Science.gov

Sample records for anticancer drug-pretreated hs-5

  1. Transgene-free human induced pluripotent stem cell line (HS5-SV.hiPS) generated from cesarean scar-derived fibroblasts.

    PubMed

    Rungsiwiwut, Ruttachuk; Pavarajarn, Wipawee; Numchaisrika, Pranee; Virutamasen, Pramuan; Pruksananonda, Kamthorn

    2016-01-01

    Transgene-free human HS5-SV.hiPS line was generated from human cesarean scar-derived fibroblasts using temperature-sensitive Sendai virus vectors carrying Oct4, Sox2, cMyc and Klf4 exogenous transcriptional factors. The viral constructs were eliminated from HS5-SV.hiPS line through heat treatment. Transgene-free HS5-SV.hiPS cells expressed pluripotent associated transcription factors Oct4, Nanog, Sox2, Rex1 and surface markers SSEA-4, TRA-1-60 and OCT4. HS5-SV.hiPS cells formed embryoid bodies and differentiated into three embryonic germ layers in vivo. HS5-SV.hiPS cells maintained their normal karyotype (46, XX) after culture for extended period. HS5-SV.hiPS displayed the similar pattern of DNA fingerprinting to the parenteral scar-derived fibroblasts. PMID:27345776

  2. Germline deletion of Igh 3′ regulatory region elements hs5-7 affects B cell specific regulation, rearrangement and insulation of the Igh locus1

    PubMed Central

    Volpi, Sabrina A.; Verma-Gaur, Jiyoti; Hassan, Rabih; Ju, Zhongliang; Roa, Sergio; Chatterjee, Sanjukta; Werling, Uwe; Hou, Harry; Will, Britta; Steidl, Ulrich; Scharff, Matthew; Edelman, Winfried; Feeney, Ann J.; Birshtein, Barbara K.

    2012-01-01

    Regulatory elements located within a ~28 kb region 3′ of the Igh gene cluster (3′ regulatory region, 3′ RR) are required for class switch recombination and for high levels of IgH expression in plasma cells. We previously defined novel DNase I hypersensitive (hs) sites, i.e. hs5-7, immediately downstream of this region. Hs5-7 contains a high density of binding sites for CTCF, a zinc finger protein associated with mammalian insulator activity and is an anchor for interactions with CTCF sites flanking the DH region. To test the function of hs5-7, we have generated mice with an 8 kb deletion encompassing all three hs elements. B cells from hs5-7 KO mice showed a modest increase in expression of the nearest downstream gene. In addition, Igh alleles in hs5-7 KO mice were in a less contracted configuration compared to WT Igh alleles and showed a two-fold increase in the usage of proximal VH7183 gene families. Hs5-7 KO mice were essentially indistinguishable from wild type mice in B cell development, allelic regulation, class switch recombination, and chromosomal looping. We conclude that hs5-7--a high-density CTCF binding region at the 3′ end of the Igh locus--impacts usage of VH regions as far as 500 kb away. PMID:22345664

  3. Anticancer chemotherapy

    SciTech Connect

    Weller, R.E.

    1988-10-01

    Despite troubled beginnings, anticancer chemotherapy has made significant contribution to the control of cancer in man, particularly within the last two decades. Early conceptual observations awakened the scientific community to the potentials of cancer chemotherapy. There are now more than 50 agents that are active in causing regression of clinical cancer. Chemotherapy's major conceptual contributions are two-fold. First, there is now proof that patients with overt metastatic disease can be cured, and second, to provide a strategy for control of occult metastases. In man, chemotherapy has resulted in normal life expectancy for some patients who have several types of metastatic cancers, including choriocarcinoma, Burkitt's lymphomas, Wilm's tumor, acute lymphocytic leukemia, Hodgkins disease, diffuse histiocytic lymphoma and others. Anticancer chemotherapy in Veterinary medicine has evolved from the use of single agents, which produce only limited remissions, to the concept of combination chemotherapy. Three basic principles underline the design of combination chemotherapy protocols; the fraction of tumor cell killed by one drug is independent of the fraction killed by another drug; drugs with different mechanisms of action should be chosen so that the antitumor effects will be additive; and since different classes of drugs have different toxicities the toxic effects will not be additive.

  4. An explanation for the ability of cytotoxic drug pretreatment to reduce bone marrow related lethality of total body irradiation (TBI). [Mice

    SciTech Connect

    Millar, J.L.; Stephens, T.C.; Wist, E.A.

    1982-03-01

    Mice given 9 to 10 Gy total body irradiation (TBI) die a hematological death 10 to 14 days after exposure. This lethality can be avoided by pretreatment with a cytotoxic drug two days before irradiation. The best example of this is seen when 200 mg/Kg cytosine arabinoside (ara-C) is given two days before TIB. Improved survival results from an earlier onset in the recovery of marrow stem cells (CFU-s) in animals given ara-C before irradiation as compared to controls. In animals given radiation alone there is a lag phase in the recovery of CFU-s; drug pretreatment before irradiation abolishes this delay. We postulate that the cells that repopulate the CFU-s compartment after irradiation are a sub-population of the DFU-s with higher self-renewal capability, lower proliferative activity and higher radiosensitivity (D/sub 0/ = .8 Gy) than the overall population D/sub 0/ = 1.1 Gy). Further, we suggest that drug pretreatment alters the radiosensitivity of the first population, increasing it temporarily to that of the overall population. This may come about by ara-C triggering these CFU-s into a relatively radioresistant phase of the cell cycle. In the Lewis lung tumor ara-C pretreatment does not affect the response to radiation, even at times when the drug promotes the early recovery of the CFU-s. It would therefore seem that a potentially useful gain in the therapeutic index may result from these findings.

  5. Anticancer activity of ferrocenylthiosemicarbazones.

    PubMed

    Sandra, Cortez-Maya; Elena, Klimova; Marcos, Flores-Alamo; Elena, Martínez-Klimova; Arturo, Ramírez-Ramírez; Teresa, Ramírez Apan; Marcos, Martínez-García

    2014-03-01

    Aliphatic and aromatic ferrocenylthiosemicarbazones were synthesized. The characterization of the new ferrocenylthiosemicarbazones was done by IR, (1)H-NMR and (13)C-NMR spectroscopy, elemental analysis and X-ray diffraction studies. The biological activity of the obtained compounds was assessed in terms of anticancer activity. Their activity against U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma), K562 (human chronic myelogenous leukemia), HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma) and SKLU-1 (human lung adenocarcinoma) cell lines was studied and compared with cisplatin. All tested compounds showed good activity and the aryl-chloro substituted ferrocenylthiosemicarbazones showed the best anticancer activity. PMID:24144199

  6. Anticancer drugs during pregnancy.

    PubMed

    Miyamoto, Shingo; Yamada, Manabu; Kasai, Yasuyo; Miyauchi, Akito; Andoh, Kazumichi

    2016-09-01

    Although cancer diagnoses during pregnancy are rare, they have been increasing with the rise in maternal age and are now a topic of international concern. In some cases, the administration of chemotherapy is unavoidable, though there is a relative paucity of evidence regarding the administration of anticancer drugs during pregnancy. As more cases have gradually accumulated and further research has been conducted, we are beginning to elucidate the appropriate timing for the administration of chemotherapy, the regimens that can be administered with relative safety, various drug options and the effects of these drugs on both the mother and fetus. However, new challenges have arisen, such as the effects of novel anticancer drugs and the desire to bear children during chemotherapy. In this review, we outline the effects of administering cytotoxic anticancer drugs and molecular targeted drugs to pregnant women on both the mother and fetus, as well as the issues regarding patients who desire to bear children while being treated with anticancer drugs. PMID:27284093

  7. Anticancer properties of lamellarins.

    PubMed

    Bailly, Christian

    2015-03-01

    In 1985 the first lamellarins were isolated from a small oceanic sea snail. Today, more than 50 lamellarins have been inventoried and numerous derivatives synthesized and tested as antiviral or anticancer agents. The lead compound in the family is lamellarin D, characterized as a potent inhibitor of both nuclear and mitochondrial topoisomerase I but also capable of directly interfering with mitochondria to trigger cancer cell death. The pharmacology and chemistry of lamellarins are discussed here and the mechanistic portrait of lamellarin D is detailed. Lamellarins frequently serve as a starting point in the design of anticancer compounds. Extensive efforts have been devoted to create novel structures as well as to improve synthetic methods, leading to lamellarins and related pyrrole-derived marine alkaloids. PMID:25706633

  8. Anticancer Properties of Lamellarins

    PubMed Central

    Bailly, Christian

    2015-01-01

    In 1985 the first lamellarins were isolated from a small oceanic sea snail. Today, more than 50 lamellarins have been inventoried and numerous derivatives synthesized and tested as antiviral or anticancer agents. The lead compound in the family is lamellarin D, characterized as a potent inhibitor of both nuclear and mitochondrial topoisomerase I but also capable of directly interfering with mitochondria to trigger cancer cell death. The pharmacology and chemistry of lamellarins are discussed here and the mechanistic portrait of lamellarin D is detailed. Lamellarins frequently serve as a starting point in the design of anticancer compounds. Extensive efforts have been devoted to create novel structures as well as to improve synthetic methods, leading to lamellarins and related pyrrole-derived marine alkaloids. PMID:25706633

  9. Sesterterpenoids with Anticancer Activity.

    PubMed

    Evidente, Antonio; Kornienko, Alexander; Lefranc, Florence; Cimmino, Alessio; Dasari, Ramesh; Evidente, Marco; Mathieu, Véronique; Kiss, Robert

    2015-01-01

    Terpenes have received a great deal of attention in the scientific literature due to complex, synthetically challenging structures and diverse biological activities associated with this class of natural products. Based on the number of C5 isoprene units they are generated from, terpenes are classified as hemi- (C5), mono- (C10), sesqui- (C15), di- (C20), sester- (C25), tri (C30), and tetraterpenes (C40). Among these, sesterterpenes and their derivatives known as sesterterpenoids, are ubiquitous secondary metabolites in fungi, marine organisms, and plants. Their structural diversity encompasses carbotricyclic ophiobolanes, polycyclic anthracenones, polycyclic furan-2-ones, polycyclic hydroquinones, among many other carbon skeletons. Furthermore, many of them possess promising biological activities including cytotoxicity and the associated potential as anticancer agents. This review discusses the natural sources that produce sesterterpenoids, provides sesterterpenoid names and their chemical structures, biological properties with the focus on anticancer activities and literature references associated with these metabolites. A critical summary of the potential of various sesterterpenoids as anticancer agents concludes the review. PMID:26295461

  10. Sesterterpenoids with Anticancer Activity

    PubMed Central

    Evidente, Antonio; Kornienko, Alexander; Lefranc, Florence; Cimmino, Alessio; Dasari, Ramesh; Evidente, Marco; Mathieu, Véronique; Kiss, Robert

    2016-01-01

    Terpenes have received a great deal of attention in the scientific literature due to complex, synthetically challenging structures and diverse biological activities associated with this class of natural products. Based on the number of C5 isoprene units they are generated from, terpenes are classified as hemi- (C5), mono- (C10), sesqui- (C15), di- (C20), sester- (C25), tri (C30), and tetraterpenes (C40). Among these, sesterterpenes and their derivatives known as sesterterpenoids, are ubiquitous secondary metabolites in fungi, marine organisms, and plants. Their structural diversity encompasses carbotricyclic ophiobolanes, polycyclic anthracenones, polycyclic furan-2-ones, polycyclic hydroquinones, among many other carbon skeletons. Furthermore, many of them possess promising biological activities including cytotoxicity and the associated potential as anticancer agents. This review discusses the natural sources that produce sesterterpenoids, provides sesterterpenoid names and their chemical structures, biological properties with the focus on anticancer activities and literature references associated with these metabolites. A critical summary of the potential of various sesterterpenoids as anticancer agents concludes the review. PMID:26295461

  11. Melatonin Anticancer Effects: Review

    PubMed Central

    Di Bella, Giuseppe; Mascia, Fabrizio; Gualano, Luciano; Di Bella, Luigi

    2013-01-01

    Melatonin (N-acetyl-5-methoxytryptamine, MLT), the main hormone produced by the pineal gland, not only regulates circadian rhythm, but also has antioxidant, anti-ageing and immunomodulatory properties. MLT plays an important role in blood composition, medullary dynamics, platelet genesis, vessel endothelia, and in platelet aggregation, leukocyte formula regulation and hemoglobin synthesis. Its significant atoxic, apoptotic, oncostatic, angiogenetic, differentiating and antiproliferative properties against all solid and liquid tumors have also been documented. Thanks, in fact, to its considerable functional versatility, MLT can exert both direct and indirect anticancer effects in factorial synergy with other differentiating, antiproliferative, immunomodulating and trophic molecules that form part of the anticancer treatment formulated by Luigi Di Bella (Di Bella Method, DBM: somatostatin, retinoids, ascorbic acid, vitamin D3, prolactin inhibitors, chondroitin-sulfate). The interaction between MLT and the DBM molecules counters the multiple processes that characterize the neoplastic phenotype (induction, promotion, progression and/or dissemination, tumoral mutation). All these particular characteristics suggest the use of MLT in oncological diseases. PMID:23348932

  12. Anticancer mechanisms of cannabinoids

    PubMed Central

    Velasco, G.; Sánchez, C.; Guzmán, M.

    2016-01-01

    In addition to the well-known palliative effects of cannabinoids on some cancer-associated symptoms, a large body of evidence shows that these molecules can decrease tumour growth in animal models of cancer. They do so by modulating key cell signalling pathways involved in the control of cancer cell proliferation and survival. In addition, cannabinoids inhibit angiogenesis and decrease metastasis in various tumour types in laboratory animals. In this review, we discuss the current understanding of cannabinoids as antitumour agents, focusing on recent discoveries about their molecular mechanisms of action, including resistance mechanisms and opportunities for their use in combination therapy. Those observations have already contributed to the foundation for the development of the first clinical studies that will analyze the safety and potential clinical benefit of cannabinoids as anticancer agents. PMID:27022311

  13. [Update on anticancer drugs].

    PubMed

    Roila, Fausto; Ballatori, Enzo

    2014-01-01

    Update on anticancer drugs. A thorough review of the clinical trials published over the last two years in major medical and oncological journals on a comprehensive spectrum of oncological conditions aims to provide at the same time (as the authors are well known representatives of the critical and complementary competences of clinical care and research methodology) an interesting double opportunity of update on: a) what is truly (i.e.documented and reliable) innovative and deserves adoption in daily care,vs what is either purely suggestive or clearly misleading; b) what are the methological, concrete, simple rules to observe in a field which is certainly moving fast, but at the same time generates highly controversial behaviors in research as well as in daily practices. The accompanying editorial (pag 60-63) further illustrates the way and the yield of using this material and approach both in the areas of nursing sciences and practice. PMID:25002061

  14. Microbiome and Anticancer Immunosurveillance.

    PubMed

    Zitvogel, Laurence; Ayyoub, Maha; Routy, Bertrand; Kroemer, Guido

    2016-04-01

    Anticancer immune responses can be considered a desirable form of autoimmunity that may be profoundly shaped by the microbiome. Here, we discuss evidence for the microbiome's influence on anti-tumor immunosurveillance, including those that are indirect and can act at a distance, and we put forward hypotheses regarding mechanisms of how these effects are implemented. These may involve cross-reactivity between microbial and tumor antigens shaping T cell repertoires and/or microbial products stimulating pattern recognition receptors that influence the type and intensity of immune responses. Understanding how the microbiome impacts natural cancer immunosurveillance as well as treatment-induced immune responses will pave the way for more effective therapies and prophylactics. PMID:27058662

  15. Classification of current anticancer immunotherapies.

    PubMed

    Galluzzi, Lorenzo; Vacchelli, Erika; Bravo-San Pedro, José-Manuel; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P; Coussens, Lisa; Dhodapkar, Madhav V; Eggermont, Alexander M; Fearon, Douglas T; Fridman, Wolf H; Fučíková, Jitka; Gabrilovich, Dmitry I; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M; Klein, Eva; Knuth, Alexander; Lewis, Claire E; Liblau, Roland; Lotze, Michael T; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J; Mittendorf, Elizabeth A; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E; Pienta, Kenneth J; Porgador, Angel; Prendergast, George C; Rabinovich, Gabriel A; Restifo, Nicholas P; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J; Speiser, Daniel E; Spisek, Radek; Srivastava, Pramod K; Talmadge, James E; Tartour, Eric; Van Der Burg, Sjoerd H; Van Den Eynde, Benoît J; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S; Whiteside, Theresa L; Wolchok, Jedd D; Zitvogel, Laurence; Zou, Weiping; Kroemer, Guido

    2014-12-30

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into "passive" and "active" based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519

  16. Classification of current anticancer immunotherapies

    PubMed Central

    Vacchelli, Erika; Pedro, José-Manuel Bravo-San; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N.; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P.; Coussens, Lisa; Dhodapkar, Madhav V.; Eggermont, Alexander M.; Fearon, Douglas T.; Fridman, Wolf H.; Fučíková, Jitka; Gabrilovich, Dmitry I.; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M.; Klein, Eva; Knuth, Alexander; Lewis, Claire E.; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J.; Mittendorf, Elizabeth A.; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E.; Pienta, Kenneth J.; Porgador, Angel; Prendergast, George C.; Rabinovich, Gabriel A.; Restifo, Nicholas P.; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J.; Speiser, Daniel E.; Spisek, Radek; Srivastava, Pramod K.; Talmadge, James E.; Tartour, Eric; Van Der Burg, Sjoerd H.; Van Den Eynde, Benoît J.; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S.; Whiteside, Theresa L.; Wolchok, Jedd D.; Zitvogel, Laurence; Zou, Weiping

    2014-01-01

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519

  17. Anticancer agents from marine sponges.

    PubMed

    Ye, Jianjun; Zhou, Feng; Al-Kareef, Ammar M Q; Wang, Hong

    2015-01-01

    Marine sponges are currently one of the richest sources of anticancer active compounds found in the marine ecosystems. More than 5300 different known metabolites are from sponges and their associated microorganisms. To survive in the complicated marine environment, most of the sponge species have evolved chemical means to defend against predation. Such chemical adaptation produces many biologically active secondary metabolites including anticancer agents. This review highlights novel secondary metabolites in sponges which inhibited diverse cancer species in the recent 5 years. These natural products of marine sponges are categorized based on various chemical characteristics. PMID:25402340

  18. Anticancer Activity of Amauroderma rude

    PubMed Central

    Yang, Xiangling; Li, Haoran; Li, Xiang-Min; Pan, Hong-Hui; Cai, Mian-Hua; Zhong, Hua-Mei; Yang, Burton B.

    2013-01-01

    More and more medicinal mushrooms have been widely used as a miraculous herb for health promotion, especially by cancer patients. Here we report screening thirteen mushrooms for anti-cancer cell activities in eleven different cell lines. Of the herbal products tested, we found that the extract of Amauroderma rude exerted the highest activity in killing most of these cancer cell lines. Amauroderma rude is a fungus belonging to the Ganodermataceae family. The Amauroderma genus contains approximately 30 species widespread throughout the tropical areas. Since the biological function of Amauroderma rude is unknown, we examined its anti-cancer effect on breast carcinoma cell lines. We compared the anti-cancer activity of Amauroderma rude and Ganoderma lucidum, the most well-known medicinal mushrooms with anti-cancer activity and found that Amauroderma rude had significantly higher activity in killing cancer cells than Ganoderma lucidum. We then examined the effect of Amauroderma rude on breast cancer cells and found that at low concentrations, Amauroderma rude could inhibit cancer cell survival and induce apoptosis. Treated cancer cells also formed fewer and smaller colonies than the untreated cells. When nude mice bearing tumors were injected with Amauroderma rude extract, the tumors grew at a slower rate than the control. Examination of these tumors revealed extensive cell death, decreased proliferation rate as stained by Ki67, and increased apoptosis as stained by TUNEL. Suppression of c-myc expression appeared to be associated with these effects. Taken together, Amauroderma rude represented a powerful medicinal mushroom with anti-cancer activities. PMID:23840494

  19. Anticancer Molecular Mechanisms of Resveratrol

    PubMed Central

    Varoni, Elena M.; Lo Faro, Alfredo Fabrizio; Sharifi-Rad, Javad; Iriti, Marcello

    2016-01-01

    Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Though it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin, and developmental pathways); signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; and immune surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multidrug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment. PMID:27148534

  20. Copper complexes as anticancer agents.

    PubMed

    Marzano, Cristina; Pellei, Maura; Tisato, Francesco; Santini, Carlo

    2009-02-01

    Metal-based antitumor drugs play a relevant role in antiblastic chemotherapy. Cisplatin is regarded as one of the most effective drugs, even if severe toxicities and drug resistance phenomena limit its clinical use. Therefore, in recent years there has been a rapid expansion in research and development of novel metal-based anticancer drugs to improve clinical effectiveness, to reduce general toxicity and to broaden the spectrum of activity. The variety of metal ion functions in biology has stimulated the development of new metallodrugs other than Pt drugs with the aim to obtain compounds acting via alternative mechanisms of action. Among non-Pt compounds, copper complexes are potentially attractive as anticancer agents. Actually, since many years a lot of researches have actively investigated copper compounds based on the assumption proposal that endogenous metals may be less toxic. It has been established that the properties of copper-coordinated compounds are largely determined by the nature of ligands and donor atoms bound to the metal ion. In this review, the most remarkable achievements in the design and development of copper(I, II) complexes as antitumor agents are discussed. Special emphasis has been focused on the identification of structure-activity relationships for the different classes of copper(I,II) complexes. This work was motivated by the observation that no comprehensive surveys of copper complexes as anticancer agents were available in the literature. Moreover, up to now, despite the enormous efforts in synthesizing different classes of copper complexes, very few data concerning the molecular basis of the mechanisms underlying their antitumor activity are available. This overview, collecting the most significant strategies adopted in the last ten years to design promising anticancer copper(I,II) compounds, would be a help to the researchers working in this field. PMID:19199864

  1. Heterocyclic Scaffolds: Centrality in Anticancer Drug Development.

    PubMed

    Ali, Imran; Lone, Mohammad Nadeem; Al-Othman, Zeid A; Al-Warthan, Abdulrahman; Sanagi, Mohd Marsin

    2015-01-01

    Cancer has been cursed for human beings for long time. Millions people lost their lives due to cancer. Despite of the several anticancer drugs available, cancer cannot be cured; especially at the late stages without showing any side effect. Heterocyclic compounds exhibit exciting medicinal properties including anticancer. Some market selling heterocyclic anticancer drugs include 5-flourouracil, methortrexate, doxorubicin, daunorubicin, etc. Besides, some natural products such as vinblastine and vincristine are also used as anticancer drugs. Overall, heterocyclic moeities have always been core parts in the expansion of anticancer drugs. This article describes the importance of heterocyclic nuclei in the development of anticancer drugs. Besides, the attempts have been made to discuss both naturally occurring and synthetic heterocyclic compounds as anticancer agents. In addition, some market selling anticancer heterocyclic compounds have been described. Moreover, the efforts have been made to discuss the mechanisms of actions and recent advances in heterocyclic compounds as anticancer agents. The current challenges and future prospectives of heterocyclic compounds have also been discussed. Finally, the suggestions for syntheses of effective, selective, fast and human friendly anticancer agents are discussed into the different sections. PMID:25751009

  2. Heterocyclic chalcone analogues as potential anticancer agents.

    PubMed

    Sharma, Vikas; Kumar, Vipin; Kumar, Pradeep

    2013-03-01

    Chalcones, aromatic ketones and enones acting as the precursor for flavonoids such as Quercetin, are known for their anticancer effects. Although, parent chalcones consist of two aromatic rings joined by a three-carbon α,β-unsaturated carbonyl system, various synthetic compounds possessing heterocyclic rings like pyrazole, indole etc. are well known and proved to be effective anticancer agents. In addition to their use as anticancer agents in cancer cell lines, heterocyclic analogues are reported to be effective even against resistant cell lines. In this connection, we hereby highlight the potential of various heterocyclic chalcone analogues as anticancer agents with a brief summary about therapeutic potential of chalcones, mechanism of anticancer action of various chalcone analogues, and current and future prospects related to the chalcones-derived anticancer research. Furthermore, some key points regarding chalcone analogues have been reviewed by analyzing their medicinal properties. PMID:22721390

  3. Ganoderma: insights into anticancer effects.

    PubMed

    Kladar, Nebojša V; Gavarić, Neda S; Božin, Biljana N

    2016-09-01

    The genus Ganoderma includes about 80 species growing on cut or rotten trees. The most commonly used species is Ganoderma ludicum. Biomolecules responsible for the health benefits of Ganoderma are polysaccharides with an immunostimulative effect and triterpenes with a cytotoxic action. For more than 2000 years, it has been used traditionally in the treatment of various pathological conditions and recently, its immunoregulatory, antiviral, antibacterial, antioxidant, hepatoprotective, and anticancer potential has been confirmed. A wide range of Ganoderma extracts and preparations arrest the cell cycle in different phases and consequently inhibit the growth of various types of cancer cells. Extracts containing polysaccharides stimulate immunological reactions through the production of various cytokines and mobilization of immune system cells. In-vivo studies have confirmed the anticancer potential and the antimetastatic effects of compounds originating from Ganoderma. There is also evidence for the chemopreventive action of Ganoderma extracts in bladder, prostate, liver, and breast cancer. The results of clinical studies suggest the combined use of G. lucidum with conventional chemotherapy/radiotherapy, but the methodology and the results of these studies are being questioned. Therefore, a constant need for new clinical trials exists. PMID:26317382

  4. Novel antibodies as anticancer agents.

    PubMed

    Zafir-Lavie, I; Michaeli, Y; Reiter, Y

    2007-05-28

    In recent years antibodies, whether generated by traditional hybridoma technology or by recombinant DNA strategies, have evolved from Paul Ehrlich's 'magic bullets' to a modern age 'guided missile'. In the recent years of immunologic research, we are witnessing development in the fields of antigen screening and protein engineering in order to create specific anticancer remedies. The developments in the field of recombinant DNA, protein engineering and cancer biology have let us gain insight into many cancer-related mechanisms. Moreover, novel techniques have facilitated tools allowing unique distinction between malignantly transformed cells, and regular ones. This understanding has paved the way for the rational design of a new age of pharmaceuticals: monoclonal antibodies and their fragments. Antibodies can select antigens on both a specific and a high-affinity account, and further implementation of these qualities is used to target cancer cells by specifically identifying exogenous antigens of cancer cell populations. The structure of the antibody provides plasticity resonating from its functional sites. This review will screen some of the many novel antibodies and antibody-based approaches that are being currently developed for clinical applications as the new generation of anticancer agents. PMID:17530025

  5. Bacteriocins as Potential Anticancer Agents

    PubMed Central

    Kaur, Sumanpreet; Kaur, Sukhraj

    2015-01-01

    Cancer remains one of the leading causes of deaths worldwide, despite advances in its treatment and detection. The conventional chemotherapeutic agents used for the treatment of cancer have non-specific toxicity toward normal body cells that cause various side effects. Secondly, cancer cells are known to develop chemotherapy resistance in due course of treatment. Thus, the demand for novel anti-cancer agents is increasing day by day. Some of the experimental studies have reported the therapeutic potential of bacteriocins against various types of cancer cell lines. Bacteriocins are ribosomally-synthesized cationic peptides secreted by almost all groups of bacteria. Some bacteriocins have shown selective cytotoxicity toward cancer cells as compared to normal cells. This makes them promising candidates for further investigation and clinical trials. In this review article, we present the overview of the various cancer cell-specific cytotoxic bacteriocins, their mode of action and efficacies. PMID:26617524

  6. [Anticancer propaganda: myth or reality?].

    PubMed

    Demin, E V; Merabishvili, V M

    2014-01-01

    The authors raise a very important problem of anticancer propaganda aimed at the early detection of cancer to be solved nowadays by means of screening and constructive interaction between oncologists and the public. To increase the level of knowledge of the population in this area it is necessary to expand the range of its adequate awareness of tumor diseases. Only joint efforts can limit the destructive effect of cancer on people's minds, so that every person would be responsible for his own health, clearly understanding the advantages of early visit to a doctor. This once again highlights the need of educational work with the public, motivational nature of which allows strengthening the value of screening in the whole complex of measures to fight cancer. PMID:24772625

  7. Plant Antimicrobial Peptides as Potential Anticancer Agents

    PubMed Central

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy. PMID:25815333

  8. Anticancer agent-based marine natural products and related compounds.

    PubMed

    Chen, Jian-Wei; Wu, Qi-Hao; Rowley, David C; Al-Kareef, Ammar M Q; Wang, Hong

    2015-01-01

    Marine natural products constitute a huge reservoir of anticancer agents. Consequently during the past decades, several marine anticancer compounds have been isolated, identified, and approved for anticancer treatment or are under trials. In this article the sources, structure, bioactivities, mode of actions, and analogs of some promising marine and derived anticancer compounds have been discussed. PMID:25559315

  9. Anticancer Properties of Capsaicin Against Human Cancer.

    PubMed

    Clark, Ruth; Lee, Seong-Ho

    2016-03-01

    There is persuasive epidemiological and experimental evidence that dietary phytochemicals have anticancer activity. Capsaicin is a bioactive phytochemical abundant in red and chili peppers. While the preponderance of the data strongly indicates significant anticancer benefits of capsaicin, more information to highlight molecular mechanisms of its action is required to improve our knowledge to be able to propose a potential therapeutic strategy for use of capsaicin against cancer. Capsaicin has been shown to alter the expression of several genes involved in cancer cell survival, growth arrest, angiogenesis and metastasis. Recently, many research groups, including ours, found that capsaicin targets multiple signaling pathways, oncogenes and tumor-suppressor genes in various types of cancer models. In this review article, we highlight multiple molecular targets responsible for the anticancer mechanism of capsaicin. In addition, we deal with the benefits of combinational use of capsaicin with other dietary or chemotherapeutic compounds, focusing on synergistic anticancer activities. PMID:26976969

  10. Glutamic acid as anticancer agent: An overview

    PubMed Central

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed. PMID:24227952

  11. Serendipity in anticancer drug discovery.

    PubMed

    Hargrave-Thomas, Emily; Yu, Bo; Reynisson, Jóhannes

    2012-01-10

    It was found that the discovery of 5.8% (84/1437) of all drugs on the market involved serendipity. Of these drugs, 31 (2.2%) were discovered following an incident in the laboratory and 53 (3.7%) were discovered in a clinical setting. In addition, 263 (18.3%) of the pharmaceuticals in clinical use today are chemical derivatives of the drugs discovered with the aid of serendipity. Therefore, in total, 24.1% (347/1437) of marketed drugs can be directly traced to serendipitous events confirming the importance of this elusive phenomenon. In the case of anticancer drugs, 35.2% (31/88) can be attributed to a serendipitous event, which is somewhat larger than for all drugs. The therapeutic field that has benefited the most from serendipity are central nervous system active drugs reflecting the difficulty in designing compounds to pass the blood-brain-barrier and the lack of laboratory-based assays for many of the diseases of the mind. PMID:22247822

  12. Serendipity in anticancer drug discovery

    PubMed Central

    Hargrave-Thomas, Emily; Yu, Bo; Reynisson, Jóhannes

    2012-01-01

    It was found that the discovery of 5.8% (84/1437) of all drugs on the market involved serendipity. Of these drugs, 31 (2.2%) were discovered following an incident in the laboratory and 53 (3.7%) were discovered in a clinical setting. In addition, 263 (18.3%) of the pharmaceuticals in clinical use today are chemical derivatives of the drugs discovered with the aid of serendipity. Therefore, in total, 24.1% (347/1437) of marketed drugs can be directly traced to serendipitous events confirming the importance of this elusive phenomenon. In the case of anticancer drugs, 35.2% (31/88) can be attributed to a serendipitous event, which is somewhat larger than for all drugs. The therapeutic field that has benefited the most from serendipity are central nervous system active drugs reflecting the difficulty in designing compounds to pass the blood-brain-barrier and the lack of laboratory-based assays for many of the diseases of the mind. PMID:22247822

  13. Novel anticancer therapeutics targeting telomerase.

    PubMed

    Ruden, Maria; Puri, Neelu

    2013-08-01

    Telomeres are protective caps at the ends of human chromosomes. Telomeres shorten with each successive cell division in normal human cells whereas, in tumors, they are continuously elongated by human telomerase reverse transcriptase (hTERT). Telomerase is overexpressed in 80-95% of cancers and is present in very low levels or is almost undetectable in normal cells. Because telomerase plays a pivotal role in cancer cell growth it may serve as an ideal target for anticancer therapeutics. Inhibition of telomerase may lead to a decrease of telomere length resulting in cell senescence and apoptosis in telomerase positive tumors. Several strategies of telomerase inhibition are reviewed, including small molecule inhibitors, antisense oligonucleotides, immunotherapies and gene therapies, targeting the hTERT or the ribonucleoprotein subunit hTER. G-quadruplex stabilizers, tankyrase and HSP90 inhibitors targeting telomere and telomerase assembly, and T-oligo approach are also covered. Based on this review, the most promising current telomerase targeting therapeutics are the antisense oligonucleotide inhibitor GRN163L and immunotherapies that use dendritic cells (GRVAC1), hTERT peptide (GV1001) or cryptic peptides (Vx-001). Most of these agents have entered phase I and II clinical trials in patients with various tumors, and have shown good response rates as evidenced by a reduction in tumor cell growth, increased overall disease survival, disease stabilization in advanced staged tumors and complete/partial responses. Most therapeutics have shown to be more effective when used in combination with standard therapies, resulting in concomitant telomere shortening and tumor mass shrinkage, as well as preventing tumor relapse and resistance to single agent therapy. PMID:22841437

  14. Tocotrienol as a potential anticancer agent.

    PubMed

    Ling, Ming T; Luk, Sze U; Al-Ejeh, Fares; Khanna, Kum K

    2012-02-01

    Vitamin E is composed of two structurally similar compounds: tocopherols (TPs) and tocotrienols (T3). Despite being overshadowed by TP over the past few decades, T3 is now considered to be a promising anticancer agent due to its potent effects against a wide range of cancers. A growing body of evidence suggests that in addition to its antioxidative and pro-apoptotic functions, T3 possesses a number of anticancer properties that make it superior to TP. These include the inhibition of epithelial-to-mesenchymal transitions, the suppression of vascular endothelial growth factor tumor angiogenic pathway and the induction of antitumor immunity. More recently, T3, but not TP, has been shown to have chemosensitization and anti-cancer stem cell effects, further demonstrating the potential of T3 as an effective anticancer therapeutic agent. With most of the previous clinical studies on TP producing disappointing results, research has now focused on testing T3 as the next generation vitamin E for chemoprevention and cancer treatment. This review will summarize recent developments in the understanding of the anticancer effects of T3. We will also discuss current progress in clinical trials involving T3 as an adjuvant to conventional cancer therapy. PMID:22095072

  15. Anticancer activity of Carica papaya: a review.

    PubMed

    Nguyen, Thao T T; Shaw, Paul N; Parat, Marie-Odile; Hewavitharana, Amitha K

    2013-01-01

    Carica papaya is widely cultivated in tropical and subtropical countries and is used as food as well as traditional medicine to treat a range of diseases. Increasing anecdotal reports of its effects in cancer treatment and prevention, with many successful cases, have warranted that these pharmacological properties be scientifically validated. A bibliographic search was conducted using the key words "papaya", "anticancer", and "antitumor" along with cross-referencing. No clinical or animal cancer studies were identified and only seven in vitro cell-culture-based studies were reported; these indicate that C. papaya extracts may alter the growth of several types of cancer cell lines. However, many studies focused on specific compounds in papaya and reported bioactivity including anticancer effects. This review summarizes the results of extract-based or specific compound-based investigations and emphasizes the aspects that warrant future research to explore the bioactives in C. papaya for their anticancer activities. PMID:23212988

  16. Development of anticancer agents: wizardry with osmium.

    PubMed

    Hanif, Muhammad; Babak, Maria V; Hartinger, Christian G

    2014-10-01

    Platinum compounds are one of the pillars of modern cancer chemotherapy. The apparent disadvantages of existing chemotherapeutics have led to the development of novel anticancer agents with alternative modes of action. Many complexes of the heavy metal osmium (Os) are potent growth inhibitors of human cancer cells and are active in vivo, often superior or comparable to cisplatin, as the benchmark metal-based anticancer agent, or clinically tested ruthenium (Ru) drug candidates. Depending on the choice of ligand system, osmium compounds exhibit diverse modes of action, including redox activation, DNA targeting or inhibition of protein kinases. In this review, we highlight recent advances in the development of osmium anticancer drug candidates and discuss their cellular mechanisms of action. PMID:24955838

  17. Studies with Myrtus communis L.: Anticancer properties

    PubMed Central

    Ogur, Recai

    2014-01-01

    Myrtus communis (MC) L. is a well-known Mediterranean plant with important cultural significance in this region. In ancient times, MC was accepted as a symbol of immortality. Maybe due to this belief, it is used during cemetery visits in some regions. Although it is a well-known plant in cosmetics, and there is a lot of studies about its different medical properties, anticancer studies performed using its different extracts or oils are not so much, but increasing. We collected these anticancer property-related studies in this review. PMID:26401362

  18. Studies with Myrtus communis L.: Anticancer properties.

    PubMed

    Ogur, Recai

    2014-01-01

    Myrtus communis (MC) L. is a well-known Mediterranean plant with important cultural significance in this region. In ancient times, MC was accepted as a symbol of immortality. Maybe due to this belief, it is used during cemetery visits in some regions. Although it is a well-known plant in cosmetics, and there is a lot of studies about its different medical properties, anticancer studies performed using its different extracts or oils are not so much, but increasing. We collected these anticancer property-related studies in this review. PMID:26401362

  19. Development of Synthetic Lethality Anticancer Therapeutics

    PubMed Central

    2015-01-01

    The concept of synthetic lethality (the creation of a lethal phenotype from the combined effects of mutations in two or more genes) has recently been exploited in various efforts to develop new genotype-selective anticancer therapeutics. These efforts include screening for novel anticancer agents, identifying novel therapeutic targets, characterizing mechanisms of resistance to targeted therapy, and improving efficacies through the rational design of combination therapy. This review discusses recent developments in synthetic lethality anticancer therapeutics, including poly ADP-ribose polymerase inhibitors for BRCA1- and BRCA2-mutant cancers, checkpoint inhibitors for p53 mutant cancers, and small molecule agents targeting RAS gene mutant cancers. Because cancers are caused by mutations in multiple genes and abnormalities in multiple signaling pathways, synthetic lethality for a specific tumor suppressor gene or oncogene is likely cell context-dependent. Delineation of the mechanisms underlying synthetic lethality and identification of treatment response biomarkers will be critical for the success of synthetic lethality anticancer therapy. PMID:24893124

  20. Anticancer oral therapy: emerging related issues.

    PubMed

    Banna, Giuseppe Luigi; Collovà, Elena; Gebbia, Vittorio; Lipari, Helga; Giuffrida, Pietro; Cavallaro, Sebastiano; Condorelli, Rosaria; Buscarino, Calogero; Tralongo, Paolo; Ferraù, Francesco

    2010-12-01

    The use of oral anticancer drugs has shown a steady increase. Most patients prefer anticancer oral therapy to intravenous treatment primarily for the convenience of a home-based therapy, although they require that the efficacy of oral therapy must be equivalent and toxicity not superior than those expected with the intravenous treatment. A better patient compliance, drug tolerability, convenience and possible better efficacy for oral therapy as compared to intravenous emerge as the major reasons to use oral anticancer agents among oncologists. Inter- and intra-individual pharmacokinetic variations in the bioavailability of oral anticancer drugs may be more relevant than for intravenous agents. Compliance is particularly important for oral therapy because it determines the dose-intensity of the treatment and ultimately treatment efficacy and toxicity. Patient stands as the most important determinant of compliance. Possible measures for an active and safe administration of oral therapy include a careful preliminary medical evaluation and selection of patients based on possible barriers to an adequate compliance, pharmacologic issues, patient-focused education, an improvement of the accessibility to healthcare service, as well as the development of home-care nursing symptom-focused interventions. Current evidences show similar quality of life profile between oral and intravenous treatments, although anticancer oral therapy seems to be more convenient in terms of administration and reduced time lost for work or other activities. Regarding cost-effectiveness, current evidences are in favor of oral therapy, mainly due to reduced need of visits and/or day in hospital for the administration of the drug and/or the management of adverse events. PMID:20570443

  1. Anticancer Effect of Lycopene in Gastric Carcinogenesis.

    PubMed

    Kim, Mi Jung; Kim, Hyeyoung

    2015-06-01

    Gastric cancer ranks as the most common cancer and the second leading cause of cancer-related death in the world. Risk factors of gastric carcinogenesis include oxidative stress, DNA damage, Helicobacter pylori infection, bad eating habits, and smoking. Since oxidative stress is related to DNA damage, smoking, and H. pylori infection, scavenging of reactive oxygen species may be beneficial for prevention of gastric carcinogenesis. Lycopene, one of the naturally occurring carotenoids, has unique structural and chemical features that contributes to a potent antioxidant activity. It shows a potential anticancer activity and reduces gastric cancer incidence. This review will summarize anticancer effect and mechanism of lycopene on gastric carcinogenesis based on the recent experimental and clinical studies. PMID:26151041

  2. Caloric Restriction Mimetics Enhance Anticancer Immunosurveillance.

    PubMed

    Pietrocola, Federico; Pol, Jonathan; Vacchelli, Erika; Rao, Shuan; Enot, David P; Baracco, Elisa E; Levesque, Sarah; Castoldi, Francesca; Jacquelot, Nicolas; Yamazaki, Takahiro; Senovilla, Laura; Marino, Guillermo; Aranda, Fernando; Durand, Sylvère; Sica, Valentina; Chery, Alexis; Lachkar, Sylvie; Sigl, Verena; Bloy, Norma; Buque, Aitziber; Falzoni, Simonetta; Ryffel, Bernhard; Apetoh, Lionel; Di Virgilio, Francesco; Madeo, Frank; Maiuri, Maria Chiara; Zitvogel, Laurence; Levine, Beth; Penninger, Josef M; Kroemer, Guido

    2016-07-11

    Caloric restriction mimetics (CRMs) mimic the biochemical effects of nutrient deprivation by reducing lysine acetylation of cellular proteins, thus triggering autophagy. Treatment with the CRM hydroxycitrate, an inhibitor of ATP citrate lyase, induced the depletion of regulatory T cells (which dampen anticancer immunity) from autophagy-competent, but not autophagy-deficient, mutant KRAS-induced lung cancers in mice, thereby improving anticancer immunosurveillance and reducing tumor mass. Short-term fasting or treatment with several chemically unrelated autophagy-inducing CRMs, including hydroxycitrate and spermidine, improved the inhibition of tumor growth by chemotherapy in vivo. This effect was only observed for autophagy-competent tumors, depended on the presence of T lymphocytes, and was accompanied by the depletion of regulatory T cells from the tumor bed. PMID:27411589

  3. Quinonaphthothiazines, syntheses, structures and anticancer activities

    NASA Astrophysics Data System (ADS)

    Jeleń, M.; Pluta, K.; Suwińska, K.; Morak-Młodawska, B.; Latocha, M.; Shkurenko, A.

    2015-11-01

    Two new types of pentacyclic azaphenothiazines being quinonaphthothiazines were obtaining from the reactions of dichlorodiquinolinyl disulfide with 1- and 2-naphthylamines. As the reactions could proceed in many ways, the proper structure elucidation was crucial. The structure determination was based on the 2D NMR spectra (NOESY, HSQC and HMBC) of the methyl derivatives. The final structure evidences came from X-ray analysis of the monocrystals. The new quinonaphthothiazines represent angularly fused pentacyclic ring systems which is folded along the N-S axis. The parent NH-compounds were transformed into the N-derivatives. Some quinonaphthothiazines exhibited promising anticancer activity against glioblastoma SNB-19, melanoma C-32 and human ductal breast epithelial tumor T47D cell lines. The anticancer activity dependent on the nature of the substituents and the ring fusion between the thiazine and naphthalene moieties. Two compounds were more active than the reference drug, cisplatin.

  4. Anticancer Effect of Lycopene in Gastric Carcinogenesis

    PubMed Central

    Kim, Mi Jung; Kim, Hyeyoung

    2015-01-01

    Gastric cancer ranks as the most common cancer and the second leading cause of cancer-related death in the world. Risk factors of gastric carcinogenesis include oxidative stress, DNA damage, Helicobacter pylori infection, bad eating habits, and smoking. Since oxidative stress is related to DNA damage, smoking, and H. pylori infection, scavenging of reactive oxygen species may be beneficial for prevention of gastric carcinogenesis. Lycopene, one of the naturally occurring carotenoids, has unique structural and chemical features that contributes to a potent antioxidant activity. It shows a potential anticancer activity and reduces gastric cancer incidence. This review will summarize anticancer effect and mechanism of lycopene on gastric carcinogenesis based on the recent experimental and clinical studies. PMID:26151041

  5. Tubulins - the target for anticancer therapy.

    PubMed

    Vindya, N G; Sharma, Nishant; Yadav, Mukesh; Ethiraj, K R

    2015-01-01

    Tubulin has picked up great focus as a major target in drug discovery and consequently, tubulin inhibitors have pulling in a considerable attention as anticancer agents. Numerable naturally occurring agents have focused on tubulin system act as an imperative target of cancer chemotherapy. Substantial number of tubulin inhibitors has been discovered so far and these agents are classified as indicated by their interaction. They are colchicine site binder, vinca- alkaloid related drugs and those interacting with the Taxol binding site and functioning as stabilising agents. We review the recent advances in the advancement of tubulin interfering agents and will render the current trend in the improvement of tubulin inhibitors as anticancer agents. PMID:25579568

  6. Spirooxindoles: Promising scaffolds for anticancer agents.

    PubMed

    Yu, Bin; Yu, De-Quan; Liu, Hong-Min

    2015-06-01

    The search for novel anticancer agents with more selectivity and lower toxicity continues to be an area of intensive investigation. The unique structural features of spirooxindoles together with diverse biological activities have made them privileged structures in new drug discovery. Among them, spiro-pyrrolidinyl oxindoles have been extensively studied as potent inhibitors of p53-MDM2 interaction, finally leading to the identification of MI-888, which could achieve rapid, complete and durable tumor regression in xenograft models of human cancer with oral administration and is in advanced preclinical research for cancer therapy. This review highlights recent progress of biologically active spirooxindoles for their anticancer potentials, mainly focusing on the discussions of SARs and modes of action. This article also aims to discuss potential further directions on the development of more potent analogues for cancer therapy. PMID:24994707

  7. Nail toxicities induced by systemic anticancer treatments.

    PubMed

    Robert, Caroline; Sibaud, Vincent; Mateus, Christina; Verschoore, Michèle; Charles, Cécile; Lanoy, Emilie; Baran, Robert

    2015-04-01

    Patients treated with systemic anticancer drugs often show changes to their nails, which are usually well tolerated and disappear on cessation of treatment. However, some nail toxicities can cause pain and functional impairment and thus substantially affect a patient's quality of life, especially if they are given taxanes or EGFR inhibitors. These nail toxicities can affect both the nail plate and bed, and might present as melanonychia, leukonychia, onycholysis, onychomadesis, Beau's lines, or onychorrhexis, as frequently noted with conventional chemotherapies. Additionally, the periungual area (perionychium) of the nail might be affected by paronychia or pyogenic granuloma, especially in patients treated with drugs targeting EGFR or MEK. We review the nail changes induced by conventional chemotherapies and those associated with the use of targeted anticancer drugs and discuss preventive or curative options. PMID:25846098

  8. 'Smartening' anticancer therapeutic nanosystems using biomolecules.

    PubMed

    Núñez-Lozano, Rebeca; Cano, Manuel; Pimentel, Belén; de la Cueva-Méndez, Guillermo

    2015-12-01

    To be effective, anticancer agents must induce cell killing in a selective manner, something that is proving difficult to achieve. Drug delivery systems could help to solve problems associated with the lack of selectivity of classical chemotherapeutic agents. However, to realize this, such systems must overcome multiple physiological barriers. For instance, they must evade surveillance by the immune system, attach selectively to target cells, and gain access to their interior. Furthermore, there they must escape endosomal entrapment, and release their cargoes in a controlled manner, without affecting their functionality. Here we review recent efforts aiming at using biomolecules to confer these abilities to bare nanoparticles, to transform them into smart anticancer therapeutic nanosystems. PMID:26277646

  9. Anticancer attributes of desert plants: a review.

    PubMed

    Harlev, Eli; Nevo, Eviatar; Lansky, Ephraim P; Lansky, Shifra; Bishayee, Anupam

    2012-03-01

    The ever-increasing emergence of the resistance of mammalian tumor cells to chemotherapy and its severe side effects reduces the clinical efficacy of a large variety of anticancer agents that are currently in use. Thus, despite the significant progress in cancer therapeutics in the last decades, the need to discover and to develop new, alternative, or synergistic anticancer agents remains. Cancer prevention or chemotherapy based on bioactive fractions or pure components derived from desert plants with known cancer-inhibiting properties suggests promising alternatives to current cancer therapy. Plants growing on low nutrient soils and/or under harsh climatic conditions, such as extreme temperatures, intense solar radiation, and water scarcity, are particularly susceptible to attack from reactive oxygen species and have evolved efficient antioxidation defense systems. The many examples of desert plants displaying anticancer effects as presented here indicates that the same defensive secondary metabolites protecting them against the harsh environment may also play a protective or a curative role against cancer, as they also do against diabetes, neurodegenerative, and other acute and chronic diseases. The present review highlights a plethora of studies focused on the antineoplastic properties of desert plants and their prinicipal phytochemicals, such as saponins, flavonoids, tannins, and terpenes. Although many desert plants have been investigated for their antitumor properties, there are many that still remain to be explored - a challenge for the prospective cancer therapy of the future. PMID:22217921

  10. In vitro anticancer activity of Anemopsis californica

    PubMed Central

    KAMINSKI, CATHERINE N.; FERREY, SETH L.; LOWREY, TIMOTHY; GUERRA, LEO; VAN SLAMBROUCK, SEVERINE; STEELANT, WIM F.A.

    2010-01-01

    Three different extract conditions (aqueous, EtOH and EtOAc) of four different parts (bracts, leaves, roots and stems) of the plant Anemopsis californica (A. californica) were evaluated for their effect on the growth and migration of human colon cancer cells, HCT-8, and the breast cancer cell lines Hs 578T and MCF-7/AZ. Our aim was to identify potential anticancer activity in crude A. californica extracts, given that this plant is used by Native Americans to treat a variety of diseases, including cancer. Our results demonstrated that for each of the cell lines tested, the majority of ethyl acetate extracts of all the plant parts are more toxic than the aqueous and ethanol extracts. Furthermore, significant growth inhibitory activity against the three cell lines was found for the ethyl acetate extract of the roots, while the aqueous extract of the roots influenced the migratory capacity of the three cell lines. This study provides evidence for the anticancer properties of A. californica when extracted in water and ethyl acetate, and supports the importance for further purification of the crude extracts and isolation of potential new anticancer compounds through bio-guided fractionation. PMID:21941602

  11. Medicinal Plants: Their Use in Anticancer Treatment

    PubMed Central

    Greenwell, M.; Rahman, P.K.S.M.

    2015-01-01

    Globally cancer is a disease which severely effects the human population. There is a constant demand for new therapies to treat and prevent this life-threatening disease. Scientific and research interest is drawing its attention towards naturally-derived compounds as they are considered to have less toxic side effects compared to current treatments such as chemotherapy. The Plant Kingdom produces naturally occurring secondary metabolites which are being investigated for their anticancer activities leading to the development of new clinical drugs. With the success of these compounds that have been developed into staple drugs for cancer treatment new technologies are emerging to develop the area further. New technologies include nanoparticles for nano-medicines which aim to enhance anticancer activities of plant-derived drugs by controlling the release of the compound and investigating new methods for administration. This review discusses the demand for naturally-derived compounds from medicinal plants and their properties which make them targets for potential anticancer treatments. PMID:26594645

  12. Targets in anticancer research--A review.

    PubMed

    Jayashree, B S; Nigam, Sukriti; Pai, Aravinda; Patel, Harsh K; Reddy, N D; Kumar, Nitesh; Rao, C M

    2015-08-01

    Cancer is a complex disease characterized by a loss in the normal cell regulatory mechanisms that govern cell survival, proliferation, and differentiation. Current chemotherapeutics, as anticancer agents, are developing resistance to single drug and also to treatment therapies involving multiple drugs. Cross resistance associated with the specificity and selectivity of existing drugs has restricted the application of chemotherapy. Alternatively, these limitations have given better insight in understanding the underlying molecular mechanisms responsible for the development of various stages in cancer. In the light of this, continuous efforts are being made in order to identify and validate newer anticancer targets. This review presents some of the important targets that have been already reported, such as aromatase, farnesyl transferase, histone deacetylase, tyrosine kinase and cyclin-dependent kinase. A few molecules designed against these targets have successfully reached clinical trials. However, only limited marketed drugs are available from these classes. Besides, the review also highlights some of the other important targets and strategies that have also drawn considerable attention in the area of anticancer drug development such as, cancer stem cells and monoclonal antibodies. Further, the integration of the tools in molecular biology with the results from preclinical and clinical trials would strengthen the effectiveness of treatment regimens in cancer patients. There lies a much scope for designing promising lead compounds and treatment therapies against these established targets. PMID:26349312

  13. Studies on Anticancer Activities of Antimicrobial Peptides

    PubMed Central

    Hoskin, David W.; Ramamoorthy, Ayyalusamy

    2008-01-01

    In spite of great advances in cancer therapy, there is considerable current interest in developing anticancer agents with a new mode of action because of the development of resistance by cancer cells towards current anticancer drugs. A growing number of studies have shown that some of the cationic antimicrobial peptides (AMPs), which are toxic to bacteria but not to normal mammalian cells, exhibit a broad spectrum of cytotoxic activity against cancer cells. Such studies have considerably enhanced the significance of AMPs, both synthetic and from natural sources, which have been of importance both for an increased understanding of the immune system and for their potential as clinical antibiotics. The electrostatic attraction between the negatively charged components of bacterial and cancer cells and the positively charged AMPs is believed to play a major role in the strong binding and selective disruption of bacterial and cancer cell membranes, respectively. However, it is unclear why some host defense peptides are able to kill cancer cells when others do not. In addition, it is not clear whether the molecular mechanism(s) underlying the antibacterial and anticancer activities of AMPs are the same or different. In this article, we review various studies on different AMPs that exhibit cytotoxic activity against cancer cells. The suitability of cancer cell-targeting AMPs as cancer therapeutics is also discussed. PMID:18078805

  14. Anticancer Drugs from Marine Flora: An Overview

    PubMed Central

    Sithranga Boopathy, N.; Kathiresan, K.

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease. PMID:21461373

  15. Pin1 as an anticancer drug target.

    PubMed

    Xu, Guoyan G; Etzkorn, Felicia A

    2009-09-01

    Pin1 specifically catalyzes the cis/trans isomerization of phospho-Ser/Thr-Pro bonds and plays an important role in many cellular events through the effects of conformational change on the function of its biological substrates, including cell division cycle 25 C (Cdc25C), c-Jun and p53. Pin1 is overexpressed in many human cancer tissues, including breast, prostate and lung cancer. Its expression correlates with cyclin D1 levels, which contribute to cell transformation. Overexpression of Pin1 promotes tumor growth, while inhibition of Pin1 causes tumor cell apoptosis. Pin1 plays an important role in oncogenesis and therefore may serve as an effective anticancer target. Many inhibitors of Pin1 have been discovered, including several classes of designed inhibitors (alkene isosteres, reduced amides, indanyl ketones) and natural products (juglone, pepticinnamin E analogues, PiB and its derivatives obtained from a library screen). Pin1 inhibitors could be used as a novel type of anticancer drug by blocking cell cycle progression. Therefore, Pin1 represents a new diagnostic and therapeutic anticancer drug target. PMID:19890497

  16. Phytochemistry and Anticancer Potential of Notoginseng.

    PubMed

    Wang, Chong-Zhi; Anderson, Samantha; Yuan, Chun-Su

    2016-01-01

    Asian ginseng, American ginseng, and notoginseng are three major species in the ginseng family. Notoginseng is a Chinese herbal medicine with a long history of use in many Oriental countries. This botanical has a distinct ginsenoside profile compared to other ginseng herbs. As a saponin-rich plant, notoginseng could be a good candidate for cancer chemoprevention. However, to date, only relatively limited anticancer studies have been conducted on notoginseng. In this paper, after reviewing its anticancer data, phytochemical isolation and analysis of notoginseng is presented in comparison with Asian ginseng and American ginseng. Over 80 dammarane saponins have been isolated and elucidated from different plant parts of notoginseng, most of them belonging to protopanaxadiol or protopanaxatriol groups. The role of the enteric microbiome in mediating notoginseng metabolism, bioavailability, and pharmacological actions are discussed. Emphasis has been placed on the identification and isolation of enteric microbiome-generated notoginseng metabolites. Future investigations should provide key insights into notoginseng's bioactive metabolites as clinically valuable anticancer compounds. PMID:26916912

  17. Anticancer Efficacy of Polyphenols and Their Combinations.

    PubMed

    Niedzwiecki, Aleksandra; Roomi, Mohd Waheed; Kalinovsky, Tatiana; Rath, Matthias

    2016-01-01

    Polyphenols, found abundantly in plants, display many anticarcinogenic properties including their inhibitory effects on cancer cell proliferation, tumor growth, angiogenesis, metastasis, and inflammation as well as inducing apoptosis. In addition, they can modulate immune system response and protect normal cells against free radicals damage. Most investigations on anticancer mechanisms of polyphenols were conducted with individual compounds. However, several studies, including ours, have indicated that anti-cancer efficacy and scope of action can be further enhanced by combining them synergistically with chemically similar or different compounds. While most studies investigated the anti-cancer effects of combinations of two or three compounds, we used more comprehensive mixtures of specific polyphenols and mixtures of polyphenols with vitamins, amino acids and other micronutrients. The mixture containing quercetin, curcumin, green tea, cruciferex, and resveratrol (PB) demonstrated significant inhibition of the growth of Fanconi anemia head and neck squamous cell carcinoma and dose-dependent inhibition of cell proliferation, matrix metalloproteinase (MMP)-2 and -9 secretion, cell migration and invasion through Matrigel. PB was found effective in inhibition of fibrosarcoma HT-1080 and melanoma A2058 cell proliferation, MMP-2 and -9 expression, invasion through Matrigel and inducing apoptosis, important parameters for cancer prevention. A combination of polyphenols (quercetin and green tea extract) with vitamin C, amino acids and other micronutrients (EPQ) demonstrated significant suppression of ovarian cancer ES-2 xenograft tumor growth and suppression of ovarian tumor growth and lung metastasis from IP injection of ovarian cancer A-2780 cells. The EPQ mixture without quercetin (NM) also has shown potent anticancer activity in vivo and in vitro in a few dozen cancer cell lines by inhibiting tumor growth and metastasis, MMP-2 and -9 secretion, invasion, angiogenesis

  18. Organoiridium Complexes: Anticancer Agents and Catalysts

    PubMed Central

    2014-01-01

    Conspectus Iridium is a relatively rare precious heavy metal, only slightly less dense than osmium. Researchers have long recognized the catalytic properties of square-planar IrI complexes, such as Crabtree’s hydrogenation catalyst, an organometallic complex with cyclooctadiene, phosphane, and pyridine ligands. More recently, chemists have developed half-sandwich pseudo-octahedral pentamethylcyclopentadienyl IrIII complexes containing diamine ligands that efficiently catalyze transfer hydrogenation reactions of ketones and aldehydes in water using H2 or formate as the hydrogen source. Although sometimes assumed to be chemically inert, the reactivity of low-spin 5d6 IrIII centers is highly dependent on the set of ligands. Cp* complexes with strong σ-donor C∧C-chelating ligands can even stabilize IrIV and catalyze the oxidation of water. In comparison with well developed Ir catalysts, Ir-based pharmaceuticals are still in their infancy. In this Account, we review recent developments in organoiridium complexes as both catalysts and anticancer agents. Initial studies of anticancer activity with organoiridium complexes focused on square-planar IrI complexes because of their structural and electronic similarity to PtII anticancer complexes such as cisplatin. Recently, researchers have studied half-sandwich IrIII anticancer complexes. These complexes with the formula [(Cpx)Ir(L∧L′)Z]0/n+ (with Cp* or extended Cp* and L∧L′ = chelated C∧N or N∧N ligands) have a much greater potency (nanomolar) toward a range of cancer cells (especially leukemia, colon cancer, breast cancer, prostate cancer, and melanoma) than cisplatin. Their mechanism of action may involve both an attack on DNA and a perturbation of the redox status of cells. Some of these complexes can form IrIII-hydride complexes using coenzyme NAD(P)H as a source of hydride to catalyze the generation of H2 or the reduction of quinones to semiquinones. Intriguingly, relatively unreactive organoiridium

  19. A Systematic Review of Iran's Medicinal Plants With Anticancer Effects.

    PubMed

    Asadi-Samani, Majid; Kooti, Wesam; Aslani, Elahe; Shirzad, Hedayatollah

    2016-04-01

    Increase in cases of various cancers has encouraged the researchers to discover novel, more effective drugs from plant sources. This study is a review of medicinal plants in Iran with already investigated anticancer effects on various cell lines. Thirty-six medicinal plants alongside their products with anticancer effects as well as the most important plant compounds responsible for the plants' anticancer effect were introduced. Phenolic and alkaloid compounds were demonstrated to have anticancer effects on various cancers in most studies. The plants and their active compounds exerted anticancer effects by removing free radicals and antioxidant effects, cell cycle arrest, induction of apoptosis, and inhibition of angiogenesis. The investigated plants in Iran contain the compounds that are able to contribute effectively to fighting cancer cells. Therefore, the extract and active compounds of the medicinal plants introduced in this review article could open a way to conduct clinical trials on cancer and greatly help researchers and pharmacists develop new anticancer drugs. PMID:26297173

  20. [Mecanisms of pharmacokinetic interactions involving oral anticancer agents].

    PubMed

    Levêque, Dominique; Duval, Céline; Poulat, Charlotte; Palas, Benjamin; El Aatmani, Anne; Dory, Anne; Becker, Guillaume; Gourieux, Bénédicte

    2015-01-01

    Oral anticancer agents and particularly kinase inhibitors are subject to pharmacokinetic drug interactions in relation to absorption and elimination phases. Interacting factors are food, fruit juices, cigarette smoke, acid-reducing agents and inducers/inhibitors. Some anticancer agents are inducers and/or inhibitors and can also perpetrate drug interactions. This review emphasizes the mechanisms of pharmacokinetic drug interactions involving oral anticancer agents. PMID:25609481

  1. CancerHSP: anticancer herbs database of systems pharmacology.

    PubMed

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-01-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php. PMID:26074488

  2. CancerHSP: anticancer herbs database of systems pharmacology

    NASA Astrophysics Data System (ADS)

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-06-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php.

  3. Current situation and future usage of anticancer drug databases.

    PubMed

    Wang, Hongzhi; Yin, Yuanyuan; Wang, Peiqi; Xiong, Chenyu; Huang, Lingyu; Li, Sijia; Li, Xinyi; Fu, Leilei

    2016-07-01

    Cancer is a deadly disease with increasing incidence and mortality rates and affects the life quality of millions of people per year. The past 15 years have witnessed the rapid development of targeted therapy for cancer treatment, with numerous anticancer drugs, drug targets and related gene mutations been identified. The demand for better anticancer drugs and the advances in database technologies have propelled the development of databases related to anticancer drugs. These databases provide systematic collections of integrative information either directly on anticancer drugs or on a specific type of anticancer drugs with their own emphases on different aspects, such as drug-target interactions, the relationship between mutations in drug targets and drug resistance/sensitivity, drug-drug interactions, natural products with anticancer activity, anticancer peptides, synthetic lethality pairs and histone deacetylase inhibitors. We focus on a holistic view of the current situation and future usage of databases related to anticancer drugs and further discuss their strengths and weaknesses, in the hope of facilitating the discovery of new anticancer drugs with better clinical outcomes. PMID:27193464

  4. Oral anticancer agent medication adherence by outpatients.

    PubMed

    Kimura, Michio; Usami, Eiseki; Iwai, Mina; Nakao, Toshiya; Yoshimura, Tomoaki; Mori, Hiromi; Sugiyama, Tadashi; Teramachi, Hitomi

    2014-11-01

    In the present study, medication adherence and factors affecting adherence were examined in patients taking oral anticancer agents. In June 2013, 172 outpatients who had been prescribed oral anticancer agents by Ogaki Municipal Hospital (Ogaki, Gifu, Japan) completed a questionnaire survey, with answers rated on a five-point Likert scale. The factors that affect medication adherence were evaluated using a customer satisfaction (CS) analysis. For patients with good and insufficient adherence to medication, the median ages were 66 years (range, 21-85 years) and 73 years (range, 30-90 years), respectively (P=0.0004), while the median dosing time was 131 days (range, 3-3,585 days) and 219 days (24-3,465 days), respectively (P=0.0447). In 36.0% (62 out of 172) of the cases, there was insufficient medication adherence; 64.5% of those cases (40 out of 62) showed good medication compliance (4-5 point rating score). However, these patients did not fully understand the effects or side-effects of the drugs, giving a score of three points or less. The percentage of patients with good medication compliance was 87.2% (150 out of 172). Through the CS analysis, three items, the interest in the drug, the desire to consult about the drug and the condition of the patient, were extracted as items for improvement. Overall, the medication compliance of the patients taking the oral anticancer agents was good, but the medication adherence was insufficient. To improve medication adherence, a better understanding of the effectiveness and necessity of drugs and their side-effects is required. In addition, the interest of patients in their medication should be encouraged and intervention should be tailored to the condition of the patient. These steps should lead to improved medication adherence. PMID:25295117

  5. Oral anticancer agent medication adherence by outpatients

    PubMed Central

    KIMURA, MICHIO; USAMI, EISEKI; IWAI, MINA; NAKAO, TOSHIYA; YOSHIMURA, TOMOAKI; MORI, HIROMI; SUGIYAMA, TADASHI; TERAMACHI, HITOMI

    2014-01-01

    In the present study, medication adherence and factors affecting adherence were examined in patients taking oral anticancer agents. In June 2013, 172 outpatients who had been prescribed oral anticancer agents by Ogaki Municipal Hospital (Ogaki, Gifu, Japan) completed a questionnaire survey, with answers rated on a five-point Likert scale. The factors that affect medication adherence were evaluated using a customer satisfaction (CS) analysis. For patients with good and insufficient adherence to medication, the median ages were 66 years (range, 21–85 years) and 73 years (range, 30–90 years), respectively (P=0.0004), while the median dosing time was 131 days (range, 3–3,585 days) and 219 days (24–3,465 days), respectively (P=0.0447). In 36.0% (62 out of 172) of the cases, there was insufficient medication adherence; 64.5% of those cases (40 out of 62) showed good medication compliance (4–5 point rating score). However, these patients did not fully understand the effects or side-effects of the drugs, giving a score of three points or less. The percentage of patients with good medication compliance was 87.2% (150 out of 172). Through the CS analysis, three items, the interest in the drug, the desire to consult about the drug and the condition of the patient, were extracted as items for improvement. Overall, the medication compliance of the patients taking the oral anticancer agents was good, but the medication adherence was insufficient. To improve medication adherence, a better understanding of the effectiveness and necessity of drugs and their side-effects is required. In addition, the interest of patients in their medication should be encouraged and intervention should be tailored to the condition of the patient. These steps should lead to improved medication adherence. PMID:25295117

  6. Ribonucleases as potential modalities in anticancer therapy

    PubMed Central

    Ardelt, Wojciech; Ardelt, Barbara; Darzynkiewicz, Zbigniew

    2009-01-01

    Antitumor ribonucleases are small (10–28 kDa) basic proteins. They were found among members of both, ribonuclease A and T1 superfamilies. Their cytotoxic properties are conferred by enzymatic activity, i.e., the ability to catalyze cleavages of phosphodiester bonds in RNA. They bind to negatively charged cell membrane, enter cells by endocytosis and translocate to cytosol where they evade mammalian protein ribonuclease inhibitor and degrade RNA. Here, we discuss structures, functions and mechanisms of antitumor activity of several cytotoxic ribonucleases with particular emphasis to the amphibian Onconase, the only enzyme of this class that reached clinical trials. Onconase is the smallest, very stable, less catalytically efficient and more cytotoxic than most RNase A homologues. Its cytostatic, cytotoxic and anticancer effects were extensively studied. It targets tRNA, rRNA, mRNA as well as the non-coding RNA (microRNAs). Numerous cancer lines are sensitive to Onconase; their treatment with 10 – 100 nM enzyme leads to suppression of cell cycle progression, predominantly through G1, followed by apoptosis or cell senescence. Onconase also has anticancer properties in animal models. Many effects of this enzyme are consistent with the microRNAs, one of its critical targets. Onconase sensitizes cells to a variety of anticancer modalities and this property is of particular interest, suggesting its application as an adjunct to chemotherapy or radiotherapy in treatment of different tumors. Cytotoxic RNases as exemplified by Onconase represent a new class of antitumor agents, with an entirely different mechanism of action than the drugs currently used in the clinic. Further studies on animal models including human tumors grafted on severe combined immunodefficient (SCID) mice and clinical trials are needed to explore clinical potential of cytotoxic RNases. PMID:19825371

  7. Anticancer potential of selected Fallopia Adans species

    PubMed Central

    OLARU, OCTAVIAN TUDOREL; VENABLES, LUANNE; VAN DE VENTER, MARYNA; NITULESCU, GEORGE MIHAI; MARGINA, DENISA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2015-01-01

    The aim of the present study was to determine the anticancer potential of three species belonging to the Fallopia genus (Polygonaceae): Fallopia convolvulus (F. convolvulus, Fallopia dumetorum (F. dumetorum) and Fallopia aubertii (F. aubertii). For this purpose, crude extracts were obtained and characterized for their phenolic and flavonoid total content and examined for their anticancer activity on three tumor cell lines: breast cancer (MCF7), colon carcinoma (Caco-2) and cervical cancer (HeLa) cells. The cytotoxic potential of the three species was assessed by MTT assay, cell cycle analysis and by the evaluation of mitochondrial membrane potential (MMP). The acute toxicity of the extracts was evaluated using one in vitro cell model (Vero cells, an African Green monkey kidney cell line) and two invertebrate in vivo models (Daphnia magna and Artemia salina). The highest total phenolic and flavonoid content was found in the F. aubertii flower extracts. The cytotoxic effects of the extracts from F. aubertii and F. convolvulus on all three cell lines were examined at concentrations ranging from 3 to 300 µg/ml. G2/M cell cycle arrest was induced by all the extracts, and a significant increase in the subG1 cell population was observed. The hydroethanolic extract from the flowers of F. aubertii induced cell apoptosis more rapidly than the other extracts. The MMP indicates the involvement of the mitochondria in the induction of apoptosis. A positive correlation between the total phenolic content of the extracts and the IC50 values against the HeLa cells was also noted. None of the extracts exhibited significantly toxic effects. Considering the antitumor potential of F. aubertii and F. convolvulus, these two species may represent a good source of plant extracts with anticancer properties. PMID:26622671

  8. Molecular aspects of vitamin D anticancer activity.

    PubMed

    Picotto, Gabriela; Liaudat, Ana C; Bohl, Luciana; Tolosa de Talamoni, Nori

    2012-10-01

    Environment may influence the development and prevention of cancer. Calcitriol has been associated with calcium homeostasis regulation. Many epidemiological, biochemical, and genetic studies have shown non-classic effects of vitamin D, such as its involvement in the progression of different cancers. Although vitamin D induces cellular arrest, triggers apoptotic pathways, inhibits angiogenesis, and alters cellular adhesion, the precise mechanisms of its action are still not completely established. This article will present a revision about the molecular aspects proposed to be involved in the anticancer action of calcitriol. Adequate levels of vitamin D to prevent cancer development will also be discussed. PMID:22963190

  9. Trial Watch: Peptide-based anticancer vaccines

    PubMed Central

    Pol, Jonathan; Bloy, Norma; Buqué, Aitziber; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Galon, Jérôme; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-01-01

    Malignant cells express antigens that can be harnessed to elicit anticancer immune responses. One approach to achieve such goal consists in the administration of tumor-associated antigens (TAAs) or peptides thereof as recombinant proteins in the presence of adequate adjuvants. Throughout the past decade, peptide vaccines have been shown to mediate antineoplastic effects in various murine tumor models, especially when administered in the context of potent immunostimulatory regimens. In spite of multiple limitations, first of all the fact that anticancer vaccines are often employed as therapeutic (rather than prophylactic) agents, this immunotherapeutic paradigm has been intensively investigated in clinical scenarios, with promising results. Currently, both experimentalists and clinicians are focusing their efforts on the identification of so-called tumor rejection antigens, i.e., TAAs that can elicit an immune response leading to disease eradication, as well as to combinatorial immunostimulatory interventions with superior adjuvant activity in patients. Here, we summarize the latest advances in the development of peptide vaccines for cancer therapy. PMID:26137405

  10. Designed TPR Modules as Novel Anticancer Agents

    SciTech Connect

    Cortajarena,A.; Yi, F.; Regan, L.

    2008-01-01

    Molecules specifically designed to modulate protein-protein interactions have tremendous potential as novel therapeutic agents. One important anticancer target is the chaperone Hsp90, whose activity is essential for the folding of many oncogenic proteins, including HER2, IGFIR, AKT, RAF-1, and FLT-3. Here we report the design and characterization of new tetratricopeptide repeat modules, which bind to the C-terminus of Hsp90 with higher affinity and with greater specificity than natural Hsp90-binding co-chaperones. Thus, when these modules are introduced into the cell, they out-compete endogenous co-chaperones for binding, thereby inhibiting Hsp90 function. The effect of Hsp90 inhibition in this fashion is dramatic; HER2 levels are substantially decreased and BT474 HER2 positive breast cancer cells are killed. Our designs thus provide new tools with which to dissect the mechanism of Hsp90-mediated protein folding and also open the door to the development of an entirely new class of anticancer agents.

  11. Anticancer Drug Induced Palmar Plantar Erythrodysesthesia

    PubMed Central

    Srinivasamurthy, Sureshkumar; Dubashi, Biswajit; Chandrasekaran, Adithan

    2014-01-01

    Background: Palmar plantar erythrodysesthesia (PPE) is a dose limiting toxicity of anticancer agents. In some cases it may mandate for discontinuation of anticancer agents. Evaluation of data of PPE among reported adverse drug reactions (ADRs) from the Department of Medical Oncology could quantify the burden. Aim: To evaluate and analyse the PPE among reported ADRs from medical Oncology. Materials and Methods: The data of all cases of reported PPE were collected during January 2012 to September 2013 and were analysed with WHO causality assessment scale. The severity was clinically graded. The follow-up data regarding outcome of ADRs were also noted. Results: During the study period of 21 months a total of 1418 ADRs have been reported from 1076 patients. Among them PPE was reported from 31 cases (2.9%). Majority (32.2%) of these patients were on chemotherapy for breast cancer. Patient’s age ranged from 17 to 68 y and the median age was 50 y. There were 18 female (58%) and 13 male patients (42%). Capecitabine was the leading drug involved in PPE, reported with 20 cases (64.5%), and followed by docetaxel with 5 cases (16.1%). Majority (67.7%) of the reactions was categorized as certain and 64.5% was grade II severity clinically. Conclusion: Our findings show that PPE accounts for 2.9% of total reported ADRs from Medical Oncology during 21 months. Majority of the reactions were classified as certain. Capecitabine is commonly implicated drug. PMID:25478366

  12. Anticancer activities of Nigella sativa (black cumin).

    PubMed

    Khan, Md Asaduzzaman; Chen, Han-chun; Tania, Mousumi; Zhang, Dian-zheng

    2011-01-01

    Nigella sativa has been used as traditional medicine for centuries. The crude oil and thymoquinone (TQ) extracted from its seeds and oil are effective against many diseases like cancer, cardiovascular complications, diabetes, asthma, kidney disease etc. It is effective against cancer in blood system, lung, kidney, liver, prostate, breast, cervix, skin with much safety. The molecular mechanisms behind its anticancer role is still not clearly understood, however, some studies showed that TQ has antioxidant role and improves body's defense system, induces apoptosis and controls Akt pathway. Although the anti-cancer activity of N. sativa components was recognized thousands of years ago but proper scientific research with this important traditional medicine is a history of last 2∼3 decades. There are not so many research works done with this important traditional medicine and very few reports exist in the scientific database. In this article, we have summarized the actions of TQ and crude oil of N. sativa against different cancers with their molecular mechanisms. PMID:22754079

  13. ATP-triggered anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Mo, Ran; Jiang, Tianyue; Disanto, Rocco; Tai, Wanyi; Gu, Zhen

    2014-03-01

    Stimuli-triggered drug delivery systems have been increasingly used to promote physiological specificity and on-demand therapeutic efficacy of anticancer drugs. Here we utilize adenosine-5'-triphosphate (ATP) as a trigger for the controlled release of anticancer drugs. We demonstrate that polymeric nanocarriers functionalized with an ATP-binding aptamer-incorporated DNA motif can selectively release the intercalating doxorubicin via a conformational switch when in an ATP-rich environment. The half-maximal inhibitory concentration of ATP-responsive nanovehicles is 0.24 μM in MDA-MB-231 cells, a 3.6-fold increase in the cytotoxicity compared with that of non-ATP-responsive nanovehicles. Equipped with an outer shell crosslinked by hyaluronic acid, a specific tumour-targeting ligand, the ATP-responsive nanocarriers present an improvement in the chemotherapeutic inhibition of tumour growth using xenograft MDA-MB-231 tumour-bearing mice. This ATP-triggered drug release system provides a more sophisticated drug delivery system, which can differentiate ATP levels to facilitate the selective release of drugs.

  14. Enediyne compounds - new promises in anticancer therapy.

    PubMed

    Gredicak, Matija; Jerić, Ivanka

    2007-06-01

    Scientists of all kinds have long been intrigued by the nature, action and potential of natural toxins that possess exceptional antibacterial and anticancer activities. These compounds, named enediynes, are among the most effective chemotherapeutic agents known. Often compared with intelligent weapons, due to the unique structure and sophisticated mechanism by which they destroy double-helical DNA, enediyne antibiotics are nowadays the most promising leaders in the anticancer therapy. Apart from their diversity, enediyne compounds share some structural and functional similarities. One fragment of a structure is responsible for the recognition and transport, another part acts as molecular trigger while the third, reactive enediyne unit, undergoes Bergman cycloaromatization and causes DNA breakage. Members of the enediyne family are already in clinical use to treat various cancers, but more general use is limited by their complex structure, which makes them formidable targets for synthetic chemists. There are three main approaches in the design of new enediyne-related compounds: improvement of enediyne >warheads<, increasing the selectivity and control of chemical or photo-induced activation. This paper gives an overview of naturally occurring enediynes, their mode of action and efforts undertaken to design artificial enediyne-related DNA cleaving agents. PMID:17507311

  15. Conventional anticancer therapeutics and telomere maintenance mechanisms.

    PubMed

    Uziel, Orit; Lahav, Meir

    2014-01-01

    The telomere-telomerase system has a unique role in the biology of cancer. Telomere maintenance, mostly affected by the up regulation of telomerase activity, is a prerequisite for perpetuation of malignant cells. This fundamental biologic feature defines telomere maintenance as an attractive therapeutic target for most types of cancer. This review summarizes some critical aspects of telomere biology with special emphasis on the connection to anticancer therapy. In particular, the effects on the telomere - telomerase system of conventional anticancer treatments, including various cytotoxic drugs, targeted biological agents and radiotherapy, and their possible combination with telomerase-directed therapy are discussed. Several potential problems, including side effects and complications inherent to perturbations of telomere biology in normal cells, are also highlighted. In spite of significant progress in this field, there are still several issues that have to be addressed and ultimately resolved in order to obtain a better characterization of the pros and cons of telomerase-directed therapies and, consequently, their clinical relevance. PMID:24975606

  16. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    PubMed Central

    Yang, Danbo; Yu, Lei; Van, Sang

    2011-01-01

    The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(l-γ-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic. PMID:24212604

  17. Chalcone Scaffold in Anticancer Armamentarium: A Molecular Insight

    PubMed Central

    Manna, Kuntal

    2016-01-01

    Cancer is an inevitable matter of concern in the medicinal chemistry era. Chalcone is the well exploited scaffold in the anticancer domain. The molecular mechanism of chalcone at cellular level was explored in past decades. This mini review provides the most recent updates on anticancer potential of chalcones. PMID:26880913

  18. Combined bacterial and viral treatment: a novel anticancer strategy

    PubMed Central

    2015-01-01

    An idea for a new combination therapy will be described herein. It is a proposition to combine viral and bacterial anticancer therapies and make them fight cancer in concert. We analyzed biological anticancer therapies and found overlapping advantages and disadvantages which led us to the conclusion that the combination therapy has the potential to create a new therapeutic quality. It is surprising how many weaknesses of viral anticancer therapy are the strengths of bacterial anticancer therapies and the other way round. We review the facts behind this concept and try to assess its value. We propose a few strategies how to combine these two therapies but as far as the review can go, final answers will have to come from the experiments. This review is the first attempt to describe a new strategy and understand the means for this idea but also to raise new questions and discuss new ways to look at anti-cancer treatment. PMID:26648783

  19. [Study on the regulation of autophagy against anticancer drugs' toxicity].

    PubMed

    Lou, Xiao-e; Zhu, Yi; He, Qiao-jun

    2016-01-01

    Autophagy is a crucial biological process in eukaryotes, which is involved in cell growth, survival and energy metabolism. It has been confirmed that autophagy mediates toxicity of anticancer drugs, especially in heart, liver and neuron. It is important to understand the function and mechanism of autophagy in anticancer drugs-induced toxicity. Given that autophagy is a double-edged sword in the maintenance of the function of heart, liver and neuron, the autophagy-mediated toxicity are very complicated in the body. We provide a review on the concept of autophagy and current status about autophagy-mediated toxicity of anticancer drugs. The knowledge is crucial in the basic study of anticancer drugs-induced toxicity, and provides some strategies for the development of alleviating the toxicity of anticancer drugs. PMID:27405158

  20. A review on anticancer potential of bioactive heterocycle quinoline.

    PubMed

    Afzal, Obaid; Kumar, Suresh; Haider, Md Rafi; Ali, Md Rahmat; Kumar, Rajiv; Jaggi, Manu; Bawa, Sandhya

    2015-06-01

    The advent of Camptothecin added a new dimension in the field anticancer drug development containing quinoline motif. Quinoline scaffold plays an important role in anticancer drug development as their derivatives have shown excellent results through different mechanism of action such as growth inhibitors by cell cycle arrest, apoptosis, inhibition of angiogenesis, disruption of cell migration, and modulation of nuclear receptor responsiveness. The anti-cancer potential of several of these derivatives have been demonstrated on various cancer cell lines. In this review we have compiled and discussed specifically the anticancer potential of quinoline derivatives, which could provide a low-height flying bird's eye view of the quinoline derived compounds to a medicinal chemist for a comprehensive and target oriented information for development of clinically viable anticancer drugs. PMID:25073919

  1. 21st International Congress on Anticancer Treatment.

    PubMed

    Magné, Nicolas; Pacaut, Cécile; Chargari, Cyrus

    2010-05-01

    The 21st International Congress on Anticancer Treatment, endorsed by the American Society of Clinical Oncology, was held in Paris (France) 1-5 February 2010. It was led and jointly sponsored by Gabriel Hortobagyi and David Khayat and by the University of Texas MD Anderson Cancer Center (TX, USA) and the Hôpital de la Pitié Salpêtrière (Paris, France), respectively. The meeting provided complete updates and innovations in the management of various cancers and supportive care. This well-recognized annual international educational and scientific conference brought together the leading scientists from across the world to share their skills and expertise by participating in this high-quality meeting. This congress provides an exceptional opportunity to meet with fellow professionals and discuss new educational case studies. In the present article, we have highlighted particularly pertinent sessions concerning hot topics for the new areas of cancer. PMID:20469995

  2. Fenbendazole as a Potential Anticancer Drug

    PubMed Central

    DUAN, QIWEN; LIU, YANFENG; ROCKWELL, SARA

    2013-01-01

    Background/Aims To evaluate the anticancer activity of fenbendazole, a widely used antihelminth with mechanisms of action that overlap with those of the hypoxia-selective nitroheterocyclic cytotoxins/radiosensitizers and the taxanes. Materials and Methods We used EMT6 mouse mammary tumor cells in cell culture and as solid tumors in mice to examine the cytotoxic and antitumor effects of fenbendazole as a single agent and in combination regimens. Results Intensive treatments with fenbendazole were toxic to EMT6 cells in vitro; toxicity increased with incubation time and under conditions of severe hypoxia. Fenbendazole did not alter the dose-response curves for radiation or docetaxel; instead, the agents produced additive cytotoxicities. Febendazole in maximally-intensive regimens did not alter the growth of EMT6 tumors, or increase the antineoplastic effects of radiation. Conclusion These studies provided no evidence that fenbendazole would have value in cancer therapy, but suggested that this general class of compounds merits further investigation. PMID:23393324

  3. Access to expensive anti-cancer drugs.

    PubMed

    Mileshkin, Linda; Sullivan, Danny

    2011-12-01

    Expensive anti-cancer drugs expose controversy underlying the process for resource allocation decisions, and intermittently result in marked publicity, emotive discussions about access to novel and expensive treatments, and political involvement which may override existing processes. This column outlines the methods of determining whether or not a treatment is considered appropriate to fund, and focuses upon the evidence of patient and doctor wishes. The existing research illustrates the complexity of patient and oncologist decision-making when these drugs are to be considered. Past litigation to obtain access to expensive treatments is discussed, along with the interactions between patients, pharmaceutical companies, health services and oncologists. This evolving field is being transformed by developments in molecular biology enabling targeted drugs, and amply demonstrates the complexity of funding decisions and how expensive treatments are considered by a range of stakeholders. PMID:22319998

  4. Fluorescence optical imaging in anticancer drug delivery.

    PubMed

    Etrych, Tomáš; Lucas, Henrike; Janoušková, Olga; Chytil, Petr; Mueller, Thomas; Mäder, Karsten

    2016-03-28

    In the past several decades, nanosized drug delivery systems with various targeting functions and controlled drug release capabilities inside targeted tissues or cells have been intensively studied. Understanding their pharmacokinetic properties is crucial for the successful transition of this research into clinical practice. Among others, fluorescence imaging has become one of the most commonly used imaging tools in pre-clinical research. The development of increasing numbers of suitable fluorescent dyes excitable in the visible to near-infrared wavelengths of the spectrum has significantly expanded the applicability of fluorescence imaging. This paper focuses on the potential applications and limitations of non-invasive imaging techniques in the field of drug delivery, especially in anticancer therapy. Fluorescent imaging at both the cellular and systemic levels is discussed in detail. Additionally, we explore the possibility for simultaneous treatment and imaging using theranostics and combinations of different imaging techniques, e.g., fluorescence imaging with computed tomography. PMID:26892751

  5. Mechanisms of the Anticancer Effects of Isothiocyanates.

    PubMed

    Fofaria, Neel M; Ranjan, Alok; Kim, Sung-Hoon; Srivastava, Sanjay K

    2015-01-01

    Cancer results from aberrant signaling pathways that result in uncontrolled cellular proliferation. The epidemiological studies have shown a strong inverse correlation between dietary consumption of cruciferous vegetables and incidences of cancer. Isothiocyanates (ITCs) are present in cruciferous vegetables like broccoli, cabbage, watercress, etc. and are identified as the major active constituents. Several mechanistic studies have demonstrated chemopreventive and chemotherapeutic activity of ITCs against various tumor types. ITCs exert anticancer activity by suppressing various critical hallmarks of cancer like cellular proliferation, angiogenesis, apoptosis, metastasis, etc., in vitro as well as in preclinical animal model. ITCs also generate reactive oxygen species to induce apoptosis in cancer cells. Due to promising preclinical results, few ITCs have also advanced to clinical trials. This chapter provides a candid review on the chemopreventive and chemotherapeutic activity of various major ITCs. PMID:26298458

  6. Anticancer Mechanism of Sulfur-Containing Compounds.

    PubMed

    De Gianni, Elena; Fimognari, Carmela

    2015-01-01

    Fruit and vegetables have traditionally represented a main source for the discovery of many biologically active substances with therapeutic values. Among the many bioactive compounds identified over the years, sulfur-containing compounds, which are present especially in the genera Allium and Brassica, have been showing a protective effect against different types of cancer. Many in vitro and in vivo studies reported that apoptosis is crucial for the anticancer effects of sulfur-containing compounds. Garlic and onion compounds and isothiocyanates contained in Brassica vegetables are able to modulate apoptosis by a wide range of mechanisms. This chapter will give an overview on the induction of apoptosis by sulfur-containing compounds in cancer cells and their different molecular mechanisms. Finally, the potential clinical implications of their proapoptotic effects will be discussed. PMID:26298460

  7. Imidazoquinolines: Recent Developments in Anticancer Activity.

    PubMed

    Patil, Shivaputra A; Patil, Siddappa A; Patil, Renukadevi; Hashizume, Rintaro

    2016-01-01

    Cancer remains one of the unsolved diseases of today's advanced drug discovery world even though it is known to humans for centuries. There is continued effort to discover new chemotherapeutic agents to improve the outcome of cancer patients. Small-molecule agonists at tolllike receptor 7 and 8 (TLR7/8) have recently generated renewed interest in cancer research owing to their profound antitumoral activity. TLR-7/8 agonist imidazoquinolines (Imiquimod, and Resiquimod) and dual inhibitor of phosphoinositide 3-kinase and mammalian target of rapamycin (NVP-BEZ235) have emerged as clinically important candidates for treating cancers. This article reviews briefly the synthesis, structure-activity relationship (SAR) and biological activities of clinically studied imidazoquinolines along with novel emerging preclinical imidazoquinolines for the anticancer activity. PMID:26675675

  8. Therapeutic aptamers: developmental potential as anticancer drugs

    PubMed Central

    Lee, Ji Won; Kim, Hyun Jung; Heo, Kyun

    2015-01-01

    Aptamers, composed of single-stranded DNA or RNA oligonucleotides that interact with target molecules through a specific three-dimensional structure, are selected from pools of combinatorial oligonucleotide libraries. With their high specificity and affinity for target proteins, ease of synthesis and modification, and low immunogenicity and toxicity, aptamers are considered to be attractive molecules for development as anticancer therapeutics. Two aptamers - one targeting nucleolin and a second targeting CXCL12 - are currently undergoing clinical trials for treating cancer patients, and many more are under study. In this mini-review, we present the current clinical status of aptamers and aptamer-based cancer therapeutics. We also discuss advantages, limitations, and prospects for aptamers as cancer therapeutics. [BMB Reports 2015; 48(4): 234-237] PMID:25560701

  9. Nanocarriers for delivery of platinum anticancer drugs☆

    PubMed Central

    Oberoi, Hardeep S.; Nukolova, Natalia V.; Kabanov, Alexander V.; Bronich, Tatiana K.

    2014-01-01

    Platinum based anticancer drugs have revolutionized cancer chemotherapy, and continue to be in widespread clinical use especially for management of tumors of the ovary, testes, and the head and neck. However, several dose limiting toxicities associated with platinum drug use, partial anti-tumor response in most patients, development of drug resistance, tumor relapse, and many other challenges have severely limited the patient quality of life. These limitations have motivated an extensive research effort towards development of new strategies for improving platinum therapy. Nanocarrier-based delivery of platinum compounds is one such area of intense research effort beginning to provide encouraging preclinical and clinical results and may allow the development of the next generation of platinum chemotherapy. This review highlights current understanding on the pharmacology and limitations of platinum compounds in clinical use, and provides a comprehensive analysis of various platinum–polymer complexes, micelles, dendrimers, liposomes and other nanoparticles currently under investigation for delivery of platinum drugs. PMID:24113520

  10. Synthesis and anticancer activity of 6-heteroarylcoumarins.

    PubMed

    Galayev, Olexandr; Garazd, Yana; Garazd, Myroslav; Lesyk, Roman

    2015-11-13

    A series of novel 7-hydroxy-8-methyl-coumarins with indole, pyrimidine, pyrazole, pyran, tetrazolo[1,5-a]pyrimidine, pyrimido[1,2-a]benzimidazol, 2-oxo-1,2-dihydropyridine and dihydropyrazolo[3,4-b]pyridine moieties at C6 position of heterocyclic core have been synthesized. Anticancer activity screening on NCI60 cell lines allowed identification of 6-(6-fluoro-1H-indol-2-yl)-7-hydroxy-4,8-dimethyl-2H-chromen-2-one (23) with the highest level of antimitotic activity with mean GI50/TGI values of 3.28/13.24 μM and certain sensitivity profile towards the Non-Small Cell Lung Cancer cell line НОР-92 (GI50/TGI/LC50 values 0.95/4.17/29.9 μM). PMID:26491980

  11. Anticancer Properties of Distinct Antimalarial Drug Classes

    PubMed Central

    Hooft van Huijsduijnen, Rob; Guy, R. Kiplin; Chibale, Kelly; Haynes, Richard K.; Peitz, Ingmar; Kelter, Gerhard; Phillips, Margaret A.; Vennerstrom, Jonathan L.; Yuthavong, Yongyuth; Wells, Timothy N. C.

    2013-01-01

    We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings. PMID:24391728

  12. Biodiversity as a source of anticancer drugs.

    PubMed

    Tan, G; Gyllenhaal, C; Soejarto, D D

    2006-03-01

    Natural Products have been the most significant source of drugs and drug leads in history. Their dominant role in cancer chemotherapeutics is clear with about 74% of anticancer compounds being either natural products, or natural product-derived. The biodiversity of the world provides a resource of unlimited structural diversity for bioprospecting by international drug discovery programs such as the ICBGs and NCDDGs, the latter focusing exclusively on anticancer compounds. However, many sources of natural products remain largely untapped. Technology is gradually overcoming the traditional difficulties encountered in natural products research by improving access to biodiverse resources, and ensuring the compatibility of samples with high throughput procedures. However, the acquisition of predictive biodiversity remains challenging. Plant and organism species may be selected on the basis of potentially useful phytochemical composition by consulting ethnopharmacological, chemosystematic, and ecological information. On the conservation/political front, the Convention on Biological Diversity (CBD) is allaying the anxiety surrounding the notion of biopiracy, which has defeated many attempts to discover and develop new natural products for human benefit. As it becomes increasingly evident and important, the CBD fosters cooperation and adaptation to new regulations and collaborative research agreements with source countries. Even as the past inadequacies of combinatorial chemistry are being analyzed, the intrinsic value of natural products as a source of drug leads is being increasingly appreciated. Their rich structural and stereochemical characteristics make them valuable as templates for exploring novel molecular diversity with the aim of synthesizing lead generation libraries with greater biological relevance. This will ensure an ample supply of starting materials for screening against the multitude of potentially "druggable" targets uncovered by genomics technologies

  13. Chemical and preclinical studies on Hedyotis diffusa with anticancer potential.

    PubMed

    Niu, Yu; Meng, Qiu-Xia

    2013-01-01

    This paper presents the chemical and preclinical anticancer research on Hedyotis diffusa Willd. in detail, one of the most renowned herbs often prescribed in the polyherbal formulas for cancer treatment in traditional Chinese medicine. Anthraquinones, flavonoids, and terpenoids constitute the majority of the 69 compounds that have been isolated and identified from H. diffusa. The anticancer effects of the methanolic, ethanolic, and aqueous extracts in various preclinical cancer models have been described. This review also summarized the anticancer activity of constituents of the herb and the mechanisms of action. All the studies suggest that H. diffusa has enormous potential in the therapy of cancer and warrants further chemical and pharmacological investigation. PMID:23600735

  14. Immune-mediated mechanisms influencing the efficacy of anticancer therapies.

    PubMed

    Coffelt, Seth B; de Visser, Karin E

    2015-04-01

    Conventional anticancer therapies, such as chemotherapy, radiotherapy, and targeted therapy, are designed to kill cancer cells. However, the efficacy of anticancer therapies is not only determined by their direct effects on cancer cells but also by off-target effects within the host immune system. Cytotoxic treatment regimens elicit several changes in immune-related parameters including the composition, phenotype, and function of immune cells. Here we discuss the impact of innate and adaptive immune cells on the success of anticancer therapy. In this context we examine the opportunities to exploit host immune responses to boost tumor clearing, and highlight the challenges facing the treatment of advanced metastatic disease. PMID:25857662

  15. Anticancer activity of Aristolochia ringens Vahl. (Aristolochiaceae)

    PubMed Central

    Akindele, Abidemi James; Wani, Zahoor; Mahajan, Girish; Sharma, Sadhana; Aigbe, Flora Ruth; Satti, Naresh; Adeyemi, Olufunmilayo Olaide; Mondhe, Dilip Manikrao

    2014-01-01

    Cancer is a leading cause of death worldwide and sustained focus is on the discovery and development of newer and better tolerated anticancer drugs especially from plants. The sulforhodamine B (SRB) in vitro cytotoxicity assay, sarcoma-180 (S-180) ascites and solid tumor, and L1210 lymphoid leukemia in vivo models were used to investigate the anticancer activity of root extracts of Aristolochia ringens Vahl. (Aristolochiaceae; 馬兜鈴 mǎ dōu líng). AR-A001 (IC50 values of 20 μg/mL, 22 μg/mL, 3 μg/mL, and 24 μg/mL for A549, HCT-116, PC3, and THP-1 cell lines, respectively), and AR-A004 (IC50 values of 26 μg/mL, 19.5 μg/mL, 12 μg/mL, 28 μg/mL, 30 μg/mL, and 22 μg/mL for A549, HCT-116, PC3, A431, HeLa, and THP-1, respectively), were observed to be significantly active in vitro. Potency was highest with AR-A001 and AR-A004 for PC3 with IC50 values of 3 μg/mL and 12 μg/mL, respectively. AR-A001 and AR-A004 produced significant (p < 0.05–0.001) dose-dependent inhibition of tumor growth in the S-180 ascites model with peak effects produced at the highest dose of 120 mg/kg. Inhibition values were 79.51% and 89.98% for AR-A001 and AR-A004, respectively. In the S-180 solid tumor model, the inhibition of tumor growth was 29.45% and 50.50% for AR-A001 (120 mg/kg) and AR-A004 (110 mg/kg), respectively, compared to 50.18% for 5-fluorouracil (5-FU; 20 mg/kg). AR-A001 and AR-A004 were also significantly active in the leukemia model with 211.11% and 155.56% increase in mean survival time (MST) compared to a value of 211.11% for 5-FU. In conclusion, the ethanolic (AR-A001) and dichloromethane:methanol (AR-A004) root extracts of AR possess significant anticancer activities in vitro and in vivo. PMID:26151007

  16. Anticancer Drug Development: The Way Forward.

    PubMed

    Connors

    1996-01-01

    Cancer chemotherapy celebrated its fiftieth anniversary last year. It was in 1945 that wartime research on the nitrogen mustards, which uncovered their potential use in the treatment of leukaemias and other cancers, was first made public. Fifty years later, more than sixty drugs have been registered in the USA for the treatment of cancer, but there are still lessons to be learnt. One problem, paradoxically, is that many anticancer agents produce a response in several different classes of the disease. This means that once a new agent has been shown to be effective in one cancer, much effort is devoted to further investigations of the same drug in various combinations for different disorders. While this approach has led to advances in the treatment of many childhood cancers and some rare diseases, a plethora of studies on metastatic colon cancer, for example, has yielded little benefit. 5-fluorouracil continues to be used in trials, yet there is no evidence for an increase in survival. The lesson to be learnt is that many common cancers are not adequately treated by present-day chemotherapy, and most trials of this sort are a waste of time. Significant increases in survival will only occur if the selectivity of present-day anticancer agents can be increased or new classes of more selective agents can be discovered. There are two fundamental problems in drug development: a lack of suitable laboratory tests and the difficulty of conducting early clinical trials. Firstly, no existing laboratory method can accurately predict which chemical will be effective against a particular class of human cancer. At best, tests can demonstrate a general 'anticancer' property. This is well exemplified by the discovery of cisplatin. The fact that cisplatin caused regression in a number of transplanted rodent tumours created no great excitement amongst chemotherapists. It was only later when it was tested clinically against ovarian cancer that results were sufficiently positive to

  17. Anticancer drug-induced kidney disorders.

    PubMed

    Kintzel, P E

    2001-01-01

    Nephrotoxicity is an inherent adverse effect of certain anticancer drugs. Renal dysfunction can be categorised as prerenal uraemia, intrinsic damage or postrenal uraemia according to the underlying pathophysiological process. Renal hypoperfusion promulgates prerenal uraemia. Intrinsic renal damage results from prolonged hypoperfusion, exposure to exogenous or endogenous nephrotoxins, renotubular precipitation of xenobiotics or endogenous compounds, renovascular obstruction, glomerular disease, renal microvascular damage or disease, and tubulointerstitial damage or disease. Postrenal uraemia is a consequence of clinically significant urinary tract obstruction. Clinical signs of nephrotoxicity and methods used to assess renal function are discussed. Mechanisms of chemotherapy-induced renal dysfunction generally include damage to vasculature or structures of the kidneys, haemolytic uraemic syndrome and prerenal perfusion deficits. Patients with cancer are frequently at risk of renal impairment secondary to disease-related and iatrogenic causes. This article reviews the incidence, presentation, prevention and management of anticancer drug-induced renal dysfunction. Dose-related nephrotoxicity subsequent to administration of certain chloroethylnitrosourea compounds (carmustine, semustine and streptozocin) is commonly heralded by increased serum creatinine levels, uraemia and proteinuria. Additional signs of streptozocin-induced nephrotoxicity include hypophosphataemia, hypokalaemia, hypouricaemia, renal tubular acidosis, glucosuria, aceturia and aminoaciduria. Cisplatin and carboplatin cause dose-related renal dysfunction. In addition to increased serum creatinine levels and uraemia, electrolyte abnormalities, such as hypomagnesaemia and hypokalaemia, are commonly reported adverse effects. Rarely, cisplatin has been implicated as the underlying cause of haemolytic uraemic syndrome. Pharmaceutical antidotes to cisplatin-induced nephrotoxicity include amifostine, sodium

  18. Efficient synthesis of benzamide riboside, a potential anticancer agent.

    PubMed

    Bonnac, Laurent F; Gao, Guang-Yao; Chen, Liqiang; Patterson, Steven E; Jayaram, Hiremagalur N; Pankiewicz, Krzysztof W

    2007-01-01

    An efficient five step synthesis of benzamide riboside (BR) amenable for a large scale synthesis has been developed. It allows for extensive pre-clinical studies of BR as a potential anticancer agent. PMID:18066762

  19. Enediyne anticancer antibiotic lidamycin: chemistry, biology and pharmacology.

    PubMed

    Shao, Rong-guang; Zhen, Yong-su

    2008-02-01

    The enediyne antibiotics, the potent anticancer agents that contain diyne-ene functional groups, are appreciated for their novel molecular architecture, their remarkable biological activity and their fascinating mechanism of action. Their anticancer activity is apparently due to their ability to damage DNA through radical-mediated hydrogen abstraction. The enediyne antibiotics show markedly cytotoxicities against cancers in vitro and in vivo. Lidamycin is a member of the enediyne anticancer antibiotic family. This review examines lidamycin with particular emphasis on the discovery, the biological properties and its structure-activity relationships. In addition, the possible mechanisms of action of lidamycin are described. Recent progress, particularly in the areas of biosynthesis, and immunoconjugates are highlighted. Finally, the pharmacological applications of lidamycin in cancer therapy and its potential use as anticancer agents are also discussed. PMID:18288918

  20. Anti-Cancer Potential of a Novel SERM Ormeloxifene

    PubMed Central

    Gara, Rishi Kumar; Sundram, Vasudha; Chauhan, Subhash C.; Jaggi, Meena

    2014-01-01

    Ormeloxifene is a non-steroidal Selective Estrogen Receptor Modulator (SERM) that is used as an oral contraceptive. Recent studies have shown its potent anti-cancer activities in breast, head and neck, and chronic myeloid leukemia cells. Several in vivo and clinical studies have reported that ormeloxifene possesses an excellent therapeutic index and has been well-tolerated, without any haematological, biochemical or histopathological toxicity, even with chronic administration. A reasonably long period of time and an enormous financial commitment are required to develop a lead compound into a clinically approved anti-cancer drug. For these reasons and to circumvent these obstacles, ormeloxifene is a promising candidate on a fast track for the development or repurposing established drugs as anti-cancer agents for cancer treatment. The current review summarizes recent findings on ormeloxifene as an anti-cancer agent and future prospects of this clinically safe pharmacophore. PMID:23895678

  1. [Advances in study of anticancer properties of Allii Macrostemonis Bulbus].

    PubMed

    Lai, Quan-kui; Tao, Rui-lin; Zhao, Yu-jia; Zi, Rui-fei; He, Quan

    2015-12-01

    A commonly used Chinese crude drug Allii Macrostemonis Bulbus has been shown to possess good anticancer activities and related properties such as antioxidation, nitrite scavenging, nitrosamine synthesis blocking and immune enhancement, and has been widely used as an effective auxiliary drug in the treatment of some malignant tumors. This paper systematically reviews the advances in the study of anticancer-related activities of Allii Macrostemonis Bulbus's various components such as raw juice, extracts, saponins, volatile oil, polysaccharides, nitrogen compounds, etc. PMID:27245027

  2. Potential Anticancer Properties of Grape Antioxidants

    PubMed Central

    Zhou, Kequan; Raffoul, Julian J.

    2012-01-01

    Dietary intake of foods rich in antioxidant properties is suggested to be cancer protective. Foods rich in antioxidant properties include grape (Vitis vinifera), one of the world's largest fruit crops and most commonly consumed fruits in the world. The composition and cancer-protective effects of major phenolic antioxidants in grape skin and seed extracts are discussed in this review. Grape skin and seed extracts exert strong free radical scavenging and chelating activities and inhibit lipid oxidation in various food and cell models in vitro. The use of grape antioxidants are promising against a broad range of cancer cells by targeting epidermal growth factor receptor (EGFR) and its downstream pathways, inhibiting over-expression of COX-2 and prostaglandin E2 receptors, or modifying estrogen receptor pathways, resulting in cell cycle arrest and apoptosis. Interestingly, some of these activities were also demonstrated in animal models. However, in vivo studies have demonstrated inconsistent antioxidant efficacy. Nonetheless, a growing body of evidence from human clinical trials has demonstrated that consumption of grape, wine and grape juice exerts many health-promoting and possible anti-cancer effects. Thus, grape skin and seed extracts have great potential in cancer prevention and further investigation into this exciting field is warranted. PMID:22919383

  3. Anticancer activity of selected Colocasia gigantia fractions.

    PubMed

    Pornprasertpol, Apichai; Sereemaspun, Amornpun; Sooklert, Kanidta; Satirapipatkul, Chutimon; Sukrong, Suchada

    2015-01-01

    The objective of this study is to investigate the anticancer potential of the extract of Colocasia gigantea C. gigantea), a plant member of the Araceae family. In the present study, we investigated the cytotoxic activity of C. gigantea extract on cervical cancer (Hela) and human white blood cells (WBC) in vitro. The authors then identified the bioactive ingredients that demonstrated cytotoxicity on tested cells and evaluated those bioactive ingredients using the bioassay-guided fractionation method. The results showed that not all parts of C. gigantea promote cytotoxic activity. The dichloromethane leaf fraction showed significant cell proliferation effect on Hela cells, but not on WBCs. Only the n-hexane tuber fraction (Fr. 1T) exhibited significant cytotoxicity on Hela cells (IC50 = 585 μg/ml) and encouraged WBC cell proliferation. From GC-Mass spectrometry, 4,22-Stigmastadiene-3-one, Diazoprogesterone, 9-Octadecenoic acid (Z)-, hexyl ester and Oleic Acid were the components of Fr 1T that demonstrated cytotoxic potential. In conclusion, C. gigantea's Fr 1T shows potential for cervical cancer treatment. PMID:25764620

  4. Review of anticancer mechanisms of isoquercitin

    PubMed Central

    Orfali, Guilherme di Camillo; Duarte, Ana Carolina; Bonadio, Vivien; Martinez, Natalia Peres; de Araújo, Maria Elisa Melo Branco; Priviero, Fernanda Bruschi Marinho; Carvalho, Patricia Oliveira; Priolli, Denise Gonçalves

    2016-01-01

    This review was based on a literature search of PubMed and Scielo databases using the keywords “quercetin, rutin, isoquercitrin, isoquercitin (IQ), quercetin-3-glucoside, bioavailability, flavonols and favonoids, and cancer” and combinations of all the words. We collected relevant scientific publications from 1990 to 2015 about the absorption, bioavailability, chemoprevention activity, and treatment effects as well as the underlying anticancer mechanisms of isoquercitin. Flavonoids are a group of polyphenolic compounds widely distributed throughout the plant kingdom. The subclass of flavonols receives special attention owing to their health benefits. The main components of this class are quercetin, rutin, and IQ, which is a flavonoid and although mostly found as a glycoside, is an aglycone (lacks a glycoside side chain). This compound presents similar therapeutic profiles to quercetin but with superior bioavailability, resulting in increased efficacy compared to the aglycone form. IQ has therapeutic applications owing to its wide range of pharmacological effects including antioxidant, antiproliferative, anti-inflammatory, anti-hypertensive, and anti-diabetic. The protective effects of IQ in cancer may be due to actions on lipid peroxidation. In addition, the antitumor effect of IQ and its underlying mechanism are related to interactions with Wnt signaling pathway, mixed-lineage protein kinase 3, mitogen-activated protein kinase, apoptotic pathways, as well proinflammatory protein signaling. This review contributed to clarifying the mechanisms of absorption, metabolism, and actions of IQ and isoquercitrin in cancer. PMID:27081641

  5. Anti-cancer agents counteracting tumor glycolysis

    PubMed Central

    Granchi, Carlotta

    2012-01-01

    Can we consider cancer as a “metabolic disease”? Tumors are the result of a metabolic selection, forming tissues composed of heterogeneous cells that generally express an overactive metabolism as a common feature. In fact, cancer cells have to deal with increased needs for both energy and biosynthetic intermediates, in order to support their growth and invasiveness. However, their high proliferation rate often generates regions that are not sufficiently oxygenated. Therefore, their carbohydrate metabolism has to rely mostly on a glycolytic process that is uncoupled from oxidative phosphorylation. This metabolic switch, also known as the “Warburg Effect”, constitutes a fundamental adaptation of the tumor cells to a relatively hostile environment, and supports the evolution of aggressive and metastatic phenotypes. As a result, tumor glycolysis may constitute an attractive target for cancer therapy. This approach has often raised concerns that anti-glycolytic agents may cause serious side effects on normal cells. Actually, the key for a selective action against cancer cells can be found in their hyperbolic addiction to glycolysis, which may be exploited to generate new anti-cancer drugs showing minimal toxicity. In fact, there is growing evidence that supports many glycolytic enzymes and transporters as suitable candidate targets for cancer therapy. Herein we review some of the most relevant anti-glycolytic agents that have been investigated so far for the treatment of cancer. PMID:22684868

  6. The Wnt pathway: emerging anticancer strategies.

    PubMed

    Gupta, Aman; Verma, Anukriti; Mishra, Ashutosh K; Wadhwa, Gulshan; Sharma, Sanjeev K; Jain, Chakresh K

    2013-05-01

    The canonical Wnt cascade has emerged as a critical regulator of cancer cells. Activation of the Wnt signaling pathway has also been associated with stem cell, thus raising the possibility of its role in embryogenesis and in the proliferation of malignant cancer cells. Wnt pathway has been reported to be involved in normal physiological processes in adult animals and integrally associated with cancer cell growth and maintenance, thus has been harnessed to devise strategies for anticancer therapy. The presence or absence of some members in this pathway, such as β-catenin, Axin or APC, has been found to involve in different types of tumors in human beings. Dysregulation of the canonical Wnt/β-catenin signaling pathway, mostly by inactivating mutations of the APC tumor suppressor, or oncogenic mutations of β-catenin, has been implicated in colorectal tumorigenesis. Further, elevated levels of β-catenin protein, a hallmark of activated canonical Wnt pathway, have been significantly observed in common forms of human malignancies, indicating that activation of the Wnt pathway may play an important role in tumor development and hence could be a crucial consideration for drug development. The paper discusses the potential therapeutic and diagnostic strategies directing on Wnt pathways on the basis of recent patents and their analysis. PMID:23432158

  7. Polyphenols as mitochondria-targeted anticancer drugs.

    PubMed

    Gorlach, Sylwia; Fichna, Jakub; Lewandowska, Urszula

    2015-10-01

    Mitochondria are the respiratory and energetic centers of the cell where multiple intra- and extracellular signal transduction pathways converge leading to dysfunction of those organelles and, consequently, apoptotic or/and necrotic cell death. Mitochondria-targeted anticancer drugs are referred to as mitocans; they have recently been classified by Neuzil et al. (2013) according to their molecular mode of action into: hexokinase inhibitors; mimickers of the Bcl-2 homology-3 (BH3) domains; thiol redox inhibitors; deregulators of voltage-dependent anionic channel (VDAC)/adenine nucleotide translocase (ANT) complex; electron redox chain-targeting agents; lipophilic cations targeting the mitochondrial inner membrane; tricarboxylic acid cycle-targeting agents; and mitochondrial DNA-targeting agents. Polyphenols of plant origin and their synthetic or semisynthetic derivatives exhibit pleiotropic biological activities, including the above-mentioned modes of action characteristic of mitocans. Some of them have already been tested in clinical trials. Gossypol has served as a lead compound for developing more efficient BH3 mimetics such as ABT-737 and its orally available structural analog ABT-263 (Navitoclax). Furthermore, mitochondriotropic derivatives of phenolic compounds such as quercetin and resveratrol have been synthesized and reported to efficiently induce cancer cell death in vitro. PMID:26185003

  8. Indigofera suffruticosa: An Alternative Anticancer Therapy

    PubMed Central

    Vieira, Jeymesson Raphael Cardoso; de Souza, Ivone Antônia; do Nascimento, Silene Carneiro

    2007-01-01

    Indigofera suffruticosa Mill (Fabeceae) occurs in the Northeast countryside and has intensive popular use in the treatment of infectious, inflammatory and other processes. The main aim of the present work was to investigate the cytotoxic and antitumor effects of aqueous extracts of leaves of I. suffruticosa obtained by infusion and maceration as well as to evaluate the toxicological properties. Aqueous extracts did not exhibit cytotoxicity against HEp-2 (human epidermoid cancer cell) cell lines by MTT method. From the aqueous extract by infusion, the toxicological assay showed low order of toxicity. The antitumor effect of aqueous extracts by infusion (64.53%) and maceration (62.62%) against sarcoma 180 in mice at a dose of 50 mg kg−1 (intraperitoneally), based on low order of toxicity was comparable to the control group, which showed 100% development. Considering the low order of toxicity and that it is highly effective in inhibiting growth of solid tumors, the aqueous extracts of leaves of I. suffruticosa may be used as an alternative anticancer agent. PMID:17965767

  9. Anticancer Activity of Sea Cucumber Triterpene Glycosides

    PubMed Central

    Aminin, Dmitry L.; Menchinskaya, Ekaterina S.; Pisliagin, Evgeny A.; Silchenko, Alexandra S.; Avilov, Sergey A.; Kalinin, Vladimir I.

    2015-01-01

    Triterpene glycosides are characteristic secondary metabolites of sea cucumbers (Holothurioidea, Echinodermata). They have hemolytic, cytotoxic, antifungal, and other biological activities caused by membranotropic action. These natural products suppress the proliferation of various human tumor cell lines in vitro and, more importantly, intraperitoneal administration in rodents of solutions of some sea cucumber triterpene glycosides significantly reduces both tumor burden and metastasis. The anticancer molecular mechanisms include the induction of tumor cell apoptosis through the activation of intracellular caspase cell death pathways, arrest of the cell cycle at S or G2/M phases, influence on nuclear factors, NF-κB, and up-down regulation of certain cellular receptors and enzymes participating in cancerogenesis, such as EGFR (epidermal growth factor receptor), Akt (protein kinase B), ERK (extracellular signal-regulated kinases), FAK (focal adhesion kinase), MMP-9 (matrix metalloproteinase-9) and others. Administration of some glycosides leads to a reduction of cancer cell adhesion, suppression of cell migration and tube formation in those cells, suppression of angiogenesis, inhibition of cell proliferation, colony formation and tumor invasion. As a result, marked growth inhibition of tumors occurs in vitro and in vivo. Some holothurian triterpene glycosides have the potential to be used as P-gp mediated MDR reversal agents in combined therapy with standard cytostatics. PMID:25756523

  10. Assessing Specificity of Anticancer Drugs In Vitro.

    PubMed

    Kluwe, Lan

    2016-01-01

    A procedure for assessing specificity of anticancer drugs in vitro using cultures containing both tumor and non-tumor cells is demonstrated. The key element is the quantitative determination of a tumor-specific genetic alteration in relation to a universal sequence using a dual-probe digital PCR assay and the subsequent calculation of the proportion of tumor cells. The assay is carried out on a culture containing tumor cells of an established line and spiked-in non-tumor cells. The mixed culture is treated with a test drug at various concentrations. After the treatment, DNA is prepared directly from the survived adhesive cells in wells of 96-well plates using a simple and inexpensive method, and subjected to a dual-probe digital PCR assay for measuring a tumor-specific genetic alteration and a reference universal sequence. In the present demonstration, a heterozygous deletion of the NF1 gene is used as the tumor-specific genetic alteration and a RPP30 gene as the reference gene. Using the ratio NF1/RPP30, the proportion of tumor cells was calculated. Since the dose-dependent change of the proportion of tumor cells provides an in vitro indication for specificity of the drug, this genetic and cell-based in vitro assay will likely have application potential in drug discovery. Furthermore, for personalized cancer-care, this genetic- and cell-based tool may contribute to optimizing adjuvant chemotherapy by means of testing efficacy and specificity of candidate drugs using primary cultures of individual tumors. PMID:27078035

  11. From antimicrobial to anticancer peptides. A review.

    PubMed

    Gaspar, Diana; Veiga, A Salomé; Castanho, Miguel A R B

    2013-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms. Although AMPs have been essentially studied and developed as potential alternatives for fighting infectious diseases, their use as anticancer peptides (ACPs) in cancer therapy either alone or in combination with other conventional drugs has been regarded as a therapeutic strategy to explore. As human cancer remains a cause of high morbidity and mortality worldwide, an urgent need of new, selective, and more efficient drugs is evident. Even though ACPs are expected to be selective toward tumor cells without impairing the normal body physiological functions, the development of a selective ACP has been a challenge. It is not yet possible to predict antitumor activity based on ACPs structures. ACPs are unique molecules when compared to the actual chemotherapeutic arsenal available for cancer treatment and display a variety of modes of action which in some types of cancer seem to co-exist. Regardless the debate surrounding the definition of structure-activity relationships for ACPs, great effort has been invested in ACP design and the challenge of improving effective killing of tumor cells remains. As detailed studies on ACPs mechanisms of action are crucial for optimizing drug development, in this review we provide an overview of the literature concerning peptides' structure, modes of action, selectivity, and efficacy and also summarize some of the many ACPs studied and/or developed for targeting different solid and hematologic malignancies with special emphasis on the first group. Strategies described for drug development and for increasing peptide selectivity toward specific cells while reducing toxicity are also discussed. PMID:24101917

  12. From antimicrobial to anticancer peptides. A review

    PubMed Central

    Gaspar, Diana; Veiga, A. Salomé; Castanho, Miguel A. R. B.

    2013-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms. Although AMPs have been essentially studied and developed as potential alternatives for fighting infectious diseases, their use as anticancer peptides (ACPs) in cancer therapy either alone or in combination with other conventional drugs has been regarded as a therapeutic strategy to explore. As human cancer remains a cause of high morbidity and mortality worldwide, an urgent need of new, selective, and more efficient drugs is evident. Even though ACPs are expected to be selective toward tumor cells without impairing the normal body physiological functions, the development of a selective ACP has been a challenge. It is not yet possible to predict antitumor activity based on ACPs structures. ACPs are unique molecules when compared to the actual chemotherapeutic arsenal available for cancer treatment and display a variety of modes of action which in some types of cancer seem to co-exist. Regardless the debate surrounding the definition of structure-activity relationships for ACPs, great effort has been invested in ACP design and the challenge of improving effective killing of tumor cells remains. As detailed studies on ACPs mechanisms of action are crucial for optimizing drug development, in this review we provide an overview of the literature concerning peptides' structure, modes of action, selectivity, and efficacy and also summarize some of the many ACPs studied and/or developed for targeting different solid and hematologic malignancies with special emphasis on the first group. Strategies described for drug development and for increasing peptide selectivity toward specific cells while reducing toxicity are also discussed. PMID:24101917

  13. Assessing Specificity of Anticancer Drugs In Vitro

    PubMed Central

    Kluwe, Lan

    2016-01-01

    A procedure for assessing specificity of anticancer drugs in vitro using cultures containing both tumor and non-tumor cells is demonstrated. The key element is the quantitative determination of a tumor-specific genetic alteration in relation to a universal sequence using a dual-probe digital PCR assay and the subsequent calculation of the proportion of tumor cells. The assay is carried out on a culture containing tumor cells of an established line and spiked-in non-tumor cells. The mixed culture is treated with a test drug at various concentrations. After the treatment, DNA is prepared directly from the survived adhesive cells in wells of 96-well plates using a simple and inexpensive method, and subjected to a dual-probe digital PCR assay for measuring a tumor-specific genetic alteration and a reference universal sequence. In the present demonstration, a heterozygous deletion of the NF1 gene is used as the tumor-specific genetic alteration and a RPP30 gene as the reference gene. Using the ratio NF1/RPP30, the proportion of tumor cells was calculated. Since the dose-dependent change of the proportion of tumor cells provides an in vitro indication for specificity of the drug, this genetic and cell-based in vitro assay will likely have application potential in drug discovery. Furthermore, for personalized cancer-care, this genetic- and cell-based tool may contribute to optimizing adjuvant chemotherapy by means of testing efficacy and specificity of candidate drugs using primary cultures of individual tumors. PMID:27078035

  14. Immunological monitoring of anticancer vaccines in clinical trials

    PubMed Central

    Ogi, Chizuru; Aruga, Atsushi

    2013-01-01

    Therapeutic anticancer vaccines operate by eliciting or enhancing an immune response that specifically targets tumor-associated antigens. Although intense efforts have been made for developing clinically useful anticancer vaccines, only a few Phase III clinical trials testing this immunotherapeutic strategy have achieved their primary endpoint. Here, we report the results of a retrospective research aimed at clarifying the design of previously completed Phase II/III clinical trials testing therapeutic anticancer vaccines and at assessing the value of immunological monitoring in this setting. We identified 17 anticancer vaccines that have been investigated in the context of a completed Phase II/III clinical trial. The immune response of patients receiving anticancer vaccination was assessed for only 8 of these products (in 15 distinct studies) in the attempt to identify a correlation with clinical outcome. Of these studies, 13 were supported by a statistical correlation study (Log-rank test), and no less than 12 identified a positive correlation between vaccine-elicited immune responses and disease outcome. Six trials also performed a Cox proportional hazards analysis, invariably demonstrating that vaccine-elicited immune responses have a positive prognostic value. However, despite these positive results in the course of early clinical development, most therapeutic vaccines tested so far failed to provide any clinical benefit to cancer patients in Phase II/III studies. Our research indicates that evaluating the immunological profile of patients at enrollment might constitute a key approach often neglected in these studies. Such an immunological monitoring should be based not only on peripheral blood samples but also on bioptic specimens, whenever possible. The evaluation of the immunological profile of cancer patients enrolled in early clinical trials will allow for the identification of individuals who have the highest chances to benefit from anticancer vaccination

  15. Anti-Cancer Vaccines — A One-Hit Wonder?

    PubMed Central

    Liu, Justin K.H.

    2014-01-01

    Immunization against common bacterial and viral diseases has helped prevent millions of deaths worldwide. More recently, the concept of vaccination has been developed into a potentially novel strategy to treat and prevent cancer formation, progression, and spread. Over the past few years, a handful of anti-cancer vaccines have been licensed and approved for use in clinical practice, thus providing a breakthrough in the field. However, the path has not always been easy, with many hurdles that have had to be overcome in order to reach this point. Nevertheless, with more anti-cancer vaccines currently in development, there is still hope that they can eventually become routine tools used in the treatment and prevention of cancer in the future. This review will discuss in detail both types of anti-cancer vaccine presently used in clinical practice — therapeutic and preventive — before considering some of the more promising anti-cancer vaccines that are currently in development. Finally, the issue of side effects and the debate surrounding the overall cost-effectiveness of anti-cancer vaccines will be examined. PMID:25506282

  16. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  17. 2-AZETIDINONE DERIVATIVES: SYNTHESIS, ANTIMICROBIAL, ANTICANCER EVALUATION AND QSAR STUDIES.

    PubMed

    Deep, Aakash; Kumar, Pradeep; Narasimhan, Balasubramanian; Lim, Siong Meng; Ramasamy, Kalavathy; Mishra, Rakesh Kumar; Mani, Vasudevan

    2016-01-01

    A series of 2-azetidinone derivatives was synthesized from hippuric acid and evaluated for its in vitro antimicrobial and anticancer activities. Antimicrobial properties of the title compounds were investigated against Gram positive and Gram negative bacterial as well as fungal strains. Anticancer activity was performed against breast cancer (MCF7) cell lines. Antimicrobial activity results revealed that N-{2-[3-chloro-2-(2- chlorophenyl)-4-oxoazetidin-1-ylamino]-2-oxoethyl}benzamide (4) was found to be the most potent antimicrobial agent. Results of anticancer study indicated that the synthesized compounds exhibited average anticancer potential and N-[2-(3-chloro-2-oxo-4-styrylazetidin-1-ylamino)-2-oxoethyl]benzamide (17) was found to be most potent anticancer agent against breast cancer (MCF7) cell lines. QSAR models indicated that the antibacterial, antifungal and the overall antimicrobial activities of the synthesized compounds were governed by topological parameters, Balaban index (J) and valence zero and first order molecular connectivity indices (⁰χv and ¹χv). PMID:27008802

  18. CancerPPD: a database of anticancer peptides and proteins

    PubMed Central

    Tyagi, Atul; Tuknait, Abhishek; Anand, Priya; Gupta, Sudheer; Sharma, Minakshi; Mathur, Deepika; Joshi, Anshika; Singh, Sandeep; Gautam, Ankur; Raghava, Gajendra P.S.

    2015-01-01

    CancerPPD (http://crdd.osdd.net/raghava/cancerppd/) is a repository of experimentally verified anticancer peptides (ACPs) and anticancer proteins. Data were manually collected from published research articles, patents and from other databases. The current release of CancerPPD consists of 3491 ACP and 121 anticancer protein entries. Each entry provides comprehensive information related to a peptide like its source of origin, nature of the peptide, anticancer activity, N- and C-terminal modifications, conformation, etc. Additionally, CancerPPD provides the information of around 249 types of cancer cell lines and 16 different assays used for testing the ACPs. In addition to natural peptides, CancerPPD contains peptides having non-natural, chemically modified residues and D-amino acids. Besides this primary information, CancerPPD stores predicted tertiary structures as well as peptide sequences in SMILES format. Tertiary structures of peptides were predicted using the state-of-art method, PEPstr and secondary structural states were assigned using DSSP. In order to assist users, a number of web-based tools have been integrated, these include keyword search, data browsing, sequence and structural similarity search. We believe that CancerPPD will be very useful in designing peptide-based anticancer therapeutics. PMID:25270878

  19. Preclinical pharmacodynamic evaluation of antibiotic nitroxoline for anticancer drug repurposing

    PubMed Central

    ZHANG, QI; WANG, SHANSHAN; YANG, DEXUAN; PAN, KEVIN; LI, LINNA; YUAN, SHOUJUN

    2016-01-01

    The established urinary antibiotic nitroxoline has recently regained considerable attention, due to its potent activities in inhibiting angiogenesis, inducing apoptosis and blocking cancer cell invasion. These features make nitroxoline an excellent candidate for anticancer drug repurposing. To rapidly advance nitroxoline repurposing into clinical trials, the present study performed systemic preclinical pharmacodynamic evaluation of its anticancer activity, including a methyl thiazolyl tetrazolium assay in vitro and an orthotopic urological tumor assay in vivo. The current study determined that nitroxoline exhibits dose-dependent anti-cancer activity in vitro and in urological tumor orthotopic mouse models. In addition, it was demonstrated that the routine nitroxoline administration regimen used for urinary tract infections was effective and sufficient for urological cancer treatment, and 2 to 4-fold higher doses resulted in obvious enhancement of anticancer efficacy without corresponding increases in toxicity. Furthermore, nitroxoline sulfate, one of the most common metabolites of nitroxoline in the urine, effectively inhibited cancer cell proliferation. This finding increases the feasibility of nitroxoline repurposing for urological cancer treatment. Due to the excellent anticancer activity demonstrated in the present study, and its well-known safety profile and pharmacokinetic properties, nitroxoline has been approved to enter into a phase II clinical trial in China for non-muscle invasive bladder cancer treatment (registration no. CTR20131716). PMID:27123101

  20. Anticancer activity assessment of two novel binuclear platinum (II) complexes.

    PubMed

    Shahsavani, Mohammad Bagher; Ahmadi, Shamseddin; Aseman, Marzieh Dadkhah; Nabavizadeh, S Masoud; Rashidi, Mehdi; Asadi, Zahra; Erfani, Nasrollah; Ghasemi, Atiyeh; Saboury, Ali Akbar; Niazi, Ali; Bahaoddini, Aminollah; Yousefi, Reza

    2016-08-01

    In the current study, two binuclear Pt (II) complexes, containing cis, cis-[Me2Pt (μ-NN) (μ-dppm) PtMe2] (1), and cis,cis-[Me2Pt(μ-NN)(μ dppm) Pt((CH2)4)] (2) in which NN=phthalazine and dppm=bis (diphenylphosphino) methane were evaluated for their anticancer activities and DNA/purine nucleotide binding properties. These Pt (II) complexes, with the non-classical structures, demonstrated a significant anticancer activity against Jurkat and MCF-7 cancer cell lines. The results of ethidium bromide/acridine orange staining and Caspase-III activity suggest that these complexes were capable to stimulate an apoptotic mechanism of cell death in the cancer cells. Using different biophysical techniques and docking simulation analysis, we indicated that these complexes were also capable to interact efficiently with DNA via a non-intercalative mechanism. According to our results, substitution of cyclopentane (in complex 2) with two methyl groups (in complex 1) results in significant improvement of the complex ability to interact with DNA and subsequently to induce the anticancer activity. Overall, these binuclear Pt (II) complexes are promising group of the non-classical potential anticancer agents which can be considered as molecular templates in designing of highly efficient platinum anticancer drugs. PMID:27289447

  1. Four copper(II) compounds synthesized by anion regulation: Structure, anticancer function and anticancer mechanism.

    PubMed

    Zhang, Zhenlei; Gou, Yi; Wang, Jun; Yang, Kun; Qi, Jinxu; Zhou, Zuping; Liang, Shichu; Liang, Hong; Yang, Feng

    2016-10-01

    Copper (Cu) compounds are a promising candidate for next generation metal anticancer drugs. Therefore, we regulated anions to synthesize four mononuclear and binuclear Cu(II) compounds derived from thiosemicarbazone Schiff base ligands and characterized them. Four of these compounds showed very high cytotoxicity to cancer cell lines in vitro. These Cu(II) compounds strongly promoted the apoptosis of BEL-7404 cells and had a capacity to arrest the cell cycle at S phase of those cells. Furthermore, reactive oxygen species (ROS), mitochondrial membrane potential and Western blot analyses revealed that these Cu(II) compounds exert their cytotoxicity through an ROS-mediated intrinsic mitochondrial pathway accompanied by the regulation of Bcl-2 family proteins. PMID:27309677

  2. Synthesis of four binuclear copper(II) complexes: Structure, anticancer properties and anticancer mechanism.

    PubMed

    Qi, Jinxu; Liang, Shichu; Gou, Yi; Zhang, Zhenlei; Zhou, Zuping; Yang, Feng; Liang, Hong

    2015-01-01

    Copper (Cu) compounds are a promising candidate for next generation metal anticancer drugs and have been extensively studied. Therefore, four binuclear copper(II) compounds derived from Schiff base thiosemicarbazones (L1-L4), namely [CuCl(L1)]2 (C1), [CuNO3(L2)]2 (C2), [Cu(NCS) (L3)]2 (C3) and [Cu(CH3COO) (L4)]2 (C4) were synthesized and characterized. Four of these compounds showed very high cytotoxicity to cancer cell lines in vitro. These Cu(II) compounds strongly promoted the apoptosis of BEL-7404 cells. The formation of reactive oxygen species (ROS), change in mitochondrial membrane potential and western blot analysis revealed that Cu compounds could induce cancer cell apoptosis through the intrinsic ROS-mediated mitochondrial pathway accompanied by the regulation of Bcl-2 family proteins. PMID:25899339

  3. Nonsteroidal Anti-inflammatory-Organometallic Anticancer Compounds.

    PubMed

    Păunescu, Emilia; McArthur, Sarah; Soudani, Mylène; Scopelliti, Rosario; Dyson, Paul J

    2016-02-15

    Compounds that combine metal-based drugs with covalently linked targeted organic agents have been shown, in some instances, to exhibit superior anticancer properties compared to the individual counterparts. Within this framework, we prepared a series of organometallic ruthenium(II)- and osmium(II)-p-cymene complexes modified with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin and diclofenac. The NSAIDs are attached to the organometallic moieties via monodentate (pyridine/phosphine) or bidentate (bipyridine) ligands, affording piano-stool Ru(II) and Os(II) arene complexes of general formula [M(η(6)-p-cymene)Cl2(N)], where N is a pyridine-based ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate}, [M(η(6)-p-cymene)Cl2(P)], where P is a phosphine ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate, and [M(η(6)-p-cymene)Cl(N,N')][Cl], where N,N' is a bipyridine-based ligand, (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate), (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(2-((2,6-dichlorophenyl)amino)phenyl)acetate), (bis(2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate), or (bis(2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate). The antiproliferative properties of the complexes were assessed in human ovarian cancer cells (A2780 and A2780cisR, the latter being resistant to cisplatin) and nontumorigenic human embryonic kidney (HEK-293) cells. Some of the complexes are considerably more cytotoxic than the original drugs and also display significant cancer cell selectivity. PMID:26824462

  4. Nanoscale coordination polymers for anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Phillips, Rachel Huxford

    This dissertation reports the synthesis and characterization of nanoscale coordination polymers (NCPs) for anticancer drug delivery. Nanoparticles have been explored in order to address the limitations of small molecule chemotherapeutics. NCPs have been investigated as drug delivery vehicles as they can exhibit the same beneficial properties as the bulk metal-organic frameworks as well as interesting characteristics that are unique to nanomaterials. Gd-MTX (MTX = methotrexate) NCPs with a MTX loading of 71.6 wt% were synthesized and stabilized by encapsulation within a lipid bilayer containing anisamide (AA), a small molecule that targets sigma receptors which are overexpressed in many cancer tissues. Functionalization with AA allows for targeted delivery and controlled release to cancer cells, as shown by enhanced efficacy against leukemia cells. The NCPs were doped with Ru(bpy)32+ (bpy = 2,2'-bipyridine), and this formulation was utilized as an optical imaging agent by confocal microscopy. NCPs containing the chemotherapeutic pemetrexed (PMX) were synthesized using different binding metals. Zr-based materials could not be stabilized by encapsulation with a lipid bilayer, and Gd-based materials showed that PMX had degraded during synthesis. However, Hf-based NCPs containing 19.7 wt% PMX were stabilized by a lipid coating and showed in vitro efficacy against non-small cell lung cancer (NSCLC) cell lines. Enhanced efficacy was observed for formulations containing AA. Additionally, NCP formulations containing the cisplatin prodrug disuccinatocisplatin were prepared; one of these formulations could be stabilized by encapsulation within a lipid layer. Coating with a lipid layer doped with AA rendered this formulation an active targeting agent. The resulting formulation proved more potent than free cisplatin in NSCLC cell lines. Improved NCP uptake was demonstrated by confocal microscopy and competitive binding assays. Finally, a Pt(IV) oxaliplatin prodrug was

  5. Delivering anti-cancer drugs with endosomal pH-sensitive anti-cancer liposomes.

    PubMed

    Moku, Gopikrishna; Gulla, Suresh Kumar; Nimmu, Narendra Varma; Khalid, Sara; Chaudhuri, Arabinda

    2016-04-01

    Numerous prior studies have been reported on the use of pH-sensitive drug carriers such as micelles, liposomes, peptides, polymers, nanoparticles, etc. that are sensitive to the acidic (pH = ∼6.5) microenvironments of tumor tissues. Such systems have been primarily used in the past as effective drug/gene/microRNA carriers for releasing their anti-cancer payloads selectively to tumor cells/tissues. Herein, we report on the development of new liposomal drug carriers prepared from glutamic acid backbone-based cationic amphiphiles containing both endosomal pH-sensitive histidine as well as cellular uptake & solubility enhancing guanidine moieties in their polar head-group regions. The most efficient one among the four presently described endosomal pH-sensitive liposomal drug carriers not only effectively delivers potent anti-cancer drugs (curcumin & paclitaxel) to mouse tumor, but also significantly contributes to inhibiting mouse tumor growth. The findings in the in vitro mechanistic studies are consistent with apoptosis of tumor cells being mediated through increased cell cycle arrest in the G2/M phase. Findings in the FRET assay and in vitro drug release studies conducted with the liposomes of the most efficient pH-sensitive lipid demonstrated its pH dependent fusogenic and controlled curcumin release properties. Importantly, the presently described liposomal formulation of curcumin & paclitaxel enhanced overall survivability of tumor bearing mice. To the best of our knowledge, the presently described system (curcumin, paclitaxel and liposomal carrier itself) is the first of its kind pH-sensitive liposomal formulation of potent chemotherapeutics in which the liposomal drug itself exhibits significant mouse tumor growth inhibition properties. PMID:26806172

  6. Polymeric Thioxanthones as Potential Anticancer and Radiotherapy Agents.

    PubMed

    Yilmaz, Gorkem; Guler, Emine; Barlas, Firat Baris; Timur, Suna; Yagci, Yusuf

    2016-07-01

    Thioxanthone (TX) and its derivatives, which are widely used as photoinitiators in UV curing technology, hold promising research interest in biological applications. In particular, the use of TXs as anticancer agent has recently been manifested as an outstanding additional property of this class of molecules. Incorporation of TX molecules into specially designed polymers widens their practical use in such applications. In this study, two water-soluble, biocompatible, and stable polymers, namely poly(vinyl alcohol) and poly(ethylene glycol), possessing TX moieties at the side chains and chain ends, respectively, are prepared and used as anticancer and radiotherapy agents. The findings confirm that both polymers are potential candidates for therapeutic agents as they possess useful features including water-solubility, radiosensitizer effect, and anticancer activity in a polymeric scaffold. PMID:27168378

  7. Cyclopentenone: a special moiety for anticancer drug design.

    PubMed

    Conti, Matteo

    2006-10-01

    The conjugate cyclopent-en-one chemical group is a special moiety for anticancer drugs. Studies on cyclopentenone prostaglandins, clavulones and other compounds have revealed its mechanism of action and a wide spectrum of intracellular targets, ranging from nuclear factors to mitochondria. The introduction of the cyclopentenone moiety into molecules, such as jasmonates and chalcones, has been shown to boost their anticancer potential. In this work, reviewing pertinent up-to-date literature, we have pointed out potentially effective cyclopentenone-bearing compounds for anticancer clinical research and inspiring relationships for future drug design. In particular, it appears that the addition of cyclopentenone groups to target-orienting molecules, in order to inactivate specific proteins in cells, could be a helpful general strategy for the development of novel therapeutic molecules. PMID:17001173

  8. The anticancer immune response: indispensable for therapeutic success?

    PubMed Central

    Zitvogel, Laurence; Apetoh, Lionel; Ghiringhelli, François; André, Fabrice; Tesniere, Antoine; Kroemer, Guido

    2008-01-01

    Although the impact of tumor immunology on the clinical management of most cancers is still negligible, there is increasing evidence that anticancer immune responses may contribute to the control of cancer after conventional chemotherapy. Thus, radiotherapy and some chemotherapeutic agents, in particular anthracyclines, can induce specific immune responses that result either in immunogenic cancer cell death or in immunostimulatory side effects. This anticancer immune response then helps to eliminate residual cancer cells (those that fail to be killed by chemotherapy) or maintains micrometastases in a stage of dormancy. Based on these premises, in this Review we address the question, How may it be possible to ameliorate conventional therapies by stimulating the anticancer immune response? Moreover, we discuss the rationale of clinical trials to evaluate and eventually increase the contribution of antitumor immune responses to the therapeutic management of neoplasia. PMID:18523649

  9. Plant derived and dietary phenolic antioxidants: anticancer properties.

    PubMed

    Roleira, Fernanda M F; Tavares-da-Silva, Elisiário J; Varela, Carla L; Costa, Saul C; Silva, Tiago; Garrido, Jorge; Borges, Fernanda

    2015-09-15

    In this paper, a review of the literature on the phenolic compounds with anticancer activity published between 2008 and 2012 is presented. In this overview only phenolic antioxidant compounds that display significant anticancer activity have been described. In the first part of this review, the oxidative and nitrosative stress relation with cancer are described. In the second part, the plant-derived food extracts, containing identified phenolic antioxidants, the phenolic antioxidants isolated from plants and plant-derived food or commercially available and the synthetic ones, along with the type of cancer and cells where they exert anticancer activity, are described and summarized in tables. The principal mechanisms for their anti-proliferative effects were also described. Finally, a critical analysis of the studies and directions for future research are included in the conclusion. PMID:25863633

  10. Alkaloids Isolated from Natural Herbs as the Anticancer Agents

    PubMed Central

    Lu, Jin-Jian; Bao, Jiao-Lin; Chen, Xiu-Ping; Huang, Min; Wang, Yi-Tao

    2012-01-01

    Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery. Several alkaloids isolated from natural herbs exhibit antiproliferation and antimetastasis effects on various types of cancers both in vitro and in vivo. Alkaloids, such as camptothecin and vinblastine, have already been successfully developed into anticancer drugs. This paper focuses on the naturally derived alkaloids with prospective anticancer properties, such as berberine, evodiamine, matrine, piperine, sanguinarine, and tetrandrine, and summarizes the mechanisms of action of these compounds. Based on the information in the literature that is summarized in this paper, the use of alkaloids as anticancer agents is very promising, but more research and clinical trials are necessary before final recommendations on specific alkaloids can be made. PMID:22988474

  11. Liposomal squalenoyl-gemcitabine: formulation, characterization and anticancer activity evaluation

    NASA Astrophysics Data System (ADS)

    Pili, Barbara; ReddyCurrent Address: Sanofi-Aventis, 13 Quai Jules-Guesdes, 94403, Vitry-Sur-Seine, France., L. Harivardhan; Bourgaux, Claudie; Lepêtre-Mouelhi, Sinda; Desmaële, Didier; Couvreur, Patrick

    2010-08-01

    A new prodrug of gemcitabine, based on the covalent coupling of squalene to gemcitabine (GemSQ), has been designed to enhance the anticancer activity of gemcitabine, a nucleoside analogue active against a wide variety of tumors. In the present study, the feasibility of encapsulating GemSQ into liposomes either PEGylated or non-PEGylated has been investigated. The in vivo anticancer activity of these formulations has been tested on subcutaneous grafted L1210wt leukemia model and compared to that of free gemcitabine. The liposomal GemSQ appears to be a potential delivery system for the effective treatment of tumors.

  12. Anticancer activities of artemisinin and its bioactive derivatives.

    PubMed

    Firestone, Gary L; Sundar, Shyam N

    2009-01-01

    Artemisinin, a sesquiterpene lactone derived from the sweet wormwood plant Artemisia annua, and its bioactive derivatives exhibit potent anticancer effects in a variety of human cancer cell model systems. The pleiotropic response in cancer cells includes growth inhibition by cell cycle arrest, apoptosis, inhibition of angiogenesis, disruption of cell migration, and modulation of nuclear receptor responsiveness. These effects of artemisinin and its derivatives result from perturbations of many cellular signalling pathways. This review provides a comprehensive discussion of these cellular responses, and considers the ramifications for the potential development of artemisinin-based compounds in anticancer therapeutic and preventative strategies. PMID:19883518

  13. Electrochemical approach of anticancer drugs--DNA interaction.

    PubMed

    Rauf, S; Gooding, J J; Akhtar, K; Ghauri, M A; Rahman, M; Anwar, M A; Khalid, A M

    2005-02-23

    The interaction of drugs with DNA is among the most important aspects of biological studies in drug discovery and pharmaceutical development processes. In recent years there has been a growing interest in the electrochemical investigation of interaction between anticancer drugs and DNA. Observing the pre and post electrochemical signals of DNA or drug interaction provides good evidence for the interaction mechanism to be elucidated. Also this interaction could be used for the quantification of these drugs and for the determination of new drugs targeting DNA. Electrochemical approach can provide new insight into rational drug design and would lead to further understanding of the interaction mechanism between anticancer drugs and DNA. PMID:15708659

  14. Synthesis and Evaluation of Flavanones as Anticancer Agents

    PubMed Central

    Murti, Y.; Mishra, P.

    2014-01-01

    A few flavanones were synthesised by cyclisation of corresponding 3-(heteroaryl)-1(2-hydroxyphenyl) prop-2-en-1-one with sodium acetate in alcohol–water and evaluated for activity. Synthesised compounds were assayed for their in vitro anticancer activity against three human cancer cell lines, mammary adenocarcinoma (MCF7), human colon adenocarcinoma (HT29) and human kidney adenocarcinoma (A498) using sulforhodamine B dye. Results indicated that most of the compounds exhibited significant in vitro anticancer potential. Among them, compound having furan ring showed most potent activity against all the tested cell lines. PMID:24843190

  15. Synthesis and anticancer activity of a hydroxytolan series.

    PubMed

    Lin, Boren; McGuire, Karen; Liu, Bo; Jamison, James; Tsai, Chun-Che

    2016-09-15

    This paper describes the development of novel anticancer poly-hydroxylated tolans. Based on structural similarity to resveratrol, a series of hydroxytolans were synthesized and evaluated for their antitumor capability against three tumor cell lines and one fibroblast cell line for selectivity comparisons. The 4,4'-dihydroxytolan (KST-201) exhibited the most significant anticancer activity with increased selectivity when compared to resveratrol and other hydroxytolans. Unlike resveratrol, KST-201 can boost hydrogen peroxide in tumor cells, which are often at high basal level of reactive oxygen species, to cause cell death by overwhelming the cellular tolerance of oxidative stress. PMID:27515319

  16. [Review about mechanisms of anti-cancer of Solanum nigrum].

    PubMed

    An, Lei; Tang, Jin-tian; Liu, Xin-min; Gao, Nan-nan

    2006-08-01

    This paper gave a brief introduction of the effect of Solanum nigrum on anti-cancer. The experimental results showed that the total alkaloid isolated from S. nigrum interfered structure and function of tumor cell membrane, disturbed the synthesis of DNA and RNA, changed the cell cycle distribution, so that total alkaloids could play in inhibabition to tumor cells, while the glycoprotein (150 x 10(3)) isolated from S. nigrum might have shown anti-cancer abilities by blocking the anti-apoptotic pathway of NF-kappaB, activating caspase cascades reaction and increasing the production of nitric oxide. PMID:17048560

  17. Hydrofocusing Bioreactor Produces Anti-Cancer Alkaloids

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Valluri, Jagan V.

    2011-01-01

    microgravitation of an HFB do not need to maintain the same surface forces as in normal Earth gravitation, they can divert more energy sources to growth and differentiation and, perhaps, to biosynthesis of greater quantities of desired medicinal compounds. Because one can adjust the HFB to vary effective gravitation, one can also test the effects of intermediate levels of gravitation on biosynthesis of various products. The potential utility of this methodology for producing drugs was demonstrated in experiments in which sandalwood and Madagascar periwinkle cells were grown in an HFB. The conditions in the HFB were chosen to induce the cells to form into aggregate cultures that produced anti-cancer indole alkaloids in amounts greater than do comparable numbers of cells of the same species cultured according to previously known methodologies. The observations made in these experiments were interpreted as suggesting that the aggregation of the cells might be responsible for the enhancement of production of alkaloids.

  18. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    PubMed Central

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents. PMID:27145869

  19. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database.

    PubMed

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents. PMID:27145869

  20. Synthesis of Some Benzimidazole Derivatives Bearing 1,3,4-Oxadiazole Moiety as Anticancer Agents

    PubMed Central

    MAZZIO, ELIZABETH; GANGAPURUM, MADHAVEI; MATEEVA, NELLY; REDDA, K. K.

    2015-01-01

    In an effort to establish new benzimidazole related structural leads with improved anticancer activity, several new benzimidazole derivatives (5a–i) with 1,3,4-oxadiazole scaffold incorporated were synthesized and studied for their anticancer activity. The anticancer screening against MDA-MB-231 breast cancer cell lines showed that compound (5c) exhibited moderate cytotoxicity. PMID:26451350

  1. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    NASA Astrophysics Data System (ADS)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  2. Synthesis and anticancer evaluation of furfurylidene 4-piperidone analogs.

    PubMed

    Jadhav, Rahul L; Magdum, Chandrakant S; Patil, Manisha V

    2014-06-01

    Recently different series of compounds have been designed that utilize the 1,5-diaryl-3-oxo-1,4-pentadinenyl pharmacophore for the development of novel cytotoxic and anticancer agents. These compounds interact with cellular thiols and thiols are not part of nucleic acids. Hence, these compounds are free from the problem of mutagenicity and carcinogenicity. The Claisen-Schmidt reaction is used for synthesizing furfurylidene analogs in a basic medium. The title compounds were prepared by reacting furfurylidenes with aryl sulfonyl, benzoyl, acroylyl, or acetyl chloride. The resulting synthesized compounds were screened for their in vitro cytotoxic properties by MTT and SRB assays against leukemic and colon cancer cell lines. Acute toxicity was determined by OECD-423 guidelines. The in vivo anticancer activities were evaluated against Ehrlich ascites carcinoma (EAC)-bearing Swiss albino mice. The MTT assay showed that compounds 2d and 3d have significant cytotoxicity against the Molt-4 human cell line as compared to the standard, 5-fluorouracil. In addition, the SRB assay indicated that the compounds 2, 2a, 2d, and 3d showed equipotent cytotoxicity against human leukemia cell lines as compared to the standard, doxorubicin. Compounds 2a and 2d showed significant anticancer activity against EAC in Swiss albino mice. This study revealed the potential of these molecules for further development as anticancer agents. PMID:24623392

  3. CNS Anticancer Drug Discovery and Development Conference White Paper.

    PubMed

    Levin, Victor A; Tonge, Peter J; Gallo, James M; Birtwistle, Marc R; Dar, Arvin C; Iavarone, Antonio; Paddison, Patrick J; Heffron, Timothy P; Elmquist, William F; Lachowicz, Jean E; Johnson, Ted W; White, Forest M; Sul, Joohee; Smith, Quentin R; Shen, Wang; Sarkaria, Jann N; Samala, Ramakrishna; Wen, Patrick Y; Berry, Donald A; Petter, Russell C

    2015-11-01

    Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric "Accelerating Drug Discovery and Development for Brain Tumors," further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward. PMID:26403167

  4. Therapeutic Effectiveness of Anticancer Phytochemicals on Cancer Stem Cells

    PubMed Central

    Oh, Jisun; Hlatky, Lynn; Jeong, Yong-Seob; Kim, Dohoon

    2016-01-01

    Understanding how to target cancer stem cells (CSCs) may provide helpful insights for the development of therapeutic or preventive strategies against cancers. Dietary phytochemicals with anticancer properties are promising candidates and have selective impact on CSCs. This review summarizes the influence of phytochemicals on heterogeneous cancer cell populations as well as on specific targeting of CSCs. PMID:27376325

  5. Tanshinones: Sources, Pharmacokinetics and Anti-Cancer Activities

    PubMed Central

    Zhang, Yong; Jiang, Peixin; Ye, Min; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2012-01-01

    Tanshinones are a class of abietane diterpene compound isolated from Salvia miltiorrhiza (Danshen or Tanshen in Chinese), a well-known herb in Traditional Chinese Medicine (TCM). Since they were first identified in the 1930s, more than 40 lipophilic tanshinones and structurally related compounds have been isolated from Danshen. In recent decades, numerous studies have been conducted to investigate the isolation, identification, synthesis and pharmacology of tanshinones. In addition to the well-studied cardiovascular activities, tanshinones have been investigated more recently for their anti-cancer activities in vitro and in vivo. In this review, we update the herbal and alternative sources of tanshinones, and the pharmacokinetics of selected tanshinones. We discuss anti-cancer properties and identify critical issues for future research. Whereas previous studies have suggested anti-cancer potential of tanshinones affecting multiple cellular processes and molecular targets in cell culture models, data from in vivo potency assessment experiments in preclinical models vary greatly due to lack of uniformity of solvent vehicles and routes of administration. Chemical modifications and novel formulations had been made to address the poor oral bioavailability of tanshinones. So far, human clinical trials have been far from ideal in their design and execution for the purpose of supporting an anti-cancer indication of tanshinones. PMID:23202971

  6. Mitochondrial chaperones may be targets for anti-cancer drugs

    Cancer.gov

    Scientists at NCI have found that a mitochondrial chaperone protein, TRAP1, may act indirectly as a tumor suppressor as well as a novel target for developing anti-cancer drugs. Chaperone proteins, such as TRAP1, help other proteins adapt to stress, but sc

  7. Electrolyte disorders associated with the use of anticancer drugs.

    PubMed

    Liamis, George; Filippatos, Theodosios D; Elisaf, Moses S

    2016-04-15

    The use of anticancer drugs is beneficial for patients with malignancies but is frequently associated with the occurrence of electrolyte disorders, which can be hazardous and in many cases fatal. The review presents the electrolyte abnormalities that can occur with the use of anticancer drugs and provides the related mechanisms. Platinum-containing anticancer drugs induce hypomagnesemia, hypokalemia and hypocalcemia. Moreover, platinum-containing drugs are associated with hyponatremia, especially when combined with large volumes of hypotonic fluids aiming to prevent nephrotoxicity. Alkylating agents have been linked with the occurrence of hyponatremia [due to syndrome of inappropriate antidiuretic hormone secretion (SIADH)] and Fanconi's syndrome (hypophosphatemia, aminoaciduria, hypouricemia and/or glucosuria). Vinca alkaloids are associated with hyponatremia due to SIADH. Epidermal growth factor receptor monoclonal antibody inhibitors induce hypomagnesemia, hypokalemia and hypocalcemia. Other, monoclonal antibodies, such as cixutumumab, cause hyponatremia due to SIADH. Tyrosine kinase inhibitors are linked to hyponatremia and hypophosphatemia. Mammalian target of rapamycin inhibitors induce hyponatremia (due to aldosterone resistance), hypokalemia and hypophosphatemia. Other drugs such as immunomodulators or methotrexate have been also associated with hyponatremia. The administration of estrogens at high doses, streptozocin, azacitidine and suramin may induce hypophosphatemia. Finally, the drug-related tumor lysis syndrome is associated with hyperphosphatemia, hyperkalemia and hypocalcemia. The prevention of electrolyte derangements may lead to reduction of adverse events during the administration of anticancer drugs. PMID:26939882

  8. Semi-synthetic mithramycin SA derivatives with improved anticancer activity.

    PubMed

    Scott, Daniel; Chen, Jhong-Min; Bae, Younsoo; Rohr, Jürgen

    2013-05-01

    Mithramycin (MTM) is a potent anti-cancer agent that has recently garnered renewed attention. This manuscript describes the design and development of mithramycin derivatives through a combinational approach of biosynthetic analogue generation followed by synthetic manipulation for further derivatization. Mithramycin SA is a previously discovered analogue produced by the M7W1 mutant strain alongside the improved mithramycin analogues mithramycin SK and mithramycin SDK. Mithramycin SA shows decreased anti-cancer activity compared to mithramycin and has a shorter, two carbon aglycon side chain that is terminated in a carboxylic acid. The aglycon side chain is responsible for an interaction with the DNA-phosphate backbone as mithramycin interacts with its target DNA. It was therefore decided to further functionalize this side chain through reactions with the terminal carboxylic acid in an effort to enhance the interaction with the DNA phosphate backbone and improve the anti-cancer activity. This side chain was modified with a variety of molecules increasing the anti-cancer activity to a comparable level to mithramycin SK. This work shows the ability to transform the previously useless mithramycin SA into a valuable molecule and opens the door to further functionalization and semi-synthetic modification for the development of molecules with increased specificity and/or drug formulation. PMID:23331575

  9. Cucurbitacins: A Systematic Review of the Phytochemistry and Anticancer Activity.

    PubMed

    Cai, Yuee; Fang, Xiefan; He, Chengwei; Li, Peng; Xiao, Fei; Wang, Yitao; Chen, Meiwan

    2015-01-01

    Cucurbitacins are highly oxidized tetracyclic triterpenoids that are widely present in traditional Chinese medicines (Cucurbitaceae family), possess strong anticancer activity, and are divided into 12 classes from A to T with over 200 derivatives. The eight most active cucurbitacin components against cancer are cucurbitacin B, D, E, I, IIa, L glucoside, Q, and R. Their mechanisms of action include antiproliferation, inhibition of migration and invasion, proapoptosis, and cell cycle arrest promotion. Cucurbitacins are also found to be the inhibitors of JAK-STAT3, Wnt, PI3K/Akt, and MAPK signaling pathways, which play important roles in the apoptosis and survival of cancer cells. Recently, new studies have discovered synergistic anticancer effects by using cucurbitacins together with clinically approved chemotherapeutic drugs, such as docetaxel and methotrexate. This paper provides a summary of recent research progress on the anticancer property of cucurbitacins and the various intracellular signaling pathways involved in the regulation of cancer cell proliferation, death, invasion, and migration. Therefore, cucurbitacins are a class of promising anticancer drugs to be used alone or be intergraded in current chemotherapies and radiotherapies to treat many types of cancers. PMID:26503558

  10. Anticancer effects of Chinese herbal medicine, science or myth?*

    PubMed Central

    Ruan, Wen-jing; Lai, Mao-de; Zhou, Jian-guang

    2006-01-01

    Currently there is considerable interest among oncologists to find anticancer drugs in Chinese herbal medicine (CHM). In the past, clinical data showed that some herbs possessed anticancer properties, but western scientists have doubted the scientific validity of CHM due to the lack of scientific evidence from their perspective. Recently there have been encouraging results, from a western perspective, in the cancer research field regarding the anticancer effects of CHM. Experiments showed that CHM played its anticancer role by inducing apoptosis and differentiation, enhancing the immune system, inhibiting angiogenesis, reversing multidrug resistance (MDR), etc. Clinical trials demonstrated that CHM could improve survival, increase tumor response, improve quality of life, or reduce chemotherapy toxicity, although much remained to be determined regarding the objective effects of CHM in human in the context of clinical trials. Interestingly, both laboratory experiments and clinical trials have demonstrated that when combined with chemotherapy, CHM could raise the efficacy level and lower toxic reactions. These facts raised the feasibility of the combination of herbal medicines and chemotherapy, although much remained to be investigated in this area. PMID:17111471

  11. Anticancer biology of Azadirachta indica L (neem): a mini review.

    PubMed

    Paul, Rajkumar; Prasad, Murari; Sah, Nand K

    2011-09-15

    Neem (Azadirachta indica), a member of the Meliaceae family, is a fast growing tropical evergreen tree with a highly branched and stout, solid stem. Because of its tremendous therapeutic, domestic, agricultural and ethnomedicinal significance, and its proximity with human culture and civilization, neem has been called "the wonder tree" and "nature's drug store." All parts of this tree, particularly the leaves, bark, seed-oil and their purified products are widely used for treatment of cancer. Over 60 different types of biochemicals including terpenoids and steroids have been purified from this plant. Pre-clinical research work done during the last decade has fine-tuned our understanding of the anticancer properties of the crude and purified products from this plant. The anticancer properties of the plant have been studied largely in terms of its preventive, protective, tumor-suppressive, immunomodulatory and apoptotic effects against various types of cancer and their molecular mechanisms. This review aims at scanning scattered literature on "the anticancer biology of A. indica," related toxicity problems and future perspectives. The cogent data on the anticancer biology of products from A. indica deserve multi-institutional clinical trials as early as possible. The prospects of relatively cheaper cancer drugs could then be brighter, particularly for the under-privileged cancer patients of the world. PMID:21743298

  12. Insight into the reactive form of the anticancer agent iproplatin.

    PubMed

    Volckova, Erika; Weaver, Evelyne; Bose, Rathindra N

    2008-05-01

    The reaction of iproplatin with reduced glutathione at different mole ratios yielded cis-di(isopropylamine)chloro-glutathionatoplatinum(II), not the expected cis-dichloro- species, indicating a mode of action of this anticancer agent that is different from that of cis-diamminedichloroplatinum(II). PMID:17707553

  13. Aqueous extracts of microalgae exhibit antioxidant and anticancer activities

    PubMed Central

    Shanab, Sanaa MM; Mostafa, Soha SM; Shalaby, Emad A; Mahmoud, Ghada I

    2012-01-01

    Objective To investigate the antioxidant and anticancer activities of aqueous extracts of nine microalgal species. Methods Variable percentages of major secondary metabolites (total phenolic content, terpenoids and alkaloids) as well as phycobiliprotein pigments (phycocyanin, allophycocyanin and phycoerythrin) in the aqueous algal extracts were recorded. Antioxidant activity of the algal extracts was performed using 2, 2 diphenyl-1-picrylhydrazyl (DPPH) test and 2,2′- azino-bis (ethylbenzthiazoline-6-sulfonic acid (ABTS.+) radical cation assay. Anticancer efficiency of the algal water extracts was investigated against Ehrlich Ascites Carcinoma cell (EACC) and Human hepatocellular cancer cell line (HepG2). Results Antioxidant activity of the algal extracts was performed using DPPH test and ABTS.+ radical cation assays which revealed 30.1-72.4% and 32.0-75.9% respectively. Anticancer efficiency of the algal water extracts was investigated against Ehrlich Ascites Carcinoma Cell (EACC) and Human Hepatocellular cancer cell line (HepG2) with an activity ranged 87.25% and 89.4% respectively. Culturing the promising cyanobacteria species; Nostoc muscorum and Oscillatoria sp. under nitrogen stress conditions (increasing and decreasing nitrate content of the normal BG11 medium, 1.5 g/L), increased nitrate concentration (3, 6 and 9 g/L) led to a remarkable increase in phycobilin pigments followed by an increase in both antioxidant and anticancer activities in both cyanobacterial species. While the decreased nitrate concentration (0.75, 0.37 and 0.0 g/L) induced an obvious decrease in phycobilin pigments with complete absence of allophycocyanin in case of Oscillatoria sp. Conclusions Nitrogen starvation (0.00 g/L nitrate) induced an increase and comparable antioxidant and anticancer activities to those cultured in the highest nitrate content. PMID:23569980

  14. Anticancer Effect of AntiMalarial Artemisinin Compounds

    PubMed Central

    Das, AK

    2015-01-01

    The anti-malarial drug artemisinin has shown anticancer activity in vitro and animal experiments, but experience in human cancer is scarce. However, the ability of artemisinins to kill cancer cells through a variety of molecular mechanisms has been explored. A PubMed search of about 127 papers on anti-cancer effects of antimalarials has revealed that this class of drug, including other antimalarials, have several biological characteristics that include anticancer properties. Experimental evidences suggest that artemisinin compounds may be a therapeutic alternative in highly aggressive cancers with rapid dissemination, without developing drug resistance. They also exhibit synergism with other anticancer drugs with no increased toxicity toward normal cells. It has been found that semisynthetic artemisinin derivatives have much higher antitumor activity than their monomeric counterparts via mechanisms like apoptosis, arrest of cell cycle at G0/G1, and oxidative stress. The exact mechanism of activation and molecular basis of these anticancer effects are not fully elucidated. Artemisinins seem to regulate key factors such as nuclear factor-kappa B, survivin, NOXA, hypoxia-inducible factor-1α, and BMI-1, involving multiple pathways that may affect drug response, drug interactions, drug resistance, and associated parameters upon normal cells. Newer synthetic artemisinins have been developed showing substantial antineoplastic activity, but there is still limited information regarding the mode of action of these synthetic compounds. In view of the emerging data, specific interactions with established chemotherapy need to be further investigated in different cancer cells and their phenotypes and validated further using different semisynthetic and synthetic artemisinin derivatives. PMID:25861527

  15. Nanodelivery of Parthenolide Using Functionalized Nanographene Enhances its Anticancer Activity

    PubMed Central

    Karmakar, A.; Mustafa, T.; Kannarpady, G.; Bratton, S.M.; Radominska-Pandya, A.; Crooks, P.A.

    2014-01-01

    Advances in anticancer chemotherapy have been hindered by the lack of biocompatibility of new prospective drugs. One significant challenge concerns water insolubility, which compromises the bioavailability of the drugs leading to increased dosage and higher systemic toxicity. To overcome these problems, nanodelivery has been established as a promising approach for increasing the efficacy and lowering the required dosage of chemotherapeutics. The naturally derived compound, parthenolide (PTL), is known for its anti-inflammatory and anticancer activity, but its poor water solubility limits its clinical value. In the present study, we have used carboxyl-functionalized nanographene (fGn) delivery to overcome the extreme hydrophobicity of this drug. A water-soluble PTL analog, dimethylamino parthenolide (DMAPT), was also examined for comparison with the anticancer efficacy of our PTL-fGn complex. Delivery by fGn was found to increase the anticancer/apoptotic effects of PTL (but not DMAPT) when delivered to the human pancreatic cancer cell line, Panc-1. The IC50 value for PTL decreased from 39 µM to 9.5 µM when delivered as a mixture with fGn. The IC50 of DMAPT did not decrease when delivered as DMAPT-fGn and was significantly higher than that for PTL-fGn. There were significant increases in ROS formation and in mitochondrial membrane disruption in Panc-1 cells after PTL-fGn treatment as compared to PTL treatment, alone. Increases in toxicity were also seen with apoptosis detection assays using flow cytometry, ethidium bromide/acridine orange/DAPI staining, and TUNEL. Thus, fGn delivery was successfully used to overcome the poor water solubility of PTL, providing a strategy for improving the effectiveness of this anticancer agent. PMID:25574376

  16. Anticancer Therapy: Light-Activated Hypoxia-Responsive Nanocarriers for Enhanced Anticancer Therapy (Adv. Mater. 17/2016).

    PubMed

    Qian, Chenggen; Yu, Jicheng; Chen, Yulei; Hu, Quanyin; Xiao, Xuanzhong; Sun, Wujin; Wang, Chao; Feng, Peijian; Shen, Qun-Dong; Gu, Zhen

    2016-05-01

    A light-activated hypoxia-responsive drug-delivery vehicle is described by Q.-D. Shen, Z. Gu, and co-workers on page 3313. This conjugated-polymer-based nanocarrier can be activated by photoirradiation, producing singlet oxygen ((1) O2 ) and inducing hypoxia to promote release of its cargo inside tumor cells for enhanced anticancer efficacy. PMID:27122110

  17. Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment

    PubMed Central

    Lee, Gyeong Jin; Kang, Joo-Hee

    2014-01-01

    Objective. Layered double hydroxide (LDH) nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles. Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML), 5-FU/LDH (FL), and (MTX + 5-FU)/LDH (MFL) nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy. Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy. PMID:24860812

  18. Nanomicellar carriers for targeted delivery of anticancer agents

    PubMed Central

    Zhang, Xiaolan; Huang, Yixian; Li, Song

    2014-01-01

    Clinical application of anticancer drugs is limited by problems such as low water solubility, lack of tissue-specificity and toxicity. Formulation development represents an important approach to these problems. Among the many delivery systems studied, polymeric micelles have gained considerable attention owing to ease in preparation, small sizes (10–100 nm), and ability to solubilize water-insoluble anticancer drugs and accumulate specifically at the tumors. This article provides a brief review of several promising micellar systems and their applications in tumor therapy. The emphasis is placed on the discussion of the authors’ recent work on several nanomicellar systems that have both a delivery function and antitumor activity, named dual-function drug carriers. PMID:24341817

  19. Recent developments in receptor tyrosine kinases targeted anticancer therapy

    PubMed Central

    Raval, Samir H.; Singh, Ratn D.; Joshi, Dilip V.; Patel, Hitesh B.; Mody, Shailesh K.

    2016-01-01

    Novel concepts and understanding of receptors lead to discoveries and optimization of many small molecules and antibodies as anti-cancerous drugs. Receptor tyrosine kinases (RTKs) are such a promising class of receptors under the investigation in past three decades. RTKs are one of the essential mediators of cell signaling mechanism for various cellular processes. Transformations such as overexpression, dysregulation, or mutations of RTKs may result into malignancy, and thus are an important target for anticancer therapy. Numerous subfamilies of RTKs, such as epidermal growth factor receptor, vascular endothelial growth factor receptor, fibroblast growth factor receptors, insulin-like growth factor receptor, and hepatocyte growth factor receptor, have been being investigated in recent years as target for anticancer therapy. The present review focuses several small molecules drugs as well as monoclonal antibodies targeting aforesaid subfamilies either approved or under investigation to treat the various cancers. PMID:27051190

  20. Novel Antimicrobial Peptides with High Anticancer Activity and Selectivity

    PubMed Central

    Chen, Kuan-Hao; Yu, Hui-Yuan; Chih, Ya-Han; Cheng, Hsi-Tsung; Chou, Yu-Ting; Cheng, Jya-Wei

    2015-01-01

    We describe a strategy to boost anticancer activity and reduce normal cell toxicity of short antimicrobial peptides by adding positive charge amino acids and non-nature bulky amino acid β-naphthylalanine residues to their termini. Among the designed peptides, K4R2-Nal2-S1 displayed better salt resistance and less toxicity to hRBCs and human fibroblast than Nal2-S1 and K6-Nal2-S1. Fluorescence microscopic studies indicated that the FITC-labeled K4R2-Nal2-S1 preferentially binds cancer cells and causes apoptotic cell death. Moreover, a significant inhibition in human lung tumor growth was observed in the xenograft mice treated with K4R2-Nal2-S1. Our strategy provides new opportunities in the development of highly effective and selective antimicrobial and anticancer peptide-based therapeutics. PMID:25970292

  1. Xanthorrhizol: a review of its pharmacological activities and anticancer properties.

    PubMed

    Oon, Seok Fang; Nallappan, Meenakshii; Tee, Thiam Tsui; Shohaimi, Shamarina; Kassim, Nur Kartinee; Sa'ariwijaya, Mohd Shazrul Fazry; Cheah, Yew Hoong

    2015-01-01

    Xanthorrhizol (XNT) is a bisabolane-type sesquiterpenoid compound extracted from Curcuma xanthorrhiza Roxb. It has been well established to possess a variety of biological activities such as anticancer, antimicrobial, anti-inflammatory, antioxidant, antihyperglycemic, antihypertensive, antiplatelet, nephroprotective, hepatoprotective, estrogenic and anti-estrogenic effects. Since many synthetic drugs possess toxic side effects and are unable to support the increasing prevalence of disease, there is significant interest in developing natural product as new therapeutics. XNT is a very potent natural bioactive compound that could fulfil the current need for new drug discovery. Despite its importance, a comprehensive review of XNT's pharmacological activities has not been published in the scientific literature to date. Here, the present review aims to summarize the available information in this area, focus on its anticancer properties and indicate the current status of the research. This helps to facilitate the understanding of XNT's pharmacological role in drug discovery, thus suggesting areas where further research is required. PMID:26500452

  2. Trial watch: Naked and vectored DNA-based anticancer vaccines

    PubMed Central

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-01-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm. PMID:26155408

  3. Potential Role of Garcinol as an Anticancer Agent

    PubMed Central

    Saadat, Nadia; Gupta, Smiti V.

    2012-01-01

    Garcinol, a polyisoprenylated benzophenone, is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Although the fruit has been consumed traditionally over centuries, its biological activities, specifically its anticancer potential is a result of recent scientific investigations. The anticarcinogenic properties of garcinol appear to be moderated via its antioxidative, anti-inflammatory, antiangiogenic, and proapoptotic activities. In addition, garcinol displays effective epigenetic influence by inhibiting histone acetyltransferases (HAT 300) and by possible posttranscriptional modulation by mi RNA profiles involved in carcinogenesis. In vitro as well as some in vivo studies have shown the potential of this compound against several cancers types including breast, colon, pancreatic, and leukemia. Although this is a promising molecule in terms of its anticancer properties, investigations in relevant animal models, and subsequent human trials are warranted in order to fully appreciate and confirm its chemopreventative and/or therapeutic potential. PMID:22745638

  4. Renal toxicity of anticancer agents targeting HER2 and EGFR.

    PubMed

    Cosmai, Laura; Gallieni, Maurizio; Porta, Camillo

    2015-12-01

    EGFR and HER2 are found overexpressed and/or activated in many different human malignancies (e.g. breast and colon cancer), and a number of drugs specifically targeting these two tyrosine kinases have been developed over the years as anticancer agents. In the present review, the renal safety profile of presently available agents targeting either HER2 or EGFR will be discussed, together with the peculiarities related to their clinical use in patients with impaired renal function, or even in dialysis. Indeed, even though renal toxicity is not so common with these agents, it may nevertheless happen, especially when these agents are combined with traditional chemotherapeutic agents. As a whole, kidney impairment or dialysis should not be regarded per se as reasons not to administer or to stop an active anti-HER or anti-EGFR anticancer treatment, especially given the possibility of significantly improving the life expectancy of many cancer patients with the use of these agents. PMID:26341657

  5. CEST theranostics: label-free MR imaging of anticancer drugs

    PubMed Central

    Xu, Jiadi; Yadav, Nirbhay N.; Chan, Kannie W. Y.; Luo, Liangping; McMahon, Michael T.; Vogelstein, Bert; van Zijl, Peter C.M.; Zhou, Shibin; Liu, Guanshu

    2016-01-01

    Image-guided drug delivery is of great clinical interest. Here, we explored a direct way, namely CEST theranostics, to detect diamagnetic anticancer drugs simply through their inherent Chemical Exchange Saturation Transfer (CEST) MRI signal, and demonstrated its application in image-guided drug delivery of nanoparticulate chemotherapeutics. We first screened 22 chemotherapeutic agents and characterized the CEST properties of representative agents and natural analogs in three major categories, i.e., pyrimidine analogs, purine analogs, and antifolates, with respect to chemical structures. Utilizing the inherent CEST MRI signal of gemcitabine, a widely used anticancer drug, the tumor uptake of the i.v.-injected, drug-loaded liposomes was successfully detected in CT26 mouse tumors. Such label-free CEST MRI theranostics provides a new imaging means, potentially with an immediate clinical impact, to monitor the drug delivery in cancer. PMID:26837220

  6. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy

    PubMed Central

    Pol, Jonathan; Vacchelli, Erika; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-01-01

    The term “immunogenic cell death” (ICD) is now employed to indicate a functionally peculiar form of apoptosis that is sufficient for immunocompetent hosts to mount an adaptive immune response against dead cell-associated antigens. Several drugs have been ascribed with the ability to provoke ICD when employed as standalone therapeutic interventions. These include various chemotherapeutics routinely employed in the clinic (e.g., doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin) as well as some anticancer agents that are still under preclinical or clinical development (e.g., some microtubular inhibitors of the epothilone family). In addition, a few drugs are able to convert otherwise non-immunogenic instances of cell death into bona fide ICD, and may therefore be employed as chemotherapeutic adjuvants within combinatorial regimens. This is the case of cardiac glycosides, like digoxin and digitoxin, and zoledronic acid. Here, we discuss recent developments on anticancer chemotherapy based on ICD inducers. PMID:26137404

  7. An Integrated Approach to Anti-Cancer Drug Sensitivity Prediction.

    PubMed

    Berlow, Noah; Haider, Saad; Wan, Qian; Geltzeiler, Mathew; Davis, Lara E; Keller, Charles; Pal, Ranadip

    2014-01-01

    A framework for design of personalized cancer therapy requires the ability to predict the sensitivity of a tumor to anticancer drugs. The predictive modeling of tumor sensitivity to anti-cancer drugs has primarily focused on generating functions that map gene expressions and genetic mutation profiles to drug sensitivity. In this paper, we present a new approach for drug sensitivity prediction and combination therapy design based on integrated functional and genomic characterizations. The modeling approach when applied to data from the Cancer Cell Line Encyclopedia shows a significant gain in prediction accuracy as compared to elastic net and random forest techniques based on genomic characterizations. Utilizing a Mouse Embryonal Rhabdomyosarcoma cell culture and a drug screen of 60 targeted drugs, we show that predictive modeling based on functional data alone can also produce high accuracy predictions. The framework also allows us to generate personalized tumor proliferation circuits to gain further insights on the individualized biological pathway. PMID:26357038

  8. Discovery of new anticancer agents from higher plants

    PubMed Central

    Pan, Li; Chai, Hee-Byung; Kinghorn, A. Douglas

    2012-01-01

    1. ABSTRACT Small organic molecules derived from higher plants have been one of the mainstays of cancer chemotherapy for approximately the past half a century. In the present review, selected single chemical entity natural products of plant origin and their semi-synthetic derivatives currently in clinical trials are featured as examples of new cancer chemotherapeutic drug candidates. Several more recently isolated compounds obtained from plants showing promising in vivo biological activity are also discussed in terms of their potential as anticancer agents, with many of these obtained from species that grow in tropical regions. Since extracts of only a relatively small proportion of the ca. 300,000 higher plants on earth have been screened biologically to date, bioactive compounds from plants should play an important role in future anticancer drug discovery efforts. PMID:22202049

  9. Anticancer activity of flavane gallates isolated from Plicosepalus curviflorus

    PubMed Central

    Fawzy, Ghada Ahmed; Al-Taweel, Areej Mohammad; Perveen, Shagufta

    2014-01-01

    Background: Previous investigation of the methanol extract of Plicosepalus curviflorus leaves led to the isolation of two new flavane gallates (1, 2), together with other compounds including quercetin (3). The stems of P. curviflorus are used traditionally for the treatment of cancer in Yemen. Objective: The aim of this study was to evaluate the anticancer activity of the plant methanol extract as well as isolated compounds (1-3). Materials and Methods: The human cancer cell lines used were; MCF-7, HepG-2, HCT-116, Hep-2, HeLa and normal, Vero cell line using the Crystal Violet Staining method (CVS). Results: Quercetin (3) possessed the highest anticancer effect against all five cell lines (IC50 ranging from 3.6 to 16.2 μg/ml). It was followed by 2S, 3R-3, 3′, 4′, 5, 7-pentahydroxyflavane-5-O-gallate (1), with IC50 ranging from 11.6 to 38.8 μg/ml. The weakest anticancer activity was given by 2S, 3R-3,3′,4′,5,5′,7-hexahydroxyflavane-3′,5-di-O-gallate (2) with IC50 ranging from 39.8 to above 50 μg/ml, compared to vinblastine sulphate as reference drug. Colon, liver and breast cell lines seemed to be more sensitive to the tested compounds than the cervical and laryngeal cell lines. Concerning the cytotoxic effect on Vero cell line, the pentahydroxyflavane-5-O-gallate (1) showed the highest IC50 ( 138.2 μg/ml), while quercetin exhibited the lowest IC50 to Vero cells (30.5 μg/ml), compared to vinblastine sulphate as reference drug (IC50: 39.7 μg/ml). Conclusion: The results suggest the possible use of compounds 1 and 3 as anticancer drugs especially against colon and liver cancers. PMID:25298669

  10. Recent Development in Carbohydrate Based Anti-cancer Vaccines

    PubMed Central

    Yin, Zhaojun; Huang, Xuefei

    2012-01-01

    The development of carbohydrate based anti-cancer vaccines is of high current interests. Herein, the latest development in this exciting field is reviewed. After a general introduction about tumor associated carbohydrate antigens and immune responses, the review is focused on the various strategies that have been developed to enhance the immunogenecity of these antigens. The results from animal studies and clinical trials are presented. PMID:22468019

  11. Discovery of anticancer agents of diverse natural origin*

    PubMed Central

    Kinghorn, A. Douglas; Carcache de Blanco, Esperanza J.; Chai, Hee-Byung; Orjala, Jimmy; Farnsworth, Norman R.; Soejarto, D. Doel; Oberlies, Nicholas H.; Wani, Mansukh C.; Kroll, David J.; Pearce, Cedric J.; Swanson, Steven M.; Kramer, Robert A.; Rose, William C.; Fairchild, Craig R.; Vite, Gregory D.; Emanuel, Stuart; Jarjoura, David; Cope, Frederick O.

    2009-01-01

    A collaborative multidisciplinary research project is described in which new natural product anticancer drug leads are obtained from a diverse group of organisms, constituted by tropical plants, aquatic cyanobacteria, and filamentous fungi. Information is provided on how these organisms are collected and processed. The types of bioassays are indicated in which crude extracts of these acquisitions are tested. Progress made in the isolation of lead bioactive secondary metabolites from three tropical plants is discussed. PMID:20046887

  12. New promising anticancer agents in development: what comes next?

    PubMed

    Verweij, J

    1996-01-01

    Anticancer drug development has recently shifted in part to development of more innovative anticancer agents. The increasing knowledge of the pathogenetic mechanisms involved in cancer cell growth has enabled the introduction of drug screening that is more mechanism-based. The realization that new targets should be preferentially evaluated as sites for anticancer drug treatment has led to the introduction of drugs such as the taxanes. Following this logic, several new drugs are being developed. Minor groove-binding agents such as carzelesin and oral platins lacking organ toxicity, such as JM216, have recently entered clinical studies. The activity of gemcitabine is a result of its being a cytidine analogue and being competitively incorporated by DNA; the drug has shown interesting activity in non-small-cell lung cancer and, although registration is imminent, issues regarding the optimal dose and administration schedule have yet to be resolved. Tomudex is a thymidylate synthase inhibitor with interesting activity in colorectal cancer. Activity in colorectal cancer is also of interest for irinotecan, the first clinically applied topoisomerase I inhibitor, an enzyme that is another example of a new target for anticancer drugs. Irinotecan has produced consistent response rates of 20-30% in six different studies in colorectal cancer. The other topoisomerase I inhibitor that is in the advanced stage of development is topotecan. This drug has shown activity in second-line chemotherapy for ovarian cancer and small-cell lung cancer. Another interesting feature of topotecan is the availability of an oral formulation with consistent bioavailability. Drugs interfering with cellular signal transduction, such as the protein kinase C inhibitors, are in the development spotlight. Finally, the use of old drugs in new ways, such as immunoconjugates of doxorubicin, holds promise for the near future. PMID:8765408

  13. Recent Trends in Targeted Anticancer Prodrug and Conjugate Design

    PubMed Central

    Singh, Yashveer; Palombo, Matthew; Sinko, Patrick J.

    2009-01-01

    Anticancer drugs are often nonselective antiproliferative agents (cytotoxins) that preferentially kill dividing cells by attacking their DNA at some level. The lack of selectivity results in significant toxicity to noncancerous proliferating cells. These toxicities along with drug resistance exhibited by the solid tumors are major therapy limiting factors that results into poor prognosis for patients. Prodrug and conjugate design involves the synthesis of inactive drug derivatives that are converted to an active form inside the body and preferably at the site of action. Classical prodrug and conjugate design has focused on the development of prodrugs that can overcome physicochemical (e.g., solubility, chemical instability) or biopharmaceutical problems (e.g., bioavailability, toxicity) associated with common anticancer drugs. The recent targeted prodrug and conjugate design, on the other hand, hinges on the selective delivery of anticancer agents to tumor tissues thereby avoiding their cytotoxic effects on noncancerous cells. Targeting strategies have attempted to take advantage of low extracellular pH, elevated enzymes in tumor tissues, the hypoxic environment inside the tumor core, and tumor-specific antigens expressed on tumor cell surfaces. The present review highlights recent trends in prodrug and conjugate rationale and design for cancer treatment. The various approaches that are currently being explored are critically analyzed and a comparative account of the advantages and disadvantages associated with each approach is presented. PMID:18691040

  14. Zirconium Phosphate Nanoplatelet Potential for Anticancer Drug Delivery Applications.

    PubMed

    González, Millie L; Ortiz, Mayra; Hernández, Carmen; Cabán, Jennifer; Rodríguez, Axel; Colón, Jorge L; Báez, Adriana

    2016-01-01

    Zirconium phosphate (ZrP) nanoplatelets can intercalate anticancer agents via an ion exchange reaction creating an inorganic delivery system with potential for cancer treatment. ZrP delivery of anticancer agents inside tumor cells was explored in vitro. Internalization and cytotoxicity of ZrP nanoplatelets were studied in MCF-7 and MCF-10A cells. DOX-loaded ZrP nanoplatelets (DOX@ZrP) uptake was assessed by confocal (CLSM) and transmission electron microscopy (TEM). Cytotoxicity to MCF-7 and MCF-10A cells was determined by the MTT assay. Reactive Oxy- gen Species (ROS) production was analyzed by fluorometric assay, and cell cycle alterations and induction of apoptosis were analyzed by flow cytometry. ZrP nanoplatelets were localized in the endosomes of MCF-7 cells. DOX and ZrP nanoplatelets were co-internalized into MCF-7 cells as detected by CLSM. While ZrP showed limited toxicity to MCF-7 cells, DOX@ZrP was cytotoxic at an IC₅₀ similar to that of free DOX. Meanwhile, DOX lC₅₀ was significantly lower than the equivalent concentration of DOX@ZrP in MCF-10A cells. ZrP did not induce apoptosis in both cell lines. DOX and DOX@ZrP induced significant oxidative stress in both cell models. Results suggest that ZrP nanoplatelets are promising as carriers of anticancer agents into cancer cells. PMID:27398437

  15. Identification of potential anticancer compounds from Oplopanax horridus

    PubMed Central

    Wang, Chong-Zhi; Zhang, Zhiyu; Huang, Wei-Hua; Du, Guang-Jian; Wen, Xiao-Dong; Calway, Tyler; Yu, Chunhao; Nass, Rachael; Zhao, Jing; Du, Wei; Li, Shao-Ping; Yuan, Chun-Su

    2013-01-01

    Oplopanax horridus is a plant native to North America. Previous reports have demonstrated that this herb has antiproliferative effects on cancer cells but study mostly focused on its extract or fractions. Because there has been limited phytochemical study on this herb, its bioactive compounds are largely unknown. We recently isolated and identified 13 compounds, including six polyynes, three sesquiterpenes, two triterpenoids, and two phenolic acids, of which five are novel compounds. In this study, we systemically evaluated the anticancer effects of compounds isolated from O. horridus. Their antiproliferative effects on a panel of human colorectal and breast cancer cells were determined using the MTS assay. Cell cycle distribution and apoptotic effects were analyzed by flow cytometry. The in vivo antitumor effect was examined using a xenograft tumor model. Among the 13 compounds, strong antiproliferative effects were observed from falcarindiol and a novel compound oplopantriol A. Falcarindiol showed the most potent antiproliferative effects, significantly inducing pro-apoptosis and cell cycle arrest in the S and G2/M phases. The anticancer potential of falcarindiol was further verified in vivo, significantly inhibiting HCT-116 tumor growth in an athymic nude mouse model at 15 mg/kg. We also analyzed the relationship between polyyne structures and their pharmacological activities. We observed that both the terminal hydroxyl group and double bond obviously affected their anticancer potential. Results from this study supplied valuable information for future semi-synthesis of polyyne derivatives to develop novel cancer chemopreventive agents. PMID:23746754

  16. Recent advances in the field of anti-cancer immunotherapy

    PubMed Central

    Neves, Henrique; Kwok, Hang Fai

    2015-01-01

    Background The main goal of anti-cancer therapy is to specifically inhibit the malignant activity of cancer cells, while leaving healthy cells unaffected. As such, for every proposed therapy, it is important to keep in mind the therapeutic index — the ratio of the toxic dose over the therapeutic dose. The use of immunotherapy has allowed a means to both specifically block protein–protein interaction and deliver cytotoxic events to a tumor-specific antigen. Review scope It is the objective of this review to give an overview on current immunotherapy treatment for cancers using monoclonal antibodies. We demonstrate three exciting targets for immunotherapy, TNF-α Converting Enzyme (TACE), Cathepsin S and Urokinase Plasmogen Activator and go over the advances made with one of the most used monoclonal antibodies in cancer therapy, Rituximab; as well as Herceptin, which is used for breast cancer therapy. Furthermore, we touch on other venues of immunotherapy, such as adaptive cell transfer, the use of nucleic acids and the use of dendritic cells. Finally, we summarize some ongoing studies that spell tentative advancements for anti-cancer immunotherapy. General significance Immunotherapy is at the forefront of anti-cancer therapies, allying both a high degree of specificity to general high effectiveness and fewer side-effects. PMID:26673349

  17. Anticancer activity of Arkeshwara Rasa - A herbo-metallic preparation

    PubMed Central

    Nafiujjaman, Md; Nurunnabi, Md; Saha, Samir Kumar; Jahan, Rownak; Lee, Yong-kyu; Rahmatullah, Mohammed

    2015-01-01

    Introduction: Though metal based drugs have been prescribed in Ayurveda for centuries to treat various diseases, such as rheumatoid arthritis and cancer, toxicity of these drugs containing heavy metal is a great drawback for practical application. So, proper scientific validation of herbo-metallic drugs like Arkeshwara Rasa (AR) have become one of the focused research arena of new drugs against cancers. Aim: To investigate the in vitro anticancer effects of AR. Materials and Methods: Anticancer activity of AR was investigated on two human cancer cell lines, which represent two different tissues (pancreas and skin). Lactate dehydrogenase (LDH) assay for enzyme activity and trypan blue assay for cell morphology were performed for further confirmation. Results: AR showed potent activity against pancreatic cancer cells (MIA-PaCa-2). LDH activity confirmed that AR was active against pancreatic cancer cells. Finally, it was observed that AR exhibited significant effects on cancer cells due to synergistic effects of different compounds of AR. Conclusion: The study strongly suggests that AR has the potential to be an anticancer drug against pancreatic cancer. PMID:27313425

  18. Potential anti-cancer drugs commonly used for other indications.

    PubMed

    Hanusova, Veronika; Skalova, Lenka; Kralova, Vera; Matouskova, Petra

    2015-01-01

    An increasing resistance of mammalian tumor cells to chemotherapy along with the severe side effects of commonly used cytostatics has raised the urgency in the search for new anti-cancer agents. Several drugs originally approved for indications other than cancer treatment have recently been found to have a cytostatic effect on cancer cells. These drugs could be expediently repurposed as anti-cancer agents, since they have already been tested for toxicity in humans and animals. The groups of newly recognized potential cytostatics discussed in this review include benzimidazole anthelmintics (albendazole, mebendazole, flubendazole), anti-hypertensive drugs (doxazosin, propranolol), psychopharmaceuticals (chlorpromazine, clomipramine) and antidiabetic drugs (metformin, pioglitazone). All these drugs have a definite potential to be used especially in combinations with other cytostatics; the chemotherapy targeting of multiple sites now represents a promising approach in cancer treatment. The present review summarizes recent information about the anti-cancer effects of selected drugs commonly used for other medical indications. Our aim is not to collect all the reported results, but to present an overview of various possibilities. Advantages, disadvantages and further perspectives regarding individual drugs are discussed and evaluated. PMID:25544649

  19. Multistimuli-Responsive Bilirubin Nanoparticles for Anticancer Therapy.

    PubMed

    Lee, Yonghyun; Lee, Soyoung; Lee, Dong Yun; Yu, Byeongjun; Miao, Wenjun; Jon, Sangyong

    2016-08-26

    Although stimuli-responsive materials hold potential for use as drug-delivery carriers for treating cancers, their clinical translation has been limited. Ideally, materials used for the purpose should be biocompatible and nontoxic, provide "on-demand" drug release in response to internal or external stimuli, allow large-scale manufacturing, and exhibit intrinsic anticancer efficacy. We present multistimuli-responsive nanoparticles formed from bilirubin, a potent endogenous antioxidant that possesses intrinsic anticancer and anti-inflammatory activity. Exposure of the bilirubin nanoparticles (BRNPs) to either reactive oxygen species (ROS) or external laser light causes rapid disruption of the BRNP nanostructure as a result of a switch in bilirubin solubility, thereby releasing encapsulated drugs. In a xenograft tumor model, BRNPs loaded with the anticancer drug doxorubicin (DOX@BRNPs), when combined with laser irradiation of 650 nm, significantly inhibited tumor growth. This study suggests that BRNPs may be used as a drug-delivery carrier as well as a companion medicine for effectively treating cancers. PMID:27485478

  20. Anticancer Gold(III) Porphyrins Target Mitochondrial Chaperone Hsp60.

    PubMed

    Hu, Di; Liu, Yungen; Lai, Yau-Tsz; Tong, Ka-Chung; Fung, Yi-Man; Lok, Chun-Nam; Che, Chi-Ming

    2016-01-22

    Identification of the molecular target(s) of anticancer metal complexes is a formidable challenge since most of them are unstable toward ligand exchange reaction(s) or biological reduction under physiological conditions. Gold(III) meso-tetraphenylporphyrin (gold-1 a) is notable for its high stability in biological milieux and potent in vitro and in vivo anticancer activities. Herein, extensive chemical biology approaches employing photo-affinity labeling, click chemistry, chemical proteomics, cellular thermal shift, saturation-transfer difference NMR, protein fluorescence quenching, and protein chaperone assays were used to provide compelling evidence that heat-shock protein 60 (Hsp60), a mitochondrial chaperone and potential anticancer target, is a direct target of gold-1 a in vitro and in cells. Structure-activity studies with a panel of non-porphyrin gold(III) complexes and other metalloporphyrins revealed that Hsp60 inhibition is specifically dependent on both the gold(III) ion and the porphyrin ligand. PMID:26663758

  1. A p53 growth arrest protects fibroblasts from anticancer agents.

    PubMed

    McCormack, E S; Bruskin, A M; Borzillo, G V

    1997-01-01

    Reversible inhibitors of the cell cycle such as the TGF-betas have been exploited to protect dividing cells from exposure to anticancer drugs and radiation. Here, rat embryo fibroblast (REF) lines expressing different p53 mutations were used to test whether the p53 growth arrest could also chemoprotect cells from high doses of anticancer drugs. Whereas the doubling times of the different REF lines at 37 degrees C were similar, cells bearing temperature-sensitive mutations (mouse 135V or human 143A) were growth arrested at 31 degrees C. Temperature-dependent p53 activity was associated with increased levels of MDM2 and p21/WAF1, and the induction of an integrated p53-responsive luciferase gene. The REF lines exhibited similar sensitivities to common anticancer drugs when grown at 37 degrees C. However, when exposed to the same agents following transient incubation at 31 degrees C, the p53-arrested cells exhibited a marked survival advantage as shown by colony-forming assays. Chemoprotection was not universal, in that colony formation was not enhanced significantly after treatment with cisplatin or 5-fluorouracil, two drugs which can cause cellular damage throughout the cell cycle. Like other negative growth regulators, an activated p53 checkpoint may mediate the survival of cells exposed to drugs that target DNA synthesis or mitosis. PMID:9351895

  2. Anticancer Activity of Methyl-Substituted Oxaliplatin Analogs†

    PubMed Central

    Jungwirth, Ute; Xanthos, Dimitris N.; Gojo, Johannes; Bytzek, Anna K.; Körner, Wilfried; Heffeter, Petra; Abramkin, Sergey A.; Jakupec, Michael A.; Hartinger, Christian G.; Windberger, Ursula; Galanski, Markus; Keppler, Bernhard K.; Berger, Walter

    2012-01-01

    Oxaliplatin is successfully used in systemic cancer therapy. However, resistance development and severe adverse effects are limiting factors for curative cancer treatment with oxaliplatin. The purpose of this study was to comparatively investigate in vitro and in vivo anticancer properties as well as the adverse effects of two methyl-substituted enantiomerically pure oxaliplatin analogs [[(1R,2R,4R)-4-methyl-1,2-cyclohexanediamine] oxalatoplatinum(II) (KP1537), and [(1R,2R,4S)-4-methyl-1,2-cyclohexanediamine]oxalatoplatinum(II) (KP1691)] and to evaluate the impact of stereoisomerism. Although the novel oxaliplatin analogs demonstrated in multiple aspects activities comparable with those of the parental compound, several key differences were discovered. The analogs were characterized by reduced vulnerability to resistance mechanisms such as p53 mutations, reduced dependence on immunogenic cell death induction, and distinctly attenuated adverse effects including weight loss and cold hyperalgesia. Stereoisomerism of the substituted methyl group had a complex and in some aspects even contradictory impact on drug accumulation and anticancer activity both in vitro and in vivo. To summarize, methyl-substituted oxaliplatin analogs harbor improved therapeutic characteristics including significantly reduced adverse effects. Hence, they might be promising metal-based anticancer drug candidates for further (pre)clinical evaluation. PMID:22331606

  3. Phenethyl Isothiocyanate: A comprehensive review of anti-cancer mechanisms

    PubMed Central

    Gupta, Parul; Wright, Stephen E.; Kim, Sung-Hoon; Srivastava, Sanjay K.

    2014-01-01

    The epidemiological evidence suggests a strong inverse relationship between dietary intake of cruciferous vegetables and the incidence of cancer. Among other constituents of cruciferous vegetables, isothiocyanates (ITC) are the main bioactive chemicals present. Phenethyl isothiocyanate (PEITC) is present as gluconasturtiin in many cruciferous vegetables with remarkable anti-cancer effects. PEITC is known to not only prevent the initiation phase of carcinogenesis process but also to inhibit the progression of tumorigenesis. PEITC targets multiple proteins to suppress various cancer-promoting mechanisms such as cell proliferation, progression and metastasis. Pre-clinical evidence suggests that combination of PEITC with conventional anti-cancer agents is also highly effective in improving overall efficacy. Based on accumulating evidence, PEITC appears to be a promising agent for cancer therapy and is already under clinical trials for leukemia and lung cancer. This is the first review which provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of PEITC as a future anti-cancer agent. PMID:25152445

  4. Anticancer efficacy of unique pyridine-based tetraindoles.

    PubMed

    Fu, Chih-Wei; Hsieh, Yun-Jung; Chang, Tzu Ting; Chen, Chia-Ling; Yang, Cheng-Yu; Liao, Anne; Hsiao, Pei-Wen; Li, Wen-Shan

    2015-11-01

    Results of previous studies demonstrated that the tetraindole, SK228, which has a high lipid but low water solubility, displayed moderate anticancer efficacy in a xenograft model of breast cancer. This finding led to the proposal that new, pyridine based tetraindole (PBT) analogs of SK228, containing tetraindole moieties distributed about central protonated pyridine cores, would have enhanced bioavailabilities and anticancer efficacies. Among the PBTs prepared and subjected to biological studies, 3f (FCW81) was observed to display the highest antiproliferative activity against the two triple negative breast cancer (TNBCs) cell lines, MDA-MB-231 and BT549. In addition, its mode of action was shown to involve G2/M arrest of the cell cycle along with the promotion of increased levels of cyclin B1 and p-chk2 and a decreased level of p-cdc2. DNA damage and induction of apoptosis caused by FCW81 was found to be associated with a decrease in DNA repair. Significantly, FCW81 displays therapeutic efficacy in a xenograft model of human breast cancer by not only serving to inhibit markedly the growth of cancer cells but also to block effectively cancer cell metastasis. Collectively, the results of these studies have led to the identification of novel pyridine-tetraindole based anticancer agents with potential use in TNBC therapy. PMID:26457743

  5. Second annual progress report on introduction and use of investigational anticancer agents in Australia, 1984-1985. Anticancer Subcommittee of the Australian Drug Evaluation Committee.

    PubMed

    1986-03-31

    Since the publication of its first report, the Anticancer Subcommittee of the Australian Drug Evaluation Committee (ADEC) has provided advice to ADEC and to the Commonwealth Department of Health on investigational anticancer agents in all stages of development. This second report outlines the progress in 1984-1985. PMID:3515139

  6. Novel walnut peptide–selenium hybrids with enhanced anticancer synergism: facile synthesis and mechanistic investigation of anticancer activity

    PubMed Central

    Liao, Wenzhen; Zhang, Rong; Dong, Chenbo; Yu, Zhiqiang; Ren, Jiaoyan

    2016-01-01

    This contribution reports a facile synthesis of degreased walnut peptides (WP1)-functionalized selenium nanoparticles (SeNPs) hybrids with enhanced anticancer activity and a detailed mechanistic evaluation of its superior anticancer activity. Structural and chemical characterizations proved that SeNPs are effectively capped with WP1 via physical absorption, resulting in a stable hybrid structure with an average diameter of 89.22 nm. A panel of selected human cancer cell lines demonstrated high susceptibility toward WP1-SeNPs and displayed significantly reduced proliferative behavior. The as-synthesized WP1-SeNPs exhibited excellent selectivity between cancer cells and normal cells. The targeted induction of apoptosis in human breast adenocarcinoma cells (MCF-7) was confirmed by the accumulation of arrested S-phase cells, nuclear condensation, and DNA breakage. Careful investigations revealed that an extrinsic apoptotic pathway can be attributed to the cell apoptosis and the same was confirmed by activation of the Fas-associated with death domain protein and caspases 3, 8, and 9. In addition, it was also understood that intrinsic apoptotic pathways including reactive oxygen species generation, as well as the reduction in mitochondrial membrane potential, are also involved in the WP1-SeNP-induced apoptosis. This suggested the involvement of multiple apoptosis pathways in the anticancer activity. Our results indicated that WP1-SeNP hybrids with Se core encapsulated in a WP1 shell could be a highly effective method to achieve anticancer synergism. Moreover, the great potential exhibited by WP1-SeNPs could make them an ideal candidate as a chemotherapeutic agent for human cancers, especially for breast cancer. PMID:27143875

  7. Novel walnut peptide-selenium hybrids with enhanced anticancer synergism: facile synthesis and mechanistic investigation of anticancer activity.

    PubMed

    Liao, Wenzhen; Zhang, Rong; Dong, Chenbo; Yu, Zhiqiang; Ren, Jiaoyan

    2016-01-01

    This contribution reports a facile synthesis of degreased walnut peptides (WP1)-functionalized selenium nanoparticles (SeNPs) hybrids with enhanced anticancer activity and a detailed mechanistic evaluation of its superior anticancer activity. Structural and chemical characterizations proved that SeNPs are effectively capped with WP1 via physical absorption, resulting in a stable hybrid structure with an average diameter of 89.22 nm. A panel of selected human cancer cell lines demonstrated high susceptibility toward WP1-SeNPs and displayed significantly reduced proliferative behavior. The as-synthesized WP1-SeNPs exhibited excellent selectivity between cancer cells and normal cells. The targeted induction of apoptosis in human breast adenocarcinoma cells (MCF-7) was confirmed by the accumulation of arrested S-phase cells, nuclear condensation, and DNA breakage. Careful investigations revealed that an extrinsic apoptotic pathway can be attributed to the cell apoptosis and the same was confirmed by activation of the Fas-associated with death domain protein and caspases 3, 8, and 9. In addition, it was also understood that intrinsic apoptotic pathways including reactive oxygen species generation, as well as the reduction in mitochondrial membrane potential, are also involved in the WP1-SeNP-induced apoptosis. This suggested the involvement of multiple apoptosis pathways in the anticancer activity. Our results indicated that WP1-SeNP hybrids with Se core encapsulated in a WP1 shell could be a highly effective method to achieve anticancer synergism. Moreover, the great potential exhibited by WP1-SeNPs could make them an ideal candidate as a chemotherapeutic agent for human cancers, especially for breast cancer. PMID:27143875

  8. Developing Exposure/Response Models for Anticancer Drug Treatment: Special Considerations

    PubMed Central

    Mould, DR; Walz, A-C; Lave, T; Gibbs, JP; Frame, B

    2015-01-01

    Anticancer agents often have a narrow therapeutic index (TI), requiring precise dosing to ensure sufficient exposure for clinical activity while minimizing toxicity. These agents frequently have complex pharmacology, and combination therapy may cause schedule-specific effects and interactions. We review anticancer drug development, showing how integration of modeling and simulation throughout development can inform anticancer dose selection, potentially improving the late-phase success rate. This article has a companion article in Clinical Pharmacology & Therapeutics with practical examples. PMID:26225225

  9. The antioxidant and anticancer effects of wild carrot oil extract.

    PubMed

    Shebaby, Wassim Nasri; El-Sibai, Mirvat; Smith, Kikki Bodman-; Karam, Marc Christoph; Mroueh, Mohamad; Daher, Costantine F

    2013-05-01

    Daucus carota L. ssp. carota (Apiacea) is used in traditional medicine in Lebanon and in different regions throughout the world. The present study investigates the in vitro anticancer activities of Daucus carota oil extract (DCOE) on four human cancer cell lines as well as its in vitro antioxidant activity. DCOE was extracted from the dried umbels with 50:50 acetone-methanol. The oil extract was analyzed by gas chromatography-mass spectrometry and screened for its antioxidant properties in vitro using 1,1-diphenyl-2-picryl hydrazyl free radical scavenging assay (DPPH), ferrous ion chelating assay (FIC) and the ferric reducing antioxidant power assay (FRAP). The anticancer activity of the oil extract against human colon (HT-29, Caco-2) and breast (MCF-7, MDA-MB-231) cancer cell lines was evaluated using the trypan blue exclusion method and the WST-1 cell proliferation assay. DCOE exhibited antioxidant activity in all assays used. The FRAP value was 164 ± 5.5 µmol FeSO4 /g, and the IC50 values for DPPH and FIC assays were 2.1 ± 0.03 mg/ml and 0.43 ± 0.02 mg/ml, respectively. Also, DCOE demonstrated a significant increase in cell death and decrease in cell proliferation. The effect of DCOE on the cell lines exhibited time and dose-dependent responses. The present study established that DCOE possesses both antioxidant and promising anticancer activities. PMID:22815230

  10. Identification of anti-cancer chemical compounds using Xenopus embryos.

    PubMed

    Tanaka, Masamitsu; Kuriyama, Sei; Itoh, Go; Kohyama, Aki; Iwabuchi, Yoshiharu; Shibata, Hiroyuki; Yashiro, Masakazu; Aiba, Namiko

    2016-06-01

    Cancer tissues have biological characteristics similar to those observed in embryos during development. Many types of cancer cells acquire pro-invasive ability through epithelial-mesenchymal transition (EMT). Similar processes (gastrulation and migration of cranial neural crest cells [CNCC]) are observed in the early stages of embryonic development in Xenopus during which cells that originate from epithelial sheets through EMT migrate to their final destinations. The present study examined Xenopus embryonic tissues to identify anti-cancer compounds that prevent cancer invasion. From the initial test of known anti-cancer drugs, AMD3100 (an inhibitor of CXCR4) and paclitaxel (a cytoskeletal drug targeting microtubules) effectively prevented migration during gastrulation or CNCC development. Blind-screening of 100 synthesized chemical compounds was performed, and nine candidates that inhibited migration of these embryonic tissues without embryonic lethality were selected. Of these, C-157 (an analog of podophyllotoxin) and D-572 (which is an indole alkaroid) prevented cancer cell invasion through disruption of interphase microtubules. In addition, these compounds affected progression of mitotic phase and induced apoptosis of SAS oral cancer cells. SAS tumors were reduced in size after intratumoral injection of C-157, and peritoneal dissemination of melanoma cells and intracranial invasion of glioma cells were inhibited by C-157 and D-572. When the other analogues of these chemicals were compared, those with subtle effect on embryos were not tumor suppressive. These results suggest that a novel chemical-screening approach based on Xenopus embryos is an effective method for isolating anti-cancer drugs and, in particular, targeting cancer cell invasion and proliferation. PMID:27019404

  11. Validating Aurora B as an anti-cancer drug target.

    PubMed

    Girdler, Fiona; Gascoigne, Karen E; Eyers, Patrick A; Hartmuth, Sonya; Crafter, Claire; Foote, Kevin M; Keen, Nicholas J; Taylor, Stephen S

    2006-09-01

    The Aurora kinases, a family of mitotic regulators, have received much attention as potential targets for novel anti-cancer therapeutics. Several Aurora kinase inhibitors have been described including ZM447439, which prevents chromosome alignment, spindle checkpoint function and cytokinesis. Subsequently, ZM447439-treated cells exit mitosis without dividing and lose viability. Because ZM447439 inhibits both Aurora A and B, we set out to determine which phenotypes are due to inhibition of which kinase. Using molecular genetic approaches, we show that inhibition of Aurora B kinase activity phenocopies ZM447439. Furthermore, a novel ZM compound, which is 100 times more selective for Aurora B over Aurora A in vitro, induces identical phenotypes. Importantly, inhibition of Aurora B kinase activity induces a penetrant anti-proliferative phenotype, indicating that Aurora B is an attractive anti-cancer drug target. Using molecular genetic and chemical-genetic approaches, we also probe the role of Aurora A kinase activity. We show that simultaneous repression of Aurora A plus induction of a catalytic mutant induces a monopolar phenotype. Consistently, another novel ZM-related inhibitor, which is 20 times as potent against Aurora A compared with ZM447439, induces a monopolar phenotype. Expression of a drug-resistant Aurora A mutant reverts this phenotype, demonstrating that Aurora A kinase activity is required for spindle bipolarity in human cells. Because small molecule-mediated inhibition of Aurora A and Aurora B yields distinct phenotypes, our observations indicate that the Auroras may present two avenues for anti-cancer drug discovery. PMID:16912073

  12. Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles

    NASA Astrophysics Data System (ADS)

    Fan, Jianquan; Fang, Gang; Wang, Xiaodan; Zeng, Fang; Xiang, Yufei; Wu, Shuizhu

    2011-11-01

    A targeted anticancer prodrug system was fabricated with 180 nm mesoporous silica nanoparticles (MSNs) as carriers. The anticancer drug doxorubicin (DOX) was conjugated to the particles through an acid-sensitive carboxylic hydrazone linker which is cleavable under acidic conditions. Moreover, folic acid (FA) was covalently conjugated to the particle surface as the targeting ligand for folate receptors (FRs) overexpressed in some cancer cells. The in vitro release profiles of DOX from the MSN-based prodrug systems showed a strong dependence on the environmental pH values. The fluorescent dye FITC was incorporated in the MSNs so as to trace the cellular uptake on a fluorescence microscope. Cellular uptakes by HeLa, A549 and L929 cell lines were tested for FA-conjugated MSNs and plain MSNs respectively, and a much more efficient uptake by FR-positive cancer cells (HeLa) can be achieved by conjugation of folic acid onto the particles because of the folate-receptor-mediated endocytosis. The cytotoxicities for the FA-conjugated MSN prodrug, the plain MSN prodrug and free DOX against three cell lines were determined, and the result indicates that the FA-conjugated MSN prodrug exhibits higher cytotoxicity to FR-positive cells, and reduced cytotoxicity to FR-negative cells. Thus, with 180 nm MSNs as the carriers for the prodrug system, good drug loading, selective targeting and sustained release of drug molecules within targeted cancer cells can be realized. This study may provide useful insights for designing and improving the applicability of MSNs in targeted anticancer prodrug systems.

  13. Naturally Occurring Isothiocyanates Exert Anticancer Effects by Inhibiting Deubiquitinating Enzymes.

    PubMed

    Lawson, Ann P; Long, Marcus J C; Coffey, Rory T; Qian, Yu; Weerapana, Eranthie; El Oualid, Farid; Hedstrom, Lizbeth

    2015-12-01

    The anticancer properties of cruciferous vegetables are well known and attributed to an abundance of isothiocyanates such as benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC). While many potential targets of isothiocyanates have been proposed, a full understanding of the mechanisms underlying their anticancer activity has remained elusive. Here we report that BITC and PEITC effectively inhibit deubiquitinating enzymes (DUB), including the enzymes USP9x and UCH37, which are associated with tumorigenesis, at physiologically relevant concentrations and time scales. USP9x protects the antiapoptotic protein Mcl-1 from degradation, and cells dependent on Mcl-1 were especially sensitive to BITC and PEITC. These isothiocyanates increased Mcl-1 ubiquitination and either isothiocyanate treatment, or RNAi-mediated silencing of USP9x decreased Mcl-1 levels, consistent with the notion that USP9x is a primary target of isothiocyanate activity. These isothiocyanates also increased ubiquitination of the oncogenic fusion protein Bcr-Abl, resulting in degradation under low isothiocyanate concentrations and aggregation under high isothiocyanate concentrations. USP9x inhibition paralleled the decrease in Bcr-Abl levels induced by isothiocyanate treatment, and USP9x silencing was sufficient to decrease Bcr-Abl levels, further suggesting that Bcr-Abl is a USP9x substrate. Overall, our findings suggest that USP9x targeting is critical to the mechanism underpinning the well-established anticancer activity of isothiocyanate. We propose that the isothiocyanate-induced inhibition of DUBs may also explain how isothiocyanates affect inflammatory and DNA repair processes, thus offering a unifying theme in understanding the function and useful application of isothiocyanates to treat cancer as well as a variety of other pathologic conditions. PMID:26542215

  14. Anticancer potential of aloes: antioxidant, antiproliferative, and immunostimulatory attributes.

    PubMed

    Harlev, Eli; Nevo, Eviatar; Lansky, Ephraim P; Ofir, Rivka; Bishayee, Anupam

    2012-06-01

    Aloe is a genus of medicinal plants with a notable history of medical use. Basic research over the past couple of decades has begun to reveal the extent of Aloe's pharmaceutical potential, particularly against neoplastic disease. This review looks at Aloe, both the genus and the folk medicine, often being called informally "aloes", and delineates their chemistry and anticancer pharmacognosy. Structures of key compounds are provided, and their pharmacological activities reviewed. Particular attention is given to their free radical scavenging, antiproliferative, and immunostimulatory properties. This review highlights major research directions on aloes, reflecting the enormous potential of natural sources, and of the genus Aloe in particular, in preventing and treating cancer. PMID:22516934

  15. (-)-Arctigenin as a lead compound for anticancer agent.

    PubMed

    Chen, Gui-Rong; Li, Hong-Fu; Dou, De-Qiang; Xu, Yu-Bin; Jiang, Hong-Shuai; Li, Fu-Rui; Kang, Ting-Guo

    2013-01-01

    (-)-Arctigenin, an important active constituent of the traditional Chinese herb Fructus Arctii, was found to exhibit various bioactivities, so it can be used as a good lead compound for further structure modification in order to find a safer and more potent medicine. (-)-Arctigenin derivatives 1-5 of (-)-arctingen were obtained by modifying with ammonolysis at the lactone ring and sulphonylation at C (6') and C (6″) and O-demethylation at CH3O-C (3'), CH3O-C (3″) and CH3O-C (4″), and their anticancer bioactivities were examined. PMID:23962054

  16. Monitoring of occupational exposure to cytostatic anticancer agents.

    PubMed

    Sorsa, M; Anderson, D

    1996-08-17

    Many anticancer agents have been shown to be carcinogenic, mutagenic and teratogenic in experimental animals and in in vitro test systems. Epidemiological data on the association of second neoplasms with a specific chemotherapy treatment is available on some 30 agents, and in the case of 10 compounds the overall evidence on human carcinogenicity has been evaluated to be conclusive (Group 1: IARC, 1987 and 1990). The primary source of human exposure to anticancer drugs is from their use in therapy of cancer. However, persons employed in the manufacture, preparation and administration of the drugs to patients and in nursing patients may also be exposed. Safe handling of anticancer drugs, since the introduction of various general handling guidelines, is now good practice in hospitals, pharmacies and drug manufacturing companies of most developed countries. Careless handling of cancer chemotherapeutic agents may lead to exposure of the personnel in amounts detectable with chemical or biological methods in the body fluids or cell samples of the subjects. The exposure is typically to mixed compounds over long-term and to low exposure levels with accidental peaks. Therefore, the use of biological exposure markers is appropriate for the monitoring of such exposure patterns. The biological markers/methods for exposure assessment are either non-specific (e.g., cytogenetic damage, point mutations or 32P-post-labelling adducts in peripheral blood lymphocytes, urinary mutagenicity) or specific for a given compound (immunological methods for DNA adducts, specific analytical methods). Studies have revealed minor amounts of cyclophosphamide in the urine of pharmacy technicians and nurses handling the drug even when taking special safety precautions (Sessink et al. (1994a) J. Occup. Med., 36, 79; Sessink et al. (1994b) Arch. Env. Health, 49, 165). Another study showed surface wipe samples with measurable cyclophosphamide even away from the handling site (McDevitt et al. (1993) J

  17. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents.

    PubMed

    Galluzzi, Lorenzo; Buqué, Aitziber; Kepp, Oliver; Zitvogel, Laurence; Kroemer, Guido

    2015-12-14

    The tremendous clinical success of checkpoint blockers illustrates the potential of reestablishing latent immunosurveillance for cancer therapy. Although largely neglected in the clinical practice, accumulating evidence indicates that the efficacy of conventional and targeted anticancer agents does not only involve direct cytostatic/cytotoxic effects, but also relies on the (re)activation of tumor-targeting immune responses. Chemotherapy can promote such responses by increasing the immunogenicity of malignant cells, or by inhibiting immunosuppressive circuitries that are established by developing neoplasms. These immunological "side" effects of chemotherapy are desirable, and their in-depth comprehension will facilitate the design of novel combinatorial regimens with improved clinical efficacy. PMID:26678337

  18. Cell Targeting in Anti-Cancer Gene Therapy

    PubMed Central

    Lila, Mohd Azmi Mohd; Siew, John Shia Kwong; Zakaria, Hayati; Saad, Suria Mohd; Ni, Lim Shen; Abdullah, Jafri Malin

    2004-01-01

    Gene therapy is a promising approach towards cancer treatment. The main aim of the therapy is to destroy cancer cells, usually by apoptotic mechanisms, and preserving others. However, its application has been hindered by many factors including poor cellular uptake, non-specific cell targeting and undesirable interferences with other genes or gene products. A variety of strategies exist to improve cellular uptake efficiency of gene-based therapies. This paper highlights advancements in gene therapy research and its application in relation to anti-cancer treatment. PMID:22977356

  19. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs.

    PubMed

    Sánchez-Martínez, Concepción; Gelbert, Lawrence M; Lallena, María José; de Dios, Alfonso

    2015-09-01

    Sustained proliferative capacity is a hallmark of cancer. In mammalian cells proliferation is controlled by the cell cycle, where cyclin-dependent kinases (CDKs) regulate critical checkpoints. CDK4 and CDK6 are considered highly validated anticancer drug targets due to their essential role regulating cell cycle progression at the G1 restriction point. This review provides an overview of recent advances on cyclin dependent kinase inhibitors in general with special emphasis on CDK4 and CDK6 inhibitors and compounds under clinical evaluation. Chemical structures, structure activity relationships, and relevant preclinical properties will be described. PMID:26115571

  20. The interaction of anticancer therapies with tumor-associated macrophages

    PubMed Central

    2015-01-01

    Macrophages are essential components of the inflammatory microenvironment of tumors. Conventional treatment modalities (chemotherapy and radiotherapy), targeted drugs, antiangiogenic agents, and immunotherapy, including checkpoint blockade, all profoundly influence or depend on the function of tumor-associated macrophages (TAMs). Chemotherapy and radiotherapy can have dual influences on TAMs in that a misdirected macrophage-orchestrated tissue repair response can result in chemoresistance, but in other circumstances, TAMs are essential for effective therapy. A better understanding of the interaction of anticancer therapies with innate immunity, and TAMs in particular, may pave the way to better patient selection and innovative combinations of conventional approaches with immunotherapy. PMID:25753580

  1. New water soluble pyrroloquinoline derivatives as new potential anticancer agents.

    PubMed

    Ferlin, Maria Grazia; Marzano, Christine; Dalla Via, Lisa; Chilin, Adriana; Zagotto, Giuseppe; Guiotto, Adriano; Moro, Stefano

    2005-08-01

    A new class of water soluble 3H-pyrrolo[3,2-f]quinoline derivatives has been synthesized and investigated as potential anticancer drugs. Water solubility profiles have been used to select the most promising derivatives. The novel compound 10, having two (2-diethylamino-ethyl) side chains linked through positions 3N and 9O, presents a suitable water solubility profile, and it was shown to exhibit cell growth inhibitory properties when tested against the in-house panel of cell lines, in particular those obtained from melanoma. PMID:15936202

  2. Enabling Anticancer Therapeutics by Nanoparticle Carriers: The Delivery of Paclitaxel

    PubMed Central

    Liu, Yongjin; Zhang, Bin; Yan, Bing

    2011-01-01

    Anticancer drugs, such as paclitaxel (PTX), are indispensable for the treatment of a variety of malignancies. However, the application of most drugs is greatly limited by the low water solubility, poor permeability, or high efflux from cells. Nanoparticles have been widely investigated to enable drug delivery due to their low toxicity, sustained drug release, molecular targeting, and additional therapeutic and imaging functions. This review takes paclitaxel as an example and compares different nanoparticle-based delivery systems for their effectiveness in cancer chemotherapy. PMID:21845085

  3. Transportan 10 improves the anticancer activity of cisplatin.

    PubMed

    Izabela, Rusiecka; Jarosław, Ruczyński; Magdalena, Alenowicz; Piotr, Rekowski; Ivan, Kocić

    2016-05-01

    The aim of this paper was to examine whether cell-penetrating peptides (CPPs) such as transportan 10 (TP10) or protein transduction domain (PTD4) may improve the anticancer activity of cisplatin (cPt). The complexes of TP10 or PTD4 with cPt were used in the experiments. They were carried out on two non-cancer (HEK293 (human embryonic kidney) and HEL299 (human embryo lung)) and two cancer (HeLa (human cervical cancer) and OS143B (human osteosarcoma 143B)) cell lines. Both complexes were tested (MTT assay) with respect to their anticancer or cytotoxic actions. TAMRA (fluorescent dye)-stained preparations were visualized in a fluorescence microscope. The long-term effect of TP10 + cPt and its components on non-cancer and cancer cell lines was observed in inverted phase contrast microscopy. In the MTT test (cell viability assay), the complex of TP10 + cPt produced a more potent effect on the cancer cell lines (HeLa, OS143B) in comparison to that observed after separate treatment with TP10 or cPt. At the same time, the action of the complex and its components was rather small on non-cancer cell lines. On the other hand, a complex of another CPP with cPt, i.e., PTD4 + cPt, was without a significant effect on the cancer cell line (OS143B). The images of the fluorescent microscopy showed TAMRA-TP10 or TAMRA-TP10 + cPt in the interior of the HeLa cells. In the case of TAMRA-PTD4 or TAMRA-PTD4 + cPt, only the first compound was found inside the cancer cell line. In contrast, none of the tested compounds gained access to the interior of the non-cancer cells (HEK293, HEL299). Long-term incubation with the TP10 + cPt (estimated by inverted phase contrast microscopy) lead to an enhanced action of the complex on cell viability (decrease in the number of cells and change in their morphology) as compared with that produced by each single agent. With regard to the tested CPPs, only TP10 improved the anticancer activity of cisplatin if both compounds were used in the form of a

  4. Biomaterials and Emerging Anticancer Therapeutics: Engineering the Microenvironment

    PubMed Central

    Gu, Luo; Mooney, David J

    2016-01-01

    The microenvironment is increasingly recognized to play key roles in cancer, and biomaterials provide a means to engineer microenvironments both in vitro and in vivo to study and manipulate cancer. In vitro cancer models using 3D matrices recapitulate key elements of the tumor microenvironment and have revealed new aspects of cancer biology. Cancer vaccines based on some of the same biomaterials have, in parallel, allowed for the engineering of durable prophylactic and therapeutic anticancer activity in preclinical studies, and some of these vaccines have moved to clinical trials. The impact of biomaterials engineering on cancer treatment is expected to further increase in importance in the years to come. PMID:26694936

  5. Importance of molecular computer modeling in anticancer drug development.

    PubMed

    Geromichalos, George D

    2007-09-01

    Increasing insight into the genetics and molecular biology of cancer has resulted in the identification of an increasing number of potential molecular targets for anticancer drug discovery and development. These targets can be approached through exploitation of emerging structural biology, "rational" drug design, screening of chemical libraries, or a combination of these methods. The result is the rapid discovery of new anticancer drugs. The processes used by academic and industrial scientists to discover new drugs has recently experienced a true renaissance with many new and exciting techniques being developed in the past 5-10 years. In this review, we will attempt to outline these latest protocols that chemists and biomedical scientists are currently employing to rapidly bring new drugs to the clinic. Structure-based drug design is perhaps the most elegant approach for discovering compounds exhibiting high specificity and efficacy. Nowadays, a number of recent successful drugs have in part or in whole emerged from a structure-based research approach. Many advances including crystallography and informatics are behind these successes. Of great importance is also the impact these advances in structure-based drug design are likely to have on the economics of drug discovery. As the structures of more and more proteins and nucleic acids become available, molecular docking is increasingly considered for lead discovery. Recent studies consider the hit-rate enhancement of docking screens and the accuracy of docking structure predictions. As more structures are determined experimentally, docking against homology-modeled targets also becomes possible for more proteins. With more docking studies being undertaken, the "drug-likeness" and specificity of docking hits is also being examined. In this article we discuss the application of molecular modeling, molecular docking and virtual molecular high-throughput, targeted drug screening to anticancer drug discovery. Currently

  6. Hepatic Encephalopathy Associated With Cancer or Anticancer Therapy

    PubMed Central

    Nott, Louise M.; Broadbridge, Vy T.; Price, Timothy

    2013-01-01

    ABSTRACT Hepatic encephalopathy is an uncommon cause of neurologic deterioration associated with hyperammonemia, which results from hepatic dysfunction or altered ammonia metabolism. Often overlooked, hyperammonemia may occur via any of several pathophysiological processes, and in the setting of malignancy, it is a potentially reversible cause of confusion and coma. Hepatic dysfunction as a result of malignant infiltration, chemotherapeutic toxicities, targeted anticancer therapies, reactivation hepatitis, portosystemic shunting, and transarterial chemoembolization (TACE) is discussed, and an approach to etiological diagnosis and management is outlined. PMID:23505573

  7. Thalidomide–A Notorious Sedative to a Wonder Anticancer Drug

    PubMed Central

    Zhou, Shuang; Wang, Fengfei; Hsieh, Tze-Chen; Wu, Joseph M.; Wu, Erxi

    2014-01-01

    In the past 50 years, thalidomide has undergone a remarkable metamorphosis from a notorious drug inducing birth defects into a highly effective therapy for treating leprosy and multiple myeloma. Today, most notably, thalidomide and its analogs have shown efficacy against a wide variety of diseases, including inflammation and cancer. The mechanism underlying its teratogenicity as well as its anticancer activities has been intensively studied. This review summarizes the biological effects and therapeutic uses of thalidomide and its analogs, and the underlying mechanisms of thalidomide’s action with a focus on its suppression of tumor growth. PMID:23931282

  8. Tristetraprolin: a novel mediator of the anticancer properties of resveratrol.

    PubMed

    Li, C; Tang, C; He, G

    2016-01-01

    Resveratrol is a natural compound that exhibits anticancer properties. Previous studies have proved that it can inhibit the proliferation of breast cancer cell lines and upregulate some cytokines such as cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF). The initiation and progression of cancer are associated with the abnormal expression of multiple cytokines. Tristetraprolin (TTP), an mRNA-binding protein, is one of the key proteins that participate in regulating cytokine expression. Two different proliferation assays on MCF-7 cells showed that the cell proliferation rate significantly reduced following treatment with resveratrol. Most importantly, we found that resveratrol promoted TTP expression at both the mRNA and protein level in a dose- and time-dependent manner. In addition, the expression of COX-2 and VEGF were significantly suppressed by resveratrol while that of inducible nitric oxide synthase (iNOS) was upregulated. Lastly, the effects of resveratrol on both MCF-7 proliferation and expression of COX-2, VEGF, and iNOS were significantly inhibited by TTP knockdown, indicating that TTP mediates the anticancer properties of resveratrol. In summary, we conclude that resveratrol inhibits the proliferation of MCF-7 cells by TTP upregulation, which is associated with downregulation of COX-2 and VEGF and upregulation of iNOS. PMID:27323060

  9. Monofunctional and Higher-Valent Platinum Anticancer Agents

    PubMed Central

    Johnstone, Timothy C.; Wilson, Justin J.

    2013-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the serendipitous discovery of the anticancer activity of cisplatin by Rosenberg, a large number of cisplatin variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. These efforts continue today with increased realization that new strategies are needed to overcome issues of toxicity and resistance inherent to treatment by the approved platinum anticancer agents. One approach has been the use of so-called “non-traditional” platinum(II) and platinum(IV) compounds that violate the structure-activity relationships that governed platinum drug-development research for many years. Another is the use of specialized drug delivery strategies. Here we describe recent developments from our laboratory involving monofunctional platinum(II) complexes together with an historical account of the manner by which we came to investigate these compounds and their relationship to previously studied molecules. We also discuss work carried out using platinum(IV) prodrugs and the development of nanoconstructs designed to deliver them in vivo. PMID:23738524

  10. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles

    PubMed Central

    Lin, Jun; Huang, Zhihai; Wu, Hao; Zhou, Wei; Jin, Peipei; Wei, Pengfei; Zhang, Yunjiao; Zheng, Fang; Zhang, Jiqian; Xu, Jing; Hu, Yi; Wang, Yanhong; Li, Yajuan; Gu, Ning; Wen, Longping

    2014-01-01

    Silver nanoparticles (Ag NPs) are cytotoxic to cancer cells and possess excellent potential as an antitumor agent. A variety of nanoparticles have been shown to induce autophagy, a critical cellular degradation process, and the elevated autophagy in most of these situations promotes cell death. Whether Ag NPs can induce autophagy and how it might affect the anticancer activity of Ag NPs has not been reported. Here we show that Ag NPs induced autophagy in cancer cells by activating the PtdIns3K signaling pathway. The autophagy induced by Ag NPs was characterized by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. Consistent with these properties, the autophagy induced by Ag NPs promoted cell survival, as inhibition of autophagy by either chemical inhibitors or ATG5 siRNA enhanced Ag NPs-elicited cancer cell killing. We further demonstrated that wortmannin, a widely used inhibitor of autophagy, significantly enhanced the antitumor effect of Ag NPs in the B16 mouse melanoma cell model. Our results revealed a novel biological activity of Ag NPs in inducing cytoprotective autophagy, and inhibition of autophagy may be a useful strategy for improving the efficacy of Ag NPs in anticancer therapy. PMID:25484080

  11. Steamed American ginseng berry: ginsenoside analyses and anticancer activities.

    PubMed

    Wang, Chong-Zhi; Zhang, Bin; Song, Wen-Xin; Wang, Anbao; Ni, Ming; Luo, Xiaoji; Aung, Han H; Xie, Jing-Tian; Tong, Robin; He, Tong-Chuan; Yuan, Chun-Su

    2006-12-27

    This study was designed to determine the changes in saponin content in American ginseng berries after treatment by heating and to assess the anticancer effects of the extracts. After steaming treatment (100-120 degrees C for 1 h, and 120 degrees C for 0.5-4 h), the content of seven ginsenosides, Rg1, Re, Rb1, Rc, Rb2, Rb3, and Rd, decreased; the content of five ginsenosides, Rh1, Rg2, 20R-Rg2, Rg3, and Rh2, increased. Rg3, a previously identified anticancer ginsenoside, increased significantly. Two hours of steaming at 120 degrees C increased the content of ginsenoside Rg3 to a greater degree than other tested ginsenosides. When human colorectal cancer cells were treated with 0.5 mg/mL steamed berry extract (120 degrees C 2 h), the antiproliferation effects were 97.8% for HCT-116 and 99.6% for SW-480 cells. At the same treatment concentration, the effects of unsteamed berry extract were 34.1% for HCT-116 and 4.9% for SW-480 cells. After staining with Hoechst 33258, apoptotic cells increased significantly by treatment with steamed berry extract compared with unheated extracts. Induction of apoptosis activity was confirmed by flow cytometry after staining with annexin V/PI. The steaming of American ginseng berries augments ginsenoside Rg3 content and increases the antiproliferative effects on two human colorectal cancer cell lines. PMID:17177524

  12. Curcumin AntiCancer Studies in Pancreatic Cancer.

    PubMed

    Bimonte, Sabrina; Barbieri, Antonio; Leongito, Maddalena; Piccirillo, Mauro; Giudice, Aldo; Pivonello, Claudia; de Angelis, Cristina; Granata, Vincenza; Palaia, Raffaele; Izzo, Francesco

    2016-01-01

    Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC. PMID:27438851

  13. Bcl-2 family proteins as targets for anticancer drug design.

    PubMed

    Huang, Z

    2000-12-27

    Bcl-2 family proteins are key regulators of programmed cell death or apoptosis that is implicated in many human diseases, particularly cancer. In recent years, they have attracted intensive interest in both basic research to understand the fundamental principles of cell survival and cell death and drug discovery to develop a new class of anticancer agents. The Bcl-2 family includes both anti- and pro-apoptotic proteins with opposing biological functions in either inhibiting or promoting cell death. High expression of anti-apoptotic members such as Bcl-2 and Bcl-XL commonly found in human cancers contributes to neoplastic cell expansion and interferes with the therapeutic action of many chemotherapeutic drugs. The functional blockade of Bcl-2 or Bcl-XL could either restore the apoptotic process in tumor cells or sensitize these tumors for chemo- and radiotherapies. This article reviews the recent progress in the design and discovery of small molecules that block the anti-apoptotic function of Bcl-2 or Bcl-XL. These chemical inhibitors are effective modulators of apoptosis and promising leads for the further development of new anticancer agents. PMID:11426648

  14. Anti-cancer drugs targeting fatty acid synthase (FAS).

    PubMed

    Pandey, Puspa R; Liu, Wen; Xing, Fei; Fukuda, Koji; Watabe, Kounosuke

    2012-05-01

    Fatty acid synthase (FAS) is a key enzyme of the fatty acid biosynthetic pathway which catalyzes de novo lipid synthesis. FAS expression in normal adult tissues is generally very low or undetectable as majority of fatty acids obtained are from dietary sources, whereas it is significantly upregulated in cancer cells despite adequate nutritional lipid supply. Activation of FAS provides rapidly proliferating tumor cells sufficient amount of lipids for membrane biogenesis and confers growth and survival advantage possibly acting as a metabolic oncogene. Importantly, inhibition of FAS in cancer cells using the pharmacological FAS inhibitors results in tumor cell death by apoptosis whereas normal cells are resistant. Due to this differential expression of FAS, the inhibitors of this enzyme are selectively toxic to tumor cells and therefore FAS is considered an attractive therapeutic target for cancer. Several FAS inhibitors are already patented and commercially available; however, the potential toxicity of these FAS inhibitors remains to be tested in clinical trials. In this review, we discuss some of the potent FAS inhibitors along with their patent information, the mechanism of anti-cancer effects and the development of more specific and potent FAS inhibitors with lower side effects that are expected to emerge as anti-cancer treatment in the near future. PMID:22338595

  15. Anticancer activity of streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma

    PubMed Central

    Kwak, Tae Won; Shin, Hee Jae; Jeong, Young-Il; Han, Myoung-Eun; Oh, Sae-Ock; Kim, Hyun-Jung; Kim, Do Hyung; Kang, Dae Hwan

    2015-01-01

    Background The aim of this study is to investigate the anticancer activity of streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma. Methods The anticancer activity of streptochlorin was evaluated in vitro in various cholangiocarcinoma cell lines for apoptosis, proliferation, invasiveness, and expression of various protein levels. A liver metastasis model was prepared by splenic injection of HuCC-T1 cholangiocarcinoma cells using a BALB/c nude mouse model to study the systemic antimetastatic efficacy of streptochlorin 5 mg/kg at 8 weeks. The antitumor efficacy of subcutaneously injected streptochlorin was also assessed using a solid tumor xenograft model of SNU478 cells for 22 days in the BALB/c nude mouse. Results Streptochlorin inhibited growth and secretion of vascular endothelial growth factor by cholangiocarcinoma cells in a dose-dependent manner and induced apoptosis in vitro. In addition, streptochlorin effectively inhibited invasion and migration of cholangiocarcinoma cells. Secretion of vascular endothelial growth factor and activity of matrix metalloproteinase-9 in cholangiocarcinoma cells were also suppressed by treatment with streptochlorin. Streptochlorin effectively regulated metastasis of HuCC-T1 cells in a mouse model of liver metastasis. In a tumor xenograft study using SNU478 cells, streptochlorin significantly inhibited tumor growth without changes in body weight when compared with the control. Conclusion These results reveal that streptochlorin is a promising chemotherapeutic agent to the treatment of cholangiocarcinoma. PMID:25931814

  16. Injectable micellar supramolecular hydrogel for delivery of hydrophobic anticancer drugs.

    PubMed

    Fu, CuiXiang; Lin, XiaoXiao; Wang, Jun; Zheng, XiaoQun; Li, XingYi; Lin, ZhengFeng; Lin, GuangYong

    2016-04-01

    In this paper, an injectable micellar supramolecular hydrogel composed of α-cyclodextrin (α-CD) and monomethoxy poly(ethylene glycol)-b-poly(ε-caplactone) (MPEG5000-PCL5000) micelles was developed by a simple method for hydrophobic anticancer drug delivery. By mixing α-CD aqueous solution and MPEG5000-PCL5000 micelles, an injectable micellar supramolecular hydrogel could be formed under mild condition due to the inclusion complexation between α-CD and MPEG segment of MPEG5000-PCL5000 micelles. The resultant supramolecular hydrogel was thereafter characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The effect of α-CD amount on the gelation time, mechanical strength and thixotropic property was studied by a rheometer. Payload of hydrophobic paclitaxel (PTX) to supramolecular hydrogel was achieved by encapsulation of PTX into MPEG5000-PCL5000 micelles prior mixing with α-CD aqueous solution. In vitro release study showed that the release behavior of PTX from hydrogel could be modulated by change the α-CD amount in hydrogel. Furthermore, such supramolecular hydrogel could enhance the biological activity of encapsulated PTX compared to free PTX, as indicated by in vitro cytotoxicity assay. All these results indicated that the developed micellar supramolecular hydrogel might be a promising injectable drug delivery system for anticancer therapy. PMID:26886821

  17. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles.

    PubMed

    Lin, Jun; Huang, Zhihai; Wu, Hao; Zhou, Wei; Jin, Peipei; Wei, Pengfei; Zhang, Yunjiao; Zheng, Fang; Zhang, Jiqian; Xu, Jing; Hu, Yi; Wang, Yanhong; Li, Yajuan; Gu, Ning; Wen, Longping

    2014-01-01

    Silver nanoparticles (Ag NPs) are cytotoxic to cancer cells and possess excellent potential as an antitumor agent. A variety of nanoparticles have been shown to induce autophagy, a critical cellular degradation process, and the elevated autophagy in most of these situations promotes cell death. Whether Ag NPs can induce autophagy and how it might affect the anticancer activity of Ag NPs has not been reported. Here we show that Ag NPs induced autophagy in cancer cells by activating the PtdIns3K signaling pathway. The autophagy induced by Ag NPs was characterized by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. Consistent with these properties, the autophagy induced by Ag NPs promoted cell survival, as inhibition of autophagy by either chemical inhibitors or ATG5 siRNA enhanced Ag NPs-elicited cancer cell killing. We further demonstrated that wortmannin, a widely used inhibitor of autophagy, significantly enhanced the antitumor effect of Ag NPs in the B16 mouse melanoma cell model. Our results revealed a novel biological activity of Ag NPs in inducing cytoprotective autophagy, and inhibition of autophagy may be a useful strategy for improving the efficacy of Ag NPs in anticancer therapy. PMID:25484080

  18. Curcumin AntiCancer Studies in Pancreatic Cancer

    PubMed Central

    Bimonte, Sabrina; Barbieri, Antonio; Leongito, Maddalena; Piccirillo, Mauro; Giudice, Aldo; Pivonello, Claudia; de Angelis, Cristina; Granata, Vincenza; Palaia, Raffaele; Izzo, Francesco

    2016-01-01

    Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC. PMID:27438851

  19. Particle margination and its implications on intravenous anticancer drug delivery.

    PubMed

    Carboni, Erik; Tschudi, Katherine; Nam, Jaewook; Lu, Xiuling; Ma, Anson W K

    2014-06-01

    "Margination" refers to the movement of particles in flow toward the walls of a channel. The term was first coined in physiology for describing the behavior of white blood cells (WBCs) and platelets in blood flow. The margination of particles is desirable for anticancer drug delivery because it results in the close proximity of drug-carrying particles to the endothelium, where they can easily diffuse into cancerous tumors through the leaky vasculature. Understanding the fundamentals of margination may further lead to the rational design of particles and allow for more specific delivery of anticancer drugs into tumors, thereby increasing patient comfort during cancer treatment. This paper reviews existing theoretical and experimental studies that focus on understanding margination. Margination is a complex phenomenon that depends on the interplay between inertial, hydrodynamic, electrostatic, lift, van der Waals, and Brownian forces. Parameters that have been explored thus far include the particle size, shape, density, stiffness, shear rate, and the concentration and aggregation state of red blood cells (RBCs). Many studies suggested that there exists an optimal particle size for margination to occur, and that nonspherical particles tend to marginate better than spherical particles. There are, however, conflicting views on the effects of particle density, stiffness, shear rate, and RBCs. The limitations of using the adhesion of particles to the channel walls in order to quantify margination propensity are explained, and some outstanding questions for future research are highlighted. PMID:24687242

  20. Sphingolipid metabolism enzymes as targets for anticancer therapy.

    PubMed

    Kok, J W; Sietsma, H

    2004-05-01

    Treatment with anti-cancer agents in most cases ultimately results in apoptotic cell death of the target tumor cells. Unfortunately, tumor cells can develop multidrug resistance, e.g., by a reduced propensity to engage in apoptosis by which they become insensitive to multiple chemotherapeutics. Ceramide. the central molecule in cellular sphingolipid metabolism, has been recognized as an important mediator of apoptosis. Moreover, an increased cellular capacity for ceramide glycosylation has been identified as a novel multidrug resistance mechanism. Indeed, virtually all multidrug resistant cell types exhibit a deviating sphingolipid composition, most typically an increased level of glucosylceramide. Thus, the enzyme glucosylceramide synthase, which converts ceramide into glucosylceramide, has emerged as a potential target to increase apoptosis and decrease drug resistance of tumor cells. In addition, several other steps in the pathways of sphingolipid metabolism arc altered in multidrug resistant cells, opening a perspective on additional sphingolipid metabolism enzymes as targets for anti-cancer therapy. In this article, we present an overview of the current understanding concerning drug resistance-related changes in sphingolipid metabolism and how interference with this metabolism can be exploited to over come multidrug resistance. PMID:15134220

  1. The promising alliance of anti-cancer electrochemotherapy with immunotherapy.

    PubMed

    Calvet, Christophe Y; Mir, Lluis M

    2016-06-01

    Anti-tumor electrochemotherapy, which consists in increasing anti-cancer drug uptake by means of electroporation, is now implanted in about 140 cancer treatment centers in Europe. Its use is supported by the English National Institute for Health and Care Excellence for the palliative treatment of skin metastases, and about 13,000 cancer patients were treated by this technology by the end of 2015. Efforts are now focused on turning this local anti-tumor treatment into a systemic one. Electrogenetherapy, that is the electroporation-mediated transfer of therapeutic genes, is currently under clinical evaluation and has brought excitement to enlarge the anti-cancer armamentarium. Among the promising electrogenetherapy strategies, DNA vaccination and cytokine-based immunotherapy aim at stimulating anti-tumor immunity. We review here the interests and state of development of both electrochemotherapy and electrogenetherapy. We then emphasize the potent beneficial outcome of the combination of electrochemotherapy with immunotherapy, such as immune checkpoint inhibitors or strategies based on electrogenetherapy, to simultaneously achieve excellent local debulking anti-tumor responses and systemic anti-metastatic effects. PMID:26993326

  2. Enhancement of anticancer potential of polyphenols by covalent modifications.

    PubMed

    Lewandowska, Urszula; Fichna, Jakub; Gorlach, Sylwia

    2016-06-01

    As evidenced by a growing number of respective clinical trials, a promising and increasingly valued approach to cancer prevention is chemoprevention which is based on using synthetic, semisynthetic, or natural compounds with the aim of preventing, delaying, arresting, or reversing carcinogenesis. Research carried out in the last two decades indicates that natural polyphenols isolated from plants (as well as their derivatives and synthetic analogs) exhibit pleiotropic actions toward cancer cells and therefore they could be used in both cancer prevention and therapy. This review discusses selected covalent modifications of polyphenols as a means for increasing their anticancer potential in relation to the parent compounds. The modifications include hydroxylation, methylation, acylation, and galloylation, among others. They were demonstrated to enhance cytotoxic, pro-oxidant, antiproliferative, proapoptotic, proautophagic, and antimigratory activities of phenolics toward various cancer cell lines in vitro. Importantly, some derivatives proved to suppress tumor growth and metastasis in animal models more strongly than the parent compounds. Some of the above-mentioned covalent modifications were also shown to increase absorption and tissue distribution of tested phenolic compounds in vivo. Anticancer clinical trials with polyphenol derivatives therefore seem warranted. PMID:26776305

  3. Mode of action of anticancer peptides (ACPs) from amphibian origin.

    PubMed

    Oelkrug, Christopher; Hartke, Martin; Schubert, Andreas

    2015-02-01

    Although cancer belongs to one of the leading causes of death around the world, fortunately studies have shown that tumor cells have various targets that are susceptible to attack. Interestingly, tumor cells are comprised of cellular membranes, which are altered in chemical composition relative to non-neoplastic cells, giving them an increased net negative charge. These altered membranes are ideal targets for antimicrobial peptides (AMPs) shown to have additional tumoricidal properties and, hence, named anticancer peptides (ACPs). Several hundred ACPs have been explored in vitro and in vivo on various types of cancer. Novel anticancer agents are supposed not to cause serious side effects and the formation of multidrug-resistant tumor cells. During the quest for potent ACPs, promising candidates were isolated from skin secretions of amphibians, such as the granular glands of the Chinese brown frog, Rana chensinensis. ACPs have to be selective to cancer cells and should not induce strong immune responses or be cleared from the body rapidly. Several modifications can improve ACPs either by optimizing the primary structure rationally or randomly or even by introducing other chemical modifications. PMID:25667440

  4. Trial watch: Dendritic cell-based anticancer therapy

    PubMed Central

    Bloy, Norma; Pol, Jonathan; Aranda, Fernando; Eggermont, Alexander; Cremer, Isabelle; Fridman, Wolf Hervé; Fučíková, Jitka; Galon, Jérôme; Tartour, Eric; Spisek, Radek; Dhodapkar, Madhav V.; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    The use of patient-derived dendritic cells (DCs) as a means to elicit therapeutically relevant immune responses in cancer patients has been extensively investigated throughout the past decade. In this context, DCs are generally expanded, exposed to autologous tumor cell lysates or loaded with specific tumor-associated antigens (TAAs), and then reintroduced into patients, often in combination with one or more immunostimulatory agents. As an alternative, TAAs are targeted to DCs in vivo by means of monoclonal antibodies, carbohydrate moieties or viral vectors specific for DC receptors. All these approaches have been shown to (re)activate tumor-specific immune responses in mice, often mediating robust therapeutic effects. In 2010, the first DC-based preparation (sipuleucel-T, also known as Provenge®) has been approved by the US Food and Drug Administration (FDA) for use in humans. Reflecting the central position occupied by DCs in the regulation of immunological tolerance and adaptive immunity, the interest in harnessing them for the development of novel immunotherapeutic anticancer regimens remains high. Here, we summarize recent advances in the preclinical and clinical development of DC-based anticancer therapeutics. PMID:25941593

  5. Structural studies on Laz, a promiscuous anticancer Neisserial protein

    PubMed Central

    Hashimoto, Wataru; Ochiai, Akihito; Hong, Chang Soo; Murata, Kousaku; Chakrabarty, Ananda M

    2015-01-01

    Azurin and Laz (lipidated azurin) are 2 bacterial proteins with anticancer, anti-viral and anti-parasitic activities. Azurin, isolated from the bacterium Pseudomonas aeruginosa, termed Paz, demonstrates anticancer activity against a range of cancers but not against brain tumors. In contrast, Laz is produced by members of Gonococci/Meningococci, including Neisseria meningitides which can cross the blood-brain barrier to infect brain meninges. It has been previously reported that Laz has an additional 39 amino acid moiety, called an H.8 epitope, in the N-terminal part of the azurin moiety that allows Laz to cross the entry barrier to brain tumors such as glioblastomas. Exactly, how the H.8 epitope helps the azurin moiety of Laz to cross the entry barriers to attack glioblastoma cells is unknown. In this paper, we describe the structural features of the H.8 moiety in Laz using X-ray crystallography and demonstrate that while the azurin moiety of Laz adopts a β-sandwich fold with 2 β-sheets arranged in the Greek key motif, the H.8 epitope was present as a disordered structure outside the Greek key motif. Structures of Paz and H.8 epitope-deficient Laz are well superimposed. The structural flexibility of the H.8 motif in Laz explains the extracellular location of Laz in Neisseria where it can bind the key components of brain tumor cells to disrupt their tight junctions and allow entry of Laz inside the tumors to exert cytotoxicity. PMID:25714335

  6. Lymphatic Targeting of Nanosystems for Anticancer Drug Therapy.

    PubMed

    Abellan-Pose, Raquel; Csaba, Noemi; Alonso, Maria Jose

    2016-01-01

    The lymphatic system represents a major route of dissemination in metastatic cancer. Given the lack of selectivity of conventional chemotherapy to prevent lymphatic metastasis, in the last years there has been a growing interest in the development of nanocarriers showing lymphotropic characteristics. The goal of this lymphotargeting strategy is to facilitate the delivery of anticancer drugs to the lymph node-resident cancer cells, thereby enhancing the effectiveness of the anti-cancer therapies. This article focuses on the nanosystems described so far for the active or passive targeting of oncological drugs to the lymphatic circulation. To understand the design and performance of these nanosystems, we will discuss first the physiology of the lymphatic system and how physiopathological changes associated to tumor growth influence the biodistribution of nanocarriers. Second, we provide evidence on how the tailoring of the physicochemical characteristics of nanosystems, i.e. particle size, surface charge and hydrophilicity, allows the modulation of their access to the lymphatic circulation. Finally, we provide an overview of the relationship between the biodistribution and antimetastatic activity of the nanocarriers loaded with oncological drugs, and illustrate the most promising active targeting approaches investigated so far. PMID:26675222

  7. Chrysin-benzothiazole conjugates as antioxidant and anticancer agents.

    PubMed

    Mistry, Bhupendra M; Patel, Rahul V; Keum, Young-Soo; Kim, Doo Hwan

    2015-12-01

    7-(4-Bromobutoxy)-5-hydroxy-2-phenyl-4H-chromen-4-one, obtained from chrysin with 1,4-dibromobutane, was combined with a wide range of 6-substituted 2-aminobenzthiazoles, which had been prepared from the corresponding anilines with potassium thiocyanate. Free radical scavenging efficacies of newer analogues were measured using DPPH and ABTS assays, in addition to the assessment of their anticancer activity against cervical cancer cell lines (HeLa and CaSki) and ovarian cancer cell line (SK-OV-3) implementing the SRB assay. Cytotoxicity of titled compounds was checked using Madin-Darby canine kidney (MDCK) non-cancer cell line. Overall, 6a-r indicated remarkable antioxidant power as DPPH and ABTS(+) scavengers; particularly the presence of halogen(s) (6g, 6h, 6j-6l) was favourable with IC50 values comparable to the control ascorbic acid. Unsubstituted benzothiazole ring favored the activity of resultant compounds (6a and 6r) against HeLa cell line, whereas presence of chlorine (6g) or a di-fluoro group (6k) was a key to exert strong action against CaSki. Moreover, a mono-fluoro (6j) and a ketonic functionality (6o) were beneficial to display anticipated anticancer effects against ovarian cancer cell line SK-OV-3. The structural assignments of the new products were done on the basis of IR, (1)H NMR, (13)C NMR spectroscopy and elemental analysis. PMID:26514745

  8. Anticancer and Antioxidant Activity of Bread Enriched with Broccoli Sprouts

    PubMed Central

    Gawlik-Dziki, Urszula; Świeca, Michał; Dziki, Dariusz; Sęczyk, Łukasz; Złotek, Urszula; Różyło, Renata; Kaszuba, Kinga; Ryszawy, Damian; Czyż, Jarosław

    2014-01-01

    This study is focused on antioxidant and anticancer capacity of bread enriched with broccoli sprouts (BS) in the light of their potential bioaccessibility and bioavailability. Generally, bread supplementation elevated antioxidant potential of product (both nonenzymatic and enzymatic antioxidant capacities); however, the increase was not correlated with the percent of BS. A replacement up to 2% of BS gives satisfactory overall consumers acceptability and desirable elevation of antioxidant potential. High activity was especially found for extracts obtained after simulated digestion, which allows assuming their protective effect for upper gastrointestinal tract; thus, the anticancer activity against human stomach cancer cells (AGS) was evaluated. A prominent cytostatic response paralleled by the inhibition of AGS motility in the presence of potentially mastication-extractable phytochemicals indicates that phenolic compounds of BS retain their biological activity in bread. Importantly, the efficient phenolics concentration was about 12 μM for buffer extract, 13 μM for extracts after digestion in vitro, and 7 μM for extract after absorption in vitro. Our data confirm chemopreventive potential of bread enriched with BS and indicate that BS comprise valuable food supplement for stomach cancer chemoprevention. PMID:25050366

  9. Paraptosis in the anti-cancer arsenal of natural products.

    PubMed

    Lee, Dongjoo; Kim, In Young; Saha, Sharmistha; Choi, Kyeong Sook

    2016-06-01

    Given the problems with malignant cancer cells showing innate and acquired resistance to apoptosis, we need alternative means to induce cell death in cancer. Paraptosis is a type of programmed cell death that is characterized by dilation of the endoplasmic reticulum (ER) and/or mitochondria. Although relatively little is known regarding the molecular basis of paraptosis, the underlying mechanism clearly differs from that of apoptosis. Recent studies have shown that various natural products, including curcumin, celastrol, 15d-PGJ2, ophiobolin A, and paclitaxel, demonstrate anti-cancer effects by inducing the paraptosis-associated cell death, which was commonly characterized by vacuolation derived from the ER. Perturbation of cellular proteostasis due to proteasomal inhibition and disruption of sulfhydryl homeostasis, generation of reactive oxygen species, and/or imbalanced homeostasis of ions (e.g., Ca(2+) and K(+)) appear to contribute to the accumulation of misfolded protein and proteotoxicity in this process. Given the pathophysiological importance of paraptosis and the debate regarding the importance of apoptosis in solid tumor, we need to collect the available knowledge regarding paraptosis and suggest future directions in the field. Here, we review the morphological and biochemical features of paraptosis, the natural products that induce paraptosis-associated cell death, their proposed mechanisms, and the significance of paraptosis as a potential anti-cancer strategy. Such work and future clarifications should enable the development of new strategies for preventing cancer and/or combating malignant cancer. PMID:26802901

  10. Antifibrotic and anticancer action of 5-ene amino/iminothiazolidinones.

    PubMed

    Kaminskyy, Danylo; den Hartog, Gertjan J M; Wojtyra, Magdalena; Lelyukh, Maryan; Gzella, Andrzej; Bast, Aalt; Lesyk, Roman

    2016-04-13

    Here we describe the synthesis and the antifibrotic and anticancer activity determination of amino(imino)thiazolidinone derivatives. An efficient one-pot three-component reaction which involved [2 + 3]-cyclocondensation and Knoevenagel condensation was used for the synthesis of 5-ene-2-amino(imino)-4-thiazolidinones. Following amino-imino tautomerism, the compound structures were confirmed by X-ray analysis. Comparison of SRB assays on fibroblasts and cancer cells revealed that compounds which significantly reduced the viability of fibroblasts did not possess an anticancer effect. A series of thiazolidinone derivatives as interesting candidates for further testing has been identified. Among the tested compounds 2-{3-furan-2-ylmethyl-2-[(2-methyl-3-phenylallylidene)hydrazono]-thiazolidin-4-one-5-yl}-N-(3-trifluoromethylphenyl)-acetamide (5), N-(2-methoxyphenyl)-2-[5-(4-oxothiazolidin-2-ylideneamino)-[1,3,4]thiadiazol-2-ylsulfanyl]-acetamide (12), 3-[3-allyl-4-oxo-2-(thiazol-2-ylimino)thiazolidin-5-ylidene]-1,3-dihydroindol-2-one (33), and 5(Z)-(thiophen-2-ylmethylene)-4-(4-chlorophenylamino)thiazol-2(5H)-one (34) possessed high antifibrotic activity levels, had a similar effect as Pirfenidone, and did not scavenge superoxide radicals. Their antifibrotic potential was confirmed using the xCelligence system. PMID:26896707

  11. Targeting protein-protein interactions as an anticancer strategy

    PubMed Central

    Ivanov, Andrei A.; Khuri, Fadlo R.; Fu, Haian

    2013-01-01

    The emergence and convergence of cancer genomics, targeted therapies, and network oncology have significantly expanded the landscape of protein-protein interaction (PPI) networks in cancer for therapeutic discovery. Extensive biological and clinical investigations have led to the identification of protein interaction hubs and nodes that are critical for the acquisition and maintaining characteristics of cancer essential for cell transformation. Such cancer enabling PPIs have become promising therapeutic targets. With technological advances in PPI modulator discovery and validation of PPI-targeting agents in clinical settings, targeting PPI interfaces as an anticancer strategy has become a reality. Future research directed at genomics-based PPI target discovery, PPI interface characterization, PPI-focused chemical library design, and patient-genomic subpopulation-driven clinical studies is expected to accelerate the development of the next generation of PPI-based anticancer agents for personalized precision medicine. Here we briefly review prominent PPIs that mediate cancer-acquired properties, highlight recognized challenges and promising clinical results in targeting PPIs, and outline emerging opportunities. PMID:23725674

  12. PPARs: Interference with Warburg' Effect and Clinical Anticancer Trials

    PubMed Central

    Vamecq, Joseph; Colet, Jean-Marie; Vanden Eynde, Jean Jacques; Briand, Gilbert; Porchet, Nicole; Rocchi, Stéphane

    2012-01-01

    The metabolic/cell signaling basis of Warburg's effect (“aerobic glycolysis”) and the general metabolic phenotype adopted by cancer cells are first reviewed. Several bypasses are adopted to provide a panoramic integrated view of tumoral metabolism, by attributing a central signaling role to hypoxia-induced factor (HIF-1) in the expression of aerobic glycolysis. The cancer metabolic phenotype also results from alterations of other routes involving ras, myc, p53, and Akt signaling and the propensity of cancer cells to develop signaling aberrances (notably aberrant surface receptor expression) which, when present, offer unique opportunities for therapeutic interventions. The rationale for various emerging strategies for cancer treatment is presented along with mechanisms by which PPAR ligands might interfere directly with tumoral metabolism and promote anticancer activity. Clinical trials using PPAR ligands are reviewed and followed by concluding remarks and perspectives for future studies. A therapeutic need to associate PPAR ligands with other anticancer agents is perhaps an important lesson to be learned from the results of the clinical trials conducted to date. PMID:22654896

  13. First synthesis and anticancer activity of novel naphthoquinone amides.

    PubMed

    Pradidphol, Narathip; Kongkathip, Ngampong; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Boonsong

    2012-03-01

    Sixteen novel naphthoquinone aromatic amides were synthesized by a new route starting from 1-hydroxy-2-naphthoic acid in nine or ten steps with good to excellent yield. Amide formation reaction was carried out by using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as an efficient condensing agent leading to carboxamides in high yield. The key step for converting naphthol to 3-hydroxynaphthoquinone was the Fremy's salt oxidation followed by hydroxylation with tert-butyl hydroperoxide and triton B. Anticancer activity of these new naphthoquinone amides were evaluated and benzamide 22 showed potent inhibition against NCI-H187 cell lines while naphthamides 23 and 43 were the most potent inhibition against KB cells. The decatenation assay revealed that compounds 24 and 43 at 20 μM can inhibit hTopoIIα activity while three other compounds, namely compounds 22, 23, and 45, exhibited hTopoIIα inhibitory activity at final concentration of 50 μM. Docking experiment revealed the same trend as the cytotoxicity and decatenation assay. Therefore, naphthamides 24 and 43 can be promising target molecules for anticancer drug development. PMID:22280818

  14. Comprehensive Review on Betulin as a Potent Anticancer Agent

    PubMed Central

    Kiełbus, Michał; Stepulak, Andrzej

    2015-01-01

    Numerous plant-derived substances, and their derivatives, are effective antitumour and chemopreventive agents. Yet, there are also a plethora of tumour types that do not respond, or become resistant, to these natural substances. This requires the discovery of new active compounds. Betulin (BE) is a pentacyclic triterpene and secondary metabolite of plants abundantly found in the outer bark of the birch tree Betulaceae sp. BE displays a broad spectrum of biological and pharmacological properties, among which the anticancer and chemopreventive activity attract most of the attention. In this vein, BE and its natural and synthetic derivatives act specifically on cancer cells with low cytotoxicity towards normal cells. Although the antineoplastic mechanism of action of BE is not well understood yet, several interesting aspects of BE's interactions are coming to light. This review will summarize the anticancer and chemopreventive potential of BE in vitro and in vivo by carefully dissecting and comparing the doses and tumour lines used in previous studies, as well as focusing on mechanisms underlying its activity at cellular and molecular level, and discuss future prospects. PMID:25866796

  15. Nanocarriers Based Anticancer Drugs: Current Scenario and Future Perceptions.

    PubMed

    Raj, Rakesh; Mongia, Pooja; Kumar Sahu, Suresh; Ram, Alpana

    2016-01-01

    Anticancer therapies mostly depend on the ability of the bioactives to reach their designated cellular and subcellular target sites, while minimizing accumulation and side effects at non specific sites. The development of nanotechnology based drug delivery systems that are able to modify the biodistribution, tissue uptake and pharmacokinetics of therapeutic agents is considered of great importance in biomedical research and treatment therapy. Controlled releases from nanocarriers can significantly enhance the therapeutic effect of a drug. Nanotechnology has the potential to revolutionize in cancer diagnosis and therapy. Targeted nano medicines either marketed or under development, are designed for the treatment of various types of cancer. Nanocarriers are able to reduce cytotoxic effect of the active anticancer drugs by increasing cancer cell targeting in comparison to conventional formulations. The newly developed nano devices such as quantum dots, liposomes, nanotubes, nanoparticles, micelles, gold nanoparticles, carbon nanotubes and solid lipid nanoparticles are the most promising applications for various cancer treatments. This review is focused on currently available information regarding pharmaceutical nanocarriers for cancer therapy and imaging. PMID:26201484

  16. The Potent Oxidant Anticancer Activity of Organoiridium Catalysts**

    PubMed Central

    Liu, Zhe; Romero-Canelón, Isolda; Qamar, Bushra; Hearn, Jessica M; Habtemariam, Abraha; Barry, Nicolas P E; Pizarro, Ana M; Clarkson, Guy J; Sadler, Peter J

    2014-01-01

    Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5-Cpxbiph)Ir(phpy)(Cl)] (1-Cl), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C∧N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η5-Cpxbiph)Ir(phpy)(py)]+ (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. PMID:24616129

  17. "Ziziphus jujuba": A red fruit with promising anticancer activities.

    PubMed

    Tahergorabi, Zoya; Abedini, Mohammad Reza; Mitra, Moodi; Fard, Mohammad Hassanpour; Beydokhti, Hossein

    2015-01-01

    Ziziphus jujuba Mill. (Z. jujuba) is a traditional herb with a long history of use for nutrition and the treatment of a broad spectrum of diseases. It grows mostly in South and East Asia, as well as in Australia and Europe. Mounting evidence shows the health benefits of Z. jujuba, including anticancer, anti-inflammation, antiobesity, antioxidant, and hepato- and gastrointestinal protective properties, which are due to its bioactive compounds. Chemotherapy, such as with cis-diamminedichloroplatinium (CDDP, cisplatin) and its derivatives, is widely used in cancer treatment. It is an effective treatment for human cancers, including ovarian cancer; however, drug resistance is a major obstacle to successful treatment. A better understanding of the mechanisms and strategies for overcoming chemoresistance can greatly improve therapeutic outcomes for patients. In this review article, the bioactive compounds present in Z. jujuba are explained. The high prevalence of many different cancers worldwide has recently attracted the attention of many researchers. This is why our research group focused on studying the anticancer activity of Z. jujuba as well as its impact on chemoresistance both in vivo and in vitro. We hope that these studies can lead to a promising future for cancer patients. PMID:26392706

  18. [Multifaceted Intervention to Explore the Appropriate Time of Anti-Cancer Treatment Cessation].

    PubMed

    Morita, Tatsuya; Okusaka, Takuji; Shimizu, Chikako

    2016-07-01

    When anti-cancer treatment should be ended is very controversial. This reviewprovides a narrative summary of recent empirical studies about the potential association between the timing of anti-cancer treatment cessation and patient quality of death and dying. Furthermore, we propose a multifaceted intervention model for Japanese oncology patients based on the evidence available. PMID:27431627

  19. [An attempt to degradation of anticancer drug and odor in the medical environment by photocatalyst].

    PubMed

    Sato, Junya; Kudo, Kenzo; Hirano, Takahiro; Kuwashima, Takayuki; Yamada, Sonpei; Kijihana, Ichiro; Sato, Kazuhiko; Takahashi, Katsuo

    2012-01-01

    Currently, there is a need to reduce the occupational exposure of health care workers to anticancer drugs. Environmental contamination by anticancer drugs and subsequent exposure of health care workers are associated with vaporization of anticancer drugs. Furthermore, carcinomatous unpleasant odor is an additional problem to vaporized anticancer drugs in the field of clinical cancer therapy. We attempted to degrade vaporized anticancer drug and unpleasant odor using a photocatalyst. Cyclophosphamide or unpleasant odors (ammonia, formaldehyde, isovaleric acid, and butyric acid) were vaporized by heating in a closed chamber. Plates of photocatalyst coated with titanium dioxide were placed into the chamber and irradiated by light source. Vaporized cyclophosphamide in the chamber was recovered by bubbling the internal air through acetone and derivatized by trifluoroacetic anhydride for analysis by gas chromatographic-mass spectrometric assay. Vaporized odors were determined using a gas-detector tube, which changed color depending on the concentration. Following activation of the photocatalyst by a light source, the residual amounts of anticancer drug and unpleasant odor components were significantly decreased compared with when the photocatalyst was not activated without a light source. These results indicate that the photocatalysts can accelerate the degradation of vaporized anticancer drugs and odor components. Air-cleaning equipment using a photocatalyst is expected to be useful in improving the QOL of cancer patients experiencing carcinomatous unpleasant odor, and in reducing occupational exposure of health care workers to anticancer drugs. PMID:23037705

  20. Immune regulation of therapy-resistant niches: emerging targets for improving anticancer drug responses.

    PubMed

    Jinushi, Masahisa

    2014-09-01

    Emerging evidence has unveiled a critical role for immunological parameters in predicting tumor prognosis and clinical responses to anticancer therapeutics. On the other hand, responsiveness to anticancer drugs greatly modifies the repertoires, phenotypes, and immunogenicity of tumor-infiltrating immune cells, serving as a critical factor to regulate tumorigenic activities and the emergence of therapy-resistant phenotypes. Tumor-associated immune functions are influenced by distinct or overlapping sets of therapeutic modalities, such as cytotoxic chemotherapy, radiotherapy, or molecular-targeted therapy, and various anticancer modalities have unique properties to influence the mode of cross-talk between tumor cells and immune cells in tumor microenvironments. Thus, it is critical to understand precise molecular machineries whereby each anticancer strategy has a distinct or overlapping role in regulating the dynamism of reciprocal communication between tumor and immune cells in tumor microenvironments. Such an understanding will open new therapeutic opportunities by harnessing the immune system to overcome resistance to conventional anticancer drugs. PMID:24756203

  1. Current developments of coumarin-based anti-cancer agents in medicinal chemistry.

    PubMed

    Emami, Saeed; Dadashpour, Sakineh

    2015-09-18

    Cancer is one of the leading health hazards and the prominent cause of death in the world. A number of anticancer agents are currently in clinical practice and used for treatment of various kinds of cancers. There is no doubt that the existing arsenal of anticancer agents is insufficient due to the high incidence of side effects and multidrug resistance. In the efforts to develop suitable anticancer drugs, medicinal chemists have focused on coumarin derivatives. Coumarin is a naturally occurring compound and a versatile synthetic scaffold possessing wide spectrum of biological effects including potential anticancer activity. This review article covers the current developments of coumarin-based anticancer agents and also discusses the structure-activity relationship of the most potent compounds. PMID:26318068

  2. Apomaghemite as a doxorubicin carrier for anticancer drug delivery.

    PubMed

    Jurado, Rocío; Frączek, Paulina; Droetto, Mélissa; Sánchez, Purificación; Valero, Elsa; Domínguez-Vera, José M; Gálvez, Natividad

    2016-04-01

    Protein cages have well-defined structures and can be chemically and biologically engineered in many ways, making them useful platforms for drug delivery applications. Taking advantage of the unique structure feature of apoferritin, a new theranostic nanocarrier is proposed herein. The apoferritin protein is effective for the encapsulation of maghemite nanoparticles and for loading a significant dose of doxorubicin (DOX) drug. This simultaneous loading of maghemite nanoparticles and DOX has been achieved using either co-encapsulation or surface-binding approaches. Maghemite nanoparticles coated with the protein apoferritin are an effective long-term MRI liver contrast agent and we report here that additionally they can serve as an anticancer drug-delivery system. In particular we show that maghemite-containing apoferritin can sustain the DOX delivery under period of 10 to 25 days depending on the environmental conditions. PMID:26826473

  3. New strategies to deliver anticancer drugs to brain tumors

    PubMed Central

    Laquintana, Valentino; Trapani, Adriana; Denora, Nunzio; Wang, Fan; Gallo, James M.; Trapani, Giuseppe

    2009-01-01

    BACKGROUND Malignant brain tumors are among the most challenging to treat and at present there are no uniformly successful treatment strategies. Standard treatment regimens consist of maximal surgical resection followed by radiotherapy and chemotherapy. The limited survival advantage attributed to chemotherapy is partially due to low CNS penetration of antineoplastic agents across the blood-brain barrier (BBB). OBJECTIVE The objective of this paper is to review recent approaches to deliver anticancer drugs into primary brain tumors. METHODS Both preclinical and clinical strategies to circumvent the BBB are considered that includes chemical modification and colloidal carriers. CONCLUSION Analysis of the available data indicates that novel approaches may be useful for CNS delivery, yet an appreciation of pharmacokinetic issues, and improved knowledge of tumor biology will be needed to significantly impact drug delivery to the target site. PMID:19732031

  4. Delivery of anticancer drugs and antibodies into cells using ultrasound

    NASA Astrophysics Data System (ADS)

    Wu, Junru; Pepe, Jason; Rincon, Mercedes

    2005-04-01

    It has been shown experimentally in cell suspensions that pulsed ultrasound (2.0 MHz) could be used to deliver an anti-cancer drug (Adriamycin hydrochloride) into Jurkat lymphocytes and antibodies (goat anti rabbit IgG and anti mouse IgD) into human peripheral blood mononuclear (PBMC) cells and Jurkat lymphocytes assisted by encapsulated microbubbles (Optison). When Adriamycin hydrochloride (ADR) was delivered, the delivery efficiency reached 4.80% and control baseline (no ultrasound and no ADR) was 0.17%. When anti-rabbit IgD was delivered, the efficiencies were 34.90% (control baseline was 1.33%) and 32.50% (control baseline was 1.66%) respectively for Jurkat cells and PBMC. When goat anti rabbit IgG was delivered, the efficiencies were 78.60% (control baseline was 1.60%) and 57.50% (control baseline was 11.30%) respectively for Jurkat cells and PBMC.

  5. Nanoparticles of Esterified Polymalic Acid for Controlled Anticancer Drug Releasea

    PubMed Central

    Lanz-Landázuri, Alberto; Portilla-Arias, José; de Ilarduya, Antxon Martínez; García-Alvarez, Montserrat; Holler, Eggehard; Ljubimova, Julia

    2014-01-01

    Esterification of microbial poly(malic acid) is performed with either ethanol or 1-butanol to obtain polymalate conjugates capable to form nanoparticles (100–350 nm). Degradation under physiological conditions takes place with release of malic acid and the corresponding alcohol as unique degradation products. The anticancer drugs Temozolomide and Doxorubicin are encapsulated in nanoparticles with efficiency of 17 and 37%, respectively. In vitro drug release assays show that Temozolomide is almost completely discharged in a few hours whereas Doxorubicin is steadily released along several days. Drug-loaded nano-particles show remarkable effectiveness against cancer cells. Partially ethylated poly(malic acid) nano-particles are those showing the highest cellular uptake. PMID:24902676

  6. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents.

    PubMed

    Rao, Pasupuleti Visweswara; Nallappan, Devi; Madhavi, Kondeti; Rahman, Shafiqur; Jun Wei, Lim; Gan, Siew Hua

    2016-01-01

    Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities. PMID:27057273

  7. Increased Oxidative Stress as a Selective Anticancer Therapy

    PubMed Central

    Liu, Jiahui; Wang, Zhichong

    2015-01-01

    Reactive oxygen species (ROS) are closely related to tumorgenesis. Under hypoxic environment, increased levels of ROS induce the expression of hypoxia inducible factors (HIFs) in cancer stem cells (CSCs), resulting in the promotion of the upregulation of CSC markers, and the reduction of intracellular ROS level, thus facilitating CSCs survival and proliferation. Although the ROS level is regulated by powerful antioxidant defense mechanisms in cancer cells, it is observed to remain higher than that in normal cells. Cancer cells may be more sensitive than normal cells to the accumulation of ROS; consequently, it is supposed that increased oxidative stress by exogenous ROS generation therapy has an effect on selectively killing cancer cells without affecting normal cells. This paper reviews the mechanisms of redox regulation in CSCs and the pivotal role of ROS in anticancer treatment. PMID:26273420

  8. Inhibitors of apoptotic proteins: new targets for anticancer therapy.

    PubMed

    Saleem, Mohammad; Qadir, Muhammad Imran; Perveen, Nadia; Ahmad, Bashir; Saleem, Uzma; Irshad, Tehseen; Ahmad, Bashir

    2013-09-01

    Inhibitors of apoptotic proteins (IAPs) can play an important role in inhibiting apoptosis by exerting their negative action on caspases (apoptotic proteins). There are eight proteins in this family: NAIP/BIRC1/NLRB, cellular IAP1 (cIAP1)/human IAP2/BIRC2, cellular IAP2 (cIAP2)/human IAP1/BIRC3, X-linked IAP (XIAP)/BIRC4, survivin/BIRC5, baculoviral IAP repeat (BIR)-containing ubiquitin-conjugating enzyme/apollon/BIRC6, livin/melanoma-IAP (ML-IAP)/BIRC7/KIAP, and testis-specific IAP (Ts-IAP)/hILP-2/BIRC8. Deregulation of these inhibitors of apoptotic proteins (IAPs) may push cell toward cancer and neurodegenerative disorders. Inhibitors of apoptotic proteins (IAPs) may provide new target for anticancer therapy. Drugs may be developed that are inhibiting these IAPs to induce apoptosis in cancerous cells. PMID:23790005

  9. Characterization of Anticancer Principles of Celosia argentea (Amaranthaceae)

    PubMed Central

    Rub, Rukhsana A.; Pati, Manohar J.; Siddiqui, Areej A.; Moghe, Alpana S.; Shaikh, Nasreen N.

    2016-01-01

    Background: An Indian origin, Celosia argentea is a weed growing during rainy season traditionally claimed for treating several ailments. Early researches on C. argentea were focused on the anti-cancer screening of seeds, with few reports on aerial parts. Objective: To isolate and characterize bioactive compounds of aerial parts of C. argentea and evaluate their anticancer potential. Materials and Methods: The methanolic aerial part extract was fractionated on column chromatography using chloroform: methanol mixture. The fractions; 80:20 and 95:5 were purified on MCI-HP20 HPLC column. Chromatographically pure compounds were pooled, concentrated and characterized spectroscopically. The compounds were further screened for anti-oxidant and cytotoxic potential. Results: Isolated compounds were confirmed as: (1) Luteolin-7-O-glucoside and (2) phenolic, 1-(4-hydroxy-2-methoxybenzofuran-5-yl)-3-phenylpropane-1,3-dione. Both exhibited significant antioxidant potential with IC50 values of 20.80 and 21.30 μg/ml for 2,2-diphenyl-1-picrylhydrazyl assay (***P < 0.001) and significant Trolox equivalent antioxidant capacity (TEAC) values for 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (*P < 0.05) and ferric reducing antioxidant potential assay (****P < 0.0001). In 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide assay, Compound 1 and 2 showed potent cytotoxicity against SiHa, HCT, MCF-7 cancer cell lines at 20 μg/ml (****P < 0.0001) and 18 μg/ml (**P < 0.01), respectively, without affecting the normal Vero cells. Both compounds enabled maximum reduction in cell viability at 50 μg/ml against HT-29 (***P < 0.001) and MCF-7 cell lines (**P < 0.01) in try pan blue viability assay. Apoptosis occurred at concentrations of 47.33 ± 0.8 μg/ml and 56.28 ± 1.2 μg/ml for Compound 1 and 35.15 ± 0.4 μg/ml and 28.05 ± 0.3 μg/ml for Compound 2 for HT-29 and MCF-7 respectively. Conclusion: A novel anticancer phenolic compound; (1-(4-hydroxy-2-methoxybenzofuran

  10. Biological Evaluation of Isoniazid Derivatives as an Anticancer Class

    PubMed Central

    Rodrigues, Felipe A. R.; Oliveira, Augusto C. A.; Cavalcanti, Bruno C.; Pessoa, Claudia; Pinheiro, Alessandra C.; de Souza, Marcus V. N.

    2014-01-01

    A series of thirty-two isoniazid derivatives have been evaluated for their activity against four human cancer cell lines with potent cytotoxicity (IC50 ranging from 0.61 to 3.36 μg/mL). The structure-activity relationship (SAR) analysis indicated the number, the positions, and the types of substituents attached to the aromatic ring as being critical factors for the biological activity. Briefly, we observed that the presence of a hydroxyl group on the benzene ring plays an important role in the anticancer activity of this series, especially when it is located in ortho-position. Among the thirty-two compounds, three displayed good cytotoxic activity when compared to the reference drug doxorubicin and are thus being considered leading compounds of this new class. PMID:24634839

  11. Biological and therapeutic activities, and anticancer properties of curcumin

    PubMed Central

    PERRONE, DONATELLA; ARDITO, FATIMA; GIANNATEMPO, GIOVANNI; DIOGUARDI, MARIO; TROIANO, GIUSEPPE; LO RUSSO, LUCIO; DE LILLO, ALFREDO; LAINO, LUIGI; LO MUZIO, LORENZO

    2015-01-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis. PMID:26640527

  12. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast

    PubMed Central

    Li, Yanran; Smolke, Christina D.

    2016-01-01

    Noscapine is a potential anticancer drug isolated from the opium poppy Papaver somniferum, and genes encoding enzymes responsible for the synthesis of noscapine have been recently discovered to be clustered on the genome of P. somniferum. Here, we reconstitute the noscapine gene cluster in Saccharomyces cerevisiae to achieve the microbial production of noscapine and related pathway intermediates, complementing and extending previous in planta and in vitro investigations. Our work provides structural validation of the secoberberine intermediates and the description of the narcotoline-4′-O-methyltransferase, suggesting this activity is catalysed by a unique heterodimer. We also reconstitute a 14-step biosynthetic pathway of noscapine from the simple alkaloid norlaudanosoline by engineering a yeast strain expressing 16 heterologous plant enzymes, achieving reconstitution of a complex plant pathway in a microbial host. Other engineered yeasts produce previously inaccessible pathway intermediates and a novel derivative, thereby advancing protoberberine and noscapine related drug discovery. PMID:27378283

  13. Inhibitors of topoisomerases as anticancer drugs: problems and prospects.

    PubMed

    Dwarakanath, B S; Khaitan, Divya; Mathur, Rohit

    2004-07-01

    DNA topoisomerases, which solve topological problems associated with various DNA transactions, are the targets of many therapeutic agents. Various topoisomerase inhibitors especially, topo-poisons, camptothecin (topo-I) and etoposide (topo-II) are some of the drugs that are used in the current treatment protocols, particularly for the treatment of leukemia (AML, ALL etc). However, tumor resistance, normal and non-specific tissue cytotoxicity are the limitations for successful development of these drugs as one of the primary therapeutic agents for the treatment of tumors in vitro. This brief review presents the current understanding about cytotoxicity development and outlines various approaches to overcome the limitations for enhancing the efficacy of topo-poison based anticancer drugs. PMID:15339028

  14. Cardenolides from the Apocynaceae family and their anticancer activity.

    PubMed

    Wen, Shiyuan; Chen, Yanyan; Lu, Yunfang; Wang, Yuefei; Ding, Liqin; Jiang, Miaomiao

    2016-07-01

    Cardenolides, as a group of natural products that can bind to Na(+)/K(+)-ATPase with an inhibiting activity, are traditionally used to treat congestive heart failure. Recent studies have demonstrated that the strong tumor cytotoxicities of cardenolides are mainly due to inducing the tumor cells apoptosis through different expression and cellular location of Na(+)/K(+)-ATPase α-subunits. The leaves, flesh, seeds and juices of numerous plants from the genera of Nerium, Thevetia, Cerbera, Apocynum and Strophanthus in Apocynaceae family, are the major sources of natural cardenolides. So far, 109 cardenolides have been isolated and identified from this family, and about a quarter of them are reported to exhibit the capability to regulate cancer cell survival and death through multiple signaling pathways. In this review, we compile the phytochemical characteristics and anticancer activity of the cardenolides from this family. PMID:27167183

  15. Tubulin-Interactive Natural Products as Anticancer Agents1

    PubMed Central

    Kingston, David G. I.

    2009-01-01

    This review provides an overview of the discovery, structures, and biological activities of anticancer natural products which act by inhibiting or promoting the assembly of tubulin to microtubules. The emphasis is on providing recent information on those compounds in clinical use or in advanced clinical trials. The vinca alkaloids, the combretastatins, NPI-2358, the halichondrin B analog eribulin, dolastatin 10, noscapine, hemiasterlin, and rhizoxin are discussed as tubulin polymerization inhibitors, while the taxanes and the epothilones are the major classes of tubulin polymerization promoters presented, with brief treatments of discodermolide, eleutherobin, and laulimalide. The challenges and future directions of tubulin-interactive natural products-based drug discovery programs are also discussed briefly. PMID:19125622

  16. A novel proteasome inhibitor NPI-0052 as an anticancer therapy

    PubMed Central

    Chauhan, D; Hideshima, T; Anderson, K C

    2006-01-01

    Proteasome inhibitor Bortezomib/Velcade has emerged as an effective anticancer therapy for the treatment of relapsed and/or refractory multiple myeloma (MM), but prolonged treatment can be associated with toxicity and development of drug resistance. In this review, we discuss the recent discovery of a novel proteasome inhibitor, NPI-0052, that is distinct from Bortezomib in its chemical structure, mechanisms of action, and effects on proteasomal activities; most importantly, it overcomes resistance to conventional and Bortezomib therapies. In vivo studies using human MM xenografts shows that NPI-0052 is well tolerated, prolongs survival, and reduces tumour recurrence. These preclinical studies provided the basis for Phase-I clinical trial of NPI-0052 in relapsed/refractory MM patients. PMID:17047643

  17. Platinum(iv) anticancer prodrugs - hypotheses and facts.

    PubMed

    Gibson, Dan

    2016-08-16

    In this manuscript we focus on Pt(iv) anticancer prodrugs. We explore the main working hypotheses for the design of effective Pt(iv) prodrugs and note the exceptions to the common assumptions that are prevalent in the field. Special attention was devoted to the emerging class of "dual action" Pt(iv) prodrugs, where bioactive ligands are conjugated to the axial positions of platinum in order to obtain orthogonal or complementary effects that will increase the efficacy of killing the cancer cells. We discuss the rationale behind the design of the "dual action" prodrugs and the results of the pharmacological studies obtained. Simultaneous release of two bioactive moieties inside the cancer cells often triggers several processes that together determine the fate of the cell. Pt(iv) complexes provide many opportunities for applying new concepts in targeting, synergistic cell killing and exploiting novel nanodelivery systems. PMID:27214873

  18. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents

    PubMed Central

    Rao, Pasupuleti Visweswara; Nallappan, Devi; Madhavi, Kondeti; Rahman, Shafiqur; Jun Wei, Lim; Gan, Siew Hua

    2016-01-01

    Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities. PMID:27057273

  19. Structural insights into G-quadruplexes: towards new anticancer drugs

    PubMed Central

    Yang, Danzhou; Okamoto, Keika

    2010-01-01

    DNA G-quadruplexes are DNA secondary structures formed in specific G-rich sequences. DNA sequences that can form G-quadruplexes have been found in regions with biological significance, such as human telomeres and oncogene-promoter regions. DNA G-quadruplexes have recently emerged as a new class of novel molecular targets for anticancer drugs. Recent progress on structural studies of the biologically relevant G-quadruplexes formed in human telomeres and in the promoter regions of human oncogenes will be discussed, as well as recent advances in the design and development of G-quadruplex-interactive drugs. DNA G-quadruplexes can readily form in solution under physiological conditions and are globularly folded nucleic acid structures. The molecular structures of intramolecular G-quadruplexes appear to differ from one another and, therefore, in principle may be differentially regulated and targeted by different proteins and drugs. PMID:20563318

  20. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast.

    PubMed

    Li, Yanran; Smolke, Christina D

    2016-01-01

    Noscapine is a potential anticancer drug isolated from the opium poppy Papaver somniferum, and genes encoding enzymes responsible for the synthesis of noscapine have been recently discovered to be clustered on the genome of P. somniferum. Here, we reconstitute the noscapine gene cluster in Saccharomyces cerevisiae to achieve the microbial production of noscapine and related pathway intermediates, complementing and extending previous in planta and in vitro investigations. Our work provides structural validation of the secoberberine intermediates and the description of the narcotoline-4'-O-methyltransferase, suggesting this activity is catalysed by a unique heterodimer. We also reconstitute a 14-step biosynthetic pathway of noscapine from the simple alkaloid norlaudanosoline by engineering a yeast strain expressing 16 heterologous plant enzymes, achieving reconstitution of a complex plant pathway in a microbial host. Other engineered yeasts produce previously inaccessible pathway intermediates and a novel derivative, thereby advancing protoberberine and noscapine related drug discovery. PMID:27378283

  1. Sphingosine kinase 1 as an anticancer therapeutic target

    PubMed Central

    Gao, Ying; Gao, Fei; Chen, Kan; Tian, Mei-li; Zhao, Dong-li

    2015-01-01

    The development of chemotherapeutic resistance is a major challenge in oncology. Elevated sphingosine kinase 1 (SK1) levels is predictive of a poor prognosis, and SK1 overexpression may confer resistance to chemotherapeutics. The SK/sphingosine-1-phosphate (S1P)/sphingosine-1-phosphate receptor (S1PR) signaling pathway has been implicated in the progression of various cancers and in chemotherapeutic drug resistance. Therefore, SK1 may represent an important target for cancer therapy. Targeting the SK/S1P/S1PR signaling pathway may be an effective anticancer therapeutic strategy, particularly in the context of overcoming drug resistance. This review summarizes our current understanding of the role of SK/S1P/S1PR signaling in cancer and development of SK1 inhibitors. PMID:26150697

  2. Hepatocellular carcinoma detected by iodized oil: use of anticancer agents

    SciTech Connect

    Ohishi, H.; Uchida, H.; Yoshimura, H.; Ohue, S.; Ueda, J.; Katsuragi, M.; Matsuo, N.; Hosogi, Y.

    1985-01-01

    Transcatheter arterial embolization (TAE) was performed in 97 patients with hepatocellular carcinoma. Ethiodol (iodized oil) containing an anticancer drug was infused via the hepatic artery followed by Gelfoam particles. The Ethiodol emulsion was selectively retained in the tumor vessels and also remained in the small daughter nodules that could not be detected by angiography or computed tomography (CT) prior to TAE. In most patients there was a reduction in the tumor size following TAE, and serum alpha-fetoprotein levels were reduced in all patients whose initial levels had exceeded 400 ng/ml. This method is considered to be effective not only for treatment of hepatic tumor but also useful for evaluation of post-TAE changes in the tumor and diagnosis of small daughter nodules, due to the long-term accumulation of Ethiodol in tumor vessels.

  3. Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery.

    PubMed

    Mo, Ran; Jiang, Tianyue; Gu, Zhen

    2014-06-01

    A liposome-based co-delivery system composed of a fusogenic liposome encapsulating ATP-responsive elements with chemotherapeutics and a liposome containing ATP was developed for ATP-mediated drug release triggered by liposomal fusion. The fusogenic liposome had a protein-DNA complex core containing an ATP-responsive DNA scaffold with doxorubicin (DOX) and could release DOX through a conformational change from the duplex to the aptamer/ATP complex in the presence of ATP. A cell-penetrating peptide-modified fusogenic liposomal membrane was coated on the core, which had an acid-triggered fusogenic potential with the ATP-loaded liposomes or endosomes/lysosomes. Directly delivering extrinsic liposomal ATP promoted the drug release from the fusogenic liposome in the acidic intracellular compartments upon a pH-sensitive membrane fusion and anticancer efficacy was enhanced both in vitro and in vivo. PMID:24764317

  4. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.

    PubMed

    Cardaci, Simone; Desideri, Enrico; Ciriolo, Maria Rosa

    2012-02-01

    The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings. PMID:22328057

  5. Medication adherence to oral anticancer drugs: systematic review.

    PubMed

    Huang, Wen-Chuan; Chen, Chung-Yu; Lin, Shun-Jin; Chang, Chao-Sung

    2016-04-01

    Many studies have demonstrated that non-adherence to oral anticancer drugs (OACDs) has challenged treatment efficacy. Otherwise, few validated tools exist to measure patients' adherence to medication regimen in clinical practice. To synthesize previous studies on adherence by cancer patients taking OACDs, especially in targeted therapy, a systematic search of several electronic databases was conducted. We analyzed existing scales' contents for various cancer patients and outcomes of studies assessing adherence. However, a well-validated scale designed particularly for OACD adherence is still lacking. Most adherence scales used in the studies reviewed contain items focused on measuring patients' medication-taking behavior more than their barriers to medication compliance and beliefs. However, non-adherence to OACDs is a complex phenomenon, and drug-taking barriers and patient beliefs significantly affect patients' non-adherence. To understand the key drivers and predisposing factors for non-adherence, we need to develop a well-validated, multidimensional scale. PMID:26935964

  6. Pegylated arginine deiminase: a novel anticancer enzyme agent

    PubMed Central

    Feun, Lynn; Savaraj, Niramol

    2011-01-01

    Pegylated arginine deiminase (ADI-PEG20) is a novel anticancer enzyme that produces depletion of arginine, which is a nonessential amino acid in humans. Certain tumours, such as malignant melanoma and hepatocellular carcinoma, are auxotrophic for arginine. These tumours that are sensitive to arginine depletion do not express argininosuccinate synthetase, a key enzyme in the synthesis of arginine from citrulline. ADI-PEG20 inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Phase I – II trials in patients with melanoma and hepatocellular carcinomas have shown the drug to have antitumour activity and tolerable side effects. Large Phase II trials and randomised, controlled Phase III trials are needed to determine its overall efficacy in the treatment of these malignancies and others. PMID:16787144

  7. Structural analogues of diosgenyl saponins: synthesis and anticancer activity.

    PubMed

    Kaskiw, Matthew J; Tassotto, Mary Lynn; Mok, Mac; Tokar, Stacey L; Pycko, Roxanne; Th'ng, John; Jiang, Zi-Hua

    2009-11-15

    Saponins display various biological activities including anti-tumor activity. Recently intensive research has been focused on developing saponins for tumor therapies. The diosgenyl saponin dioscin is one of the most common steroidal saponins and exhibits potent anticancer activity in several human cancer cells through apoptosis-inducing pathways. In this paper, we describe the synthesis of several diosgenyl saponin analogues containing either a 2-amino-2-deoxy-beta-d-glucopyranosyl residue or an alpha-l-rhamnopyranosyl-(1-->4)-2-amino-2-deoxy-beta-d-glucopyranosyl residue with different acyl substituents on the amino group. The cytotoxic activity of these compounds was evaluated in MCF-7 breast cancer cells and HeLa cervical cancer cells. Structure-activity relationship studies show that the disaccharide saponin analogues are in general less active than their corresponding monosaccharide analogues. The incorporation of an aromatic nitro functionality into these saponin analogues does not exhibit significant effect on their cytotoxic activity. PMID:19819703

  8. Anticancer Organometallic Osmium(II)-p-cymene Complexes.

    PubMed

    Păunescu, Emilia; Nowak-Sliwinska, Patrycja; Clavel, Catherine M; Scopelliti, Rosario; Griffioen, Arjan W; Dyson, Paul J

    2015-09-01

    Osmium compounds are attracting increasing attention as potential anticancer drugs. In this context, a series of bifunctional organometallic osmium(II)-p-cymene complexes functionalized with alkyl or perfluoroalkyl groups were prepared and screened for their antiproliferative activity. Three compounds from the series display selectivity toward cancer cells, with moderate cytotoxicity observed against human ovarian carcinoma (A2780) cells, whereas no cytotoxicity was observed on non-cancerous human embryonic kidney (HEK-293) cells and human endothelial (ECRF24) cells. Two of these three cancer-cell-selective compounds induce cell death largely via apoptosis and were also found to disrupt vascularization in the chicken embryo chorioallantoic membrane (CAM) model. Based on these promising properties, these compounds have potential clinical applications. PMID:26190176

  9. Anti-cancer activity of bromelain nanoparticles by oral administration.

    PubMed

    Bhatnagar, Priyanka; Patnaik, Soma; Srivastava, Amit K; Mudiam, Mohan K R; Shukla, Yogeshwer; Panda, Amulya K; Pant, Aditya B; Kumar, Pradeep; Gupta, Kailash C

    2014-12-01

    Oral administration of anti-cancer drugs is an effective alternative to improve their efficacy and reduce undesired toxicity. Bromelain (BL) is known as an effective anti-cancer phyto-therapeutic agent, however, its activity is reduced upon oral administration. In addressing the issue, BL was encapsulated in Poly(lactic-co-glycolic acid) (PLGA) to formulate nanoparticles (NPs). Further, the NPs were coated with Eudragit L30D polymer to introduce stability against the gastric acidic conditions. The resultant coated NPs were characterized for BL entrapment, proteolytic activity and mean particle size. The stability and release pattern of NPs were evaluated under simulated gastrointestinal tract (GIT) pH conditions. Cytotoxicity studies carried out in human cell lines of diverse origin have shown significant dose advantage (-7-10 folds) with NPs in reducing the IC50 values compared with free BL. The cellular uptake of NPs in MCF-7, HeLa and Caco-2 cells monolayer was significantly enhanced several folds as compared to free BL. Altered expression of marker proteins associated with apoptosis and cell death (P53, P21, Bcl2, Bax) also confirmed the enhanced anti-carcinogenic potential of formulated NPs. Oral administration of NPs reduced the tumor burden of Ehrlich ascites carcinoma (EAC) in Swiss albino mice and also increased their life-span (160.0 ± 5.8%) when compared with free BL (24 ± 3.2%). The generation of reactive oxygen species, induction of apoptosis and impaired mitochondrial membrane potential in EAC cells treated with NPs confirmed the suitability of Eudragit coated BL-NPs as a promising candidate for oral chemotherapy. PMID:26000370

  10. Biotechnological aspects of the production of the anticancer drug podophyllotoxin.

    PubMed

    Farkya, Sunita; Bisaria, V S; Srivastava, A K

    2004-10-01

    The natural lignan podophyllotoxin, a dimerized product of two phenylpropanoid moieties which occurs in a few plant species, is a pharmacologically important compound for its anticancer activities. It is used as a precursor for the chemical synthesis of the anticancer drugs etoposide, teniposide and etopophose. The availability of this lignan is becoming increasingly limited because of the scarce occurrence of its natural sources and also because synthetic approaches for its production are still commercially unacceptable. Biotechnological production using cell culture may be considered as an alternative source. Selection of the best performing cell line, its maintenance and stabilization are necessary prerequisites for its production in bioreactors and subsequent scale-up of the cultivation process to the industrial level. Scale-up of growth and product yield depends on a multitude of factors, such as growth medium, physicochemical conditions, seed inoculum, type of reactor and processing conditions. The composition of the growth medium, elicitors and precursors, etc. can markedly influence the production. Optimum levels of parameters that facilitate high growth and product response in cell suspensions of Podophyllum hexandrum have already been determined by statistical design. P. hexandrum cells have successfully been cultivated in a 3-l stirred-tank bioreactor under low shear conditions in batch and fed-batch modes of operation. The batch kinetic data were used to identify the mathematical model which was then used to develop nutrient-feeding strategies for fed-batch cultivation to prolong the productive log phase of cultivation. An improvement in the production of podophyllotoxin to 48.8 mg l(-1) in a cell culture of P. hexandrum was achieved, with a corresponding volumetric productivity of 0.80 mg l(-1) day(-1), when the reactor was operated in continuous cell-retention mode. Efforts are being made to further enhance its production levels by the development of

  11. T-oligo as an anticancer agent in colorectal cancer

    SciTech Connect

    Wojdyla, Luke; Stone, Amanda L.; Sethakorn, Nan; Uppada, Srijayaprakash B.; Devito, Joseph T.; Bissonnette, Marc; Puri, Neelu

    2014-04-04

    Highlights: • T-oligo induces cell cycle arrest, senescence, apoptosis, and differentiation in CRC. • Treatment with T-oligo downregulates telomere-associated proteins. • T-oligo combined with an EGFR-TKI additively inhibits cellular proliferation. • T-oligo has potential as an effective therapeutic agent for CRC. - Abstract: In the United States, there will be an estimated 96,830 new cases of colorectal cancer (CRC) and 50,310 deaths in 2014. CRC is often detected at late stages of the disease, at which point there is no effective chemotherapy. Thus, there is an urgent need for effective novel therapies that have minimal effects on normal cells. T-oligo, an oligonucleotide homologous to the 3′-telomere overhang, induces potent DNA damage responses in multiple malignant cell types, however, its efficacy in CRC has not been studied. This is the first investigation demonstrating T-oligo-induced anticancer effects in two CRC cell lines, HT-29 and LoVo, which are highly resistant to conventional chemotherapies. In this investigation, we show that T-oligo may mediate its DNA damage responses through the p53/p73 pathway, thereby inhibiting cellular proliferation and inducing apoptosis or senescence. Additionally, upregulation of downstream DNA damage response proteins, including E2F1, p53 or p73, was observed. In LoVo cells, T-oligo induced senescence, decreased clonogenicity, and increased expression of senescence associated proteins p21, p27, and p53. In addition, downregulation of POT1 and TRF2, two components of the shelterin protein complex which protects telomeric ends, was observed. Moreover, we studied the antiproliferative effects of T-oligo in combination with an EGFR tyrosine kinase inhibitor, Gefitinib, which resulted in an additive inhibitory effect on cellular proliferation. Collectively, these data provide evidence that T-oligo alone, or in combination with other molecularly targeted therapies, has potential as an anti-cancer agent in CRC.

  12. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles.

    PubMed

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-11-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV-vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent. PMID:25280701

  13. Chrysin-piperazine conjugates as antioxidant and anticancer agents.

    PubMed

    Patel, Rahul V; Mistry, Bhupendra; Syed, Riyaz; Rathi, Anuj K; Lee, Yoo-Jung; Sung, Jung-Suk; Shinf, Han-Seung; Keum, Young-Soo

    2016-06-10

    Synthesis of 7-(4-bromobutoxy)-5-hydroxy-2-phenyl-4H-chromen-4-one intermediate treating chrysin with 1,4-dibromobutane facilitated combination of chrysin with a wide range of piperazine moieties which were equipped via reacting the corresponding amines with bis(2-chloroethyl)amine hydrochloride in diethylene glycol monomethyl ether solvent. Free radical scavenging potential of prepared products was analyzed in vitro adopting DPPH and ABTS bioassay in addition to the evaluation of in vitro anticancer efficacies against cervical cancer cell lines (HeLa and CaSki) and an ovarian cancer cell line SK-OV-3 using SRB assay. Bearable toxicity of 7a-w was examined employing Madin-Darby canine kidney (MDCK) cell line. In addition, cytotoxic nature of the presented compounds was inspected utilizing Human bone marrow derived mesenchymal stem cells (hBM-MSCs). Overall, 7a-w indicated remarkable antioxidant power in scavenging DPPH(·) and ABTS(·+), particularly analogs 7f, 7j, 7k, 7l, 7n, 7q, 7v, 7w have shown promising free radical scavenging activity. Analogs 7j and 7o are identified to be highly active candidates against HeLa and CaSki cell lines, whereas 7h and 7l along with 7j proved to be very sensitive towards ovarian cancer cell line SKOV-3. None of the newly prepared scaffolds showed cytotoxic nature toward hBM-MSCs cells. From the structure-activity point of view, nature and position of the electron withdrawing and electron donating functional groups on the piperazine core may contribute to the anticipated antioxidant and anticancer action. Different spectroscopic techniques (FT-IR, (1)H NMR, (13)C NMR, Mass) and elemental analysis (CHN) were utilized to confirm the desired structure of final compounds. PMID:26924226

  14. T-oligo as an anticancer agent in colorectal cancer

    PubMed Central

    Stone, Amanda L.; Sethakorn, Nan; Uppada, Srijayaprakash B.; Devito, Joseph T.; Bissonnette, Marc

    2016-01-01

    In the United States, there will be an estimated 96,830 new cases of colorectal cancer (CRC) and 50,310 deaths in 2014. CRC is often detected at late stages of the disease, at which point there is no effective chemotherapy. Thus, there is an urgent need for effective novel therapies that have minimal effects on normal cells. T-oligo, an oligonucleotide homologous to the 3'-telomere overhang, induces potent DNA damage responses in multiple malignant cell types, however, its efficacy in CRC has not been studied. This is the first investigation demonstrating T-oligo-induced anticancer effects in two CRC cell lines, HT-29 and LoVo, which are highly resistant to conventional chemotherapies. In this investigation, we show that T-oligo may mediate its DNA damage responses through the p53/p73 pathway, thereby inhibiting cellular proliferation and inducing apoptosis or senescence. Additionally, upregulation of downstream DNA damage response proteins, including E2F1, p53 or p73, was observed. In LoVo cells, T-oligo induced senescence, decreased clonogenicity, and increased expression of senescence associated proteins p21, p27, and p53. In addition, downregulation of POT1 and TRF2, two components of the shelterin protein complex which protects telomeric ends, was observed. Moreover, we studied the antiproliferative effects of T-oligo in combination with an EGFR tyrosine kinase inhibitor, Gefitinib, which resulted in an additive inhibitory effect on cellular proliferation. Collectively, these data provide evidence that T-oligo alone, or in combination with other molecularly targeted therapies, has potential as an anti-cancer agent in CRC. PMID:24632202

  15. Screening of anticancer activity from agarwood essential oil

    PubMed Central

    Hashim, Yumi Zuhanis Has-Yun; Phirdaous, Abbas; Azura, Amid

    2014-01-01

    Background: Agarwood is a priceless non-timber forest product from Aquilaria species belonging to the Thymelaeaceae family. As a result of a defence mechanism to fend off pathogens, Aquilaria species develop agarwood or resin which can be used for incense, perfumery, and traditional medicines. Evidences from ethnopharmacological practices showed that Aquilaria spp. have been traditionally used in the Ayurvedic practice and Chinese medicine to treat various diseases particularly the inflammatory-associated diseases. There have been no reports on traditional use of agarwood towards cancer treatment. However, this is most probably due to the fact that cancer nomenclature is used in modern medicine to describe the diseases associated with unregulated cell growth in which inflammation and body pain are involved. Objective: The aim of this current study was therefore to investigate the potential anticancer properties of agarwood essential oil obtained from distillation of agarwood (resin) towards MCF-7 breast cancer cells. Materials and Methods: The essential oil was subjected to screening assays namely cell viability, cell attachment and sulforhodamine B (SRB)-based cytotoxicity assay to determine the IC50 value. Results: The agarwood essential oil caused reduction of the cell number in both the cell viability and attachment assay suggesting a cumulative effect of the cell killing, inhibition of the cell attachment and or causing cells to detach. The agarwood essential oil showed IC50 value of 900 μg/ml towards the cancer cells. Conclusion: The agarwood essential oil exhibited anticancer activity which supports the traditional use against the inflammatory-associated diseases. This warrants further investigation towards the development of alternative remedy towards cancer. PMID:25002797

  16. Quinones derived from plant secondary metabolites as anti-cancer agents.

    PubMed

    Lu, Jin-Jian; Bao, Jiao-Lin; Wu, Guo-Sheng; Xu, Wen-Shan; Huang, Ming-Qing; Chen, Xiu-Ping; Wang, Yi-Tao

    2013-03-01

    Quinones are plant-derived secondary metabolites that present some anti-proliferation and anti-metastasis effects in various cancer types both in vitro and in vivo. This review focuses on the anti-cancer prospects of plant-derived quinones, namely, aloe-emodin, juglone, β-lapachol, plumbagin, shikonin, and thymoquinone. We intend to summarize their anti-cancer effects and investigate the mechanism of actions to promote the research and development of anti-cancer agents from quinones. PMID:22931417

  17. Nanovectors for anti-cancer drug delivery in the treatment of advanced pancreatic adenocarcinoma

    PubMed Central

    Hsueh, Chung-Tzu; Selim, Julie H; Tsai, James Y; Hsueh, Chung-Tsen

    2016-01-01

    Liposome, albumin and polymer polyethylene glycol are nanovector formulations successfully developed for anti-cancer drug delivery. There are significant differences in pharmacokinetics, efficacy and toxicity between pre- and post-nanovector modification. The alteration in clinical pharmacology is instrumental for the future development of nanovector-based anticancer therapeutics. We have reviewed the results of clinical studies and translational research in nanovector-based anti-cancer therapeutics in advanced pancreatic adenocarcinoma, including nanoparticle albumin-bound paclitaxel and nanoliposomal irinotecan. Furthermore, we have appraised the ongoing studies incorporating novel agents with nanomedicines in the treatment of pancreatic adenocarcinoma. PMID:27610018

  18. Nanovectors for anti-cancer drug delivery in the treatment of advanced pancreatic adenocarcinoma.

    PubMed

    Hsueh, Chung-Tzu; Selim, Julie H; Tsai, James Y; Hsueh, Chung-Tsen

    2016-08-21

    Liposome, albumin and polymer polyethylene glycol are nanovector formulations successfully developed for anti-cancer drug delivery. There are significant differences in pharmacokinetics, efficacy and toxicity between pre- and post-nanovector modification. The alteration in clinical pharmacology is instrumental for the future development of nanovector-based anticancer therapeutics. We have reviewed the results of clinical studies and translational research in nanovector-based anti-cancer therapeutics in advanced pancreatic adenocarcinoma, including nanoparticle albumin-bound paclitaxel and nanoliposomal irinotecan. Furthermore, we have appraised the ongoing studies incorporating novel agents with nanomedicines in the treatment of pancreatic adenocarcinoma. PMID:27610018

  19. Recent Advances in chemistry and pharmacology of 2-methoxyestradiol: An anticancer investigational drug.

    PubMed

    Kumar, B Sathish; Raghuvanshi, Dushyant Singh; Hasanain, Mohammad; Alam, Sarfaraz; Sarkar, Jayanta; Mitra, Kalyan; Khan, Feroz; Negi, Arvind S

    2016-06-01

    2-Methoxyestradiol (2ME2), an estrogen hormone metabolite is a potential cancer chemotherapeutic agent. Presently, it is an investigational drug under various phases of clinical trials alone or in combination therapy. Its anticancer activity has been attributed to its antitubulin, antiangiogenic, pro-apoptotic and ROS induction properties. This anticancer drug candidate has been explored extensively in last twenty years for its detailed chemistry and pharmacology. Present review is an update of its chemistry and biological activity. It also extends an assessment of potential of 2ME2 and its analogues as possible anticancer drug in future. PMID:27020471

  20. Theobroma cacao: Review of the Extraction, Isolation, and Bioassay of Its Potential Anti-cancer Compounds.

    PubMed

    Baharum, Zainal; Akim, Abdah Md; Hin, Taufiq Yap Yun; Hamid, Roslida Abdul; Kasran, Rosmin

    2016-02-01

    Plants have been a good source of therapeutic agents for thousands of years; an impressive number of modern drugs used for treating human diseases are derived from natural sources. The Theobroma cacao tree, or cocoa, has recently garnered increasing attention and become the subject of research due to its antioxidant properties, which are related to potential anti-cancer effects. In the past few years, identifying and developing active compounds or extracts from the cocoa bean that might exert anti-cancer effects have become an important area of health- and biomedicine-related research. This review provides an updated overview of T. cacao in terms of its potential anti-cancer compounds and their extraction, in vitro bioassay, purification, and identification. This article also discusses the advantages and disadvantages of the techniques described and reviews the processes for future perspectives of analytical methods from the viewpoint of anti-cancer compound discovery. PMID:27019680

  1. Recent Advances in Drug Repositioning for the Discovery of New Anticancer Drugs

    PubMed Central

    Shim, Joong Sup; Liu, Jun O.

    2014-01-01

    Drug repositioning (also referred to as drug repurposing), the process of finding new uses of existing drugs, has been gaining popularity in recent years. The availability of several established clinical drug libraries and rapid advances in disease biology, genomics and bioinformatics has accelerated the pace of both activity-based and in silico drug repositioning. Drug repositioning has attracted particular attention from the communities engaged in anticancer drug discovery due to the combination of great demand for new anticancer drugs and the availability of a wide variety of cell- and target-based screening assays. With the successful clinical introduction of a number of non-cancer drugs for cancer treatment, drug repositioning now became a powerful alternative strategy to discover and develop novel anticancer drug candidates from the existing drug space. In this review, recent successful examples of drug repositioning for anticancer drug discovery from non-cancer drugs will be discussed. PMID:25013375

  2. Potential Anti-Cancer Activities and Mechanisms of Costunolide and Dehydrocostuslactone

    PubMed Central

    Lin, Xuejing; Peng, Zhangxiao; Su, Changqing

    2015-01-01

    Costunolide (CE) and dehydrocostuslactone (DE) are derived from many species of medicinal plants, such as Saussurea lappa Decne and Laurus nobilis L. They have been reported for their wide spectrum of biological effects, including anti-inflammatory, anticancer, antiviral, antimicrobial, antifungal, antioxidant, antidiabetic, antiulcer, and anthelmintic activities. In recent years, they have caused extensive interest in researchers due to their potential anti-cancer activities for various types of cancer, and their anti-cancer mechanisms, including causing cell cycle arrest, inducing apoptosis and differentiation, promoting the aggregation of microtubule protein, inhibiting the activity of telomerase, inhibiting metastasis and invasion, reversing multidrug resistance, restraining angiogenesis has been studied. This review will summarize anti-cancer activities and associated molecular mechanisms of these two compounds for the purpose of promoting their research and application. PMID:25984608

  3. Anticancer, Anti-Inflammatory, and Analgesic Activities of Synthesized 2-(Substituted phenoxy) Acetamide Derivatives

    PubMed Central

    Pal, Dilipkumar; Hegde, Rahul Rama; Hashim, Syed Riaz

    2014-01-01

    The aphorism was to develop new chemical entities as potential anticancer, anti-inflammatory, and analgesic agents. The Leuckart synthetic pathway was utilized in development of novel series of 2-(substituted phenoxy)-N-(1-phenylethyl)acetamide derivatives. The compounds containing 1-phenylethylamine as basic moiety attached to substituted phenols were assessed for their anticancer activity against MCF-7 (breast cancer), SK-N-SH (neuroblastoma), anti-inflammatory activity, and analgesic activity. These investigations revealed that synthesized products 3a–j with halogens on the aromatic ring favors as the anticancer and anti-inflammatory activity. Among all, compound 3c N-(1-(4-chlorophenyl)ethyl)-2-(4-nitrophenoxy)acetamide exhibited anticancer, anti-inflammatory, and analgesic activities. In conclusion, 3c may have potential to be developed into a therapeutic agent. PMID:25197642

  4. Anticancer, anti-inflammatory, and analgesic activities of synthesized 2-(substituted phenoxy) acetamide derivatives.

    PubMed

    Rani, Priyanka; Pal, Dilipkumar; Hegde, Rahul Rama; Hashim, Syed Riaz

    2014-01-01

    The aphorism was to develop new chemical entities as potential anticancer, anti-inflammatory, and analgesic agents. The Leuckart synthetic pathway was utilized in development of novel series of 2-(substituted phenoxy)-N-(1-phenylethyl)acetamide derivatives. The compounds containing 1-phenylethylamine as basic moiety attached to substituted phenols were assessed for their anticancer activity against MCF-7 (breast cancer), SK-N-SH (neuroblastoma), anti-inflammatory activity, and analgesic activity. These investigations revealed that synthesized products 3a-j with halogens on the aromatic ring favors as the anticancer and anti-inflammatory activity. Among all, compound 3c N-(1-(4-chlorophenyl)ethyl)-2-(4-nitrophenoxy)acetamide exhibited anticancer, anti-inflammatory, and analgesic activities. In conclusion, 3c may have potential to be developed into a therapeutic agent. PMID:25197642

  5. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class.

    PubMed

    Lemieszek, Marta; Rzeski, Wojciech

    2012-01-01

    Basidiomycete mushrooms represent a valuable source of biologically active compounds with anticancer properties. This feature is primarily attributed to polysaccharides and their derivatives. The anticancer potential of polysaccharides is linked to their origin, composition and chemical structure, solubility and method of isolation. Moreover, their activity can be significantly increased by chemical modifications. Anticancer effects of polysaccharides can be expressed indirectly (immunostimulation) or directly (cell proliferation inhibition and/or apoptosis induction). Among the wide range of polysaccharides with documented anticancer properties, lentinan, polysaccharide-K (PSK) and schizophyllan deserve special attention. These polysaccharides for many years have been successfully applied in cancer treatment and their mechanism of action is the best known. PMID:23788896

  6. Theobroma cacao: Review of the Extraction, Isolation, and Bioassay of Its Potential Anti-cancer Compounds

    PubMed Central

    Baharum, Zainal; Akim, Abdah Md; Hin, Taufiq Yap Yun; Hamid, Roslida Abdul; Kasran, Rosmin

    2016-01-01

    Plants have been a good source of therapeutic agents for thousands of years; an impressive number of modern drugs used for treating human diseases are derived from natural sources. The Theobroma cacao tree, or cocoa, has recently garnered increasing attention and become the subject of research due to its antioxidant properties, which are related to potential anti-cancer effects. In the past few years, identifying and developing active compounds or extracts from the cocoa bean that might exert anti-cancer effects have become an important area of health- and biomedicine-related research. This review provides an updated overview of T. cacao in terms of its potential anti-cancer compounds and their extraction, in vitro bioassay, purification, and identification. This article also discusses the advantages and disadvantages of the techniques described and reviews the processes for future perspectives of analytical methods from the viewpoint of anti-cancer compound discovery. PMID:27019680

  7. Salinomycin: A Novel Anti-Cancer Agent with Known Anti-Coccidial Activities

    PubMed Central

    Zhou, Shuang; Wang, Fengfei; Wong, Eric T.; Fonkem, Ekokobe; Hsieh, Tze-Chen; Wu, Joseph M.; Wu, Erxi

    2014-01-01

    Salinomycin, traditionally used as an anti-coccidial drug, has recently been shown to possess anti-cancer and anti-cancer stem cell (CSC) effects, as well as activities to overcome multi-drug resistance based on studies using human cancer cell lines, xenograft mice, and in case reports involving cancer patients in pilot clinical trials. Therefore, salinomycin may be considered as a promising novel anti-cancer agent despite its largely unknown mechanism of action. This review summarizes the pharmacologic effects of salinomycin and presents possible mechanisms by which salinomycin exerts its anti-tumorigenic activities. Recent advances and potential complications that might limit the utilization of salinomycin as an anti-cancer and anti-CSC agent are also presented and discussed. PMID:23931281

  8. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class

    PubMed Central

    Rzeski, Wojciech

    2012-01-01

    Basidiomycete mushrooms represent a valuable source of biologically active compounds with anticancer properties. This feature is primarily attributed to polysaccharides and their derivatives. The anticancer potential of polysaccharides is linked to their origin, composition and chemical structure, solubility and method of isolation. Moreover, their activity can be significantly increased by chemical modifications. Anticancer effects of polysaccharides can be expressed indirectly (immunostimulation) or directly (cell proliferation inhibition and/or apoptosis induction). Among the wide range of polysaccharides with documented anticancer properties, lentinan, polysaccharide-K (PSK) and schizophyllan deserve special attention. These polysaccharides for many years have been successfully applied in cancer treatment and their mechanism of action is the best known. PMID:23788896

  9. OLIGODEOXYNUCLEOTIDES AS ANTI-CANCER THERAPEUTICS AND DIAGNOSTICS | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute Laboratory of Experimental Immunology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize anti-cancer oligodeoxynucleotides.  

  10. Anticancer and Cancer Preventive Properties of Marine Polysaccharides: Some Results and Prospects

    PubMed Central

    Fedorov, Sergey N.; Ermakova, Svetlana P.; Zvyagintseva, Tatyana N.; Stonik, Valentin A.

    2013-01-01

    Many marine-derived polysaccharides and their analogues have been reported as showing anticancer and cancer preventive properties. These compounds demonstrate interesting activities and special modes of action, differing from each other in both structure and toxicity profile. Herein, literature data concerning anticancer and cancer preventive marine polysaccharides are reviewed. The structural diversity, the biological activities, and the molecular mechanisms of their action are discussed. PMID:24317475

  11. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells.

    PubMed

    Celia, Christian; Trapasso, Elena; Locatelli, Marcello; Navarra, Michele; Ventura, Cinzia Anna; Wolfram, Joy; Carafa, Maria; Morittu, Valeria Maria; Britti, Domenico; Di Marzio, Luisa; Paolino, Donatella

    2013-12-01

    Citrus extracts, particularly bergamot essential oil (BEO) and its fractions, have been found to exhibit anticancer efficacy. However, the poor water solubility, low stability and limited bioavailability have prevented the use of BEO in cancer therapy. To overcome such drawbacks, we formulated BEO liposomes that improved the water solubility of the phytocomponents and increased their anticancer activity in vitro against human SH-SY5Y neuroblastoma cells. The results warrant further investigation of BEO liposomes for in vivo applications. PMID:24099646

  12. Nanoformulation for anticancer drug delivery: Enhanced pharmacokinetics and circulation

    NASA Astrophysics Data System (ADS)

    Parekh, Gaurav

    In this study, we have explored the application of the Layer-by-Layer (LbL) assembly technique for improving injectable drug delivery systems of low soluble anticancer drugs (e.g. Camptothecin (CPT), Paclitaxel (PTX) or Doxorubicin (DOX)). For this study, a polyelectrolyte shell encapsulates different types of drug nanocores (e.g. soft core, nanomicelle or solid lipid nanocores).The low soluble drugs tend to crystallize and precipitate in an aqueous medium. This is the reason they cannot be injected and may have low concentrations and low circulation time in the blood. Even though these drugs when present in the cancer microenvironment have high anti-tumor inhibition, the delivery to the tumor site after intravenous administration is a challenge. We have used FDA-approved biopolymers for the process and elaborated formation of 60-90 nm diameter initial cores, which was stabilized by multilayer LbL shells for controlled release and longer circulation. A washless LbL assembly process was applied as an essential advancement in nano-assembly technology using low density nanocore (lipids) and preventing aggregation. This advancement reduced the number of process steps, enhanced drug loading capacity, and prevented the loss of expensive polyelectrolytes. Finally, we elaborated a general nano-encapsulation process, which allowed these three important anticancer drug core-shell nanocapsules with diameters of ca. 100-130 nm (this small size is a record for LbL encapsulation technique) to be stable in the serum and the blood for at least one week, efficient for cancer cell culture studies, injectable to mice with circulation for 4 hrs, and effective in suppressing tumors. This work is divided into three studies. The first study (CHAPTER 4) explores the application of LbL assembly for encapsulating a soft core of albumin protein and CPT anticancer drug. In order to preserve the activity of drug in the core, a unique technique of pH reversal is employed where the first few

  13. SWCNT-Polymer Nanocomplexes for Anti-Cancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Withey, Paul; Momin, Zoya; Bommoju, Anvesh; Hoang, Trung; Rashid, Bazlur

    2015-03-01

    Utilization of single-walled carbon nanotubes (SWCNTs) as more effective drug-delivery agents are being considered due to their ability to easily cross cell membranes, while their high aspect ratio and large surface area provide multiple attachment sites for biocompatible drug complexes. However, excessive bundling of pristine SWCNTs caused by strong attractive Van der Walls forces between CNT sidewalls is a major obstacle. We have successfully dispersed SWCNTs with both polyvinyl alcohol and Pluronic biocompatible polymers, and attached anti-cancer drugs Camptothecin (CPT) and Doxorubicin to form non-covalent CNT-polymer-drug conjugates in aqueous solution. Polymeric dispersion of SWCNTs by both polymers is confirmed by clearly identifiable near-infrared (NIR) fluorescence emission peaks of individual (7,5) and (7,6) nanotubes, and drug attachment to form complete complexes verified by UV-Vis spectroscopy. These complexes, with varying SWCNT and drug concentrations, were tested for effectiveness by exposing them to a line of human embryonic kidney cancer cells and analyzed for cell viability. Preliminary results indicate significant improvement in drug effectiveness on the cancer cells, with more successful internalization due to unaltered SWCNTs as the drug carriers. Supported by the UHCL Faculty Research Support Fund.

  14. A drug-specific nanocarrier design for efficient anticancer therapy

    NASA Astrophysics Data System (ADS)

    Shi, Changying; Guo, Dandan; Xiao, Kai; Wang, Xu; Wang, Lili; Luo, Juntao

    2015-07-01

    The drug-loading properties of nanocarriers depend on the chemical structures and properties of their building blocks. Here we customize telodendrimers (linear dendritic copolymer) to design a nanocarrier with improved in vivo drug delivery characteristics. We do a virtual screen of a library of small molecules to identify the optimal building blocks for precise telodendrimer synthesis using peptide chemistry. With rationally designed telodendrimer architectures, we then optimize the drug-binding affinity of a nanocarrier by introducing an optimal drug-binding molecule (DBM) without sacrificing the stability of the nanocarrier. To validate the computational predictions, we synthesize a series of nanocarriers and evaluate systematically for doxorubicin delivery. Rhein-containing nanocarriers have sustained drug release, prolonged circulation, increased tolerated dose, reduced toxicity, effective tumour targeting and superior anticancer effects owing to favourable doxorubicin-binding affinity and improved nanoparticle stability. This study demonstrates the feasibility and versatility of the de novo design of telodendrimer nanocarriers for specific drug molecules, which is a promising approach to transform nanocarrier development for drug delivery.

  15. Tirapazamine: a bioreductive anticancer drug that exploits tumour hypoxia.

    PubMed

    Denny, W A; Wilson, W R

    2000-12-01

    Tirapazamine is the second clinical anticancer drug (after porfiromycin) that functions primarily as a hypoxia-selective cytotoxin. Hypoxic cells in tumours are relatively resistant to radiotherapy and to some forms of chemotherapy and are also biologically aggressive, thus representing an important target population in oncology. Tirapazamine undergoes metabolism by reductases to form a transient oxidising radical that can be efficiently scavenged by molecular oxygen in normal tissues to re-form the parent compound. In the absence of oxygen, the oxidising radical abstracts a proton from DNA to form DNA radicals, largely at C4' on the ribose ring. Tirapazamine can also oxidise such DNA radicals to cytotoxic DNA strand breaks. It therefore shows substantial selective cytotoxicity for anoxic cells in culture (typically approximately 100-fold more potent than under oxic conditions) and for the hypoxic subfraction of cells in tumours. Preclinical studies showed enhanced activity of combinations of tirapazamine with radiation (to kill oxygenated cells) and with conventional cytotoxics, especially cisplatin (probably through inhibition of repair of cisplatin DNA cross-links in hypoxic cells). Phase II and III clinical studies of tirapazamine and cisplatin in malignant melanoma and non-small cell lung cancer suggest that the combination is more active than cisplatin alone and preliminary results with advanced squamous cell carcinomas of the head and neck indicate that tirapazamine may enhance the activity of cisplatin with fractionated radiotherapy. PMID:11093359

  16. Anticancer and anti-inflammatory activities of some dietary cucurbits.

    PubMed

    Sharma, Dhara; Rawat, Indu; Goel, H C

    2015-04-01

    In this study, we investigated few dietary cucurbits for anticancer activity by monitoring cytotoxic (MTT and LDH assays), apoptotic (caspase-3 and annexin-V assays), and also their anti-inflammatory effects by IL-8 cytokine assay. Aqua-alcoholic (50:50) whole extracts of cucurbits [Lagenaria siceraria (Ls), Luffa cylindrica (Lc) and Cucurbita pepo (Cp)] were evaluated in colon cancer cells (HT-29 and HCT-15) and were compared with isolated biomolecule, cucurbitacin-B (Cbit-B). MTT and LDH assays revealed that the cucurbit extracts and Cbit-B, in a concentration dependent manner, decreased the viability of HT-29 and HCT-15 cells substantially. The viability of lymphocytes was, however, only marginally decreased, yielding a potential advantage over the tumor cells. Caspase-3 assay revealed maximum apoptosis with Ls while annexin V assay demonstrated maximum efficacy of Lc in this context. These cucurbits have also shown decreased secretion of IL-8, thereby revealing their anti-inflammatory capability. The results have demonstrated the therapeutic potential of dietary cucurbits in inhibiting cancer and inflammatory cytokine. PMID:26011982

  17. Male contraceptive Adjudin is a potential anti-cancer drug

    PubMed Central

    Xie, Qian Reuben; Liu, Yewei; Shao, Jiaxiang; Yang, Jian; Liu, Tengyuan; Zhang, Tingting; Wang, Boshi; Mruk, Dolores D.; Silvestrini, Bruno; Cheng, C. Yan; Xia, Weiliang

    2014-01-01

    Adjudin, also known as AF-2364 and an analog of lonidamine (LND), is a male contraceptive acting through the induction of premature sperm depletion from the seminiferous epithelium when orally administered to adult rats, rabbits or dogs. It is also known that LND can target mitochondria and block energy metabolism in tumor cells. However, whether Adjudin exhibits any anti-cancer activity remains to be elucidated. Herein we described the anti-proliferative activity of Adjudin on cancer cells in vitro and on lung and prostate tumors inoculated in nude mice. We found that Adjudin induced apoptosis in cancer cells through a Caspase-3-dependent pathway. Further experiments revealed that Adjudin could trigger mitochondrial dysfunction in cancer cells, apparently affecting the mitochondrial mass, inducing the loss of mitochondrial membrane potential and reducing cellular ATP levels. Intraperitoneal administration of Adjudin to tumor-bearing athymic nude mice also significantly suppressed the lung and prostate tumor growth. When used in combination with cisplatin, Adjudin enhances the sensitivity to cisplatin-induced cancer cell cytotoxicity. Taken together, these findings have demonstrated that Adjudin may be a potential drug for cancer therapy. PMID:23178657

  18. Synthesis of New 3-Heteroarylindoles as Potential Anticancer Agents.

    PubMed

    Abdelhamid, Abdou O; Gomha, Sobhi M; Abdelriheem, Nadia A; Kandeel, Saher M

    2016-01-01

    2-(3-(1H-Indol-3-yl)-5-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-substituted-5-(substituted diazenyl)thiazoles and 2-(1H-indol-3-yl)-9-substituted-4,7-disubstituted pyrido[3,2-e][1,2,4]triazolo[4,3-a]pyrimidin-5(7H)-ones were synthesized via reaction of hydrazonoyl halides with each of 3-(1H-indol-2-yl)-5-(p-tolyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide and 7-(1H-indol-3-yl)-2- thioxo-5-substituted-2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-ones, respectively. Also, hydrazonoyl halides were reacted with N'-(1-(1H-indol-3-yl)ethylidene)-2-cyanoacetohydrazide to afford 1,3,4-thiadiazole derivatives. Structures of the new synthesis were elucidated on the basis of elemental analysis, spectral data, and alternative synthetic routes whenever possible. Fifteen of the new compounds have been evaluated for their antitumor activity against the MCF-7 human breast carcinoma cell line. The results indicated that many of the tested compounds showed moderate to high anticancer activity when compared with doxorubicin as a reference drug. PMID:27438822

  19. ZnO nanopellets have selective anticancer activity.

    PubMed

    Gopala Krishna, Prashanth; Paduvarahalli Ananthaswamy, Prashanth; Yadavalli, Tejabhiram; Bhangi Mutta, Nagabhushana; Sannaiah, Ananda; Shivanna, Yogisha

    2016-05-01

    This research work presents the synthesis of ZnO nanopellets (ZNPs) by low temperature hydrothermal approach and evaluation of their antibacterial activity, cytotoxicity in vitro and in vivo. Structural and morphological studies conducted on the sample reveal hexagonal ZNPs in the size range of 250-500nm. Surface area measurements showed high porosity of the sample compared to conventional ZnO nanoparticles. Antimicrobial studies revealed their bactericidal nature against both Gram-negative and Gram-positive bacteria. Furthermore, to better understand the parameters that affect the interactions between our ZNPs and mammalian cells, and thus their biocompatibility, we have examined the impact of cell culture conditions as well as of material properties on cytotoxicity by DPPH, blood hemolysis and MTT assay. The results showed good antioxidant capacity and biocompatibility of ZNPs at higher concentrations. MTT assay revealed the anticancer activity of ZNPs against prostate and breast cancer cell lines. Acute toxicity tests on Swiss albino mice showed no evident toxicity over a 14 days period. PMID:26952499

  20. Benefit and harms of new anti-cancer drugs.

    PubMed

    Vera-Badillo, Francisco E; Al-Mubarak, Mustafa; Templeton, Arnoud J; Amir, Eitan

    2013-06-01

    Phase III randomized controlled trials (RCTs) assess clinically important differences in endpoints that reflect benefit to and harm of patients. Defining benefit of cancer drugs can be difficult. Overall survival and quality of life are the most relevant primary endpoints, but difficulty in measuring these mean that other endpoints are often used, although their surrogacy or clinical relevance has not always been established. In general, advances in drug development have led to numerous new drugs to enter the market. Pivotal RCT of several new drugs have shown that benefit appeared greater for targeted anticancer agents than for chemotherapeutic agents. This effect seems particularly evident with targeted agents evaluated in biomarker-driven studies. Unfortunately, new therapies have also shown an increase in toxicity. Such toxicity is not always evident in the initial reports of RCTs. This may be a result of a statistical inability to detect differences between arms of RCTs, or occasionally due to biased reporting. There are several examples where reports of new toxicities could only be found in drug labels. In some cases, the small improvement in survival has come at a cost of substantial excess toxicity, leading some to consider such therapy as having equipoise. PMID:23435854

  1. Death receptors as targets for anti-cancer therapy

    PubMed Central

    Papenfuss, Kerstin; Cordier, Stefanie M; Walczak, Henning

    2008-01-01

    Human tumour cells are characterized by their ability to avoid the normal regulatory mechanisms of cell growth, division and death. The classical chemotherapy aims to kill tumour cells by causing DNA damage-induced apoptosis. However, as many tumour cells posses mutations in intracellular apoptosis-sensing molecules like p53, they are not capable of inducing apoptosis on their own and are therefore resistant to chemotherapy. With the discovery of the death receptors the opportunity arose to directly trigger apoptosis from the outside of tumour cells, thereby circumventing chemotherapeutic resistance. Death receptors belong to the tumour necrosis factor receptor superfamily, with tumour necrosis factor (TNF) receptor-1, CD95 and TNF-related apoptosis-inducing ligand-R1 and -R2 being the most prominent members. This review covers the current knowledge about these four death receptors, summarizes pre-clinical approaches engaging these death receptors in anti-cancer therapy and also gives an overview about their application in clinical trials conducted to date. PMID:19210756

  2. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-07-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX ( P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  3. Selective anti-cancer agents as anti-aging drugs

    PubMed Central

    Blagosklonny, Mikhail V

    2013-01-01

    Recent groundbreaking discoveries have revealed that IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO, PI3K, mTOR, S6K, and NFκB are involved in the aging process. This is remarkable because the same signaling molecules, oncoproteins and tumor suppressors, are well-known targets for cancer therapy. Furthermore, anti-cancer drugs aimed at some of these targets have been already developed. This arsenal could be potentially employed for anti-aging interventions (given that similar signaling molecules are involved in both cancer and aging). In cancer, intrinsic and acquired resistance, tumor heterogeneity, adaptation, and genetic instability of cancer cells all hinder cancer-directed therapy. But for anti-aging applications, these hurdles are irrelevant. For example, since anti-aging interventions should be aimed at normal postmitotic cells, no selection for resistance is expected. At low doses, certain agents may decelerate aging and age-related diseases. Importantly, deceleration of aging can in turn postpone cancer, which is an age-related disease. PMID:24345884

  4. Imaging-guided delivery of RNAi for anticancer treatment.

    PubMed

    Wang, Junqing; Mi, Peng; Lin, Gan; Wáng, Yì Xiáng J; Liu, Gang; Chen, Xiaoyuan

    2016-09-01

    The RNA interference (RNAi) technique is a new modality for cancer therapy, and several candidates are being tested clinically. In the development of RNAi-based therapeutics, imaging methods can provide a visible and quantitative way to investigate the therapeutic effect at anatomical, cellular, and molecular level; to noninvasively trace the distribution; to and study the biological processes in preclinical and clinical stages. Their abilities are important not only for therapeutic optimization and evaluation but also for shortening of the time of drug development to market. Typically, imaging-functionalized RNAi therapeutics delivery that combines nanovehicles and imaging techniques to study and improve their biodistribution and accumulation in tumor site has been progressively integrated into anticancer drug discovery and development processes. This review presents an overview of the current status of translating the RNAi cancer therapeutics in the clinic, a brief description of the biological barriers in drug delivery, and the roles of imaging in aspects of administration route, systemic circulation, and cellular barriers for the clinical translation of RNAi cancer therapeutics, and with partial content for discussing the safety concerns. Finally, we focus on imaging-guided delivery of RNAi therapeutics in preclinical development, including the basic principles of different imaging modalities, and their advantages and limitations for biological imaging. With growing number of RNAi therapeutics entering the clinic, various imaging methods will play an important role in facilitating the translation of RNAi cancer therapeutics from bench to bedside. PMID:26805788

  5. Nanoformulation for anticancer drug delivery: Enhanced pharmacokinetics and circulation

    NASA Astrophysics Data System (ADS)

    Parekh, Gaurav

    In this study, we have explored the application of the Layer-by-Layer (LbL) assembly technique for improving injectable drug delivery systems of low soluble anticancer drugs (e.g. Camptothecin (CPT), Paclitaxel (PTX) or Doxorubicin (DOX)). For this study, a polyelectrolyte shell encapsulates different types of drug nanocores (e.g. soft core, nanomicelle or solid lipid nanocores).The low soluble drugs tend to crystallize and precipitate in an aqueous medium. This is the reason they cannot be injected and may have low concentrations and low circulation time in the blood. Even though these drugs when present in the cancer microenvironment have high anti-tumor inhibition, the delivery to the tumor site after intravenous administration is a challenge. We have used FDA-approved biopolymers for the process and elaborated formation of 60-90 nm diameter initial cores, which was stabilized by multilayer LbL shells for controlled release and longer circulation. A washless LbL assembly process was applied as an essential advancement in nano-assembly technology using low density nanocore (lipids) and preventing aggregation. This advancement reduced the number of process steps, enhanced drug loading capacity, and prevented the loss of expensive polyelectrolytes. Finally, we elaborated a general nano-encapsulation process, which allowed these three important anticancer drug core-shell nanocapsules with diameters of ca. 100-130 nm (this small size is a record for LbL encapsulation technique) to be stable in the serum and the blood for at least one week, efficient for cancer cell culture studies, injectable to mice with circulation for 4 hrs, and effective in suppressing tumors. This work is divided into three studies. The first study (CHAPTER 4) explores the application of LbL assembly for encapsulating a soft core of albumin protein and CPT anticancer drug. In order to preserve the activity of drug in the core, a unique technique of pH reversal is employed where the first few

  6. Site-specific anticancer effects of dietary flavonoid quercetin.

    PubMed

    Sak, Katrin

    2014-01-01

    Food-derived flavonoid quercetin, widely distributed in onions, apples, and tea, is able to inhibit growth of various cancer cells indicating that this compound can be considered as a good candidate for anticancer therapy. Although the exact mechanism of this action is not thoroughly understood, behaving as antioxidant and/or prooxidant as well as modulating different intracellular signalling cascades may all play a certain role. Such inhibitory activity of quercetin has been shown to depend first of all on cell lines and cancer types; however, no comprehensive site-specific analysis of this effect has been published. In this review article, cytotoxicity constants of quercetin measured in various human malignant cell lines of different origin were compiled from literature and a clear cancer selective action was demonstrated. The most sensitive malignant sites for quercetin revealed to be cancers of blood, brain, lung, uterine, and salivary gland as well as melanoma whereas cytotoxic activity was higher in more aggressive cells compared to the slowly growing cells showing that the most harmful cells for the organism are probably targeted. More research is needed to overcome the issues of poor water solubility and relatively low bioavailability of quercetin as the major obstacles limiting its clinical use. PMID:24377461

  7. Lycopene: a review of its potential as an anticancer agent.

    PubMed

    Bhuvaneswari, V; Nagini, S

    2005-11-01

    Dietary chemoprevention has emerged as a cost effective approach to control most prevalent chronic diseases including cancer. In particular, tomato and tomato products are recognised to confer a wide range of health benefits. Epidemiological studies have provided evidence that high consumption of tomatoes effectively lowers the risk of reactive oxygen species (ROS)-mediated diseases such as cardiovascular disease and cancer by improving the antioxidant capacity. Tomatoes are rich sources of lycopene, an antioxidant carotenoid reported to be a more stable and potent singlet oxygen quenching agent compared to other carotenoids. In addition to its antioxidant properties, lycopene shows an array of biological effects including cardioprotective, anti-inflammatory, antimutagenic and anticarcinogenic activities. The anticancer activity of lycopene has been demonstrated both in in vitro and in vivo tumour models. The mechanisms underlying the inhibitory effects of lycopene on carcinogenesis could involve ROS scavenging, upregulation of detoxification systems, interference with cell proliferation, induction of gap-junctional communication, inhibition of cell cycle progression and modulation of signal transduction pathways. This review outlines the sources, structure, absorption, metabolism, bioavailability and pharmacological properties of lycopene with special reference to its antioxidant and anticarcinogenic effects. PMID:16305484

  8. Tetrandrine enhances the anticancer effects of arsenic trioxide in vitro.

    PubMed

    Chen, Youran; Li, Peichun; Yang, Shen; Tong, Nannan; Zhang, Jie; Zhao, Xiaoyan

    2014-05-01

    Arsenic trioxide (As2O3), an effective agent to treat leukemia and other solid tumors, is largely limited by its toxicity. QT prolongation, torsades de pointes and sudden death have been implicated in the cardiotoxicity of As2O3. The present study was designed to assess whether the combination of As2O3 and tetrandrine could generate a more powerful anti-cancer effect. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed for detecting the proliferation of HepG2 and A549 cells treated with tetrandrine and As2O3. Fluorescent microscopy measurements and flow cytometry were carried out to evaluate the apoptosis in HepG2 cells. The cell cycle arrest of HepG2 cells was also determined by flow cytometry. The cell proliferation assay in HepG2 and A549 cells indicated that tetrandrine significantly enhanced the inhibit effect of As2O3. In addition, the following Isobolograms further demonstrated that combining As2O3 with tetrandrine generated synergism action. Tetrandrine also enhanced the apoptosis, necrosis and cell cycle arrest in As2O3-treated HepG2 cells. Our present study showed that tetrandrine can dramatically enhance the anti- cancer effect induced by As2O3. Combining As2O3 with tetrandrine would be a novel strategy to treat cancer in clinical practice. PMID:24548979

  9. Proteomic Analysis of Anticancer TCMs Targeted at Mitochondria

    PubMed Central

    Wang, Yang; Yu, Ru-Yuan; He, Qing-Yu

    2015-01-01

    Traditional Chinese medicine (TCM) is a rich resource of anticancer drugs. Increasing bioactive natural compounds extracted from TCMs are known to exert significant antitumor effects, but the action mechanisms of TCMs are far from clear. Proteomics, a powerful platform to comprehensively profile drug-regulated proteins, has been widely applied to the mechanistic investigation of TCMs and the identification of drug targets. In this paper, we discuss several bioactive TCM products including terpenoids, flavonoids, and glycosides that were extensively investigated by proteomics to illustrate their antitumor mechanisms in various cancers. Interestingly, many of these natural compounds isolated from TCMs mostly exert their tumor-suppressing functions by specifically targeting mitochondria in cancer cells. These TCM components induce the loss of mitochondrial membrane potential, the release of cytochrome c, and the accumulation of ROS, initiating apoptosis cascade signaling. Proteomics provides systematic views that help to understand the molecular mechanisms of the TCM in tumor cells; it bears the inherent limitations in uncovering the drug-protein interactions, however. Subcellular fractionation may be coupled with proteomics to capture and identify target proteins in mitochondria-enriched lysates. Furthermore, translating mRNA analysis, a new technology profiling the drug-regulated genes in translatome level, may be integrated into the systematic investigation, revealing global information valuable for understanding the action mechanism of TCMs. PMID:26568766

  10. Crosslinked multilamellar liposomes for controlled delivery of anticancer drugs.

    PubMed

    Joo, Kye-Il; Xiao, Liang; Liu, Shuanglong; Liu, Yarong; Lee, Chi-Lin; Conti, Peter S; Wong, Michael K; Li, Zibo; Wang, Pin

    2013-04-01

    Liposomes constitute one of the most popular nanocarriers for the delivery of cancer therapeutics. However, since their potency is limited by incomplete drug release and inherent instability in the presence of serum components, their poor delivery occurs in certain circumstances. In this study, we address these shortcomings and demonstrate an alternative liposomal formulation, termed crosslinked multilamellar liposome (CML). With its properties of improved sustainable drug release kinetics and enhanced vesicle stability, CML can achieve controlled delivery of cancer therapeutics. CML stably encapsulated the anticancer drug doxorubicin (Dox) in the vesicle and exhibited a remarkably controlled rate of release compared to that of the unilamellar liposome (UL) with the same lipid composition or Doxil-like liposome (DLL). Our imaging study demonstrated that the CMLs were mainly internalized through a caveolin-dependent pathway and were further trafficked through the endosome-lysosome compartments. Furthermore, in vivo experiments showed that the CML-Dox formulation reduced systemic toxicity and significantly improved therapeutic activity in inhibiting tumor growth compared to that of UL-Dox or DLL-Dox. This drug packaging technology may therefore provide a new treatment option to better manage cancer and other diseases. PMID:23375392

  11. Optical Interferometric Response of Living Tissue to Cytoskeletal Anticancer Drugs

    NASA Astrophysics Data System (ADS)

    Nolte, David; Jeong, Kwan; Turek, John

    2007-03-01

    Living tissue illuminated by short-coherence light can be optically sectioned in three dimensions using coherent detection such as interferometry. We have developed full-field coherence-gated imaging of tissue using digital holography. Two-dimensional image sections from a fixed depth are recorded as interference fringes with a CCD camera located at the optical Fourier plane. Fast Fourier transform of the digital hologram yields the depth-selected image. When the tissue is living, highly dynamic speckle is observed as fluctuating pixel intensities. The temporal autocorrelation functions are directly related to the degree of motility at depth. We have applied the cytoskeletal drugs nocodazole and colchicine to osteogenic sarcoma multicellular spheroids and observed the response holographically. Colchicine is an anticancer drug that inhibits microtubule polymerization and hence prevents spindle formation during mitosis. Nocodazole, on the other hand, depolymerizes microtubules. Both drugs preferentially inhibit rapidly-dividing cancer cells. We observe dose-response using motility as an effective contrast agent. This work opens the possibility for studies of three-dimensional motility as a multiplexed assay for drug discovery.

  12. Molecular mechanisms and proposed targets for selected anticancer gold compounds.

    PubMed

    Casini, Angela; Messori, Luigi

    2011-01-01

    Nowadays, gold compounds constitute a family of very promising experimental agents for cancer treatment. Indeed, several gold(I) and gold(III) compounds were shown to manifest outstanding antiproliferative properties in vitro against selected human tumor cell lines and some of them performed remarkably well even in tumor models in vivo. Notably, the peculiar chemical properties of the gold centre impart innovative pharmacological profiles to gold-based metallodrugs most likely in relation to novel molecular mechanisms. The precise mechanisms through which cytotoxic gold compounds produce their biological effects are still largely unknown. Within this frame, the major aim of this review is to define the possible modes of action and the most probable biomolecular targets for a few representative gold compounds on which extensive biochemical and cellular data have been gathered. In particular, we will focus on auranofin and analogues, on gold(III) porphyrins and gold(III) dithiocarbamates. For these three families markedly distinct molecular mechanisms were recently invoked: a direct mitochondrial mechanism involving thioredoxin reductase inhibition in the case of the gold(I) complexes, the influence on some apoptotic proteins--i.e. MAPKs and Bcl-2--for gold(III) porphyrins, and the proteasome inhibition for gold(III) dithiocarbamates. In a few cases the distinct mechanisms may overlap. The general perspectives for the development of new gold compounds as effective anticancer agents with innovative modes of action are critically discussed. PMID:22039866

  13. [The anticancer drug Kang-Lai-Te emulsion for infusion].

    PubMed

    Li Dapeng

    2005-01-01

    Kanglaite (KLT) emulsion for infusion is a new type of anticancer drug, prepared by extracting active antitumor components from the primary product of the Chinese plant Semen Coicis using modern technology, and formed as lipid emulsion for intravenous and intra-arterial injections. Clinical application of this drug demonstrates high efficacy of KLT in treatment of various tumors, such as lung, hepatic, stomach, and breast carcinomas. Its use leads to a significant increase of immune functions and improves life quality: when combined with radio-, chemotherapy, and auxiliary therapy, it leads to a significant increase of the therapeutic effect and reduces the toxic effects of these treatments. Deep study of the mechanism of KLT action, performed in large research centers of China, has demonstrated that the drug blocks tumor cell mitosis at the boundary of G2 and M phases of the cell cycle, induces tumor cell apoptosis, increases the expression of Fas/Apo-1 gene, which inhibits the growth of tumor cells, and reduces the expression of Bel-2 gene, which promotes it, inhibits angiogenesis, actively decreases cancer cachexy, and is able to overcome multiple drug resistance of tumor cells. PMID:16250329

  14. Using DNA devices to track anticancer drug activity.

    PubMed

    Kahanda, Dimithree; Chakrabarti, Gaurab; Mcwilliams, Marc A; Boothman, David A; Slinker, Jason D

    2016-06-15

    It is beneficial to develop systems that reproduce complex reactions of biological systems while maintaining control over specific factors involved in such processes. We demonstrated a DNA device for following the repair of DNA damage produced by a redox-cycling anticancer drug, beta-lapachone (β-lap). These chips supported ß-lap-induced biological redox cycle and tracked subsequent DNA damage repair activity with redox-modified DNA monolayers on gold. We observed drug-specific changes in square wave voltammetry from these chips at therapeutic ß-lap concentrations of high statistical significance over drug-free control. We also demonstrated a high correlation of this change with the specific ß-lap-induced redox cycle using rational controls. The concentration dependence of ß-lap revealed significant signal changes at levels of high clinical significance as well as sensitivity to sub-lethal levels of ß-lap. Catalase, an enzyme decomposing peroxide, was found to suppress DNA damage at a NQO1/catalase ratio found in healthy cells, but was clearly overcome at a higher NQO1/catalase ratio consistent with cancer cells. We found that it was necessary to reproduce key features of the cellular environment to observe this activity. Thus, this chip-based platform enabled tracking of ß-lap-induced DNA damage repair when biological criteria were met, providing a unique synthetic platform for uncovering activity normally confined to inside cells. PMID:26901461

  15. Anti-cancer activity of carbamate derivatives of melampomagnolide B

    PubMed Central

    Janganati, Venumadhav; Penthala, Narsimha Reddy; Madadi, Nikhil Reddy; Chen, Zheng; Crooks, Peter A.

    2015-01-01

    Melampomagnolide B (MMB) is a natural sesquiterpene structurally related to parthenolide (PTL). We have shown that MMB exhibits anti-leukemic properties similar to PTL. Unlike PTL, the presence of a primary hydroxyl group in the MMB molecule allows the opportunity for examining the biological activity of a variety of conjugated analogs of MMB. We have now synthesized a series of carbamate analogs of MMB and evaluated these derivatives for anti-cancer activity against a panel of sixty human cancer cell lines. Analogs 6a and 6e exhibited promising anti-leukemic activity against human leukemia cell line CCRF-CEM with GI50 values of 680 and 620 nM, respectively. 6a also showed GI50 values of 1.98 and 1.38 µM respectively, against RPMI-8226 and SR leukemia cell lines and GI50 values of 460 and 570 nM against MDA-MB-435 melanoma and MDA-MB-468 breast cancer cell lines, respectively. 6e had GI50 values of 650 nM and 900 nM against HOP-92 non-small cell lung and RXF 393 renal cancer cell lines. PMID:24928404

  16. Quinones as mutagens, carcinogens, and anticancer agents: introduction and overview

    SciTech Connect

    Smith, M.T.

    1985-01-01

    Quinones are widespread in the environment, occurring both naturally and as pollutants. Human exposure to them is, therefore, extensive. Quinones also form an important class of toxic metabolites generated as a result of the metabolism of phenols and related compounds, including phenol itself, 1-naphthol, and diethylstilbesterol. The mechanisms by which quinones exert their toxic effects are complex, but two processes appear to be centrally involved: the direct arylation of sulfhydryls, and the generation of active oxygen species via redox cycling. Certain quinones have been shown to be mutagenic via the formation of active oxygen species and others via their conversion to DNA-binding semiquinone free radicals. Paradoxically, quinones are not only mutagenic and therefore potentially carcinogenic, they are also effective anticancer agents. Classic examples are Adriamycin (doxorubicin hydrochloride) and mitomycin C, but other less complex quinones also show effective antitumor activity. The design of novel quinones that are more selective in their toxicity to human tumor cells and whose mechanism of action if understood seems a promising approach in cancer treatment, especially if host toxicity can be prevented via the use of chemoprotective agents.

  17. Targeting NK Cells for Anticancer Immunotherapy: Clinical and Preclinical Approaches

    PubMed Central

    Carotta, Sebastian

    2016-01-01

    The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. Although the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer (NK) cells are the body’s first line of defense against infected or transformed cells, as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell-based anticancer therapies, which has lead to a steady increase of NK cell-based clinical and preclinical trials. Here, the role of NK cells in cancer immune surveillance is summarized, and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed. PMID:27148271

  18. Human recombinant RNASET2: A potential anti-cancer drug

    PubMed Central

    Roiz, Levava; Smirnoff, Patricia; Lewin, Iris; Shoseyov, Oded; Schwartz, Betty

    2016-01-01

    The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate. PMID:27014725

  19. Clinically relevant drug interactions between anticancer drugs and psychotropic agents.

    PubMed

    Yap, K Y-L; Tay, W L; Chui, W K; Chan, A

    2011-01-01

    Drug interactions are commonly seen in the treatment of cancer patients. Psychotropics are often indicated for these patients since they may also suffer from pre-existing psychological disorders or experience insomnia and anxiety associated with cancer therapy. Thus, the risk of anticancer drug (ACD)-psychotropic drug-drug interactions (DDIs) is high. Drug interactions were compiled from the British National Formulary (53rd edn), Lexi-Comp's Drug Information Handbook (15th edn), Micromedex (v5.1), Hansten & Horn's Drug Interactions (2000) and Drug Interaction Facts (2008 edn). Product information of the individual drugs, as well as documented literature on ACD-psychotropic interactions from PubMed and other databases was also incorporated. This paper identifies clinically important ACD-psychotropic DDIs that are frequently observed. Pharmacokinetic DDIs were observed for tyrosine kinase inhibitors, corticosteroids and antimicrotubule agents due to their inhibitory or inductive effects on cytochrome P450 isoenzymes. Pharmacodynamic DDIs were identified for thalidomide with central nervous system depressants, procarbazine with antidepressants, myelosuppressive ACDs with clozapine and anthracyclines with QT-prolonging psychotropics. Clinicians should be vigilant when psychotropics are prescribed concurrently with ACDs. Close monitoring of plasma drug levels should be carried out to avoid toxicity in the patient, as well as to ensure adequate chemotherapeutic and psychotropic coverage. PMID:20030690

  20. Human recombinant RNASET2: A potential anti-cancer drug.

    PubMed

    Roiz, Levava; Smirnoff, Patricia; Lewin, Iris; Shoseyov, Oded; Schwartz, Betty

    2016-01-01

    The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate. PMID:27014725

  1. Cardiac Effects of Anticancer Therapy in the Elderly

    PubMed Central

    Accordino, Melissa K.; Neugut, Alfred I.; Hershman, Dawn L.

    2014-01-01

    Cancer incidence increases with age, and as life expectancy increases, the number of elderly patients with cancer is increasing. Cancer treatments, including chemotherapy and radiotherapy, have significant short- and long-term effects on cardiovascular function. These cardiotoxic effects can be acute, such as changes in electrocardiogram (ECG), arrhythmias, ischemia, and pericarditis and/or myocarditis-like syndromes, or they can be chronic, such as ventricular dysfunction. Anticancer therapies can also have indirect effects, such as alterations in blood pressure, or can cause metabolic abnormalities that subsequently increase risk for cardiac events. In this review, we explore both observational and clinical trial evidence of cardiac risk in the elderly. In both observational and clinical trial data, risk of cardiotoxicity with anthracycline-based chemotherapy increases with age. However, it is less clear whether the association between age and cardiotoxicity exists for newer treatments. The association may not be well demonstrated as a result of under-representation of elderly patients in clinical trials and avoidance of these therapies in this population. In addition, we discuss strategies for surveillance and prevention of cardiotoxicity in the elderly. In the elderly, it is important to be aware of the potential for cardiotoxicity during long-term follow-up and to consider both prevention and surveillance of these late effects. PMID:25071122

  2. Dynamic rendering of the heterogeneous cell response to anticancer treatments.

    PubMed

    Falcetta, Francesca; Lupi, Monica; Colombo, Valentina; Ubezio, Paolo

    2013-01-01

    The antiproliferative response to anticancer treatment is the result of concurrent responses in all cell cycle phases, extending over several cell generations, whose complexity is not captured by current methods. In the proposed experimental/computational approach, the contemporary use of time-lapse live cell microscopy and flow cytometric data supported the computer rendering of the proliferative process through the cell cycle and subsequent generations during/after treatment. The effects of treatments were modelled with modules describing the functional activity of the main pathways causing arrest, repair and cell death in each phase. A framework modelling environment was created, enabling us to apply different types of modules in each phase and test models at the complexity level justified by the available data. We challenged the method with time-course measures taken in parallel with flow cytometry and time-lapse live cell microscopy in X-ray-treated human ovarian cancer cells, spanning a wide range of doses. The most suitable model of the treatment, including the dose-response of each effect, was progressively built, combining modules with a rational strategy and fitting simultaneously all data of different doses and platforms. The final model gave for the first time the complete rendering in silico of the cycling process following X-ray exposure, providing separate and quantitative measures of the dose-dependence of G1, S and G2M checkpoint activities in subsequent generations, reconciling known effects of ionizing radiations and new insights in a unique scenario. PMID:24146610

  3. Heat-Shock Protein 90-Targeted Nano Anticancer Therapy.

    PubMed

    Rochani, Ankit K; Ravindran Girija, Aswathy; Borah, Ankita; Maekawa, Toru; Sakthi Kumar, D

    2016-04-01

    Suboptimal chemotherapy of anticancer drugs may be attributed to a variety of cellular mechanisms, which synergize to dodge the drug responses. Nearly 2 decades of heat-shock protein 90 (Hsp90)-targeted drug discovery has shown that the mono-therapy with Hsp90 inhibitors seems to be relatively ineffective compared with combination treatment due to several cellular dodging mechanisms. In this article, we have tried to analyze and review the Hsp90 and mammalian target of rapamycin (m-TOR)-mediated drug resistance mechanisms. By using this information we have discussed about the rationale behind use of drug combinations that includes both or any one of these inhibitors for cancer therapy. Currently, biodegradable nano vector (NV)-loaded novel drug delivery systems have shown to resolve the problems of poor bioavailability. NVs of drugs such as paclitaxel, doxorubicin, daunorubicin, and others have been successfully introduced for medicinal use. Hence, looking at the success of NVs, in this article we have also discussed the progress made in the delivery of biodegradable NV-loaded Hsp90 and m-TOR-targeted inhibitors in multiple drug combinations. We have also discussed the possible ways by which the market success of biodegradable NVs can positively impact the clinical trials of anti-Hsp90 and m-TOR combination strategy. PMID:26886301

  4. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update.

    PubMed

    Khan, Fazlullah; Niaz, Kamal; Maqbool, Faheem; Ismail Hassan, Fatima; Abdollahi, Mohammad; Nagulapalli Venkata, Kalyan C; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2016-01-01

    Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods-including fruits, vegetables, tea, wine, as well as other dietary supplements-and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s) of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed. PMID:27589790

  5. PH responsive polypeptide based polymeric micelles for anticancer drug delivery.

    PubMed

    Zhao, Dongping; Li, Bingqiang; Han, Jiaming; Yang, Yue; Zhang, Xinchen; Wu, Guolin

    2015-09-01

    A pH-responsive polymeric micelle based on poly(aspartamide) derivative was explored as an efficient acid-triggered anticancer drug delivery system. Poly(α,β-l-asparthydrazide) (PAHy) was prepared by aminolysis reaction of polysuccinimide with hydrazine hydrate. Poly(ethylene glycol) and aliphatic chain (C18) were conjugated onto PAHy to afford an amphiphilic copolymer with acid-liable hydrazone bonds. The structure of the resulting copolymer and its self-assembled micelles were confirmed by (1) H NMR, FTIR, DLS, and TEM. Furthermore, doxorubicin (DOX) was loaded into the polymeric micelles via the hydrophobic interaction between the C18 group and DOX molecules, and the π-π staking between the hydrazone conjugated DOX and free DOX molecules. Results showed that the DOX loaded nanoparticle (NP) was relatively stable under physiological conditions, while the DOX was quickly released in response to acidity due to the shedding of mPEG shells and dissociating of C18 segments because of the pH-cleavage of intermediate hydrazone bonds. In addition, the DOX loaded micelles presented a high cytotoxic activity against tumor cells in vitro. This pH responsive NP has appeared highly promising for the targeted intracellular delivery of hydrophobic chemotherapeutics in cancer therapy. PMID:25689362

  6. Prioritising anticancer drugs for environmental monitoring and risk assessment purposes.

    PubMed

    Booker, Victoria; Halsall, Crispin; Llewellyn, Neville; Johnson, Andrew; Williams, Richard

    2014-03-01

    Anticancer drugs routinely used in chemotherapy enter wastewater through the excretion of the non-metabolised drug following administration to patients. This study considers the consumption and subsequent behaviour and occurrence of these chemicals in aquatic systems, with the aim of prioritising a selection of these drugs which are likely to persist in the environment and hence be considered for environmental screening programmes. Accurate consumption data were compiled from a hospital survey in NW England and combined with urinary excretion rates derived from clinical studies. Physical-chemical property data were compiled along with likely chemical fate and persistence during and after wastewater treatment. A shortlist of 15 chemicals (from 65) was prioritised based on their consumption, persistency and likelihood of occurrence in surface waters and supported by observational studies where possible. The ecological impact of these 'prioritised' chemicals is uncertain as the measured concentrations in surface waters generally fall below standard toxicity thresholds. Nonetheless, this prioritised sub-list should prove useful for developing environmental screening programmes. PMID:24369294

  7. Diaryl Urea: A Privileged Structure in Anticancer Agents.

    PubMed

    Garuti, Laura; Roberti, Marinella; Bottegoni, Giovanni; Ferraro, Mariarosaria

    2016-01-01

    The diaryl urea is an important fragment/pharmacophore in constructing anticancer molecules due to its near-perfect binding with certain acceptors. The urea NH moiety is a favorable hydrogen bond donor, while the urea oxygen atom is regarded as an excellent acceptor. Many novel compounds have been synthesized and evaluated for their antitumor activity with the successful development of sorafenib. Moreover, this structure is used to link alkylating pharmacophores with high affinity DNA binders. In addition, the diaryl urea is present in several kinase inhibitors, such as RAF, KDR and Aurora kinases. Above all, this moiety is used in the type II inhibitors: it usually forms one or two hydrogen bonds with a conserved glutamic acid and one with the backbone amide of the aspartic acid in the DFG motif. In addition, some diaryl urea derivatives act as Hedgehog (Hh) ligands, binding and inhibiting proteins involved in the homonymous Hh signaling pathway. In this review we provide some of the methodologies adopted for the synthesis of diaryl ureas and a description of the most representative antitumor agents bearing the diaryl urea moiety, focusing on their mechanisms bound to the receptors and structure-activity relationships (SAR). An increased knowledge of these derivatives could prompt the search to find new and more potent compounds. PMID:27063259

  8. Anticancer Drug Delivery: An Update on Clinically Applied Nanotherapeutics.

    PubMed

    Marchal, Sophie; El Hor, Amélie; Millard, Marie; Gillon, Véronique; Bezdetnaya, Lina

    2015-09-01

    The development of chemotherapy using conventional anticancer drugs has been hindered due to several drawbacks related to their poor water solubility and poor pharmacokinetics, leading to severe adverse side effects and multidrug resistance in patients. Nanocarriers were developed to palliate these problems by improving drug delivery, opening the era of nanomedicine in oncology. Liposomes have been by far the most used nanovectors for drug delivery, with liposomal doxorubicin receiving US FDA approval as early as 1995. Antibody drug conjugates and promising drug delivery systems based on a natural polymer, such as albumin, or a synthetic polymer, are currently undergoing advanced clinical trials or have received approval for clinical applications. However, despite attractive results being obtained in preclinical studies, many well-designed nanodrugs fell short of expectations when tested in patients, evidencing the gap between nanoparticle design and their clinical translation. The aim of this review is to evaluate the extent of nanotherapeutics used in oncology by providing an insight into the most successful concepts. The reasons that prevent nanodrugs from expanding to clinic are discussed, and the efforts that must be taken to take full advantage of the great potential of nanomedicine are highlighted. PMID:26323338

  9. Quantum study of boron nitride nanotubes functionalized with anticancer molecules.

    PubMed

    Duverger, Eric; Gharbi, Tijani; Delabrousse, Eric; Picaud, Fabien

    2014-09-14

    Full DFT-D2 calculations were carried out to study the interactions between single wall (10,10) boron nitride nanotubes (BNNTs) and different molecules, such as azomethine (C2H5N) and an anticancer agent (Pt(IV) complex) linked to an amino-derivative chain. The geometry of the (10,10) BNNT-azomethine and the BNNT-amino derivative system was optimised by considering different molecular configurations on the inner and outer surfaces of the nanotube. Simulation results showed that the most stable physisorption state for both molecules was located inside the nanotube in a parallel configuration. We showed also that the molecular chemisorption was possible only when the azomethine was present above two adjacent B and N atoms of a hexagon. The attachment of an azomethine plus a subsequent drug did not perturb the cycloaddition process. Moreover, all theoretical results showed that the therapeutic agent complex was not affected when it was attached onto BNNTs. PMID:25070038

  10. Hurdles in anticancer drug development from a regulatory perspective.

    PubMed

    Jonsson, Bertil; Bergh, Jonas

    2012-04-01

    Between January 2001 and January 2012, 48 new medicinal products for cancer treatment were licensed within the EU, and 77 new indications were granted for products already licensed. In some cases, a major improvement to existing therapies was achieved, for example, trastuzumab in breast cancer. In other cases, new fields for effective drug therapy opened up, such as in chronic myeloid leukemia, and renal-cell carcinoma. In most cases, however, the benefit-risk balance was considered to be only borderline favorable. Based on our assessment of advice procedures for marketing authorization, 'need for speed' seems to be the guiding principle in anticancer drug development. Although, for drugs that make a difference, early licensure is of obvious importance to patients, this is less evident in the case of borderline drugs. Without proper incentives and with hurdles inside and outside companies, a change in drug development cannot be expected; drugs improving benefit-risk modestly over available therapies will be brought forward towards licensure. In this Perspectives article, we discuss some hurdles to biomarker-driven drug development and provide some suggestions to overcome them. PMID:22349015

  11. A drug-specific nanocarrier design for efficient anticancer therapy

    PubMed Central

    Shi, Changying; Guo, Dandan; Xiao, Kai; Wang, Xu; Wang, Lili; Luo, Juntao

    2015-01-01

    The drug-loading properties of nanocarriers depend on the chemical structures and properties of their building blocks. Here, we customize telodendrimers (linear-dendritic copolymer) to design a nanocarrier with improved in vivo drug delivery characteristics. We do a virtual screen of a library of small molecules to identify the optimal building blocks for precise telodendrimer synthesis using peptide chemistry. With rationally designed telodendrimer architectures, we then optimize the drug binding affinity of a nanocarrier by introducing an optimal drug-binding molecule (DBM) without sacrificing the stability of the nanocarrier. To validate the computational predictions, we synthesize a series of nanocarriers and evaluate systematically for doxorubicin delivery. Rhein-containing nanocarriers have sustained drug release, prolonged circulation, increased tolerated dose, reduced toxicity, effective tumor targeting and superior anticancer effects owing to favourable doxorubicin-binding affinity and improved nanoparticle stability. This study demonstrates the feasibility and versatility of the de novo design of telodendrimer nanocarriers for specific drug molecules, which is a promising approach to transform nanocarrier development for drug delivery. PMID:26158623

  12. Pharmacokinetics of Selected Anticancer Drugs in Elderly Cancer Patients: Focus on Breast Cancer

    PubMed Central

    Crombag, Marie-Rose B.S.; Joerger, Markus; Thürlimann, Beat; Schellens, Jan H.M.; Beijnen, Jos H.; Huitema, Alwin D.R.

    2016-01-01

    Background: Elderly patients receiving anticancer drugs may have an increased risk to develop treatment-related toxicities compared to their younger peers. However, a potential pharmacokinetic (PK) basis for this increased risk has not consistently been established yet. Therefore, the objective of this study was to systematically review the influence of age on the PK of anticancer agents frequently administered to elderly breast cancer patients. Methods: A literature search was performed using the PubMed electronic database, Summary of Product Characteristics (SmPC) and available drug approval reviews, as published by EMA and FDA. Publications that describe age-related PK profiles of selected anticancer drugs against breast cancer, excluding endocrine compounds, were selected and included. Results: This review presents an overview of the available data that describe the influence of increasing age on the PK of selected anticancer drugs used for the treatment of breast cancer. Conclusions: Selected published data revealed differences in the effect and magnitude of increasing age on the PK of several anticancer drugs. There may be clinically-relevant, age-related PK differences for anthracyclines and platina agents. In the majority of cases, age is not a good surrogate marker for anticancer drug PK, and the physiological state of the individual patient may better be approached by looking at organ function, Charlson Comorbidity Score or geriatric functional assessment. PMID:26729170

  13. Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications.

    PubMed

    Rudokas, Mindaugas; Najlah, Mohammad; Alhnan, Mohamed Albed; Elhissi, Abdelbary

    2016-01-01

    This is a critical review on research conducted in the field of pulmonary delivery of liposomes. Issues relating to the mechanism of nebulisation and liposome composition were appraised and correlated with literature reports of liposome formulations used in clinical trials to understand the role of liposome size and composition on therapeutic outcome. A major highlight was liposome inhalation for the treatment of lung cancers. Many in vivo studies that explored the potential of liposomes as anticancer carrier systems were evaluated, including animal studies and clinical trials. Liposomes can entrap anticancer drugs and localise their action in the lung following pulmonary delivery. The safety of inhaled liposomes incorporating anticancer drugs depends on the anticancer agent used and the amount of drug delivered to the target cancer in the lung. The difficulty of efficient targeting of liposomal anticancer aerosols to the cancerous tissues within the lung may result in low doses reaching the target site. Overall, following the success of liposomes as inhalable carriers in the treatment of lung infections, it is expected that more focus from research and development will be given to designing inhalable liposome carriers for the treatment of other lung diseases, including pulmonary cancers. The successful development of anticancer liposomes for inhalation may depend on the future development of effective aerosolisation devices and better targeted liposomes to maximise the benefit of therapy and reduce the potential for local and systemic adverse effects. PMID:26938856

  14. Sensitization for Anticancer Drug-Induced Apoptosis by Betulinic Acid1

    PubMed Central

    Fulda, Simone; Debatin, Klaus-Michael

    2005-01-01

    Abstract We previously described that betulinic acid (BetA), a naturally occurring pentacyclic triterpenoid, induces apoptosis in tumor cells through the mitochondrial pathway. Here, for the first time, we provide evidence that BetA cooperated with anticancer drugs to induce apoptosis and to inhibit clonogenic survival of tumor cells. Combined treatment with BetA and anticancer drugs acted in concert to induce loss of mitochondrial membrane potential and the release of cytochrome c and Smac from mitochondria, resulting in activation of caspases and apoptosis. Overexpression of Bcl-2, which blocked mitochondrial perturbations, also inhibited the cooperative effect of BetA and anticancer drugs, indicating that cooperative interaction involved the mitochondrial pathway. Notably, cooperation of BetA and anticancer drugs was found for various cytotoxic compounds with different modes of action (e.g., doxorubicin, cisplatin, Taxol, VP16, or actinomycin D). Importantly, BetA and anticancer drugs cooperated to induce apoptosis in different tumor cell lines, including p53 mutant cells, and also in primary tumor cells, but not in human fibroblasts indicating some tumor specificity. These findings indicate that using BetA as sensitizer in chemotherapy-based combination regimens may be a novel strategy to enhance the efficacy of anticancer therapy, which warrants further investigation. PMID:15802021

  15. Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Chen, Mu-He; Hao, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2016-06-01

    Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes (Re1 and Re2), along with their corresponding dinuclear complexes (Re3 and Re4), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1-Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase-independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase-independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes. PMID:27106876

  16. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis.

    PubMed

    Nakamura, Kazuki; Shinozuka, Kazumasa; Yoshikawa, Noriko

    2015-01-01

    Cordyceps sinensis, a fungus that parasitizes on the larva of Lepidoptera, has been used as a valued traditional Chinese medicine. We investigated the effects of water extracts of Cordyceps sinensis (WECS), and particularly focused on its anticancer and antimetastatic actions. Based on in vitro studies, we report that WECS showed an anticancer action, and this action was antagonized by an adenosine A3 receptor antagonist. Moreover, this anticancer action of WECS was promoted by an adenosine deaminase inhibitor. These results suggest that one of the components of WECS with an anticancer action might be an adenosine or its derivatives. Therefore, we focused on cordycepin (3'-deoxyadenosine) as one of the active ingredients of WECS. According to our experiments, cordycepin showed an anticancer effect through the stimulation of adenosine A3 receptor, followed by glycogen synthase kinase (GSK)-3β activation and cyclin D1 suppression. Cordycepin also showed an antimetastatic action through inhibiting platelet aggregation induced by cancer cells and suppressing the invasiveness of cancer cells via inhibiting the activity of matrix metalloproteinase (MMP)-2 and MMP-9, and accelerating the secretion of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 from cancer cells. In conclusion, cordycepin, an active component of WECS, might be a candidate anticancer and antimetastatic agent. PMID:25704018

  17. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    PubMed

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-01-01

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery. PMID:27229857

  18. Structural and mechanistic bases of the anticancer activity of natural aporphinoid alkaloids.

    PubMed

    Liu, Yanjuan; Liu, Junxi; Di, Duolong; Li, Min; Fen, Yan

    2013-01-01

    Aporphinoid alkaloids, which encompass a large number of complicated structures, are an important group of natural products. The anticancer activity of aporphinoid alkaloids has become a hot pharmaceutical research area in recent years. Recent studies on the anticancer activity of these compounds are reviewed. The structure activity relationships (SARs) and anticancer mechanisms of aporphinoid alkaloids, as well as simple aporphine, oxoaporphine, dehydroaporphine and dimeric aporphine, have been summarized. The presence of a 1,2-methylenedioxy group and methylation of nitrogen are key features to the cytotoxicity of aporphinoid alkaloids. Oxidation and dehydrogenation of C7 could improve the anticancer activity. The contributions of chirality of hydrogen at C6a and the substitution pattern of other positions about aporphinoid alkaloids for anticancer activity remain unknown. Induced cancer cells apoptosis, prevention of cell proliferation, DNA topoisomerase inhibition, reducing the drug-resistant cellular side population (SP) or cancer stem cells (CSCs) and inhibition of epidermal growth factor receptor (EGFR) tyrosine kinase seem to play important roles in the molecular mechanisms of anticancer activity about aporphinoid alkaloids. PMID:23978138

  19. Lanostanoids from fungi: a group of potential anticancer compounds.

    PubMed

    Ríos, José-Luis; Andújar, Isabel; Recio, María-Carmen; Giner, Rosa-María

    2012-11-26

    Lanostanes are a group of tetracyclic triterpenoids derived from lanosterol. They have relevant biological and pharmacological properties, such as their cytotoxic effects via induction of apoptosis. This review compiles the most relevant lanostanoids studied from 2000 to 2011, principally those isolated from Ganoderma lucidum and other related fungi, such as Poria cocos, Laetiporus sulphureus, Inonotus obliquus, Antrodia camphorata, Daedalea dickinsii, and Elfvingia applanata, which have great potential as anticancer agents because of their cytotoxic or apoptotic effects. The compounds were selected on the basis of their proapoptotic mechanisms, through their ability to modify transcriptional activities via nuclear factors or genes and the activation or inhibition of pro- or antiapoptotic proteins; studies based only on their cytotoxicity were excluded from this review in the absence of complementary studies on their mechanisms of action. A total of 81 compounds from Ganoderma lucidum and other species from this genus are included, as well as 96 compounds isolated from other fungi, principally Poria cocos. Some of these compounds were found to arrest the cell cycle in the G1 phase, increase levels of p53 and Bax, or inhibit the phosphorylation of Erk1/2 or the activation of NF-κB and AP-1. Other lanostanes have inhibitory effects on the growth of androgen prostate carcinoma through increasing the expression of p21, which activates the tumor suppressor protein p53, while other compounds have been shown to selectively inhibit topo II activity without affecting topo I. General considerations concerning the chemical structure-biological activities of these compounds are also discussed. PMID:23092389

  20. Comparison and validation of genomic predictors for anticancer drug sensitivity

    PubMed Central

    Papillon-Cavanagh, Simon; De Jay, Nicolas; Hachem, Nehme; Olsen, Catharina; Bontempi, Gianluca; Aerts, Hugo J W L; Quackenbush, John; Haibe-Kains, Benjamin

    2013-01-01

    Background An enduring challenge in personalized medicine lies in selecting the right drug for each individual patient. While testing of drugs on patients in large trials is the only way to assess their clinical efficacy and toxicity, we dramatically lack resources to test the hundreds of drugs currently under development. Therefore the use of preclinical model systems has been intensively investigated as this approach enables response to hundreds of drugs to be tested in multiple cell lines in parallel. Methods Two large-scale pharmacogenomic studies recently screened multiple anticancer drugs on over 1000 cell lines. We propose to combine these datasets to build and robustly validate genomic predictors of drug response. We compared five different approaches for building predictors of increasing complexity. We assessed their performance in cross-validation and in two large validation sets, one containing the same cell lines present in the training set and another dataset composed of cell lines that have never been used during the training phase. Results Sixteen drugs were found in common between the datasets. We were able to validate multivariate predictors for three out of the 16 tested drugs, namely irinotecan, PD-0325901, and PLX4720. Moreover, we observed that response to 17-AAG, an inhibitor of Hsp90, could be efficiently predicted by the expression level of a single gene, NQO1. Conclusion These results suggest that genomic predictors could be robustly validated for specific drugs. If successfully validated in patients’ tumor cells, and subsequently in clinical trials, they could act as companion tests for the corresponding drugs and play an important role in personalized medicine. PMID:23355484

  1. Anticancer Inhibitors of Hsp90 Function: Beyond the Usual Suspects.

    PubMed

    Garg, Gaurav; Khandelwal, Anuj; Blagg, Brian S J

    2016-01-01

    The 90-kDa heat-shock protein (Hsp90) is a molecular chaperone responsible for the stability and function of a wide variety of client proteins that are critical for cell growth and survival. Many of these client proteins are frequently mutated and/or overexpressed in cancer cells and are therefore being actively pursued as individual therapeutic targets. Consequently, Hsp90 inhibition offers a promising strategy for simultaneous degradation of several anticancer targets. Currently, most Hsp90 inhibitors under clinical evaluation act by blocking the binding of ATP to the Hsp90 N-terminal domain and thereby, induce the degradation of many Hsp90-dependent oncoproteins. Although, they have shown some promising initial results, clinical challenges such as induction of the heat-shock response, retinopathy, and gastrointestinal tract toxicity are emerging from human trials, which constantly raise concerns about the future development of these inhibitors. Novobiocin derivatives, which do not bind the chaperone's N-terminal ATPase pocket, have emerged over the past decade as an alternative strategy to inhibit Hsp90, but to date, no derivative has been investigated in the clinical setting. In recent years, a number of natural or synthetic compounds have been identified that modulate Hsp90 function via various mechanisms. These compounds not only offer new chemotypes for the development of future Hsp90 inhibitors but can also serve as chemical probes to unravel the biology of Hsp90. This chapter presents a synopsis of inhibitors that directly, allosterically, or even indirectly alters Hsp90 function, and highlights their proposed mechanisms of action. PMID:26916001

  2. Farnesyltransferase as a target for anticancer drug design.

    PubMed

    Qian, Y; Sebti, S M; Hamilton, A D

    1997-01-01

    The currently understood function for Ras in signal transduction is in mediating the transmission of signals from external growth factors to the cell nucleus. Mutated forms of this GTP-binding protein are found in 30% of human cancers with particularly high prevalence in colon and pancreatic carcinomas. These mutations destroy the GTPase activity of Ras and cause the protein to be locked in its active, GTP bound form. As a result, the signaling pathways are activated, leading to uncontrolled tumor growth. Ras function in signaling requires its association with the plasma membrane. This is achieved by posttranslational farnesylation of a cysteine residue present as part of the CA1A2X carboxyl terminal tetrapeptide of all Ras proteins. The enzyme that recognizes and farnesylates the CA1A2X sequence, Ras farnesyltransferase (FTase), has become an important target for the design of inhibitors that might be interesting as antitumor agents. Several approaches have been taken in the search for in vivo active inhibitors of farnesyltransferase. These include the identification of natural products such as the chaetomellic and zaragozic acids that mimic farnesylpyrophosphate, bisubstrate transition state analogs combining elements of the farnesyl and tetrapeptide substrates and peptidomimetics that reproduce features of the carboxyl terminal tetrapeptide CA1A2X sequence. This last group of compounds has been most successful in showing highly potent inhibition of FTase and selective blocking of Ras processing in a range of Ras transformed tumor cell lines at concentrations as low as 10 nM. Certain peptidomimetics will also block tumor growth in various mouse models, with apparently few toxic side effects. These results suggest that farnesyltransferase inhibitors hold considerable promise as anticancer drugs in the clinic. PMID:9174410

  3. Anticancer effects of the organosilicon multidrug resistance modulator SILA 421.

    PubMed

    Olszewski, Ulrike; Zeillinger, Robert; Kars, Meltem Demirel; Zalatnai, Attila; Molnar, Jozsef; Hamilton, Gerhard

    2012-07-01

    1,3-dimethyl-1,3-bis(4-fluorophenyl)-1,3-bis{3-[1(4-butylpiperazinyl)]-propyl}-disiloxan-tetrahydrochlorid (SILA 421) is a compound that was developed as modulator of the ABC cassette transporter P-glycoprotein. Furthermore, it exerted antimicrobial toxicity, vascular effects, downregulation of chaperone induction and plasmid curing in bacterial cells. Here, this drug was found to possess cytotoxic activity against a panel of human cancer cell lines that do not overexpress P-gp, with 50% inhibitory concentrations ranging between 1.75±0.38 μM for GLC14 small cell lung cancer and 34.00±4.75 μM for PC-3 prostate cancer cells. HL-60 leukemia and MDA-MB-435 breast cancer cells exhibited cell cycle arrest and apoptotic cell death in response to SILA 421. Assessment of global gene expression of SILA 421-treated HL-60 cells was employed to identify cellular pathways affected by the compound and revealed disturbance of DNA replication, transcription and production of apparently misfolded proteins. Endoplasmatic reticulum stress and downregulation of cell cycle, cellular repair mechanisms and growth factor-related signaling cascades eventually resulted in induction of apoptosis in this cell line. In addition to the well established P-gp inhibitory effect of SILA compounds, reversal of resistance to taxanes, which had been reported for SILA 421 and the related molecule SILA 409, may be linked to downregulation of gene expression of kinesins. Interference with DNA replication and transcription seems to be the common denominator of antimicrobial activity and plasmid curing, as well as anticancer toxicity in human cell lines. Thus, in consideration of the full range of putative cellular targets found in the present work, the application of these SILA compounds for treatment of tumors should be further evaluated. PMID:22263791

  4. Antibody–drug conjugates as novel anti-cancer chemotherapeutics

    PubMed Central

    Peters, Christina; Brown, Stuart

    2015-01-01

    Over the past couple of decades, antibody–drug conjugates (ADCs) have revolutionized the field of cancer chemotherapy. Unlike conventional treatments that damage healthy tissues upon dose escalation, ADCs utilize monoclonal antibodies (mAbs) to specifically bind tumour-associated target antigens and deliver a highly potent cytotoxic agent. The synergistic combination of mAbs conjugated to small-molecule chemotherapeutics, via a stable linker, has given rise to an extremely efficacious class of anti-cancer drugs with an already large and rapidly growing clinical pipeline. The primary objective of this paper is to review current knowledge and latest developments in the field of ADCs. Upon intravenous administration, ADCs bind to their target antigens and are internalized through receptor-mediated endocytosis. This facilitates the subsequent release of the cytotoxin, which eventually leads to apoptotic cell death of the cancer cell. The three components of ADCs (mAb, linker and cytotoxin) affect the efficacy and toxicity of the conjugate. Optimizing each one, while enhancing the functionality of the ADC as a whole, has been one of the major considerations of ADC design and development. In addition to these, the choice of clinically relevant targets and the position and number of linkages have also been the key determinants of ADC efficacy. The only marketed ADCs, brentuximab vedotin and trastuzumab emtansine (T-DM1), have demonstrated their use against both haematological and solid malignancies respectively. The success of future ADCs relies on improving target selection, increasing cytotoxin potency, developing innovative linkers and overcoming drug resistance. As more research is conducted to tackle these issues, ADCs are likely to become part of the future of targeted cancer therapeutics. PMID:26182432

  5. Anticancer activity of the iron facilitator LS081

    PubMed Central

    2011-01-01

    Background Cancer cells have increased levels of transferrin receptor and lower levels of ferritin, an iron deficient phenotype that has led to the use of iron chelators to further deplete cells of iron and limit cancer cell growth. As cancer cells also have increased reactive oxygen species (ROS) we hypothesized that a contrarian approach of enhancing iron entry would allow for further increased generation of ROS causing oxidative damage and cell death. Methods A small molecule library consisting of ~11,000 compounds was screened to identify compounds that stimulated iron-induced quenching of intracellular calcein fluorescence. We verified the iron facilitating properties of the lead compound, LS081, through 55Fe uptake and the expression of the iron storage protein, ferritin. LS081-induced iron facilitation was correlated with rates of cancer cell growth inhibition, ROS production, clonogenicity, and hypoxia induced factor (HIF) levels. Results Compound LS081 increased 55Fe uptake in various cancer cell lines and Caco2 cells, a model system for studying intestinal iron uptake. LS081 also increased the uptake of Fe from transferrin (Tf). LS081 decreased proliferation of the PC-3 prostate cancer cell line in the presence of iron with a lesser effect on normal prostate 267B1 cells. In addition, LS081 markedly decreased HIF-1α and -2α levels in DU-145 prostate cancer cell line and the MDA-MB-231 breast cancer cell lines, stimulated ROS production, and decreased clonogenicity. Conclusions We have developed a high through-put screening technique and identified small molecules that stimulate iron uptake both from ferriTf and non-Tf bound iron. These iron facilitator compounds displayed properties suggesting that they may serve as anti-cancer agents. PMID:21453502

  6. Endophytic fungi: novel sources of anticancer lead molecules.

    PubMed

    Chandra, Sheela

    2012-07-01

    Cancer is a major killer disease all over the world and more than six million new cases are reported every year. Nature is an attractive source of new therapeutic compounds, as a tremendous chemical diversity is found in millions of species of plants, animals, and microorganisms. Plant-derived compounds have played an important role in the development of several clinically useful anti-cancer agents. These include vinblastine, vincristine, camptothecin, podophyllotoxin, and taxol. Production of a plant-based natural drug is always not up to the desired level. It is produced at a specific developmental stage or under specific environmental condition, stress, or nutrient availability; the plants may be very slow growing taking several years to attain a suitable growth phase for product accumulation and extraction. Considering the limitations associated with the productivity and vulnerability of plant species as sources of novel metabolites, microorganisms serve as the ultimate, readily renewable, and inexhaustible source of novel structures bearing pharmaceutical potential. Endophytes, the microorganisms that reside in the tissues of living plants, are relatively unstudied and offer potential sources of novel natural products for exploitation in medicine, agriculture and the pharmaceutical industry. They develop special mechanisms to penetrate inside the host tissue, residing in mutualistic association and their biotransformation abilities opens a new platform for synthesis of novel secondary metabolites. They produce metabolites to compete with the epiphytes and also with the plant pathogens to maintain a critical balance between fungal virulence and plant defense. It is therefore necessary that the relationship between the plants and endophytes during the accumulation of these secondary metabolites is studied. Insights from such research would provide alternative methods of natural product drug discovery which could be reliable, economical, and environmentally safe

  7. Antimalarial Activity of the Anticancer Histone Deacetylase Inhibitor SB939

    PubMed Central

    Sumanadasa, Subathdrage D. M.; Goodman, Christopher D.; Lucke, Andrew J.; Skinner-Adams, Tina; Sahama, Ishani; Haque, Ashraful; Do, Tram Anh; McFadden, Geoffrey I.; Fairlie, David P.

    2012-01-01

    Histone deacetylase (HDAC) enzymes posttranslationally modify lysines on histone and nonhistone proteins and play crucial roles in epigenetic regulation and other important cellular processes. HDAC inhibitors (e.g., suberoylanilide hydroxamic acid [SAHA; also known as vorinostat]) are used clinically to treat some cancers and are under investigation for use against many other diseases. Development of new HDAC inhibitors for noncancer indications has the potential to be accelerated by piggybacking onto cancer studies, as several HDAC inhibitors have undergone or are undergoing clinical trials. One such compound, SB939, is a new orally active hydroxamate-based HDAC inhibitor with an improved pharmacokinetic profile compared to that of SAHA. In this study, the in vitro and in vivo antiplasmodial activities of SB939 were investigated. SB939 was found to be a potent inhibitor of the growth of Plasmodium falciparum asexual-stage parasites in vitro (50% inhibitory concentration [IC50], 100 to 200 nM), causing hyperacetylation of parasite histone and nonhistone proteins. In combination with the aspartic protease inhibitor lopinavir, SB939 displayed additive activity. SB939 also potently inhibited the in vitro growth of exoerythrocytic-stage Plasmodium parasites in liver cells (IC50, ∼150 nM), suggesting that inhibitor targeting to multiple malaria parasite life cycle stages may be possible. In an experimental in vivo murine model of cerebral malaria, orally administered SB939 significantly inhibited P. berghei ANKA parasite growth, preventing development of cerebral malaria-like symptoms. These results identify SB939 as a potent new antimalarial HDAC inhibitor and underscore the potential of investigating next-generation anticancer HDAC inhibitors as prospective new drug leads for treatment of malaria. PMID:22508312

  8. Multifunctional Liposome Nanocarriers Combining Upconverting Nanoparticles and Anticancer Drugs.

    PubMed

    Huang, Yue; Hemmer, Eva; Rosei, Federico; Vetrone, Fiorenzo

    2016-06-01

    Lanthanide-doped upconverting nanoparticles (UCNPs) are well-known for their inherent ability to convert low energy near-infrared (NIR) excitation wavelengths into higher energy emission wavelengths covering the ultraviolet (UV) to NIR regions. This optical feature makes UCNPs highly attractive for a broad range of applications including (bio)imaging and the biomedical use of light-triggered processes such as drug release. In the quest for novel theranostic approaches, the combination of multiple modalities on a single nanoscale platform, for example, combining optical imaging and drug delivery, is very desirable. In this context, liposomes, artificially prepared constructs composed of a lamellar phase lipid bilayer, have been introduced as suitable nanocarriers for UCNPs. Here, we developed a hybrid nanocarrier consisting of Er(3+) and Yb(3+) co-doped NaGdF4 UCNPs that were encapsulated in the aqueous core of the liposomes and the potential of the obtained nanocarriers for drug delivery was shown by co-loading the model anticancer drug doxorubicin (DOX). Under 980 nm excitation, a decrease of the green upconversion emission of the NaGdF4:Er(3+), Yb(3+) UCNPs was observed when DOX was co-loaded with the UCNPs in the liposome nanocarrier. This quenching effect is assigned to the energy transfer between the donor UCNP and the acceptor DOX and is most significant, since it allows for the spectral monitoring of the DOX loading and release from the liposome nanocarriers. Thus, the drug loading, release, and spectral monitoring properties of the obtained liposome nanocarriers were thoroughly characterized allowing us to assess their future potential as theranostic nanocarriers. PMID:27135855

  9. Chemopreventive and Anticancer Activities of Allium victorialis var. platyphyllum Extracts

    PubMed Central

    Kim, Hyun-Jeong; Park, Min Jeong; Park, Hee-Juhn; Chung, Won-Yoon; Kim, Ki-Rim; Park, Kwang-Kyun

    2014-01-01

    Background: Allium victorialis var. platyphyllum is an edible perennial herb and has been used as a vegetable or as a Korean traditional medicine. Allium species have received much attention owing to their diverse pharmacological properties, including antioxidative, anti-inflammatory, and anticancer activities. However, A. victorialis var. platyphyllum needs more study. Methods: The chemopreventive potential of A. victorialis var. platyphyllum methanol extracts was examined by measuring 12-O-tetra-decanoylphorbol 13-acetate (TPA)-induced superoxide anion production in the differentiated HL-60 cells, TPA-induced mouse ear edema, and Ames/Salmonella mutagenicity. The apoptosis-inducing capabilities of the extracts were evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, 4’,6-diamidino-2-phenylindole staining, and the DNA fragmentation assay in human colon cancer HT-29 cells. Antimetastatic activities of the extracts were also investigated in an experimental mouse lung metastasis model. Results: The methanol extracts of A. victorialis var. platyphyllum rhizome (AVP-R) and A. victorialis var. platyphyllum stem (AVP-S) dose-dependently inhibited the TPA-induced generation of superoxide anion in HL-60 cells and TPA-induced ear edema in mice, as well as 7,12-dimethylbenz[a]anthracene (DMBA) and tert-butyl hydroperoxide (t-BOOH) -induced bacterial mutagenesis. AVP-R and AVP-S reduced cell viability in a dose-related manner and induced apoptotic morphological changes and internucleosomal DNA fragmentation in HT-29 cells. In the experimental mouse lung metastasis model, the formation of tumor nodules in lung tissue was significantly inhibited by the treatment of the extracts. Conclusions: AVP-R and AVP-S possess antioxidative, anti-inflammatory, antimutagenic, proapoptotic, and antimetastatic activities. Therefore, these extracts can serve as a beneficial supplement for the prevention and treatment of cancer. PMID:25337587

  10. Combined anticancer therapies: an overview of the latest applications.

    PubMed

    Piccolo, Maria Teresa; Menale, Ciro; Crispi, Stefania

    2015-01-01

    Tumor resistance and low drug efficacy prompt to investigate new therapeutic strategies that have high efficacy and low toxicity, especially for cancers with poor prognosis. This goal has been recently achieved using particular pharmaceutical combination or nanotechnologies to specifically deliver drugs at the tumor site. Novel combined treatments employ either naturally active ingredients or drugs already intended for other uses, with the aim to increase cell sensitivity to therapy and reduce drug toxicity. Combined treatments usually improve the overall therapeutic efficacy of the single drug. Drug-drug interactions allow synergistic effects. Several evidences indicate that synergy can be affected by drug-drug ratio and drug administration order. Therapeutic efficacy can be enhanced through drug entrapment in nanocarriers that allow a site-specific targeting, resulting in a build-up of the drug in the tumor with a significant toxicity reduction. Several studies investigated combined entrapment of two or more drugs each one characterized by different mechanisms of action. These nanosystems improve synergistic efficacy and could be a device to resolve toxicity and multi-drug resistance. Nano-encapsulation of anticancer agents by targeting specific tumor tissues significantly optimizes drug bioavailability, biocompatibility and therapeutic efficacy. The efficacy of these formulations results from receptor-mediated endocytosis and prolonged circulation time. Drug encapsulation also allows using limited final concentration while avoiding its activity within the blood circulation. In this review we report recent findings about novel combined treatment focusing on synergistic effects and mechanisms of action. We will also overview the latest drug delivery system and their therapeutic benefits in cancer treatment. PMID:25584691

  11. The Anticancer Role of Capsaicin in Experimentallyinduced Lung Carcinogenesis

    PubMed Central

    Anandakumar, Pandi; Kamaraj, Sattu; Jagan, Sundaram; Ramakrishnan, Gopalakrishnan; Asokkumar, Selvamani; Naveenkumar, Chandrashekar; Raghunandhakumar, Subramanian; Vanitha, Manickam Kalappan; Devaki, Thiruvengadam

    2015-01-01

    Objectives: Capsaicin (CAP) is the chief pungent principle found in the hot red peppers and the chili peppers that have long been used as spices, food additives and drugs. This study investigated the anticancer potential of CAP through its ability to modify extracellular matrix components and proteases during mice lung carcinogenesis. Methods: Swiss albino mice were treated with benzo(a) pyrene (50 mg/kg body weight dissolved in olive oil) orally twice a week for four successive weeks to induce lung cancer at the end of 14th week. CAP was administrated (10 mg/kg body weight dissolved in olive oil) intraperitoneally. Extracellular matrix components were assayed; Masson’s trichome staining of lung tissues was performed. Western blot analyses of matrix metalloproteases 2 and 9 were also carried out. Results: In comparison with the control animals, animals in which benzo(a)pyrene had induced lung cancer showed significant increases in extracellular matrix components such as collagen (hydroxy proline), elastin, uronic acid and hexosamine and in glycosaminoglycans such as hyaluronate, chondroitin sulfate, keratan sulfate and dermatan sulfate. The above alterations in extracellular matrix components were effectively counteracted in benzo(a)pyrene along with CAP supplemented animals when compared to benzo(a) pyrene alone supplemented animals. The results of Masson’s trichome staining for collagen and of, immunoblotting analyses of matrix metalloproteases 2 and 9 further supported the biochemical findings. Conclusion: The apparent potential of CAP in modulating extracellular matrix components and proteases suggests that CAP plays a chemomodulatory and anti- cancer role working against experimentally induced lung carcinogenesis. PMID:26120484

  12. Bioassay-Guided Isolation of Sesquiterpene Coumarins from Ferula narthex Bioss: A New Anticancer Agent

    PubMed Central

    Alam, Mahboob; Khan, Ajmal; Wadood, Abdul; Khan, Ayesha; Bashir, Shumaila; Aman, Akhtar; Jan, Abdul Khaliq; Rauf, Abdur; Ahmad, Bashir; Khan, Abdur Rahman; Farooq, Umar

    2016-01-01

    The main objective of cancer management with chemotherapy (anticancer drugs) is to kill the neoplastic (cancerous) cell instead of a normal healthy cell. The bioassay-guided isolation of two new sesquiterpene coumarins (compounds 1 and 2) have been carried out from Ferula narthex collected from Chitral, locally known as “Raw.” Anticancer activity of crude and all fractions have been carried out to prevent carcinogenesis by using MTT assay. The n-hexane fraction showed good activity with an IC50 value of 5.434 ± 0.249 μg/mL, followed by crude MeFn extract 7.317 ± 0.535 μg/mL, and CHCl3 fraction 9.613 ± 0.548 μg/mL. Compounds 1 and 2 were isolated from chloroform fraction. Among tested pure compounds, compound 1 showed good anticancer activity with IC50 value of 14.074 ± 0.414 μg/mL. PASS (Prediction of Activity Spectra) analysis of the compound 1 was carried out, in order to predicts their binding probability with anti-cancer target. As a results the compound 1 showed binding probability with human histone acetyltransferase with Pa (probability to be active) value of 0.303. The compound 1 was docked against human histone acetyltransferase (anti-cancer drug target) by using molecular docking simulations. Molecular docking results showed that compound 1 accommodate well in the anti-cancer drug target. Moreover the activity support cancer chemo preventive activity of different compounds isolated from the genus Ferula, in accordance with the previously reported anticancer activities of the genus. PMID:26909039

  13. Hybrid anticancer 1,2-diazine derivatives with multiple mechanism of action. Part 3.

    PubMed

    Antoci, Vasilichia; Mantu, Dorina; Cozma, Danut Gabriel; Usru, Cornelia; Mangalagiu, Ionel I

    2014-01-01

    Antitumour chemotherapy is nowadays a very active field of research, DNA targeting drugs being the most widely used group in therapy. The design, synthesis and anticancer activity of a new class of anticancer derivatives with pyrrolo-1,2-diazine and benzoquinone skeleton is presented. The synthesis is direct and efficient, involving an alkylation followed by a [3+2] dipolar cycloaddition. The penta- and tetra-cyclic pyrrolo-1,2-diazine were evaluated for their in vitro anticancer activity against an NCI 60 human tumour cell line panel. The pentacyclic-1,2-diazine exhibit a significant anticancer activity against Non-Small Cell Lung Cancer NCI-H460, Leukemia MOLT-4, Leukemia CCRF-CEM and Breast Cancer MCF7. We hypothesize that these molecules will exert their anticancer activity through multiple mechanisms of action: intercalating the DNA, inhibiting the topoisomerase enzymes and, destroying the DNA strands via electron transfer mechanism. However, the intercalation with the DNA seems to prevail in competition with the others mechanisms. PMID:24239342

  14. A ferromagnetic compound with anti-cancer proeprties for controlled drug delivery and imaging

    DOE PAGESBeta

    Eguchi, Haruki; Hirata, Kunio; Kurotani, Reiko; Singh, David J.; Fukumura, Hidenobu; Umemura, Masanari; Hoshino, Yujiro; Lee, Jin; Masuda, Takatsugu; Amemiya, Naoyuki; et al

    2015-03-17

    New anticancer agents and modalities for their use are of great interest. Recent studies have demonstrated the presence of anti-cancer properties in salen derivatives. We found that an iron salen derivative, i.e., [Fe(salen)]2O, displays ferromagnetic order above room temperature and shows spontaneous field-dependent magnetization and hysteresis. Understanding of this magnetic property is provided by first-principles calculations based on structures obtained by X-ray crystallography. [Fe(salen)]2O exhibited potent anti-cancer properties against various cancer cell types and was readily attracted by even moderate-strength permanent magnets in vitro. We demonstrated that the delivery of [Fe(salen)]2O to melanoma tissues transplanted into the tails of micemore » using a permanent magnet leads to a robust decrease in tumor size. The local accumulation of [Fe(salen)]2O was visualized by MRI. Thus, [Fe(salen)]2O acted as an anti-cancer and MRI contrast compound that has a pharmacological effect that is delivered in a controlled manner, suggesting new strategies for anti-cancer drug development.« less

  15. Anticancer Activity of Garcinia morella on T-Cell Murine Lymphoma Via Apoptotic Induction.

    PubMed

    Choudhury, Bhaswati; Kandimalla, Raghuram; Bharali, Rupjyoti; Monisha, Javadi; Kunnumakara, Ajaikumar B; Kalita, Kasturi; Kotoky, Jibon

    2016-01-01

    Traditional knowledge (TK) based medicines have gained worldwide attention and presently the scientific community is focussing on proper pharmacological validation and identification of lead compounds for the treatment of various diseases. The North East region of India is the home of valuable traditional herbal remedies. Garcinia morella Desr. (Guttiferae) is one such medicinal plant used by traditional healers for the treatment of inflammatory disorders. The present study was aimed to evaluate the antioxidant and anticancer activity of methanol extracts of the leaf, bark and fruit of G. morella (GM) in different in vitro and in vivo experimental conditions. The results of this study showed that GM methanol extracts possessed in vitro antioxidant and anticancer properties, where the fruit extract (GF) showed maximum activity. The anticancer activity was further confirmed by the results of in vivo administration of GF (200 mg/kg) for ten days to Dalton's lymphoma (DLA) induced mice. GF extract significantly increased the mean survival time (MST) of the animals, decreased the tumor volume and restored the hematological and biochemical parameters. The present study for the first time reported the anticancer property of GF on DLA. Further from the experiments conducted to elucidate the mechanism of action of GF on DLA, it can be concluded that GF exerts its anticancer effect through induction of caspases and DNA fragmentation that ultimately leads to apoptosis. However, further experimentation is required to elucidate the active principle and validate these findings in various in vivo settings. PMID:26858645

  16. Coumarin-appended phosphorescent cyclometalated iridium(iii) complexes as mitochondria-targeted theranostic anticancer agents.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Ji, Liang-Nian; Mao, Zong-Wan

    2016-08-16

    Theranostic anticancer agents incorporating anticancer properties with capabilities for real-time treatment assessment are appealing candidates for chemotherapy. The design of mitochondria-targeted cytotoxic drugs represents a promising approach to target tumors selectively and overcome resistance to current anticancer therapies. In this work, three coumarin-appended phosphorescent cyclometalated iridium(iii) complexes 1-3 have been explored as mitochondria-targeted theranostic anticancer agents. These complexes display rich photophysical properties, which facilitate the study of their intracellular fate. All three complexes can specifically target mitochondria and show much higher antiproliferative activities than cisplatin against various cancer cells including cisplatin-resistant cells. 1-3 can penetrate into human cervical carcinoma (HeLa) cells quickly and efficiently, and they can carry out theranostic functions by simultaneously inducing and monitoring the morphological changes in mitochondria. Mechanism studies show that 1-3 exert their anticancer efficacy by initiating a cascade of events related to mitochondrial dysfunction. Genome-wide transcriptional and Connectivity Map analyses reveal that the cytotoxicity of complex 3 is associated with pathways involved in mitochondrial dysfunction and apoptosis. PMID:27139504

  17. Non-covalent carriage of anticancer agents by humanized antibody trastuzumab.

    PubMed

    Yadav, Arpita; Sharma, Sweta; Yadav, Veejendra Kumar

    2016-05-01

    This article explores the internalization and non-covalent carriage of small molecule anticancer agents like vinca alkaloids by humanized monoclonal antibody trastuzumab. Such carriage is marked by significant reduction in side effects and increased therapeutic value of these anticancer agents. This study is coherent with few clinical observations of enhanced efficiency of these anticancer agents when co-administered with therapeutic antibodies. This study will also serve as the foundation for screening a database of anticancer agents for possible compounds that may be co-delivered alongwith the antibody. Based on this study vincristine conformation inside antibody and its charge environment may be used as descriptors for screening purposes. Graphical Abstract This article describes the use of immunotherapeutic agents for enhancing the bioavailability and efficacy of small molecule anticancer agents. The internalization and non-covalent carriage of vinca alkaloids by humanized antibody trastuzumab has been investigated utilizing flexible ligand molecular docking and molecular dynamics simulation studies coupled with MMGBSA binding energy calculations. The study concludes efficient non-covalent carriage without probability of premature expulsion. It is recommended that vincristine conformation and charge distribution may be used for screening library of compounds for possible mAb cargo. PMID:27109707

  18. A ferromagnetic compound with anti-cancer proeprties for controlled drug delivery and imaging

    SciTech Connect

    Eguchi, Haruki; Hirata, Kunio; Kurotani, Reiko; Singh, David J.; Fukumura, Hidenobu; Umemura, Masanari; Hoshino, Yujiro; Lee, Jin; Masuda, Takatsugu; Amemiya, Naoyuki; Yamamoto, Masahiro; Sato, Itaru; Feng, Xianfeng; Sato, Motohiko; Inoue, Seiichi; Yamamoto, Masaki; Aoki, Ichio; Tanigaki, Katsumi; Sato, Mamoru; Ishikawa, Yoshihiro

    2015-03-17

    New anticancer agents and modalities for their use are of great interest. Recent studies have demonstrated the presence of anti-cancer properties in salen derivatives. We found that an iron salen derivative, i.e., [Fe(salen)]2O, displays ferromagnetic order above room temperature and shows spontaneous field-dependent magnetization and hysteresis. Understanding of this magnetic property is provided by first-principles calculations based on structures obtained by X-ray crystallography. [Fe(salen)]2O exhibited potent anti-cancer properties against various cancer cell types and was readily attracted by even moderate-strength permanent magnets in vitro. We demonstrated that the delivery of [Fe(salen)]2O to melanoma tissues transplanted into the tails of mice using a permanent magnet leads to a robust decrease in tumor size. The local accumulation of [Fe(salen)]2O was visualized by MRI. Thus, [Fe(salen)]2O acted as an anti-cancer and MRI contrast compound that has a pharmacological effect that is delivered in a controlled manner, suggesting new strategies for anti-cancer drug development.

  19. Anticancer Activity of Garcinia morella on T-Cell Murine Lymphoma Via Apoptotic Induction

    PubMed Central

    Choudhury, Bhaswati; Kandimalla, Raghuram; Bharali, Rupjyoti; Monisha, Javadi; Kunnumakara, Ajaikumar B.; Kalita, Kasturi; Kotoky, Jibon

    2016-01-01

    Traditional knowledge (TK) based medicines have gained worldwide attention and presently the scientific community is focussing on proper pharmacological validation and identification of lead compounds for the treatment of various diseases. The North East region of India is the home of valuable traditional herbal remedies. Garcinia morella Desr. (Guttiferae) is one such medicinal plant used by traditional healers for the treatment of inflammatory disorders. The present study was aimed to evaluate the antioxidant and anticancer activity of methanol extracts of the leaf, bark and fruit of G. morella (GM) in different in vitro and in vivo experimental conditions. The results of this study showed that GM methanol extracts possessed in vitro antioxidant and anticancer properties, where the fruit extract (GF) showed maximum activity. The anticancer activity was further confirmed by the results of in vivo administration of GF (200 mg/kg) for ten days to Dalton’s lymphoma (DLA) induced mice. GF extract significantly increased the mean survival time (MST) of the animals, decreased the tumor volume and restored the hematological and biochemical parameters. The present study for the first time reported the anticancer property of GF on DLA. Further from the experiments conducted to elucidate the mechanism of action of GF on DLA, it can be concluded that GF exerts its anticancer effect through induction of caspases and DNA fragmentation that ultimately leads to apoptosis. However, further experimentation is required to elucidate the active principle and validate these findings in various in vivo settings. PMID:26858645

  20. Anticancer potential of silymarin: from bench to bed side.

    PubMed

    Agarwal, Rajesh; Agarwal, Charu; Ichikawa, Haruyo; Singh, Rana P; Aggarwal, Bharat B

    2006-01-01

    Silymarin consists of a family of flavonoids (silybin, isosilybin, silychristin, silydianin and taxifoline) commonly found in the dried fruit of the milk thistle plant Silybum marianum. Although silymarin's role as an antioxidant and hepatoprotective agent is well known, its role as an anticancer agent has begun to emerge. Extensive research within the last decade has shown that silymarin can suppress the proliferation of a variety of tumor cells (e.g., prostate, breast, ovary, colon, lung, bladder); this is accomplished through cell cycle arrest at the G1/S-phase, induction of cyclin-dependent kinase inhibitors (such as p15, p21 and p27), down-regulation of anti-apoptotic gene products (e.g., Bcl-2 and Bcl-xL), inhibition of cell-survival kinases (AKT, PKC and MAPK) and inhibition of inflammatory transcription factors (e.g., NF-kappaB). Silymarin can also down-regulate gene products involved in the proliferation of tumor cells (cyclin D1, EGFR, COX-2, TGF-beta, IGF-IR), invasion (MMP-9), angiogenesis (VEGF) and metastasis (adhesion molecules). The antiinflammatory effects of silymarin are mediated through suppression of NF-kappaB-regulated gene products, including COX-2, LOX, inducible iNOS, TNF and IL-1. Numerous studies have indicated that silymarin is a chemopreventive agent in vivo against a variety of carcinogens/tumor promoters, including UV light, 7,12-dimethylbenz(a)anthracene (DMBA), phorbol 12-myristate 13-acetate (PMA) and others. Silymarin has also been shown to sensitize tumors to chemotherapeutic agents through down-regulation of the MDR protein and other mechanisms. It binds to both estrogen and androgen receptors, and down-regulates PSA. In addition to its chemopreventive effects, silymarin exhibits antitumor activity against human tumors (e.g., prostate and ovary) in rodents. Various clinical trials have indicated that silymarin is bioavailable and pharmacologically safe. Studies are now in progress to demonstrate the clinical efficacy of

  1. Antioxidant and anticancer evaluation of Scindapsus officinalis (Roxb.) Schott fruits

    PubMed Central

    Shivhare, Shaktikumar C.; Patidar, Arjun O.; Malviya, K. G.; Shivhare-Malviya, K. K.

    2011-01-01

    Several methods exist for the treatment of cancer in modern medicine. These include chemotherapy, radiotherapy, and surgery; most cancer chemotherapeutants severely affect the host normal cells. Hence the use of natural products now has been contemplated of exceptional value in the control of cancer. Plant-derived natural products such as flavonoids, terpenes, alkaloids, etc., have received considerable attention in recent years due to their diverse pharmacological properties including cytotoxic and cancer chemopreventive effects. Looking into this, the antioxidant and anticancer evaluation of Scindapsus officinalis (Roxb.) Schott fruits has been attempted to investigate its antitumor activity. The collection and authentication of the plant material mainly fruits and their various extractions was done. Identification of plant's active constituents by preliminary phytochemical screening was carried out. An in-vitro cytotoxic assay using the brine shrimp lethality assay with brine shrimp eggs (Artemia salina) at a dose of 1–10 μg/ml with the fruit extract was performed by the method described by Mayer et al. Cell viability using the Trypan blue dye exclusion test at a dose of 20, 40, 80, 120, and 160 μg/ml dissolved in DMSO (final concentration 0.1%), and cytotoxicity using the MTT assay where viable cells convert MTT into a formazan salt were performed. All pharmacological screening for acute toxicity and anti tumour studies using EAC 1 × 106 cells/mouse treated Swiss albino mice at a dose of 100 and 200 mg/kg/day orally was carried out. Biochemical and antioxidants predictions from various parameters like hematological, RBC, WBC count, PVC, total protein, Tissue Lipid Peroxidation, SOD, CATALASE, GPx, GST levels and anti tumour activity of Scindapsus officinalis were observed. The data was statistically analyzed by one-way ANOVA followed by Dunnett's and Tukey's multiple comparison test. The antitumor effect of the extract is evident from the increase in mean

  2. Potential anticancer effect of red spinach (Amaranthus gangeticus) extract.

    PubMed

    Sani, Huzaimah Abdullah; Rahmat, Asmah; Ismail, Maznah; Rosli, Rozita; Endrini, Susi

    2004-01-01

    The objective of this study was to determine the anti cancer effects of red spinach (Amaranthus gangeticus Linn) in vitro and in vivo. For in vitro study, microtitration cytotoxic assay was done using 3-(4,5-dimethylthiazol-2-il)-2,5-diphenil tetrazolium bromide (MTT) kit assay. Results showed that aqueous extract of A gangeticus inhibited the proliferation of liver cancer cell line (HepG2) and breast cancer cell line (MCF-7). The IC(50) values were 93.8 mu g/ml and 98.8 mu g/ml for HepG2 and MCF-7, respectively. The inhibitory effect was also observed in colon cancer cell line (Caco-2), but a lower percentage compared to HepG2 and MCF-7. For normal cell line (Chang Liver), there was no inhibitory effect. In the in vivo study, hepatocarcinogenesis was monitored in rats according to Solt and Farber (1976) without partial hepatectomy. Assay of tumour marker enzymes such as glutathione S-transferase (GST), gamma-glutamyl transpeptidase (GGT), uridyl diphosphoglucuronyl transferase (UDPGT) and alkaline phosphatase (ALP) were carried out to determine the severity of hepatocarcinogenesis. The result found that supplementation of 5%, 7.5% and 10% of A. gangeticus aqueous extract to normal rats did not show any significant difference towards normal control (P <0.05). The exposure of the rats to chemical carcinogens diethylnitrosamine (DEN) and 2-acetylaminofluorene (AAF) showed a significant increase in specific enzyme activity of GGT, GST, UDPGT and ALP compared to normal control (P <0.05). However, it was found that the supplementation of A. gangeticus aqueous extract in 5%, 7.5% and 10% to cancer-induced rats could inhibit the activity of all tumour marker enzymes especially at 10% (P <0.05). Supplementation of anti cancer drug glycyrrhizin at suggested dose (0.005%) did not show any suppressive effect towards cancer control (P <0.05). In conclusion, A. gangeticus showed anticancer potential in in vitro and in vivo studies. PMID:15563447

  3. Characterization of novel MPS1 inhibitors with preclinical anticancer activity.

    PubMed

    Jemaà, M; Galluzzi, L; Kepp, O; Senovilla, L; Brands, M; Boemer, U; Koppitz, M; Lienau, P; Prechtl, S; Schulze, V; Siemeister, G; Wengner, A M; Mumberg, D; Ziegelbauer, K; Abrieu, A; Castedo, M; Vitale, I; Kroemer, G

    2013-11-01

    synergistic interaction between paclitaxel and MPS1 inhibitors could also be demonstrated in vivo, as the combination of these agents efficiently reduced the growth of tumor xenografts and exerted superior antineoplastic effects compared with either compound employed alone. Altogether, these results suggest that MPS1 inhibitors may exert robust anticancer activity, either as standalone therapeutic interventions or combined with microtubule-targeting chemicals. PMID:23933817

  4. Anti-Cancer Effect of Lambertianic Acid by Inhibiting the AR in LNCaP Cells

    PubMed Central

    Lee, Myoung-Sun; Lee, Seon-Ok; Kim, Sung-Hoon; Lee, Eun-Ok; Lee, Hyo-Jeong

    2016-01-01

    Lambertianic acid (LA) is known to have anti-allergic and antibacterial effects. However, the anticancer activities and mechanism of action of LA have not been investigated. Therefore, the anticancer effects and mechanism of LA are investigated in this study. LA decreased not only AR protein levels, but also cellular and secretory levels of PSA. Furthermore, LA inhibited nuclear translocation of the AR induced by mibolerone. LA suppressed cell proliferation by inducing G1 arrest, downregulating CDK4/6 and cyclin D1 and activating p53 and its downstream molecules, p21 and p27. LA induced apoptosis and the expression of related proteins, including cleaved caspase-9 and -3, c-PARP and BAX, and inhibited BCl-2. The role of AR in LA-induced apoptosis was assessed by using siRNA. Collectively, these findings suggest that LA exerts the anticancer effect by inhibiting AR and is a valuable therapeutic agent in prostate cancer treatment. PMID:27399684

  5. Suppositional area for the search of bacterial products for anticancer therapy.

    PubMed

    Abashina, Tatiana; Laurinavichius, Kestutis; Vainshtein, Mikhail

    2016-07-01

    It is well-known that bacteria can produce compounds which show anticancer effects. In present time, it is impossible to check all bacterial species on their possible production of anticancer compounds (AC) under different conditions. Thus, it is necessary to limit the area for search of bacterial products for the anticancer therapy. We propose that production of AC by bacteria is a part of microbial biological strategy under natural conditions. We propose that bacteria in soils, in water and on plants do not meet human tumors and their AC serve for the competition with eukaryotic organisms. Most probably, an epiphytic growth of bacilli is accompanied with production of compounds inhibiting eukaryotes. According to awaited profit for the AC-producing bacteria, the epiphytic groups of bacilli show inhibition of mycelial fungi which are a natural model of eukaryotic cells. An example of strain isolation and a primary test is presented. PMID:27241255

  6. Anticancer properties of novel 4-methylene-1,2-diphenylpyrazolidin-3-ones.

    PubMed

    Gach, Katarzyna; Szymański, Jacek; Pomorska, Dorota; Długosz, Angelika; Modranka, Jakub; Michalak, Marlena; Janecki, Tomasz; Janecka, Anna

    2015-11-01

    The limited success of the currently used antitumor therapies is the driving force for organic chemists to seek new lead structures with anticancer potential. Two α-methylene-γ-lactams with an additional nitrogen atom in the lactam ring, 5-vinyl-1,2-diphenyl-4-methylenepyrazolidin-3-one (2a) and 5-phenyl-1,2-diphenyl-4-methylenepyrazolidin-3-one (2b) have been synthesized. Their anticancer activity was assessed in MCF-7 cells. Both compounds inhibited cell proliferation and induced DNA damage and apoptosis, with 2a being the more potent analog. Synergistic effects of 2a used in combination with known anticancer drugs, 5-fluorouracil, taxol, and oxaliplatin were evaluated. Compound 2a significantly enhanced the antitumor action of oxaliplatin and 5-fluorouracil, but not taxol. PMID:25832885

  7. Development of Platinum(iv) Complexes as Anticancer Prodrugs: the Story so Far

    NASA Astrophysics Data System (ADS)

    Wong, Daniel Yuan Qiang; Ang, Wee Han

    2012-06-01

    The serendipitous discovery of the antitumor properties of cisplatin by Barnett Rosenberg some forty years ago brought about a paradigm shift in the field of medicinal chemistry and challenged conventional thinking regarding the role of potentially toxic heavy metals in drugs. Platinum(II)-based anticancer drugs have since become some of the most effective and widely-used drugs in a clinician's arsenal and have saved countless lives. However, they are limited by high toxicity, severe side-effects and the incidence of drug resistance. In recent years, attention has shifted to stable platinum(IV) complexes as anticancer prodrugs. By exploiting the unique chemical and structural attributes of their scaffolds, these platinum(IV) prodrugs offer new strategies of targeting and killing cancer cells. This review summarizes the development of anticancer platinum(IV) prodrugs to date and some of the exciting strategies that utilise the platinum(IV) construct as targeted chemotherapeutic agents against cancer.

  8. Discovery of a new function of curcumin which enhances its anticancer therapeutic potency

    NASA Astrophysics Data System (ADS)

    Nagahama, Koji; Utsumi, Tomoya; Kumano, Takayuki; Maekawa, Saeko; Oyama, Naho; Kawakami, Junji

    2016-08-01

    Curcumin has received immense attention over the past decades because of its diverse biological activities and recognized as a promising drug candidate in a large number of diseases. However, its clinical application has been hindered due to extremely low aqueous solubility, chemical stability, and cellular uptake. In this study, we discovered quite a new function of curcumin, i.e. pH-responsive endosomal disrupting activity, derived from curcumin’s self-assembly. We selected anticancer activity as an example of biological activities of curcumin, and investigated the contribution of pH-responsive property to its anticancer activity. As a result, we demonstrated that the pH-responsive property significantly enhances the anticancer activity of curcumin. Furthermore, we demonstrated a utility of the pH-responsive property of curcumin as delivery nanocarriers for doxorubicin toward combination cancer therapy. These results clearly indicate that the smart curcumin assemblies act as promising nanoplatform for development of curcumin-based therapeutics.

  9. Repurposing the Clinically Efficacious Antifungal Agent Itraconazole as an Anticancer Chemotherapeutic.

    PubMed

    Pace, Jennifer R; DeBerardinis, Albert M; Sail, Vibhavari; Tacheva-Grigorova, Silvia K; Chan, Kelly A; Tran, Raymond; Raccuia, Daniel S; Wechsler-Reya, Robert J; Hadden, M Kyle

    2016-04-28

    Itraconazole (ITZ) is an FDA-approved member of the triazole class of antifungal agents. Two recent drug repurposing screens identified ITZ as a promising anticancer chemotherapeutic that inhibits both the angiogenesis and hedgehog (Hh) signaling pathways. We have synthesized and evaluated first- and second-generation ITZ analogues for their anti-Hh and antiangiogenic activities to probe more fully the structural requirements for these anticancer properties. Our overall results suggest that the triazole functionality is required for ITZ-mediated inhibition of angiogenesis but that it is not essential for inhibition of Hh signaling. The synthesis and evaluation of stereochemically defined des-triazole ITZ analogues also provides key information as to the optimal configuration around the dioxolane ring of the ITZ scaffold. Finally, the results from our studies suggest that two distinct cellular mechanisms of action govern the anticancer properties of the ITZ scaffold. PMID:27014922

  10. Synthesis and anticancer potential of novel xanthone derivatives with 3,6-substituted chains.

    PubMed

    Liu, Chaomei; Zhang, Mei; Zhang, Zhenhuan; Zhang, Steven B; Yang, Shanmin; Zhang, Amy; Yin, Liangjie; Swarts, Steven; Vidyasagar, Sadasivan; Zhang, Lurong; Okunieff, Paul

    2016-09-15

    In an effort to develop new drug candidates with enhanced anticancer activity, our team synthesized and assessed the cytotoxicity of a series of novel xanthone derivatives with two longer 3,6-disubstituted amine carbonyl methoxy side chains on either benzene ring in selected human cancer cell lines. An MTT assay revealed that a set of compounds with lower IC50 values than the positive control, 5-FU, exhibited greater anticancer effects. The most potent derivative (XD8) exhibited anticancer activity in MDA-MB-231, PC-3, A549, AsPC-1, and HCT116 cells lines with IC50 values of 8.06, 6.18, 4.59, 4.76, and 6.09μM, respectively. Cell cycle analysis and apoptosis activation suggested that the mechanism of action of these derivatives includes cell cycle regulation and apoptosis induction. PMID:27448774

  11. SYNTHESIS, ANTIMICROBIAL, ANTICANCER EVALUATION AND QSAR STUDIES OF THIAZOLIDIN-4-ONE DERIVATIVES.

    PubMed

    Deep, Aakash; Kumar, Pradeep; Narasimhan, Balasubramanian; Lim, Siong Meng; Ramasamy, Kalavathy; Mishra, Rakesh Kumar; Mani, Vasudevan

    2016-01-01

    In this study, a novel series of 4-thiazolidinone derivatives (1-17) was synthesized and evaluated for its in vitro antimicrobial and anticancer potentials. N-(2-(5-(4-nitrobenzylidene)-2-(4-chlorophenyl)-4-oxothia- zolidin-3-ylamino)-2-oxoethyl) benzamide (7, pMICam = 1.86 µM/mL) was found to be the most active antimi- crobial agent. The anticancer study results demonstrated that N-(2-(5-(4-hydroxybenzylidene)-2-(4- methoxyphenyl)-4-oxothiazolidin-3-ylamino)-2-oxoethyl) benzamide (10, IC₅₀ = 18.59 µM) was the most active anticancer agent. QSAR studies indicated the importance of topological parameter, Kier's α third order shape index (κα₃) as well as electronic parameters, cosmic total energy (cos E) and energy of highest occupied molecular orbital (HOMO) in describing the antimicrobial activity of synthesized compounds. PMID:27008804

  12. Drug Delivery Innovations for Enhancing the Anticancer Potential of Vitamin E Isoforms and Their Derivatives

    PubMed Central

    Neophytou, Christiana M.; Constantinou, Andreas I.

    2015-01-01

    Vitamin E isoforms have been extensively studied for their anticancer properties. Novel drug delivery systems (DDS) that include liposomes, nanoparticles, and micelles are actively being developed to improve Vitamin E delivery. Furthermore, several drug delivery systems that incorporate Vitamin E isoforms have been synthesized in order to increase the bioavailability of chemotherapeutic agents or to provide a synergistic effect. D-alpha-tocopheryl polyethylene glycol succinate (Vitamin E TPGS or TPGS) is a synthetic derivative of natural alpha-tocopherol which is gaining increasing interest in the development of drug delivery systems and has also shown promising anticancer effect as a single agent. This review provides a summary of the properties and anticancer effects of the most potent Vitamin E isoforms and an overview of the various formulations developed to improve their efficacy, with an emphasis on the use of TPGS in drug delivery approaches. PMID:26137487

  13. Synthesis, cytotoxicity and mechanistic evaluation of 4-oxoquinoline-3-carboxamide derivatives: finding new potential anticancer drugs.

    PubMed

    Forezi, Luana da S M; Tolentino, Nathalia M C; de Souza, Alessandra M T; Castro, Helena C; Montenegro, Raquel C; Dantas, Rafael F; Oliveira, Maria E I M; Silva, Floriano P; Barreto, Leilane H; Burbano, Rommel M R; Abrahim-Vieira, Bárbara; de Oliveira, Riethe; Ferreira, Vitor F; Cunha, Anna C; Boechat, Fernanda da C S; de Souza, Maria Cecília B V

    2014-01-01

    As part of a continuing search for new potential anticancer candidates, we describe the synthesis, cytotoxicity and mechanistic evaluation of a series of 4-oxoquinoline-3-carboxamide derivatives as novel anticancer agents. The inhibitory activity of compounds 10-18 was determined against three cancer cell lines using the MTT colorimetric assay. The screening revealed that derivatives 16b and 17b exhibited significant cytotoxic activity against the gastric cancer cell line but was not active against a normal cell line, in contrast to doxorubicin, a standard chemotherapeutic drug in clinical use. Interestingly, no hemolytical activity was observed when the toxicity of 16b and 17b was tested against blood cells. The in silico and in vitro mechanistic evaluation indicated the potential of 16b as a lead for the development of novel anticancer agents against gastric cancer cells. PMID:24858098

  14. Synthesis, antimicrobial, anticancer evaluation and QSAR studies of 3/4-bromo benzohydrazide derivatives.

    PubMed

    Kumar, Pradeep; Narasimhan, Balasubramanian; Ramasamy, Kalavathy; Mani, Vasudevan; Mishra, Rakesh Kumar; Majeed, Abu Bakar Abdul

    2015-01-01

    A series 3/4-bromo-N'-(substituted benzylidene/furan-2-ylmethylene/5-oxopentylidene/3- phenylallylidene)benzohydrazides (1-23) was synthesized and characterized by physicochemical and spectral means. The synthesized compounds were screened for their antimicrobial and anticancer potentials. Antimicrobial activity results indicated that compound 12 (pMICam = 1.67 μM/ml) was the most potent antimicrobial agent. The synthesized benzohydrazides were also having good anticancer potential and compound 22 (IC50 = 1.20 μM μM) was found to be the most potent anticancer agent which was more potent than standard drugs, tetrandrine (IC50 = 1.53) and 5- fluorouracil (IC50 = 4.6 μM). QSAR studies indicated that antimicrobial activity of synthesized compounds was best described by electronic parameter, total energy (Te) and topological parameters, valance zero order molecular connectivity index ((0)χ(v)) and Wiener index (W). PMID:25860177

  15. Hydrogen Peroxide Inducible DNA Cross-Linking Agents: Targeted Anticancer Prodrugs

    PubMed Central

    Kuang, Yunyan; Balakrishnan, Kumudha; Gandhi, Varsha; Peng, Xiaohua

    2011-01-01

    The major concern for anticancer chemotherapeutic agents is the host toxicity. The development of anti-cancer prodrugs targeting the unique biochemical alterations in cancer cells is an attractive approach to achieve therapeutic activity and selectivity. We designed and synthesized a new type of nitrogen mustard prodrug that can be activated by high level of reactive oxygen species (ROS) found in cancer cells to release the active chemotherapy agent. The activation mechanism was determined by NMR analysis. The activity and selectivity of these prodrugs towards ROS was determined by measuring DNA interstrand crosslinks and/or DNA alkylations. These compounds showed 60–90% inhibition toward various cancer cells, while normal lymphocytes were not affected. To the best of our knowledge, this is the first example of H2O2-activated anticancer prodrugs. PMID:22035519

  16. Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms

    PubMed Central

    Akrami, Mohammad; Balalaie, Saeed; Hosseinkhani, Saman; Alipour, Mohsen; Salehi, Fahimeh; Bahador, Abbas; Haririan, Ismaeil

    2016-01-01

    Pro-apoptotic peptides induce intrinsic apoptosis pathway in cancer cells. However, poor cellular penetration of the peptides is often associated with limited therapeutic efficacy. In this report, a series of peptide-gold nanoparticle platforms were developed to evaluate the anticancer activity of a novel alpha-lipoic acid-peptide conjugate, LA-WKRAKLAK, with respect to size and shape of nanoparticles. Gold nanoparticles (AuNPs) were found to enhance cell internalization as well as anticancer activity of the peptide conjugates. The smaller nanospheres showed a higher cytotoxicity, morphological change and cellular uptake compared to larger nanospheres and nanorods, whereas nanorods showed more hemolytic activity compared to nanospheres. The findings suggested that the anticancer and biological effects of the peptides induced by intrinsic apoptotic pathway were tuned by peptide-functionalized gold nanoparticles (P-AuNPs) as a function of their size and shape. PMID:27491007

  17. Recent developments of C-4 substituted coumarin derivatives as anticancer agents.

    PubMed

    Dandriyal, Jyoti; Singla, Ramit; Kumar, Manvendra; Jaitak, Vikas

    2016-08-25

    Cancer is a prominent cause of death in global. Currently, the numbers of drugs that are in clinical practice are having a high prevalence of side effect and multidrug resistance. Researchers have made an attempt to expand a suitable anticancer drug that has no MDR and side effect. Coumarin scaffold became an attractive subject due to their broad spectrum of pharmacological activities. Coumarin derivatives extensively explored for anticancer activities as it possesses minimum side effect along with multi-drug reversal activity. Coumarin derivatives can act by various mechanisms on different tumor cell lines depending on substitution pattern of the core structure of coumarin. Substitution on coumarin nucleus leads to the search for more potent compounds. In this review, we have made an effort to give a synthetic strategy for the preparation of C-4 substituted coumarin derivatives as anticancer agents based on their mechanism of action and also discuss the SAR of the most active compound. PMID:27155469

  18. Anticancer activity studies of cubebin isolated from Piper cubeba and its synthetic derivatives.

    PubMed

    Rajalekshmi, Dhanya S; Kabeer, Farha A; Madhusoodhanan, Arya R; Bahulayan, Arun K; Prathapan, Remani; Prakasan, Nisha; Varughese, Sunil; Nair, Mangalam S

    2016-04-01

    (-)-Cubebin, isolated from the seeds of Piper cubeba, and its five different types of derivatives (a total of 17), with varying functionalities, were tested for their in vitro anticancer activity against six human cancer cell lines (A549, K562, SiHa, KB, HCT116 and HT29) using MTT assay. Cubebin as well as its derivatives containing lactone and amide groups showed significant anticancer activity. In some of the tested cell lines, the amide derivatives showed higher activity. Morphological analysis indicated that these compounds act through apoptosis mediated pathway of cell death and we expect that these results will pave new paths in the development of novel anticancer agents by the derivatization of (-)-cubebin. PMID:26916436

  19. Two preclinical tests to evaluate anticancer activity and to help validate drug candidates for clinical trials

    PubMed Central

    López-Lázaro, Miguel

    2015-01-01

    Current approaches to assessing preclinical anticancer activity do not reliably predict drug efficacy in cancer patients. Most of the compounds that show remarkable anticancer effects in preclinical models actually fail when tested in clinical trials. We blame these failures on the complexity of the disease and on the limitations of the preclinical tools we require for our research. This manuscript argues that this lack of clinical response may also be caused by poor in vitro and in vivo preclinical designs, in which cancer patients' needs are not fully considered. Then, it proposes two patient-oriented tests to assess in vitro and in vivo anticancer activity and to help validate drug candidates for clinical evaluation. PMID:25859551

  20. Review of procedures used for the extraction of anti-cancer compounds from tropical plants.

    PubMed

    Pandey, Saurabh; Shaw, Paul N; Hewavitharana, Amitha K

    2015-01-01

    Tropical plants are important sources of anti-cancer lead molecules. According to the US National Cancer Institute, out of the 3000 plants identified as active against cancer using in vitro studies, 70% are of tropical origin. The extraction of bioactive compounds from the plant materials is a fundamental step whose efficiency is critical for the success of drug discovery efforts. There has been no review published of the extraction procedures of anti-cancer compounds from tropical plants and hence the following is a critical evaluation of such procedures undertaken prior to the use of these compounds in cancer cell line studies, during the last five years. It presents a comprehensive analysis of all approaches taken to extract anti-cancer compounds from various tropical plants. (Databases searched were PubMed, SciFinder, Web of Knowledge, Scopus, Embase and Google Scholar). PMID:25403166

  1. Evaluation of anticancer activity of celastrol liposomes in prostate cancer cells

    PubMed Central

    Wolfram, Joy; Suri, Krishna; Huang, Yi; Molinaro, Roberto; Borsoi, Carlotta; Scott, Bronwyn; Boom, Kathryn; Paolino, Donatella; Fresta, Massimo; Wang, Jianghua; Ferrari, Mauro

    2014-01-01

    Context Celastrol, a natural compound derived from the herb Tripterygium wilfordii, is known to have anticancer activity, but is not soluble in water. Objective Formation of celastrol liposomes, to avoid the use of toxic solubilizing agents. Materials and methods Two different formulations of pegylated celastrol liposomes were fabricated. Liposomal characteristics and serum stability were determined using dynamic light scattering. Drug entrapment efficacy and drug release were measured spectrophotometrically. Cellular internalization and anticancer activity was measured in prostate cancer cells. Results Liposomal celastrol displayed efficient serum stability, cellular internalization and anticancer activity, comparable to that of the free drug reconstituted in dimethyl sulfoxide. Discussion and conclusion Liposomal celastrol can decrease the viability of prostate cancer cells, while eliminating the need for toxic solubilizing agents. PMID:24654943

  2. Enhancement of In Vivo Anticancer Effect of Cisplatin by Incorporation Inside Carbon Nanohorns

    NASA Astrophysics Data System (ADS)

    Yudasaka, Masako; Ajima, Kumiko; Murakami, Tatsuya; Mizoguchi, Yoshikazu; Tsuchida, Kunihiro; Ichihashi, Toshinari; Iijima, Sumio

    2009-03-01

    We have been studying potential applications of single-wall carbon nanohorns (SWNHs) to drug delivery systems. SWNHs are multiply functionalized with proteins, magnetites, tumor targeting molecules, and others. Various drugs are easily incorporated, and the incorporated drugs are slowly released. Almost no acute toxicity of SWNHs was found through various animal tests. We show in this report that anticancer effect of cisplatin was enhanced by incorporation inside SWNHs (CDDP@SWNH) as evidenced by in vivo tests: CDDP@SWNH was locally injected to tumors subcutaneously transplanted on mice. CDDP@SWNH inhibited the tumor growth more effectively than CDDP. This anticancer enhancement was achieved by large CDDP-quantity incorporated inside SWNH, slow release of CDDP from SWNH, long-term stay of SWNHs at the tumor sites, and an anticancer effect of SWNH itself [1].[3pt] [1] K. Ajima et al. ACSNano, 10(2008)2057-2064.

  3. Anticancer Activity of the Antimicrobial Peptide Scolopendrasin VII Derived from the Centipede, Scolopendra subspinipes mutilans.

    PubMed

    Lee, Joon Ha; Kim, In-Woo; Kim, Sang-Hee; Kim, Mi-Ae; Yun, Eun-Young; Nam, Sung-Hee; Ahn, Mi-Young; Kang, Dongchul; Hwang, Jae Sam

    2015-08-01

    Previously, we performed de novo RNA sequencing of Scolopendra subspinipes mutilans using high-throughput sequencing technology and identified several antimicrobial peptide candidates. Among them, a cationic antimicrobial peptide, scolopendrasin VII, was selected based on its physicochemical properties, such as length, charge, and isoelectric point. Here, we assessed the anticancer activities of scolopendrasin VII against U937 and Jurkat leukemia cell lines. The results showed that scolopendrasin VII decreased the viability of the leukemia cells in MTS assays. Furthermore, flow cytometric analysis and acridine orange/ethidium bromide staining revealed that scolopendrasin VII induced necrosis in the leukemia cells. Scolopendrasin VII-induced necrosis was mediated by specific interaction with phosphatidylserine, which is enriched in the membrane of cancer cells. Taken together, these data indicated that scolopendrasin VII induced necrotic cell death in leukemia cells, probably through interaction with phosphatidylserine. The results provide a useful anticancer peptide candidate and an efficient strategy for new anticancer peptide development. PMID:25907065

  4. Oxadiazoles as privileged motifs for promising anticancer leads: recent advances and future prospects.

    PubMed

    Khan, Imtiaz; Ibrar, Aliya; Abbas, Naeem

    2014-01-01

    Taking into account the rising trend of the incidence of cancers of various organs, effective therapies are urgently needed to control human malignancies. The rapid emergence of hundreds of new agents that modulate an ever-growing list of cancer-specific molecular targets offers tremendous hope for cancer patients. However, almost all of the chemotherapy drugs currently on the market cause serious side effects. Based on these facts, the design of new chemical entities as anticancer agents requires the simulation of a suitable bioactive pharmacophore. The pharmacophore not only should have the required potency but must also be safer on normal cell lines than on tumor cells. In this perspective, oxadiazole scaffolds with well-defined anticancer activity profile have fueled intense academic and industrial research in recent years. This paper is intended to highlight the recent advances along with current developments as well as future outlooks for the design of novel and efficacious anticancer agents based on oxadiazole motifs. PMID:24265208

  5. Anticancer studies of the synthesized gold nanoparticles against MCF 7 breast cancer cell lines

    NASA Astrophysics Data System (ADS)

    Kamala Priya, M. R.; Iyer, Priya R.

    2014-09-01

    It has been previously stated that gold nanoparticles have been successfully synthesized using various green extracts of plants. The synthesized gold nanoparticles were characterized under scanning electron microscopy and EDX to identify the size of the nanoparticles. It was found that the nanoparticles were around 30 nm in size, which is a commendable nano dimension achieved through a plant mediated synthesis. The nanoparticles were further studied for their various applications. In the current study, we have made attempts to exploit the anticancer ability of the gold nano particles. The nanoparticles were studied against MCF 7 breast cancer cell lines. The results obtained from the studies of anticancer activity showed that gold nanoparticles gave an equivalent good results, in par with the standard drugs against cancer. The AuNP's proved to be efficient even from the minimum concentrations of 2 μg/ml, and as the concentration increased the anticancer efficacy as well increased.

  6. Anticancer studies of the synthesized gold nanoparticles against MCF 7 breast cancer cell lines

    NASA Astrophysics Data System (ADS)

    Kamala Priya, M. R.; Iyer, Priya R.

    2015-04-01

    It has been previously stated that gold nanoparticles have been successfully synthesized using various green extracts of plants. The synthesized gold nanoparticles were characterized under scanning electron microscopy and EDX to identify the size of the nanoparticles. It was found that the nanoparticles were around 30 nm in size, which is a commendable nano dimension achieved through a plant mediated synthesis. The nanoparticles were further studied for their various applications. In the current study, we have made attempts to exploit the anticancer ability of the gold nano particles. The nanoparticles were studied against MCF 7 breast cancer cell lines. The results obtained from the studies of anticancer activity showed that gold nanoparticles gave an equivalent good results, in par with the standard drugs against cancer. The AuNP's proved to be efficient even from the minimum concentrations of 2 μg/ml, and as the concentration increased the anticancer efficacy as well increased.

  7. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark

    PubMed Central

    2014-01-01

    Background Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. Methods In anti-inflammatory activity, NO was measured using the griess method. iNOS and proteins regulating NF-κB and ERK1/2 signaling were analyzed by Western blot. In anti-cancer activity, cell growth was measured by MTT assay. Cleaved PARP, ATF3 and cyclin D1 were analyzed by Western blot. Results In anti-inflammatory effect, MRBE blocked NO production via suppressing iNOS over-expression in LPS-stimulated RAW264.7 cells. In addition, MRBE inhibited NF-κB activation through p65 nuclear translocation via blocking IκB-α degradation and ERK1/2 activation via its hyper-phosphorylation. In anti-cancer activity, MRBE deos-dependently induced cell growth arrest and apoptosis in human colorectal cancer cells, SW480. MRBE treatment to SW480 cells activated ATF3 expression and down-regulated cyclin D1 level. We also observed that MRBE-induced ATF3 expression was dependent on ROS and GSK3β. Moreover, MRBE-induced cyclin D1 down-regulation was mediated from cyclin D1 proteasomal degradation, which was dependent on ROS. Conclusions These findings suggest that mulberry root bark exerts anti-inflammatory and anti-cancer activity. PMID:24962785

  8. Anti-Cancer Properties of the Naturally Occurring Aphrodisiacs: Icariin and Its Derivatives

    PubMed Central

    Tan, Hui-Li; Chan, Kok-Gan; Pusparajah, Priyia; Saokaew, Surasak; Duangjai, Acharaporn; Lee, Learn-Han; Goh, Bey-Hing

    2016-01-01

    Epimedium (family Berberidaceae), commonly known as Horny Goat Weed or Yin Yang Huo, is commonly used as a tonic, aphrodisiac, anti-rheumatic and anti-cancer agent in traditional herbal formulations in Asian countries such as China, Japan, and Korea. The major bioactive compounds present within this plant include icariin, icaritin and icariside II. Although it is best known for its aphrodisiac properties, scientific and pharmacological studies suggest it possesses broad therapeutic capabilities, especially for enhancing reproductive function and osteoprotective, neuroprotective, cardioprotective, anti-inflammatory and immunoprotective effects. In recent years, there has been great interest in scientific investigation of the purported anti-cancer properties of icariin and its derivatives. Data from in vitro and in vivo studies suggests these compounds demonstrate anti-cancer activity against a wide range of cancer cells which occurs through various mechanisms such as apoptosis, cell cycle modulation, anti-angiogenesis, anti-metastasis and immunomodulation. Of note, they are efficient at targeting cancer stem cells and drug-resistant cancer cells. These are highly desirable properties to be emulated in the development of novel anti-cancer drugs in combatting the emergence of drug resistance and overcoming the limited efficacy of current standard treatment. This review aims to summarize the anti-cancer mechanisms of icariin and its derivatives with reference to the published literature. The currently utilized applications of icariin and its derivatives in cancer treatment are explored with reference to existing patents. Based on the data compiled, icariin and its derivatives are shown to be compounds with tremendous potential for the development of new anti-cancer drugs. PMID:27445824

  9. Anti-Cancer Properties of the Naturally Occurring Aphrodisiacs: Icariin and Its Derivatives.

    PubMed

    Tan, Hui-Li; Chan, Kok-Gan; Pusparajah, Priyia; Saokaew, Surasak; Duangjai, Acharaporn; Lee, Learn-Han; Goh, Bey-Hing

    2016-01-01

    Epimedium (family Berberidaceae), commonly known as Horny Goat Weed or Yin Yang Huo, is commonly used as a tonic, aphrodisiac, anti-rheumatic and anti-cancer agent in traditional herbal formulations in Asian countries such as China, Japan, and Korea. The major bioactive compounds present within this plant include icariin, icaritin and icariside II. Although it is best known for its aphrodisiac properties, scientific and pharmacological studies suggest it possesses broad therapeutic capabilities, especially for enhancing reproductive function and osteoprotective, neuroprotective, cardioprotective, anti-inflammatory and immunoprotective effects. In recent years, there has been great interest in scientific investigation of the purported anti-cancer properties of icariin and its derivatives. Data from in vitro and in vivo studies suggests these compounds demonstrate anti-cancer activity against a wide range of cancer cells which occurs through various mechanisms such as apoptosis, cell cycle modulation, anti-angiogenesis, anti-metastasis and immunomodulation. Of note, they are efficient at targeting cancer stem cells and drug-resistant cancer cells. These are highly desirable properties to be emulated in the development of novel anti-cancer drugs in combatting the emergence of drug resistance and overcoming the limited efficacy of current standard treatment. This review aims to summarize the anti-cancer mechanisms of icariin and its derivatives with reference to the published literature. The currently utilized applications of icariin and its derivatives in cancer treatment are explored with reference to existing patents. Based on the data compiled, icariin and its derivatives are shown to be compounds with tremendous potential for the development of new anti-cancer drugs. PMID:27445824

  10. Nelfinavir and other protease inhibitors in cancer: mechanisms involved in anticancer activity

    PubMed Central

    Koltai, Tomas

    2015-01-01

    Objective: To review the mechanisms of anti-cancer activity of nelfinavir and other protease inhibitors (PIs) based on evidences reported in the published literature. Methods: We extensively reviewed the literature concerning nelfinavir (NFV) as an off target anti-cancer drug and other PIs. A classification of PIs based on anti-cancer mode of action was proposed. Controversies regarding nelfinavir mode of action were also addressed. Conclusions: The two main mechanisms involved in anti-cancer activity are endoplasmic reticulum stress-unfolded protein response pathway and Akt inhibition. However there are many other effects, partially dependent and independent of those mentioned, that may be useful in cancer treatment, including MMP-9 and MMP-2 inhibition, down-regulation of CDK-2, VEGF, bFGF, NF-kB, STAT-3, HIF-1 alfa, IGF, EGFR, survivin, BCRP, androgen receptor, proteasome, fatty acid synthase (FAS), decrease in cellular ATP concentration and upregulation of TRAIL receptor DR5, Bax, increased radiosensitivity, and autophagy. The end result of all these effects is slower growth, decreased angiogenesis, decreased invasion and increased apoptosis, which means reduced proliferation and increased cancer cells death. PIs may be classified according to their anticancer activity at clinically achievable doses, in AKT inhibitors, ER stressors and Akt inhibitors/ER stressors. Beyond the phase I trials that have been recently completed, adequately powered and well-designed clinical trials are needed in the various cancer type settings, and specific trials where NFV is tested in association with other known anti-cancer pharmaceuticals should be sought, in order to find an appropriate place for NFV in cancer treatment. The analysis of controversies on the molecular mechanisms of NFV hints to the possibility that NFV works in a different way in tumor cells and in hepatocytes and adipocytes. PMID:26097685

  11. Design, synthesis and biological activity of piperlongumine derivatives as selective anticancer agents.

    PubMed

    Wu, Yuelin; Min, Xiao; Zhuang, Chunlin; Li, Jin; Yu, Zhiliang; Dong, Guoqiang; Yao, Jiangzhong; Wang, Shengzheng; Liu, Yang; Wu, Shanchao; Zhu, Shiping; Sheng, Chunquan; Wei, Yunyang; Zhang, Huojun; Zhang, Wannian; Miao, Zhenyuan

    2014-07-23

    In an effort to expand the structure-activity relationship of the natural anticancer compound piperlongumine, we have prepared sixteen novel piperlongumine derivatives with halogen or morpholine substituents at C2 and alkyl substituents at C7. Most of 2-halogenated piperlongumines showed potent in vitro activity against four cancer cells and modest selectivity for lung normal cells. The highly active anticancer compound 11h exhibited obvious ROS elevation and excellent in vivo antitumor potency with suppressed tumor growth by 48.58% at the dose of 2 mg/kg. The results indicated that halogen substituents as electrophilic group at C2 played an important role in increasing cytotoxicity. PMID:24937186

  12. Anticancer activity of essential oils and their chemical components - a review

    PubMed Central

    Bayala, Bagora; Bassole, Imaël HN; Scifo, Riccardo; Gnoula, Charlemagne; Morel, Laurent; Lobaccaro, Jean-Marc A; Simpore, Jacques

    2014-01-01

    Essential oils are widely used in pharmaceutical, sanitary, cosmetic, agriculture and food industries for their bactericidal, virucidal, fungicidal, antiparasitical and insecticidal properties. Their anticancer activity is well documented. Over a hundred essential oils from more than twenty plant families have been tested on more than twenty types of cancers in last past ten years. This review is focused on the activity of essential oils and their components on various types of cancers. For some of them the mechanisms involved in their anticancer activities have been carried out. PMID:25520854

  13. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells.

    PubMed

    He, Huan; Li, Dong-Wei; Yang, Li-Yun; Fu, Li; Zhu, Xun-Jin; Wong, Wai-Kwok; Jiang, Feng-Lei; Liu, Yi

    2015-01-01

    Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment. PMID:26337336

  14. 3-Hydrazinoindolin-2-one derivatives: Chemical classification and investigation of their targets as anticancer agents.

    PubMed

    Ibrahim, Hany S; Abou-Seri, Sahar M; Abdel-Aziz, Hatem A

    2016-10-21

    Isatin is a well acknowledged pharmacophore in many clinically approved drugs used for treatment of cancer. 3-Hydrazinoindolin-2-one, as a derivative of isatin, represents a pharmacophore of an important class of biologically active pharmaceutical agents by virtue of their diverse biological activities. In this review, anticancer activity will be on focus for compounds derived from 3-hydrazinoindolin-2-one. They are classified according to their chemical structure into nine different classes. In each class, different compounds were browsed, showing their anticancer activity and their potential targets. Moreover, crystallographic data or docking studies were highlighted for some compounds, when available, to provide a deep understanding of their mechanisms of action. PMID:27391135

  15. Horner-Wadsworth-Emmons approach to piperlongumine analogues with potent anti-cancer activity.

    PubMed

    Han, Li-Chen; Stanley, Paul A; Wood, Paul J; Sharma, Pallavi; Kuruppu, Anchala I; Bradshaw, Tracey D; Moses, John E

    2016-08-21

    Natural products with anti-cancer activity play a vital role in lead and target discovery. We report here the synthesis and biological evaluation of the plant-derived alkaloid, piperlongumine and analogues. Using a Horner-Wadsworth-Emmons coupling approach, a selection of piperlongumine-like compounds were prepared in good overall yield from a novel phosphonoacetamide reagent. A number of the compounds displayed potent anti-cancer activity against colorectal (HCT 116) and ovarian (IGROV-1) carcinoma cell lines, via a mechanism of action which may involve ROS generation. Contrary to previous reports, no selective action in cancer cell (MRC-5) was observed for piperlongumine analogues. PMID:27443386

  16. Emergence of zebrafish models in oncology for validating novel anticancer drug targets and nanomaterials

    PubMed Central

    Mimeault, Murielle; Batra, Surinder K.

    2013-01-01

    The in vivo zebrafish models have recently attracted great attention in molecular oncology to investigate multiple genetic alterations associated with the development of human cancers and validate novel anticancer drug targets. Particularly, the transparent zebrafish models can be used as a xenotransplantation system to rapidly assess the tumorigenicity and metastatic behavior of cancer stem and/or progenitor cells and their progenies. Moreover, the zebrafish models have emerged as powerful tools for an in vivo testing of novel anticancer agents and nanomaterials for counteracting tumor formation and metastases and improving the efficacy of current radiation and chemotherapeutic treatments against aggressive, metastatic and lethal cancers. PMID:22903142

  17. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells

    PubMed Central

    He, Huan; Li, Dong-Wei; Yang, Li-Yun; Fu, Li; Zhu, Xun-Jin; Wong, Wai-Kwok; Jiang, Feng-Lei; Liu, Yi

    2015-01-01

    Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment. PMID:26337336

  18. Molecular modeling based synthesis and evaluation of in vitro anticancer activity of indolyl chalcones.

    PubMed

    Gaur, Rashmi; Yadav, Dharmendra K; Kumar, Shiv; Darokar, Mahendra P; Khan, Feroz; Bhakuni, Rajendra Singh

    2015-01-01

    A series of twenty one chalcone derivatives having indole moiety were synthesized and were evaluated against four human cancer cell lines. Indolyl chalcones 1a, 1b, 1d, 1f-1j, 2c, 2e, 2i showed good anticancer activity. Chalcones 1b and 1d were the most active and selective anticancer agents with IC50 values <1μg/ml and 1.51μg/ml, against WRL-68 cell line, respectively. Molecular mechanism was explored through in silico docking & ADMET studies. PMID:25860176

  19. Preparation of multifunctional glyconanoparticles as a platform for potential carbohydrate-based anticancer vaccines.

    PubMed

    Ojeda, Rafael; de Paz, Jose Luis; Barrientos, Africa G; Martín-Lomas, Manuel; Penadés, Soledad

    2007-02-26

    A novel platform for anticancer vaccines has been prepared using glyconanotechnology recently developed in our laboratory. Ten different multifunctional gold glyconanoparticles incorporating sialylTn and Lewis(y) antigens, T-cell helper peptides (TT) and glucose in well defined average proportions and with differing density have been synthesised in one step and characterised using NMR and TEM. Size and nature of the linker were crucial to control kinetics of S-Au bond formation and to achieve the desired ligand ratio on the gold clusters. The technology presented here opens the way for tailoring polyvalent anticancer vaccines candidates and drug delivery carriers with defined average chemical composition. PMID:17173881

  20. Expression of sulfotransferase SULT1A1 in cancer cells predicts susceptibility to the novel anticancer agent NSC-743380

    PubMed Central

    Wang, Li; Wu, Shuhong; Liu, Xiaoying; Li, Hongyu; Zhang, Hui; Wang, Rui-Yu; Sun, Xiaoping; Wei, Caimiao; Baggerly, Keith A.; Roth, Jack A.; Wang, Michael; Swisher, Stephen G.; Fang, Bingliang

    2015-01-01

    The small molecule anticancer agent NSC-743380 modulates functions of multiple cancer-related pathways and is highly active in a subset of cancer cell lines in the NCI-60 cell line panel. It also has promising in vivo anticancer activity. However, the mechanisms underlying NSC-743380's selective anticancer activity remain uncharacterized. To determine biomarkers that may be used to identify responders to this novel anticancer agent, we performed correlation analysis on NSC-743380's anticancer activity and the gene expression levels in NCI-60 cell lines and characterized the functions of the top associated genes in NSC-743380–mediated anticancer activity. We found sulfotransferase SULT1A1 is causally associated with NSC-743380's anticancer activity. SULT1A1 was expressed in NSC-743380–sensitive cell lines but was undetectable in resistant cancer cells. Ectopic expression of SULT1A1 in NSC743380 resistant cancer cells dramatically sensitized the resistant cells to NSC-743380. Knockdown of the SULT1A1 in the NSC-743380 sensitive cancer cell line rendered it resistance to NSC-743380. The SULT1A1 protein levels in cell lysates from 18 leukemia cell lines reliably predicted the susceptibility of the cell lines to NSC-743380. Thus, expression of SULT1A1 in cancer cells is required for NSC-743380's anticancer activity and can be used as a biomarker for identification of NSC-743380 responders. PMID:25514600

  1. Multifunctional liposomes for enhanced anti-cancer therapy

    NASA Astrophysics Data System (ADS)

    Falcao, Claudio Borges

    2011-12-01

    with half of the concentration needed for G3139 alone in CL to reduce the cell viability by 40%. Also, it was found greater apoptotic signal in cells treated with CLs containing D-(KLAKLAK)2/G3139 complexes than CLs with G3139 only. In vivo, D-(KLAKLAK) 2/G3139 complexes in CL significantly inhibited tumor growth compared to the saline treated group, through apoptosis induction. However, the mechanism involved in cell death by apoptosis seems to be independent of reduction of bcl-2 protein levels. PEG2000 at 1% mol could significantly reduce activity of PCL formulation towards B16(F10) cells compared to CLs. After pre-incubation at pH 7.4, PCL and pH-PCL had decreased activity compared to CL towards B16(F10) cells. After pre-incubation at pH 5.0, while CL and PCL had the same activity with the cells as in neutral pH, pH-PCL formulation had its PEG cleaved and its cytotoxicity was restored against the melanoma cells. Thus, D-(KLAKLAK)2/G3139 complexes in CL had enhanced anti-cancer therapy, through apoptosis, than G3139 alone in CL in vitro and in vivo. In vitro, PCL and pH-PCL particles obtained can have a prolonged blood residence time, and, once a tumor tissue is reached, pH-PCL can have its cytotoxicity restored because of hydrolysis of cleavable PEG at a lowered pH.

  2. A Systematic Review of the Anticancer Properties of Compounds Isolated from Licorice (Gancao).

    PubMed

    Tang, Zheng-Hai; Li, Ting; Tong, Yun-Guang; Chen, Xiao-Jia; Chen, Xiu-Ping; Wang, Yi-Tao; Lu, Jin-Jian

    2015-12-01

    Licorice (Gancao in Chinese) has been used worldwide as a botanical source in medicine and as a sweetening agent in food products for thousands of years. Triterpene saponins and flavonoids are its main ingredients that exhibit a variety of biological activities, including hepatoprotective, antiulcer, anti-inflammatory, antiviral and anticancer effects among others. This review attempts to summarize the current knowledge on the anticancer properties and mechanisms of the compounds isolated from licorice and obtain new insights for further research and development of licorice. A broad spectrum of in vitro and in vivo studies have recently demonstrated that the mixed extracts and purified compounds from licorice exhibit evident anticancer properties by inhibition of proliferation, induction of cell cycle arrest, apoptosis, autophagy, differentiation, suppression of metastasis, angiogenesis, and sensitization of chemotherapy or radiotherapy. A combined treatment of licorice compounds and clinical chemotherapy drugs remarkably enhances anticancer effects and reduces the side effects of chemotherapeutics. Furthermore, glycyrrhizic acid and glycyrrhetinic acid in licorice have been indicated to present obvious liver-targeting effects in targeted drug delivery systems for hepatocellular carcinoma treatment. PMID:26695708

  3. A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging

    PubMed Central

    Eguchi, Haruki; Umemura, Masanari; Kurotani, Reiko; Fukumura, Hidenobu; Sato, Itaru; Kim, Jeong-Hwan; Hoshino, Yujiro; Lee, Jin; Amemiya, Naoyuki; Sato, Motohiko; Hirata, Kunio; Singh, David J.; Masuda, Takatsugu; Yamamoto, Masahiro; Urano, Tsutomu; Yoshida, Keiichiro; Tanigaki, Katsumi; Yamamoto, Masaki; Sato, Mamoru; Inoue, Seiichi; Aoki, Ichio; Ishikawa, Yoshihiro

    2015-01-01

    Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies. PMID:25779357

  4. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC.

    PubMed

    Blandino, Giovanni; Valerio, Mariacristina; Cioce, Mario; Mori, Federica; Casadei, Luca; Pulito, Claudio; Sacconi, Andrea; Biagioni, Francesca; Cortese, Giancarlo; Galanti, Sergio; Manetti, Cesare; Citro, Gennaro; Muti, Paola; Strano, Sabrina

    2012-01-01

    Diabetic patients treated with metformin have a reduced incidence of cancer and cancer-related mortality. Here we show that metformin affects engraftment and growth of breast cancer tumours in mice. This correlates with the induction of metabolic changes compatible with clear anticancer effects. We demonstrate that microRNA modulation underlies the anticancer metabolic actions of metformin. In fact, metformin induces DICER expression and its effects are severely impaired in DICER knocked down cells. Conversely, ectopic expression of DICER recapitulates the effects of metformin in vivo and in vitro. The microRNAs upregulated by metformin belong mainly to energy metabolism pathways. Among the messenger RNAs downregulated by metformin, we found c-MYC, IRS-2 and HIF1alpha. Downregulation of c-MYC requires AMP-activated protein kinase-signalling and mir33a upregulation by metformin. Ectopic expression of c-MYC attenuates the anticancer metabolic effects of metformin. We suggest that DICER modulation, mir33a upregulation and c-MYC targeting have an important role in the anticancer metabolic effects of metformin. PMID:22643892

  5. A Review on the Synthesis and Anti-cancer Activity of 2-substituted Quinolines.

    PubMed

    Gopaul, Kaalin; Shintre, Suhas A; Koorbanally, Neil A

    2015-01-01

    Quinolines substituted at C-2 on the quinoline scaffold have shown interesting anticancer activity in a number of anticancer assays such as breast (MCF-7, MDA-MB 231), human cervical epithelioid (HeLa), oral squamous cell carcinoma (SAS), human stomach adenocarcinoma (AGS, MKN45), hepatocellular (SKHep, HepG-2, Hep-3B), prostate (PC-3, DU145), lung (A549, H-460), gastric (HGC, MNK-74), leukemia (K562, U937, REH, NALM6, CEM/ADR 5000), colon (Colo-205, HCT 116, SW620, Caco-2, HT29), neuroblastoma (IMR32), CNS (SF-268), oesophageal (EAC) and melanoma (A-375). They have been synthesised by a number of strategies starting with isatin, anilines, nitrobenzenes and benzamides and some even with cyclohexanone and cyclohexa-1,3-diones with ammonium acetate. Many of the synthetic strategies employ the derivatisation of quinoline precursors itself. We review here the synthesis of 145 bioactive anticancer quinolines substituted at the 2-position and their anticancer activity. PMID:25511516

  6. A novel anticancer theranostic pro-prodrug based on hypoxia and photo sequential control.

    PubMed

    Feng, Weipei; Gao, Chunyue; Liu, Wei; Ren, Huihui; Wang, Chao; Ge, Kun; Li, Shenghui; Zhou, Guoqiang; Li, Hongyan; Wang, Shuxiang; Jia, Guang; Li, Zhenhua; Zhang, Jinchao

    2016-08-01

    A novel anticancer pro-prodrug (GMC-CAE-NO2) with diagnosis and therapy functions based on hypoxia and photo sequential control was designed. It provides a platform for constructing theranostic pro-prodrugs to release active drugs controlled by hypoxic status and UV illumination. PMID:27379361

  7. Current understanding of synergistic interplay of chitosan nanoparticles and anticancer drugs: merits and challenges.

    PubMed

    Kandra, Prameela; Kalangi, Hemalatha Padma Jyoti

    2015-03-01

    Recent advances have been made in cancer chemotherapy through the development of conjugates for anticancer drugs. Many drugs have problems of poor stability, water insolubility, low selectivity, high toxicity, and side effects. Most of the chitosan nanoparticles showed to be good drug carriers because of their biocompatibility, biodegradability, and it can be readily modified. The anticancer drug with chitosan nanoparticles displays efficient anticancer effects with a decrease in the adverse effects of the original drug due to the predominant distribution into the tumor site and a gradual release of free drug from the conjugate which enhances drug solubility, stability, and efficiency. In this review, we discuss wider applications of numerous modified chitosan nanoparticles against different tumors and also focusing on the administration of anticancer drugs through various routes. We propose the interaction between nanosized drug carrier and tumor tissue to understand the synergistic interplay. Finally, we elaborate merits of drug delivery system at the tumor site, with emphasizing future challenges in cancer chemotherapy. PMID:25698508

  8. DNA binding and anticancer activity of novel cyclometalated platinum (II) complexes.

    PubMed

    Mohammadi, Roghayeh; Yousefi, Reza; Aseman, Marzieh Dadkhah; Nabavizadeh, S Masoud; Rashidi, Mehdi

    2015-01-01

    This study describes anticancer activity and DNA binding properties of two cyclometalated platinum (II) complexes with non-leaving lipophilic ligands; deprotonated 2-phenylpryidine (ppy): C1 and deprotonated benzo[h] quinolone (bhq): C2. Both complexes demonstrate significant anticancer activity and were capable to stimulate Caspase-III activity in Jurkat cancer cells. The results of Acridine orange/Ethidium bromide(AO/EtB), along with those of Caspase-III activity suggest that these complexes can induce apoptosis in the cancer cells. Moreover, C1 with flexible chemical structure indicates considerably higher anticancer activity than C2 which possesses a higher structural rigidity. Additionally, C2 represents a complex which is in part inducing cancer cell death due to the cell injury (necrosis). The absorption spectra of DNA demonstrate a hypochromic effect in the presence of increasing concentration of these complexes, reflecting DNA structural alteration after drug binding. Also, EtB competition assay and docking results revealed partial intercalation and DNA groove binding for the metal complexes. Overall, from the therapeutic point of view, ppy containing platinum complex (C1) is a favored anticancer agent, because it induces signaling cell death (apoptosis) in cancer cells, and lacks the necrotic effect. PMID:25482721

  9. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed

    Gomes, Nelson G M; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-06-01

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term "cytotoxicity" to be synonymous with "anticancer agent", which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms. PMID:26090846

  10. Roles of Reactive Oxygen Species in Anticancer Therapy with Salvia miltiorrhiza Bunge

    PubMed Central

    Pan, Tai-Long

    2016-01-01

    Cancer is a leading cause of death worldwide. We aim to provide a systematic review about the roles of reactive oxygen species (ROS) in anticancer therapy with Salvia miltiorrhiza Bunge (Danshen). Danshen, including its lipophilic and hydrophilic constituents, is potentially beneficial for treating various cancers. The mechanisms of ROS-related anticancer effects of Danshen vary depending on the specific type of cancer cells involved. Danshen may enhance TNF-α-induced apoptosis, upregulate caspase-3, caspase-8, caspase-9, endoplasmic reticulum stress, P21, P53, Bax/Bcl-2, DR5, and AMP-activated protein kinase, or activate the p38/JNK, mitogen-activated protein kinase, and FasL signaling pathways. Conversely, Danshen may downregulate human telomerase reverse transcriptase mRNA, telomerase, survivin, vascular endothelial growth factor/vascular endothelial growth factor receptor 2, CD31, NF-κB, Erk1/2, matrix metalloproteinases, microtubule assembly, and receptor tyrosine kinases including epidermal growth factor receptors, HER2, and P-glycoprotein and inhibit the PI3K/Akt/mTOR or estrogen receptor signaling pathways. Therefore, Danshen may inhibit cancer cells proliferation through antioxidation on tumor initiation and induce apoptosis or autophagy through ROS generation on tumor progression, tumor promotion, and tumor metastasis. Based on the available evidence regarding its anticancer properties, this review provides new insights for further anticancer research or clinical trials with Danshen. PMID:27579153

  11. A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging.

    PubMed

    Eguchi, Haruki; Umemura, Masanari; Kurotani, Reiko; Fukumura, Hidenobu; Sato, Itaru; Kim, Jeong-Hwan; Hoshino, Yujiro; Lee, Jin; Amemiya, Naoyuki; Sato, Motohiko; Hirata, Kunio; Singh, David J; Masuda, Takatsugu; Yamamoto, Masahiro; Urano, Tsutomu; Yoshida, Keiichiro; Tanigaki, Katsumi; Yamamoto, Masaki; Sato, Mamoru; Inoue, Seiichi; Aoki, Ichio; Ishikawa, Yoshihiro

    2015-01-01

    Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies. PMID:25779357

  12. Total synthesis and structural revision of mycalol, an anticancer natural product from the marine source.

    PubMed

    Seetharamsingh, B; Rajamohanan, P R; Reddy, D Srinivasa

    2015-04-01

    The total synthesis of an anticancer (anaplastic thyroid) natural lipid mycalol has been accomplished for the first time. Synthesis of originally proposed structure necessitated the revision of structure in which the position of acetate group moved from C20 to C19 and a change in stereochemistry of the glycerol unit. PMID:25763453

  13. Anticancer Activity of Apaziquone in Oral Cancer Cells and Xenograft Model: Implications for Oral Cancer Therapy

    PubMed Central

    Srivastava, Gunjan; Somasundaram, Raj Thani; Walfish, Paul G.; Ralhan, Ranju

    2015-01-01

    Oral squamous cell carcinoma (OSCC) patients diagnosed in late stages have limited chemotherapeutic options underscoring the great need for development of new anticancer agents for more effective disease management. We aimed to investigate the anticancer potential of Apaziquone, [EOquin, USAN, E09, 3-hydroxy-5- aziridinyl-1-methyl-2(1H-indole-4,7-dione)–prop-β-en-α-ol], a pro-drug belonging to a class of anti-cancer agents called bioreductive alkylating agents, for OSCC. Apaziquone treatment inhibited cell proliferation and induced apoptosis in OSCC cells in vitro. Apaziquone treated OSCC cells showed increased activation of Caspase 9 and Caspase 3, and Poly (ADP ribose) polymerase (PARP) cleavage suggesting induction of apoptosis by apaziquone in oral cancer cells. Importantly, apaziquone treatment significantly reduced oral tumor xenograft volume in immunocompromised NOD/SCID/Crl mice without causing apparent toxicity to normal tissues. In conclusion, our in vitro and in vivo studies identified and demonstrated the pre-clinical efficacy of Apaziquone, as a potential novel anti-cancer therapeutic candidate for oral cancer management. PMID:26208303

  14. Anti-cancer effects of traditional Korean wild vegetables in complementary and alternative medicine.

    PubMed

    Ju, Hyun-Mok; Yu, Kwang-Won; Cho, Sung-Dae; Cheong, Sun Hee; Kwon, Ki Han

    2016-02-01

    This research study explored the anti-cancer effects of natural materials in South Korea. Although South Korea has a long history of traditional medicine, many natural materials of South Korea have not yet been introduced to the rest of the world because of language barriers and inconsistent study conditions. In the past 3 years, 56 papers introducing 56 natural materials, which have anti-cancer effects, have been published by scientists in South Korea. Further, these studies have introduced five kinds of natural materials presented in research papers that were written in Korean and are therefore virtually unknown overseas. The anti-cancer effects were confirmed by 2-3 cancer markers in the majority of the studies, with the most common targets being breast cancer cells and gastric cancer cells. These cancers have the greatest incidence in South Korea. The natural materials studied not only exhibit anti-cancer activity but also display anti-inflammatory, anti-oxidative stress, and anti-diabetic activities. They have not yet been used for the direct treatment of disease but have potential as medicinal materials for alternative and complementary medicine for the treatment of many modern diseases. Many natural materials of South Korea are already known all over the world, and with this study, we hope to further future research to learn more about these natural medicines. PMID:26860801

  15. Unimolecular micelles of amphiphilic cyclodextrin-core star-like block copolymers for anticancer drug delivery.

    PubMed

    Xu, Zhigang; Liu, Shiying; Liu, Hui; Yang, Cangjie; Kang, Yuejun; Wang, Mingfeng

    2015-11-11

    Well-defined star-like amphiphilic polymers composed of a β-cyclodextrin core, from which 21 hydrophobic poly(lactic acid) arms and hydrophilic poly(ethylene glycol) arms are grafted sequentially, form robust and uniform unimolecular micelles that are biocompatible and efficient in the delivery of anticancer drugs. PMID:26121632

  16. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the "Supply Problem".

    PubMed

    Gomes, Nelson G M; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-05-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors' opinion should be pursued due to their most promising anticancer activities. PMID:27213412

  17. 21 CFR 70.51 - Advisory committee on the applicability of the anticancer clause.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Advisory committee on the applicability of the anticancer clause. 70.51 Section 70.51 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL COLOR ADDITIVES Safety Evaluation § 70.51 Advisory committee on the...

  18. Plant derived substances with anti-cancer activity: from folklore to practice.

    PubMed

    Fridlender, Marcelo; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70-95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early nineteenth century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next two decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin, and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity. PMID:26483815

  19. Endophytic l-asparaginase-producing fungi from plants associated with anticancer properties

    PubMed Central

    Chow, YiingYng; Ting, Adeline S.Y.

    2014-01-01

    Endophytes are novel sources of natural bioactive compounds. This study seeks endophytes that produce the anticancer enzyme l-asparaginase, to harness their potential for mass production. Four plants with anticancer properties; Cymbopogon citratus, Murraya koenigii, Oldenlandia diffusa and Pereskia bleo, were selected as host plants. l-Asparaginase-producing endophytes were detected by the formation of pink zones on agar, a result of hydrolyzes of asparagine into aspartic acid and ammonia that converts the phenol red dye indicator from yellow (acidic condition) to pink (alkaline condition). The anticancer enzyme asparaginase was further quantified via Nesslerization. Results revealed that a total of 89 morphotypes were isolated; mostly from P. bleo (40), followed by O. diffusa (25), C. citratus (14) and M. koenigii (10). Only 25 of these morphotypes produced l-asparaginase, mostly from P. bleo and their asparaginase activities were between 0.0069 and 0.025 μM mL−1 min−1. l-Asparaginase producing isolates were identified as probable species of the genus Colletotrichum, Fusarium, Phoma and Penicillium. Studies here revealed that endophytes are good alternative sources for l-asparaginase production and they can be sourced from anticancer plants, particularly P. bleo. PMID:26644924

  20. Anti-cancer scopes and associated mechanisms of Scutellaria extract and flavonoid wogonin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extracts of Scutellaria species have been used in Eastern traditional medicine as well in the Americas for the treatment of several human ailments, including cancer. Crude extracts or flavonoids derived from Scutellaria have been scientifically studied for potential anti-cancer activity using in vit...

  1. Anticancer activity of Cynodon dactylon and Oxalis corniculata on Hep2 cell line.

    PubMed

    Salahuddin, H; Mansoor, Q; Batool, R; Farooqi, A A; Mahmood, T; Ismail, M

    2016-01-01

    Bioactive chemicals isolated from plants have attracted considerable attention over the years and overwhelmingly increasing laboratory findings are emphasizing on tumor suppressing properties of these natural agents in genetically and chemically induced animal carcinogenesis models. We studied in vitro anticancer activity of organic extracts of Cynodon dactylon and Oxalis corniculata on Hep2 cell line and it was compared with normal human corneal epithelial cells (HCEC) by using MTT assay. Real Time PCR was conducted for p53 and PTEN genes in treated cancer cell line. DNA fragmentation assay was also carried out to note DNA damaging effects of the extracts. The minimally effective concentration of ethanolic extract of Cynodon dactylon and methanolic extract of Oxalis corniculata that was nontoxic to HCEC but toxic to Hep2 was recorded (IC50) at a concentration of 0.042mg/ml (49.48 % cell death) and 0.048mg/ml (47.93% cell death) respectively, which was comparable to the positive control. Our results indicated dose dependent increase in cell death. P53 and PTEN did not show significant increase in treated cell line. Moreover, DNA damaging effects were also not detected in treated cancer cell line. Anticancer activity of these plants on the cancer cell line showed the presence of anticancer components which should be characterized to be used as anticancer therapy. PMID:27188871

  2. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the “Supply Problem”

    PubMed Central

    Gomes, Nelson G. M.; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-01-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors’ opinion should be pursued due to their most promising anticancer activities. PMID:27213412

  3. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents.

    PubMed

    Bao, Jiaolin; Huang, Borong; Zou, Lidi; Chen, Shenghui; Zhang, Chao; Zhang, Yulin; Chen, Meiwan; Wan, Jian-Bo; Su, Huanxing; Wang, Yitao; He, Chengwei

    2015-01-01

    Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM) promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM) inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU), camptothecin (CPT), and paclitaxel (TAX). The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer. PMID:26421434

  4. Comparison of doxorubicin anticancer drug loading on different metal oxide nanoparticles.

    PubMed

    Javed, Khalid Rashid; Ahmad, Munir; Ali, Salamat; Butt, Muhammad Zakria; Nafees, Muhammad; Butt, Alvina Rafiq; Nadeem, Muhammad; Shahid, Abubakar

    2015-03-01

    Nanomaterials are being vigorously investigated for their use in anticancer drug delivery regimes or as biomarkers agents and are considered to be a candidate to provide a way to combat severe weaknesses of anticancer drug pharmacokinetics, such as their nonspecificity. Because of this weakness, a bigger proportion of the drug-loaded nanomaterials flow toward healthy tissues and result in undesirable side effects. It is very important to evaluate drug loading and release efficiency of various nanomaterials to find out true pharmacokinetics of these drugs.This observational study aims to evaluate various surface functionalized and naked nanomaterials for their drug loading capability and consequently strengthens the Reporting of Observational Studies in Epidemiology (STROBE). We analyzed naked and coated nanoparticles of transition metal oxides for their further loading with doxorubicin, a representative water-soluble anticancer drug.Various uncoated and polyethylene glycol-coated metal oxide nanoparticles were synthesized and loaded with anticancer drug using simple stirring of the nanoparticles in a saturated aqueous solution of the drug. Results showed that surface-coated nanoparticles have higher drug-loading capabilities; however, certain naked metal oxide nanoparticles, such as cobalt oxide nanoparticles, can load a sufficient amount of drug. PMID:25789952

  5. Double layered hydroxides as potential anti-cancer drug delivery agents.

    PubMed

    Riaz, Ufana; Ashraf, S M

    2013-04-01

    The emergence of nanotechnology has changed the scenario of the medical world by revolutionizing the diagnosis, monitoring and treatment of cancer. This nanotechnology has been proved miraculous in detecting cancer cells, delivering chemotherapeutic agents and monitoring treatment from non-specific to highly targeted killing of tumor cells. In the past few decades, a number of inorganic materials have been investigated such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide, and layered double hydroxide (LDH) for examining their efficacy in targeting drug delivery. The reason behind the selection of these inorganic materials was their versatile and unique features efficient in drug delivery, such as wide availability, rich surface functionality, good biocompatibility, potential for target delivery, and controlled release of the drug from these inorganic nanomaterials. Although, the drug-LDH hybrids are found to be quite instrumental because of their application as advanced anti-cancer drug delivery systems, there has not been much research on them. This mini review is set to highlight the advancement made in the use of layered double hydroxides (LDHs) as anti-cancer drug delivery agents. Along with the advantages of LDHs as anti-cancer drug delivery agents, the process of interaction of some of the common anti-cancer drugs with LDH has also been discussed. PMID:23170959

  6. Nanoformulation improves activity of the (pre)clinical anticancer ruthenium complex KP1019.

    PubMed

    Heffeter, P; Riabtseva, A; Senkiv, Y; Kowol, C R; Körner, W; Jungwith, U; Mitina, N; Keppler, B K; Konstantinova, T; Yanchuk, I; Stoika, R; Zaichenko, A; Berger, W

    2014-05-01

    Ruthenium anticancer drugs belong to the most promising non-platinum anticancer metal compounds in clinical evaluation. However, although the clinical results are promising regarding both activity and very low adverse effects, the clinical application is currently hampered by the limited solubility and stability of the drug in aqueous solution. Here, we present a new nanoparticle formulation based on polymer-based micelles loaded with the anticancer lead ruthenium compound KP1019. Nanoprepared KP1019 was characterised by enhanced stability in aqueous solutions. Moreover, the nanoparticle formulation facilitated cellular accumulation of KP1019 (determined by ICP-MS measurements) resulting in significantly lowered IC50 values. With regard to the mode of action, increased cell cycle arrest in G2/M phase (PI-staining), DNA damage (Comet assay) as well as enhanced levels of apoptotic cell death (caspase 7 and PARP cleavage) were found in HCT116 cells treated with the new nanoformulation of KP1019. Summarizing, we present for the first time evidence that nanoformulation is a feasible strategy for improving the stability as well as activity of experimental anticancer ruthenium compounds. PMID:24734541

  7. Pharmacophore modeling and in silico toxicity assessment of potential anticancer agents from African medicinal plants

    PubMed Central

    Ntie-Kang, Fidele; Simoben, Conrad Veranso; Karaman, Berin; Ngwa, Valery Fuh; Judson, Philip Neville; Sippl, Wolfgang; Mbaze, Luc Meva’a

    2016-01-01

    Molecular modeling has been employed in the search for lead compounds of chemotherapy to fight cancer. In this study, pharmacophore models have been generated and validated for use in virtual screening protocols for eight known anticancer drug targets, including tyrosine kinase, protein kinase B β, cyclin-dependent kinase, protein farnesyltransferase, human protein kinase, glycogen synthase kinase, and indoleamine 2,3-dioxygenase 1. Pharmacophore models were validated through receiver operating characteristic and Güner–Henry scoring methods, indicating that several of the models generated could be useful for the identification of potential anticancer agents from natural product databases. The validated pharmacophore models were used as three-dimensional search queries for virtual screening of the newly developed AfroCancer database (~400 compounds from African medicinal plants), along with the Naturally Occurring Plant-based Anticancer Compound-Activity-Target dataset (comprising ~1,500 published naturally occurring plant-based compounds from around the world). Additionally, an in silico assessment of toxicity of the two datasets was carried out by the use of 88 toxicity end points predicted by the Lhasa’s expert knowledge-based system (Derek), showing that only an insignificant proportion of the promising anticancer agents would be likely showing high toxicity profiles. A diversity study of the two datasets, carried out using the analysis of principal components from the most important physicochemical properties often used to access drug-likeness of compound datasets, showed that the two datasets do not occupy the same chemical space. PMID:27445461

  8. 75 FR 10487 - International Conference on Harmonisation; Guidance on S9 Nonclinical Evaluation for Anticancer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... Federal Register of February 17, 2009 (74 FR 7445), FDA published a notice announcing the availability of... HUMAN SERVICES Food and Drug Administration International Conference on Harmonisation; Guidance on S9 Nonclinical Evaluation for Anticancer Pharmaceuticals; Availability AGENCY: Food and Drug Administration,...

  9. Tracking of STAT3 signaling for anticancer drug-discovery based on localized surface plasmon resonance.

    PubMed

    Song, Sojin; Nguyen, Anh H; Lee, Jong Uk; Cha, Misun; Sim, Sang Jun

    2016-04-21

    Signal transducer and activator of transcription 3 (STAT3) protein signaling is crucial for the survival, invasion, and growth of human cancer cells; thus, STAT3 protein is an ideal target for a new drug screening system. Herein, we developed a label-free sensor for anticancer drug-discovery based on the localized surface plasmon resonance (LSPR) shift response by tracking of STAT3 signaling including phosphorylation and dimerization. This enables ultrasensitive monitoring of the molecular interactions that occur on the surface of single gold nanoparticles. The red shift of the LSPR λmax was observed as 3.46 nm and 9.00 nm, respectively, indicating phosphorylation and dimerization of the STAT3 signaling pathway. In screening of anticancer candidates, the system worked well in the presence of STA-21 which inhibits STAT3 dimerization. The LSPR λmax shift in the inhibition condition is three times lower than that in the absence of an inhibitor. Interestingly, the system reveals high specificity, reproducibility and compatibility with real samples (MCF-7 cell line). Therefore, these results demonstrated that this system has strong potential to be an accurate and effective sensor for tracking of signaling pathways and drug screening of anticancer candidates for anticancer therapy. PMID:26998671

  10. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed Central

    Gomes, Nelson G. M.; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-01-01

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms. PMID:26090846

  11. Lipopolysaccharide based oral nanocarriers for the improvement of bioavailability and anticancer efficacy of curcumin.

    PubMed

    Chaurasia, Sundeep; Patel, Ravi R; Chaubey, Pramila; Kumar, Nagendra; Khan, Gayasuddin; Mishra, Brahmeshwar

    2015-10-01

    Soluthin MD(®), a unique phosphatidylcholine-maltodextrin based hydrophilic lipopolysaccharide, which exhibits superior biocompatibility and bioavailability enhancer properties for poorly water soluble drug(s). Curcumin (CUR) is a potential natural anticancer drug with low bioavailability due to poor aqueous solubility. The study aims at formulation and optimization of CUR loaded lipopolysaccharide nanocarriers (C-LPNCs) to enhance oral bioavailability and anticancer efficacy in colon-26 tumor-bearing mice in vitro and in vivo. The Optimized C-LPNCs demonstrated favorable mean particle size (108 ± 3.4 nm) and percent entrapment efficiency (65.29 ± 1.0%). Pharmacokinetic parameters revealed ∼130-fold increase in oral bioavailability and cytotoxicity studies demonstrated ∼23-fold reduction in 50% cell growth inhibition when treated with optimized C-LPNCs as compared to pure CUR. In vivo anticancer study performed with optimized C-LPNCs showed significant increase in efficacy compared with pure CUR. Thus, lipopolysaccharide nanocarriers show potential delivery strategy to improve oral bioavailability and anticancer efficacy of CUR in the treatment of colorectal cancer. PMID:26076595

  12. Highly efficient anti-cancer therapy using scorpion 'NanoVenin'.

    PubMed

    Misra, Santosh K; Ye, Mao; Kim, Sumin; Pan, Dipanjan

    2014-11-11

    Host defence peptidotoxins from animal venoms have been identified to possess substantial anticancer properties. Towards a safer, translatable approach, we have developed a viable chemical methodology based on a well-defined, self-assembled polymeric nano-architecture for controlled delivery of toxins derived from scorpion venom. PMID:25061638

  13. Endophytic l-asparaginase-producing fungi from plants associated with anticancer properties.

    PubMed

    Chow, YiingYng; Ting, Adeline S Y

    2015-11-01

    Endophytes are novel sources of natural bioactive compounds. This study seeks endophytes that produce the anticancer enzyme l-asparaginase, to harness their potential for mass production. Four plants with anticancer properties; Cymbopogon citratus, Murraya koenigii, Oldenlandia diffusa and Pereskia bleo, were selected as host plants. l-Asparaginase-producing endophytes were detected by the formation of pink zones on agar, a result of hydrolyzes of asparagine into aspartic acid and ammonia that converts the phenol red dye indicator from yellow (acidic condition) to pink (alkaline condition). The anticancer enzyme asparaginase was further quantified via Nesslerization. Results revealed that a total of 89 morphotypes were isolated; mostly from P. bleo (40), followed by O. diffusa (25), C. citratus (14) and M. koenigii (10). Only 25 of these morphotypes produced l-asparaginase, mostly from P. bleo and their asparaginase activities were between 0.0069 and 0.025 μM mL(-1) min(-1). l-Asparaginase producing isolates were identified as probable species of the genus Colletotrichum, Fusarium, Phoma and Penicillium. Studies here revealed that endophytes are good alternative sources for l-asparaginase production and they can be sourced from anticancer plants, particularly P. bleo. PMID:26644924

  14. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.

    PubMed

    Yang, Yuhui; Karakhanova, Svetlana; Hartwig, Werner; D'Haese, Jan G; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V

    2016-12-01

    Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc. PMID:26895995

  15. Modulation of APC Function and Anti-Tumor Immunity by Anti-Cancer Drugs

    PubMed Central

    Martin, Kea; Schreiner, Jens; Zippelius, Alfred

    2015-01-01

    Professional antigen-presenting cells (APCs), such as dendritic cells (DCs), are central to the initiation and regulation of anti-cancer immunity. However, in the immunosuppressive environment within a tumor APCs may antagonize anti-tumor immunity by inducing regulatory T cells (Tregs) or anergy of effector T cells due to lack of efficient costimulation. Hence, in an optimal setting, anti-cancer drugs have the power to reduce tumor size and thereby may induce the release of tumor antigens and, at the same time, modulate APC function toward efficient priming of antigen-specific effector T cells. Selected cytotoxic agents may revert APC dysfunction either by directly maturing DCs or through induction of immunogenic tumor cell death. Furthermore, specific cytotoxic agents may support adaptive immunity by selectively depleting regulatory subsets, such as Tregs or myeloid-derived suppressor cells. Perspectively, this will allow developing effective combination strategies with novel immunotherapies to exert complementary pressure on tumors via direct toxicity as well as immune activation. We, here, review our current knowledge on the capacity of anti-cancer drugs to modulate APC functions to promote durable anti-cancer immune responses. PMID:26483791

  16. SFPO and ESOP recommendations for the practical stability of anticancer drugs: an update.

    PubMed

    Vigneron, J; Astier, A; Trittler, R; Hecq, J D; Daouphars, M; Larsson, I; Pourroy, B; Pinguet, F

    2013-11-01

    The recommendations for the practical stability of anticancer drugs published in 2010 by the French Society of Hospital Pharmacists (SFPO) and the European Society of Oncology Pharmacists (ESOP) have been updated. Ten new molecules have been included (asparaginase, azacitidine, bevacizumab, clofarabine, eribuline mesylate, folinate sodium, levofolinate calcium, nelarabine, rituximab, temsirolimus). PMID:24206590

  17. Alkyne-substituted diminazene as G-quadruplex binders with anticancer activities.

    PubMed

    Wang, Changhao; Carter-Cooper, Brandon; Du, Yixuan; Zhou, Jie; Saeed, Musabbir A; Liu, Jinbing; Guo, Min; Roembke, Benjamin; Mikek, Clinton; Lewis, Edwin A; Lapidus, Rena G; Sintim, Herman O

    2016-08-01

    G-quadruplex ligands have been touted as potential anticancer agents, however, none of the reported G-quadruplex-interactive small molecules have gone past phase II clinical trials. Recently it was revealed that diminazene (berenil, DMZ) actually binds to G-quadruplexes 1000 times better than DNA duplexes, with dissociation constants approaching 1 nM. DMZ however does not have strong anticancer activities. In this paper, using a panel of biophysical tools, including NMR, FRET melting assay and FRET competition assay, we discovered that monoamidine analogues of DMZ bearing alkyne substitutes selectively bind to G-quadruplexes. The lead DMZ analogues were shown to be able to target c-MYC G-quadruplex both in vitro and in vivo. Alkyne DMZ analogues display respectable anticancer activities (single digit micromolar GI50) against ovarian (OVCAR-3), prostate (PC-3) and triple negative breast (MDA-MB-231) cancer cell lines and represent interesting new leads to develop anticancer agents. PMID:27132164

  18. Comparison of Doxorubicin Anticancer Drug Loading on Different Metal Oxide Nanoparticles

    PubMed Central

    Javed, Khalid Rashid; Ahmad, Munir; Ali, Salamat; Butt, Muhammad Zakria; Nafees, Muhammad; Butt, Alvina Rafiq; Nadeem, Muhammad; Shahid, Abubakar

    2015-01-01

    Abstract Nanomaterials are being vigorously investigated for their use in anticancer drug delivery regimes or as biomarkers agents and are considered to be a candidate to provide a way to combat severe weaknesses of anticancer drug pharmacokinetics, such as their nonspecificity. Because of this weakness, a bigger proportion of the drug-loaded nanomaterials flow toward healthy tissues and result in undesirable side effects. It is very important to evaluate drug loading and release efficiency of various nanomaterials to find out true pharmacokinetics of these drugs. This observational study aims to evaluate various surface functionalized and naked nanomaterials for their drug loading capability and consequently strengthens the Reporting of Observational Studies in Epidemiology (STROBE). We analyzed naked and coated nanoparticles of transition metal oxides for their further loading with doxorubicin, a representative water-soluble anticancer drug. Various uncoated and polyethylene glycol-coated metal oxide nanoparticles were synthesized and loaded with anticancer drug using simple stirring of the nanoparticles in a saturated aqueous solution of the drug. Results showed that surface-coated nanoparticles have higher drug-loading capabilities; however, certain naked metal oxide nanoparticles, such as cobalt oxide nanoparticles, can load a sufficient amount of drug. PMID:25789952

  19. SETDB1 mediated FosB expression increases the cell proliferation rate during anticancer drug therapy

    PubMed Central

    Na, Han-Heom; Noh, Hee-Jung; Cheong, Hyang-Min; Kang, Yoonsung; Kim, Keun-Cheol

    2016-01-01

    The efficacy of anticancer drugs depends on a variety of signaling pathways, which can be positively or negatively regulated. In this study, we show that SETDB1 HMTase is down-regulated at the transcriptional level by several anticancer drugs, due to its inherent instability. Using RNA sequence analysis, we identified FosB as being regulated by SETDB1 during anticancer drug therapy. FosB expression was increased by treatment with doxorubicin, taxol and siSETDB1. Moreover, FosB was associated with an increased rate of proliferation. Combinatory transfection of siFosB and siSETDB1 was slightly increased compared to transfection of siFosB. Furthermore, FosB was regulated by multiple kinase pathways. ChIP analysis showed that SETDB1 and H3K9me3 interact with a specific region of the FosB promoter. These results suggest that SETDB1-mediated FosB expression is a common molecular phenomenon, and might be a novel pathway responsible for the increase in cell proliferation that frequently occurs during anticancer drug therapy. [BMB Reports 2016; 49(4): 238-243] PMID:26949019

  20. Cell-specific intracellular anticancer drug delivery from mesoporous silica nanoparticles with pH sensitivity.

    PubMed

    Luo, Zhong; Cai, Kaiyong; Hu, Yan; Zhang, Beilu; Xu, Dawei

    2012-05-01

    A nanoreservoir for efficient intracellular anticancer drug delivery based on mesoporous silica nanoparticles end-capped with lactobionic acid-grafted bovine serum albumin is fabricated. It demonstrates great potential for both cell-specific endocytosis and intracellular pH-responsive controlled release of drugs. A possible endocytosis pathway/mechanism of the smart controlled drug release system is proposed. PMID:23184747

  1. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug.

    PubMed

    Sharma, Harshita; Kumar, Krishan; Choudhary, Chetan; Mishra, Pawan K; Vaidya, Bhuvaneshwar

    2016-01-01

    The aim of the study was to prepare chemotherapeutic agent-loaded zinc oxide nanoparticles for the intracellular delivery of drug, for better therapeutic activity. Zinc oxide nanoparticles have inherent anticancer properties, hence it was envisaged that by loading the anticancer drug into zinc oxide nanoparticles, enhanced anticancer activity might be observed. Zinc oxide nanoparticles were prepared using zinc nitrate and sodium hydroxide. Starch was used as the stabilizing agent. The nanoparticles prepared were characterized for size, shape, entrapment efficiency, and drug release. Further, cell line studies were performed to evaluate cellular uptake and cytotoxicity profile using MCF-7 cells. A hemolysis study was performed to check the acute toxicity of the nanoparticles. The nanoparticles were found to be 476.4 ± 2.51 nm in size, with low PDI (0.312 ± 0.02) and high entrapment efficiency (> 85%). The nanoparticles were stable, and did not form aggregates on storage in the dispersed form. A cytotoxicity study demonstrated that drug-loaded zinc oxide nanoparticles exhibited higher anticancer activity as compared to either blank zinc oxide nanoparticles and doxorubicin (DOX) alone, or their mixture. A hemolytic test revealed that the prepared zinc oxide nanoparticles caused negligible hemolysis. Thus, it can be concluded that zinc oxide nanoparticles loaded with DOX resulted in better uptake of the chemotherapeutic agent, and at the same time, showed low toxicity towards normal cells. PMID:25406734

  2. Roles of Reactive Oxygen Species in Anticancer Therapy with Salvia miltiorrhiza Bunge.

    PubMed

    Hung, Yu-Chiang; Pan, Tai-Long; Hu, Wen-Long

    2016-01-01

    Cancer is a leading cause of death worldwide. We aim to provide a systematic review about the roles of reactive oxygen species (ROS) in anticancer therapy with Salvia miltiorrhiza Bunge (Danshen). Danshen, including its lipophilic and hydrophilic constituents, is potentially beneficial for treating various cancers. The mechanisms of ROS-related anticancer effects of Danshen vary depending on the specific type of cancer cells involved. Danshen may enhance TNF-α-induced apoptosis, upregulate caspase-3, caspase-8, caspase-9, endoplasmic reticulum stress, P21, P53, Bax/Bcl-2, DR5, and AMP-activated protein kinase, or activate the p38/JNK, mitogen-activated protein kinase, and FasL signaling pathways. Conversely, Danshen may downregulate human telomerase reverse transcriptase mRNA, telomerase, survivin, vascular endothelial growth factor/vascular endothelial growth factor receptor 2, CD31, NF-κB, Erk1/2, matrix metalloproteinases, microtubule assembly, and receptor tyrosine kinases including epidermal growth factor receptors, HER2, and P-glycoprotein and inhibit the PI3K/Akt/mTOR or estrogen receptor signaling pathways. Therefore, Danshen may inhibit cancer cells proliferation through antioxidation on tumor initiation and induce apoptosis or autophagy through ROS generation on tumor progression, tumor promotion, and tumor metastasis. Based on the available evidence regarding its anticancer properties, this review provides new insights for further anticancer research or clinical trials with Danshen. PMID:27579153

  3. Paclitaxel Through the Ages of Anticancer Therapy: Exploring Its Role in Chemoresistance and Radiation Therapy

    PubMed Central

    Barbuti, Anna Maria; Chen, Zhe-Sheng

    2015-01-01

    Paclitaxel (Taxol®) is a member of the taxane class of anticancer drugs and one of the most common chemotherapeutic agents used against many forms of cancer. Paclitaxel is a microtubule-stabilizer that selectively arrests cells in the G2/M phase of the cell cycle, and found to induce cytotoxicity in a time and concentration-dependent manner. Paclitaxel has been embedded in novel drug formulations, including albumin and polymeric micelle nanoparticles, and applied to many anticancer treatment regimens due to its mechanism of action and radiation sensitizing effects. Though paclitaxel is a major anticancer drug which has been used for many years in clinical treatments, its therapeutic efficacy can be limited by common encumbrances faced by anticancer drugs. These encumbrances include toxicities, de novo refraction, and acquired multidrug resistance (MDR). This article will give a current and comprehensive review of paclitaxel, beginning with its unique history and pharmacology, explore its mechanisms of drug resistance and influence in combination with radiation therapy, while highlighting current treatment regimens, formulations, and new discoveries. PMID:26633515

  4. Identification and characterization of a potent anticancer fraction from the leaf extracts of Moringa oleifera L.

    PubMed

    Krishnamurthy, Praveen T; Vardarajalu, Ambalika; Wadhwani, Ashish; Patel, Viral

    2015-02-01

    Anticancer potential of Moringa oleifera L. extracts have been well established. However, there are no reports on the isolated molecules/fractions from these extracts which are responsible for the anticancer/cytotoxic activity. Thus, in the present study, we explored the same. The n-hexane, chloroform, ethyl acetate, methanol extracts of the M. oleifera leaves and 15 fractions (F1 to F15) of ethyl acetate extract were evaluated for their in vitro and in vivo anticancer activity using Hep-2 cell lines and Dalton's lymphoma ascites model in mice, respectively. Among the tested samples, the F1 fraction showed potential cytotoxic effect in Hep-2 cell lines with a CTC50 value of 12.5 ± 0.5 μg/ml. In vivo studies with the doses 5 and 10 mg/kg, p.o. demonstrated significant reduction in body weight and increased the mean survival time compared to the control group. These results were also comparable to the standard, 5-Fluorouracil, treated animals. We have also successfully isolated and characterized the anticancer fraction, F1 from the leaves of M. oleifera L. PMID:25757240

  5. Design of a novel microtubule targeted peptide vesicle for delivering different anticancer drugs.

    PubMed

    Adak, Anindyasundar; Mohapatra, Saswat; Mondal, Prasenjit; Jana, Batakrishna; Ghosh, Surajit

    2016-06-18

    A microtubule targeted peptide-based delivery vehicle has been designed using two oppositely charged peptides, which targets tubulin/microtubules, delivers both hydrophilic and hydrophobic drugs into their target site through lysosome at acidic pH. Drug loaded vesicles show a significant anticancer effect compared to control drugs in a 2D monolayer and a 3D spheroid cell. PMID:27153208

  6. Down-regulation of telomerase activity by anticancer drugs in human ovarian cancer cells.

    PubMed

    Kunifuji, Yasumasa; Gotoh, Sadao; Abe, Tetsuya; Miura, Masayoshi; Karasaki, Yuji

    2002-07-01

    Maintenance of telomere length is crucial for survival of cells. Telomerase, an enzyme that is responsible for elongation of shortened telomeres, is active in human germ cells as well as most tumor tissues and experimentally immortalized cells. In contrast, most mature somatic cells in human tissues express undetectable or low telomerase activity, implying the existence of a stringent and negative regulatory mechanism. In this study we report the effects of anticancer drugs on telomerase activity in human cancer cells. In assaying for telomerase activity, we basically followed the original TRAP assay system, but with some modifications. A down-regulation of telomerase activity was found when cells of a human ovarian cancer cell line, A2780, were treated with;cis-diamminedichloroplatinum(II) (CDDP; cisplatin). However, down-regulation of telomerase activity was not found in cells of a cisplatin-resistant cell line, A2780CP, treated with cisplatin. On the other hand, telomerase activity in both the cell lines A2780 and A2780CP was reduced when A2780 or A2780CP was treated with adriamycin, an anthracycline antibiotic having a broad spectrum of antineoplastic activity. The different effects on the telomerase activity of the two types of anticancer drugs may be due the distinct chemical functions of these drugs. The present results may indicate a positive relationship between anticancer effects and down-regulation of telomerase activity by anticancer drugs. PMID:12172504

  7. A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Eguchi, Haruki; Umemura, Masanari; Kurotani, Reiko; Fukumura, Hidenobu; Sato, Itaru; Kim, Jeong-Hwan; Hoshino, Yujiro; Lee, Jin; Amemiya, Naoyuki; Sato, Motohiko; Hirata, Kunio; Singh, David J.; Masuda, Takatsugu; Yamamoto, Masahiro; Urano, Tsutomu; Yoshida, Keiichiro; Tanigaki, Katsumi; Yamamoto, Masaki; Sato, Mamoru; Inoue, Seiichi; Aoki, Ichio; Ishikawa, Yoshihiro

    2015-03-01

    Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies.

  8. Robust Structure and Reactivity of Aqueous Arsenous Acid-Platinum(II) Anticancer Complexes**

    PubMed Central

    Miodragović, Ðenana U.; Quentzel, Jeremy A.; Kurutz, Josh W.; Stern, Charlotte L.; Ahn, Richard W.; Kandela, Irawati; Mazar, Andrew; O’Halloran, Thomas V.

    2014-01-01

    The first molecular adducts of platinum and arsenic based anticancer drugs - arsenoplatins - show unanticipated structure, substitution chemistry, and cellular cytotoxicity. The PtII-AsIII bonds in these complexes are stable in aqueous solution and strongly influence the lability of the trans ligand. PMID:24038962

  9. Synthesis and anticancer activities of amphiphilic 5-fluoro-2'-deoxyuridylic acid prodrugs.

    PubMed

    Ludwig, Peter S; Schwendener, Reto A; Schott, Herbert

    2005-05-01

    Amphiphilic anticancer prodrugs of 5'-fluoro-2'-deoxyuridine-5'-monophosphate (5-FdUMP) were synthesized according to the hydrogen phosphonate method by coupling lipophilic cytosine derivatives or a phospholipid with 5-fluoro-2'-deoxyuridine (5-FdU). Studies within the in vitro Anticancer Screen Program of the National Cancer Institute have demonstrated high anticancer activities of the heterodinucleoside phosphates: N4-palmitoyl-2'-deoxycytidylyl-(3' --> 5')-3'-O-acetyl-5-fluoro-2'-deoxyuridine (dC(pam)-5-FdU(Ac), N4-palmitoyl-2',3'-dideoxycytidylyl-(5' --> 5')-3'-O-acetyl-5-fluoro-2'-deoxyuridine (ddC(pam)-(5' --> 5')-5-FdU(Ac), 5-fluoro-2'-deoxyuridylyl-(3' --> 5')-5-fluoro-N4-hexadecyl-2'-deoxycytidine (5-FdU-5-FdC(hex)), and of the new liponucleotide 1-O-octadecyl-rac-glycerylyl-(3 --> 5')-5-fluoro-2'-deoxyuridine (Oct1Gro-(3 --> 5')-5-FdU). The anticancer activities of these prodrugs are comparable to those of 5-FdU and the tumor specificities are modulated by their structures. The highest cytotoxic activity being even superior to 5-FdU was expressed by the dimer 5-FdU-5-FdC(hex). PMID:15893023

  10. Evaluation of Anticancer Activity of Curcumin Analogues Bearing a Heterocyclic Nucleus.

    PubMed

    Ahsan, Mohamed Jawed; Ahsan, Mohamed Jawed

    2016-01-01

    We report herein an in vitro anticancer evaluation of a series of seven curcumin analogues (3a-g). The National Cancer Institute (NCI US) Protocol was followed and all the compounds were evaluated for their anticancer activity on nine different panels (leukemia, non small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer) represented by 60 NCI human cancer cell lines. All the compounds showed significant anticancer activity in one dose assay (drug concentration 10 μM) and hence were evaluated further in five dose assays (0.01, 0.1, 1, 10 and 100 μM) and three dose related parameters GI50, TGI and LC50 were calculated for each (3a-g) in micro molar drug concentrations (μM). The compound 3d (NSC 757927) showed maximum mean percent growth inhibition (PGI) of 112.2%, while compound 3g (NSC 763374) showed less mean PGI of 40.1% in the one dose assay. The maximum anticancer activity was observed with the SR (leukemia) cell line with a GI50 of 0.03 μM. The calculated average sensitivity of all cell lines of a particular subpanel toward the test agent showed that all the curcumin analogues showed maximum activity on leukemia cell lines with GI50 values between 0.23 and 2.67 μM. PMID:27221847

  11. Pretreatment of baicalin and wogonoside with glycoside hydrolase: A promising approach to enhance anticancer potential

    PubMed Central

    YU, CHUNHAO; ZHANG, ZHIYU; ZHANG, HAIJIANG; ZHEN, ZHONG; CALWAY, TYLER; WANG, YUNWEI; YUAN, CHUN-SU; WANG, CHONG-ZHI

    2013-01-01

    Previous phytochemical studies showed that the major flavonoids in Scutellaria baicalensis are baicalin, baicalein, wogonoside and wogonin. The two glycosides (baicalin and wogonoside) can be transformed into their aglycons (baicalein and wogonin), which possess positive anticancer potential. In this study, we used glycosidase to catalyze flavonoids in S. baicalensis to enhance the herb’s anticancer activities. Our HPLC data showed that, using the optimized conditions obtained in our experiments (20 U/g of cellulase, 50ºC, pH 4.8 and treatment for 8 h), there was a marked transformation from the two glycosides to their aglycons. The anticancer activity was subsequently evaluated using a series of S. baicalensis extracts in which variable lengths of glycosidase treatment time were used. Combining analytical and bioassay results, we observed that the higher the aglycon content, the stronger the antiproliferation effects. Compared to the untransformed control, 8 h of glycosidase catalyzing significantly increased antiproliferative activity on human colorectal and breast cancer cells, and its cancer cell growth inhibition is, in part, mediated by cell cycle arrest at the S-phase and induction of apoptosis. Data from this study suggest that using glycosidase to catalyze S. baicalensis offers a promising approach to increase its anticancer activity. PMID:24026776

  12. Plant derived substances with anti-cancer activity: from folklore to practice

    PubMed Central

    Fridlender, Marcelo; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70–95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early nineteenth century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next two decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin, and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity. PMID:26483815

  13. Isolation and Characterization of the Anticancer Compound Piceatannol from Sophora Interrupta Bedd

    PubMed Central

    Mathi, Pardhasaradhi; Das, Snehasish; Nikhil, Kumar; Roy, Partha; Yerra, Srikanth; Ravada, Suryachandra Rao; Bokka, Venkata Raman; Botlagunta, Mahendran

    2015-01-01

    Background: Sophora belongs to the family of Fabaceae and the species in this genus are currently used as a folklore medicine for preventing a variety of ailments including cancer. Our aim was to identify and validate an anticancer compound from Sophora interrupta using multi-spectroscopic, anticancer screening, and molecular docking approach. Methods: The cytotoxicity of the various solvent extracts, petroleum ether, n-butanol, and ethyl acetate (EtOAc) of the S. interrupta root powder was evaluated in a breast cancer cell lines (MCF-7). The extract that had anticancer activity was subjected to column chromatography based on the polarity of the solvents. The anticancer activity of the elution fractions was validated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The isolated metabolite fraction with anticancer activity was run through a C18 column isocratic and gradient high-performance liquid chromatography (HPLC). The structure of the isolated compound was characterized using 1H nuclear magnetic resonance (NMR), 13C-NMR, Fourier transform infrared spectroscopy, and liquid chromatography-mass spectrometer methods. Results: The crude EtAOc extract effectively inhibited the proliferation of MCF-7 cells. The column eluted chloroform and EtOAc (4:6) fraction of the EtOAc extract showed significant anticancer activity in the MCF-7 cells compared with normal mesenchymal stem cells. This fraction showed three major peaks in the HPLC chromatogram and the first major peak with a retention time (RT) of 7.153 was purified using preparative-HPLC. The structure of the compound is a piceatannol, which is a metabolic product of resveratrol. Piceatannol formed direct two hydrogen bond interactions between Cys912 (2H), and Glu878 of vascular endothelial growth factor receptor 1 (VEGFR1) with a glide-score (G-score) of −10.193, and two hydrogen bond interactions between Cys919, and Asp1046 of VEGFR2, with a G-score of −8.359. The structure is

  14. In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning.

    PubMed

    Almajhdi, Fahad N; Fouad, H; Khalil, Khalil Abdelrazek; Awad, Hanem M; Mohamed, Sahar H S; Elsarnagawy, T; Albarrag, Ahmed M; Al-Jassir, Fawzi F; Abdo, Hany S

    2014-04-01

    In the present work, a series of 0, 1 and 7 wt% silver nano-particles (Ag NPs) incorporated poly lactic-co-glycolic acid (PLGA) nano-fibers were synthesized by the electrospinning process. The PLGA/Ag nano-fibers sheets were characterized using SEM, TEM and DSC analyses. The three synthesized PLGA/silver nano-fiber composites were screened for anticancer activity against liver cancer cell line using MTT and LDH assays. The anticancer activity of PLGA nano-fibers showed a remarkable improvement due to increasing the concentration of the Ag NPs. In addition to the given result, PLGA nano-fibers did not show any cytotoxic effect. However, PLGA nano-fibers that contain 1 % nano silver showed anticancer activity of 8.8 %, through increasing the concentration of the nano silver to 7 % onto PLGA nano-fibers, the anticancer activity was enhanced to a 67.6 %. Furthermore, the antibacterial activities of these three nano-fibers, against the five bacteria strains namely; E.coli o157:H7 ATCC 51659, Staphylococcus aureus ATCC 13565, Bacillus cereus EMCC 1080, Listeria monocytogenes EMCC 1875 and Salmonella typhimurium ATCC25566 using the disc diffusion method, were evaluated. Sample with an enhanced inhibitory effect was PLGA/Ag NPs (7 %) which inhibited all strains (inhibition zone diameter 10 mm); PLGA/Ag NPs (1 %) sample inhibited only one strain (B. cereus) with zone diameter 8 mm. The PLGA nano-fiber sample has not shown any antimicrobial activity. Based on the anticancer as well as the antimicrobial results in this study, it can be postulated that: PLGA nanofibers containing 7 % nano silver are suitable as anticancer- and antibiotic-drug delivery systems, as they will increase the anticancer as well as the antibiotic drug potency without cytotoxicity effect on the normal cells. These findings also suggest that Ag NPs, of the size (5-10 nm) evaluated in the present study, are appropriate for therapeutic application from a safety standpoint. PMID:24375170

  15. Screening for Anti-Cancer Compounds in Marine Organisms in Oman

    PubMed Central

    Dobretsov, Sergey; Tamimi, Yahya; Al-Kindi, Mohamed A.; Burney, Ikram

    2016-01-01

    Objectives: Marine organisms are a rich source of bioactive molecules with potential applications in medicine, biotechnology and industry; however, few bioactive compounds have been isolated from organisms inhabiting the Arabian Gulf and the Gulf of Oman. This study aimed to isolate and screen the anti-cancer activity of compounds and extracts from 40 natural products of marine organisms collected from the Gulf of Oman. Methods: This study was carried out between January 2012 and December 2014 at the Sultan Qaboos University, Muscat, Oman. Fungi, bacteria, sponges, algae, soft corals, tunicates, bryozoans, mangrove tree samples and sea cucumbers were collected from seawater at Marina Bandar Al-Rowdha and Bandar Al-Khayran in Oman. Bacteria and fungi were isolated using a marine broth and organisms were extracted with methanol and ethyl acetate. Compounds were identified from spectroscopic data. The anti-cancer activity of the compounds and extracts was tested in a Michigan Cancer Foundation (MCF)-7 cell line breast adenocarcinoma model. Results: Eight pure compounds and 32 extracts were investigated. Of these, 22.5% showed strong or medium anti-cancer activity, with malformin A, kuanoniamine D, hymenialdisine and gallic acid showing the greatest activity, as well as the soft coral Sarcophyton sp. extract. Treatment of MCF-7 cells at different concentrations of Sarcophyton sp. extracts indicated the induction of concentration-dependent cell death. Ultrastructural analysis highlighted the presence of nuclear fragmentation, membrane protrusion, blebbing and chromatic segregation at the nuclear membrane, which are typical characteristics of cell death by apoptosis induction. Conclusion: Some Omani marine organisms showed high anti-cancer potential. The efficacy, specificity and molecular mechanisms of anti-cancer compounds from Omani marine organisms on various cancer models should be investigated in future in vitro and in vivo studies. PMID:27226907

  16. Oral anticancer drugs: mechanisms of low bioavailability and strategies for improvement.

    PubMed

    Stuurman, Frederik E; Nuijen, Bastiaan; Beijnen, Jos H; Schellens, Jan H M

    2013-06-01

    The use of oral anticancer drugs has increased during the last decade, because of patient preference, lower costs, proven efficacy, lack of infusion-related inconveniences, and the opportunity to develop chronic treatment regimens. Oral administration of anticancer drugs is, however, often hampered by limited bioavailability of the drug, which is associated with a wide variability. Since most anticancer drugs have a narrow therapeutic window and are dosed at or close to the maximum tolerated dose, a wide variability in the bioavailability can have a negative impact on treatment outcome. This review discusses mechanisms of low bioavailability of oral anticancer drugs and strategies for improvement. The extent of oral bioavailability depends on many factors, including release of the drug from the pharmaceutical dosage form, a drug's stability in the gastrointestinal tract, factors affecting dissolution, the rate of passage through the gut wall, and the pre-systemic metabolism in the gut wall and liver. These factors are divided into pharmaceutical limitations, physiological endogenous limitations, and patient-specific limitations. There are several strategies to reduce or overcome these limitations. First, pharmaceutical adjustment of the formulation or the physicochemical characteristics of the drug can improve the dissolution rate and absorption. Second, pharmacological interventions by combining the drug with inhibitors of transporter proteins and/or pre-systemic metabolizing enzymes can overcome the physiological endogenous limitations. Third, chemical modification of a drug by synthesis of a derivative, salt form, or prodrug could enhance the bioavailability by improving the absorption and bypassing physiological endogenous limitations. Although the bioavailability can be enhanced by various strategies, the development of novel oral products with low solubility or cell membrane permeability remains cumbersome and is often unsuccessful. The main reasons are

  17. Ganoderma lucidum: a potential for biotechnological production of anti-cancer and immunomodulatory drugs.

    PubMed

    Boh, Bojana

    2013-09-01

    Based on the analysis of more than 270 patents and scientific articles, this state-of-the-art review presents Ganoderma lucidum, a medicinal basidiomycete mushroom with immunomodulatory and anti-cancer effects. Cultivation methods for the commercial production of G. lucidum fruit bodies and mycelia are summarized, with main active compounds of triterpenoids, polysaccharides, and proteins, often found in forms of proteoglycans or glycopeptides. Pharmacological effects with emphasis on anti-cancer and immunomodulatory functions are presented, separately for spores and dry mycelia, and for the groups of triterpenoids, polysaccharides, proteins and glycoproteins. Patents disclosing preparation methods of extracts and purified pharmaceutical isolates are reviewed, and examples of anti-cancer formulations, used as pharmaceuticals or nutraceuticals, are given. The review suggests that according to the present understanding, the anti-cancer activity of G. lucidum may be attributed to at least five groups of mechanisms: (1) activation/modulation of the immune response of the host, (2) direct cytotoxicity to cancer cells, (3) inhibition of tumor-induced angiogenesis, (4) inhibition of cancer cells proliferation and invasive metastasis behaviour, and (5) carcinogens deactivation with protection of cells. Although, the data from recent in vitro and in vivo studies demonstrate promising anti-cancer effects, a need is identified for further (1) isolation and purification of compounds, with deeper understanding of their individual and synergistic pharmacological effects, (2) molecular level studies of the antitumor and immuno-supportive mechanisms, (3) well designed in vivo tests and controlled clinical studies, and (4) standardisation and quality control for G. lucidum strains, cultivation processes, extracts and commercial formulations. PMID:23227951

  18. Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis

    PubMed Central

    2011-01-01

    Background The aim of this study is to investigate in vitro antioxidant, antimicrobial and anticancer activity of the acetone extracts of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. Methods Antioxidant activity was evaluated by five separate methods: free radical scavenging, superoxide anion radical scavenging, reducing power, determination of total phenolic compounds and determination of total flavonoid content. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method against six species of bacteria and ten species of fungi. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using MTT method. Results Of the lichens tested, Lecanora atra had largest free radical scavenging activity (94.7% inhibition), which was greater than the standard antioxidants. Moreover, the tested extracts had effective reducing power and superoxide anion radical scavenging. The strong relationships between total phenolic and flavonoid contents and the antioxidant effect of tested extracts were observed. Extract of Cladonia furcata was the most active antimicrobial agent with minimum inhibitory concentration values ranging from 0.78 to 25 mg/mL. All extracts were found to be strong anticancer activity toward both cell lines with IC50 values ranging from 8.51 to 40.22 μg/mL. Conclusions The present study shows that tested lichen extracts demonstrated a strong antioxidant, antimicrobial and anticancer effects. That suggest that lichens may be used as as possible natural antioxidant, antimicrobial and anticancer agents to control various human, animal and plant diseases. PMID:22013953

  19. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis.

    PubMed

    Gali-Muhtasib, Hala; Hmadi, Raed; Kareh, Mike; Tohme, Rita; Darwiche, Nadine

    2015-12-01

    Despite remarkable progress in the discovery and development of novel cancer therapeutics, cancer remains the second leading cause of death in the world. For many years, compounds derived from plants have been at the forefront as an important source of anticancer therapies and have played a vital role in the prevention and treatment of cancer because of their availability, and relatively low toxicity when compared with chemotherapy. More than 3000 plant species have been reported to treat cancer and about thirty plant-derived compounds have been isolated so far and have been tested in cancer clinical trials. The mechanisms of action of plant-derived anticancer drugs are numerous and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and caspase and/or p53-dependent or independent mechanisms. Alternative modes of cell death by plant-derived anticancer drugs are emerging and include mainly autophagy, necrosis-like programmed cell death, mitotic catastrophe, and senescence leading to cell death. Considering that the non-apoptotic cell death mechanisms of plant-derived anticancer drugs are less reviewed than the apoptotic ones, this paper attempts to focus on such alternative cell death pathways for some representative anticancer plant natural compounds in clinical development. In particular, emphasis will be on some promising polyphenolics such as resveratrol, curcumin, and genistein; alkaloids namely berberine, noscapine, and colchicine; terpenoids such as parthenolide, triptolide, and betulinic acid; and the organosulfur compound sulforaphane. The understanding of non-apoptotic cell death mechanisms induced by these drugs would provide insights into the possibility of exploiting novel molecular pathways and targets of plant-derived compounds for future cancer therapeutics. PMID:26362468

  20. Safe and targeted anticancer therapy for ovarian cancer using a novel class of curcumin analogs

    PubMed Central

    2013-01-01

    A diagnosis of advanced ovarian cancer is the beginning of a long and arduous journey for a patient. Worldwide, approximately half of the individuals undergoing therapy for advanced cancer will succumb to the disease, or consequences of treatment. Well-known and widely-used chemotherapeutic agents such as cisplatin, paclitaxel, 5-fluorouracil, and doxorubicin are toxic to both cancer and non-cancerous cells, and have debilitating side effects Therefore, development of new targeted anticancer therapies that can selectively kill cancer cells while sparing the surrounding healthy tissues is essential to develop more effective therapies. We have developed a new class of synthetic curcumin analogs, diarylidenyl-piperidones (DAPs), which have higher anticancer activity and enhanced bio-absorption than curcumin. The DAP backbone structure exhibits cytotoxic (anticancer) activity, whereas the N-hydroxypyrroline (-NOH) moiety found on some variants functions as a cellular- or tissue-specific modulator (antioxidant) of cytotoxicity. The anticancer activity of the DAPs has been evaluated using a number of ovarian cancer cell lines, and the safety has been evaluated in a number of non-cancerous cell lines. Both variations of the DAP compounds showed similar levels of cell death in ovarian cancer cells, however the compounds with the -NOH modification were less toxic to non-cancerous cells. The selective cytotoxicity of the DAP–NOH compounds suggests that they will be useful as safe and effective anticancer agents. This article reviews some of the key findings of our work with the DAP compounds, and compares this to some of the targeted therapies currently used in ovarian cancer therapy. PMID:23663277

  1. A smart magnetic nanoplatform for synergistic anticancer therapy: manoeuvring mussel-inspired functional magnetic nanoparticles for pH responsive anticancer drug delivery and hyperthermia

    NASA Astrophysics Data System (ADS)

    Sasikala, Arathyram Ramachandra Kurup; Ghavaminejad, Amin; Unnithan, Afeesh Rajan; Thomas, Reju George; Moon, Myeongju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2015-10-01

    We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy.We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic

  2. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    PubMed

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast

  3. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines

    PubMed Central

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70–90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2–3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of

  4. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions

    PubMed Central

    E-kobon, Teerasak; Thongararm, Pennapa; Roytrakul, Sittiruk; Meesuk, Ladda; Chumnanpuen, Pramote

    2015-01-01

    Several reports have shown antimicrobial and anticancer activities of mucous glycoproteins extracted from the giant African snail Achatina fulica. Anticancer properties of the snail mucous peptides remain incompletely revealed. The aim of this study was to predict anticancer peptides from A. fulica mucus. Two of HPLC-separated mucous fractions (F2 and F5) showed in vitro cytotoxicity against the breast cancer cell line (MCF-7) and normal epithelium cell line (Vero). According to the mass spectrometric analysis, 404 and 424 peptides from the F2 and F5 fractions were identified. Our comprehensive bioinformatics workflow predicted 16 putative cationic and amphipathic anticancer peptides with diverse structures from these two peptidome data. These peptides would be promising molecules for new anti-breast cancer drug development. PMID:26862373

  5. Enhancing Activity of Anticancer Drugs in Multidrug Resistant Tumors by Modulating P-Glycoprotein through Dietary Nutraceuticals.

    PubMed

    Khan, Muhammad; Maryam, Amara; Mehmood, Tahir; Zhang, Yaofang; Ma, Tonghui

    2015-01-01

    Multidrug resistance is a principal mechanism by which tumors become resistant to structurally and functionally unrelated anticancer drugs. Resistance to chemotherapy has been correlated with overexpression of p-glycoprotein (p-gp), a member of the ATP-binding cassette (ABC) superfamily of membrane transporters. P-gp mediates resistance to a broad-spectrum of anticancer drugs including doxorubicin, taxol, and vinca alkaloids by actively expelling the drugs from cells. Use of specific inhibitors/blocker of p-gp in combination with clinically important anticancer drugs has emerged as a new paradigm for overcoming multidrug resistance. The aim of this paper is to review p-gp regulation by dietary nutraceuticals and to correlate this dietary nutraceutical induced-modulation of p-gp with activity of anticancer drugs. PMID:26514453

  6. Targeted Delivery System of Nanobiomaterials in Anticancer Therapy: From Cells to Clinics

    PubMed Central

    Jin, Su-Eon; Jin, Hyo-Eon; Hong, Soon-Sun

    2014-01-01

    Targeted delivery systems of nanobiomaterials are necessary to be developed for the diagnosis and treatment of cancer. Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular levels and to deliver anticancer drugs into the diseased sites. In particular, nanobiomaterial-based nanocarriers, so-called nanoplatforms, are the design of the targeted delivery systems such as liposomes, polymeric nanoparticles/micelles, nanoconjugates, norganic materials, carbon-based nanobiomaterials, and bioinspired phage system, which are based on the nanosize of 1–100 nm in diameter. In this review, the design and the application of these nanoplatforms are discussed at the cellular levels as well as in the clinics. We believe that this review can offer recent advances in the targeted delivery systems of nanobiomaterials regarding in vitro and in vivo applications and the translation of nanobiomaterials to nanomedicine in anticancer therapy. PMID:24672796

  7. Newly synthesized anticancer drug HUHS1015 is effective on malignant pleural mesothelioma

    PubMed Central

    Kaku, Yoshiko; Nagaya, Hisao; Tsuchiya, Ayako; Kanno, Takeshi; Gotoh, Akinobu; Tanaka, Akito; Shimizu, Tadashi; Nakao, Syuhei; Tabata, Chiharu; Nakano, Takashi; Nishizaki, Tomoyuki

    2014-01-01

    The newly synthesized naftopidil analogue HUHS1015 reduced cell viability in malignant pleural mesothelioma cell lines MSTO-211H, NCI-H28, NCI-H2052, and NCI-H2452, with the potential greater than that for the anticancer drugs paclitaxel or cisplatin at concentrations higher than 30 μM. HUHS1015 induced both necrosis and apoptosis of MSTO-211H and NCI-H2052 cells. HUHS1015 upregulated expression of mRNAs for Puma, Hrk, and Noxa in MSTO-211H and NCI-H2052 cells, suggesting HUHS1015-induced mitochondrial apoptosis. HUHS1015 clearly suppressed tumor growth in mice inoculated with NCI-H2052 cells. Taken together, the results of the present study indicate that HUHS1015 could be developed as an effective anticancer drug for treatment of malignant pleural mesothelioma. PMID:24754309

  8. N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs.

    PubMed

    Patil, Siddappa A; Patil, Shivaputra A; Patil, Renukadevi; Keri, Rangappa S; Budagumpi, Srinivasa; Balakrishna, Geetha R; Tacke, Matthias

    2015-01-01

    Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents. PMID:26144266

  9. Discovery and development of natural product oridonin-inspired anticancer agents.

    PubMed

    Ding, Ye; Ding, Chunyong; Ye, Na; Liu, Zhiqing; Wold, Eric A; Chen, Haiying; Wild, Christopher; Shen, Qiang; Zhou, Jia

    2016-10-21

    Natural products have historically been, and continue to be, an invaluable source for the discovery of various therapeutic agents. Oridonin, a natural diterpenoid widely applied in traditional Chinese medicines, exhibits a broad range of biological effects including anticancer and anti-inflammatory activities. To further improve its potency, aqueous solubility and bioavailability, the oridonin template serves as an exciting platform for drug discovery to yield better candidates with unique targets and enhanced drug properties. A number of oridonin derivatives (e.g. HAO472) have been designed and synthesized, and have contributed to substantial progress in the identification of new agents and relevant molecular mechanistic studies toward the treatment of human cancers and other diseases. This review summarizes the recent advances in medicinal chemistry on the explorations of novel oridonin analogues as potential anticancer therapeutics, and provides a detailed discussion of future directions for the development and progression of this class of molecules into the clinic. PMID:27344488

  10. The anticancer natural product ophiobolin A induces cytotoxicity by covalent modification of phosphatidylethanolamine.

    PubMed

    Chidley, Christopher; Trauger, Sunia A; Birsoy, Kıvanç; O'Shea, Erin K

    2016-01-01

    Phenotypic screens allow the identification of small molecules with promising anticancer activity, but the difficulty in characterizing the mechanism of action of these compounds in human cells often undermines their value as drug leads. Here, we used a loss-of-function genetic screen in human haploid KBM7 cells to discover the mechanism of action of the anticancer natural product ophiobolin A (OPA). We found that genetic inactivation of de novo synthesis of phosphatidylethanolamine (PE) mitigates OPA cytotoxicity by reducing cellular PE levels. OPA reacts with the ethanolamine head group of PE in human cells to form pyrrole-containing covalent cytotoxic adducts and these adducts lead to lipid bilayer destabilization. Our characterization of this unusual cytotoxicity mechanism, made possible by unbiased genetic screening in human cells, suggests that the selective antitumor activity displayed by OPA may be due to altered membrane PE levels in cancer cells. PMID:27403889

  11. Anticancer principles from medicinal piper ( hú jiāo) plants.

    PubMed

    Wang, Yue-Hu; Morris-Natschke, Susan L; Yang, Jun; Niu, Hong-Mei; Long, Chun-Lin; Lee, Kuo-Hsiung

    2014-01-01

    The ethnomedical uses of Piper ( Hú Jiāo) plants as anticancer agents, in vitro cytotoxic activity of both extracts and compounds from Piper plants, and in vivo antitumor activity and mechanism of action of selected compounds are reviewed in the present paper. The genus Piper (Piperaceae) contains approximately 2000 species, of which 10 species have been used in traditional medicines to treat cancer or cancer-like symptoms. Studies have shown that 35 extracts from 24 Piper species and 32 compounds from Piper plants possess cytotoxic activity. Amide alkaloids account for 53% of the major active principles. Among them, piplartine (piperlongumine) shows the most promise, being toxic to dozens of cancer cell lines and having excellent in vivo activity. It is worthwhile to conduct further anticancer studies both in vitro and in vivo on Piper plants and their active principles. PMID:24872928

  12. Anticancer Principles from Medicinal Piper (胡椒 Hú Jiāo) Plants

    PubMed Central

    Wang, Yue-Hu; Morris-Natschke, Susan L.; Yang, Jun; Niu, Hong-Mei; Long, Chun-Lin; Lee, Kuo-Hsiung

    2014-01-01

    The ethnomedical uses of Piper (胡椒 Hú Jiāo) plants as anticancer agents, in vitro cytotoxic activity of both extracts and compounds from Piper plants, and in vivo antitumor activity and mechanism of action of selected compounds are reviewed in the present paper. The genus Piper (Piperaceae) contains approximately 2000 species, of which 10 species have been used in traditional medicines to treat cancer or cancer-like symptoms. Studies have shown that 35 extracts from 24 Piper species and 32 compounds from Piper plants possess cytotoxic activity. Amide alkaloids account for 53% of the major active principles. Among them, piplartine (piperlongumine) shows the most promise, being toxic to dozens of cancer cell lines and having excellent in vivo activity. It is worthwhile to conduct further anticancer studies both in vitro and in vivo on Piper plants and their active principles. PMID:24872928

  13. Chloroquine enhanced the anticancer capacity of VNP20009 by inhibiting autophagy

    PubMed Central

    Zhang, Xiaoxin; Xu, Qiaoqiao; Zhang, Zhuangzhuang; Cheng, Wei; Cao, Wenmin; Jiang, Chizhou; Han, Chao; Li, Jiahuang; Hua, Zichun

    2016-01-01

    Bacteria-based living anticancer agents have emerged as promising therapeutics. However, the functional role of autophagy in bacterial cancer therapy has been little investigated. In this study, Salmonella VNP20009 induced autophagy in B16F10 cells, which is an unfavorable factor in bacterial cancer therapy. Inhibiting the induction of autophagy by chloroquine or siRNA in bacterial cancer therapy dose- and time-dependently promoted cell death. The combined therapy of VNP20009 and chloroquine not only enhanced the bacterial tumor targeting ability but also facilitated the infiltration of immune cells into the tumor. Our results showed that the combined therapy of VNP20009 and chloroquine could significantly inhibit tumor growth and prolong mouse survival time. This study provides a novel strategy for improving the anti-cancer efficacy of bacterial cancer therapy. PMID:27412722

  14. Novel Resveratrol-Based Aspirin Prodrugs: Synthesis, Metabolism, and Anticancer Activity.

    PubMed

    Zhu, Yingdong; Fu, Junsheng; Shurlknight, Kelly L; Soroka, Dominique N; Hu, Yuhui; Chen, Xiaoxin; Sang, Shengmin

    2015-08-27

    Regular aspirin use has been convincingly shown to reduce the risk of colorectal cancer. However, long-term use of aspirin leads to gastrotoxicity. Herein, we designed and synthesized a novel class of resveratrol-based aspirin prodrugs to simultaneously release aspirin and resveratrol to attenuate the side effects caused by aspirin. Prodrug RAH exerted enhanced anticancer activities which are better than a physical mixture of aspirin and resveratrol as well as each individually. Metabolism of RAH in mice showed that the majority of RAH is decomposed to release resveratrol and aspirin or salicylic acid either in the intestine or after absorption. Mechanistic studies demonstrate RAH inhibits cell cycle arrest through downregulation of cyclins and induces apoptosis by activation of caspase-3 in cancer cells. These findings highlighted the improved anticancer properties of resveratrol-based aspirin prodrugs. RAH may represent novel and safe alternatives of aspirin for the purpose of daily use in the future. PMID:26204233

  15. Evaluation of Degradation Properties of Polyglycolide and Its Potential as Delivery Vehicle for Anticancer Agents

    SciTech Connect

    Noorsal, K.; Ghani, S. M.; Yunos, D. M.; Mohamed, M. S. W.; Yahya, A. F.

    2010-03-11

    Biodegradable polymers offer a unique combination of properties that can be tailored to suit nearly any controlled drug delivery application. The most common biodegradable polymers used for biomedical applications are semicrystalline polyesters and polyethers which possess good mechanical properties and have been used in many controlled release applications. Drug release from these polymers may be controlled by several mechanisms and these include diffusion of drug through a matrix, dissolution of polymer matrix and degradation of the polymer. This study aims to investigate the degradation and drug release properties of polyglycolide (1.03 dL/g), in which, cis platin, an anticancer agent was used as the model drug. The degradation behaviour of the chosen polymer is thought to largely govern the release of the anticancer agent in vitro.

  16. Toxicity interactions and ways of reducing side effects of anticancer drugs.

    PubMed

    Gola, A; Orzechowska-Juzwenko, K

    1982-01-01

    Side effects of cytostatics commonly used in the Haematology Clinic are analysed. The toxic action on the host's organs is discussed in L-asparaginase, azathioprine, bleomycine, busulfan, cyclophosphamide, cytosin-arabinoside, daunorubicine, fluorouracil, mercaptopurine, methotrexate, dichlorplatinum, procarbazine and the vinca alkaloids. In addition to toxic symptoms arising from single organs the most important 21 anticancer drugs are gathered in a table. Metabolism of activation and inactivation are mentioned to interprete symptoms of toxicity. Furthermore, the interactions between commonly administered drugs and carcinostatics which may enhance or suppress their carcinostatic efficacy are exposed. A final survey of possible pharmacological rescue measures, which may improve the tolerance of anticancer drugs by diminishing their toxicity is presented. PMID:6184274

  17. Neem Limonoids as Anticancer Agents: Modulation of Cancer Hallmarks and Oncogenic Signaling.

    PubMed

    Nagini, Siddavaram

    2014-01-01

    Neem (Azadirachta indica A. Juss) is one of the most versatile medicinal plants, widely distributed in the Indian subcontinent. Neem is a rich source of limonoids that are endowed with potent medicinal properties predominantly antioxidant, anti-inflammatory, and anticancer activities. Azadirachtin, gedunin, and nimbolide are more extensively investigated relative to other neem limonoids. Accumulating evidence indicates that the anticancer effects of neem limonoids are mediated through the inhibition of hallmark capabilities of cancer such as cell proliferation, apoptosis evasion, inflammation, invasion, and angiogenesis. The neem limonoids have been demonstrated to target oncogenic signaling kinases and transcription factors chiefly, NF-κB, Wnt/β-catenin, PI3K/Akt, MAPK, and JAK/STAT signaling pathways. Neem limonoids that target multiple pathways that are aberrant in cancer are ideal candidates for cancer chemoprevention and therapy. PMID:27102702

  18. Histone/protein deacetylase SIRT1 is an anticancer therapeutic target

    PubMed Central

    Hwang, Bor-Jang; Madabushi, Amrita; Jin, Jin; Lin, Shiou-Yuh S; Lu, A-Lien

    2014-01-01

    SIRT1, a member of the NAD+-dependent histone/protein deacetylase family, is involved in chromatin remodeling, DNA repair, and stress response and is a potential drug target. 5-fluorouracil (FU) and the SN1-type DNA methylating agent temozolomide (TMZ) are anticancer agents. In this study, we demonstrate that sirt1 knockout mouse embryonic fibroblast cells are more sensitive to FU and DNA methylating agents than normal cells. Based on these findings, the chemotherapy efficacy of SIRT1 inhibitors in combination with FU or TMZ were tested with human breast cancer cells. We found that treatments combining SIRT1 inhibitors with FU or TMZ show synergistic reduction of cell viability and colony formation of breast cancer cells. Thus, inhibition of SIRT1 activity provides a novel anticancer strategy. PMID:24959376

  19. Nizwaside: a new anticancer pregnane glycoside from the sap of Desmidorchis flava.

    PubMed

    Hussain, Hidayat; Raees, Muhammad Adil; Rehman, Najeeb Ur; Al-Rawahi, Ahmed; Csuk, René; Khan, Husain Yar; Abbas, Ghulam; Al-Broumi, Mohammed Abdullah; Green, Ivan R; Elyassi, Ali; Mahmood, Talat; Al-Harrasi, Ahmed

    2015-12-01

    The sap from the succulent Desmidorchis flava (N.E.Br) Meve and Liede yielded a new pregnane glycoside, named nizwaside whose structure was established using 1D and 2D NMR techniques as well as mass spectrometry (ESIMS). Nizwaside was tested for anticancer, DPPH antioxidant, urease enzyme inhibition, α-glucosidase enzyme inhibition and acetylcholinesterase inhibition activities. Interestingly, nizwaside showed significant anti-proliferative effects on MDA MB231 breast cancer cells with an IC(50) of 23.5 µg/ml. Moreover, nizwaside was more effective than Doxorubicin, a well-known clinical anticancer drug, in suppressing MDA MB231 cell proliferation even at concentrations lower than that of Doxorubicin (75 µg/ml nizwaside vs. 100 µg/ml Doxorubicin). On the other hand, nizwaside showed relatively weak antioxidant activity with 15 % inhibition. PMID:26335549

  20. The application of click chemistry in the synthesis of agents with anticancer activity

    PubMed Central

    Ma, Nan; Wang, Ying; Zhao, Bing-Xin; Ye, Wen-Cai; Jiang, Sheng

    2015-01-01

    The copper(I)-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry) to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents. PMID:25792812

  1. Hurdles and delays in access to anti-cancer drugs in Europe

    PubMed Central

    Ades, F; Zardavas, D; Senterre, C; de Azambuja, E; Eniu, A; Popescu, R; Piccart, M; Parent, F

    2014-01-01

    Demographic changes in the world population will cause a significant increase in the number of new cases of cancer. To handle this challenge, societies will need to adapt how they approach cancer prevention and treatment, with changes to the development and uptake of innovative anticancer drugs playing an important role. However, there are obstacles to implementing innovative drugs in clinical practice. Prior to being incorporated into daily practice, the drug must obtain regulatory and reimbursement approval, succeed in changing the prescription habits of physicians, and ultimately gain the compliance of individual patients. Developing an anticancer drug and bringing it into clinical practice is, therefore, a lengthy and complex process involving multiple partners in several areas. To optimize patient treatment and increase the likelihood of implementing health innovation, it is essential to have an overview of the full process. This review aims to describe the process and discuss the hurdles arising at each step. PMID:25525460

  2. Quercetin nanocomposite as novel anticancer therapeutic: improved efficiency and reduced toxicity.

    PubMed

    Cirillo, Giuseppe; Vittorio, Orazio; Hampel, Silke; Iemma, Francesca; Parchi, Paolo; Cecchini, Marco; Puoci, Francesco; Picci, Nevio

    2013-06-14

    A three-functional nanocomposite was prepared by radical polymerization of methacrylic acid around carbon nanotubes in the presence of Quercetin as biologically active molecule and proposed as new anticancer therapeutic. The so-obtained hybrid material was characterized by FT-IR, Raman, SEM, TEM analyses, while the functionalization degree of 2.33 mg of Quercetin per g of composite was assessed by Folin-Ciocalteu test. Antioxidant test (DPPH and ABTS) showed that the covalent coupling did not interfere with the antioxidant properties of the flavonoid, while the anticancer activity was greatly enhanced with a recorded IC50 value much lower than free Quercetin. Cell viability tests on healthy cells demonstrated no-toxicity of the conjugate. PMID:23602995

  3. Theoretical research into anticancer activity of diterpenes isolated from the paraiban flora.

    PubMed

    Ishiki, Hamilton; Junior, Francisco J B Mendonça; Santos, Paula F; Tavares, Josean F; Tavares, Josean F; Silva, Marcelo S; Scotti, Marcus T

    2014-07-01

    Many studies of the scientific literature discuss the anticancer activity of diterpenes inhibiting the Akt/IKK/NF-kappaB pro-survival signaling cascade, mainly by the activation of serine/threonine phosphatase PP2A. The aim of this work was to evaluate and compare the anticancer potential of three atisane, three kaurane and three trachylobane diterpenes extracted from the roots of Xylopia langsdorffiana. Thus, we investigated the reactivity (H-L(GAP) parameter), HOMO atmosphere favorable to neutralize the radical reactivity, and the docking of compounds with PP2A. With all approaches, this theoretical study showed that atisane diterpenes have favorable characteristics for antitumor activity, like electron donating ability and greater hydrophilic interactions with the enzyme, by inhibition of Akt/IKK/NF-kappaB, and activation of PP2A. PMID:25230491

  4. Anticancer drug release from poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels

    NASA Astrophysics Data System (ADS)

    Taşdelen, B.; Kayaman-Apohan, N.; Güven, O.; Baysal, B. M.

    2005-08-01

    The drug uptake and release of anticancer drug from N-isopropylacrylamide/itaconic acid copolymeric hydrogels containing 0-3 mol% of itaconic acid irradiated at 48 kGy have been investigated. 5-Fluorouracil (5-FU) is used as a model anticancer drug. The effect of 5-FU solution on swelling characteristics of PNIPAAm and P(NIPAAm/IA) copolymeric hydrogels have also been studied. The percent swelling, equilibrium swelling, equilibrium water/5-FU content and diffusion constant values are evaluated for poly(N-isopropylacrylamide) (PNIPAAm) and poly(N-isopropylacrylamide/itaconic) (P(NIPAAm/IA)) hydrogels at 130 ppm of 5-FU solution at room temperature. Diffusion of 5-FU solution into the hydrogels has been found to be the non-Fickian type. Finally, the kinetics of drug release from the hydrogels are examined.

  5. New Anticancer Drugs Associated With Large Increases In Costs And Life Expectancy.

    PubMed

    Howard, David H; Chernew, Michael E; Abdelgawad, Tamer; Smith, Gregory L; Sollano, Josephine; Grabowski, David C

    2016-09-01

    Spending on anticancer drugs has risen rapidly over the past two decades. A key policy question is whether new anticancer drugs offer value, given their high cost. Using data from the Surveillance, Epidemiology, and End Results (SEER)-Medicare database, we assessed the value of new cancer treatments in routine clinical practice for patients with metastatic breast, lung, or kidney cancer or chronic myeloid leukemia in the periods 1996-2000 and 2007-11. We found that there were large increases in medical costs, but also large gains in life expectancy. For example, among patients with breast cancer who received physician-administered drugs, lifetime costs-including costs for outpatient and inpatient care-increased by $72,000 and life expectancy increased by thirteen months. Changes in life expectancy and costs were much smaller among patients who did not receive these drugs. PMID:27605636

  6. In vivo nanotoxicology of hybrid systems based on copolymer/silica/anticancer drug

    NASA Astrophysics Data System (ADS)

    Silveira, C. P.; Paula, A. J.; Apolinário, L. M.; Fávaro, W. J.; Durán, N.

    2015-05-01

    One of the major problems in cancer therapies is the high occurrence of side effects intrinsic of anticancer drugs. Doxorrubicin is a conventional anticancer molecule used to treat a wide range of cancer, such as breast, ovarian and prostate. However, its use is associated with a number of side effects like multidrug resistance and cardiotoxicity. The association with nanomaterials has been considered in the past decade to overcome the high toxicity of these drugs. In this context, mesoporous silica nanoparticles are great candidates to be used as carriers once they are very biocompatible. Taking into account the combination of nanoparticles and doxorrubicin, we treated rats with chemically induced prostate cancer with systems based on mesoporous silica nanoparticles and a thermoreversible block copolymer (Pluronic F-127) containing doxorrubicin. Preliminary results show a possible improvement in tumor conditions proportional to the concentration of the nanoparticles, opening a perspective to use mesoporous silica nanoparticles as carrier for doxorrubicin in prostate cancer treatment.

  7. Synthesis, structure, antimycobacterial and anticancer evaluation of new pyrrolo-phenanthroline derivatives.

    PubMed

    Al Matarneh, Cristina M; Mangalagiu, Ionel I; Shova, Sergiu; Danac, Ramona

    2016-06-01

    A study concerning design, synthesis, structure and in vitro antimycobacterial and anticancer evaluation of new fused derivatives with pyrrolo[2,1-c][4,7]phenanthroline skeleton is described. The strategy adopted for synthesis involves a [3 + 2] dipolar cycloaddition of several in situ generated 4,7-phenanthrolin-4-ium ylides to different substituted alkynes and alkenes. Stereo- and regiochemistry of cycloaddition reactions were discussed. The structure of the new compounds was proven unambiguously, single-crystal X-ray diffraction studies including. The antimycobacterial and anticancer activity of a selection of new synthesized compounds was evaluated against Mycobacterium tuberculosis H37Rv under aerobic conditions and 60 human tumour cell line panel, respectively. Five of the tested compounds possess a moderate antimycobacterial activity, while two of the compounds have a significant antitumor activity against renal cancer and breast cancer. PMID:25945747

  8. Anticancer and antioxidant activities of the peptide fraction from algae protein waste.

    PubMed

    Sheih, I-Chuan; Fang, Tony J; Wu, Tung-Kung; Lin, Peng-Hsiang

    2010-01-27

    Algae protein waste is a byproduct during production of algae essence from Chlorella vulgaris. There is no known report on the anticancer peptides derived from the microalgae protein waste. In this paper, the peptide fraction isolated from pepsin hydrolysate of algae protein waste had strong dose-dependent antiproliferation and induced a post-G1 cell cycle arrest in AGS cells; however, no cytotoxicity was observed in WI-38 lung fibroblasts cells in vitro. The peptide fraction also revealed much better antioxidant activity toward peroxyl radicals and LDL than those of Trolox. Among these peptides, a potent antiproliferative, antioxidant, and NO-production-inhibiting hendecapeptide was isolated, and its amino acid sequence was VECYGPNRPQF. These results demonstrate that inexpensive algae protein waste could be a new alternative to produce anticancer peptides. PMID:19916544

  9. Isolation of Cells Specialized in Anticancer Alkaloid Metabolism by Fluorescence-Activated Cell Sorting.

    PubMed

    Carqueijeiro, Inês; Guimarães, Ana Luísa; Bettencourt, Sara; Martínez-Cortés, Teresa; Guedes, Joana G; Gardner, Rui; Lopes, Telma; Andrade, Cláudia; Bispo, Cláudia; Martins, Nuno Pimpão; Andrade, Paula; Valentão, Patrícia; Valente, Inês M; Rodrigues, José A; Duarte, Patrícia; Sottomayor, Mariana

    2016-08-01

    Plant specialized metabolism often presents a complex cell-specific compartmentation essential to accomplish the biosynthesis of valuable plant natural products. Hence, the disclosure and potential manipulation of such pathways may depend on the capacity to isolate and characterize specific cell types. Catharanthus roseus is the source of several medicinal terpenoid indole alkaloids, including the low-level anticancer vinblastine and vincristine, for which the late biosynthetic steps occur in specialized mesophyll cells called idioblasts. Here, the optical, fluorescence, and alkaloid-accumulating properties of C. roseus leaf idioblasts are characterized, and a methodology for the isolation of idioblast protoplasts by fluorescence-activated cell sorting is established, taking advantage of the distinctive autofluorescence of these cells. This achievement represents a crucial step for the development of differential omic strategies leading to the identification of candidate genes putatively involved in the biosynthesis, pathway regulation, and transmembrane transport leading to the anticancer alkaloids from C. roseus. PMID:27356972

  10. Design and synthesis of novel 4'-demethyl-4-deoxypodophyllotoxin derivatives as potential anticancer agents.

    PubMed

    Zhu, Xiong; Fu, Junjie; Tang, Yan; Gao, Yuan; Zhang, Shijin; Guo, Qinglong

    2016-02-15

    A group of podophyllotoxin (PPT) derivatives (7a-j) were synthesized by conjugating aryloxyacetanilide moieties to the 4'-hydroxyl of 4'-demethyl-4-deoxypodophyllotoxin (DDPT), and their anticancer activity was evaluated. It was found that the most potent compound 7d inhibited the proliferation of three cancer cell lines with sub to low micromolar IC50 values. Furthermore, it was demonstrated that 7d induced cell cycle arrest in G2/M phase in MGC-803 cells, and regulated the expression of cell cycle check point proteins, such as cyclin A, cyclin B, CDK1, cdc25c, and p21. Finally, 4 mg/kg of 7d reduced the weights and volumes of HepG2 xenografts in mice. Our findings suggest that 7d might be a potential anticancer agent. PMID:26804229

  11. Cysteine-modifying agents: a possible approach for effective anticancer and antiviral drugs.

    PubMed Central

    Casini, Angela; Scozzafava, Andrea; Supuran, Claudiu T

    2002-01-01

    Modification of cysteine residues in proteins, due to a) the participation of the thiol moiety of this amino acid in oxido-reduction reactions, b) its ability to strongly coordinate transition metal ions, or c) its nucleophilic nature and facile reaction with electrophiles, may be critically important for the design of novel types of pharmacological agents. Application of such procedures recently led to the design of novel antivirals, mainly based on the reaction of zinc finger proteins with disulfides and related derivatives. This approach was particularly successful for developing novel antiviral agents for human immunodeficiency virus and human papilloma virus. Several new anticancer therapeutic approaches, mainly targeting tubulin, have also been reported. Thus, this unique amino acid offers very interesting possibilities for developing particularly useful pharmacological agents, which generally possess a completely different mechanism of action compared with classic agents in clinical use, thus avoiding major problems such as multidrug resistance (for antiviral and anticancer agents) or high toxicity. PMID:12426135

  12. Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development

    PubMed Central

    Senese, S; Lo, Y C; Huang, D; Zangle, T A; Gholkar, A A; Robert, L; Homet, B; Ribas, A; Summers, M K; Teitell, M A; Damoiseaux, R; Torres, J Z

    2014-01-01

    Cancer cell proliferation relies on the ability of cancer cells to grow, transition through the cell cycle, and divide. To identify novel chemical probes for dissecting the mechanisms governing cell cycle progression and cell division, and for developing new anti-cancer therapeutics, we developed and performed a novel cancer cell-based high-throughput chemical screen for cell cycle modulators. This approach identified novel G1, S, G2, and M-phase specific inhibitors with drug-like properties and diverse chemotypes likely targeting a broad array of processes. We further characterized the M-phase inhibitors and highlight the most potent M-phase inhibitor MI-181, which targets tubulin, inhibits tubulin polymerization, activates the spindle assembly checkpoint, arrests cells in mitosis, and triggers a fast apoptotic cell death. Importantly, MI-181 has broad anti-cancer activity, especially against BRAFV600E melanomas. PMID:25321469

  13. Repurposing drugs in oncology (ReDO)—cimetidine as an anti-cancer agent

    PubMed Central

    Pantziarka, Pan; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vidula; Sukhatme, Vikas P

    2014-01-01

    Cimetidine, the first H2 receptor antagonist in widespread clinical use, has anti-cancer properties that have been elucidated in a broad range of pre-clinical and clinical studies for a number of different cancer types. These data are summarised and discussed in relation to a number of distinct mechanisms of action. Based on the evidence presented, it is proposed that cimetidine would synergise with a range of other drugs, including existing chemotherapeutics, and that further exploration of the potential of cimetidine as an anti-cancer therapeutic is warranted. Furthermore, there is compelling evidence that cimetidine administration during the peri-operative period may provide a survival benefit in some cancers. A number of possible combinations with other drugs are discussed in the supplementary material accompanying this paper. PMID:25525463

  14. Ginseng and Anticancer Drug Combination to Improve Cancer Chemotherapy: A Critical Review

    PubMed Central

    Chen, Shihong; Huang, Ying; O'Barr, Stephen A.; Wong, Rebecca A.; Chow, Moses Sing Sum

    2014-01-01

    Ginseng, a well-known herb, is often used in combination with anticancer drugs to enhance chemotherapy. Its wide usage as well as many documentations are often cited to support its clinical benefit of such combination therapy. However the literature based on objective evidence to make such recommendation is still lacking. The present review critically evaluated relevant studies reported in English and Chinese literature on such combination. Based on our review, we found good evidence from in vitro and in vivo animal studies showing enhanced antitumor effect when ginseng is used in combination with some anticancer drugs. However, there is insufficient clinical evidence of such benefit as very few clinical studies are available. Future research should focus on clinically relevant studies of such combination to validate the utility of ginseng in cancer. PMID:24876866

  15. Honokiol analogs: a novel class of anticancer agents targeting cell signaling pathways and other bioactivities.

    PubMed

    Kumar, Ankit; Kumar Singh, Umesh; Chaudhary, Anurag

    2013-05-01

    Honokiol (3,5-di-(2-propenyl)-1,1-biphenyl-2,2-diol) is a natural bioactive neolignan isolated from the genus Magnolia. In recent studies, honokiol has been observed to have anti-angiogenic, anticancer, anti-inflammatory, neuroprotective and GABA-modulating properties in vitro and in preclinical models. Honokiol and its analogs target multiple signaling pathways including NF-κB, STAT3, EGFR, mTOR and caspase-mediated common pathway, which regulate cancer initiation and progression. Honokiol and its targets of action may be helpful in the development of effective analogs and targeted cancer therapy. In this review, recent data describing the molecular targets of honokiol and its analogs with anticancer and some other bioactivities are discussed. PMID:23651094

  16. Isolation, transformation, anticancer, and apoptosis activity of lupeyl acetate from Artocarpus integra

    NASA Astrophysics Data System (ADS)

    Suwito, Hery; Heffen, Wan Lelly; Cahyana, Herry; Suwarso, Wahyudi Priyono

    2016-03-01

    Lupeyl acetate -a major constituent of the bark of Artocarpus integra- was isolated and then transformed chemically into lupeol and lupenone by hydrolysis and oxidation reaction respectively. The molecular structures of the prepared compounds were determined based on FTIR, MS and NMR spectrum evidences. Their anticancer activities were determined against breast cancer cells MCF-7 using neutral red assay, while their apoptotic activity were confirmed by flowcytometric analysis using Annexin V-FTIC assay and DNA fragmentation. The IC50 of Lupeyl acetate, lupeol, and lupenone were 48.79; 43.09; and 8.07 µg/mL respectively. The results of flowcytometric analysis and DNA fragmentation showed that anticancer activity of the prepared compounds following apoptosis mechanism.

  17. Hierarchical targeted hepatocyte mitochondrial multifunctional chitosan nanoparticles for anticancer drug delivery.

    PubMed

    Chen, Zhipeng; Zhang, Liujie; Song, Yang; He, Jiayu; Wu, Li; Zhao, Can; Xiao, Yanyu; Li, Wei; Cai, Baochang; Cheng, Haibo; Li, Weidong

    2015-06-01

    The overwhelming majority of drugs exert their pharmacological effects after reaching their target sites of action, however, these target sites are mainly located in the cytosol or intracellular organelles. Consequently, delivering drugs to the specific organelle is the key to achieve maximum therapeutic effects and minimum side-effects. In the work reported here, we designed, synthesized, and evaluated a novel mitochondrial-targeted multifunctional nanoparticles (MNPs) based on chitosan derivatives according to the physiological environment of the tumor and the requirement of mitochondrial targeting drug delivery. The intelligent chitosan nanoparticles possess various functions such as stealth, hepatocyte targeting, multistage pH-response, lysosomal escape and mitochondrial targeting, which lead to targeted drug release after the progressively shedding of functional groups, thus realize the efficient intracellular delivery and mitochondrial localization, inhibit the growth of tumor, elevate the antitumor efficacy, and reduce the toxicity of anticancer drugs. It provides a safe and efficient nanocarrier platform for mitochondria targeting anticancer drug delivery. PMID:25818430

  18. In vitro anticancer activity of extracts of Mentha Spp. against human cancer cells.

    PubMed

    Sharma, Vikas; Hussain, Shabir; Gupta, Moni; Saxena, Ajit Kumar

    2014-10-01

    In vitro anticancer potential of methanolic and aqueous extracts of whole plants of Mentha arvensis, M. longifolia, M. spicata and M. viridis at concentration of 100 μg/ml was evaluated against eight human cancer cell lines--A-549, COLO-205, HCT-116, MCF-7, NCI-H322, PC-3, THP-1 and U-87MG from six different origins (breast, colon, glioblastoma, lung, leukemia and prostate) using sulphorhodamine blue (SRB) assay. Methanolic extracts of above-mentioned Mentha Spp. displayed anti-proliferative effect in the range of 70-97% against four human cancer cell lines, namely COLO-205, MCF-7, NCI-H322 and THP-1; however, aqueous extracts were found to be active against HCT-116 and PC-3. The results indicate that Mentha Spp. contain certain constituents with cytotoxic properties which may find use in developing anticancer agents. PMID:25630112

  19. The Parity Paradigm: Can Legislation Help Reduce the Cost Burden of Oral Anticancer Medications?

    PubMed

    Kircher, Sheetal M; Meeker, Caitlin R; Nimeiri, Halla; Geynisman, Daniel M; Zafar, S Yousuf; Shankaran, Veena; de Souza, Jonas; Wong, Yu-Ning

    2016-01-01

    Over the last decade, there has been increased development and use of oral anticancer medications, which sometimes leads to high cost sharing for patients. Drug parity laws require insurance plans to cover oral anticancer medications with the same cost sharing as intravenous/injected chemotherapy or have a capped limit on out-of-pocket costs. There are currently 36 enacted state laws (plus the District of Columbia) addressing drug parity, but no federal laws. In this policy perspective piece, we discuss the history, opportunities, and limitations of drug parity laws in oncology. We also discuss the implications of provisions of the Affordable Care Act and other proposed policy reforms on financing oral chemotherapy. PMID:26797241

  20. A journey under the sea: the quest for marine anti-cancer alkaloids.

    PubMed

    Tohme, Rita; Darwiche, Nadine; Gali-Muhtasib, Hala

    2011-01-01

    The alarming increase in the global cancer death toll has fueled the quest for new effective anti-tumor drugs thorough biological screening of both terrestrial and marine organisms. Several plant-derived alkaloids are leading drugs in the treatment of different types of cancer and many are now being tested in various phases of clinical trials. Recently, marine-derived alkaloids, isolated from aquatic fungi, cyanobacteria, sponges, algae, and tunicates, have been found to also exhibit various anti-cancer activities including anti-angiogenic, anti-proliferative, inhibition of topoisomerase activities and tubulin polymerization, and induction of apoptosis and cytotoxicity. Two tunicate-derived alkaloids, aplidin and trabectedin, offer promising drug profiles, and are currently in phase II clinical trials against several solid and hematologic tumors. This review sheds light on the rich array of anti-cancer alkaloids in the marine ecosystem and introduces the most investigated compounds and their mechanisms of action. PMID:22113577