Science.gov

Sample records for anticancer drugs mitoxantrone

  1. Gossypol-Capped Mitoxantrone-Loaded Mesoporous SiO2 NPs for the Cooperative Controlled Release of Two Anti-Cancer Drugs.

    PubMed

    Heleg-Shabtai, Vered; Aizen, Ruth; Sharon, Etery; Sohn, Yang Sung; Trifonov, Alexander; Enkin, Natalie; Freage, Lina; Nechushtai, Rachel; Willner, Itamar

    2016-06-15

    Mesoporous SiO2 nanoparticles, MP-SiO2 NPs, are functionalized with the boronic acid ligand units. The pores of the MP-SiO2 NPs are loaded with the anticancer drug mitoxantrone, and the pores are capped with the anticancer drug gossypol. The resulting two-drug-functionalized MP-SiO2 NPs provide a potential stimuli-responsive anticancer drug carrier for cooperative chemotherapeutic treatment. In vitro experiments reveal that the MP-SiO2 NPs are unlocked under environmental conditions present in cancer cells, e.g., acidic pH and lactic acid overexpressed in cancer cells. The effective unlocking of the capping units under these conditions is attributed to the acidic hydrolysis of the boronate ester capping units and to the cooperative separation of the boronate ester bridges by the lactate ligand. The gossypol-capped mitoxantrone-loaded MP-SiO2 NPs reveals preferential cytotoxicity toward cancer cells and cooperative chemotherapeutic activities toward the cancer cells. The MCF-10A epithelial breast cells and the malignant MDA-MB-231 breast cancer cells treated with the gossypol-capped mitoxantrone-loaded MP-SiO2 NPs revealed after a time-interval of 5 days a cell death of ca. 8% and 60%, respectively. Also, the gossypol-capped mitoxantrone-loaded MP-SiO2 NPs revealed superior cancer-cell death (ca. 60%) as compared to control carriers consisting of β-cyclodextrin-capped mitoxantrone-loaded (ca. 40%) under similar loading of the mitoxantrone drug. The drugs-loaded MP-SiO2 NPs reveal impressive long-term stabilities. PMID:27186957

  2. Study on the interaction of anticancer drug mitoxantrone with DNA by fluorescence and Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Tang, Lingjuan; Sun, Zhenrong; Guo, Jianyu; Wang, Zugeng

    2006-02-01

    Mitoxantrone, a clinically useful antitumour antibiotic for leukaemia and breast cancer, has received more attentions. In this paper, the interaction between mitoxantrone and calf thymus DNA is investigated by Raman and fluorescence spectroscopies, and the binding site of mitoxantrone to calf thymus DNA is explored. The results showed that mitoxantrone interacts with calf thymus DNA bases by the intercalation of anthracycline into the base pair plane of adenine (A) and thymine (T), and it results in the disruption of the hydrogen bonds between calf thymus DNA bases, and thus the calf thymus DNA double-strand can be disrupted into the B-form DNA double-strand segments.

  3. Oxidative metabolism of the anti-cancer agent mitoxantrone by horseradish, lacto-and lignin peroxidase.

    PubMed

    Brück, Thomas B; Brück, Dieter W

    2011-02-01

    Mitoxantrone (MH(2)X), an anthraquinone-type anti-cancer agent used clinically in the treatment of human malignancies, is oxidatively activated by the peroxidase/H(2)O(2) enzyme system. In contrast to the enzymatic mechanisms of drug oxidation, the chemical transformations of MH(2)X are not well described. In this study, MH(2)X metabolites, produced by the horseradish, lacto- or lignin peroxidase (respectively HRP, LPO and LIP)/H(2)O(2) system, were investigated by steady-state spectrokinetic and HPLC-MS methods. At an equimolar mitoxantrone/H(2)O(2) ratio, the efficacy of the enzyme-catalyzed oxidation of mitoxantrone decreased in the following order: LPO > HRP > LIP, which accorded with the decreasing size of the substrate access channel in the enzyme panel examined. In all cases, the central drug oxidation product was the redox-active cyclic metabolite, hexahydronaphtho-[2,3-f]-quinoxaline-7,12-dione (MH(2)), previously identified in the urine of mitoxantrone-treated patients. As the reaction progressed, data gathered in this study suggests that further oxidation of the MH(2) side-chains occurred, yielding the mono- and dicarboxylic acid derivatives respectively. Based on the available data a further MH(2) derivative is proposed, in which the amino-alkyl side-chain(s) are cyclised. With increasing H(2)O(2) concentrations, these novel MH(2) derivatives were oxidised to additional metabolites, whose spectral properties and MS data indicated a stepwise destruction of the MH(2) chromophore due to an oxidative cleavage of the 9,10-anthracenedione moiety. The novel metabolites extend the known sequence of peroxidase-induced mitoxantrone metabolism, and may contribute to the cytotoxic effects of the drug in vivo. Based on the structural features of the proposed MH(2) oxidation products we elaborate on various biochemical mechanisms, which extend the understanding of mitoxantrone's pharmaceutical action and its clinical effectiveness with a particular focus on

  4. Targeted Tumor Therapy with "Magnetic Drug Targeting": Therapeutic Efficacy of Ferrofluid Bound Mitoxantrone

    NASA Astrophysics Data System (ADS)

    Alexiou, Ch.; Schmid, R.; Jurgons, R.; Bergemann, Ch.; Arnold, W.; Parak, F.G.

    The difference between success or failure of chemotherapy depends not only on the drug itself but also on how it is delivered to its target. Biocompatible ferrofluids (FF) are paramagnetic nanoparticles, that may be used as a delivery system for anticancer agents in locoregional tumor therapy, called "magnetic drug targeting". Bound to medical drugs, such magnetic nanoparticles can be enriched in a desired body compartment (tumor) using an external magnetic field, which is focused on the area of the tumor. Through this form of target directed drug application, one attempts to concentrate a pharmacological agent at its site of action in order to minimize unwanted side effects in the organism and to increase its locoregional effectiveness. Tumor bearing rabbits (VX2 squamous cell carcinoma) in the area of the hind limb, were treated by a single intra-arterial injection (A. femoralis) of mitoxantrone bound ferrofluids (FF-MTX), while focusing an external magnetic field (1.7 Tesla) onto the tumor for 60 minutes. Complete tumor remissions could be achieved in these animals in a dose related manner (20% and 50% of the systemic dose of mitoxantrone), without any negative side effects, like e.g. leucocytopenia, alopecia or gastrointestinal disorders. The strong and specific therapeutic efficacy in tumor treatment with mitoxantrone bound ferrofluids may indicate that this system could be used as a delivery system for anticancer agents, like radionuclids, cancer-specific antibodies, anti-angiogenetic factors, genes etc.

  5. Vitamin E succinate-conjugated F68 micelles for mitoxantrone delivery in enhancing anticancer activity

    PubMed Central

    Liu, Yuling; Xu, Yingqi; Wu, Minghui; Fan, Lijiao; He, Chengwei; Wan, Jian-Bo; Li, Peng; Chen, Meiwan; Li, Hui

    2016-01-01

    Mitoxantrone (MIT) is a chemotherapeutic agent with promising anticancer efficacy. In this study, Pluronic F68-vitamine E succinate (F68-VES) amphiphilic polymer micelles were developed for delivering MIT and enhancing its anticancer activity. MIT-loaded F68–VES (F68–VES/MIT) micelles were prepared via the solvent evaporation method with self-assembly under aqueous conditions. F68–VES/MIT micelles were found to be of optimal particle size with the narrow size distribution. Transmission electron microscopy images of F68–VES/MIT micelles showed homogeneous spherical shapes and smooth surfaces. F68–VES micelles had a low critical micelle concentration value of 3.311 mg/L, as well as high encapsulation efficiency and drug loading. Moreover, F68–VES/MIT micelles were stable in the presence of fetal bovine serum for 24 hours and maintained sustained drug release in vitro. Remarkably, the half maximal inhibitory concentration (IC50) value of F68–VES/MIT micelles was lower than that of free MIT in both MDA-MB-231 and MCF-7 cells (two human breast cancer cell lines). In addition, compared with free MIT, there was an increased trend of apoptosis and cellular uptake of F68–VES/MIT micelles in MDA-MB-231 cells. Taken together, these results indicated that F68–VES polymer micelles were able to effectively deliver MIT and largely improve its potency in cancer therapy. PMID:27471384

  6. Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer

    NASA Astrophysics Data System (ADS)

    Hou, Lin; Feng, Qianhua; Wang, Yating; Yang, Xiaomin; Ren, Junxiao; Shi, Yuyang; Shan, Xiaoning; Yuan, Yujie; Wang, Yongchao; Zhang, Zhenzhong

    2016-01-01

    Multifunctional nanosheets (HA-GO/Pluronic) with targeted chemo-photothermal properties were successfully developed for controlled delivery of mitoxantrone (MIT) to overcome multidrug resistance (MDR). In vitro release profiles displayed that both an acidic environment and a NIR laser could trigger and accelerate the release of a drug, which ensured nanosheets were stable in blood circulation and released MIT within tumor cells under laser irradiation. HA-GO/Pluronic nanosheets were taken up into MCF-7/ADR cells via receptor-mediated endocytosis, which further facilitated escapement of P-gp efflux. Compared with MIT solution, MIT/HA-GO/Pluronic showed greater cytotoxicity and increase in cellular MIT accumulation in MCF-7/ADR cells. Cell apoptosis and cell cycle arrest studies also revealed that MIT/HA-GO/Pluronic was more potent than MIT/GO/Pluronic and MIT solution. The anticancer efficacy in vivo was evaluated in MCF-7 and MCF-7/ADR-bearing mice, and inhibition of tumors by MIT/HA-GO/Pluronic with NIR laser irradiation was the most effective among all MIT formulations. In summary, the MIT/HA-GO/Pluronic system had striking functions such as P-gp reversible inhibitor and anticancer efficacy, and could present a promising platform for drug-resistant cancer treatment.

  7. Anticancer drugs during pregnancy.

    PubMed

    Miyamoto, Shingo; Yamada, Manabu; Kasai, Yasuyo; Miyauchi, Akito; Andoh, Kazumichi

    2016-09-01

    Although cancer diagnoses during pregnancy are rare, they have been increasing with the rise in maternal age and are now a topic of international concern. In some cases, the administration of chemotherapy is unavoidable, though there is a relative paucity of evidence regarding the administration of anticancer drugs during pregnancy. As more cases have gradually accumulated and further research has been conducted, we are beginning to elucidate the appropriate timing for the administration of chemotherapy, the regimens that can be administered with relative safety, various drug options and the effects of these drugs on both the mother and fetus. However, new challenges have arisen, such as the effects of novel anticancer drugs and the desire to bear children during chemotherapy. In this review, we outline the effects of administering cytotoxic anticancer drugs and molecular targeted drugs to pregnant women on both the mother and fetus, as well as the issues regarding patients who desire to bear children while being treated with anticancer drugs. PMID:27284093

  8. [Update on anticancer drugs].

    PubMed

    Roila, Fausto; Ballatori, Enzo

    2014-01-01

    Update on anticancer drugs. A thorough review of the clinical trials published over the last two years in major medical and oncological journals on a comprehensive spectrum of oncological conditions aims to provide at the same time (as the authors are well known representatives of the critical and complementary competences of clinical care and research methodology) an interesting double opportunity of update on: a) what is truly (i.e.documented and reliable) innovative and deserves adoption in daily care,vs what is either purely suggestive or clearly misleading; b) what are the methological, concrete, simple rules to observe in a field which is certainly moving fast, but at the same time generates highly controversial behaviors in research as well as in daily practices. The accompanying editorial (pag 60-63) further illustrates the way and the yield of using this material and approach both in the areas of nursing sciences and practice. PMID:25002061

  9. Mitoxantrone loaded superparamagnetic nanoparticles for drug targeting: a versatile and sensitive method for quantification of drug enrichment in rabbit tissues using HPLC-UV.

    PubMed

    Tietze, Rainer; Schreiber, Eveline; Lyer, Stefan; Alexiou, Christoph

    2010-01-01

    In medicine, superparamagnetic nanoparticles bound to chemotherapeutics are currently investigated for their feasibility in local tumor therapy. After intraarterial application, these particles can be accumulated in the targeted area by an external magnetic field to increase the drug concentration in the region of interest (Magnetic-Drug-Targeting). We here present an analytical method (HPLC-UV), to detect pure or ferrofluid-bound mitoxantrone in a complex matrix even in trace amounts in order to perform biodistribution studies. Mitoxantrone could be extracted in high yields from different tissues. Recovery of mitoxantrone in liver tissue (5000 ng/g) was 76 +/- 2%. The limit of quantification of mitoxantrone standard was 10 ng/mL +/-12%. Validation criteria such as linearity, precision, and stability were evaluated in ranges achieving the FDA requirements. As shown for pilot samples, biodistribution studies can easily be performed after application of pure or ferrofluid-bound mitoxantrone. PMID:20490266

  10. Mitoxantrone Injection

    MedlinePlus

    ... medications to relieve pain in people with advanced prostate cancer who did not respond to other medications. Mitoxantrone ... doses). When mitoxantrone injection is used to treat prostate cancer, it is usually given once every 21 days. ...

  11. Mitoxantrone Injection

    MedlinePlus

    ... of disability in patients with certain forms of multiple sclerosis (MS). Mitoxantrone injection is also used together with steroid ... a class of medications called anthracenediones. Mitoxantrone treats MS by stopping certain cells of the immune system ...

  12. Identification of Novel Antipoxviral Agents: Mitoxantrone Inhibits Vaccinia Virus Replication by Blocking Virion Assembly▿

    PubMed Central

    Deng, Liang; Dai, Peihong; Ciro, Anthony; Smee, Donald F.; Djaballah, Hakim; Shuman, Stewart

    2007-01-01

    The bioterror threat of a smallpox outbreak in an unvaccinated population has mobilized efforts to develop new antipoxviral agents. By screening a library of known drugs, we identified 13 compounds that inhibited vaccinia virus replication at noncytotoxic doses. The anticancer drug mitoxantrone is unique among the inhibitors identified in that it has no apparent impact on viral gene expression. Rather, it blocks processing of viral structural proteins and assembly of mature progeny virions. The isolation of mitoxantrone-resistant vaccinia strains underscores that a viral protein is the likely target of the drug. Whole-genome sequencing of mitoxantrone-resistant viruses pinpointed missense mutations in the N-terminal domain of vaccinia DNA ligase. Despite its favorable activity in cell culture, mitoxantrone administered intraperitoneally at the maximum tolerated dose failed to protect mice against a lethal intranasal infection with vaccinia virus. PMID:17928345

  13. Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone.

    PubMed

    Damiani, Roberto Marques; Moura, Dinara Jaqueline; Viau, Cassiana Macagnan; Caceres, Rafael Andrade; Henriques, João Antonio Pêgas; Saffi, Jenifer

    2016-09-01

    Anthracyclines, e.g., doxorubicin (DOX), and anthracenediones, e.g., mitoxantrone (MTX), are drugs used in the chemotherapy of several cancer types, including solid and non-solid malignancies such as breast cancer, leukemia, lymphomas, and sarcomas. Although they are effective in tumor therapy, treatment with these two drugs may lead to side effects such as arrhythmia and heart failure. At the same clinically equivalent dose, MTX causes slightly reduced cardiotoxicity compared with DOX. These drugs interact with iron to generate reactive oxygen species (ROS), target topoisomerase 2 (Top2), and impair mitochondria. These are some of the mechanisms through which these drugs induce late cardiomyopathy. In this review, we compare the cardiotoxicities of these two chemotherapeutic drugs, DOX and MTX. As described here, even though they share similarities in their modes of toxicant action, DOX and MTX seem to differ in a key aspect. DOX is a more redox-interfering drug, while MTX induces energy imbalance. In addition, DOX toxicity can be explained by underlying mechanisms that include targeting of Top2 beta, mitochondrial impairment, and increases in ROS generation. These modes of action have not yet been demonstrated for MTX, and this knowledge gap needs to be filled. PMID:27342245

  14. Inhibition of endosomal sequestration of basic anticancer drugs: influence on cytotoxicity and tissue penetration

    PubMed Central

    Lee, C M; Tannock, I F

    2006-01-01

    The basic drugs doxorubicin and mitoxantrone are known to be concentrated in acidic endosomes of cells. Here, we address the hypotheses that raising endosomal pH with the modifying agents chloroquine, omeprazole or bafilomycin A might decrease sequestration of anticancer drugs in endosomes, thereby increasing their cytotoxicity and availability for tissue penetration. Chloroquine, omeprazole and bafilomycin A showed concentration-dependent effects to raise endosomal pH, and to inhibit sequestration of doxorubicin in endosomes. Chloroquine and omeprazole but not bafilomycin A decreased the net uptake of doxorubicin into cells, but there was no significant effect on uptake of mitoxantrone. Omeprazole and bafilomycin A increased the cytotoxicity of the anticancer drugs for cultured cells, as measured in a clonogenic assay, whereas chloroquine had minimal effects on cytotoxicity despite reduced uptake of doxorubicin. Omeprazole but not chloroquine or bafilomycin A increased the penetration of anticancer drugs through multicellular layers of tumour tissue. We conclude that modifiers of endosomal pH might increase therapeutic effectiveness of basic drugs by increasing their toxicity and/or tissue penetration in solid tumours. PMID:16495919

  15. Serendipity in anticancer drug discovery.

    PubMed

    Hargrave-Thomas, Emily; Yu, Bo; Reynisson, Jóhannes

    2012-01-10

    It was found that the discovery of 5.8% (84/1437) of all drugs on the market involved serendipity. Of these drugs, 31 (2.2%) were discovered following an incident in the laboratory and 53 (3.7%) were discovered in a clinical setting. In addition, 263 (18.3%) of the pharmaceuticals in clinical use today are chemical derivatives of the drugs discovered with the aid of serendipity. Therefore, in total, 24.1% (347/1437) of marketed drugs can be directly traced to serendipitous events confirming the importance of this elusive phenomenon. In the case of anticancer drugs, 35.2% (31/88) can be attributed to a serendipitous event, which is somewhat larger than for all drugs. The therapeutic field that has benefited the most from serendipity are central nervous system active drugs reflecting the difficulty in designing compounds to pass the blood-brain-barrier and the lack of laboratory-based assays for many of the diseases of the mind. PMID:22247822

  16. Serendipity in anticancer drug discovery

    PubMed Central

    Hargrave-Thomas, Emily; Yu, Bo; Reynisson, Jóhannes

    2012-01-01

    It was found that the discovery of 5.8% (84/1437) of all drugs on the market involved serendipity. Of these drugs, 31 (2.2%) were discovered following an incident in the laboratory and 53 (3.7%) were discovered in a clinical setting. In addition, 263 (18.3%) of the pharmaceuticals in clinical use today are chemical derivatives of the drugs discovered with the aid of serendipity. Therefore, in total, 24.1% (347/1437) of marketed drugs can be directly traced to serendipitous events confirming the importance of this elusive phenomenon. In the case of anticancer drugs, 35.2% (31/88) can be attributed to a serendipitous event, which is somewhat larger than for all drugs. The therapeutic field that has benefited the most from serendipity are central nervous system active drugs reflecting the difficulty in designing compounds to pass the blood-brain-barrier and the lack of laboratory-based assays for many of the diseases of the mind. PMID:22247822

  17. Heterocyclic Scaffolds: Centrality in Anticancer Drug Development.

    PubMed

    Ali, Imran; Lone, Mohammad Nadeem; Al-Othman, Zeid A; Al-Warthan, Abdulrahman; Sanagi, Mohd Marsin

    2015-01-01

    Cancer has been cursed for human beings for long time. Millions people lost their lives due to cancer. Despite of the several anticancer drugs available, cancer cannot be cured; especially at the late stages without showing any side effect. Heterocyclic compounds exhibit exciting medicinal properties including anticancer. Some market selling heterocyclic anticancer drugs include 5-flourouracil, methortrexate, doxorubicin, daunorubicin, etc. Besides, some natural products such as vinblastine and vincristine are also used as anticancer drugs. Overall, heterocyclic moeities have always been core parts in the expansion of anticancer drugs. This article describes the importance of heterocyclic nuclei in the development of anticancer drugs. Besides, the attempts have been made to discuss both naturally occurring and synthetic heterocyclic compounds as anticancer agents. In addition, some market selling anticancer heterocyclic compounds have been described. Moreover, the efforts have been made to discuss the mechanisms of actions and recent advances in heterocyclic compounds as anticancer agents. The current challenges and future prospectives of heterocyclic compounds have also been discussed. Finally, the suggestions for syntheses of effective, selective, fast and human friendly anticancer agents are discussed into the different sections. PMID:25751009

  18. Treatment Efficiency of Free and Nanoparticle-Loaded Mitoxantrone for Magnetic Drug Targeting in Multicellular Tumor Spheroids.

    PubMed

    Hornung, Annkathrin; Poettler, Marina; Friedrich, Ralf P; Zaloga, Jan; Unterweger, Harald; Lyer, Stefan; Nowak, Johannes; Odenbach, Stefan; Alexiou, Christoph; Janko, Christina

    2015-01-01

    Major problems of cancer treatment using systemic chemotherapy are severe side effects. Magnetic drug targeting (MDT) employing superparamagnetic iron oxide nanoparticles (SPION) loaded with chemotherapeutic agents may overcome this dilemma by increasing drug accumulation in the tumor and reducing toxic side effects in the healthy tissue. For translation of nanomedicine from bench to bedside, nanoparticle-mediated effects have to be studied carefully. In this study, we compare the effect of SPION, unloaded or loaded with the cytotoxic drug mitoxantrone (MTO) with the effect of free MTO, on the viability and proliferation of HT-29 cells within three-dimensional multicellular tumor spheroids. Fluorescence microscopy and flow cytometry showed that both free MTO, as well as SPION-loaded MTO (SPION(MTO)) are able to penetrate into tumor spheroids and thereby kill tumor cells, whereas unloaded SPION did not affect cellular viability. Since SPION(MTO) has herewith proven its effectivity also in complex multicellular tumor structures with its surrounding microenvironment, we conclude that it is a promising candidate for further use in magnetic drug targeting in vivo. PMID:26437393

  19. Nanostructured lipid-carrageenan hybrid carriers (NLCCs) for controlled delivery of mitoxantrone hydrochloride to enhance anticancer activity bypassing the BCRP-mediated efflux.

    PubMed

    Ling, Guixia; Zhang, Tianhong; Zhang, Peng; Sun, Jin; He, Zhonggui

    2016-08-01

    Novel nanostructured lipid-carrageenan hybrid carriers (NLCCs) were exploited for controlled delivery of water soluble chemotherapeutic agent mitoxantrone hydrochloride (MTO) with high loading capacity, sustained release property, and potential for improving oral bioavailability and antitumor efficacy. By introducing the negative polymer of carrageenan, MTO was highly incorporated into NLCCs with encapsulation efficiency of 95.8% by electrostatic interaction. In vivo pharmacokinetics of MTO solution (MTO-Sol) and MTO-NLCCs in rats demonstrated that the apparent bioavailability of MTO-NLCCs was increased to approximate 3.5-fold compared to that of MTO-Sol. The cytotoxicity investigations by MTT method indicated that NLCCs could significantly enhanced the antitumor efficacy against resistant MCF-7/MX cells. The relative cellular association of MTO-NLCCs was 9.2-fold higher than that of MTO-Sol in breast cancer resistance protein (BCRP) over-expressing MCF-7/MX cells, implying that BCRP-mediated drug efflux was diminished by the introduction of NLCCs. The endocytosis inhibition study implied that the NLCCs entered the MCF-7/MX cells by clathrin-mediated endocytosis process, which can bypass the efflux of MTO mediated by BCRP. The new developed NLCCs provide an effective strategy for oral delivery of water-soluble MTO with improved encapsulation efficiency, oral bioavailability, and cytotoxicity against resistant breast cancer cells. PMID:26754913

  20. Crude drugs as anticancer agents

    PubMed Central

    Mou, Xiaoyang; Kesari, Santosh; Wen, Patrick Y; Huang, Xudong

    2011-01-01

    Although tremendous progress has been made in basic cancer biology and in the development of novel cancer treatments, cancer remains a leading cause of death in the world. The etiopathogenesis of cancer is complex. Besides genetic predisposition, known environmental factors associated with cancer are: diet, lifestyle, and environmental toxins. Toxicity of drugs and eventual relapse of cancers contribute to high cancer death rates. Current therapeutic interventions for cancer- surgery, chemotherapy, radiotherapy, thermotherapy, etc. are far from being curative for many forms of cancer. Chemotherapy, in particular, though the most commonly used cancer treatment, is usually associated with side effects with varying degrees of severity. The purpose of this brief review is to assemble current literature on some crude drugs and to focus on their beneficial roles and drug targets in cancer therapy and chemo-prevention. Although their pharmacological mechanisms and biochemical roles in cancer biology and tumor chemo-prevention are not fully understood, crude drugs are believed to have nutriceutical effects upon cancer patients. PMID:21394282

  1. ATP-triggered anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Mo, Ran; Jiang, Tianyue; Disanto, Rocco; Tai, Wanyi; Gu, Zhen

    2014-03-01

    Stimuli-triggered drug delivery systems have been increasingly used to promote physiological specificity and on-demand therapeutic efficacy of anticancer drugs. Here we utilize adenosine-5'-triphosphate (ATP) as a trigger for the controlled release of anticancer drugs. We demonstrate that polymeric nanocarriers functionalized with an ATP-binding aptamer-incorporated DNA motif can selectively release the intercalating doxorubicin via a conformational switch when in an ATP-rich environment. The half-maximal inhibitory concentration of ATP-responsive nanovehicles is 0.24 μM in MDA-MB-231 cells, a 3.6-fold increase in the cytotoxicity compared with that of non-ATP-responsive nanovehicles. Equipped with an outer shell crosslinked by hyaluronic acid, a specific tumour-targeting ligand, the ATP-responsive nanocarriers present an improvement in the chemotherapeutic inhibition of tumour growth using xenograft MDA-MB-231 tumour-bearing mice. This ATP-triggered drug release system provides a more sophisticated drug delivery system, which can differentiate ATP levels to facilitate the selective release of drugs.

  2. Pin1 as an anticancer drug target.

    PubMed

    Xu, Guoyan G; Etzkorn, Felicia A

    2009-09-01

    Pin1 specifically catalyzes the cis/trans isomerization of phospho-Ser/Thr-Pro bonds and plays an important role in many cellular events through the effects of conformational change on the function of its biological substrates, including cell division cycle 25 C (Cdc25C), c-Jun and p53. Pin1 is overexpressed in many human cancer tissues, including breast, prostate and lung cancer. Its expression correlates with cyclin D1 levels, which contribute to cell transformation. Overexpression of Pin1 promotes tumor growth, while inhibition of Pin1 causes tumor cell apoptosis. Pin1 plays an important role in oncogenesis and therefore may serve as an effective anticancer target. Many inhibitors of Pin1 have been discovered, including several classes of designed inhibitors (alkene isosteres, reduced amides, indanyl ketones) and natural products (juglone, pepticinnamin E analogues, PiB and its derivatives obtained from a library screen). Pin1 inhibitors could be used as a novel type of anticancer drug by blocking cell cycle progression. Therefore, Pin1 represents a new diagnostic and therapeutic anticancer drug target. PMID:19890497

  3. Current situation and future usage of anticancer drug databases.

    PubMed

    Wang, Hongzhi; Yin, Yuanyuan; Wang, Peiqi; Xiong, Chenyu; Huang, Lingyu; Li, Sijia; Li, Xinyi; Fu, Leilei

    2016-07-01

    Cancer is a deadly disease with increasing incidence and mortality rates and affects the life quality of millions of people per year. The past 15 years have witnessed the rapid development of targeted therapy for cancer treatment, with numerous anticancer drugs, drug targets and related gene mutations been identified. The demand for better anticancer drugs and the advances in database technologies have propelled the development of databases related to anticancer drugs. These databases provide systematic collections of integrative information either directly on anticancer drugs or on a specific type of anticancer drugs with their own emphases on different aspects, such as drug-target interactions, the relationship between mutations in drug targets and drug resistance/sensitivity, drug-drug interactions, natural products with anticancer activity, anticancer peptides, synthetic lethality pairs and histone deacetylase inhibitors. We focus on a holistic view of the current situation and future usage of databases related to anticancer drugs and further discuss their strengths and weaknesses, in the hope of facilitating the discovery of new anticancer drugs with better clinical outcomes. PMID:27193464

  4. Fluorescence optical imaging in anticancer drug delivery.

    PubMed

    Etrych, Tomáš; Lucas, Henrike; Janoušková, Olga; Chytil, Petr; Mueller, Thomas; Mäder, Karsten

    2016-03-28

    In the past several decades, nanosized drug delivery systems with various targeting functions and controlled drug release capabilities inside targeted tissues or cells have been intensively studied. Understanding their pharmacokinetic properties is crucial for the successful transition of this research into clinical practice. Among others, fluorescence imaging has become one of the most commonly used imaging tools in pre-clinical research. The development of increasing numbers of suitable fluorescent dyes excitable in the visible to near-infrared wavelengths of the spectrum has significantly expanded the applicability of fluorescence imaging. This paper focuses on the potential applications and limitations of non-invasive imaging techniques in the field of drug delivery, especially in anticancer therapy. Fluorescent imaging at both the cellular and systemic levels is discussed in detail. Additionally, we explore the possibility for simultaneous treatment and imaging using theranostics and combinations of different imaging techniques, e.g., fluorescence imaging with computed tomography. PMID:26892751

  5. Access to expensive anti-cancer drugs.

    PubMed

    Mileshkin, Linda; Sullivan, Danny

    2011-12-01

    Expensive anti-cancer drugs expose controversy underlying the process for resource allocation decisions, and intermittently result in marked publicity, emotive discussions about access to novel and expensive treatments, and political involvement which may override existing processes. This column outlines the methods of determining whether or not a treatment is considered appropriate to fund, and focuses upon the evidence of patient and doctor wishes. The existing research illustrates the complexity of patient and oncologist decision-making when these drugs are to be considered. Past litigation to obtain access to expensive treatments is discussed, along with the interactions between patients, pharmaceutical companies, health services and oncologists. This evolving field is being transformed by developments in molecular biology enabling targeted drugs, and amply demonstrates the complexity of funding decisions and how expensive treatments are considered by a range of stakeholders. PMID:22319998

  6. Anticancer Drugs from Marine Flora: An Overview

    PubMed Central

    Sithranga Boopathy, N.; Kathiresan, K.

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease. PMID:21461373

  7. Anticancer Drug Induced Palmar Plantar Erythrodysesthesia

    PubMed Central

    Srinivasamurthy, Sureshkumar; Dubashi, Biswajit; Chandrasekaran, Adithan

    2014-01-01

    Background: Palmar plantar erythrodysesthesia (PPE) is a dose limiting toxicity of anticancer agents. In some cases it may mandate for discontinuation of anticancer agents. Evaluation of data of PPE among reported adverse drug reactions (ADRs) from the Department of Medical Oncology could quantify the burden. Aim: To evaluate and analyse the PPE among reported ADRs from medical Oncology. Materials and Methods: The data of all cases of reported PPE were collected during January 2012 to September 2013 and were analysed with WHO causality assessment scale. The severity was clinically graded. The follow-up data regarding outcome of ADRs were also noted. Results: During the study period of 21 months a total of 1418 ADRs have been reported from 1076 patients. Among them PPE was reported from 31 cases (2.9%). Majority (32.2%) of these patients were on chemotherapy for breast cancer. Patient’s age ranged from 17 to 68 y and the median age was 50 y. There were 18 female (58%) and 13 male patients (42%). Capecitabine was the leading drug involved in PPE, reported with 20 cases (64.5%), and followed by docetaxel with 5 cases (16.1%). Majority (67.7%) of the reactions was categorized as certain and 64.5% was grade II severity clinically. Conclusion: Our findings show that PPE accounts for 2.9% of total reported ADRs from Medical Oncology during 21 months. Majority of the reactions were classified as certain. Capecitabine is commonly implicated drug. PMID:25478366

  8. Biodiversity as a source of anticancer drugs.

    PubMed

    Tan, G; Gyllenhaal, C; Soejarto, D D

    2006-03-01

    Natural Products have been the most significant source of drugs and drug leads in history. Their dominant role in cancer chemotherapeutics is clear with about 74% of anticancer compounds being either natural products, or natural product-derived. The biodiversity of the world provides a resource of unlimited structural diversity for bioprospecting by international drug discovery programs such as the ICBGs and NCDDGs, the latter focusing exclusively on anticancer compounds. However, many sources of natural products remain largely untapped. Technology is gradually overcoming the traditional difficulties encountered in natural products research by improving access to biodiverse resources, and ensuring the compatibility of samples with high throughput procedures. However, the acquisition of predictive biodiversity remains challenging. Plant and organism species may be selected on the basis of potentially useful phytochemical composition by consulting ethnopharmacological, chemosystematic, and ecological information. On the conservation/political front, the Convention on Biological Diversity (CBD) is allaying the anxiety surrounding the notion of biopiracy, which has defeated many attempts to discover and develop new natural products for human benefit. As it becomes increasingly evident and important, the CBD fosters cooperation and adaptation to new regulations and collaborative research agreements with source countries. Even as the past inadequacies of combinatorial chemistry are being analyzed, the intrinsic value of natural products as a source of drug leads is being increasingly appreciated. Their rich structural and stereochemical characteristics make them valuable as templates for exploring novel molecular diversity with the aim of synthesizing lead generation libraries with greater biological relevance. This will ensure an ample supply of starting materials for screening against the multitude of potentially "druggable" targets uncovered by genomics technologies

  9. Anticancer Properties of Distinct Antimalarial Drug Classes

    PubMed Central

    Hooft van Huijsduijnen, Rob; Guy, R. Kiplin; Chibale, Kelly; Haynes, Richard K.; Peitz, Ingmar; Kelter, Gerhard; Phillips, Margaret A.; Vennerstrom, Jonathan L.; Yuthavong, Yongyuth; Wells, Timothy N. C.

    2013-01-01

    We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings. PMID:24391728

  10. Mitoxantrone resistance in HL-60 leukemia cells: Reduced nuclear topoisomerase II catalytic activity and drug-induced DNA cleavage in association with reduced expression of the topoisomerase II. beta. isoform

    SciTech Connect

    Harker, W.G.; Slade, D.L.; Parr, R.L. ); Drake, F.H. )

    1991-10-15

    Mitoxantrone-resistant variants of the human HL-60 leukemia cell line are cross-resistant to several natural product and synthetic antineoplastic agents. The resistant cells (HL-60/MX2) retain sensitivity to the Vinca alkaloids vincristine and vinblastine, drugs that are typically associated with the classical multidrug resistance phenotype. Mitoxantrone accumulation and retention are equivalent in the sensitive and resistant cell types, suggesting that mitoxantrone resistance inn HL-60/MX2 cells might be associated with an alteration in the type II DNA topoisomerases. The authors discovered that topoisomerase II catalytic activity in 1.0 M NaCl nuclear extracts from the HL-60/MX2 variant was reduced 4- to 5-fold compared to that in the parental HL-60 cells. Studies were designed to minimize the proteolytic degradation of the topoisomerase II enzymes by extraction of whole cells with hot SDS. When nuclear extracts from the two cell types were normalized for equivalent catalytic activity, mitoxantrone inhibited the decatenation of kDNA by these extracts to an equal extent but levels of mitoxantrone-induced cleavage of {sup 32}P-labeled pBR322 DNA by nuclear extracts from HL-60/MX2 cells were 3- to 4-fold lower than in comparable HL-60 extracts. Resistance to the topoisomerase II inhibitor mitoxantrone in HL-60/MX2 is associated with reduced nuclear and whole cell topoisomerase II catalytic activity, immunologically undetectable levels of the 180-kDa topoisomerase II isozyme, and reduced mitoxantrone-induced cleavage of radiolabeled DNA by topoisomerase II in nuclear extracts from these cells.

  11. Anticancer Drug Development: The Way Forward.

    PubMed

    Connors

    1996-01-01

    Cancer chemotherapy celebrated its fiftieth anniversary last year. It was in 1945 that wartime research on the nitrogen mustards, which uncovered their potential use in the treatment of leukaemias and other cancers, was first made public. Fifty years later, more than sixty drugs have been registered in the USA for the treatment of cancer, but there are still lessons to be learnt. One problem, paradoxically, is that many anticancer agents produce a response in several different classes of the disease. This means that once a new agent has been shown to be effective in one cancer, much effort is devoted to further investigations of the same drug in various combinations for different disorders. While this approach has led to advances in the treatment of many childhood cancers and some rare diseases, a plethora of studies on metastatic colon cancer, for example, has yielded little benefit. 5-fluorouracil continues to be used in trials, yet there is no evidence for an increase in survival. The lesson to be learnt is that many common cancers are not adequately treated by present-day chemotherapy, and most trials of this sort are a waste of time. Significant increases in survival will only occur if the selectivity of present-day anticancer agents can be increased or new classes of more selective agents can be discovered. There are two fundamental problems in drug development: a lack of suitable laboratory tests and the difficulty of conducting early clinical trials. Firstly, no existing laboratory method can accurately predict which chemical will be effective against a particular class of human cancer. At best, tests can demonstrate a general 'anticancer' property. This is well exemplified by the discovery of cisplatin. The fact that cisplatin caused regression in a number of transplanted rodent tumours created no great excitement amongst chemotherapists. It was only later when it was tested clinically against ovarian cancer that results were sufficiently positive to

  12. Copper ion-mediated liposomal encapsulation of mitoxantrone: the role of anions in drug loading, retention and release.

    PubMed

    Li, Chunlei; Cui, Jingxia; Li, Yingui; Wang, Caixia; Li, Yanhui; Zhang, Lan; Zhang, Li; Guo, Wenmin; Wang, Jinxu; Zhang, Hongwu; Hao, Yanli; Wang, Yongli

    2008-08-01

    Besides pH gradient, other transmembrane gradients such as metal ion gradient could be also employed to load drugs into liposomes. In pH gradient method, anions have an important role since they could form specific aggregates with drugs, and then affect drug release kinetics from vesicles. To explore the role of anions in metal ion gradient method, copper ion-mediated mitoxantrone (MIT) loading was investigated systematically. When empty liposomes exhibiting a transmembrane copper ion gradient (300 mM) were mixed with MIT in a molar ratio of 0.2:1, after 5 min incubation at 60 degrees C, >95% MIT could be loaded into vesicles and the encapsulation was stable, regardless of the kinds of anions and initial intraliposomal pH values. The encapsulation ratio decreased with increased MIT/lipid molar ratio. But even when the molar ratio increased to 0.4, >90% encapsulation could still be achieved. In the presence of nigericin and ammonium, the drug loading profiles were affected to different degree with respect to both drug loading rate and encapsulation ratio. Relative to CuSO(4)-containing systems, CuCl(2) mediated MIT loading was unstable. Both nigericin and ammonium could alter the absorption spectra of liposomal MITs loaded with CuSO(4) gradient. In vitro release studies were performed in glucose/histidine buffer and in 50% human plasma using a dialysis method. In both of release media, CuCl(2)-containing vesicles displayed rapid release kinetics in comparison with CuSO(4) systems; and during the experiment period, MIT was lost from the vesicles continuously. When the formulations were injected into BDF1 mice at a dose of 4 mg/kg, all the liposomal formulations exhibited enhanced blood circulation time, with half-life values of 6.8-7.2h, significantly compared to the rapid clearance of free-MIT. In L1210 ascitic model, CuCl(2) formulation was more therapeutically active than CuSO(4) formulation. At a dose of 6 mg/kg, the treatment with CuCl(2) formulation resulted in

  13. [Study on the regulation of autophagy against anticancer drugs' toxicity].

    PubMed

    Lou, Xiao-e; Zhu, Yi; He, Qiao-jun

    2016-01-01

    Autophagy is a crucial biological process in eukaryotes, which is involved in cell growth, survival and energy metabolism. It has been confirmed that autophagy mediates toxicity of anticancer drugs, especially in heart, liver and neuron. It is important to understand the function and mechanism of autophagy in anticancer drugs-induced toxicity. Given that autophagy is a double-edged sword in the maintenance of the function of heart, liver and neuron, the autophagy-mediated toxicity are very complicated in the body. We provide a review on the concept of autophagy and current status about autophagy-mediated toxicity of anticancer drugs. The knowledge is crucial in the basic study of anticancer drugs-induced toxicity, and provides some strategies for the development of alleviating the toxicity of anticancer drugs. PMID:27405158

  14. Electrochemical approach of anticancer drugs--DNA interaction.

    PubMed

    Rauf, S; Gooding, J J; Akhtar, K; Ghauri, M A; Rahman, M; Anwar, M A; Khalid, A M

    2005-02-23

    The interaction of drugs with DNA is among the most important aspects of biological studies in drug discovery and pharmaceutical development processes. In recent years there has been a growing interest in the electrochemical investigation of interaction between anticancer drugs and DNA. Observing the pre and post electrochemical signals of DNA or drug interaction provides good evidence for the interaction mechanism to be elucidated. Also this interaction could be used for the quantification of these drugs and for the determination of new drugs targeting DNA. Electrochemical approach can provide new insight into rational drug design and would lead to further understanding of the interaction mechanism between anticancer drugs and DNA. PMID:15708659

  15. Assessing Specificity of Anticancer Drugs In Vitro.

    PubMed

    Kluwe, Lan

    2016-01-01

    A procedure for assessing specificity of anticancer drugs in vitro using cultures containing both tumor and non-tumor cells is demonstrated. The key element is the quantitative determination of a tumor-specific genetic alteration in relation to a universal sequence using a dual-probe digital PCR assay and the subsequent calculation of the proportion of tumor cells. The assay is carried out on a culture containing tumor cells of an established line and spiked-in non-tumor cells. The mixed culture is treated with a test drug at various concentrations. After the treatment, DNA is prepared directly from the survived adhesive cells in wells of 96-well plates using a simple and inexpensive method, and subjected to a dual-probe digital PCR assay for measuring a tumor-specific genetic alteration and a reference universal sequence. In the present demonstration, a heterozygous deletion of the NF1 gene is used as the tumor-specific genetic alteration and a RPP30 gene as the reference gene. Using the ratio NF1/RPP30, the proportion of tumor cells was calculated. Since the dose-dependent change of the proportion of tumor cells provides an in vitro indication for specificity of the drug, this genetic and cell-based in vitro assay will likely have application potential in drug discovery. Furthermore, for personalized cancer-care, this genetic- and cell-based tool may contribute to optimizing adjuvant chemotherapy by means of testing efficacy and specificity of candidate drugs using primary cultures of individual tumors. PMID:27078035

  16. Assessing Specificity of Anticancer Drugs In Vitro

    PubMed Central

    Kluwe, Lan

    2016-01-01

    A procedure for assessing specificity of anticancer drugs in vitro using cultures containing both tumor and non-tumor cells is demonstrated. The key element is the quantitative determination of a tumor-specific genetic alteration in relation to a universal sequence using a dual-probe digital PCR assay and the subsequent calculation of the proportion of tumor cells. The assay is carried out on a culture containing tumor cells of an established line and spiked-in non-tumor cells. The mixed culture is treated with a test drug at various concentrations. After the treatment, DNA is prepared directly from the survived adhesive cells in wells of 96-well plates using a simple and inexpensive method, and subjected to a dual-probe digital PCR assay for measuring a tumor-specific genetic alteration and a reference universal sequence. In the present demonstration, a heterozygous deletion of the NF1 gene is used as the tumor-specific genetic alteration and a RPP30 gene as the reference gene. Using the ratio NF1/RPP30, the proportion of tumor cells was calculated. Since the dose-dependent change of the proportion of tumor cells provides an in vitro indication for specificity of the drug, this genetic and cell-based in vitro assay will likely have application potential in drug discovery. Furthermore, for personalized cancer-care, this genetic- and cell-based tool may contribute to optimizing adjuvant chemotherapy by means of testing efficacy and specificity of candidate drugs using primary cultures of individual tumors. PMID:27078035

  17. Clinically relevant drug interactions between anticancer drugs and psychotropic agents.

    PubMed

    Yap, K Y-L; Tay, W L; Chui, W K; Chan, A

    2011-01-01

    Drug interactions are commonly seen in the treatment of cancer patients. Psychotropics are often indicated for these patients since they may also suffer from pre-existing psychological disorders or experience insomnia and anxiety associated with cancer therapy. Thus, the risk of anticancer drug (ACD)-psychotropic drug-drug interactions (DDIs) is high. Drug interactions were compiled from the British National Formulary (53rd edn), Lexi-Comp's Drug Information Handbook (15th edn), Micromedex (v5.1), Hansten & Horn's Drug Interactions (2000) and Drug Interaction Facts (2008 edn). Product information of the individual drugs, as well as documented literature on ACD-psychotropic interactions from PubMed and other databases was also incorporated. This paper identifies clinically important ACD-psychotropic DDIs that are frequently observed. Pharmacokinetic DDIs were observed for tyrosine kinase inhibitors, corticosteroids and antimicrotubule agents due to their inhibitory or inductive effects on cytochrome P450 isoenzymes. Pharmacodynamic DDIs were identified for thalidomide with central nervous system depressants, procarbazine with antidepressants, myelosuppressive ACDs with clozapine and anthracyclines with QT-prolonging psychotropics. Clinicians should be vigilant when psychotropics are prescribed concurrently with ACDs. Close monitoring of plasma drug levels should be carried out to avoid toxicity in the patient, as well as to ensure adequate chemotherapeutic and psychotropic coverage. PMID:20030690

  18. Anticancer drug-induced kidney disorders.

    PubMed

    Kintzel, P E

    2001-01-01

    Nephrotoxicity is an inherent adverse effect of certain anticancer drugs. Renal dysfunction can be categorised as prerenal uraemia, intrinsic damage or postrenal uraemia according to the underlying pathophysiological process. Renal hypoperfusion promulgates prerenal uraemia. Intrinsic renal damage results from prolonged hypoperfusion, exposure to exogenous or endogenous nephrotoxins, renotubular precipitation of xenobiotics or endogenous compounds, renovascular obstruction, glomerular disease, renal microvascular damage or disease, and tubulointerstitial damage or disease. Postrenal uraemia is a consequence of clinically significant urinary tract obstruction. Clinical signs of nephrotoxicity and methods used to assess renal function are discussed. Mechanisms of chemotherapy-induced renal dysfunction generally include damage to vasculature or structures of the kidneys, haemolytic uraemic syndrome and prerenal perfusion deficits. Patients with cancer are frequently at risk of renal impairment secondary to disease-related and iatrogenic causes. This article reviews the incidence, presentation, prevention and management of anticancer drug-induced renal dysfunction. Dose-related nephrotoxicity subsequent to administration of certain chloroethylnitrosourea compounds (carmustine, semustine and streptozocin) is commonly heralded by increased serum creatinine levels, uraemia and proteinuria. Additional signs of streptozocin-induced nephrotoxicity include hypophosphataemia, hypokalaemia, hypouricaemia, renal tubular acidosis, glucosuria, aceturia and aminoaciduria. Cisplatin and carboplatin cause dose-related renal dysfunction. In addition to increased serum creatinine levels and uraemia, electrolyte abnormalities, such as hypomagnesaemia and hypokalaemia, are commonly reported adverse effects. Rarely, cisplatin has been implicated as the underlying cause of haemolytic uraemic syndrome. Pharmaceutical antidotes to cisplatin-induced nephrotoxicity include amifostine, sodium

  19. Polyphenols as mitochondria-targeted anticancer drugs.

    PubMed

    Gorlach, Sylwia; Fichna, Jakub; Lewandowska, Urszula

    2015-10-01

    Mitochondria are the respiratory and energetic centers of the cell where multiple intra- and extracellular signal transduction pathways converge leading to dysfunction of those organelles and, consequently, apoptotic or/and necrotic cell death. Mitochondria-targeted anticancer drugs are referred to as mitocans; they have recently been classified by Neuzil et al. (2013) according to their molecular mode of action into: hexokinase inhibitors; mimickers of the Bcl-2 homology-3 (BH3) domains; thiol redox inhibitors; deregulators of voltage-dependent anionic channel (VDAC)/adenine nucleotide translocase (ANT) complex; electron redox chain-targeting agents; lipophilic cations targeting the mitochondrial inner membrane; tricarboxylic acid cycle-targeting agents; and mitochondrial DNA-targeting agents. Polyphenols of plant origin and their synthetic or semisynthetic derivatives exhibit pleiotropic biological activities, including the above-mentioned modes of action characteristic of mitocans. Some of them have already been tested in clinical trials. Gossypol has served as a lead compound for developing more efficient BH3 mimetics such as ABT-737 and its orally available structural analog ABT-263 (Navitoclax). Furthermore, mitochondriotropic derivatives of phenolic compounds such as quercetin and resveratrol have been synthesized and reported to efficiently induce cancer cell death in vitro. PMID:26185003

  20. Nanoscale coordination polymers for anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Phillips, Rachel Huxford

    This dissertation reports the synthesis and characterization of nanoscale coordination polymers (NCPs) for anticancer drug delivery. Nanoparticles have been explored in order to address the limitations of small molecule chemotherapeutics. NCPs have been investigated as drug delivery vehicles as they can exhibit the same beneficial properties as the bulk metal-organic frameworks as well as interesting characteristics that are unique to nanomaterials. Gd-MTX (MTX = methotrexate) NCPs with a MTX loading of 71.6 wt% were synthesized and stabilized by encapsulation within a lipid bilayer containing anisamide (AA), a small molecule that targets sigma receptors which are overexpressed in many cancer tissues. Functionalization with AA allows for targeted delivery and controlled release to cancer cells, as shown by enhanced efficacy against leukemia cells. The NCPs were doped with Ru(bpy)32+ (bpy = 2,2'-bipyridine), and this formulation was utilized as an optical imaging agent by confocal microscopy. NCPs containing the chemotherapeutic pemetrexed (PMX) were synthesized using different binding metals. Zr-based materials could not be stabilized by encapsulation with a lipid bilayer, and Gd-based materials showed that PMX had degraded during synthesis. However, Hf-based NCPs containing 19.7 wt% PMX were stabilized by a lipid coating and showed in vitro efficacy against non-small cell lung cancer (NSCLC) cell lines. Enhanced efficacy was observed for formulations containing AA. Additionally, NCP formulations containing the cisplatin prodrug disuccinatocisplatin were prepared; one of these formulations could be stabilized by encapsulation within a lipid layer. Coating with a lipid layer doped with AA rendered this formulation an active targeting agent. The resulting formulation proved more potent than free cisplatin in NSCLC cell lines. Improved NCP uptake was demonstrated by confocal microscopy and competitive binding assays. Finally, a Pt(IV) oxaliplatin prodrug was

  1. Recent Advances in Drug Repositioning for the Discovery of New Anticancer Drugs

    PubMed Central

    Shim, Joong Sup; Liu, Jun O.

    2014-01-01

    Drug repositioning (also referred to as drug repurposing), the process of finding new uses of existing drugs, has been gaining popularity in recent years. The availability of several established clinical drug libraries and rapid advances in disease biology, genomics and bioinformatics has accelerated the pace of both activity-based and in silico drug repositioning. Drug repositioning has attracted particular attention from the communities engaged in anticancer drug discovery due to the combination of great demand for new anticancer drugs and the availability of a wide variety of cell- and target-based screening assays. With the successful clinical introduction of a number of non-cancer drugs for cancer treatment, drug repositioning now became a powerful alternative strategy to discover and develop novel anticancer drug candidates from the existing drug space. In this review, recent successful examples of drug repositioning for anticancer drug discovery from non-cancer drugs will be discussed. PMID:25013375

  2. CNS Anticancer Drug Discovery and Development Conference White Paper.

    PubMed

    Levin, Victor A; Tonge, Peter J; Gallo, James M; Birtwistle, Marc R; Dar, Arvin C; Iavarone, Antonio; Paddison, Patrick J; Heffron, Timothy P; Elmquist, William F; Lachowicz, Jean E; Johnson, Ted W; White, Forest M; Sul, Joohee; Smith, Quentin R; Shen, Wang; Sarkaria, Jann N; Samala, Ramakrishna; Wen, Patrick Y; Berry, Donald A; Petter, Russell C

    2015-11-01

    Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric "Accelerating Drug Discovery and Development for Brain Tumors," further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward. PMID:26403167

  3. Electrolyte disorders associated with the use of anticancer drugs.

    PubMed

    Liamis, George; Filippatos, Theodosios D; Elisaf, Moses S

    2016-04-15

    The use of anticancer drugs is beneficial for patients with malignancies but is frequently associated with the occurrence of electrolyte disorders, which can be hazardous and in many cases fatal. The review presents the electrolyte abnormalities that can occur with the use of anticancer drugs and provides the related mechanisms. Platinum-containing anticancer drugs induce hypomagnesemia, hypokalemia and hypocalcemia. Moreover, platinum-containing drugs are associated with hyponatremia, especially when combined with large volumes of hypotonic fluids aiming to prevent nephrotoxicity. Alkylating agents have been linked with the occurrence of hyponatremia [due to syndrome of inappropriate antidiuretic hormone secretion (SIADH)] and Fanconi's syndrome (hypophosphatemia, aminoaciduria, hypouricemia and/or glucosuria). Vinca alkaloids are associated with hyponatremia due to SIADH. Epidermal growth factor receptor monoclonal antibody inhibitors induce hypomagnesemia, hypokalemia and hypocalcemia. Other, monoclonal antibodies, such as cixutumumab, cause hyponatremia due to SIADH. Tyrosine kinase inhibitors are linked to hyponatremia and hypophosphatemia. Mammalian target of rapamycin inhibitors induce hyponatremia (due to aldosterone resistance), hypokalemia and hypophosphatemia. Other drugs such as immunomodulators or methotrexate have been also associated with hyponatremia. The administration of estrogens at high doses, streptozocin, azacitidine and suramin may induce hypophosphatemia. Finally, the drug-related tumor lysis syndrome is associated with hyperphosphatemia, hyperkalemia and hypocalcemia. The prevention of electrolyte derangements may lead to reduction of adverse events during the administration of anticancer drugs. PMID:26939882

  4. Curcumin augments the cytostatic and anti-invasive effects of mitoxantrone on carcinosarcoma cells in vitro.

    PubMed

    Luty, Marcin; Kwiecień, Edyta; Firlej, Magdalena; Łabędź-Masłowska, Anna; Paw, Milena; Madeja, Zbigniew; Czyż, Jarosław

    2016-01-01

    Numerous adverse effects limit the applicability of mitoxantrone for the treatment of drug-resistant tumors, including carcinosarcoma. Here, we estimated the additive effects of mitoxantrone and curcumin, a plant-derived biomolecule isolated from Curcuma longa, on the neoplastic and invasive potential of carcinosarcoma cells in vitro. Curcumin augmented the cytostatic, cytotoxic and anti-invasive effects of mitoxantrone on the Walker-256 cells. It also strengthened the inhibitory effects of mitoxantrone on the motility of drug-resistant Walker-256 cells that had retained viability after a long-term mitoxantrone/curcumin treatment. Thus, curcumin reduces the effective doses of mitoxantrone and augments its interference with the invasive potential of drug-resistant carcinosarcoma cells. PMID:27390785

  5. An Integrated Approach to Anti-Cancer Drug Sensitivity Prediction.

    PubMed

    Berlow, Noah; Haider, Saad; Wan, Qian; Geltzeiler, Mathew; Davis, Lara E; Keller, Charles; Pal, Ranadip

    2014-01-01

    A framework for design of personalized cancer therapy requires the ability to predict the sensitivity of a tumor to anticancer drugs. The predictive modeling of tumor sensitivity to anti-cancer drugs has primarily focused on generating functions that map gene expressions and genetic mutation profiles to drug sensitivity. In this paper, we present a new approach for drug sensitivity prediction and combination therapy design based on integrated functional and genomic characterizations. The modeling approach when applied to data from the Cancer Cell Line Encyclopedia shows a significant gain in prediction accuracy as compared to elastic net and random forest techniques based on genomic characterizations. Utilizing a Mouse Embryonal Rhabdomyosarcoma cell culture and a drug screen of 60 targeted drugs, we show that predictive modeling based on functional data alone can also produce high accuracy predictions. The framework also allows us to generate personalized tumor proliferation circuits to gain further insights on the individualized biological pathway. PMID:26357038

  6. CEST theranostics: label-free MR imaging of anticancer drugs

    PubMed Central

    Xu, Jiadi; Yadav, Nirbhay N.; Chan, Kannie W. Y.; Luo, Liangping; McMahon, Michael T.; Vogelstein, Bert; van Zijl, Peter C.M.; Zhou, Shibin; Liu, Guanshu

    2016-01-01

    Image-guided drug delivery is of great clinical interest. Here, we explored a direct way, namely CEST theranostics, to detect diamagnetic anticancer drugs simply through their inherent Chemical Exchange Saturation Transfer (CEST) MRI signal, and demonstrated its application in image-guided drug delivery of nanoparticulate chemotherapeutics. We first screened 22 chemotherapeutic agents and characterized the CEST properties of representative agents and natural analogs in three major categories, i.e., pyrimidine analogs, purine analogs, and antifolates, with respect to chemical structures. Utilizing the inherent CEST MRI signal of gemcitabine, a widely used anticancer drug, the tumor uptake of the i.v.-injected, drug-loaded liposomes was successfully detected in CT26 mouse tumors. Such label-free CEST MRI theranostics provides a new imaging means, potentially with an immediate clinical impact, to monitor the drug delivery in cancer. PMID:26837220

  7. Mitoxantrone-loaded superparamagnetic iron oxide nanoparticles as drug carriers for cancer therapy: Uptake and toxicity in primary human tubular epithelial cells.

    PubMed

    Cicha, Iwona; Scheffler, Laura; Ebenau, Astrid; Lyer, Stefan; Alexiou, Christoph; Goppelt-Struebe, Margarete

    2016-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are in use for many clinical diagnostic and experimental therapeutic applications, for example, for targeted drug delivery. To analyze the cellular responses to mitoxantrone-carrying SPIONs (SPION-MTO), and to the drug released from SPIONs, we used an in vitro system that allows comparison of primary human cells with different endocytotic capacities, namely, epithelial cells from proximal and distal parts of the nephron. SPIONs were selectively and rapidly internalized by proximal tubular cells with high endocytotic potential, but not by distal tubular cells. Uptake did not affect cell viability or morphology. In both cell types, free MTO (10-100 nM) induced double-strand DNA breaks and senescence, cell hypertrophy and reduced cell proliferation. However, cadherin-mediated cell-cell adhesion, cytoskeletal structures or polarity of the cells were not affected. Interestingly, a comparable response was also observed upon treatment with SPION-MTO and was independent of uptake of the particles. The effect of SPION-MTO on cells which did not internalize particles was primarily related to the release of MTO from drug-coated particles upon incubation in serum-containing cell growth medium. In conclusion, we show that whereas the uptake of SPIONs does not affect cellular functions or viability, the toxicity of drug-loaded SPIONs depends essentially on the type of drug bound to nanoparticles. Due to the relatively low systemic toxicity of MTO, the effects of MTO-SPIONs on human tubular cells were moderate, but they may become clinically relevant when more nephrotoxic drugs are bound to SPIONs. PMID:26468004

  8. Cyclopentenone: a special moiety for anticancer drug design.

    PubMed

    Conti, Matteo

    2006-10-01

    The conjugate cyclopent-en-one chemical group is a special moiety for anticancer drugs. Studies on cyclopentenone prostaglandins, clavulones and other compounds have revealed its mechanism of action and a wide spectrum of intracellular targets, ranging from nuclear factors to mitochondria. The introduction of the cyclopentenone moiety into molecules, such as jasmonates and chalcones, has been shown to boost their anticancer potential. In this work, reviewing pertinent up-to-date literature, we have pointed out potentially effective cyclopentenone-bearing compounds for anticancer clinical research and inspiring relationships for future drug design. In particular, it appears that the addition of cyclopentenone groups to target-orienting molecules, in order to inactivate specific proteins in cells, could be a helpful general strategy for the development of novel therapeutic molecules. PMID:17001173

  9. Potential anti-cancer drugs commonly used for other indications.

    PubMed

    Hanusova, Veronika; Skalova, Lenka; Kralova, Vera; Matouskova, Petra

    2015-01-01

    An increasing resistance of mammalian tumor cells to chemotherapy along with the severe side effects of commonly used cytostatics has raised the urgency in the search for new anti-cancer agents. Several drugs originally approved for indications other than cancer treatment have recently been found to have a cytostatic effect on cancer cells. These drugs could be expediently repurposed as anti-cancer agents, since they have already been tested for toxicity in humans and animals. The groups of newly recognized potential cytostatics discussed in this review include benzimidazole anthelmintics (albendazole, mebendazole, flubendazole), anti-hypertensive drugs (doxazosin, propranolol), psychopharmaceuticals (chlorpromazine, clomipramine) and antidiabetic drugs (metformin, pioglitazone). All these drugs have a definite potential to be used especially in combinations with other cytostatics; the chemotherapy targeting of multiple sites now represents a promising approach in cancer treatment. The present review summarizes recent information about the anti-cancer effects of selected drugs commonly used for other medical indications. Our aim is not to collect all the reported results, but to present an overview of various possibilities. Advantages, disadvantages and further perspectives regarding individual drugs are discussed and evaluated. PMID:25544649

  10. Mitochondrial chaperones may be targets for anti-cancer drugs

    Cancer.gov

    Scientists at NCI have found that a mitochondrial chaperone protein, TRAP1, may act indirectly as a tumor suppressor as well as a novel target for developing anti-cancer drugs. Chaperone proteins, such as TRAP1, help other proteins adapt to stress, but sc

  11. Fenbendazole as a Potential Anticancer Drug

    PubMed Central

    DUAN, QIWEN; LIU, YANFENG; ROCKWELL, SARA

    2013-01-01

    Background/Aims To evaluate the anticancer activity of fenbendazole, a widely used antihelminth with mechanisms of action that overlap with those of the hypoxia-selective nitroheterocyclic cytotoxins/radiosensitizers and the taxanes. Materials and Methods We used EMT6 mouse mammary tumor cells in cell culture and as solid tumors in mice to examine the cytotoxic and antitumor effects of fenbendazole as a single agent and in combination regimens. Results Intensive treatments with fenbendazole were toxic to EMT6 cells in vitro; toxicity increased with incubation time and under conditions of severe hypoxia. Fenbendazole did not alter the dose-response curves for radiation or docetaxel; instead, the agents produced additive cytotoxicities. Febendazole in maximally-intensive regimens did not alter the growth of EMT6 tumors, or increase the antineoplastic effects of radiation. Conclusion These studies provided no evidence that fenbendazole would have value in cancer therapy, but suggested that this general class of compounds merits further investigation. PMID:23393324

  12. Therapeutic aptamers: developmental potential as anticancer drugs

    PubMed Central

    Lee, Ji Won; Kim, Hyun Jung; Heo, Kyun

    2015-01-01

    Aptamers, composed of single-stranded DNA or RNA oligonucleotides that interact with target molecules through a specific three-dimensional structure, are selected from pools of combinatorial oligonucleotide libraries. With their high specificity and affinity for target proteins, ease of synthesis and modification, and low immunogenicity and toxicity, aptamers are considered to be attractive molecules for development as anticancer therapeutics. Two aptamers - one targeting nucleolin and a second targeting CXCL12 - are currently undergoing clinical trials for treating cancer patients, and many more are under study. In this mini-review, we present the current clinical status of aptamers and aptamer-based cancer therapeutics. We also discuss advantages, limitations, and prospects for aptamers as cancer therapeutics. [BMB Reports 2015; 48(4): 234-237] PMID:25560701

  13. Malignancies after mitoxantrone for multiple sclerosis

    PubMed Central

    Seuffert, Linda; Mäder, Uwe; Toyka, Klaus V.

    2016-01-01

    Objective: To assess the therapy-related risk of malignancies in mitoxantrone-treated patients with multiple sclerosis. Methods: This retrospective observational cohort study included all mitoxantrone-treated patients with multiple sclerosis seen at our department between 1994 and 2007. We collected follow-up information on medically confirmed malignancies, life status, and cause of death, as of 2010. Malignancy rates were compared to the German national cancer registry matched for sex, age, and year of occurrence. Results: Follow-up was completed in 676 of 677 identified patients. Median follow-up time was 8.7 years (interquartile range 6.8–11.2), corresponding to 6,220 person-years. Median cumulative mitoxantrone dose was 79.0 mg/m2 (interquartile range 50.8–102.4). Thirty-seven patients (5.5%) were diagnosed with a malignancy after mitoxantrone initiation, revealing a standardized incidence ratio of 1.50 (95% confidence interval [CI] 1.05–2.08). Entities included breast cancer (n = 9), colorectal cancer (n = 7), acute myeloid leukemia (n = 4, 0.6%), and others (each entity n = 1 or 2). The standardized incidence ratio of colorectal cancer was 2.98 (95% CI 1.20–6.14) and of acute myeloid leukemia 10.44 (95% CI 3.39–24.36). It was not increased for other entities including breast cancer. Multivariate Cox regression identified higher age at treatment initiation but neither cumulative mitoxantrone dose (>75 vs ≤75 mg/m2) nor treatment with other immunosuppressive drugs or sex as a risk factor. Fifty-five patients had died, among them 12 of a malignancy and 43 reportedly of other causes. Conclusions: While the overall incidence of malignancies was only mildly increased, the risk of leukemia and colorectal cancer was heightened. If confirmed, posttherapy colonoscopy could become advisable. PMID:27170571

  14. Preclinical pharmacodynamic evaluation of antibiotic nitroxoline for anticancer drug repurposing

    PubMed Central

    ZHANG, QI; WANG, SHANSHAN; YANG, DEXUAN; PAN, KEVIN; LI, LINNA; YUAN, SHOUJUN

    2016-01-01

    The established urinary antibiotic nitroxoline has recently regained considerable attention, due to its potent activities in inhibiting angiogenesis, inducing apoptosis and blocking cancer cell invasion. These features make nitroxoline an excellent candidate for anticancer drug repurposing. To rapidly advance nitroxoline repurposing into clinical trials, the present study performed systemic preclinical pharmacodynamic evaluation of its anticancer activity, including a methyl thiazolyl tetrazolium assay in vitro and an orthotopic urological tumor assay in vivo. The current study determined that nitroxoline exhibits dose-dependent anti-cancer activity in vitro and in urological tumor orthotopic mouse models. In addition, it was demonstrated that the routine nitroxoline administration regimen used for urinary tract infections was effective and sufficient for urological cancer treatment, and 2 to 4-fold higher doses resulted in obvious enhancement of anticancer efficacy without corresponding increases in toxicity. Furthermore, nitroxoline sulfate, one of the most common metabolites of nitroxoline in the urine, effectively inhibited cancer cell proliferation. This finding increases the feasibility of nitroxoline repurposing for urological cancer treatment. Due to the excellent anticancer activity demonstrated in the present study, and its well-known safety profile and pharmacokinetic properties, nitroxoline has been approved to enter into a phase II clinical trial in China for non-muscle invasive bladder cancer treatment (registration no. CTR20131716). PMID:27123101

  15. Importance of molecular computer modeling in anticancer drug development.

    PubMed

    Geromichalos, George D

    2007-09-01

    Increasing insight into the genetics and molecular biology of cancer has resulted in the identification of an increasing number of potential molecular targets for anticancer drug discovery and development. These targets can be approached through exploitation of emerging structural biology, "rational" drug design, screening of chemical libraries, or a combination of these methods. The result is the rapid discovery of new anticancer drugs. The processes used by academic and industrial scientists to discover new drugs has recently experienced a true renaissance with many new and exciting techniques being developed in the past 5-10 years. In this review, we will attempt to outline these latest protocols that chemists and biomedical scientists are currently employing to rapidly bring new drugs to the clinic. Structure-based drug design is perhaps the most elegant approach for discovering compounds exhibiting high specificity and efficacy. Nowadays, a number of recent successful drugs have in part or in whole emerged from a structure-based research approach. Many advances including crystallography and informatics are behind these successes. Of great importance is also the impact these advances in structure-based drug design are likely to have on the economics of drug discovery. As the structures of more and more proteins and nucleic acids become available, molecular docking is increasingly considered for lead discovery. Recent studies consider the hit-rate enhancement of docking screens and the accuracy of docking structure predictions. As more structures are determined experimentally, docking against homology-modeled targets also becomes possible for more proteins. With more docking studies being undertaken, the "drug-likeness" and specificity of docking hits is also being examined. In this article we discuss the application of molecular modeling, molecular docking and virtual molecular high-throughput, targeted drug screening to anticancer drug discovery. Currently

  16. Delivering anti-cancer drugs with endosomal pH-sensitive anti-cancer liposomes.

    PubMed

    Moku, Gopikrishna; Gulla, Suresh Kumar; Nimmu, Narendra Varma; Khalid, Sara; Chaudhuri, Arabinda

    2016-04-01

    Numerous prior studies have been reported on the use of pH-sensitive drug carriers such as micelles, liposomes, peptides, polymers, nanoparticles, etc. that are sensitive to the acidic (pH = ∼6.5) microenvironments of tumor tissues. Such systems have been primarily used in the past as effective drug/gene/microRNA carriers for releasing their anti-cancer payloads selectively to tumor cells/tissues. Herein, we report on the development of new liposomal drug carriers prepared from glutamic acid backbone-based cationic amphiphiles containing both endosomal pH-sensitive histidine as well as cellular uptake & solubility enhancing guanidine moieties in their polar head-group regions. The most efficient one among the four presently described endosomal pH-sensitive liposomal drug carriers not only effectively delivers potent anti-cancer drugs (curcumin & paclitaxel) to mouse tumor, but also significantly contributes to inhibiting mouse tumor growth. The findings in the in vitro mechanistic studies are consistent with apoptosis of tumor cells being mediated through increased cell cycle arrest in the G2/M phase. Findings in the FRET assay and in vitro drug release studies conducted with the liposomes of the most efficient pH-sensitive lipid demonstrated its pH dependent fusogenic and controlled curcumin release properties. Importantly, the presently described liposomal formulation of curcumin & paclitaxel enhanced overall survivability of tumor bearing mice. To the best of our knowledge, the presently described system (curcumin, paclitaxel and liposomal carrier itself) is the first of its kind pH-sensitive liposomal formulation of potent chemotherapeutics in which the liposomal drug itself exhibits significant mouse tumor growth inhibition properties. PMID:26806172

  17. pH-sensitive, polymer modified, plasma stable niosomes: promising carriers for anti-cancer drugs

    PubMed Central

    Tila, Dena; Yazdani-Arazi, Seyede Narjes; Ghanbarzadeh, Saeed; Arami, Sanam; Pourmoazzen, Zhaleh

    2015-01-01

    The aim of this study was the design and evaluation of a novel plasma stable, pH-sensitive niosomal formulation of Mitoxantrone by a modified ethanol injection method. Cholesterol hemisuccinate was added instead of cholesterol in order to produce pH-sensitivity property and using PEG-Poly (monomethyl itaconate)-CholC6 (PEG-PMMI-CholC6) copolymer introduced simultaneously pH-sensitivity and plasma stability properties in prepared niosomes. The pH-sensitivity and cytotoxicity of Mitoxantrone niosomes were evaluated in vitro in phosphate buffer with different pHs as well as using human ovarian cancer cell line (OVCAR-3), human breast cancer cell line (MCF-7) and human umbilical vein endothelial cells (HUVEC). Results showed that both cholesterol derivatives bearing formulations had pH-sensitive property and were found to release their contents under mild acidic conditions rapidly. In addition, the PEG-PMMI-CholC6-based niosomes could reserve the pH-sensitivity after incubation in plasma. Both Mitoxantrone-loaded pH-sensitive niosomes showed higher cytotoxicity than the conventional niosomes on OVCAR-3 and MCF-7 cell lines. However, both pH-sensitive niosomes exhibited lower cytotoxic effect on HUVEC cell line. Plasma stable, pH-sensitive niosomes could improve the cytotoxic effect and reduce the side effects of anti-tumor drugs. PMID:26417350

  18. Attempts to develop radioactive anticancer drugs

    SciTech Connect

    Mitchell, J.S.; Brown, I.; Chir, B.; Carpenter, R.N.

    1983-01-01

    Since 1953, attempts have been made to develop radioactive drugs. Preparations of tritiated menadiol sodium diphosphate (T-MNDP) of high specific activity showed a definite, though limited, but sometimes useful effect in the treatment of certain patients with advanced tumors, especially adenocarcinoma of the colon and of the pancreas and malignant melanoma of the skin. The next step was to use a much more effective isotope. 6-/sup 125/I-iodo-2-methyl-1,4-naphthoquinol bis (diammonium phosphate) - abbreviated 6-/sup 125/I-iodo-MNDP - has been synthesized, and in laboratory studies appears more promising. /sup 125/I provides radiations which behave predominately like high LET radiation, despite the accompanying X and gamma radiations. The astatine analogue, 6-/sup 211/At-astato-2-methyl-1,4-naphthoquinol bis (disodium phosphate) has also been synthesized. Confirming and greatly extending the earlier findings with T-MNDP, in vitro experiments showed that 6-/sup 125/I-iodo-MNDP is concentrated selectively in the cells of some human malignant tumors by a factor of about 15 to 20 or more in relation to the cells of normal origin that were studied. Macrodosimetric considerations and comparison with clinical treatments with T-MNDP suggest practical dosage. A typical treatment for a patient of body weight 70 kg with localized inoperable carcinoma of the colon could be 8 intravenous injections each of approximately 120mCi of 6-/sup 125/I-iodo-MNDP to a toal of 0.97 Ci in 25 days. Risks of late carcinogenesis and leukemogenesis are calculated to be less than 1%. Clinical indications are discussed briefly. Animal experiments are in progress and further preclinical studies are required.

  19. SWCNT-Polymer Nanocomplexes for Anti-Cancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Withey, Paul; Momin, Zoya; Bommoju, Anvesh; Hoang, Trung; Rashid, Bazlur

    2015-03-01

    Utilization of single-walled carbon nanotubes (SWCNTs) as more effective drug-delivery agents are being considered due to their ability to easily cross cell membranes, while their high aspect ratio and large surface area provide multiple attachment sites for biocompatible drug complexes. However, excessive bundling of pristine SWCNTs caused by strong attractive Van der Walls forces between CNT sidewalls is a major obstacle. We have successfully dispersed SWCNTs with both polyvinyl alcohol and Pluronic biocompatible polymers, and attached anti-cancer drugs Camptothecin (CPT) and Doxorubicin to form non-covalent CNT-polymer-drug conjugates in aqueous solution. Polymeric dispersion of SWCNTs by both polymers is confirmed by clearly identifiable near-infrared (NIR) fluorescence emission peaks of individual (7,5) and (7,6) nanotubes, and drug attachment to form complete complexes verified by UV-Vis spectroscopy. These complexes, with varying SWCNT and drug concentrations, were tested for effectiveness by exposing them to a line of human embryonic kidney cancer cells and analyzed for cell viability. Preliminary results indicate significant improvement in drug effectiveness on the cancer cells, with more successful internalization due to unaltered SWCNTs as the drug carriers. Supported by the UHCL Faculty Research Support Fund.

  20. Inhibitors of topoisomerases as anticancer drugs: problems and prospects.

    PubMed

    Dwarakanath, B S; Khaitan, Divya; Mathur, Rohit

    2004-07-01

    DNA topoisomerases, which solve topological problems associated with various DNA transactions, are the targets of many therapeutic agents. Various topoisomerase inhibitors especially, topo-poisons, camptothecin (topo-I) and etoposide (topo-II) are some of the drugs that are used in the current treatment protocols, particularly for the treatment of leukemia (AML, ALL etc). However, tumor resistance, normal and non-specific tissue cytotoxicity are the limitations for successful development of these drugs as one of the primary therapeutic agents for the treatment of tumors in vitro. This brief review presents the current understanding about cytotoxicity development and outlines various approaches to overcome the limitations for enhancing the efficacy of topo-poison based anticancer drugs. PMID:15339028

  1. Apomaghemite as a doxorubicin carrier for anticancer drug delivery.

    PubMed

    Jurado, Rocío; Frączek, Paulina; Droetto, Mélissa; Sánchez, Purificación; Valero, Elsa; Domínguez-Vera, José M; Gálvez, Natividad

    2016-04-01

    Protein cages have well-defined structures and can be chemically and biologically engineered in many ways, making them useful platforms for drug delivery applications. Taking advantage of the unique structure feature of apoferritin, a new theranostic nanocarrier is proposed herein. The apoferritin protein is effective for the encapsulation of maghemite nanoparticles and for loading a significant dose of doxorubicin (DOX) drug. This simultaneous loading of maghemite nanoparticles and DOX has been achieved using either co-encapsulation or surface-binding approaches. Maghemite nanoparticles coated with the protein apoferritin are an effective long-term MRI liver contrast agent and we report here that additionally they can serve as an anticancer drug-delivery system. In particular we show that maghemite-containing apoferritin can sustain the DOX delivery under period of 10 to 25 days depending on the environmental conditions. PMID:26826473

  2. Nanoparticles of Esterified Polymalic Acid for Controlled Anticancer Drug Releasea

    PubMed Central

    Lanz-Landázuri, Alberto; Portilla-Arias, José; de Ilarduya, Antxon Martínez; García-Alvarez, Montserrat; Holler, Eggehard; Ljubimova, Julia

    2014-01-01

    Esterification of microbial poly(malic acid) is performed with either ethanol or 1-butanol to obtain polymalate conjugates capable to form nanoparticles (100–350 nm). Degradation under physiological conditions takes place with release of malic acid and the corresponding alcohol as unique degradation products. The anticancer drugs Temozolomide and Doxorubicin are encapsulated in nanoparticles with efficiency of 17 and 37%, respectively. In vitro drug release assays show that Temozolomide is almost completely discharged in a few hours whereas Doxorubicin is steadily released along several days. Drug-loaded nano-particles show remarkable effectiveness against cancer cells. Partially ethylated poly(malic acid) nano-particles are those showing the highest cellular uptake. PMID:24902676

  3. Structural insights into G-quadruplexes: towards new anticancer drugs

    PubMed Central

    Yang, Danzhou; Okamoto, Keika

    2010-01-01

    DNA G-quadruplexes are DNA secondary structures formed in specific G-rich sequences. DNA sequences that can form G-quadruplexes have been found in regions with biological significance, such as human telomeres and oncogene-promoter regions. DNA G-quadruplexes have recently emerged as a new class of novel molecular targets for anticancer drugs. Recent progress on structural studies of the biologically relevant G-quadruplexes formed in human telomeres and in the promoter regions of human oncogenes will be discussed, as well as recent advances in the design and development of G-quadruplex-interactive drugs. DNA G-quadruplexes can readily form in solution under physiological conditions and are globularly folded nucleic acid structures. The molecular structures of intramolecular G-quadruplexes appear to differ from one another and, therefore, in principle may be differentially regulated and targeted by different proteins and drugs. PMID:20563318

  4. Validating Aurora B as an anti-cancer drug target.

    PubMed

    Girdler, Fiona; Gascoigne, Karen E; Eyers, Patrick A; Hartmuth, Sonya; Crafter, Claire; Foote, Kevin M; Keen, Nicholas J; Taylor, Stephen S

    2006-09-01

    The Aurora kinases, a family of mitotic regulators, have received much attention as potential targets for novel anti-cancer therapeutics. Several Aurora kinase inhibitors have been described including ZM447439, which prevents chromosome alignment, spindle checkpoint function and cytokinesis. Subsequently, ZM447439-treated cells exit mitosis without dividing and lose viability. Because ZM447439 inhibits both Aurora A and B, we set out to determine which phenotypes are due to inhibition of which kinase. Using molecular genetic approaches, we show that inhibition of Aurora B kinase activity phenocopies ZM447439. Furthermore, a novel ZM compound, which is 100 times more selective for Aurora B over Aurora A in vitro, induces identical phenotypes. Importantly, inhibition of Aurora B kinase activity induces a penetrant anti-proliferative phenotype, indicating that Aurora B is an attractive anti-cancer drug target. Using molecular genetic and chemical-genetic approaches, we also probe the role of Aurora A kinase activity. We show that simultaneous repression of Aurora A plus induction of a catalytic mutant induces a monopolar phenotype. Consistently, another novel ZM-related inhibitor, which is 20 times as potent against Aurora A compared with ZM447439, induces a monopolar phenotype. Expression of a drug-resistant Aurora A mutant reverts this phenotype, demonstrating that Aurora A kinase activity is required for spindle bipolarity in human cells. Because small molecule-mediated inhibition of Aurora A and Aurora B yields distinct phenotypes, our observations indicate that the Auroras may present two avenues for anti-cancer drug discovery. PMID:16912073

  5. Nanocarriers Based Anticancer Drugs: Current Scenario and Future Perceptions.

    PubMed

    Raj, Rakesh; Mongia, Pooja; Kumar Sahu, Suresh; Ram, Alpana

    2016-01-01

    Anticancer therapies mostly depend on the ability of the bioactives to reach their designated cellular and subcellular target sites, while minimizing accumulation and side effects at non specific sites. The development of nanotechnology based drug delivery systems that are able to modify the biodistribution, tissue uptake and pharmacokinetics of therapeutic agents is considered of great importance in biomedical research and treatment therapy. Controlled releases from nanocarriers can significantly enhance the therapeutic effect of a drug. Nanotechnology has the potential to revolutionize in cancer diagnosis and therapy. Targeted nano medicines either marketed or under development, are designed for the treatment of various types of cancer. Nanocarriers are able to reduce cytotoxic effect of the active anticancer drugs by increasing cancer cell targeting in comparison to conventional formulations. The newly developed nano devices such as quantum dots, liposomes, nanotubes, nanoparticles, micelles, gold nanoparticles, carbon nanotubes and solid lipid nanoparticles are the most promising applications for various cancer treatments. This review is focused on currently available information regarding pharmaceutical nanocarriers for cancer therapy and imaging. PMID:26201484

  6. Particle margination and its implications on intravenous anticancer drug delivery.

    PubMed

    Carboni, Erik; Tschudi, Katherine; Nam, Jaewook; Lu, Xiuling; Ma, Anson W K

    2014-06-01

    "Margination" refers to the movement of particles in flow toward the walls of a channel. The term was first coined in physiology for describing the behavior of white blood cells (WBCs) and platelets in blood flow. The margination of particles is desirable for anticancer drug delivery because it results in the close proximity of drug-carrying particles to the endothelium, where they can easily diffuse into cancerous tumors through the leaky vasculature. Understanding the fundamentals of margination may further lead to the rational design of particles and allow for more specific delivery of anticancer drugs into tumors, thereby increasing patient comfort during cancer treatment. This paper reviews existing theoretical and experimental studies that focus on understanding margination. Margination is a complex phenomenon that depends on the interplay between inertial, hydrodynamic, electrostatic, lift, van der Waals, and Brownian forces. Parameters that have been explored thus far include the particle size, shape, density, stiffness, shear rate, and the concentration and aggregation state of red blood cells (RBCs). Many studies suggested that there exists an optimal particle size for margination to occur, and that nonspherical particles tend to marginate better than spherical particles. There are, however, conflicting views on the effects of particle density, stiffness, shear rate, and RBCs. The limitations of using the adhesion of particles to the channel walls in order to quantify margination propensity are explained, and some outstanding questions for future research are highlighted. PMID:24687242

  7. Lymphatic Targeting of Nanosystems for Anticancer Drug Therapy.

    PubMed

    Abellan-Pose, Raquel; Csaba, Noemi; Alonso, Maria Jose

    2016-01-01

    The lymphatic system represents a major route of dissemination in metastatic cancer. Given the lack of selectivity of conventional chemotherapy to prevent lymphatic metastasis, in the last years there has been a growing interest in the development of nanocarriers showing lymphotropic characteristics. The goal of this lymphotargeting strategy is to facilitate the delivery of anticancer drugs to the lymph node-resident cancer cells, thereby enhancing the effectiveness of the anti-cancer therapies. This article focuses on the nanosystems described so far for the active or passive targeting of oncological drugs to the lymphatic circulation. To understand the design and performance of these nanosystems, we will discuss first the physiology of the lymphatic system and how physiopathological changes associated to tumor growth influence the biodistribution of nanocarriers. Second, we provide evidence on how the tailoring of the physicochemical characteristics of nanosystems, i.e. particle size, surface charge and hydrophilicity, allows the modulation of their access to the lymphatic circulation. Finally, we provide an overview of the relationship between the biodistribution and antimetastatic activity of the nanocarriers loaded with oncological drugs, and illustrate the most promising active targeting approaches investigated so far. PMID:26675222

  8. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs.

    PubMed

    Sánchez-Martínez, Concepción; Gelbert, Lawrence M; Lallena, María José; de Dios, Alfonso

    2015-09-01

    Sustained proliferative capacity is a hallmark of cancer. In mammalian cells proliferation is controlled by the cell cycle, where cyclin-dependent kinases (CDKs) regulate critical checkpoints. CDK4 and CDK6 are considered highly validated anticancer drug targets due to their essential role regulating cell cycle progression at the G1 restriction point. This review provides an overview of recent advances on cyclin dependent kinase inhibitors in general with special emphasis on CDK4 and CDK6 inhibitors and compounds under clinical evaluation. Chemical structures, structure activity relationships, and relevant preclinical properties will be described. PMID:26115571

  9. Thalidomide–A Notorious Sedative to a Wonder Anticancer Drug

    PubMed Central

    Zhou, Shuang; Wang, Fengfei; Hsieh, Tze-Chen; Wu, Joseph M.; Wu, Erxi

    2014-01-01

    In the past 50 years, thalidomide has undergone a remarkable metamorphosis from a notorious drug inducing birth defects into a highly effective therapy for treating leprosy and multiple myeloma. Today, most notably, thalidomide and its analogs have shown efficacy against a wide variety of diseases, including inflammation and cancer. The mechanism underlying its teratogenicity as well as its anticancer activities has been intensively studied. This review summarizes the biological effects and therapeutic uses of thalidomide and its analogs, and the underlying mechanisms of thalidomide’s action with a focus on its suppression of tumor growth. PMID:23931282

  10. A drug-specific nanocarrier design for efficient anticancer therapy

    NASA Astrophysics Data System (ADS)

    Shi, Changying; Guo, Dandan; Xiao, Kai; Wang, Xu; Wang, Lili; Luo, Juntao

    2015-07-01

    The drug-loading properties of nanocarriers depend on the chemical structures and properties of their building blocks. Here we customize telodendrimers (linear dendritic copolymer) to design a nanocarrier with improved in vivo drug delivery characteristics. We do a virtual screen of a library of small molecules to identify the optimal building blocks for precise telodendrimer synthesis using peptide chemistry. With rationally designed telodendrimer architectures, we then optimize the drug-binding affinity of a nanocarrier by introducing an optimal drug-binding molecule (DBM) without sacrificing the stability of the nanocarrier. To validate the computational predictions, we synthesize a series of nanocarriers and evaluate systematically for doxorubicin delivery. Rhein-containing nanocarriers have sustained drug release, prolonged circulation, increased tolerated dose, reduced toxicity, effective tumour targeting and superior anticancer effects owing to favourable doxorubicin-binding affinity and improved nanoparticle stability. This study demonstrates the feasibility and versatility of the de novo design of telodendrimer nanocarriers for specific drug molecules, which is a promising approach to transform nanocarrier development for drug delivery.

  11. Hurdles in anticancer drug development from a regulatory perspective.

    PubMed

    Jonsson, Bertil; Bergh, Jonas

    2012-04-01

    Between January 2001 and January 2012, 48 new medicinal products for cancer treatment were licensed within the EU, and 77 new indications were granted for products already licensed. In some cases, a major improvement to existing therapies was achieved, for example, trastuzumab in breast cancer. In other cases, new fields for effective drug therapy opened up, such as in chronic myeloid leukemia, and renal-cell carcinoma. In most cases, however, the benefit-risk balance was considered to be only borderline favorable. Based on our assessment of advice procedures for marketing authorization, 'need for speed' seems to be the guiding principle in anticancer drug development. Although, for drugs that make a difference, early licensure is of obvious importance to patients, this is less evident in the case of borderline drugs. Without proper incentives and with hurdles inside and outside companies, a change in drug development cannot be expected; drugs improving benefit-risk modestly over available therapies will be brought forward towards licensure. In this Perspectives article, we discuss some hurdles to biomarker-driven drug development and provide some suggestions to overcome them. PMID:22349015

  12. A drug-specific nanocarrier design for efficient anticancer therapy

    PubMed Central

    Shi, Changying; Guo, Dandan; Xiao, Kai; Wang, Xu; Wang, Lili; Luo, Juntao

    2015-01-01

    The drug-loading properties of nanocarriers depend on the chemical structures and properties of their building blocks. Here, we customize telodendrimers (linear-dendritic copolymer) to design a nanocarrier with improved in vivo drug delivery characteristics. We do a virtual screen of a library of small molecules to identify the optimal building blocks for precise telodendrimer synthesis using peptide chemistry. With rationally designed telodendrimer architectures, we then optimize the drug binding affinity of a nanocarrier by introducing an optimal drug-binding molecule (DBM) without sacrificing the stability of the nanocarrier. To validate the computational predictions, we synthesize a series of nanocarriers and evaluate systematically for doxorubicin delivery. Rhein-containing nanocarriers have sustained drug release, prolonged circulation, increased tolerated dose, reduced toxicity, effective tumor targeting and superior anticancer effects owing to favourable doxorubicin-binding affinity and improved nanoparticle stability. This study demonstrates the feasibility and versatility of the de novo design of telodendrimer nanocarriers for specific drug molecules, which is a promising approach to transform nanocarrier development for drug delivery. PMID:26158623

  13. Comparison and validation of genomic predictors for anticancer drug sensitivity

    PubMed Central

    Papillon-Cavanagh, Simon; De Jay, Nicolas; Hachem, Nehme; Olsen, Catharina; Bontempi, Gianluca; Aerts, Hugo J W L; Quackenbush, John; Haibe-Kains, Benjamin

    2013-01-01

    Background An enduring challenge in personalized medicine lies in selecting the right drug for each individual patient. While testing of drugs on patients in large trials is the only way to assess their clinical efficacy and toxicity, we dramatically lack resources to test the hundreds of drugs currently under development. Therefore the use of preclinical model systems has been intensively investigated as this approach enables response to hundreds of drugs to be tested in multiple cell lines in parallel. Methods Two large-scale pharmacogenomic studies recently screened multiple anticancer drugs on over 1000 cell lines. We propose to combine these datasets to build and robustly validate genomic predictors of drug response. We compared five different approaches for building predictors of increasing complexity. We assessed their performance in cross-validation and in two large validation sets, one containing the same cell lines present in the training set and another dataset composed of cell lines that have never been used during the training phase. Results Sixteen drugs were found in common between the datasets. We were able to validate multivariate predictors for three out of the 16 tested drugs, namely irinotecan, PD-0325901, and PLX4720. Moreover, we observed that response to 17-AAG, an inhibitor of Hsp90, could be efficiently predicted by the expression level of a single gene, NQO1. Conclusion These results suggest that genomic predictors could be robustly validated for specific drugs. If successfully validated in patients’ tumor cells, and subsequently in clinical trials, they could act as companion tests for the corresponding drugs and play an important role in personalized medicine. PMID:23355484

  14. Injectable micellar supramolecular hydrogel for delivery of hydrophobic anticancer drugs.

    PubMed

    Fu, CuiXiang; Lin, XiaoXiao; Wang, Jun; Zheng, XiaoQun; Li, XingYi; Lin, ZhengFeng; Lin, GuangYong

    2016-04-01

    In this paper, an injectable micellar supramolecular hydrogel composed of α-cyclodextrin (α-CD) and monomethoxy poly(ethylene glycol)-b-poly(ε-caplactone) (MPEG5000-PCL5000) micelles was developed by a simple method for hydrophobic anticancer drug delivery. By mixing α-CD aqueous solution and MPEG5000-PCL5000 micelles, an injectable micellar supramolecular hydrogel could be formed under mild condition due to the inclusion complexation between α-CD and MPEG segment of MPEG5000-PCL5000 micelles. The resultant supramolecular hydrogel was thereafter characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The effect of α-CD amount on the gelation time, mechanical strength and thixotropic property was studied by a rheometer. Payload of hydrophobic paclitaxel (PTX) to supramolecular hydrogel was achieved by encapsulation of PTX into MPEG5000-PCL5000 micelles prior mixing with α-CD aqueous solution. In vitro release study showed that the release behavior of PTX from hydrogel could be modulated by change the α-CD amount in hydrogel. Furthermore, such supramolecular hydrogel could enhance the biological activity of encapsulated PTX compared to free PTX, as indicated by in vitro cytotoxicity assay. All these results indicated that the developed micellar supramolecular hydrogel might be a promising injectable drug delivery system for anticancer therapy. PMID:26886821

  15. Bcl-2 family proteins as targets for anticancer drug design.

    PubMed

    Huang, Z

    2000-12-27

    Bcl-2 family proteins are key regulators of programmed cell death or apoptosis that is implicated in many human diseases, particularly cancer. In recent years, they have attracted intensive interest in both basic research to understand the fundamental principles of cell survival and cell death and drug discovery to develop a new class of anticancer agents. The Bcl-2 family includes both anti- and pro-apoptotic proteins with opposing biological functions in either inhibiting or promoting cell death. High expression of anti-apoptotic members such as Bcl-2 and Bcl-XL commonly found in human cancers contributes to neoplastic cell expansion and interferes with the therapeutic action of many chemotherapeutic drugs. The functional blockade of Bcl-2 or Bcl-XL could either restore the apoptotic process in tumor cells or sensitize these tumors for chemo- and radiotherapies. This article reviews the recent progress in the design and discovery of small molecules that block the anti-apoptotic function of Bcl-2 or Bcl-XL. These chemical inhibitors are effective modulators of apoptosis and promising leads for the further development of new anticancer agents. PMID:11426648

  16. Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment

    PubMed Central

    Lee, Gyeong Jin; Kang, Joo-Hee

    2014-01-01

    Objective. Layered double hydroxide (LDH) nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles. Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML), 5-FU/LDH (FL), and (MTX + 5-FU)/LDH (MFL) nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy. Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy. PMID:24860812

  17. New strategies to deliver anticancer drugs to brain tumors

    PubMed Central

    Laquintana, Valentino; Trapani, Adriana; Denora, Nunzio; Wang, Fan; Gallo, James M.; Trapani, Giuseppe

    2009-01-01

    BACKGROUND Malignant brain tumors are among the most challenging to treat and at present there are no uniformly successful treatment strategies. Standard treatment regimens consist of maximal surgical resection followed by radiotherapy and chemotherapy. The limited survival advantage attributed to chemotherapy is partially due to low CNS penetration of antineoplastic agents across the blood-brain barrier (BBB). OBJECTIVE The objective of this paper is to review recent approaches to deliver anticancer drugs into primary brain tumors. METHODS Both preclinical and clinical strategies to circumvent the BBB are considered that includes chemical modification and colloidal carriers. CONCLUSION Analysis of the available data indicates that novel approaches may be useful for CNS delivery, yet an appreciation of pharmacokinetic issues, and improved knowledge of tumor biology will be needed to significantly impact drug delivery to the target site. PMID:19732031

  18. Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery.

    PubMed

    Mo, Ran; Jiang, Tianyue; Gu, Zhen

    2014-06-01

    A liposome-based co-delivery system composed of a fusogenic liposome encapsulating ATP-responsive elements with chemotherapeutics and a liposome containing ATP was developed for ATP-mediated drug release triggered by liposomal fusion. The fusogenic liposome had a protein-DNA complex core containing an ATP-responsive DNA scaffold with doxorubicin (DOX) and could release DOX through a conformational change from the duplex to the aptamer/ATP complex in the presence of ATP. A cell-penetrating peptide-modified fusogenic liposomal membrane was coated on the core, which had an acid-triggered fusogenic potential with the ATP-loaded liposomes or endosomes/lysosomes. Directly delivering extrinsic liposomal ATP promoted the drug release from the fusogenic liposome in the acidic intracellular compartments upon a pH-sensitive membrane fusion and anticancer efficacy was enhanced both in vitro and in vivo. PMID:24764317

  19. Medication adherence to oral anticancer drugs: systematic review.

    PubMed

    Huang, Wen-Chuan; Chen, Chung-Yu; Lin, Shun-Jin; Chang, Chao-Sung

    2016-04-01

    Many studies have demonstrated that non-adherence to oral anticancer drugs (OACDs) has challenged treatment efficacy. Otherwise, few validated tools exist to measure patients' adherence to medication regimen in clinical practice. To synthesize previous studies on adherence by cancer patients taking OACDs, especially in targeted therapy, a systematic search of several electronic databases was conducted. We analyzed existing scales' contents for various cancer patients and outcomes of studies assessing adherence. However, a well-validated scale designed particularly for OACD adherence is still lacking. Most adherence scales used in the studies reviewed contain items focused on measuring patients' medication-taking behavior more than their barriers to medication compliance and beliefs. However, non-adherence to OACDs is a complex phenomenon, and drug-taking barriers and patient beliefs significantly affect patients' non-adherence. To understand the key drivers and predisposing factors for non-adherence, we need to develop a well-validated, multidimensional scale. PMID:26935964

  20. Optimizing drug development of anti-cancer drugs in children using modelling and simulation

    PubMed Central

    van Hasselt, Johan GC; van Eijkelenburg, Natasha KA; Beijnen, Jos H; Schellens, Jan HM; Huitema, Alwin DR

    2013-01-01

    Modelling and simulation (M&S)-based approaches have been proposed to support paediatric drug development in order to design and analyze clinical studies efficiently. Development of anti-cancer drugs in the paediatric population is particularly challenging due to ethical and practical constraints. We aimed to review the application of M&S in the development of anti-cancer drugs in the paediatric population, and to identify where M&S-based approaches could provide additional support in paediatric drug development of anti-cancer drugs. A structured literature search on PubMed was performed. The majority of identified M&S-based studies aimed to use population PK modelling approaches to identify determinants of inter-individual variability, in order to optimize dosing regimens and to develop therapeutic drug monitoring strategies. Prospective applications of M&S approaches for PK-bridging studies have scarcely been reported for paediatric oncology. Based on recent developments of M&S in drug development there are several opportunities where M&S could support more informative bridging between children and adults, and increase efficiency of the design and analysis of paediatric clinical trials, which should ultimately lead to further optimization of drug treatment strategies in this population. PMID:23216601

  1. Benefit and harms of new anti-cancer drugs.

    PubMed

    Vera-Badillo, Francisco E; Al-Mubarak, Mustafa; Templeton, Arnoud J; Amir, Eitan

    2013-06-01

    Phase III randomized controlled trials (RCTs) assess clinically important differences in endpoints that reflect benefit to and harm of patients. Defining benefit of cancer drugs can be difficult. Overall survival and quality of life are the most relevant primary endpoints, but difficulty in measuring these mean that other endpoints are often used, although their surrogacy or clinical relevance has not always been established. In general, advances in drug development have led to numerous new drugs to enter the market. Pivotal RCT of several new drugs have shown that benefit appeared greater for targeted anticancer agents than for chemotherapeutic agents. This effect seems particularly evident with targeted agents evaluated in biomarker-driven studies. Unfortunately, new therapies have also shown an increase in toxicity. Such toxicity is not always evident in the initial reports of RCTs. This may be a result of a statistical inability to detect differences between arms of RCTs, or occasionally due to biased reporting. There are several examples where reports of new toxicities could only be found in drug labels. In some cases, the small improvement in survival has come at a cost of substantial excess toxicity, leading some to consider such therapy as having equipoise. PMID:23435854

  2. Anticancer Drug Delivery: An Update on Clinically Applied Nanotherapeutics.

    PubMed

    Marchal, Sophie; El Hor, Amélie; Millard, Marie; Gillon, Véronique; Bezdetnaya, Lina

    2015-09-01

    The development of chemotherapy using conventional anticancer drugs has been hindered due to several drawbacks related to their poor water solubility and poor pharmacokinetics, leading to severe adverse side effects and multidrug resistance in patients. Nanocarriers were developed to palliate these problems by improving drug delivery, opening the era of nanomedicine in oncology. Liposomes have been by far the most used nanovectors for drug delivery, with liposomal doxorubicin receiving US FDA approval as early as 1995. Antibody drug conjugates and promising drug delivery systems based on a natural polymer, such as albumin, or a synthetic polymer, are currently undergoing advanced clinical trials or have received approval for clinical applications. However, despite attractive results being obtained in preclinical studies, many well-designed nanodrugs fell short of expectations when tested in patients, evidencing the gap between nanoparticle design and their clinical translation. The aim of this review is to evaluate the extent of nanotherapeutics used in oncology by providing an insight into the most successful concepts. The reasons that prevent nanodrugs from expanding to clinic are discussed, and the efforts that must be taken to take full advantage of the great potential of nanomedicine are highlighted. PMID:26323338

  3. Continuous infusion of low-dose doxorubicin, epirubicin and mitoxantrone in cancer chemotherapy: a review.

    PubMed

    Greidanus, J; Willemse, P H; Uges, D R; Oremus, E T; De Langen, Z J; De Vries, E G

    1988-12-01

    With the recent development of reliable portable pumps and safe venous access systems, continuous infusion of chemotherapeutic agents on an out-patient basis has become feasible. Advantages of continuous infusion are the long-term exposure of tumour cells to the drug and the fact that most toxic effects are reduced for doxorubicin, epirubicin and mitoxantrone due to elimination of the high peak plasma levels. Preliminary data for doxorubicin suggest that its antitumour activity is maintained. Pharmacokinetic studies with epirubicin and mitoxantrone showed a linear relationship between drug dose infused and the steady-state plasma level for these drugs. The area under the curve for leukocytes drug level was higher during continuous infusion than after an equitoxic bolus injection of epirubicin and mitoxantrone. Well-randomized clinical trials will be necessary to investigate the role of continuous infusion of antracyclines and mitoxantrone in cancer chemotherapy in the future. PMID:3062572

  4. Prevalence of potential drug–drug interactions in cancer patients treated with oral anticancer drugs

    PubMed Central

    van Leeuwen, R W F; Brundel, D H S; Neef, C; van Gelder, T; Mathijssen, R H J; Burger, D M; Jansman, F G A

    2013-01-01

    Background: Potential drug–drug interactions (PDDIs) in patients with cancer are common, but have not previously been quantified for oral anticancer treatment. We assessed the prevalence and seriousness of potential PDDIs among ambulatory cancer patients on oral anticancer treatment. Methods: A search was conducted in a computer-based medication prescription system for dispensing oral anticancer drugs to outpatients in three Dutch centres. Potential drug–drug interactions were identified using electronic (Drug Interaction Fact software) and manual screening methods (peer-reviewed reports). Results: In the 898 patients included in the study, 1359 PDDIs were identified in 426 patients (46%, 95% confidence interval (CI)=42–50%). In 143 patients (16%), a major PDDI was identified. The drug classes most frequently involved in a major PDDI were coumarins and opioids. The majority of cases concerned central nervous system interactions, PDDIs that can cause gastrointestinal toxicity and prolongation of QT intervals. In multivariate analysis, concomitant use of more drugs (odds ratio (OR)=1.66, 95% CI=1.54–1.78, P<0001) and genito-urinary cancer (OR=0.25, 95% CI=0.12–0.52, P<0001) were risk factors. Conclusion: Potential drug–drug interactions are very common among cancer patients on oral cancer therapy. Physicians and pharmacists should be more aware of these potential interactions. PMID:23412102

  5. Nanoformulation for anticancer drug delivery: Enhanced pharmacokinetics and circulation

    NASA Astrophysics Data System (ADS)

    Parekh, Gaurav

    In this study, we have explored the application of the Layer-by-Layer (LbL) assembly technique for improving injectable drug delivery systems of low soluble anticancer drugs (e.g. Camptothecin (CPT), Paclitaxel (PTX) or Doxorubicin (DOX)). For this study, a polyelectrolyte shell encapsulates different types of drug nanocores (e.g. soft core, nanomicelle or solid lipid nanocores).The low soluble drugs tend to crystallize and precipitate in an aqueous medium. This is the reason they cannot be injected and may have low concentrations and low circulation time in the blood. Even though these drugs when present in the cancer microenvironment have high anti-tumor inhibition, the delivery to the tumor site after intravenous administration is a challenge. We have used FDA-approved biopolymers for the process and elaborated formation of 60-90 nm diameter initial cores, which was stabilized by multilayer LbL shells for controlled release and longer circulation. A washless LbL assembly process was applied as an essential advancement in nano-assembly technology using low density nanocore (lipids) and preventing aggregation. This advancement reduced the number of process steps, enhanced drug loading capacity, and prevented the loss of expensive polyelectrolytes. Finally, we elaborated a general nano-encapsulation process, which allowed these three important anticancer drug core-shell nanocapsules with diameters of ca. 100-130 nm (this small size is a record for LbL encapsulation technique) to be stable in the serum and the blood for at least one week, efficient for cancer cell culture studies, injectable to mice with circulation for 4 hrs, and effective in suppressing tumors. This work is divided into three studies. The first study (CHAPTER 4) explores the application of LbL assembly for encapsulating a soft core of albumin protein and CPT anticancer drug. In order to preserve the activity of drug in the core, a unique technique of pH reversal is employed where the first few

  6. Crosslinked multilamellar liposomes for controlled delivery of anticancer drugs.

    PubMed

    Joo, Kye-Il; Xiao, Liang; Liu, Shuanglong; Liu, Yarong; Lee, Chi-Lin; Conti, Peter S; Wong, Michael K; Li, Zibo; Wang, Pin

    2013-04-01

    Liposomes constitute one of the most popular nanocarriers for the delivery of cancer therapeutics. However, since their potency is limited by incomplete drug release and inherent instability in the presence of serum components, their poor delivery occurs in certain circumstances. In this study, we address these shortcomings and demonstrate an alternative liposomal formulation, termed crosslinked multilamellar liposome (CML). With its properties of improved sustainable drug release kinetics and enhanced vesicle stability, CML can achieve controlled delivery of cancer therapeutics. CML stably encapsulated the anticancer drug doxorubicin (Dox) in the vesicle and exhibited a remarkably controlled rate of release compared to that of the unilamellar liposome (UL) with the same lipid composition or Doxil-like liposome (DLL). Our imaging study demonstrated that the CMLs were mainly internalized through a caveolin-dependent pathway and were further trafficked through the endosome-lysosome compartments. Furthermore, in vivo experiments showed that the CML-Dox formulation reduced systemic toxicity and significantly improved therapeutic activity in inhibiting tumor growth compared to that of UL-Dox or DLL-Dox. This drug packaging technology may therefore provide a new treatment option to better manage cancer and other diseases. PMID:23375392

  7. Optical Interferometric Response of Living Tissue to Cytoskeletal Anticancer Drugs

    NASA Astrophysics Data System (ADS)

    Nolte, David; Jeong, Kwan; Turek, John

    2007-03-01

    Living tissue illuminated by short-coherence light can be optically sectioned in three dimensions using coherent detection such as interferometry. We have developed full-field coherence-gated imaging of tissue using digital holography. Two-dimensional image sections from a fixed depth are recorded as interference fringes with a CCD camera located at the optical Fourier plane. Fast Fourier transform of the digital hologram yields the depth-selected image. When the tissue is living, highly dynamic speckle is observed as fluctuating pixel intensities. The temporal autocorrelation functions are directly related to the degree of motility at depth. We have applied the cytoskeletal drugs nocodazole and colchicine to osteogenic sarcoma multicellular spheroids and observed the response holographically. Colchicine is an anticancer drug that inhibits microtubule polymerization and hence prevents spindle formation during mitosis. Nocodazole, on the other hand, depolymerizes microtubules. Both drugs preferentially inhibit rapidly-dividing cancer cells. We observe dose-response using motility as an effective contrast agent. This work opens the possibility for studies of three-dimensional motility as a multiplexed assay for drug discovery.

  8. [The anticancer drug Kang-Lai-Te emulsion for infusion].

    PubMed

    Li Dapeng

    2005-01-01

    Kanglaite (KLT) emulsion for infusion is a new type of anticancer drug, prepared by extracting active antitumor components from the primary product of the Chinese plant Semen Coicis using modern technology, and formed as lipid emulsion for intravenous and intra-arterial injections. Clinical application of this drug demonstrates high efficacy of KLT in treatment of various tumors, such as lung, hepatic, stomach, and breast carcinomas. Its use leads to a significant increase of immune functions and improves life quality: when combined with radio-, chemotherapy, and auxiliary therapy, it leads to a significant increase of the therapeutic effect and reduces the toxic effects of these treatments. Deep study of the mechanism of KLT action, performed in large research centers of China, has demonstrated that the drug blocks tumor cell mitosis at the boundary of G2 and M phases of the cell cycle, induces tumor cell apoptosis, increases the expression of Fas/Apo-1 gene, which inhibits the growth of tumor cells, and reduces the expression of Bel-2 gene, which promotes it, inhibits angiogenesis, actively decreases cancer cachexy, and is able to overcome multiple drug resistance of tumor cells. PMID:16250329

  9. Nanoformulation for anticancer drug delivery: Enhanced pharmacokinetics and circulation

    NASA Astrophysics Data System (ADS)

    Parekh, Gaurav

    In this study, we have explored the application of the Layer-by-Layer (LbL) assembly technique for improving injectable drug delivery systems of low soluble anticancer drugs (e.g. Camptothecin (CPT), Paclitaxel (PTX) or Doxorubicin (DOX)). For this study, a polyelectrolyte shell encapsulates different types of drug nanocores (e.g. soft core, nanomicelle or solid lipid nanocores).The low soluble drugs tend to crystallize and precipitate in an aqueous medium. This is the reason they cannot be injected and may have low concentrations and low circulation time in the blood. Even though these drugs when present in the cancer microenvironment have high anti-tumor inhibition, the delivery to the tumor site after intravenous administration is a challenge. We have used FDA-approved biopolymers for the process and elaborated formation of 60-90 nm diameter initial cores, which was stabilized by multilayer LbL shells for controlled release and longer circulation. A washless LbL assembly process was applied as an essential advancement in nano-assembly technology using low density nanocore (lipids) and preventing aggregation. This advancement reduced the number of process steps, enhanced drug loading capacity, and prevented the loss of expensive polyelectrolytes. Finally, we elaborated a general nano-encapsulation process, which allowed these three important anticancer drug core-shell nanocapsules with diameters of ca. 100-130 nm (this small size is a record for LbL encapsulation technique) to be stable in the serum and the blood for at least one week, efficient for cancer cell culture studies, injectable to mice with circulation for 4 hrs, and effective in suppressing tumors. This work is divided into three studies. The first study (CHAPTER 4) explores the application of LbL assembly for encapsulating a soft core of albumin protein and CPT anticancer drug. In order to preserve the activity of drug in the core, a unique technique of pH reversal is employed where the first few

  10. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance

    PubMed Central

    Wei, Tuo; Chen, Chao; Liu, Juan; Liu, Cheng; Posocco, Paola; Liu, Xiaoxuan; Cheng, Qiang; Huo, Shuaidong; Liang, Zicai; Fermeglia, Maurizio; Liang, Xing-Jie; Rocchi, Palma; Peng, Ling

    2015-01-01

    Drug resistance and toxicity constitute challenging hurdles for cancer therapy. The application of nanotechnology for anticancer drug delivery is expected to address these issues and bring new hope for cancer treatment. In this context, we established an original nanomicellar drug delivery system based on an amphiphilic dendrimer (AmDM), which could generate supramolecular micelles to effectively encapsulate the anticancer drug doxorubicin (DOX) with high drug-loading capacity (>40%), thanks to the unique dendritic structure creating large void space for drug accommodation. The resulting AmDM/DOX nanomicelles were able to enhance drug potency and combat doxorubicin resistance in breast cancer models by significantly enhancing cellular uptake while considerably decreasing efflux of the drug. In addition, the AmDM/DOX nanoparticles abolished significantly the toxicity related to the free drug. Collectively, our studies demonstrate that the drug delivery system based on nanomicelles formed with the self-assembling amphiphilic dendrimer constitutes a promising and effective drug carrier in cancer therapy. PMID:25713374

  11. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance.

    PubMed

    Wei, Tuo; Chen, Chao; Liu, Juan; Liu, Cheng; Posocco, Paola; Liu, Xiaoxuan; Cheng, Qiang; Huo, Shuaidong; Liang, Zicai; Fermeglia, Maurizio; Pricl, Sabrina; Liang, Xing-Jie; Rocchi, Palma; Peng, Ling

    2015-03-10

    Drug resistance and toxicity constitute challenging hurdles for cancer therapy. The application of nanotechnology for anticancer drug delivery is expected to address these issues and bring new hope for cancer treatment. In this context, we established an original nanomicellar drug delivery system based on an amphiphilic dendrimer (AmDM), which could generate supramolecular micelles to effectively encapsulate the anticancer drug doxorubicin (DOX) with high drug-loading capacity (>40%), thanks to the unique dendritic structure creating large void space for drug accommodation. The resulting AmDM/DOX nanomicelles were able to enhance drug potency and combat doxorubicin resistance in breast cancer models by significantly enhancing cellular uptake while considerably decreasing efflux of the drug. In addition, the AmDM/DOX nanoparticles abolished significantly the toxicity related to the free drug. Collectively, our studies demonstrate that the drug delivery system based on nanomicelles formed with the self-assembling amphiphilic dendrimer constitutes a promising and effective drug carrier in cancer therapy. PMID:25713374

  12. [An attempt to degradation of anticancer drug and odor in the medical environment by photocatalyst].

    PubMed

    Sato, Junya; Kudo, Kenzo; Hirano, Takahiro; Kuwashima, Takayuki; Yamada, Sonpei; Kijihana, Ichiro; Sato, Kazuhiko; Takahashi, Katsuo

    2012-01-01

    Currently, there is a need to reduce the occupational exposure of health care workers to anticancer drugs. Environmental contamination by anticancer drugs and subsequent exposure of health care workers are associated with vaporization of anticancer drugs. Furthermore, carcinomatous unpleasant odor is an additional problem to vaporized anticancer drugs in the field of clinical cancer therapy. We attempted to degrade vaporized anticancer drug and unpleasant odor using a photocatalyst. Cyclophosphamide or unpleasant odors (ammonia, formaldehyde, isovaleric acid, and butyric acid) were vaporized by heating in a closed chamber. Plates of photocatalyst coated with titanium dioxide were placed into the chamber and irradiated by light source. Vaporized cyclophosphamide in the chamber was recovered by bubbling the internal air through acetone and derivatized by trifluoroacetic anhydride for analysis by gas chromatographic-mass spectrometric assay. Vaporized odors were determined using a gas-detector tube, which changed color depending on the concentration. Following activation of the photocatalyst by a light source, the residual amounts of anticancer drug and unpleasant odor components were significantly decreased compared with when the photocatalyst was not activated without a light source. These results indicate that the photocatalysts can accelerate the degradation of vaporized anticancer drugs and odor components. Air-cleaning equipment using a photocatalyst is expected to be useful in improving the QOL of cancer patients experiencing carcinomatous unpleasant odor, and in reducing occupational exposure of health care workers to anticancer drugs. PMID:23037705

  13. Delivery of anticancer drugs and antibodies into cells using ultrasound

    NASA Astrophysics Data System (ADS)

    Wu, Junru; Pepe, Jason; Rincon, Mercedes

    2005-04-01

    It has been shown experimentally in cell suspensions that pulsed ultrasound (2.0 MHz) could be used to deliver an anti-cancer drug (Adriamycin hydrochloride) into Jurkat lymphocytes and antibodies (goat anti rabbit IgG and anti mouse IgD) into human peripheral blood mononuclear (PBMC) cells and Jurkat lymphocytes assisted by encapsulated microbubbles (Optison). When Adriamycin hydrochloride (ADR) was delivered, the delivery efficiency reached 4.80% and control baseline (no ultrasound and no ADR) was 0.17%. When anti-rabbit IgD was delivered, the efficiencies were 34.90% (control baseline was 1.33%) and 32.50% (control baseline was 1.66%) respectively for Jurkat cells and PBMC. When goat anti rabbit IgG was delivered, the efficiencies were 78.60% (control baseline was 1.60%) and 57.50% (control baseline was 11.30%) respectively for Jurkat cells and PBMC.

  14. Prioritising anticancer drugs for environmental monitoring and risk assessment purposes.

    PubMed

    Booker, Victoria; Halsall, Crispin; Llewellyn, Neville; Johnson, Andrew; Williams, Richard

    2014-03-01

    Anticancer drugs routinely used in chemotherapy enter wastewater through the excretion of the non-metabolised drug following administration to patients. This study considers the consumption and subsequent behaviour and occurrence of these chemicals in aquatic systems, with the aim of prioritising a selection of these drugs which are likely to persist in the environment and hence be considered for environmental screening programmes. Accurate consumption data were compiled from a hospital survey in NW England and combined with urinary excretion rates derived from clinical studies. Physical-chemical property data were compiled along with likely chemical fate and persistence during and after wastewater treatment. A shortlist of 15 chemicals (from 65) was prioritised based on their consumption, persistency and likelihood of occurrence in surface waters and supported by observational studies where possible. The ecological impact of these 'prioritised' chemicals is uncertain as the measured concentrations in surface waters generally fall below standard toxicity thresholds. Nonetheless, this prioritised sub-list should prove useful for developing environmental screening programmes. PMID:24369294

  15. Using DNA devices to track anticancer drug activity.

    PubMed

    Kahanda, Dimithree; Chakrabarti, Gaurab; Mcwilliams, Marc A; Boothman, David A; Slinker, Jason D

    2016-06-15

    It is beneficial to develop systems that reproduce complex reactions of biological systems while maintaining control over specific factors involved in such processes. We demonstrated a DNA device for following the repair of DNA damage produced by a redox-cycling anticancer drug, beta-lapachone (β-lap). These chips supported ß-lap-induced biological redox cycle and tracked subsequent DNA damage repair activity with redox-modified DNA monolayers on gold. We observed drug-specific changes in square wave voltammetry from these chips at therapeutic ß-lap concentrations of high statistical significance over drug-free control. We also demonstrated a high correlation of this change with the specific ß-lap-induced redox cycle using rational controls. The concentration dependence of ß-lap revealed significant signal changes at levels of high clinical significance as well as sensitivity to sub-lethal levels of ß-lap. Catalase, an enzyme decomposing peroxide, was found to suppress DNA damage at a NQO1/catalase ratio found in healthy cells, but was clearly overcome at a higher NQO1/catalase ratio consistent with cancer cells. We found that it was necessary to reproduce key features of the cellular environment to observe this activity. Thus, this chip-based platform enabled tracking of ß-lap-induced DNA damage repair when biological criteria were met, providing a unique synthetic platform for uncovering activity normally confined to inside cells. PMID:26901461

  16. Multifunctional Liposome Nanocarriers Combining Upconverting Nanoparticles and Anticancer Drugs.

    PubMed

    Huang, Yue; Hemmer, Eva; Rosei, Federico; Vetrone, Fiorenzo

    2016-06-01

    Lanthanide-doped upconverting nanoparticles (UCNPs) are well-known for their inherent ability to convert low energy near-infrared (NIR) excitation wavelengths into higher energy emission wavelengths covering the ultraviolet (UV) to NIR regions. This optical feature makes UCNPs highly attractive for a broad range of applications including (bio)imaging and the biomedical use of light-triggered processes such as drug release. In the quest for novel theranostic approaches, the combination of multiple modalities on a single nanoscale platform, for example, combining optical imaging and drug delivery, is very desirable. In this context, liposomes, artificially prepared constructs composed of a lamellar phase lipid bilayer, have been introduced as suitable nanocarriers for UCNPs. Here, we developed a hybrid nanocarrier consisting of Er(3+) and Yb(3+) co-doped NaGdF4 UCNPs that were encapsulated in the aqueous core of the liposomes and the potential of the obtained nanocarriers for drug delivery was shown by co-loading the model anticancer drug doxorubicin (DOX). Under 980 nm excitation, a decrease of the green upconversion emission of the NaGdF4:Er(3+), Yb(3+) UCNPs was observed when DOX was co-loaded with the UCNPs in the liposome nanocarrier. This quenching effect is assigned to the energy transfer between the donor UCNP and the acceptor DOX and is most significant, since it allows for the spectral monitoring of the DOX loading and release from the liposome nanocarriers. Thus, the drug loading, release, and spectral monitoring properties of the obtained liposome nanocarriers were thoroughly characterized allowing us to assess their future potential as theranostic nanocarriers. PMID:27135855

  17. Biotechnological aspects of the production of the anticancer drug podophyllotoxin.

    PubMed

    Farkya, Sunita; Bisaria, V S; Srivastava, A K

    2004-10-01

    The natural lignan podophyllotoxin, a dimerized product of two phenylpropanoid moieties which occurs in a few plant species, is a pharmacologically important compound for its anticancer activities. It is used as a precursor for the chemical synthesis of the anticancer drugs etoposide, teniposide and etopophose. The availability of this lignan is becoming increasingly limited because of the scarce occurrence of its natural sources and also because synthetic approaches for its production are still commercially unacceptable. Biotechnological production using cell culture may be considered as an alternative source. Selection of the best performing cell line, its maintenance and stabilization are necessary prerequisites for its production in bioreactors and subsequent scale-up of the cultivation process to the industrial level. Scale-up of growth and product yield depends on a multitude of factors, such as growth medium, physicochemical conditions, seed inoculum, type of reactor and processing conditions. The composition of the growth medium, elicitors and precursors, etc. can markedly influence the production. Optimum levels of parameters that facilitate high growth and product response in cell suspensions of Podophyllum hexandrum have already been determined by statistical design. P. hexandrum cells have successfully been cultivated in a 3-l stirred-tank bioreactor under low shear conditions in batch and fed-batch modes of operation. The batch kinetic data were used to identify the mathematical model which was then used to develop nutrient-feeding strategies for fed-batch cultivation to prolong the productive log phase of cultivation. An improvement in the production of podophyllotoxin to 48.8 mg l(-1) in a cell culture of P. hexandrum was achieved, with a corresponding volumetric productivity of 0.80 mg l(-1) day(-1), when the reactor was operated in continuous cell-retention mode. Efforts are being made to further enhance its production levels by the development of

  18. Developing Exposure/Response Models for Anticancer Drug Treatment: Special Considerations

    PubMed Central

    Mould, DR; Walz, A-C; Lave, T; Gibbs, JP; Frame, B

    2015-01-01

    Anticancer agents often have a narrow therapeutic index (TI), requiring precise dosing to ensure sufficient exposure for clinical activity while minimizing toxicity. These agents frequently have complex pharmacology, and combination therapy may cause schedule-specific effects and interactions. We review anticancer drug development, showing how integration of modeling and simulation throughout development can inform anticancer dose selection, potentially improving the late-phase success rate. This article has a companion article in Clinical Pharmacology & Therapeutics with practical examples. PMID:26225225

  19. Antibody–drug conjugates as novel anti-cancer chemotherapeutics

    PubMed Central

    Peters, Christina; Brown, Stuart

    2015-01-01

    Over the past couple of decades, antibody–drug conjugates (ADCs) have revolutionized the field of cancer chemotherapy. Unlike conventional treatments that damage healthy tissues upon dose escalation, ADCs utilize monoclonal antibodies (mAbs) to specifically bind tumour-associated target antigens and deliver a highly potent cytotoxic agent. The synergistic combination of mAbs conjugated to small-molecule chemotherapeutics, via a stable linker, has given rise to an extremely efficacious class of anti-cancer drugs with an already large and rapidly growing clinical pipeline. The primary objective of this paper is to review current knowledge and latest developments in the field of ADCs. Upon intravenous administration, ADCs bind to their target antigens and are internalized through receptor-mediated endocytosis. This facilitates the subsequent release of the cytotoxin, which eventually leads to apoptotic cell death of the cancer cell. The three components of ADCs (mAb, linker and cytotoxin) affect the efficacy and toxicity of the conjugate. Optimizing each one, while enhancing the functionality of the ADC as a whole, has been one of the major considerations of ADC design and development. In addition to these, the choice of clinically relevant targets and the position and number of linkages have also been the key determinants of ADC efficacy. The only marketed ADCs, brentuximab vedotin and trastuzumab emtansine (T-DM1), have demonstrated their use against both haematological and solid malignancies respectively. The success of future ADCs relies on improving target selection, increasing cytotoxin potency, developing innovative linkers and overcoming drug resistance. As more research is conducted to tackle these issues, ADCs are likely to become part of the future of targeted cancer therapeutics. PMID:26182432

  20. Recent Advances in chemistry and pharmacology of 2-methoxyestradiol: An anticancer investigational drug.

    PubMed

    Kumar, B Sathish; Raghuvanshi, Dushyant Singh; Hasanain, Mohammad; Alam, Sarfaraz; Sarkar, Jayanta; Mitra, Kalyan; Khan, Feroz; Negi, Arvind S

    2016-06-01

    2-Methoxyestradiol (2ME2), an estrogen hormone metabolite is a potential cancer chemotherapeutic agent. Presently, it is an investigational drug under various phases of clinical trials alone or in combination therapy. Its anticancer activity has been attributed to its antitubulin, antiangiogenic, pro-apoptotic and ROS induction properties. This anticancer drug candidate has been explored extensively in last twenty years for its detailed chemistry and pharmacology. Present review is an update of its chemistry and biological activity. It also extends an assessment of potential of 2ME2 and its analogues as possible anticancer drug in future. PMID:27020471

  1. Amphiphilic p-Sulfonatocalix[4]arene as “Drug Chaperone” for Escorting Anticancer Drugs

    PubMed Central

    Wang, Yi-Xuan; Guo, Dong-Sheng; Duan, Yong-Chao; Wang, Yong-Jian; Liu, Yu

    2015-01-01

    Supramolecularly constructing multifunctional platform for drug delivery is a challenging task. In this work, we propose a novel supramolecular strategy “drug chaperone”, in which macrocyclic amphiphiles directly coassemble with cationic drugs into a multifunctional platform and its surface is further decorated with targeting ligands through host–guest recognition. The coassembling and hierarchical decoration processes were monitored by optical transmittance measurements, and the size and morphology of amphiphilic coassemblies were identified by dynamic light scattering and high-resolution transmission electron microscopy. In cell experiments to validate the drug chaperone strategy, the anticancer activities of free drugs were pronouncedly improved by coassembling with amphiphilic chaperone and further functionalization with targeting ligand. PMID:25761778

  2. PH responsive polypeptide based polymeric micelles for anticancer drug delivery.

    PubMed

    Zhao, Dongping; Li, Bingqiang; Han, Jiaming; Yang, Yue; Zhang, Xinchen; Wu, Guolin

    2015-09-01

    A pH-responsive polymeric micelle based on poly(aspartamide) derivative was explored as an efficient acid-triggered anticancer drug delivery system. Poly(α,β-l-asparthydrazide) (PAHy) was prepared by aminolysis reaction of polysuccinimide with hydrazine hydrate. Poly(ethylene glycol) and aliphatic chain (C18) were conjugated onto PAHy to afford an amphiphilic copolymer with acid-liable hydrazone bonds. The structure of the resulting copolymer and its self-assembled micelles were confirmed by (1) H NMR, FTIR, DLS, and TEM. Furthermore, doxorubicin (DOX) was loaded into the polymeric micelles via the hydrophobic interaction between the C18 group and DOX molecules, and the π-π staking between the hydrazone conjugated DOX and free DOX molecules. Results showed that the DOX loaded nanoparticle (NP) was relatively stable under physiological conditions, while the DOX was quickly released in response to acidity due to the shedding of mPEG shells and dissociating of C18 segments because of the pH-cleavage of intermediate hydrazone bonds. In addition, the DOX loaded micelles presented a high cytotoxic activity against tumor cells in vitro. This pH responsive NP has appeared highly promising for the targeted intracellular delivery of hydrophobic chemotherapeutics in cancer therapy. PMID:25689362

  3. Human recombinant RNASET2: A potential anti-cancer drug.

    PubMed

    Roiz, Levava; Smirnoff, Patricia; Lewin, Iris; Shoseyov, Oded; Schwartz, Betty

    2016-01-01

    The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate. PMID:27014725

  4. Selective anti-cancer agents as anti-aging drugs

    PubMed Central

    Blagosklonny, Mikhail V

    2013-01-01

    Recent groundbreaking discoveries have revealed that IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO, PI3K, mTOR, S6K, and NFκB are involved in the aging process. This is remarkable because the same signaling molecules, oncoproteins and tumor suppressors, are well-known targets for cancer therapy. Furthermore, anti-cancer drugs aimed at some of these targets have been already developed. This arsenal could be potentially employed for anti-aging interventions (given that similar signaling molecules are involved in both cancer and aging). In cancer, intrinsic and acquired resistance, tumor heterogeneity, adaptation, and genetic instability of cancer cells all hinder cancer-directed therapy. But for anti-aging applications, these hurdles are irrelevant. For example, since anti-aging interventions should be aimed at normal postmitotic cells, no selection for resistance is expected. At low doses, certain agents may decelerate aging and age-related diseases. Importantly, deceleration of aging can in turn postpone cancer, which is an age-related disease. PMID:24345884

  5. Tirapazamine: a bioreductive anticancer drug that exploits tumour hypoxia.

    PubMed

    Denny, W A; Wilson, W R

    2000-12-01

    Tirapazamine is the second clinical anticancer drug (after porfiromycin) that functions primarily as a hypoxia-selective cytotoxin. Hypoxic cells in tumours are relatively resistant to radiotherapy and to some forms of chemotherapy and are also biologically aggressive, thus representing an important target population in oncology. Tirapazamine undergoes metabolism by reductases to form a transient oxidising radical that can be efficiently scavenged by molecular oxygen in normal tissues to re-form the parent compound. In the absence of oxygen, the oxidising radical abstracts a proton from DNA to form DNA radicals, largely at C4' on the ribose ring. Tirapazamine can also oxidise such DNA radicals to cytotoxic DNA strand breaks. It therefore shows substantial selective cytotoxicity for anoxic cells in culture (typically approximately 100-fold more potent than under oxic conditions) and for the hypoxic subfraction of cells in tumours. Preclinical studies showed enhanced activity of combinations of tirapazamine with radiation (to kill oxygenated cells) and with conventional cytotoxics, especially cisplatin (probably through inhibition of repair of cisplatin DNA cross-links in hypoxic cells). Phase II and III clinical studies of tirapazamine and cisplatin in malignant melanoma and non-small cell lung cancer suggest that the combination is more active than cisplatin alone and preliminary results with advanced squamous cell carcinomas of the head and neck indicate that tirapazamine may enhance the activity of cisplatin with fractionated radiotherapy. PMID:11093359

  6. Male contraceptive Adjudin is a potential anti-cancer drug

    PubMed Central

    Xie, Qian Reuben; Liu, Yewei; Shao, Jiaxiang; Yang, Jian; Liu, Tengyuan; Zhang, Tingting; Wang, Boshi; Mruk, Dolores D.; Silvestrini, Bruno; Cheng, C. Yan; Xia, Weiliang

    2014-01-01

    Adjudin, also known as AF-2364 and an analog of lonidamine (LND), is a male contraceptive acting through the induction of premature sperm depletion from the seminiferous epithelium when orally administered to adult rats, rabbits or dogs. It is also known that LND can target mitochondria and block energy metabolism in tumor cells. However, whether Adjudin exhibits any anti-cancer activity remains to be elucidated. Herein we described the anti-proliferative activity of Adjudin on cancer cells in vitro and on lung and prostate tumors inoculated in nude mice. We found that Adjudin induced apoptosis in cancer cells through a Caspase-3-dependent pathway. Further experiments revealed that Adjudin could trigger mitochondrial dysfunction in cancer cells, apparently affecting the mitochondrial mass, inducing the loss of mitochondrial membrane potential and reducing cellular ATP levels. Intraperitoneal administration of Adjudin to tumor-bearing athymic nude mice also significantly suppressed the lung and prostate tumor growth. When used in combination with cisplatin, Adjudin enhances the sensitivity to cisplatin-induced cancer cell cytotoxicity. Taken together, these findings have demonstrated that Adjudin may be a potential drug for cancer therapy. PMID:23178657

  7. Human recombinant RNASET2: A potential anti-cancer drug

    PubMed Central

    Roiz, Levava; Smirnoff, Patricia; Lewin, Iris; Shoseyov, Oded; Schwartz, Betty

    2016-01-01

    The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate. PMID:27014725

  8. Nanodrug Formed by Coassembly of Dual Anticancer Drugs to Inhibit Cancer Cell Drug Resistance.

    PubMed

    Zhao, Yuanyuan; Chen, Fei; Pan, Yuanming; Li, Zhipeng; Xue, Xiangdong; Okeke, Chukwunweike Ikechukwu; Wang, Yifeng; Li, Chan; Peng, Ling; Wang, Paul C; Ma, Xiaowei; Liang, Xing-Jie

    2015-09-01

    Carrier-free pure nanodrugs (PNDs) that are composed entirely of pharmaceutically active molecules are regarded as promising candidates to be the next generation of drug formulations and are mainly formulated from supramolecular self-assembly of drug molecules. It benefits from the efficient use of drug compounds with poor aqueous solubility and takes advantage of nanoscale drug delivery systems. Here, a type of all-in-one nanoparticle consisting of multiple drugs with enhanced synergistic antiproliferation efficiency against drug-resistant cancer cells has been created. To nanoparticulate the anticancer drugs, 10-hydroxycamptothecin (HCPT) and doxorubicin (DOX) were chosen as a typical model. The resulting HD nanoparticles (HD NPs) were formulated by a "green" and convenient self-assembling method, and the water-solubility of 10-hydroxycamptothecin (HCPT) was improved 50-fold after nanosizing by coassembly with DOX. The formation process was studied by observing the morphological changes at various reaction times and molar ratios of DOX to HCPT. Molecular dynamics (MD) simulations showed that DOX molecules tend to assemble around HCPT molecules through intermolecular forces. With the advantage of nanosizing, HD NPs could improve the intracellular drug retention of DOX to as much as 2-fold in drug-resistant cancer cells (MCF-7R). As a dual-drug-loaded nanoformulation, HD NPs effectively enhanced drug cytotoxicity to drug-resistant cancer cells. The combination of HCPT and DOX exhibited a synergistic effect as the nanosized HD NPs improved drug retention in drug-resistant cancer cells against P-gp efflux in MCF-7R cells. Furthermore, colony forming assays were applied to evaluate long-term inhibition of cancer cell proliferation, and these assays confirmed the greatly improved cytotoxicity of HD NPs in drug-resistant cells compared to free drugs. PMID:26270258

  9. Nanodrug Formed by Coassembly of Dual Anticancer Drugs to Inhibit Cancer Cell Drug Resistance

    PubMed Central

    Zhao, Yuanyuan; Chen, Fei; Pan, Yuanming; Li, Zhipeng; Xue, Xiangdong; Okeke, Chukwunweike Ikechukwu; Wang, Yifeng; Li, Chan; Peng, Ling; Wang, Paul C.; Ma, Xiaowei; Liang, Xing-Jie

    2016-01-01

    Carrier-free pure nanodrugs (PNDs) that are composed entirely of pharmaceutically active molecules are regarded as promising candidates to be the next generation of drug formulations and are mainly formulated from supramolecular self-assembly of drug molecules. It benefits from the efficient use of drug compounds with poor aqueous solubility and takes advantage of nanoscale drug delivery systems. Here, a type of all-in-one nanoparticle consisting of multiple drugs with enhanced synergistic antiproliferation efficiency against drug-resistant cancer cells has been created. To nanoparticulate the anticancer drugs, 10-hydroxycamptothecin (HCPT) and doxorubicin (DOX) were chosen as a typical model. The resulting HD nanoparticles (HD NPs) were formulated by a “green” and convenient self-assembling method, and the water-solubility of 10-hydroxycamptothecin (HCPT) was improved 50-fold after nanosizing by coassembly with DOX. The formation process was studied by observing the morphological changes at various reaction times and molar ratios of DOX to HCPT. Molecular dynamics (MD) simulations showed that DOX molecules tend to assemble around HCPT molecules through intermolecular forces. With the advantage of nanosizing, HD NPs could improve the intracellular drug retention of DOX to as much as 2-fold in drug-resistant cancer cells (MCF-7R). As a dual-drug-loaded nanoformulation, HD NPs effectively enhanced drug cytotoxicity to drug-resistant cancer cells. The combination of HCPT and DOX exhibited a synergistic effect as the nanosized HD NPs improved drug retention in drug-resistant cancer cells against P-gp efflux in MCF-7R cells. Furthermore, colony forming assays were applied to evaluate long-term inhibition of cancer cell proliferation, and these assays confirmed the greatly improved cytotoxicity of HD NPs in drug-resistant cells compared to free drugs. PMID:26270258

  10. Immune regulation of therapy-resistant niches: emerging targets for improving anticancer drug responses.

    PubMed

    Jinushi, Masahisa

    2014-09-01

    Emerging evidence has unveiled a critical role for immunological parameters in predicting tumor prognosis and clinical responses to anticancer therapeutics. On the other hand, responsiveness to anticancer drugs greatly modifies the repertoires, phenotypes, and immunogenicity of tumor-infiltrating immune cells, serving as a critical factor to regulate tumorigenic activities and the emergence of therapy-resistant phenotypes. Tumor-associated immune functions are influenced by distinct or overlapping sets of therapeutic modalities, such as cytotoxic chemotherapy, radiotherapy, or molecular-targeted therapy, and various anticancer modalities have unique properties to influence the mode of cross-talk between tumor cells and immune cells in tumor microenvironments. Thus, it is critical to understand precise molecular machineries whereby each anticancer strategy has a distinct or overlapping role in regulating the dynamism of reciprocal communication between tumor and immune cells in tumor microenvironments. Such an understanding will open new therapeutic opportunities by harnessing the immune system to overcome resistance to conventional anticancer drugs. PMID:24756203

  11. Evidence Report: The efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis

    PubMed Central

    Marriott, James J.; Miyasaki, Janis M.; Gronseth, Gary; O'Connor, Paul W.

    2010-01-01

    Objective: The chemotherapeutic agent mitoxantrone was approved for use in multiple sclerosis (MS) in 2000. After a review of all the available evidence, the original report of the Therapeutics and Technology Assessment Subcommittee in 2003 concluded that mitoxantrone probably reduced clinical attack rates, MRI activity, and disease progression. Subsequent reports of decreased systolic function, heart failure, and leukemia prompted the US Food and Drug Administration to institute a “black box” warning in 2005. This review was undertaken to examine the available literature on the efficacy and safety of mitoxantrone use in patients with MS since the initial report. Methods: Relevant articles were obtained through a review of the medical literature and the strength of the available evidence was graded according to the American Academy of Neurology evidence classification scheme. Results: The accumulated Class III and IV evidence suggests an increased incidence of systolic dysfunction and therapy-related acute leukemia (TRAL) with mitoxantrone therapy. Systolic dysfunction occurs in ∼12% of patients with MS treated with mitoxantrone, congestive heart failure occurs in ∼0.4%, and leukemia occurs in ∼0.8%. The number needed to harm is 8 for systolic dysfunction and 123 for TRAL. There is no new efficacy evidence that would change the recommendation from the previous report. Conclusions: The risk of systolic dysfunction and leukemia in patients treated with mitoxantrone is higher than suggested at the time of the previous report, although comprehensive postmarketing surveillance data are lacking. GLOSSARY AAN = American Academy of Neurology; CHF = congestive heart failure; CML = chronic myeloid leukemia; FDA = Food and Drug Administration; LVEF = left ventricular ejection fraction; MIMS = Mitoxantrone in Multiple Sclerosis Group; MS = multiple sclerosis; MX = mitoxantrone hydrochloride; NNH = number needed to harm; RRMS = relapsing-remitting multiple sclerosis

  12. Pharmacokinetics of Selected Anticancer Drugs in Elderly Cancer Patients: Focus on Breast Cancer

    PubMed Central

    Crombag, Marie-Rose B.S.; Joerger, Markus; Thürlimann, Beat; Schellens, Jan H.M.; Beijnen, Jos H.; Huitema, Alwin D.R.

    2016-01-01

    Background: Elderly patients receiving anticancer drugs may have an increased risk to develop treatment-related toxicities compared to their younger peers. However, a potential pharmacokinetic (PK) basis for this increased risk has not consistently been established yet. Therefore, the objective of this study was to systematically review the influence of age on the PK of anticancer agents frequently administered to elderly breast cancer patients. Methods: A literature search was performed using the PubMed electronic database, Summary of Product Characteristics (SmPC) and available drug approval reviews, as published by EMA and FDA. Publications that describe age-related PK profiles of selected anticancer drugs against breast cancer, excluding endocrine compounds, were selected and included. Results: This review presents an overview of the available data that describe the influence of increasing age on the PK of selected anticancer drugs used for the treatment of breast cancer. Conclusions: Selected published data revealed differences in the effect and magnitude of increasing age on the PK of several anticancer drugs. There may be clinically-relevant, age-related PK differences for anthracyclines and platina agents. In the majority of cases, age is not a good surrogate marker for anticancer drug PK, and the physiological state of the individual patient may better be approached by looking at organ function, Charlson Comorbidity Score or geriatric functional assessment. PMID:26729170

  13. Proteomic analysis of prodigiosin-induced apoptosis in a breast cancer mitoxantrone-resistant (MCF-7 MR) cell line.

    PubMed

    Monge, Marta; Vilaseca, Marta; Soto-Cerrato, Vanessa; Montaner, Beatriz; Giralt, Ernest; Pérez-Tomás, Ricardo

    2007-02-01

    Prodigiosin (PG) is a bacterial, red-pigmented antibiotic with immunosuppressive and apoptotic activities. To better understand its mechanisms of action, we tried to identify proteins associated with apoptosis induced by PG. For this purpose, the variation of protein expression on exposure to apoptotic concentrations of PG was examined, by high-resolution two-dimensional gel electrophoresis (2D-E), in the MCF-7 cancer cell line resistant to mitoxantrone (MCF-7-MR). Six PG apoptosis-associated protein spots were further characterized by complementary peptide mass fingerprinting and tandem mass spectrometry data obtained on a matrix-assisted laser desorption ionization-time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometer. The proteins identified were involved in various cellular functions, including cell defence, DNA repair and cellular organization. Our data provide novel information on cell response to PG, a new apoptotic drug with interesting anticancer activity. PMID:16633713

  14. Design of a novel microtubule targeted peptide vesicle for delivering different anticancer drugs.

    PubMed

    Adak, Anindyasundar; Mohapatra, Saswat; Mondal, Prasenjit; Jana, Batakrishna; Ghosh, Surajit

    2016-06-18

    A microtubule targeted peptide-based delivery vehicle has been designed using two oppositely charged peptides, which targets tubulin/microtubules, delivers both hydrophilic and hydrophobic drugs into their target site through lysosome at acidic pH. Drug loaded vesicles show a significant anticancer effect compared to control drugs in a 2D monolayer and a 3D spheroid cell. PMID:27153208

  15. Cell-specific intracellular anticancer drug delivery from mesoporous silica nanoparticles with pH sensitivity.

    PubMed

    Luo, Zhong; Cai, Kaiyong; Hu, Yan; Zhang, Beilu; Xu, Dawei

    2012-05-01

    A nanoreservoir for efficient intracellular anticancer drug delivery based on mesoporous silica nanoparticles end-capped with lactobionic acid-grafted bovine serum albumin is fabricated. It demonstrates great potential for both cell-specific endocytosis and intracellular pH-responsive controlled release of drugs. A possible endocytosis pathway/mechanism of the smart controlled drug release system is proposed. PMID:23184747

  16. Farnesyltransferase as a target for anticancer drug design.

    PubMed

    Qian, Y; Sebti, S M; Hamilton, A D

    1997-01-01

    The currently understood function for Ras in signal transduction is in mediating the transmission of signals from external growth factors to the cell nucleus. Mutated forms of this GTP-binding protein are found in 30% of human cancers with particularly high prevalence in colon and pancreatic carcinomas. These mutations destroy the GTPase activity of Ras and cause the protein to be locked in its active, GTP bound form. As a result, the signaling pathways are activated, leading to uncontrolled tumor growth. Ras function in signaling requires its association with the plasma membrane. This is achieved by posttranslational farnesylation of a cysteine residue present as part of the CA1A2X carboxyl terminal tetrapeptide of all Ras proteins. The enzyme that recognizes and farnesylates the CA1A2X sequence, Ras farnesyltransferase (FTase), has become an important target for the design of inhibitors that might be interesting as antitumor agents. Several approaches have been taken in the search for in vivo active inhibitors of farnesyltransferase. These include the identification of natural products such as the chaetomellic and zaragozic acids that mimic farnesylpyrophosphate, bisubstrate transition state analogs combining elements of the farnesyl and tetrapeptide substrates and peptidomimetics that reproduce features of the carboxyl terminal tetrapeptide CA1A2X sequence. This last group of compounds has been most successful in showing highly potent inhibition of FTase and selective blocking of Ras processing in a range of Ras transformed tumor cell lines at concentrations as low as 10 nM. Certain peptidomimetics will also block tumor growth in various mouse models, with apparently few toxic side effects. These results suggest that farnesyltransferase inhibitors hold considerable promise as anticancer drugs in the clinic. PMID:9174410

  17. Sensitization for Anticancer Drug-Induced Apoptosis by Betulinic Acid1

    PubMed Central

    Fulda, Simone; Debatin, Klaus-Michael

    2005-01-01

    Abstract We previously described that betulinic acid (BetA), a naturally occurring pentacyclic triterpenoid, induces apoptosis in tumor cells through the mitochondrial pathway. Here, for the first time, we provide evidence that BetA cooperated with anticancer drugs to induce apoptosis and to inhibit clonogenic survival of tumor cells. Combined treatment with BetA and anticancer drugs acted in concert to induce loss of mitochondrial membrane potential and the release of cytochrome c and Smac from mitochondria, resulting in activation of caspases and apoptosis. Overexpression of Bcl-2, which blocked mitochondrial perturbations, also inhibited the cooperative effect of BetA and anticancer drugs, indicating that cooperative interaction involved the mitochondrial pathway. Notably, cooperation of BetA and anticancer drugs was found for various cytotoxic compounds with different modes of action (e.g., doxorubicin, cisplatin, Taxol, VP16, or actinomycin D). Importantly, BetA and anticancer drugs cooperated to induce apoptosis in different tumor cell lines, including p53 mutant cells, and also in primary tumor cells, but not in human fibroblasts indicating some tumor specificity. These findings indicate that using BetA as sensitizer in chemotherapy-based combination regimens may be a novel strategy to enhance the efficacy of anticancer therapy, which warrants further investigation. PMID:15802021

  18. Comparison of Doxorubicin Anticancer Drug Loading on Different Metal Oxide Nanoparticles

    PubMed Central

    Javed, Khalid Rashid; Ahmad, Munir; Ali, Salamat; Butt, Muhammad Zakria; Nafees, Muhammad; Butt, Alvina Rafiq; Nadeem, Muhammad; Shahid, Abubakar

    2015-01-01

    Abstract Nanomaterials are being vigorously investigated for their use in anticancer drug delivery regimes or as biomarkers agents and are considered to be a candidate to provide a way to combat severe weaknesses of anticancer drug pharmacokinetics, such as their nonspecificity. Because of this weakness, a bigger proportion of the drug-loaded nanomaterials flow toward healthy tissues and result in undesirable side effects. It is very important to evaluate drug loading and release efficiency of various nanomaterials to find out true pharmacokinetics of these drugs. This observational study aims to evaluate various surface functionalized and naked nanomaterials for their drug loading capability and consequently strengthens the Reporting of Observational Studies in Epidemiology (STROBE). We analyzed naked and coated nanoparticles of transition metal oxides for their further loading with doxorubicin, a representative water-soluble anticancer drug. Various uncoated and polyethylene glycol-coated metal oxide nanoparticles were synthesized and loaded with anticancer drug using simple stirring of the nanoparticles in a saturated aqueous solution of the drug. Results showed that surface-coated nanoparticles have higher drug-loading capabilities; however, certain naked metal oxide nanoparticles, such as cobalt oxide nanoparticles, can load a sufficient amount of drug. PMID:25789952

  19. Comparison of doxorubicin anticancer drug loading on different metal oxide nanoparticles.

    PubMed

    Javed, Khalid Rashid; Ahmad, Munir; Ali, Salamat; Butt, Muhammad Zakria; Nafees, Muhammad; Butt, Alvina Rafiq; Nadeem, Muhammad; Shahid, Abubakar

    2015-03-01

    Nanomaterials are being vigorously investigated for their use in anticancer drug delivery regimes or as biomarkers agents and are considered to be a candidate to provide a way to combat severe weaknesses of anticancer drug pharmacokinetics, such as their nonspecificity. Because of this weakness, a bigger proportion of the drug-loaded nanomaterials flow toward healthy tissues and result in undesirable side effects. It is very important to evaluate drug loading and release efficiency of various nanomaterials to find out true pharmacokinetics of these drugs.This observational study aims to evaluate various surface functionalized and naked nanomaterials for their drug loading capability and consequently strengthens the Reporting of Observational Studies in Epidemiology (STROBE). We analyzed naked and coated nanoparticles of transition metal oxides for their further loading with doxorubicin, a representative water-soluble anticancer drug.Various uncoated and polyethylene glycol-coated metal oxide nanoparticles were synthesized and loaded with anticancer drug using simple stirring of the nanoparticles in a saturated aqueous solution of the drug. Results showed that surface-coated nanoparticles have higher drug-loading capabilities; however, certain naked metal oxide nanoparticles, such as cobalt oxide nanoparticles, can load a sufficient amount of drug. PMID:25789952

  20. Current understanding of synergistic interplay of chitosan nanoparticles and anticancer drugs: merits and challenges.

    PubMed

    Kandra, Prameela; Kalangi, Hemalatha Padma Jyoti

    2015-03-01

    Recent advances have been made in cancer chemotherapy through the development of conjugates for anticancer drugs. Many drugs have problems of poor stability, water insolubility, low selectivity, high toxicity, and side effects. Most of the chitosan nanoparticles showed to be good drug carriers because of their biocompatibility, biodegradability, and it can be readily modified. The anticancer drug with chitosan nanoparticles displays efficient anticancer effects with a decrease in the adverse effects of the original drug due to the predominant distribution into the tumor site and a gradual release of free drug from the conjugate which enhances drug solubility, stability, and efficiency. In this review, we discuss wider applications of numerous modified chitosan nanoparticles against different tumors and also focusing on the administration of anticancer drugs through various routes. We propose the interaction between nanosized drug carrier and tumor tissue to understand the synergistic interplay. Finally, we elaborate merits of drug delivery system at the tumor site, with emphasizing future challenges in cancer chemotherapy. PMID:25698508

  1. Anticancer Agent Shikonin Is an Incompetent Inducer of Cancer Drug Resistance

    PubMed Central

    Wu, Hao; Xie, Jiansheng; Pan, Qiangrong; Wang, Beibei; Hu, Danqing; Hu, Xun

    2013-01-01

    Purpose Cancer drug resistance is a major obstacle for the success of chemotherapy. Since most clinical anticancer drugs could induce drug resistance, it is desired to develop candidate drugs that are highly efficacious but incompetent to induce drug resistance. Numerous previous studies have proven that shikonin and its analogs not only are highly tumoricidal but also can bypass drug-transporter and apoptotic defect mediated drug resistance. The purpose of this study is to investigate if or not shikonin is a weak inducer of cancer drug resistance. Experimental Design Different cell lines (K562, MCF-7, and a MDR cell line K562/Adr), after repeatedly treated with shikonin for 18 months, were assayed for drug resistance and gene expression profiling. Results After 18-month treatment, cells only developed a mere 2-fold resistance to shikonin and a marginal resistance to cisplatin and paclitaxel, without cross resistance to shikonin analogs and other anticancer agents. Gene expression profiles demonstrated that cancer cells did strongly respond to shikonin treatment but failed to effectively mobilize drug resistant machineries. Shikonin-induced weak resistance was associated with the up-regulation of βII-tubulin, which physically interacted with shikonin. Conclusion Taken together, apart from potent anticancer activity, shikonin and its analogs are weak inducers of cancer drug resistance and can circumvent cancer drug resistance. These merits make shikonin and its analogs potential candidates for cancer therapy with advantages of avoiding induction of drug resistance and bypassing existing drug resistance. PMID:23300986

  2. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    PubMed

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-01-01

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery. PMID:27229857

  3. Second annual progress report on introduction and use of investigational anticancer agents in Australia, 1984-1985. Anticancer Subcommittee of the Australian Drug Evaluation Committee.

    PubMed

    1986-03-31

    Since the publication of its first report, the Anticancer Subcommittee of the Australian Drug Evaluation Committee (ADEC) has provided advice to ADEC and to the Commonwealth Department of Health on investigational anticancer agents in all stages of development. This second report outlines the progress in 1984-1985. PMID:3515139

  4. Nanovectors for anti-cancer drug delivery in the treatment of advanced pancreatic adenocarcinoma

    PubMed Central

    Hsueh, Chung-Tzu; Selim, Julie H; Tsai, James Y; Hsueh, Chung-Tsen

    2016-01-01

    Liposome, albumin and polymer polyethylene glycol are nanovector formulations successfully developed for anti-cancer drug delivery. There are significant differences in pharmacokinetics, efficacy and toxicity between pre- and post-nanovector modification. The alteration in clinical pharmacology is instrumental for the future development of nanovector-based anticancer therapeutics. We have reviewed the results of clinical studies and translational research in nanovector-based anti-cancer therapeutics in advanced pancreatic adenocarcinoma, including nanoparticle albumin-bound paclitaxel and nanoliposomal irinotecan. Furthermore, we have appraised the ongoing studies incorporating novel agents with nanomedicines in the treatment of pancreatic adenocarcinoma. PMID:27610018

  5. Nanovectors for anti-cancer drug delivery in the treatment of advanced pancreatic adenocarcinoma.

    PubMed

    Hsueh, Chung-Tzu; Selim, Julie H; Tsai, James Y; Hsueh, Chung-Tsen

    2016-08-21

    Liposome, albumin and polymer polyethylene glycol are nanovector formulations successfully developed for anti-cancer drug delivery. There are significant differences in pharmacokinetics, efficacy and toxicity between pre- and post-nanovector modification. The alteration in clinical pharmacology is instrumental for the future development of nanovector-based anticancer therapeutics. We have reviewed the results of clinical studies and translational research in nanovector-based anti-cancer therapeutics in advanced pancreatic adenocarcinoma, including nanoparticle albumin-bound paclitaxel and nanoliposomal irinotecan. Furthermore, we have appraised the ongoing studies incorporating novel agents with nanomedicines in the treatment of pancreatic adenocarcinoma. PMID:27610018

  6. Amido analogs of mitoxantrone: physico-chemical properties, molecular modeling, cellular effects and antineoplastic potential.

    PubMed

    Zagotto, G; Moro, S; Uriarte, E; Ferrazzi, E; Palù, G; Palumbo, M

    1997-03-01

    To assess the effects of amido substitution in the side-chains of the anticancer drug mitoxantrone (MX) two analogs were synthesized, having hydroxyethylaminoacetyl- and hydroxyethylaminopropionyl- substituents at the nitrogens located at positions 1, 4 of the anthracenedione ring system. The novel derivatives exhibit DNA-affinity and redox properties similar to the parent drug. However, unlike MX, they are not able to stimulate DNA cleavage, as shown by alkaline elution experiments. Molecular modeling studies using ab initio quantum mechanical methods show that, while the stereochemistry of the drug molecule is not appreciably affected when an amide group replaces the aromatic amino function, the reverse is true for the electrostatic properties. Indeed, overlapping of electron density of MX with its analogs is very poor. Moreover, a reversal in the direction of MX dipole moment occurs in the amido congeners. This may explain the lack of recognition of the cleavable topoisomerase II-DNA complex and loss of cleavage stimulation. However, the new derivatives exhibit pharmacological activity comparable to that found for MX, as they are remarkably cytotoxic and are active in vivo against P388 murine leukemia. Hence, amido substitution may lead to a different mechanism of cytotoxicity, not related to classical protein or free radical-mediated DNA damage, which points to a novel type of antineoplastic pharmacophore. PMID:9113065

  7. Drug Delivery Innovations for Enhancing the Anticancer Potential of Vitamin E Isoforms and Their Derivatives

    PubMed Central

    Neophytou, Christiana M.; Constantinou, Andreas I.

    2015-01-01

    Vitamin E isoforms have been extensively studied for their anticancer properties. Novel drug delivery systems (DDS) that include liposomes, nanoparticles, and micelles are actively being developed to improve Vitamin E delivery. Furthermore, several drug delivery systems that incorporate Vitamin E isoforms have been synthesized in order to increase the bioavailability of chemotherapeutic agents or to provide a synergistic effect. D-alpha-tocopheryl polyethylene glycol succinate (Vitamin E TPGS or TPGS) is a synthetic derivative of natural alpha-tocopherol which is gaining increasing interest in the development of drug delivery systems and has also shown promising anticancer effect as a single agent. This review provides a summary of the properties and anticancer effects of the most potent Vitamin E isoforms and an overview of the various formulations developed to improve their efficacy, with an emphasis on the use of TPGS in drug delivery approaches. PMID:26137487

  8. Double layered hydroxides as potential anti-cancer drug delivery agents.

    PubMed

    Riaz, Ufana; Ashraf, S M

    2013-04-01

    The emergence of nanotechnology has changed the scenario of the medical world by revolutionizing the diagnosis, monitoring and treatment of cancer. This nanotechnology has been proved miraculous in detecting cancer cells, delivering chemotherapeutic agents and monitoring treatment from non-specific to highly targeted killing of tumor cells. In the past few decades, a number of inorganic materials have been investigated such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide, and layered double hydroxide (LDH) for examining their efficacy in targeting drug delivery. The reason behind the selection of these inorganic materials was their versatile and unique features efficient in drug delivery, such as wide availability, rich surface functionality, good biocompatibility, potential for target delivery, and controlled release of the drug from these inorganic nanomaterials. Although, the drug-LDH hybrids are found to be quite instrumental because of their application as advanced anti-cancer drug delivery systems, there has not been much research on them. This mini review is set to highlight the advancement made in the use of layered double hydroxides (LDHs) as anti-cancer drug delivery agents. Along with the advantages of LDHs as anti-cancer drug delivery agents, the process of interaction of some of the common anti-cancer drugs with LDH has also been discussed. PMID:23170959

  9. Oral anticancer drugs: mechanisms of low bioavailability and strategies for improvement.

    PubMed

    Stuurman, Frederik E; Nuijen, Bastiaan; Beijnen, Jos H; Schellens, Jan H M

    2013-06-01

    The use of oral anticancer drugs has increased during the last decade, because of patient preference, lower costs, proven efficacy, lack of infusion-related inconveniences, and the opportunity to develop chronic treatment regimens. Oral administration of anticancer drugs is, however, often hampered by limited bioavailability of the drug, which is associated with a wide variability. Since most anticancer drugs have a narrow therapeutic window and are dosed at or close to the maximum tolerated dose, a wide variability in the bioavailability can have a negative impact on treatment outcome. This review discusses mechanisms of low bioavailability of oral anticancer drugs and strategies for improvement. The extent of oral bioavailability depends on many factors, including release of the drug from the pharmaceutical dosage form, a drug's stability in the gastrointestinal tract, factors affecting dissolution, the rate of passage through the gut wall, and the pre-systemic metabolism in the gut wall and liver. These factors are divided into pharmaceutical limitations, physiological endogenous limitations, and patient-specific limitations. There are several strategies to reduce or overcome these limitations. First, pharmaceutical adjustment of the formulation or the physicochemical characteristics of the drug can improve the dissolution rate and absorption. Second, pharmacological interventions by combining the drug with inhibitors of transporter proteins and/or pre-systemic metabolizing enzymes can overcome the physiological endogenous limitations. Third, chemical modification of a drug by synthesis of a derivative, salt form, or prodrug could enhance the bioavailability by improving the absorption and bypassing physiological endogenous limitations. Although the bioavailability can be enhanced by various strategies, the development of novel oral products with low solubility or cell membrane permeability remains cumbersome and is often unsuccessful. The main reasons are

  10. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy

    PubMed Central

    Pol, Jonathan; Vacchelli, Erika; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-01-01

    The term “immunogenic cell death” (ICD) is now employed to indicate a functionally peculiar form of apoptosis that is sufficient for immunocompetent hosts to mount an adaptive immune response against dead cell-associated antigens. Several drugs have been ascribed with the ability to provoke ICD when employed as standalone therapeutic interventions. These include various chemotherapeutics routinely employed in the clinic (e.g., doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin) as well as some anticancer agents that are still under preclinical or clinical development (e.g., some microtubular inhibitors of the epothilone family). In addition, a few drugs are able to convert otherwise non-immunogenic instances of cell death into bona fide ICD, and may therefore be employed as chemotherapeutic adjuvants within combinatorial regimens. This is the case of cardiac glycosides, like digoxin and digitoxin, and zoledronic acid. Here, we discuss recent developments on anticancer chemotherapy based on ICD inducers. PMID:26137404

  11. Mitoxantrone targets the ATP-binding site of FAK, binds the FAK kinase domain and decreases FAK, Pyk-2, c-Src, and IGF-1R in vitro kinase activities.

    PubMed

    Golubovskaya, Vita M; Ho, Baotran; Zheng, Min; Magis, Andrew; Ostrov, David; Cance, William G

    2013-05-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that is overexpressed in many types of tumors and plays a key role in cell adhesion, spreading, motility, proliferation, invasion, angiogenesis, and survival. Recently, FAK has been proposed as a target for cancer therapy, and we performed computer modeling and screening of the National Cancer Institute (NCI) small molecule compounds database to target the ATP-binding site of FAK, K454. More than 140,000 small molecule compounds were docked into the crystal structure of the kinase domain of FAK in 100 different orientations using DOCK5.1 that identified small molecule compounds, targeting the K454 site, called A-compounds. To find the therapeutic efficacy of these compounds, we examined the effect of twenty small molecule compounds on cell viability by MTT assays in different cancer cell lines. One compound, A18 (1,4-bis(diethylamino)-5,8- dihydroxy anthraquinon) was a mitoxantrone derivative and significantly decreased viability in most of the cells comparable to the to the level of FAK kinase inhibitors TAE-226 (Novartis, Inc) and PF-573,228 (Pfizer). The A18 compound specifically blocked autophosphorylation of FAK like TAE-226 and PF-228. ForteBio Octet Binding assay demonstrated that mitoxantrone (1,4-dihydroxy- 5,8-bis[2-(2-hydroxyethylamino) ethylamino] anthracene-9,10-dione directly binds the FAK-kinase domain. In addition, mitoxantrone significantly decreased the viability of breast cancer cells in a dose-dependent manner and inhibited the kinase activity of FAK and Y56/577 FAK phosphorylation at 10-20 μM. Mitoxantrone did not affect phosphorylation of EGFR, but decreased Pyk-2, c-Src, and IGF-1R kinase activities. The data demonstrate that mitoxantrone decreases cancer viability, binds FAK-Kinase domain, inhibits its kinase activity, and also inhibits in vitro kinase activities of Pyk-2 and IGF-1R. Thus, this novel function of the mitoxantrone drug can be critical for future development of anti-cancer

  12. Mitoxantrone-loaded albumin microspheres for localized intratumoral chemotherapy of breast cancer

    NASA Astrophysics Data System (ADS)

    Almond, Brett Anthony

    The safety and efficacy of conventional chemotherapy is limited by its toxicity. The direct intratumoral injection of free or microsphere-loaded antineoplastic drugs is a promising modality for the treatment of solid tumors. Intratumoral chemotherapy delivers high localized doses of cytotoxic drugs to the tumor tissues than does systemic (intravenous) chemotherapy and it decreases systemic drug concentrations and toxicities. The use of drug-loaded microspheres also provides a prolonged release of drug into the surrounding tumor tissues, increasing exposure of the neoplasm to therapeutic levels of the cytotoxic drug. Mitoxantrone and 5-fluorouracil-loaded albumin microspheres were synthesized. The microspheres were synthesized using a suspension crosslinking technique and a glutardehyde crosslinking agent. The particle-size distribution of the microspheres was controlled by adjusting the emulsion energy and the concentration of cellulose acetate butyrate, the emulsion stabilization agent. Both microsphere size and crosslink density (glutaraldehyde concentration) were found to affect the in vitro release of loaded drugs in in vitro infinite sink conditions. The in vivo efficacy and toxicity of intratumoral chemotherapy with free and microsphere-loaded mitoxantrone were evaluated in a 16/C murine mammary adenocarcinoma model. Intratumoral chemotherapy with free mitoxantrone significantly improved survival and decreased toxicity compared to intravenously delivered drug. The efficacy of two size distributions of mitoxantrone-loaded albumin microspheres, corresponding to mean diameters of 5 to 10 mum and 20 to 40 mum, were evaluated delivered both alone and in combination with free mitoxantrone. Intratumoral injection of mitoxantrone-loaded microspheres was found to allow the safe delivery of increased doses compared to free drug. The maximum tolerated doses were approximately 40 mg/kg compared to 12 mg/kg, respectively. Intratumoral chemotherapy using free and

  13. Zirconium Phosphate Nanoplatelet Potential for Anticancer Drug Delivery Applications.

    PubMed

    González, Millie L; Ortiz, Mayra; Hernández, Carmen; Cabán, Jennifer; Rodríguez, Axel; Colón, Jorge L; Báez, Adriana

    2016-01-01

    Zirconium phosphate (ZrP) nanoplatelets can intercalate anticancer agents via an ion exchange reaction creating an inorganic delivery system with potential for cancer treatment. ZrP delivery of anticancer agents inside tumor cells was explored in vitro. Internalization and cytotoxicity of ZrP nanoplatelets were studied in MCF-7 and MCF-10A cells. DOX-loaded ZrP nanoplatelets (DOX@ZrP) uptake was assessed by confocal (CLSM) and transmission electron microscopy (TEM). Cytotoxicity to MCF-7 and MCF-10A cells was determined by the MTT assay. Reactive Oxy- gen Species (ROS) production was analyzed by fluorometric assay, and cell cycle alterations and induction of apoptosis were analyzed by flow cytometry. ZrP nanoplatelets were localized in the endosomes of MCF-7 cells. DOX and ZrP nanoplatelets were co-internalized into MCF-7 cells as detected by CLSM. While ZrP showed limited toxicity to MCF-7 cells, DOX@ZrP was cytotoxic at an IC₅₀ similar to that of free DOX. Meanwhile, DOX lC₅₀ was significantly lower than the equivalent concentration of DOX@ZrP in MCF-10A cells. ZrP did not induce apoptosis in both cell lines. DOX and DOX@ZrP induced significant oxidative stress in both cell models. Results suggest that ZrP nanoplatelets are promising as carriers of anticancer agents into cancer cells. PMID:27398437

  14. Hierarchical targeted hepatocyte mitochondrial multifunctional chitosan nanoparticles for anticancer drug delivery.

    PubMed

    Chen, Zhipeng; Zhang, Liujie; Song, Yang; He, Jiayu; Wu, Li; Zhao, Can; Xiao, Yanyu; Li, Wei; Cai, Baochang; Cheng, Haibo; Li, Weidong

    2015-06-01

    The overwhelming majority of drugs exert their pharmacological effects after reaching their target sites of action, however, these target sites are mainly located in the cytosol or intracellular organelles. Consequently, delivering drugs to the specific organelle is the key to achieve maximum therapeutic effects and minimum side-effects. In the work reported here, we designed, synthesized, and evaluated a novel mitochondrial-targeted multifunctional nanoparticles (MNPs) based on chitosan derivatives according to the physiological environment of the tumor and the requirement of mitochondrial targeting drug delivery. The intelligent chitosan nanoparticles possess various functions such as stealth, hepatocyte targeting, multistage pH-response, lysosomal escape and mitochondrial targeting, which lead to targeted drug release after the progressively shedding of functional groups, thus realize the efficient intracellular delivery and mitochondrial localization, inhibit the growth of tumor, elevate the antitumor efficacy, and reduce the toxicity of anticancer drugs. It provides a safe and efficient nanocarrier platform for mitochondria targeting anticancer drug delivery. PMID:25818430

  15. Reversible and formaldehyde-mediated covalent binding of a bis-amino mitoxantrone analogue to DNA.

    PubMed

    Konda, Shyam K; Kelso, Celine; Pumuye, Paul P; Medan, Jelena; Sleebs, Brad E; Cutts, Suzanne M; Phillips, Don R; Collins, J Grant

    2016-05-18

    The ability of a bis-amino mitoxantrone anticancer drug (named WEHI-150) to form covalent adducts with DNA, after activation by formaldehyde, has been studied by electrospray ionisation mass spectrometry and HPLC. Mass spectrometry results showed that WEHI-150 could form covalent adducts with d(ACGCGCGT)2 that contained one, two or three covalent links to the octanucleotide, whereas the control drugs (daunorubicin and the anthracenediones mitoxantrone and pixantrone) only formed adducts with one covalent link to the octanucleotide. HPLC was used to examine the extent of covalent bond formation of WEHI-150 with d(CGCGCG)2 and d(CG(5Me)CGCG)2. Incubation of WEHI-150 with d(CG(5Me)CGCG)2 in the presence of formaldehyde resulted in the formation of significantly greater amounts of covalent adducts than was observed with d(CGCGCG)2. In order to understand the observed increase of covalent adducts with d(CG(5Me)CGCG)2, an NMR study of the reversible interaction of WEHI-150 at both CpG and (5Me)CpG sites was undertaken. Intermolecular NOEs were observed in the NOESY spectra of d(ACGGCCGT)2 with added WEHI-150 that indicated that the drug selectively intercalated at the CpG sites and from the major groove. In particular, NOEs were observed from the WEHI-150 H2,3 protons to the H1' protons of G3 and G7 and from the H6,7 protons to the H5 protons of C2 and C6. By contrast, intermolecular NOEs were observed between the WEHI-150 H2,3 protons to the H2'' proton of the (5Me)C3 in d(CG(5Me)CGCG)2, and between the drug aliphatic protons and the H1' proton of G4. This demonstrated that WEHI-150 preferentially intercalates at (5Me)CpG sites, compared to CpG sequences, and predominantly via the minor groove at the (5Me)CpG site. The results of this study demonstrate that WEHI-150 is likely to form interstrand DNA cross-links, upon activation by formaldehyde, and consequently exhibit greater cytotoxicity than other current anthracenedione drugs. PMID:27142235

  16. [Novel oral anticancer drugs: a review of adverse drug reactions, interactions and patient adherence].

    PubMed

    Bartal, Alexandra; Mátrai, Zoltán; Szucs, Attila; Belinszkaja, Galina; Langmár, Zoltán; Rosta, András

    2012-01-15

    Each aspect of oncological care is widely affected by the spread of oral anticancer agents, which raises several questions in terms of safe medication use and patient adherence. Over the past decade targeted therapies have appeared in clinical practice and revolutionized the pharmacological treatment of malignancies. Regular patient - doctor visits and proper patient education is crucial in order to comply with the therapy previously agreed upon with the oncologist, to increase patient adherence, to detect and to treat adverse effects in early stages. Since the information on the new medicines in Hungarian language is sparse it is the intention of the authors to give an overview of the basic knowledge, patient safety issues, adverse effects and interactions. Official drug information summaries and data on pharmacokinetics, interactions and adverse effects from the literature are reviewed as the basis for this overview. PMID:22217686

  17. Microprocessor in controlled transdermal drug delivery of anti-cancer drugs.

    PubMed

    Chandrashekar, N S; Shobha Rani, R H

    2009-12-01

    Microprocessor controlled transdermal delivery of anticancer drugs 5-Fluorouracil (5-FU) and 6-Mercaptopurine (6-MP) was developed and in vitro evaluation was done. Drugs were loaded based on the pharmacokinetics parameters. In vitro diffusion studies were carried at different current density (0.0, 0.1, 0.22, 0.50 mA/cm2). The patches were evaluated for the drug content, thickness, weight, folding endurance, flatness, thumb tack test and adhesive properties all were well with in the specification of transdermal patches with elegant and transparent in appearance. In vitro permeation studies through human cadaver skin showed, passive delivery (0.0 mA/cm2) of 6-MP was low. As the current density was progressively increased, the flux also increased. the flux also increased with 0.1 mA/cm2 for 15-20 min, but it was less than desired flux, 0.2 mA/cm2 for 30 min showed better flux than 0.1 mA/cm2 current, but lag time was more than 4 h, 0.5 mA/cm2 current for more than 1 h, flux was >159 microg/cm2 h which was desired flux for 6-MP. 5-FU flux reached the minimum effective concentration (MEC) of 54 microg/cm2 h with 0.5 mA/cm2 current for 30-45 min, drug concentration were within the therapeutic window in post-current phase. We concluded from Ohm's Law that as the resistance decreases, current increases. Skin resistance decrease with increase in time and current, increase in the drug permeation. Interestingly, for all investigated current densities, as soon as the current was switched off, 5-FU and 6-MP flux decreased fairly, but the controlled drug delivery can be achieved by switching the current for required period of time. PMID:18592348

  18. Secondary metabolites as DNA topoisomerase inhibitors: A new era towards designing of anticancer drugs

    PubMed Central

    Baikar, Supriya; Malpathak, Nutan

    2010-01-01

    A large number of secondary metabolites like alkaloids, terpenoids, polyphenols and quinones are produced by the plants. These metabolites can be utilized as natural medicines for the reason that they inhibit the activity of DNA topoisomerase which are the clinical targets for anticancer drugs. DNA topoisomerases are the cellular enzymes that change the topological state of DNA through the breaking and rejoining of DNA strands. Synthetic drugs as inhibitors of topoisomerases have been developed and used in the clinical trials but severe side effects are a serious problem for them therefore, there is a need for the development of novel plant-derived natural drugs and their analogs which may serve as appropriate inhibitors with respect to drug designing. The theme for this review is how secondary metabolites or natural products inactivate the action of DNA topoisomerases and open new avenues towards isolation and characterization of compounds for the development of novel drugs with anticancer potential. PMID:22228937

  19. Two preclinical tests to evaluate anticancer activity and to help validate drug candidates for clinical trials

    PubMed Central

    López-Lázaro, Miguel

    2015-01-01

    Current approaches to assessing preclinical anticancer activity do not reliably predict drug efficacy in cancer patients. Most of the compounds that show remarkable anticancer effects in preclinical models actually fail when tested in clinical trials. We blame these failures on the complexity of the disease and on the limitations of the preclinical tools we require for our research. This manuscript argues that this lack of clinical response may also be caused by poor in vitro and in vivo preclinical designs, in which cancer patients' needs are not fully considered. Then, it proposes two patient-oriented tests to assess in vitro and in vivo anticancer activity and to help validate drug candidates for clinical evaluation. PMID:25859551

  20. Anti-cancer drugs targeting fatty acid synthase (FAS).

    PubMed

    Pandey, Puspa R; Liu, Wen; Xing, Fei; Fukuda, Koji; Watabe, Kounosuke

    2012-05-01

    Fatty acid synthase (FAS) is a key enzyme of the fatty acid biosynthetic pathway which catalyzes de novo lipid synthesis. FAS expression in normal adult tissues is generally very low or undetectable as majority of fatty acids obtained are from dietary sources, whereas it is significantly upregulated in cancer cells despite adequate nutritional lipid supply. Activation of FAS provides rapidly proliferating tumor cells sufficient amount of lipids for membrane biogenesis and confers growth and survival advantage possibly acting as a metabolic oncogene. Importantly, inhibition of FAS in cancer cells using the pharmacological FAS inhibitors results in tumor cell death by apoptosis whereas normal cells are resistant. Due to this differential expression of FAS, the inhibitors of this enzyme are selectively toxic to tumor cells and therefore FAS is considered an attractive therapeutic target for cancer. Several FAS inhibitors are already patented and commercially available; however, the potential toxicity of these FAS inhibitors remains to be tested in clinical trials. In this review, we discuss some of the potent FAS inhibitors along with their patent information, the mechanism of anti-cancer effects and the development of more specific and potent FAS inhibitors with lower side effects that are expected to emerge as anti-cancer treatment in the near future. PMID:22338595

  1. Dual-drug loaded nanoformulation with a galactosamine homing moiety for liver-targeted anticancer therapy.

    PubMed

    Muhammad, Nafees; Wang, Xiaoyong; Wang, Kun; Zhu, Chengcheng; Zhu, Zhenzhu; Jiao, Yang; Guo, Zijian

    2016-08-16

    Drug resistance and unfavorable pharmacokinetics are the major obstacles for conventional anticancer drugs. A combination of different anticancer drugs into one formulation is a common strategy to alleviate the side effects of individual drugs in clinical practice. Platinum anticancer drugs are the typical defective therapeutic agents for cancer chemotherapy and have poor selectivity for tumor cells. In this study, a nanosystem composed of poly(lactic-co-glycolic acid) (PLGA), Pt(IV) prodrug (PPD) and α-tocopheryl succinate (α-TOS) was designed to overcome these defects. The Pt(IV) prodrug, c,c,t-[Pt(NH3)2Cl2(O2CC(CH3)3)2], was prepared by the reaction of oxoplatin with trimethylacetic anhydride and its structure was characterized by X-ray crystallography. The PPD and α-TOS self-assembled with PLGA, forming a dual-drug loaded nanoparticle (DDNP). The surface of the DDNP was decorated with galactosamine (G), giving rise to a G-DDNP that can actively target the liver cancer cells through the overexpressed asialoglycoprotein receptors. The DDNPs and G-DDNPs were characterized by SEM, TEM, and DLS. They are spherical in shape with required polydispersity and suitable mean size (ca. 150 nm). The in vitro cytotoxicity of DDNPs and G-DDNPs was tested against the human SMMC-7721 liver cancer cell line. G-DDNPs are more potent than the corresponding free drugs and untargeted DDNP, showing that some synergistic and tumor-specific effects are achieved by this strategy. The results demonstrate that dual-drug loaded nanoformulations with tumor-targeting function could be effective anticancer agents for conquering the shortcomings related to single-drug chemotherapy. PMID:27333997

  2. Unimolecular micelles of amphiphilic cyclodextrin-core star-like block copolymers for anticancer drug delivery.

    PubMed

    Xu, Zhigang; Liu, Shiying; Liu, Hui; Yang, Cangjie; Kang, Yuejun; Wang, Mingfeng

    2015-11-11

    Well-defined star-like amphiphilic polymers composed of a β-cyclodextrin core, from which 21 hydrophobic poly(lactic acid) arms and hydrophilic poly(ethylene glycol) arms are grafted sequentially, form robust and uniform unimolecular micelles that are biocompatible and efficient in the delivery of anticancer drugs. PMID:26121632

  3. Down-regulation of telomerase activity by anticancer drugs in human ovarian cancer cells.

    PubMed

    Kunifuji, Yasumasa; Gotoh, Sadao; Abe, Tetsuya; Miura, Masayoshi; Karasaki, Yuji

    2002-07-01

    Maintenance of telomere length is crucial for survival of cells. Telomerase, an enzyme that is responsible for elongation of shortened telomeres, is active in human germ cells as well as most tumor tissues and experimentally immortalized cells. In contrast, most mature somatic cells in human tissues express undetectable or low telomerase activity, implying the existence of a stringent and negative regulatory mechanism. In this study we report the effects of anticancer drugs on telomerase activity in human cancer cells. In assaying for telomerase activity, we basically followed the original TRAP assay system, but with some modifications. A down-regulation of telomerase activity was found when cells of a human ovarian cancer cell line, A2780, were treated with;cis-diamminedichloroplatinum(II) (CDDP; cisplatin). However, down-regulation of telomerase activity was not found in cells of a cisplatin-resistant cell line, A2780CP, treated with cisplatin. On the other hand, telomerase activity in both the cell lines A2780 and A2780CP was reduced when A2780 or A2780CP was treated with adriamycin, an anthracycline antibiotic having a broad spectrum of antineoplastic activity. The different effects on the telomerase activity of the two types of anticancer drugs may be due the distinct chemical functions of these drugs. The present results may indicate a positive relationship between anticancer effects and down-regulation of telomerase activity by anticancer drugs. PMID:12172504

  4. SETDB1 mediated FosB expression increases the cell proliferation rate during anticancer drug therapy

    PubMed Central

    Na, Han-Heom; Noh, Hee-Jung; Cheong, Hyang-Min; Kang, Yoonsung; Kim, Keun-Cheol

    2016-01-01

    The efficacy of anticancer drugs depends on a variety of signaling pathways, which can be positively or negatively regulated. In this study, we show that SETDB1 HMTase is down-regulated at the transcriptional level by several anticancer drugs, due to its inherent instability. Using RNA sequence analysis, we identified FosB as being regulated by SETDB1 during anticancer drug therapy. FosB expression was increased by treatment with doxorubicin, taxol and siSETDB1. Moreover, FosB was associated with an increased rate of proliferation. Combinatory transfection of siFosB and siSETDB1 was slightly increased compared to transfection of siFosB. Furthermore, FosB was regulated by multiple kinase pathways. ChIP analysis showed that SETDB1 and H3K9me3 interact with a specific region of the FosB promoter. These results suggest that SETDB1-mediated FosB expression is a common molecular phenomenon, and might be a novel pathway responsible for the increase in cell proliferation that frequently occurs during anticancer drug therapy. [BMB Reports 2016; 49(4): 238-243] PMID:26949019

  5. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug.

    PubMed

    Sharma, Harshita; Kumar, Krishan; Choudhary, Chetan; Mishra, Pawan K; Vaidya, Bhuvaneshwar

    2016-01-01

    The aim of the study was to prepare chemotherapeutic agent-loaded zinc oxide nanoparticles for the intracellular delivery of drug, for better therapeutic activity. Zinc oxide nanoparticles have inherent anticancer properties, hence it was envisaged that by loading the anticancer drug into zinc oxide nanoparticles, enhanced anticancer activity might be observed. Zinc oxide nanoparticles were prepared using zinc nitrate and sodium hydroxide. Starch was used as the stabilizing agent. The nanoparticles prepared were characterized for size, shape, entrapment efficiency, and drug release. Further, cell line studies were performed to evaluate cellular uptake and cytotoxicity profile using MCF-7 cells. A hemolysis study was performed to check the acute toxicity of the nanoparticles. The nanoparticles were found to be 476.4 ± 2.51 nm in size, with low PDI (0.312 ± 0.02) and high entrapment efficiency (> 85%). The nanoparticles were stable, and did not form aggregates on storage in the dispersed form. A cytotoxicity study demonstrated that drug-loaded zinc oxide nanoparticles exhibited higher anticancer activity as compared to either blank zinc oxide nanoparticles and doxorubicin (DOX) alone, or their mixture. A hemolytic test revealed that the prepared zinc oxide nanoparticles caused negligible hemolysis. Thus, it can be concluded that zinc oxide nanoparticles loaded with DOX resulted in better uptake of the chemotherapeutic agent, and at the same time, showed low toxicity towards normal cells. PMID:25406734

  6. SFPO and ESOP recommendations for the practical stability of anticancer drugs: an update.

    PubMed

    Vigneron, J; Astier, A; Trittler, R; Hecq, J D; Daouphars, M; Larsson, I; Pourroy, B; Pinguet, F

    2013-11-01

    The recommendations for the practical stability of anticancer drugs published in 2010 by the French Society of Hospital Pharmacists (SFPO) and the European Society of Oncology Pharmacists (ESOP) have been updated. Ten new molecules have been included (asparaginase, azacitidine, bevacizumab, clofarabine, eribuline mesylate, folinate sodium, levofolinate calcium, nelarabine, rituximab, temsirolimus). PMID:24206590

  7. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.

    PubMed

    Cardaci, Simone; Desideri, Enrico; Ciriolo, Maria Rosa

    2012-02-01

    The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings. PMID:22328057

  8. Calcium phosphate hybrid nanoparticles: self-assembly formation, characterization, and application as an anticancer drug nanocarrier.

    PubMed

    Zhao, Xin-Yu; Zhu, Ying-Jie; Chen, Feng; Lu, Bing-Qiang; Qi, Chao; Zhao, Jing; Wu, Jin

    2013-06-01

    Calcium phosphate hybrid nanoparticles (CaP-HNPs) have been synthesized in aqueous solution through self-assembly by using two oppositely charged polyelectrolytes (poly(diallyldimethylammonium chloride) (PDADMAC) and poly(acrylate sodium) (PAS)) as dual templates. First, the PAS/Ca(2+) and PDADMAC/PO4(3-) complexes form through electrostatic interactions and then two complexes self-assemble into CaP-HNPs after mixing them together. The as-prepared CaP-HNPs exhibit a spherical morphology with a narrow size distribution, good dispersibility, and high colloidal stability in water. The CaP-HNPs are explored as a nanocarrier for the anticancer drug docetaxel (Dtxl). The CaP-HNPs show excellent biocompatibility, high drug-loading capacity, pH-sensitive drug-release behavior, and high anticancer effect after being loaded with Dtxl. Therefore, the as-prepared CaP-HNPs are promising drug nanocarriers for cancer therapy. PMID:23589508

  9. Anticancer drug release from poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels

    NASA Astrophysics Data System (ADS)

    Taşdelen, B.; Kayaman-Apohan, N.; Güven, O.; Baysal, B. M.

    2005-08-01

    The drug uptake and release of anticancer drug from N-isopropylacrylamide/itaconic acid copolymeric hydrogels containing 0-3 mol% of itaconic acid irradiated at 48 kGy have been investigated. 5-Fluorouracil (5-FU) is used as a model anticancer drug. The effect of 5-FU solution on swelling characteristics of PNIPAAm and P(NIPAAm/IA) copolymeric hydrogels have also been studied. The percent swelling, equilibrium swelling, equilibrium water/5-FU content and diffusion constant values are evaluated for poly(N-isopropylacrylamide) (PNIPAAm) and poly(N-isopropylacrylamide/itaconic) (P(NIPAAm/IA)) hydrogels at 130 ppm of 5-FU solution at room temperature. Diffusion of 5-FU solution into the hydrogels has been found to be the non-Fickian type. Finally, the kinetics of drug release from the hydrogels are examined.

  10. New Anticancer Drugs Associated With Large Increases In Costs And Life Expectancy.

    PubMed

    Howard, David H; Chernew, Michael E; Abdelgawad, Tamer; Smith, Gregory L; Sollano, Josephine; Grabowski, David C

    2016-09-01

    Spending on anticancer drugs has risen rapidly over the past two decades. A key policy question is whether new anticancer drugs offer value, given their high cost. Using data from the Surveillance, Epidemiology, and End Results (SEER)-Medicare database, we assessed the value of new cancer treatments in routine clinical practice for patients with metastatic breast, lung, or kidney cancer or chronic myeloid leukemia in the periods 1996-2000 and 2007-11. We found that there were large increases in medical costs, but also large gains in life expectancy. For example, among patients with breast cancer who received physician-administered drugs, lifetime costs-including costs for outpatient and inpatient care-increased by $72,000 and life expectancy increased by thirteen months. Changes in life expectancy and costs were much smaller among patients who did not receive these drugs. PMID:27605636

  11. Hurdles and delays in access to anti-cancer drugs in Europe

    PubMed Central

    Ades, F; Zardavas, D; Senterre, C; de Azambuja, E; Eniu, A; Popescu, R; Piccart, M; Parent, F

    2014-01-01

    Demographic changes in the world population will cause a significant increase in the number of new cases of cancer. To handle this challenge, societies will need to adapt how they approach cancer prevention and treatment, with changes to the development and uptake of innovative anticancer drugs playing an important role. However, there are obstacles to implementing innovative drugs in clinical practice. Prior to being incorporated into daily practice, the drug must obtain regulatory and reimbursement approval, succeed in changing the prescription habits of physicians, and ultimately gain the compliance of individual patients. Developing an anticancer drug and bringing it into clinical practice is, therefore, a lengthy and complex process involving multiple partners in several areas. To optimize patient treatment and increase the likelihood of implementing health innovation, it is essential to have an overview of the full process. This review aims to describe the process and discuss the hurdles arising at each step. PMID:25525460

  12. Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs

    PubMed Central

    van Rijt, Sabine H.; Sadler, Peter J.

    2010-01-01

    This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry with many new approaches to the design of innovative metal-based anticancer drugs emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action, and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy. PMID:19782150

  13. Dose critical in-vivo detection of anti-cancer drug levels in blood

    DOEpatents

    Miller, Holly H.; Hirschfeld, deceased, Tomas B.

    1991-01-01

    A method and apparatus are disclosed for the in vivo and in vitro detection and measurement of dose critical levels of DNA-binding anti-cancer drug levels in biological fluids. The apparatus comprises a laser based fiber optic sensor (optrode) which utilizes the secondary interactions between the drug and an intercalating fluorochrome bound to a probe DNA, which in turn is attached to the fiber tip at one end thereof. The other end of the optical fiber is attached to an illumination source, detector and recorder. The fluorescence intensity is measured as a function of the drug concentration and its binding constant to the probe DNA. Anticancer drugs which lend themselves to analysis by the use of the method and the optrode of the present invention include doxorubicin, daunorubicin, carminomycin, aclacinomycin, chlorambucil, cyclophosphamide, methotrexate, 5-uracil, arabinosyl cytosine, mitomycin, cis-platinum 11 diamine dichloride procarbazine, vinblastine vincristine and the like. The present method and device are suitable for the continuous monitoring of the levels of these and other anticancer drugs in biological fluids such as blood, serum, urine and the like. The optrode of the instant invention also enables the measurement of the levels of these drugs from a remote location and from multiple samples.

  14. Label-free detection of anticancer drug paclitaxel in living cells by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Derely, L.; Vegh, A.-G.; Durand, J.-C.; Gergely, C.; Larroque, C.; Fauroux, M.-A.; Cuisinier, F. J. G.

    2013-03-01

    Confocal Raman microscopy, a non-invasive, label-free, and high spatial resolution imaging technique is employed to trace the anticancer drug paclitaxel in living Michigan Cancer Foundation-7 (MCF-7) cells. The Raman images were treated by K-mean cluster analysis to detect the drug in cells. Distribution of paclitaxel in cells is verified by calculating the correlation coefficient between the reference spectrum of the drug and the whole Raman image spectra. A time dependent gradual diffusion of paclitaxel all over the cell is observed suggesting a complementary picture of the pharmaceutical action of this drug based on rapid binding of free tubulin to crystallized paclitaxel.

  15. Synthesis and characterization of polymeric nanospheres loaded with the anticancer drug paclitaxel and magnetic particles

    NASA Astrophysics Data System (ADS)

    Závišová, Vlasta; Koneracká, Martina; Múčková, Marta; Kopčanský, Peter; Tomašovičová, Natália; Lancz, Gábor; Timko, Milan; Pätoprstá, Božena; Bartoš, Peter; Fabián, Martin

    2009-05-01

    We describe the preparation (by nanoprecipitation) and characterization of nanospheres (NPs) for magnetic drug targeting made of a magnetic fluid with poly(ethylene glycol), poly( D, L-lactic- co-glycolic acid) (PLGA), and the anticancer drug paclitaxel (Taxol ®). Infrared spectroscopy confirmed the incorporation of the drug in the PLGA NPs, which were also characterized in terms of morphology, size (typical diameter 200-250 nm) and colloidal stability in aqueous solutions of NaCl. Drug release and in vivo toxicity experiments of the prepared samples were performed. Their stability, magnetic properties (superparamagnetism), and lethal dose were found to be acceptable for the proposed application in cancer therapy.

  16. Emergence of zebrafish models in oncology for validating novel anticancer drug targets and nanomaterials

    PubMed Central

    Mimeault, Murielle; Batra, Surinder K.

    2013-01-01

    The in vivo zebrafish models have recently attracted great attention in molecular oncology to investigate multiple genetic alterations associated with the development of human cancers and validate novel anticancer drug targets. Particularly, the transparent zebrafish models can be used as a xenotransplantation system to rapidly assess the tumorigenicity and metastatic behavior of cancer stem and/or progenitor cells and their progenies. Moreover, the zebrafish models have emerged as powerful tools for an in vivo testing of novel anticancer agents and nanomaterials for counteracting tumor formation and metastases and improving the efficacy of current radiation and chemotherapeutic treatments against aggressive, metastatic and lethal cancers. PMID:22903142

  17. Response of Human Prostate Cancer Cells to Mitoxantrone Treatment in Simulated Microgravity Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Wu, Honglu

    2012-07-01

    RESPONSE OF HUMAN PROSTATE CANCER CELLS TO MITOXANTRONE TREATMENT IN SIMULATED MICROGRAVITY ENVIRONMENT Ye Zhang1,2, Christopher Edwards3, and Honglu Wu1 1 NASA-Johnson Space Center, Houston, TX 2 Wyle Integrated Science and Engineering Group, Houston, TX 3 Oregon State University, Corvallis, OR This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on

  18. Mitosis as an anti-cancer drug target.

    PubMed

    Salmela, Anna-Leena; Kallio, Marko J

    2013-10-01

    Suppression of cell proliferation by targeting mitosis is one potential cancer intervention. A number of existing chemotherapy drugs disrupt mitosis by targeting microtubule dynamics. While efficacious, these drugs have limitations, i.e. neuropathy, unpredictability and development of resistance. In order to overcome these issues, a great deal of effort has been spent exploring novel mitotic targets including Polo-like kinase 1, Aurora kinases, Mps1, Cenp-E and KSP/Eg5. Here we summarize the latest developments in the discovery and clinical evaluation of new mitotic drug targets. PMID:23775312

  19. Enhancing cancer targeting and anticancer activity by a stimulus-sensitive multifunctional polymer-drug conjugate.

    PubMed

    Tu, Ying; Zhu, Lin

    2015-08-28

    Undesirable physicochemical properties, low tumor targeting, insufficient cell internalization, acquired drug resistance, and severe side effects significantly limit the applications of anticancer drugs. In this study, to improve the tumor targeting and drug efficacy of the poorly water-soluble drug, doxorubicin (DOX), a novel drug delivery platform (PEG-ppTAT-DOX) was developed, which contained a polyethylene glycol (PEG), a matrix metalloproteinase 2 (MMP2)-sensitive peptide linker (pp), a cell penetrating peptide (TAT), and a model drug (doxorubicin). The prepared drug platform possessed several key features, including: (i) the nanoparticle formation via the self-assembly; (ii) prevention of the non-specific interaction via the PEGylation; (iii) tumor targeting via the MMP2-mediated PEG deshielding and exposure of the TAT; (iv) the TAT-mediated cell internalization; (v) the TAT-induced endosomal escape; (vi) the inhibition of P-glycoprotein mediated drug efflux; and (vii) the TAT-medicated nuclear translocation. These cooperative functions ensured the improved tumor targetability, enhanced tumor cell internalization, improved intracellular distribution, and potentiated anticancer activity. Compared to the multi-component nanocarriers, the proposed simple but multifunctional polymer-drug conjugate might have greater potential for tumor-targeted drug delivery and enhanced chemotherapy. PMID:26113423

  20. Cationic drug-based self-assembled polyelectrolyte complex micelles: Physicochemical, pharmacokinetic, and anticancer activity analysis.

    PubMed

    Ramasamy, Thiruganesh; Poudel, Bijay Kumar; Ruttala, Himabindu; Choi, Ju Yeon; Hieu, Truong Duy; Umadevi, Kandasamy; Youn, Yu Seok; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-10-01

    Nanofabrication of polymeric micelles through self-assembly of an ionic block copolymer and oppositely charged small molecules has recently emerged as a promising method of formulating delivery systems. The present study therefore aimed to investigate the interaction of cationic drugs doxorubicin (DOX) and mitoxantrone (MTX) with the anionic block polymer poly(ethylene oxide)-block-poly(acrylic acid) (PEO-b-PAA) and to study the influence of these interactions on the pharmacokinetic stability and antitumor potential of the formulated micelles in clinically relevant animal models. To this end, individual DOX and MTX-loaded polyelectrolyte complex micelles (PCM) were prepared, and their physicochemical properties and pH-responsive release profiles were studied. MTX-PCM and DOX-PCM exhibited a different release profile under all pH conditions tested. MTX-PCM exhibited a monophasic release profile with no initial burst, while DOX-PCM exhibited a biphasic release. DOX-PCM showed a higher cellular uptake than that shown by MTX-PCM in A-549 cancer cells. Furthermore, DOX-PCM induced higher apoptosis of cancer cells than that induced by MTX-PCM. Importantly, both MTX-PCM and DOX-PCM showed prolonged blood circulation. MTX-PCM improved the AUCall of MTX 4-fold compared to a 3-fold increase by DOX-PCM for DOX. While a definite difference in blood circulation was observed between MTX-PCM and DOX-PCM in the pharmacokinetic study, both MTX-PCM and DOX-PCM suppressed tumor growth to the same level as the respective free drugs, indicating the potential of PEGylated polymeric micelles as effective delivery systems. Taken together, our results show that the nature of interactions of cationic drugs with the polyionic copolymer can have a tremendous influence on the biological performance of a delivery system. PMID:27318960

  1. Tracking of STAT3 signaling for anticancer drug-discovery based on localized surface plasmon resonance.

    PubMed

    Song, Sojin; Nguyen, Anh H; Lee, Jong Uk; Cha, Misun; Sim, Sang Jun

    2016-04-21

    Signal transducer and activator of transcription 3 (STAT3) protein signaling is crucial for the survival, invasion, and growth of human cancer cells; thus, STAT3 protein is an ideal target for a new drug screening system. Herein, we developed a label-free sensor for anticancer drug-discovery based on the localized surface plasmon resonance (LSPR) shift response by tracking of STAT3 signaling including phosphorylation and dimerization. This enables ultrasensitive monitoring of the molecular interactions that occur on the surface of single gold nanoparticles. The red shift of the LSPR λmax was observed as 3.46 nm and 9.00 nm, respectively, indicating phosphorylation and dimerization of the STAT3 signaling pathway. In screening of anticancer candidates, the system worked well in the presence of STA-21 which inhibits STAT3 dimerization. The LSPR λmax shift in the inhibition condition is three times lower than that in the absence of an inhibitor. Interestingly, the system reveals high specificity, reproducibility and compatibility with real samples (MCF-7 cell line). Therefore, these results demonstrated that this system has strong potential to be an accurate and effective sensor for tracking of signaling pathways and drug screening of anticancer candidates for anticancer therapy. PMID:26998671

  2. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-07-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX ( P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  3. Synthesis, cytotoxicity and mechanistic evaluation of 4-oxoquinoline-3-carboxamide derivatives: finding new potential anticancer drugs.

    PubMed

    Forezi, Luana da S M; Tolentino, Nathalia M C; de Souza, Alessandra M T; Castro, Helena C; Montenegro, Raquel C; Dantas, Rafael F; Oliveira, Maria E I M; Silva, Floriano P; Barreto, Leilane H; Burbano, Rommel M R; Abrahim-Vieira, Bárbara; de Oliveira, Riethe; Ferreira, Vitor F; Cunha, Anna C; Boechat, Fernanda da C S; de Souza, Maria Cecília B V

    2014-01-01

    As part of a continuing search for new potential anticancer candidates, we describe the synthesis, cytotoxicity and mechanistic evaluation of a series of 4-oxoquinoline-3-carboxamide derivatives as novel anticancer agents. The inhibitory activity of compounds 10-18 was determined against three cancer cell lines using the MTT colorimetric assay. The screening revealed that derivatives 16b and 17b exhibited significant cytotoxic activity against the gastric cancer cell line but was not active against a normal cell line, in contrast to doxorubicin, a standard chemotherapeutic drug in clinical use. Interestingly, no hemolytical activity was observed when the toxicity of 16b and 17b was tested against blood cells. The in silico and in vitro mechanistic evaluation indicated the potential of 16b as a lead for the development of novel anticancer agents against gastric cancer cells. PMID:24858098

  4. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis.

    PubMed

    Gali-Muhtasib, Hala; Hmadi, Raed; Kareh, Mike; Tohme, Rita; Darwiche, Nadine

    2015-12-01

    Despite remarkable progress in the discovery and development of novel cancer therapeutics, cancer remains the second leading cause of death in the world. For many years, compounds derived from plants have been at the forefront as an important source of anticancer therapies and have played a vital role in the prevention and treatment of cancer because of their availability, and relatively low toxicity when compared with chemotherapy. More than 3000 plant species have been reported to treat cancer and about thirty plant-derived compounds have been isolated so far and have been tested in cancer clinical trials. The mechanisms of action of plant-derived anticancer drugs are numerous and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and caspase and/or p53-dependent or independent mechanisms. Alternative modes of cell death by plant-derived anticancer drugs are emerging and include mainly autophagy, necrosis-like programmed cell death, mitotic catastrophe, and senescence leading to cell death. Considering that the non-apoptotic cell death mechanisms of plant-derived anticancer drugs are less reviewed than the apoptotic ones, this paper attempts to focus on such alternative cell death pathways for some representative anticancer plant natural compounds in clinical development. In particular, emphasis will be on some promising polyphenolics such as resveratrol, curcumin, and genistein; alkaloids namely berberine, noscapine, and colchicine; terpenoids such as parthenolide, triptolide, and betulinic acid; and the organosulfur compound sulforaphane. The understanding of non-apoptotic cell death mechanisms induced by these drugs would provide insights into the possibility of exploiting novel molecular pathways and targets of plant-derived compounds for future cancer therapeutics. PMID:26362468

  5. Access to innovation: is there a difference in the use of expensive anticancer drugs between French hospitals?

    PubMed

    Bonastre, Julia; Chevalier, Julie; Van der Laan, Chantal; Delibes, Michel; De Pouvourville, Gerard

    2014-06-01

    In DRG-based hospital payment systems, expensive drugs are often funded separately. In France, specific expensive drugs (including a large proportion of anticancer drugs) are fully reimbursed up to national reimbursement tariffs to ensure equity of access. Our objective was to analyse the use of expensive anticancer drugs in public and private hospitals, and between regions. We had access to sales per anticancer drug and per hospital in the year 2008. We used a multilevel model to study the variation in the mean expenditure of expensive anticancer drugs per course of chemotherapy and per hospital. The mean expenditure per course of chemotherapy was €922 [95% CI: 890-954]. At the hospital level, specialisation in chemotherapies for breast cancers was associated with a higher expenditure of anticancer drugs per course for those hospitals with the highest proportion of cancers at this site. There were no differences in the use of expensive drugs between the private and the public hospital sector after controlling for case mix. There were no differences between the mean expenditures per region. The absence of disparities in the use of expensive anticancer drugs between hospitals and regions may indicate that exempting chemotherapies from DRG-based payments and providing additional reimbursement for these drugs has been successful at ensuring equal access to care. PMID:24314625

  6. Toxicity interactions and ways of reducing side effects of anticancer drugs.

    PubMed

    Gola, A; Orzechowska-Juzwenko, K

    1982-01-01

    Side effects of cytostatics commonly used in the Haematology Clinic are analysed. The toxic action on the host's organs is discussed in L-asparaginase, azathioprine, bleomycine, busulfan, cyclophosphamide, cytosin-arabinoside, daunorubicine, fluorouracil, mercaptopurine, methotrexate, dichlorplatinum, procarbazine and the vinca alkaloids. In addition to toxic symptoms arising from single organs the most important 21 anticancer drugs are gathered in a table. Metabolism of activation and inactivation are mentioned to interprete symptoms of toxicity. Furthermore, the interactions between commonly administered drugs and carcinostatics which may enhance or suppress their carcinostatic efficacy are exposed. A final survey of possible pharmacological rescue measures, which may improve the tolerance of anticancer drugs by diminishing their toxicity is presented. PMID:6184274

  7. The effect of vinca alkaloid anticancer drug, vinorelbine, on chromatin and histone proteins in solution.

    PubMed

    Rabbani-Chadegani, Azra; Chamani, Elham; Hajihassan, Zahra

    2009-06-24

    Vinorelbine (navelbin) belongs to vinca alkaloid anticancer drugs family with a broad spectrum of selective activity against mitotic microtubules. The present study is the first report demonstrating chromatin components as a novel target for vinorelbine in hepatocytes. The interaction was carried out in solution, employing fluorescence, UV spectroscopy and thermal denaturation techniques. Fluorescence emission spectra represented quenching of DNA chromospheres with drug and decreased fluorescence emission intensity in a dose-dependent manner. Binding of vinorelbine to chromatin induced very high hypochromicity and shifted DNA melting temperature to lower Tm. Vinorelbine binds to histone proteins with very high affinity when compared with the interaction of DNA intercalator anticancer drug, daunomycin, and the globular domain of the histones is considered as a main drug binding site. The results also showed that in the presence of vinorelbine, the absorbance of chromatin at 260 nm was decreased and the binding pattern was similar to daunomycin-chromatin complex. The results for the first time suggest that apart from tubulins, chromatin components can also be considered as a new target for this anticancer drug. PMID:19394329

  8. A ferromagnetic compound with anti-cancer proeprties for controlled drug delivery and imaging

    DOE PAGESBeta

    Eguchi, Haruki; Hirata, Kunio; Kurotani, Reiko; Singh, David J.; Fukumura, Hidenobu; Umemura, Masanari; Hoshino, Yujiro; Lee, Jin; Masuda, Takatsugu; Amemiya, Naoyuki; et al

    2015-03-17

    New anticancer agents and modalities for their use are of great interest. Recent studies have demonstrated the presence of anti-cancer properties in salen derivatives. We found that an iron salen derivative, i.e., [Fe(salen)]2O, displays ferromagnetic order above room temperature and shows spontaneous field-dependent magnetization and hysteresis. Understanding of this magnetic property is provided by first-principles calculations based on structures obtained by X-ray crystallography. [Fe(salen)]2O exhibited potent anti-cancer properties against various cancer cell types and was readily attracted by even moderate-strength permanent magnets in vitro. We demonstrated that the delivery of [Fe(salen)]2O to melanoma tissues transplanted into the tails of micemore » using a permanent magnet leads to a robust decrease in tumor size. The local accumulation of [Fe(salen)]2O was visualized by MRI. Thus, [Fe(salen)]2O acted as an anti-cancer and MRI contrast compound that has a pharmacological effect that is delivered in a controlled manner, suggesting new strategies for anti-cancer drug development.« less

  9. A ferromagnetic compound with anti-cancer proeprties for controlled drug delivery and imaging

    SciTech Connect

    Eguchi, Haruki; Hirata, Kunio; Kurotani, Reiko; Singh, David J.; Fukumura, Hidenobu; Umemura, Masanari; Hoshino, Yujiro; Lee, Jin; Masuda, Takatsugu; Amemiya, Naoyuki; Yamamoto, Masahiro; Sato, Itaru; Feng, Xianfeng; Sato, Motohiko; Inoue, Seiichi; Yamamoto, Masaki; Aoki, Ichio; Tanigaki, Katsumi; Sato, Mamoru; Ishikawa, Yoshihiro

    2015-03-17

    New anticancer agents and modalities for their use are of great interest. Recent studies have demonstrated the presence of anti-cancer properties in salen derivatives. We found that an iron salen derivative, i.e., [Fe(salen)]2O, displays ferromagnetic order above room temperature and shows spontaneous field-dependent magnetization and hysteresis. Understanding of this magnetic property is provided by first-principles calculations based on structures obtained by X-ray crystallography. [Fe(salen)]2O exhibited potent anti-cancer properties against various cancer cell types and was readily attracted by even moderate-strength permanent magnets in vitro. We demonstrated that the delivery of [Fe(salen)]2O to melanoma tissues transplanted into the tails of mice using a permanent magnet leads to a robust decrease in tumor size. The local accumulation of [Fe(salen)]2O was visualized by MRI. Thus, [Fe(salen)]2O acted as an anti-cancer and MRI contrast compound that has a pharmacological effect that is delivered in a controlled manner, suggesting new strategies for anti-cancer drug development.

  10. Platinum anticancer drugs. From serendipity to rational design.

    PubMed

    Monneret, C

    2011-11-01

    The discovery of cis-platin was serendipitous. In 1965, Rosenberg was looking into the effects of an electric field on the growth of Escherichia coli bacteria. He noticed that bacteria ceased to divide when placed in an electric field but what Rosenberg also observed was a 300-fold increase in the size of the bacteria. He attributed this to the fact that somehow the platinum-conducting plates were inducing cell growth but inhibiting cell division. It was later deduced that the platinum species responsible for this was cis-platin. Rosenberg hypothesized that if cis-platin could inhibit bacterial cell division it could also stop tumor cell growth. This conjecture has proven correct and has led to the introduction of cis-platin in cancer therapy. Indeed, in 1978, six years after clinical trials conducted by the NCI and Bristol-Myers-Squibb, the U.S. Food and Drug Administration (FDA) approved cis-platin under the name of Platinol(®) for treating patients with metastatic testicular or ovarian cancer in combination with other drugs but also for treating bladder cancer. Bristol-Myers Squibb also licensed carboplatin, a second-generation platinum drug with fewer side effects, in 1979. Carboplatin entered the U.S. market as Paraplatin(®) in 1989 for initial treatment of advanced ovarian cancer in established combination with other approved chemotherapeutic agents. Numerous platin derivatives have been further developed with more or less success and the third derivative to be approved in 1994 was oxaliplatin under the name of Eloxatin(®). It was the first platin-based drug to be active against metastatic colorectal cancer in combination with fluorouracil and folinic acid. The two others platin-based drugs to be approved were nedaplatin (Aqupla(®)) in Japan and lobaplatin in China, respectively. More recently, a strategy to overcome resistance due to interaction with thiol-containing molecules led to the synthesis of picoplatin in which one of the amines linked to Pt

  11. Controlled release of an anti-cancer drug from DNA structured nano-films

    PubMed Central

    Cho, Younghyun; Lee, Jong Bum; Hong, Jinkee

    2014-01-01

    We demonstrate the generation of systemically releasable anti-cancer drugs from multilayer nanofilms. Nanofilms designed to drug release profiles in programmable fashion are promising new and alternative way for drug delivery. For the nanofilm structure, we synthesized various unique 3-dimensional anti cancer drug incorporated DNA origami structures (hairpin, Y, and X shaped) and assembled with peptide via layer-by-layer (LbL) deposition method. The key to the successful application of these nanofilms requires a novel approach of the influence of DNA architecture for the drug release from functional nano-sized surface. Herein, we have taken first steps in building and controlling the drug incorporated DNA origami based multilayered nanostructure. Our finding highlights the novel and unique drug release character of LbL systems in serum condition taken full advantages of DNA origami structure. This multilayer thin film dramatically affects not only the release profiles but also the structure stability in protein rich serum condition. PMID:24518218

  12. Modelling targets for anticancer drug control optimization in physiologically structured cell population models

    NASA Astrophysics Data System (ADS)

    Billy, Frédérique; Clairambault, Jean; Fercoq, Olivier; Lorenzi, Tommaso; Lorz, Alexander; Perthame, Benoît

    2012-09-01

    The main two pitfalls of therapeutics in clinical oncology, that limit increasing drug doses, are unwanted toxic side effects on healthy cell populations and occurrence of resistance to drugs in cancer cell populations. Depending on the constraint considered in the control problem at stake, toxicity or drug resistance, we present two different ways to model the evolution of proliferating cell populations, healthy and cancer, under the control of anti-cancer drugs. In the first case, we use a McKendrick age-structured model of the cell cycle, whereas in the second case, we use a model of evolutionary dynamics, physiologically structured according to a continuous phenotype standing for drug resistance. In both cases, we mention how drug targets may be chosen so as to accurately represent the effects of cytotoxic and of cytostatic drugs, separately, and how one may consider the problem of optimisation of combined therapies.

  13. Controlled release of an anti-cancer drug from DNA structured nano-films

    NASA Astrophysics Data System (ADS)

    Cho, Younghyun; Lee, Jong Bum; Hong, Jinkee

    2014-02-01

    We demonstrate the generation of systemically releasable anti-cancer drugs from multilayer nanofilms. Nanofilms designed to drug release profiles in programmable fashion are promising new and alternative way for drug delivery. For the nanofilm structure, we synthesized various unique 3-dimensional anti cancer drug incorporated DNA origami structures (hairpin, Y, and X shaped) and assembled with peptide via layer-by-layer (LbL) deposition method. The key to the successful application of these nanofilms requires a novel approach of the influence of DNA architecture for the drug release from functional nano-sized surface. Herein, we have taken first steps in building and controlling the drug incorporated DNA origami based multilayered nanostructure. Our finding highlights the novel and unique drug release character of LbL systems in serum condition taken full advantages of DNA origami structure. This multilayer thin film dramatically affects not only the release profiles but also the structure stability in protein rich serum condition.

  14. Improved delivery of the natural anticancer drug tetrandrine.

    PubMed

    Shi, Chen; Ahmad Khan, Saeed; Wang, Kaiping; Schneider, Marc

    2015-02-01

    The study aims at designing a nanoparticle-based delivery system to improve the efficacy of the natural compound tetrandrine against lung cancer. Nanoparticles from poly(lactic-co-glycolic acid) (PLGA) were prepared by the emulsion solvent diffusion method and characterized for their physicochemical properties and drug-loading efficiency. Furthermore, the cellular uptake and the anti-cancerous activity was studied on A549 cell line. To investigate the surface properties and uptake, three different stabilizers were used to analyze the effect on size and zeta potential of nanoparticles as well as the effect on the cellular uptake. Nanoparticles in the size range of 180-200 nm with spherical shape were obtained with polyvinyl alcohol (PVA), Pluronic-F127 (PF127) and didodecyldimethylammonium bromide (DMAB), 2%, 1% and 0.1%, respectively. An entrapment efficiency of 50-60% with a loading of 1.5-2% was observed. In vitro release profile at pH 7.4 PBS solution showed a consistent release over 168 h. All particle systems showed an improved performance over the pure drug at the same drug concentration. DMAB stabilized particles demonstrated the most pronounced effect against A549 cells compared to pure drug while PVA stabilized particles were least effective in terms of antitumor activity. PMID:25510598

  15. Cytochrome P450s in the development of target-based anticancer drugs.

    PubMed

    Purnapatre, Kedar; Khattar, Sunil K; Saini, Kulvinder Singh

    2008-01-18

    Enzymes of the cytochrome P450 (CYP) superfamily are the major determinants of half-life and execute pharmacological effects of many therapeutic drugs. In new drug discovery research, recombinant (human) CYPs are also used for identifying active or inactive metabolites that could lead to increased potency or toxicity of a molecule. In addition, CYP inhibition by anticancer drugs might lead to adverse drug reactions, multiple-drug resistance, and drug-drug interactions. During the discovery and pre-clinical evaluation of a New Chemical Entity (NCE), large amounts of purified recombinant CYPs are required for studying metabolism and pharmacokinetic parameters. Therefore, present research efforts are focused to over-express these human CYPs in bacteria, yeast, insect and mammalian cells, followed by their purification on an industrial scale to facilitate identification of novel anticancer drugs. This review summarizes the merits and limitations of these expression systems for an optimized production of individual CYP isoforms, and their usefulness in the discovery and development of target-based, safe and efficacious NCEs for the treatment of cancer. PMID:18053638

  16. Modulation of APC Function and Anti-Tumor Immunity by Anti-Cancer Drugs

    PubMed Central

    Martin, Kea; Schreiner, Jens; Zippelius, Alfred

    2015-01-01

    Professional antigen-presenting cells (APCs), such as dendritic cells (DCs), are central to the initiation and regulation of anti-cancer immunity. However, in the immunosuppressive environment within a tumor APCs may antagonize anti-tumor immunity by inducing regulatory T cells (Tregs) or anergy of effector T cells due to lack of efficient costimulation. Hence, in an optimal setting, anti-cancer drugs have the power to reduce tumor size and thereby may induce the release of tumor antigens and, at the same time, modulate APC function toward efficient priming of antigen-specific effector T cells. Selected cytotoxic agents may revert APC dysfunction either by directly maturing DCs or through induction of immunogenic tumor cell death. Furthermore, specific cytotoxic agents may support adaptive immunity by selectively depleting regulatory subsets, such as Tregs or myeloid-derived suppressor cells. Perspectively, this will allow developing effective combination strategies with novel immunotherapies to exert complementary pressure on tumors via direct toxicity as well as immune activation. We, here, review our current knowledge on the capacity of anti-cancer drugs to modulate APC functions to promote durable anti-cancer immune responses. PMID:26483791

  17. Synergistic enhancement effect of magnetic nanoparticles on anticancer drug accumulation in cancer cells

    NASA Astrophysics Data System (ADS)

    Zhang, Renyun; Wang, Xuemei; Wu, Chunhui; Song, Min; Li, Jingyuan; Lv, Gang; Zhou, Jian; Chen, Chen; Dai, Yongyuan; Gao, Feng; Fu, Degang; Li, Xiaomao; Guan, Zhiqun; Chen, Baoan

    2006-07-01

    Three kinds of magnetic nanoparticle, tetraheptylammonium capped nanoparticles of Fe3O4, Fe2O3 and Ni have been synthesized, and the synergistic effect of these nanoparticles on the drug accumulation of the anticancer drug daunorubicin in leukaemia cells has been explored. Our observations indicate that the enhancement effect of Fe3O4 nanoparticles is much stronger than that of Fe2O3 and Ni nanoparticles, suggesting that nanoparticle surface chemistry and size as well as the unique properties of the magnetic nanoparticles themselves may contribute to the synergistic enhanced effect of the drug uptake of targeted cancer cells.

  18. Enhancing Activity of Anticancer Drugs in Multidrug Resistant Tumors by Modulating P-Glycoprotein through Dietary Nutraceuticals.

    PubMed

    Khan, Muhammad; Maryam, Amara; Mehmood, Tahir; Zhang, Yaofang; Ma, Tonghui

    2015-01-01

    Multidrug resistance is a principal mechanism by which tumors become resistant to structurally and functionally unrelated anticancer drugs. Resistance to chemotherapy has been correlated with overexpression of p-glycoprotein (p-gp), a member of the ATP-binding cassette (ABC) superfamily of membrane transporters. P-gp mediates resistance to a broad-spectrum of anticancer drugs including doxorubicin, taxol, and vinca alkaloids by actively expelling the drugs from cells. Use of specific inhibitors/blocker of p-gp in combination with clinically important anticancer drugs has emerged as a new paradigm for overcoming multidrug resistance. The aim of this paper is to review p-gp regulation by dietary nutraceuticals and to correlate this dietary nutraceutical induced-modulation of p-gp with activity of anticancer drugs. PMID:26514453

  19. A spectroscopic investigations of anticancer drugs binding to bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Bakkialakshmi, S.; Chandrakala, D.

    2012-03-01

    The binding of anticancer drugs (i) Uracil (U), (ii) 5-Fluorouracil (5FU) and (iii) 5-Chlorouracil (5ClU), to bovine serum albumin (BSA) at two levels of temperature was studied by the fluorescence of quenching method. UV/Vis, time-resolved fluorescence, Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR) and scanning electron microscope (SEM) analyses were also made. Binding constants (Ka) and binding sites (n) at various levels of temperature were calculated. The obtained binding sites were found to be equal to one for all the three quenchers (U, 5FU and 5ClU) at two different temperature levels. Thermodynamic parameters ΔH, ΔG and ΔS have been calculated and were presented in tables. Change in FTIR absorption intensity shows strong binding of anticancer drugs to BSA. Changes in chemical shifts of NMR and fluorescence lifetimes of the drugs indicate the presence of interaction and binding of BSA to anticancer drugs. 1H NMR spectra and SEM photographs also conform this binding.

  20. Terminal modification of polymeric micelles with π-conjugated moieties for efficient anticancer drug delivery.

    PubMed

    Liang, Yan; Deng, Xin; Zhang, Longgui; Peng, Xinyu; Gao, Wenxia; Cao, Jun; Gu, Zhongwei; He, Bin

    2015-12-01

    High drug loading content is the critical factor to polymeric micelles for efficient chemotherapy. Small molecules of cinnamic acid, 7-carboxymethoxy coumarin and chrysin with different π-conjugated moieties were immobilized on the terminal hydroxyl groups of PCL segments in mPEG-PCL micelles to improve drug loading content via the evocation of π-π stacking interaction between doxorubicin (DOX) and polymeric micelles. The modification of π-conjugated moieties enhanced the capability of crystallization of mPEG-PCL block copolymers. The drug loading content increased dramatically from 12.9% to 25.5% after modification. All the three modified mPEG-PCL micelles were nontoxic to cells. Chrysin modified polymeric micelles exhibited the most efficient anticancer activity. The in vivo anticancer activity of 10 mg/kg DOX dose of chrysin modified micelle formulation for twice injections was comparable to that of 5 mg/kg dose of free DOX·HCl for four injections under the circumstance of same total DOX amount. The systemic toxicity of DOX loaded chrysin modified micelles was significantly reduced. This research provided a facile strategy to achieve polymeric micelles with high drug loading content and efficient anticancer activity both in vitro and in vivo. PMID:26310358

  1. Transcriptomic analysis predicts survival and sensitivity to anticancer drugs of patients with a pancreatic adenocarcinoma.

    PubMed

    Duconseil, Pauline; Gilabert, Marine; Gayet, Odile; Loncle, Celine; Moutardier, Vincent; Turrini, Olivier; Calvo, Ezequiel; Ewald, Jacques; Giovannini, Marc; Gasmi, Mohamed; Bories, Erwan; Barthet, Marc; Ouaissi, Mehdi; Goncalves, Anthony; Poizat, Flora; Raoul, Jean Luc; Secq, Veronique; Garcia, Stephane; Viens, Patrice; Iovanna, Juan; Dusetti, Nelson

    2015-04-01

    A major impediment to the effective treatment of patients with pancreatic ductal adenocarcinoma (PDAC) is the molecular heterogeneity of this disease, which is reflected in an equally diverse pattern of clinical outcome and in responses to therapies. We developed an efficient strategy in which PDAC samples from 17 consecutive patients were collected by endoscopic ultrasound-guided fine-needle aspiration or surgery and were preserved as breathing tumors by xenografting and as a primary culture of epithelial cells. Transcriptomic analysis was performed from breathing tumors by an Affymetrix approach. We observed significant heterogeneity in the RNA expression profile of tumors. However, the bioinformatic analysis of these data was able to discriminate between patients with long- and short-term survival corresponding to patients with moderately or poorly differentiated PDAC tumors, respectively. Primary culture of cells allowed us to analyze their relative sensitivity to anticancer drugs in vitro using a chemogram, similar to the antibiogram for microorganisms, establishing an individual profile of drug sensitivity. As expected, the response was patient dependent. We also found that transcriptomic analysis predicts the sensitivity of cells to the five anticancer drugs most frequently used to treat patients with PDAC. In conclusion, using this approach, we found that transcriptomic analysis could predict the sensitivity to anticancer drugs and the clinical outcome of patients with PDAC. PMID:25765988

  2. Shape regulated anticancer activities and systematic toxicities of drug nanocrystals in vivo.

    PubMed

    Zhou, Mengjiao; Zhang, Xiujuan; Yu, Caitong; Nan, Xueyan; Chen, Xianfeng; Zhang, Xiaohong

    2016-01-01

    In this paper, shape regulated anticancer activities as well as systematic toxicities of hydroxycamptothecin nanorods and nanoparticles (HCPT NRs and NPs) were systematically studied. In vitro and in vivo therapeutic efficacies were evaluated in cancer cells and tumor-bearing mice, indicating that NRs possessed superior antitumor efficacy over NPs at the equivalent dose, while systematic toxicity of the differently shaped nanodrugs assessed in healthy mice, including the maximum tolerated dose, blood analysis and histology examinations and so on, suggested that the NRs also caused higher toxicities than NPs, and also had a long-term toxicity. These results imply that the balance between anticancer efficiency and systematic toxicity of drug nanocrystals should be fully considered in practice, which will provide new concept in the future design of drug nanocrystals for cancer therapy. From the Clinical Editor: Advances in nanotechnology have enabled the design of novel nanosized drugs for the treatment of cancer. One of the interesting findings thus far is the different biological effects seen with different shaped nanoparticles. In this article, the authors investigated and compared the anticancer activities of hydroxycamptothecin nanorods and nanoparticles. The experimental data would provide a better understanding for future drug design. PMID:26427356

  3. Quantification of cell viability and rapid screening anti-cancer drug utilizing nanomechanical fluctuation.

    PubMed

    Wu, Shangquan; Liu, Xiaoli; Zhou, Xiarong; Liang, Xin M; Gao, Dayong; Liu, Hong; Zhao, Gang; Zhang, Qingchuan; Wu, Xiaoping

    2016-03-15

    Cancer is a serious threat to human health. Although numerous anti-cancer drugs are available clinically, many have shown toxic side effects due to poor tumor-selectivity, and reduced effectiveness due to cancers rapid development of resistance to treatment. The development of new highly efficient and practical methods to quantify cell viability and its change under drug treatment is thus of significant importance in both understanding of anti-cancer mechanism and anti-cancer drug screening. Here, we present an approach of utilizing a nanomechanical fluctuation based highly sensitive microcantilever sensor, which is capable of characterizing the viability of cells and quantitatively screening (within tens of minutes) their responses to a drug with the obvious advantages of a rapid, label-free, quantitative, noninvasive, real-time and in-situ assay. The microcantilever sensor operated in fluctuation mode was used in evaluating the paclitaxel effectiveness on breast cancer cell line MCF-7. This study demonstrated that the nanomechanical fluctuations of the microcantilever sensor are sensitive enough to detect the dynamic variation in cellular force which is provided by the cytoskeleton, using cell metabolism as its energy source, and the dynamic instability of microtubules plays an important role in the generation of the force. We propose that cell viability consists of two parts: biological viability and mechanical viability. Our experimental results suggest that paclitaxel has little effect on biological viability, but has a significant effect on mechanical viability. This new method provides a new concept and strategy for the evaluation of cell viability and the screening of anti-cancer drugs. PMID:26406457

  4. Response of Human Prostate Cancer Cells to Mitoxantrone Treatment in Simulated Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Edwards, Christopher; Wu, Honglu

    2011-01-01

    This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulation of cells in response to antineoplastic agents, we cultured LNCaP cells for 96 hr either in a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as a control. 24 hr after the culture started, mitoxantrone was introduced to the cells at a final concentration of 1 M. The mitoxantrone treatment lasted 72 hr and then the cells were collected for various measurements. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not show significant differences in cell viability, growth rate, or cell cycle distribution. However, in response to mitoxantrone (1uM), a significant proportion of bioreactor cultured cells (30%) was arrested at G2 phase and a significant number of these cells were apoptotic in comparison to their static controls. The expressions of 84 oxidative stress related genes were analyzed using Qiagen PCR array to identify the possible mechanism underlying the altered responses of bioreactor culture cells to mitoxantrone. Nine out of 84 genes showed higher expression at four hour post mitoxantrone treatment in cells cultured at rotating condition compared to those at static. Taken together, the results reported here indicate that simulated microgravity may alter the responses of LNCaP cells to mitoxantrone treatment. The alteration of oxidative stress pathways

  5. Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery.

    PubMed

    Weng, Qunhong; Wang, Binju; Wang, Xuebin; Hanagata, Nobutaka; Li, Xia; Liu, Dequan; Wang, Xi; Jiang, Xiangfen; Bando, Yoshio; Golberg, Dmitri

    2014-06-24

    Developing materials for "Nano-vehicles" with clinically approved drugs encapsulated is envisaged to enhance drug therapeutic effects and reduce the adverse effects. However, design and preparation of the biomaterials that are porous, nontoxic, soluble, and stable in physiological solutions and could be easily functionalized for effective drug deliveries are still challenging. Here, we report an original and simple thermal substitution method to fabricate perfectly water-soluble and porous boron nitride (BN) materials featuring unprecedentedly high hydroxylation degrees. These hydroxylated BNs are biocompatible and can effectively load anticancer drugs (e.g., doxorubicin, DOX) up to contents three times exceeding their own weight. The same or even fewer drugs that are loaded on such BN carriers exhibit much higher potency for reducing the viability of LNCaP cancer cells than free drugs. PMID:24797563

  6. In vivo nanotoxicology of hybrid systems based on copolymer/silica/anticancer drug

    NASA Astrophysics Data System (ADS)

    Silveira, C. P.; Paula, A. J.; Apolinário, L. M.; Fávaro, W. J.; Durán, N.

    2015-05-01

    One of the major problems in cancer therapies is the high occurrence of side effects intrinsic of anticancer drugs. Doxorrubicin is a conventional anticancer molecule used to treat a wide range of cancer, such as breast, ovarian and prostate. However, its use is associated with a number of side effects like multidrug resistance and cardiotoxicity. The association with nanomaterials has been considered in the past decade to overcome the high toxicity of these drugs. In this context, mesoporous silica nanoparticles are great candidates to be used as carriers once they are very biocompatible. Taking into account the combination of nanoparticles and doxorrubicin, we treated rats with chemically induced prostate cancer with systems based on mesoporous silica nanoparticles and a thermoreversible block copolymer (Pluronic F-127) containing doxorrubicin. Preliminary results show a possible improvement in tumor conditions proportional to the concentration of the nanoparticles, opening a perspective to use mesoporous silica nanoparticles as carrier for doxorrubicin in prostate cancer treatment.

  7. Newly synthesized anticancer drug HUHS1015 is effective on malignant pleural mesothelioma

    PubMed Central

    Kaku, Yoshiko; Nagaya, Hisao; Tsuchiya, Ayako; Kanno, Takeshi; Gotoh, Akinobu; Tanaka, Akito; Shimizu, Tadashi; Nakao, Syuhei; Tabata, Chiharu; Nakano, Takashi; Nishizaki, Tomoyuki

    2014-01-01

    The newly synthesized naftopidil analogue HUHS1015 reduced cell viability in malignant pleural mesothelioma cell lines MSTO-211H, NCI-H28, NCI-H2052, and NCI-H2452, with the potential greater than that for the anticancer drugs paclitaxel or cisplatin at concentrations higher than 30 μM. HUHS1015 induced both necrosis and apoptosis of MSTO-211H and NCI-H2052 cells. HUHS1015 upregulated expression of mRNAs for Puma, Hrk, and Noxa in MSTO-211H and NCI-H2052 cells, suggesting HUHS1015-induced mitochondrial apoptosis. HUHS1015 clearly suppressed tumor growth in mice inoculated with NCI-H2052 cells. Taken together, the results of the present study indicate that HUHS1015 could be developed as an effective anticancer drug for treatment of malignant pleural mesothelioma. PMID:24754309

  8. Repurposing drugs in oncology (ReDO)—cimetidine as an anti-cancer agent

    PubMed Central

    Pantziarka, Pan; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vidula; Sukhatme, Vikas P

    2014-01-01

    Cimetidine, the first H2 receptor antagonist in widespread clinical use, has anti-cancer properties that have been elucidated in a broad range of pre-clinical and clinical studies for a number of different cancer types. These data are summarised and discussed in relation to a number of distinct mechanisms of action. Based on the evidence presented, it is proposed that cimetidine would synergise with a range of other drugs, including existing chemotherapeutics, and that further exploration of the potential of cimetidine as an anti-cancer therapeutic is warranted. Furthermore, there is compelling evidence that cimetidine administration during the peri-operative period may provide a survival benefit in some cancers. A number of possible combinations with other drugs are discussed in the supplementary material accompanying this paper. PMID:25525463

  9. Ginseng and Anticancer Drug Combination to Improve Cancer Chemotherapy: A Critical Review

    PubMed Central

    Chen, Shihong; Huang, Ying; O'Barr, Stephen A.; Wong, Rebecca A.; Chow, Moses Sing Sum

    2014-01-01

    Ginseng, a well-known herb, is often used in combination with anticancer drugs to enhance chemotherapy. Its wide usage as well as many documentations are often cited to support its clinical benefit of such combination therapy. However the literature based on objective evidence to make such recommendation is still lacking. The present review critically evaluated relevant studies reported in English and Chinese literature on such combination. Based on our review, we found good evidence from in vitro and in vivo animal studies showing enhanced antitumor effect when ginseng is used in combination with some anticancer drugs. However, there is insufficient clinical evidence of such benefit as very few clinical studies are available. Future research should focus on clinically relevant studies of such combination to validate the utility of ginseng in cancer. PMID:24876866

  10. Reducing Both Pgp Overexpression and Drug Efflux with Anti-Cancer Gold-Paclitaxel Nanoconjugates

    PubMed Central

    Li, Fei; Zhou, Xiaofei; Zhou, Hongyu; Jia, Jianbo; Li, Liwen; Zhai, Shumei; Yan, Bing

    2016-01-01

    Repeated administrations of anti-cancer drugs to patients often induce drug resistance. P-glycoprotein (Pgp) facilitates an efficient drug efflux, preventing cellular accumulation of drugs and causing multi-drug resistance (MDR). In this study, we developed a gold-paclitaxel nanoconjugate system to overcome MDR. Gold nanoparticles (GNPs) were conjugated with β-cyclodextrin enclosing paclitaxel (PTX) molecules and PEG molecules. GNP conjugates were effectively endocytosed by both drug-sensitive human lung cancer H460 cells and Pgp-overexpressed drug-resistant H460PTX cells. Compared with PTX, PGNPs did not induce the Pgp overexpression in drug-sensitive H460 cells after long-term treatment and also avoided being pumped out of cells by overexpressed Pgp molecules in H460PTX with a 17-fold lower EC50 compared to PTX. Fluorescent microscopy and flow cytometry further confirmed that fluorescent labeled PGNPs (f-PGNPs) maintained a high cellular PTX level in both H460 and H460PTX cells. These results demonstrated that nano-drug conjugates were able to avoid the development of drug resistance in sensitive cells and evade Pgp-mediated drug resistance and to maintain a high cytotoxicity in drug-resistant cancer cells. These findings exemplify a powerful nanotechnological approach to the long-lasting issue of chemotherapy-induced drug resistance. PMID:27467397

  11. Phytantriol based liquid crystal provide sustained release of anticancer drug as a novel embolic agent.

    PubMed

    Qin, Lingzhen; Mei, Liling; Shan, Ziyun; Huang, Ying; Pan, Xin; Li, Ge; Gu, Yukun; Wu, Chuanbin

    2016-01-01

    Phytantriol has received increasing amount of attention in drug delivery system, however, the ability of the phytantriol based liquid crystal as a novel embolic agent to provide a sustained release delivery system is yet to be comprehensively demonstrated. The purpose of this study was to prepare a phytantriol-based cubic phase precursor solution loaded with anticancer drug hydroxycamptothecine (HCPT) and evaluate its embolization properties, in vitro drug release and cytotoxicity. Phase behavior of the phytantriol-solvent-water system was investigated by visual inspection and polarized light microscopy, and no phase transition was observed in the presence of HCPT within the studied dose range. Water uptake by the phytantriol matrices was determined gravimetrically, suggesting that the swelling complied with the second order kinetics. In vitro evaluation of embolic efficacy indicated that the isotropic solution displayed a satisfactory embolization effect. In vitro drug release results showed a sustained-release up to 30 days and the release behavior was affected by the initial composition and drug loading. Moreover, the in vitro cytotoxicity and anticancer activity were evaluated by MTT assay. No appreciable mortality was observed for NIH 3T3 cells after 48 h exposure to blank formulations, and the anticancer activity of HCPT-loaded formulations to HepG2 and SMMC7721 cells was strongly dependent on the drug loading and treatment time. Taken together, these results indicate that phytantriol-based cubic phase embolic gelling solution is a promising potential carrier for HCPT delivery to achieve a sustained drug release by vascular embolization, and this technology may be potential for clinical applications. PMID:26035332

  12. The newly synthesized anticancer drug HUHS1015 is useful for treatment of human gastric cancer.

    PubMed

    Kaku, Yoshiko; Tsuchiya, Ayako; Kanno, Takeshi; Nakao, Shuhei; Shimizu, Tadashi; Tanaka, Akito; Nishizaki, Tomoyuki

    2015-03-01

    Naftopidil is clinically for treatment of benign prostate hyperplasia, and emerging evidence has pointed to its anticancer effect. To obtain the anticancer drug with the potential greater than that of naftopidil, we have newly synthesized the naftopidil analogue HUHS1015. The present study investigated the mechanism underlying HUHS1015-induced apoptosis of human gastric cancer cells and assessed the possibility for clinical use as an innovative anticancer drug. HUHS1015 reduced cell viability for MKN28 human well-differentiated gastric adenocarcinoma cell line and MKN45 human poorly differentiated gastric adenocarcinoma cell line in a concentration (0.3-100 μM)-dependent manner more effectively than cisplatin, a chemo-drug widely used. In the flow cytometry using propidium iodide (PI) and annexin V, HUHS1015 significantly increased the population of PI-positive and annexin V-negative cells, corresponding to primary necrosis and that of PI-positive and annexin V-positive cells, corresponding to late apoptosis/secondary necrosis, both in the two cell types. HUHS1015 significantly activated caspase-3, caspase-4, and caspase-8 in MKN45 cells, while no obvious caspase activation was found in MKN28 cells. HUHS1015 upregulated expression of the tumor necrosis factor α (TNFα) mRNA and protein in MKN45 cells, allowing activation of caspase-8 through TNF receptor and the effector caspase-3. HUHS1015 clearly inhibited tumor growth in mice inoculated with MKN45 cells, with the survival rate higher than that for the anticancer drugs cisplatin, paclitaxel, and irinotecan. The results of the present study show that HUHS1015 induces caspase-independent and caspase-dependent apoptosis of MKN28 and MKN45 human gastric cancer cells, respectively, and effectively suppresses MKN45 cell proliferation. PMID:25567349

  13. A CD13 inhibitor, ubenimex, synergistically enhances the effects of anticancer drugs in hepatocellular carcinoma

    PubMed Central

    YAMASHITA, MASAFUMI; WADA, HIROSHI; EGUCHI, HIDETOSHI; OGAWA, HISATAKA; YAMADA, DAISAKU; NODA, TAKEHIRO; ASAOKA, TADAFUMI; KAWAMOTO, KOICHI; GOTOH, KUNIHITO; UMESHITA, KOJI; DOKI, YUICHIRO; MORI, MASAKI

    2016-01-01

    Cancer stem cells (CSCs) were reported to be involved in resistance to chemo/radiation therapy. We previously reported that CD13 was both a marker of CSCs and a candidate therapeutic target in HCC. In the present study, we explored the antitumor effect of a combined therapy, where ubenimex, a CD13 inhibitor, was combined with conventional anticancer drugs, fluorouracil (5-FU), cisplatin (CDDP), doxorubicin (DXR) and sorafenib (SOR), and we elucidated the mechanism of these combination therapies. We evaluated changes in the expression of CD13 before and after treatment with anticancer drugs and with or without ubenimex in the human HCC cell lines HuH7 and PLC/PRF/5. The interactions between the anticancer drugs and ubenimex were determined with isobologram analyses. We analyzed cell cycle, apoptosis, and intracellular reactive oxygen species (ROS) levels to explore the mechanisms of the combination therapies. In both cell lines, the expression of CD13 increased after a 72-h exposure to each anticancer drug alone (P<0.05), and the expression of CD13 decreased with ubenimex administration (P<0.05). Isobologram analyses indicated that ubenimex had synergistic effects with 5-FU, CDDP and DXR, and an additive effect with SOR. Cell cycle analyses showed that ubenimex decreased the proportion of cells in G0/G1. Ubenimex enhanced the effects of 5-FU, CDDP and DXR by increasing apoptosis and intracellular ROS levels. In combination therapies, ubenimex synergistically enhanced the antitumor effects of 5-FU, CDDP and DXR on cell cycle regulation and apoptosis induction in HCC cell lines. The effects of ubenimex were due to increased intracellular ROS levels. PMID:27121124

  14. A CD13 inhibitor, ubenimex, synergistically enhances the effects of anticancer drugs in hepatocellular carcinoma.

    PubMed

    Yamashita, Masafumi; Wada, Hiroshi; Eguchi, Hidetoshi; Ogawa, Hisataka; Yamada, Daisaku; Noda, Takehiro; Asaoka, Tadafumi; Kawamoto, Koichi; Gotoh, Kunihito; Umeshita, Koji; Doki, Yuichiro; Mori, Masaki

    2016-07-01

    Cancer stem cells (CSCs) were reported to be involved in resistance to chemo/radiation therapy. We previously reported that CD13 was both a marker of CSCs and a candidate therapeutic target in HCC. In the present study, we explored the antitumor effect of a combined therapy, where ubenimex, a CD13 inhibitor, was combined with conventional anticancer drugs, fluorouracil (5-FU), cisplatin (CDDP), doxorubicin (DXR) and sorafenib (SOR), and we elucidated the mechanism of these combination therapies. We evaluated changes in the expression of CD13 before and after treatment with anticancer drugs and with or without ubenimex in the human HCC cell lines HuH7 and PLC/PRF/5. The interactions between the anticancer drugs and ubenimex were determined with isobologram analyses. We analyzed cell cycle, apoptosis, and intracellular reactive oxygen species (ROS) levels to explore the mechanisms of the combination therapies. In both cell lines, the expression of CD13 increased after a 72-h exposure to each anticancer drug alone (p<0.05), and the expression of CD13 decreased with ubenimex administration (p<0.05). Isobologram analyses indicated that ubenimex had synergistic effects with 5-FU, CDDP and DXR, and an additive effect with SOR. Cell cycle analyses showed that ubenimex decreased the proportion of cells in G0/G1. Ubenimex enhanced the effects of 5-FU, CDDP and DXR by increasing apoptosis and intracellular ROS levels. In combination therapies, ubenimex synergistically enhanced the antitumor effects of 5-FU, CDDP and DXR on cell cycle regulation and apoptosis induction in HCC cell lines. The effects of ubenimex were due to increased intracellular ROS levels. PMID:27121124

  15. Anticancer polymeric nanomedicine bearing synergistic drug combination is superior to a mixture of individually-conjugated drugs.

    PubMed

    Markovsky, Ela; Baabur-Cohen, Hemda; Satchi-Fainaro, Ronit

    2014-08-10

    Paclitaxel and doxorubicin are potent anticancer drugs used in the clinic as mono-therapies or in combination with other modalities to treat various neoplasms. However, both drugs suffer from side effects and poor pharmacokinetics. These two drugs have dissimilar physico-chemical properties, pharmacokinetics and distinct mechanisms of action, toxicity and drug resistance. In order to target both drugs selectively to the tumor site, we conjugated them at a synergistic ratio to a biocompatible and biodegradable polyglutamic acid (PGA) backbone. Drugs conjugation to a nano-sized polymer enabled preferred tumor accumulation by passive targeting, making use of the enhanced permeability and retention (EPR) effect. The rational design presented here resulted in co-delivery of combination of the drugs and their simultaneous release at the tumor site. PGA-paclitaxel-doxorubicin nano-sized conjugate exhibited superior anti-tumor efficacy and safety compared to the combination of the free drugs or a mixture of the drugs conjugated to separate polymer chains, at equivalent concentrations. This novel polymer-based multi-drug nano-sized conjugate allowed for true combination therapy since it delivered both drugs to the same target site at the ratio required for synergism. Using mice bearing orthotopic mammary adenocarcinoma, we demonstrate here the advantage of a combined polymer therapeutic bearing two synergistic drugs on the same polymer backbone, compared to each drug bound separately to the backbone. PMID:24862318

  16. -based nanobiosensor monitoring toxicological behavior of Mitoxantrone in vitro

    NASA Astrophysics Data System (ADS)

    Lad, Amitkumar N.; Agrawal, Y. K.

    2014-06-01

    The present study involves the development of nanobiosensor to determine toxicological behavior of Mitoxantrone (MTX). Mitoxantrone intercalates with DNA and produces MTX-DNA adduct, resulting in blockade of protein synthesis and excessive production of free radicals in the myocardium eventually leads to cardiac toxicity. Potentiometry was applied to develop an electroanalytical procedure for the determination of MTX and its interaction with DNA immobilized on the electrode surface modified with Silicon dioxide (SiO2) nanoparticles. The nanobiosensor immersed in MTX solution to monitor MTX-DNA interaction with respect to time and alters the resistance of the nanobiosensor. It was observed that MTX-DNA interaction is fast initially and as time elapses, the change in interaction gets slow due to formation of MTX-DNA adduct. Determination limit of the nanobiosensor is 100-10 ng/ml. This study suggests that the nanobiosensor allows real-time monitoring of the drug-DNA interaction changes by measuring the potential at sensor interface which can prove to be an important tool in drug discovery pipelines and molecular toxicology.

  17. Exosome Delivered Anticancer Drugs Across the Blood-Brain Barrier for Brain Cancer Therapy in Danio Rerio

    PubMed Central

    Yang, Tianzhi; Martin, Paige; Fogarty, Brittany; Brown, Alison; Schurman, Kayla; Phipps, Roger; Yin, Viravuth P.; Lockman, Paul

    2015-01-01

    Purpose The blood–brain barrier (BBB) essentially restricts therapeutic drugs from entering into the brain. This study tests the hypothesis that brain endothelial cell derived exosomes can deliver anticancer drug across the BBB for the treatment of brain cancer in a zebrafish (Danio rerio) model. Materials and Methods Four types of exosomes were isolated from brain cell culture media and characterized by particle size, morphology, total protein, and transmembrane protein markers. Transport mechanism, cell uptake, and cytotoxicity of optimized exosome delivery system were tested. Brain distribution of exosome delivered anticancer drugs was evaluated using transgenic zebrafish TG (fli1: GFP) embryos and efficacies of optimized formations were examined in a xenotransplanted zebrafish model of brain cancer model. Results Four exosomes in 30–100 diameters showed different morphologies and exosomes derived from brain endothelial cells expressed more CD63 tetraspanins transmembrane proteins. Optimized exosomes increased the uptake of fluorescent marker via receptor mediated endocytosis and cytotoxicity of anticancer drugs in cancer cells. Images of the zebrafish showed exosome delivered anticancer drugs crossed the BBB and entered into the brain. In the brain cancer model, exosome delivered anticancer drugs significantly decreased fluorescent intensity of xenotransplanted cancer cells and tumor growth marker. Conclusions Brain endothelial cell derived exosomes could be potentially used as a carrier for brain delivery of anticancer drug for the treatment of brain cancer. PMID:25609010

  18. Anti-VEGF Anticancer Drugs: Mind the Hypertension.

    PubMed

    Katsi, Vasiliki; Zerdes, Ioannis; Manolakou, Stavroula; Makris, Thomas; Nihoyannopoulos, Petros; Tousoulis, Dimitris; Kallikazaros, Ioannis

    2014-01-01

    The introduction of therapies that inhibit tumor angiogenesis and particularly target to vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) (VEGF inhibitors/VEGFi) have revolutionized the treatment of various cancer types. Although their clinical benefit can be optimal for cancer-affected patients, the safety of these targeted agents is of special concern especially for longer-term adjuvant or maintenance treatment. Importantly, VEGFi therapy has been significantly associated with hypertension (HTN) as an adverse effect and therefore the control of blood pressure (BP) after the administration of these drugs remains a challenging matter to be faced. The aim of this review is to summarize studies which investigate the association of VEGFi agents with HTN manifestation and the possible risks associated with this complication. Additionally, given that the optimal management of HTN caused by VEGFi remains obscure, this review will focus on prevention strategies including BP monitoring plans and propose potential therapeutic approaches. PMID:26123049

  19. Carboxymethyl Hyaluronan-Stabilized Nanoparticles for Anticancer Drug Delivery

    PubMed Central

    Woodman, Jessica L.; Suh, Min Sung; Zhang, Jianxing; Kondaveeti, Yuvabharath; Burgess, Diane J.; White, Bruce A.; Prestwich, Glenn D.; Kuhn, Liisa T.

    2015-01-01

    Carboxymethyl hyaluronic acid (CMHA) is a semisynthetic derivative of HA that is recognized by HA binding proteins but contains an additional carboxylic acid on some of the 6-hydroxyl groups of the N-acetyl glucosamine sugar units. These studies tested the ability of CMHA to stabilize the formation of calcium phosphate nanoparticles and evaluated their potential to target therapy resistant, CD44+/CD24−/low human breast cancer cells (BT-474EMT). CMHA stabilized particles (nCaPCMHA) were loaded with the chemotherapy drug cis-diamminedichloroplatinum(II) (CDDP) to form nCaPCMHACDDP. nCaPCMHACDDP was determined to be poorly crystalline hydroxyapatite, 200 nm in diameter with a −43 mV zeta potential. nCaPCMHACDDP exhibited a two-day burst release of CDDP that tapered resulting in 86% release by 7 days. Surface plasmon resonance showed that nCaPCMHACDDP binds to CD44, but less effectively than CMHA or hyaluronan. nCaPCMHA-AF488 was taken up by CD44+/CD24− BT-474EMT breast cancer cells within 18 hours. nCaPCMHACDDP was as cytotoxic as free CDDP against the BT-474EMT cells. Subcutaneous BT-474EMT tumors were more reproducibly inhibited by a near tumor dose of 2.8 mg/kg CDDP than a 7 mg/kg dose nCaPCMHACDDP. This was likely due to a lack of distribution of nCaPCMHACDDP throughout the dense tumor tissue that limited drug diffusion. PMID:26448751

  20. Potentiation of Anticancer Drugs: Effects of Pentoxifylline on Neoplastic Cells

    PubMed Central

    Barancik, Miroslav; Bohacova, Viera; Gibalova, Lenka; Sedlak, Jan; Sulova, Zdena; Breier, Albert

    2012-01-01

    The drug efflux activity of P-glycoprotein (P-gp, a product of the mdr1 gene, ABCB1 member of ABC transporter family) represents a mechanism by which tumor cells escape death induced by chemotherapeutics. In this study, we investigated the mechanisms involved in the effects of pentoxifylline (PTX) on P-gp-mediated multidrug resistance (MDR) in mouse leukemia L1210/VCR cells. Parental sensitive mouse leukemia cells L1210, and multidrug-resistant cells, L1210/VCR, which are characterized by the overexpression of P-gp, were used as experimental models. The cells were exposed to 100 μmol/L PTX in the presence or absence of 1.2 μmol/L vincristine (VCR). Western blot analysis indicated a downregulation of P-gp protein expression when multidrug-resistant L1210/VCR cells were exposed to PTX. The effects of PTX on the sensitization of L1210/VCR cells to VCR correlate with the stimulation of apoptosis detected by Annexin V/propidium iodide apoptosis necrosis kit and proteolytic activation of both caspase-3 and caspase-9 monitored by Western blot analysis. Higher release of matrix metalloproteinases (MMPs), especially MMP-2, which could be attenuated by PTX, was found in L1210/VCR than in L1210 cells by gelatin zymography in electrophoretic gel. Exposure of resistant cells to PTX increased the content of phosphorylated Akt kinase. In contrast, the presence of VCR eliminated the effects of PTX on Akt kinase phosphorylation. Taken together, we conclude that PTX induces the sensitization of multidrug-resistant cells to VCR via downregulation of P-gp, stimulation of apoptosis and reduction of MMPs released from drug-resistant L1210/VCR cells. These facts bring new insights into the mechanisms of PTX action on cancer cells. PMID:22312258

  1. Comparison, synthesis and evaluation of anticancer drug-loaded polymeric nanoparticles on breast cancer cell lines.

    PubMed

    Eatemadi, Ali; Darabi, Masoud; Afraidooni, Loghman; Zarghami, Nosratollah; Daraee, Hadis; Eskandari, Leila; Mellatyar, Hassan; Akbarzadeh, Abolfazl

    2016-05-01

    Breast cancer is a major form of cancer, with a high mortality rate in women. It is crucial to achieve more efficient and safe anticancer drugs. Recent developments in medical nanotechnology have resulted in novel advances in cancer drug delivery. Cisplatin, doxorubicin, and 5-fluorouracil are three important anti-cancer drugs which have poor water-solubility. In this study, we used cisplatin, doxorubicin, and 5-fluorouracil-loaded polycaprolactone-polyethylene glycol (PCL-PEG) nanoparticles to improve the stability and solubility of molecules in drug delivery systems. The nanoparticles were prepared by a double emulsion method and characterized with Fourier Transform Infrared (FTIR) spectroscopy and Hydrogen-1 nuclear magnetic resonance ((1)HNMR). Cells were treated with equal concentrations of cisplatin, doxorubicin and 5-fluorouracil-loaded PCL-PEG nanoparticles, and free cisplatin, doxorubicin and 5-fluorouracil. The 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl tetrazolium bromide (MTT) assay confirmed that cisplatin, doxorubicin, and 5-fluorouracil-loaded PCL-PEG nanoparticles enhanced cytotoxicity and drug delivery in T47D and MCF7 breast cancer cells. However, the IC50 value of doxorubicin was lower than the IC50 values of both cisplatin and 5-fluorouracil, where the difference was statistically considered significant (p˂0.05). However, the IC50 value of all drugs on T47D were lower than those on MCF7. PMID:25707442

  2. Classical and Targeted Anticancer Drugs: An Appraisal of Mechanisms of Multidrug Resistance.

    PubMed

    Baguley, Bruce C

    2016-01-01

    The mechanisms by which tumor cells resist the action of multiple anticancer drugs, often with widely different chemical structures, have been pursued for more than 30 years. The identification of P-glycoprotein (P-gp), a drug efflux transporter protein with affinity for multiple therapeutic drugs, provided an important potential mechanism and further work, which identified other members of ATP-binding cassette (ABC) family that act as drug transporters. Several observations, including results of clinical trials with pharmacological inhibitors of P-gp, have suggested that mechanisms other than efflux transporters should be considered as contributors to resistance, and in this review mechanisms of anticancer drug resistance are considered more broadly. Cells in human tumors exist is a state of continuous turnover, allowing ongoing selection and "survival of the fittest." Tumor cells die not only as a consequence of drug therapy but also by apoptosis induced by their microenvironment. Cell death can be mediated by host immune mechanisms and by nonimmune cells acting on so-called death receptors. The tumor cell proliferation rate is also important because it controls tumor regeneration. Resistance to therapy might therefore be considered to arise from a reduction of several distinct cell death mechanisms, as well as from an increased ability to regenerate. This review provides a perspective on these mechanisms, together with brief descriptions of some of the methods that can be used to investigate them in a clinical situation. PMID:26910066

  3. In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery.

    PubMed

    Deepagan, V G; Kwon, Seunglee; You, Dong Gil; Nguyen, Van Quy; Um, Wooram; Ko, Hyewon; Lee, Hansang; Jo, Dong-Gyu; Kang, Young Mo; Park, Jae Hyung

    2016-10-01

    Stimuli-responsive micelles have emerged as the drug carrier for cancer therapy since they can exclusively release the drug via their structural changes in response to the specific stimuli of the target site. Herein, we developed the in situ diselenide-crosslinked micelles (DCMs), which are responsive to the abnormal ROS levels of tumoral region, as anticancer drug carriers. The DCMs were spontaneously derived from selenol-bearing triblock copolymers consisting of polyethylene glycol (PEG) and polypeptide derivatives. During micelle formation, doxorubicine (DOX) was effectively encapsulated in the hydrophobic core, and diselenide crosslinks were formed in the shell. The DCMs maintained their structural integrity, at least for 6 days in physiological conditions, even in the presence of destabilizing agents. However, ROS-rich conditions triggered rapid release of DOX from the DOX-encapsulating DCMs (DOX-DCMs) because the hydrophobic diselenide bond was cleaved into hydrophilic selenic acid derivatives. Interestingly, after their systemic administration into the tumor-bearing mice, DOX-DCMs delivered significantly more drug to tumors (1.69-fold and 3.73-fold higher amount compared with their non-crosslinked counterparts and free drug, respectively) and effectively suppressed tumor growth. Overall, our data indicate that DCMs have great potential as drug carriers for anticancer therapy. PMID:27372421

  4. Investigation of the complexation of the anti-cancer drug novantrone with the hairpin structure of the deoxyheptanucleotide 5‧-d(GpCpGpApApGpC)

    NASA Astrophysics Data System (ADS)

    Kostjukov, V. V.; Pahomov, V. I.; Andrejuk, D. D.; Davies, D. B.; Evstigneev, M. P.

    2007-10-01

    In aqueous solution the deoxyheptanucleotide, 5'-d(GpCpGpApApGpC), exists as a very stable hairpin structure in equilibrium with small proportions of the single-stranded and duplex forms. Complexation of the anti-cancer drug novantrone (mitoxantrone) with the DNA heptamer was investigated by one- and two-dimensional 500 MHz 1H NMR spectroscopy (2M-TOCSY, 2M-NOESY) and molecular dynamics simulations. The proton chemical shifts of NOV in mixed solutions with the heptamer were measured as a function of concentration and temperature and the equilibrium association parameters were determined for complexation of NOV with the three forms of the heptamer. The spatial structure of the complex of the antibiotic with the hairpin form of the heptamer was built on the basis of 2D-NOE data. The conformational dynamics of the complex and its interaction with the water environment were investigated by molecular dynamics methods. The results suggest that NOV complexes with the hairpin form of the heptamer in solution by intercalation. Complexation of NOV with the hairpin stem results in a disruption of about one half of the intramolecular water bridges of the hairpin, which is considered to be the main reason for the observed decrease in the thermodynamical stability of the hairpin on binding with the ligand.

  5. Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting.

    PubMed

    Kayal, Sibnath; Ramanujan, Raju Vijayaraghavan

    2010-09-01

    Magnetic drug targeting, using core-shell magnetic carrier particles loaded with anti-cancer drugs, is an emerging and significant method of cancer treatment. Gold shell-iron core nanoparticles (Fe@Au) were synthesized by the reverse micelle method with aqueous reactants, surfactant, co-surfactant and oil phase. XRD, XPS, TEM and magnetic property measurements were utilized to characterize these core-shell nanoparticles. Magnetic measurements showed that the particles were superparamagnetic at room temperature and that the saturation magnetization decreased with increasing gold concentration. The anti-cancer drug doxorubicin (DOX) was loaded onto these Fe@Au nanoparticle carriers and the drug release profiles showed that upto 25% of adsorbed drug was released in 80 h. It was found that the amine (-NH2) group of DOX binds to the gold shell. An in vitro apparatus simulating the human circulatory system was used to determine the retention of these nanoparticle carriers when exposed to an external magnetic field. A high percentage of magnetic carriers could be retained for physiologically relevant flow speeds of fluid. The present findings show that DOX loaded gold coated iron nanoparticles are promising for magnetically targeted drug delivery. PMID:21133071

  6. Human splicing factor SPF45 (RBM17) confers broad multidrug resistance to anticancer drugs when overexpressed--a phenotype partially reversed by selective estrogen receptor modulators.

    PubMed

    Perry, William L; Shepard, Robert L; Sampath, Janardhan; Yaden, Benjamin; Chin, William W; Iversen, Philip W; Jin, Shengfang; Lesoon, Andrea; O'Brien, Kathryn A; Peek, Victoria L; Rolfe, Mark; Shyjan, Andrew; Tighe, Michelle; Williamson, Mark; Krishnan, Venkatesh; Moore, Robert E; Dantzig, Anne H

    2005-08-01

    The splicing factor SPF45 (RBM17) is frequently overexpressed in many solid tumors, and stable expression in HeLa cells confers resistance to doxorubicin and vincristine. In this study, we characterized stable transfectants of A2780 ovarian carcinoma cells. In a 3-day cytotoxicity assay, human SPF45 overexpression conferred 3- to 21-fold resistance to carboplatin, vinorelbine, doxorubicin, etoposide, mitoxantrone, and vincristine. In addition, resistance to gemcitabine and pemetrexed was observed at the highest drug concentrations tested. Knockdown of SPF45 in parental A2780 cells using a hammerhead ribozyme sensitized A2780 cells to etoposide by approximately 5-fold relative to a catalytically inactive ribozyme control and untransfected cells, suggesting a role for SPF45 in intrinsic resistance to some drugs. A2780-SPF45 cells accumulated similar levels of doxorubicin as vector-transfected and parental A2780 cells, indicating that drug resistance is not due to differences in drug accumulation. Efforts to identify small molecules that could block SPF45-mediated drug resistance revealed that the selective estrogen receptor (ER) modulators tamoxifen and LY117018 (a raloxifene analogue) partially reversed SPF45-mediated drug resistance to mitoxantrone in A2780-SPF45 cells from 21-fold to 8- and 5-fold, respectively, but did not significantly affect the mitoxantrone sensitivity of vector control cells. Quantitative PCR showed that ERbeta but not ERalpha was expressed in A2780 transfectants. Coimmunoprecipitation experiments suggest that SPF45 and ERbeta physically interact in vivo. Thus, SPF45-mediated drug resistance in A2780 cells may result in part from effects of SPF45 on the transcription or alternate splicing of ERbeta-regulated genes. PMID:16061639

  7. Alkaloids from marine invertebrates as important leads for anticancer drugs discovery and development.

    PubMed

    Imperatore, Concetta; Aiello, Anna; D'Aniello, Filomena; Senese, Maria; Menna, Marialuisa

    2014-01-01

    The present review describes research on novel natural antitumor alkaloids isolated from marine invertebrates. The structure, origin, and confirmed cytotoxic activity of more than 130 novel alkaloids belonging to several structural families (indoles, pyrroles, pyrazines, quinolines, and pyridoacridines), together with some of their synthetic analogs, are illustrated. Recent discoveries concerning the current state of the potential and/or development of some of them as new drugs, as well as the current knowledge regarding their modes of action, are also summarized. A special emphasis is given to the role of marine invertebrate alkaloids as an important source of leads for anticancer drug discovery. PMID:25490431

  8. Salt-bridge-supported bilayer lipid membrane biosensor for determination of anticancer drug cyclophosphamide

    NASA Astrophysics Data System (ADS)

    Zhang, Yanli; Wang, Tao; Zhang, Chunxu; Shen, Hanxi; Chao, Fuhuan

    2001-09-01

    A novel biosensor for assaying anticancer drug cyclophosphamide was constructed with salt-bridge supported bilayer lipid membrane modified with tetraphenylborate- cyclophosphamide complex. The modification was achieved by the introduction of the complex into the membrane forming solution. The biosensor show a linear response to the drug over the concentration range 8.96 X 10-6 mol L-1. The effects of coexistent substances and pH on assay were evaluated. The results show that the distinguish merits of this kind of biosensor is the excellently biological compatibility and no need of mediator for ions exchange. It also shows good selectivity and sensitivity for cyclophosphamide assay.

  9. A 3D Fibrous Scaffold Inducing Tumoroids: A Platform for Anticancer Drug Development

    PubMed Central

    Girard, Yvonne K.; Wang, Chunyan; Ravi, Sowndharya; Howell, Mark C.; Mallela, Jaya; Alibrahim, Mahmoud; Green, Ryan; Hellermann, Gary; Mohapatra, Shyam S.; Mohapatra, Subhra

    2013-01-01

    The development of a suitable three dimensional (3D) culture system for anticancer drug development remains an unmet need. Despite progress, a simple, rapid, scalable and inexpensive 3D-tumor model that recapitulates in vivo tumorigenesis is lacking. Herein, we report on the development and characterization of a 3D nanofibrous scaffold produced by electrospinning a mixture of poly(lactic-co-glycolic acid) (PLGA) and a block copolymer of polylactic acid (PLA) and mono-methoxypolyethylene glycol (mPEG) designated as 3P. Cancer cells cultured on the 3P scaffold formed tight irregular aggregates similar to in vivo tumors, referred to as tumoroids that depended on the topography and net charge of the scaffold. 3P scaffolds induced tumor cells to undergo the epithelial-to-mesenchymal transition (EMT) as demonstrated by up-regulation of vimentin and loss of E-cadherin expression. 3P tumoroids showed higher resistance to anticancer drugs than the same tumor cells grown as monolayers. Inhibition of ERK and PI3K signal pathways prevented EMT and reduced tumoroid formation, diameter and number. Fine needle aspirates, collected from tumor cells implanted in mice when cultured on 3P scaffolds formed tumoroids, but showed decreased sensitivity to anticancer drugs, compared to tumoroids formed by direct seeding. These results show that 3P scaffolds provide an excellent platform for producing tumoroids from tumor cell lines and from biopsies and that the platform can be used to culture patient biopsies, test for anticancer compounds and tailor a personalized cancer treatment. PMID:24146752

  10. The absence of functional glucosylceramide synthase does not sensitize melanoma cells for anticancer drugs.

    PubMed

    Veldman, Robert Jan; Mita, Alain; Cuvillier, Olivier; Garcia, Virginie; Klappe, Karin; Medin, Jeffrey A; Campbell, John D; Carpentier, Stéphane; Kok, Jan Willem; Levade, Thierry

    2003-06-01

    Conversion of ceramide, a putative mediator of anticancer drug-induced apoptosis, into glucosylceramide, by the action of glucosylceramide synthase (GCS), has been implicated in drug resistance. Herein, we compared GM95 mouse melanoma cells deficient in GCS activity, with cells stably transfected with a vector encoding GCS (GM95/GCS). Enzymatic and metabolic analysis demonstrated that GM95/GCS cells expressed a fully functional enzyme, resulting in normal ceramide glycosylation. However, cytotoxicity assays, as well as caspase activation and cytochrome c release studies, did not reveal any difference between the two cell lines with respect to their sensitivity toward doxorubicin, vinblastine, paclitaxel, cytosine arabinoside, or short-chain ceramide analogs. Administration of doxorubicin resulted in ceramide accumulation in both cell lines, with similar kinetics and amplitude. Although glucosylceramide formation was detected in doxorubicin-treated GM95/GCS cells, metabolism of drug-induced ceramide did not appear to be instrumental in cell survival. Furthermore, N-(n-butyl)deoxynojirimycin, a potent and non-toxic GCS inhibitor, had no chemosensitizing effect on wild-type melanoma cells. Altogether, both genetic and pharmacological alterations of the cellular ceramide glycosylation capacity failed to sensitize melanoma cells to anticancer drugs, therefore moderating the importance of ceramide glucosylation in drug-resistance mechanisms. PMID:12692077

  11. SR 4233 (tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours.

    PubMed Central

    Brown, J. M.

    1993-01-01

    SR 4233 (3-amino-1,2,4-benzotriazine 1,4-dioxide, WIN 59075, tirapazamine) is the lead compound in a new class of bioreductive anticancer drugs, the benzotriazine di-N-oxides. It is currently undergoing Phase I clinical testing. The preferential tumour cell killing of SR 4233 is a result of its high specific toxicity to cells at low oxygen tensions. Such hypoxic cells are a common feature of solid tumours, but not normal tissues, and are resistant to cancer therapies including radiation and some anticancer drugs. The killing of these tumour cells by SR 4233, particularly when given on multiple occasions, can increase total tumour cell killing by fractionated irradiation by several orders of magnitude without increasing toxicity to surrounding normal tissues. Topics covered in this review include the rationale for developing a hypoxic cytotoxic agent, the cytotoxicity of SR 4233 as a function of oxygen concentration, the mechanism of action of the drug and its intracellular target and the in vivo evidence that the drug may be useful as an adjunct both to radiotherapy and chemotherapy. Finally, the major unanswered questions on the drug are outlined. PMID:8512801

  12. ATP-Responsive DNA-Graphene Hybrid Nanoaggregates for Anticancer Drug Delivery

    PubMed Central

    Mo, Ran; Jiang, Tianyue; Sun, Wujin; Gu, Zhen

    2015-01-01

    Stimuli-triggered drug delivery systems are primarily focused on the applications of the tumor microenvironmental or cellular physiological cues to enhance the release of drugs at the target site. In this study, we applied adenosine-5′-triphosphate (ATP), the primary “energy molecule”, as a trigger for enhanced release of preloaded drugs responding to the intracellular ATP concentration that is significantly higher than the extracellular level. A new ATP-responsive anticancer drug delivery strategy utilizing DNA-graphene crosslinked hybrid nanoaggregates as carriers was developed for controlled release of doxorubicin (DOX), which consists of graphene oxide (GO), two single-stranded DNA (ssDNA, denoted as DNA1 and DNA2) and ATP aptamer. The single-stranded DNA1 and DNA2 together with the ATP aptamer serve as the linkers upon hybridization for controlled assembly of the DNA-GO nanoaggregates, which effectively inhibited the release of DOX from the GO nanosheets. In the presence of ATP, the responsive formation of the ATP/ATP aptamer complex causes the dissociation of the aggregates, which promoted the release of DOX in the environment with a high ATP concentration such as cytosol compared with that in the ATP-deficient extracellular fluid. This supports the development of a novel ATP-responsive platform for targeted on-demand delivery of anticancer drugs inside specific cells. PMID:25736497

  13. Design, synthesis and anti-cancer activity evaluation of podophyllotoxin-norcantharidin hybrid drugs.

    PubMed

    Han, Hong-Wei; Qiu, Han-Yue; Hu, Cui; Sun, Wen-Xue; Yang, Rong-Wu; Qi, Jin-Liang; Wang, Xiao-Ming; Lu, Gui-Hua; Yang, Yong-Hua

    2016-07-15

    In this study, we designed and synthesized eighteen podophyllotoxin-norcantharidin hybrid drugs which could exhibit more potent anti-cancer activity than the parent drugs. Through the anti-proliferation assay, the most potent anti-cancer agent was screened out, namely Q9 (IC50=0.88±0.18μM against MCF-7 cell line), and it showed lower cytotoxicity against non-cancer cells, human embryonic kidney cells (293T) (IC50=54.38±3.78μM). Additionally, based on the flow cytometry analysis result, it can cause a remarkable cell cycle arrest at G2/M phase and induce apoptosis in MCF-7 cells more significantly than podophyllotoxin or norcantharidin per se. Moreover, the expression of cell cycle relative protein CDK1 was up regulated while a protein required for mitotic initiation, Cyclin B1 was down regulated. Furthermore, according to the confocal microscopy observation results, it was shown that Q9 was a potent tubulin polymerization inhibitor and the effect is comparable to that of colchicine. For further investigation on the aforementioned mechanisms, we performed western blot experiments, thus finding the increase of the cleavage of PARP. Consistent with these new findings, molecular docking observations suggested that compound Q9 could be developed as a potential anticancer agent. PMID:27262599

  14. HER2-mediated anticancer drug delivery: strategies to prepare targeting ligands highly specific for the receptor.

    PubMed

    Calce, Enrica; Monfregola, Luca; Saviano, Michele; De Luca, Stefania

    2015-01-01

    HER2 receptor, for its involvement in tumorigenesis, has been largely studied as topic in cancer research. In particular, the employment of trastuzumab (Herceptin), a humanized anti-HER2 antibody, showed several clinical benefits in the therapy against the breast cancer. Moreover, for its accessible extracellular domain, this receptor is considered an ideal target to deliver anticancer drugs for the receptormediated anticancer therapy. By now, monoclonal antibody and its fragments, affibody, and some peptides have been employed as targeting agents in order to deliver various drugs to HER2 positive tumor cells. In particular, the ability to perform a fast and reliable screening of a large number of peptide molecules would make possible the selection of highly specific compounds to the receptor target. In this regard, the availability of preparing a simplified synthetic model which is a good mimetic of the receptor target and can be used in a reliable screening method of ligands would be of a strategic importance for the development of selective HER2-targeting peptide molecules. Herein, we illustrate the importance of HER2-targeted anticancer therapies. We also report on a synthetic and effective mimetic of the receptor, which revealed to be a useful tool for the selection of specific HER2 ligands. PMID:25994863

  15. Transmembrane delivery of anticancer drugs through self-assembly of cyclic peptide nanotubes.

    PubMed

    Chen, Jian; Zhang, Bei; Xia, Fei; Xie, Yunchang; Jiang, Sifan; Su, Rui; Lu, Yi; Wu, Wei

    2016-04-01

    Breaking the natural barriers of cell membranes achieves fast entry of therapeutics, which leads to enhanced efficacy and helps overcome multiple drug resistance. Herein, transmembrane delivery of a series of small molecule anticancer drugs was achieved by the construction of artificial transmembrane nanochannels formed by self-assembly of cyclic peptide (cyclo[Gln-(d-Leu-Trp)4-d-Leu], CP) nanotubes (CPNTs) in the lipid bilayers. Our in vitro study in liposomes indicated that the transport of molecules with sizes smaller than 1.0 nm, which is the internal diameter of the CPNTs, could be significantly enhanced by CPNTs in a size-selective and dose-dependent manner. Facilitated uptake of 5-fluorouracil (5-FU) was also confirmed in the BEL7402 cell line. On the contrary, CPs could facilitate neither the transport across liposomal membranes nor the uptake by cell lines of cytarabine, a counterevidence drug with a size of 1.1 nm. CPs had a very weak anticancer efficacy, but could significantly reduce the IC50 of 5-FU in BEL7402, HeLa and S180 cell lines. Analysis by a q test revealed that a combination of 5-FU and CP had a synergistic effect in BEL7402 at all CP levels, in S180 at CP levels higher than 64 μg mL(-1), but not in HeLa, where an additive effect was observed. Temporarily, intratumoral injection is believed to be the best way for CP administration. In vivo imaging using (125)I radio-labelled CP confirmed that CPNPTs were completely localized in the tumor tissues, and translocation to other tissues was negligible. In vivo anticancer efficacy was studied in the grafted S180 solid tumor model in mice, and the results indicated that tumor growth was greatly inhibited by the combinatory use of 5-FU and CP, and a synergistic effect was observed at CP doses of 0.25 mg per kg bw. It is concluded that facilitated transmembrane delivery of anticancer drugs with sizes smaller than 1.0 nm was achieved, and the synergistic anticancer effect was confirmed both in cell

  16. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    PubMed Central

    Martins, Murillo L.; Ignazzi, Rosanna; Eckert, Juergen; Watts, Benjamin; Kaneno, Ramon; Zambuzzi, Willian F.; Daemen, Luke; Saeki, Margarida J.; Bordallo, Heloisa N.

    2016-01-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with reduced clearance rate and toxicity. X-rays and neutrons were used to investigate the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. From these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier design is potentially safer to healthy cells. PMID:26932808

  17. The Effective Role of Hydroxyapatite Based Composites in Anticancer Drug Delivery Systems.

    PubMed

    Saber-Samandari, Samaneh; Nezafati, Nader; Saber-Samandari, Saeed

    2016-01-01

    Tumors consist of a heterogeneous population of cancer cells carrying multiple genetic mutations. During the past few decades, efforts have focused on curing cancer using various methods. However, traditional cancer therapies still carry some drawbacks, such as limited application for only a few cancer types, killing of normal cells, poor specificity, and associated toxicity. To overcome these disadvantages, drug-delivery methods that emphasize biomaterials have been developed and applied to optimize cancer treatments. Hydroxyapatite (HAP) is a biocompatible inorganic material that can be applied in biomedical drug-delivery applications. This review discusses the features and properties of HAP that make it an effective biomaterial and provides a comprehensive summary of recent studies in which HAP and composites containing HAP were applied as anticancer drug carriers. We believe that HAP-based composites show great promise for cancer treatment using controlled release of therapeutic agents, leading to enhanced efficiency, selective release of drugs, and prohibition of cancer cell proliferation. PMID:27279338

  18. Extracellular control of intracellular drug release for enhanced safety of anti-cancer chemotherapy

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Qi, Haixia; Long, Ziyan; Liu, Shang; Huang, Zhen; Zhang, Junfeng; Wang, Chunming; Dong, Lei

    2016-06-01

    The difficulty of controlling drug release at an intracellular level remains a key challenge for maximising drug safety and efficacy. We demonstrate herein a new, efficient and convenient approach to extracellularly control the intracellular release of doxorubicin (DOX), by designing a delivery system that harnesses the interactions between the system and a particular set of cellular machinery. By simply adding a small-molecule chemical into the cell medium, we could lower the release rate of DOX in the cytosol, and thereby increase its accumulation in the nuclei while decreasing its presence at mitochondria. Delivery of DOX with this system effectively prevented DOX-induced mitochondria damage that is the main mechanism of its toxicity, while exerting the maximum efficacy of this anti-cancer chemotherapeutic agent. The present study sheds light on the design of drug delivery systems for extracellular control of intracellular drug delivery, with immediate therapeutic implications.

  19. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    DOE PAGESBeta

    Martins, Murillo L.; Ignazzi, Rosanna; Eckert, Juergen; Watts, Benjamin; Kaneno, Ramon; Zambuzzi, Willian F.; Daemen, Luke; Saeki, Margarida J.; Bordallo, Heloisa N.

    2016-03-02

    Here, the most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with reduced clearance rate and toxicity. X-rays and neutrons were used to investigatemore » the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. In conclusion, from these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier design is potentially safer to healthy cells.« less

  20. Random laser in biological tissues impregnated with a fluorescent anticancer drug

    NASA Astrophysics Data System (ADS)

    Lahoz, F.; Martín, I. R.; Urgellés, M.; Marrero-Alonso, J.; Marín, R.; Saavedra, C. J.; Boto, A.; Díaz, M.

    2015-04-01

    We have demonstrated that chemically modified anticancer drugs can provide random laser (RL) when infiltrated in a biological tissue. A fluorescent biomarker has been covalently bound to tamoxifen, which is one of the most frequently used drugs for breast cancer therapy. The light emitted by the drug-dye composite is scattered in tissue, which acts as a gain medium. Both non-coherent and coherent RL regimes have been observed. Moreover, the analysis of power Fourier transforms of coherent RL spectra indicates that the tissues show a dominant random laser cavity length of about 18 µm, similar to the average size of single cells. These results show that RL could be obtained from other drugs, if properly marked with a fluorescent tag, which could be appealing for new forms of combined opto-chemical therapies.

  1. Extracellular control of intracellular drug release for enhanced safety of anti-cancer chemotherapy

    PubMed Central

    Zhu, Qian; Qi, Haixia; Long, Ziyan; Liu, Shang; Huang, Zhen; Zhang, Junfeng; Wang, Chunming; Dong, Lei

    2016-01-01

    The difficulty of controlling drug release at an intracellular level remains a key challenge for maximising drug safety and efficacy. We demonstrate herein a new, efficient and convenient approach to extracellularly control the intracellular release of doxorubicin (DOX), by designing a delivery system that harnesses the interactions between the system and a particular set of cellular machinery. By simply adding a small-molecule chemical into the cell medium, we could lower the release rate of DOX in the cytosol, and thereby increase its accumulation in the nuclei while decreasing its presence at mitochondria. Delivery of DOX with this system effectively prevented DOX-induced mitochondria damage that is the main mechanism of its toxicity, while exerting the maximum efficacy of this anti-cancer chemotherapeutic agent. The present study sheds light on the design of drug delivery systems for extracellular control of intracellular drug delivery, with immediate therapeutic implications. PMID:27334142

  2. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells.

    PubMed

    Martins, Murillo L; Ignazzi, Rosanna; Eckert, Juergen; Watts, Benjamin; Kaneno, Ramon; Zambuzzi, Willian F; Daemen, Luke; Saeki, Margarida J; Bordallo, Heloisa N

    2016-01-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with reduced clearance rate and toxicity. X-rays and neutrons were used to investigate the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. From these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier design is potentially safer to healthy cells. PMID:26932808

  3. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    NASA Astrophysics Data System (ADS)

    Martins, Murillo L.; Ignazzi, Rosanna; Eckert, Juergen; Watts, Benjamin; Kaneno, Ramon; Zambuzzi, Willian F.; Daemen, Luke; Saeki, Margarida J.; Bordallo, Heloisa N.

    2016-03-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with reduced clearance rate and toxicity. X-rays and neutrons were used to investigate the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. From these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier design is potentially safer to healthy cells.

  4. N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs.

    PubMed

    Patil, Siddappa A; Patil, Shivaputra A; Patil, Renukadevi; Keri, Rangappa S; Budagumpi, Srinivasa; Balakrishna, Geetha R; Tacke, Matthias

    2015-01-01

    Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents. PMID:26144266

  5. Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development

    PubMed Central

    Senese, S; Lo, Y C; Huang, D; Zangle, T A; Gholkar, A A; Robert, L; Homet, B; Ribas, A; Summers, M K; Teitell, M A; Damoiseaux, R; Torres, J Z

    2014-01-01

    Cancer cell proliferation relies on the ability of cancer cells to grow, transition through the cell cycle, and divide. To identify novel chemical probes for dissecting the mechanisms governing cell cycle progression and cell division, and for developing new anti-cancer therapeutics, we developed and performed a novel cancer cell-based high-throughput chemical screen for cell cycle modulators. This approach identified novel G1, S, G2, and M-phase specific inhibitors with drug-like properties and diverse chemotypes likely targeting a broad array of processes. We further characterized the M-phase inhibitors and highlight the most potent M-phase inhibitor MI-181, which targets tubulin, inhibits tubulin polymerization, activates the spindle assembly checkpoint, arrests cells in mitosis, and triggers a fast apoptotic cell death. Importantly, MI-181 has broad anti-cancer activity, especially against BRAFV600E melanomas. PMID:25321469

  6. Prioritization of anticancer drugs against a cancer using genomic features of cancer cells: A step towards personalized medicine

    PubMed Central

    Gupta, Sudheer; Chaudhary, Kumardeep; Kumar, Rahul; Gautam, Ankur; Nanda, Jagpreet Singh; Dhanda, Sandeep Kumar; Brahmachari, Samir Kumar; Raghava, Gajendra P. S.

    2016-01-01

    In this study, we investigated drug profile of 24 anticancer drugs tested against a large number of cell lines in order to understand the relation between drug resistance and altered genomic features of a cancer cell line. We detected frequent mutations, high expression and high copy number variations of certain genes in both drug resistant cell lines and sensitive cell lines. It was observed that a few drugs, like Panobinostat, are effective against almost all types of cell lines, whereas certain drugs are effective against only a limited type of cell lines. Tissue-specific preference of drugs was also seen where a drug is more effective against cell lines belonging to a specific tissue. Genomic features based models have been developed for each anticancer drug and achieved average correlation between predicted and actual growth inhibition of cell lines in the range of 0.43 to 0.78. We hope, our study will throw light in the field of personalized medicine, particularly in designing patient-specific anticancer drugs. In order to serve the scientific community, a webserver, CancerDP, has been developed for predicting priority/potency of an anticancer drug against a cancer cell line using its genomic features (http://crdd.osdd.net/raghava/cancerdp/). PMID:27030518

  7. Multicomponent Coculture System of Cancer Cells and Two Types of Stromal Cells for In Vitro Evaluation of Anticancer Drugs.

    PubMed

    Yamazoe, Hironori; Hagihara, Yoshihisa; Kobayashi, Hisayuki

    2016-01-01

    In vitro evaluation of anticancer drugs using cancer cells has long been performed for the development of novel drugs and the selection of effective drugs for different patients. Recent studies have suggested that tumor stromal cells affect the drug sensitivity of cancer cells; however, most conventional culture systems for drug evaluation lack stromal cells. In this study, we fabricated a multicomponent coculture system that takes account of cancer-stroma interactions for drug evaluation. In this system, small-cell and nonsmall-cell lung cancer cells embedded in collagen gel were cocultured with two types of stromal cells, including stromal fibroblasts and proinflammatory cytokine-secreting monocytes, thus recreating the in vivo cancer microenvironment. Cancer drug sensitivity was significantly altered by the presence of stromal cells. Fibroblasts induced resistance of cancer cells to anticancer drugs. Monocytes induced the upregulation of thymidine phosphorylase in cancer cells, promoting the conversion of an anticancer prodrug to a cytotoxic drug, and consequently enhanced the sensitivity of cancer cells to the anticancer prodrug. These results clearly show the importance of incorporating stromal cells into culture systems for drug evaluation. Our system will help to improve the accuracy of in vitro drug evaluation and provide useful information for the in vitro recreation of cancer microenvironments. PMID:26421875

  8. The role of mitoxantrone in non-Hodgkin's lymphoma.

    PubMed

    Armitage, James O

    2002-04-01

    The development of doxorubicin was an important advance in the treatment of patients with non-Hodgkin's lymphoma (NHL). Alternatives to doxorubicin, such as mitoxantrone (Novantrone), have less nonhematologic toxicity and could offer a therapeutic advantage in some situations if similar antilymphoma activity exists. Several combination regimens that include mitoxantrone have been shown to be active. These include mitoxantrone/ifosfamide (Ifex) and mitoxantrone/etoposide combinations as salvage therapy for aggressive lymphomas. Mitoxantrone in combination with fludarabine (Fludara) for the treatment of newly diagnosed follicular lymphomas and in combination with fludarabine and dexamethasone for relapsed/refractory follicular lymphomas has produced high complete response rates. Other evolving uses of mitoxantrone include combination therapy with cladribine (Leustatin) or rituximab (Rituxan), and as part of conditioning regimens for hematopoietic stem cell transplantation. In diffuse aggressive lymphoma, mitoxantrone, 10 mg/m2, substituted for doxorubicin, 50 mg/m2, results in a poorer response when CNOP (cyclophosphamide [Cytoxan, Neosar], mitoxantrone [Novantrone], vincristine [Oncovin], prednisone) is compared to CHOP (cyclophosphamide, doxorubicin HCl vincristine, prednsione); however, increasing the mitoxantrone dose to 12 mg/m2 in either the CNOP or CMP-BOP (cyclophosphamide, mitoxantrone, procarbazine [Matulane], bleomycin [Blenoxane], vincristine, prednisone) regimens yields results comparable to those achieved with the doxorubicin-containing regimen. Comparable results have also been observed when 10 mg/M2 of mitoxantrone was substituted for 45 mg/M2 of doxorubicin in the m-BACOD (methorexate, bleomycin, doxorubicin [Adriamycin], cyclophosphamide, vincristine, dexamethasone) regimen. Mitoxantrone is active in NHL, and combinations including mitoxantrone can be used effectively and may provide an advantage in the elderly. PMID:12017536

  9. Anticancer efficacy and absorption, distribution, metabolism, and toxicity studies of Aspergiolide A in early drug development

    PubMed Central

    Wang, Yuanyuan; Qi, Xin; Li, Dehai; Zhu, Tianjiao; Mo, Xiaomei; Li, Jing

    2014-01-01

    Since the first anthracycline was discovered, many other related compounds have been studied in order to overcome its defects and improve efficacy. In the present paper, we investigated the anticancer effects of a new anthracycline, aspergiolide A (ASP-A), from a marine-derived fungus in vitro and in vivo, and we evaluated the absorption, distribution, metabolism, and toxicity drug properties in early drug development. We found that ASP-A had activity against topoisomerase II that was comparable to adriamycin. ASP-A decreased the growth of various human cancer cells in vitro and induced apoptosis in BEL-7402 cells via a caspase-dependent pathway. The anticancer efficacy of ASP-A on the growth of hepatocellular carcinoma xenografts was further assessed in vivo. Results showed that, compared with the vehicle group, ASP-A exhibited significant anticancer activity with less loss of body weight. A pharmacokinetics and tissue distribution study revealed that ASP-A was rapidly cleared in a first order reaction kinetics manner, and was enriched in cancer tissue. The maximal tolerable dose (MTD) of ASP-A was more than 400 mg/kg, and ASP-A was not considered to be potentially genotoxic or cardiotoxic, as no significant increase of micronucleus rates or inhibition of the hERG channel was seen. Finally, an uptake and transport assay of ASP-A was performed in monolayers of Caco-2 cells, and ASP-A was shown to be absorbed through the active transport pathway. Altogether, these results indicate that ASP-A has anticancer activity targeting topoisomerase II, with a similar structure and mechanism to adriamycin, but with much lower toxicity. Nonetheless, further molecular structure optimization is necessary. PMID:25378909

  10. Photoacoustic “nanobombs” fight against undesirable vesicular compartmentalization of anticancer drugs

    PubMed Central

    Chen, Aiping; Xu, Chun; Li, Min; Zhang, Hailin; Wang, Diancheng; Xia, Mao; Meng, Gang; Kang, Bin; Chen, Hongyuan; Wei, Jiwu

    2015-01-01

    Undesirable intracellular vesicular compartmentalization of anticancer drugs in cancer cells is a common cause of chemoresistance. Strategies aimed at circumventing this problem may improve chemotherapeutic efficacy. We report a novel photophysical strategy for controlled-disruption of vesicular sequestration of the anticancer drug doxorubicin (DOX). Single-walled carbon nanotubes (SWCNTs), modified with folate, were trapped in acidic vesicles after entering lung cancer cells. Upon irradiation by near-infrared pulsed laser, these vesicles were massively broken by the resulting photoacoustic shockwave, and the vesicle-sequestered contents were released, leading to redistribution of DOX from cytoplasm to the target-containing nucleus. Redistribution resulted in 12-fold decrease of the EC50 of DOX in lung cancer cells, and enhanced antitumor efficacy of low-dose DOX in tumor-bearing mice. Side effects were not observed. These findings provide insights of using nanotechnology to improve cancer chemotherapy, i.e. not only for drug delivery, but also for overcoming intracellular drug-transport hurdles. PMID:26483341

  11. Repurposing Drugs in Oncology (ReDO)—nitroglycerin as an anti-cancer agent

    PubMed Central

    Sukhatme, Vidula; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vikas P; Pantziarka, Pan

    2015-01-01

    Nitroglycerin (NTG), a drug that has been in clinical use for more than a century, has a range of actions which make it of particular interest in an oncological setting. It is generally accepted that the main mechanism of action of NTG is via the production of nitric oxide (NO), which improves cardiac oxygenation via multiple mechanisms including improved blood flow (vasodilation), decreased platelet aggregation, increased erythrocyte O2 release and decreased mitochondrial utilization of oxygen. Its vasoactive properties mean that it has the potential to exploit more fully the enhanced permeability and retention effect in delivering anti-cancer drugs to tumour tissues. Moreover NTG can reduce HIF-1α levels in hypoxic tumour tissues and this may have anti-angiogenic, pro-apoptotic and anti-efflux effects. Additionally NTG may enhance anti-tumour immunity. Pre-clinical and clinical data on these anti-cancer properties of NTG are summarised and discussed. While there is evidence of a positive action as a monotherapy in prostate cancer, there are mixed results in NSCLC where initially positive results have yet to be fully replicated. Based on the evidence presented, a case is made that further exploration of the clinical benefits that may accrue to cancer patients is warranted. Additionally, it is proposed that NTG may synergise with a number of other drugs, including other repurposed drugs, and these are discussed in the supplementary material appended to this paper. PMID:26435741

  12. Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity.

    PubMed

    McMillin, Douglas W; Delmore, Jake; Weisberg, Ellen; Negri, Joseph M; Geer, D Corey; Klippel, Steffen; Mitsiades, Nicholas; Schlossman, Robert L; Munshi, Nikhil C; Kung, Andrew L; Griffin, James D; Richardson, Paul G; Anderson, Kenneth C; Mitsiades, Constantine S

    2010-04-01

    Conventional anticancer drug screening is typically performed in the absence of accessory cells of the tumor microenvironment, which can profoundly alter antitumor drug activity. To address this limitation, we developed the tumor cell-specific in vitro bioluminescence imaging (CS-BLI) assay. Tumor cells (for example, myeloma, leukemia and solid tumors) stably expressing luciferase are cultured with nonmalignant accessory cells (for example, stromal cells) for selective quantification of tumor cell viability, in presence versus absence of stromal cells or drug treatment. CS-BLI is high-throughput scalable and identifies stroma-induced chemoresistance in diverse malignancies, including imatinib resistance in leukemic cells. A stroma-induced signature in tumor cells correlates with adverse clinical prognosis and includes signatures for activated Akt, Ras, NF-kappaB, HIF-1alpha, myc, hTERT and IRF4; for biological aggressiveness; and for self-renewal. Unlike conventional screening, CS-BLI can also identify agents with increased activity against tumor cells interacting with stroma. One such compound, reversine, shows more potent activity in an orthotopic model of diffuse myeloma bone lesions than in conventional subcutaneous xenografts. Use of CS-BLI, therefore, enables refined screening of candidate anticancer agents to enrich preclinical pipelines with potential therapeutics that overcome stroma-mediated drug resistance and can act in a synthetic lethal manner in the context of tumor-stroma interactions. PMID:20228816

  13. Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system

    NASA Astrophysics Data System (ADS)

    Oh, Jae-Min; Park, Man; Kim, Sang-Tae; Jung, Jin-Young; Kang, Yong-Gu; Choy, Jin-Ho

    2006-05-01

    We have been successful to intercalate anticancer drug, methotrexate (MTX), into layered double hydroxides (LDHs), Mg2Al(OH)6(NO3)·0.1H2O, through conventional co-precipitation method. Layered double hydroxides (LDHs) are endowed with great potential for delivery vector, since their cationic layers lead to safe reservation of biofunctional molecules such as drug molecules or genes. And their ion exchangeability and solubility in acidic media (pH<4) give rise to the controlled release of drug molecules. Moreover, it has been partly confirmed that LDH itself is non-toxic and facilitate the cellular permeation. To check the toxicity of LDHs, the osteosarcoma cell culture lines (Saos-2 and MG-63) and the normal one (human fibroblast) were used for in vitro test. The anticancer efficacy of MTX intercalated LDHs (MTX-LDH nanohybrids) was also estimated in vitro by the bioassay such as MTT and BrdU (5-bromo-2-deoxyuridine) with the bone cancer cell culture lines (Saos-2 and MG-63). According to the toxicity test results, LDHs do not harm to both the normal and cancer cells upto the concentration of 500 ug/mL. The anticancer efficacy test for the MTX-LDH nanohybrids turn out to be much more effective in cell suppression compared to the MTX itself. According to the cell-line tests, the MTX-LDH shows same drug efficacy to the MTX itself in spite of the low concentration by ˜5000 times. Such a high cancer suppression effect of MTX-LDH hybrid is surely due to the excellent delivery efficiency of inorganic delivery vector, LDHs.

  14. Characteristics of pharmacogenomics/biomarker-guided clinical trials for regulatory approval of anti-cancer drugs in Japan.

    PubMed

    Ishiguro, Akihiro; Yagi, Satomi; Uyama, Yoshiaki

    2013-06-01

    Pharmacogenomics (PGx) or biomarker (BM) has the potential to facilitate the development of safer and more effective drugs in terms of their benefit/risk profiles by stratifying population into categories such as responders/non-responders and high-/low-risks to drug-induced serious adverse reactions. In the past decade, practical use of PGx or BM has advanced the field of anti-cancer drug development. To identify the characteristics of the PGx/BM-guided clinical trials for regulatory approval of anti-cancer drugs in Japan, we collected information on design features of 'key trials' in the review reports of anti-cancer drugs that were approved after the implementation of the 'Revised Guideline for the Clinical Evaluation of Anti-cancer drugs' in April 2006. On the basis of the information available on the regulatory review data for the newly approved anti-cancer drugs in Japan, this article aims to explain the limitations and points to consider in the study design of PGx/BM-guided clinical trials. PMID:23657427

  15. Repositioning of Tyrosine Kinase Inhibitors as Antagonists of ATP-Binding Cassette Transporters in Anticancer Drug Resistance

    PubMed Central

    Wang, Yi-Jun; Zhang, Yun-Kai; Kathawala, Rishil J.; Chen, Zhe-Sheng

    2014-01-01

    The phenomenon of multidrug resistance (MDR) has attenuated the efficacy of anticancer drugs and the possibility of successful cancer chemotherapy. ATP-binding cassette (ABC) transporters play an essential role in mediating MDR in cancer cells by increasing efflux of drugs from cancer cells, hence reducing the intracellular accumulation of chemotherapeutic drugs. Interestingly, small-molecule tyrosine kinase inhibitors (TKIs), such as AST1306, lapatinib, linsitinib, masitinib, motesanib, nilotinib, telatinib and WHI-P154, have been found to have the capability to overcome anticancer drug resistance by inhibiting ABC transporters in recent years. This review will focus on some of the latest and clinical developments with ABC transporters, TKIs and anticancer drug resistance. PMID:25268163

  16. The status of platinum anticancer drugs in the clinic and in clinical trials.

    PubMed

    Wheate, Nial J; Walker, Shonagh; Craig, Gemma E; Oun, Rabbab

    2010-09-21

    Since its approval in 1979 cisplatin has become an important component in chemotherapy regimes for the treatment of ovarian, testicular, lung and bladder cancers, as well as lymphomas, myelomas and melanoma. Unfortunately its continued use is greatly limited by severe dose limiting side effects and intrinsic or acquired drug resistance. Over the last 30 years, 23 other platinum-based drugs have entered clinical trials with only two (carboplatin and oxaliplatin) of these gaining international marketing approval, and another three (nedaplatin, lobaplatin and heptaplatin) gaining approval in individual nations. During this time there have been more failures than successes with the development of 14 drugs being halted during clinical trials. Currently there are four drugs in the various phases of clinical trial (satraplatin, picoplatin, Lipoplatin and ProLindac). No new small molecule platinum drug has entered clinical trials since 1999 which is representative of a shift in focus away from drug design and towards drug delivery in the last decade. In this perspective article we update the status of platinum anticancer drugs currently approved for use, those undergoing clinical trials and those discontinued during clinical trials, and discuss the results in the context of where we believe the field will develop over the next decade. PMID:20593091

  17. Transmembrane delivery of anticancer drugs through self-assembly of cyclic peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Zhang, Bei; Xia, Fei; Xie, Yunchang; Jiang, Sifan; Su, Rui; Lu, Yi; Wu, Wei

    2016-03-01

    Breaking the natural barriers of cell membranes achieves fast entry of therapeutics, which leads to enhanced efficacy and helps overcome multiple drug resistance. Herein, transmembrane delivery of a series of small molecule anticancer drugs was achieved by the construction of artificial transmembrane nanochannels formed by self-assembly of cyclic peptide (cyclo[Gln-(d-Leu-Trp)4-d-Leu], CP) nanotubes (CPNTs) in the lipid bilayers. Our in vitro study in liposomes indicated that the transport of molecules with sizes smaller than 1.0 nm, which is the internal diameter of the CPNTs, could be significantly enhanced by CPNTs in a size-selective and dose-dependent manner. Facilitated uptake of 5-fluorouracil (5-FU) was also confirmed in the BEL7402 cell line. On the contrary, CPs could facilitate neither the transport across liposomal membranes nor the uptake by cell lines of cytarabine, a counterevidence drug with a size of 1.1 nm. CPs had a very weak anticancer efficacy, but could significantly reduce the IC50 of 5-FU in BEL7402, HeLa and S180 cell lines. Analysis by a q test revealed that a combination of 5-FU and CP had a synergistic effect in BEL7402 at all CP levels, in S180 at CP levels higher than 64 μg mL-1, but not in HeLa, where an additive effect was observed. Temporarily, intratumoral injection is believed to be the best way for CP administration. In vivo imaging using 125I radio-labelled CP confirmed that CPNPTs were completely localized in the tumor tissues, and translocation to other tissues was negligible. In vivo anticancer efficacy was studied in the grafted S180 solid tumor model in mice, and the results indicated that tumor growth was greatly inhibited by the combinatory use of 5-FU and CP, and a synergistic effect was observed at CP doses of 0.25 mg per kg bw. It is concluded that facilitated transmembrane delivery of anticancer drugs with sizes smaller than 1.0 nm was achieved, and the synergistic anticancer effect was confirmed both in cell lines

  18. Pharmacokinetic Interaction of Rifampicin with Oral Versus Intravenous Anticancer Drugs: Challenges, Dilemmas and Paradoxical Effects Due to Multiple Mechanisms.

    PubMed

    Srinivas, Nuggehally R

    2016-06-01

    Since many drugs are cytochrome P450 (CYP)-3A4 substrates, it has become common practice to assess drug-drug interaction (DDI) potential with a CYP3A4 inhibitor (ketoconazole) or inducer (rifampicin) in early drug development. Such an evaluation is relevant to anticancer drugs with metabolism governed by CYP3A4. DDIs with rifampicin are complex, involving other physiological mechanisms that may impact overall pharmacokinetics. Our objective was to study and delineate such mechanisms for oral versus intravenous anticancer drugs. We hypothesized that DDIs between anticancer drugs and rifampicin were primarily driven by CYP3A4 induction. This hypothesis was proven for the oral anticancer drugs; however, in some cases, other intrinsic mechanisms such as P-glycoprotein (Pgp)/UDP glucuronosyl transferase (UGT) induction and transporter inhibition may have played an important role alongside the induced CYP3A4 enzymes. The hypothesis that CYP3A4 induction would decrease drug exposure appeared paradoxical for intravenous romidepsin and-to a somewhat lesser extent-for cabazitaxel. In light of this dilemma in the interpretation of the pharmacokinetic data with rifampicin, several questions require further consideration. Given the complexity and paradoxical effects arising with DDIs with rifampicin, the continued preference for rifampicin as CYP3A4 inducer needs immediate re-appraisal. PMID:27098526

  19. Paralytic ileus due to a novel anticancer drug, nab-paclitaxel: A case report

    PubMed Central

    JIAO, XIAO-DONG; LUO, XIU; QIN, WEN-XING; YUAN, LING-YAN; ZANG, YUAN-SHENG

    2016-01-01

    Nab-paclitaxel is a recently emerged chemotherapy drug, which is widely used for the treatment of multiple types of cancer. The prospects of this novel drug are very bright as a result of its higher efficacy and lower toxicity compared with paclitaxel. Hence, the side effect, even if rare, require attention in clinical practice. The present study described an unusual case of nab-paclitaxel-associated paralytic ileus. To the best of our knowledge, this is the first report to demonstrate that nab-paclitaxel may lead to acute intestinal obstruction. Since nab-paclitaxel will be used more frequently, this unusual side effect might be encountered by a clinical oncologist and must be treated correctly. This is the first reported case, to the best of our knowledge, of paralytic ileus caused by nab-paclitaxel, which will be widely used as a novel anticancer drug. PMID:27123288

  20. Mycoplasma hyorhinis-encoded cytidine deaminase efficiently inactivates cytosine-based anticancer drugs.

    PubMed

    Vande Voorde, Johan; Vervaeke, Peter; Liekens, Sandra; Balzarini, Jan

    2015-01-01

    Mycoplasmas may colonize tumor tissue in patients. The cytostatic activity of gemcitabine was dramatically decreased in Mycoplasma hyorhinis-infected tumor cell cultures compared with non-infected tumor cell cultures. This mycoplasma-driven drug deamination could be prevented by exogenous administration of the cytidine deaminase (CDA) inhibitor tetrahydrouridine, but also by the natural nucleosides or by a purine nucleoside phosphorylase inhibitor. The M. hyorhinis-encoded CDAHyor gene was cloned, expressed as a recombinant protein and purified. CDAHyor was found to be more catalytically active than its human equivalent and efficiently deaminates (inactivates) cytosine-based anticancer drugs. CDAHyor expression at the tumor site may result in selective drug inactivation and suboptimal therapeutic efficiency. PMID:26322268

  1. How strong is the edge effect in the adsorption of anticancer drugs on a graphene cluster?

    PubMed

    Rungnim, Chompoonut; Chanajaree, Rungroj; Rungrotmongkol, Thanyada; Hannongbua, Supot; Kungwan, Nawee; Wolschann, Peter; Karpfen, Alfred; Parasuk, Vudhichai

    2016-04-01

    The adsorption of nucleobase-analog anticancer drugs (fluorouracil, thioguanine, and mercaptopurine) on a graphene flake (C54H18) was investigated by shifting the site at which adsorption occurs from one end of the sheet to the other end. The counterpoise-corrected M06-2X/cc-pVDZ binding energies revealed that the binding stability decreases in the sequence thioguanine > mercaptopurine > fluorouracil. We found that adsorption near the middle of the sheet is more favorable than adsorption near the edge due to the edge effect. This edge effect is stronger for the adsorption of thioguanine or mercaptopurine than for fluorouracil adsorption. However, the edge effect reduces the binding energy of the drug to the flake by only a small amount, <5 kcal/mol, depending on the adsorption site and the alignment of the drug at this site. PMID:26994019

  2. The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity

    PubMed Central

    Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A.; Kim, Sungjoon; Wilson, Christopher J.; Lehár, Joseph; Kryukov, Gregory V.; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F.; Monahan, John E.; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A.; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H.; Cheng, Jill; Yu, Guoying K.; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D.; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C.; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P.; Gabriel, Stacey B.; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E.; Weber, Barbara L.; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L.; Meyerson, Matthew; Golub, Todd R.; Morrissey, Michael P.; Sellers, William R.; Schlegel, Robert; Garraway, Levi A.

    2012-01-01

    The systematic translation of cancer genomic data into knowledge of tumor biology and therapeutic avenues remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacologic annotation is available1. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number, and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacologic profiles for 24 anticancer drugs across 479 of the lines, this collection allowed identification of genetic, lineage, and gene expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Altogether, our results suggest that large, annotated cell line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of “personalized” therapeutic regimens2. PMID:22460905

  3. Layered double hydroxides as effective carrier for anticancer drugs and tailoring of release rate through interlayer anions.

    PubMed

    Senapati, Sudipta; Thakur, Ravi; Verma, Shiv Prakash; Duggal, Shivali; Mishra, Durga Prasad; Das, Parimal; Shripathi, T; Kumar, Mohan; Rana, Dipak; Maiti, Pralay

    2016-02-28

    Hydrophobic anticancer drug, raloxifene hydrochloride (RH) is intercalated into a series of magnesium aluminum layered double hydroxides (LDHs) with various charge density anions through ion exchange technique for controlled drug delivery. The particle nature of the LDH in presence of drug is determined through electron microscopy and surface morphology. The release of drug from the RH intercalated LDHs was made very fast or sustained by altering the exchangeable anions followed by the modified Freundlich and parabolic diffusion models. The drug release rate is explained from the interactions between the drug and LDHs along with order-disorder structure of drug intercalated LDHs. Nitrate bound LDH exhibits greater interaction with drug and sustained drug delivery against the loosely interacted phosphate bound LDH-drug, which shows fast release. Cell viability through MTT assay suggests drug intercalated LDHs as better drug delivery vehicle for cancer cell line against poor bioavailability of the pure drug. In vivo study with mice indicates the differential tumor healing which becomes fast for greater drug release system but the body weight index clearly hints at damaged organ in the case of fast release system. Histopathological experiment confirms the damaged liver of the mice treated either with pure drug or phosphate bound LDH-drug, fast release system, vis-à-vis normal liver cell morphology for sluggish drug release system with steady healing rate of tumor. These observations clearly demonstrate that nitrate bound LDH nanoparticle is a potential drug delivery vehicle for anticancer drugs without any side effect. PMID:26774219

  4. Guidelines for the practical stability studies of anticancer drugs: a European consensus conference.

    PubMed

    Bardin, C; Astier, A; Vulto, A; Sewell, G; Vigneron, J; Trittler, R; Daouphars, M; Paul, M; Trojniak, M; Pinguet, F

    2011-07-01

    Stability studies performed by the pharmaceutical industry are only designed to fulfill licensing requirements. Thus, post-dilution or -reconstitution stability data are frequently limited to 24h only for bacteriological reasons regardless of the true chemical stability which could, in many cases, be longer. In practice, the pharmacy-based centralized preparation may require infusions to be made several days in advance to provide, for example, the filling of ambulatory devices for continuous infusions or batch preparations for dose banding. Furthermore, a non-justified limited stability for expensive products is obviously very costly. Thus, there is a compelling need for additional stability data covering practical uses of anticancer drugs. A European conference consensus was held in France, May 2010, under the auspices of the French Society of Oncology Pharmacy (SFPO) to propose adapted rules on stability in practical situations and guidelines to perform corresponding stability studies. For each anticancer drug, considering their therapeutic index, the pharmacokinetics/pharmacodynamics (PK/PD) variability, specific clinical use and risks related to degradation products, the classical limit of 10% of degradation can be inappropriate. Therefore, acceptance limits must be clinically relevant and should be defined for each drug individually. Design of stability studies has to reflect the different needs of the clinical practice (preparation for the week-ends, outpatient transportations, implantable devices, dose banding…). It is essential to use validated stability-indicating methods, separating degradation products being formed in the practical use of the drug. Sequential temperature designs should be encouraged to replicate problems seen in daily practice such as rupture of the cold-chain or temperature-cycling between refrigerated storage and ambient in-use conditions. Stressed conditions are recommended to evaluate not only the role of classical variables (p

  5. Cytotoxic Activity of Anticancer Drugs on Hepatocellular Carcinoma Cells in Hypoxic-Hyponutritional Culture

    PubMed Central

    Li, Qiang; Zhu, Lin-Zhong; Yang, Ren-Jie; Zhu, Xu

    2014-01-01

    To investigate which anticancer drugs and combination of dual drugs could further promote the inhibition of cell growth in vitro against HCC cell line (HepG2) in the hypoxic and hyponutritional culture medium (HHCM) mimicked the different scenarios of transcatheter arterial chemoembolization (TACE). The cells of hepatocellular carcinoma (HCC) treated by TACE suffered various hypoxia and hyponutrition. The cells were treated for 2 hours, 4 hours, 6 hours, and 24 hours, respectively, using 10 drugs including epirubicin (EPI), cisplatin (DDP), mitomycin-C (MMC), oxaliplatin (OXA), hydroxycamptothecin (HCPT), 5-fluorouracil (5-FU), gemcitabine (GEM), docetaxel (DTX), thiotepa (TSPA), and pemetrexed disodium (PEM) in 4 concentrations of HHCM (5%, 10%, 25%, and 50%, respectively) mimicking the scenario of TACE and were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells treated with combinations of dual drugs for 24 hours were also tested. The sensitive drugs with inhibition rates more than 30% were EPI, MMC, HCPT, OXA, and PEM in 4 types of HHCMs. The sensitivity of the cells to treatment with drugs for 24 hours was significantly higher than the sensitivity of the cells to treatment with drugs for 2 hours in 5%, 10%, and 25% HHCM. The sensitivity of the combination of dual drugs was no more than the sensitivity of the single drug with higher sensitivity in 4 concentrations of HHCM. EPI, MMC, HCPT, OXA, and PEM exhibited cytotoxic activity against HepG2 cells in various hypoxia and hyponutrition states. Prolonging the time of exposure could increase the sensitivity of drug, and the combination of dual drugs cannot enhance the cytotoxic effect. PMID:25437582

  6. Cytotoxic activity of anticancer drugs on hepatocellular carcinoma cells in hypoxic-hyponutritional culture.

    PubMed

    Li, Qiang; Zhu, Lin-Zhong; Yang, Ren-Jie; Zhu, Xu

    2014-01-01

    To investigate which anticancer drugs and combination of dual drugs could further promote the inhibition of cell growth in vitro against HCC cell line (HepG2) in the hypoxic and hyponutritional culture medium (HHCM) mimicked the different scenarios of transcatheter arterial chemoembolization (TACE). The cells of hepatocellular carcinoma (HCC) treated by TACE suffered various hypoxia and hyponutrition. The cells were treated for 2 hours, 4 hours, 6 hours, and 24 hours, respectively, using 10 drugs including epirubicin (EPI), cisplatin (DDP), mitomycin-C (MMC), oxaliplatin (OXA), hydroxycamptothecin (HCPT), 5-fluorouracil (5-FU), gemcitabine (GEM), docetaxel (DTX), thiotepa (TSPA), and pemetrexed disodium (PEM) in 4 concentrations of HHCM (5%, 10%, 25%, and 50%, respectively) mimicking the scenario of TACE and were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells treated with combinations of dual drugs for 24 hours were also tested. The sensitive drugs with inhibition rates more than 30% were EPI, MMC, HCPT, OXA, and PEM in 4 types of HHCMs. The sensitivity of the cells to treatment with drugs for 24 hours was significantly higher than the sensitivity of the cells to treatment with drugs for 2 hours in 5%, 10%, and 25% HHCM. The sensitivity of the combination of dual drugs was no more than the sensitivity of the single drug with higher sensitivity in 4 concentrations of HHCM. EPI, MMC, HCPT, OXA, and PEM exhibited cytotoxic activity against HepG2 cells in various hypoxia and hyponutrition states. Prolonging the time of exposure could increase the sensitivity of drug, and the combination of dual drugs cannot enhance the cytotoxic effect. PMID:25437582

  7. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy

    PubMed Central

    He, Yingna; Zhang, Linhua; Zhu, Dunwan; Song, Cunxian

    2014-01-01

    Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs) as a magnetic resonance imaging (MRI) contrast agent and anticancer drug, mitoxantrone (Mit), were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML) showed significantly increased uptake in luteinizing hormone–releasing hormone (LHRH) receptor overexpressing MCF-7 (Michigan Cancer Foundation-7) breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML) control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3) cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer. PMID:25187709

  8. Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications

    PubMed Central

    Nadeem, Muhammad; Ahmad, Munir; Akhtar, Muhammad Saeed; Shaari, Amiruddin; Riaz, Saira; Naseem, Shahzad; Masood, Misbah; Saeed, M. A.

    2016-01-01

    The current study emphasizes the synthesis of iron oxide nanoparticles (IONPs) and impact of hydrophilic polymer polyvinyl alcohol (PVA) coating concentration as well as anticancer drug doxorubicin (DOX) loading on saturation magnetization for target drug delivery applications. Iron oxide nanoparticles particles were synthesized by a reformed version of the co-precipitation method. The coating of polyvinyl alcohol along with doxorubicin loading was carried out by the physical immobilization method. X-ray diffraction confirmed the magnetite (Fe3O4) structure of particles that remained unchanged before and after polyvinyl alcohol coating and drug loading. Microstructure and morphological analysis was carried out by transmission electron microscopy revealing the formation of nanoparticles with an average size of 10 nm with slight variation after coating and drug loading. Transmission electron microscopy, energy dispersive, and Fourier transform infrared spectra further confirmed the conjugation of polymer and doxorubicin with iron oxide nanoparticles. The room temperature superparamagnetic behavior of polymer-coated and drug-loaded magnetite nanoparticles were studied by vibrating sample magnetometer. The variation in saturation magnetization after coating evaluated that a sufficient amount of polyvinyl alcohol would be 3 wt. % regarding the externally controlled movement of IONPs in blood under the influence of applied magnetic field for in-vivo target drug delivery. PMID:27348436

  9. Single-phased luminescent mesoporous nanoparticles for simultaneous cell imaging and anticancer drug delivery.

    PubMed

    Di, Weihua; Ren, Xinguang; Zhao, Haifeng; Shirahata, Naoto; Sakka, Yoshio; Qin, Weiping

    2011-10-01

    Multifunctional materials for biological use have mostly been designed with composite or hybrid nanostructures in which two or more components are incorporated. The present work reports on a multifunctional biomaterial based on single-phased luminescent mesoporous lanthanide oxide nanoparticles that combine simultaneous drug delivery and cell imaging. A simple strategy based on solid-state-chemistry thermal decomposition process was employed to fabricate the spherical mesoporous Gd(2)O(3):Eu nanoparticles with homogeneous size distribution. The porous nanoparticles developed by this strategy possess well-defined mesopores, large pore size and volume, and high specific surface area. The mesoporous features of nanoparticles impart the material with capabilities of loading and releasing the drug with a relatively high loading efficiency and a sustained release behavior of drugs. The DOX-loaded porous Gd(2)O(3) nanoparticles are able to kill the cancer cells efficiently upon incubation with the human cervical carcinoma (HeLa) cells, indicating the potential for treatment of cancer cells. Meanwhile, the intrinsic luminescence of Gd(2)O(3):Eu nanoparticles gives the function of optical imaging. Therefore, the drug release activity and effect of drugs on the cells can be effectively monitored via luminescence of nanoparticles themselves, realizing multifunctionality of simultaneous cell imaging and anticancer drug delivery in a single-phased nanoparticle. PMID:21745687

  10. Current Advances in Mathematical Modeling of Anti-Cancer Drug Penetration into Tumor Tissues

    PubMed Central

    Kim, MunJu; Gillies, Robert J.; Rejniak, Katarzyna A.

    2013-01-01

    Delivery of anti-cancer drugs to tumor tissues, including their interstitial transport and cellular uptake, is a complex process involving various biochemical, mechanical, and biophysical factors. Mathematical modeling provides a means through which to understand this complexity better, as well as to examine interactions between contributing components in a systematic way via computational simulations and quantitative analyses. In this review, we present the current state of mathematical modeling approaches that address phenomena related to drug delivery. We describe how various types of models were used to predict spatio-temporal distributions of drugs within the tumor tissue, to simulate different ways to overcome barriers to drug transport, or to optimize treatment schedules. Finally, we discuss how integration of mathematical modeling with experimental or clinical data can provide better tools to understand the drug delivery process, in particular to examine the specific tissue- or compound-related factors that limit drug penetration through tumors. Such tools will be important in designing new chemotherapy targets and optimal treatment strategies, as well as in developing non-invasive diagnosis to monitor treatment response and detect tumor recurrence. PMID:24303366