Science.gov

Sample records for anticancer platinum complexes

  1. Anticancer activity assessment of two novel binuclear platinum (II) complexes.

    PubMed

    Shahsavani, Mohammad Bagher; Ahmadi, Shamseddin; Aseman, Marzieh Dadkhah; Nabavizadeh, S Masoud; Rashidi, Mehdi; Asadi, Zahra; Erfani, Nasrollah; Ghasemi, Atiyeh; Saboury, Ali Akbar; Niazi, Ali; Bahaoddini, Aminollah; Yousefi, Reza

    2016-08-01

    In the current study, two binuclear Pt (II) complexes, containing cis, cis-[Me2Pt (μ-NN) (μ-dppm) PtMe2] (1), and cis,cis-[Me2Pt(μ-NN)(μ dppm) Pt((CH2)4)] (2) in which NN=phthalazine and dppm=bis (diphenylphosphino) methane were evaluated for their anticancer activities and DNA/purine nucleotide binding properties. These Pt (II) complexes, with the non-classical structures, demonstrated a significant anticancer activity against Jurkat and MCF-7 cancer cell lines. The results of ethidium bromide/acridine orange staining and Caspase-III activity suggest that these complexes were capable to stimulate an apoptotic mechanism of cell death in the cancer cells. Using different biophysical techniques and docking simulation analysis, we indicated that these complexes were also capable to interact efficiently with DNA via a non-intercalative mechanism. According to our results, substitution of cyclopentane (in complex 2) with two methyl groups (in complex 1) results in significant improvement of the complex ability to interact with DNA and subsequently to induce the anticancer activity. Overall, these binuclear Pt (II) complexes are promising group of the non-classical potential anticancer agents which can be considered as molecular templates in designing of highly efficient platinum anticancer drugs. PMID:27289447

  2. Development of Platinum(iv) Complexes as Anticancer Prodrugs: the Story so Far

    NASA Astrophysics Data System (ADS)

    Wong, Daniel Yuan Qiang; Ang, Wee Han

    2012-06-01

    The serendipitous discovery of the antitumor properties of cisplatin by Barnett Rosenberg some forty years ago brought about a paradigm shift in the field of medicinal chemistry and challenged conventional thinking regarding the role of potentially toxic heavy metals in drugs. Platinum(II)-based anticancer drugs have since become some of the most effective and widely-used drugs in a clinician's arsenal and have saved countless lives. However, they are limited by high toxicity, severe side-effects and the incidence of drug resistance. In recent years, attention has shifted to stable platinum(IV) complexes as anticancer prodrugs. By exploiting the unique chemical and structural attributes of their scaffolds, these platinum(IV) prodrugs offer new strategies of targeting and killing cancer cells. This review summarizes the development of anticancer platinum(IV) prodrugs to date and some of the exciting strategies that utilise the platinum(IV) construct as targeted chemotherapeutic agents against cancer.

  3. Robust Structure and Reactivity of Aqueous Arsenous Acid-Platinum(II) Anticancer Complexes**

    PubMed Central

    Miodragović, Ðenana U.; Quentzel, Jeremy A.; Kurutz, Josh W.; Stern, Charlotte L.; Ahn, Richard W.; Kandela, Irawati; Mazar, Andrew; O’Halloran, Thomas V.

    2014-01-01

    The first molecular adducts of platinum and arsenic based anticancer drugs - arsenoplatins - show unanticipated structure, substitution chemistry, and cellular cytotoxicity. The PtII-AsIII bonds in these complexes are stable in aqueous solution and strongly influence the lability of the trans ligand. PMID:24038962

  4. DNA binding and anticancer activity of novel cyclometalated platinum (II) complexes.

    PubMed

    Mohammadi, Roghayeh; Yousefi, Reza; Aseman, Marzieh Dadkhah; Nabavizadeh, S Masoud; Rashidi, Mehdi

    2015-01-01

    This study describes anticancer activity and DNA binding properties of two cyclometalated platinum (II) complexes with non-leaving lipophilic ligands; deprotonated 2-phenylpryidine (ppy): C1 and deprotonated benzo[h] quinolone (bhq): C2. Both complexes demonstrate significant anticancer activity and were capable to stimulate Caspase-III activity in Jurkat cancer cells. The results of Acridine orange/Ethidium bromide(AO/EtB), along with those of Caspase-III activity suggest that these complexes can induce apoptosis in the cancer cells. Moreover, C1 with flexible chemical structure indicates considerably higher anticancer activity than C2 which possesses a higher structural rigidity. Additionally, C2 represents a complex which is in part inducing cancer cell death due to the cell injury (necrosis). The absorption spectra of DNA demonstrate a hypochromic effect in the presence of increasing concentration of these complexes, reflecting DNA structural alteration after drug binding. Also, EtB competition assay and docking results revealed partial intercalation and DNA groove binding for the metal complexes. Overall, from the therapeutic point of view, ppy containing platinum complex (C1) is a favored anticancer agent, because it induces signaling cell death (apoptosis) in cancer cells, and lacks the necrotic effect. PMID:25482721

  5. Nanocarriers for delivery of platinum anticancer drugs☆

    PubMed Central

    Oberoi, Hardeep S.; Nukolova, Natalia V.; Kabanov, Alexander V.; Bronich, Tatiana K.

    2014-01-01

    Platinum based anticancer drugs have revolutionized cancer chemotherapy, and continue to be in widespread clinical use especially for management of tumors of the ovary, testes, and the head and neck. However, several dose limiting toxicities associated with platinum drug use, partial anti-tumor response in most patients, development of drug resistance, tumor relapse, and many other challenges have severely limited the patient quality of life. These limitations have motivated an extensive research effort towards development of new strategies for improving platinum therapy. Nanocarrier-based delivery of platinum compounds is one such area of intense research effort beginning to provide encouraging preclinical and clinical results and may allow the development of the next generation of platinum chemotherapy. This review highlights current understanding on the pharmacology and limitations of platinum compounds in clinical use, and provides a comprehensive analysis of various platinum–polymer complexes, micelles, dendrimers, liposomes and other nanoparticles currently under investigation for delivery of platinum drugs. PMID:24113520

  6. Amide Coupling Reaction for the Synthesis of Bispyridine-based Ligands and Their Complexation to Platinum as Dinuclear Anticancer Agents

    PubMed Central

    Apps, Michael G.; Johnson, Ben W.; Sutcliffe, Oliver B.; Brown, Sarah D.; Wheate, Nial J.

    2014-01-01

    Amide coupling reactions can be used to synthesize bispyridine-based ligands for use as bridging linkers in multinuclear platinum anticancer drugs. Isonicotinic acid, or its derivatives, are coupled to variable length diaminoalkane chains under an inert atmosphere in anhydrous DMF or DMSO with the use of a weak base, triethylamine, and a coupling agent, 1-propylphosphonic anhydride. The products precipitate from solution upon formation or can be precipitated by the addition of water. If desired, the ligands can be further purified by recrystallization from hot water. Dinuclear platinum complex synthesis using the bispyridine ligands is done in hot water using transplatin. The most informative of the chemical characterization techniques to determine the structure and gross purity of both the bispyridine ligands and the final platinum complexes is 1H NMR with particular analysis of the aromatic region of the spectra (7-9 ppm). The platinum complexes have potential application as anticancer agents and the synthesis method can be modified to produce trinuclear and other multinuclear complexes with different hydrogen bonding functionality in the bridging ligand. PMID:24893964

  7. Enhanced anti-cancer efficacy to cancer cells by doxorubicin loaded water-soluble amino acid-modified β-cyclodextrin platinum complexes.

    PubMed

    Zhao, Mei-Xia; Zhao, Meng; Zeng, Er-Zao; Li, Yang; Li, Jin-Ming; Cao, Qian; Tan, Cai-Ping; Ji, Liang-Nian; Mao, Zong-Wan

    2014-08-01

    The effective targeted delivery of insoluble anticancer drugs to increase the intracellular drug concentration has become a focus in cancer therapy. In this system, two water-soluble amino acid-modified β-cyclodextrin (β-CD) platinum complexes were reported. They showed preferable binding ability to DNA and effective inhibition to cancer cells, and they could bind and unwind pBR322 DNA in a manner which was similar to cisplatin. Besides, our platinum complexes could effectively deliver the anticancer drug doxorubicin (Dox) into cells and had higher cell inhibition ratio, but less toxicity on the normal cells, compared with cancer cells. In this combination system, Dox was encapsulated into the hydrophobic cavities of β-CD at the optimum molar ratio of 1:1, which were validated by UV-visible (UV-vis) absorption spectroscopy, fluorescence spectroscopy and MTT experiments. Moreover, the combination system had higher cell inhibition ratio than free Dox and amino acid-modified β-CD platinum complexes, and the results of high content screening (HCS) showed that Dox-loaded amino acid-modified β-CD platinum complexes could permeate the cell membrane and enter cells, suggesting the efficient transport of Dox across the membranes with the aid of the β-CD. We expect that the amino acid-modified β-CD platinum complexes will deliver the antitumor drug Dox to enhance intracellular drug accumulation and such combination system showed great potential as an antitumor drug. PMID:24803024

  8. Novel Anticancer Platinum(IV) Complexes with Adamantylamine: Their Efficiency and Innovative Chemotherapy Strategies Modifying Lipid Metabolism.

    PubMed

    Kozubík, Alois; Vaculová, Alena; Soucek, Karel; Vondrácek, Jan; Turánek, Jaroslav; Hofmanová, Jirina

    2008-01-01

    The impressive impact of cisplatin on cancer on one side and severe side effects, as well as the development of drug resistance during treatment on the other side, were the factors motivating scientists to design and synthesize new more potent analogues lacking disadvantages of cisplatin. Platinum(IV) complexes represent one of the perspective groups of platinum-based drugs. In this review, we summarize recent findings on both in vitro and in vivo effects of platinum(IV) complexes with adamantylamine. Based on a literary overview of the mechanisms of activity of platinum-based cytostatics, we discuss opportunities for modulating the effects of novel platinum complexes through interactions with apoptotic signaling pathways and with cellular lipids, including modulations of the mitochondrial cell death pathway, oxidative stress, signaling of death ligands, lipid metabolism/signaling, or intercellular communication. These approaches might significantly enhance the efficacy of both novel and established platinum-based cytostatics. PMID:18414587

  9. Spin-labelled photo-cytotoxic diazido platinum(iv) anticancer complex.

    PubMed

    Venkatesh, V; Wedge, Christopher J; Romero-Canelón, Isolda; Habtemariam, Abraha; Sadler, Peter J

    2016-08-16

    We report the synthesis and characterisation of the nitroxide spin-labelled photoactivatable Pt(iv) prodrug trans,trans,trans-[Pt(N3)2(OH)(OCOCH2CH2CONH-TEMPO)(Py)2] (Pt-TEMPO, where TEMPO = 2,2,6,6-tetramethylpiperidine 1-oxyl). Irradiation with blue visible light gave rise to Pt(ii) and azidyl as well as nitroxyl radicals. Pt-TEMPO exhibited low toxicity in the dark, but on photoactivation was as active towards human ovarian cancer cells as the clinical photosensitizer chlorpromazine and much more active than the anticancer drug cisplatin under the conditions used. PMID:27189101

  10. Two mixed-NH3/amine platinum (II) anticancer complexes featuring a dichloroacetate moiety in the leaving group

    NASA Astrophysics Data System (ADS)

    Liu, Weiping; Su, Jia; Jiang, Jing; Li, Xingyao; Ye, Qingsong; Zhou, Hongyu; Chen, Jialin; Li, Yan

    2013-08-01

    Two mixed-NH3/amine platinum (II) complexes of 3-dichoroacetoxylcyclobutane-1, 1-dicarboxylate have been prepared in the present study and characterized by elemental analysis and IR, HPLC-MS and 1H, 13C-NMR. The complexes exist in equilibrium between two position isomeric forms and undergo hydrolysis reaction in aqueous solution, releasing the platinum pharmacophores and dichloroacetate which is a small-molecular cell apoptosis inducer. Both complexes were evaluated for in vitro cytotoxic profile in A549, SGC-7901 and SK-OV-3 caner cells as well as in BEAS-2B normal cells. They exhibit markedly cytoxicity toward cancer cells by selectively inducing the apoptosis of cancer cells, whereas leaving normal cells less affected. They have also the ability to overcome the resistance of SK-OV-3 cancer cells to cisplatin. Our findings offer an alternative novel way to develop platinum drugs which can both overcome the drug resistance and selectively target tumor cells.

  11. Monofunctional and Higher-Valent Platinum Anticancer Agents

    PubMed Central

    Johnstone, Timothy C.; Wilson, Justin J.

    2013-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the serendipitous discovery of the anticancer activity of cisplatin by Rosenberg, a large number of cisplatin variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. These efforts continue today with increased realization that new strategies are needed to overcome issues of toxicity and resistance inherent to treatment by the approved platinum anticancer agents. One approach has been the use of so-called “non-traditional” platinum(II) and platinum(IV) compounds that violate the structure-activity relationships that governed platinum drug-development research for many years. Another is the use of specialized drug delivery strategies. Here we describe recent developments from our laboratory involving monofunctional platinum(II) complexes together with an historical account of the manner by which we came to investigate these compounds and their relationship to previously studied molecules. We also discuss work carried out using platinum(IV) prodrugs and the development of nanoconstructs designed to deliver them in vivo. PMID:23738524

  12. Multifaceted Studies of the DNA Interactions and In Vitro Cytotoxicity of Anticancer Polyaromatic Platinum(II) Complexes.

    PubMed

    Pages, Benjamin J; Sakoff, Jennette; Gilbert, Jayne; Rodger, Alison; Chmel, Nikola P; Jones, Nykola C; Kelly, Sharon M; Ang, Dale L; Aldrich-Wright, Janice R

    2016-06-20

    This study reports a detailed biophysical analysis of the DNA binding and cytotoxicity of six platinum complexes (PCs). They are of the type [Pt(PL )(SS-dach)]Cl2 , where PL is a polyaromatic ligand and SS-dach is 1S,2S-diaminocyclohexane. The DNA binding of these complexes was investigated using six techniques including ultraviolet and fluorescence spectroscopy, linear dichroism, synchrotron radiation circular dichroism, isothermal titration calorimetry and mass spectrometry. This portfolio of techniques has not been extensively used to study the interactions of such complexes previously; each assay provided unique insight. The in vitro cytotoxicity of these compounds was studied in ten cell lines and compared to the effects of their R,R enantiomers; activity was very high in Du145 and SJ-G2 cells, with some submicromolar IC50 values. In terms of both DNA affinity and cytotoxicity, complexes of 5,6-dimethyl-1,10-phenanthroline and 2,2'-bipyridine exhibited the greatest and least activity, respectively, suggesting that there is some correlation between DNA binding and cytotoxicity. PMID:27219069

  13. Cyclometalated Iminophosphorane Gold(III) and Platinum(II) Complexes. A Highly Permeable Cationic Platinum(II) Compound with Promising Anticancer Properties.

    PubMed

    Frik, Malgorzata; Fernández-Gallardo, Jacob; Gonzalo, Oscar; Mangas-Sanjuan, Víctor; González-Alvarez, Marta; Serrano del Valle, Alfonso; Hu, Chunhua; González-Alvarez, Isabel; Bermejo, Marival; Marzo, Isabel; Contel, María

    2015-08-13

    New organometallic gold(III) and platinum(II) complexes containing iminophosphorane ligands are described. Most of them are more cytotoxic to a number of human cancer cell lines than cisplatin. Cationic Pt(II) derivatives 4 and 5, which differ only in the anion, Hg2Cl6(2-) or PF6(-) respectively, display almost identical IC50 values in the sub-micromolar range (25-335-fold more active than cisplatin on these cell lines). The gold compounds induced mainly caspase-independent cell death, as previously reported for related cycloaurated compounds containing IM ligands. Cycloplatinated compounds 3, 4, and 5 can also activate alternative caspase-independent mechanisms of death. However, at short incubation times cell death seems to be mainly caspase dependent, suggesting that the main mechanism of cell death for these compounds is apoptosis. Mercury-free compound 5 does not interact with plasmid (pBR322) DNA or with calf thymus DNA. Permeability studies of 5 by two different assays, in vitro Caco-2 monolayers and a rat perfusion model, have revealed a high permeability profile for this compound (comparable to that of metoprolol or caffeine) and an estimated oral fraction absorbed of 100%, which potentially makes it a good candidate for oral administration. PMID:26147404

  14. Cyclometalated Iminophosphorane Gold(III) and Platinum(II) Complexes. A Highly Permeable Cationic Platinum(II) Compound with Promising Anticancer Properties

    PubMed Central

    2015-01-01

    New organometallic gold(III) and platinum(II) complexes containing iminophosphorane ligands are described. Most of them are more cytotoxic to a number of human cancer cell lines than cisplatin. Cationic Pt(II) derivatives 4 and 5, which differ only in the anion, Hg2Cl62– or PF6– respectively, display almost identical IC50 values in the sub-micromolar range (25–335-fold more active than cisplatin on these cell lines). The gold compounds induced mainly caspase-independent cell death, as previously reported for related cycloaurated compounds containing IM ligands. Cycloplatinated compounds 3, 4, and 5 can also activate alternative caspase-independent mechanisms of death. However, at short incubation times cell death seems to be mainly caspase dependent, suggesting that the main mechanism of cell death for these compounds is apoptosis. Mercury-free compound 5 does not interact with plasmid (pBR322) DNA or with calf thymus DNA. Permeability studies of 5 by two different assays, in vitro Caco-2 monolayers and a rat perfusion model, have revealed a high permeability profile for this compound (comparable to that of metoprolol or caffeine) and an estimated oral fraction absorbed of 100%, which potentially makes it a good candidate for oral administration. PMID:26147404

  15. A Dual-Targeting, p53-Independent, Apoptosis-Inducing Platinum(II) Anticancer Complex, [Pt(BDIQQ)]Cl

    PubMed Central

    Suntharalingam, Kogularamanan; Wilson, Justin J.; Lin, Wei; Lippard, Stephen J.

    2014-01-01

    The therapeutic index and cellular mechanism of action of [Pt(BDIQQ)]Cl, a monocationic, square-planar platinum(II) complex, are reported. [Pt(BDIQQ)]Cl was used to treat several cell lines, including wild type and cisplatin-resistant ovarian carcinoma cells (A2780 and A2780CP70) and non-proliferating lung carcinoma cells (A549). [Pt(BDIQQ)]Cl selectively kills cancer over healthy cells and exhibits no cross-resistance with cisplatin. The mechanism of cell killing was established through detailed cell-based assays. [Pt(BDIQQ)]Cl exhibits dual-threat capabilities, targeting nuclear DNA and mitochondria simultaneously. [Pt(BDIQQ)]Cl induces DNA damage, leading to p53 enrichment, mitochondrial membrane potential depolarisation, and caspase-mediated apoptosis. [Pt(BDIQQ)]Cl also accumulates in the mitochondria, resulting in direct mitochondrial damage. Flow cytometric studies demonstrated that [Pt(BDIQQ)]Cl has no significant effect on cell cycle progression. Remarkably, p53-status is a not a determinant of [Pt(BDIQQ)]Cl activity. In p53-null cells, [Pt(BDIQQ)]Cl induces cell death through mitochondrial dysfunction. Cancers with p53-null status could therefore be targeted using [Pt(BDIQQ)]Cl. PMID:24514456

  16. Interactions of the anticancer antibiotic altromycin B with copper(II), palladium(II) and platinum(II) ions and in vitro activity of the formed complexes.

    PubMed

    Nikolis, Nikolaos; Methenitis, Constantinos; Pneumatikakis, George; Fiallo, Marina M L

    2002-04-10

    Interaction of the anticancer antibiotic altromycin B with Cu(II), Pd(II) and Pt(II) ions was studied using 1H-NMR, EPR, electronic absorption and circular dichroism spectroscopy. The results derived from NMR studies where that the Pt(II) and Pd(II) ions interact with the nitrogen atom of the dimethylamino group of the C(10)-disaccharide, while the C(2)-epoxide group does not participate and remains intact. Cu(II) ions interact in a different way with altromycin B as was concluded by EPR and circular dichroism spectra. Altromycin B coordinates to the Cu(II) ions via the oxygen atoms of the C(11) phenolic and the C(12) carbonyl group while the nitrogen atom does not participate in the complexation. The presence of these metal ions improves the stability of altromycin B in solution. These complexes were studied in vitro against K562 leukemia sensitive and doxorubicin-resistant cells and GLC4 lung tumor cells, sensitive and doxorubicin-resistant. The activity of the complexes compared to the free drug is improved against resistant cells and is affected moderately against sensitive cells. Finally, 20% of platinum added as altromycin B metal complex entered GLC4 cells. PMID:11931973

  17. A Novel Class of Bis- and Tris-Chelate Diam(m)inebis(dicarboxylato)platinum(IV) Complexes as Potential Anticancer Prodrugs

    PubMed Central

    Varbanov, Hristo P.; Göschl, Simone; Heffeter, Petra; Theiner, Sarah; Roller, Alexander; Jensen, Frank; Jakupec, Michael A.; Berger, Walter; Galanski, Markus; Keppler, Bernhard K.

    2015-01-01

    A novel class of platinum(IV) complexes of the type [Pt(Am)-(R(COO)2)2], where Am is a chelating diamine or two monodentate am(m)ine ligands and R(COO)2 is a chelating dicarboxylato moiety, was synthesized. For this purpose, the reaction between the corresponding tetrahydroxidoplatinum(IV) precursors and various dicarboxylic acids, such as oxalic, malonic, 3-methylmalonic, and cyclobutanedicarboxylic acid, was utilized. All new compounds were characterized in detail, using 1D and 2D NMR techniques, ESI-MS, FTIR spectroscopy, elemental analysis, TGA, and X-ray diffraction. Their in vitro cytotoxicity was determined in a panel of human tumor cell lines (CH1, SW480 and A549) by means of the MTT colorimetric assay. Furthermore, the lipophilicity and redox properties of the novel complexes were evaluated in order to better understand their pharmacological behavior. The most promising drug candidate, 4b (Pt(DACH)(mal)2), demonstrated low in vivo toxicity but profound anticancer activity against both the L1210 leukemia and CT-26 colon carcinoma models. PMID:25032896

  18. Comparison of the effects of the oral anticancer platinum(IV) complexes oxoplatin and metabolite cis-diammine-tetrachlorido-platinum(IV) on global gene expression of NCI-H526 cells

    PubMed Central

    Olszewski, Ulrike; Ulsperger, Ernst; Geissler, Klaus; Hamilton, Gerhard

    2011-01-01

    Platinum(IV) coordination complexes like oxoplatin (cis,cis,trans-diammine-dichlorido-dihydroxido-platinum[IV]) show high stability and therefore can be utilized orally for outpatient care. Although oxoplatin is capable of binding directly to DNA after prolonged incubation, platinum(IV) agents are considered to be largely inert prodrugs that are converted to highly cytotoxic platinum(II) compounds by reducing substances, enzymes, or microenviron-mental conditions. Reaction of oxoplatin with 0.1 M hydrogen chloride mimicking gastric acid yields cis-diammine-tetrachlorido-platinum(IV) (DATCP[IV]), which exhibits two-fold increased activity. The presence of chlorides as ligands in the axial position results in a high reduction potential that favors transformation to platinum(II) complexes. In this study, the intracellular effect of the highly reactive tetrachlorido derivative was investigated in comparison with an equipotent dose of cisplatin. Genome-wide expression profiling of NCI-H526 small cell lung cancer cells treated with these platinum species revealed clear differences in the expression pattern of affected genes and concerned cellular pathways between DATCP(IV) and cisplatin. Application of DATCP(IV) resulted in extensive downregulation of protein and ATP synthesis, cell cycle regulation, and glycolysis, in contrast to cisplatin, which preferentially targeted glutathione conjugation, pyruvate metabolism, citric acid cycle, and the metabolism of amino acids and a range of carbohydrates. Thus, the oxoplatin metabolite DATCP(IV) constitutes a potent cytotoxic derivative that may be produced by gastric acid or acidic areas prevailing in larger solid tumors, depending on the respective pharmaceutical formulation of oxoplatin. Furthermore, DATCP(IV) exhibits intracellular effects that are clearly different from the expected reduced product cisplatin(II). In conclusion, activation of the platinum(IV) complex oxoplatin seems to involve the generation of a cytotoxic

  19. Platinum(iv) anticancer prodrugs - hypotheses and facts.

    PubMed

    Gibson, Dan

    2016-08-16

    In this manuscript we focus on Pt(iv) anticancer prodrugs. We explore the main working hypotheses for the design of effective Pt(iv) prodrugs and note the exceptions to the common assumptions that are prevalent in the field. Special attention was devoted to the emerging class of "dual action" Pt(iv) prodrugs, where bioactive ligands are conjugated to the axial positions of platinum in order to obtain orthogonal or complementary effects that will increase the efficacy of killing the cancer cells. We discuss the rationale behind the design of the "dual action" prodrugs and the results of the pharmacological studies obtained. Simultaneous release of two bioactive moieties inside the cancer cells often triggers several processes that together determine the fate of the cell. Pt(iv) complexes provide many opportunities for applying new concepts in targeting, synergistic cell killing and exploiting novel nanodelivery systems. PMID:27214873

  20. [Platinum antitumor complexes].

    PubMed

    Bonetti, Andrea; Giuliani, Jacopo; Muggia, Franco

    2015-12-01

    In the last 50 years the oncology has experienced remarkable changes resulting in transforming malignant germ-cell testicular tumors from highly fatal to nearly uniformly cured neoplasms. This clinical landmark was justly attributed to the identification of cisplatin by Barnett Rosenberg in his experiments dating to 1965. On this 50th anniversary of this discovery, one is reminded of the following key aspects in cancer therapeutics: 1) the life-story of Barnett Rosenberg and his legacy that included organizing nearly quadrennial "platinum" meetings incorporating advances in cancer biology into evolving therapeutic strategies; 2) the search for less toxic analogs of cisplatin leading to the development of carboplatin; 3) clinical research into attenuation of cisplatin toxicities; 4) oxaliplatin and the expansion of the therapeutic spectrum of platinum compounds; and 5) the ongoing multifaceted investigations into the problem of "platinum resistance". PMID:26780071

  1. Nucleotide Binding Preference of the Monofunctional Platinum Anticancer-Agent Phenanthriplatin.

    PubMed

    Riddell, Imogen A; Johnstone, Timothy C; Park, Ga Young; Lippard, Stephen J

    2016-05-23

    The monofunctional platinum anticancer agent phenanthriplatin generates covalent adducts with the purine bases guanine and adenine. Preferential nucleotide binding was investigated by using a polymerase stop assay and linear DNA amplification with a 163-base pair DNA double helix. Similarly to cisplatin, phenanthriplatin forms the majority of adducts at guanosine residues, but significant differences in both the number and position of platination sites emerge when comparing results for the two complexes. Notably, the monofunctional complex generates a greater number of polymerase-halting lesions at adenosine residues than does cisplatin. Studies with 9-methyladenine reveal that, under abiological conditions, phenanthriplatin binds to the N(1) or N(7) position of 9-methyladenine in approximately equimolar amounts. By contrast, comparable reactions with 9-methylguanine afforded only the N(7) -bound species. Both of the 9-methyladenine linkage isomers (N(1) and N(7) ) exist as two diastereomeric species, arising from hindered rotation of the aromatic ligands about their respective platinum-nitrogen bonds. Eyring analysis of rate constants extracted from variable-temperature NMR spectroscopic data revealed that the activation energies for ligand rotation in the N(1) -bound platinum complex and the N(7) -linkage isomers are comparable. Finally, a kinetic analysis indicated that phenanthriplatin reacts more rapidly, by a factor of eight, with 9-methylguanine than with 9-methyladenine, suggesting that the distribution of lesions formed on double-stranded DNA is kinetically controlled. In addition, implications for the potent anticancer activity of phenanthriplatin are discussed herein. PMID:27111128

  2. Derivatisation of buforin IIb, a cationic henicosapeptide, to afford its complexation to platinum(ii) resulting in a novel platinum(ii)-buforin IIb conjugate with anti-cancer activity.

    PubMed

    Parker, J P; Devocelle, M; Morgan, M P; Marmion, C J

    2016-08-16

    Herein we report the synthesis of buforin IIb, its novel malonate derivative malBuf and its Pt(ii) complex cis-[Pt(NH3)2(malBuf-2H)]. We decided to harness the cell targeting, cell-penetrating and anti-proliferative effects of buforin IIb to help target a cytotoxic dose of a Pt DNA binding species, {Pt(NH3)2} to cancer cells whilst also delivering a peptide with potent anti-cancer properties. Preliminary in vitro data shows cis-[Pt(NH3)2(malBuf-2H)] to be more cytotoxic against the cisplatin resistant ovarian cancer cell line (A2780cisR) relative to buforin IIb, cisplatin and cis-[Pt(NH3)2(malonate)]. PMID:27292799

  3. Guanidine complexes of platinum: a theoretical study.

    PubMed

    Marin-Luna, Marta; Sanchez-Sanz, Goar; O'Sullivan, Patrick; Rozas, Isabel

    2014-07-24

    We have studied theoretically the complexes of model N-phenylguanidine/ium derivatives with PtCl3(-) and PtCl2 in different coordinating modes (mono- and bidentate) with different N atoms of the guanidine/ium moiety using the B3LYP/6-31+G** and LANL2DZ mixed basis set. This will aid the understanding of the complexation between platinum and the guanidine or guanidinium moiety in order to design dual anticancer agents that combine a guanidine-based DNA minor groove binder and a cisplatin-like moiety. Calculated interaction and relative energies, analysis of the electron density, and examination of the orbital interactions indicate that the most stable type of complex is that with a monodentate interaction between PtCl3(-) and guanidinium established through one of the NH2 groups. Next, we optimized the structure of three bis-guanidinium diaromatic systems developed in our group as DNA minor groove binders and their complexation with PtCl3(-), finding that the formation of Pt complexes of these minor groove binders is favorable and would produce stable monodentate coordinated systems. PMID:24988181

  4. Copper complexes as anticancer agents.

    PubMed

    Marzano, Cristina; Pellei, Maura; Tisato, Francesco; Santini, Carlo

    2009-02-01

    Metal-based antitumor drugs play a relevant role in antiblastic chemotherapy. Cisplatin is regarded as one of the most effective drugs, even if severe toxicities and drug resistance phenomena limit its clinical use. Therefore, in recent years there has been a rapid expansion in research and development of novel metal-based anticancer drugs to improve clinical effectiveness, to reduce general toxicity and to broaden the spectrum of activity. The variety of metal ion functions in biology has stimulated the development of new metallodrugs other than Pt drugs with the aim to obtain compounds acting via alternative mechanisms of action. Among non-Pt compounds, copper complexes are potentially attractive as anticancer agents. Actually, since many years a lot of researches have actively investigated copper compounds based on the assumption proposal that endogenous metals may be less toxic. It has been established that the properties of copper-coordinated compounds are largely determined by the nature of ligands and donor atoms bound to the metal ion. In this review, the most remarkable achievements in the design and development of copper(I, II) complexes as antitumor agents are discussed. Special emphasis has been focused on the identification of structure-activity relationships for the different classes of copper(I,II) complexes. This work was motivated by the observation that no comprehensive surveys of copper complexes as anticancer agents were available in the literature. Moreover, up to now, despite the enormous efforts in synthesizing different classes of copper complexes, very few data concerning the molecular basis of the mechanisms underlying their antitumor activity are available. This overview, collecting the most significant strategies adopted in the last ten years to design promising anticancer copper(I,II) compounds, would be a help to the researchers working in this field. PMID:19199864

  5. Antitumor effect of arabinogalactan and platinum complex.

    PubMed

    Starkov, A K; Zamay, T N; Savchenko, A A; Ingevatkin, E V; Titova, N M; Kolovskaya, O S; Luzan, N A; Silkin, P P; Kuznetsova, S A

    2016-03-01

    The article presents the results of investigation of antitumor properties of platinum-arabinogalactan complex. We showed the ability of the complex to inhibit the growth of Ehrlich ascites tumor cells. It is found that the distribution of the platinum-arabinogalactan complex is not specific only for tumor cells in mice. The complex was found in all tissues and organs examined (ascites cells, embryonic cells, kidney, and liver). The mechanism of action of the arabinogalactan-platinum complex may be similar to cisplatin as the complex is able to accumulate in tumor cells. PMID:27193706

  6. Biologically Inspired Phosphino Platinum Complexes

    SciTech Connect

    Jain, Avijita; Helm, Monte L.; Linehan, John C.; DuBois, Daniel L.; Shaw, Wendy J.

    2012-08-01

    Platinum complexes containing phosphino amino acid and amino acid ester ligands, built upon the PPhNR’2 platform, have been synthesized and characterized (PPhNR’2= [1,3-diaza]-5-phenyl phosphacyclohexane, R’=glycine or glycine ester). These complexes were characterized by 31P, 13C, 1H, 195Pt NMR spectroscopy and mass spectrometry. The X-ray crystal structure of one of the complexes, [PtCl2(PPhNGlyester 2)2], is also reported. These biologically inspired ligands have potential use in homogeneous catalysis, with special applications in chiral chemistry and water soluble chemistry. These complexes also provide a foundation upon which larger peptides can be attached, to allow the introduction of enzyme-like features onto small molecule catalysts. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  7. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  8. Photoactive platinum(ii) β-diketonates as dual action anticancer agents.

    PubMed

    Raza, Md Kausar; Mitra, Koushambi; Shettar, Abhijith; Basu, Uttara; Kondaiah, Paturu; Chakravarty, Akhil R

    2016-08-16

    Platinum(ii) complexes, viz. [Pt(L)(cur)] (1), [Pt(L)(py-acac)] (2) and [Pt(L)(an-acac)] (3), where HL is 4,4'-bis-dimethoxyazobenzene, Hcur is curcumin, Hpy-acac and Han-acac are pyrenyl and anthracenyl appended acetylacetone, were prepared, characterized and their anticancer activities were studied. Complex [Pt(L)(acac)] (4) was used as a control. Complex 1 showed an absorption band at 430 nm (ε = 8.8 × 10(4) M(-1) cm(-1)). The anthracenyl and pyrenyl complexes displayed bands near 390 nm (ε = 3.7 × 10(4) for 3 and 4.4 × 10(4) M(-1) cm(-1) for 2). Complex 1 showed an emission band at 525 nm (Φ = 0.017) in 10% DMSO-DPBS (pH, 7.2), while 2 and 3 were blue emissive (λem = 440 and 435, Φ = 0.058 and 0.045). There was an enhancement in emission intensity on glutathione (GSH) addition indicating diketonate release. The platinum(ii) species thus formed acted as a transcription inhibitor. The released β-diketonate base showed photo-chemotherapeutic activity. The complexes photocleaved plasmid DNA under blue light of 457 nm forming ∼75% nicked circular (NC) DNA with hydroxyl radicals and singlet oxygen as the ROS. Complexes 1-3 were photocytotoxic in skin keratinocyte HaCaT cells giving IC50 of 8-14 μM under visible light (400-700 nm, 10 J cm(-2)), while being non-toxic in the dark (IC50: ∼60 μM). Complex 4 was inactive. Complexes 1-3 generating cellular ROS caused apoptotic cell death under visible light as evidenced from DCFDA and annexin-V/FITC-PI assays. This work presents a novel way to deliver an active platinum(ii) species and a phototoxic β-diketone species to the cancer cells. PMID:27488950

  9. Nanocrystalline carbonate-apatites: role of Ca/P ratio on the upload and release of anticancer platinum bisphosphonates

    NASA Astrophysics Data System (ADS)

    Iafisco, Michele; Palazzo, Barbara; Martra, Gianmario; Margiotta, Nicola; Piccinonna, Sara; Natile, Giovanni; Gandin, Valentina; Marzano, Cristina; Roveri, Norberto

    2011-12-01

    In the present study two nanocrystalline apatites have been investigated as bone-specific drug delivery devices to be used for treatment of bone tumors either by local implantation or by injection. In order to assess how the Ca/P ratio can influence the adsorption and release of anticancer platinum-bisphosphonate complexes, two kinds of apatite nanocrystals having different Ca/P ratios but similar morphologies, degree of crystallinity, and surface areas have been synthesized and characterized. The two platinum-bisphosphonate complexes considered were the bis-{ethylenediamineplatinum(ii)}-2-amino-1-hydroxyethane-1,1-diyl-bisphosphonate and the bis-{ethylenediamineplatinum(ii)}medronate. The Ca/P ratio plays an important role in the adsorption as well as in the release of the two drugs. In fact, the apatite with a higher Ca/P ratio showed greater affinity for both platinum complexes. Also the chemical structure of the two Pt complexes appreciably affects their affinity towards as well as their release from the two kinds of apatites. In particular, the platinum complex whose bisphosphonate contains a free aminic group showed greater upload and smaller release. The cytotoxicity of the Pt complexes released from the apatite was tested against human cervical, colon, and lung cancer cells as well as against osteosarcoma cells. In agreement with previous work, the Pt complexes released were found to be more cytotoxic than the unmodified complexes.In the present study two nanocrystalline apatites have been investigated as bone-specific drug delivery devices to be used for treatment of bone tumors either by local implantation or by injection. In order to assess how the Ca/P ratio can influence the adsorption and release of anticancer platinum-bisphosphonate complexes, two kinds of apatite nanocrystals having different Ca/P ratios but similar morphologies, degree of crystallinity, and surface areas have been synthesized and characterized. The two platinum

  10. Insights into the structure-activity relationships of chiral 1,2-diaminophenylalkane platinum(II) anticancer derivatives.

    PubMed

    Berger, Gilles; Fusaro, Luca; Luhmer, Michel; Czapla-Masztafiak, Joanna; Lipiec, Ewelina; Szlachetko, Jakub; Kayser, Yves; Fernandes, Daniel L A; Sá, Jacinto; Dufrasne, François; Bombard, Sophie

    2015-07-01

    The structure-activity relationships of chiral 1,2-diaminophenylalkane platinum(II) anticancer derivatives are studied, including interactions with telomeric- and genomic-like DNA sequences, the pKa of their diaqua species, structural properties obtained from DFT calculations and resonant X-ray emission spectroscopy. The binding modes of the compounds to telomeric sequences were elucidated, showing no major differences with conventional cis-platinum(II) complexes like cisplatin, supporting that the cis-square planar geometry governs the binding of small Pt(II) complexes to G4 structures. Double-stranded DNA platination kinetics and acid-base constants of the diaqua species of the compounds were measured and compared, highlighting a strong steric dependence of the DNA-binding kinetics, but independent to stereoisomerism. Structural features of the compounds are discussed on the basis of dispersion-corrected DFT, showing that the most active series presents conformers for which the platinum atom is well devoid of steric hindrance. If reactivity indices derived from conceptual DFT do not show evidences for different reactivity between the compounds, RXES experiments provide new insight into the availability of platinum orbitals for binding to nucleophiles. PMID:25982100

  11. [Clinical pharmacology of anticancer agents. (Part 1) Introduction, alkylating agents and platinum compounds].

    PubMed

    Fujita, H

    1991-11-01

    Pharmacokinetic concepts as to absorption, distribution, metabolism and excretion of anticancer agents, and how drugs reach to the site of action were reviewed. Then, roles of the liver and kidney to the excretion and metabolism, intracellular pharmacokinetics, and relationships between drug response and cell proliferation kinetics or cell cycle phase were explained. Drug development, mode of action and pharmacokinetics of alkylating agents and platinum compounds were reviewed. This includes: alkylating agents: nitrogen mustard, phenylalanine mustard, estracyte, cyclophosphamide, carboquone, busulfan, nitrosourea, etc., and platinum compounds: cisplatin, carboplatin, 254-S, DWA-2114 R, NK-121. PMID:1952967

  12. A Photoactivatable Platinum(IV) Complex Targeting Genomic DNA and Histone Deacetylases.

    PubMed

    Kasparkova, Jana; Kostrhunova, Hana; Novakova, Olga; Křikavová, Radka; Vančo, Ján; Trávníček, Zdeněk; Brabec, Viktor

    2015-11-23

    We report toxic effects of a photoactivatable platinum(IV) complex conjugated with suberoyl-bis-hydroxamic acid in tumor cells. The conjugate exerts, after photoactivation, two functions: activity as both a platinum(II) anticancer drug and histone deacetylase (HDAC) inhibitor in cancer cells. This approach relies on the use of a Pt(IV) pro-drug, acting by two independent mechanisms of biological action in a cooperative manner, which can be selectively photoactivated to a cytotoxic species in and around a tumor, thereby increasing selectivity towards cancer cells. These results suggest that this strategy is a valuable route to design new platinum agents with higher efficacy for photodynamic anticancer chemotherapy. PMID:26458068

  13. Platinum anticancer drugs. From serendipity to rational design.

    PubMed

    Monneret, C

    2011-11-01

    The discovery of cis-platin was serendipitous. In 1965, Rosenberg was looking into the effects of an electric field on the growth of Escherichia coli bacteria. He noticed that bacteria ceased to divide when placed in an electric field but what Rosenberg also observed was a 300-fold increase in the size of the bacteria. He attributed this to the fact that somehow the platinum-conducting plates were inducing cell growth but inhibiting cell division. It was later deduced that the platinum species responsible for this was cis-platin. Rosenberg hypothesized that if cis-platin could inhibit bacterial cell division it could also stop tumor cell growth. This conjecture has proven correct and has led to the introduction of cis-platin in cancer therapy. Indeed, in 1978, six years after clinical trials conducted by the NCI and Bristol-Myers-Squibb, the U.S. Food and Drug Administration (FDA) approved cis-platin under the name of Platinol(®) for treating patients with metastatic testicular or ovarian cancer in combination with other drugs but also for treating bladder cancer. Bristol-Myers Squibb also licensed carboplatin, a second-generation platinum drug with fewer side effects, in 1979. Carboplatin entered the U.S. market as Paraplatin(®) in 1989 for initial treatment of advanced ovarian cancer in established combination with other approved chemotherapeutic agents. Numerous platin derivatives have been further developed with more or less success and the third derivative to be approved in 1994 was oxaliplatin under the name of Eloxatin(®). It was the first platin-based drug to be active against metastatic colorectal cancer in combination with fluorouracil and folinic acid. The two others platin-based drugs to be approved were nedaplatin (Aqupla(®)) in Japan and lobaplatin in China, respectively. More recently, a strategy to overcome resistance due to interaction with thiol-containing molecules led to the synthesis of picoplatin in which one of the amines linked to Pt

  14. Organoiridium Complexes: Anticancer Agents and Catalysts

    PubMed Central

    2014-01-01

    Conspectus Iridium is a relatively rare precious heavy metal, only slightly less dense than osmium. Researchers have long recognized the catalytic properties of square-planar IrI complexes, such as Crabtree’s hydrogenation catalyst, an organometallic complex with cyclooctadiene, phosphane, and pyridine ligands. More recently, chemists have developed half-sandwich pseudo-octahedral pentamethylcyclopentadienyl IrIII complexes containing diamine ligands that efficiently catalyze transfer hydrogenation reactions of ketones and aldehydes in water using H2 or formate as the hydrogen source. Although sometimes assumed to be chemically inert, the reactivity of low-spin 5d6 IrIII centers is highly dependent on the set of ligands. Cp* complexes with strong σ-donor C∧C-chelating ligands can even stabilize IrIV and catalyze the oxidation of water. In comparison with well developed Ir catalysts, Ir-based pharmaceuticals are still in their infancy. In this Account, we review recent developments in organoiridium complexes as both catalysts and anticancer agents. Initial studies of anticancer activity with organoiridium complexes focused on square-planar IrI complexes because of their structural and electronic similarity to PtII anticancer complexes such as cisplatin. Recently, researchers have studied half-sandwich IrIII anticancer complexes. These complexes with the formula [(Cpx)Ir(L∧L′)Z]0/n+ (with Cp* or extended Cp* and L∧L′ = chelated C∧N or N∧N ligands) have a much greater potency (nanomolar) toward a range of cancer cells (especially leukemia, colon cancer, breast cancer, prostate cancer, and melanoma) than cisplatin. Their mechanism of action may involve both an attack on DNA and a perturbation of the redox status of cells. Some of these complexes can form IrIII-hydride complexes using coenzyme NAD(P)H as a source of hydride to catalyze the generation of H2 or the reduction of quinones to semiquinones. Intriguingly, relatively unreactive organoiridium

  15. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes

    PubMed Central

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P.

    2016-01-01

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes. PMID:27574114

  16. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes.

    PubMed

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P

    2016-01-01

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes. PMID:27574114

  17. Platinum and Gold Complexes for OLEDs.

    PubMed

    Tang, Man-Chung; Chan, Alan Kwun-Wa; Chan, Mei-Yee; Yam, Vivian Wing-Wah

    2016-08-01

    Encouraging efforts on the design of high-performance organic materials and smart architecture during the past two decades have made organic light-emitting device (OLED) technology an important competitor for the existing liquid crystal displays. Particularly, the development of phosphorescent materials based on transition metals plays a crucial role for this success. Apart from the extensively studied iridium(III) complexes with d(6) electronic configuration and octahedral geometry, the coordination-unsaturated nature of d(8) transition metal complexes with square-planar structures has been found to provide intriguing spectroscopic and luminescence properties. This article briefly summarizes the development of d(8) platinum(II) and gold(III) complexes and their application studies in the fabrication of phosphorescent OLEDs. An in-depth understanding of the nature of the excited states has offered a great opportunity to fine-tune the emission colors covering the entire visible spectrum as well as to improve their photophysical properties. With good device engineering, high performance vacuum-deposited OLEDs with external quantum efficiencies (EQEs) of up to 30 % and solution-processable OLEDs with EQEs of up to 10 % have been realized by modifying the cyclometalated or pincer ligands of these metal complexes. These impressive demonstrations reveal that d(8) metal complexes are promising candidates as phosphorescent materials for OLED applications in displays as well as in solid-state lighting in the future. PMID:27573398

  18. Multi-platinum anti-cancer agents. Substitution-inert compounds for tumor selectivity and new targets.

    PubMed

    Farrell, N P

    2015-12-21

    This tutorial review summarizes chemical, biophysical and cellular biological properties of formally substitution-inert "non-covalent" polynuclear platinum complexes (PPCs). We demonstrate how modulation of the pharmacological factors affecting platinum compound cytotoxicity such as cellular accumulation, reactivity toward extracellular and intracellular sulfur-ligand nucleophiles and consequences of DNA binding is achieved to afford a profile of biological activity distinct from that of covalently-binding agents. The DNA binding of substitution-inert complexes is achieved by molecular recognition through minor groove spanning and backbone tracking of the phosphate clamp. In this situation, the square-planar tetra-am(m)ine Pt(ii) coordination units hydrogen bond to phosphate oxygen OP atoms to form bidentate N-O-N motifs. The modular nature of the polynuclear compounds results in high-affinity binding to DNA and very efficient nuclear condensation. These combined effects distinguish the phosphate clamp as a third mode of ligand-DNA binding, discrete from intercalation and minor-groove binding. The cellular consequences mirror those of the biophysical studies and a significant portion of nuclear DNA is compacted, a unique effect different from mitosis, senescence or apoptosis. Substitution-inert PPCs display cytotoxicity similar to cisplatin in a wide range of cell lines, and sensitivity is indifferent to p53 status. Cellular accumulation is mediated through binding to heparan sulfate proteoglycans (HSPG) allowing for possibilities of tumor selectivity as well as disruption of HSPG function, opening new targets for platinum antitumor agents. The combined properties show that covalently-binding chemotypes are not the unique arbiters of cytotoxicity and antitumor activity and meaningful antitumor profiles can be achieved even in the absence of Pt-DNA bond formation. These dual properties make the substitution-inert compounds a unique class of inherently dual

  19. The status of platinum anticancer drugs in the clinic and in clinical trials.

    PubMed

    Wheate, Nial J; Walker, Shonagh; Craig, Gemma E; Oun, Rabbab

    2010-09-21

    Since its approval in 1979 cisplatin has become an important component in chemotherapy regimes for the treatment of ovarian, testicular, lung and bladder cancers, as well as lymphomas, myelomas and melanoma. Unfortunately its continued use is greatly limited by severe dose limiting side effects and intrinsic or acquired drug resistance. Over the last 30 years, 23 other platinum-based drugs have entered clinical trials with only two (carboplatin and oxaliplatin) of these gaining international marketing approval, and another three (nedaplatin, lobaplatin and heptaplatin) gaining approval in individual nations. During this time there have been more failures than successes with the development of 14 drugs being halted during clinical trials. Currently there are four drugs in the various phases of clinical trial (satraplatin, picoplatin, Lipoplatin and ProLindac). No new small molecule platinum drug has entered clinical trials since 1999 which is representative of a shift in focus away from drug design and towards drug delivery in the last decade. In this perspective article we update the status of platinum anticancer drugs currently approved for use, those undergoing clinical trials and those discontinued during clinical trials, and discuss the results in the context of where we believe the field will develop over the next decade. PMID:20593091

  20. Cytotoxicity of Cyclometalated Platinum Complexes Based on Tridentate NCN and CNN-coordinating ligands: Remarkable Coordination Dependence

    PubMed Central

    Vezzu, Dileep A. k.; Lu, Qun; Chen, Yan-Hua; Huo, Shouquan

    2014-01-01

    A series of cyclometalated platinum complexes with diverse coordination patterns and geometries were screened for their anticancer activity. It was discovered that the NʌCʌN-coordinated platinum complex based on 1,3-di(pyridyl)benzene displayed much higher cytotoxicity against human lung cancer cells NCI-H522, HCC827, and NCI-H1299, and human prostate cancer cell RV1 than cisplatin. In a sharp contrast, the CʌNʌN-coordinated platinum complex based on 6-phenyl-2,2′-bipyridine was ineffective on these cancer cells. This remarkable difference in cytotoxicity displayed by NʌCʌN- and CʌNʌN-coordinated platinum complexes was related to the trans effect of the carbon donor in the cyclometalated platinum complexes, which played a crucial role in facilitating the dissociation of the chloride ligand to create an active binding site. The DNA binding was studied for the NʌCʌN-coordinated platinum complex using electrophoresis and emission titration. The cellular uptake observed by fluorescent microscope showed the complex is largely concentrated in the cytoplasm. The possible pathways for the cell apoptosis was studied by western blot analysis and the activation of PARP via caspase 7 was observed. PMID:24531534

  1. Cytotoxicity of cyclometalated platinum complexes based on tridentate NCN and CNN-coordinating ligands: remarkable coordination dependence.

    PubMed

    Vezzu, Dileep A K; Lu, Qun; Chen, Yan-Hua; Huo, Shouquan

    2014-05-01

    A series of cyclometalated platinum complexes with diverse coordination patterns and geometries were screened for their anticancer activity. It was discovered that the N^C^N-coordinated platinum complex based on 1,3-di(pyridyl)benzene displayed much higher cytotoxicity against human lung cancer cells NCI-H522, HCC827, and NCI-H1299, and human prostate cancer cell RV1 than cisplatin. In a sharp contrast, the C^N^N-coordinated platinum complex based on 6-phenyl-2,2'-bipyridine was ineffective on these cancer cells. This remarkable difference in cytotoxicity displayed by N^C^N- and C^N^N-coordinated platinum complexes was related to the trans effect of the carbon donor in the cyclometalated platinum complexes, which played a crucial role in facilitating the dissociation of the chloride ligand to create an active binding site. The DNA binding was studied for the N^C^N-coordinated platinum complex using electrophoresis and emission titration. The cellular uptake observed by fluorescent microscope showed that the complex is largely concentrated in the cytoplasm. The possible pathways for the cell apoptosis were studied by western blot analysis and the activation of PARP via caspase 7 was observed. PMID:24531534

  2. Raman spectroscopic evaluation of DNA adducts of a platinum containing anticancer drug

    NASA Astrophysics Data System (ADS)

    Jangir, Deepak K.; Mehrotra, Ranjana

    2014-09-01

    Mechanistic understanding of the interaction of drugs with their target molecules is important for better understanding of their mode of action and to improve their efficacy. Carboplatin is a platinum containing anticancer drug, used to treat different type of tumors. In the present work, we applied Raman spectroscopy to study the interaction of carboplatin with DNA at molecular level using different carboplatin-DNA molar ratios. These Raman spectroscopic results provide comprehensive understanding on the carboplatin-DNA interactions and indicate that DNA cross-linked adducts formed by carboplatin are similar to cisplatin adducts. The results indicate that guanine N7 and adenine N7 are the putative sites for carboplatin interaction. It is observed that carboplatin has some affinity toward cytosine in DNA. Phosphate sugar backbone of DNA showed conformation perturbation in DNA which were easily sensible at higher concentrations of carboplatin. Most importantly, carboplatin interaction induces intermediate A- and B-DNA conformations at the cross-linking sites.

  3. Design of enzymatically cleavable prodrugs of a potent platinum-containing anticancer agent.

    PubMed

    Ding, Song; Pickard, Amanda J; Kucera, Gregory L; Bierbach, Ulrich

    2014-12-01

    Using a versatile synthetic approach, a new class of potential ester prodrugs of highly potent, but systemically too toxic, platinum-acridine anticancer agents was generated. The new hybrids contain a hydroxyl group, which has been masked with a cleavable lipophilic acyl moiety. Both butanoic (butyric) and bulkier 2-propanepentanoic (valproic) esters were introduced. The goals of this design were to improve the drug-like properties (e.g., logD) and to reduce the systemic toxicity of the pharmacophore. Two distinct pathways by which the target compounds undergo effective ester hydrolysis, the proposed activating step, have been confirmed: platinum-assisted, self-immolative ester cleavage in a low-chloride environment (LC-ESMS, NMR spectroscopy) and enzymatic cleavage by human carboxylesterase-2 (hCES-2) (LC-ESMS). The valproic acid ester derivatives are the first example of a metal-containing agent cleavable by the prodrug-converting enzyme. They show excellent chemical stability and reduced systemic toxicity. Preliminary results from screening in lung adenocarcinoma cell lines (A549, NCI-H1435) suggest that the mechanism of the valproic esters may involve intracellular deesterification. PMID:25303639

  4. Pharmacokinetics and tissue distribution of two novel isomerism anticancer platinum compounds.

    PubMed

    He, Donglin; Yin, Shuhui; Han, Fuguo; Zhu, Jingjie; Shi, Yun; Tong, Zhiyuan; Liu, Qingfei

    2016-11-01

    LLC-0601(S,S) and LLC-0601(R,R) are two novel synthesized isomerism platinum compounds both with encouraging anticancer activity. However, the previous study showed that toxicity of LLC-0601(R,R) was much higher than that of LLC-0601(S,S) with higher body weight loss and mortality rate of tested rats. This paper is focused on the comparison of the two compounds with their pharmacokinetic (PK) profiles in rats and tissue distribution in mice after intravenous administration. The atomic absorption spectrometry (AAS) method was successfully developed and applied for the determination of platinum in plasma and tissues. The results showed that main PK parameters such as half-life, AUC and MRT of the two compounds had no significant difference after intravenous administration to rats (p  > 0.05). The tissue distribution after intravenous administration to mice showed that the concentration of LLC-0601(R,R) in heart at 0.083 h was higher than that of LLC-0601(S,S) (p  < 0.05) and it was the same case for AUC5min-4 h (p  < 0.05). Different distribution of the two compounds in heart was possibly the main reason of different toxicity and more in-depth research on the metabolites and other mechanism are needed to investigate the toxicity. PMID:27042965

  5. The new platinum-based anticancer agent LA-12 induces retinol binding protein 4 in vivo

    PubMed Central

    2011-01-01

    Background The initial pharmacokinetic study of a new anticancer agent (OC-6-43)-bis(acetato)(1-adamantylamine)amminedichloroplatinum (IV) (LA-12) was complemented by proteomic screening of rat plasma. The objective of the study was to identify new LA-12 target proteins that serve as markers of LA-12 treatment, response and therapy monitoring. Methods Proteomic profiles were measured by surface-enhanced laser desorption-ionization time-of-flight mass spectrometry (SELDI-TOF MS) in 72 samples of rat plasma randomized according to LA-12 dose and time from administration. Correlation of 92 peak clusters with platinum concentration was evaluated using Spearman correlation analysis. Results We identified Retinol-binding protein 4 (RBP4) whose level correlated with LA-12 level in treated rats. Similar results were observed in randomly selected patients involved in Phase I clinical trials. Conclusions RBP4 induction is in agreement with known RBP4 regulation by amantadine and cisplatin. Since retinol metabolism is disrupted in many cancers and inversely associates with malignancy, these data identify a potential novel mechanism for the action of LA-12 and other similar anti-cancer drugs. PMID:22040120

  6. Platinum carboxylato-pendant-arm macrocycles: structure, redox properties and anti-cancer potential.

    PubMed

    Haines, R I; Hutchings, D R; McCormack, T M

    2001-05-01

    In an attempt to generate new platinum compounds that may be effective in the treatment of cancer, as well as having a lower toxicity than traditional platins and being orally viable, we are studing the synthesis and reactivity of platinum complexes of tetraazamacrocycles bearing carboxylato pendant arms. We have synthesized adducts of meso- and rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-1,7-diacetic acid (L(1)H(2)). The meso-Pt(II)L(1) complex is unstable with respect to disproportionation, forming platinum metal and [meso-Pt(IV)L(1)](2+). The rac-isomer shows less tendency to disproportionate. Cyclic voltammetry suggests that the rac-Pt(II)L(1) complex undergoes two one-electron oxidations. Using bis-triazacyclononanenickel(III), [Ni(III)(tacn)(2)](3+) as an outer-sphere oxidant, the self-exchange rate for the [Pt(II/III)L](0/+) couple has been estimated at 0.034 M(-1) s(-1). PMID:11377689

  7. N-Heterocyclic Carbene-Polyethylenimine Platinum Complexes with Potent in Vitro and in Vivo Antitumor Efficacy.

    PubMed

    Chekkat, Neila; Dahm, Georges; Chardon, Edith; Wantz, May; Sitz, Justine; Decossas, Marion; Lambert, Olivier; Frisch, Benoit; Rubbiani, Riccardo; Gasser, Gilles; Guichard, Gilles; Fournel, Sylvie; Bellemin-Laponnaz, Stéphane

    2016-08-17

    The current interest for platinum N-heterocyclic carbene complexes in cancer research stems from their impressive toxicity reported against a range of different human cancer cells. To date, the demonstration of their in vivo efficacy relative to that of established platinum-based drugs has not been specifically addressed. Here, we introduce an innovative approach to increase the NHC-Pt complex potency whereby multiple NHC-Pt(II) complexes are coordinated along a polyethylenimine polymer (PEI) chain. We show that such NHC-Pt(II)-PEI conjugates induce human cancer cell death in vitro and in vivo in a xenograft mouse model with no observable side effects in contrast to oxaliplatin. Additional studies indicate nucleus and mitochondria targeting and suggest various mechanisms of action compared to classical platinum-based anticancer drugs. PMID:27459208

  8. Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities.

    PubMed

    Ghosh, Sougata; Nitnavare, Rahul; Dewle, Ankush; Tomar, Geetanjali B; Chippalkatti, Rohan; More, Piyush; Kitture, Rohini; Kale, Sangeeta; Bellare, Jayesh; Chopade, Balu A

    2015-01-01

    Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum-palladium bimetallic nanoparticles (Pt-PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2-5 nm, while PdNPs and Pt-PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88% ± 1.73% elemental Pt and 68.96% ± 1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm(-1), attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm(-1), associated with C-H stretching, N-H bending in primary amines, N-O stretching in nitro group, and C-C stretch, respectively. Anticancer activity against HeLa cells showed that Pt-PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6%) or PdNPs (33.15%). Further, Pt-PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals. PMID:26719690

  9. Platinum trans-Bis(borirene) complexes displaying coplanarity and communication across a platinum metal center.

    PubMed

    Braunschweig, Holger; Damme, Alexander; Dewhurst, Rian D; Kelch, Hauke; Macha, Bret B; Radacki, Krzysztof; Vargas, Alfredo; Ye, Qing

    2015-02-01

    Ambient-temperature photolysis of the aminoborylene complex [(OC)5 Cr=B=N(SiMe3 )2 ] in the presence of a series of trans-bis(alkynyl)platinum(II) precursors of the type trans-[Pt(CCAr)2 (PEt3 )2 ] (Ar=Ph, p-C6 H4 OMe, and p-C6 H4 CF3 ) successfully leads to twofold transfer of the borylene moiety [:B=N(SiMe3 )2 ] onto the alkyne functionalities. The alkynyl precursors and resultant bis(borirene)platinum(II) complexes formed are of the type trans-[Pt(B{=N(SiMe3 )2 }C=CAr)2 (PEt3 )2 ] (Ar=Ph, p-C6 H4 OMe, and p-C6 H4 CF3 ). These species have all been successfully characterized by NMR, IR, and UV/Vis spectroscopy as well as by elemental analysis. Single-crystal X-ray diffraction has verified that these trans-bis(borirene)platinum(II) complexes display coplanarity between the twin three-membered rings across the platinum core in the solid state and stand as the first examples of coplanar conformations of twin borirene systems. These complexes were modeled using density functional theory (DFT), providing information helpful in determining the ability of the transition metal core to interact with each individual borirene ring system and allowing for the observed coplanarity of these rings in the solid state. This proposed transition metal interaction with the twin borirene systems is manifested in the electronic characterization of these borirene species, which display divergent photophysical UV/Vis spectroscopic profiles compared to a previously published mono(borirene)platinum(II) complex. PMID:25430871

  10. MRI-detectable polymeric micelles incorporating platinum anticancer drugs enhance survival in an advanced hepatocellular carcinoma model

    PubMed Central

    Vinh, Nguyen Quoc; Naka, Shigeyuki; Cabral, Horacio; Murayama, Hiroyuki; Kaida, Sachiko; Kataoka, Kazunori; Morikawa, Shigehiro; Tani, Tohru

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most intractable and lethal cancers; most cases are diagnosed at advanced stages with underlying liver dysfunction and are frequently resistant to conventional chemotherapy and radiotherapy. The development of tumor-targeting systems may improve treatment outcomes. Nanomedicine platforms are of particular interest for enhancing chemotherapeutic efficiency, and they include polymeric micelles, which enable targeting of multiple drugs to solid tumors, including imaging and therapeutic agents. This allows concurrent diagnosis, targeting strategy validation, and efficacy assessment. We used polymeric micelles containing the T1-weighted magnetic resonance imaging contrast agent gadolinium-diethylenetriaminpentaacetic acid (Gd-DTPA) and the parent complex of the anticancer drug oxaliplatin [(1,2-diaminocyclohexane)platinum(II) (DACHPt)] for simultaneous imaging and therapy in an orthotopic rat model of HCC. The Gd-DTPA/DACHPt-loaded micelles were injected into the hepatic artery, and magnetic resonance imaging performance and antitumor activity against HCC, as well as adverse drug reactions were assessed. After a single administration, the micelles achieved strong and specific tumor contrast enhancement, induced high levels of tumor apoptosis, and significantly suppressed tumor size and growth. Moreover, the micelles did not induce severe adverse reactions and significantly improved survival outcomes in comparison to oxaliplatin or saline controls. Our results suggest that Gd-DTPA/DACHPt-loaded micelles are a promising approach for effective diagnosis and treatment of advanced HCC. PMID:26203241

  11. MRI-detectable polymeric micelles incorporating platinum anticancer drugs enhance survival in an advanced hepatocellular carcinoma model.

    PubMed

    Vinh, Nguyen Quoc; Naka, Shigeyuki; Cabral, Horacio; Murayama, Hiroyuki; Kaida, Sachiko; Kataoka, Kazunori; Morikawa, Shigehiro; Tani, Tohru

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most intractable and lethal cancers; most cases are diagnosed at advanced stages with underlying liver dysfunction and are frequently resistant to conventional chemotherapy and radiotherapy. The development of tumor-targeting systems may improve treatment outcomes. Nanomedicine platforms are of particular interest for enhancing chemotherapeutic efficiency, and they include polymeric micelles, which enable targeting of multiple drugs to solid tumors, including imaging and therapeutic agents. This allows concurrent diagnosis, targeting strategy validation, and efficacy assessment. We used polymeric micelles containing the T1-weighted magnetic resonance imaging contrast agent gadolinium-diethylenetriaminpentaacetic acid (Gd-DTPA) and the parent complex of the anticancer drug oxaliplatin [(1,2-diaminocyclohexane)platinum(II) (DACHPt)] for simultaneous imaging and therapy in an orthotopic rat model of HCC. The Gd-DTPA/DACHPt-loaded micelles were injected into the hepatic artery, and magnetic resonance imaging performance and antitumor activity against HCC, as well as adverse drug reactions were assessed. After a single administration, the micelles achieved strong and specific tumor contrast enhancement, induced high levels of tumor apoptosis, and significantly suppressed tumor size and growth. Moreover, the micelles did not induce severe adverse reactions and significantly improved survival outcomes in comparison to oxaliplatin or saline controls. Our results suggest that Gd-DTPA/DACHPt-loaded micelles are a promising approach for effective diagnosis and treatment of advanced HCC. PMID:26203241

  12. Computational methods for the description of pharmacologically relevant platinum complexes--molecular structure and bond dissociation.

    PubMed

    Kokoschka, Malte; Galgonek, Jakub; Vondrasek, Jiri; Hobza, Pavel

    2016-02-01

    Cancer is after cardiovascular disease the most frequent cause of death in Europe. In 28 of 53 countries considered in this area it is already the leading cause of death and expected to gain even more importance until the year 2020. Amongst the large arsenal of different anti-cancer drugs, platinum drugs belong to the first developed anticancer drugs and still have a large impact on cancer therapy. Nevertheless therapy with platinum-anticancer drugs is accompanied by severe adverse effects caused by frequent interactions with the amino acids of different human proteins. Computational chemistry offers methods to study such interactions and even those of not yet synthesized drugs in silico. For such studies a profound knowledge of the prediction quality of various computational methods towards platinum-drug-like complexes is necessary. By this article we are aiming on delivering important accuracy information of the frequently used computational methods. Most important findings are the high performance of the double hybrid functional B2PLYP for the calculation of geometries, even in small basis sets, followed by BP86 and PBE and the still acceptable performance of the semi-empirical Method PM6-D3H4X for extremely large systems. To follow absolute energies of the dissociation process, LPNO-CEPA and B3LYP-D3 can be suggested while SCS-MP2 shows an extremely narrow standard deviation and a low maximum error, which make it an ideal candidate for relative energy calculations in the exploration of reaction mechanisms. PMID:26777459

  13. Design of Enzymatically Cleavable Prodrugs of a Potent Platinum-Containing Anticancer Agent

    PubMed Central

    Ding, Song; Pickard, Amanda J.; Kucera, Gregory L.

    2014-01-01

    Using a versatile synthetic approach, a new class of potential ester prodrugs of highly potent, but systemically too toxic, platinum–acridine anticancer agents was generated. The new hybrids contain a hydroxyl group, which has been masked with a cleavable lipophilic acyl moiety. Both butanoic (butyric) and bulkier 2-propanepentanoic (valproic) esters were introduced. The goals of this design were to improve the drug-like properties (e.g., logD) and to reduce the systemic toxicity of the pharmacophore. Two distinct pathways by which the target compounds undergo effective ester hydrolysis, the proposed activating step, have been confirmed: platinum-assisted, self-immolative ester cleavage in a low-chloride environment (LC-ESMS, NMR spectroscopy) and enzymatic cleavage by human carboxylesterase-2 (hCES-2) (LC-ESMS). The valproic acid ester derivatives are the first example of a metal-containing agent cleavable by the pro-drug-converting enzyme. They show excellent chemical stability and reduced systemic toxicity. Preliminary results from screening in lung adenocarcinoma cell lines (A549, NCI-H1435) suggest that the mechanism of the valproic esters may involve intracellular deesterification. PMID:25303639

  14. Polymeric micelles loaded with platinum anticancer drugs target preangiogenic micrometastatic niches associated with inflammation.

    PubMed

    Wu, Hailiang; Cabral, Horacio; Toh, Kazuko; Mi, Peng; Chen, Yi-Chun; Matsumoto, Yu; Yamada, Naoki; Liu, Xueying; Kinoh, Hiroaki; Miura, Yutaka; Kano, Mitsunobu R; Nishihara, Hiroshi; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2014-09-10

    Nanocarriers have been used for specific delivery of therapeutic agents to solid tumors based on the enhanced permeability and retention in cancerous tissues. Despite metastasis is the main reason of cancer-related death and a priority for nanocarrier-based therapies, the targeting ability of nanocarriers to the metastatic disease is poorly understood, especially for preangiogenic micrometastases as nanocarriers usually use the malignant neovasculature for enhancing their accumulation. Thus, herein, we studied the ability of micellar nanocarriers incorporating (1,2-diaminocyclohexane)platinum(II) (DACHPt) for treating liver metastases of bioluminescent murine colon adenocarcinoma C-26, during overt and preangiogenic metastatic stages. After intravenous injection, DACHPt-loaded micelles (DACHPt/m) effectively inhibited the tumor growth in both metastatic tumor models. While the anticancer activity of the micelles against overt metastases was associated with their selective accumulation in cancerous tissues having neovasculature, the ability of DACHPt/m to target preangiogenic metastases was correlated with the inflammatory microenvironment of the niche. This targeting capability of polymeric micelles to preangiogenic metastasis may provide a novel approach for early diagnosis and treatment of metastases. PMID:24956488

  15. Water-soluble Co(III) complexes of substituted phenanthrolines with cell selective anticancer activity.

    PubMed

    Jagadeesan, Sivaraman; Balasubramanian, Vimalkumar; Baumann, Patric; Neuburger, Markus; Häussinger, Daniel; Palivan, Cornelia G

    2013-11-01

    Transition metal complexes with substituted phenanthrolines as ligands represent potential anticancer products without the drawbacks of platinum complexes that are currently marketed. Here, we report the synthesis and cell selective anticancer activity of five new water-soluble Co(III) complexes with methyl substituted phenanthroline ligands. The complexes were characterized by elemental analysis, NMR, FAB-mass spectrometry, FTIR, electronic spectroscopy, and single crystal X-ray diffraction. Possible interaction of these complexes with DNA was assessed by a combination of circular dichroism, UV-vis spectroscopy titration, and ethidium bromide displacement assay, and the results indicated that DNA interaction is weak for these complexes. Cellular uptake and cytotoxicity of complexes at low concentrations were assessed by flow cytometry on PC-3 cells, while their effect on intracellular mitochondrial function was measured by MTS assay on HeLa and PC-3 cell lines. These complexes showed selective cytotoxicity with a significantly higher effect on intracellular mitochondrial function in PC-3 cells than in HeLa cells. At low concentrations, complex 2 had the highest cytotoxic effect on PC-3 cells, inducing around 38% cell death, and the correlation of cytotoxicity of these complexes to their hydrophobicity indicates that an appropriate value of the hydrophobicity is essential for high antitumor activity. PMID:24127683

  16. Radiosensitization of EMT6 cells by four platinum complexes.

    PubMed

    Teicher, B A; Rockwell, S; Lee, J B

    1985-05-01

    The greatest research effort in producing radiation sensitizers has been directed toward organic compounds. However, platinum complexes also have radiosensitizing capabilities, perhaps because they bind to DNA. The compound described here are dichloro complexes of bivalent platinum with one or two potentially radiosensitizing ligands. The radiosensitization of oxygenated and hypoxic exponentially growing EMT6 cells in vitro was measured. The dose modifying factors obtained with 200 microM and 400 microM trans-bis(2-nitroimidazole)dichloroplatinum II (NIPt) in hypoxic cells were 1.5 and 2.1, respectively. For trans-bis(2-amino-5-nitrothiazole)dichloroplatinum II (Plant) under the same conditions, the dose modifying factor was 1.5 at 200 microM and 1.8 at 400 microM. Neither compound sensitized oxygenated cells when tested similar protocols. Unlike the trans complexes, (1,2-diamino-4-nitrobenzene)dichloroplatinum II (Plato) was cytotoxic toward the hypoxic cells in the absence of X rays. The time course of cytotoxicity for 100 microM Plato in exponentially growing cells showed rapid killing of hypoxic cells, and much less toxicity toward oxygenated cells. In radiosensitization studies, dose modifying factors of 1.6 and 2.0 were found with 200 microM and 400 microM Plato in hypoxic cells. The compound did not sensitize aerobic cells. The well-known platinum complex cis-dipyridinedichloroplatinum II (PyPt) represents a cis-platinum heterocyclic aromatic complex that does not have a nitro-functionality. The dose modifying factor obtained with 400 microM PyPt in hypoxic cells was 1.7. On a molar basis, the nitro-functional platinum complexes appear to be more effective as hypoxic cell radiosensitizers than the corresponding free ligands. PMID:4039304

  17. Allergy to complex platinum salts: A historical prospective cohort study.

    PubMed Central

    Niezborala, M; Garnier, R

    1996-01-01

    OBJECTIVE: To assess the incidence of allergy to complex platinum salts in a platinum refinery. METHODS: A historical prospective cohort study was carried out on 77 workers (67 men) who started work between 1 January 1979 and 31 December 1991 and who were not atopic on skin prick tests to three common allergens at the time of recruitment. Skin prick tests with complex platinum salts were carried out and diagnosis of allergy to complex platinum salts made by the company's doctor. Skin tests and medical examinations were carried out routinely every six months. Follow up was until 30 September 1992 or until leaving refinery work. RESULTS: 18 workers developed a positive result on skin tests and 23 developed symptoms, including all 18 subjects with positive skin tests; the probability of surviving (95% confidence interval (95% CI)) for 72 months after joining the company, with negative skin test results was 0.67 (0.51-0.79) or with no symptoms was 0.63 (0.49-0.75). The incidence of positive skin tests and symptoms was highest during the first two years of work. Symptoms occurred more frequently in September and October than during the other months of the year. The exclusion of atopic subjects did not seem to have resulted in a lower incidence of sensitisation. Smoking was a significant predictive factor for both positive skin tests (estimated relative risk 5.53) and symptoms (4.70). CONCLUSION: The findings confirm that smoking is and that atopy may not be a high risk factor for the development of allergy to complex platinum salts. The high incidence of sensitisation and the available data on the clinical course of sensitised workers show that sensitised workers must be promptly and completely removed from exposure. PMID:8664963

  18. Heteroleptic Complexes of Cyclometalated Platinum with Triarylformazanate Ligands.

    PubMed

    Kabir, Evanta; Wu, Chia-Hua; Wu, Judy I-Chia; Teets, Thomas S

    2016-01-19

    Formazanates are a ligand class featuring a 1,2,4,5-tetraazapentadienyl core, with variable substitution at the 1, 3, and 5 positions. Here we describe a set of four heteroleptic cylcometalated platinum complexes containing triarylformazanate ligands. The complexes are prepared by metathesis reactions of chloro-bridged dimers [Pt(C∧N)(μ-Cl)]2 (C∧N = 2-phenylpyridine or 2-(2,4-difluorophenyl)pyridine) with triarylformazans in the presence of base. X-ray diffraction studies reveal the molecular structures of three such complexes. Cyclic voltammograms and UV-vis absorption spectra of the complexes show features characteristic of both the cyclometalated platinum fragment and the formazanate, with the latter giving rise to two reversible one-electron reductions in the CV and an intense visible π → π* absorption which is red-shifted by >100 nm relative to the free formazan. The electronic structures and redox properties of the complexes were further investigated by UV-vis spectroelectrochemistry and density functional theory calculations. All of the experimental and theoretical work points to a frontier molecular orbital manifold where the formazanate π and π* orbitals are substantially mixed with d-orbitals derived from the platinum center. PMID:26702999

  19. Radiosensitization of EMT6 cells by four platinum complexes

    SciTech Connect

    Teicher, B.A.; Rockwell, S.; Lee, J.B.

    1985-05-01

    The compounds described here are dichloro complexes of bivalent platinum with one or two potentially radiosensitizing ligands. The radiosensitization of oxygenated and hypoxic exponentially growing EMT6 cells in vitro was measured. The dose modifying factors obtained with 200 ..mu..M and 400 ..mu..M trans-bis(2-nitroimidazole)dichloroplatinum II (NIPt) in hypoxic cells were 1.5 and 2.1, respectively. For trans-bis(2-amino-5-nitrothiazole)dichloroplatinum II (Plant) under the same conditions, the dose modifying factor was 1.5 at 200 ..mu..M and 1.8 at 400 ..mu..M. Neither compound sensitized oxygenated cells when tested similar protocols. Unlike the trans complexes (1,2-diamino-4-nitrobenzene)dichloroplatinum II (Plato) was cytotoxic toward the hypoxic cells in the absence of X rays. The time course of cytotoxicity for 100 ..mu..M Plato in exponentially growing cells showed rapid killing of hypoxic cells, and much less toxicity toward oxygenated cells. In radiosensitization studies, dose modifying factors of 1.6 and 2.0 were found with 200 ..mu..M and 400 ..mu..M Plato in hypoxic cells. The compound did not sensitize aerobic cells. The well-known platinum complex cis-dipyridinedichloroplatinum II (PyPt) represents a cis-platinum heterocyclic aromatic complex that does not have a nitro-functionality. The dose modifying factor obtained with 400 ..mu..M PyPt in hypoxic cells was 1.7. On a molar basis, the nitro-functional platinum complexes appear to be more effective as hypoxic cell radiosensitizers than the corresponding free ligands.

  20. Platinum(II) complexes as spectroscopic probes for biomolecules

    SciTech Connect

    Ratilla, E.

    1990-09-21

    The use of platinum(II) complexes as tags and probes for biomolecules is indeed advantageous for their reactivities can be selective for certain purposes through an interplay of mild reaction conditions and of the ligands bound to the platinum. The use of {sup 195}Pt NMR as a method of detecting platinum and its interactions with biomolecules was carried out with the simplest model of platinum(II) tagging to proteins. Variable-temperature {sup 195}Pt NMR spectroscopy proved useful in studying the stereodynamics of complex thioethers like methionine. The complex, Pt(trpy)Cl{sup +}, with its chromophore has a greater potential for probing proteins. It is a noninvasive and selective tag for histidine and cysteine residues on the surface of cytochrome c at pH 5. The protein derivatives obtained are separable, and the tags are easily quantitated and differentiated through the metal-to-ligand charge transfer bands which are sensitive to the environment of the tag. Increasing the pH to 7.0 led to the modification by Pt(trpy)Cl{sup +}of Arg 91 in cytochrome c. Further studies with guanidine-containing ligands as models for arginine modification by Pt(trpy)Cl{sup +} showed that guanidine can act as a terminal ligand and as a bridging ligand. Owing to the potential utility of Pt(trpy)L{sup n+} as electron dense probes of nucleic acid structure, interactions of this bis-Pt(trpy){sup 2+} complex with nucleic acids was evaluated. Indeed, the complex interacts non-covalently with nucleic acids. Its interactions with DNA are not exactly the same as those of its precedents. Most striking is its ability to form highly immobile bands of DNA upon gel electrophoresis. 232 refs.

  1. Luminescent Cyclometalated Platinum and Palladium Complexes with Novel Photophysical Properties

    NASA Astrophysics Data System (ADS)

    Turner, Eric

    Organic light emitting diodes (OLEDs) is a rapidly emerging technology based on organic thin film semiconductors. Recently, there has been substantial investment in their use in displays. In less than a decade, OLEDs have grown from a promising academic curiosity into a multi-billion dollar global industry. At the heart of an OLED are emissive molecules that generate light in response to electrical stimulation. Ideal emitters are efficient, compatible with existing materials, long lived, and produce light predominantly at useful wavelengths. Developing an understanding of the photophysical processes that dictate the luminescent properties of emissive materials is vital to their continued development. Chapter 1 and Chapter 2 provide an introduction to the topics presented and the laboratory methods used to explore them. Chapter 3 discusses a series of tridentate platinum complexes. A synthetic method utilizing microwave irradiation was explored, as well as a study of the effects ligand structure had on the excited state properties. Results and techniques developed in this endeavor were used as a foundation for the work undertaken in later chapters. Chapter 4 introduces a series of tetradentate platinum complexes that share a phenoxy-pyridyl (popy) motif. The new molecular design improved efficiency through increased rigidity and modification of the excited state properties. This class of platinum complexes were markedly more efficient than those presented in Chapter 3, and devices employing a green emitting complex of the series achieved nearly 100% electron-to-photon conversion efficiency in an OLED device. Chapter 5 adapts the ligand structure developed in Chapter 4 to palladium. The resulting complexes exceed reported efficiencies of palladium complexes by an order of magnitude. This chapter also provides the first report of a palladium complex as an emitter in an OLED device. Chapter 6 discusses the continuation of development efforts to include carbazolyl

  2. Near-UV phosphorescent emitters: N-heterocyclic platinum(ii) tetracarbene complexes.

    PubMed

    Unger, Yvonne; Zeller, Alexander; Taige, Maria A; Strassner, Thomas

    2009-06-28

    Although examples of nickel(ii), palladium(ii) and platinum(ii) N-heterocyclic tetracarbene complexes are known in the literature, particularly platinum(ii) tetracarbene complexes are rare. We developed a new synthetic route via biscarbene acetate complexes, which make homoleptic as well as heteroleptic platinum(ii) tetracarbene complexes accessible. The reported photoluminescence data show that these complexes have good quantum yields and photostability and are a promising class of emitters for PhOLEDs. Characterization of the compounds includes a solid-state structure of the homoleptic complex bis(1,1'-diisopropyl-3,3'-methylenediimidazoline-2,2'-diylidene)platinum(ii) dibromide. PMID:19513490

  3. Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes

    NASA Astrophysics Data System (ADS)

    Ecton, Jeremy Exton

    Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a

  4. A branched luminescent multinuclear platinum(II) complex

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Xu, S. J.; Tao, Chi-Hang; Yam, Vivian Wing-Wah; Zhang, Jie

    2011-08-01

    Nonlinear optical properties of luminescent multinuclear platinum(II) complex of branched alkynyls in benzene solution are investigated at room temperature by using two-photon fluorescence (TPF) technique. It is found that the material shows unusual nonlinear optical characteristics under the excitation of near infrared femtosecond laser pulses. The self-focusing of laser beam energy during propagation of the laser pulses in the sample with large nonlinear coefficient for the refractive index is observed. Based on this phenomenon, a new method for measuring the nonlinear coefficient and two-photon absorption cross section of materials is proposed.

  5. Biotinylated Platinum(II) Ferrocenylterpyridine Complexes for Targeted Photoinduced Cytotoxicity.

    PubMed

    Mitra, Koushambi; Shettar, Abhijith; Kondaiah, Paturu; Chakravarty, Akhil R

    2016-06-01

    Biotinylated platinum(II) ferrocenylterpyridine (Fc-tpy) complexes [Pt(Fc-tpy)(L(1))]Cl (1) and [Pt(Fc-tpy)(L(2))]Cl (2), where HL(1) and HL(2) are biotin-containing ligands, were prepared, and their targeted photoinduced cytotoxic effect in cancer cells over normal cells was studied. A nonbiotinylated complex, [Pt(Fc-tpy)(L(3))]Cl (3), was prepared as a control to study the role of the biotin moiety in cellular uptake properties of the complexes. Three platinum(II) phenylterpyridine (Ph-tpy) complexes, viz., [Pt(Ph-tpy)(L(1))]Cl (4), [Pt(Ph-tpy)(L(2))]Cl (5), and [Pt(Ph-tpy)(L(3))]Cl (6), were synthesized and explored to understand the role of a metal-bound Fc-tpy ligand over Ph-tpy as a photoinitiator. The Fc-tpy complexes displayed an intense absorption band near 640 nm, which was absent in their Ph-tpy analogues. The Fc-tpy complexes (1 mM in 0.1 M TBAP) showed an irreversible cyclic voltammetric anodic response of the Fc/Fc(+) couple near 0.25 V. The Fc-tpy complexes displayed photodegradation in red light of 647 nm involving the formation of a ferrocenium ion (Fc(+)) and reactive oxygen species (ROS). Photoinduced release of the biotinylated ligands was observed from spectral measurements, and this possibly led to the controlled generation of an active platinum(II) species, which binds to the calf-thymus DNA used for this study. The biotinylated photoactive Fc-tpy complexes showed significant photoinduced cytotoxicity, giving a IC50 value of ∼7 μM in visible light of 400-700 nm with selective uptake in BT474 cancer cells over HBL-100 normal cells. Furthermore, ferrocenyl complexes resulted in light-induced ROS-mediated apoptosis, as indicated by DCFDA, annexin V/FITC staining, and sub-G1 DNA content determined by fluorescent activated cell sorting analysis. The phenyl analogues 4 and 5 were photostable, served as DNA intercalators, and demonstrated selective cytotoxicity in the cancer cells, giving IC50 values of ∼4 μM. PMID:27171926

  6. Understanding the interaction of an antitumoral platinum(II) 7-azaindolate complex with proteins and DNA.

    PubMed

    Samper, Katia G; Rodríguez, Venancio; Ortega-Carrasco, Elisabeth; Atrian, Sílvia; Maréchal, Jean Didier; Cutillas, Natalia; Zamora, Ana; de Haro, Concepción; Capdevila, Mercè; Ruiz, José; Palacios, Òscar

    2014-12-01

    The reactivity of the [Pt(dmba)(aza-N1)(dmso)] complex 1, (a potential antitumoral drug with lower IC50 than cisplatin in several tumoral cell lines) with different proteins and oligonucleotides is investigated by means of mass spectrometry (ESI-TOF MS). The results obtained show a particular binding behaviour of this platinum(II) complex. The interaction of 1 with the assayed proteins apparently takes place by Pt-binding to the most accessible coordinating amino acids, presumably at the surface of the protein -this avoiding protein denaturation or degradation- with the subsequent release of one or two ligands of 1. The specific reactivity of 1 with distinct proteins allows to conclude that the substituted initial ligand (dmso or azaindolate) is indicative of the nature of the protein donor atom finally bound to the platinum(II) centre, i.e. N- or S-donor amino acid. Molecular modeling calculations suggest that the release of the azaindolate ligand is promoted by a proton transfer to the non-coordinating N present in the azaindolate ring, while the release of the dmso ligand is mainly favoured by the binding of a deprotonated Cys. The interaction of complex 1 with DNA takes always place through the release of the azaindolate ligand. Interestingly, the interaction of 1 with DNA only proceeds when the oligonucleotides are annealed forming a double strand. Complex 1 is also capable to displace ethidium bromide from DNA and it also weakly binds to DNA at the minor groove, as shown by Hoechst 33258 displacement experiments. Furthermore, complex 1 is also a good inhibitor of cathepsin B (an enzyme implicated in a number of cancer related events). Therefore, although compound 1 is definitely able to bind proteins that can hamper its arrival to the nuclear target, it should be taken into consideration as a putative anticancer drug due to its strong interaction with oligonucleotides and its effective inhibition of cat B. PMID:25106460

  7. A first principles study of pristine and Al-doped boron nitride nanotubes interacting with platinum-based anticancer drugs

    NASA Astrophysics Data System (ADS)

    Shakerzadeh, Ehsan; Noorizadeh, Siamak

    2014-03-01

    Interaction of cis-platin and neda-platin, two conventional platinum-based anticancer drugs, with pristine [8,8] and Al-doped [8,0] boron nitride nanotubes (BNNTs) are investigated using the density functional theory (DFT) method. The obtained results indicate that cis-platin and neda-platin weakly interact with pristine zig zag or armchair BNNTs with a little dependency on the adsorbing positions; while both cis-platin and neda-platin are preferentially adsorbed onto the Al atom of the Al-doped BNNT with considerable adsorption energies. Therefore the Al-doped-BNNT might be an efficient carrier for delivery of these drugs in nanomedicine domain. The electronic structures of the stable configurations are also investigated through both DOS and PDOS spectra. The obtained results introduce the Al-doped-BNNT as an efficient carrier for delivery of cis-platin and neda-platin in nanomedicine domain.

  8. A New Approach to Reduce Toxicities and to Improve Bioavailabilities of Platinum-Containing Anti-Cancer Nanodrugs

    PubMed Central

    Liu, Li; Ye, Qing; Lu, Maggie; Lo, Ya-Chin; Hsu, Yuan-Hung; Wei, Ming-Cheng; Chen, Yu-Hsiang; Lo, Shen-Chuan; Wang, Shian-Jy; Bain, Daniel J.; Ho, Chien

    2015-01-01

    Platinum (Pt) drugs are the most potent and commonly used anti-cancer chemotherapeutics. Nanoformulation of Pt drugs has the potential to improve the delivery to tumors and reduce toxic side effects. A major challenge for translating nanodrugs to clinical settings is their rapid clearance by the reticuloendothelial system (RES), hence increasing toxicities on off-target organs and reducing efficacy. We are reporting that an FDA approved parenteral nutrition source, Intralipid 20%, can help this problem. A dichloro (1, 2-diaminocyclohexane) platinum (II)-loaded and hyaluronic acid polymer-coated nanoparticle (DACHPt/HANP) is used in this study. A single dose of Intralipid (2 g/kg, clinical dosage) is administrated [intravenously (i. v.), clinical route] one hour before i.v. injection of DACHPt/HANP. This treatment can significantly reduce the toxicities of DACHPt/HANP in liver, spleen, and, interestingly, kidney. Intralipid can decrease Pt accumulation in the liver, spleen, and kidney by 20.4%, 42.5%, and 31.2% at 24-hr post nanodrug administration, respectively. The bioavailability of DACHPt/HANP increases by 18.7% and 9.4% during the first 5 and 24 hr, respectively. PMID:26039249

  9. A new approach to reduce toxicities and to improve bioavailabilities of platinum-containing anti-cancer nanodrugs.

    PubMed

    Liu, Li; Ye, Qing; Lu, Maggie; Lo, Ya-Chin; Hsu, Yuan-Hung; Wei, Ming-Cheng; Chen, Yu-Hsiang; Lo, Shen-Chuan; Wang, Shian-Jy; Bain, Daniel J; Ho, Chien

    2015-01-01

    Platinum (Pt) drugs are the most potent and commonly used anti-cancer chemotherapeutics. Nanoformulation of Pt drugs has the potential to improve the delivery to tumors and reduce toxic side effects. A major challenge for translating nanodrugs to clinical settings is their rapid clearance by the reticuloendothelial system (RES), hence increasing toxicities on off-target organs and reducing efficacy. We are reporting that an FDA approved parenteral nutrition source, Intralipid 20%, can help this problem. A dichloro (1, 2-diaminocyclohexane) platinum (II)-loaded and hyaluronic acid polymer-coated nanoparticle (DACHPt/HANP) is used in this study. A single dose of Intralipid (2 g/kg, clinical dosage) is administrated [intravenously (i. v.), clinical route] one hour before i.v. injection of DACHPt/HANP. This treatment can significantly reduce the toxicities of DACHPt/HANP in liver, spleen, and, interestingly, kidney. Intralipid can decrease Pt accumulation in the liver, spleen, and kidney by 20.4%, 42.5%, and 31.2% at 24-hr post nanodrug administration, respectively. The bioavailability of DACHPt/HANP increases by 18.7% and 9.4% during the first 5 and 24 hr, respectively. PMID:26039249

  10. Synthesis, characterization, and biological evaluation of Schiff base-platinum(II) complexes

    NASA Astrophysics Data System (ADS)

    Shiju, C.; Arish, D.; Bhuvanesh, N.; Kumaresan, S.

    2015-06-01

    The platinum complexes of Schiff base ligands derived from 4-aminoantipyrine and a few substituted aldehydes were synthesized and characterized by elemental analysis, mass, 1H NMR, IR, electronic spectra, molar conductance, and powder XRD. The structure of one of the ligands L5 was confirmed by a single crystal XRD analysis. The Schiff base ligand crystallized in the triclinic, space group P-1 with a = 7.032(2) Ǻ, b = 9.479(3) Ǻ, c = 12.425(4) Ǻ, α = 101.636(3)°, β = 99.633(3)°, γ = 94.040(3)°, V = 795.0(4) Ǻ3, Z = 2, F(0 0 0) = 352, Dc = 1.405 mg/m3, μ = 0.099 mm-1, R = 0.0378, and wR = 0.0967. The spectral results show that the Schiff base ligand acts as a bidentate donor coordinating through the azomethine nitrogen and the carbonyl oxygen atoms. The geometrical structures of these complexes are found to be square planar. Antimicrobial studies indicate that these complexes exhibit better activity than the ligand. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa), Colon Cancer Cells (HCT116) and Epidermoid Carcinoma Cells (A431) and it was found that the [Pt(L3)Cl2] complex is more active.

  11. Systematic differences in electrochemical reduction of the structurally characterized anti-cancer platinum(IV) complexes [Pt{((p-HC6F4)NCH2)2}-(pyridine)2Cl2], [Pt{((p-HC6F4)NCH2)2}(pyridine)2(OH)2], and [Pt{((p-HC6F4)NCH2)2}(pyridine)2(OH)Cl].

    PubMed

    Guo, Si-Xuan; Mason, Dayna N; Turland, Susan A; Lawrenz, Eric T; Kelly, Lance C; Fallon, Gary D; Gatehouse, Bryan M; Bond, Alan M; Deacon, Glen B; Battle, Andrew R; Hambley, Trevor W; Rainone, Silvina; Webster, Lorraine K; Cullinane, Carleen

    2012-10-01

    The putative platinum(IV) anticancer drugs, [Pt{((R)NCH(2))(2)}(py)(2)XY] (X,Y=Cl, R=p-HC(6)F(4) (1a), C(6)F(5) (1b); X,Y=OH, R=p-HC(6)F(4) (2); X=Cl, Y=OH, R=p-HC(6)F(4) (3), py = pyridine) have been prepared by oxidation of the Pt(II) anticancer drugs [Pt{((R)NCH(2))(2)}(py)(2)] (R=p-HC(6)F(4) (4a) or C(6)F(5) (4b)) with PhICl(2) (1a,b), H(2)O(2) (2) and PhICl(2)/Bu(4)NOH (3). NMR spectroscopy and the X-ray crystal structures of 1b, 2 and 3 show that they have octahedral stereochemistry with the X,Y ligands in the trans-position. The net two electron electrochemical reduction of 1a, 2 and 3 has been studied by voltammetric, spectroelectrochemical and bulk electrolysis techniques in acetonitrile. NMR and other data reveal that reduction of 1a gives pure 4a via the elimination of both axial chloride ligands. In the case of 2, one end of the diamide ligand is protonated and the resulting -NH(p-HC(6)F(4)) group dissociated giving a [Pt{N(p-HC(6)F(4))CH(2)CH(2)NH(p-HC(6)F(4))}] arrangement, one pyridine ligand is lost and a hydroxide ion retained in the coordination sphere. Intriguingly, in the case of reduction of 3, a 50% mixture of the reduction products of pure 1a and 2 is formed. The relative ease of reduction is 1>3>2. Testing of 1a, 2 and 3 against L1210 and L1210(DDP) (DDP = cis-diamine-dichloroplatinum(II)) mouse leukaemia cells shows all to be cytotoxic with IC(50) values of 1.0-3.5 μM. 2 and 3 are active in vivo against AHDJ/PC6 tumor line when delivered in peanut oil despite being hard to reduce electrochemically, and notably are more active than 4a delivered in this medium whilst comparable with 4a delivered in saline/Tween. PMID:22921430

  12. Structural Preferences in Phosphanylthiolato Platinum(II) Complexes

    PubMed Central

    Duran, Josep; Real, Julio; Benet‐Buchholz, Jordi; Solà, Miquel

    2016-01-01

    Abstract Invited for this month's cover picture are the groups of Prof. Alfonso Polo and Dr. Albert Poater at the Universitat de Girona, as well as their collaborators from the Universitat Autònoma de Barcelona and the Institute of Chemical Research of Catalonia. The cover picture shows phosphanylthiolate ligand coordination on a platinum(II) center to give only the bischelate cis ‐P,P isomer when the ligand/Pt ratio is 2, whereas a trinuclear unexpected complex is achieved with a ligand/Pt ratio of 1. Here, the synthesis and structural determination is combined with density functional theory (DFT) calculations to rationalize the reaction mechanistically and through conceptual DFT. The exciting point of this study is that it opens the door to test new experimental pathways to monitor the preferred cis or trans arrangement of bidentate ligands to platinum. (Legend: H‐white, C‐black, P‐purple, S‐yellow, Cl‐green, Pt‐blue.) For more details, see the Full Paper on p. 51 ff. PMID:27308218

  13. Chromatin folding and DNA replication inhibition mediated by a highly antitumor-active tetrazolato-bridged dinuclear platinum(II) complex

    PubMed Central

    Imai, Ryosuke; Komeda, Seiji; Shimura, Mari; Tamura, Sachiko; Matsuyama, Satoshi; Nishimura, Kohei; Rogge, Ryan; Matsunaga, Akihiro; Hiratani, Ichiro; Takata, Hideaki; Uemura, Masako; Iida, Yutaka; Yoshikawa, Yuko; Hansen, Jeffrey C.; Yamauchi, Kazuto; Kanemaki, Masato T.; Maeshima, Kazuhiro

    2016-01-01

    Chromatin DNA must be read out for various cellular functions, and copied for the next cell division. These processes are targets of many anticancer agents. Platinum-based drugs, such as cisplatin, have been used extensively in cancer chemotherapy. The drug–DNA interaction causes DNA crosslinks and subsequent cytotoxicity. Recently, it was reported that an azolato-bridged dinuclear platinum(II) complex, 5-H-Y, exhibits a different anticancer spectrum from cisplatin. Here, using an interdisciplinary approach, we reveal that the cytotoxic mechanism of 5-H-Y is distinct from that of cisplatin. 5-H-Y inhibits DNA replication and also RNA transcription, arresting cells in the S/G2 phase, and are effective against cisplatin-resistant cancer cells. Moreover, it causes much less DNA crosslinking than cisplatin, and induces chromatin folding. 5-H-Y will expand the clinical applications for the treatment of chemotherapy-insensitive cancers. PMID:27094881

  14. Chromatin folding and DNA replication inhibition mediated by a highly antitumor-active tetrazolato-bridged dinuclear platinum(II) complex.

    PubMed

    Imai, Ryosuke; Komeda, Seiji; Shimura, Mari; Tamura, Sachiko; Matsuyama, Satoshi; Nishimura, Kohei; Rogge, Ryan; Matsunaga, Akihiro; Hiratani, Ichiro; Takata, Hideaki; Uemura, Masako; Iida, Yutaka; Yoshikawa, Yuko; Hansen, Jeffrey C; Yamauchi, Kazuto; Kanemaki, Masato T; Maeshima, Kazuhiro

    2016-01-01

    Chromatin DNA must be read out for various cellular functions, and copied for the next cell division. These processes are targets of many anticancer agents. Platinum-based drugs, such as cisplatin, have been used extensively in cancer chemotherapy. The drug-DNA interaction causes DNA crosslinks and subsequent cytotoxicity. Recently, it was reported that an azolato-bridged dinuclear platinum(II) complex, 5-H-Y, exhibits a different anticancer spectrum from cisplatin. Here, using an interdisciplinary approach, we reveal that the cytotoxic mechanism of 5-H-Y is distinct from that of cisplatin. 5-H-Y inhibits DNA replication and also RNA transcription, arresting cells in the S/G2 phase, and are effective against cisplatin-resistant cancer cells. Moreover, it causes much less DNA crosslinking than cisplatin, and induces chromatin folding. 5-H-Y will expand the clinical applications for the treatment of chemotherapy-insensitive cancers. PMID:27094881

  15. Pre-association of polynuclear platinum anticancer agents on a protein, human serum albumin. Implications for drug design†

    PubMed Central

    Montero, Eva I.; Benedetti, Brad T.; Mangrum, John B.; Oehlsen, Michael J.; Qu, Yun; Farrell, Nicholas P.

    2009-01-01

    The interactions of polynuclear platinum complexes with human serum albumin were studied. The compounds examined were the “non-covalent” analogs of the trinuclear BBR3464 as well as the dinuclear spermidine-bridged compounds differing in only the presence or absence of a central -NH2-+ (BBR3571 and analogs). Thus, closely-related compounds could be compared. Evidence for pre-association, presumably through electrostatic and hydrogen-bonding, was obtained from fluorescence and circular dichroism spectroscopy and Electrospray Ionization Mass Spectrometry (ESI-MS). In the case of those compounds containing Pt-Cl bonds, further reaction took place presumably through displacement by sulfur nucleophiles. The implications for protein pre-association and plasma stability of polynuclear platinum compounds are discussed. PMID:17992278

  16. Synthesis, cytotoxicity and structure-activity relationships between ester and amide functionalities in novel acridine-based platinum(II) complexes.

    PubMed

    Bouyer, Florence; Moretto, Johnny; Pertuit, David; Szollosi, Anna; Lacaille-Dubois, Marie-Aleth; Blache, Yves; Chauffert, Bruno; Desbois, Nicolas

    2012-05-01

    In order to improve the pharmacological profile of the anticancer drug cisplatin, several new acridine-based tethered (ethane-1,2-diamine)platinum(II) complexes connected by a polymethylene chain were synthetized. Activity-structure relationship between amide or ester functionalities was explored by changing acridine-9-carboxamide into acridine-9-carboxylate chromophore. The in vitro cytotoxicity of these new complexes was assessed in human colic HCT 116, SW480 and HT-29 cancer cell lines. Series of complexes bearing the acridine-9-carboxylate chromophore displayed higher cytotoxic effect than acridine-9-carboxamide complexes, with gradual effect according to the size of the polymethylene linker. PMID:22459174

  17. Structural Preferences in Phosphanylthiolato Platinum(II) Complexes

    PubMed Central

    Duran, Josep; Real, Julio; Benet‐Buchholz, Jordi; Solà, Miquel

    2015-01-01

    Abstract The transition‐metal complexes of heterotopic phosphanylthiolato ligands are useful in various reactions which depend on the stereochemistry of the complexes. Bis‐chelate complex [Pt(SCH2CH2PPh2‐κ2 P,S)2] (1) was obtained in good yields by direct base‐free substitution reaction of the corresponding phosphanylthiol (HSCH2CH2PPh2) with K2PtCl4 or by oxidative addition of the same phosphanylthiol to Pt(PPh3)4. In agreement with the antisymbiosis rule, complex 1 shows a cis‐P,P arrangement in solid state crystallizing in the monoclinic system (C2/c). Density functional theory (DFT) calculations on 1 reveal the right characteristics for the preferred cis‐P,P arrangement, rationalizing its formation. Direct base‐free reaction of [PtCl2(1,5‐cyclooctadiene)] with one equivalent of the same phosphanylthiol produce the trinuclear complex [PtCl(μ‐SCH2CH2PPh2‐κ2 P,S)]3 (2) instead of the binuclear structure common in palladium and nickel derivatives. Crystals of 2 are triclinic (P 1‾ ) showing a sulfur‐bridging edge‐sharing cyclic trinuclear complex with square‐planar coordination geometry around the platinum atoms and a Pt3S3 cycle in skew‐boat conformation. This preference for the trinuclear structure was rationalized mechanistically and through conceptual DFT. PMID:27308212

  18. Synthesis and reactivity of dichloroboryl complexes of platinum(II).

    PubMed

    Charmant, Jonathan P H; Fan, Cheng; Norman, Nicholas C; Pringle, Paul G

    2007-01-01

    The reaction between [Pt(nbe)3] (nbe=norbornene), two equivalents of the phosphines PPh3, PMePh2 or PMe2Ph and 1 equivalent of BCl3 affords the platinum dichloroboryl species [PtCl(BCl2)(PPh3)2], [PtCl(BCl2)(PMePh2)2] and [PtCl(BCl2)(PMe2Ph)2]. All three complexes were characterised by X-ray crystallography and reveal that the boryl group lies trans to the chloride. With PMe3 as the phosphine, the complex [PtCl(BCl2)(PMe3)2] is isolated in high yield as a white crystalline powder although crystals suitable for X-ray crystallography were not obtained. Crystals were obtained of a product shown by X-ray crystallography to be the unusual dinuclear species [Pt2(BCl2)2(PMe3)4(micro-Cl)][BCl4] which reveals an arrangement in which two square planar platinum(II) centres are linked by a single bridging chloride which is trans to a BCl2 group on each platinum centre. The reaction of [PtCl(BCl2)(PMe3)2] with NEt3 or pyridine (py) affords the adducts [PtCl{BCl2(NEt3)}(PMe3)2] and [PtCl{BCl2(py)}(PMe3)2], respectively, both characterised spectroscopically. The reaction between [PtCl(BCl2)(PMe3)2] and either 4 equivalents of NHEt2 or piperidine (pipH) results in the mono-substituted boryl species [PtCl{BCl(NEt2)}(PMe3)2] and [PtCl{BCl(pip)}(PMe3)2], respectively, the former characterised by X-ray crystallography. Treatment of either [PtCl(BCl2)(PMe3)2] (in the presence of excess NEt3) or [PtCl{BCl(NEt2)}(PMe3)2] with catechol affords the B(cat) (cat=catecholate) derivative [PtCl{B(cat)}(PMe3)2] which is also formed in the reaction between [Pt(PMe3)4] and ClB(cat) and also from the slow decomposition of [Pt{B(cat)}2(PMe3)2] in dichloromethane over a period of months. The compound [Pt{B(cat)}2(PMe3)2] was prepared from the reaction between [Pt(PMe3)4] and B2(cat)2. PMID:17160181

  19. cRGD-installed polymeric micelles loading platinum anticancer drugs enable cooperative treatment against lymph node metastasis.

    PubMed

    Makino, Jun; Cabral, Horacio; Miura, Yutaka; Matsumoto, Yu; Wang, Ming; Kinoh, Hiroaki; Mochida, Yuki; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2015-12-28

    Lymph node metastasis (LNM) is correlated with decreased survival, indicating high tumor malignancy and being a potential source for subsequent fatal metastases. Targeted therapies inhibiting the formation of LNM, while eliminating established metastatic foci, could provide synergistic effects by reducing the incidence and growth of metastasis. Based on the inhibitory activity of cRGD peptide against the development of metastasis, and the LNM targeting ability of systemically injected drug-loaded polymeric micelles, herein, we studied the capability of cRGD-installed polymeric micelles incorporating the platinum anticancer drug (1,2-diaminocylohexane)platinum(II) (DACHPt) for cooperatively inhibiting the formation and progression of LNM. As cRGD-installed DACHPt-loaded micelles (cRGD-DACHPt/m) presented similar size, drug loading and surface charge to non-conjugated micelles (MeO-DACHPt/m), the differences in the biological performance of the micelles were endorsed to the effect of the ligand. In a syngeneic melanoma model, both MeO-DACHPt/m and cRGD-DACHPt/m showed comparable antitumor activity against the primary tumors and the established metastatic foci in lymph nodes. However, cRGD-DACHPt/m significantly enhanced the efficacy against LNM draining from primary tumors through the effective inhibition of the spreading of cancer cells. This improved inhibition was associated with the ability of cRGD-DACHPt/m to reduce the migration of melanoma cells, which was higher than that of MeO-DACHPt/m, free cRGD and their combination. These results support our strategy of using cRGD-installed micelles for attaining cooperative therapies against LNM exploiting the inhibitory function of the peptide and the cytotoxic effect of the micelles. PMID:26474676

  20. Unsaturated platinum-rhenium cluster complexes. Synthesis, structures and reactivity.

    PubMed

    Adams, Richard D; Captain, Burjor; Smith, Mark D; Beddie, Chad; Hall, Michael B

    2007-05-01

    Two new compounds PtRe3(CO)12(PBut3)(micro-H)3, 9, and PtRe2(CO)9(PBut3)(micro-H)2, 10, were obtained from the reaction of Pt(PBut3)2 with Re3(CO)12(micro-H3), 8, at room temperature. Compound 9 contains a butterfly cluster of four metals formed by the insertion of the platinum atom from a Pt(PBut3) group into one of the hydride-bridged metal-metal bonds of 8. The three hydrido ligands are bridging ligands across each of three new Pt-Re bonds. Compound 10 contains a triangular PtRe2 cluster with two hydrido ligands; one bridges a Pt-Re bond, and the other bridges the Re-Re bond. The new compound Pt2Re2(CO)7(PBut3)2(micro-H)2, 11, was obtained from the reaction of 8 with Pt(PBut3)2 in hexane at reflux. Compound 11 was also obtained from 10 by reaction with an additional quantity of Pt(PBut3)2. Compound 11 contains a tetrahedral cluster of four metal atoms with two dynamically active hydrido ligands. A CO ligand on one of the two platinum atoms also exchanges between the two platinum atoms rapidly on the NMR time scale. Compound 11 is electronically unsaturated and was found to add hydrogen at room temperature to form the tetrahydrido cluster complex, Pt2Re2(CO)7(PBut3)2(micro-H)4, 12. Compound 12 has a structure similar to 11 but contains one triply bridging hydrido ligand, two edge bridging hydrido ligands, and one terminal hydrido ligand on one of the two platinum atoms. A kinetic isotope effect D/H of 1.5(1) was determined for the addition of H2 to 11. Hydrogen can be eliminated from 12 by heating to 97 degrees C or by the application of UV-vis irradiation at room temperature. Compound 12 adds CO at room temperature to yield the complex Pt2Re2(CO)8(PBut3)2(micro-H)4, 13, which contains a planar cluster of four metal atoms with a Pt-Pt bond and four edge bridging hydrido ligands. Compounds 11 and 12 react with Pt(PBut3)2 to yield the known five metal cluster complexes Pt3Re2(CO)6(PBut3)3(micro-H)2, 14, and Pt3Re2(CO)6(PBut3)3(micro-H)4, 15, respectively. Density

  1. Chiral Platinum(II) Complexes Featuring Phosphine and Chloroquine Ligands as Cytotoxic and Monofunctional DNA-Binding Agents.

    PubMed

    Villarreal, Wilmer; Colina-Vegas, Legna; Rodrigues de Oliveira, Clayton; Tenorio, Juan C; Ellena, Javier; Gozzo, Fábio C; Cominetti, Marcia Regina; Ferreira, Antonio G; Ferreira, Marco Antonio Barbosa; Navarro, Maribel; Batista, Alzir A

    2015-12-21

    Chiral molecules in nature are involved in many biological events; their selectivity and specificity make them of great interest for understanding the behavior of bioactive molecules, by providing information about the chiral discrimination. Inspired by these conformational properties, we present the design and synthesis of novel chiral platinum(II) complexes featuring phosphine and chloroquine ligands with the general formula [PtCl(P)2(CQ)]PF6 (where (P)2 = triphenylphosphine (PPh3) (5), 1,3-bis(diphenylphosphine)propane (dppp) (6), 1,4-bis(diphenylphosphine)butane (dppb) (7), 1,1'-bis(diphenylphosphine)ferrocene (dppf) (8), and CQ = chloroquine] and their precursors of the type [PtCl2(P)2] are described. The complexes were characterized by elemental analysis, absorption spectroscopy in the infrared and ultraviolet-visible (UV-vis) regions, multinuclear ((1)H, (13)C, (31)P, (15)N, and (195)Pt) NMR spectroscopy, cyclic voltammetry, and mass spectrometry (in the case of chloroquine complexes). The interactions of the new platinum-chloroquine complexes with both albumin (BSA), using fluorescence spectroscopy, and DNA, by four widely reported methods were also evaluated. These experiments showed that these Pt-CQ complexes interact strongly with DNA and have high affinities for BSA, in contrast to CQ and CQDP (chloroquine diphosphate), which interact weakly with these biomolecules. Additional assays were performed in order to investigate the cytotoxicity of the platinum complexes against two healthy cell lines (mouse fibroblasts (L929) and the Chinese hamster lung (V79-4)) and four tumor cell lines (human breast (MDA-MB-231 and MCF-7), human lung (A549), and human prostate (DU-145)). The results suggest that the Pt-CQ complexes are generally more cytotoxic than the free CQ, showing that they are promising as anticancer drugs. PMID:26606142

  2. Linker design for the modular assembly of multifunctional and targeted platinum(ii)-containing anticancer agents.

    PubMed

    Ding, S; Bierbach, U

    2016-08-16

    A versatile and efficient modular synthetic platform was developed for assembling multifunctional conjugates and targeted forms of platinum-(benz)acridines, a class of highly cytotoxic DNA-targeted hybrid agents. The synthetic strategy involved amide coupling between succinyl ester-modified platinum compounds (P1, P2) and a set of 11 biologically relevant primary and secondary amines (N1-N11). To demonstrate the feasibility and versatility of the approach, a structurally and functionally diverse range of amines was introduced. These include biologically active molecules, such as rucaparib (a PARP inhibitor), E/Z-endoxifen (an estrogen receptor antagonist), and a quinazoline-based tyrosine kinase inhibitor. Micro-scale reactions in Eppendorf tubes or on 96-well plates were used to screen for optimal coupling conditions in DMF solution with carbodiimide-, uronium-, and phosphonium-based compounds, as well as other common coupling reagents. Reactions with the phosphonium-based coupling reagent PyBOP produced the highest yields and gave the cleanest conversions. Furthermore, it was demonstrated that the chemistry can also be performed in aqueous media and is amenable to parallel synthesis based on multiple consecutive reactions in DMF in a "one-tube" format. In-line LC-MS was used to assess the stability of the conjugates in physiologically relevant buffers. Hydrolysis of the conjugates occurs at the ester moiety and is facilitated by the aquated metal moiety under low-chloride ion conditions. The rate of ester cleavage greatly depends on the nature of the amine component. Potential applications of the linker technology are discussed. PMID:27251881

  3. Oxalato-platinum or 1-OHP, a third-generation platinum complex: an experimental and clinical appraisal and preliminary comparison with cis-platinum and carboplatinum.

    PubMed

    Mathé, G; Kidani, Y; Segiguchi, M; Eriguchi, M; Fredj, G; Peytavin, G; Misset, J L; Brienza, S; de Vassals, F; Chenu, E

    1989-01-01

    A new platinum complex, oxalatoplatin or l-OHP, which, at the same metal dose in experimental tests is as efficient as cisplatin, and is more so at a lower metal dose than carboplatin; which is as efficient in human tumors of the testis and ovary as these other analogs, and more so in melanoma and breast cancer; which is not nephrotoxic, cardiotoxic or mutagenic, and hardly hematotoxic and neurotoxic, is described and compared with the above-mentioned platinum complexes. Combined with 5Fu, it induces a high number of remissions in colorectal cancer, and has brought about cures in inoperable gastric cancers. Combined with carboplatin, it has resulted in a high proportion of cures in L1210-carrying mice, which no other two-by-two combination of these complexes has achieved. PMID:2675999

  4. Evaluation of novel trans-sulfonamide platinum complexes against tumor cell lines.

    PubMed

    Pérez, Carlos; Díaz-García, C Vanesa; Agudo-López, Alba; del Solar, Virginia; Cabrera, Silvia; Agulló-Ortuño, M Teresa; Navarro-Ranninger, Carmen; Alemán, José; López-Martín, José A

    2014-04-01

    Platinum-based drugs, mainly cisplatin, are employed for the treatment of solid malignancies. However, cisplatin treatment often results in the development of chemoresistance, leading to therapeutic failure. Here, the antitumor activity of different trans-sulfonamide platinum complexes in a panel of human cell lines is presented. The cytotoxicity profiles and cell cycle analyses of these platinum sulfonamide complexes were different from those of cisplatin. These studies showed that complex 2b with cyclohexyldiamine and dansyl moieties had the best antitumoral activities. PMID:24589491

  5. Platinum(iv) N-heterocyclic carbene complexes: their synthesis, characterisation and cytotoxic activity.

    PubMed

    Bouché, M; Dahm, G; Wantz, M; Fournel, S; Achard, T; Bellemin-Laponnaz, S

    2016-07-28

    Platinum(ii) N-heterocyclic carbene complexes have been oxidized by bromine or iodobenzene dichloride to provide the fully characterised corresponding platinum(iv) NHC complexes. Antiproliferative activities of Pt(iv) NHC complexes were assayed against several cancer cell lines and the results were correlated with respect to their stability. Mechanistic investigations revealed that mitochondrial dysfunction and ROS production were associated with the cytotoxic process induced by these compounds. PMID:27331604

  6. Anticancer activity of ruthenium(II) arene complexes bearing 1,2,3,4-tetrahydroisoquinoline amino alcohol ligands.

    PubMed

    Chelopo, Madichaba P; Pawar, Sachin A; Sokhela, Mxolisi K; Govender, Thavendran; Kruger, Hendrik G; Maguire, Glenn E M

    2013-08-01

    Ruthenium complexes offer potential reduced toxicity compared to current platinum anticancer drugs. 1,2,3,4-tetrahydrisoquinoline amino alcohol ligands were synthesised, characterised and coordinated to an organometallic Ru(II) centre. These complexes were evaluated for activity against the cancer cell lines MCF-7, A549 and MDA-MB-231 as well as for toxicity in the normal cell line MDBK. They were observed to be moderately active against only the MCF-7 cells with the best IC₅₀ value of 34 μM for the cis-diastereomeric complex C4. They also displayed excellent selectivity by being relatively inactive against the normal MDBK cell line with SI values ranging from 2.3 to 7.4. PMID:23827181

  7. T-shaped platinum boryl complexes: synthesis and structure.

    PubMed

    Braunschweig, Holger; Radacki, Krzysztof; Uttinger, Katharina

    2008-01-01

    A series of cationic T-shaped 14-electron boryl complexes of the type trans-[(Cy3P)2Pt(B(X)X')]+ (X=Br; X'=ortho-tolyl, tBu, NMe2, piperidyl, Br; XX'=(NMe2)2, catecholato) were synthesized by halide abstraction from trans-[(Cy3P)2Pt(Br)(B(X)X')] (Cy=cyclohexyl) with Na[BArf 4] (Arf=3,5-(CF3)2C6H3), K[B(C6F5)4], or Na[BPh4]. X-ray diffraction studies were performed on all compounds, revealing a subtle correlation between the trans-influence of the boryl moiety and the Pt-H and Pt-C separations. However, no notable agostic C-H interaction with the platinum center was detected. trans-[(Cy3P)2Pt(BCat)]+ (Cat=catecholato), the complex with the shortest Pt-H and Pt-C distances, was treated with Lewis bases (L), forming compounds of the type trans-[(Cy3P)2Pt(L)(BCat)]+, thus proving a decisive influence of the degree of trans-influence exerted by the boryl ligands on the chemical reactivity of the title complexes. Another point that was investigated and clarified is the different behavior of trans-[(Cy3P)2Pt(Br)(B(Br)Mes)] (Mes=mesityl) towards K[B(C6F5)4] with formation of the borylene species trans-[(Cy3P)2Pt(Br)(BMes)]+. PMID:18663715

  8. Synthesis and characterisation of platinum (II) salphen complex and its interaction with calf thymus DNA

    NASA Astrophysics Data System (ADS)

    Sukri, Shahratul Ain Mohd; Heng, Lee Yook; Karim, Nurul Huda Abd

    2014-09-01

    A platinum (II) salphen complex was synthesised by condensation reaction of 2,4-dihydroxylbenzaldehyde and o-phenylenediamine with potassium tetrachloroplatinate to obtain N,N'-Bis-4-(hydroxysalicylidene)-phenylenediamine-platinum (II). The structure of the complex was confirmed by 1H and 13C NMR spectroscopy, FTIR spectroscopy, CHN elemental analyses and ESI-MS spectrometry. The platinum (II) salphen complex with four donor atoms N2O2 from its salphen ligand coordinated to platinum (II) metal centre were determined. The binding mode and interaction of this complex with calf thymus DNA was determined by UV/Vis DNA titration and emission titration. The intercalation between the DNA bases by π-π stacking due to its square planar geometry and aromatic rings structures was proposed.

  9. Synthesis and characterisation of platinum (II) salphen complex and its interaction with calf thymus DNA

    SciTech Connect

    Sukri, Shahratul Ain Mohd; Heng, Lee Yook; Karim, Nurul Huda Abd

    2014-09-03

    A platinum (II) salphen complex was synthesised by condensation reaction of 2,4-dihydroxylbenzaldehyde and o-phenylenediamine with potassium tetrachloroplatinate to obtain N,N′-Bis-4-(hydroxysalicylidene)-phenylenediamine-platinum (II). The structure of the complex was confirmed by {sup 1}H and {sup 13}C NMR spectroscopy, FTIR spectroscopy, CHN elemental analyses and ESI-MS spectrometry. The platinum (II) salphen complex with four donor atoms N{sub 2}O{sub 2} from its salphen ligand coordinated to platinum (II) metal centre were determined. The binding mode and interaction of this complex with calf thymus DNA was determined by UV/Vis DNA titration and emission titration. The intercalation between the DNA bases by π-π stacking due to its square planar geometry and aromatic rings structures was proposed.

  10. Modeling platinum group metal complexes in aqueous solution.

    PubMed

    Lienke, A; Klatt, G; Robinson, D J; Koch, K R; Naidoo, K J

    2001-05-01

    We construct force fields suited for the study of three platinum group metals (PGM) as chloranions in aqueous solution from quantum chemical computations and report experimental data. Density functional theory (DFT) using the local density approximation (LDA), as well as extended basis sets that incorporate relativistic corrections for the transition metal atoms, has been used to obtain equilibrium geometries, harmonic vibrational frequencies, and atomic charges for the complexes. We found that DFT calculations of [PtCl(6)](2-).3H(2)O, [PdCl(4)](2-).2H(2)O, and [RhCl(6)](3-).3H(2)O water clusters compared well with molecular mechanics (MM) calculations using the specific force field developed here. The force field performed equally well in condensed phase simulations. A 500 ps molecular dynamics (MD) simulation of [PtCl(6)](2-) in water was used to study the structure of the solvation shell around the anion. The resulting data were compared to an experimental radial distribution function derived from X-ray diffraction experiments. We found the calculated pair correlation functions (PCF) for hexachloroplatinate to be in good agreement with experiment and were able to use the simulation results to identify and resolve two water-anion peaks in the experimental spectrum. PMID:11327912

  11. Platinum(II) 1,5-COD oxo complexes

    SciTech Connect

    Shan, H.; James, A.; Sharp, P.R.

    1998-11-02

    Three new types of platinum(II) oxo complexes--[(1,5-COD)Pt({mu}{sup 3}-O)(AuL)]{sub 2}(BF{sub 4}){sub 2} [1, L = PPh{sub 3}, PPh{sub 2}Et, PPh{sub 2}-i-Pr, P(o-tol){sub 3}, P(p-tol){sub 3}, P(p-MeOC{sub 6}H{sub 4}){sub 3}, P(p-CF{sub 3}C{sub 6}H{sub 4}){sub 3}], [(1,5-COD)Pt{l_brace}{mu}{sup 3}-O(AuL){sub 2}{r_brace}{sub 2}](BF{sub 4}){sub 2} (2), and [(1,5-COD){sub 4}Pt{sub 4}({mu}{sup 3}-O){sub 2}Cl{sub 2}]X{sub 2} (3, X = BF{sub 4}; 3a, X = CF{sub 3}SO{sub 3})--are obtained from oxo/chloro exchange reactions between (1,5-COD)PtCl{sub 2} and [(LAu){sub 3}({mu}{sup 3}-O)]BF{sub 4}. Crystals of 1 (L = PPh{sub 3}) from CDCl{sub 3} are triclinic. Crystals of 3a from CH{sub 2}Cl{sub 2}/toluene are trigonal. The structure of the cationic portion of 1 shows a planar (COD)-Pt({mu}-O){sub 2}Pt(COD) unit with slightly out-of-plane LAu{sup +} groups linearly coordinated to the oxo ligands. The structure of the cationic portion of 3a is similar and shows a slightly folded (COD)Pt({mu}-O){sub 2}Pt(COD) unit with out-of-plane [(COD)PtCl]{sup +} groups coordinated to the oxo ligands. Solutions of 3 in untreated CH{sub 2}Cl{sub 2} or CD{sub 2}Cl{sup 2} deposit crystals of [(1,5-COD){sub 4}Pt{sub 4}({mu}{sup 3}-O){sub 2}({mu}{sup 2}-OH)](BF{sub 4}){sub 3} (4) which are monoclinic. The core structure of the cationic portion of 4 shows a tetranuclear platinum cation in which the metal atoms occupy the corners of a distorted tetrahedron and two {mu}{sup 3}-oxo ligands and one {mu}{sup 2}-hydroxo ligand bridge the four platinum atoms. Reaction of 1 (L = PPh{sub 3}) with PPh{sub 3} gives OPPh{sub 3} and [(Ph{sub 3}P){sub 3}PtAuPPh{sub 3}]BF{sub 4} (5) which is also obtained from (Ph{sub 3}P){sub 4}Pt and Ph{sub 3}-PAuBF{sub 4}. Crystals of 5 from THF are monoclinic. The structure of 5 consists of an L{sub 3}Pt-AuL cation where the Au atom is linear 2-coordinate and the Pt atom is distorted square-planar 4-coordinate.

  12. Anticancer Organometallic Osmium(II)-p-cymene Complexes.

    PubMed

    Păunescu, Emilia; Nowak-Sliwinska, Patrycja; Clavel, Catherine M; Scopelliti, Rosario; Griffioen, Arjan W; Dyson, Paul J

    2015-09-01

    Osmium compounds are attracting increasing attention as potential anticancer drugs. In this context, a series of bifunctional organometallic osmium(II)-p-cymene complexes functionalized with alkyl or perfluoroalkyl groups were prepared and screened for their antiproliferative activity. Three compounds from the series display selectivity toward cancer cells, with moderate cytotoxicity observed against human ovarian carcinoma (A2780) cells, whereas no cytotoxicity was observed on non-cancerous human embryonic kidney (HEK-293) cells and human endothelial (ECRF24) cells. Two of these three cancer-cell-selective compounds induce cell death largely via apoptosis and were also found to disrupt vascularization in the chicken embryo chorioallantoic membrane (CAM) model. Based on these promising properties, these compounds have potential clinical applications. PMID:26190176

  13. Theoretical study of amino derivatives and anticancer platinum drug grafted on various carbon nanostructures.

    PubMed

    Kraszewski, S; Duverger, E; Ramseyer, C; Picaud, F

    2013-11-01

    Density functional theory calculations with van der Waals approximation have been conducted to analyze the functionalization of various carbon-based nanostructures (fullerene, metallic, and semi-conducting nanotubes) with amino derivative groups. The results obtained with azomethine, show the formation of a five membered ring on fullerenes, and on nanotubes consistent with experimental observations. The attachment of an azomethine plus subsequent drug like a Pt(IV) complex does not perturb the cycloaddition process. Moreover, all theoretical results show that the length of different amino derivatives with subsequent Pt(IV) complex does not affect the complexed therapeutic agent when it is attached onto these carbon-based nanostructures. PMID:24206319

  14. Exploiting developments in nanotechnology for the preferential delivery of platinum-based anti-cancer agents to tumours: targeting some of the hallmarks of cancer.

    PubMed

    Parker, James P; Ude, Ziga; Marmion, Celine J

    2016-01-01

    Platinum drugs as anti-cancer therapeutics are held in extremely high regard. Despite their success, there are drawbacks associated with their use; their dose-limiting toxicity, their limited activity against an array of common cancers and patient resistance to Pt-based therapeutic regimes. Current investigations in medicinal inorganic chemistry strive to offset these shortcomings through selective targeting of Pt drugs and/or the development of Pt drugs with new or multiple modes of action. A comprehensive overview showcasing how liposomes, nanocapsules, polymers, dendrimers, nanoparticles and nanotubes may be employed as vehicles to selectively deliver cytotoxic Pt payloads to tumour cells is provided. PMID:26567482

  15. Platinum-based drugs: past, present and future.

    PubMed

    Dilruba, Shahana; Kalayda, Ganna V

    2016-06-01

    Platinum-based drugs cisplatin, carboplatin and oxaliplatin are widely used in the therapy of human neoplasms. Their clinical success is, however, limited due to severe side effects and intrinsic or acquired resistance to the treatment. Much effort has been put into the development of new platinum anticancer complexes, but none of them has reached worldwide clinical application so far. Nedaplatin, lobaplatin and heptaplatin received only regional approval. Some new platinum complexes and platinum drug formulations are undergoing clinical trials. Here, we review the main classes of new platinum drug candidates, such as sterically hindered complexes, monofunctional platinum drugs, complexes with biologically active ligands, trans-configured and polynuclear platinum complexes, platinum(IV) prodrugs and platinum-based drug delivery systems. For each class of compounds, a detailed overview of the mechanism of action is given, the cytotoxicity is compared to that of the clinically used platinum drugs, and the clinical perspectives are discussed. A critical analysis of lessons to be learned is presented. Finally, a general outlook regarding future directions in the field of new platinum drugs is given. PMID:26886018

  16. Extraction chromatography of palladium and platinum complexes with nitroso-R-salt.

    PubMed

    Flieger, A; Przeszlakowski, S

    1985-12-01

    The retention of palladium and platinum complexes with nitroso-R-salt on silica gel treated with Aliquat 336 has been investigated. The complexation of platinum with nitroso-R-salt (NRS) requires heating of H(2)PtCl(6) with an excess of NRS at 100 degrees . The affinity of the complexes for an Aliquat 336 stationary phase increases in the following order: PdCl(4)(2-) ~ Pt-NRS < PtCl(6)(2-) Pd-NRS. The complexes of palladium and platinum can be separated by column chromatography on silica treated with Aliquat 336 and eluted with 0.25M perchloric acid (Pt) and 1M perchloric acid (Pd). PMID:18963969

  17. New zinc(II), palladium(II) and platinum(II) complexes of DL-piperidine-2-carboxylic acid; X-ray crystal structure of trans-[Zn2(μ-Ca)2(Hpa)2Cl6] and anticancer activity of some complexes

    NASA Astrophysics Data System (ADS)

    Alie El-Deen, Afaf A.; El-Askalany, Abd El-Monem E.; Halaoui, Ruba; Jean-Claude, Bertrand J.; Butler, Ian S.; Mostafa, Sahar I.

    2013-03-01

    New complexes of DL-piperidine-2-carboxylic acid (DL-H2pa), [Zn(Hpa)(AcO)(H2O)2], trans-[Zn2(μ-Ca)2(Hpa)2Cl6], [M(bpy)(Hpa)]Cl and [M(pa)(PPh3)2] (M(II) = Pd, Pt) have been prepared and characterized on the basis of elemental analyses, molar conductivity and thermal measurements, IR, Raman, UV-Vis, NMR (1H and 31P) and mass spectroscopy. DL-Piperidine-2-carboxylic acids act as bidentate ligands, through the carboxyl oxygen and cyclic nitrogen atoms. The crystal structure of trans-[Zn2(μ-Ca)2(Hpa)2Cl6], obtained from the addition of ZnCl2 to DL-H2pa in either hard tap water or presence of CaCl2, has been determined by X-ray diffraction. It crystallizes in a triclinic lattice with space group symmetry P1. The complex has two zinc atoms in tetrahedral geometry, each ligated by a carboxyl oxygen and three chlorine atoms. The other carboxyl oxygen atoms from the two Hpa- ligands are bridged by two calcium atoms, i.e., there are two Zn(Hpa-)Cl3 units bridged by two calcium atoms. The free DL-H2pa and its complexes, trans-[Zn2(μ-Ca)2(Hpa)2Cl6], [Pd(bpy)(Hpa)]Cl and [M(pa)(PPh3)2] (M(II) = Pd, Pt) have been tested against the serous ovarian cancer ascites, OV 90 cell line.

  18. Organometallic Iridium(III) Anticancer Complexes with New Mechanisms of Action: NCI-60 Screening, Mitochondrial Targeting, and Apoptosis

    PubMed Central

    2013-01-01

    Platinum complexes related to cisplatin, cis-[PtCl2(NH3)2], are successful anticancer drugs; however, other transition metal complexes offer potential for combating cisplatin resistance, decreasing side effects, and widening the spectrum of activity. Organometallic half-sandwich iridium (IrIII) complexes [Ir(Cpx)(XY)Cl]+/0 (Cpx = biphenyltetramethylcyclopentadienyl and XY = phenanthroline (1), bipyridine (2), or phenylpyridine (3)) all hydrolyze rapidly, forming monofunctional G adducts on DNA with additional intercalation of the phenyl substituents on the Cpx ring. In comparison, highly potent complex 4 (Cpx = phenyltetramethylcyclopentadienyl and XY = N,N-dimethylphenylazopyridine) does not hydrolyze. All show higher potency toward A2780 human ovarian cancer cells compared to cisplatin, with 1, 3, and 4 also demonstrating higher potency in the National Cancer Institute (NCI) NCI-60 cell-line screen. Use of the NCI COMPARE algorithm (which predicts mechanisms of action (MoAs) for emerging anticancer compounds by correlating NCI-60 patterns of sensitivity) shows that the MoA of these IrIII complexes has no correlation to cisplatin (or oxaliplatin), with 3 and 4 emerging as particularly novel compounds. Those findings by COMPARE were experimentally probed by transmission electron microscopy (TEM) of A2780 cells exposed to 1, showing mitochondrial swelling and activation of apoptosis after 24 h. Significant changes in mitochondrial membrane polarization were detected by flow cytometry, and the potency of the complexes was enhanced ca. 5× by co-administration with a low concentration (5 μM) of the γ-glutamyl cysteine synthetase inhibitor L-buthionine sulfoximine (L-BSO). These studies reveal potential polypharmacology of organometallic IrIII complexes, with MoA and cell selectivity governed by structural changes in the chelating ligands. PMID:23618382

  19. Organometallic Iridium(III) anticancer complexes with new mechanisms of action: NCI-60 screening, mitochondrial targeting, and apoptosis.

    PubMed

    Hearn, Jessica M; Romero-Canelón, Isolda; Qamar, Bushra; Liu, Zhe; Hands-Portman, Ian; Sadler, Peter J

    2013-01-01

    Platinum complexes related to cisplatin, cis-[PtCl2(NH3)2], are successful anticancer drugs; however, other transition metal complexes offer potential for combating cisplatin resistance, decreasing side effects, and widening the spectrum of activity. Organometallic half-sandwich iridium (Ir(III)) complexes [Ir(Cp(x))(XY)Cl](+/0) (Cp(x) = biphenyltetramethylcyclopentadienyl and XY = phenanthroline (1), bipyridine (2), or phenylpyridine (3)) all hydrolyze rapidly, forming monofunctional G adducts on DNA with additional intercalation of the phenyl substituents on the Cp(x) ring. In comparison, highly potent complex 4 (Cp(x) = phenyltetramethylcyclopentadienyl and XY = N,N-dimethylphenylazopyridine) does not hydrolyze. All show higher potency toward A2780 human ovarian cancer cells compared to cisplatin, with 1, 3, and 4 also demonstrating higher potency in the National Cancer Institute (NCI) NCI-60 cell-line screen. Use of the NCI COMPARE algorithm (which predicts mechanisms of action (MoAs) for emerging anticancer compounds by correlating NCI-60 patterns of sensitivity) shows that the MoA of these Ir(III) complexes has no correlation to cisplatin (or oxaliplatin), with 3 and 4 emerging as particularly novel compounds. Those findings by COMPARE were experimentally probed by transmission electron microscopy (TEM) of A2780 cells exposed to 1, showing mitochondrial swelling and activation of apoptosis after 24 h. Significant changes in mitochondrial membrane polarization were detected by flow cytometry, and the potency of the complexes was enhanced ca. 5× by co-administration with a low concentration (5 μM) of the γ-glutamyl cysteine synthetase inhibitor L-buthionine sulfoximine (L-BSO). These studies reveal potential polypharmacology of organometallic Ir(III) complexes, with MoA and cell selectivity governed by structural changes in the chelating ligands. PMID:23618382

  20. Metallomesogens based on platinum(II) complexes: synthesis, luminescence and polarized emission.

    PubMed

    Wang, Yafei; Liu, Yu; Luo, Jian; Qi, Hongrui; Li, Xiaoshuang; Nin, Meijun; Liu, Ming; Shi, Danyan; Zhu, Weiguo; Cao, Yong

    2011-05-14

    Two series of heteroleptic cyclometalated platinum(II) complexes [(C(n)Oppy)Pt(acac) and (C(n)OFppy)Pt(acac)] have been prepared. Their liquid-crystal and optophysical properties were studied, in which C(n)Oppy is 2-(4-alkoxyphenyl)-5-(alkoxymethyl)pyridine and C(n)OFppy is 2-(3-fluoro-4-alkoxyphenyl)-5-(alkoxymethyl)pyridine. Only the heteroleptic cyclometalated platinum(II) complexes (n = 12 and 16) exhibited enantiotropic mesophase transitions with smectic (S(m)) structure. Intense polarized luminescence with a maximum peak at 532 nm and a polarization ratio as high as 10.5 were obtained in an aligned polyimide film under opto-excitation at room temperature. This research work provides a simple approach to realize high-efficiency polarized emission by heteroleptic cyclometalated platinum(II) complexes. PMID:21451822

  1. Say No to DMSO: Dimethylsulfoxide Inactivates Cisplatin, Carboplatin and Other Platinum Complexes

    PubMed Central

    Hall, Matthew D.; Telma, Katherine A.; Chang, Ki-Eun; Lee, Tobie D.; Madigan, James P.; Lloyd, John R.; Goldlust, Ian S.; Hoeschele, James D.; Gottesman, Michael M.

    2014-01-01

    The platinum drugs cisplatin, carboplatin and oxaliplatin are highly utilized in the clinic and as a consequence are extensively studied in the laboratory setting. In this study, we examined the literature and found a significant number of studies (11 - 34%) in prominent cancer journals utilizing cisplatin dissolved in dimethylsulfoxide (DMSO). However, dissolving cisplatin in DMSO for laboratory-based studies results in ligand displacement and changes the structure of the complex. We examined the effect of DMSO on platinum complexes, including cisplatin, carboplatin and oxaliplatin, finding that DMSO reacted with the complexes, inhibited their cytotoxicity and their ability to initiate cell death. These results render a substantial portion of the literature on cisplatin uninterpretable. Raising awareness of this significant issue in the cancer biology community is critical, and we make recommendations on appropriate solvation of platinum drugs for research. PMID:24812268

  2. Cellular response to antitumor cis-Dichlorido platinum(II) complexes of CDK inhibitor Bohemine and its analogues.

    PubMed

    Liskova, Barbora; Zerzankova, Lenka; Novakova, Olga; Kostrhunova, Hana; Travnicek, Zdenek; Brabec, Viktor

    2012-02-20

    The cellular and molecular pharmacology of the new class of anticancer drugs, in which the CDK inhibitor bohemine and its analogues are coordinated to Pt(II) to form cisplatin derivatives, was investigated. The results revealed the unique anticancer profile of a cisplatin-derived platinum(II) dichlorido complex involving N(7)-coordinated bohemine (C1). Although the IC(50) values were ∼6-fold higher for C1 than for cisplatin in cisplatin-sensitive tumor cells, the tumor cells in which C1 was also active are those which acquired resistance to cisplatin. In addition, among the novel conjugates of bohemine and its analogues with cisplatin, marked selectivity of C1 for tumor cells relative to the nontumorigenic, normal cells was observed. However, coordination of bohemine to platinum in C1 considerably reduced one of the dual functionalities anticipated to be effective after C1 reaches the nucleus. Further studies performed in the cells with wt p53 status show differences between cisplatin and C1 at the level of cell cycle regulation. Impedance-based real-time monitoring of the effects of C1 and cisplatin on cell growth supported the thesis that critical differences exist in the rate and mechanisms of cell kill caused by the two agents and that C1 was a more potent inducer of apoptosis and/or necrosis than cisplatin. The results also showed that the distinct differences in cell killing observed for C1 and cisplatin might be associated with processes at the DNA level. The DNA binding experiments carried out in a cell-free medium demonstrated that modification reactions resulting in the irreversible coordination of C1 to DNA were slower than that of cisplatin. Transcription mapping experiments and determination of interstrand cross-linking efficiency of C1 suggested that several aspects of DNA binding mode of C1 and cisplatin were similar. It was concluded that C1 remains a promising prototype of compounds for the generation of novel drug candidates with cytotoxicity

  3. Photoinduced cytotoxicity by a platinum diimine complex employing magnetite-silica nanocomposites as delivery vehicles.

    PubMed

    Zhang, Zhigang; Li, Haisha; Dai, Ruihui; Chai, Aiyun

    2015-10-01

    Tartaric acid-modified core-shell magnetite-silica nanocomposites were prepared by a sol-gel method, and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. Then the nanocomposites were employed as carriers of a photoactive platinum diimine complex. Photoinduced cytotoxicity by the photosensitizer-loaded nanocomposites in different human carcinoma cells has been studied by cell viability assay. The results suggest that the as-synthesized nanocomposites have good stability in water, and the cytotoxicity induced by the platinum diimine complex in red light can be significantly enhanced when the photosensitizer is loaded with the magnetic nanocomposites. PMID:26315847

  4. Structure Effect of Some New Anticancer Pt(II) Complexes of Amino Acid Derivatives with Small Branched or Linear Hydrocarbon Chains on Their DNA Interaction.

    PubMed

    Kantoury, Mahshid; Eslami Moghadam, Mahboube; Tarlani, Ali Akbar; Divsalar, Adeleh

    2016-07-01

    The aim of this study was to investigate the structure effect and identify the modes of binding of amino acid-Pt complexes to DNA molecule for cancer treatment. Hence, three novel water soluble platinum complexes, [Pt(phen)(R-gly)]NO3 (where phen is 1,10-phenanthroline, R-gly is methyl, amyl, and isopentyl-glycine), have been synthesized and characterized by spectroscopic methods, conductivity measurements, and chemical analysis. The anticancer activities of synthesized complexes were investigated against human breast cancer cell line of MDA-MB 231. The 50% cytotoxic concentration values were determined to be 42.5, 58, and 70 μm for methyl-, amyl-, and isopentyl-gly complexes, respectively. These complexes were interacted with calf thymus DNA (ct-DNA) via positive cooperative interaction. The modes of binding of the complexes to DNA were investigated by fluorescence spectroscopy and circular dichroism in combination with a molecular docking study. The result indicates that complexes with small or branched hydrocarbon chains can intercalate with DNA. This is while amyl complexes with linear chains interacted additionally via groove binding. The results of the negative value of Gibbs energy for binding of isopentyl-platinum to DNA and those of the molecular docking were coherent. Furthermore, the docking results demonstrated that hydrophobic interaction plays an important role in the complex-DNA interaction. PMID:26833921

  5. Nanoformulation improves activity of the (pre)clinical anticancer ruthenium complex KP1019.

    PubMed

    Heffeter, P; Riabtseva, A; Senkiv, Y; Kowol, C R; Körner, W; Jungwith, U; Mitina, N; Keppler, B K; Konstantinova, T; Yanchuk, I; Stoika, R; Zaichenko, A; Berger, W

    2014-05-01

    Ruthenium anticancer drugs belong to the most promising non-platinum anticancer metal compounds in clinical evaluation. However, although the clinical results are promising regarding both activity and very low adverse effects, the clinical application is currently hampered by the limited solubility and stability of the drug in aqueous solution. Here, we present a new nanoparticle formulation based on polymer-based micelles loaded with the anticancer lead ruthenium compound KP1019. Nanoprepared KP1019 was characterised by enhanced stability in aqueous solutions. Moreover, the nanoparticle formulation facilitated cellular accumulation of KP1019 (determined by ICP-MS measurements) resulting in significantly lowered IC50 values. With regard to the mode of action, increased cell cycle arrest in G2/M phase (PI-staining), DNA damage (Comet assay) as well as enhanced levels of apoptotic cell death (caspase 7 and PARP cleavage) were found in HCT116 cells treated with the new nanoformulation of KP1019. Summarizing, we present for the first time evidence that nanoformulation is a feasible strategy for improving the stability as well as activity of experimental anticancer ruthenium compounds. PMID:24734541

  6. Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Chen, Mu-He; Hao, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2016-06-01

    Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes (Re1 and Re2), along with their corresponding dinuclear complexes (Re3 and Re4), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1-Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase-independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase-independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes. PMID:27106876

  7. Palladium, platinum, and rhodium contents of rocks near the lower margin of the Stillwater complex, Montana.

    USGS Publications Warehouse

    Zientek, M.L.; Foose, M.P.; Leung, Mei

    1986-01-01

    Statistical summaries are reported for Pd, Pt and Rh contents of rocks from the lower part of the Stillwater complex, the underlying contact-metamorphosed sediments, and post-metamorphic dykes and sills wholly within the hornfelses. Variability of the data among the rock types is attributed largely to differences in sulphide content. Non-correlation of sulphur with platinum-group assays of many rock types leads to the suggestion that the immiscible sulphide and silicate liquids did not completely equilibrate with respect to platinum-group elements. -G.J.N.

  8. Synthesis and Antiproliferative Activity of Steroidal Thiosemicarbazone Platinum (Pt(II)) Complexes.

    PubMed

    Huang, Yanmin; Kong, Erbin; Gan, Chunfang; Liu, Zhiping; Lin, Qifu; Cui, Jianguo

    2015-01-01

    Steroidal compounds exhibit particular physiological activities. In this paper, some steroidal thiosemicarbazones platinum (Pt(II)) complexes were synthesized by the condensation of steroidal ketones with thiosemicarbazide using estrone, chenodeoxycholic acid, and 7-deoxycholic acid as starting materials and complexation of steroidal thiosesemicarbazones with Pt(II). The complexes were characterized by IR, NMR, and MS, and their antiproliferative activities were evaluated. The results showed that some steroidal thiosemicarbazones platinum (Pt(II)) complexes displayed moderate cytotoxicity to HeLa and Bel-7404 cells. Thereinto, complex 6 showed an excellent inhibited selectivity to HeLa cells with an IC50 value of 9.2 μM and SI value of 21.7. At the same time, all compounds were almost inactive to HEK293T (normal kidney epithelial cells). The information obtained from the studies may be useful for the design of novel chemotherapeutic drugs. PMID:26635511

  9. Synthesis and Antiproliferative Activity of Steroidal Thiosemicarbazone Platinum (Pt(II)) Complexes

    PubMed Central

    Huang, Yanmin; Kong, Erbin; Gan, Chunfang; Liu, Zhiping; Lin, Qifu; Cui, Jianguo

    2015-01-01

    Steroidal compounds exhibit particular physiological activities. In this paper, some steroidal thiosemicarbazones platinum (Pt(II)) complexes were synthesized by the condensation of steroidal ketones with thiosemicarbazide using estrone, chenodeoxycholic acid, and 7-deoxycholic acid as starting materials and complexation of steroidal thiosesemicarbazones with Pt(II). The complexes were characterized by IR, NMR, and MS, and their antiproliferative activities were evaluated. The results showed that some steroidal thiosemicarbazones platinum (Pt(II)) complexes displayed moderate cytotoxicity to HeLa and Bel-7404 cells. Thereinto, complex 6 showed an excellent inhibited selectivity to HeLa cells with an IC50 value of 9.2 μM and SI value of 21.7. At the same time, all compounds were almost inactive to HEK293T (normal kidney epithelial cells). The information obtained from the studies may be useful for the design of novel chemotherapeutic drugs. PMID:26635511

  10. Characterization of the Sukinda and Nausahi ultramafic complexes, Orissa, India by platinum-group element geochemistry

    USGS Publications Warehouse

    Page, N.J.; Banerji, P.K.; Haffty, J.

    1985-01-01

    Samples of 20 chromitite, 14 ultramafic and mafic rock, and 9 laterite and soil samples from the Precambrian Sukinda and Nausahi ultramafic complexes, Orissa, India were analyzed for platinum-group elements (PGE). The maximum concentrations are: palladium, 13 parts per billion (ppb); platinum, 120 ppb; rhodium, 21 ppb; iridium, 210 ppb; and ruthenium, 630 ppb. Comparison of chondrite-normalized ratios of PGE for the chromitite samples of lower Proterozoic to Archean age with similar data from Paleozoic and Mesozoic ophiolite complexes strongly implies that these complexes represent Precambrian analogs of ophiolite complexes. This finding is consistent with the geology and petrology of the Indian complexes and suggests that plate-tectonic and ocean basin developement models probably apply to some parts of Precambrian shield areas. ?? 1985.

  11. Synthesis, Characterization, and Evaluation of cis-Diphenyl Pyridineamine Platinum(II) Complexes as Potential Anti-Breast Cancer Agents

    PubMed Central

    Guevara, Priscilla; Ramirez, Verenice; Metta-Magaña, Alejandro J.; Villagrán, Dino; Varela-Ramirez, Armando; Das, Siddhartha; Nuñez, Jose E.

    2015-01-01

    Although cisplatin is considered as an effective anti-cancer agent, it has shown limitations and may produce toxicity in patients. Therefore, we synthesized two cis-dichlorideplatinum(II) compounds (13 and 14) composed of meta- and para-N,N-diphenyl pyridineamine ligands through a reaction of the amine precursors and PtCl2 with respective yields of 16% and 47%. We hypothesized that compounds 13 and 14, with lipophilic ligands, should transport efficiently in cancer cells and demonstrate more effectiveness than cisplatin. When tested for biological activity, compounds 13 and 14 were found to inhibit the growth of MCF 7 and MDA-MB-231 cells (IC50s 1 ± 0.4 μM and 1 ± 0.2 μM for 13 and 14, respectively, and IC50 7.5 ± 1.3 μM for compound 13 and 1 ± 0.3 μM for compound 14). Incidentally, these doses were found to be lower than cisplatin doses (IC50 5 ± 0.7 μM for MCF 7 and 10 ± 1.1 μM for MDA-MB-231). Similar to cisplatin, 13 and 14 interacted with DNA and induced apoptosis. However, unlike cisplatin, they blocked the migration of MDA-MB-231 cells suggesting that in addition to apoptotic and DNA-binding capabilities, these compounds are useful in blocking the metastatic migration of breast cancer cells. To delineate the mechanism of action, computer-aided analyses (DFT calculations) were conducted for compound 13. Results indicate that in vivo, the pyridineamine ligands are likely to dissociate from the complex, forming a platinum DNA adduct with anti-proliferative activity. These results suggest that complexes 13 and 14 hold promise as potential anti-cancer agents. PMID:24737042

  12. Synthesis of four binuclear copper(II) complexes: Structure, anticancer properties and anticancer mechanism.

    PubMed

    Qi, Jinxu; Liang, Shichu; Gou, Yi; Zhang, Zhenlei; Zhou, Zuping; Yang, Feng; Liang, Hong

    2015-01-01

    Copper (Cu) compounds are a promising candidate for next generation metal anticancer drugs and have been extensively studied. Therefore, four binuclear copper(II) compounds derived from Schiff base thiosemicarbazones (L1-L4), namely [CuCl(L1)]2 (C1), [CuNO3(L2)]2 (C2), [Cu(NCS) (L3)]2 (C3) and [Cu(CH3COO) (L4)]2 (C4) were synthesized and characterized. Four of these compounds showed very high cytotoxicity to cancer cell lines in vitro. These Cu(II) compounds strongly promoted the apoptosis of BEL-7404 cells. The formation of reactive oxygen species (ROS), change in mitochondrial membrane potential and western blot analysis revealed that Cu compounds could induce cancer cell apoptosis through the intrinsic ROS-mediated mitochondrial pathway accompanied by the regulation of Bcl-2 family proteins. PMID:25899339

  13. A Redox-Active Dinuclear Platinum Complex Exhibiting Multicolored Electrochromism and Luminescence.

    PubMed

    Yoshida, Masaki; Yashiro, Naoki; Shitama, Hotaka; Kobayashi, Atsushi; Kato, Masako

    2016-01-11

    A redox series of cyclometalated platinum complexes based on a dinuclear motif linked by acetamidato (aam) bridging ligands, [Pt2 (μ-aam)2 (ppy)2 ] (ppy(-) =2-phenylpyridinate ion), has been synthesized. The complexes in this series are easily oxidized and reduced by both electrochemical and chemical methods, and this is accompanied by multistep changes in their optical properties, that is, multiple color changes and luminescence. Isolation of the complexes and the structural determination of three oxidation states, +2, +2.33, and +3, have been achieved. The mixed-valent complex, with an average oxidation state of +2.33, forms a trimer based on the dinuclear motif. The mixed-valent complex has a characteristic color owing to intervalence transitions in the platinum chain. In contrast, the divalent complex exhibits strong red phosphorescence originating from a triplet metal-metal-to-ligand charge transfer ((3) MMLCT) state. This study demonstrates the unique chromic behavior of a redox-active and luminescent platinum complex. PMID:26573238

  14. Novel monofunctional platinum (II) complex Mono-Pt induces apoptosis-independent autophagic cell death in human ovarian carcinoma cells, distinct from cisplatin

    PubMed Central

    Guo, Wen-Jie; Zhang, Yang-Miao; Zhang, Li; Huang, Bin; Tao, Fei-Fei; Chen, Wei; Guo, Zi-Jian; Xu, Qiang; Sun, Yang

    2013-01-01

    Failure to engage apoptosis appears to be a leading mechanism of resistance to traditional platinum drugs in patients with ovarian cancer. Therefore, an alternative strategy to induce cell death is needed for the chemotherapy of this apoptosis-resistant cancer. Here we report that autophagic cell death, distinct from cisplatin-induced apoptosis, is triggered by a novel monofunctional platinum (II) complex named Mono-Pt in human ovarian carcinoma cells. Mono-Pt-induced cell death has the following features: cytoplasmic vacuolation, caspase-independent, no nuclear fragmentation or chromatin condensation, and no apoptotic bodies. These characteristics integrally indicated that Mono-Pt, rather than cisplatin, initiated a nonapoptotic cell death in Caov-3 ovarian carcinoma cells. Furthermore, incubation of the cells with Mono-Pt but not with cisplatin produced an increasing punctate distribution of microtubule-associated protein 1 light chain 3 (LC3), and an increasing ratio of LC3-II to LC3-I. Mono-Pt also caused the formation of autophagic vacuoles as revealed by monodansylcadaverine staining and transmission electron microscopy. In addition, Mono-Pt-induced cell death was significantly inhibited by the knockdown of either BECN1 or ATG7 gene expression, or by autophagy inhibitors 3-methyladenine, chloroquine and bafilomycin A1. Moreover, the effect of Mono-Pt involved the AKT1-MTOR-RPS6KB1 pathway and MAPK1 (ERK2)/MAPK3 (ERK1) signaling, since the MTOR inhibitor rapamycin increased, while the MAPK1/3 inhibitor U0126 decreased Mono-Pt-induced autophagic cell death. Taken together, our results suggest that Mono-Pt exerts anticancer effect via autophagic cell death in apoptosis-resistant ovarian cancer. These findings lead to increased options for anticancer platinum drugs to induce cell death in cancer. PMID:23580233

  15. Pharmacokinetics and tissue distribution of novel platinum containing anticancer agent BP‐C1 studied in rabbits using sector field inductively coupled plasma mass spectrometry

    PubMed Central

    Navolotskii, Denis V.; Ivanenko, Natalya B.; Fedoros, Elena I.; Panchenko, Andrey V.

    2015-01-01

    A method of platinum quantification in whole blood samples after microwave digestion using sector field inductively coupled plasma mass spectrometry has been developed. The following analytical figures of merit have been established: limit of detection 1.1 µg/L for blood samples, dynamic range 3.6–200 µg/L, intra‐day precision (relative standard deviation, n = 9) did not exceed 5%. Spiked samples were analyzed for method validation. The method was used for pharmacokinetics studies of a novel anti‐cancer drug BP‐С1, a complex of cis‐configured platinum and benzene‐poly‐carboxylic acids. Main pharmacokinetic parameters (area under curve, maximum concentration, clearance, half‐life times for α‐ and β‐phase) were estimated for two dosage forms of BP‐C1 0.05 and 0.125 mass %. Pharmacokinetic curves were assessed for single and course administration. Studies were performed using rabbits (n = 6) as a model. BP‐C1 was injected intramuscularly. The study established dose proportionality of the tested dosage forms and suggested clinical dosing schedule: 5 days of injections followed by 2 days’ break. Platinum tissue distribution was studied in tissue samples collected 20 days after the last injection. Predominant platinum accumulation was observed in kidneys, liver, and muscles near injection site. ‘Slow’ phase of platinum excretion kinetics may be related to the muscles at the injection site. © 2015 The Authors. Drug Testing and Analysis published by John Wiley & Sons Ltd. PMID:26061351

  16. Bidentate NHC^pyrozolate ligands in luminescent platinum(II) complexes.

    PubMed

    Naziruddin, Abbas Raja; Galstyan, Anzhela; Iordache, Adriana; Daniliuc, Constantin G; Strassert, Cristian A; De Cola, Luisa

    2015-05-14

    A bidentate C^N donor set derived from an N-heterocyclic carbene (NHC) precursor linked to a trifluoromethyl (CF3) functionalized pyrazole ring is described for the first time. The ligands have been employed to prepare four new phosphorescent complexes by the coordination of platinum(II) centres bearing cyclometalated phenyl-pyridine/triazole-pyridine chelates. The electronic and steric environments of these complexes were tuned through the incorporation of suitable substituents in the phenyl-pyridine/triazole-pyridine ligands, wherein the position of the phenyl-ring substituent (a CF3 group) also directs the selective adoption of either a trans or a cis configuration between the C(NHC) and the C(phenyl) donor atoms. Molecular structures obtained by X-ray diffraction for three of the complexes confirm a distorted square-planar configuration around the platinum centre, and DFT calculations show that the substituents have a significant influence on the energies of the frontier orbitals. Moreover, a platinum(II) complex featuring the new bidentate NHC^pyrazolate ligand and a bulky adamantyl functionalized pyridine-triazole luminophore was observed to be highly emissive and exhibiting a sky-blue luminescence (λ(Em) = 470 nm) with photoluminescence quantum yields as high as 50% in doped PMMA matrices. A complete photophysical investigation of all of the complexes in solution as well as in the solid state is herein reported. PMID:25616069

  17. Coumarin-appended phosphorescent cyclometalated iridium(iii) complexes as mitochondria-targeted theranostic anticancer agents.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Ji, Liang-Nian; Mao, Zong-Wan

    2016-08-16

    Theranostic anticancer agents incorporating anticancer properties with capabilities for real-time treatment assessment are appealing candidates for chemotherapy. The design of mitochondria-targeted cytotoxic drugs represents a promising approach to target tumors selectively and overcome resistance to current anticancer therapies. In this work, three coumarin-appended phosphorescent cyclometalated iridium(iii) complexes 1-3 have been explored as mitochondria-targeted theranostic anticancer agents. These complexes display rich photophysical properties, which facilitate the study of their intracellular fate. All three complexes can specifically target mitochondria and show much higher antiproliferative activities than cisplatin against various cancer cells including cisplatin-resistant cells. 1-3 can penetrate into human cervical carcinoma (HeLa) cells quickly and efficiently, and they can carry out theranostic functions by simultaneously inducing and monitoring the morphological changes in mitochondria. Mechanism studies show that 1-3 exert their anticancer efficacy by initiating a cascade of events related to mitochondrial dysfunction. Genome-wide transcriptional and Connectivity Map analyses reveal that the cytotoxicity of complex 3 is associated with pathways involved in mitochondrial dysfunction and apoptosis. PMID:27139504

  18. Studies of glutathione transferase P1-1 bound to a platinum(IV)-based anticancer compound reveal the molecular basis of its activation.

    PubMed

    Parker, Lorien J; Italiano, Louis C; Morton, Craig J; Hancock, Nancy C; Ascher, David B; Aitken, Jade B; Harris, Hugh H; Campomanes, Pablo; Rothlisberger, Ursula; De Luca, Anastasia; Lo Bello, Mario; Ang, Wee Han; Dyson, Paul J; Parker, Michael W

    2011-07-01

    Platinum-based cancer drugs, such as cisplatin, are highly effective chemotherapeutic agents used extensively for the treatment of solid tumors. However, their effectiveness is limited by drug resistance, which, in some cancers, has been associated with an overexpression of pi class glutathione S-transferase (GST P1-1), an important enzyme in the mercapturic acid detoxification pathway. Ethacraplatin (EA-CPT), a trans-Pt(IV) carboxylate complex containing ethacrynate ligands, was designed as a platinum cancer metallodrug that could also target cytosolic GST enzymes. We previously reported that EA-CPT was an excellent inhibitor of GST activity in live mammalian cells compared to either cisplatin or ethacrynic acid. In order to understand the nature of the drug-protein interactions between EA-CPT and GST P1-1, and to obtain mechanistic insights at a molecular level, structural and biochemical investigations were carried out, supported by molecular modeling analysis using quantum mechanical/molecular mechanical methods. The results suggest that EA-CPT preferentially docks at the dimer interface at GST P1-1 and subsequent interaction with the enzyme resulted in docking of the ethacrynate ligands at both active sites (in the H-sites), with the Pt moiety remaining bound at the dimer interface. The activation of the inhibitor by its target enzyme and covalent binding accounts for the strong and irreversible inhibition of enzymatic activity by the platinum complex. PMID:21681839

  19. Cyclometalated complexes of platinum metals - the new luminescent sensors

    NASA Astrophysics Data System (ADS)

    Nikolaeva, M. V.; Katlenok, E. A.; Khakhalina, M. S.; Puzyk, M. V.; Balashev, K. P.

    2015-11-01

    The influence of the environment on the cyclometalated Pt(II), Pd(II), Ir(III) complexes' optical properties in the presence of various organic and inorganic compounds in solution and the gas phase is studied. The feasibility of complexes' using as optical sensors for molecular oxygen, halides ions, hydrogen and Hg(II) cations in the liquid phase, as well as for water and some organic solvents' vapor in the immobilized state in the MF-4SK membrane.

  20. Efficient Red-Emitting Platinum Complex with Long Operational Stability.

    PubMed

    Fleetham, Tyler; Li, Guijie; Li, Jian

    2015-08-01

    A tetradentate cyclometalated Pt(II) complex, PtN3N-ptb, was developed as an emissive dopant for stable and efficient red phosphorescent OLEDs. Devices employing PtN3N-ptb in electrochemically stable device architectures achieved long operational lifetimes with estimated LT97, of over 600 h at luminances of 1000 cd/m(2). Such long operational lifetimes were achieved utilizing only literature reported host, transporting and blocking materials with known molecular structures. Additionally, a thorough study of the effects of various host and transport materials on the efficiency, turn on voltage, and stability of the devices was carried out. Ultimately, maximum forward viewing EQEs as high as 21.5% were achieved, demonstrating that Pt(II) complexes can act as stable and efficient dopants with operational lifetimes comparable or superior to those of the best literature-reported Ir(III) complexes. PMID:26156426

  1. Zinc(II), ruthenium(II), rhodium(III), palladium(II), silver(I), platinum(II) and MoO22+ complexes of 2-(2‧-hydroxy-5‧-methylphenyl)-benzotriazole as simple or primary ligand and 2,2‧-bipyridyl, 9,10-phenanthroline or triphenylphosphine as secondary ligands: Structure and anticancer activity

    NASA Astrophysics Data System (ADS)

    El-Asmy, Hala A.; Butler, Ian S.; Mouhri, Zhor S.; Jean-Claude, Bertrand J.; Emmam, Mohamed S.; Mostafa, Sahar I.

    2014-02-01

    New complexes of 2-(2‧-hydroxy-5‧-methylphenyl)-benzotriazole (Hhmbt), [Zn(hmbt)2(H2O)2], [Zn(hmbt)(OAc)(H2O)2], [Pd(hmbt)(H2O)Cl], [Pd(hmbt)2], [M(PPh3)(hmbt)Cl], [M(L)(hmbt)]Cl (M(II) = Pd, Pt; L = bpy, phen), [Ag2(hmbt)2], [Ag(phen)(hmbt)], [Ag(PPh3)(hmbt)], [Rh(hmbt)2(H2O)2]Cl, [Ru(hmbt)2(H2O)2], [Ru(PPh3)(hmbt)2Cl] and cis-[MoO2(hmbt)2] have been synthesized. They have been structurally and spectroscopically characterized on the basis of elemental analysis, IR, NMR (1H, 13C, 31P), UV-vis. and ESI-mass spectroscopy, thermal and molar conductivity measurements. 2-(2‧-Hydroxy-5‧-methylphenyl)-benzotriazole behaves as a mononegative bidentate through the deprotonated phenolic oxygen and imine nitrogen atoms. The reported complexes have been tested against human breast cancer (MDA-MB231) and human ovarian cancer (OVCAR-8) cell lines. The complexes, [Ag(hmpbt)(PPh3)], [Rh(hmbt)2(H2O)2]Cl, [Pt(phen)(hmbt)]Cl and [Pd(phen)(hmbt)]Cl exhibit the highest growth inhibitory activity with mean IC50 values 1.37, 7.52, 5.24 and 4.85 μM (MDA-MB231) and 1.75, 8.50, 3.00 and 2.99 μM (OVACAR-8), respectively.

  2. Transition metal complexes of neocryptolepine analogues. Part I: Synthesis, spectroscopic characterization, and invitro anticancer activity of copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Emam, Sanaa Moustafa; El Sayed, Ibrahim El Tantawy; Nassar, Nagla

    2015-03-01

    New generation of copper(II) complexes with aminoalkylaminoneocryptolepine as bidentate ligands has been synthesized and it is characterized by elemental analyses, magnetic moment, spectra (IR, UV-Vis, 1H NMR and ESR) and thermal studies. The IR data suggest the coordination modes for ligands which behave as a bidentate with copper(II) ion. Based on the elemental analysis, magnetic studies, electronic and ESR data, binuclear square planar geometry was proposed for complexes 7a, 7b, square pyramidal for 9a, 9b and octahedral for 8a, 8b, 10a, 10b. The molar conductance in DMF solution indicates that all complexes are electrolyte except 7a and 7b. The ESR spectra of solid copper(II) complexes in powder form showed an axial symmetry with 2B1g as a ground state and hyperfine structure. The thermal stability and degradation of the ligands and their metal complexes were studied employing DTA and TG methods. The metal-free ligands and their copper(II) complexes were tested for their in vitro anticancer activity against human colon carcinoma (HT-29). The results showed that the synthesized copper(II) complexes exhibited higher anticancer activity than their free ligands. Of all the studied copper(II) complexes, the bromo-substituted complex 9b exhibited high anticancer activity at low micromolar inhibitory concentrations (IC50 = 0.58 μM), compared to the other complexes and the free ligands.

  3. Gram Scale Synthesis of Benzophenanthroline and Its Blue Phosphorescent Platinum Complex.

    PubMed

    Saris, Patrick J G; Thompson, Mark E

    2016-08-19

    The design, synthesis, and characterization of 12-phenylbenzo[f][1,7]phenanthroline, Bzp, is reported. Its use as a fluorine-free ligand for sky blue phosphorescence is demonstrated in a cyclometalated platinum complex, BzpPtDpm. BzpPtDpm phosphoresces at the same wavelength as its analogous 4,6-difluorophenylpyridine complex at both room temperature (466 nm) and 77 K (458 nm). Finally, production of a conformationally restricted derivative of BzpPtDpm with greatly increased quantum yield (46%) validates the versatility of the synthetic route. PMID:27490703

  4. Platinum-containing compound platinum pyrithione is stronger and safer than cisplatin in cancer therapy.

    PubMed

    Zhao, Chong; Chen, Xin; Zang, Dan; Lan, Xiaoying; Liao, Siyan; Yang, Changshan; Zhang, Peiquan; Wu, Jinjie; Li, Xiaofen; Liu, Ningning; Liao, Yuning; Huang, Hongbiao; Shi, Xianping; Jiang, Lili; Liu, Xiuhua; He, Zhimin; Wang, Xuejun; Liu, Jinbao

    2016-09-15

    DNA is the well-known molecular target of current platinum-based anticancer drugs; consequently, their clinical use is severely restricted by their systemic toxicities and drug resistance originating from non-selective DNA damage. Various strategies have been developed to circumvent the shortcomings of platinum-based chemotherapy but the inherent problem remains unsolved. Here we report that platinum pyrithione (PtPT), a chemically well-characterized synthetic complex of platinum, inhibits proteasome function and thereby exhibits greater and more selective cytotoxicity to multiple cancer cells than cisplatin, without showing discernible DNA damage both in vitro and in vivo. Moreover, unlike the classical proteasome inhibitor bortezomib/Velcade which inhibits the proteasome via blocking the peptidase activity of 20S proteasomes, PtPT primarily deactivates 26S proteasome-associated deubiquitinases USP14 and UCHL5. Furthermore, PtPT can selectively induce cytotoxicity and proteasome inhibition in cancer cells from leukemia patients but not peripheral blood mononuclear cells from healthy humans. In nude mice, PtPT also remarkably inhibited tumor xenograft growth, without showing the adverse effects that were induced by cisplatin. Hence, we have discovered a new platinum-based anti-tumor agent PtPT which targets 26S proteasome-associated deubiquitinases rather than DNA in the cell and thereby exerts safer and more potent anti-tumor effects, identifying a highly translatable new platinum-based anti-cancer strategy. PMID:27381943

  5. Synthesis and properties of para-substituted NCN-pincer palladium and platinum complexes.

    PubMed

    Slagt, Martijn Q; Rodríguez, Gema; Grutters, Michiel M P; Klein Gebbink, Robertus J M; Klopper, Wim; Jenneskens, Leonardus W; Lutz, Martin; Spek, Anthony L; van Koten, Gerard

    2004-03-19

    A variety of para-substituted NCN-pincer palladium(II) and platinum(II) complexes [MX(NCN-Z)] (M=Pd(II), Pt(II); X=Cl, Br, I; NCN-Z=[2,6-(CH(2)NMe(2))(2)C(6)H(2)-4-Z](-); Z=NO(2), COOH, SO(3)H, PO(OEt)(2), PO(OH)(OEt), PO(OH)(2), CH(2)OH, SMe, NH(2)) were synthesised by routes involving substitution reactions, either prior to or, notably, after metalation of the ligand. The solubility of the pincer complexes is dominated by the nature of the para substituent Z, which renders several complexes water-soluble. The influence of the para substituent on the electronic properties of the metal centre was studied by (195)Pt NMR spectroscopy and DFT calculations. Both the (195)Pt chemical shift and the calculated natural population charge on platinum correlate linearly with the sigma(p) Hammett substituent constants, and thus the electronic properties of predesigned pincer complexes can be predicted. The sigma(p) value for the para-PtI group itself was determined to be -1.18 in methanol and -0.72 in water/methanol (1/1). Complexes substituted with protic functional groups (CH(2)OH, COOH) exist as dimers in the solid state due to intermolecular hydrogen-bonding interactions. PMID:15034878

  6. Rhenium complexes with visible-light-induced anticancer activity.

    PubMed

    Kastl, Anja; Dieckmann, Sandra; Wähler, Kathrin; Völker, Timo; Kastl, Lena; Merkel, Anna Lena; Vultur, Adina; Shannan, Batool; Harms, Klaus; Ocker, Matthias; Parak, Wolfgang J; Herlyn, Meenhard; Meggers, Eric

    2013-06-01

    Shedding light on the matter: Rhenium(I) indolato complexes with highly potent visible-light-triggered antiproliferative activity (complex 1: EC50 light=0.1 μM vs EC50 dark=100 μM) in 2D- and 3D-organized cancer cells are reported and can be traced back to an efficient generation of singlet oxygen, causing rapid morphological changes and an induction of apoptosis. PMID:23568508

  7. Reactivity studies of pincer bis-protic N-heterocyclic carbene complexes of platinum and palladium under basic conditions

    PubMed Central

    Marelius, David C; Moore, Curtis E; Rheingold, Arnold L

    2016-01-01

    Summary Bis-protic N-heterocyclic carbene complexes of platinum and palladium (4) yield dimeric structures 6 when treated with sodium tert-butoxide in CH2Cl2. The use of a more polar solvent (THF) and a strong base (LiN(iPr)2) gave the lithium chloride adducts monobasic complex 7 or analogous dibasic complex 8. PMID:27559382

  8. Reactivity studies of pincer bis-protic N-heterocyclic carbene complexes of platinum and palladium under basic conditions.

    PubMed

    Marelius, David C; Moore, Curtis E; Rheingold, Arnold L; Grotjahn, Douglas B

    2016-01-01

    Bis-protic N-heterocyclic carbene complexes of platinum and palladium (4) yield dimeric structures 6 when treated with sodium tert-butoxide in CH2Cl2. The use of a more polar solvent (THF) and a strong base (LiN(iPr)2) gave the lithium chloride adducts monobasic complex 7 or analogous dibasic complex 8. PMID:27559382

  9. Synthesis of diorganoplatinum(IV) complexes by the Ssbnd S bond cleavage with platinum(II) complexes

    NASA Astrophysics Data System (ADS)

    Niroomand Hosseini, Fatemeh; Rashidi, Mehdi; Nabavizadeh, S. Masoud

    2016-12-01

    Reaction of [PtR2(NN)] (R = Me, p-MeC6H4 or p-MeOC6H4; NN = 2,2‧-bipyridine, 4,4‧-dimethyl-2,2‧-bipyridine, 1,10-phenanthroline or 2,9-dimethyl-1,10-phenanthroline) with MeSSMe gives the platinum(IV) complexes cis,trans-[PtR2(SMe)2(NN)]. They are characterized by NMR spectroscopy and elemental analysis. The geometries and the nature of the frontier molecular orbitals of Pt(IV) complexes containing Ptsbnd S bonds are studied by means of the density functional theory.

  10. Antitumor activity of a new platinum complex, oxalato (trans-l-1,2-diaminocyclohexane)platinum (II): new experimental data.

    PubMed

    Tashiro, T; Kawada, Y; Sakurai, Y; Kidani, Y

    1989-01-01

    Antitumor activity of a new platinum complex, oxalato (trans-l-1,2-diaminocyclohexane) platinum (II) (l-OHP), was studied. This water-soluble platinum complex showed a more prominent life-prolonging effect on a mouse leukemia L1210 than cisplatin (DDP). By an intermittent treatment schedule cured mice were observed at the optimal dose. In addition, a subline of L1210 having a 40-fold resistance to DDP (L1210/DDP) showed lack of cross-resistance to l-OHP both in vivo and in vitro. Especially in vivo l-OHP was more active against L1210/DDP than against the original L1210, and all mice were cured at doses of 6.25 and 3.12 mg/kg. l-OHP was also effective against several mouse tumors such as P388 leukemia, B16 melanoma, Lewis lung carcinoma, colon 26 and colon 38 adenocarcinomas, and M5076 fibrosarcoma, though its antitumor spectrum was somewhat different from that of DDP. The synthesis of both DNA and RNA in L1210 cells was inhibited by about 50% with exposure to 10 microM of l-OHP for 1 h, followed by postincubation in drug-free medium for 6-24 h, while only the inhibition of DNA synthesis was observed by DDP in the same experiment. If severe toxicity is not observed in preclinical study, l-OHP expected to be a new clinically active Pt complex. PMID:2790145

  11. Platinum Group Thiophenoxyimine Complexes: Syntheses,Crystallographic and Computational Studies of Structural Properties

    SciTech Connect

    Krinsky, Jamin L.; Arnold, John; Bergman, Robert G.

    2006-10-03

    Monomeric thiosalicylaldiminate complexes of rhodium(I) and iridium(I) were prepared by ligand transfer from the homoleptic zinc(II) species. In the presence of strongly donating ligands, the iridium complexes undergo insertion of the metal into the imine carbon-hydrogen bond. Thiophenoxyketimines were prepared by non-templated reaction of o-mercaptoacetophenone with anilines, and were complexed with rhodium(I), iridium(I), nickel(II) and platinum(II). X-ray crystallographic studies showed that while the thiosalicylaldiminate complexes display planar ligand conformations, those of the thiophenoxyketiminates are strongly distorted. Results of a computational study were consistent with a steric-strain interpretation of the difference in preferred ligand geometries.

  12. Inhibition of Mitochondrial Complex II by the Anticancer Agent Lonidamine.

    PubMed

    Guo, Lili; Shestov, Alexander A; Worth, Andrew J; Nath, Kavindra; Nelson, David S; Leeper, Dennis B; Glickson, Jerry D; Blair, Ian A

    2016-01-01

    The antitumor agent lonidamine (LND; 1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid) is known to interfere with energy-yielding processes in cancer cells. However, the effect of LND on central energy metabolism has never been fully characterized. In this study, we report that a significant amount of succinate is accumulated in LND-treated cells. LND inhibits the formation of fumarate and malate and suppresses succinate-induced respiration of isolated mitochondria. Utilizing biochemical assays, we determined that LND inhibits the succinate-ubiquinone reductase activity of respiratory complex II without fully blocking succinate dehydrogenase activity. LND also induces cellular reactive oxygen species through complex II, which reduced the viability of the DB-1 melanoma cell line. The ability of LND to promote cell death was potentiated by its suppression of the pentose phosphate pathway, which resulted in inhibition of NADPH and glutathione generation. Using stable isotope tracers in combination with isotopologue analysis, we showed that LND increased glutaminolysis but decreased reductive carboxylation of glutamine-derived α-ketoglutarate. Our findings on the previously uncharacterized effects of LND may provide potential combinational therapeutic approaches for targeting cancer metabolism. PMID:26521302

  13. Inhibition of Mitochondrial Complex II by the Anticancer Agent Lonidamine*

    PubMed Central

    Guo, Lili; Shestov, Alexander A.; Worth, Andrew J.; Nath, Kavindra; Nelson, David S.; Leeper, Dennis B.; Glickson, Jerry D.; Blair, Ian A.

    2016-01-01

    The antitumor agent lonidamine (LND; 1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid) is known to interfere with energy-yielding processes in cancer cells. However, the effect of LND on central energy metabolism has never been fully characterized. In this study, we report that a significant amount of succinate is accumulated in LND-treated cells. LND inhibits the formation of fumarate and malate and suppresses succinate-induced respiration of isolated mitochondria. Utilizing biochemical assays, we determined that LND inhibits the succinate-ubiquinone reductase activity of respiratory complex II without fully blocking succinate dehydrogenase activity. LND also induces cellular reactive oxygen species through complex II, which reduced the viability of the DB-1 melanoma cell line. The ability of LND to promote cell death was potentiated by its suppression of the pentose phosphate pathway, which resulted in inhibition of NADPH and glutathione generation. Using stable isotope tracers in combination with isotopologue analysis, we showed that LND increased glutaminolysis but decreased reductive carboxylation of glutamine-derived α-ketoglutarate. Our findings on the previously uncharacterized effects of LND may provide potential combinational therapeutic approaches for targeting cancer metabolism. PMID:26521302

  14. N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs.

    PubMed

    Patil, Siddappa A; Patil, Shivaputra A; Patil, Renukadevi; Keri, Rangappa S; Budagumpi, Srinivasa; Balakrishna, Geetha R; Tacke, Matthias

    2015-01-01

    Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents. PMID:26144266

  15. Toward overcoming cisplatin resistance via sterically hindered platinum(II) complexes.

    PubMed

    Yu, Haiyan; Gou, Shaohua; Wang, Zhimei; Chen, Feihong; Fang, Lei

    2016-05-23

    A number of platinum(II) complexes with steric hindrance derived from (1R,2R)-N(1)-benzylcyclohexane-1,2-diamine derivatives were designed and prepared. Biological assay indicated that most complexes showed antitumor activity against the tested cancer cell lines, especially those with chloride anions as leaving groups had compatible or superior activity to cisplatin and oxaliplatin. Complex 2a, as the most potent agent, is also sensitive to cisplatin resistant SGC7901/CDDP cancer cell line, which has been subsequently studied by cellular uptake, flow cytometry, gel electrophoresis and western blot assays. The steric hindrance resulting from a pending 2-fluorobenzyl moiety of the ligand might be the key factor for its ability to overcome cisplatin resistant cancer cells. PMID:26974381

  16. Synthesis and spectral studies of platinum metal complexes of benzoin thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Offiong, Offiong E.

    1994-11-01

    The platinum metal chelates of benzoin thiosemicarbazone obtained with Ru(III), Rh(III), Ir(III), Pd(II) and Pt(II) were prepared from their corresponding halide salts. The complexes were characterized by elemental analysis, conductance measurement, IR, Raman, 1H-NMR, 13C-NMR and UV-visible spectra studies. Various ligand field parameters and nephelauxetic parameters were also calculated. The mode of bonding and the geometry of the ligand environment around the metal ion have been discussed in the light of the available data obtained. Complexes of Ru(III), Rh(III) and Ir(III) are six-coordinate octahedral, while Pd(II) and Pt(II) halide complexes are four-coordinated with halides bridging.

  17. Modulation of Intersystem Crossing Rate by Minor Ligand Modifications in Cyclometalated Platinum(II) Complexes.

    PubMed

    Shafikov, Marsel Z; Kozhevnikov, Dmitry N; Bodensteiner, Michael; Brandl, Fabian; Czerwieniec, Rafał

    2016-08-01

    Photophysical properties of four new platinum(II) complexes comprising extended ppy (Hppy = 2-phenylpyridine) and thpy (Hthpy = 2-(2'-thienyl)pyridine) cyclometalated ligands and acetylacetonate (acac) are reported. Substitution of the benzene ring of Pt-ppy complexes 1 and 2 with a more electron-rich thiophene of Pt-thpy complexes 3 and 4 leads to narrowing of the HOMO-LUMO gap and thus to a red shift of the lowest energy absorption band and phosphorescence band, as expected for low-energy excited states of the intraligand/metal-to-ligand charge transfer character. However, in addition to these conventional spectral shifts, another, at first unexpected, substitution effect occurs. Pt-thpy complexes 3 and 4 are dual emissive showing fluorescence about 6000 cm(-1) (∼0.75 eV) higher in energy relative to the phosphorescence band, while for Pt-ppy complexes 1 and 2 only phosphorescence is observed. For dual-emissive complexes 3 and 4, ISC rates kISC are estimated to be in order of 10(9)-10(10) s(-1), while kISC of Pt-ppy complexes 1 and 2 is much faster amounting to 10(12) s(-1) or more. The relative intensities of the fluorescence and phosphorescence signals of Pt-thpy complexes 3 and 4 depend on the excitation wavelength, showing that hyper-intersystem crossing (HISC) in these complexes is observably significant. PMID:27388146

  18. Simple cerium-triethanolamine complex: Synthesis, characterization, thermal decomposition and its application to prepare ceria support for platinum catalysts used in methane steam reforming

    NASA Astrophysics Data System (ADS)

    Wattanathana, Worawat; Nootsuwan, Nollapan; Veranitisagul, Chatchai; Koonsaeng, Nattamon; Laosiripojana, Navadol; Laobuthee, Apirat

    2015-06-01

    Cerium-triethanolamine complex was synthesized by simple complexation method in 1-propanol solvent using cerium(III) chloride as a metal source and triethanolamine as a ligand. The structures of the prepared complex were proposed based on FT-IR, FT-Raman and ESI-MS results as equimolar of triethanolamine and cerium chelated complex having monomeric tricyclic structure with and without chloride anion as another coordinating group known as ceratrane. The complex was used as a precursor for ceria material done by thermal decomposition. XRD result revealed that when calcined at 600 °C for 2 h, the cerium complex was totally turned into pure ceria with cubic fluorite structure. The obtained ceria was then employed to synthesize platinum doped ceria catalysts for methane steam reforming. Various amounts of platinum i.e. 1, 3, 5 and 10 mol percents were introduced on the ceria support by microwave-assisted wetness impregnation using ammonium tetrachloroplatinate(II). The platinum-impregnated ceria powders were subjected to calcination in 10% hydrogen/helium atmosphere at 500 °C for 3 h to reduce platinum(II) to platinum(0). XRD patterns of the catalysts confirmed that the platinum particles doped on the ceria support were in the form of platinum(0). Catalytic activity test showed that the catalytic activities got higher as the amounts of platinum doped increased. Besides, the portions of coke formation on the surface of catalysts were reduced as the amounts of platinum doped increased.

  19. Mirror-Image Organometallic Osmium Arene Iminopyridine Halido Complexes Exhibit Similar Potent Anticancer Activity

    PubMed Central

    Fu, Ying; Soni, Rina; Romero, María J; Pizarro, Ana M; Salassa, Luca; Clarkson, Guy J; Hearn, Jessica M; Habtemariam, Abraha; Wills, Martin; Sadler, Peter J

    2013-01-01

    Four chiral OsII arene anticancer complexes have been isolated by fractional crystallization. The two iodido complexes, (SOs,SC)-[Os(η6-p-cym)(ImpyMe)I]PF6 (complex 2, (S)-ImpyMe: N-(2-pyridylmethylene)-(S)-1-phenylethylamine) and (ROs,RC)-[Os(η6-p-cym)(ImpyMe)I]PF6 (complex 4, (R)-ImpyMe: N-(2-pyridylmethylene)-(R)-1-phenylethylamine), showed higher anticancer activity (lower IC50 values) towards A2780 human ovarian cancer cells than cisplatin and were more active than the two chlorido derivatives, (SOs,SC)-[Os(η6-p-cym)(ImpyMe)Cl]PF6, 1, and (ROs,RC)-[Os(η6-p-cym)(ImpyMe)Cl]PF6, 3. The two iodido complexes were evaluated in the National Cancer Institute 60-cell-line screen, by using the COMPARE algorithm. This showed that the two potent iodido complexes, 2 (NSC: D-758116/1) and 4 (NSC: D-758118/1), share surprisingly similar cancer cell selectivity patterns with the anti-microtubule drug, vinblastine sulfate. However, no direct effect on tubulin polymerization was found for 2 and 4, an observation that appears to indicate a novel mechanism of action. In addition, complexes 2 and 4 demonstrated potential as transfer-hydrogenation catalysts for imine reduction. PMID:24114923

  20. Data on the characterization and anticancer action of iron(II) polypyridyl complexes.

    PubMed

    Chen, Jingjing; Luo, Zuandi; Zhao, Zhennan; Xie, Lina; Zheng, Wenjie; Chen, Tianfeng

    2016-09-01

    This data article contains complementary figures and results related to the research article entitled, "Cellular localization of iron(II) polypyridyl complexes determines their anticancer action mechanisms" [1] (Chen et al., 2015). The characterization of Fe(II) complexes by ESI-MS, (1)H NMR, (13)C NMR spectroscopy, FT-IR spectra, UV-vis spectra was provided. Also,the data for the stability of Fe(II) complexes 1-5 in DMSO/Milli-Q water/ culture medium (without serum or phenol red) at 37 °C at different periods of time by UV-vis spectra and (1)H NMR was showed. At the same time, the anticancer efficacy, cellular distribution and ROS generation in MCF-7 cells of complexes are reported. In addition, we also show the cellular localization of complex 4, the relative fluorescence intensity of complex 1 and complex 3 pretreated with anti-TfR (2 μg/mL) in MCF-7 cells using flow cytometry. The compilation of this data provides an invaluable resource for the wider research community and the interpretation of these data could be found in the research article noted above. PMID:27453925

  1. Spectroscopic and structural properties of 2,2'-dipyridylamine and its palladium and platinum complexes

    NASA Astrophysics Data System (ADS)

    Yurdakul, Ş.; Bilkana, M. T.

    2015-10-01

    The structural features such as geometric parameters, vibration frequencies and intensities of the vibrational bands of 2,2'-dipyridylamine ligand (DPA), its palladium (Pd(DPA)Cl2) and platinum (Pt(DPA)Cl2) complexes were studied by the density functional theory (DFT). The calculations were carried out by DFT / B3LYP method with 6-311++G(d,p) and LANL2DZ basis sets. All vibrational frequencies assigned in detail with the help of total energy distribution analysis (TED). Optimized geometric bond lengths and bond angles were compared with experimental X-ray data. Using DPA, K2PtCl4, and Na2PdCl4, the synthesized complex structures were characterized by the combination of elemental analysis, FT-IR (mid and far IR) and Raman spectroscopy.

  2. PALLADIUM, PLATINUM, RHODIUM, RUTHENIUM AND IRIDIUM IN PERIDOTITES AND CHROMITITES FROM OPHIOLITE COMPLEXES IN NEWFOUNDLAND.

    USGS Publications Warehouse

    Page, Norman J; Talkington, Raymond W.

    1984-01-01

    Samples of spinel lherzolite, harzburgite, dunite, and chromitite from the Bay of Islands, Lewis Hills, Table Mountain, Advocate, North Arm Mountain, White Hills Periodite Point Rousse, Great Bend and Betts Cove ophiolite complexes in Newfoundland were analyzed for the platinum-group elements (PGE) Pd, Pt, Rh, Ru and Ir. The ranges of concentration (in ppb) observed for all rocks are: less than 0. 5 to 77 (Pd), less than 1 to 120 (Pt), less than 0. 5 to 20 (Rh), less than 100 to 250 (Ru) and less than 20 to 83 (Ir). Chondrite-normalized PGE ratios suggest differences between rock types and between complexes. Samples of chromitite and dunite show relative enrichment in Ru and Ir and relative depletion in Pt and Pd.

  3. Geophysical Imaging of the Stillwater and Bushveld Complexes and Relation to Platinum-group Element Exploration

    NASA Astrophysics Data System (ADS)

    Finn, C.; Bedrosian, P.; Zientek, M. L.; Cole, J.; Webb, S. J.; Bloss, B. R.

    2015-12-01

    Exploring for platinum-group elements (PGEs) relies on understanding the geophysical signature of the entire magmatic system in which they form, from bottom to top. New potential field and electromagnetic data and methods effectively map internal structures of layered intrusions that host PGE-bearing magmatic ore deposits, the volume of the intrusion and its extent under cover, and locations of sulfide mineralization. High resolution aeromagnetic data can image fine scale linear anomalies related to layering in the Stillwater and Bushveld Complexes. At Stillwater, the aeromagnetic anomalies relate to boundaries between major stratigraphic units and olivine-bearing rock layers altered to a mixture of serpentine and magnetite. The PGE-enriched sulfide mineralization hosted by olivine-bearing rocks in the Stillwater Complex produces a distinct linear magnetic high. In the Upper Zone of the Bushveld Complex, primary magnetite layers generate linear magnetic highs. Electromagnetic (EM) data over the Stillwater Complex highlight contact-type mineralization which contain low resistivity sulfide minerals. Stochastic inversions reveal a low resistivity zone along the southern edge of the Stillwater Complex corresponding to mineralization in banded iron formation or contact-type sulfide mineralization in the Basal zone. Gravity highs characterize the exposed and interpreted buried extent of the Stillwater and Bushveld complexes. A 3D inversion of gravity data of the Sillwater Complex indicates that the complex extends 30 km north and 40 km east of its outcrop beneath Phanerozoic cover. Geophysical models image the 3D geometry of the Bushveld Complex north of the Thabazimbi-Murchison Lineament (TML), critical for understanding the origin of the world's largest layered mafic intrusion and associated platinum- group element deposits, as a ~4 km thick, 160 km x ~125 km body underlying ~1-2 km of cover. Locally thick regions in the TML portion of the model may represent feeders

  4. Increasing the bioavailability of Ru(III) anticancer complexes through hydrophobic albumin interactions.

    PubMed

    Webb, Michael I; Wu, Boris; Jang, Thalia; Chard, Ryan A; Wong, Edwin W Y; Wong, May Q; Yapp, Donald T T; Walsby, Charles J

    2013-12-01

    A series of pyridine-based derivatives of the clinically successful Ru(III)-based complexes indazolium [trans-RuCl4(1H-indazole)2] (KP1019) and sodium [trans-RuCl4(1H-indazole)2] (KP1339) have been synthesized to probe the effect of hydrophobic interactions with human serum albumin (hsA) on anticancer activity. The solution behavior and protein interactions of the new compounds were characterized by using electron paramagnetic resonance (EPR) and UV/Vis spectroscopy. These studies have revealed that incorporation of hydrophobic substituents at the 4'-position of the axial pyridine ligand stabilizes non-coordinate interactions with hsA. As a consequence, direct coordination to the protein is inhibited, which is expected to increase the bioavailability of the complexes, thus potentially leading to improved anticancer activity. By using this approach, the lifetimes of hydrophobic protein interactions were extended from 2 h for the unsubstituted pyridine complex, to more than 24 h for several derivatives. Free complexes were tested for their anticancer activity against the SW480 human colon carcinoma cell line, exhibiting low cytotoxicity. Pre-treatment with hsA improved the solubility of every compound and led to some changes in activity. Particularly notable was the difference in activity between the methyl- and dibenzyl-functionalized complexes. The former shows reduced activity after incubation with hsA, indicating reduced bioavailability due to protein coordination. The latter exhibits little activity on its own but, following treatment with hsA, exhibited significant cytotoxicity, which is consistent with its ability to form non-coordinate interactions with the protein. Overall, our studies demonstrate that non-coordinate interactions with hsA are a viable target for enhancing the activity of Ru(III)-based complexes in vivo. PMID:24203647

  5. Synthesis, characterization and anticancer activity of kaempferol-zinc(II) complex.

    PubMed

    Tu, Lv-Ying; Pi, Jiang; Jin, Hua; Cai, Ji-Ye; Deng, Sui-Ping

    2016-06-01

    According to the previous studies, the anticancer activity of flavonoids could be enhanced when they are coordinated with transition metal ions. In this work, kaempferol-zinc(II) complex (kaempferol-Zn) was synthesized and its chemical properties were characterized by UV-VIS, FT-IR, (1)H NMR, elemental analysis, electrospray mass spectrometry (ES-MS) and fluorescence spectroscopy, which showed that the synthesized complex was coordinated with a Zn(II) ion via the 3-OH and 4-oxo groups. The anticancer effects of kaempferol-Zn and free kaempferol on human oesophageal cancer cell line (EC9706) were compared. MTT results demonstrated that the killing effect of kaempferol-Zn was two times higher than that of free kaempferol. Atomic force microscopy (AFM) showed the morphological and ultrastructural changes of cellular membrane induced by kaempferol-Zn at subcellular or nanometer level. Moreover, flow cytometric analysis indicated that kaempferol-Zn could induce apoptosis in EC9706 cells by regulating intracellular calcium ions. Collectively, all the data showed that kaempferol-Zn might be served as a kind of potential anticancer agent. PMID:27080177

  6. Radiosensitisation of human colorectal cancer cells by ruthenium(II) arene anticancer complexes

    PubMed Central

    Carter, R; Westhorpe, A; Romero, MJ; Habtemariam, A; Gallevo, CR; Bark, Y; Menezes, N; Sadler, PJ; Sharma, RA

    2016-01-01

    Some of the largest improvements in clinical outcomes for patients with solid cancers observed over the past 3 decades have been from concurrent treatment with chemotherapy and radiotherapy (RT). The lethal effects of RT on cancer cells arise primarily from damage to DNA. Ruthenium (Ru) is a transition metal of the platinum group, with potentially less toxicity than platinum drugs. We postulated that ruthenium-arene complexes are radiosensitisers when used in combination with RT. We screened 14 ruthenium-arene complexes and identified AH54 and AH63 as supra-additive radiosensitisers by clonogenic survival assays and isobologram analyses. Both complexes displayed facial chirality. At clinically relevant doses of RT, radiosensitisation of cancer cells by AH54 and AH63 was p53-dependent. Radiation enhancement ratios for 5–10 micromolar drug concentrations ranged from 1.19 to 1.82. In p53-wildtype cells, both drugs induced significant G2 cell cycle arrest and apoptosis. Colorectal cancer cells deficient in DNA damage repair proteins, EME1 and MUS81, were significantly more sensitive to both agents. Both drugs were active in cancer cell lines displaying acquired resistance to oxaliplatin or cisplatin. Our findings broaden the potential scope for these drugs for use in cancer therapy, including combination with radiotherapy to treat colorectal cancer. PMID:26867983

  7. Oxidation of formic acid on platinum surfaces decorated with cobalt(III) macrocyclic complexes

    NASA Astrophysics Data System (ADS)

    Stevanović, S.; Babić-Samardžija, K.; Sovilj, S. P.; Tripković, A.; Jovanović, V. M.

    2009-09-01

    Platinum electrode decorated with three different mixed-ligand cobalt(III) complexes of the general formula [Co(Rdtc)cyclam](ClO4)2 [cyclam = 1,4,8,11-tetraazacyclotetradecane, Rdtc- = morpholine-(Morphdtc), piperidine-(Pipdtc), and 4-methylpiperidine-(4-Mepipdtc) dithiocarbamates, respectively] was used to study oxidation of formic acid in acidic solution. The complexes were adsorbed on differently prepared Pt surfaces, at open circuit potential. The preliminary results show increased catalytic activity of Pt for formic acid oxidation with complex ion adsorbed on the polycrystalline surfaces. The increase in catalytic activity depends on the structure of the complex applied and follows the order of metal-coordinated bidentate ligand as Morphdtc > Pipdtc > 4-Mepipdtc. Based on IR and NMR data, the main characteristics of the Rdtc ligands do not vary dramatically, but high symmetry of the corresponding complexes decreases in the same order. Accordingly, the complexes are distinctively more mobile, causing chemical interactions to occur on the surface with appreciable speed and enhanced selectivity. The effect of the complexes on catalytic activity presumably depends on structural changes on Pt surfaces caused by their adsorption.

  8. Controlled Release of Chemotherapeutic Platinum-Bisphosphonate Complexes from Injectable Calcium Phosphate Cements.

    PubMed

    Farbod, Kambiz; Sariibrahimoglu, Kemal; Curci, Alessandra; Hayrapetyan, Astghik; Hakvoort, Jan N W; van den Beucken, Jeroen J J P; Iafisco, Michele; Margiotta, Nicola; Leeuwenburgh, Sander C G

    2016-05-01

    Herein, we present a method to release chemotherapeutic platinum-bisphosphonate (Pt-BP) complexes from apatitic calcium phosphate cements (CPCs). Pt-BP-loaded hydroxyapatite nanoparticles (HA NPs) were added at different ratios to the powder phase of the cements, which contained poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres as porogens to accelerate their degradation. In vitro release kinetics of Pt-BP complexes revealed that the release rate of Pt species can be tuned by varying the amount of drug-loaded HA NPs as well as modifying the chemical structure of the Pt-BP complex to tailor its affinity with HA NPs. In addition, the incorporation of PLGA microspheres into the CPCs increased the degradation rate of the materials without affecting the release rate of Pt species. Finally, the antiproliferative activity of the free Pt-BP complexes and Pt-BP-loaded CPCs was evaluated using both human osteosarcoma cancer cells (MG-63) and human bone marrow-derived mesenchymal stromal cells (h-BMMSCs). This study demonstrated that both free Pt-BP complexes and the releasates from the CPCs were antiproliferative in a dose-dependent manner. Moreover, their antiproliferative activity was higher on MG-63 cells compared to h-BMMSC primary cells. In summary, it was shown that injectable CPCs can be rendered chemotherapeutically active by incorporation of HA NPs loaded with HA-binding Pt-BP complexes. PMID:27083055

  9. Copper, Palladium, and Platinum-Containing Complexes of an Asymmetric Dinucleating Ligand

    PubMed Central

    Halvagar, Mohammad Reza; Neisen, Benjamin

    2013-01-01

    The coordination chemistry of an asymmetric dinucleating hexadentate ligand LH2 comprising neutral alkyltriamine and potentially dianionic dicarboxamido-pyridyl donor sets with copper, palladium, and platinum has been explored. Monometallic, dicopper, and heterodinuclear Cu-Pd and -Pt complexes have been prepared and characterized, including by NMR, EPR, UV-vis, and IR spectroscopy and X-ray crystallography. For example, the monometallic complexes [(LH2)MCl]X (M = Cu, X = OTf; M = Pd or Pt, X = Cl) were prepared, wherein the metal(II) ions is coordinated to the triamine portion and the pyridyldicarboxamide is unperturbed. Treatment of LH2 with [MesCu]x (Mes = mesityl) provided a monocopper(I) complex, again with the metal coordinated only to the trialkylamine donor set. Reaction of [(LH2)CuCl]OTf with NaOMe resulted in an unexpected migration of the copper(II)-chloride fragment to the pyridyldicarboxamide site to yield Na[LCuCl], from which a dicopper complex LCu2Cl2 and mixed-metal complexes LCu(Cl)M(Cl) (M = Pd, Pt) were prepared by addition of CuCl2 or MCl2, respectively. The heterodinuclear complexes were also prepared by addition of CuCl2 to [(LH2)MCl]Cl. PMID:23268657

  10. Communication: Photoactivation of nucleobase bound platinum(II) metal complexes: probing the influence of the nucleobase.

    PubMed

    Sen, Ananya; Dessent, Caroline E H

    2014-12-28

    We present UV laser action spectra (220-300 nm) of isolated nucleobase-bound Pt(II)(CN)4(2-) complexes, i.e., Pt(CN)4(2-)⋅M, where M = uracil, thymine, cytosine, and adenine. These metal complex-nucleobase clusters represent model systems for identifying the fundamental photophysical and photochemical processes occurring in photodynamic platinum (II) drug therapies that target DNA. This is the first study to explore the specific role of the nucleobase in the photophysics of the aggregate complex. Each of the complexes studied displays a broadly similar absorption spectra, with a strong λmax ∼ 4.7 eV absorption band (nucleobase localized chromophore) and a subsequent increase in the absorption intensity towards higher spectral-energy (Pt(CN)4(2-) localized chromophore). However, strikingly different band widths are observed across the series of complexes, decreasing in the order Pt(CN)4(2-)⋅Thymine > Pt(CN)4(2-)⋅Uracil > Pt(CN)4(2-)⋅Adenine > Pt(CN)4(2-)⋅Cytosine. Changes in the bandwidth of the ∼4.7 eV band are accompanied by distinctive changes in the photofragment product ions observed following photoexcitation, with the narrower-bandwidth complexes showing a greater propensity to decay via electron detachment decay. We discuss these observations in the context of the distinctive nucleobase-dependent excited state lifetimes. PMID:25554122

  11. New platinum(II) complexes with benzo-thia-zole ligands.

    PubMed

    Carmona-Negrón, José A; Cádiz, Mayra E; Moore, Curtis E; Rheingold, Arnold L; Meléndez, Enrique

    2016-03-01

    Four new platinum(II) complexes, namely tetra-ethyl-ammonium tri-bromido-(2-methyl-1,3-benzo-thia-zole-κN)platinate(II), [NEt4][PtBr3(C8H7NS)] (1), tetra-ethyl-ammonium tri-bromido-(6-meth-oxy-2-methyl-1,3-benzo-thia-zole-κN)platinate(II), [NEt4][PtBr3(C9H9NOS)] (2), tetra-ethyl-ammonium tri-bromido-(2,5,6-trimethyl-1,3-benzo-thia-zole-κN)platinate(II), [NEt4][PtBr3(C10H11NS)] (3), and tetra-ethyl-ammonium tri-bromido-(2-methyl-5-nitro-1,3-benzo-thia-zole-κN)platinate(II), [NEt4][PtBr3(C8H6N2O2S)] (4), have been synthesized and structurally characterized by single-crystal X-ray diffraction techniques. These species are precursors of compounds with potential application in cancer chemotherapy. All four platinum(II) complexes adopt the expected square-planar coordination geometry, and the benzo-thia-zole ligand is engaged in bonding to the metal atom through the imine N atom (Pt-N). The Pt-N bond lengths are normal: 2.035 (5), 2.025 (4), 2.027 (5) and 2.041 (4) Å for complexes 1, 2, 3 and 4, respectively. The benzo-thia-zole ligands are positioned out of the square plane, with dihedral angles ranging from 76.4 (4) to 88.1 (4)°. The NEt4 cation in 3 is disordered with 0.57/0.43 occupancies. PMID:27006819

  12. Antiviral activity of platinum (II) and palladium (II) complexes of pyridine-2-carbaldehyde thiosemicarbazone.

    PubMed

    Varadinova, T; Kovala-Demertzi, D; Rupelieva, M; Demertzis, M; Genova, P

    2001-04-01

    A heterocyclic compound, pyridine-2-carbaldehyde thiosemicarbazone (HFoTsc), and its six metal coordinated bound complexes, three with platinum (II) and three with palladium (II), were studied for their activity against herpes simplex virus 1 (HSV-1) infection in cultured cells. According to their cytotoxicity the compounds were divided into two groups. Group I (cytotoxic compounds) included all three palladium complexes and [Pt(HFoTsc)2] Cl2, with maximum non-toxic concentration (MNC) of 1-10 micromol/l and a 50% cytotoxic concentration (CC50) of 20-100 micromol/l. Group 2 (low cytotoxic compounds) with MNC of 100 micromol/l and CC50 of 548-5820 micromol/l included compounds in the following order: [Pt(HFoTsc)2] Cl2platinum complexes as well as [Pd(HFoTsc)2]Cl2 and [Pd(FoTsc)2] inhibited HSV- I infection following a structure-activity relationship but only [Pt(HFoTsc)2]Cl2 expressed a significant selectivity comparable to that of HFoTsc. However, [PdCl(FoTsc)] acting 48 hrs gave a higher infectious HSV-1 titer (170%) compared to control (100%, no compound). PMID:11719987

  13. New platinum(II) complexes with benzo­thia­zole ligands

    PubMed Central

    Carmona-Negrón, José A.; Cádiz, Mayra E.; Moore, Curtis E.; Rheingold, Arnold L.; Meléndez, Enrique

    2016-01-01

    Four new platinum(II) complexes, namely tetra­ethyl­ammonium tri­bromido­(2-methyl-1,3-benzo­thia­zole-κN)platinate(II), [NEt4][PtBr3(C8H7NS)] (1), tetra­ethyl­ammonium tri­bromido­(6-meth­oxy-2-methyl-1,3-benzo­thia­zole-κN)platinate(II), [NEt4][PtBr3(C9H9NOS)] (2), tetra­ethyl­ammonium tri­bromido­(2,5,6-trimethyl-1,3-benzo­thia­zole-κN)platinate(II), [NEt4][PtBr3(C10H11NS)] (3), and tetra­ethyl­ammonium tri­bromido­(2-methyl-5-nitro-1,3-benzo­thia­zole-κN)platinate(II), [NEt4][PtBr3(C8H6N2O2S)] (4), have been synthesized and structurally characterized by single-crystal X-ray diffraction techniques. These species are precursors of compounds with potential application in cancer chemotherapy. All four platinum(II) complexes adopt the expected square-planar coordination geometry, and the benzo­thia­zole ligand is engaged in bonding to the metal atom through the imine N atom (Pt—N). The Pt—N bond lengths are normal: 2.035 (5), 2.025 (4), 2.027 (5) and 2.041 (4) Å for complexes 1, 2, 3 and 4, respectively. The benzo­thia­zole ligands are positioned out of the square plane, with dihedral angles ranging from 76.4 (4) to 88.1 (4)°. The NEt4 cation in 3 is disordered with 0.57/0.43 occupancies. PMID:27006819

  14. (Fluoren-9-ylidene)methanedithiolato complexes of platinum: synthesis, reactivity, and luminescence.

    PubMed

    Vicente, José; González-Herrero, Pablo; Pérez-Cadenas, María; Jones, Peter G; Bautista, Delia

    2005-10-01

    Platinum(II) complexes with (fluoren-9-ylidene)methanedithiolato and its 2,7-di-tert-butyl- and 2,7-dimethoxy-substituted analogues were obtained by reacting different chloroplatinum(II) precursors with the piperidinium dithioates (pipH)[(2,7-R2C12H6)CHCS2] [R = H (1a), t-Bu (1b), or OMe (1c)] in the presence of piperidine. The anionic complexes Q2[Pt{S(2)C=C(C12H6R(2)-2,7)}2] [R = H, (Pr(4)N)(2)2a; R = t-Bu, (Pr4N)(2)2b, (Et4N)(2)2b; R = OMe, (Pr4N)(2)2c] were prepared from PtCl(2), piperidine, the corresponding QCl salt, and 1a-c in molar ratio 1:2:2:2. In the absence of QCl, the complexes (pipH)(2)2b and [Pt(pip)(4)]2b were isolated depending on the PtCl(2):pip molar ratio. The neutral complexes [Pt{S2C=C(C12H6R(2)-2,7)L(2)] [L = PPh(3), R = H (3a), t-Bu (3b), OMe (3c); L = PEt(3), R = H (4a), t-Bu (4b), OMe (4c); L(2) = dbbpy, R = H (5a), t-Bu (5b), OMe (5c) (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridyl)] were similarly prepared from the corresponding precursors [PtCl2L2] and 1a-c in the presence of piperidine. Oxidation of Q(2)2b with [FeCp2]PF6 afforded the mixed Pt(II)-Pt(IV) complex Q2[Pt2{S2C=C[C12H6(t-Bu)(2)-2,7]}4] (Q(2)6, Q = Et4N+, Pr4N+). The protonation of (Pr4N)(2)2b with 2 equiv of triflic acid gave the neutral dithioato complex [Pt2{S2CCH[C12H6(t-Bu)(2)-2,7]}4] (7). The same reaction in 1:1 molar ratio gave the mixed dithiolato/dithioato complex Pr4N[Pt{S2C=C[C12H6(t-Bu)(2)-2,7]}{S2CCH[C12H6(t-Bu)(2)-2,7]}] (Pr(4)N8) while the corresponding DMANH+ salt was obtained by treating 7 with 2 equiv of 1,8-bis(dimethylamino)naphthalene (DMAN). The crystal structures of 3b and 5c.CH2Cl2 have been solved by X-ray crystallography. All the platinum complexes are photoluminescent at 77 K in CH2Cl2 or KBr matrix, except for Q(2)6. Compounds 5a-c and Q8 show room-temperature luminescence in fluid solution. The electronic absorption and emission spectra of the dithiolato complexes reveal charge-transfer absorption and emission energies which are significantly lower

  15. Evaluation of Binding Selectivities and Affinities of Platinum-Based Quadruplex Interactive Complexes by Electrospray Ionization Mass Spectrometry

    PubMed Central

    Pierce, Sarah E.; Kieltyka, Roxanne; Sleiman, Hanadi F.; Brodbelt, Jennifer S.

    2009-01-01

    The quadruplex binding affinities and selectivities of two large π-surface PtII phenanthroimidazole complexes, as well as a smaller π-surface platinum bipyridine complex and a larger RuII complex, were evaluated by electrospray ionization mass spectrometry. Circular dichroism (CD) spectroscopy was used to determine the structures of various quadruplexes and to study the thermal denaturation of the quadruplexes in the absence and presence of the metal complexes. In addition, chemical probe reactions with glyoxal were used to monitor the changes in the quadruplex conformation because of association with the complexes. The platinum phenanthroimidazole complexes show increased affinity for several of the quadruplexes with elongated loops between guanine repeats. Quadruplexes with shorter loops exhibited insubstantial binding to the transition metal complexes. Similarly binding to duplex and single strand oligonucleotides was low overall. Although the ruthenium-based metal complex showed somewhat enhanced quadruplex binding, the PtII complexes had higher quadruplex affinities and selectivities that are attributed to their square planar geometries. The chemical probe reactions using glyoxal indicated increased reactivity when the platinum phenanthroimidazole complexes were bound to the quadruplexes, thus suggesting a conformational change that alters guanine accessibility. PMID:19117031

  16. Structure-activity relationship for Fe(III)-salen-like complexes as potent anticancer agents.

    PubMed

    Ghanbari, Zahra; Housaindokht, Mohammad R; Izadyar, Mohammad; Bozorgmehr, Mohammad R; Eshtiagh-Hosseini, Hossein; Bahrami, Ahmad R; Matin, Maryam M; Khoshkholgh, Maliheh Javan

    2014-01-01

    Quantitative structure activity relationship (QSAR) for the anticancer activity of Fe(III)-salen and salen-like complexes was studied. The methods of density function theory (B3LYP/LANL2DZ) were used to optimize the structures. A pool of descriptors was calculated: 1497 theoretical descriptors and quantum-chemical parameters, shielding NMR, and electronic descriptors. The study of structure and activity relationship was performed with multiple linear regression (MLR) and artificial neural network (ANN). In nonlinear method, the adaptive neuro-fuzzy inference system (ANFIS) was applied in order to choose the most effective descriptors. The ANN-ANFIS model with high statistical significance (R (2) train = 0.99, RMSE = 0.138, and Q (2) LOO = 0.82) has better capability to predict the anticancer activity of the new compounds series of this family. Based on this study, anticancer activity of this compound is mainly dependent on the geometrical parameters, position, and the nature of the substituent of salen ligand. PMID:24955417

  17. Structure-Activity Relationship for Fe(III)-Salen-Like Complexes as Potent Anticancer Agents

    PubMed Central

    Ghanbari, Zahra; Housaindokht, Mohammad R.; Izadyar, Mohammad; Bozorgmehr, Mohammad R.; Eshtiagh-Hosseini, Hossein; Bahrami, Ahmad R.; Matin, Maryam M.; Khoshkholgh, Maliheh Javan

    2014-01-01

    Quantitative structure activity relationship (QSAR) for the anticancer activity of Fe(III)-salen and salen-like complexes was studied. The methods of density function theory (B3LYP/LANL2DZ) were used to optimize the structures. A pool of descriptors was calculated: 1497 theoretical descriptors and quantum-chemical parameters, shielding NMR, and electronic descriptors. The study of structure and activity relationship was performed with multiple linear regression (MLR) and artificial neural network (ANN). In nonlinear method, the adaptive neuro-fuzzy inference system (ANFIS) was applied in order to choose the most effective descriptors. The ANN-ANFIS model with high statistical significance (R2train = 0.99, RMSE = 0.138, and Q2LOO = 0.82) has better capability to predict the anticancer activity of the new compounds series of this family. Based on this study, anticancer activity of this compound is mainly dependent on the geometrical parameters, position, and the nature of the substituent of salen ligand. PMID:24955417

  18. Photodynamic killing of cancer cells by a Platinum(II) complex with cyclometallating ligand.

    PubMed

    Doherty, Rachel E; Sazanovich, Igor V; McKenzie, Luke K; Stasheuski, Alexander S; Coyle, Rachel; Baggaley, Elizabeth; Bottomley, Sarah; Weinstein, Julia A; Bryant, Helen E

    2016-01-01

    Photodynamic therapy that uses photosensitizers which only become toxic upon light-irradiation provides a strong alternative to conventional cancer treatment due to its ability to selectively target tumour material without affecting healthy tissue. Transition metal complexes are highly promising PDT agents due to intense visible light absorption, yet the majority are toxic even without light. This study introduces a small, photostable, charge-neutral platinum-based compound, Pt(II) 2,6-dipyrido-4-methyl-benzenechloride, complex 1, as a photosensitizer, which works under visible light. Activation of the new photosensitizer at low concentrations (0.1-1 μM) by comparatively low dose of 405 nm light (3.6 J cm(-2)) causes significant cell death of cervical, colorectal and bladder cancer cell lines, and, importantly, a cisplatin resistant cell line EJ-R. The photo-index of the complex is 8. We demonstrate that complex 1 induces irreversible DNA single strand breaks following irradiation, and that oxygen is essential for the photoinduced action. Neither light, nor compound alone led to cell death. The key advantages of the new drug include a remarkably fast accumulation time (diffusion-controlled, minutes), and photostability. This study demonstrates a highly promising new agent for photodynamic therapy, and attracts attention to photostable metal complexes as viable alternatives to conventional chemotherapeutics, such as cisplatin. PMID:26940077

  19. Photodynamic killing of cancer cells by a Platinum(II) complex with cyclometallating ligand

    NASA Astrophysics Data System (ADS)

    Doherty, Rachel E.; Sazanovich, Igor V.; McKenzie, Luke K.; Stasheuski, Alexander S.; Coyle, Rachel; Baggaley, Elizabeth; Bottomley, Sarah; Weinstein, Julia A.; Bryant, Helen E.

    2016-03-01

    Photodynamic therapy that uses photosensitizers which only become toxic upon light-irradiation provides a strong alternative to conventional cancer treatment due to its ability to selectively target tumour material without affecting healthy tissue. Transition metal complexes are highly promising PDT agents due to intense visible light absorption, yet the majority are toxic even without light. This study introduces a small, photostable, charge-neutral platinum-based compound, Pt(II) 2,6-dipyrido-4-methyl-benzenechloride, complex 1, as a photosensitizer, which works under visible light. Activation of the new photosensitizer at low concentrations (0.1–1 μM) by comparatively low dose of 405 nm light (3.6 J cm‑2) causes significant cell death of cervical, colorectal and bladder cancer cell lines, and, importantly, a cisplatin resistant cell line EJ-R. The photo-index of the complex is 8. We demonstrate that complex 1 induces irreversible DNA single strand breaks following irradiation, and that oxygen is essential for the photoinduced action. Neither light, nor compound alone led to cell death. The key advantages of the new drug include a remarkably fast accumulation time (diffusion-controlled, minutes), and photostability. This study demonstrates a highly promising new agent for photodynamic therapy, and attracts attention to photostable metal complexes as viable alternatives to conventional chemotherapeutics, such as cisplatin.

  20. Photodynamic killing of cancer cells by a Platinum(II) complex with cyclometallating ligand

    PubMed Central

    Doherty, Rachel E.; Sazanovich, Igor V.; McKenzie, Luke K.; Stasheuski, Alexander S.; Coyle, Rachel; Baggaley, Elizabeth; Bottomley, Sarah; Weinstein, Julia A.; Bryant, Helen E.

    2016-01-01

    Photodynamic therapy that uses photosensitizers which only become toxic upon light-irradiation provides a strong alternative to conventional cancer treatment due to its ability to selectively target tumour material without affecting healthy tissue. Transition metal complexes are highly promising PDT agents due to intense visible light absorption, yet the majority are toxic even without light. This study introduces a small, photostable, charge-neutral platinum-based compound, Pt(II) 2,6-dipyrido-4-methyl-benzenechloride, complex 1, as a photosensitizer, which works under visible light. Activation of the new photosensitizer at low concentrations (0.1–1 μM) by comparatively low dose of 405 nm light (3.6 J cm−2) causes significant cell death of cervical, colorectal and bladder cancer cell lines, and, importantly, a cisplatin resistant cell line EJ-R. The photo-index of the complex is 8. We demonstrate that complex 1 induces irreversible DNA single strand breaks following irradiation, and that oxygen is essential for the photoinduced action. Neither light, nor compound alone led to cell death. The key advantages of the new drug include a remarkably fast accumulation time (diffusion-controlled, minutes), and photostability. This study demonstrates a highly promising new agent for photodynamic therapy, and attracts attention to photostable metal complexes as viable alternatives to conventional chemotherapeutics, such as cisplatin. PMID:26940077

  1. Photo-induced DNA cleavage and cytotoxicity of a ruthenium(II) arene anticancer complex.

    PubMed

    Brabec, Viktor; Pracharova, Jitka; Stepankova, Jana; Sadler, Peter J; Kasparkova, Jana

    2016-07-01

    We report DNA cleavage by ruthenium(II) arene anticancer complex [(η(6)-p-terp)Ru(II)(en)Cl](+) (p-terp=para-terphenyl, en=1,2-diaminoethane, complex 1) after its photoactivation by UVA and visible light, and the toxic effects of photoactivated 1 in cancer cells. It was shown in our previous work (T. Bugarcic et al., J. Med. Chem. 51 (2008) 5310-5319) that this complex exhibits promising toxic effects in several human tumor cell lines and concomitantly its DNA binding mode involves combined intercalative and monofunctional (coordination) binding modes. We demonstrate in the present work that when photoactivated by UVA or visible light, 1 efficiently photocleaves DNA, also in hypoxic media. Studies of the mechanism underlying DNA cleavage by photoactivated 1 reveal that the photocleavage reaction does not involve generation of reactive oxygen species (ROS), although contribution of singlet oxygen ((1)O2) to the DNA photocleavage process cannot be entirely excluded. Notably, the mechanism of DNA photocleavage by 1 appears to involve a direct modification of mainly those guanine residues to which 1 is coordinatively bound. As some tumors are oxygen-deficient and cytotoxic effects of photoactivated ruthenium compounds containing {Ru(η(6)-arene)}(2+) do not require the presence of oxygen, this class of ruthenium complexes may be considered potential candidate agents for improved photodynamic anticancer chemotherapy. PMID:26778426

  2. Cytotoxic properties of a new organometallic platinum(II) complex and its gold(I) heterobimetallic derivatives.

    PubMed

    Serratrice, Maria; Maiore, Laura; Zucca, Antonio; Stoccoro, Sergio; Landini, Ida; Mini, Enrico; Massai, Lara; Ferraro, Giarita; Merlino, Antonello; Messori, Luigi; Cinellu, Maria Agostina

    2016-01-14

    A novel platinum(ii) organometallic complex, [Pt(pbi)(Me)(DMSO)], bearing the 2-(2'-pyridyl)-benzimidazole (pbiH) ligand, was synthesized and fully characterized. Interestingly, the reaction of this organometallic platinum(ii) complex with two distinct gold(i) phosphane compounds afforded the corresponding heterobimetallic derivatives with the pbi ligand bridging the two metal centers. The antiproliferative properties in vitro of [Pt(pbi)(Me)(DMSO)] and its gold(i) derivatives as well as those of the known coordination platinum(ii) and palladium(ii) complexes with the same ligand, of the general formula [MCl2(pbiH)], were comparatively evaluated against A2780 cancer cells, either sensitive or resistant to cisplatin. A superior biological activity of the organometallic compound clearly emerged compared to the corresponding platinum(ii) complex; the antiproliferative effects are further enhanced upon attaching the gold(i) triphenylphosphine moiety to the organometallic Pt compound. Remarkably, these novel metal species are able to overcome nearly complete resistance to cisplatin. Significant mechanistic insight into the study compounds was gained after investigating their reactions with a few representative biomolecules by electrospray mass spectrometry and X-ray crystallography. The obtained results are comprehensively discussed. PMID:26609781

  3. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity.

    PubMed

    Banerjee, Samya; Chakravarty, Akhil R

    2015-07-21

    Curcumin is a polyphenolic species. As an active ingredient of turmeric, it is well-known for its traditional medicinal properties. The therapeutic values include antioxidant, anti-inflammatory, antiseptic, and anticancer activity with the last being primarily due to inhibition of the transcription factor NF-κB besides affecting several biological pathways to arrest tumor growth and its progression. Curcumin with all these positive qualities has only remained a potential candidate for cancer treatment over the years without seeing any proper usage because of its hydrolytic instability involving the diketo moiety in a cellular medium and its poor bioavailability. The situation has changed considerably in recent years with the observation that curcumin in monoanionic form could be stabilized on binding to a metal ion. The reports from our group and other groups have shown that curcumin in the metal-bound form retains its therapeutic potential. This has opened up new avenues to develop curcumin-based metal complexes as anticancer agents. Zinc(II) complexes of curcumin are shown to be stable in a cellular medium. They display moderate cytotoxicity against prostate cancer and neuroblastoma cell lines. A similar stabilization and cytotoxic effect is reported for (arene)ruthenium(II) complexes of curcumin against a variety of cell lines. The half-sandwich 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane (RAPTA)-type ruthenium(II) complexes of curcumin are shown to be promising cytotoxic agents with low micromolar concentrations for a series of cancer cell lines. In a different approach, cobalt(III) complexes of curcumin are used for its cellular delivery in hypoxic tumor cells using intracellular agents that reduce the metal and release curcumin as a cytotoxin. Utilizing the photophysical and photochemical properties of the curcumin dye, we have designed and synthesized photoactive curcumin metal complexes that are used for cellular imaging by fluorescence microscopy and

  4. Phosphorescent Platinum(II) Complexes with Mesoionic 1H-1,2,3-Triazolylidene Ligands.

    PubMed

    Soellner, Johannes; Tenne, Mario; Wagenblast, Gerhard; Strassner, Thomas

    2016-07-11

    The synthesis and characterization of eight unprecedented phosphorescent C^C* cyclometalated mesoionic aryl-1,2,3-triazolylidene platinum(II) complexes with different β-diketonate ligands are reported. All compounds proved to be strongly emissive at room temperature in poly(methyl methacrylate) films with an emitter concentration of 2 wt %. The observed photoluminescence properties were strongly dependent on the substitution on the aryl system and the β-diketonate ligand. Compared to acetylacetonate, the β-diketonates with aromatic substituents (mesityl and duryl) were found to significantly enhance the quantum yield while simultaneously reducing the emission lifetimes. Characterization was carried out by standard techniques, as well as solid-state structure determination, which confirmed the binding mode of the carbene ligand. DFT calculations, carried out to predict the emission wavelength with maximum intensity, were in excellent agreement with the (later) obtained experimental data. PMID:27294887

  5. Quantum spin fluctuations in quasi-one-dimensional chlorine-bridged platinum complexes

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Donohoe, Robert J.; Wang, Wen Z.; Bishop, Alan R.; Gammel, Jan T.

    1997-12-01

    We report experimental and theoretical studies of spin dynamic process in the quasi-one-dimensional chlorine- bridged platinum complex, [PtII(en)2][PtIV(en)2Cl2](ClO4)4, where en equals ethylenediamine, C2N2H8. The process manifests itself in collapsing of the hyperfine and superhyperfine structures in the electron spin resonance spectrum and non-statistical distribution of spectral weight of the Pt isotopes. More surprisingly, it is activated only at temperatures below 6 K. We interpret the phenomenon in terms of quantum tunneling of the electronic spin in a strong electron-electron and electron-phonon coupling regime. This is modeled using a non-adiabatic many-body approach, in which polarons and solitons represent local spin-Peierls regions in a strongly disproportional charge- density-wave background and display intriguing spin-charge separation in the form of pinned charge and tunneling spin fluctuations.

  6. Our Expedition in Linear Neutral Platinum-Acetylide Complexes: The Preparation of Micro/nanostructure Materials, Complicated Topologies, and Dye-Sensitized Solar Cells.

    PubMed

    Xu, Lin; Yang, Hai-Bo

    2016-06-01

    During the past few decades, the construction of various kinds of platinum-acetylide complexes has attracted considerable attention, because of their wide applications in photovoltaic cells, non-linear optics, and bio-imaging materials. Among these platinum-acetylide complexes, the linear neutral platinum-acetylide complexes, due to their attractive properties, such as well-defined linear geometry, synthetic accessibility, and intriguing photoproperties, have emerged as a rising star in this field. In this personal account, we will discuss how we entered the field of linear neutral platinum-acetylide chemistry and what we found in this field. The preparation of various types of linear neutral platinum-acetylide complexes and their applications in the areas of micro/nanostructure materials, complicated topologies, and dye-sensitized solar cells will be summarized in this account. PMID:27097565

  7. Solution Studies on DNA Interactions of Substitution-inert Platinum Complexes mediated via The Phosphate Clamp

    PubMed Central

    Qu, Y.; Kipping, R. G.

    2015-01-01

    The phosphate clamp is a distinct mode of ligand-DNA binding where the molecular is manifest through (“non-covalent”) hydrogen-bonding from am(m)ines of polynuclear platinum complexes to the phosphate oxygens on the oligonucleotide backbone. This third mode of DNA is unique from the “classical” DNA intercalators and minor groove binding agents and even the closely related covalently binding mononuclear and polynuclear drugs. 2D 1H NMR studies on the Dickerson Drew Dodecamer (DDD, d(CGCGAATTCGCG)2) showed significant A-T contacts mainly on nucleotides A6, T7 and T8 implying a selective bridging from C9G10 in the 3' direction to C9G10 of the opposite strand. {1H, 15N} HSQC NMR Spectroscopy using the fully 15N-labelled compound ([{trans-Pt(NH2)3(H2N(CH2)6NH3}2μ-(H2N(CH2)6NH2)2(Pt(NH3)2]8+ (TriplatinNC) showed at pH6 significant chemical shift and 1J(195Pt-15N) coupling constants from free drug and DDD-TriplatinNC at pH 7 indicative of formation of the phosphate clamp. 31P NMR results are also reported for the hexamer d(CGTACG)2 showing changes in 31P NMR chemical shifts indicative of changes around the phosphorous center. The studies confirm the DNA binding modes by substitution-inert (non-covalent) polynuclear platinum complexes and help to further establish the chemotype as a new class of potential anti-tumor agents in their own right with a distinct profile of biological activity. PMID:25524170

  8. Effects of ancillary ligands on selectivity of protein labeling with platinum(II) chloro complexes

    SciTech Connect

    Zhou, Xia-Ying.

    1990-02-01

    Potassium (2,6-pyridinedicarboxylato)chloroplatinate(II) was synthesized. The molecular structure of the complex in (n-Bu){sub 4}N(Pt(dipic)Cl){center dot}0.5H{sub 2}O was determined by x-ray crystallography. The (Pt(dipic)Cl){sup {minus}} is essentially planar and contains a Pt(II) atom, a tridentate dipicolinate dianion ligand, and a unidentate Cl{sup {minus}} ligand. The bis(bidentate) complex trans-(Pt(dipic){sub 2}){sup 2{minus}} was also observed by {sup 1}H NMR. A red gel-like substance was observed when the yellow aqueous solution of K(Pt(dipic)Cl) was cooled or concentrated. The K(Pt(dipic)Cl) molecules form stacks in the solid state and gel-like substance but remain monomeric over a wide range of concentrations and temperatures. The reactivity and selectivity of(Pt(dipic)Cl){sup {minus}} toward cytochromes c from horse and tuna were studied. The new transition-metal reagent is specific for methionine residues. Di(2-pyridyl-{beta}-ethyl)sulfidochloroplatinum(II) chloride dihydrate was also synthesized. This complex labels histidine and methionine residues in cytochrome c. The ancillary ligands in these platinum(II) complexes clearly determine the selectivity of protein labeling. 106 refs., 10 figs., 11 tabs.

  9. Platinum complexes bearing normal and mesoionic N-heterocyclic carbene based pincer ligands: syntheses, structures, and photo-functional attributes.

    PubMed

    Naziruddin, Abbas Raja; Lee, Chen-Shiang; Lin, Wan-Jung; Sun, Bing-Jian; Chao, Kang-Heng; Chang, Agnes Hsiu Hwa; Hwang, Wen-Shu

    2016-04-01

    Platinum complexes featuring pyridine bis-N-heterocyclic-imidazol-2-ylidene/-mesoionic-triazol-5-ylidene donors as pincer ligands and chloro (-Cl), acetonitrile (-NCCH3) or cyano (-CN) groups as auxiliary ligands are prepared as highly strained organometallic phosphors. X-ray structures of four of these complexes confirm a distorted square planar geometry, where the pincer ligand and its mesityl wingtips occur in a twisted conformation to each other. Electrochemical and photophysical characterization have been carried out and the experimental results are interpreted with the aid of density functional theory calculations. Emission responses of complexes under exposure to different vapors and mechanical shear are reported. Notably, the platinum complex featuring pyridine bis-imidazol-2-ylidene and a weakly donating acetonitrile auxiliary ligand exhibited strong aquachromic and mechanochromic emission responses, showing color changes from sky blue to green or yellow-green. PMID:26947757

  10. Achieving near-infrared emission in platinum(ii) complexes by using an extended donor-acceptor-type ligand.

    PubMed

    Zhang, You-Ming; Meng, Fanyuan; Tang, Jian-Hong; Wang, Yafei; You, Caifa; Tan, Hua; Liu, Yu; Zhong, Yu-Wu; Su, Shijian; Zhu, Weiguo

    2016-03-15

    A series of C^N ligands with donor-acceptor (D-A) frameworks, i.e. TPA-BTPy, TPA-BTPy-Fl and Fl(TPA-BTPy)2, as well as their mono- and di-nuclear platinum(ii) complexes of (TPA-BTPy)Pt(pic), (TPA-BTPy-Fl)Pt(pic) and [Fl(TPA-BTPy)2]Pt2(pic)2 are respectively designed and synthesized, in which triphenylamine (TPA) and fluorene (Fl) are used as the D units, 4-(pyrid-2-yl)benzothiadiazole (BTPy) as the A unit, and the picolinate anion (pic) as the auxiliary ligand. Their thermal, photophysical and electrochemical characteristics were investigated. Compared to mono-nuclear platinum complexes and their free ligands, this dinuclear one of [Fl(TPA-BTPy)2]Pt2(pic)2 shows an obvious interaction from the platinum atom to ligand and dual emission peaks at 828 and 601 nm in thin films. Upon oxidation with antimony pentachloride in dichloromethane, charge transfer transitions between the platinum and ligand are observed for the three complexes. The single-emissive-layer polymer light-emitting devices doped with [Fl(TPA-BTPy)2]Pt2(pic)2 display a strong electroluminescence with dual emission peaks at 780 and 600 nm at a dopant concentration over 4 wt%. A maximum external quantum efficiency of 0.02% with a radiance of 59 μW cm(-2) is obtained in the device at 30 wt% dopant concentration. This work indicates that the use of an extended D-A-type ligand is an effective strategy to achieve NIR emission for platinum complexes in PLEDs. PMID:26880278

  11. Design, Synthesis, and Biological Features of Platinum(II) Complexes with Rigid Steric Hindrance.

    PubMed

    Wang, Zhimei; Yu, Haiyan; Gou, Shaohua; Chen, Feihong; Fang, Lei

    2016-05-01

    A series of platinum(II) complexes, with N-monosubstituted 1R,2R-diaminocyclohexane bearing methoxy-substituted benzyl groups as carrier ligands, were designed and synthesized. The newly prepared compounds, with chloride anions as leaving groups, were found to be very active against the tested cancer cell lines, including a cisplatin-resistant cell line. Despite their efficacy against tumor cells, they also showed low toxicity to a human normal liver cell line. Among them, complex 1 had superior cytotoxic activity against A549, HCT-116, MCF-7, SGC7901, and SGC7901/CDDP cancer cell lines. The DNA binding assay is of further special interest, as an unusual monofunctional binding mode was found, due to the introduction of a rigid substituted aromatic ring in the 1R,2R-diaminocyclohexane framework as steric hindrance. The linkage of complex 1 with DNA was stable and insensitive to nucleophilic attack. Moreover, studies including cellular uptake, gel electrophoresis, apoptosis and cell cycle, and Western blot analysis have provided insight into the high potency of this compound. PMID:27074104

  12. N6-benzyladenosine derivatives as novel N-donor ligands of platinum(II) dichlorido complexes.

    PubMed

    Starha, Pavel; Popa, Igor; Trávníček, Zdeněk; Vančo, Ján

    2013-01-01

    The platinum(II) complexes trans-[PtCl₂(Ln)₂]∙xSolv 1-13 (Solv = H₂O or CH3OH), involving N6-benzyladenosine-based N-donor ligands, were synthesized; L(n) stands for N6-(2-methoxybenzyl)adenosine (L₁, involved in complex 1), N6-(4-methoxy-benzyl)adenosine (L₂, 2), N6-(2-chlorobenzyl)adenosine (L₃, 3), N6-(4-chlorobenzyl)-adenosine (L₄, 4), N6-(2-hydroxybenzyl)adenosine (L₅, 5), N6-(3-hydroxybenzyl)-adenosine (L₆, 6), N6-(2-hydroxy-3-methoxybenzyl)adenosine (L₇, 7), N6-(4-fluoro-benzyl)adenosine (L₈, 8), N6-(4-methylbenzyl)adenosine (L₉, 9), 2-chloro-N6-(3-hydroxy-benzyl)adenosine (L₁₀, 10), 2-chloro-N6-(4-hydroxybenzyl)adenosine (L₁₁, 11), 2-chloro-N6-(2-hydroxy-3-methoxybenzyl)adenosine (L₁₂, 12) and 2-chloro-N6-(2-hydroxy-5-methylbenzyl)adenosine (L₁₃, 13). The compounds were characterized by elemental analysis, mass spectrometry, IR and multinuclear (¹H-, ¹³C-, ¹⁹⁵Pt- and ¹⁵N-) and two-dimensional NMR spectroscopy, which proved the N7-coordination mode of the appropriate N6-benzyladenosine derivative and trans-geometry of the title complexes. The complexes 1-13 were found to be non-toxic in vitro against two selected human cancer cell lines (HOS and MCF7; with IC₅₀ > 50.0 µM). However, they were found (by ESI-MS study) to be able to interact with the physiological levels of the sulfur-containing biogenic biomolecule L-methionine by a relatively simple 1:1 exchange mechanism (one L(n) molecule was replaced by one L-methionine molecule), thus forming a mixed-nitrogen/sulfur-ligand dichlorido-platinum(II) coordination species. PMID:23771060

  13. Syntheses, crystal structures, anticancer activities of three reduce Schiff base ligand based transition metal complexes

    NASA Astrophysics Data System (ADS)

    Chang, Hui-Qin; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Xu, Zhou-Qing; Chen, Ru-Hua; Ma, Tie-Liang; Wang, Yuan; Wu, Wei-Na

    2016-02-01

    Three nickel(II) complexes, [Ni2(L1)2(tren)2(H2O)](ClO4)3 (1), [NiL2(tren)2](ClO4)·2.5H2O (2), [NiL2(tren)2]I·1.5H2O·CH3OH (3) based on amino acid reduced Schiff ligands are synthesized and characterized by physico-chemical and spectroscopic methods. The results show that in all complexes, the amino acid ligand is deprotonated and acts as an anionic ligand. In the dinuclear complex 1, each Ni(II) atom has a distorted octahedron geometry while with different coordination environment. However, the complexes 2 and 3 are mononuclear, almost with the same coordination environment. Furthermore, in vitro experiments are carried out, including MTT assay, Annexin V/PI flow cytometry and western blotting, to assess whether the complexes have antitumor effect. And the results show that all the three complexes have moderate anticancer activity towards human hepatic cancer (HepG2), human cervical cancer (HeLa) and human prostate (PC3) cell lines, in a concentration dependent way. The complex 1 exhibit higher cytotoxicity than the other two complexes and can induce human hepatic cancer cell (HepG2) to cell apoptosis by activating caspase 3.

  14. Synthesis, characterization and biological evaluation of labile intercalative ruthenium(ii) complexes for anticancer drug screening.

    PubMed

    Huang, Huaiyi; Zhang, Pingyu; Chen, Yu; Qiu, Kangqiang; Jin, Chengzhi; Ji, Liangnian; Chao, Hui

    2016-08-16

    DNA binding and DNA transcription inhibition is regarded as a promising strategy for cancer chemotherapy. Herein, chloro terpyridyl Ru(ii) complexes, [Ru(tpy)(N^N)Cl](+) (Ru1, N^N = 2,2'-bipyridine; Ru2, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]acenaphthylene; Ru3, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]phenanthrene; Ru4, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]pyrene) were prepared as DNA intercalative and covalent binding anticancer agents. The chloro ligand hydrolysis slowly and the octanol and water partition coefficient of Ru2-Ru4 were between 0.6 and 1.2. MALDI-TOF mass, DNA gel electrophoresis confirmed covalent and intercalative DNA binding modes of Ru2-Ru4, while Ru1 can only bind DNA covalently. As a result, Ru2-Ru4 exhibited stronger DNA transcription inhibition activity, higher cell uptake efficiency and better anticancer activity than Ru1. Ru4 was the most toxic complex toward all cancer cells which inhibited DNA replication and transcription. AO/EB, Annexin V/PI, nuclear staining, JC-1 assays further confirmed that Ru2-Ru4 induced cancer cell death by an apoptosis mechanism. PMID:27294337

  15. Development of anticancer agents: wizardry with osmium.

    PubMed

    Hanif, Muhammad; Babak, Maria V; Hartinger, Christian G

    2014-10-01

    Platinum compounds are one of the pillars of modern cancer chemotherapy. The apparent disadvantages of existing chemotherapeutics have led to the development of novel anticancer agents with alternative modes of action. Many complexes of the heavy metal osmium (Os) are potent growth inhibitors of human cancer cells and are active in vivo, often superior or comparable to cisplatin, as the benchmark metal-based anticancer agent, or clinically tested ruthenium (Ru) drug candidates. Depending on the choice of ligand system, osmium compounds exhibit diverse modes of action, including redox activation, DNA targeting or inhibition of protein kinases. In this review, we highlight recent advances in the development of osmium anticancer drug candidates and discuss their cellular mechanisms of action. PMID:24955838

  16. ALLERGIC RESPONSE TO PLATINUM AND PALLADIUM COMPLEXES DETERMINATION OF NO-EFFECT LEVEL

    EPA Science Inventory

    Rabbits, guinea pigs and mice were subcutaneously injected with PtSO4 (with and without NH4Cl) and PdSO4 (with and without NH4Cl) in an attempt to sensitize the animals to platinum or palladium. No allergic induction was found. No allergic induction to platinum or palladium was f...

  17. The Midas touch in cancer chemotherapy: from platinum- to gold-dithiocarbamato complexes.

    PubMed

    Ronconi, Luca; Fregona, Dolores

    2009-12-28

    The unquestionable therapeutic success of the anticancer drug cisplatin and its second- and third-generation analogues has triggered, in the past forty years, the development of several metal-based potential chemotherapeutic agents, most of which have failed to enter clinical trials. In this context, during the last decade, our research group has been making quite an effort to design a number of metal-dithiocarbamato derivatives that were expected, at least in principle, to resemble the main features of cisplatin together with higher activity, improved selectivity and bioavailability, and lower side-effects. Among all, gold(III) complexes have shown outstanding in vitro and in vivo antitumour properties and reduced or no systemic and renal toxicity, compared to the reference drug. Here, we summarize the results achieved to date, focusing on the mechanistic studies and the potential future developments opened up by our research work. PMID:20023894

  18. Pharmacological and molecular effects of platinum(II) complexes involving 7-azaindole derivatives.

    PubMed

    Starha, Pavel; Hošek, Jan; Vančo, Ján; Dvořák, Zdeněk; Suchý, Pavel; Popa, Igor; Pražanová, Gabriela; Trávníček, Zdeněk

    2014-01-01

    The in vitro antitumour activity studies on a panel of human cancer cell lines (A549, HeLa, G-361, A2780, and A2780R) and the combined in vivo and ex vivo antitumour testing on the L1210 lymphocytic leukaemia model were performed on the cis-[PtCl2(naza)2] complexes (1-3) involving the 7-azaindole derivatives (naza). The platinum(II) complexes showed significantly higher in vitro cytotoxic effects on cell-based models, as compared with cisplatin, and showed the ability to avoid the acquired resistance of the A2780R cell line to cisplatin. The in vivo testing of the complexes (applied at the same dose as cisplatin) revealed their positive effect on the reduction of cancerous tissues volume, even if it is lower than that of cisplatin, however, they also showed less serious adverse effects on the healthy tissues and the health status of the treated mice. The results of ex vivo assays revealed that the complexes 1-3 were able to modulate the levels of active forms of caspases 3 and 8, and the transcription factor p53, and thus activate the intrinsic (mitochondrial) pathway of apoptosis. The pharmacological observations were supported by both the histological and immunohistochemical evaluation of isolated cancerous tissues. The applicability of the prepared complexes and their fate in biological systems, characterized by the hydrolytic stability and the thermodynamic aspects of the interactions with cysteine, reduced glutathione, and human serum albumin were studied by the mass spectrometry and isothermal titration calorimetric experiments. PMID:24603594

  19. Pharmacological and Molecular Effects of Platinum(II) Complexes Involving 7-Azaindole Derivatives

    PubMed Central

    Štarha, Pavel; Hošek, Jan; Vančo, Ján; Dvořák, Zdeněk; Suchý, Pavel; Popa, Igor; Pražanová, Gabriela; Trávníček, Zdeněk

    2014-01-01

    The in vitro antitumour activity studies on a panel of human cancer cell lines (A549, HeLa, G-361, A2780, and A2780R) and the combined in vivo and ex vivo antitumour testing on the L1210 lymphocytic leukaemia model were performed on the cis-[PtCl2(naza)2] complexes (1–3) involving the 7-azaindole derivatives (naza). The platinum(II) complexes showed significantly higher in vitro cytotoxic effects on cell-based models, as compared with cisplatin, and showed the ability to avoid the acquired resistance of the A2780R cell line to cisplatin. The in vivo testing of the complexes (applied at the same dose as cisplatin) revealed their positive effect on the reduction of cancerous tissues volume, even if it is lower than that of cisplatin, however, they also showed less serious adverse effects on the healthy tissues and the health status of the treated mice. The results of ex vivo assays revealed that the complexes 1–3 were able to modulate the levels of active forms of caspases 3 and 8, and the transcription factor p53, and thus activate the intrinsic (mitochondrial) pathway of apoptosis. The pharmacological observations were supported by both the histological and immunohistochemical evaluation of isolated cancerous tissues. The applicability of the prepared complexes and their fate in biological systems, characterized by the hydrolytic stability and the thermodynamic aspects of the interactions with cysteine, reduced glutathione, and human serum albumin were studied by the mass spectrometry and isothermal titration calorimetric experiments. PMID:24603594

  20. Excited-state absorption of a bipyridyl platinum(II) complex with alkynyl-benzothiazolylfluorene units.

    PubMed

    Pritchett, Timothy M; Sun, Wenfang; Zhang, Bingguang; Ferry, Michael J; Li, Yunjing; Haley, Joy E; Mackie, David M; Shensky, William; Mott, Andrew G

    2010-05-01

    The singlet excited-state lifetime of a bipyridyl platinum(II) complex containing two alkynyl-benzothiazolylfluorene units was determined to be 145+/-105 ps by fitting femtosecond transient difference absorption data, and the triplet quantum yield was measured to be 0.14. A ground-state absorption cross section of 6.1 x 10(-19) cm(2) at 532 nm was deduced from UV-visible absorption data. Excited-state absorption cross sections of (6.7+/-0.1) x 10(-17) cm(2) (singlet) and (4.6+/-0.1) x 10(-16) cm(2) (triplet) were obtained by using a five-level dynamic model to fit open-aperture Z scans at picosecond and nanosecond pulse widths and a variety of pulse energies. For this complex, the ratio of the triplet excited-state absorption cross section to the ground-state absorption cross section--long used as a figure of merit for reverse saturable absorbers--thus stands at 754, to our knowledge the largest ever reported at 532 nm wavelength. PMID:20436550

  1. Structural properties of platinum(II) biphenyl complexes containing 1,10-phenanthroline derivatives

    NASA Astrophysics Data System (ADS)

    Rillema, D. Paul; Cruz, Arvin J.; Tasset, Brandon J.; Moore, Curtis; Siam, Khamis; Huang, Wei

    2013-06-01

    Seven platinum(II) complexes formulated as Pt(bph)L, where bph is the 2,2'-biphenyl dianion and L = 4-methyl-1,10-phenanthroline (4-Mephen), 5-methyl-1,10-phenanthroline (5-Mephen), 5-chloro-1,10-phenanthroline (5-Clphen), 5,6-dimethyl-1,10-phenanthroline (5,6-Me2phen), 4,7-dimethyl-1,10-phenanthroline (4,7-Me2phen), 4,7-diphenyl-1,10-phenanthroline (4,7-Ph2phen) and 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-Me4phen) are reported. Protons attached to the phen ligand resonate downfield from those attached to the bph ligand and two proton signals are split by interaction with 195Pt. Pt(bph)(3,4,7,8-Me4phen), Pt(bph)(4,7-Me2phen), Pt(bph)(5,6-Me2phen), Pt(bph)(4,7-Ph2phen) and Pt(bph)(5-Mephen) crystallize in the space groups Pna21, P21/n, P21/c, P - 1 and Pca21, respectively. The structures of the complexes deviate from true planarity and divide themselves into two groups where the bph and phen ligands cross in an X configuration or bow out in a butterfly (B) configuration. Circular dichroism revealed two different spectra with respect to the X and B configurations.

  2. Hydrogen versus fluorine: effects on molecular structure and intermolecular interactions in a platinum isocyanate complex.

    PubMed

    Raven, William; Joschko, Thomas; Kalf, Irmgard; Englert, Ulli

    2016-03-01

    At the molecular level, the enantiomerically pure square-planar organoplatinum complex (SP-4-4)-(R)-[2-(1-aminoethyl)-5-fluorophenyl-κ(2)C(1),N][(R)-1-(4-fluorophenyl)ethylamine-κN](isocyanato-κN)platinum(II), [Pt(C8H9FN)(NCO)(C8H10FN)], and its congener without fluorine substituents on the aryl rings adopt the same structure within error. The similarities between the compounds extend to the most relevant intermolecular interactions, i.e. N-H...O and N-H...N hydrogen bonds link neighbouring molecules into chains along the shortest lattice parameter in each structure. Differences between the crystal structures of the fluoro-substituted and parent complex become obvious with respect to secondary interactions perpendicular to the classical hydrogen bonds; the fluorinated compound features short C-H...F contacts with an F...H distance of ca 2.6 Å. The fluorine substitution is also reflected in reduced backbonding from the metal cation to the isocyanate ligand. PMID:26942427

  3. Ternary metal complexes of guaifenesin drug: Synthesis, spectroscopic characterization and in vitro anticancer activity of the metal complexes.

    PubMed

    Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A

    2015-01-01

    The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity. PMID:26067934

  4. Significance of water solubility in the gastrointestinal absorption of trans-bis(n-valerato)(1R,2R-cyclohexanediamine)(oxalato)platinum(IV), an orally active antitumor platinum complex, and its analogs.

    PubMed

    Kizu, R; Nakanishi, T; Yamamoto, S; Hayakawa, K; Matsuzawa, A; Eriguchi, M; Takeda, Y; Akiyama, N; Kidani, Y

    1998-02-01

    Trans-bis(n-valerato)(1R,2R-cyclohexanediamine)(oxalato++ +)platinum(IV) (C5-OHP) is an orally active platinum complex we prepared. The gastrointestinal absorption of C5-OHP was examined in rats and compared with those of C5-OHP analogs which have a general formula of trans-bis(n-OCOCnH2n+1)(1R,2R-cyclohexanediamine)(oxalato )platinum(IV) as well as C5-OHP. The complexes did not show significant differences in pharmacokinetic behavior after i.v. injection. Plasma platinum level after a single oral administration at a dose was higher for a complex with higher water solubility. The intestinal absorption rate measured by an in situ recirculating perfusion technique was higher for a complex with higher lipophilicity. These results indicate that the water solubility is a more dominant factor than the lipophilicity in the gastrointestinal absorption of the complexes. Then, the effects of surfactants and alpha-cyclodextrin (alpha-CD) on the solubility of C5-OHP was studied. Among the agents tested, alpha-CD showed the highest effect in increasing the solubility. Administration of C5-OHP together with alpha-CD gave approximately three times higher plasma platinum levels than administration of C5-OHP alone. Water solubility was found to be a dominant factor in the gastrointestinal absorption of C5-OHP and its analogs. PMID:9510503

  5. Synthesis, crystal structure, DNA interaction and anticancer activity of tridentate copper(II) complexes.

    PubMed

    Li, Guan-Ying; Du, Ke-Jie; Wang, Jin-Quan; Liang, Jie-Wen; Kou, Jun-Feng; Hou, Xiao-Juan; Ji, Liang-Nian; Chao, Hui

    2013-02-01

    Three new tridentate copper(II) complexes [Cu(dthp)Cl(2)] (1) (dthp=2,6-di(thiazol-2-yl)pyridine), [Cu(dmtp)Cl(2)] (2) (dmtp=2,6-di(5-methyl-4H-1,2,4-triazol-3-yl)pyridine) and [Cu(dtp)Cl(2)] (3) (dtp=2,6-di(4H-1,2,4-triazol-3-yl)pyridine) have been synthesized and characterized. Crystal structure of complex 1 shows that the complex existed as distorted square pyramid with five co-ordination sites occupied by the tridentate ligand and the two chlorine anions. Ethidium bromide displacement assay, viscosity measurements, circular dichroism studies and cyclic voltammetric experiments suggested that these complexes bound to DNA via an intercalative mode. Three Cu(II) complexes were found to efficiently cleave DNA in the presence of sodium ascorbate, and singlet oxygen ((1)O(2)) and hydrogen peroxide were proved to contribute to the DNA cleavage process. They exhibited anticancer activity against HeLa, Hep-G2 and BEL-7402 cell lines. Nuclear chromatin cleavage has also been observed with AO/EB staining assay and the alkaline single-cell gel electrophoresis (comet assay). The results demonstrated that three Cu(II) complexes cause DNA damage that can induce the apoptosis of BEL-7402 cells. PMID:23186647

  6. Regioselective complexation of unprotected carbohydrates by platinum(II). Synthesis, structure, complexation equilibria, and hydrogen-bonding in carbonate-derived bis(phosphine)platinum(II) diolate and alditolate complexes

    SciTech Connect

    Andrews, M.A.; Voss, E.J.; Gould, G.L.; Klooster, W.T.; Koetzle, T.F. )

    1994-06-29

    Treatment of bis(phosphine)platinum(II) carbonate complexes (LL)Pt(CO[sub 3]) (e.g., LL = 1,3-bis(diphenylphosphino)propane) with vicinal diols (i.e., HOCR[sup 1]R[sup 2]CR[sup 3]R[sup 4]OH) gives equilibrium conversion to the corresponding diolate complexes (LL)Pt(OCR[sup 1]R[sup 2]CR[sup 3]R[sup 4]O), which are readily isolated in good yield. From competition experiments, relative diol complexation constants were determined as a function of both the diol and the phosphine substituents and found to span a range of over 10[sup 4]. Corresponding triolate and alditolate complexes were similarly prepared, for which very distinct equilibrium isomeric regioselectivities are observed, favoring complexation of [gamma],[delta]-threo diols. An X-ray structure of (dppp)Pt(D-mannitolate) shows that the mannitol is bonded to the platinum as its dianion via the oxygens on C3 and C4 to form a 2,5-dioxaplatinacyclopentane chelate ring and that three different strong intramolecular hydrogen-bonding interactions are present between the hydroxyl hydrogens and the metallacycle oxygens (O-O) (av) = 2.65(2) [angstrom], forming five-, six-, and seven-membered rings. Crystal data for PtP[sub 2]O[sub 6]C[sub 33]H[sub 38]-CH[sub 2]Cl[sub 2]: P2[sub 1]2[sub 1]2[sub 1], Z = 4, T = 20 [degree]C, a = 11.225(2) [angstrom], b = 15.875(3) [angstrom], c = 19.964(4) [angstrom], R(F[sub 0]) = 0.058, R[sub w](F[sub o]) = 0.062. 78 refs., 4 figs., 6 tabs.

  7. Platinum(II)-bis(aryleneethynylene) complexes for solution-processible molecular bulk heterojunction solar cells.

    PubMed

    Dai, Feng-Rong; Zhan, Hong-Mei; Liu, Qian; Fu, Ying-Ying; Li, Jin-Hua; Wang, Qi-Wei; Xie, Zhiyuan; Wang, Lixiang; Yan, Feng; Wong, Wai-Yeung

    2012-01-27

    Four new solution-processible small-molecular platinum(II)-bis(aryleneethynylene) complexes consisting of benzothiadiazole as the electron acceptor and triphenylamine and/or thiophene as the electron donor were conveniently synthesized and characterized by physicochemical and computational methods, and utilized as the electron-donor materials in the fabrication of solution-processed bulk heterojunction (BHJ) solar cells. The effect of different electron-donor groups in these small molecules on the optoelectronic and photovoltaic properties was also examined. The optical and time-dependent density functional theory studies showed that the incorporation of stronger electron-donor groups significantly enhanced the solar-absorption abilities of the complexes. These molecular complexes can serve as good electron donors for fabricating BHJ devices by blending them with the [6,6]-phenyl-C(71)-butyric acid methyl ester (PC(70)BM) as the electron acceptor. The best power conversion efficiency of 2.37% was achieved with the open-circuit voltage of 0.83 V, short-circuit current density of 7.10 mA cm(-2) and fill factor of 0.40 under illumination of an AM 1.5 solar-cell simulator. The spin-coated thin films showed p-channel field-effect charge transport with hole mobilities of up to 2.4×10(-4) cm(2) V(-1) s(-1) for these molecules. The present work illuminates the potential of well-defined organometallic complexes in developing light-harvesting small molecules for efficient power generation in organic photovoltaics implementation. PMID:22213333

  8. Dual-targeting organometallic ruthenium(II) anticancer complexes bearing EGFR-inhibiting 4-anilinoquinazoline ligands.

    PubMed

    Zhang, Yang; Zheng, Wei; Luo, Qun; Zhao, Yao; Zhang, Erlong; Liu, Suyan; Wang, Fuyi

    2015-08-01

    We have recently demonstrated that complexation with (η(6)-arene)Ru(II) fragments confers 4-anilinoquinazoline pharmacophores a higher potential for inducing cellular apoptosis while preserving the highly inhibitory activity of 4-anilinoquinazolines against EGFR and the reactivity of the ruthenium centre to 9-ethylguanine (Chem. Commun., 2013, 49, 10224-10226). Reported herein are the synthesis, characterisation and evaluation of the biological activity of a new series of ruthenium(ii) complexes of the type [(η(6)-arene)Ru(N,N-L)Cl]PF6 (arene = p-cymene, benzene, 2-phenylethanol or indane, L = 4-anilinoquinazolines). These organometallic ruthenium complexes undergo fast hydrolysis in aqueous solution. Intriguingly, the ligation of (arene)Ru(II) fragments with 4-anilinoquinazolines not only makes the target complexes excellent EGFR inhibitors, but also confers the complexes high affinity to bind to DNA minor grooves while maintaining their reactivity towards DNA bases, characterising them with dual-targeting properties. Molecular modelling studies reveal that the hydrolysis of these complexes is a favourable process which increases the affinity of the target complexes to bind to EGFR and DNA. In vitro biological activity assays show that most of this group of ruthenium complexes are selectively active inhibiting the EGF-stimulated growth of the HeLa cervical cancer cell line, and the most active complex [(η(6)-arene)Ru(N,N-L13)Cl]PF6 (, IC50 = 1.36 μM, = 4-(3'-chloro-4'-fluoroanilino)-6-(2-(2-aminoethyl)aminoethoxy)-7-methoxyquinazoline) is 29-fold more active than its analogue, [(η(6)-arene)Ru(N,N-ethylenediamine)Cl]PF6, and 21-fold more active than gefitinib, a well-known EGFR inhibitor in use clinically. These results highlight the strong promise to develop highly active ruthenium anticancer complexes by ligation of cytotoxic ruthenium pharmacophores with bioactive organic molecules. PMID:26106875

  9. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs

    PubMed Central

    Johnstone, Timothy C.; Suntharalingam, Kogularamanan; Lippard, Stephen J.

    2016-01-01

    The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer,, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing non-classical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore non-classical platinum(II) complexes with trans geometry and with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-treat agents, and photoactivatable platinum(IV) complexes. Nanodelivery particles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also reflect our optimism that the next generation of platinum cancer drugs is about to arrive. PMID:26865551

  10. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs.

    PubMed

    Johnstone, Timothy C; Suntharalingam, Kogularamanan; Lippard, Stephen J

    2016-03-01

    The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-threat agents, and photoactivatable platinum(IV) complexes. Nanoparticles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations, including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers, will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also will reflect our optimism that the next generation of approved platinum cancer drugs is about to arrive. PMID:26865551

  11. Synthesis, spectroscopic characterization and molecular modeling of a tetranuclear platinum(II) complex with thiazolidine-4-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Corbi, Pedro P.; Formiga, André L. B.; Bonk, Fábio A.; Quintão, Frederico A.; Ferraresi, Diego K. D.; Lustri, Wilton R.; Massabni, Antonio C.

    2012-07-01

    The synthesis, spectroscopic characterization and molecular modeling of a novel tetranuclear platinum(II) complex with thiazolidine-4-carboxylic acid (THC) are described. Elemental analysis is consistent with the composition PtCl2C4H7NO2S·H2O. Infrared (IR) spectroscopic results and solid-state 13C and 15N nuclear magnetic resonance (NMR) data indicate coordination of the ligand to Pt(II) through the nitrogen and sulfur atoms. The square planar geometry of the platinum(II) complex is completed by chlorine atoms. Density functional theory (DFT) suggests the formation of a tetrameric cluster as the most probable structure, where each THC molecule bridges between two metal centers. The compound is insoluble in water.

  12. Theoretical Investigations and Density Functional Theory Based Quantitative Structure–Activity Relationships Model for Novel Cytotoxic Platinum(IV) Complexes

    PubMed Central

    2012-01-01

    Octahedral platinum(IV) complexes are promising candidates in the fight against cancer. In order to rationalize the further development of this class of compounds, detailed studies on their mechanisms of action, toxicity, and resistance must be provided and structure–activity relationships must be drawn. Herein, we report on theoretical and QSAR investigations of a series of 53 novel bis-, tris-, and tetrakis(carboxylato)platinum(IV) complexes, synthesized and tested for cytotoxicity in our laboratories. The hybrid DFT functional wb97x was used for optimization of the structure geometry and calculation of the descriptors. Reliable and robust QSAR models with good explanatory and predictive properties were obtained for both the cisplatin sensitive cell line CH1 and the intrinsically cisplatin resistant cell line SW480, with a set of four descriptors. PMID:23214999

  13. Structural comparison of anticancer drug-DNA complexes: Adriamycin and daunomycin

    SciTech Connect

    Frederick, C.A.; Williams, L.D.; Rich, A.; Wang, A.H.J. ); Ughetto, G. ); van der Marel, G.A.; van Boom, J.H. )

    1990-03-13

    The anticancer drugs adriamycin and daunomycin have each been crystallized with the DNA sequence d(CGATCG) and the tree-dimensional structures of the complexes solved at 1.7- and 1.5-{angstrom} resolution, respectively. These antitumor drugs have significantly different clinical properties, yet they differ chemically by only the additional hydroxyl at C14 of adriamycin. The complex of daunoymcin with d(CGATCG) has tighter binding than the complex with d(CGTACG), leading us to infer a sequence preference in the binding of this anthracycline drug. The structures of daunomycin and adriamycin with d(CGATCG) are very similar. However, there add additional solvent interactions with the adriamycin C14 hydroxyl linking it to the DNA. Surprisingly, under the influence of the altered solvation, there is considerable difference in the conformation of spermine in these two complexes. The observed changes in the overall structures of the ternary complexes amplify the small chemical differences between these two antibiotics and provide a possible explanation for the significantly different clinical activities of these important drugs.

  14. Platinum diimine bis(acetylide) complexes: Synthesis, characterization, and luminescence properties

    SciTech Connect

    Hissler, M.; Connick, W.B.; Geiger, D.K.; McGarrah, J.E.; Lipa, D.; Lachicotte, R.J.; Eisenberg, R.

    2000-02-07

    A new set of luminescent platinum(II) diimine complexes has been synthesized and characterized. The anionic ligands in these complexes are arylacetylides. The complexes are brightly emissive in fluid solution with relative emission quantum yields {phi}{sub em} ranging from 3 x 10{sup {minus}3} to 10{sup {minus}1}. Two series of complexes have been investigated. The first has the formula Pt(Rphen)(C{equivalent{underscore}to}CC{sub 6}H{sub 5}){sub 2} where Rphen is 1,10-phenanthroline substituted in the 5-position with R = H, Me, Cl, Br, NO{sub 2}, or C{equivalent{underscore}to}CC{sub 6}H{sub 5}, while the second has the formula Pt(dbbpy)(C{equivalent{underscore}to}CC{sub 6}H{sub 4}X){sub 2} where dbbpy = 4,4{prime}-di(tert-butyl)bipyridine and X = H, Me, F, or NO{sub 2}. From NMR, IR, and electronic spectroscopies, all of the complexes are assigned a square planar coordination geometry with cis-alkynyl ligands. The crystal structure of Pt(phen)(C{equivalent{underscore}to}CC{sub 6}H{sub 4}CH{sub 3}){sub 2} confirms this assignment. All of the complexes exhibit an absorption band at ca. 400 nm that corresponds to a Pt d {r{underscore}arrow} {pi}{asterisk}{sub diimine} charge-transfer transition. The variation of {lambda}{sub max} for this band with substituent variation supports this assignment. From similar changes in the energy of the solution luminescence as a function of substituents R and X, the emissive excited state is also of MLCT origin, but with spin-forbidden character on the basis of excited-state lifetime measurements (0.01--5.6 {mu}s). The complexes undergo electron-transfer quenching, showing good Stern-Volmer behavior using 10-methylphenothiazine and N,N,N{prime},N{prime}-tetramethylbenzidine as reductive quenchers. Excited-state reduction potentials are estimated on the basis of a simple thermochemical analysis. Crystal data for Pt(phen)(C{equivalent{underscore}to}CC{sub 6}H{sub 4}CH{sub 3}){sub 2}: monoclinic, space group C2/c, a = 19

  15. Platinum diimine bis(acetylide) complexes: synthesis, characterization, and luminescence properties.

    PubMed

    Hissler, M; Connick, W B; Geiger, D K; McGarrah, J E; Lipa, D; Lachicotte, R J; Eisenberg, R

    2000-02-01

    A new set of luminescent platinum(II) diimine complexes has been synthesized and characterized. The anionic ligands in these complexes are arylacetylides. The complexes are brightly emissive in fluid solution with relative emission quantum yields phiem ranging from 3 x 10(-3) to 10(-1). Two series of complexes have been investigated. The first has the formula Pt(Rphen)(C...CC6H5)2 where Rphen is 1,10-phenanthroline substituted in the 5-position with R = H, Me, Cl, Br, NO2, or C...CC6H5, while the second has the formula Pt(dbbpy)(C=CC6H4X)2 where dbbpy = 4,4'-di(tert-butyl)bipyridine and X = H, Me, F, or NO2. From NMR, IR, and electronic spectroscopies, all of the complexes are assigned a square planar coordination geometry with cis-alkynyl ligands. The crystal structure of Pt(phen)(Ce-CC6H4CH3)2 confirms this assignment. All of the complexes exhibit an absorption band at ca. 400 nm that corresponds to a Pt d-->pi*diimine charge-transfer transition. The variation of lambdamax for this band with substituent variation supports this assignment. From similar changes in the energy of the solution luminescence as a function of substituents R and X, the emissive excited state is also of MLCT origin, but with spin-forbidden character on the basis of excited-state lifetime measurements (0.01-5.6 micros). The complexes undergo electron-transfer quenching, showing good Stern-Volmer behavior using 10-methylphenothiazine and N,N,N',N'-tetramethylbenzidine as reductive quenchers. Excited-state reduction potentials are estimated on the basis of a simple thermochemical analysis. Crystal data for Pt(phen)(C...CC6H4CH3)2: monoclinic, space group C2/c, a = 19.0961(1) A, b = 10.4498(1) A, c = 11.8124(2) A, beta = 108.413(1) degrees, V = 2236.49 A3, number of reflections 1614, number of variables 150, R1 = 0.0163, wR2 (I > 2sigma) = 0.0410. PMID:11229561

  16. Quantum Spin Fluctuations in Quasi-One-Dimensional Chlorine-Bridged Platinum Complexes

    SciTech Connect

    Wei, X.; Donohoe, R. J.; Wang, W. Z.; Bishop, A. R.; Gammel, J. T.

    1997-01-01

    We report experimental and theoretical studies of spin dynamic process in the quasi-one-dimensional chlorine-bridged platinum complex, [Pt{sup II}(en){sub 2}][Pt{sup IV}(en){sub 2}Cl{sub 2}](ClO{sub 4}){sub 4}, where en = ethylenediamine, C{sub 2}N{sub 2}H{sub 8}. The process manifests itself in collapsing of the hyperfine and superhyperfine structures in the electron spin resonance (ESR) spectrum and non-statistical distribution of spectral weight of the Pt isotopes. More surprisingly, it is activated only at temperatures below 6 K. We interpret the phenomenon in terms of quantum tunneling of the electronic spin in a strong electron-electron and electron-phonon coupling regime. This is modeled using a non-adiabatic many-body approach, in which polarons and solitons represent local spin-Peierls regions in a strongly disproportional charge-density-wave background and display intriguing spin-charge separation in the form of pinned charge and tunneling spin fluctuations. 24 refs., 5 figs., 1 tab.

  17. Potential switchable circularly polarized luminescence from chiral cyclometalated platinum(II) complexes.

    PubMed

    Zhang, Xiao-Peng; Chang, Victoria Y; Liu, Jian; Yang, Xiao-Liang; Huang, Wei; Li, Yizhi; Li, Cheng-Hui; Muller, Gilles; You, Xiao-Zeng

    2015-01-01

    A series of chiral cyclometalated platinum(II) complexes, [Pt((-)-L1)(Dmpi)]Cl ((-)-1), [Pt((+)-L1)(Dmpi)]Cl ((+)-1), [Pt((-)-L2)(Dmpi)]Cl ((-)-2), [Pt((+)-L2)(Dmpi)]Cl ((+)-2), [Pt3((-)-L2)2(Dmpi)4](ClO4)4 ((-)-3), and [Pt3((+)-L2)2(Dmpi)4](ClO4)4 ((+)-3) [(-)-L1 = (-)-4,5-pinene-6'-phenyl-2,2'-bipyridine, (+)-L1 = (+)-4,5-pinene-6'-phenyl-2,2'-bipyridine), (-)-L2 = (-)-1,3-bis(2-(4,5-pinene)pyridyl)benzene, (+)-L2 = (+)-1,3-bis(2-(4,5-pinene)pyridyl)benzene, Dmpi = 2,6-dimethylphenyl isocyanide], have been designed and synthesized. In aqueous solutions, (-)-1 and (+)-1 aggregate into one-dimensional helical chain structures through Pt···Pt, π-π, and hydrophobic-hydrophobic interactions. (-)-3 and (+)-3 represent a novel helical structure with Pt-Pt bonds. The formation of helical structures results in enhanced and distinct chiroptical properties as evidenced by circular dichroism spectra. Circularly polarized luminescence (CPL) was observed from the aggregates of (-)-1 and (+)-1 in water, as well as (-)-3 and (+)-3 in dichloromethane. The CPL activity can be switched reversibly (for (-)-1 and (+)-1) or irreversibly (for (-)-3 and (+)-3) by varying the temperature. PMID:25495433

  18. Oxidative addition of hydrogen to bis(phosphine)platinum(0) complexes: an ab initio theroretical treatment

    SciTech Connect

    Noell, J.O.; Hay, P.J.

    1982-08-25

    Ab initio molecular orbital methods utilizing relativistic core potentials and correlated wave functions are employed to examine the oxidative addition reactions H/sub 2/ + Pt(PH/sub 3/)/sub 2/..-->..cis-Pt(PH/sub 3/)/sub 2/H/sub 2/ and H/sub 2/ + Pt(P(CH/sub 3/)/sub 3/)/sub 2/..-->..cis-Pt(P(CH/sub 3/)/sub 3/)/sub 2/H/sub 2/. For this symmetry-allowed process, an activation barrier of 17 kcal/mol and an exothermicity of 7 kcal/mol are calculated at the SCF level for the PH/sub 3/ liquid; similar values are obtained for the P(CH/sub 3/)/sub 3/ ligand. This implies a barrier of 24 kcal/mol for the reverse reductive elimination reaction. These values were not significantly altered in MC-SCF or CI calculations. This barrier is consistent with available data in the analogous process in six-coordinate complexes but is puzzling in light of the paucity of known four-coordinate cis dihydrides. The reaction is analyzed in terms of three phases: initial repulsion, partial transfer of charge from the platinum to the hydrogen, and final metal-hydrogen bond formation. The relative energies of the cis and trans isomers are also discussed.

  19. Helical Self-Assembly and Photopolymerization Properties of Achiral Amphiphilic Platinum(II) Diacetylene Complexes of Tridentate 2,6-Bis(1-alkylpyrazol-3-yl)pyridines.

    PubMed

    Li, Yongguang; Wong, Keith Man-Chung; Wong, Hok-Lai; Yam, Vivian Wing-Wah

    2016-07-13

    Amphiphilic platinum(II) diacetylene complexes of the 2,6-bis(1-butylpyrazol-3-yl)pyridine pincer ligand were designed and synthesized. Helical fibrous nanostructures were obtained through supramolecular assembly of the achiral platinum(II) diacetylene complexes via intermolecular hydrogen bonding, amphiphilic effects, Pt···Pt interactions, and π-π stacking interactions. In situ post-photopolymerization of the diacetylene unit was shown to occur in the preorganized helical fibers. PMID:27348758

  20. Mechanochromism in the luminescence of novel cyclometalated platinum(ii) complexes with α-aminocarboxylates.

    PubMed

    Ohno, Keiji; Yamaguchi, Shohei; Nagasawa, Akira; Fujihara, Takashi

    2016-04-01

    Six novel phosphorescent cyclometalated platinum(ii) complexes with α-aminocarboxylato ligands, [Pt(II)(ppy)L] (ppy = 2-phenylpyridinato, L(-) = Gly, Ala, Leu, Ile, Phe, Sar), were synthesized, and the structures were determined by X-ray crystallography. [Pt(II)(ppy)L] (L(-) = Gly, Ala) in crystals are in monomeric structures and stack through π-π interactions to form columns, and the features of the luminescence are similar to each other and those in solution, suggesting little influence of the π-π interactions on the luminescence. [Pt(II)(ppy)Leu] has a dimeric structure through the Pt-Pt interaction. [Pt(II)(ppy)Sar] showed two pseudo-polymorphs, one of which contains both monomeric and dimeric forms, while the other consists of only dimeric units. Intra-dimer π-π interactions were observed in both the dimeric units. [Pt(II)(ppy)L] (L(-) = Leu, Ile, Phe) in the solid state displayed different spectral patterns of luminescence from those in solution, suggesting that the dimeric structures through the Pt-Pt interaction in the solid state are dissociated into the corresponding monomeric ones in solution. The complexes except [Pt(II)(ppy)Phe] in the solid state exhibited reversible luminescent mechanochromism in response to the mechanical grinding and treatment with a few drops of solvent. These phenomena are induced by the change in the energy level of the triplet state due to the change in the extent of intermolecular interactions, which appeared due to the crystalline-amorphous phase conversion. PMID:26905648

  1. Preparation, stability, and photoreactivity of thiolato ruthenium polypyridyl complexes: Can cysteine derivatives protect ruthenium-based anticancer complexes?

    PubMed

    van Rixel, Vincent H S; Busemann, Anja; Göttle, Adrien J; Bonnet, Sylvestre

    2015-09-01

    Ruthenium polypyridyl complexes may act as light-activatable anticancer prodrugs provided that they are protected by well-coordinated ligands that i) prevent coordination of other biomolecules to the metal center in the dark and ii) can be removed by visible light irradiation. In this paper, the use of monodentate thiol ligands RSH as light-cleavable protecting groups for the ruthenium complex [Ru(tpy)(bpy)(OH2)](PF6)2 ([1](PF6)2; tpy=2,2';6',2″-terpyridine, bpy=2,2'-bypyridine), is investigated. The reaction of [1](2+) with RSH=H2Cys (L-cysteine), H2Acys (N-acetyl-L-cysteine), and HAcysMe (N-acetyl-L-cysteine methyl ester), is studied by UV-visible spectroscopy, NMR spectroscopy, and mass spectrometry. Coordination of the monodentate thiol ligands to the ruthenium complex takes place upon heating to 353 K, but full conversion to the protected complex [Ru(tpy)(bpy)(SR)]PF6 is only possible when a large excess of ligand is used. Isolation and characterization of the two new thiolato complexes [Ru(tpy)(bpy)(κS-HCys)]PF6 ([2]PF6) and [Ru(tpy)(bpy)(κS-HAcys)]PF6 ([3]PF6) is reported. [3]PF6 shows a metal-to-ligand charge-transfer absorption band that is red shifted (λmax=492 nm in water) compared to its methionine analogue [Ru(tpy)(bpy)(κS-HAmet)](Cl)2 ([5](Cl)2, λmax=452 nm; HAmet=N-acetyl-methionine). In the dark the thiolate ligand coordinated to ruthenium is oxidized even by traces of oxygen, which first leads to the sulfenato, sulfinato, and disulfide ruthenium complexes, and finally to the formation of the aqua complex [1](2+). [3]PF6 showed slow photosubstitution of the thiolate ligand by water under blue light irradiation, together with faster photooxidation of the thiolate ligand compared to dark conditions. The use of thiol vs. thioether monodentate ligands is discussed for the protection of anticancer ruthenium-based prodrugs. PMID:26187140

  2. Design, synthesis and DNA interactions of a chimera between a platinum complex and an IHF mimicking peptide.

    PubMed

    Rao, Harita; Damian, Mariana S; Alshiekh, Alak; Elmroth, Sofi K C; Diederichsen, Ulf

    2015-12-28

    Conjugation of metal complexes with peptide scaffolds possessing high DNA binding affinity has shown to modulate their biological activities and to enhance their interaction with DNA. In this work, a platinum complex/peptide chimera was synthesized based on a model of the Integration Host Factor (IHF), an architectural protein possessing sequence specific DNA binding and bending abilities through its interaction with a minor groove. The model peptide consists of a cyclic unit resembling the minor grove binding subdomain of IHF, a positively charged lysine dendrimer for electrostatic interactions with the DNA phosphate backbone and a flexible glycine linker tethering the two units. A norvaline derived artificial amino acid was designed to contain a dimethylethylenediamine as a bidentate platinum chelating unit, and introduced into the IHF mimicking peptides. The interaction of the chimeric peptides with various DNA sequences was studied by utilizing the following experiments: thermal melting studies, agarose gel electrophoresis for plasmid DNA unwinding experiments, and native and denaturing gel electrophoresis to visualize non-covalent and covalent peptide-DNA adducts, respectively. By incorporation of the platinum metal center within the model peptide mimicking IHF we have attempted to improve its specificity and DNA targeting ability, particularly towards those sequences containing adjacent guanine residues. PMID:26477860

  3. Structural Determinants of p53-Independence in Anticancer Ruthenium-Arene Schiff-Base Complexes.

    PubMed

    Chow, Mun Juinn; Babak, Maria V; Wong, Daniel Yuan Qiang; Pastorin, Giorgia; Gaiddon, Christian; Ang, Wee Han

    2016-07-01

    p53 is a key tumor suppressor gene involved in key cellular processes and implicated in cancer therapy. However, it is inactivated in more than 50% of all cancers due to mutation or overexpression of its negative regulators. This leads to drug resistance and poor chemotherapeutic outcome as most clinical drugs act via a p53-dependent mechanism of action. An attractive strategy to circumvent this resistance would be to identify new anticancer drugs that act via p53-independent mode of action. In the present study, we identified 9 Ru (II)-Arene Schiff-base (RAS) complexes able to induce p53-independent cytotoxicity and discuss structural features that are required for their p53-independent activity. Increasing hydrophobicity led to an increase in cellular accumulation in cells with a corresponding increase in efficacy. We further showed that all nine complexes demonstrated p53-independent activity. This was despite significant differences in their physicochemical properties, suggesting that the iminoquinoline ligand, a common structural feature for all the complexes, is required for the p53-independent activity. PMID:27174050

  4. SO2-Binding Properties of Cationic η6,η1-NCN-Pincer Arene Ruthenium Platinum Complexes: Spectroscopic and Theoretical Studies

    SciTech Connect

    Bonnet, Sylvestre A.; Van Lenthe, Joop H.; van Dam, Hubertus JJ; van Koten, Gerard; Klein Gebbink, Robertus J M

    2011-03-01

    The SO2-binding properties of a series of η6,η1-NCN-pincer ruthenium platinum complexes have been studied by both UV-visible spectroscopy, and theoretical calculations. When an electronwithdrawing [Ru(C5R5)]+ fragment (R = H or Me) is η6-coordinated to the phenyl ring of the NCNpincer platinum fragment (cf. [2]+ and [3]+, see scheme 1), the characteristic orange coloration (pointing to η1- SO2 binding to Pt) of a solution of the parent NCN-pincer platinum complex 1 in dichloromethane upon SO2-bubbling is not observed. However, when the ruthenium center is η6- coordinated to a phenyl substituent linked in para-position to the carbon-to-platinum bond, i.e. complex [4]+, the SO2-binding property of the NCN-platinum center seems to be retained, as bubbling SO2 into a solution of the latter complex produces the characteristic orange color. We performed theoretical calculations at the MP2 level of approximation and TD-DFT studies, which enabled us to interpret the absence of color change in the case of [2]+ as an absence of coordination of SO2 to platinum. We analyze this absence or weaker SO2-coordination in dichloromethane to be a consequence of the relative electron-poorness of the platinum center in the respective η6- ruthenium coordinated NCN-pincer platinum complexes, that leads to a lower binding energy and an elongated calculated Pt-S bond distance. We also discuss the effects of electrostatic interactions in these cationic systems, which also seems to play a destabilizing role for complex [2(SO2)]+.

  5. Luminescent Platinum Compounds: From Molecules to OLEDs

    NASA Astrophysics Data System (ADS)

    Murphy, Lisa; Williams, J. A. Gareth

    Around 30 years ago, much of the research into platinum coordination chemistry was being driven either by research into one-dimensional, electrically conducting molecular materials exploiting the stacking interactions of planar complexes, or by the unprecedented success of cis-Pt(NH3)2Cl2 (cisplatin) as an anticancer agent. At that time, a number of simple platinum(II) compounds were known to be photoluminescent at low temperature or in the solid state, but almost none in fluid solution at room temperature. Since that time, several families of complexes have been discovered that are brightly luminescent, and a number of investigations have shed light on the factors that govern the luminescence efficiencies of Pt(II) complexes. Over the past decade, such studies have been spurred on by the potential application of triplet-emitting metal complexes as phosphors in organic light-emitting devices (OLEDs), where their ability to trap otherwise wasted triplet states can lead to large gains in efficiency. In this contribution, we take a chemist's perspective of the field, overviewing in the first instance the factors that need to be taken into account in the rational design of highly luminescent platinum(II) complexes, and the background to their use in OLEDs. We then consider in more detail the properties of some individual classes, highlighting work from the past 3 years, and including selected examples of their utility in OLEDs and other applications.

  6. Triphenyl phosphine adducts of platinum(IV) and palladium(II) dithiocarbamates complexes: a spectral and in vitro study

    NASA Astrophysics Data System (ADS)

    Manav, N.; Mishra, A. K.; Kaushik, N. K.

    2004-11-01

    Triphenyl phosphine adducts of dithiocarbamate complexes of platinum(IV) and palladium(II) of the type [Pt(L) 2PPh 3Cl 2] and [Pd(L) 2PPh 3] [L: morpholine dithiocarbamate (L 1), aniline dithiocarbamate (L 2) and N-(methyl, cyclohexyl) dithiocarbamate (L 3)] were prepared and characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectral studies. Thermal studies of the complexes were carried out. In vitro antitumor activity has been screened towards human adenocarcinoma cell lines and showed significant inhibition even at very low concentration.

  7. Potential Switchable Circularly Polarized Luminescence from Chiral Cyclometalated Platinum(II) Complexes

    PubMed Central

    2015-01-01

    A series of chiral cyclometalated platinum(II) complexes, [Pt((−)-L1)(Dmpi)]Cl ((−)-1), [Pt((+)-L1)(Dmpi)]Cl ((+)-1), [Pt((−)-L2)(Dmpi)]Cl ((−)-2), [Pt((+)-L2)(Dmpi)]Cl ((+)-2), [Pt3((−)-L2)2(Dmpi)4](ClO4)4 ((−)-3), and [Pt3((+)-L2)2(Dmpi)4](ClO4)4 ((+)-3) [(−)-L1 = (−)-4,5-pinene-6′-phenyl-2,2′-bipyridine, (+)-L1 = (+)-4,5-pinene-6′-phenyl-2,2′-bipyridine), (−)-L2 = (−)-1,3-bis(2-(4,5-pinene)pyridyl)benzene, (+)-L2 = (+)-1,3-bis(2-(4,5-pinene)pyridyl)benzene, Dmpi = 2,6-dimethylphenyl isocyanide], have been designed and synthesized. In aqueous solutions, (−)-1 and (+)-1 aggregate into one-dimensional helical chain structures through Pt···Pt, π–π, and hydrophobic–hydrophobic interactions. (−)-3 and (+)-3 represent a novel helical structure with Pt–Pt bonds. The formation of helical structures results in enhanced and distinct chiroptical properties as evidenced by circular dichroism spectra. Circularly polarized luminescence (CPL) was observed from the aggregates of (−)-1 and (+)-1 in water, as well as (−)-3 and (+)-3 in dichloromethane. The CPL activity can be switched reversibly (for (−)-1 and (+)-1) or irreversibly (for (−)-3 and (+)-3) by varying the temperature. PMID:25495433

  8. Emissive or nonemissive? A theoretical analysis of the phosphorescence efficiencies of cyclometalated platinum(II) complexes.

    PubMed

    Tong, Glenna So-Ming; Che, Chi-Ming

    2009-07-20

    We herein report a theoretical analysis based on a density functional theory/time-dependent density functional theory (DFT/TDDFT) approach to understand the different phosphorescence efficiencies of a family of cyclometalated platinum(II) complexes: [Pt(NCN)Cl] (1; NCN = 1,3-bis(2-pyridyl)phenyl(-)), [Pt(CNN)Cl] (2; CNN = 6-phenyl-2,2'-bipyridyl(-)), [Pt(CNC)(CNPh)] (3; CNC = 2,6-diphenylpyridyl(2-)), [Pt(R-CNN)Cl] (4; R-CNN = 3-(6'-(2''-naphthyl)-2'-pyridyl)isoquinolinyl(-)), and [Pt(R-CNC)(CNPh)] (5; R-CNC = 2,6-bis(2'-naphthyl)pyridyl(2-)). By considering both the spin-orbit coupling (SOC) and the electronic structures of these complexes at their respective optimized singlet ground (S(0)) and first triplet (T(opt)(1)) excited states, we were able to rationalize the experimental findings that 1) 1 is a strong emitter while its isomer 2 is only weakly emissive in CH(2)Cl(2) solution at room temperature; 2) although the cyclometalated ligand of 3 has a higher ligand-field strength than that of 1, 3 is nonemissive in CH(2)Cl(2) solution at 298 K; and 3) extension of pi conjugation at the lateral aryl rings of the cyclometalated ligands of 2 and 3 to give 4 and 5, respectively, leads to increased emission quantum yields under the same conditions. We found that Jahn-Teller and pseudo-Jahn-Teller effects are operative in complexes 2 and 3, respectively, on going from the optimized S(0) ground state to the optimized T(opt)(1) excited state, and thus lead to large excited-state structural distortions and hence fast nonradiative decay. Furthermore, a strong-field ligand may push the two different occupied d orbitals so far apart that the SOC effect is small and the radiative decay rate is slow. This work is an example of electronic-structure-driven tuning of the phosphorescence efficiency, and the DFT/TDDFT approach is demonstrated to be a versatile tool for the design of phosphorescent materials with target characteristics. PMID:19544517

  9. Inelastic neutron scattering study of Pt(II) complexes displaying anticancer properties.

    PubMed

    de Carvalho, Luís A E Batista; Marques, M Paula M; Martin, Christine; Parker, Stewart F; Tomkinson, John

    2011-05-01

    The well-known platinum(II) chemotherapeutic drugs cisplatin [cis-(NH(3))(2)PtCl(2)] and carboplatin [Pt(NH(3))(2)C(6)O(4)H(6)], as well as the analogous transplatin [trans-(NH(3))(2)PtCl(2)], were studied by inelastic neutron scattering (INS) spectroscopy, coupled to quantum mechanical methods, and some ancillary work with X-ray diffraction on powders. An assignment of the experimental spectra was carried out based on the calculated INS transition frequencies and intensities (at the DFT level), thereby achieving a good correspondence between the calculated and observed data. Unusually good-quality INS spectra were obtained from about 250 mg, which is the smallest sample of a hydrogenous compound for which a successful INS interpretation has been reported. The knowledge of the local configuration of this kind of complexes is essential for an accurate understanding of their activity, which will pave the way for the rational design of novel third-generation drugs comprising cisplatin- and carboplatin-like moieties. PMID:21523878

  10. Novel platinum(II) and palladium(II) complexes of thiosemicarbazones derived from 5-substitutedthiophene-2-carboxaldehydes and their antiviral and cytotoxic activities.

    PubMed

    Karaküçük-İyidoğan, Ayşegül; Taşdemir, Demet; Oruç-Emre, Emine Elçin; Balzarini, Jan

    2011-11-01

    A series of thiosemicarbazones and their platinum(II) and palladium(II) complexes have been synthesized. The chemical structures of ligands and their complexes were characterized by UV-Vis, IR, (1)H NMR, (13)C NMR, MS spectra, elemental analysis and TGA. The antiviral and cytotoxic activities of all compounds have been tested. Results of broad antiviral evaluation showed that none of the compounds evaluated endowed with anti-DNA or -RNA virus activity at subtoxic concentrations except for the palladium complex 1b. This compound exhibited slightly selective inhibition against cytomegalovirus. The platinum complex 4a exhibited the best cytostatic activities against human cervix carcinoma. Ligands 2, 4 and 5 showed cytostatic potential. The palladium complexes were in general less cytostatic than the corresponding platinum complexes or unliganded congeners. PMID:21993152

  11. Interaction of manganese(II) complex with apotransferrin and the apotransferrin enhanced anticancer activities

    NASA Astrophysics Data System (ADS)

    Yao, Ling; Chen, Qiu-Yun; Xu, Xiao-Lei; Li, Zan; Wang, Xue-Ming

    2013-03-01

    Apotransferrin could bind a number of metal ions besides Fe, which makes it an attractive delivery vehicle for metal-based medicines. In order to evaluate whether anticancer Mn(II) complex of [(Adpa)Mn(Cl)(H2O)] Adpa = bis(2-pyridylmethyl)amino-2-propionic acid) (AdpaMn) could be transported by apotransferrin, we investigated its interaction with human apotransferrin by fluorescence and circular dichroism spectroscopy (CD). The association dynamics show that AdpaMn could bind to apotransferrin spontaneously in Hepes buffer. Synchronous fluorescence spectroscopy and CD spectroscopy show that the conjugation of AdpaMn and apotransferrin by hydrophobic interactions induces the change of the microenvironment and conformation of apotransferrin. The reversible binding and release of AdpaMn was studied with fluorescence titration method. The AdpaMn complex can be released from the AdpaMn-apotransferrin entity in weak acid environments. MTT assay in vitro confirms that apotransferrin can enhance the inhibition rate of AdpaMn on the proliferation of HepG-2 cells, so we deduce that AdpaMn could be transported by apotransferrin in vivo.

  12. Luminescence rigidochromism and redox chemistry of pyrazolate-bridged binuclear platinum(II) diimine complex intercalated into zirconium phosphate layers.

    PubMed

    Rivera, Eladio J; Barbosa, Cindy; Torres, Rafael; Rivera, Harry; Fachini, Estevao R; Green, Tyler W; Connick, William B; Colón, Jorge L

    2012-03-01

    The direct intercalation of a pyrazolate-bridged platinum(II) bipyridyl dimer ([{Pt(dmbpy)(μ-pz)}(2)](2+); dmbpy = 4,4'-dimethyl-2,2'-bipyridine, pz(-) = pyrazolate) within a zirconium phosphate (ZrP) framework has been accomplished. The physical and spectroscopic properties of [{Pt(dmbpy)(μ-pz)}(2)](2+) intercalated in ZrP were investigated by X-ray powder diffraction and X-ray photoelectron, infrared, absorption, and luminescence spectroscopies. Zirconium phosphate layers have a special microenvironment that is capable of supporting a variety of platinum oxidation states. Diffuse reflectance spectra from powders of the blue-gray intercalated materials show the formation of a low-energy band at 600 nm that is not present in the platinum dimer salt. The nonintercalated complex is nonemissive in room-temperature fluid solution, but gives rise to intense blue-green emission in a 4:1 ethanol/methanol 77 K frozen glassy solution. Powders and colloidal suspensions of [{Pt(dmbpy)(μ-pz)}(2)](2+)-exchanged ZrP materials exhibit intense emissions at room-temperature. PMID:22339702

  13. Synthesis, Characterization, Anticancer, and Antioxidant Studies of Ru(III) Complexes of Monobasic Tridentate Schiff Bases

    PubMed Central

    Ejidike, Ikechukwu P.

    2016-01-01

    Mononuclear Ru(III) complexes of the type [Ru(LL)Cl2(H2O)] (LL = monobasic tridentate Schiff base anion: (1Z)-N′-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)-N-phenylethanimidamide [DAE], 4-[(1E)-N-{2-[(Z)-(4-hydroxy-3-methoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [HME], 4-[(1E)-N-{2-[(Z)-(3,4-dimethoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [MBE], and N-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)benzenecarboximidoyl chloride [DEE]) were synthesized and characterized using the microanalytical, conductivity measurements, electronic spectra, and FTIR spectroscopy. IR spectral studies confirmed that the ligands act as tridentate chelate coordinating the metal ion through the azomethine nitrogen and phenolic oxygen atom. An octahedral geometry has been proposed for all Ru(III)-Schiff base complexes. In vitro anticancer studies of the synthesized complexes against renal cancer cells (TK-10), melanoma cancer cells (UACC-62), and breast cancer cells (MCF-7) was investigated using the Sulforhodamine B assay. [Ru(DAE)Cl2(H2O)] showed the highest activity with IC50 valves of 3.57 ± 1.09, 6.44 ± 0.38, and 9.06 ± 1.18 μM against MCF-7, UACC-62, and TK-10, respectively, order of activity being TK-10 < UACC-62 < MCF-7. The antioxidant activity by DPPH and ABTS inhibition assay was also examined. Scavenging ability of the complexes on DPPH radical can be ranked in the following order: [Ru(DEE)Cl2(H2O)] > [Ru(HME)Cl2(H2O)] > [Ru(DAE)Cl2(H2O)] > [Ru(MBE)Cl2(H2O)]. PMID:27597814

  14. Synthesis, Characterization, Anticancer, and Antioxidant Studies of Ru(III) Complexes of Monobasic Tridentate Schiff Bases.

    PubMed

    Ejidike, Ikechukwu P; Ajibade, Peter A

    2016-01-01

    Mononuclear Ru(III) complexes of the type [Ru(LL)Cl2(H2O)] (LL = monobasic tridentate Schiff base anion: (1Z)-N'-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)-N-phenylethanimidamide [DAE], 4-[(1E)-N-{2-[(Z)-(4-hydroxy-3-methoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [HME], 4-[(1E)-N-{2-[(Z)-(3,4-dimethoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [MBE], and N-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)benzenecarboximidoyl chloride [DEE]) were synthesized and characterized using the microanalytical, conductivity measurements, electronic spectra, and FTIR spectroscopy. IR spectral studies confirmed that the ligands act as tridentate chelate coordinating the metal ion through the azomethine nitrogen and phenolic oxygen atom. An octahedral geometry has been proposed for all Ru(III)-Schiff base complexes. In vitro anticancer studies of the synthesized complexes against renal cancer cells (TK-10), melanoma cancer cells (UACC-62), and breast cancer cells (MCF-7) was investigated using the Sulforhodamine B assay. [Ru(DAE)Cl2(H2O)] showed the highest activity with IC50 valves of 3.57 ± 1.09, 6.44 ± 0.38, and 9.06 ± 1.18 μM against MCF-7, UACC-62, and TK-10, respectively, order of activity being TK-10 < UACC-62 < MCF-7. The antioxidant activity by DPPH and ABTS inhibition assay was also examined. Scavenging ability of the complexes on DPPH radical can be ranked in the following order: [Ru(DEE)Cl2(H2O)] > [Ru(HME)Cl2(H2O)] > [Ru(DAE)Cl2(H2O)] > [Ru(MBE)Cl2(H2O)]. PMID:27597814

  15. DNA interaction and cytotoxic activities of square planar platinum(II) complexes with N, S-donor ligands

    NASA Astrophysics Data System (ADS)

    Patel, Mohan N.; Patel, Chintan R.; Joshi, Hardik N.; Thakor, Khyati P.

    2014-06-01

    The platinum(II) complexes with N, S-donor ligands have been synthesized and characterized by physicochemical methods viz. elemental, electronic, FT-IR, 1H NMR and LC-MS spectra. The binding mode and potency of the complexes with HS DNA (Herring Sperm) have been examined by absorption titration and viscosity measurement studies. The results revealed that complexes bind to HS DNA via covalent mode with the intrinsic binding constant (Kb) in the range 1.37-7.76 × 105 M-1. Decrease in the relative viscosity of HS DNA also supports the covalent mode of binding. The DNA cleavage activity of synthesized complexes has been carried out by gel electrophoresis experiment using supercoiled form of pUC19 DNA; showing the unwinding of the negatively charged supercoiled DNA. Brine shrimp (Artemia Cysts) lethality bioassay technique has been applied for the determination of toxic property of synthesized complexes in terms of μM.

  16. Sequence Effect of Self-Assembling Peptides on the Complexation and In Vitro Delivery of the Hydrophobic Anticancer Drug Ellipticine

    PubMed Central

    Fung, Shan Yu; Yang, Hong; Chen, P.

    2008-01-01

    A special class of self-assembling peptides has been found to be capable of stabilizing the hydrophobic anticancer agent ellipticine in aqueous solution. Here we study the effect of peptide sequence on the complex formation and its anticancer activity in vitro. Three peptides, EAK16-II, EAK16-IV and EFK16-II, were selected to have either a different charge distribution (EAK16-II vs. EAK16-IV) or a varying hydrophobicity (EAK16-II vs. EFK16-II). Results on their complexation with ellipticine revealed that EAK16-II and EAK16-IV were able to stabilize protonated ellipticine or ellipticine microcrystals depending on the peptide concentration; EFK16-II could stabilize neutral ellipticine molecules and ellipticine microcrystals. These different molecular states of ellipticine were expected to affect ellipticine delivery. The anticancer activity of these complexes was tested against two cancer cell lines: A549 and MCF-7, and related to the cell viability. The viability results showed that the complexes with protonated ellipticine were effective in eradicating both cancer cells (viability <0.05), but their dilutions in water were not stable, leading to a fast decrease in their toxicity. In contrast, the complexes formulated with EFK16-II were relatively stable upon dilution, but their original toxicity was relatively low compared to that with protonated ellipticine. Overall, the charge distribution of the peptides seemed not to affect the complex formation and its therapeutic efficacy in vitro; however, the increase in hydrophobicity of the peptides significantly altered the state of stabilized ellipticine and increased the stability of the complexes. This work provides essential information for peptide sequence design in the development of self-assembling peptide-based delivery of hydrophobic anticancer drugs. PMID:18398476

  17. How to modify 7-azaindole to form cytotoxic Pt(II) complexes: highly in vitro anticancer effective cisplatin derivatives involving halogeno-substituted 7-azaindole.

    PubMed

    Štarha, Pavel; Trávníček, Zdeněk; Popa, Alexandr; Popa, Igor; Muchová, Tereza; Brabec, Viktor

    2012-10-01

    The platinum(II) dichlorido and oxalato complexes of the general formula cis-[PtCl(2)(nHaza)(2)] (1-3) [Pt(ox)(nHaza)(2)] (4-6) involving 7-azaindole halogeno-derivatives (nHaza) were prepared and thoroughly characterized. A single-crystal X-ray analysis of cis-[PtCl(2)(3ClHaza)(2)]·DMF (1·DMF; 3ClHaza symbolizes 3-chloro-7-azaindole) revealed a distorted square-planar arrangement with both the 3ClHaza molecules coordinated through their N7 atoms in a cis fashion. In vitro cytotoxicity of the complexes was evaluated by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay against the HOS (osteosarcoma), MCF7 (breast adenocarcinoma) and LNCaP (prostate adenocarcinoma) human cancer cell lines. The dichlorido complexes 1-3 (IC(50)=3.8, 3.9, and 2.5 μM, respectively) showed significantly higher in vitro anticancer effect against HOS as compared with cisplatin, whose IC(50)=37.7 μM. The biological effect of cisplatin against MCF7 (IC(50)=24.5 μM) and LNCaP (IC(50)=3.8 μM) was also exceeded by 1-3 (except for 2 against LNCaP), but the difference can be classified as significant only in the case of 1 (IC(50)=3.4 μM) and 3 (IC(50)=2.0 μM) against MCF7. The molecular pharmacological studies (RNA synthesis by T7 RNA polymerase in vitro) proved that 1-3 bind to DNA in a similar manner as cisplatin, since the RNA synthesis products of 1-3 and cisplatin showed a similar sequence profile of major bands. PMID:22922312

  18. Dye sensitization of nanocrystalline titanium dioxide with square planar platinum(II) diimine dithiolate complexes.

    PubMed

    Islam, A; Sugihara, H; Hara, K; Singh, L P; Katoh, R; Yanagida, M; Takahashi, Y; Murata, S; Arakawa, H; Fujihashi, G

    2001-10-01

    A series of platinum-based sensitizers of the general type Pt(NN)(SS), where NN is 4,4'-dicarboxy-2,2'-bipyridine (dcbpy) or 4,7-dicarboxy-1,10-phenanthroline (dcphen) and SS is ethyl-2-cyano-3,3-dimercaptoacrylate (ecda), quinoxaline-2,3-dithiolate (qdt), 1,2-benzenedithiolate (bdt), or 3,4-toluenedithiolate (tdt), that have various ground-state oxidation potentials has been synthesized and anchored to nanocrystalline titanium dioxide electrodes for light-to-electricity conversion in regenerative photoelectrochemical cells with an I(-)/I(-)(3) acetonitrile electrolyte. The intense mixed-Pt/dithiolate-to-diimine charge-transfer absorption bands in this series could be tuned from 440 to 580 nm by choosing appropriate dithiolate ligands, and the highest occupied molecular orbitals varied by more than 500 mV. Spectrophotometric titration of the Pt(dcphen)(bdt) complex exhibits a ground-state pK(a) value of 3.2 +/- 0.1, which can be assigned to the protonation of the carboxylate group of the dcphen ligand. Binding of Pt(dcbpy)(qdt) to porous nanostructured TiO(2) films was analyzed using the Langmuir adsorption isotherm model, yielding an adsorption equilibrium constant of 4 x 10(5) M(-1). The amount of dye adsorbed at the surface of TiO(2) films was 9.5 x 10(-8) mol/cm(2), which is ca. 50% lower than the full monolayer coverage. The resulting complexes efficiently sensitized TiO(2) over a notably broad spectral range and showed an open-circuit potential of ca. 600 mV with an impressive fill factor of > 0.70, making them attractive candidates for solar energy conversion applications. The visible spectra of the 3,4-toluenedithiol-based sensitizers showed an enhanced red response, but the lower photocurrent efficiency observed for these sensitizers stems in part from a sluggish halide oxidation rate and a fast recombination of injected electrons with the oxidized dye. PMID:11578182

  19. Towards targeting anticancer drugs: ruthenium(ii)-arene complexes with biologically active naphthoquinone-derived ligand systems.

    PubMed

    Kubanik, Mario; Kandioller, Wolfgang; Kim, Kunwoo; Anderson, Robert F; Klapproth, Erik; Jakupec, Michael A; Roller, Alexander; Söhnel, Tilo; Keppler, Bernhard K; Hartinger, Christian G

    2016-08-16

    Anticancer active metal complexes with biologically active ligands have the potential to interact with more than one biological target, which could help to overcome acquired and/or intrinsic resistance of tumors to small molecule drugs. In this paper we present the preparation of 2-hydroxy-[1,4]-naphthoquinone-derived ligands and their coordination to a Ru(II)(η(6)-p-cymene)Cl moiety. The synthesis of oxime derivatives resulted in the surprising formation of nitroso-naphthalene complexes, as confirmed by X-ray diffraction analysis. The compounds were shown to be stable in aqueous solution but reacted with glutathione and ascorbic acid rather than undergoing reduction. One-electron reduction with pulse radiolysis revealed different behavior for the naphthoquinone and nitroso-naphthalene complexes, which was also observed in in vitro anticancer assays. PMID:27214822

  20. Mechanistic studies on the gas-phase dehydrogenation of alkanes at cyclometalated platinum complexes.

    PubMed

    Butschke, Burkhard; Schwarz, Helmut

    2012-10-29

    In the ion/molecule reactions of the cyclometalated platinum complexes [Pt(L-H)](+) (L=2,2'-bipyridine (bipy), 2-phenylpyridine (phpy), and 7,8-benzoquinoline (bq)) with linear and branched alkanes C(n)H(2n+2) (n=2-4), the main reaction channels correspond to the eliminations of dihydrogen and the respective alkenes in varying ratios. For all three couples [Pt(L-H)](+)/C(2)H(6), loss of C(2)H(4) dominates clearly over H(2) elimination; however, the mechanisms significantly differs for the reactions of the "rollover"-cyclometalated bipy complex and the classically cyclometalated phpy and bq complexes. While double hydrogen-atom transfer from C(2)H(6) to [Pt(bipy-H)](+), followed by ring rotation, gives rise to the formation of [Pt(H)(bipy)](+), for the phpy and bq complexes [Pt(L-H)](+), the cyclometalated motif is conserved; rather, according to DFT calculations, formation of [Pt(L-H)(H(2))](+) as the ionic product accounts for C(2)H(4) liberation. In the latter process, [Pt(L-H)(H(2))(C(2)H(4))](+) (that carries H(2) trans to the nitrogen atom of the heterocyclic ligand) serves, according to DFT calculation, as a precursor from which, due to the electronic peculiarities of the cyclometalated ligand, C(2)H(4) rather than H(2) is ejected. For both product-ion types, [Pt(H)(bipy)](+) and [Pt(L-H)(H(2))](+) (L=phpy, bq), H(2) loss to close a catalytic dehydrogenation cycle is feasible. In the reactions of [Pt(bipy-H)](+) with the higher alkanes C(n)H(2n+2) (n=3, 4), H(2) elimination dominates over alkene formation; most probably, this observation is a consequence of the generation of allyl complexes, such as [Pt(C(3)H(5))(bipy)](+). In the reactions of [Pt(L-H)](+) (L=phpy, bq) with propane and n-butane, the losses of the alkenes and dihydrogen are of comparable intensities. While in the reactions of "rollover"-cyclometalated [Pt(bipy-H)](+) with C(n)H(2n+2) (n=2-4) less than 15 % of the generated product ions are formed by C-C bond-cleavage processes, this value is

  1. Synthesis of a series of new platinum organometallic complexes derived from bidentate Schiff-base ligands and their catalytic activity in the hydrosilylation and dehydrosilylation of styrene.

    PubMed

    Lachachi, M Belhadj; Benabdallah, Tayeb; Aguiar, Pedro M; Youcef, M Hadj; Whitwood, Adrian C; Lynam, Jason M

    2015-07-14

    The synthesis and properties of a novel class of platinum complexes containing Schiff bases as O,N-bidentate ligands is described as are the solution and solid state properties of the uncomplexed ligands. The platinum complexes were prepared from [PtBr2(COD)] (COD = 1,5-cyclooctadiene) and N-(2-hydroxy-1-naphthalidene)aniline derivatives in the presence of base (NaOBu(t)). Instead of a substitution reaction to afford cationic species, the addition of the Schiff base ligands results in both the formal loss of two equivalents of bromide and addition of hydroxide to the COD ligand of the complexes. It is proposed that this reaction proceeds through a cationic platinum complex [Pt(N-O)(COD)]Br which then undergoes addition of water and loss of HBr. An example of a dinuclear platinum complex in which two cyclo-octene ligands are bridged by an ether linkage is also reported. The platinum complexes were evaluated as catalysts for the hydrogenative and dehydrogenative silylation of styrene, the resulting behaviour is substituent, time and temperature dependent. PMID:26061657

  2. Synthesis and in vitro activity of platinum(II) complexes of two fluorenylspirohydantoins against a human tumour cell line

    PubMed Central

    Marinova, Petja; Marinov, Marin; Kazakova, Maria; Feodorova, Yana; Penchev, Plamen; Sarafian, Victoria; Stoyanov, Neyko

    2014-01-01

    This paper presents a method for synthesis and cytotoxicity of new platinum(II) complexes of (9′-fluorene)-spiro-5-hydantoin (L1) and (9′-fluorene)-spiro-5-(2-thiohydantoin) (L2). The new obtained complexes were studied by elemental analysis: ultraviolet–visible, attenuated total reflection Fourier transform infrared (ATR-FTIR), and 1H- and 13C-NMR for Pt(II) compounds and additionally Raman spectroscopy for free ligands. Based on the experimental data, the most probable structure of the complexes is suggested. In the present study, we have examined cytotoxic activity of (9′-fluorene)-spiro-5-hydantoin (L1) and (9′-fluorene)-spiro-5-(2-thiohydantoin) (L2) and their Pt(II) complexes on the retinoblastoma cell line WERI-Rb-1. PMID:26019515

  3. Development of a robust pH-sensitive polyelectrolyte ionomer complex for anticancer nanocarriers

    PubMed Central

    Lim, Chaemin; Youn, Yu Seok; Lee, Kyung Soo; Hoang, Ngoc Ha; Sim, Taehoon; Lee, Eun Seong; Oh, Kyung Taek

    2016-01-01

    A polyelectrolyte ionomer complex (PIC) composed of cationic and anionic polymers was developed for nanomedical applications. Here, a poly(ethylene glycol)–poly(lactic acid)–poly(ethylene imine) triblock copolymer (PEG–PLA–PEI) and a poly(aspartic acid) (P[Asp]) homopolymer were synthesized. These polyelectrolytes formed stable aggregates through electrostatic interactions between the cationic PEI and the anionic P(Asp) blocks. In particular, the addition of a hydrophobic PLA and a hydrophilic PEG to triblock copolyelectrolytes provided colloidal aggregation stability by forming a tight hydrophobic core and steric hindrance on the surface of PIC, respectively. The PIC showed different particle sizes and zeta potentials depending on the ratio of cationic PEI and anionic P(Asp) blocks (C/A ratio). The doxorubicin (dox)-loaded PIC, prepared with a C/A ratio of 8, demonstrated pH-dependent behavior by the deprotonation/protonation of polyelectrolyte blocks. The drug release and the cytotoxicity of the dox-loaded PIC (C/A ratio: 8) increased under acidic conditions compared with physiological pH, due to the destabilization of the formation of the electrostatic core. In vivo animal imaging revealed that the prepared PIC accumulated at the targeted tumor site for 24 hours. Therefore, the prepared pH-sensitive PIC could have considerable potential as a nanomedicinal platform for anticancer therapy. PMID:26955270

  4. Development of a robust pH-sensitive polyelectrolyte ionomer complex for anticancer nanocarriers.

    PubMed

    Lim, Chaemin; Youn, Yu Seok; Lee, Kyung Soo; Hoang, Ngoc Ha; Sim, Taehoon; Lee, Eun Seong; Oh, Kyung Taek

    2016-01-01

    A polyelectrolyte ionomer complex (PIC) composed of cationic and anionic polymers was developed for nanomedical applications. Here, a poly(ethylene glycol)-poly(lactic acid)-poly(ethylene imine) triblock copolymer (PEG-PLA-PEI) and a poly(aspartic acid) (P[Asp]) homopolymer were synthesized. These polyelectrolytes formed stable aggregates through electrostatic interactions between the cationic PEI and the anionic P(Asp) blocks. In particular, the addition of a hydrophobic PLA and a hydrophilic PEG to triblock copolyelectrolytes provided colloidal aggregation stability by forming a tight hydrophobic core and steric hindrance on the surface of PIC, respectively. The PIC showed different particle sizes and zeta potentials depending on the ratio of cationic PEI and anionic P(Asp) blocks (C/A ratio). The doxorubicin (dox)-loaded PIC, prepared with a C/A ratio of 8, demonstrated pH-dependent behavior by the deprotonation/protonation of polyelectrolyte blocks. The drug release and the cytotoxicity of the dox-loaded PIC (C/A ratio: 8) increased under acidic conditions compared with physiological pH, due to the destabilization of the formation of the electrostatic core. In vivo animal imaging revealed that the prepared PIC accumulated at the targeted tumor site for 24 hours. Therefore, the prepared pH-sensitive PIC could have considerable potential as a nanomedicinal platform for anticancer therapy. PMID:26955270

  5. In Vitro Anticancer Activity of cis-Diammineplatinum(II) Complexes with β-Diketonate Leaving Group Ligands

    PubMed Central

    Wilson, Justin J.; Lippard, Stephen J.

    2012-01-01

    Five cationic platinum(II) complexes of general formula, [Pt(NH3)2(β-diketonate)]X are reported, where X is a non-coordinating anion and β-diketonate = acetylacetonate (acac), 1,1,1,-trifluoroacetylacetonate (tfac), benzoylacetonate (bzac), 4,4,4-trifluorobenzoylacetonate (tfbz), or dibenzoylmethide (dbm), corresponding respectively to complexes 1–5. The log P values and the stabilities of 1–5 in aqueous solution were evaluated. The phenyl ring substituents of 3–5 increase the lipophilicity of the resulting complexes, whereas the trifluoromethyl groups of 2 and 4 decrease the stability of the complexes in aqueous solution. The uptake of 1–5 in HeLa cells increase as the lipophilicity of the investigated complex increases. Cancer cell cytotoxicity studies indicate that 1 and 3 are the least active complexes whereas 2, 4, and 5 are comparable to cisplatin. PMID:22606945

  6. Highly luminescent half-lantern cyclometalated platinum(II) complex: synthesis, structure, luminescence studies, and reactivity.

    PubMed

    Sicilia, Violeta; Forniés, Juan; Casas, José Ma; Martín, Antonio; López, José A; Larraz, Carmen; Borja, Pilar; Ovejero, Carmen; Tordera, Daniel; Bolink, Henk

    2012-03-19

    The half-lantern compound [{Pt(bzq)(μ-C(7)H(4)NS(2)-κN,S)}(2)]·Me(2)CO (1) was obtained by reaction of equimolar amounts of potassium 2-mercaptobenzothiazolate (KC(7)H(4)NS(2)) and [Pt(bzq)(NCMe)(2)]ClO(4). The Pt(II)···Pt(II) separation in the neutral complex [{Pt(bzq)(μ-C(7)H(4)NS(2)-κN,S)}(2)] is 2.910 (2) Å, this being among the shortest observed in half-lantern divalent platinum complexes. Within the complex, the benzo[h]quinoline (bzq) groups lie in close proximity with most C···C distances being between 3.3 and 3.7 Å, which is indicative of significant π-π interactions. The reaction of 1 with halogens X(2) (X(2) = Cl(2), Br(2), or I(2)) proceeds with a two-electron oxidation to give the corresponding dihalodiplatinum(III) complexes [{Pt(bzq)(μ-C(7)H(4)NS(2)-κN,S)X}(2)] (X = Cl 2, Br 3, I 4). Their X-ray structures confirm the retention of the half-lantern structure and the coordination mode of the bzq and the bridging ligand μ-C(7)H(4)NS(2)-κN,S. The Pt-Pt distances (Pt-Pt = 2.6420(3) Å 2, 2.6435(4) Å 3, 2.6690(3) Å 4) are shorter than that in 1 because of the Pt-Pt bond formation. Time dependent-density functional theory (TD-DFT) studies performed on 1 show a formal bond order of 0 between the metal atoms, with the 6p(z) contribution diminishing the antibonding character of the highest occupied molecular orbital (HOMO) and being responsible for an attractive intermetallic interaction. A shortening of the Pt-Pt distance from 2.959 Å in the ground state S(0) to 2.760 Å in the optimized first excited state (T(1)) is consistent with an increase in the Pt-Pt bond order to 0.5. In agreement with TD-DFT calculations, the intense, structureless, red emission of 1 in the solid state and in solution can be mainly attributed to triplet metal-metal-to-ligand charge transfer ((3)MMLCT) [dσ*(Pt-Pt) → π*(bzq)] excited states. The high quantum yields of this emission measured in toluene (44%) and solid state (62%) at room temperature indicate

  7. A high-performance liquid chromatographic assay with improved selectivity for cisplatin and active platinum (II) complexes in plasma ultrafiltrate.

    PubMed

    Andrews, P A; Wung, W E; Howell, S B

    1984-11-15

    cis-Diamminedichloroplatinum(II) (DDP) was measured in plasma ultrafiltrate following derivatization with sodium diethyldithiocarbamate (DDTC) by quantitation against a nickel chloride internal standard. A chloroform extract containing the Pt(DDTC)2 and Ni(DDTC)2 complexes was separated by reversed-phase high-performance liquid chromatography on a C18 radial compression column. The complex was eluted with methanol/water, 4/1, at a flow rate of 1.5 ml/min, and was detected at 254 nm. The limit of sensitivity was 0.1 microgram/ml DDP in the ultrafiltrate. This analytical approach was validated by comparison to graphite furnace atomic absorption spectrophotometric determinations of duplicate samples. There was clearly a component of the ultrafiltrable platinum present that was resistant to derivatization by DDTC. Evidence is presented that this component, presumably Pt(II) complexed with endogenous small molecules, is non cytotoxic and, hence, that this method may be selective for "active Pt(II)." This method offers an advantage over atomic absorption determination of total platinum in ultrafiltrate which does not discriminate between active and inactive forms, and over off-line FAA detection of parent DDP in HPLC eluates which ignores other active forms. Using this technique we have measured the pharmacokinetics of DDTC-reactive Pt(II) in humans after either i.v. infusion or infusion of DDP into the peritoneal cavity of patients with ovarian carcinoma. PMID:6099065

  8. A new platinum complex with tryptophan: Synthesis, structural characterization, DFT studies and biological assays in vitro over human tumorigenic cells

    NASA Astrophysics Data System (ADS)

    Carvalho, Marcos A.; Shishido, Silvia M.; Souza, Bárbara C.; de Paiva, Raphael E. F.; Gomes, Alexandre F.; Gozzo, Fábio C.; Formiga, André L. B.; Corbi, Pedro P.

    2014-03-01

    A new platinum(II) complex with the amino acid L-tryptophan (trp), named Pt-trp, was synthesized and characterized. Elemental, thermogravimetric and ESI-QTOF mass spectrometric analyses led to the composition [Pt(C11H11N2O2)2]ṡ6H2O. Infrared spectroscopic data indicate the coordination of trp to Pt(II) through the oxygen of the carboxylate group and also through the nitrogen atom of the amino group. The 13C CP/MAS NMR spectroscopic data confirm coordination through the oxygen atom of the carboxylate group, while the 15N CP/MAS NMR data confirm coordination of the nitrogen of the NH2 group to the metal. Density functional theory (DFT) studies were applied to evaluate the cis and trans coordination modes of trp to platinum(II). The trans isomer was shown to be energetically more stable than the cis one. The Pt-trp complex was evaluated as a cytotoxic agent against SK-Mel 103 (human melanoma) and Panc-1 (human pancreatic carcinoma) cell lines. The complex was shown to be cytotoxic over the considered cells.

  9. Bovine serum albumin binding, antioxidant and anticancer properties of an oxidovanadium(IV) complex with luteolin.

    PubMed

    Naso, Luciana G; Lezama, Luis; Valcarcel, María; Salado, Clarisa; Villacé, Patricia; Kortazar, Danel; Ferrer, Evelina G; Williams, Patricia A M

    2016-04-01

    Chemotherapy using metal coordination compounds for cancer treatment is the work of the ongoing research. Continuing our research on the improvement of the anticancer activity of natural flavonoids by metal complexation, a coordination compound of the natural antioxidant flavone luteolin (lut) and the oxidovanadium(IV) cation has been synthesized and characterized. Using different physicochemical measurements some structural aspects of [VO(lut)(H2O)2]Na·3H2O (VOlut) were determined. The metal coordinated to two cis-deprotonated oxygen atoms (ArO(-)) of the ligand and two H2O molecules. Magnetic measurements in solid state indicated the presence of an effective exchange pathway between adjacent vanadium ions. VOlut improved the antioxidant capacity of luteolin only against hydroxyl radical. The antitumoral effects were evaluated on MDAMB231 breast cancer and A549 lung cancer cell lines. VOlut exhibited higher viability inhibition (IC50=17 μM) than the ligand on MDAMB231 cells but they have the same behavior on A549 cells (ca. IC50=60 μM). At least oxidative stress processes were active during cancer cell-killing. When metals chelated through the carbonyl group and one adjacent OH group of the flavonoid an effective improvement of the biological properties has been observed. In VOlut the different coordination may be the cause of the small improvement of some of the tested properties of the flavonoid. Luteolin and VOlut could be distributed and transported in vivo. Luteolin interacted in the microenvironment of the tryptophan group of the serum binding protein, BSA, by means of electrostatic forces and its complex bind the protein by H bonding and van der Waals interactions. PMID:26828287

  10. Synthesis and evaluation of multi-wall carbon nanotube–paclitaxel complex as an anti-cancer agent

    PubMed Central

    Ghasemvand, Fariba; Biazar, Esmaeil; Tavakolifard, Sara; Khaledian, Mohammad; Rahmanzadeh, Saeid; Momenzadeh, Daruosh; Afroosheh, Roshanak; Zarkalami, Faezeh; Shabannezhad, Marjan; Hesami Tackallou, Saeed; Massoudi, Nilofar; Heidari Keshel, Saeed

    2016-01-01

    Aim: The aim of this study was to design multi-walled carbon nanotubes (MWCNTs) loaded with paclitaxel (PTX) anti-cancer drug and investigate its anti-cancerous efficacy of human gastric cancer. Background: Carbon nanotubes (CNTs) represent a novel nano-materials applied in various fields such as drug delivery due to their unique chemical properties and high drug loading. Patients and methods: In this study, multi-walled carbon nanotubes (MWCNTs) pre-functionalized covalently with a paclitaxel (PTX) as an anti-cancer drug and evaluated by different analyses including, scanning electron microscope (SEM), particle size analyzer and cellular analyses. Results: A well conjugated of anti-cancer drug on the carbon nanotube surfaces was shown. This study demonstrates that the MWCN-PTX complex is a potentially useful system for delivery of anti-cancer drugs. The flow cytometry, CFU and MTT assay results have disclosed that MWCNT/PTXs might promote apoptosis in MKN-45 gastric adenocarcinoma cell line. Conclusion: According to results, our simple method can be designed a candidate material for chemotherapy. It has presented a few bio-related applications including, their successful use as a nano-carriers for drug transport. PMID:27458512

  11. Organometallic Palladium Complexes with a Water-Soluble Iminophosphorane Ligand as Potential Anticancer Agents

    PubMed Central

    Carreira, Monica; Calvo-Sanjuán, Rubén; Sanaú, Mercedes; Marzo, Isabel; Contel, María

    2012-01-01

    The synthesis and characterization of a new water-soluble iminophosphorane ligand TPA=N-C(O)-2BrC6H4 (C,N-IM; TPA = 1,3,5-triaza-7-phosphaadamantane) 1 is reported. Oxidative addition of 1 to Pd2(dba)3 affords the orthopalladated dimer [Pd(μ-Br){C6H4(C(O)N=TPA-kC,N)-2}]2 (2) as a mixture of cis and trans isomers (1:1 molar ratio) where the iminophosphorane moeity behaves as a C,N-pincer ligand. By addition of different neutral or monoanionic ligands to 2, the bridging bromide can be cleaved and a variety of hydrophilic or water-soluble mononuclear organometallic palladium(II) complexes of the type [Pd{C6H4(C(O)N=TPA-kC,N)-2}(L-L)] (L-L = acac (3); S2CNMe2 (4); 4,7-Diphenyl-1,10-phenanthrolinedisulfonic acid disodium salt C12H6N2(C6H4SO3Na)2 (5)); [Pd{C6H4(C(O)N=TPA-kC,N)-2}(L)Br] (L = P(mC6H4SO3Na)3 (6); P(3-Pyridyl)3 (7)) and, [Pd(C6H4(C(O)N=TPA)-2}(TPA)2Br] (8) are obtained as single isomers. All new complexes were tested as potential anticancer agents and their cytotoxicity properties were evaluated in vitro against human Jurkat-T acute lymphoblastic leukemia cells, normal T-lymphocytes (PBMC) and DU-145 human prostate cancer cells. Compounds [Pd(μ-Br){C6H4(C(O)N=TPA-kC,N)-2}]2 (2) and [Pd{C6H4(C(O)N=TPA-kC,N)-2}(acac)] 3 (which has been crystallographically characterized) display the higher cytotoxicity against the above mentioned cancer cell lines while being less toxic to normal T-lymphocytes (peripheral blood mononuclear cells: PBMC). In addition, 3 is very toxic to cisplatin resistant Jurkat shBak indicating a cell death pathway that may be different to that of cisplatin. The interaction of 2 and 3 with plasmid (pBR322) DNA is much weaker than that of cisplatin pointing to an alternative biomolecular target for these cytotoxic compounds. All the compounds show an interaction with human serum albumin (HSA) faster than that of cisplatin. PMID:23066172

  12. Biophysical studies on the interaction of platinum(II) complex containing antiviral drug ribavirin with human serum albumin.

    PubMed

    Shahabadi, Nahid; Hadidi, Saba; Kalar, Zeinab Mirzaei

    2016-07-01

    This study describes HSA binding properties of a platinum(II) complex with an antiviral drug ligand; ribavirin. Spectroscopic analysis of the emission quenching at different temperatures and UV-vis spectra revealed that the quenching mechanism of HSA by Pt(II) complex is static quenching mechanism. The binding constants and the number of binding sites were determined by fluorescence quenching method. Pt(II) complex binding is characterized by one high affinity binding site. Through the site marker competitive experiment, site I was assigned to possess high affinity binding site for Pt(II) complex. The calculated thermodynamic parameters (ΔG, ΔH and ΔS) confirmed that the binding reaction is spontaneous, and hydrophobic forces played a major role in the reaction. Fluorescence quenching studies showed that the binding affinity of Pt(II) complex with HSA in the buffer solution at different pH values is: Kb (pH3.0)>Kb (pH9.0)>Kb (pH7.4). The CD spectrum shows the binding of Pt(II) complex leads to a change in the α-helical structure of HSA. CD spectroscopy studies further indicated the influence of pH on the complexation process and the alteration in the protein conformation upon binding. PMID:27183492

  13. Synthesis, characterization and multi-spectroscopic DNA interaction studies of a new platinum complex containing the drug metformin

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Heidari, Leila

    2014-07-01

    A new platinum(II) complex; [Pt(Met)(DMSO)Cl]Cl in which Met = metformin and DMSO: dimethylsulfoxide, was synthesized and characterized by 1H NMR, IR, UV-Vis spectra, molar conductivity and computational methods. Binding interaction of this complex with calf thymus (CT) DNA has been investigated by using absorption, emission, circular dichroism, viscosity measurements, differential pulse voltammetry and cleavage studies by agarose gel electrophoresis. UV-Vis absorption studies showed hyperchromism. CD studies showed less perturbation on the base stacking and helicity bands in the CD spectrum of CT-DNA (B → C structural transition). In fluorimeteric studies, the Pt(II) complex can bind with DNA-NR complex and forms a new non-fluorescence adduct. The anodic peak current in the differential pulse voltammogram of the Pt(II) complex decreased gradually with the addition of DNA. Cleavage experiments showed that the Pt(II) complex does not induce any cleavage under the experimental setup. Finally all results indicated that Pt(II) complex interact with DNA via groove binding mode.

  14. Complexes of platinum and palladium with β-diketones and DMSO: Synthesis, characterization, molecular modeling, and biological studies

    NASA Astrophysics Data System (ADS)

    do Couto Almeida, J.; Marzano, I. M.; de Paula, F. C. Silva; Pivatto, M.; Lopes, N. P.; de Souza, P. C.; Pavan, F. R.; Formiga, A. L. B.; Pereira-Maia, E. C.; Guerra, W.

    2014-10-01

    This work reports on the synthesis and characterization of new complexes of the type [MCl(L)DMSO], where L = 4,4,4-trifluoro-1-phenyl-1,3-butanedione (HTPB) or 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (HTTA) and M = Pt2+ or Pd2+. These complexes were characterized by elemental analyses, conductivity measurements, FT-IR, UV-Vis, high-resolution mass spectra (HRESIMS) and TG/DTA. In the complexes, the metallic ions bind to β-diketone via the oxygen atoms and to DMSO molecule via sulfur atom. The structures of complexes were optimized and theoretical data showed good agreement with the experimental results. The cytotoxic activity of the compounds was evaluated in a chronic myelogenous leukemia cell line. The platinum complexes were more cytotoxic than the free ligands and carboplatin and are promising candidates for further investigations. As example, the compound [PtCl(TPB)(DMSO)] inhibits the growth of K562 cells with an IC50 value equal to 2.5 μM. Furthermore, microbiological assays against Mycobacterium tuberculosis showed that all complexes exhibit low cytotoxicity against this bacterial strain while the free ligands exhibited MIC values of approximately 10 μg mL-1.

  15. New binary and ternary platinum(II) formamidine complexes: Synthesis, characterization, structural studies and in-vitro antitumor activity

    NASA Astrophysics Data System (ADS)

    Soliman, Ahmed A.; Alajrawy, Othman I.; Attaby, Fawzy A.; Linert, W.

    2016-07-01

    A series of new binary and ternary platinum(II) complexes of the type [Pt(L1-4)Cl2].xH2O and [Pt(L1-4)ox].xH2O where L = formamidine ligands and ox = oxalate, have been synthesized and characterized by elemental analyses, magnetic susceptibility, UV-vis, infrared (IR), mass spectroscopy, thermal analysis and theoretical calculations. The spectroscopic data indicated that the formamidine ligands act as bidentate N2 donors. The complexes (1-8) are diamagnetic and the optimization of their structures indicated that the geometry is distorted square planar with Cl-Pt-Cl, O-Pt-O and N-Pt-N bond angles ranged 81.73°-95.82° which is acceptable for the heteroleptic complexes. The electronic energies (a.u.) of the complexes (-893.53 to -1989.84) indicate that the complexes are more stable than the ligands. The energies of the HOMO (-0.218 to -0.244) and LUMO (-.0111to -0.134) orbitals of the complexes were negative which indicates that the complexes are stable compounds. The dipole moment of the complexes (6.23-19.89 Debye) indicates that the complexes are polarized. The complexes are thermally stable as shown from their relatively higher overall activation energies (889-2066 kJ mol-1). The complexes are proved to have a good cytotoxicity with IC50 (μM) against MCF-7 (0.040-0.117), HCT-116 (0.085-0.119) and HepG-2 (0.058-0.131) cell lines, which open the field for further application as antitumor compounds.

  16. Gold(I)-triphenylphosphine complexes with hypoxanthine-derived ligands: in vitro evaluations of anticancer and anti-inflammatory activities.

    PubMed

    Křikavová, Radka; Hošek, Jan; Vančo, Ján; Hutyra, Jakub; Dvořák, Zdeněk; Trávníček, Zdeněk

    2014-01-01

    A series of gold(I) complexes involving triphenylphosphine (PPh3) and one N-donor ligand derived from deprotonated mono- or disubstituted hypoxanthine (HLn) of the general composition [Au(Ln)(PPh3)] (1-9) is reported. The complexes were thoroughly characterized, including multinuclear high resolution NMR spectroscopy as well as single crystal X-ray analysis (for complexes 1 and 3). The complexes were screened for their in vitro cytotoxicity against human cancer cell lines MCF7 (breast carcinoma), HOS (osteosarcoma) and THP-1 (monocytic leukaemia), which identified the complexes 4-6 as the most promising representatives, who antiproliferative activity was further tested against A549 (lung adenocarcinoma), G-361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) cell lines. Complexes 4-6 showed a significantly higher in vitro anticancer effect against the employed cancer cells, except for G-361, as compared with the commercially used anticancer drug cisplatin, with IC50 ≈ 1-30 µM. Anti-inflammatory activity was evaluated in vitro by the assessment of the ability of the complexes to modulate secretion of the pro-inflammatory cytokines, i.e. tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), in the lipopolysaccharide-activated macrophage-like THP-1 cell model. The results of this study identified the complexes as auspicious anti-inflammatory agents with similar or better activity as compared with the clinically applied gold-based antiarthritic drug Auranofin. In an effort to explore the possible mechanisms responsible for the biological effect, the products of interactions of selected complexes with sulfur-containing biomolecules (L-cysteine and reduced glutathione) were studied by means of the mass-spectrometry study. PMID:25226034

  17. Gold(I)-Triphenylphosphine Complexes with Hypoxanthine-Derived Ligands: In Vitro Evaluations of Anticancer and Anti-Inflammatory Activities

    PubMed Central

    Křikavová, Radka; Hošek, Jan; Vančo, Ján; Hutyra, Jakub; Dvořák, Zdeněk; Trávníček, Zdeněk

    2014-01-01

    A series of gold(I) complexes involving triphenylphosphine (PPh3) and one N-donor ligand derived from deprotonated mono- or disubstituted hypoxanthine (HLn) of the general composition [Au(Ln)(PPh3)] (1–9) is reported. The complexes were thoroughly characterized, including multinuclear high resolution NMR spectroscopy as well as single crystal X-ray analysis (for complexes 1 and 3). The complexes were screened for their in vitro cytotoxicity against human cancer cell lines MCF7 (breast carcinoma), HOS (osteosarcoma) and THP-1 (monocytic leukaemia), which identified the complexes 4–6 as the most promising representatives, who antiproliferative activity was further tested against A549 (lung adenocarcinoma), G-361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) cell lines. Complexes 4–6 showed a significantly higher in vitro anticancer effect against the employed cancer cells, except for G-361, as compared with the commercially used anticancer drug cisplatin, with IC50 ≈ 1–30 µM. Anti-inflammatory activity was evaluated in vitro by the assessment of the ability of the complexes to modulate secretion of the pro-inflammatory cytokines, i.e. tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), in the lipopolysaccharide-activated macrophage-like THP-1 cell model. The results of this study identified the complexes as auspicious anti-inflammatory agents with similar or better activity as compared with the clinically applied gold-based antiarthritic drug Auranofin. In an effort to explore the possible mechanisms responsible for the biological effect, the products of interactions of selected complexes with sulfur-containing biomolecules (L-cysteine and reduced glutathione) were studied by means of the mass-spectrometry study. PMID:25226034

  18. Anticancer activity and computational modeling of ternary copper (II) complexes with 3-indolecarboxylic acid and 1,10-phenanthroline.

    PubMed

    Zhang, Zhen; Wang, Huiyun; Wang, Qibao; Yan, Maocai; Wang, Huannan; Bi, Caifeng; Sun, Shanshan; Fan, Yuhua

    2016-08-01

    Metal-containing compounds have been extensively studied for many years as potent proteasome inhibitors. The 20S proteasome, the main component of the ubiquitin proteasome pathway, is one of the excellent targets in anticancer drug development. We recently reported that several copper complexes were able to inhibit cancer-special proteasome and induce cell death in human cancer cells. However, the involved molecular mechanism is not known yet. We therefore synthesized three copper complexes and investigated their abilities on inhibiting proteasome activity and inducting apoptosis in human breast cancer cells. Furthermore, we employed molecular dockings to analyze the possible interaction between the synthetic copper complexes and the β5 subunit of proteasome which only reflects the chymotrypsin-like activity. Our results demonstrate that three Cu(II) complexes possess potent proteasome inhibition capability in a dose-dependent and time-dependent manner in MDA-MB-231 human breast cancer cells. They could bind to the β5 subunit of the 20S proteasome, which consequently cause deactivation of the proteasome and tumor cell death. The present study is significant for providing important theoretical basis for design and synthesis of anticancer drugs with low toxicity, high efficiency and high selectivity. PMID:27278680

  19. Structural features of several heteroborane complexes of divalent platinum. Crystal structures of 9-bis(triphenylphosphine)-6-carbodecaborane and 6-thiodecaborane complexes of platinum

    SciTech Connect

    Kukina, G.A.; Porai-Koshits, M.A.; Sergienko, V.S.; Zefirov, Yu.V.; Sadikov, G.G.

    1986-01-01

    An x-ray diffraction investigation of carborane complexes of Pt(2+) with the general formula 9-(PPh/sub 3/)/sub 2/Pt-6-XB/sub 8/H/sub 10/, where X = CH/sub 2/ (I) and S (II), have been carried out (lambda Mo, least-squares method in the anisotropic-isotropic approximation to R = 0.035 and 0.062 on the basis of 4427 and 3449 reflections for compounds I and II, respectively). The crystals of compounds I and II are monoclinic: a = 14.359 and 11.514, b = 14.083 and 20.040, c = 14.988 and 16.416 A, ..beta.. = 105.37 and 95.68/sup 0/, Z = 4, space group p2/sub 1//n for I and II, respectively. The Pt atoms in compounds I and II are coordinated by two P atoms and triatomic ..pi..-allyl-like 3B fragment in the carborane. Compounds I and II have nido structures. The Pt and X atoms are located in para positions at the vertices of a six-atom boat formed by the outer girdle of the carborane framework. The bond lengths and angles in compounds I and II are: Pt-P/sub av/ = 2.317 and 2.320; Pt-B = 2.19 to 2.25 and 2.21 to 2.28, X-B = 1.64 to 1.75 and 1.92 to 1.93 A, PPtP = 98.70 and 98.4/sup 0/. The structure of the Pt(PPh/sub 3/)/sub 2/ fragment, the packing of the complexes, and the intra- and intermolecular contacts in compound I have been discussed in detail. The results of the investigation of compounds I and III have been compared with the literature data on other heteroborane complexes of d/sup 8/ metals.

  20. Ligand Based Dual Fluorescence and Phosphorescence Emission from BODIPY Platinum Complexes and Its Application to Ratiometric Singlet Oxygen Detection.

    PubMed

    Geist, Fabian; Jackel, Andrej; Winter, Rainer F

    2015-11-16

    Four new 4,4-difluoro-4-bora-3a,4a-diaza-s-indacen-8-yl (BODIPY) platinum(II) complexes of the type cis-/trans-Pt(BODIPY)Br(PR3)2 (R = Et or Ph) were synthesized and characterized by NMR, electronic absorption, and luminescence spectroscopy. Three of the complexes were also studied by single crystal X-ray diffraction. The absorption profiles of the four complexes feature intense HOMO → LUMO π → π* transitions with molar extinction coefficients ε of ca. 50 000 M(-1)cm(-1) at around 475 nm and vibrational progressions that are characteristic of BODIPYs. Most remarkably, most complexes exhibit dual emissions through fluorescence at ca. 490 nm and phosphorescence at ca. 650 nm that originate from Pt-perturbed BODIPY-centered (1)ππ* or (3)ππ* states, respectively. Electronic absorption and luminescence spectroscopy data are in good agreement with our TD-DFT calculations. While the emission of the cis-complexes is dominated by fluorescence, their trans-isomers emit predominantly through phosphorescence with a phosphorescence quantum yield for trans-Pt(BODIPY)Br(PEt3)2 (trans-1) of 31.2%. trans-1 allows for ratiometric one-component oxygen sensing in fluid solution up to atmospheric concentration levels and exhibits a remarkably high Stern-Volmer constant for the quenching of the excited triplet state by oxygen of ca. 350 bar(-1) as determined by changes in phosphorescence intensity and lifetime. PMID:26540413

  1. A neutral branched platinum-acetylide complex possessing a tetraphenylethylene core: preparation of a luminescent organometallic gelator and its unexpected spectroscopic behaviour during sol-to-gel transition.

    PubMed

    Ren, Yuan-Yuan; Wu, Nai-Wei; Huang, Junhai; Xu, Zheng; Sun, Dan-Dan; Wang, Cui-Hong; Xu, Lin

    2015-10-21

    A neutral branched platinum-acetylide complex TPA possessing a tetraphenylethylene core was successfully prepared, which was found to form luminescent organometallic gels in ethyl acetate. Stimulated by temperature or F(-), the reversible gel-sol transition was realized. More interestingly, TPA exhibited an unexpected blue shift of the emission during the sol-to-gel transition. PMID:26323961

  2. Unsymmetric Mono- and Dinuclear Platinum(IV) Complexes Featuring an Ethylene Glycol Moiety: Synthesis, Characterization, and Biological Activity

    PubMed Central

    Pichler, Verena; Heffeter, Petra; Valiahdi, Seied M.; Kowol, Christian R.; Egger, Alexander; Berger, Walter; Jakupec, Michael A.; Galanski, Markus; Keppler, Bernhard K.

    2014-01-01

    Eight novel mononuclear and two dinuclear platinum(IV) complexes were synthesized and characterized by elemental analysis, one- and two-dimensional NMR spectroscopy, mass spectrometry, and reversed-phase HPLC (log kw) and in one case by X-ray diffraction. Cytotoxicity of the compounds was studied in three human cancer cell lines (CH1, SW480, and A549) by means of the MTT assay, featuring IC50 values to the low micromolar range. Furthermore a selected set of compounds was investigated in additional cancer cell lines (P31 and P31/cis, A2780 and A2780/cis, SW1573, 2R120, and 2R160) with regard to their resistance patterns, offering a distinctly different scheme compared to cisplatin. To gain further insights into the mode of action, drug uptake, DNA synthesis inhibition, cell cycle effects, and induction of apoptosis were determined for two characteristic substances. PMID:23194425

  3. A structural and spectroscopic investigation of octahedral platinum bis(dithiolene)phosphine complexes: platinum dithiolene internal redox chemistry induced by phosphine association.

    PubMed

    Chandrasekaran, P; Greene, Angelique F; Lillich, Karen; Capone, Stephen; Mague, Joel T; DeBeer, Serena; Donahue, James P

    2014-09-01

    The complexes [Pt(mdt)2] (4; mdt = methyldithiolene, [Me2C2S2](n-)), [Pt(adt)2] (5; adt = p-anisyldithiolene, [(MeO-p-C6H4)2C2S2](n-)), and [Pd(adt)2] (10) have been prepared in yields of ≥90% via transmetalation reactions with the corresponding [R2Sn(S2C2R'2)] complexes (R = (n)Bu, R' = Me; R = Me, R' = -C6H4-p-OMe, 3). Intraligand C-S and C-Cchelate bond lengths (~1.71 and ~1.40 Å, respectively) obtained by X-ray crystallography show these compounds to be comprised of radical monoanions mdt(•-) and adt(•-). The six-coordinate octahedral adducts [Pt(adt)2(dppe)] [6; dppe = 1,2-bis(diphenylphosphino)ethane], trans-[Pt(adt)2(PMe3)2] (8), and trans-[Pt(mdt)2(PMe3)2] (9) have also been prepared, and crystal structures reveal dithiolene ligands that are fully reduced ene-1,2-dithiolates (C-S and C-C(chelate) = ~1.77 and 1.35 Å, respectively). Reduction of the dithiolene ligand thus occurs to accommodate the +IV oxidation state typical of octahedral six-coordinate platinum. The cyclic voltammogram of 5 shows two fully reversible reductions at -0.11 and -0.84 V in CH2Cl2 (vs Ag/AgCl), attributed to successive (adt(•-) + e(-) → adt(2-)) processes, and a reversible oxidation at +1.01 V. The cyclic voltammogram of 9 shows two reversible oxidations at +0.38 and +0.86 V, which are assigned as successive (adt(2-) → adt(•-) + e(-)) oxidations. Consistent with their formulation as having fully reduced dithiolene ligands, the UV-vis spectra for 6, 8, and 9 show no low-energy absorptions below 700 nm, and the S K-edge XAS spectra of 6 and 8 show dithiolene sulfur that is reduced relative to that in 5. The introduction of PMe3 to 10 did not produce the palladium analogue of 8 but rather [Pd(adt)(PMe3)2] (11). The reaction of [PdCl2(PPh3)2] with Li2(mdt) produced a mixture of [Pd(mdt)(PPh3)2] (12, 20%) and [(Ph3P)Pd(μ-1,2-mdt-S,S':S)2Pd(PPh3)] (13, 28%), with the latter having C2 symmetry with a Pd2S2 core structure folded along the S···S axis. PMID:25113575

  4. Synthesis and Anticancer Properties of Silver(I) Complexes Containing 2,6-Bis(substituted)pyridine Derivatives

    PubMed Central

    Ali, Korany A.; Abd-Elzaher, Mokhles M.; Mahmoud, Khaled

    2013-01-01

    Several new 2,6-bis(substituted)pyridine ligands and 2,6-bis(substituted)pyridine Ag(I) nitrate complexes were synthesized and characterized spectroscopically. The newly synthesized ligands include pyridine-2,6-bis(3-oxopropanenitrile) (1), pyridine-2,6-bis(2-cyano-N-phenyl-3-oxopropanethioamide) (2), and pyridine-2,6-bis((E)-2-(2-phenylhydrazono)-3-oxopropanenitrile) (3). The newly synthesized ligands and silver(I) complexes were evaluated for their in vitro anticancer activity against four human cancer cell lines including hepatocellular carcinoma (HePG2), lung adenocarcinoma (A549), colon carcinoma (HT29), and breast adenocarcinoma (MCF7). Most of the newly synthesized silver(I) complexes exhibited better activity than the ligands, and the results have been compared with doxorubicin as a reference drug. PMID:25386361

  5. HOMO-LUMO energy gap control in platinum(II) biphenyl complexes containing 2,2'-bipyridine ligands.

    PubMed

    Rillema, D Paul; Stoyanov, Stanislav R; Cruz, Arvin J; Nguyen, Huy; Moore, Curtis; Huang, Wei; Siam, Khamis; Jehan, Ali; KomReddy, Venugopal

    2015-10-21

    A series of platinum(ii) biphenyl 2,2'-bipyridine complexes containing electron-donating and electron-withdrawing moieties on the 4 and 4' positions of the bipyridine ligand exhibit emission from excited states in the 600 nm region of the spectrum upon excitation in the metal-to-ligand charge transfer transition located near 450 nm. These complexes are distorted from planarity based on both single crystal structure determinations and density functional theory (DFT) calculations of isolated molecules in acetonitrile. The DFT also reveals the geometry of the lowest-lying triplet state (LLTS) of each complex that is important for emission behavior. The LLTS are assigned based on the electron spin density distributions and correlated with the singlet excited states to understand the mechanism of electronic excitation and relaxation. Time-dependent DFT calculations are performed to compute the singlet excited state energies of these complexes so as to help interpret their UV-Vis absorption spectra. Computational and experimental results, including absorption and emission energy maxima, electrochemical reduction potentials, LLTS, singlet excited states, and LUMO and HOMO energies, exhibit linear correlations with the Hammett constants for para-substituents σp. These correlations are employed to screen complexes that have not yet been synthesized. The correlation analysis indicates that the electronic structure and the HOMO-LUMO energy gap in Pt(ii) complexes can be effectively controlled using electron-donating and electron-withdrawing moieties covalently bonded to the ligands. The information presented in this paper provides a better understanding of the fundamental electronic and thermodynamic behavior of these complexes and could be used to design systems with specific applications. PMID:26369314

  6. Platinum Neurotoxicity Pharmacogenetics

    PubMed Central

    McWhinney, Sarah R.; Goldberg, Richard M.; McLeod, Howard L.

    2009-01-01

    Cisplatin, carboplatin, and oxaliplatin anticancer drugs are commonly used to treat lung, colorectal, ovarian, breast, head/neck, and genitourinary cancers. However, the efficacy of platinum-based drugs is often compromised because of the substantial risk for severe toxicities, including neurotoxicity. Neurotoxicity can result in both acute and chronic debilitation. Moreover, colorectal cancer patients treated with oxaliplatin more often discontinue therapy due to peripheral neuropathy than for tumor progression, potentially compromising patient benefit. Numerous methods to prevent neurotoxicity have so far proven unsuccessful. In order to circumvent this life-altering side effect, while taking advantage of the antitumor activities of the platinum agents, efforts to identify mechanism-based biomarkers are underway. In this review, we detail findings from the current literature for genetic markers associated with neurotoxicity induced by single agent and combination platinum chemotherapy. These data have the potential for broad clinical implications if mechanistic associations lead to the development of toxicity modulators to minimize the noxious sequelae of platinum chemotherapy. PMID:19139108

  7. Anticancer Agents: Does a Phosphonium Behave Like a Gold(I) Phosphine Complex? Let a "Smart" Probe Answer!

    PubMed

    Ali, Moussa; Dondaine, Lucile; Adolle, Anais; Sampaio, Carla; Chotard, Florian; Richard, Philippe; Denat, Franck; Bettaieb, Ali; Le Gendre, Pierre; Laurens, Véronique; Goze, Christine; Paul, Catherine; Bodio, Ewen

    2015-06-11

    Gold phosphine complexes, such as auranofin, have been recognized for decades as antirheumatic agents. Clinical trials are now underway to validate their use in anticancer or anti-HIV treatments. However, their mechanisms of action remain unclear. A challenging question is whether the gold phosphine complex is a prodrug that is administered in an inactive precursor form or rather that the gold atom remains attached to the phosphine ligand during treatment. In this study, we present two novel gold complexes, which we compared to auranofin and to their phosphonium analogue. The chosen ligand is a phosphine-based smart probe, whose strong fluorescence depends on the presence of the gold atom. The in vitro biological action of the gold complexes and the phosphonium derivative were investigated, and a preliminary in vivo study in healthy zebrafish larvae allowed us to evaluate gold complex biodistribution and toxicity. The different analyses carried out showed that these gold complexes were stable and behaved differently from phosphonium and auranofin, both in vitro and in vivo. Two-photon microscopy experiments demonstrated that the cellular targets of these gold complexes are not the same as those of the phosphonium analogue. Moreover, despite similar IC50 values in some cancer cell lines, gold complexes displayed a low toxicity in vivo, in contrast to the phosphonium salt. They are therefore suitable for future in vivo investigations. PMID:25973667

  8. Lipid solubility of the platinum group metals Pt, Pd and Rh in dependence on the presence of complexing agents.

    PubMed

    Zimmermann, Sonja; Menzel, Christoph M; Stüben, Doris; Taraschewski, Horst; Sures, Bernd

    2003-01-01

    Investigations on the bioaccumulation of the platinum group metals (PGM) Pt, Pd and Rh in aquatic organisms are of growing interest in environmental research due to the increasing emission of these metals by motor vehicles with catalytic converters. Until now, nothing is known about the possible influence of complexing agents on the bioaccumulation capacity of these precious metals. According to the partition coefficient between 1-octanol and water (POW) as a measure of bioaccumulation, in this study a simple shaking method was performed in order to investigate the effects of different complexing agents (-methionine, thio urea, EDTA, humic substances, bile compounds) on the octanol solubility of the PGM. The results demonstrated a significant influence of all agents used. -Methionine and thio urea decreased the lipid solubility. In contrast, the presence of EDTA, humic substances and especially bile caused a higher transfer of metals in the octanol phase. For most complexing agents tested, the transfer of Pd to the lipid phase was significantly higher compared with Rh and Pt, except for bile acid where the highest octanol solubility was found for Pt. Recent experimental results on PGM accumulation in zebra mussels confirm a high bioaccumulation of Pd which could be predicted from the lipid solubility. PMID:12683977

  9. Structural, spectroscopic and quantum chemical studies of acetyl hydrazone oxime and its palladium(II) and platinum(II) complexes

    NASA Astrophysics Data System (ADS)

    Kaya, Yunus; Icsel, Ceyda; Yilmaz, Veysel T.; Buyukgungor, Orhan

    2015-09-01

    Acetyl hydrazone oxime, [(1E,2E)-2-(hydroxyimino)-1-phenylethylidene]acetohydrazone (hipeahH2) and its palladium(II) and platinum(II) complexes, [M(hipeahH)2] (M = PdII and PtII), have been synthesized and characterized by elemental analysis, UV-vis IR, NMR and LC-MS techniques. X-ray diffraction analysis of [Pd(hipeahH)2] shows that the two hipeahH2 ligands are not equal; one of the ligands loses the hydrazone proton, while the other one loses the oxime proton, resulting in a different coordination behavior to form five- and six-membered chelate rings. The molecular geometries from X-ray experiments in the ground state were compared using the density functional theory (DFT) with the B3LYP method combined with the 6-311++G(d,p) basis set for the ligand and the LanL2DZ basis set for the complexes. Comprehensive theoretical and experimental structural studies on the molecule have been carried out by FT-IR, NMR and UV-vis spectrometry. In addition, the isomer studies of ligand and its complexes were made by DFT.

  10. Synthesis, characterization and in vitro antitumor activity of platinum(II) oxalato complexes involving 7-azaindole derivatives as coligands.

    PubMed

    Štarha, Pavel; Trávníček, Zdeněk; Popa, Igor; Dvořák, Zdeněk

    2014-01-01

    The platinum(II) oxalato complexes [Pt(ox)(naza)2] (1-3) were synthesized and characterized by elemental analysis (C, H, N), multinuclear NMR spectroscopy ((1)H, (13)C, (15)N, (195)Pt) and electrospray ionization mass spectrometry (ESI-MS); naza = 4-chloro-7-azaindole (4Claza; 1), 3-bromo-7-azaindole (3Braza; 2) or 4-bromo-7-azaindole (4Braza; 3). The prepared substances were screened for their in vitro antitumor activity on the osteosarcoma (HOS) and breast adenocarcinoma (MCF7) human cancer cell lines, where 2 showed moderate antitumor effect (IC50 = 27.5 μM, and 18.3 μM, respectively). The complex 2 was further tested on a panel of six others human cancer cell lines, including the malignant melanoma (G361), cervix carcinoma (HeLa), ovarian carcinoma (A2780), cisplatin-resistant ovarian carcinoma (A2780R), lung carcinoma (A549) and prostate adenocarcinoma (LNCaP). This substance was found to be moderate antitumor effective against G361 (IC50 = 17.3 μM), HeLa (IC50 = 31.8 μM) and A2780 (IC50 = 19.2 μM) cell lines. The complex 2 was also studied by NMR for its solution stability and by ESI-MS experiments for its ability to interact with biomolecules, such as cysteine, glutathione or guanosine 5'-monophosphate. PMID:25068781

  11. Solid solutions of platinum(II) and palladium(II) oxalato-complex salt as precursors of nanoalloys

    NASA Astrophysics Data System (ADS)

    Zadesenets, A. V.; Asanova, T. I.; Vikulova, E. S.; Filatov, E. Yu.; Plyusnin, P. E.; Baidina, I. A.; Asanov, I. P.; Korenev, S. V.

    2013-03-01

    A solid solution of platinum (II) and palladium (II) oxalato-complex salt, (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O, has been synthesized and studied as a precursor for preparing bimetallic PtPd nanoparticles through its thermal decomposition. The smallest homogenous bimetallic PtPd nanoparticles were found to form in hydrogen and helium atmospheres. The annealing temperature and time have low effect on the bimetallic particles size. Comparative analysis of structural and thermal properties of the solid solution and individual Pt, Pd oxalato-complex salts was performed to investigate a mechanism of thermal decomposition of (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O. Based on in situ X-ray photoemission spectroscopy investigation it was proposed a mechanism of formation of bimetallic PtPd nanoparticles from the solid-solution oxalato-complex salt during thermal decomposition.

  12. Binuclear platinum (II)-terpyridine complexes. A new class of bifunctional DNA-intercalating agent.

    PubMed Central

    McFadyen, W D; Wakelin, L P; Roos, I A; Hillcoat, B L

    1986-01-01

    A series of binuclear DNA-binding ligands was prepared by linking two (2,2':6',2"-terpyridine)platinum(II) moieties via alpha omega-dithiols of the type HS-[CH2]n-SH where n = 4-10. A monomeric analogue was also synthesized. Compounds were characterized by elemental analysis and electronic and n.m.r. spectroscopy. Viscometric measurements with sonicated rod-like DNA fragments and covalently closed circular DNA were performed to investigate the mode of binding of these agents. The ligands with n = 5 and 6 function as bis intercalators and form a single 'base-pair sandwich' in violation of neighbour-exclusion binding. Bifunctional reaction occurs for the ligand with n = 7, whereas the ligands with n = 8 and 10 show a preference for mixed monofunctional/bifunctional binding. The data do not permit definitive assignment of the binding mode of the ligands with n = 4 and 9. All compounds are growth-inhibitory against mouse leukaemia L1210 cells in culture with IC50 values in the range 2-14 microM. PMID:3800959

  13. Design, Synthesis of Novel Platinum(II) Glycoconjugates, and Evaluation of Their Antitumor Effects.

    PubMed

    Han, Jianbin; Gao, Xiangqian; Liu, Ran; Yang, Jinna; Zhang, Menghua; Mi, Yi; Shi, Ying; Gao, Qingzhi

    2016-06-01

    A new series of sugar-conjugated (trans-R, R-cyclohexane-1, 2-diamine)-2-halo-malonato-platinum(II) complexes were designed and synthesized to target tumor-specific glucose transporters (GLUTs). The water solubility of the sugar-conjugated platinum (II) complexes was greatly improved by average of 570-fold, 33-fold, and 94-fold, respectively, compared to cisplatin (1.0 mg/mL), carboplatin (17.1 mg/mL), and the newest generation of clinical drug oxaliplatin (6.0 mg/mL). Despite the high water solubility, the platinum(II) glycoconjugates exhibited a notable increase in cytotoxicity by a margin of 1.5- to 6.0-fold in six different human cancer cell lines with respect to oxaliplatin. The potential GLUT1 transportability of the complexes was investigated through a molecular docking study and was confirmed with GLUT1 inhibitor-mediated cytotoxicity dependency evaluation. The results showed that the sugar-conjugated platinum(II) complexes can be recognized by the glucose recognition binding site of GLUT1 and their cell killing effect depends highly on the GLUT1 inhibitor, quercetin. The research presenting a prospective concept for targeted therapy anticancer drug design, and with the analysis of the synthesis, water solubility, antitumor activity, and the transportability of the platinum(II) glycoconjugates, this study provides fundamental data supporting the inherent potential of these designed conjugates as lead compounds for GLUT-mediated tumor targeting. PMID:26706102

  14. Communication: Photoactivation of nucleobase bound platinum{sup II} metal complexes: Probing the influence of the nucleobase

    SciTech Connect

    Sen, Ananya; Dessent, Caroline E. H.

    2014-12-28

    We present UV laser action spectra (220-300 nm) of isolated nucleobase-bound Pt{sup II}(CN){sub 4}{sup 2−} complexes, i.e., Pt(CN){sub 4}{sup 2−}⋅M, where M = uracil, thymine, cytosine, and adenine. These metal complex-nucleobase clusters represent model systems for identifying the fundamental photophysical and photochemical processes occurring in photodynamic platinum (II) drug therapies that target DNA. This is the first study to explore the specific role of the nucleobase in the photophysics of the aggregate complex. Each of the complexes studied displays a broadly similar absorption spectra, with a strong λ{sub max} ∼ 4.7 eV absorption band (nucleobase localized chromophore) and a subsequent increase in the absorption intensity towards higher spectral-energy (Pt(CN){sub 4}{sup 2−} localized chromophore). However, strikingly different band widths are observed across the series of complexes, decreasing in the order Pt(CN){sub 4}{sup 2−}⋅Thymine > Pt(CN){sub 4}{sup 2−}⋅Uracil > Pt(CN){sub 4}{sup 2−}⋅Adenine > Pt(CN){sub 4}{sup 2−}⋅Cytosine. Changes in the bandwidth of the ∼4.7 eV band are accompanied by distinctive changes in the photofragment product ions observed following photoexcitation, with the narrower-bandwidth complexes showing a greater propensity to decay via electron detachment decay. We discuss these observations in the context of the distinctive nucleobase-dependent excited state lifetimes.

  15. Platinum(IV)-chlorotoxin (CTX) conjugates for targeting cancer cells.

    PubMed

    Graf, Nora; Mokhtari, Tara E; Papayannopoulos, Ioannis A; Lippard, Stephen J

    2012-05-01

    Cisplatin is one of the most widely used anticancer drugs. Its side effects, however, have motivated researchers to search for equally effective analogs that are better tolerated. Selectively targeting cancer tissue is one promising strategy. For this purpose, a platinum(IV) complex was conjugated to the cancer-targeting peptide chlorotoxin (CTX, TM601) in order to deliver cisplatin selectively to cancer cells. The 1:1 Pt-CTX conjugate was characterized by mass spectrometry and gel electrophoresis. Like most platinum(IV) derivatives, the cytotoxicity of the conjugate was lower in cell culture than that of cisplatin, but greater than those of its Pt(IV) precursor and CTX in several cancer cell lines. PMID:22465700

  16. Biological activity of palladium(II) and platinum(II) complexes of the acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate and the X-ray crystal structure of the [Pd(asme)2] (asme=anionic form of the acetone Schiff base of S-methyldithiocarbazate) complex.

    PubMed

    Akbar Ali, Mohammad; Mirza, Aminul Huq; Butcher, Raymond J; Tarafder, M T H; Keat, Tan Boon; Ali, A Manaf

    2002-11-25

    Palladium(II) and platinum(II) complexes of general empirical formula, [M(NS)(2)] (NS=uninegatively charged acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate; M=Pt(II) and Pd(II)) have been prepared and characterized by a variety of physicochemical techniques. Based on conductance, IR and electronic spectral evidence, a square-planar structure is assigned to these complexes. The crystal and molecular structure of the [Pd(asme)(2)] complex (asme=anionic form of the acetone Schiff base of S-methyldithiocarbazate) has been determined by X-ray diffraction. The complex has a distorted cis-square planar structure with the ligands coordinated to the palladium(II) ions as uninegatively charged bidentate NS chelating agents via the azomethine nitrogen and the mercaptide sulfur atoms. The distortion from a regular square-planar geometry is attributed to the restricted bite angles of the ligands. Antimicrobial tests indicate that the Schiff bases exhibit strong activities against the pathogenic bacteria, Bacillus subtilis (mutant defective DNA repair), methicillin-resistant Staphylococcus aureus, B. subtilis (wild type) and Pseudomonas aeruginosa and the fungi, Candida albicans (CA), Candida lypotica (2075), Saccharomyces cerevisiae (20341) and Aspergillus ochraceous (398)-the activities exhibited by these compounds being greater than that of the standard antibacterial and antifungal drugs, streptomycin and nystatin, respectively. The palladium(II) and platinum(II) complexes are inactive against most of these organisms but, the microbe, Pseudomonas aeruginosa shows strong sensitivity to the platinum(II) complexes. Screening of the compounds for their cytotoxicities against T-lymphoblastic leukemia cancer cells has shown that the acetone Schiff base of S-methyldithiocarbazate (Hasme) exhibits a very weak activity, whereas the S-benzyl derivative (Hasbz) is inactive. However, the palladium(II) complexes exhibit strong cytotoxicities against this cancer; their

  17. Spectral characterization, electrochemical and anticancer studies on some metal(II) complexes containing tridentate quinoxaline Schiff base

    NASA Astrophysics Data System (ADS)

    Chellaian, Justin Dhanaraj; Johnson, Jijo

    2014-06-01

    Co(II), Ni(II), Cu(II) and Zn(II) complexes of a tridentate ONO donor Schiff base ligand derived from 3-(2-aminoethylamino)quinoxalin-2(1H)-one were synthesized. The ligand and its metal complexes were characterized using elemental analysis, molar conductance, IR, 1H NMR, mass, magnetic susceptibility, electronic spectra and ESR spectral studies. Electrochemical behavior of the synthesized compounds was studied using cyclic voltammetry. The grain size of the synthesized compounds was determined by powder XRD. The Schiff base and its complexes have been screened for their antimicrobial activities against the bacterial species E. coli, K. pneumoniae, P. aeruginosa and S. aureus; fungal species include, A. niger, and C. albicans by disc diffusion method. The results show that the complexes have higher activity than the free ligand. The interaction of the complexes with calf thymus DNA (CT DNA) has been investigated by electronic absorption method. Furthermore, the DNA cleavage activity of the complexes was studied using agarose gel electrophoresis. In vitro anticancer studies of the ligand and its complexes using MTT assay was also done.

  18. Palladium(II) and platinum(II) complexes containing benzimidazole ligands: Molecular structures, vibrational frequencies and cytotoxicity

    NASA Astrophysics Data System (ADS)

    Abdel Ghani, Nour T.; Mansour, Ahmed M.

    2011-04-01

    (1H-benzimidazol-2-ylmethyl)-(4-methoxyl-phenyl)-amine (L 1), (1H-benzimidazol-2-ylmethyl)-(4-methyl-phenyl)-amine (L 2) and their Pd(II) and Pt(II) complexes have been synthesized as potential anticancer compounds and their structures were elucidated using a variety of physico-chemical techniques. Theoretical calculations invoking geometry optimization, vibrational assignments, 1H NMR, charge distribution and molecular orbital description HOMO and LUMO were done using density functional theory. Natural bond orbital analysis (NBO) method was performed to provide details about the type of hybridization and the nature of bonding in the studied complexes. Strong coordination bonds (LP(1)N11 → σ *(M sbnd Cl22)) and (LP(1)N21 → σ *(M sbnd Cl23)) (M = Pd or Pt) result from donation of electron density from a lone pair orbital on the nitrogen atoms to the acceptor metal molecular orbitals. The experimental results and the calculated molecular parameters revealed square-planar geometries around the metallic centre through the pyridine-type nitrogen of the benzimidazole ring and secondary amino group and two chlorine atoms. The activation thermodynamic parameters were calculated using non-isothermal methods. The synthesized ligands, in comparison to their metal complexes were screened for their antibacterial activity. In addition, the studied complexes showed activity against three cell lines of different origin, breast cancer (MCF-7), Colon Carcinoma (HCT) and human heptacellular carcinoma (Hep-G2) comparable to cis-platin.

  19. Cis-trans isomerism in a square-planar platinum(II) complex bearing bulky fluorinated phosphane ligands.

    PubMed

    Bernès, Sylvain; Meléndez, Francisco J; Torrens, Hugo

    2016-04-01

    Transition-metal complexes bearing fluorinated phosphane and thiolate ligands has been an area of study in recent years and the chemical context of the current work is related to the metal-assisted functionalization of fluorinated derivatives. The cis and trans isomers of the square-planar complex bis[(pentafluorophenyl)diphenylphosphane-κP]bis(2,3,5,6-tetrafluorobenzenethiolato-κS)platinum(II), [Pt(C6HF4S)2{P(C6H5)2(C6F5)}2], have been crystallized from a single chromatographic fraction and characterized by X-ray diffraction analysis. The stabilization of the cis isomer results from weak intramolecular π-stacking interactions and possibly from the formation of a C-F...Pt contact, characterized by an F...Pt separation of 2.957 (6) Å. The natural bond orbital analysis (NBO) for this isomer confirms that the corresponding F → Pt charge transfer accounts for 6.92 kcal mol(-1) in the isomer stabilization. Such interactions are not present in the centrosymmetric trans isomer. PMID:27045175

  20. Lewis acid-base interactions between platinum(ii) diaryl complexes and bis(perfluorophenyl)zinc: strongly accelerated reductive elimination induced by a Z-type ligand.

    PubMed

    Liberman-Martin, Allegra L; Levine, Daniel S; Ziegler, Micah S; Bergman, Robert G; Tilley, T Don

    2016-05-19

    Z-type interactions between bis(perfluorophenyl)zinc and platinum(ii) diaryl complexes supported by 1,10-phenanthroline (phen), 2,2'-bipyridine (bpy), and bis(dimethylphosphino)ethane (dmpe) ligands are reported. In the solid state, the nature of the Pt-Zn interaction depends on the bidentate ligand; the phen-supported complex exhibits an unsupported Pt-Zn bond, while the dmpe derivative features additional bridging aryl interactions. A strongly accelerated rate of reductive elimination is observed for phen- and bpy-supported complexes, while aryl exchange between Pt and Zn is observed for the dmpe complex. PMID:27161155

  1. Vapor- and mechanical-grinding-triggered color and luminescence switches for bis(σ-fluorophenylacetylide) platinum(II) complexes.

    PubMed

    Ni, Jun; Zhang, Xu; Wu, Yu-Hui; Zhang, Li-Yi; Chen, Zhong-Ning

    2011-01-24

    Square-planar bis(σ-fluorophenylacetylide) platinum(II) complexes [Pt(Me(3)SiC≡CbpyC≡C-SiMe(3))(C≡CC(6)H(4)F)(2)] (C≡CC(6)H(4)F-2 for 2, C≡CC(6)H(4)F-3 for 3, and C≡CC(6)H(4)F-4 for 4; Me(3)SiC≡CbpyC≡CSiMe(3)=5,5'-bis(trimethylsilylethynyl)-2,2'-bipyridine) were prepared and were characterized by spectroscopic and luminescence studies, and X-ray crystallography. The color and luminescence of crystalline complex 3 is specifically sensitive to CHCl(3) vapor to afford 140-180 nm of luminescence vapochromic redshift, which is useful for specific detection of CHCl(3) vapor. Complex 4 displays selective luminescence vapochromic properties to CH(2)Cl(2) and CHCl(3) vapors with a luminescence vapochromic shift response of ca. 150-200 nm. Interestingly, complexes 2-4 exhibit reversible, and naked-eye perceivable, mechanical stimuli-responsive color and luminescence changes. When solid species 2-4 are crushed gently or ground, the crystalline state is converted to an amorphous phase. Meanwhile, bright yellow-orange luminescence in the crystalline species is converted to dark red under UV light irradiation with 100-160 nm of mechanochromic shift response. A vapochromic or mechanochromic cycle was monitored by dynamic variations in emission spectra and X-ray diffraction (XRD) patterns. The halohydrocarbon vapor- or mechanical-grinding-triggered color and luminescence switches are most likely correlated to a shorted intermolecular Pt-Pt distance as that revealed in vapochromic species 4·0.5 CH(2)Cl(2) by X-ray crystallography, thus leading to an increased contribution from intermolecular Pt-Pt interaction as demonstrated by DTF computational studies. PMID:21243683

  2. Anticancer activity of a chelating nitrogen mustard bearing tetrachloridoplatinum(iv) complex: better stability yet equipotent to the Pt(ii) analogue.

    PubMed

    Karmakar, Subhendu; Chatterjee, Saptarshi; Purkait, Kallol; Mukherjee, Arindam

    2016-08-01

    Two Pt(iv) complexes cis,cis,trans-[Pt(IV)(L1)Cl4] (1a) & cis,cis,trans-[Pt(IV)(L2)Cl4] (2a) containing the nitrogen mustard moieties -N(CH2CH2Cl)2 & -NHCH2CH2Cl, were prepared in a single step from the Pt(ii) complexes containing -N(CH2CH2OH)2 (1) & -NHCH2CH2OH (2) moieties respectively using only thionyl chloride. The characterization of both the Pt(iv) complexes was performed by NMR, IR, UV and elemental analysis. Complex 1a was also characterized by single crystal X-ray diffraction. 1a crystallized in the I2/a space group. 1a exhibited much higher solution stability than 2a in kinetic studies by (1)H NMR. 1a shows a prodrug like activity as it converts to its Pt(ii) congener, [Pt(II)(L1)Cl2] (3) after 2 days in buffered solution. The binding experiment of 1a with model nucleobase 9-ethylguanine (9-EtG), showed that 1a converts to 3 and forms mono-adducts with 9-EtG. In the presence of reduced glutathione (GSH), the formation of 3 from 1a is quicker and upon the formation of 3 it binds almost instantaneously to GSH to form cis-[PtCl(L1)SG] (3c). Complex 3c transformed within a day to give a free aziridinium ion of L1 (3b) by dissociation. The in vitro cytotoxicity of the complexes and the clinical anticancer drug cisplatin show that 1a is potent against MCF-7, A549, HepG2 and MIA PaCa-2. The potency is highest against MIA PaCa-2 exhibiting an IC50 value of 4.4 ± 0.5 μM. The in vitro cytotoxicity data also showed that between the two complexes only 1a is active against MCF-7, A549 and MIA PaCa-2 in normoxia and hypoxia, both in the presence and absence of added GSH. Even in the presence of excess GSH in hypoxia, 1a exhibits significant cytotoxicity against MIA PaCa-2 and MCF-7 with IC50 values of 4.5 ± 0.3 and 11.2 ± 1.8 μM respectively. Platinum accumulation studies by ICP-MS display greater internalization of 1a, than 2a, 3 and cisplatin inside MCF-7 cells. 1a arrests cell cycle at the G2/M phase in MCF-7, exhibits capability to inhibit metastasis, induces

  3. bis-Nitrile and bis-Dialkylcyanamide Platinum(II) Complexes as Efficient Catalysts for Hydrosilylation Cross-Linking of Siloxane Polymers.

    PubMed

    Islamova, Regina M; Dobrynin, Mikhail V; Ivanov, Daniil M; Vlasov, Andrey V; Kaganova, Elena V; Grigoryan, Galina V; Kukushkin, Vadim Yu

    2016-01-01

    cis- and trans-Isomers of the platinum(II) nitrile complexes [PtCl2(NCR)2] (R = NMe2, N(C₅H10), Ph, CH2Ph) were examined as catalysts for hydrosilylation cross-linking of vinyl-terminated polydimethylsiloxane and trimethylsilyl-terminated poly(dimethylsiloxane-co-ethylhydrosiloxane) producing high quality silicone rubbers. Among the tested platinum species the cis-complexes are much more active catalysts than their trans-congeners and for all studied platinum complexes cis-[PtCl2(NCCH2Ph)2] exhibits the best catalytic activity (room temperature, c = 1.0 × 10(-4) mol/L, τpot-life 60 min, τcuring 6 h). Although cis-[PtCl₂(NCCH2Ph)2] is less active than the widely used Karstedt's catalyst, its application for the cross-linking can be performed not only at room temperature (c = 1.0 × 10(-4) mol/L), but also, more efficiently, at 80 °C (c = 1.0 × 10(-4)-1.0 × 10(-5) mol/L) and it prevents adherence of the formed silicone rubbers to equipment. The usage of the cis- and trans-[PtCl2(NCR)2] complexes as the hydrosilylation catalysts do not require any inhibitors and, moreover, the complexes and their mixtures with vinyl- and trimethylsilyl terminated polysiloxanes are shelf-stable in air. Tested catalysts do not form colloid platinum particles after the cross-linking. PMID:26959003

  4. Synthesis, spectroscopic, anticancer and antibacterial studies of Ni(II) and Cu(II) complexes with 2-carboxybenzaldehyde thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Vandana

    2014-08-01

    Ni(II) and Cu(II) complexes of 2-carboxybenzaldehyde thiosemicarbazone (L) were synthesized and investigated by their spectral and analytical data. These newly synthesized complexes have a composition of M(L)X(H2O)2 (where M = Ni(II), Cu(II) and X = Cl-, NO3-, CH3COO-) and (L) is the tridentate Schiff base ligand. The ligand and its complexes have been characterized on the basis of analytical, molar conductivity, magnetic susceptibility measurements, FT-IR, ESR, 1H NMR and electronic spectral analysis. All the compounds were non-electrolytic in nature. On the basis of spectral studies an octahedral geometry has been assigned for Ni(II) and a tetragonal geometry for Cu(II) complexes. The ligand and its metal complexes were screened for their anticancer studies against human breast cancer cell lines MCF-7 and calculated minimum inhibitory concentration and also for antibacterial activity using Kirby-Bauer single disk susceptibility test.

  5. Synthesis, spectroscopic, anticancer and antibacterial studies of Ni(II) and Cu(II) complexes with 2-carboxybenzaldehyde thiosemicarbazone.

    PubMed

    Chandra, Sulekh; Vandana

    2014-08-14

    Ni(II) and Cu(II) complexes of 2-carboxybenzaldehyde thiosemicarbazone (L) were synthesized and investigated by their spectral and analytical data. These newly synthesized complexes have a composition of M(L)X(H2O)2 (where M=Ni(II), Cu(II) and X=Cl(-), NO3(-), CH3COO(-)) and (L) is the tridentate Schiff base ligand. The ligand and its complexes have been characterized on the basis of analytical, molar conductivity, magnetic susceptibility measurements, FT-IR, ESR, (1)H NMR and electronic spectral analysis. All the compounds were non-electrolytic in nature. On the basis of spectral studies an octahedral geometry has been assigned for Ni(II) and a tetragonal geometry for Cu(II) complexes. The ligand and its metal complexes were screened for their anticancer studies against human breast cancer cell lines MCF-7 and calculated minimum inhibitory concentration and also for antibacterial activity using Kirby-Bauer single disk susceptibility test. PMID:24747857

  6. Spectroscopic and theoretical studies on the excited state in diimine dithiolate complexes of platinum(II)

    SciTech Connect

    Zuleta, J.A.; Bevilacqua, J.M.; Eisenberg, R. ); Proserpio, D.M. ); Harvey, P.D. )

    1992-06-10

    The photophysical properties of a series of Pt(N-N)(S-S) complexes have been studied where (N-N) is either an [alpha],[alpha][prime]-diimine or saturated diamine chelating ligand and (S-S) is either a dithiolate chelating ligand or two monothiolate ligands in order to determine the orbital composition of the excited state. The solvent dependence of the absorption spectra of these complexes and the temperature dependence of their emission intensities and lifetimes have been examined while the ligands have been systematically varied. The electronic spectra are found to be dependent on whether or not the nitrogen chelating ligand is unsaturated (contains a vacant [pi]* orbital). On the basis of the spectroscopic data, the lowest energy absorption band in the diimine complexes is assigned as a metal-dithiolate to [pi]*(diimine) transition, whereas in the diamine complexes it is assigned as a metal-to-dithiolate MLCT transition. The only room-temperature emissive complexes are those that contain an [alpha],[alpha][prime]-diimine chelating ligand. The nature of the emission in these complexes at all temperatures depends on the dithiolate ligand, and the temperature dependence of the emission spectra has been examined. The nature of the HOMO and LUMO has been examined experimentally using cyclic voltammetry. On the basis of the electrochemical and spectroscopic data, the emission from all of the Pt(diimine)(S-S) complexes except those of 1,2-dithiolate maleonitriledithiolate (mnt) is assigned as a [sup 3](d(Pt)/p(S)-[pi]*(diimine)) transition, while, for the mnt complexes, it corresponds to a [sup 3](d(Pt)/p(S)-[pi]*(mnt)) transition. These assignments are supported by extended Hueckel molecular orbital calculations.

  7. Five-alkyl-two-thiopyrrolidones as ligands in platinum(II) and palladium(II) complexes

    SciTech Connect

    Shebaldova, A.D.; Bystrenina, V.I.; Bespalova, G.V.; Labunskaya, V.I.

    1985-09-01

    5-alkyl-2-thiopyrrolidones (TP, alkyl = C/sub 3/H/sub 7/, C/sub 4/H/sub 9/, C/sub 5/H/sub 11/) have been used for the first time as ligands for the synthesis of complex compounds. When they are reacted with solutions of Pt(II) and Pd(II) salts in a hydroalcoholic medium with a 2:1 ratio between the reactants, complexes with the general formula M(TP)/sub 2/Cl/sub 2/ are obtained. The composition of the complex compounds has been established on the basis of the data from elemental and thermographic analysis. The complex compounds are nonelectrolytes and have a trans configurations (one band with a frequency of 310-330 cm/sup -1/). With the aid of the methods of quantum chemistry and IR and NMR spectroscopy, it has been established that the coordination of TP with the metal is realized by means of the sulfur atom. A comparison of the electron-donor properties of the 5-substituted thiopyrrolidones and their oxygen-containing analogs has been made. All the complex compounds have moderate antiphage, antibacterial, and antifungal activities. The Pd(II) complexes are catalysts for the dehydrohalogenation of 1,2-dichloro-3-butene to chloroprenes.

  8. Influence of the π-coordinated arene on the anticancer activity of ruthenium(II) carbohydrate organometallic complexes

    NASA Astrophysics Data System (ADS)

    Hanif, Muhammad; Meier, Samuel; Nazarov, Alexey; Risse, Julie; Legin, Anton; Casini, Angela; Jakupec, Michael; Keppler, Bernhard; Hartinger, Christian

    2013-10-01

    The synthesis and in vitro cytotoxicity of a series of RuII(arene) complexes with carbohydrate-derived phosphite ligands and various arene co-ligands is described. The arene ligand has a strong influence on the in vitro anticancer activity of this series of compounds, which correlates fairly well with cellular accumulation. The most lipophilic compound bearing a biphenyl moiety and a cyclohexylidene-protected carbohydrate is the most cytotoxic with unprecedented IC50 values for the compound class in three human cancer cell lines. This compound shows reactivity to the DNA model nucleobase 9-ethylguanine, but does not alter the secondary structure of plasmid DNA indicating that other biological targets are responsible for its cytotoxic effect.

  9. Influence of the π-coordinated arene on the anticancer activity of ruthenium(II) carbohydrate organometallic complexes

    PubMed Central

    Hanif, Muhammad; Meier, Samuel M.; Nazarov, Alexey A.; Risse, Julie; Legin, Anton; Casini, Angela; Jakupec, Michael A.; Keppler, Bernhard K.; Hartinger, Christian G.

    2013-01-01

    The synthesis and in vitro cytotoxicity of a series of RuII(arene) complexes with carbohydrate-derived phosphite ligands and various arene co-ligands is described. The arene ligand has a strong influence on the in vitro anticancer activity of this series of compounds, which correlates fairly well with cellular accumulation. The most lipophilic compound bearing a biphenyl moiety and a cyclohexylidene-protected carbohydrate is the most cytotoxic with unprecedented IC50 values for the compound class in three human cancer cell lines. This compound shows reactivity to the DNA model nucleobase 9-ethylguanine, but does not alter the secondary structure of plasmid DNA, indicating that other biological targets are responsible for its cytotoxic effect. PMID:24790955

  10. MALDI-Q-TOF mass spectrometric determination of gold and platinum in tissues using their diethyldithiocarbamate chelate complexes.

    PubMed

    Minakata, Kayoko; Nozawa, Hideki; Yamagishi, Itaru; Gonmori, Kunio; Suzuki, Masako; Hasegawa, Koutaro; Wurita, Amin; Watanabe, Kanako; Suzuki, Osamu

    2014-02-01

    A rapid determination method is presented for gold (Au(3+)) and platinum (Pt(4+)) in tissues using matrix-assisted laser desorption ionization quadrupole time-of-flight mass spectrometry (MALDI-Q-TOF-MS). Au and Pt ions in wet-ashed tissue solution were reacted with diethyldithiocarbamate (DDC), and the resulting chelate complex ions Au(DDC)2 (+) and Pt(DDC)3 (+) were detected by MALDI-Q-TOF-MS using α-cyano-4-hydroxycinnamic acid as a matrix. The limit of detection (LOD) was 0.8 ng/g tissue and the quantification range was 2-400 ng/g for Au, and the LOD was 6 ng/g tissue and the quantification range was 20-4,000 ng/g for Pt. The Pt levels detected by MALDI-Q-TOF-MS in several tissues of a patient overdosed with cisplatin were nearly the same as those detected by flow-injection electrospray ionization mass spectrometry. The LODs of Au and Pt were 0.04 pg per well (sample spot) and 0.3 pg per well, respectively. To our knowledge, this is the first attempt to quantify Au(3+) and Pt(4+) ions in tissues by MALDI-Q-TOF-MS. PMID:23455689

  11. Synthesis, spectroscopic, mutagenic, and cytotoxicity studies of some mixed-ligand platinum(II) complexes of 2,2'-bipyridine and amino acids.

    PubMed

    Jain, N; Mital, R; Ray, K S; Srivastava, T S; Bhattacharya, R K

    1987-09-01

    Seven platinum(II) complexes of the type [Pt(bipy)(AA)]n+ (where n = 1 or 0 and AA is anion of L-valine, L-isoleucine, L-aspartic acid (dianion), L-glutamic acid (dianion), L-glutamine, L-proline, or S-methyl-L-cysteine) have been prepared and characterized. The modes of binding of amino acids in these complexes have been ascertained particularly by infrared and 1H NMR spectral studies. The L-glutamine complex shows a ID50 value (50% inhibitory dose) in the range of greater than 20 micrograms/ml to 100 micrograms/ml of the complex. However, the complexes of L-valine, L-isoleucine, L-aspartic acid, L-glutamic acid, L-proline, and S-methyl-L-cysteine show ID50 values greater than 100 micrograms/ml of the complex. The above complexes also show inferior growth inhibition of P-388 cells than platinum(II) complexes of 2,2'-bipyridine with L-alanine, L-leucine, L-methionine, and L-aspargine as reported earlier. The platinum(II) complexes of 2,2'-bipyridine with glycine (Gly), L-alanine (Ala), L-leucine (leu), L-valine (Val), L-methionine (Met), L-phenylalanine (Phe), L-serine (Ser), L-tyrosine (Tyr) and L-tryptophan (Trp) have been tested for mutagenesis using TA 100 and TA 98 strains. They show nonmutagenicity. This is in contrast to the cis-[Pt(NH3)2Cl2] showing a base pair substitution mutagenesis. PMID:3320273

  12. Platinum-group element abundance and distribution in chromite deposits of the Acoje Block, Zambales Ophiolite Complex, Philippines

    USGS Publications Warehouse

    Bacuta, G.C., Jr.; Kay, R.W.; Gibbs, A.K.; Lipin, B.R.

    1990-01-01

    Platinum-group elements (PGE) occur in ore-grade concentration in some of the chromite deposits related to the ultramafic section of the Acoje Block of the Zambales Ophiolite Complex. The deposits are of three types: Type 1 - associated with cumulate peridotites at the base of the crust; Type 2 - in dunite pods from the top 1 km of mantle harzburgite; and Type 3 - like Type 2, but in deeper levels of the harzburgite. Most of the deposites have chromite compositions that are high in Cr with Cr/(Cr + Al) (expressed as chromium index, Cr#) > 0.6; high-Al (Cr# Pd, thought to be characteristic of PGE-barren deposits) and positive slope (Ir < Pd, characteristic of PGE-rich deposits). Iridium, Ru and Os commonly occur as micron-size laurite (sulfide) inclusions in unfractured chromite. Laurite and native Os are also found as inclusions in interstitial sulfides. Platinum and Pd occur as alloy inclusions (and possibly as solid solution) in interstitial Ni-Cu sulfides and as tellurobismuthides in serpentine and altered sulfides. Variability of PGE distribution may be explained by alteration, crystal fractionation or partial melting processes. Alteration and metamorphism were ruled out, because PGE contents do not correlate with degree of serpentinization or the abundance and type (hydroxyl versus non-hydroxyl) of silicate inclusions in chromite. Preliminary Os isotopic data do not support crustal contamination as a source of the PGEs in the Acoje deposits. The anomalous PGE concentrations in Type 1 high-Cr chromite deposits are attributed to two stages of enrichment: an early enrichment of their mantle source from previous melting events and a later stage of sulfide segregation accompanying chromite crystallization. High-Al chromite deposits which crystallized from basalts derived from relatively low degrees of melting owe their low PGE content to partitioning of PGEs in sulfides and alloys that remain in the mantle. High-Cr deposits crystallized from melts that were

  13. Biological Impact of Pd (II) Complexes: Synthesis, Spectral Characterization, In Vitro Anticancer, CT-DNA Binding, and Antioxidant Activities

    PubMed Central

    Sharma, Nitin Kumar; Ameta, Rakesh Kumar; Singh, Man

    2016-01-01

    A new series of Pd (II) complexes of methyl substituted benzylamine ligands (BLs) has been synthesized and characterized via spectroscopic techniques such as UV/Vis. FTIR, LCMS, 1H, and 13C NMR. The UV/Vis study in DMSO, DMSO + water, and DMSO + PBS buffer (pH = 7.2) confirmed their molecular sustainability in liquids. Their in vitro anticancer activity against breast cancer cell lines such as MCF-7 and MDA-MB-231 makes them interesting for in vivo analysis. Their stronger DNA binding activity (DBA) compared with free ligand suggested them as a good DNA binder. DBA was further confirmed by physicochemical studies such as surface tension and viscosity of complex + DNA which inferred the disruption of DNA and intercalation of complexes, respectively. Their % binding activity, % disruption of DNA base pairs (DNABP), and % intercalating strength are reported in this paper for the first time for better understanding of DNA binding mechanism. Along with this, their scavenging activity (SA) determined through DPPH free radical and the results indicate good antioxidant behaviour of complexes. PMID:26989511

  14. Biological Impact of Pd (II) Complexes: Synthesis, Spectral Characterization, In Vitro Anticancer, CT-DNA Binding, and Antioxidant Activities.

    PubMed

    Sharma, Nitin Kumar; Ameta, Rakesh Kumar; Singh, Man

    2016-01-01

    A new series of Pd (II) complexes of methyl substituted benzylamine ligands (BLs) has been synthesized and characterized via spectroscopic techniques such as UV/Vis. FTIR, LCMS, (1)H, and (13)C NMR. The UV/Vis study in DMSO, DMSO + water, and DMSO + PBS buffer (pH = 7.2) confirmed their molecular sustainability in liquids. Their in vitro anticancer activity against breast cancer cell lines such as MCF-7 and MDA-MB-231 makes them interesting for in vivo analysis. Their stronger DNA binding activity (DBA) compared with free ligand suggested them as a good DNA binder. DBA was further confirmed by physicochemical studies such as surface tension and viscosity of complex + DNA which inferred the disruption of DNA and intercalation of complexes, respectively. Their % binding activity, % disruption of DNA base pairs (DNABP), and % intercalating strength are reported in this paper for the first time for better understanding of DNA binding mechanism. Along with this, their scavenging activity (SA) determined through DPPH free radical and the results indicate good antioxidant behaviour of complexes. PMID:26989511

  15. Methyl 6-Amino-6-deoxy-d-pyranoside-Conjugated Platinum(II) Complexes for Glucose Transporter (GLUT)-Mediated Tumor Targeting: Synthesis, Cytotoxicity, and Cellular Uptake Mechanism.

    PubMed

    Li, Taoli; Gao, Xiangqian; Yang, Liu; Shi, Yunli; Gao, Qingzhi

    2016-05-19

    Methyl 6-aminodeoxy-d-pyranoside-derived platinum(II) glycoconjugates were designed and synthesized based on the clinical drug oxaliplatin for glucose transporter (GLUT)-mediated tumor targeting. In addition to a substantial improvement in water solubility, the conjugates exhibited cytotoxicity similar to or higher than that of oxaliplatin in six different human cancer cell lines. GLUT-mediated transport of the complexes was investigated with a cell-based fluorescence competition assay and GLUT-inhibitor-mediated cytotoxicity analysis in a GLUT-overexpressing human colorectal adenocarcinoma (HT29) cell line. The antitumor effect of the aminodeoxypyranoside-conjugated platinum(II) complexes was found to depend significantly on the GLUT inhibitor, and the cellular uptake of the molecules was regulated by GLUT-mediated transport. The results from this study demonstrate the potential advantages of aminodeoxypyranosides as sugar motifs for glycoconjugation for Warburg-effect-targeted drug design. These fundamental results also support the potential of aminodeoxypyranoside-conjugated platinum(II) complexes as lead compounds for further preclinical evaluation. PMID:27135196

  16. Synthesis, spectral characterization and eukaryotic DNA degradation of thiosemicarbazones and their platinum(IV) complexes

    NASA Astrophysics Data System (ADS)

    Al-Hazmi, G. A.; El-Metwally, N. M.; El-Gammal, O. A.; El-Asmy, A. A.

    2008-01-01

    The condensation products of acetophenone (or its derivatives), salicylaldehyde and o-hydroxy- p-methoxybenzophenone with thiosemicarbazide and ethyl- or phenyl-thiosemicarbazide are the investigated thiosemicarbazones. Their reactions with H 2PtCl 6 produced Pt(IV) complexes characterized by elemental, thermal, mass, IR and electronic spectral studies. The coordination modes were found mononegative bidentate in the acetophenone derivatives and binegative tridentate in the salicylaldehyde derivatives. The complexes were analyzed thermogravimetrically and found highly stable. Some ligands and their complexes were screened against Sarcina sp. and E. coli using the cup-diffusion technique. [Pt( oHAT)(OH)Cl] shows higher activity against E. coli than the other compounds. The degradation power of the tested compounds on the calf thymus DNA supports their selectivity against bacteria and not against the human or related eukaryotic organisms.

  17. Platinum and palladium complexes of thiosemicarbazones derived of 2-acetylthiophene: Synthesis and spectral studies

    NASA Astrophysics Data System (ADS)

    Neto, J. L.; de Lima, G. M.; Beraldo, H.

    2006-03-01

    The reaction of 2-acetylthiophene thiosemicarbazone (2-HATT) and 2-acetylthiophene 4-phenylthiosemicarbazone (2-HAT-4-FT) with Pd(COD)Cl 2 (COD = 1,5-cyclooctadiene) and trans-Pt 2PEt 3Cl 4 yielded four new metal complexes: [Pd(2-HATT)Cl 2] ( 1), [Pd(2-ATT) 2] ( 2), [Pd(2-AT-4-FT)Cl] ( 3) and [Pt(2-ATT)(PEt 3)Cl] ( 4). Apart from compound 3 all the others were characterised by 1H and 13C{ 1H} NMR, infrared spectroscopy, and elemental analysis. Multinuclear NMR experiments of 31P{ 1H} and 195Pt{ 1H} of complex 4 have revealed that the ligand 2-HATT behaves as a bidentate chelating agent towards Pd(COD)Cl 2 and trans-Pt 2PEt 3Cl 4 whereas ligand 2-HAT-4-FT forms a tridentate chelating complex with Pd(COD)Cl 2.

  18. Physicochemical Studies and Anticancer Potency of Ruthenium η6-p-Cymene Complexes Containing Antibacterial Quinolones

    PubMed Central

    2011-01-01

    With the aim of exploring the anticancer properties of organometallic compounds with bioactive ligands, Ru(arene) compounds of the antibacterial quinolones nalidixic acid (2) and cinoxacin (3) were synthesized, and their physicochemical properties were compared to those of chlorido(η6-p-cymene)(ofloxacinato-κ2O,O)ruthenium(II) (1). All compounds undergo a rapid ligand exchange reaction from chlorido to aqua species. 2 and 3 are significantly more stable than 1 and undergo minor conversion to an unreactive [(cym)Ru(μ-OH)3Ru(cym)]+ species (cym = η6-p-cymene). In the presence of human serum albumin 1−3 form adducts with this transport protein within 20 min of incubation. With guanosine 5′-monophosphate (5′-GMP; as a simple model for reactions with DNA) very rapid reactions yielding adducts via its N7 atom were observed, illustrating that DNA is a possible target for this compound class. A moderate capacity of inhibiting tumor cell proliferation in vitro was observed for 1 in CH1 ovarian cancer cells, whereas 2 and 3 turned out to be inactive. PMID:21552495

  19. Synthesis, structure, and spectroscopic properties of ortho-metalated platinum(II) complexes

    SciTech Connect

    Mdleleni, M.M.; Bridgewater, J.S.; Watts, R.J.; Ford, P.C.

    1995-04-26

    The ortho-metalated Pt(II) complexes Pt(ppy)(CO)Cl (1), Pt(ptpy)(CO)Cl (2), and Pt(ppy)(Hppy)Cl (3) (where ppy and ptpy are respectively the ortho-C-deprotonated forms of 2-phenylpyridine and 2-p-tolylpyridine and Hppy is 2-phenylpyridine) have been prepared. The CO ligand is coordinated trans to the nitrogen atom of the ortho-metalated ligand and exerts a strong trans effect resulting in a relatively long Pt-N bond [2.114(19) {angstrom}]. This structure shows both the bidentate ppy ligand and the monodentate Hppy with the nitrogens of these ligands trans to each other. The UV/vis electronic absorption spectra of 1-3 have intense bands in the near-UV region ({approximately}375 nm) which have been assigned as metal to ligand charge transfer (MLCT) transitions, and higher energy bands were assigned as ligand-centered transitions. Each complex exhibits relatively long-lived structured emissions in the solid state at ambient temperature and at 77 K and 77 K glassy toluene solutions. These emissions are proposed to originate from triplet MLCT states. Notably, in solution both the lifetime and spectrum of 2 proved to be a function of the concentration, a phenomenon interpreted in terms of the propensity of square planar d{sup 8} complexes to oligomerize. In contrast, the more sterically hindered complex 3 displayed no such tendency toward oligomerization.

  20. Microwave assisted synthesis, characterization and biological evaluation of palladium and platinum complexes with azomethines

    NASA Astrophysics Data System (ADS)

    Sharma, Krishna; Singh, Ritu; Fahmi, Nighat; Singh, R. V.

    2010-01-01

    Reactions of 3-acetyl-2,5-dimethylthiophene with thiosemicarbazide and semicarbazide hydrochloride resulted in the formation of new heterocyclic ketimines, 3-acetyl-2,5-dimethylthiophene thiosemicarbazone (C 9H 13N 3OS 2 or L 1H) and 3-acetyl-2,5- dimethylthiophene semicarbazone (C 9H 13N 3OS or L 2H), respectively. The Pd(II) and Pt(II) complexes have been synthesized by mixing metal salts in 1:2 molar ratios with these ligands by using microwave as well as conventional heating method for comparison purposes. The authenticity of these ligands and their complexes has been established on the basis of elemental analysis, melting point determinations, molecular weight determinations, IR, 1H NMR and UV spectral studies. These studies showed that the ligands coordinate to the metal atom in a monobasic bidentate manner and square planar environment around the metal atoms has been proposed to the complexes. Both the ligands and their complexes have been screened for their antimicrobial activities. The antiamoebic activity of both the ligands and their palladium compounds against the protozoan parasite Entamoeba histolytica has been tested.

  1. Solvent induced helical aggregation in the self-assembly of cholesterol tailed platinum complexes.

    PubMed

    Mao, Yueyuan; Liu, Keyin; Meng, Luyan; Chen, Liang; Chen, Liming; Yi, Tao

    2014-10-14

    Three alkynylplatinum(ii) bipyridyl complexes in which two cholesterol groups are combined with a bipyridyl group via alkyl chains and amido bonds were designed and synthesized. The complexes have different lengths of ethylene glycol chains at the para-position of 1-phenylethyne. All three complexes can self-assemble to gel networks in DMSO, while only the morphology of 1a without an ether chain shows a well-defined right-handed helical structure in layer packing mode. However, 1c with long ethylene glycol chains forms perfect regular left-handed helical structures in aqueous ethanol solution while the volume percentage of water is less than 5% (v/v). As the ratio of water increases, the chirality changes from a left-handed helix to a right-handed helix and the packing mode alters from a monolayer structure to a hexagonal structure. As the ratio of water further increases to greater than 50% (v/v), the structure of the assembly finally transforms into bilayer vesicles. The process of the morphology transition is traced by circular dichroism spectra, powder X-ray diffraction, SEM and TEM images. The result indicates that a polar solvent (water) acts as a trigger to change the self-assembly of the chiral structures of the complex due to the strong hydrophobic interaction between cholesterol groups and the balance of the hydrophobicity and hydrophilicity of the solvent environment. PMID:25131259

  2. Microwave assisted synthesis, characterization and biological evaluation of palladium and platinum complexes with azomethines.

    PubMed

    Sharma, Krishna; Singh, Ritu; Fahmi, Nighat; Singh, R V

    2010-01-01

    Reactions of 3-acetyl-2,5-dimethylthiophene with thiosemicarbazide and semicarbazide hydrochloride resulted in the formation of new heterocyclic ketimines, 3-acetyl-2,5-dimethylthiophene thiosemicarbazone (C(9)H(13)N(3)OS(2) or L(1)H) and 3-acetyl-2,5- dimethylthiophene semicarbazone (C(9)H(13)N(3)OS or L(2)H), respectively. The Pd(II) and Pt(II) complexes have been synthesized by mixing metal salts in 1:2 molar ratios with these ligands by using microwave as well as conventional heating method for comparison purposes. The authenticity of these ligands and their complexes has been established on the basis of elemental analysis, melting point determinations, molecular weight determinations, IR, (1)H NMR and UV spectral studies. These studies showed that the ligands coordinate to the metal atom in a monobasic bidentate manner and square planar environment around the metal atoms has been proposed to the complexes. Both the ligands and their complexes have been screened for their antimicrobial activities. The antiamoebic activity of both the ligands and their palladium compounds against the protozoan parasite Entamoeba histolytica has been tested. PMID:19962340

  3. Trans- and cis-2-phenylindole platinum(II) complexes as cytotoxic agents against human breast adenocarcinoma cell lines

    NASA Astrophysics Data System (ADS)

    Tomé, Maria; López, Concepción; González, Asensio; Ozay, Bahadir; Quirante, Josefina; Font-Bardía, Mercè; Calvet, Teresa; Calvis, Carme; Messeguer, Ramon; Baldomá, Laura; Badía, Josefa

    2013-09-01

    The synthesis and characterization of the new 2-phenylindole derivative: C8H3N-2-C6H5-3NOMe-5OMe (3c) and the trans- and cis-isomers of [Pt(3c)Cl2(DMSO)] complexes (4c and 5c, respectively) are described. The crystal structures of 4c·CH2Cl2 and 5c confirm: (a) the existence of a Pt-Nindole bond, (b) the relative arrangement of the Cl- ligands [trans- (in 4c) or cis- (in 5c)] and (c) the anti-(E) configuration of the oxime. The cytotoxic assessment of C8H3N-2-(C6H4-4‧R1)-3NOMe-5R2 [with R1 = R2 = H (3a); R1 = Cl, R2 = H (3b) and R1 = H, R2 = OMe (3c)] and the geometrical isomers of [Pt(L)Cl2(DMSO)] with L = 3a-3c [trans- (4a-4c) and cis- (5a-5c), respectively] against human breast adenocarcinoma cell lines (MDA-MB231 and MCF-7) is also reported and reveals that all the platinum(II) complexes (except 4a) are more cytotoxic than cisplatin in front of the MCF7 cell line. Electrophoretic DNA migration studies of the synthesized compounds in the absence and in the presence of topoisomerase-I have been performed, in order to get further insights into their mechanism of action.

  4. A Ratiometric Luminescent Switch Based on Platinum Complexes Tethered to a Crown-Ether Scaffold.

    PubMed

    Sinn, Stephan; Biedermann, Frank; Vishe, Mahesh; Aliprandi, Alessandro; Besnard, Céline; Lacour, Jérôme; De Cola, Luisa

    2016-06-17

    A ratiometric chemosensor for potassium is reported, based on phosphorescent dinuclear cyclometalated Pt(II) complexes featuring a cis-crown ether as the cation-recognition unit. The metal complexes are blue luminescent in a non-aggregated state but become strongly orange emissive when in a close physical proximity, as is the case when the macrocycle is in the folded state. Upon binding of the cation, unfolding occurs, resulting in a pronounced change in the emission properties (e.g. emission wavelength), which can be used for ratiometric sensing applications. The reversibility of the binding was confirmed by competitive titration experiments with unsubstituted 18-crown-6; the system shows supramolecular switching behavior. PMID:26918952

  5. Chromophore-labelled, luminescent platinum complexes: syntheses, structures, and spectroscopic properties.

    PubMed

    Stacey, Oliver J; Ward, Benjamin D; Coles, Simon J; Horton, Peter N; Pope, Simon J A

    2016-06-21

    Ligands based upon 4-carboxamide-2-phenylquinoline derivatives have been synthesised with solubilising octyl hydrocarbon chains and tethered aromatic chromophores to give naphthyl (), anthracenyl () and pyrenyl () ligand variants, together with a non-chromophoric analogue () for comparison. (1)H NMR spectroscopic studies of the ligands showed that two non-interchangeable isomers exist for and while only one isomer exists for and . Supporting DFT calculations on suggest that the two isomers may be closely isoenergetic with a relatively high barrier to exchange of ca. 100 kJ mol(-1). These new ligands were cyclometalated with Pt(ii) to give complexes [Pt()(acac)] (acac = acetylacetonate). The spectroscopically characterised complexes were studied using multinuclear NMR spectroscopy including (195)Pt{(1)H} NMR studies which revealed δPtca. -2785 ppm for [Pt()(acac)]. X-ray crystallographic studies were undertaken on [Pt()(acac)] and [Pt()(acac)], each showing the weakly distorted square planar geometry at Pt(ii); the structure of [Pt()(acac)] showed evidence for intermolecular Pt-Pt interactions. The UV-vis. absorption studies show that the spectral profiles for [Pt()(acac)] are a composite of the organic chromophore centred bands and a broad (1)MLCT (5d → π*) band (ca. 440 nm) associated with the complex. Luminescence studies showed that complexes [Pt()(acac)] are dual emissive with fluorescence characteristic of the tethered fluorophore and long-lived phosphorescence attributed to (3)MLCT emission. In the case of the pyrenyl derivative, [Pt()(acac)], the close energetic matching of the (3)MLCT and (3)LCpyr excited states led to an elongation of the (3)MLCT emission lifetime (τ = 42 μs) under degassed solvent conditions, suggestive of energy transfer processes between the two states. PMID:27241625

  6. Identification of an iridium(III) complex with anti-bacterial and anti-cancer activity

    PubMed Central

    Lu, Lihua; Liu, Li-Juan; Chao, Wei-chieh; Zhong, Hai-Jing; Wang, Modi; Chen, Xiu-Ping; Lu, Jin-Jian; Li, Ruei-nian; Ma, Dik-Lung; Leung, Chung-Hang

    2015-01-01

    Group 9 transition metal complexes have been widely explored as therapeutic agents due to their unique geometry, their propensity to undergo ligand exchanges with biomolecules and their diverse steric and electronic properties. These metal complexes can offer distinct modes of action in living organisms compared to carbon-based molecules. In this study, we investigated the antimicrobial and anti-proliferative abilities of a series of cyclometallated iridium(III) complexes. The iridium(III) complex 1 inhibited the growth of S. aureus with MIC and MBC values of 3.60 and 7.19 μM, respectively, indicating its potent bactericidal activity. Moreover, complex 1 also exhibited cytotoxicity against a number of cancer cell lines, with particular potency against ovarian, cervical and melanoma cells. This cyclometallated iridium(III) complex is the first example of a substitutionally-inert, Group 9 organometallic compound utilized as a direct and selective inhibitor of S. aureus. PMID:26416333

  7. Synthesis, spectral characterization, DNA interaction, anticancer and molecular docking studies on some transition metal complexes with bidentate ligand.

    PubMed

    Dhanaraj, C Justin; Hassan, Israr Ul; Johnson, Jijo; Joseph, J; Joseyphus, R Selwin

    2016-09-01

    The ligand, N(2),N(3)-bis(3-nitrophenyl)quinoxaline-2.3-diamine was prepared by the condensation of quinoxaline-2.3(1,4H)-dione with 3-nitroaniline. It was treated with Co(II), Ni(II), Cu(II) and Zn(II) acetates to form the metal complexes. These were characterized by elemental analysis, molar conductance, magnetic moment, UV-Vis., IR, (1)H NMR, ESR and mass spectral data. Octahedral geometry has been assigned to Co(II), Ni(II) and Zn(II) complexes, whereas Cu(II) complex has distorted octahedral geometry. From the powder XRD data, crystallite size and unit cell parameters were calculated. The surface morphology of the synthesized compounds were determined using SEM analysis. The antimicrobial activity of the compounds against some bacterial species viz. Escherichiacoli, Klebsiella pneumoniae, Pseudomonas aeuruginosa and Staphylococcus aureus; also the fungal species, Aspergillus niger, and Candida albicans were done by disc diffusion method. DNA binding, cleavage and super oxide anion scavenging activities were also evaluated. The DNA binding activity of the compounds were identified using electronic absorption titrations and DNA cleavage was determined using gel electrophoresis. The anticancer activities of the compounds against HeLa cell line were determined using MTT assay. The highly potent compound among the five against HeLa cell line is subjected to molecular docking study against human papilloma virus receptor molecule and ATP binding site of telomerase. PMID:27367456

  8. Synthesis, Characterization, and In Vitro Cytotoxic Activities of Benzaldehyde Thiosemicarbazone Derivatives and Their Palladium (II) and Platinum (II) Complexes against Various Human Tumor Cell Lines

    PubMed Central

    Hernándeza, Wilfredo; Paz, Juan; Vaisberg, Abraham; Spodine, Evgenia; Richter, Rainer; Beyer, Lothar

    2008-01-01

    The palladium (II) bis-chelate Pd (L1−3)2 and platinum (II) tetranuclear Pt4(L4)4 complexes of benzaldehyde thiosemicarbazone derivatives have been synthesized, and characterized by elemental analysis and IR, FAB(+)-mass and NMR (1H, 13C) spectroscopy. The complex Pd(L2)2 [HL2 = m-CN-benzaldehyde thiosemicarbazone] shows a square-planar geometry with two deprotonated ligands (L) coordinated to PdII through the nitrogen and sulphur atoms in a transarrangement, while the complex Pt4(L4)4 [HL4 = 4-phenyl-1-benzaldehyde thiosemicarbazone] has a tetranuclear geometry with four tridentate ligands coordinated to four PtII ions through the carbon (aromatic ring), nitrogen, and sulphur atoms where the ligands are deprotonated at the NH group. The in vitro antitumor activity of the ligands and their complexes was determined against different human tumor cell lines, which revealed that the palladium (II) and platinum (II) complexes are more cytotoxic than their ligands with IC50 values at the range of 0.07–3.67 μM. The tetranuclear complex Pt4(L4)4, with the phenyl group in the terminal amine of the ligand, showed higher antiproliferative activity (CI50 = 0.07–0.12 μM) than the other tested palladium (II) complexes. PMID:19148285

  9. The separation of platinum, palladium and gold from silicate rocks by the anion exchange separation of chloro complexes after a sodium peroxide fusion: an investigation of low recoveries.

    PubMed

    Enzweiler, J; Potts, P J

    1995-10-01

    A series of experiments was undertaken to measure the recovery efficiency of platinum, palladium and gold from silicate rocks using a sodium peroxide fusion followed by anion exchange separation of the analytes as chloro complexes. Results obtained by graphite furnace atomic absorption spectrometric analysis of standard solutions prepared in dilute HCl or HCl-acidified sodium peroxide solution showed that recoveries were near quantitative. However, when standard solutions were added to an alkaline sodium peroxide solution, which was then acidified, low results were obtained for platinum and gold (46% and 76% respectively). Low and variable results were also obtained when standard solutions were added to a peridotite sample that had been dissolved by the state procedure, and in the analysis of the South African Bureau of Standards certified reference material, SARM 7. Various experiments were undertaken to investigate these low recoveries, but the reason proposed here is the formation of hydroxychloro compounds in alkaline solution which are not, on acidification with HCl, converted quantitatively to the chloro complex necessary for quantitative anion exchange separation. It is concluded that a sodium peroxide fusion followed by an anion-exchange separation does not appear to form the basis of a successful technique for the determination of platinum, palladium and gold in silicate rocks. PMID:18966370

  10. Synthesis, characterization and anticancer activities of two lanthanide(III) complexes with a nicotinohydrazone ligand

    NASA Astrophysics Data System (ADS)

    Xu, Zhou-Qin; Mao, Xian-Jie; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Cai, Hong-Xin; Bie, Hong-Yan; Chen, Ru-Hua; Ma, Tie-liang

    2015-12-01

    Two isostructural acylhydrazone based complexes, namely [Ce(penh)2(H2O)4](NO3)3·4H2O (1) and [Sm(penh)2(NO3)2](NO3)·C2H5OH (2) (penh = 2-acetylpyridine nicotinohydrazone), have been obtained and characterized by physico-chemical and spectroscopic methods. The ten-coordinated lanthanide metal ion in each complex is surrounded by two independent tridentate neutral acylhydrazones with two ON2 donor sets. The other four coordination oxygen atoms are from four water molecules and two bidentate nitrate anions for complexes 1 and 2, respectively, thus giving distorted bicapped square antiprism geometry. Both complexes have excellent antitumor activity towards human pancreatic cancer (PATU8988), human colorectal cancer (lovo) and human gastric cancer(SGC7901) cell line. Furthermore, the cell apoptosis of complex 1 is detected by AnnexinV/PI flow cytometry.

  11. Therapeutic gold, silver, and platinum nanoparticles.

    PubMed

    Yamada, Miko; Foote, Matthew; Prow, Tarl W

    2015-01-01

    There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems. PMID:25521618

  12. In vitro anticancer activities of Schiff base and its lanthanum complex

    NASA Astrophysics Data System (ADS)

    Neelima; Poonia, Kavita; Siddiqui, Sahabjada; Arshad, Md; Kumar, Dinesh

    2016-02-01

    Schiff base metal complexes are well-known to intercalate DNA. The La(III) complexes have been synthesized such that they hinder with the role of the topoisomerases, which control the topology of DNA during the cell-division cycle. Although several promising chemotherapeutics have been developed, on the basis of Schiff base metal complex DNA intercalating system they did not proceed past clinical trials due to their dose-limiting toxicity. Herein, we discuss an alternative compound, the La(III) complex, [La(L1)2Cl3]·7H2O based on a Schiff base ligand 2,3-dihydro-1H-indolo-[2,3-b]-phenazin-4(5H)-ylidene)benzothiazole-2-amine (L1), and report in vitro cell studies. Results of antitumor activity using cell viability assay, reactive oxygen species (ROS) generation and nuclear condensation in PC-3 (Human, prostate carcinoma) cells show that the metal complex is more potent than ligand. La(III) complexes have been synthesized by reaction of lanthanum(III) salt in 1:2 M ratio with ligands L1 and 3-(ethoxymethylene)-2,3-dihydro-1H-indolo[2,3-b]-phenazin-4(5H)-ylidene)benzathiazole-2-amine (L2) in methanol. The ligands and their La(III) complexes were characterized by molar conductance, magnetic susceptibility, elemental analyses, FT-IR, UV-Vis, 1H/13C NMR, thermogravimetric, XRD, and SEM analysis.

  13. Promising anticancer mono- and dinuclear ruthenium(III) dithiocarbamato complexes: systematic solution studies.

    PubMed

    Nagy, Eszter Márta; Nardon, Chiara; Giovagnini, Lorena; Marchiò, Luciano; Trevisan, Andrea; Fregona, Dolores

    2011-11-28

    During the last decade, our research group has prepared a number of metal dithiocarbamato derivatives of Pt, Pd and Au that were expected to resemble the main features of cisplatin together with higher activity, improved selectivity and bioavailability, and lower side-effects. Furthermore, we have already published the synthesis, characterization and in vitro cytotoxicity studies of novel ruthenium(III) dithiocarbamato complexes such as [RuL(3)] monomers (11) and α-[Ru(2)L(5)]Cl dimers (12) with five different dithiocarbamate ligands. As both the monomer and the dinuclear complexes have shown significant antitumor activity in different human tumor cell lines, we decided to widen the characterization studies and to analyse thoroughly their behavior in physiological-like medium by UV-visible and CD spectroscopy. In the present paper we report on the crystal structure of [Ru(DMDT)(3)], [Ru(PDT)(3)] and [Ru(ESDT)(3)] complexes and we determine the spin state of the paramagnetic Ru(III) by means of Evans' method. Then, we discuss in detail the UV-visible spectral data of the complexes in different medium. All the studied complexes are stable in dimethyl sulfoxide, and show low solubility in phosphate buffered saline solution, particularly the monomer species, even at low concentration, while increased solubility for both types of complexes have been found in the presence of bovine serum albumin (BSA). Moreover, no changes on the coordination sphere of the metal, as well as no direct interaction between the BSA protein and the complex have been identified by UV-visible spectroscopy. However, some conformational changes on the BSA structure, induced by the ruthenium(III) complexes have been confirmed by CD spectroscopy, indicating a probable secondary electrostatic interaction between the metal complex and the peptide. In addition, no significant interaction has been demonstrated with the components of Dulbecco's Modified Eagle's Medium, used for the in vitro assays

  14. NMR Properties of Platinum --Thallium Bonded Complexes. Analysis of Relativistic Density Functional Theory Results

    SciTech Connect

    LeGuennic, Boris; Matsumoto, Kazuko; Autschbach, Jochen

    2004-08-26

    A portion of the following research was conducted at EMSL. The metal NMR parameters of the complexes [(NC)5Pt–Tl(CN)n]n- (n = 0–3, I–IV) and [(NC)5Pt–Tl–Pt(CN)5]3- (V), as well as [fPt(NO3)(NH3)2L2gTl(NO3)2(MeOH)] (VI) and [fPt(NO3)(NH3)2L2g2Tl]+ (VII) with L =NHCOtBu,were computationally investigated by relativistic density functional theory. Complexes I–V were previously studied by us. We briefly review the main findings here. Their spin–spin coupling constants are analyzed in terms ofmolecular orbital and fragment orbital contributions which demonstrate the various influences of the solvent and of the ligands on the extraordinarily large metal–metal coupling constants. Complexes VI and VII and various model systems were investigated in more detail. It is shown that the same computational model which performs best for I–V yields too large metal–metal coupling constants for VI and VII. The analysis shows that this is likely to be attributable to a strong sensitivity of the coupling constants to the rather small Pt 6s contributions in the occupied metal–metal s-bonding orbitals. Bulk solvent effects on the metal–metal couplings are sizeable and should be considered in the computational model. Both calculated and experimental Pt–Tl coupling constants for VI and VII are substantially larger than those for I–V, thereby representing the largest heteronuclear coupling constants known so far experimentally. Metal chemical shifts for VI and VII were also investigated. The computational results indicate that the choice of the Pt reference is rather problematic. Tl chemical shifts agree much better with experimental data.

  15. New trans dichloro (triphenylphosphine)platinum(II) complexes containing N-(butyl),N-(arylmethyl)amino ligands: Synthesis, cytotoxicity and mechanism of action.

    PubMed

    Dalla Via, Lisa; García-Argáez, Aída Nelly; Agostinelli, Enzo; Belli Dell'Amico, Daniela; Labella, Luca; Samaritani, Simona

    2016-07-01

    Some new platinum(II) complexes have been prepared, of general formula trans-[PtCl2(PPh3){NH(Bu)CH2Ar}], where the dimension of the Ar residue in the secondary amines has been varied from small phenyl to large pyrenyl group. The obtained complexes, tested in vitro towards a panel of human tumor cell lines showed an interesting antiproliferative effect on both cisplatin-sensitive and -resistant cells. For the most cytotoxic derivative 2a the investigation on the mechanism of action highlighted the ability to induce apoptosis on resistant cells and interestingly, to inhibit the catalytic activity of topoisomerase II. PMID:27179449

  16. Highly Phosphorescent Crystals of Square-Planar Platinum Complexes with Chiral Organometallic Linkers: Homochiral versus Heterochiral Arrangements, Induced Circular Dichroism, and TD-DFT Calculations.

    PubMed

    Sesolis, Hugo; Dubarle-Offner, Julien; Chan, Carmen K M; Puig, Emmanuel; Gontard, Geoffrey; Winter, Pierre; Cooksy, Andrew L; Yam, Vivian W W; Amouri, Hani

    2016-06-01

    A novel class of chiral luminescent square-planar platinum complexes with a π-bonded chiral thioquinonoid ligand is described. Remarkably the presence of this chiral organometallic ligand controls the aggregation of this square planar luminophor and imposes a homo- or hetero-chiral arrangement at the supramolecular level, displaying non-covalent Pt-Pt and π-π interactions. Interestingly these complexes are highly luminescent in the crystalline state and their photophysical properties can be traced to their aggregation in the solid state. A TD-DFT calculation is obtained to rationalize this unique behavior. PMID:27142245

  17. Impact of a carboxyl group on a cyclometalated ligand: hydrogen-bond- and coordination-driven self-assembly of a luminescent platinum(II) complex.

    PubMed

    Ebina, Masanori; Kobayashi, Atsushi; Ogawa, Tomohiro; Yoshida, Masaki; Kato, Masako

    2015-09-21

    A new luminescent cyclometalated platinum(II) complex containing a carboxyl group, trans-[Pt(pcppy)(pic)][1-COOH; Hpcppy = 2-(p-carboxyphenyl)pyridine and Hpic = picolinic acid] has been synthesized and characterized. The luminescence behavior of 1-COOH in the solid and solution states is completely different despite the similarity of the luminescence in both states for the nonsubstituted complex, [Pt(ppy)(pic)] (1-H; Hppy = 2-phenylpyridine). Interestingly, 1-COOH exhibits concentration-dependent absorption and emission behavior based on its aggregation in a basic aqueous solution despite the absence of amphiphilic character. PMID:26327429

  18. Anti-cancer effects of newly developed chemotherapeutic agent, glycoconjugated palladium (II) complex, against cisplatin-resistant gastric cancer cells

    PubMed Central

    2013-01-01

    Background Cisplatin (CDDP) is the most frequently used chemotherapeutic agent for various types of advanced cancer, including gastric cancer. However, almost all cancer cells acquire resistance against CDDP, and this phenomenon adversely affects prognosis. Thus, new chemotherapeutic agents that can overcome the CDDP-resistant cancer cells will improve the survival of advanced cancer patients. Methods We synthesized new glycoconjugated platinum (II) and palladium (II) complexes, [PtCl2 (L)] and [PdCl2 (L)]. CDDP-resistant gastric cancer cell lines were established by continuous exposure to CDDP, and gene expression in the CDDP-resistant gastric cancer cells was analyzed. The cytotoxicity and apoptosis induced by [PtCl2 (L)] and [PdCl2 (L)] in CDDP-sensitive and CDDP-resistant gastric cancer cells were evaluated. DNA double-strand breaks by drugs were assessed by evaluating phosphorylated histone H2AX. Xenograft tumor mouse models were established and antitumor effects were also examined in vivo. Results CDDP-resistant gastric cancer cells exhibit ABCB1 and CDKN2A gene up-regulation, as compared with CDDP-sensitive gastric cancer cells. In the analyses of CDDP-resistant gastric cancer cells, [PdCl2 (L)] overcame cross-resistance to CDDP in vitro and in vivo. [PdCl2 (L)] induced DNA double-strand breaks. Conclusion These results indicate that [PdCl2 (L)] is a potent chemotherapeutic agent for CDDP-resistant gastric cancer and may have clinical applications. PMID:23672493

  19. Anticancer Activity of Organogallium(III) Complexes in Colon Cancer Cells.

    PubMed

    Kaluđerović, Milena R; Mojić, Marija; Gómez-Ruiz, Santiago; Mijatović, Sanja; Maksimović-Ivanić, Danijela

    2016-01-01

    In vitro antitumor activity of various organogallium(III) complexes (1-8) has been tested against CT26CL25, HCT116, SW480 colon cancer cell lines. CV and MTT assays were used to assess on the antiproliferative effect of investigated organogallium(III) complexes. From the investigated complexes, the most active was found to be tetranuclear compound 8 against CT26CL25 cells. Flow cytometric analysis of the CT26CL25 cells upon the treatment with 8 was performed in order to determine the role of apoptosis, caspase activation, autophagy and proliferation rate on the cell death caused with this compound. Results indicate cytotoxic potential of the tetranuclear complex 8 by inducing caspase independent apoptosis and blocking most of the cells before first division. PMID:26443026

  20. Anticancer Activity Studies of Ruthenium(II) Complex Toward Human Osteosarcoma HOS Cells.

    PubMed

    Zhu, Jian-Wei; Liu, Si-Hong; Zhang, Gui-Qiang; Xu, Hui-Hua; Wang, Yu-Xuan; Wu, Yong; Liu, Ya-Min; Wang, Yan; Liang, Jun-Bo; Guo, Qi-Feng

    2016-08-01

    A new Ru(II) complex [Ru(dmp)2(NMIP)](ClO4)2 (dmp = 2,9-dimethyl-1,10-phenanthroline, NMIP = 2'-(2″-nitro-3″,4″-methylenedioxyphenyl)imidazo[4',5'-f][1,10]-phenanthroline) was synthesized and characterized by elemental analysis, ESI-MS and (1)H NMR. The cytotoxic activity of the complex against MG-63, U2OS, HOS, and MC3T3-e1 cell lines was investigated by MTT method. The complex shows moderate cytotoxicity toward HOS (IC50 = 35.6 ± 2.6 µM) and MC3T3-e1 (IC50 = 41.6 ± 2.8 µM) cell lines. The morphological studies show that the complex can induce apoptosis in HOS cells and cause an increase of reactive oxygen species levels and a decrease in the mitochondrial membrane potential. The cell cycle distribution demonstrates that the complex inhibits the cell growth at S phase. Additionally, the antitumor activity in vivo reveals that the complex can induce a decrease in tumor weight. PMID:27007877

  1. DNA/RNA binding and anticancer/antimicrobial activities of polymer-copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Riyasdeen, Anvarbatcha; Dhivya, Rajakumar; Vignesh, Sivanandham; Akbarsha, Mohammad Abdulkader; James, Rathinam Arthur

    2013-05-01

    Water soluble polymer-copper(II) complexes with various degrees of coordination in the polymer chain were synthesized and characterized by elemental analysis, IR, UV-visible and EPR spectra. The DNA/RNA binding behavior of these polymer-copper(II) complexes was examined by UV-visible absorption, emission and circular dichroism spectroscopic methods, and cyclic voltammetry techniques. The binding of the polymer-copper(II) complexes with DNA/RNA was mainly through intercalation but some amount of electrostatic interaction was also observed. This binding capacity increased with the degree of coordination of the complexes. The polymer-copper(II) complex having the highest degree of coordination was subjected to analysis of cytotoxic and antimicrobial properties. The cytotoxicity study indicated that the polymer-copper(II) complexes affected the viability of MCF-7 mammary carcinoma cells, and the cells responded to the treatment with mostly through apoptosis although a few cells succumbed to necrosis. The antimicrobial screening showed activity against some human pathogens.

  2. Syntheses, DNA binding and anticancer profiles of L-glutamic acid ligand and its copper(II) and ruthenium(III) complexes.

    PubMed

    Ali, Imran; Wani, Waseem A; Saleem, Kishwar; Wesselinova, Diana

    2013-02-01

    A new multidentate ligand (L) has been synthesized by the controlled condensation of L-glutamic acid with formaldehyde and ethylenediamine. Cu(II) and Ru(III) metal ion complexes of the synthesized ligand have also been prepared. The ligand and the metal complexes were purified by chromatography and characterized by spectroscopy and other techniques. Molar conductance measurements suggested ionic nature of the complexes. The ligand and the complexes are soluble in water with quite good stabilities; essential requirements for effective anticancer drugs. DNA binding constants (Kbs) for copper and ruthenium complexes were 1.8 x 103 and 2.6 x 103 M-1 while their Ksv values were 7.9 x 103, and 7.3 x 103; revealing strong binding of these complexes with DNA. Hemolytic assays of the reported compounds indicated their significantly less toxicity to RBCs than the standard anticancer drug letrazole. Anticancer profiles of all the compounds were determined on HepG2, HT-29, MDA-MB-231 and HeLa human cancer cell lines. All the compounds have quite good activities on HeLa cell lines but the best results were of CuL on HepG2, HT-29 and MDA-MB-231 cell lines. PMID:22741786

  3. Iridium(I) Compounds as Prospective Anticancer Agents: Solution Chemistry, Antiproliferative Profiles and Protein Interactions for a Series of Iridium(I) N-Heterocyclic Carbene Complexes.

    PubMed

    Gothe, Yvonne; Marzo, Tiziano; Messori, Luigi; Metzler-Nolte, Nils

    2016-08-22

    A series of structurally related mono- and bis-NHC-iridium(I) (NHC: N-heterocyclic carbene) complexes have been investigated for their suitability as potential anticancer drugs. Their spectral behaviour in aqueous buffers under physiological-like conditions and their cytotoxicity against the cancer cell lines MCF-7 and HT-29 are reported. Notably, almost all complexes exhibit significant cytotoxic effects towards both cancer cell lines. In general, the cationic bis-carbene complexes show higher stability and greater anticancer activity than their neutral mono-carbene analogues with IC50 values in the high nanomolar range. Furthermore, to gain initial mechanistic insight, the interactions of these iridium(I)-NHC complexes with two model proteins, namely lysozyme and cytochrome c, were explored by HR-ESI-MS analyses. The different protein metalation patterns of the complexes can be roughly classified into two distinct groups. Those interactions give us a first idea about the possible mechanism of action of this class of compounds. Overall, our findings show that iridium(I)-NHC complexes represent very interesting candidates for further development as new metal-based anticancer drugs. PMID:27443984

  4. Oxidovanadium(IV) complexes with chrysin and silibinin: anticancer activity and mechanisms of action in a human colon adenocarcinoma model.

    PubMed

    León, I E; Cadavid-Vargas, J F; Tiscornia, I; Porro, V; Castelli, S; Katkar, P; Desideri, A; Bollati-Fogolin, M; Etcheverry, S B

    2015-10-01

    Vanadium compounds were studied during recent years to be considered as a representative of a new class of nonplatinum metal antitumor agents in combination to its low toxicity. On the other hand, flavonoids are a wide family of polyphenolic compounds synthesized by plants that display many interesting biological effects. Since coordination of ligands to metals can improve the pharmacological properties, we report herein, for the first time, a exhaustive study of the mechanisms of action of two oxidovanadium(IV) complexes with the flavonoids: silibinin Na₂[VO(silibinin)₂2]·6H₂O (VOsil) and chrysin [VO(chrysin)₂EtOH]₂(VOchrys) on human colon adenocarcinoma derived cell line HT-29. The complexes inhibited the cell viability of colon adenocarcinoma cells in a dose dependent manner with a greater potency than that the free ligands and free metal, demonstrating the benefit of complexation. The decrease of the ratio of the amount of reduced glutathione to the amount of oxidized glutathione were involved in the deleterious effects of both complexes. Besides, VOchrys caused cell cycle arrest in G2/M phase while VOsil activated caspase 3 and triggering the cells directly to apoptosis. Moreover, VOsil diminished the NF-kB activation via increasing the sensitivity of cells to apoptosis. On the other hand, VOsil inhibited the topoisomerase IB activity concluding that this is important target involved in the anticancer vanadium effects. As a whole, the results presented herein demonstrate that VOsil has a stronger deleterious action than VOchrys on HT-29 cells, whereby suggesting that Vosil is the potentially best candidate for future use in alternative anti-tumor treatments. PMID:26404080

  5. Preliminary anti-cancer photodynamic therapeutic in vitro studies with mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes.

    PubMed

    Holder, Alvin A; Taylor, Patrick; Magnusen, Anthony R; Moffett, Erick T; Meyer, Kyle; Hong, Yiling; Ramsdale, Stuart E; Gordon, Michelle; Stubbs, Javelyn; Seymour, Luke A; Acharya, Dhiraj; Weber, Ralph T; Smith, Paul F; Dismukes, G Charles; Ji, Ping; Menocal, Laura; Bai, Fengwei; Williams, Jennie L; Cropek, Donald M; Jarrett, William L

    2013-09-01

    We report the synthesis and characterisation of mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes, which were used as potential photodynamic therapeutic agents for melanoma cell growth inhibition. The novel complexes, [Ru(pbt)2(phen2DTT)](PF6)2·1.5H2O 1 (where phen2DTT = 1,4-bis(1,10-phenanthrolin-5-ylsulfanyl)butane-2,3-diol and pbt = 2-(2'-pyridyl)benzothiazole) and [Ru(pbt)2(tpphz)](PF6)2·3H2O 2 (where tpphz = tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine) were synthesised and characterised. Compound 1 was reacted with [VO(sal-L-tryp)(H2O)] (where sal-L-tryp = N-salicylidene-L-tryptophanate) to produce [Ru(pbt)2(phen2DTT)VO(sal-L-tryp)](PF6)2·5H2O 4; while [VO(sal-L-tryp)(H2O)] was reacted with compound 2 to produce [Ru(pbt)2(tpphz)VO(sal-L-tryp)](PF6)2·6H2O 3. All complexes were characterised by elemental analysis, HRMS, ESI MS, UV-visible absorption, ESR spectroscopy, and cyclic voltammetry, where appropriate. In vitro cell toxicity studies (with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay) via dark and light reaction conditions were carried out with sodium diaqua-4,4',4'',4''' tetrasulfophthalocyaninecobaltate(II) (Na4[Co(tspc)(H2O)2]), [VO(sal-L-tryp)(phen)]·H2O, and the chloride salts of complexes 3 and 4. Such studies involved A431, human epidermoid carcinoma cells; human amelanotic malignant melanoma cells; and HFF, non-cancerous human skin fibroblast cells. Both chloride salts of complexes 3 and 4 were found to be more toxic to melanoma cells than to non-cancerous fibroblast cells, and preferentially led to apoptosis of the melanoma cells over non-cancerous skin cells. The anti-cancer property of the chloride salts of complexes 3 and 4 was further enhanced when treated cells were exposed to light, while no such effect was observed on non-cancerous skin fibroblast cells. ESR and (51)V NMR spectroscopic studies were also used to assess the stability of the chloride salts of complexes 3

  6. Synthesis, characterization and anticancer activity studies of ruthenium(II) polypyridyl complexes on A549 cells.

    PubMed

    Zeng, Chuan-Chuan; Jiang, Guang-Bin; Lai, Shang-Hai; Zhang, Cheng; Yin, Hui; Tang, Bing; Wan, Dan; Liu, Yun-Jun

    2016-08-01

    Four new ruthenium(II) polypyridyl complexes [Ru(N-N)2(bddp)](ClO4)21-4 (N-N=dmb: 4,4'-dimethyl-2,2'-bipyridine 1, bpy: 2,2'-bipyridine 2, phen: 1,10-phenanthroline 3 and dmp: 2,9-dimethyl-1,10-phenanthroline 4, bddp=benzilo[2,3-b]-1,4-diazabenzo[i]dipyrido[3,2-a:2',3'-c]phenazine) were synthesized and characterized by elemental analysis, ESI-MS and (1)H NMR. The cytotoxicity in vitro of the complexes against BEL-7402, HeLa, MG-63 and A549 cell lines was investigated by MTT method. The complexes show high cytotoxic activity toward the selected cell lines with an IC50 value ranging from 5.3±0.6 to 15.7±3.6μM. The apoptosis was studied with acridine orange (AO)/ethdium bromide (EB) and Hoechst 33258 staining methods. The cellular uptake was investigated with DAPI staining method. The reactive oxygen species (ROS) and mitochondrial membrane potential were performed under fluorescent microscope and flow cytometry. The complexes can induce an increase in the ROS levels and a decrease in the mitochondrial membrane potential. The comet assay was studied with fluorescent microscope. The percentage in apoptotic and necrotic cells and cell cycle arrest were assayed by flow cytometry. The effects of the complexes on the expression of caspases and Bcl-2 family proteins were studied by western blot analysis. The results show that the complexes induce apoptosis in A549 cells through an ROS-mediated mitochondrial dysfunction pathway, which was accompanied by regulating the expression of Bcl-2 family proteins. PMID:27288660

  7. Platinum-group minerals in the LG and MG chromitites of the eastern Bushveld Complex, South Africa

    NASA Astrophysics Data System (ADS)

    Oberthür, Thomas; Junge, Malte; Rudashevsky, Nikolay; de Meyer, Eveline; Gutter, Paul

    2016-01-01

    The chromitites of the Bushveld Complex in South Africa contain vast resources of platinum-group elements (PGE); however, except for the economic upper group (UG)-2 chromitite seam, information on the distribution of the PGE in the ores and on the mineralogical nature, assemblages, and proportions of platinum-group minerals (PGM) is essentially missing. In the present geochemical and mineralogical study, PGE concentrates originating from the lower group (LG)-6 and middle group (MG)-1/2 chromitites were investigated with the intention to fill this gap of knowledge. Chondrite-normalized PGE patterns of bulk rock and concentrates are characterized by a positive slope from Os to Rh, a slight drop to Pt, and an increase to Pd again. The pronounced similarities of the PGE patterns indicate similar primary processes of PGE concentration in the chromitites, namely "sulfide control" of the PGE mineralization, i.e., co-precipitation of chromite and sulfide. Further, the primary control of PGE concentration in chromitites appears to be dual in character: (i) base-level concentrations of IPGE (up to ˜500 ppb) hosted within chromite and (ii) co-precipitation of chromite and sulfide, the latter containing virtually the entire remaining PGE budget. Sulfides (chalcopyrite, pentlandite, and pyrite; pyrrhotite is largely missing) are scarce within the chromitites and occur mainly interstitial to chromite grains. Pd and Rh contents in pentlandite are low and erratic. Essentially, the whole PGE inventory of the ores occurs in the form of discrete PGM. The PGM are almost always associated with sulfides. The dominant PGM are various Pt-Pd-Rh sulfides (cooperite/braggite [(Pt,Pd)S] and malanite/cuprorhodsite [CuPt2S4]/[CuRh2S4]), laurite [RuS2], the main carrier of the IPGE (Os, Ir, Ru), sulfarsenides [(Rh,Pt,Ir)AsS], sperrylite [PtAs2], Pt-Fe alloys, and a large variety of mainly Pd-rich PGM. The LG and MG chromitites have many characteristics in common and define a general, "typical

  8. Contrasting Anticancer Activity of Half-Sandwich Iridium(III) Complexes Bearing Functionally Diverse 2-Phenylpyridine Ligands

    PubMed Central

    2015-01-01

    > nucleus > cytoskeleton. This work highlights the strong dependence of biological behavior on the nature and position of the substituent on the chelating ligand and shows how this class of organometallic anticancer complexes can be fine-tuned to increase their potency without using extended cyclopentadienyl systems. PMID:26146437

  9. Synthesis and photophysical studies of chiral helical macrocyclic scaffolds via coordination-driven self-assembly of 1,8,9,16-tetraethynyltetraphenylene. formation of monometallic platinum(II) and dimetallic platinum(II)-ruthenium(II) complexes.

    PubMed

    Lin, Fang; Peng, Hai-Yan; Chen, Jing-Xing; Chik, David T W; Cai, Zongwei; Wong, Keith M C; Yam, Vivian W W; Wong, Henry N C

    2010-11-24

    This paper is concerned with the synthesis and reactions of enantiopure 1,8,9,16-tetraethynyltetraphenylene (3). We obtained 3 in 34% yield through four steps starting from 1,8,9,16-tetrahydroxytetraphenylene (2a) via a functional group interconversion strategy. On the basis of this chiral "helical" building block, three rigid helical macrocycles 14, 15, and 22 were designed. Complexes 14 and 15 were constructed via coordination-driven self-assembly with platinum(II) complexes 8 and 9b, while 22 cannot be obtained successfully. Then macrocycle 28 was designed on the structural basis of 22 to which octyl chains were introduced, in the hope of improving the solubility of the complex. Macrocycle 28 was finally formed and was characterized by NMR spectroscopy, elemental analysis, and electrospray mass spectrometry. For the enantiopure 15 and 28, circular dichroism (CD) spectra also exhibited chiral properties. Complexes 27 and 28 both exhibited an intense emission band at 621 nm in acetonitrile at 298 K upon excitation at λ > 420 nm. PMID:21033663

  10. Adjusting the DNA Interaction and Anticancer Activity of Pt(II) N-Heterocyclic Carbene Complexes by Steric Shielding of the Trans Leaving Group.

    PubMed

    Muenzner, Julienne K; Rehm, Tobias; Biersack, Bernhard; Casini, Angela; de Graaf, Inge A M; Worawutputtapong, Pawida; Noor, Awal; Kempe, Rhett; Brabec, Viktor; Kasparkova, Jana; Schobert, Rainer

    2015-08-13

    Five platinum(II) complexes bearing a (1,3-dibenzyl)imidazol-2-ylidene ligand but different leaving groups trans to it were examined for cytotoxicity, DNA and cell cycle interference, vascular disrupting properties, and nephrotoxicity. The cytotoxicity of complexes 3a-c increased with the steric shielding of their leaving chloride ligand, and complex 3c, featuring two triphenylphosphanes, was the most efficacious, with submicromolar IC50 concentrations. Complexes 3a-c interacted with DNA in electrophoretic mobility shift and ethidium bromide binding assays. The cationic complex 3c did not bind coordinatively to DNA but led to its aggregation, damage that is not amenable to the usual repair mechanisms. Accordingly, it arrested the cell cycle of melanoma cells in G1 phase, whereas cis-dichlorido[(1,3-dibenzyl)imidazol-2-ylidene](dimethyl sulfoxide) platinum(II) 3a induced G2/M phase arrest. Complex 3c also disrupted the blood vessels in the chorioallantoic membrane of fertilized chicken eggs. Ex vivo studies using precision-cut tissue slices suggested the nephrotoxicities of 3a-c to be clinically manageable. PMID:26182125

  11. Characterization and evaluation of a folic acid receptor-targeted cyclodextrin complex as an anticancer drug delivery system.

    PubMed

    Xu, Jiaojiao; Xu, Beihua; Shou, Dan; Qin, Fuhua; Xu, Yong; Hu, Ying

    2016-02-15

    -targeting efficacy and diminished systemic side effects. These results suggest that the novel FR-targeted cyclodextrin complex is a promising alternative as an anticancer drug delivery system. PMID:26577995

  12. LA-ICP-MS imaging in multicellular tumor spheroids - a novel tool in the preclinical development of metal-based anticancer drugs.

    PubMed

    Theiner, Sarah; Schreiber-Brynzak, Ekaterina; Jakupec, Michael A; Galanski, Markus; Koellensperger, Gunda; Keppler, Bernhard K

    2016-04-01

    A novel application of advanced elemental imaging offers cutting edge in vitro assays with more predictive power on the efficacy of anticancer drugs in preclinical development compared to two dimensional cell culture models. We propose LA-ICP-MS analysis of multicellular spheroids, which are increasingly being used as three dimensional (3D) models of tumors, for improving the in vitro evaluation of anticancer metallodrugs. The presented strategy is very well suited for screening drug-tumor penetration, a key issue for drug efficacy. A major advantage of tumor spheroid models is that they enable us to create a tissue-like structure and function. With respect to 2D culture on the one hand and in vivo models on the other, multicellular spheroids thus show intermediate complexity, still allowing high repeatability and adequate through-put for drug research. This strongly argues for the use of spheroids as bridging models in preclinical anticancer drug development. Probing the lateral platinum distribution within these tumor models allows visualizing the penetration depth and targeting of platinum-based complexes. In the present study, we show for the first time that spatially-resolved metal accumulation in tumor spheroids upon treatment with platinum compounds can be appropriately assessed. The optimized LA-ICP-MS setup allowed discerning the platinum localization in different regions of the tumor spheroids upon compound treatment at biologically relevant (low micromolar) concentrations. Predominant platinum accumulation was observed at the periphery as well as in the center of the spheroids. This corresponds to the proliferating outermost layers of cells and the necrotic core, respectively, indicating enhanced platinum sequestration in these regions. PMID:26806253

  13. Antimicrobial and antitumor activity of platinum and palladium complexes of novel spherical aramides nanoparticles containing flexibilizing linkages: structure-property relationship.

    PubMed

    Elhusseiny, Amel F; Hassan, Hammed H A M

    2013-02-15

    Square planar Pd (II) and octahedral Pt (IV) complexes with novel spherical aramides nanoparticles containing flexible linkages ligands have been synthesized and characterized using analytical and spectral techniques. The synthesized complexes have been tested for their antimicrobial activity using Kirby-Bauer disc diffusion method. The antitumor activity has been performed using liver carcinoma (HEPG2), breast carcinoma (MCF7) and colon carcinoma (HCT 116) cell lines. Palladium complexes of polyamides containing sulfones showed the highest potency as antibacterial and antifungal agents. Platinum complexes containing sulfone and ether flexible linkages and chloro groups exhibited high potency as antitumor and antimicrobial agents. The uniform sizes of these nanomaterials could find biological uses such as immune assay and other medical purposes. PMID:23261618

  14. Antimicrobial and antitumor activity of platinum and palladium complexes of novel spherical aramides nanoparticles containing flexibilizing linkages: Structure-property relationship

    NASA Astrophysics Data System (ADS)

    Elhusseiny, Amel F.; Hassan, Hammed H. A. M.

    2013-02-01

    Square planar Pd (II) and octahedral Pt (IV) complexes with novel spherical aramides nanoparticles containing flexible linkages ligands have been synthesized and characterized using analytical and spectral techniques. The synthesized complexes have been tested for their antimicrobial activity using Kirby-Bauer disc diffusion method. The antitumor activity has been performed using liver carcinoma (HEPG2), breast carcinoma (MCF7) and colon carcinoma (HCT 116) cell lines. Palladium complexes of polyamides containing sulfones showed the highest potency as antibacterial and antifungal agents. Platinum complexes containing sulfone and ether flexible linkages and chloro groups exhibited high potency as antitumor and antimicrobial agents. The uniform sizes of these nanomaterials could find biological uses such as immune assay and other medical purposes.

  15. Use of perfluorinated phosphines to provide thermomorphic anticancer complexes for heat-based tumor targeting.

    PubMed

    Renfrew, Anna K; Scopelliti, Rosario; Dyson, Paul J

    2010-03-01

    A series of compounds of general formula [Ru(eta(6)-arene)(pta)(PR(3))Cl]BF(4) (arene = p-cymene or 4-phenyl-2-butanol; pta = 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane, PR(3) = PPh(2)(p-C(6)H(4)C(2)H(4)C(8)F(17)), PPh(p-C(6)H(4)C(2)H(4)C(8)F(17))(2), P(p-C(6)H(4)C(2)H(4)C(6)F(13))(3), PPh(3) or P(p-C(6)H(4)F)(3)) have been prepared and characterized by spectroscopic methods. The structure of [Ru(eta(6)-p-cymene)(pta)Cl(P(p-C(6)H(4)F)(3))]BF(4) has also been established in the solid state by X-ray crystallography. The cytotoxicities of the compounds were determined in the A2780 and A2780 cisplatin-resistant cell lines revealing that the fluorinated phosphines significantly increase antiproliferative activity relative to their bis-chloride precursors. Two of the complexes were found to be thermoresponsive, that is, showing poor water solubility at 37 degrees C and good solubility at 42 degrees C, the temperature of a heated tumor, providing a method of tumor targeting. Incubation at 42 degrees C for 2 h resulted in improved cytotoxicities for two of the complexes. PMID:20131860

  16. Multistate and Multicolor Photochromism through Selective Cycloreversion in Asymmetric Platinum(II) Complexes with Two Different Dithienylethene-Acetylides.

    PubMed

    Li, Bin; Wen, Hui-Min; Wang, Jin-Yun; Shi, Lin-Xi; Chen, Zhong-Ning

    2015-12-01

    Four asymmetric bis(dithienylethene-acetylide) platinum(II) complexes trans-Pt(PEt3)2(L1o)(L5o) (1oo), trans-Pt(PEt3)2(L2o)(L5o) (2oo), trans-Pt(PEt3)2(L3o)(L5o) (3oo), and trans-Pt(PEt3)2(L4o)(L5o) (4oo) with two different dithienylethene-acetylides (L1o-L5o) were designed to modulate stepwise, multistate, and multicolor photochromism by modifying ring-closure absorption wavelengths. Upon irradiation under UV light, 1oo converts only to 1oc without the observation of 1co and dually ring-closed species 1cc. In contrast, both mixed ring-open/closed species oc and co as well as dually ring-closed species cc are observed upon UV light irradiation of 2oo-4oo, implying that a substantial stepwise photochromic process occurs following 2oo-4oo → 2oc-4oc/2co-4co → 2cc-4cc. The conversion percentage of dually ring-closed species at the photostationary state (PSS) is progressively increased following 1cc (0%) → 2cc (40%) → 3cc (86%) → 4cc (>95%), coinciding with the progressive red-shift of ring-closure absorption bands in free L1c (441 nm) → L2c (510 nm) → L3c (556 nm) → L4c (591 nm). Particularly, compound 2 affords four states (2oo, 2co, 2oc, and 2cc) with different colors (colorless, purple, blue, and dark blue, respectively) through a selective photochemical cycloreversion process upon irradiation with appropriate wavelengths of light. Although stepwise photocyclization reactions 3oo → 3co/3oc → 3cc and 4oo → 4co/4oc → 4cc are observed, multicolor photochromism of 3oo and 4oo could not be achieved because ring-closure absorption bands between L3c/L4c and L5c are significantly overlapped. The stepwise photochemical processes are well demonstrated by NMR, UV-vis, and infrared (IR) spectroscopy and time-dependent density functional theory (TD-DFT) computational studies. PMID:26595115

  17. Thermochromic platinum complexes

    DOEpatents

    Kostic, Nenad M.; Zhou, Xia-Ying

    1990-05-29

    Thermochromic compounds containing the [Pt(dipic)Cl].sup.- anion. These compounds are yellow and monomeric at high temperatures or in low concentrations and abruptly change to red and polymeric at low temperatures or higher solution concentrations. This unusual property allows them to be used as temperature sensors.

  18. Thermochromic platinum complexes

    DOEpatents

    Kostic, Nenad M.; Zhou, Xia-Ying

    1989-08-15

    Thermochromic compounds containing the [Pt(dipic)Cl].sup.- anion. These compounds are yellow and monomeric at high temperatures or in low concentrations and abruptly change to red and polymeric at low temperatures or higher solution concentrations. This unusual property allows them to be used as temperature sensors.

  19. Cyclometalated iridium(III) complexes as mitochondria-targeted anticancer agents.

    PubMed

    Xiong, Kai; Chen, Yu; Ouyang, Cheng; Guan, Rui-Lin; Ji, Liang-Nian; Chao, Hui

    2016-06-01

    Four cyclometalated iridium(III) complexes [Ir(dfppy)2(L)](+) (dfppy = 2-(2,4-difluorophenyl)pyridine, L = 6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine, Ir1; 6-(isoquinolin-1-yl)-1,3,5-triazine-2,4-diamine, Ir2; 6-(quinolin-2-yl)-1,3,5-triazine-2,4-diamine, Ir3; 6-(isoquinolin-3-yl)-1,3,5-triazine-2,4-diamine, Ir4) have been synthesized and characterized. Distinct from cisplatin, Ir1-Ir4 could specifically target mitochondria and induced apoptosis against various cancer cell lines, especially for cisplatin resistant cells. ICP-MS results indicated that Ir1-Ir4 were taken up via different mechanism for cancer cells and normal cells, which resulted in their high selectivity. The structure-activity relationship and signaling pathways were also discussed. PMID:27039888

  20. Novel amphiphilic cationic porphyrin and its Ag(II) complex as potential anticancer agents

    PubMed Central

    Tovmasyan, Artak; Babayan, Nelli; Poghosyan, David; Margaryan, Kristine; Harutyunyan, Boris; Grigoryan, Rusanna; Sarkisyan, Natalia; Spasojevic, Ivan; Mamyan, Suren; Sahakyan, Lida; Aroutiounian, Rouben; Ghazaryan, Robert; Gasparyan, Gennadi

    2015-01-01

    In the present study we have synthesized a novel amphiphilic porphyrin and its Ag(II) complex through modification of water-soluble porphyrinic structure in order to increase its lipophilicity and in turn pharmacological potency. New cationic non-symmetrical meso-substituted porphyrins were characterized by UV–visible, electrospray ionization mass spectrometry (ESI-MS), 1H NMR techniques, lipophilicity (thin-layer chromatographic retention factor, Rf), and elemental analysis. The key toxicological profile (i.e. cytotoxicity and cell line-(cancer type-) specificity; genotoxicity; cell cycle effects) of amphiphilic Ag porphyrin was studied in human normal and cancer cell lines of various tissue origins and compared with its water-soluble analog. Structural modification of the molecule from water-soluble to amphiphilic resulted in a certain increase in the cytotoxicity and a decrease in cell line-specificity. Importantly, Ag(II) porphyrin showed less toxicity to normal cells and greater toxicity to their cancerous counterparts as compared to cisplatin. The amphiphilic complex was also not genotoxic and demonstrated a slight cytostatic effect via the cell cycle delay due to the prolongation of S-phase. As expected, the performed structural modification affected also the photocytotoxic activity of metal-free amphiphilic porphyrin. The ligand tested on cancer cell line revealed a dramatic (more than 70-fold) amplification of its phototoxic activity as compared to its water-soluble tetracationic metal-free analog. The compound combines low dark cytotoxicity with 5 fold stronger phototoxicity relative to Chlorin e6 and could be considered as a potential photosensitizer for further development in photodynamic therapy. PMID:25086237

  1. A combined experimental and theoretical investigation of a new imineoxime and its palladium(II) and platinum(II) complexes: Synthesis, structural characterization and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Kaya, Yunus; Icsel, Ceyda; Yilmaz, Veysel T.; Buyukgungor, Orhan

    2014-12-01

    A new imineoxime compound {(1E,2E)-(2-hydroxy-ethylimino)-naphthalene-2yl-ethanal oxime (heineoH)} and its palladium(II) and platinum(II) complexes ([M(heineo)2]) have been synthesized and characterized by IR, NMR, UV-vis, elemental analysis, mass spectra and X-ray single crystal diffraction. [Pt(heineo)2] was obtained as a single crystal, while [Pd(heineo)2] was synthesized as a polycrystalline powder. The X-ray diffraction analysis of the [Pt(heineo)2] indicated that the platinum(II) ion is coordinated by two heineo ligands in a distorted square-planar geometry. DFT (B3LYP/6-311++G(d,p) and LANL2DZ) calculations on the ligand and its complexes were carried out to correlate the geometry and vibrational and electronic properties. Additionally, heineoH is fluorescent in EtOH at room temperature, but the fluorescence is quenched in the case of the metal complexes.

  2. A combined experimental and theoretical investigation of a new imineoxime and its palladium(II) and platinum(II) complexes: synthesis, structural characterization and spectroscopic properties.

    PubMed

    Kaya, Yunus; Icsel, Ceyda; Yilmaz, Veysel T; Buyukgungor, Orhan

    2014-12-10

    A new imineoxime compound {(1E,2E)-(2-hydroxy-ethylimino)-naphthalene-2yl-ethanal oxime (heineoH)} and its palladium(II) and platinum(II) complexes ([M(heineo)2]) have been synthesized and characterized by IR, NMR, UV-vis, elemental analysis, mass spectra and X-ray single crystal diffraction. [Pt(heineo)2] was obtained as a single crystal, while [Pd(heineo)2] was synthesized as a polycrystalline powder. The X-ray diffraction analysis of the [Pt(heineo)2] indicated that the platinum(II) ion is coordinated by two heineo ligands in a distorted square-planar geometry. DFT (B3LYP/6-311++G(d,p) and LANL2DZ) calculations on the ligand and its complexes were carried out to correlate the geometry and vibrational and electronic properties. Additionally, heineoH is fluorescent in EtOH at room temperature, but the fluorescence is quenched in the case of the metal complexes. PMID:24929321

  3. Investigating the effect of gallium curcumin and gallium diacetylcurcumin complexes on the structure, function and oxidative stability of the peroxidase enzyme and their anticancer and antibacterial activities.

    PubMed

    Jahangoshaei, Parisa; Hassani, Leila; Mohammadi, Fakhrossadat; Hamidi, Akram; Mohammadi, Khosro

    2015-10-01

    Curcumin has a wide spectrum of biological and pharmacological activities including anti-inflammatory, antioxidant, antiproliferative, antimicrobial and anticancer activities. Complexation of curcumin with metals has gained attention in recent years for improvement of its stability. In this study, the effect of gallium curcumin and gallium diacetylcurcumin on the structure, function and oxidative stability of horseradish peroxidase (HRP) enzyme were evaluated by spectroscopic techniques. In addition to the enzymatic investigation, the cytotoxic effect of the complexes was assessed on bladder, MCF-7 breast cancer and LNCaP prostate carcinoma cell lines by MTT assay. Furthermore, antibacterial activity of the complexes against S. aureus and E. coli was explored by dilution test method. The results showed that the complexes improve activity of HRP and also increase its tolerance against the oxidative condition. After addition of the complexes, affinity of HRP for hydrogen peroxide substrate decreases, while the affinity increases for phenol substrate. Circular dichroism, intrinsic and synchronous fluorescence spectra showed that the enzyme structure around the catalytic heme group becomes less compact and also the distance between the heme group and tryptophan residues increases due to binding of the complexes to HRP. On the whole, it can be concluded that the change in the enzyme structure upon binding to the gallium curcumin and gallium diacetylcurcumin complexes results in an increase in the antioxidant efficiency and activity of the peroxidise enzyme. The result of anticancer and antibacterial activities suggested that the complexes exhibit the potential for cancer treatment, but they have no significant antibacterial activity. PMID:26369539

  4. Synthesis, spectroscopic, anticancer, antibacterial and antifungal studies of Ni(II) and Cu(II) complexes with hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Vandana; Kumar, Suresh

    2015-01-01

    Schiff's base ligand(L) hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene] and its metal complexes have been synthesized and characterized by elemental analysis, molar conductance, various spectroscopic techniques such as electronic, IR, 1H NMR, mass, EPR. Molar conductance of complexes in DMF solution corresponds to non-electrolyte. Complexes have general composition [M(L)2X2], where M = Ni(II) and Cu(II), X = Cl-, NO3-, CH3COO- and ½SO42-. On the basis of above spectral studies, an octahedral geometry has been assigned for Ni(II) complexes and tetragonal geometry for Cu(II) complexes except [Cu(L)2SO4] which possesses five coordinated trigonal bipyramidal geometry. These metal complexes were also tested for their anticancer, antibacterial and antifungal activities to assess their inhibition potential. Anticancer activity of ligand and its metal complexes were evaluated using SRB fluorometric assay and Adriamycin (ADR) was applied as positive control. Schiff's base ligand and its metal complexes were screened for their antibacterial and antifungal activity against Escherichia coli, Bacillus cereus and Aspergillus niger, Aspergillus flavus, respectively. Kirby-Bauer single disk susceptibility test was used for antibacterial activity and well diffusion method for antifungal activity of the compounds on the used fungi.

  5. Comparison of the Properties of SnCl(3)(-) and SnBr(3)(-) Complexes of Platinum(II).

    PubMed

    Nelson, John H.; Wilson, William L.; Cary, Lewis W.; Alcock, Nathaniel W.; Clase, Howard J.; Jas, Gouri S.; Ramsey-Tassin, Lori; Kenney, John W.

    1996-02-14

    independent observed reflections with I/sigma(I) > 3.0 and I/sigma(I) > 2.0, respectively. For the former, the asymmetric unit contains 1.5 cis-[PtBr(2)(SnBr(3))(2)](2)(-) ions, 0.5 of which is disordered in such a way as to be pseudocentrosymmetric. This disordering involves a half-occupied PtBr(2) unit appearing on either side of the center. Simultaneously, one bromine from each SnBr(3) ligand changes sides while the other two bromines appear in average positions with very small displacements between their positions. The Pt-Sn distance in [PtBr(3)(SnBr(3))](2)(-) (2.486(3) Å) is slightly shorter than that incis-[PtBr(2)(SnBr(3))(2)](2)(-) (2.4955(3) Å, average), and both are significantly longer than that previously found in cis-[PtCl(2)(SnCl(3))(2)](2)(-) (2.3556 Å, average), which is not consistent with the relative magnitudes of the (1)J((195)Pt-(119)Sn) coupling constants (28 487, 25 720, and 27 627 Hz, respectively). From our electronic absorption and emission studies of the Pt-SnX(3)(-) complexes, we conclude that (a) the low-energy transitions are d-d transitions analogous to those found in [PtX(4)](2)(-) systems, (b) the SnCl(3)(-) ligand is a stronger sigma donor than SnBr(3)(-), (c) the triplet state from which the emission occurs is split by spin-orbit coupling into different spin-orbit states, (d) a forbidden spin-orbit state must lie at or near the bottom of the spin-orbit manifold, (e) the solid state crystal environment perturbs the platinum-tin halide electronic states, and (f) dispersion of the samples in solvents changes this perturbation, which can be rationalized in terms of an in-plane distortion of the square planar platinum coordination sphere. PMID:11666261

  6. Phosphinogold(I) dithiocarbamate complexes: effect of the nature of phosphine ligand on anticancer properties.

    PubMed

    Keter, Frankline K; Guzei, Ilia A; Nell, Margo; Zyl, Werner E van; Darkwa, James

    2014-02-17

    The reactions of potassium salts of the dithiocarbamates L {where L = pyrazolyldithiocarbamate (L1), 3,5-dimethylpyrazolyldithiocarbamate (L2), or indazolyldithiocarbamate (L3)} with the gold precursors [AuCl(PPh3)], [Au2Cl2(dppe)], [Au2Cl2(dppp)], or [Au2Cl2(dpph)] lead to the new gold(I) complexes [AuL(PPh3)] (1-3), [Au2L2(dppe)] (4-6), [(Au2L2)(dppp)] (7-9), and [Au2(L)2(dpph)] (10-12) {where dppe = 1,2-bis(diphenylphosphino)ethane, dppp = 1,3-bis(diphenylphosphino)propane, and dpph = 1,6-bis(diphenylphosphino)hexane}. These gold compounds were characterized by a combination of NMR and infrared spectroscopy, microanalysis, and mass spectrometry; and in selected cases by single-crystal X-ray crystallography. Compounds 4-6, which have dppe ligands, are unstable in solution for prolonged periods, with 4 readily transforming to the Au18 cluster [Au18S8(dppe)6]Cl2 (4a) in dichloromethane. Compounds 1-3 and 7-12 are all active against human cervical epithelioid carcinoma (HeLa) cells, but the most active compounds are 10 and 11, with IC50 values of 0.51 μM and 0.14 μM, respectively. Compounds 10 and 11 are more selective toward HeLa cells than they are toward normal cells, with selectivities of 25.0 and 70.5, respectively. Further tests, utilizing the 60-cell-line Developmental Therapeutics Program at the National Cancer Institute (U.S.A.), showed 10 and 11 to be active against nine other types of cancers. PMID:24476103

  7. Cationic drug-based self-assembled polyelectrolyte complex micelles: Physicochemical, pharmacokinetic, and anticancer activity analysis.

    PubMed

    Ramasamy, Thiruganesh; Poudel, Bijay Kumar; Ruttala, Himabindu; Choi, Ju Yeon; Hieu, Truong Duy; Umadevi, Kandasamy; Youn, Yu Seok; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-10-01

    Nanofabrication of polymeric micelles through self-assembly of an ionic block copolymer and oppositely charged small molecules has recently emerged as a promising method of formulating delivery systems. The present study therefore aimed to investigate the interaction of cationic drugs doxorubicin (DOX) and mitoxantrone (MTX) with the anionic block polymer poly(ethylene oxide)-block-poly(acrylic acid) (PEO-b-PAA) and to study the influence of these interactions on the pharmacokinetic stability and antitumor potential of the formulated micelles in clinically relevant animal models. To this end, individual DOX and MTX-loaded polyelectrolyte complex micelles (PCM) were prepared, and their physicochemical properties and pH-responsive release profiles were studied. MTX-PCM and DOX-PCM exhibited a different release profile under all pH conditions tested. MTX-PCM exhibited a monophasic release profile with no initial burst, while DOX-PCM exhibited a biphasic release. DOX-PCM showed a higher cellular uptake than that shown by MTX-PCM in A-549 cancer cells. Furthermore, DOX-PCM induced higher apoptosis of cancer cells than that induced by MTX-PCM. Importantly, both MTX-PCM and DOX-PCM showed prolonged blood circulation. MTX-PCM improved the AUCall of MTX 4-fold compared to a 3-fold increase by DOX-PCM for DOX. While a definite difference in blood circulation was observed between MTX-PCM and DOX-PCM in the pharmacokinetic study, both MTX-PCM and DOX-PCM suppressed tumor growth to the same level as the respective free drugs, indicating the potential of PEGylated polymeric micelles as effective delivery systems. Taken together, our results show that the nature of interactions of cationic drugs with the polyionic copolymer can have a tremendous influence on the biological performance of a delivery system. PMID:27318960

  8. Bioavailability of platinum emitted from automobile exhaust.

    PubMed

    Artelt, S; Kock, H; Nachtigall, D; Heinrich, U

    1998-08-01

    A model substance was used which is similar in respect to platinum content of exhaust particles emitted from a three-way-catalytic converter equipped engine. The bioavailability of platinum from such exhaust particles and the kind of platinum species formed in vivo were assessed. An in vitro solubility test showed a solubility of approximately 10 percent of platinum content of the model substance in physiological sodium chloride solution. Two short-term animal studies (8 days) were performed. In all examined rat tissues and body fluids platinum could be detected. In addition, the contribution of the overall bioavailability caused by swallowing a certain amount of the intratracheally applied platinum was evaluated by oral application. It was very low. An analytical method was developed to determine platinum species. Synthetic samples (matrix with a platinum standard solution) were analysed. In rat bronchoalveolar lavage spiked with a platinum standard solution only low molecular complexed platinum was found whereas in rat blood plasma all platinum was bound to proteins. In ongoing studies, the model substance is being tested in a three month rat inhalation study. PMID:9820662

  9. Methanol-Triggered Turn-On-Type Photoluminescence in l-Cysteinato Palladium(II) and Platinum(II) Complexes Supported by a Bis(diphenylphosphine) Ligand.

    PubMed

    Yoshinari, Nobuto; Shimizu, Tsutomu; Nozaki, Koichi; Konno, Takumi

    2016-03-01

    The selective detection of methanol by photoluminescence under environmental conditions has been a great challenge for materials science. Herein, a reversible, turn-on-type photoluminescence triggered by methanol vapor in square-planar palladium(II) and platinum(II) complexes, newly prepared from [MCl2(1,3-bis(diphenylphosphino)propane)] and l-cysteine, is reported. Both the "turn-on" and "turn-off" states of the complexes were crystallographically characterized, which revealed the presence of intermolecular OH···O and CH···π interactions between methanol and the complex molecules in the turn-on state. These interactions prevent the vibrational quenching of the luminescence, leading to the turn-on-type luminescence in this system. PMID:26882289

  10. Glutathione selectively modulates the binding of platinum drugs to human copper chaperone Cox17.

    PubMed

    Zhao, Linhong; Wang, Zhen; Wu, Han; Xi, Zhaoyong; Liu, Yangzhong

    2015-12-01

    The copper chaperone Cox17 (cytochrome c oxidase copper chaperone) has been shown to facilitate the delivery of cisplatin to mitochondria, which contributes to the overall cytotoxicity of the drug [Zhao et al. (2014) Chem. Commun. 50: , 2667-2669]. Kinetic data indicate that Cox17 has reactivity similar to glutathione (GSH), the most abundant thiol-rich molecule in the cytoplasm. In the present study, we found that GSH significantly modulates the reaction of platinum complexes with Cox17. GSH enhances the reactivity of three anti-cancer drugs (cisplatin, carboplatin and oxaliplatin) to Cox17, but suppresses the reaction of transplatin. Surprisingly, the pre-formed cisplatin-GSH adducts are highly reactive to Cox17; over 90% platinum transfers from GSH to Cox17. On the other hand, transplatin-GSH adducts are inert to Cox17. These different effects are consistent with the drug activity of these platinum complexes. In addition, GSH attenuates the protein aggregation of Cox17 induced by platination. These results indicate that the platinum-protein interactions could be substantially influenced by the cellular environment. PMID:26399480

  11. Cellular mechanisms of the cytotoxicity of the anticancer drug elesclomol and its complex with Cu(II).

    PubMed

    Hasinoff, Brian B; Wu, Xing; Yadav, Arun A; Patel, Daywin; Zhang, Hui; Wang, De-Shen; Chen, Zhe-Sheng; Yalowich, Jack C

    2015-02-01

    The potent anticancer drug elesclomol, which forms an extremely strong complex with copper, is currently undergoing clinical trials. However, its mechanism of action is not well understood. Treatment of human erythroleukemic K562 cells with either elesclomol or Cu(II)-elesclomol caused an immediate halt in cell growth which was followed by a loss of cell viability after several hours. Treatment of K562 cells also resulted in induction of apoptosis as measured by annexin V binding. Elesclomol or Cu(II)-elesclomol treatment caused a G1 cell cycle block in synchronized Chinese hamster ovary cells. Elesclomol and Cu(II)-elesclomol induced DNA double strand breaks in K562 cells, suggesting that they may also have exerted their cytotoxicity by damaging DNA. Cu(II)-elesclomol also weakly inhibited DNA topoisomerase I (5.99.1.2) but was not active against DNA topoisomerase IIα (5.99.1.3). Elesclomol or Cu(II)-elesclomol treatment had little effect on the mitochondrial membrane potential of viable K562 cells. NCI COMPARE analysis showed that Cu(II)-elesclomol exerted its cytotoxicity by mechanisms similar to other cytotoxic copper chelating compounds. Experiments with cross-resistant cell lines overexpressing several ATP-binding cassette (ABC) type efflux transporters showed that neither elesclomol nor Cu(II)-elesclomol were cross-resistant to cells overexpressing either ABCB1 (Pgp) or ABCG2 (BCRP), but that cells overexpressing ABCC1 (MRP1) were slightly cross-resistant. In conclusion, these results showed that elesclomol caused a rapid halt in cell growth, induced apoptosis, and may also have inhibited cell growth, in part, through its ability to damage DNA. PMID:25550273

  12. Fabrication of polymer-platinum(II) complex nanomicelle from mPEG-g-alpha,beta-poly [(N-amino acidyl)-DL-aspartamide] and cis-dichlorodiammine platinum(II) and its cytotoxicity.

    PubMed

    Wang, Chengyun; Gong, Yanbao; Fan, Naiqian; Liu, Shunying; Luo, Shufang; Yu, Jiahui; Huang, Jin

    2009-04-01

    The aim of research is to develop and optimize delivery system for cis-dichlorodiammine platinum(II) (CDDP) based on polymer-metal complex nanomicelles with controllable particle size in order to achieve the passive tumor targeting. In particular, graft copolymers, mPEG-g-alpha,beta-poly [(N-amino acidyl)-DL-aspartamide] (mPEG-g-PAAsp) were synthesized by the ring-opening reaction of polysuccinimide with mPEG-NH(2) (M(w): 2000 and 5000 Da), and then with l-aspartic acid and l-glutamic acid, respectively. mPEG-g-PAAsp-CDDP complex nanomicelles were fabricated from mPEG-g-PAAsp and CDDP. The formation of mPEG-g-PAAsp-CDDP nanomicelles was confirmed by fluorescence spectrophotoscopy, electrical conductivity and particle size measurements. It was found that all the nanomicelles showed spherical shapes with clear core-shell structures and narrow size distributions. Their sizes ranged from 80 to 160 nm, suggesting of their passive targeting potential to tumor tissue. With the increase of the molecular weight of mPEG, the sizes of mPEG-g-PAAsp-CDDP micelles showed a tendency to increase. mPEG-g-PAAsp-CDDP nanomicelles showed linear gradual drug release profiles in 40 h, suggestion of their sustained drug release behaviors. Compared with CDDP, mPEG-g-PAAsp-CDDP micelles showed essential decreased cytotoxicity to Bel-7402 cell line. PMID:19150231

  13. A comparative study on the interactions of human copper chaperone Cox17 with anticancer organoruthenium(II) complexes and cisplatin by mass spectrometry.

    PubMed

    Li, Lijie; Guo, Wei; Wu, Kui; Wu, Xuelei; Zhao, Linhong; Zhao, Yao; Luo, Qun; Wang, Yuanyuan; Liu, Yangzhong; Zhang, Qingwu; Wang, Fuyi

    2016-08-01

    Herein we report investigation of the interactions between anticancer organoruthenium complexes, [(η(6)-arene)Ru(en)(Cl)]PF6 (en=ethylenediamine, arene=p-cymene (1) or biphenyl (2)), and the human copper chaperone protein Cox17 by mass spectrometry with cisplatin as a reference. The electrospray ionization mass spectrometry (ESI-MS) results indicate much weaker binding of the ruthenium complexes than that of cisplatin to apo-Cox172s-s, the functional state of Cox17. Up to tetra-platinated Cox17 adducts were identified while only mono-ruthenated and a little amount of di-ruthenated Cox17 adducts were detected even for the reactions with 10-fold excess of the Ru complexes. However, ESI-MS analysis coupled with liquid chromatography of tryptic digests of metalated proteins identified only three platination sites as Met4, Cys27 and His47 residues, possibly due to the lower abundance or facile dissociation of Pt bindings at other sites. Complexes 1 and 2 were found to bind to the same three residues with Met4 as the major site. Inductively coupled plasma mass spectrometry results revealed that ~7mol Pt binding to 1mol apo-Cox172s-s molecules, compared to only 0.17 (1) and 0.10 (2) mol Ru to 1mol apo-Cox172s-s. This is in line with the circular dichroism results that much larger unfolding extent of α-helix of apo-Cox172s-s was observed upon cisplatin binding than that upon organoruthenium bindings. These results collectively indicate that Cox17 might not participate in the action of these anticancer organoruthenium complexes, and further verify the distinct anticancer mechanism of the organoruthenium(II) complexes from cisplatin. PMID:27235272

  14. A Mn(II) complex of boradiazaindacene (BODIPY) loaded graphene oxide as both LED light and H2O2 enhanced anticancer agent.

    PubMed

    Xu, Xiao-Lei; Shao, Jian; Chen, Qiu-Yun; Li, Cheng-Hao; Kong, Meng-Yun; Fang, Fang; Ji, Ling; Boison, Daniel; Huang, Tao; Gao, Jing; Feng, Chang-Jian

    2016-06-01

    Cancer cells are more susceptible to H2O2 induced cell death than normal cells. H2O2-activatable and O2-evolving nanoparticles could be used as photodynamic therapy agents in hypoxic environments. In this report, a photo-active Mn(II) complex of boradiazaindacene derivatives (Mn1) was used as a dioxygen generator under irradiation with LED light in water. Moreover, the in vitro biological evaluation for Mn1 and its loaded graphene oxide (herein called Mn1@GO) on HepG-2 cells in normal and hypoxic conditions has been performed. In particular, Mn1@GO can react with H2O2 resulting active anticancer species, which show high inhibition on both HepG-2 cells and CoCl2-treated HepG-2 cells (hypoxic cancer cells). The mechanism of LED light enhanced anticancer activity for Mn1@GO on HepG-2 cells was discussed. Our results show that Mn(II) complexes of boradiazaindacene (BODIPY) derivatives loaded GO can be both LED light and H2O2-activated anticancer agents in hypoxic environments. PMID:26901626

  15. The Potent Oxidant Anticancer Activity of Organoiridium Catalysts**

    PubMed Central

    Liu, Zhe; Romero-Canelón, Isolda; Qamar, Bushra; Hearn, Jessica M; Habtemariam, Abraha; Barry, Nicolas P E; Pizarro, Ana M; Clarkson, Guy J; Sadler, Peter J

    2014-01-01

    Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5-Cpxbiph)Ir(phpy)(Cl)] (1-Cl), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C∧N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η5-Cpxbiph)Ir(phpy)(py)]+ (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. PMID:24616129

  16. Crystal structures of di-chlorido-palladium(II), -platinum(II) and -rhodium(III) complexes containing 8-(di-phenyl-phosphan-yl)quinoline.

    PubMed

    Suzuki, Takayoshi; Yamaguchi, Hiroshi; Fujiki, Masayuki; Hashimoto, Akira; Takagi, Hideo D

    2015-05-01

    The crystal structures of di-chlorido-palladium(II), -platinum(II) and -rhodium(III) complexes containing 8-(di-phenyl-phosphan-yl)quinoline, (SP-4)-[PdCl2(C21H16NP)], (1) [systematic name: di-chlor-ido-(8-di-phenyl-phosphanyl-quinoline)-palladium(II)], (SP-4)-[PtCl2(C21H16NP)]·CH2Cl2, (2) [systematic name: di-chlorido-(8-di-phenyl-phos-phanyl-quinoline)-platinum(II) dichlorometh-ane monosolvate], and (OC-6-32)-[RhCl2(C21H16NP)2]PF6·0.5CH2Cl2·0.5CH3OH, (3) [systematic name: cis-di-chlor-ido-bis-(8-di-phenyl-phosphanyl-quinoline)-rhodium(III) hexa-fluorido-phos-phate di-chloro-methane/-methanol hemisolvate] are reported. In these complexes, the phosphanyl-quinoline acts as a bidentate ligand, forming a planar asymmetrical five-membered chelate ring. The palladium(II) and platinum(II) complex mol-ecules in (1) and (2), respectively, show a typical square-planar coordination geometry and form a dimeric structure through an inter-molecular π-π stacking inter-action between the quinolyl rings. The centroid-centroid distances between the stacked six-membered rings in (1) and (2) are 3.633 (2) and 3.644 (2) Å, respectively. The cationic rhodium(III) complex in (3) has a cis(Cl),cis(P),cis(N) (OC-6-32) configuration of the ligands, in which two kinds of intra-molecular π-π stacking inter-actions are observed: between the quinolyl and phenyl rings and between two phenyl rings, the centroid-centroid distances being 3.458 (2) and 3.717 (2) Å, respectively. The PF6 (-) anion in (3) is rotationally disordered, the site occupancies of each F atom being 0.613 (14) and 0.387 (14). The CH2Cl2 and CH3OH solvent mol-ecules are also disordered and equal site occupancies of 0.5 are assumed. PMID:25995852

  17. Shape and distribution analysis of Merensky Reef potholing, Northam Platinum Mine, western Bushveld Complex: implications for pothole formation and growth

    NASA Astrophysics Data System (ADS)

    Smith, Damian S.; Basson, Ian J.

    2006-06-01

    Syn-magmatic removal of the cumulate pile during the formation of the Bushveld Complex resulted in “potholes”. Erosion progressed downward in the cumulate pile, resulting in a series of steep, transgressive contacts between locally conformable potholed reefs in the regional pothole sub-facies of the Swartklip Facies in the western limb of the Bushveld Complex. The deepest of these potholes, “third-order” or “FWP2” potholing, occurs where the base of the Merensky Cyclic Unit transgresses the Upper Pseudo-Reef Chromitite marker horizon. The base of a FWP2 pothole on Northam Platinum Mine consists of an unconformable stringer Merensky Chromitite overlain by a medium-grained, poikilitic orthopyroxenite and underlain by either a pegmatitic harzburgite or the medium-grained Lower Pseudo-Reef Anorthosite. Detailed shape and distribution analysis of FWP2 potholes reveals underlying patterns in their shape and distribution which, in turn, suggest a structural control. The ratio between pothole short vs long axes is 0.624 ( N=1,385), although the ratio increases from 0.48 to 0.61 in the long axis range 10 to 60 m, then decreases from 0.61 to 0.57 from 61 to 100 m, increasing again from 0.57 to 0.61 from 101 to 400 m, suggesting that there is not a simple relationship between pothole shape and size. Shape (circularity, eccentricity, and dendricity) analysis of a subset of 638 potholes indicates that potholes with long axes <100 m have an elliptical, average normalized shape, elongate on a 120-150° orientation. Potholes with long axis lengths >100 m have an average normalized shape that is bilobate and elongate on a 120° orientation. The average aspect ratio (short axis length divided by long axis length) of potholes is highest for potholes with long axis lengths >100 m and lowest for potholes with long axis lengths between 35 and 60 m. The most common long axis orientation for potholes with long axis lengths <100 m is 150° but 120° for long axis lengths >100 m

  18. Characterization of the host–guest complex of a curcumin analog with β-cyclodextrin and β-cyclodextrin–gemini surfactant and evaluation of its anticancer activity

    PubMed Central

    Poorghorban, Masoomeh; Das, Umashankar; Alaidi, Osama; Chitanda, Jackson M; Michel, Deborah; Dimmock, Jonathan; Verrall, Ronald; Grochulski, Pawel; Badea, Ildiko

    2015-01-01

    Background Curcumin analogs, including the novel compound NC 2067, are potent cytotoxic agents that suffer from poor solubility, and hence, low bioavailability. Cyclodextrin-based carriers can be used to encapsulate such agents. In order to understand the interaction between the two molecules, the physicochemical properties of the host–guest complexes of NC 2067 with β-cyclodextrin (CD) or β-cyclodextrin–gemini surfactant (CDgemini surfactant) were investigated for the first time. Moreover, possible supramolecular structures were examined in order to aid the development of new drug delivery systems. Furthermore, the in vitro anticancer activity of the complex of NC 2067 with CDgemini surfactant nanoparticles was demonstrated in the A375 melanoma cell line. Methods Physicochemical properties of the complexes formed of NC 2067 with CD or CDgemini surfactant were investigated by synchrotron-based powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Synchrotron-based small- and wide-angle X-ray scattering and size measurements were employed to assess the supramolecular morphology of the complex formed by NC 2067 with CDgemini surfactant. Lastly, the in vitro cell toxicity of the formulations toward A375 melanoma cells at various drug-to-carrier mole ratios were measured by cell viability assay. Results Physical mixtures of NC 2067 and CD or CDgemini surfactant showed characteristics of the individual components, whereas the complex of NC 2067 and CD or CDgemini surfactant presented new structural features, supporting the formation of the host–guest complexes. Complexes of NC 2067 with CDgemini surfactants formed nanoparticles having sizes of 100–200 nm. NC 2067 retained its anticancer activity in the complex with CDgemini surfactant for different drug-to-carrier mole ratios, with an IC50 (half-maximal inhibitory concentration) value comparable to that for NC 2067 without the carrier. Conclusion The formation of

  19. Further studies on the synthesis of finely divided platinum

    SciTech Connect

    Turkevich, J.; Miner, R.S. Jr.; Babenkova, L.

    1986-09-25

    An investigation was made of the effect of pH and of starting platinum complexes on the synthesis of monodisperse platinum particles by citrate reduction. The antitumor drug cis-platin does not readily produce colloidal particles, and these lack activity for hydrogen peroxide decomposition. The growth of platinum particles by both citrate reduction and hydrogen gas treatment was also studied.

  20. Platinum-group elements in rocks from the voikar-syninsky ophiolite complex, Polar Urals, U.S.S.R.

    USGS Publications Warehouse

    Page, N.J.; Aruscavage, P. J.; Haffty, J.

    1983-01-01

    Analyses of platinum-group elements (PGE) in rocks collected from the Voikar-Syninsky ophiolite in the Polar Urals suggest that the distribution and geochemistry of PGE in this Paleozoic ophiolite are similar to those in Mesozoic ophiolites from elsewhere. Chondrite-normalized PGE patterns for chromitite, the tectonite unit, and ultramafic and mafic cumulate unit have negative slopes. These results are similar to those found for chromitites from other ophiolites; stratiform chromities show positive slopes. If the magmas that form both types of chromitite originate from similar mantle source material with respect to PGE content, the processes involved must be quite different. However, the distinct chondrite-normalized PGE patterns may reflect differing source materials. ?? 1983 Springer-Verlag.

  1. Synthesis of binuclear platinum complexes containing the ligands 8-naphthyridine, 2-aminopyridine, and 7-azaindolate. An experimental study of the steric hindrance of the bulky pentafluorophenyl ligands in the synthesis of binuclear complexes.

    PubMed

    Casas, José M; Diosdado, Beatriz E; Forniés, Juan; Martín, Antonio; Rueda, Angel J; Orpen, A Guy

    2008-10-01

    The bidentate N-donor ligands 2-aminopyridine (2-ampy), 7-azaindolate (aza) and 1,8-naphthyridine (napy) have been used to study the steric effect of pentafluorophenyl groups in the synthesis of binuclear platinum(II) complexes. The 2-ampy and aza ligands bridge two "Pt(C 6F 5) 2" fragments with Pt...Pt distances of 4.1 and 3.4 A, respectively (complexes 1 and 3). Under the same reaction conditions the napy ligand shows chelating behavior and makes the mononuclear complex ( A) highly reactive because of its strained coordination. One of the Pt-N bonds of the chelating complex is broken on reaction with HX {X = Cl ( 4), Br ( 5)} because of protonation while the anion X (-) occupies a created vacant site. The resulting mononuclear complex eliminates C 6F 5H when refluxed, and a binuclear complex ( 6) with two napy ligands bridging two "Pt(C 6F 5)Cl" fragments is obtained. The reaction of A with HPPh 2 affords a mononuclear complex ( 7) analogous to complexes 5 and 6, but reflux gives a binuclear complex ( 8) with the two napy ligands terminally bound and the PPh 2 groups bridging the "Pt(C 6F 5)napy" moieties. The reaction of A with HCCPh gives a binuclear complex; moreover, the final product does not depend on the ratio of complex A to HCCPh. Complexes 1, 4, 6, 9 have been structurally characterized by X-ray diffraction. PMID:18767797

  2. The combined treatment with novel platinum(II) complex and anti-MUC1 increases apoptotic response in MDA-MB-231 breast cancer cells.

    PubMed

    Gornowicz, Agnieszka; Bielawska, Anna; Czarnomysy, Robert; Gabryel-Porowska, Halina; Muszyńska, Anna; Bielawski, Krzysztof

    2015-10-01

    New strategy of cancer's targeting treatment is combining monoclonal antibodies with chemotherapeutic agents. An important goal of targeted therapy appears to be a transmembrane glycoprotein type I-mucin 1 (MUC1), which is overexpressed in tumors of epithelial origin, especially in breast cancer. The goal of the study was to check the effect of monoclonal antibody against MUC1 with novel platinum(II) complex (Pt12) on selected aspects of apoptosis in human MDA-MB-231 breast cancer cells. The number of apoptotic and necrotic cells was measured using annexin V binding assay. The decrease of mitochondrial membrane potential (MMP) and DNA fragmentation was analyzed. Finally, the influence of novel platinum(II) complex (Pt12) used with anti-MUC1 on the concentration of selected markers of apoptosis such as Bax, caspase-8, -9, and caspase-3 was performed using ELISA. The results from combined treatment were compared with those obtained using monotherapy. In our study, we proved that anti-MUC1 used in combination with Pt12 strongly induced apoptosis in MDA-MB-231 breast cancer cell line. The effect was stronger than treatment with Pt12, cisplatin, anti-MUC1, and anti-MUC1 used with cisplatin. We also observed the highest decrease of MMP and the strongest DNA fragmentation after such a combined treatment. The results obtained from ELISA showed increased concentration of Bax, caspases-8, -9, -3 compared to monotherapy. Our study proved that Pt12 together with anti-MUC1 strongly induced apoptosis in estrogen-negative breast cancer cell line (MDA-MB-231). The apoptosis may go through extrinsic pathway associated with caspase-8 as well as intrinsic pathway connected with caspase-9. PMID:26112902

  3. Synthesis, characterization and in vitro anticancer activity of 18-membered octaazamacrocyclic complexes of Co(II), Ni(II), Cd(II) and Sn(II)

    NASA Astrophysics Data System (ADS)

    Kareem, Abdul; Zafar, Hina; Sherwani, Asif; Mohammad, Owais; Khan, Tahir Ali

    2014-10-01

    An effective series of 18 membered octaazamacrocyclic complexes of the type [MLX2], where X = Cl or NO3 have been synthesized by template condensation reaction of oxalyl dihydrazide with dibenzoylmethane and metal salt in 2:2:1 molar ratio. The formation of macrocyclic framework, stereochemistry and their overall geometry have been characterized by various physico-chemical studies viz., elemental analysis, electron spray ionization-mass spectrometry (ESI-MS), I.R, UV-Vis, 1H NMR, 13C NMR spectroscopy, X-ray diffraction (XRD) and TGA/DTA studies. These studies suggest formation of octahedral macrocyclic complexes of Co(II), Ni(II), Cd(II) and Sn(II). The molar conductance values suggest nonelectrolytic nature for all the complexes. Thermogravimatric analysis shows that all the complexes are stable up to 600 °C. All these complexes have been tested against different human cancer cell lines i.e. human hepatocellular carcinoma (Hep3B), human cervical carcinoma (HeLa), human breast adenocarcinoma (MCF7) and normal cells (PBMC). The newly synthesized 18-membered octaazamacrocyclic complexes during in vitro anticancer evaluation, displayed moderate to good cytotoxicity on liver (Hep3B), cervical (HeLa) and breast (MCF7) cancer cell lines, respectively. The most effective anticancer cadmium complex (C34H28N10CdO10) was found to be active with IC50 values, 2.44 ± 1.500, 3.55 ± 1.600 and 4.82 ± 1.400 in micro-molar on liver, cervical and breast cancer cell lines, respectively.

  4. Self-Assembled Nanoparticles Based on Amphiphilic Anticancer Drug-Phospholipid Complex for Targeted Drug Delivery and Intracellular Dual-Controlled Release.

    PubMed

    Li, Yang; Lin, Jinyan; Yang, Xiangrui; Li, Yanxiu; Wu, Shichao; Huang, Yu; Ye, Shefang; Xie, Liya; Dai, Lizong; Hou, Zhenqing

    2015-08-19

    Integrating advantages of mitomycin C (MMC)-phospholipid complex for increased drug encapsulation efficiency and reduced premature drug release, DSPE-PEG-folate (DSPE-PEG-FA) for specific tumor targeting, we reported a simple one-pot self-assembly route to prepare the MMC-phospholipid complex-loaded DSPE-PEG-based nanoparticles (MP-PEG-FA NPs). Both confocal imaging and flow cytometry demonstrated that MMC was distributed into nuclei after cellular uptake and intracellular drug delivery. More importantly, the systemically administered MP-PEG-FA NPs led to increased blood persistence and enhanced tumor accumulation in HeLa tumor-bearing nude mice. This study introduces a simple and effective strategy to design the anticancer drug-phospholipid complex-based targeted drug delivery system for sustained/controlled drug release. PMID:26234408

  5. Cu(II) complexes with co-planar [Cu(II)(N-N)(HIMC⁻)], their anti-cancer activities, ΔG, ΔE and solid luminescence.

    PubMed

    Cheng, Yi-Feng; Lu, Xiao-Ming; Wang, Guo

    2014-04-14

    [Cu(II)(phen)(HIMC(-))(H2O)]·[Cu(II)(phen)(HIMC(-))(NO3(-))]·NO3(-)·H2O (1) and [Cu(II)(2,2'-bipy)(HIMC(-))]·NO3(-)·xH2O (2) (phen = 1,10-phenanthroline, 2,2'-bipy = 2,2'-bipyridine, HIMC(-) = 1H-imidazole-4-carboxylate acid anion) have been synthesized at 180 °C, of which the HIMC(-) is produced by an in situ decarboxylation from H3IDC (1H-imidazole-4,5-dicarboxylic acid) in a one-pot hydrothermal reaction. The anticancer activity experiments in vitro show that 1 exhibited excellent activities against A549, Bel-7402 and HCT-8 cancer cells and is even better than the clinical anticancer drug 5-Fu (5-fluorouracil), while 2 shows little response toward the cancer cells. The single crystal X-ray diffraction indicated that complex 1 possess a co-planar [Cu(II)(N-N)(HIMC(-))] coordination geometry. The IR, elemental analysis and solid-state luminescent spectra of complexes 1 and 2 indicated that the composition of these two complexes are similar, whereas the 2,2'-bipy in complex 2 replaced phen in complex 1. The calculation by the Gaussian 03 program illustrated that the decrease in the energy gaps between π*-π from the free to the coordinated ligand for 2,2'-bipy and phen (ΔE) are 5.3 eV to 4.0 eV and 4.8 eV to 4.5 eV separately, and the relative changes of the Gibbs free energies (ΔG) for complex 1 and 2 decomposing into free Cu(2+) and ligands are about 0 kcal mol(-1) and 7 kcal mol(-1) respectively, which revealed that it is more stable when 2,2'-bipy is coordinated with Cu(II) than phen, and 1 is easier to disassociate into free Cu(2+) than 2. By relating the ΔE, ΔG, luminescent qualities and anticancer toxicities of the complexes with their composition, it can be concluded that both Cu(II) and their coordinated ligands are responsible for the inhibition against cancer cells. PMID:24519174

  6. Primary cumulus platinum minerals in the Monts de Cristal Complex, Gabon: magmatic microenvironments inferred from high-definition X-ray fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Barnes, Stephen J.; Fisher, Louise A.; Godel, Bélinda; Pearce, Mark A.; Maier, Wolfgang D.; Paterson, David; Howard, Daryl L.; Ryan, Christopher G.; Laird, Jamie S.

    2016-03-01

    An unusual occurrence of Pt-enriched pyroxenites in the Monts de Cristal igneous complex is characterized by unusually high ratios of Pt to other platinum-group elements (PGEs) and very low Cu and sulfide contents. Synchrotron X-ray fluorescence microscopy was used to identify over a hundred discrete grains of platinum minerals and relate their occurrence to textural associations in the host heteradcumulate orthopyroxenites. Element associations, backed up by FIB-SEM and PIXE probe observations, indicate that most of the Pt is associated with either As- or trace Cu-Ni-rich sulfides, or both. Some of the Pt-As grains can be identified as sperrylite, and most are likely to be Pt-Fe alloy. The relative abundances and volumes of Pt minerals to sulfide minerals are very large compared with typical magmatic sulfides. Almost all of the grains observed lie at or within a few tens of μm of cumulus orthopyroxene grain boundaries, and there is no significant difference between the populations of grains located inside or outside plagioclase oikocrysts. These oikocrysts are inferred to have crystallized either at the cumulus stage or very shortly thereafter, on the basis of their relationship to Ti enrichment in the margins of pyroxene grains not enclosed in oikocrysts. This relationship precludes a significant role of trapped intercumulus liquid in Pt deposition or mobilization and also allows a confident inference that Pt-rich and Pt-As-enriched phases precipitated directly from the magma at the cumulus stage. These observations lead to the conclusion that fractionation of Pt from other PGEs in this magmatic system is a consequence of a solubility limit for solid Pt metal and/or Pt arsenide.

  7. Platinum-group element distribution in base-metal sulfides of the UG2 chromitite, Bushveld Complex, South Africa—a reconnaissance study

    NASA Astrophysics Data System (ADS)

    Osbahr, Inga; Oberthür, Thomas; Klemd, Reiner; Josties, Anja

    2014-08-01

    Two drill cores of the UG2 chromitite from the eastern and western Bushveld Complex were studied by whole-rock analysis, ore microscopy, SEM/Mineral Liberation Analysis (MLA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis. The top and base of the UG2 main seam have the highest bulk-rock Pd and Pt concentrations. Sulfides mostly occur as aggregates of pentlandite, chalcopyrite, and rare pyrrhotite and pyrite or as individual grains associated mostly with chromite grains. In situ LA-ICP-MS analyses reveal that pentlandite carries distinctly elevated platinum-group element (PGE) contents. In contrast, pyrrhotite and chalcopyrite contain very low PGE concentrations. Pentlandite shows average maximum values of 350-1,000 ppm Pd, 200 ppm Rh, 130-175 ppm Ru, 20 ppm Os, and 150 ppm Ir, and is the principal host of Pd and Rh in the studied ores of the UG2. Mass balance calculations were conducted for samples representing the UG2 main seam of the drill core DT46, eastern Bushveld. Pentlandite consistently hosts elevated contents of the whole-rock Pd (up to 55 %) and Rh (up to 46 %), and erratic contents of Os (up to 50 %), Ir (2 to 17 %), and Ru (1-39 %). Platinum-group mineral (PGM) investigations support these mass balance results; most of the PGM are Pt-dominant such as braggite/cooperite and Pt-Fe alloys or laurite (carrying elevated concentrations of Os and Ir). Palladium and Rh-bearing PGM are rare. Both PGE concentrations and their distribution in base-metal sulfides (BMS) in the UG2 largely resemble that of the Merensky Reef, as most of the Pd and Rh are incorporated in pentlandite, whereas pyrrhotite, chalcopyrite, and pyrite are almost devoid of PGE.

  8. The mineralogy and mineral associations of platinum group elements and gold in the Platreef at Zwartfontein, Akanani Project, Northern Bushveld Complex, South Africa

    NASA Astrophysics Data System (ADS)

    van der Merwe, Frits; Viljoen, Fanus; Knoper, Mike

    2012-09-01

    The mineralogy of the platinum-group elements (PGE), and gold, in the Platreef of the Bushveld Complex, was investigated using an FEI Mineral Liberation Analyser. Polished sections were prepared from 171 samples collected from two boreholes, for the in-situ examination of platinum group minerals (PGM). PGM and gold minerals encountered include maslovite (PtBiTe, 32 area% of total PGM), kotulskite (Pd(BiTe), 17 %), isoferroplatinum (Pt3Fe, 15 %), sperrylite (PtAs2, 11 %), cooperite (PtS, 5 %), moncheite (PtTe2; 5 %), electrum (AuAg; 5 %), michenerite (PdBiTe; 3 %), Pd alloys (Pd, Sb, Sn; 3 %), hollingworthite ((Rh,Pt)AsS; 2 %), as well as minor (all <1 area% of total PGM) merenskyite (PdBiTe2), laurite (RuS2), rustenburgite (Pt0.4Pd0.4Sn0.2), froodite (PdBi2), atokite (Pd0.5Pt0.3Sn0.2), stumpflite (PtSb), plumbopalladinite (Pd3Pb2), and zvyagintsevite (Pd3Pb). An observed association of all PGM with base metal sulfides (BMS), and a pronounced association of PGE tellurides, arsenides and Pd&Pt alloys with secondary silicates, is consistent with the remobilisation and recrystallisation of some of the PGM's during hydrothermal alteration and serpentinisation subsequent to their initial (primary) crystallisation from BMS (e.g. Godel et al. J Petrol 48:1569-1604, 2007; Hutchinson and McDonald Appl Earth Sci (Trans Inst Min Metall B) 114:B208-224, 2008).

  9. Electronic and photophysical properties of platinum(II) biphenyl complexes containing 2,2'-bipyridine and 1,10-phenanthroline ligands.

    PubMed

    Rillema, D Paul; Cruz, Arvin J; Moore, Curtis; Siam, Khamis; Jehan, A; Base, Derek; Nguyen, T; Huang, Wei

    2013-01-18

    Pt(bph)(bpy) and Pt(bph)(phen), where bph is the 2,2'-biphenyl dianion, bpy is 2,2'-bipyridine, and phen is 1,10-phenanthroline, crystallize in the space groups I4(1)/a and P2(1)/c, respectively, in two different configurations as X-shaped and bowed (B). The distance between Pt centers is 3.5 Å indicative of π-π stacking. The complexes are optically active, absorb light at 440 nm, and emit in the solid state at room temperature and in the solid glass phase at 77 K. The emission maxima for both in the glass occur near 581 nm but are red-shifted to ∼700 nm in the solid state. Both complexes exhibit solvatochromism in nitrile-based solvents with the Pt(bph)(phen) complex showing greater excited state dipole character compared to the Pt(bph)(bpy) derivative. Frontier orbitals for the HOMO determined by DFT calculations contain electronic contributions from the biphenyl ligand and the platinum center. The LUMO orbitals primarily reside on the diimine ligands. TDDFT calculations indicate the low-energy transitions occur from the metal/bph combination to the diimine ligand. PMID:23270541

  10. Synthesis and characterization of mixed-ligand diimine-piperonal thiosemicarbazone complexes of ruthenium(II): Biophysical investigations and biological evaluation as anticancer and antibacterial agents

    NASA Astrophysics Data System (ADS)

    Beckford, Floyd A.; Thessing, Jeffrey; Shaloski, Michael, Jr.; Canisius Mbarushimana, P.; Brock, Alyssa; Didion, Jacob; Woods, Jason; Gonzalez-Sarrías, Antonio; Seeram, Navindra P.

    2011-04-01

    We have used a novel microwave-assisted method developed in our laboratories to synthesize a series of ruthenium-thiosemicarbazone complexes. The new thiosemicarbazone ligands are derived from benzo[ d][1,3]dioxole-5-carbaldehyde (piperonal) and the complexes are formulated as [(diimine) 2Ru(TSC)](PF 6) 2 (where the TSC is the bidentate thiosemicarbazone ligand). The diimine in the complexes is either 2,2'-bipyridine or 1,10-phenanthroline. The complexes have been characterized by spectroscopic means (NMR, IR and UV-Vis) as well as by elemental analysis. We have studied the biophysical characteristics of the complexes by investigating their anti-oxidant ability as well as their ability to disrupt the function of the human topoisomerase II enzyme. The complexes are moderately strong binders of DNA with binding constants of 10 4 M -1. They are also strong binders of human serum albumin having binding constants on the order of 10 4 M -1. The complexes show good in vitro anticancer activity against human colon cancer cells, Caco-2 and HCT-116 and indeed show some cytotoxic selectivity for cancer cells. The IC 50 values range from 7 to 159 μM (after 72 h drug incubation). They also have antibacterial activity against Gram-positive strains of pathogenic bacteria with IC 50 values as low as 10 μM; little activity was seen against Gram-negative strains. It has been established that all the compounds are catalytic inhibitors of human topoisomerase II.

  11. Synthesis, superoxide dismutase, nuclease, and anticancer activities of copper(II) complexes incorporating bis(2-picolyl)amine with different counter anions

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mohamed M.; Ramadan, Abdel-Motaleb M.; Mersal, Gaber A. M.; El-Shazly, Samir A.

    2011-07-01

    Interaction of the tridentate ligand bis(2-picolyl)amine L with copper(II) salts gave a series of copper(II) complexes with the formula types: [ LCu(X) 2] (X = Cl -1, = Br -2), [( LCu (H 2O)(μ-SO 4)( LCu(H 2O)]SO 43, [ LCu(OAc)](OAc )H 2O 4, [ LCu(H 2O) 2](Y) 2 (Y = NO3-5, = ClO4-6). Their structures and properties were characterized by elemental analysis, thermal analysis (TGA), IR, UV-vis and ESR spectroscopy, electrochemical measurements including cyclic voltammetry and electrical molar conductivity, and magnetic moment measurements. A square pyramidal geometry is proposed for the halogeno complexes 1 and 2 in monomeric structures. For sulfate complex, the sulfate group bridged two copper(II) ions of the two [N 3O] donor units to give the dimeric complex molecule 3 in square pyramidal environment around the copper(II) ions. In the case of complexes 4- 6, square planar stereochemistries in monomeric structures are suggested. The SOD biomimetic catalytic activity of the obtained complexes was assessed for their ability to inhibit the reduction of nitroblue tetrazolium (NBT). The catalytic efficiency of O2- scavenging by complexes depends on the nature of the particular acidic anion radical incorporated in the complex molecule and follows the order: NO3- > ClO4- > Br - ⩾ Cl - > SO4- > AcO -. A probable mechanistic implications for the catalytic dismutation of O2- by copper(II) complexes are proposed. Furthermore, complex 1 exhibits significant hydrolytic cleavage of the genomic DNA in the absence of any external additives. In addition, the in vitro study of cytotoxicity of complex 1 on colon cancer cell line (Caco-2) indicates that the complex has the potential to act as an effective anticancer drug with IC 50 value of 156 ± 0.35 μM.

  12. Effects of TAT-conjugated platinum nanoparticles on lifespan of mitochondrial electron transport complex I-deficient Caenorhabditis elegans, nuo-1

    PubMed Central

    Sakaue, Yuri; Kim, Juewon; Miyamoto, Yusei

    2010-01-01

    Platinum nanoparticle (Pt-np) species are superoxide dismutase/catalase mimetics and also have an activity similar to that of mitochondrial electron transport complex I. To examine if this complex I-like activity functions in vivo, we studied the effects of Pt-nps on the lifespan of a mitochondrial complex I-deficient Caenorhabditis elegans mutant, nuo-1 (LB25) compared with wild-type N2. We synthesized a fusion protein of a cell-penetrating peptide, human immunodeficiency virus-1 TAT (48–60), C-terminally linked to a peptide with a high affinity to platinum (GRKKRRQRRRPPQ-DRTSTWR). Pt-nps were functionalized by conjugation with this fusion protein at a 1:1 ratio of TAT-PtBP to Pt atoms. Adult worms were treated with conjugated Pt-nps for 10 days. The mean lifespan of untreated N2 and LB25 was 19.6 ± 0.4 and 11.8 ± 0.3 days, respectively. Using 5 μM of conjugated Pt-nps, the lifespan of N2 and LB25 was maximally extended. This maximal lifespan extension of LB25 was 31.9 ± 2.6%, which was significantly greater than that of N2 (21.1 ± 1.7%, P < 0.05 by Student’s t-test). Internalization of Pt into the whole body and mitochondria was similar between these two strains. Excessive accumulation of reactive oxygen species was not observed in the cytosol or mitochondria of untreated LB25. Treatment for five days with 5 μM conjugated Pt-nps decreased cytosolic and mitochondrial reactive oxygen species in N2 and LB25 to a similar extent. The ratio of [NAD+]/[NADH] was very low in the whole body and mitochondria of control LB25. After five days of treatment with 5 μM conjugated Pt-nps, the ratio of [NAD+]/[NADH] was increased in N2 and LB25. However, the degree of the increase was much higher in LB25 than in N2. Pt-nps function as NADH oxidase and recover the [NAD+]/[NADH] ratio in LB25, leading to effective extension of the lifespan of LB25. PMID:20957220

  13. trans-cis photoisomerization of azobenzene-conjugated dithiolato-bipyridine platinum(II) complexes: extension of photoresponse to longer wavelengths and photocontrollable tristability.

    PubMed

    Sakamoto, Ryota; Kume, Shoko; Sugimoto, Manabu; Nishihara, Hiroshi

    2009-01-01

    Azobenzene derivatives modified with dithiolato-bipyridine platinum(II) complexes were synthesized, revealing their highly extended photoresponses to the long wavelength region as well as unique photocontrollable tristability. The absorptions of trans-1 and trans-2 with one azobenzene group on the dithiolene and bipyridine ligands, respectively, cover the range from 300 to 700 nm. These absorptions are ascribed, by means of time-dependent (TD)DFT calculations, to transitions from dithiolene(pi) to bipyridine(pi*), namely, interligand charge transfer (CT), pi-pi*, and n-pi* transitions of the azobenzene unit, and pi-pi* transitions of the bipyridine ligand. In addition, only trans-1 shows distinctive electronic bands, assignable to transitions from the dithiolene(pi) to azobenzene(pi*), defined as intraligand CT. Complex 1 shows photoisomerization behavior opposite to that of azobenzene: trans-to-cis and cis-to-trans conversions proceed with 405 and 312 nm irradiation, which correspond to excitation with the intraligand CT, and pi-pi* bands of the azobenzene and bipyridine units, respectively. In contrast, complex 2 shows photoisomerization similar to that of azobenzene: trans-to-cis and cis-to-trans transformations occur with 365 and 405 nm irradiation, respectively. Irradiation at 578 nm, corresponding to excitation of the interligand CT transitions, results in cis-to-trans conversion of both 1 and 2, which is the longest wavelength ever reported to effect the photoisomerization of the azobenzene group. The absorption and photochromism of 4, which has azobenzene groups on both the dithiolato and bipyridine ligands, have characteristics quite similar to those of 1 and 2, which furnishes 4 with photocontrollable tristability in a single molecule using light at 365, 405, and 578 nm. We also clarified that 1 and 2 have high photoisomerization efficiencies, and good thermal stability of the cis forms. Complexes 3 and 5 have almost the identical photoresponse to those

  14. Selective turn-off phosphorescent and colorimetric detection of mercury(II) in water by half-lantern platinum(II) complexes.

    PubMed

    Sicilia, Violeta; Borja, Pilar; Baya, Miguel; Casas, José M

    2015-04-21

    The platinum(ii) half-lantern dinuclear complexes [{Pt(bzq)(μ-C7H4NS2-κN,S)}2] () and [{Pt(bzq)(μ-C7H4NOS-κN,S)}2] () [bzq = benzo[h]quinolinate, C7H4NS2 = 2-mercaptobenzothiazolate, C7H4NOS = 2-mercaptobenzoxazolate] in solution of DMSO-H2O undergo a dramatic color change from yellowish-orange to purple and turn-off phosphorescence in the presence of a small amount of Hg(2+), being discernible by the naked-eye and by spectroscopic methods. Other metal ions as Ag(+), Li(+), Na(+), K(+), Ca(2+), Mg(2+), Ba(2+), Pb(2+), Cd(2+), Zn(2+) and Tl(+) were tested and, even in a big excess, showed no interference in the selective detection of Hg(2+) in water. Job's plot analysis indicated a 1 : 1 stoichiometry in the complexation mode of Hg(2+) by /. The phosphorescence quenching attributed to the formation of [/ : Hg(2+)] complexes showed binding constants of K = 1.13 × 10(5) M(-1) () and K = 1.99 × 10(4) M(-1) (). The limit of detection has been also evaluated. In addition, dried paper test strips impregnated in DMSO solutions of and can detect concentration of Hg(2+) in water as low as 1 × 10(-5) M for and 5 × 10(-5) M for , making these complexes good candidates to be used as real-time Hg(2+) detectors. The nature of the interaction of the Pt2 half-lantern complex with the Hg(2+) cation, has been investigated by theoretical calculations. PMID:25781389

  15. Hydrolysis of oxaliplatin-evaluation of the acid dissociation constant for the oxalato monodentate complex.

    PubMed

    Jerremalm, Elin; Eksborg, Staffan; Ehrsson, Hans

    2003-02-01

    Alkaline hydrolysis of the platinum anticancer drug oxaliplatin gives the oxalato monodentate complex and the dihydrated oxaliplatin complex in two consecutive steps. The acid dissociation constant for the oxalato monodentate intermediate was determined by a kinetic approach. The pK(a) value was estimated as 7.23. The monodentate intermediate is assumed to rapidly react with endogenous compounds, resulting in a continuous conversion of oxaliplatin via the monodentate form. PMID:12532393

  16. Singlet and triplet excitation management in a bichromophoric near-infrared-phosphorescent BODIPY-benzoporphyrin platinum complex

    SciTech Connect

    Whited, M. T.; Djurovich, P. I.; Roberts, Sean T.; Durrell, A. C.; Schlenker, C. W.; Bradforth, Stephen E.; Thompson, Mark E.

    2011-01-12

    Multichromophoric arrays provide one strategy for assembling molecules with intense absorptions across the visible spectrum but are generally focused on systems that efficiently produce and manipulate singlet excitations and therefore are burdened by the restrictions of (a) unidirectional energy transfer and (b) limited tunability of the lowest molecular excited state. In contrast, we present here a multichromophoric array based on four boron dipyrrins (BODIPY) bound to a platinum benzoporphyrin scaffold that exhibits intense panchromatic absorption and efficiently generates triplets. The spectral complementarity of the BODIPY and porphryin units allows the direct observation of fast bidirectional singlet and triplet energy transfer processes (kST(1BDP→1Por) = 7.8 × 1011 s-1, kTT(3Por→3BDP) = 1.0 × 1010 s-1, kTT(3BDP→3Por) = 1.6 × 1010 s-1), leading to a long-lived equilibrated [3BDP][Por]⇌[BDP][3Por] state. This equilibrated state contains approximately isoenergetic porphyrin and BODIPY triplets and exhibits efficient near-infrared phosphorescence (λem = 772 nm, Φ = 0.26). Taken together, these studies show that appropriately designed triplet-utilizing arrays may overcome fundamental limitations typically associated with core-shell chromophores by tunable redistribution of energy from the core back onto the antennae.

  17. Synthesis and Structure of a Ternary Copper(II) Complex with Mixed Ligands of Diethylenetriamine and Picrate: DNA/Protein-Binding Property and In Vitro Anticancer Activity Studies.

    PubMed

    Shi, Ya-Ning; Zheng, Kang; Zhu, Ling; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-05-01

    Based on the importance of the design and synthesis of transition metal complexes with noncovalent DNA/protein-binding abilities in the field of metallo pharmaceuticals, a new mononuclear ternary copper(II) complex with mixed ligands of diethylenetriamine (dien) and picrate anion (pic), identified as [Cu(dien)(pic)](pic), was synthesized and characterized by elemental analysis, molar conductivity measurement, infrared spectrum, electronic spectral studies, and single-crystal X-ray diffractometry. The structure analysis reveals that the copper(II) complex crystallizes in the monoclinic space group P21 /c, and the copper(II) ion has a distorted square pyramidal coordination geometry. A two-dimensional supramolecular structure is formed through hydrogen bonds. The DNA/bovine serum albumin (BSA)-binding properties of the complex are explored, indicating that the complex can interact with herring sperm DNA via intercalation mode and bind to BSA responsible for quenching of tryptophan fluorescence by static quenching mechanism. The in vitro anticancer activity shows that the copper(II) complex is active against the selected tumor cell lines. PMID:25652782

  18. Cross-polarization magic-angle spinning nuclear magnetic resonance study of platinum complexes containing the cis-P2PtC2 fragment.

    PubMed

    Challoner, R; Sebald, A

    1995-01-01

    31P and 195Pt cross-polarization magic-angle spinning nuclear magnetic resonance (CP-MAS NMR) spectra of three platinum complexes of formal oxidation state Pt(0) and Pt(II), respectively, are reported. All three complexes, (Ph3P)2Pt(C2H4) (1), (Et2P-CH2-CH2-PEt2)Pt(C identical to C-H)2 (2) and (Ph2P-CH2-CH2-PPh2)Pt(C identical to C-C(CH3)=CH2)2 (3) contain the square-planar cis-P2PtC2 fragment and show unusual NMR spectroscopic properties insofar that the 195Pt shielding patterns are fairly narrow in relation to what one would generally have to expect for 195Pt in square-planar coordination. Another unexpected NMR property of the cis-P2PtC2 fragment in 1-3 is the absence of spinning frequency-dependent second-order effects in this solid-state ABX spin system. PMID:7894980

  19. The electronic structures and photophysical properties of platinum complexes with C^N^N ligands: the influence of the carborane substituent.

    PubMed

    Zhang, Wenting; Luo, Yafei; Xu, Yanyan; Tian, Li; Li, Ming; He, Rongxing; Shen, Wei

    2015-11-01

    Carboranes have attracted increasing interest in the scientific community due to their remarkable structures and strong electron-withdrawing abilities. In this article, four platinum complexes [(C^N^N)PtC[triple bond, length as m-dash]CPh](1), [(C^N^N)PtC[triple bond, length as m-dash]C-TPA](2), [(C^N^N)PtC[triple bond, length as m-dash]C-TAB](3), [(C^N^N)PtC[triple bond, length as m-dash]C-CB](4) (where TPA = triphenylamine, TAB = triarylboryl, CB = o-carborane) have been calculated via density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods to mainly explore the influence of carborane substituents on electronic structures, photophysical properties and radiative decay processes. The calculated results reveal that 2 with electron-donating triphenylamine has a low radiative decay rate constant and a red-shifted emission band, but 3 and 4 containing electron-withdrawing triarylboryl and o-carborane exhibit the opposite properties, especially 4 is supposed to have the highest phosphorescence quantum yield with the smallest nonradiative decay rate constant. These findings successfully illustrated the structure-property relationship and the designed complex 4 with carborane can serve as a highly efficient phosphorescent material in the future. PMID:26419292

  20. Ionic Self-Assembly and Red-Phosphorescence Properties of a Charged Platinum(II) 8-Quinolinol Complex Associated with Ammonium-Based Amphiphiles.

    PubMed

    Camerel, Franck; Vacher, Antoine; Jeannin, Olivier; Barberá, Joaquín; Fourmigué, Marc

    2015-12-21

    A series of ionic associates based on the platinum(II) chelate of 5-sulfo-8-quinolinol, [Pt(qS)2](2-), and ammonium-based amphiphiles is described. At variance with the prototypical neutral complex Pt(q)2 (q=8-quinolinol), these dianionic fluorophores, functionalized at the periphery with sulfonate groups, can be associated by the ionic self-assembly approach with various ammonium cations, such as (H2n+1Cn)2Me2N(+) (n=12, 16, 18) or complex ammonium cations carrying three Cn carbon chains (n=12, 14, 16) and an additional amide group. Investigations of their luminescence properties in solution, in the solid state, and, when possible, in thin films revealed that the phosphorescence properties in condensed phases are directly correlated to intermolecular interactions between the luminescent [Pt(qS)2](2-) centers. Of particular interest is also the formation of a columnar liquid-crystalline phase around room temperature (between -25 and +180 °C), as well as the very good film-forming ability of some of these fluorophores from organic solvents. PMID:26552608

  1. Synthesis, structural characterization, in vitro antimicrobial and anticancer activity studies of ternary metal complexes containing glycine amino acid and the anti-inflammatory drug lornoxicam

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mohamed, Gehad G.; El-Dessouky, Maher M. I.

    2015-02-01

    Mixed ligand complexes were synthesized using lornoxicam (LOR) as the primary ligand and glycine amino acid (HGly) as the secondary ligand. They were characterized by FT-IR, UV-Vis, mass, 1H NMR, ESR spectral studies, TG-DTG, X-ray powder diffraction and physical analytical studies. From the molar conductance, magnetic moment and electronic spectral data of the synthesized complexes, general formulae of [M(LOR)2(Gly)]·Xn·yH2O where M = Cr(III) (X = Cl, n = 2, y = 3), Mn(II) (X = Cl, n = 1, y = 1), Co(II) (X = BF4, n = 1, y = 0), Ni(II) (X = Cl, n = 1, y = 0), Cu(II) (X = BF4, n = 1, y = 2) and Zn(II) (X = BF4, n = 1, y = 2) and (M = Fe(II) (X = BF4, n = 1, y = 1) and Fe(III) (X = Cl, n = 2, y = 1) with an octahedral structure were proposed. Thermal analyses show that the complexes lose water molecules of hydration initially and subsequently expel anionic parts and organic ligands in continuous steps. The kinetic parameters namely E, ΔH∗, ΔS∗ and ΔG∗ illustrate the spontaneous association of the metal and ligands in the formation of the complexes. The antimicrobial efficiency of the LOR and HGly ligands and the ternary complexes were examined by in vitro method against various pathogenic bacterial and fungal strains. The metal complexes were found to possess efficient antimicrobial properties compared to lornoxicam and most of these complexes could turn out to be excellent models for the design of effective antibiotic drug substances. Also, the two ligands, in comparison to ternary metal complexes are screened for their anticancer activity against breastic cancer cell line. The results showed that the metal complexes be more active than the parent LOR and glycine free ligands except Cr(III) ternary complex which was found to be inactive.

  2. Competitive Binding Sites of a Ruthenium Arene Anticancer Complex on Oligonucleotides Studied by Mass Spectrometry: Ladder-Sequencing versus Top-Down

    NASA Astrophysics Data System (ADS)

    Wu, Kui; Hu, Wenbing; Luo, Qun; Li, Xianchan; Xiong, Shaoxiang; Sadler, Peter J.; Wang, Fuyi

    2013-03-01

    We report identification of the binding sites for an organometallic ruthenium anticancer complex [( η 6-biphenyl)Ru(en)Cl][PF6] ( 1; en = ethylenediamine) on the 15-mer single-stranded oligodeoxynucleotides (ODNs), 5'-CTCTCTX7G8Y9CTTCTC-3' [X = Y = T ( I); X = C and Y = A ( II); X = A and Y = T ( III); X = T and Y = A ( IV)] by electrospray ionization mass spectrometry (ESI-MS) in conjunction with enzymatic digestion or tandem mass spectrometry (top-down MS). ESI-MS combined with enzymatic digestion (termed MS-based ladder-sequencing), is effective for identification of the thermodynamically-favored G-binding sites, but not applicable to determine the thermodynamically unstable T-binding sites because the T-bound adducts dissociate during enzymatic digestion. In contrast, top-down MS is efficient for localization of the T binding sites, but not suitable for mapping ruthenated G bases, due to the facile fragmentation of G bases from ODN backbones prior to the dissociation of the phosphodiester bonds. The combination of the two MS approaches reveals that G8 in each ODN is the preferred binding site for 1, and that the T binding sites of 1 are either T7 or T11 on I and IV, and either T6 or T11 on II and III, respectively. These findings not only demonstrate for the first time that T-bases in single-stranded oligonucleotides are kinetically competitive with guanine for such organoruthenium complexes, but also illustrate the relative merits of the combination of ladder-sequencing and top-down MS approaches to elucidate the interactions of metal anticancer complexes with DNA.

  3. Synthesis and behavior of novel sulfonated water-soluble N-heterocyclic carbene (η(4)-diene) platinum(0) complexes.

    PubMed

    Ruiz-Varilla, Andrea M; Baquero, Edwin A; Silbestri, Gustavo F; Gonzalez-Arellano, Camino; de Jesús, Ernesto; Flores, Juan C

    2015-11-14

    A series of water-soluble (NHC)Pt(0)(dvtms) and (NHC)Pt(0)(AE) complexes containing different sulfonated NHC ligands (dvtms = divinyltetramethyldisiloxane and AE = diallyl ether) are reported. The dvtms compounds have been found to be quite robust and to display some conformational rigidity, whereas their AE counterparts are less stable and more flexible. The catalytic evaluation of these complexes in the hydrosilylation of alkynes in water revealed no benefits in favor of the complexes containing the more labile spectator diene (AE), and a fairly regular catalytic behavior for all complexes that restricts the location of the sulfonate group to the proximity of the metal site. PMID:26346995

  4. Broadband visible-light-harvesting trans-bis(alkylphosphine) platinum(II)-alkynyl complexes with singlet energy transfer between BODIPY and naphthalene diimide ligands.

    PubMed

    Liu, Lianlian; Guo, Song; Ma, Jie; Xu, Kejing; Zhao, Jianzhang; Zhang, Tierui

    2014-10-27

    A heteroleptic bis(tributylphosphine) platinum(II)-alkynyl complex (Pt-1) showing broadband visible-light absorption was prepared. Two different visible-light-absorbing ligands, that is, ethynylated boron-dipyrromethene (BODIPY) and a functionalized naphthalene diimide (NDI) were used in the molecule. Two reference complexes, Pt-2 and Pt-3, which contain only the NDI or BODIPY ligand, respectively, were also prepared. The coordinated BODIPY ligand shows absorption at 503 nm and fluorescence at 516 nm, whereas the coordinated NDI ligand absorbs at 594 nm; the spectral overlap between the two ligands ensures intramolecular resonance energy transfer in Pt-1, with BODIPY as the singlet energy donor and NDI as the energy acceptor. The complex shows strong absorption in the region 450 nm-640 nm, with molar absorption coefficient up to 88 000 M(-1)  cm(-1) . Long-lived triplet excited states lifetimes were observed for Pt-1-Pt-3 (36.9 μs, 28.3 μs, and 818.6 μs, respectively). Singlet and triplet energy transfer processes were studied by the fluorescence/phosphorescence excitation spectra, steady-state and time-resolved UV/Vis absorption and luminescence spectra, as well as nanosecond time-resolved transient difference absorption spectra. A triplet-state equilibrium was observed for Pt-1. The complexes were used as triplet photosensitizers for triplet-triplet annihilation upconversion, with upconversion quantum yields up to 18.4 % being observed for Pt-1. PMID:25223732

  5. Solid inclusion complexes of oleanolic acid with amino-appended β-cyclodextrins (ACDs): Preparation, characterization, water solubility and anticancer activity.

    PubMed

    Ren, Yufeng; Liu, Ying; Yang, Zhikuan; Niu, Raomei; Gao, Kai; Yang, Bo; Liao, Xiali; Zhang, Jihong

    2016-12-01

    Oleanolic acid (OA) is a pentacyclic triterpenoid acid of natural abundance in plants which possesses important biological activities. However, its medicinal applications were severely impeded by the poor water solubility and resultant low bioavailability and potency. In this work, studies on solid inclusion complexes of OA with a series of amino-appended β-cyclodextrins (ACDs) were conducted in order to address this issue. These complexes were prepared by suspension method and were well characterized by NMR, SEM, XRD, TG, DSC and Zeta potential measurement. The 2:1 inclusion mode of ACDs/OA complexes was elucidated by elaborate 2D NMR (ROESY). Besides, water solubility of OA was dramatically promoted by inclusion complexation with ACDs. Moreover, in vitro anticancer activities of OA against human cancer cell lines HepG2, HT29 and HCT116 were significantly enhanced after formation of inclusion complexes, while the apoptotic response results indicated their induction of apoptosis of cancer cells. This could provide a novel approach to development of novel pharmaceutical formulations of OA. PMID:27612690

  6. Conformation and recognition of DNA damaged by antitumor cis-dichlorido platinum(II) complex of CDK inhibitor bohemine.

    PubMed

    Novakova, Olga; Liskova, Barbora; Vystrcilova, Jana; Suchankova, Tereza; Vrana, Oldrich; Starha, Pavel; Travnicek, Zdenek; Brabec, Viktor

    2014-05-01

    A substitution of the ammine ligands of cisplatin, cis-[Pt(NH3)2Cl2], for cyclin dependent kinase (CDK) inhibitor bohemine (boh), [2-(3-hydroxypropylamino)-6-benzylamino-9-isopropylpurine], results in a compound, cis-[Pt(boh)2Cl2] (C1), with the unique anticancer profile which may be associated with some features of the damaged DNA and/or its cellular processing (Travnicek Z et al. (2003) J Inorg Biochem94, 307-316; Liskova B (2012) Chem Res Toxicol25, 500-509). A combination of biochemical and molecular biology techniques was used to establish mechanistic differences between cisplatin and C1 with respect to the DNA damage they produce and their interactions with critical DNA-binding proteins, DNA-processing enzymes and glutathione. The results show that replacement of the NH3 groups in cisplatin by bohemine modulates some aspects of the mechanism of action of C1. More specifically, the results of the present work are consistent with the thesis that, in comparison with cisplatin, effects of other factors, such as: (i) slower rate of initial binding of C1 to DNA; (ii) the lower efficiency of C1 to form bifunctional adducts; (iii) the reduced bend of longitudinal DNA axis induced by the major 1,2-GG intrastrand cross-link of C1; (iv) the reduced affinity of HMG domain proteins to the major adduct of C1; (v) the enhanced efficiency of the DNA adducts of C1 to block DNA polymerization and to inhibit transcription activity of human RNA pol II and RNA transcription; (vi) slower rate of the reaction of C1 with glutathione, may partially contribute to the unique activity of C1. PMID:24675180

  7. First palladium(II) and platinum(II) complexes from employment of 2,6-diacetylpyridine dioxime: synthesis, structural and spectroscopic characterization, and biological evaluation.

    PubMed

    Koumousi, Evangelia S; Zampakou, Marianthi; Raptopoulou, Catherine P; Psycharis, Vassilis; Beavers, Christine M; Teat, Simon J; Psomas, George; Stamatatos, Theocharis C

    2012-07-16

    Employment of the monoanion of 2,6-diacetylpyridine dioxime (dapdoH(2)) as a tridentate chelate in palladium(II) and platinum(II) chemistry is reported. The syntheses, crystal structures, spectroscopic and physicochemical characterization, and biological evaluation are described of [PdCl(dapdoH)] (1) and [PtCl(dapdoH)] (2). Reaction of PdCl(2) with 2 equivs of dapdoH(2) in MeOH under reflux gave 1, whereas the same reaction with PtCl(2) in place of PdCl(2) gave 2 in comparable yields (70-80%). The divalent metal center in both compounds is coordinated by a terminal chloro group and a N,N',N"-tridentate chelating (η(3)) dapdoH(-) ligand. Thus, each metal ion is four coordinate with a distorted square planar geometry. Characterization of both complexes with (1)H and (13)C NMR and UV-vis and electrospray ionization mass spectroscopies confirmed their integrity in DMSO solutions. Interaction of the complexes with human and bovine serum albumin has been studied with fluorescence spectroscopy, revealing their affinity for these proteins with relatively high values of binding constants. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that they can bind to CT DNA, and the corresponding DNA binding constants have been evaluated. Cyclic voltammograms of the complexes in the presence of CT DNA solution have shown that the interaction of the complexes with CT DNA is mainly through intercalation, which has been also shown by DNA solution viscosity measurements. Competitive studies with ethidium bromide (EB) have revealed the ability of the complexes to displace the DNA-bound EB, suggesting competition with EB. The combined work demonstrates the ability of pyridyl-dioxime chelates not only to lead to polynuclear 3d-metal complexes with impressive structural motifs and interesting magnetic properties but also to yield new, mononuclear 4d- and 5d-metal complexes with biological implications. PMID:22742945

  8. Toward the design of a catalytic metallodrug: selective cleavage of G-quadruplex telomeric DNA by an anticancer copper-acridine-ATCUN complex.

    PubMed

    Yu, Zhen; Han, Menglu; Cowan, James A

    2015-02-01

    Telomeric DNA represents a novel target for the development of anticancer drugs. By application of a catalytic metallodrug strategy, a copper-acridine-ATCUN complex (CuGGHK-Acr) has been designed that targets G-quadruplex telomeric DNA. Both fluorescence solution assays and gel sequencing demonstrate the CuGGHK-Acr catalyst to selectively bind and cleave the G-quadruplex telomere sequence. The cleavage pathway has been mapped by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) experiments. CuGGHK-Acr promotes significant inhibition of cancer cell proliferation and shortening of telomere length. Both senescence and apoptosis are induced in the breast cancer cell line MCF7. PMID:25504651

  9. Toward the Design of a Catalytic Metallodrug: Selective Cleavage of G-Quadruplex Telomeric DNA by an Anticancer Copper–Acridine–ATCUN Complex**

    PubMed Central

    Yu, Zhen; Han, Menglu

    2015-01-01

    Telomeric DNA represents a novel target for the development of anticancer drugs. By application of a catalytic metallodrug strategy, a copper–acridine–ATCUN complex (CuGGHK-Acr) has been designed that targets G-quadruplex telomeric DNA. Both fluorescence solution assays and gel sequencing demonstrate the CuGGHK-Acr catalyst to selectively bind and cleave the G-quadruplex telomere sequence. The cleavage pathway has been mapped by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) experiments. CuGGHK-Acr promotes significant inhibition of cancer cell proliferation and shortening of telomere length. Both senescence and apoptosis are induced in the breast cancer cell line MCF7. PMID:25504651

  10. PLATINUM AND FUEL CELLS

    EPA Science Inventory

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  11. In vitro DNA and BSA-binding, cell imaging and anticancer activity against human carcinoma cell lines of mixed ligand copper(II) complexes.

    PubMed

    Anjomshoa, Marzieh; Torkzadeh-Mahani, Masoud

    2015-11-01

    Binding studies of two water soluble copper(II) complexes of the type [Cu(phen-dion)(diimine)Cl]Cl, where phen-dione is 1,10-phenanthroline-5,6-dione and diimine is 1,10-phenanthroline (1) and 2,2'-bipyridine (2), with fish sperm DNA (FS-DNA) and bovine serum albumin (BSA) have been examined under physiological conditions by a series of experimental methods (UV-Vis absorption, fluorescence, viscosity, cyclic voltammetry (CV) and circular dichroism (CD) spectroscopic techniques). The experimental results indicate that the complexes interact with FS-DNA by electrostatic and partial insertion of pyridyl rings between the base stacks of double-stranded DNA. The complexes could quench the intrinsic fluorescence of BSA with the binding constants (Kbin) of 32×10(5) M(-1) (1) and 1.7×10(5) M(-1) (2) at 290 K. The quenching mechanism, thermodynamic parameters, the number of binding sites and the effect of the Cu(II) complexes on the secondary structure of BSA have been explored. The in vitro anticancer chemotherapeutic potential of two copper(II) complexes against the three human carcinoma cell lines (MCF-7, A-549, and HT-29) and one normal cell line (DPSC) were evaluated by MTT assay. The results of in vitro cytotoxicity indicate that the complex (1) has greater cytotoxicity activity against all of the cell lines, especially HT-29 with IC50 values of 1.8 μM. Based on the IC50 values, these complexes did not display an apparent cyto-selective profile, because it would appear that two complexes are toxic to all four model cell lines. The microscopic analyses of the cancer cells confirm results of cytotoxicity. PMID:26057093

  12. Stereospecific ligands and their complexes. Part XII. Synthesis, characterization and in vitro antiproliferative activity of platinum(IV) complexes with some O,O‧-dialkyl esters of (S,S)-ethylenediamine-N,N‧-di-2-propanoic acid against colon cancer (HCT-116) and breast cancer (MDA-MB-231) cell lines

    NASA Astrophysics Data System (ADS)

    Stojković, Danijela Lj.; Jevtić, Verica V.; Radić, Gordana P.; Đačić, Dragana S.; Ćurčić, Milena G.; Marković, Snežana D.; Ðinović, Vesna M.; Petrović, Vladimir P.; Trifunović, Srećko R.

    2014-03-01

    Synthesis of three new platinum(IV) complexes C1-C3, with bidentate N,N‧-ligand precursors, O,O‧-dialkyl esters (alkyl = propyl, butyl and pentyl), of (S,S)-ethylenediamine-N,N‧-di-2-propanoic acid, H2-S,S-eddp were reported. The reported platinum(IV) complexes characterized by elemental analysis and their structures were discussed on the bases of their infrared, 1H and 13C NMR spectroscopy. In vitro antiproliferative activity was determined on tumor cell lines: human colon carcinoma HCT-116 and human breast carcinoma MDA-MB-231, using MTT test.

  13. Multinuclear NMR spectroscopy and antitumor activity of novel platinum(II) complexes with 5,7-disubstituted-1,2,4-triazolo[1,5-a]pyrimidines.

    PubMed

    Łakomska, Iwona; Szłyk, Edward; Sitkowski, Jerzy; Kozerski, Lech; Wietrzyk, Joanna; Pełczyńska, Marzena; Nasulewicz, Anna; Opolski, Adam

    2004-01-01

    Novel platinum(II) complexes with 5,7-disubstituted-1,2,4-triazolo[1,5-a]pyrimidines have been synthesized and characterized by infrared and multinuclear magnetic resonance spectroscopic techniques (1H, 13C, 15N, 195Pt). The complexes are of two types: [PtCl2(L)2] and [PtCl2(NH3)(L)], where L=5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine (dptp) and 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp). Significant 15N NMR upfield shifts (92-95 ppm) were observed for N(3) atom indicating this nitrogen atom as a coordination site. The molecular structure suggest that Pt(II) ion has the square planar geometry with N(3) bonded 5,7-disubstituted-1,2,4-triazolo[1,5-a]pyrimidines, N-bonded second ligand (NH3 for cis-[PtCl2(NH3)(L)] or, respectively, 5,7-disubstituted-1,2,4-triazolo[1,5-a]pyrimidines for cis-[PtCl2L2]) and two cis chloride anions. The antiproliferative activity in vitro of complexes (1-4) have been tested against the cells of four human cell lines: SW707 rectal adenocarcinoma, A549 non-small cell lung carcinoma, T47D breast cancer and HCV29T bladder cancer. The results indicate a moderate antiproliferative activity of (4) against the cells of rectal, breast and bladder cancer and a marked and selective cytotoxic effect of (1-3) against the cells of all studied human cancer lines. PMID:14659646

  14. Synthetic, Spectroscopic and Biocidal Aspects of Heterobimetallic Complexes Comprising Platinum(II) and a Group Four or Fourteen Element

    PubMed Central

    Sharma, Kripa

    2000-01-01

    Heterobimetallic complexes with varying amines have been synthesized by the reaction of [Pt(C2H8N2)2]Cl2 with group four or fourteen organometallic dichlorides, viz., R2MCl2 and Cp2M'Cl2 in a 1:2 molar ratio in MeOH (where M=Si or Sn, M'= Ti or Zr and R=Ph or Me). These complexes have been characterized by elemental analysis, molecular weight determinations, magnetic measurements, conductance, IR, 1H NMR and electronic spectra. The spectral data suggest a square planar geometry for all the complexes. Conductivity data suggest that they behave as electrolytes. These monometallic precursors along with their complexes have been screened in vitro against a number of pathogenic fungi and bacteria to assess their growth inhibiting potential. PMID:18475917

  15. High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: visible-light driven water oxidation.

    PubMed

    Yamada, Yusuke; Oyama, Kohei; Gates, Rachel; Fukuzumi, Shunichi

    2015-05-01

    A near-stoichiometric amount of O2 was evolved as observed in the visible-light irradiation of an aqueous buffer (pH 8) containing [Ru(II) (2,2'-bipyridine)3 ] as a photosensitizer, Na2 S2 O8 as a sacrificial electron acceptor, and a heteropolynuclear cyanide complex as a water-oxidation catalyst. The heteropolynuclear cyanide complexes exhibited higher catalytic activity than a polynuclear cyanide complex containing only Co(III) or Pt(IV) ions as C-bound metal ions. The origin of the synergistic effect between Co and Pt ions is discussed in relation to electronic and local atomic structures of the complexes. PMID:25866203

  16. Insights into anticancer activity and mechanism of action of a ruthenium(II) complex in human esophageal squamous carcinoma EC109 cells.

    PubMed

    Guo, Liubin; Lv, Gaochao; Qiu, Ling; Yang, Hui; Zhang, Li; Yu, Huixin; Zou, Meifen; Lin, Jianguo

    2016-09-01

    A ruthenium(II) complex [Ru(p-cymene)(NHC)Cl2] (NHC=1,3-bis(4-(tert-butyl)benzylimidazol-2-ylidene), referred to as L-4, has been designed and synthesized recently in order to look for new anticancer drugs with high efficacy and low side effects. The anticancer activity and mechanism of action of L-4 in human esophageal squamous carcinoma EC109 cells were systematically investigated. The results revealed that L-4 exerted strong inhibitory effect on the proliferation of EC109 cells, and it arrested EC109 cells at G2/M phase, accompanied with the up-regulation of p53 and p21 and the down-regulation of cyclin D1. The results also showed that the reactive oxygen species (ROS)-dependent apoptosis of EC109 can be induced by L-4 via inhibiting the activity of glutathione reductase (GR), decreasing the ratio of glutathione to oxidized glutathione (GSH/GSSG), and leading to the generation of reactive oxygen species. The mitochondria-mediated apoptosis of EC109 induced by L-4 was also observed from the increase of Bax/Bcl-2 ratio, overload of Ca(2+), disruption of mitochondrial membrane potential (MMP), redistribution of cytochrome c, and activation of caspase-3/-9. However, the effects of L-4 on the cell viability, GR activity, GSH/GSSG ratio, reactive oxygen species level, mitochondria dysfunction and apoptosis induction were remarkably attenuated by adding the reactive oxygen species scavenger, NAC. Therefore, it was concluded that L-4 can inhibit the proliferation of EC109 cells via blocking cell cycle progression and inducing reactive oxygen species-dependent and mitochondria-mediated apoptosis. These findings suggested that the ruthenium(II) complex might be a potential effective chemotherapeutic agent for human esophageal squamous carcinoma (ESCC) and worthy of further investigation. PMID:27262377

  17. Ambiphilic diphosphine-borane ligands: metal-->borane interactions within isoelectronic complexes of rhodium, platinum and palladium.

    PubMed

    Bontemps, Sébastien; Sircoglou, Marie; Bouhadir, Ghenwa; Puschmann, Horst; Howard, Judith A K; Dyer, Philip W; Miqueu, Karinne; Bourissou, Didier

    2008-01-01

    Coordination of an ambiphilic diphosphine-borane (DPB) ligand to the RhCl(CO) fragment affords two isomeric complexes. According to X-ray diffraction analysis, each complex adopts a square-pyramidal geometry with trans coordination of the two phosphine buttresses and axial RhB contacts, but the two differ in the relative orientations around the rhodium and boron centres. DFT calculations on the actual complexes provide insight into the influence of the pi-accepting CO co-ligand, compared with previously reported complexes [Rh(mu-Cl)(dpb)]2 and [RhCl(dmap)(dpb)]. In addition, comparison of the nu(CO) frequency of [RhCl(CO)(dpb)] with that of the related borane-free complex [RhCl(CO)(iPr2PPh)2] substantiates the significant electron-withdrawing effect that the sigma-accepting borane moiety exerts on the metal. Valence isoelectronic [PtCl2(dpb)] and [PdCl2(dpb)] complexes have also been prepared and characterized spectroscopically and structurally. The pronounced influence of the transition metal on the magnitude of the M-->B interaction is highlighted by geometric considerations and NBO analyses. PMID:17948327

  18. Promising antioxidant and anticancer (human breast cancer) oxidovanadium(IV) complex of chlorogenic acid. Synthesis, characterization and spectroscopic examination on the transport mechanism with bovine serum albumin.

    PubMed

    Naso, Luciana G; Valcarcel, María; Roura-Ferrer, Meritxell; Kortazar, Danel; Salado, Clarisa; Lezama, Luis; Rojo, Teofilo; González-Baró, Ana C; Williams, Patricia A M; Ferrer, Evelina G

    2014-06-01

    A new chlorogenate oxidovanadium complex (Na[VO(chlorog)(H2O)3].4H2O) was synthesized by using Schlenk methodology in the course of a reaction at inert atmosphere in which deprotonated chlorogenic acid ligand binds to oxidovanadium(IV) in a reaction experiment controlled via EPR technique and based in a species distribution diagram. The compound was characterized by FTIR, EPR, UV-visible and diffuse reflectance spectroscopies and thermogravimetric, differential thermal and elemental analyses. The ligand and the complex were tested for their antioxidant effects on DPPH (1,1-diphenyl-2-picrylhydrazyl radical), ABTS(+) (radical cation of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt), O2(-), OH and ROO radicals and their cytotoxic activity on different cancer cell lines (SKBR3, T47D and MDAMB231) and primary human mammary epithelial cells. The complex behaved as good antioxidant agent with strongest inhibitory effects on O2(-), OH and ROO radicals and exhibited selective cytotoxicity against SKBR3 cancer cell line. Albumin interaction experiments denoted high affinity toward the complex and its calculated binding constant was indicative of a strong binding to the protein. Based on this study, it is hypothesized that Na[VO(chlorog)(H2O)3].4H2O would be a promising candidate for further evaluation as an antioxidant and anticancer agent. PMID:24681549

  19. Competitive formation of DNA linkage isomers by a trinuclear platinum complex and the influence of pre-association.

    PubMed

    Moniodis, Joseph J; Thomas, Donald S; Davies, Murray S; Berners-Price, Susan J; Farrell, Nicholas P

    2015-02-28

    2D [(1)H, (15)N] HSQC NMR spectroscopy has been used to monitor the reaction of fully (15)N-labelled [{trans-PtCl(NH3)2}2(μ-trans-Pt(NH3)2{NH2(CH2)6NH2}2)](4+) (BBR3464 ((15)N-1)) with the 14-mer duplex (5'-{d(ATACATG(7)G(8)TACATA)}-3'·5'-{d(TATG(18)TACCATG(25)TAT)}-3' or I) at pH 5.4 and 298 K, to examine the possible formation of 1,4 and 1,5-GG adducts in both 5'-5' and 3'-3' directions. In a previous study, the binding of the dinuclear 1,1/t,t to I showed specific formation of the 5'-5' 1,4 G(8)G(18) cross-link, whereas in this case a mixture of adducts were formed. Initial (1)H NMR spectra suggested the presence of two pre-associated states aligned in both directions along the DNA. The pre-association was studied in the absence of covalent binding, by use of the "non-covalent" analog [{trans-Pt(NH3)3}2(μ-trans-Pt(NH3)2{NH2(CH2)6NH2}2)](6+) (AH44, 0). Chemical shift changes of DNA protons combined with NOE connectivities between CH2 and NH3 protons of 0 and the adenine H2 protons on I show that two different molecules of 0 are bound in the minor groove. Molecular dynamic simulations were performed to study the interaction of 0 at the two pre-association sites using charges derived from density functional theory (DFT) calculations. Structures where the central platinum is located in the minor groove and the aliphatic linkers extend into the major groove, in opposite directions, often represent the lowest energy structures of the snapshots selected. In the reaction of (15)N-1 and I, following the pre-association step, aquation occurs to give the mono aqua monochloro species 2, with a rate constant of 3.43 ± 0.03 × 10(-5) s(-1). There was evidence for two monofunctional adducts (3, 4) bound to the 3' (G8) and 5' (G7) residues and the asymmetry of the (1)H,(15)N peak for 3 suggested two conformers of the 3' adduct, aligned in different directions along the DNA. The rate constant for combined monofunctional adduct formation (0.6 ± 0.1 M(-1)) is ca. 2-fold lower

  20. Anticancer chemotherapy

    SciTech Connect

    Weller, R.E.

    1988-10-01

    Despite troubled beginnings, anticancer chemotherapy has made significant contribution to the control of cancer in man, particularly within the last two decades. Early conceptual observations awakened the scientific community to the potentials of cancer chemotherapy. There are now more than 50 agents that are active in causing regression of clinical cancer. Chemotherapy's major conceptual contributions are two-fold. First, there is now proof that patients with overt metastatic disease can be cured, and second, to provide a strategy for control of occult metastases. In man, chemotherapy has resulted in normal life expectancy for some patients who have several types of metastatic cancers, including choriocarcinoma, Burkitt's lymphomas, Wilm's tumor, acute lymphocytic leukemia, Hodgkins disease, diffuse histiocytic lymphoma and others. Anticancer chemotherapy in Veterinary medicine has evolved from the use of single agents, which produce only limited remissions, to the concept of combination chemotherapy. Three basic principles underline the design of combination chemotherapy protocols; the fraction of tumor cell killed by one drug is independent of the fraction killed by another drug; drugs with different mechanisms of action should be chosen so that the antitumor effects will be additive; and since different classes of drugs have different toxicities the toxic effects will not be additive.

  1. Influence of Ancillary Ligands and Isomerism on the Luminescence of Bis-cyclometalated Platinum(IV) Complexes.

    PubMed

    Juliá, Fabio; García-Legaz, María-Dulce; Bautista, Delia; González-Herrero, Pablo

    2016-08-01

    The synthesis, characterization, and photophysical properties of a wide variety of bis-cyclometalated Pt(IV) complexes featuring a C2-symmetrical or unsymmetrical {Pt(ppy)2} unit (sym or unsym complexes, respectively; ppy = C-deprotonated 2-phenylpyridine) and different ancillary ligands are reported. Complexes sym-[Pt(ppy)2X2] (X = OTf(-), OAc(-)) were obtained by chloride abstraction from sym-[Pt(ppy)2Cl2] using the corresponding AgX salts, and the triflate derivative was employed to obtain homologous complexes with X = F(-), Br(-), I(-), trifluoroacetate (TFA(-)). Complexes unsym-[Pt(ppy)2(Me)X] (X = OTf(-), F(-)) were prepared by reacting unsym-[Pt(ppy)2(Me)Cl] with AgOTf or AgF, respectively, and the triflate derivative was employed as precursor for the synthesis of the homologues with X = Br(-), I(-), or TFA(-) through its reaction with the appropriate anionic ligands. The previously reported complexes unsym-[Pt(ppy)2X2] (X = Cl(-), Br(-), OAc(-), TFA(-)) are included in the photophysical study to assess the influence of the arrangement of the cyclometalated ligands. Density functional theory (DFT) and time-dependent DFT calculations on selected derivatives were performed for a better interpretation of the observed excited-state properties. Complexes sym-[Pt(ppy)2X2] (except X = I(-)) exhibit phosphorescent emissions in fluid solutions at 298 K arising from essentially (3)LC(ppy) excited states, which are very similar in shape and energy. However, their efficiencies are heavily dependent on the nature of the ancillary ligands, which affect the energy of deactivating ligand-to-ligand charge transfer (LLCT) or ligand-to-metal charge transfer (LMCT) states. The fluoride derivative sym-[Pt(ppy)2F2] shows the highest quantum yield of this series (Φ = 0.398), mainly because the relatively high metal-to-ligand charge transfer admixture in its emitting state leads to a high radiative rate constant. Complexes unsym-[Pt(ppy)2X2] emit from (3)LC(ppy) states in frozen

  2. Synthesis and characterization of mixed-ligand diimine-piperonal thiosemicarbazone complexes of ruthenium(II): Biophysical investigations and biological evaluation as anticancer and antibacterial agents

    PubMed Central

    Beckford, Floyd A.; Thessing, Jeffrey; Shaloski, Michael; Mbarushimana, P. Canisius; Brock, Alyssa; Didion, Jacob; Woods, Jason; Gonzalez-Sarrías, Antonio; Seeram, Navindra P.

    2011-01-01

    We have used a novel microwave-assisted method developed in our laboratories to synthesize a series of ruthenium-thiosemicarbazone complexes. The new thiosemicarbazone ligands are derived from benzo[d][1,3]dioxole-5-carbaldehyde (piperonal) and the complexes are formulated as [(diimine)2Ru(TSC)](PF6)2 (where the TSC is the bidentate thiosemicarbazone ligand). The diimine in the complexes is either 2,2'-bipyridine or 1,10-phenanthroline. The complexes have been characterized by spectroscopic means (NMR, IR and UV-Vis) as well as by elemental analysis. We have studied the biophysical characteristics of the complexes by investigating their anti-oxidant ability as well as their ability to disrupt the function of the human topoisomerase II enzyme. The complexes are moderately strong binders of DNA with binding constants of 104 M−1. They are also strong binders of human serum albumin having binding constants on the order of 104 M−1. The complexes show good in vitro anticancer activity against human colon cancer cells, Caco-2 and HCT-116 and indeed show some cytotoxic selectivity for cancer cells. The IC50 values range from 7 – 159 μM (after 72 h drug incubation). They also have antibacterial activity against Gram-positive strains of pathogenic bacteria with IC50 values as low as 10 μM; little activity was seen against Gram-negative strains. It has been established that all the compounds are catalytic inhibitors of human topoisomerase II. PMID:21552381

  3. Luminescent platinum(II) complexes with functionalized N-heterocyclic carbene or diphosphine selectively probe mismatched and abasic DNA

    PubMed Central

    Fung, Sin Ki; Zou, Taotao; Cao, Bei; Chen, Tianfeng; To, Wai-Pong; Yang, Chen; Lok, Chun-Nam; Che, Chi-Ming

    2016-01-01

    The selective targeting of mismatched DNA overexpressed in cancer cells is an appealing strategy in designing cancer diagnosis and therapy protocols. Few luminescent probes that specifically detect intracellular mismatched DNA have been reported. Here we used Pt(II) complexes with luminescence sensitive to subtle changes in the local environment and report several Pt(II) complexes that selectively bind to and identify DNA mismatches. We evaluated the complexes' DNA-binding characteristics by ultraviolet/visible absorption titration, isothermal titration calorimetry, nuclear magnetic resonance and quantum mechanics/molecular mechanics calculations. These Pt(II) complexes show up to 15-fold higher emission intensities upon binding to mismatched DNA over matched DNA and can be utilized for both detecting DNA abasic sites and identifying cancer cells and human tissue samples with different levels of mismatch repair. Our work highlights the potential of luminescent Pt(II) complexes to differentiate between normal cells and cancer cells which generally possess more aberrant DNA structures. PMID:26883164

  4. Platinum(II) and Palladium(II) Complexes of Pyridine-2-Carbaldehyde Thiosemicarbazone as Alternative Antiherpes Simplex Virus Agents

    PubMed Central

    Kovala-Demertzi, D.; Varadinova, T.; Genova, P.; Souza, P.; Demertzis, M. A.

    2007-01-01

    The cytotoxicity and the antivirus activity of Pd(II) and Pt(II) complexes with pyridine-2-carbaldehyde thiosemicarbazone (HFoTsc) against HSV replication were evaluated on four HSV strains—two wt strains Victoria (HSV-1) and BJA (HSV-2) and two ACVR mutants with different tk gene mutations R-100 (TKA, HSV-1) and PU (TKN, HSV-2). The experiments were performed on continuous MDBK cells and four HSV 1 and HSV 2 strains were used, two sensitive to acyclovir and two resistant mutants. The five complexes of HFoTsc, [Pt(FoTsc)Cl], [Pt(FoTsc)(H2FoTsc)]Cl2, [Pt(FoTsc)2], [Pd(FoTsc)(H2FoTsc)]Cl2, and [Pd(FoTsc)2], were found to be effective inhibitors of HSV replication. The most promising, active, and selective anti-HSV agent was found to be complex [Pt(FoTsc)(H2FoTsc)]Cl2. This complex could be useful in the treatment of HSV infections, since it is resistant to ACV mutants. PCR study of immediate early 300 bp ReIV Us1 region reveals that the complex [Pt(FoTsc)(H2FoTsc)]Cl2 specifically suppressed wt HSV-1 genome 2 hours after the infection, not inducing apoptosis/necrosis on the 8 hours after virus infection. The target was found to be most probably the viral, instead of the host cell DNA. PMID:17541481

  5. DNA Interaction and DNA Cleavage Studies of a New Platinum(II) Complex Containing Aliphatic and Aromatic Dinitrogen Ligands

    PubMed Central

    Shahabadi, Nahid; Kashanian, Soheila; Mahdavi, Maryam; Sourinejad, Noorkaram

    2011-01-01

    A new Pt(II) complex, [Pt(DIP)(LL)](NO3)2 (in which DIP is 4,7-diphenyl-1,10-phenanthroline and LL is the aliphatic dinitrogen ligand, N,N-dimethyl-trimethylenediamine), was synthesized and characterized using different physico-chemical methods. The interaction of this complex with calf thymus DNA (CT-DNA) was investigated by absorption, emission, circular dichroism (CD), and viscosity measurements. The complex binds to CT-DNA in an intercalative mode. The calculated binding constant, Kb, was 6.6 × 104 M−1. The enthalpy and entropy changes of the reaction between the complex and CT-DNA showed that the van der Waals interactions and hydrogen bonds are the main forces in the interaction with CT-DNA. In addition, CD study showed that phenanthroline ligand insert between the base pair stack of double helical structure of DNA. It is remarkable that this complex has the ability to cleave the supercoiled plasmid. PMID:22235195

  6. Fertility Inhibitor Heterobimetallic Complexes of Platinum(II) and Palladium(II): Synthetic, Spectroscopic and Antimicrobial Aspects

    PubMed Central

    Sharma, Kripa; Joshi, S. C.

    2000-01-01

    Synthetic, spectroscopic and antimicrobial aspects of some fertility inhibitor heterobimetallic complexes have been carried out. These heterobimetallic chelates [M(C5H5N3)2M2'(R)4]Cl2 (M = Pd or Pt and M' = Si, Sn, Ti and Zr) have been successfully synthesinzed via the reaction of M(C5H7N3)2Cl2 with group four or fourteen dichlorides in 1:2 stoichiometric proportions. The products were characterized by elemental analyses, molecular weight determinations, magnetic susceptibility measurements, conductance, and IR multinuclear NMR and electronic spectral studies. A square planar geometry has been suggested for all the complexes with the help of spectral data. Conductivity data strongly suggest that chlorine atoms are ionic in nature due to which complexes behave as electrolytes. All the complexes have been evaluated for their antmicrobial effects on different species of pathogenic fungi and bacteria. The testicular sperm density, testicular sperm morphology, sperm motility, density of cauda epididymal spermatozoa and fertility in mating trails and biochemical parameters of reproductive organs have been examined and discussed. PMID:18475932

  7. Synthesis, Characterization, and Interaction with Biomolecules of Platinum(II) Complexes with Shikimic Acid-Based Ligands

    PubMed Central

    Peng, Yan; Zhang, Min-Min; Chen, Zhen-Feng; Hu, Kun; Liu, Yan-Cheng; Chen, Xia; Liang, Hong

    2013-01-01

    Starting from the active ingredient shikimic acid (SA) of traditional Chinese medicine and NH2(CH2)nOH, (n = 2–6), we have synthesized a series of new water-soluble Pt(II) complexes PtLa–eCl2, where La–e are chelating diamine ligands with carbon chain covalently attached to SA (La–e = SA-NH(CH2)nNHCH2CH2NH2; La, n = 2; Lb, n = 3; Lc, n = 4; Ld, n = 5; Le, n = 6). The results of the elemental analysis, LC-MS, capillary electrophoresis, and 1H, 13C NMR indicated that there was only one product (isomer) formed under the present experimental conditions, in which the coordinate mode of PtLa–eCl2 was two-amine bidentate. Their in vitro cytotoxic activities were evaluated by MTT method, where these compounds only exhibited low cytotoxicity towards BEL7404, which should correlate their low lipophilicity. The interactions of the five Pt(II) complexes with DNA were investigated by agarose gel electrophoresis, which suggests that the Pt(II) complexes could induce DNA alteration. We also studied the interactions of the Pt(II) complexes with 5′-GMP with ESI-MS and 1H NMR and found that PtLbCl2, PtLcCl2, and PtLdCl2 could react with 5′-GMP to form mono-GMP and bis-GMP adducts. Furthermore, the cell-cycle analysis revealed that PtLbCl2, PtLcCl2 cause cell G2-phase arrest after incubation for 72 h. Overall, these water-soluble Pt(II) complexes interact with DNA mainly through covalent binding, which blocks the DNA synthesis and replication and thus induces cytotoxicity that weakens as the length of carbon chain increases. PMID:23533373

  8. Tunable and Efficient White Light Phosphorescent Emission Based on Single Component N-Heterocyclic Carbene Platinum(II) Complexes.

    PubMed

    Bachmann, Michael; Suter, Dominik; Blacque, Olivier; Venkatesan, Koushik

    2016-05-16

    A new class of cyclometalated pyridine N-heterocyclic carbene (NHC) Pt(II) complexes with electronically different alkyne derivatives (C≡CR; R = C6H4C(CH3)3 (1), C6H5 (2), C6H4F (3), C6H3(CF3)2 (4)) as ancillary ligands were synthesized, and the consequences of the electronic properties of the different substituted phenylacetylene ligands on the phosphorescent emission efficiencies were studied, where C≡CC6H4C(CH3)3 = 4-tert-butylphenylacetylene, C≡CC6H5 = phenylacetylene, C≡CC6H4F = 4-fluorophenylacetylene, and C≡CC6H3(CF3)2 = 3,5-bis(trifluoromethyl)phenylacetylene. Structural characterization, electrochemistry, and photophysical investigations were performed for all four compounds. Moreover, the emission quantum efficiencies and wavelength emission intensities of the complexes were also recorded in different weight percents in poly(methyl methacrylate) films (PMMA) and evaluated in the CIE-1931 chromaticity diagram. The square planar coordination geometry with the alkynyl ligands was corroborated for complexes 1, 2, and 3 by single crystal X-ray diffraction studies. These complexes show tunable monomeric high energy triplet emission and an additional concentration-dependent low-energy excimer-based phosphorescence. While adopting weight percent concentrations between 15 and 25%, the two emission bands covering the entire visible spectrum were obtained with these particular complexes displaying the properties of an efficient white light triplet emitter with excellent CIE-1931 coordinates (0.31, 0.33). On the basis of the high luminescent quantum efficiency of over 50% for white light emission, these compounds could be potentially useful for white organic light-emitting diodes (WOLEDs) based applications. PMID:27135529

  9. Second- and higher-order structural changes of DNA induced by antitumor-active tetrazolato-bridged dinuclear platinum(II) complexes with different types of 5-substituent.

    PubMed

    Uemura, Masako; Yoshikawa, Yuko; Yoshikawa, Kenichi; Sato, Takaji; Mino, Yoshiki; Chikuma, Masahiko; Komeda, Seiji

    2013-10-01

    Here, we used circular dichroism (CD) and fluorescence microscopy (FM) to examine the interactions of a series of antitumor-active tetrazolato-bridged dinuclear platinum(II) complexes, [{cis-Pt(NH3)2}2(μ-OH)(μ-5-R-tetrazolato-N2,N3)](n+) (R=CH3 (1), C6H5 (2), CH2COOCH2CH3 (3), CH2COO(-) (4), n=2 (1-3) or 1 (4)), which are derivatives of [{cis-Pt(NH3)2}2(μ-OH)(μ-tetrazolato-N2,N3)](2+) (5-H-Y), with DNA to elucidate the influence of these interactions on the secondary or higher-order structure of DNA and reveal the mechanism of action. The CD study showed that three derivatives, 1-3, with a double-positive charge altered the secondary structures of calf thymus DNA but that 4, the only complex with a single positive charge, induced almost no change, implying that the B- to C-form conformational change is influenced by ionic attraction. Unexpectedly, single-molecule observations with FM revealed that 4 changed the higher-order structure of T4 DNA into the compact-globule state most efficiently, at the lowest concentration, which was nearly equal to that of 5-H-Y. These contradictory results suggest that secondary structural changes are not necessarily linked to higher-order ones, and that the non-coordinative interaction could be divided into two distinct interactions: (1) ionic attraction and (2) hydrogen bonding and/or van der Waals contact. The relationship between diffusion-controlled non-coordinative DNA interactions and cytotoxicities is also discussed. PMID:23725767

  10. Aromatic C-H Activation in the Triplet Excited State of Cyclometalated Platinum(II) Complexes Using Visible Light.

    PubMed

    Juliá, Fabio; González-Herrero, Pablo

    2016-04-27

    The visible-light driven cyclometalation of arene substrates containing an N-donor heteroaromatic moiety as directing group by monocyclometalated Pt(II) complexes is reported. Precursors of the type [PtMe(C^N)(N^CH)], where N^CH is 2-phenylpyridine (ppyH) or related compunds with diverse electronic properties and C^N is the corresponding cyclometalated ligand, afford homoleptic cis-[Pt(C^N)2] complexes upon irradiation with blue LEDs at room temperature with evolution of methane. Heteroleptic derivatives cis-[Pt(ppy)(C'^N')] are obtained analogously from [PtMe(ppy)(N'^C'H)], where N'^C'H represents an extended set of heteroaromatic compounds. Experimental and computational studies demonstrate an unprecedented C-H oxidative addition, which is initiated by a triplet excited state of metal-to-ligand charge-transfer (MLCT) character and leads to a detectable Pt(IV) methyl hydride intermediate. PMID:27058394

  11. Ultrasound-induced emission enhancement based on structure-dependent homo- and heterochiral aggregations of chiral binuclear platinum complexes.

    PubMed

    Komiya, Naruyoshi; Muraoka, Takako; Iida, Masayuki; Miyanaga, Maiko; Takahashi, Koichi; Naota, Takeshi

    2011-10-12

    Instant and precise control of phosphorescent emission can be performed by ultrasound-induced gelation of organic liquids with chiral, clothespin-shaped trans-bis(salicylaldiminato)Pt(II) complexes, anti-1. Nonemissive solutions of racemic, short-linked anti-1a (n = 5) and optically pure, long-linked anti-1c (n = 7) in organic liquids are transformed immediately into stable phosphorescent gels upon brief irradiation of low-power ultrasound. Emission from the gels can be controlled by sonication time, linker length, and optical activity of the complexes. Several experimental results indicated that structure-dependent homo- and heterochiral aggregations and ultrasound-control of the aggregate morphology are key factors for emission enhancement. PMID:21894951

  12. Effect of glucosamine conjugation to zinc(II) complexes of a bis-pyrazole ligand: syntheses, characterization and anticancer activity.

    PubMed

    Bhattacharyya, Sudipta; Sarkar, Amrita; Dey, Suman Kr; Mukherjee, Arindam

    2014-11-01

    The bis(3,5-dimethyl-1H- pyrazol-1yl)acetic acid (bdmpza) ligand was conjugated with tert-butyl-N-(2-aminoethyl) carbonate, methyl-2-amino-4-(methylthio)butanoate and 1,3,4,6-tetra-O-acetyl-β-d-glucosamine hydrochloride via amide coupling method to form three ligands L1-L3 which were then reacted with Zn(II) salts to form four zinc complexes (1-4). The complexes were characterized by (1)H NMR, (13)C NMR, electrospray ionization mass spectrometry (ESI-MS), FT-IR, CHN analyses. Complexes 1, 2 and 4 were also characterized by single crystal X-ray diffraction. It was found that Zn(II) salts could selectively remove the acetyl group from anomeric position leaving everything else intact. The cytotoxicity studies of the ligand and the complexes showed that the conjugation to acetylated glucosamine enhances cytotoxic ability although the complexes become more hydrophilic. Cytotoxicity studies in human breast adenocarcinoma (MCF-7), human cervical cancer (HeLa WT) and human lung adenocarcinoma (A549) showed that the acetylated glucosamine conjugation to the bis-pyrazole ligated Zn(II) complex led to 2-4 fold increase in cytotoxicity (IC50 values ca. 57-80μM) against HeLa WT and MCF-7 cell lines. The Zn(II) complex bearing the acetylated glucosamine inhibits the cell cycle in the G2/M phase of MCF-7 cell line. ICP-MS data shows more accumulation of Zn(II) inside the cell upon use of complex 4 as compared to Zn(II) salts or the other presented complexes. Further studies suggest that the mitochondrial transmembrane potential changes in the presence of complex 4 and caspase-7 is activated by Zn(II) salts but the activation is much more by complex 4 and hence there is apoptosis and dose dependent chromatin condensation/nuclear fragmentation as observed by microscopy. PMID:25113858

  13. Uniting Ruthenium(II) and Platinum(II) Polypyridine Centers in Heteropolymetallic Complexes Giving Strong Two-Photon Absorption.

    PubMed

    Shi, Pengfei; Coe, Benjamin J; Sánchez, Sergio; Wang, Daqi; Tian, Yupeng; Nyk, Marcin; Samoc, Marek

    2015-12-01

    New trinuclear RuPt2 and heptanuclear RuPt6 complex salts are prepared by attaching Pt(II) 2,2':6',2"-terpyridine (tpy) moieties to Ru(II) 4,4':2',2":4",4"'-quaterpyridine (qpy) complexes. Characterization includes single crystal X-ray structures for both polymetallic species. The visible absorption bands are primarily due to Ru(II) → qpy metal-to-ligand charge-transfer (MLCT) transitions, according to time-dependent density functional theory (TD-DFT) calculations. These spectra change only slightly on Pt coordination, while the orange-red emission from the complexes shows corresponding small red-shifts, accompanied by decreases in intensity. Cubic molecular nonlinear optical behavior has been assessed by using Z-scan measurements. These reveal relatively high two-photon absorption (2PA) cross sections σ2, with maximal values of 301 GM at 834 nm (RuPt2) and 523 GM at 850 nm (RuPt6) when dissolved in methanol or acetone, respectively. Attaching Pt(II)(tpy) moieties triples or quadruples the 2PA activities when compared with the Ru(II)-based cores. PMID:26562721

  14. Platinum(II) oxalato complexes involving adenosine-based N-donor ligands: synthesis, characterization and cytotoxicity evaluation.

    PubMed

    Starha, Pavel; Popa, Igor; Trávníček, Zdeněk

    2014-01-01

    A one-step synthetic procedure using the reaction of potassium bis(oxalato)platinate(II) with the corresponding N6-benzyladenosine derivative (nL) provided the [Pt(ox)(nL)₂]∙1.5H₂O oxalato (ox) complexes 1-5, involving the nL molecules as monodentate coordinated N-donor ligands. The complexes were thoroughly characterized by elemental analysis, multinuclear (¹H, ¹³C, ¹⁵N, 1¹⁹⁵Pt) and two dimensional NMR, infrared and Raman spectroscopy, and mass spectrometry, proving their composition and purity as well as coordination of nL through the N7 atom of the purine moiety. Geometry of [Pt(ox)(4FL)₂] (5) was optimized at the B3LYP/LANLTZ/6-311G** level of theory. The complexes were screened for their in vitro cytotoxicity against two human cancer cell lines (HOS osteosarcoma and MCF7 breast adenocarcinoma), but they did not show any effect up to the concentration of 50.0 µM (compounds 1, 2) or 20.0 µM (compounds 3-5). PMID:24662093

  15. Platinum-group element distribution in base-metal sulfides of the Merensky Reef from the eastern and western Bushveld Complex, South Africa

    NASA Astrophysics Data System (ADS)

    Osbahr, Inga; Klemd, Reiner; Oberthür, Thomas; Brätz, Helene; Schouwstra, Robert

    2013-02-01

    Base-metal sulfides in magmatic Ni-Cu-PGE deposits are important carriers of platinum-group elements (PGE). The distribution and concentrations of PGE in pentlandite, pyrrhotite, chalcopyrite, and pyrite were determined in samples from the mineralized portion of four Merensky Reef intersections from the eastern and western Bushveld Complex. Electron microprobe analysis was used for major elements, and in situ laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) for trace elements (PGE, Ag, and Au). Whole rock trace element analyses were performed on representative samples to obtain mineralogical balances. In Merensky Reef samples from the western Bushveld, both Pt and Pd are mainly concentrated in the upper chromitite stringer and its immediate vicinity. Samples from the eastern Bushveld reveal more complex distribution patterns. In situ LA-ICP-MS analyses of PGE in sulfides reveal that pentlandite carries distinctly elevated PGE contents, whereas pyrrhotite and chalcopyrite only contain very low PGE concentrations. Pentlandite is the principal host of Pd and Rh in the ores. Palladium and Rh concentrations in pentlandite reach up to 700 and 130 ppm, respectively, in the samples from the eastern Bushveld, and up to 1,750 ppm Pd and up to 1,000 ppm Rh in samples from the western Bushveld. Only traces of Pt are present in the base-metal sulfides (BMS). Pyrrhotite contains significant though generally low amounts of Ru, Os, and Ir, but hardly any Pd or Rh. Chalcopyrite contains most of the Ag but carries only extremely low PGE concentrations. Mass balance calculations performed on the Merensky Reef samples reveal that in general, pentlandite in the feldspathic pyroxenite and the pegmatoidal feldspathic pyroxenite hosts up to 100 % of the Pd and Rh and smaller amounts (10-40 %) of the Os, Ir, and Ru. Chalcopyrite and pyrrhotite usually contain less than 10 % of the whole rock PGE. The remaining PGE concentrations, and especially most of the Pt (up to

  16. Anticancer activity and DNA-binding investigations of the Cu(II) and Ni(II) complexes with coumarin derivative.

    PubMed

    Zhu, Taofeng; Wang, Yuan; Ding, Weiliang; Xu, Jun; Chen, Ruhua; Xie, Jing; Zhu, Wenjiao; Jia, Lei; Ma, Tieliang

    2015-03-01

    Two new copper(II) (2) and nickel(II) (3) complexes with a new coumarin derivative have been synthesized and structurally characterized. The DNA-binding activities of the two complexes have been investigated by spectrometric titrations, ethidium bromide displacement experiments, CD (circular dichroism) spectral analysis, and viscosity measurements. The results indicate that the two complexes, especially the complex 2, can strongly bind to calf-thymus DNA (CT--DNA). The intrinsic binding constants Kb of the complexes with CT-DNA are 2.99 × 10(5) and 0.61 × 10(5) for 2 and 3, respectively. Comparative cytotoxic activities of the two complexes are also determined by MTT assay. The results show that the drugs designed here have significant cytotoxic activity against the human hepatic (HepG2), human promyelocytic leukemia (HL60), and human prostate (PC3) cell lines. Cell apoptosis was detected by Annexin V/PI flow cytometry, and the results show that the two copper complexes can induce apoptosis of the three human tumor cells. In conclusions, the two complexes show considerable cytotoxic activity against the three human cancer and induce apoptosis of the threes. PMID:25141910

  17. Affinity to bovine serum albumin and anticancer activity of some new water-soluble metal Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Zarei, Leila; Sadi, Somaye Barzegar; Amirghofran, Zahra

    2014-12-01

    Metal Schiff-base complexes show biological activity but they are usually insoluble in water so four new water-soluble metal Schiff base complexes of Na2[M(5-SO3-1,2-salben]; (5-SO3-1,2-salben denoted N,N";-bis(5-sulphosalicyliden)-1,2-diaminobenzylamine and M = Mg, Mn, Cu, Zn) were synthesized and characterized. The formation constants of the metal complexes were determined by UV-Vis absorption spectroscopy. The interaction of these complexes with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. Type of quenching, binding constants, number of binding sites and binding stoichiometries were determined by fluorescence quenching method. The results showed that the mentioned complexes strongly bound to BSA. Thermodynamic parameters indicated that hydrophobic association was the major binding force and that the interaction was entropy driven and enthalpically disfavoured. The displacement experiment showed that these complexes could bind to the subdomain IIA (site I) of albumin. Furthermore the synchronous fluorescence spectra showed that the microenvironment of the tryptophan residues was not apparently changed. Based on the Förster theory of non-radiation energy transfer, the distance between the donor (Trp residues) and the acceptor metal complexes was obtained. The growth inhibitory effect of complexes toward the K562 cancer cell line was measured.

  18. New Oxidovanadium Complexes Incorporating Thiosemicarbazones and 1, 10-Phenanthroline Derivatives as DNA Cleavage, Potential Anticancer Agents, and Hydroxyl Radical Scavenger.

    PubMed

    Ying, Peng; Zeng, Pengfei; Lu, Jiazheng; Chen, Hongyuan; Liao, Xiangwen; Yang, Ning

    2015-10-01

    Four novel oxidovanadium(IV) complexes, [VO(hntdtsc)(PHIP)] (1) (hntdtsc = 2-hydroxy-1-naphthaldehyde thiosemicarbazone, PHIP= 2-phenyl-imidazo[4,5-f]1,10-phenanthroline), [VO(hntdtsc)(DPPZ)](2)(DPPZ= dipyrido[3,2-a:2',3'-c]phenazine), [VO(satsc)(PHIP)](3) (satsc=salicylaldehyde thiosemicarbazone), and [VO(satsc)(DPPZ)](4), have been prepared and characterized. The chemical nuclease activities and photocleavage reactions of the complexes were tested. All four complexes can efficiently cleave pBR322 DNA, and complex 1 has the best cleaving ability. The antitumor properties of these complexes were examined with three different tumor cell lines using MTT assay. Their antitumor mechanism has been analyzed using cell cycle analysis, fluorescence microscopy of apoptosis, and Annexin V-FITC/PI assay. The results showed that the growth of human neuroblastoma (SH-SY5Y, SK-N-SH) and human breast adenocarcinoma (MCF-7) cells were inhibited significantly with very low IC50 values. Complex 1 was found to be the most potent antitumor agent among the four complexes. It can cause G0/G1 phase arrest of the cell cycle and exhibited significant induced apoptosis in SK-N-SH cells and displayed typical morphological apoptotic characteristics. In addition, they all displayed reasonable abilities to scavenge hydroxyl radical, and complex 1 was the best inhibitor. PMID:25659415

  19. Cobalt(III) complexes as potential anticancer agents: Physicochemical, structural, cytotoxic activity and DNA/protein interactions.

    PubMed

    Thamilarasan, V; Sengottuvelan, N; Sudha, A; Srinivasan, P; Chakkaravarthi, G

    2016-09-01

    Cobalt(III) complexes (1-3) such as [Co(acac)(bpy)(N3)2·H2O] 1, [Co(acac)(en)(N3)2] 2, and [Co(acac)(2-pic)(N3)2] 3 (where, acac=acetylacetone, bpy=2.2'-bipyridine, en=ethylenediamine, 2-pic=2-picolylamine and NaN3=sodium azide) were synthesized and characterized. The structure of complexes (1-3) has been determined by single crystal X-ray diffraction studies and the configuration around cobalt(III) ion was distorted octahedral coordination geometry. Density functional theory calculations were performed to examine the molecular geometry and frontier molecular orbital properties of complexes (1-3). DNA binding properties of the cobalt(III) complexes with calf thymus DNA (CT-DNA) were investigated by UV-visible absorption, fluorescence, circular dichroism spectroscopy and viscosity measurements. The docking studies showed the preferred orientation of sterically acceptable Co(III) complexes (1, 2) inside the DNA through the mode of intercalation, whereas complex 3 exhibited minor groove binding modes. The intrinsic binding constants Kb of complexes (1-3) with CT-DNA were in the following order 1>3>2. Complexes (1-3) exhibit a good binding propensity to bovine serum albumin (BSA) and gel electrophoresis assay demonstrated that the complexes (1-3) promote the cleavage of the pBR322 DNA in the presence of 3-mercaptopropionic acid (MPA) and cleavage process was found to proceed by singlet oxygen cleavage mechanism. Further, the in vitro cytotoxicity studies of complexes (1-3) were tested on human breast cancer cell line (MCF-7). PMID:27475779

  20. Sesterterpenoids with Anticancer Activity.

    PubMed

    Evidente, Antonio; Kornienko, Alexander; Lefranc, Florence; Cimmino, Alessio; Dasari, Ramesh; Evidente, Marco; Mathieu, Véronique; Kiss, Robert

    2015-01-01

    Terpenes have received a great deal of attention in the scientific literature due to complex, synthetically challenging structures and diverse biological activities associated with this class of natural products. Based on the number of C5 isoprene units they are generated from, terpenes are classified as hemi- (C5), mono- (C10), sesqui- (C15), di- (C20), sester- (C25), tri (C30), and tetraterpenes (C40). Among these, sesterterpenes and their derivatives known as sesterterpenoids, are ubiquitous secondary metabolites in fungi, marine organisms, and plants. Their structural diversity encompasses carbotricyclic ophiobolanes, polycyclic anthracenones, polycyclic furan-2-ones, polycyclic hydroquinones, among many other carbon skeletons. Furthermore, many of them possess promising biological activities including cytotoxicity and the associated potential as anticancer agents. This review discusses the natural sources that produce sesterterpenoids, provides sesterterpenoid names and their chemical structures, biological properties with the focus on anticancer activities and literature references associated with these metabolites. A critical summary of the potential of various sesterterpenoids as anticancer agents concludes the review. PMID:26295461

  1. Sesterterpenoids with Anticancer Activity

    PubMed Central

    Evidente, Antonio; Kornienko, Alexander; Lefranc, Florence; Cimmino, Alessio; Dasari, Ramesh; Evidente, Marco; Mathieu, Véronique; Kiss, Robert

    2016-01-01

    Terpenes have received a great deal of attention in the scientific literature due to complex, synthetically challenging structures and diverse biological activities associated with this class of natural products. Based on the number of C5 isoprene units they are generated from, terpenes are classified as hemi- (C5), mono- (C10), sesqui- (C15), di- (C20), sester- (C25), tri (C30), and tetraterpenes (C40). Among these, sesterterpenes and their derivatives known as sesterterpenoids, are ubiquitous secondary metabolites in fungi, marine organisms, and plants. Their structural diversity encompasses carbotricyclic ophiobolanes, polycyclic anthracenones, polycyclic furan-2-ones, polycyclic hydroquinones, among many other carbon skeletons. Furthermore, many of them possess promising biological activities including cytotoxicity and the associated potential as anticancer agents. This review discusses the natural sources that produce sesterterpenoids, provides sesterterpenoid names and their chemical structures, biological properties with the focus on anticancer activities and literature references associated with these metabolites. A critical summary of the potential of various sesterterpenoids as anticancer agents concludes the review. PMID:26295461

  2. CF3 Derivatives of the Anticancer Ru(III) Complexes KP1019, NKP-1339, and Their Imidazole and Pyridine Analogues Show Enhanced Lipophilicity, Albumin Interactions, and Cytotoxicity.

    PubMed

    Chang, Stephanie W; Lewis, Andrew R; Prosser, Kathleen E; Thompson, John R; Gladkikh, Margarita; Bally, Marcel B; Warren, Jeffrey J; Walsby, Charles J

    2016-05-16

    functionalization. Overall, these studies demonstrate that lipophilicity may be a determining factor in the anticancer activity and pharmacological behavior of these types of Ru(III) complexes. PMID:27143338

  3. Activity of phosphino palladium(II) and platinum(II) complexes against HIV-1 and Mycobacterium tuberculosis.

    PubMed

    Gama, Ntombenhle H; Elkhadir, Afag Y F; Gordhan, Bhavna G; Kana, Bavesh D; Darkwa, James; Meyer, Debra

    2016-08-01

    Treatment of human immunodeficiency virus (HIV) is currently complicated by increased prevalence of co-infection with Mycobacterium tuberculosis. The development of drug candidates that offer the simultaneous management of HIV and tuberculosis (TB) would be of great benefit in the holistic treatment of HIV/AIDS, especially in sub-Saharan Africa which has the highest global prevalence of HIV-TB coinfection. Bis(diphenylphosphino)-2-pyridylpalladium(II) chloride (1), bis(diphenylphosphino)-2-pyridylplatinum(II) chloride (2), bis(diphenylphosphino)-2-ethylpyridylpalladium(II) chloride (3) and bis(diphenylphosphino)-2-ethylpyridylplatinum(II) (4) were investigated for the inhibition of HIV-1 through interactions with the viral protease. The complexes were subsequently assessed for biological potency against Mycobacterium tuberculosis H37Rv by determining the minimal inhibitory concentration (MIC) using broth microdilution. Complex (3) showed the most significant and competitive inhibition of HIV-1 protease (p = 0.014 at 100 µM). Further studies on its in vitro effects on whole virus showed reduced viral infectivity by over 80 % at 63 µM (p < 0.05). In addition, the complex inhibited the growth of Mycobacterium tuberculosis at an MIC of 5 µM and was non-toxic to host cells at all active concentrations (assessed by tetrazolium dye and real time cell electronic sensing). In vitro evidence is provided here for the possibility of utilizing a single metal-based compound for the treatment of HIV/AIDS and TB. PMID:27246555

  4. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes.

    PubMed

    Vícha, Jan; Patzschke, Michael; Marek, Radek

    2013-05-28

    A methodology for optimizing the geometry and calculating the NMR shielding constants is calibrated for octahedral complexes of Pt(IV) and Ir(III) with modified nucleic acid bases. The performance of seven different functionals (BLYP, B3LYP, BHLYP, BP86, TPSS, PBE, and PBE0) in optimizing the geometry of transition-metal complexes is evaluated using supramolecular clusters derived from X-ray data. The effects of the size of the basis set (ranging from SVP to QZVPP) and the dispersion correction (D3) on the interatomic distances are analyzed. When structural deviations and computational demands are employed as criteria for evaluating the optimizations of these clusters, the PBE0/def2-TZVPP/D3 approach provides excellent results. In the next step, the PBE0/def2-TZVPP approach is used with the continuum-like screening model (COSMO) to optimize the geometry of single molecules for the subsequent calculation of the NMR shielding constants in solution. The two-component zeroth-order regular approximation (SO-ZORA) is used to calculate the NMR shielding constants (PBE0/TZP/COSMO). The amount of exact exchange in the PBE0 functional is validated for the nuclear magnetic shieldings of atoms in the vicinity of heavy transition metals. For the PBE0/TZP/COSMO setup, an exact exchange of 40% is found to accurately reproduce the experimental NMR shielding constants for both types of complexes. Finally, the effect of the amount of exact exchange on the NMR shielding calculations (which is capable of compensating for the structural deficiencies) is analyzed for various molecular geometries (SCS-MP2, BHLYP, and PBE0) and the influence of a trans-substituent on the NMR chemical shift of nitrogen is discussed. The observed dependencies for an iridium complex cannot be rationalized by visualizing the Fermi-contact (FC) induced spin density and probably originate from changes in the d-d transitions that modulate the spin-orbit (SO) part of the SO/FC term. PMID:23598437

  5. Multinuclear NMR spectroscopy and antiproliferative activity in vitro of platinum(II) and palladium(II) complexes with 6-mercaptopurine

    NASA Astrophysics Data System (ADS)

    Łakomska, Iwona; Pazderski, Leszek; Sitkowski, Jerzy; Kozerski, Lech; Pełczyńska, Marzena; Nasulewicz, Anna; Opolski, Adam; Szłyk, Edward

    2004-11-01

    A series of Pd(II) and Pt(II) complexes with 6-mercaptopurine (6-Hmp) of formulae Pd(6-Hmp) 2Cl 2 ( 1), Pd(6-mp) 2·2H 2O ( 2), Pt(6-mp) 2·2H 2O ( 3), Pt(6-mp)(dmso)Cl ( 4) was synthesized and studied by IR, far-IR, 1H, 13C, 15N NMR. ( 1) has an ionic character and consists of distinct [Pd(6-Hmp) 2] 2+ cations and uncoordinated Cl - anions, whereas ( 2,3) are neutral species with central atoms bis-chelated by the deprotonated 6-mp - ligands. NMR studies suggest that S and N(7) are the complexation sites, while far-IR spectra indicate the square-planar geometry of Pd(II) or Pt(II). In ( 4) the Pt(II) atom is coordinated by one chelating 6-mp - anion, S-bonded dmso molecule and a terminal chloride. The antiproliferative activity in vitro of ( 2-4) was tested against human leukaemia HL-60 cells, being exhibited for ( 2) at the level ca. six times lower than in case of cisplatin.

  6. Synthesis and characterization of luminescent square-planar platinum(II) complexes containing dithiolate or dithiocarbamate ligands

    SciTech Connect

    Bevilacqua, J.M.; Eisenberg, R.

    1994-06-22

    The synthesis, characterization, and emission properties of a series of Pt(L{sub 2})(S-S) complexes are reported. The (L{sub 2}) ligands include 4,7-diphenyl-1,10-phenanthroline (Ph{sub 2}phen), 4,4{prime}-dimethyl-2,2{prime}-bipyridine (Me{sub 2}bpy), 1,5-cyclo-octadiene (COD), trimethyl phosphite (P(OMe){sub 3}), and the {alpha}-C-deprotonated form of 2-phenylpyridine (2-phpy). The (S-S) ligands include 1-(tert-butoxycarbonyl)-1-cyanoethylene-2,2-dithiolate (tbcda), 1-(diethoxyphosphinyl)-1-cyanoethylene-2,2-dithiolate (cpdt), cis-1,2-dicarbomethoxyethylene-1,2-dithiolate (met), and N,N-diethyldithio-carbamate (Et{sub 2}dtc). The complexes are readily synthesized by the addition of the dithiolate or thiolate ligand to Pt(L{sub 2})Cl{sub 2} except for Pt(P(OMe){sub 3}){sub 2}(met), which is prepared by the addition of 2 equiv of trimethyl phosphite to Pt(COD)(met).

  7. Structure-based design of platinum(II) complexes as c-myc oncogene down-regulators and luminescent probes for G-quadruplex DNA.

    PubMed

    Wang, Ping; Leung, Chung-Hang; Ma, Dik-Lung; Yan, Siu-Cheong; Che, Chi-Ming

    2010-06-18

    A series of platinum(II) complexes with tridentate ligands was synthesized and their interactions with G-quadruplex DNA within the c-myc gene promoter were evaluated. Complex 1, which has a flat planar 2,6-bis(benzimidazol-2-yl)pyridine (bzimpy) scaffold, was found to stabilize the c-myc G-quadruplex structure in a cell-free system. An in silico G-quadruplex DNA model has been constructed for structure-based virtual screening to develop new Pt(II)-based complexes with superior inhibitory activities. By using complex 1 as the initial structure for hit-to-lead optimization, bzimpy and related 2,6-bis(pyrazol-3-yl)pyridine (dPzPy) scaffolds containing amine side-chains emerge as the top candidates. Six of the top-scoring complexes were synthesized and their interactions with c-myc G-quadruplex DNA have been investigated. The results revealed that all of the complexes have the ability to stabilize the c-myc G-quadruplex. Complex 3 a ([Pt(II)L2R](+); L2=2,6-bis[1-(3-piperidinepropyl)-1H-enzo[d]imidazol-2-yl]pyridine, R=Cl) displayed the strongest inhibition in a cell-free system (IC(50)=2.2 microM) and was 3.3-fold more potent than that of 1. Complexes 3 a and 4 a ([Pt(II)L3R](+); L3=2,6-bis[1-(3-morpholinopropyl)-1H-pyrazol-3-yl]pyridine, R=Cl) were found to effectively inhibit c-myc gene expression in human hepatocarcinoma cells with IC(50) values of approximately 17 microM, whereas initial hit 1 displayed no significant effect on gene expression at concentrations up to 50 microM. Complexes 3 a and 4 a have a strong preference for G-quadruplex DNA over duplex DNA, as revealed by competition dialysis experiments and absorption titration; 3 a and 4 a bind G-quadruplex DNA with binding constants (K) of approximately 10(6)-10(7) dm(3) mol(-1), which are at least an order of magnitude higher than the K values for duplex DNA. NMR spectroscopic titration experiments and molecular modeling showed that 4 a binds c-myc G-quadruplex DNA through an external end-stacking mode at

  8. Transition metal complexes of a new 15-membered [N5] penta-azamacrocyclic ligand with their spectral and anticancer studies

    NASA Astrophysics Data System (ADS)

    El-Boraey, Hanaa A.; Serag El-Din, Azza A.

    2014-11-01

    Novel penta-azamacrocyclic 15-membered [N5] ligand [L] i.e. 1,5,8,12-tetetraaza-3,4: 9,10-dibenzo-6-ethyl-7-methyl-1,12-(2,6-pyrido)cyclopentadecan-5,7 diene-2,11-dione and its transition metal complexes with Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and structurally characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On basis of IR, MS, UV-Vis 1H NMR and EPR spectral studies an octahedral geometry has been proposed for all complexes except Co(II), Cu(II) nitrate complexes and Pd(II) chloride complex that adopt tetrahedral, square pyramidal and square planar geometries, respectively. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.04-9.7, 2.5-3.7 μg/mL) showed potent antitumor activity comparable with their ligand (IC50 = 11.7, 3.45 μg/mL) against the above mentioned cell lines, respectively. The results evidently show that the activity of the ligand becomes more pronounced and significant when coordinated to the metal ion.

  9. Transition metal complexes of a new 15-membered [N5] penta-azamacrocyclic ligand with their spectral and anticancer studies.

    PubMed

    El-Boraey, Hanaa A; Serag El-Din, Azza A

    2014-11-11

    Novel penta-azamacrocyclic 15-membered [N5] ligand [L] i.e. 1,5,8,12-tetetraaza-3,4: 9,10-dibenzo-6-ethyl-7-methyl-1,12-(2,6-pyrido)cyclopentadecan-5,7 diene-2,11-dione and its transition metal complexes with Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and structurally characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On basis of IR, MS, UV-Vis 1H NMR and EPR spectral studies an octahedral geometry has been proposed for all complexes except Co(II), Cu(II) nitrate complexes and Pd(II) chloride complex that adopt tetrahedral, square pyramidal and square planar geometries, respectively. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50=2.04-9.7, 2.5-3.7 μg/mL) showed potent antitumor activity comparable with their ligand (IC50=11.7, 3.45 μg/mL) against the above mentioned cell lines, respectively. The results evidently show that the activity of the ligand becomes more pronounced and significant when coordinated to the metal ion. PMID:24892547

  10. Discovery and investigation of anticancer ruthenium-arene Schiff-base complexes via water-promoted combinatorial three-component assembly.

    PubMed

    Chow, Mun Juinn; Licona, Cynthia; Yuan Qiang Wong, Daniel; Pastorin, Giorgia; Gaiddon, Christian; Ang, Wee Han

    2014-07-24

    The structural diversity of metal scaffolds makes them a viable alternative to traditional organic scaffolds for drug design. Combinatorial chemistry and multicomponent reactions, coupled with high-throughput screening, are useful techniques in drug discovery, but they are rarely used in metal-based drug design. We report the optimization and validation of a new combinatorial, metal-based, three-component assembly reaction for the synthesis of a library of 442 Ru-arene Schiff-base (RAS) complexes. These RAS complexes were synthesized in a one-pot, on-a-plate format using commercially available starting materials under aqueous conditions. The library was screened for their anticancer activity, and several cytotoxic lead compounds were identified. In particular, [(η6-1,3,5-triisopropylbenzene)RuCl(4-methoxy-N-(2-quinolinylmethylene)aniline)]Cl (4) displayed low micromolar IC50 values in ovarian cancers (A2780, A2780cisR), breast cancer (MCF7), and colorectal cancer (HCT116, SW480). The absence of p53 activation or changes in IC50 value between p53+/+ and p53-/- cells suggests that 4 and possibly the other lead compounds may act independently of the p53 tumor suppressor gene frequently mutated in cancer. PMID:25023617

  11. Photophysical and photochemical properties of the water-soluble porphyrin complexes of metals of the platinum group

    NASA Astrophysics Data System (ADS)

    Vasil'Ev, V. V.; Blinova, I. A.; Golovina, I. V.; Borisov, S. M.

    1999-07-01

    Consideration is given to phosphorescence and photochemical properties of the coordination compounds Pt(II), Pd(II), and Rh(III) with three water-soluble porphyrins, i.e., meso-tetrakis (4-N,N,N-trimethylaminophenyl) porphin (H2TTMAP4+), meso-tetrakis (4-N-methylpyridyl) porphin (H2TMPyP4+) and meso-tetrakis (4-sulfonatophenyl) porphin (H2TSPP4-). It is shown that the process of photoreduction by an irreversibly oxidized electron donor (EDTA) proceeds only for the complexes with TMPyP, which is attributed to the strongest oxidative properties of these metal poprhyrins in the triplet excited state. The end products of the photoreduction reaction (metal chlorins and metallophlorin-anions) are established and its possible mechanism is suggested.

  12. Determination of the complex refractive index of a subwavelength-diameter platinum or gold pipe by light scattering.

    PubMed

    Tajima, Fumiaki; Nishiyama, Yoshio

    2016-09-01

    The complex refractive indices of Pt and Au pipes that are subwavelength in diameter have been found to be different from those of metal thin films for the first time. The metal pipe is made from a spider silk of half-wavelength diameter clad with Pt or Au and illuminated by a plane-polarized laser of wavelength 660 nm at normal incidence. The angular distribution of the light intensity scattered by the pipe is measured and fitted using theoretical calculations based on the corresponding model. The fitting results have lead to the optimum values and uncertainty ranges of the indices and the diameter of the pipe. A field emission scanning electron microscope confirms the diameter from the optical estimation and reveals an image of the surface of the pipe. PMID:27607485

  13. Antioxidant, anticancer activities and mechanistic studies of the flavone glycoside diosmin and its oxidovanadium(IV) complex. Interactions with bovine serum albumin.

    PubMed

    Naso, Luciana; Martínez, Valeria R; Lezama, Luis; Salado, Clarisa; Valcarcel, María; Ferrer, Evelina G; Williams, Patricia A M

    2016-09-15

    The natural antioxidant flavonoid diosmin, found in citric fruits, showed low antioxidant properties among other flavonoids due to its structural characteristics and low cytotoxicity against lung (A549) and breast (T47D, SKBR3 and MDAMB231) cancer cell lines. The anticancer behavior has been improved by the metal complex generated with the flavonoid and the oxidovanadium(IV) ion. This new complex, [VO(dios)(OH)3]Na5·6H2O (VOdios), has been synthesized and characterized both in solid and solution states. The interaction of the metal ion through the sugar moiety of diosmin precluded the improvement of the antioxidant effects. However, the cell-killing effects tested in human lung A549 and breast T47D, SKBR3 and MDAMB231 cancer cell lines, were enhanced by complexation. The anti-proliferative effects on the human lung cancer cell line were accompanied by cellular ROS generation and an increase in cytoplasm condensation. The breast cancer cell lines did not produce caspase3/7 activation, mitochondrial potential reduction and ROS generation. Therefore, a non-apoptotic form of cell death in a caspase- and oxidative stress-independent manner has been proposed. The protein binding ability has been monitored by the quenching of tryptophan emission in the presence of the compounds using bovine serum albumin (BSA) as a model protein. Both compounds could be distributed and transported in vivo and the complex displayed stronger binding affinity and higher contributions to the hydrogen bond and van der Waals forces. PMID:27374881

  14. Cytotoxic trans-platinum(II) complex with 3-hydroxymethylpyridine: Synthesis, X-ray structure and biological activity evaluation.

    PubMed

    Grabner, Sabina; Modec, Barbara; Bukovec, Nataša; Bukovec, Peter; Čemažar, Maja; Kranjc, Simona; Serša, Gregor; Sčančar, Janez

    2016-08-01

    To assess the potential cytostatic properties of Pt(II) complexes with 3-hydroxymethylpyridine (3-hmpy) as the only carrier ligand, novel cis-[PtCl2(3-hmpy)2] (1) and trans-[PtCl2(3-hmpy)2] (2) have been prepared. Elemental analysis, FTIR spectroscopy, multinuclear NMR spectroscopy and X-ray crystallography were used to determine their structures. Based on the results obtained with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and clonogenic assay on T24 human bladder carcinoma cells (T24), the most potent compound 2 was further tested for cytotoxicity in human ovarian carcinoma cell lines - cisplatin sensitive (IGROV 1) and its resistant subclone (IGROV 1/RDDP). The cytotoxicity of compound 2 in IGROV 1/RDDP is comparable to cisplatin. Furthermore, compound 2 induced severe conformational changes in plasmid DNA, which resulted in a delayed onset of apoptosis in T24 cells, and higher amounts of Pt in tumours and serum compared to cisplatin. In addition, in vivo antitumour effectiveness was comparable to that of cisplatin with a smaller reduction of animals' body weight, thus demonstrating that it is a promising transplatin analogue which deserves further studies. PMID:27189143

  15. The conformation effect of the diamine bridge on the stability of dinuclear platinum(II) complexes and their hydrolysis.

    PubMed

    Esteves, Lucas F; Dos Santos, Hélio F; Costa, Luiz Antônio S

    2015-09-01

    In this paper, the hydrolysis process of a bisplatinum complex containing the flexible chain 1,6-hexanediamine between the two metal centers was investigated through the use of density functional theory (DFT) with the analysis of the role of the spacing group arrangement on the values of free energy activation barrier. All structures were fully optimized in aqueous solution using implicit model for solvent at DFT level. The energy profiles for the hydrolysis reaction were determined by using the supermolecule approach. Five transition states were proposed differing by the conformation of the bridge group, and the activation free energy calculated as a weighted average within the selected forms. The Gibbs population for reactant was used as a statistical weight leading to the predicted value of 23.1kcalmol(-1), in good accordance with experiment, 23.8kcalmol(-1). Our results suggests that for 1,6-hexanediamine bridge ligand, the extend forms with average torsional angle over the carbon chain larger than 130° have the greatest contribution to the hydrolysis kinetics. The results presented here point out that the hydrolysis mechanism might follow different paths for each conformation and each of these contributes to the observed energy barrier. PMID:26318233

  16. Structures at the base of the Upper Group 2 chromitite layer, Bushveld Complex, South Africa, on Karee Mine (Lonmin Platinum)

    NASA Astrophysics Data System (ADS)

    Van der Merwe, J.; Cawthorn, R. G.

    2005-08-01

    Exposures in a now-infilled pit mined for platiniferous UG2 chromitite in the Bushveld Complex, South Africa, are described. The layer of chromitite is underlain by anorthosite, providing a dramatic colour contrast. The interface between these two rock types shows evidence of various scales of irregularities. In plan view, small circular depressions, less than 3 cm across and 5 mm deep, occupy about 20% of the surface. Between them, the contact is planar. The anorthosite, immediately underlying the chromitite, has a planar fabric visible in thin sections that is not disturbed beneath these small depressions. Another set of depressions occurs, about 40 cm in diameter and with variable depth (< 40 cm). Again they are approximately circular. Larger structures, called potholes, reach several metres. No regular distribution pattern is apparent in any of these structures. Several possible processes are reviewed for the origin of these irregularities, especially the small-scale structures, but none explains all the features noted. These processes include remelting, diapirism, impact-generated dimpling, gas escape, and interference rippling. We present a photographic record of these structures, but present no definitive model for their interpretation.

  17. New 15-membered tetraaza (N4) macrocyclic ligand and its transition metal complexes: Spectral, magnetic, thermal and anticancer activity

    NASA Astrophysics Data System (ADS)

    El-Boraey, Hanaa A.; EL-Gammal, Ohyla A.

    2015-03-01

    Novel tetraamidemacrocyclic 15-membered ligand [L] i.e. naphthyl-dibenzo[1,5,9,12]tetraazacyclopentadecine-6,10,11,15-tetraoneand its transition metal complexes with Fe(II), Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On the basis of analytical, spectral (IR, MS, UV-Vis, 1H NMR and EPR) and thermal studies distorted octahedral or square planar geometry has been proposed for the complexes. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.27-2.7, 8.33-31.1 μg/mL, respectively) showed potent antitumor activity, towards the former cell lines comparable with their ligand (IC50 = 13, 26 μg/mL, respectively). The results show that the activity of the ligand towards breast cancer cell line becomes more pronounced and significant when coordinated to the metal ion.

  18. Pyrithione-based ruthenium complexes as inhibitors of aldo-keto reductase 1C enzymes and anticancer agents.

    PubMed

    Kljun, Jakob; Anko, Maja; Traven, Katja; Sinreih, Maša; Pavlič, Renata; Peršič, Špela; Ude, Žiga; Codina, Elisa Esteve; Stojan, Jure; Lanišnik Rižner, Tea; Turel, Iztok

    2016-08-01

    Four ruthenium complexes of clinically used zinc ionophore pyrithione and its oxygen analog 2-hydroxypyridine N-oxide were prepared and evaluated as inhibitors of enzymes of the aldo-keto reductase subfamily 1C (AKR1C). A kinetic study assisted with docking simulations showed a mixed type of inhibition consisting of a fast reversible and a slow irreversible step in the case of both organometallic compounds 1A and 1B. Both compounds also showed a remarkable selectivity towards AKR1C1 and AKR1C3 which are targets for breast cancer drug design. The organoruthenium complex of ligand pyrithione as well as pyrithione itself also displayed toxicity on the hormone-dependent MCF-7 breast cancer cell line with EC50 values in the low micromolar range. PMID:27357845

  19. Chemical genetics analysis of an aniline mustard anticancer agent reveals complex I of the electron transport chain as a target.

    PubMed

    Fedeles, Bogdan I; Zhu, Angela Y; Young, Kellie S; Hillier, Shawn M; Proffitt, Kyle D; Essigmann, John M; Croy, Robert G

    2011-09-30

    The antitumor agent 11β (CAS 865070-37-7), consisting of a DNA-damaging aniline mustard linked to an androgen receptor (AR) ligand, is known to form covalent DNA adducts and to induce apoptosis potently in AR-positive prostate cancer cells in vitro; it also strongly prevents growth of LNCaP xenografts in mice. The present study describes the unexpectedly strong activity of 11β against the AR-negative HeLa cells, both in cell culture and tumor xenografts, and uncovers a new mechanism of action that likely explains this activity. Cellular fractionation experiments indicated that mitochondria are the major intracellular sink for 11β; flow cytometry studies showed that 11β exposure rapidly induced oxidative stress, mitochondria being an important source of reactive oxygen species (ROS). Additionally, 11β inhibited oxygen consumption both in intact HeLa cells and in isolated mitochondria. Specifically, 11β blocked uncoupled oxygen consumption when mitochondria were incubated with complex I substrates, but it had no effect on oxygen consumption driven by substrates acting downstream of complex I in the mitochondrial electron transport chain. Moreover, 11β enhanced ROS generation in isolated mitochondria, suggesting that complex I inhibition is responsible for ROS production. At the cellular level, the presence of antioxidants (N-acetylcysteine or vitamin E) significantly reduced the toxicity of 11β, implicating ROS production as an important contributor to cytotoxicity. Collectively, our findings establish complex I inhibition and ROS generation as a new mechanism of action for 11β, which supplements conventional DNA adduct formation to promote cancer cell death. PMID:21832047

  20. Ferrocenyl-L-amino acid copper(II) complexes showing remarkable photo-induced anticancer activity in visible light.

    PubMed

    Goswami, Tridib K; Gadadhar, Sudarshan; Balaji, Babu; Gole, Bappaditya; Karande, Anjali A; Chakravarty, Akhil R

    2014-08-21

    Ferrocene-conjugated copper(ii) complexes [Cu(Fc-aa)(aip)](ClO4) () and [Cu(Fc-aa)(pyip)](ClO4) () of l-amino acid reduced Schiff bases (Fc-aa), 2-(9-anthryl)-1H-imidazo[4,5-f][1,10]phenanthroline (aip) and 2-(1-pyrenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (pyip), where Fc-aa is ferrocenylmethyl-l-tyrosine (Fc-Tyr in , ), ferrocenylmethyl-l-tryptophan (Fc-Trp in , ) and ferrocenylmethyl-l-methionine (Fc-Met in , ), were prepared and characterized, and their photocytotoxicity was studied (Fc = ferrocenyl moiety). Phenyl analogues, viz. [Cu(Ph-Met)(aip)](ClO4) () and [Cu(Ph-Met)(pyip)](ClO4) (), were prepared and used as control compounds. The bis-imidazophenanthroline copper(ii) complexes, viz. [Cu(aip)2(NO3)](NO3) () and [Cu(pyip)2(NO3)](NO3) (), were also prepared and used as controls. Complexes having a redox inactive cooper(ii) center showed the Fc(+)-Fc redox couple at ∼0.5 V vs. SCE in DMF-0.1 mol [Bu(n)4N](ClO4). The copper(ii)-based d-d band was observed near 600 nm in DMF-Tris-HCl buffer (1 : 1 v/v). The ferrocenyl complexes showed low dark toxicity, but remarkably high photocytotoxicity in human cervical HeLa and human breast adenocarcinoma MCF-7 cancer cells giving an excellent photo-dynamic effect while their phenyl analogues were inactive. The photo-exposure caused significant morphological changes in the cancer cells when compared to the non-irradiated ones. The photophysical processes were rationalized from the theoretical studies. Fluorescence microscopic images showed and localizing predominantly in the endoplasmic reticulum (ER) of the cancer cells, thus minimizing any undesirable effects involving nuclear DNA. PMID:24971754

  1. Amino acetate functionalized Schiff base organotin(IV) complexes as anticancer drugs: synthesis, structural characterization, and in vitro cytotoxicity studies.

    PubMed

    Baul, Tushar S Basu; Basu, Smita; de Vos, Dick; Linden, Anthony

    2009-10-01

    Potassium 2-{[(2Z)-(3-hydroxy-1-methyl-2-butenylidene)]amino}-4-methyl-pentanoate (L(1)HK) and potassium 2-{[(E)-1-(2-hydroxyphenyl)alkylidene]amino}-4-methyl-pentanoates (L(2)HK-L(3)HK) underwent reactions with Ph(n)SnCl(4-n) (n = 2 and 3) to give the amino acetate functionalized Schiff base organotin(IV) complexes [Ph(3)SnLH](n)(1-3) and [Ph(2)SnL] (4), respectively. These complexes have been characterized by (1)H, (13)C, (119)Sn NMR, IR spectroscopic techniques in combination with elemental analyses. The crystal structures of 1 and 3 were determined. The crystal structures reveal that the complexes exist as polymeric chains in which the L-bridged Sn-atoms adopt a trans-R(3)SnO(2) trigonal bipyramidal configuration with the Ph groups in the equatorial positions and the axial locations occupied by a carboxylate oxygen atom from one carboxylate ligand and the alcoholic or phenolic oxygen atom of the next carboxylate ligand in the chain. The carboxylate ligands coordinate in the zwitterionic form with the alcoholic/phenolic proton moved to the nearby nitrogen atom. The solution structures were predicted by (119)Sn NMR spectroscopy. When these organotin(IV) complexes were tested against A498, EVSA-T, H226, IGROV, M19 MEL, MCF7 and WIDR human tumor cell lines, the average ID(50) values obtained were 55, 80 and 35 ng/ml for triphenyltin(IV) compounds 1-3, respectively. The most cytotoxic triphenyltin(IV) compound in the present report (3) with an average ID(50) value of around 35 ng/ml is found to be more cytotoxic for all the cell lines studied than doxorubicin, cisplatin, 5-fluorouracil and etoposide. PMID:18941713

  2. Synthesis, characterization, in vitro cytotoxicity and anticancer effects of ruthenium(II) complexes on BEL-7402 cells.

    PubMed

    Zhang, Cheng; Han, Bing-Jie; Zeng, Chuan-Chuan; Lai, Shang-Hai; Li, Wei; Tang, Bing; Wan, Dan; Jiang, Guang-Bin; Liu, Yun-Jun

    2016-04-01

    Four new ruthenium(II) polypyridyl complexes [Ru(dmb)2(DQTT)](ClO4)2 (1) (DQTT=12-(1,4-dihydroquinoxalin-6-yl)-4,5,9,14-tetraazabenzo[b]triphenylene, dmb=4,4'-dimethyl-2,2'-bipyridine), [Ru(bpy)2(DQTT)](ClO4)2 (2) (bpy=2,2'-bipyridine), [Ru(phen)2(DQTT)](ClO4)2 (3) (phen=1,10-phenanthroline) and [Ru(dmp)2(DQTT)](ClO4)2 (4) (dmp=2,9-dimethyl-1,10-phenanthroline) were synthesized and characterized by elemental analysis, ESI-MS, (1)H NMR and (13)C NMR. The cytotoxic activity in vitro of the complexes was evaluated against human BEL-7402, A549, HeLa, HepG-2 and MG-63 cancer cell lines by MTT (3-(4,5-dimethylthiazole)-2,5-diphenyltetrazolium bromide) method. The IC50 values of complexes 1-4 against BEL-7402 cells are 31.8 ± 1.0, 35.8 ± 1.6, 29.0 ± 0.8 and 25.0 ± 0.9 μM, respectively. The morphological apoptosis was investigated with AO/EB (acridine orange/ethidium bromide) and Hoechst 33258 staining methods. The DNA damage was assayed by comet assay. The inhibition of cell migration was evaluated by the wound healing assay. The levels of ROS (reactive oxygen species) and the changes of mitochondrial membrane potential were studied under fluorescent microscope. The percentages in the cells of apoptotic and necrotic cells and the cell cycle arrest were determined by flow cytometry. The expression of Bcl-2 family proteins was investigated by western blot analysis. The results show that the complexes induce BEL-7402 cells apoptosis through a ROS-mediated mitochondrial dysfunction pathway, which was accompanied by regulation of the expression of Bcl-2 family proteins. PMID:26828285

  3. Synthesis, structural characterization and anticancer activity of some new complexes of 6-amino-4-hydroxy-2-thiopyrimidine

    NASA Astrophysics Data System (ADS)

    Elsayed, Shadia A.; Jean-Claude, Bertrand J.; Butler, Ian S.; Mostafa, Sahar I.

    2012-11-01

    New complexes of 6-amino-4-hydroxy-2-thiopyrimidine (Hahtp), [Zn(ahtp)2(H2O)2], [Zn(ahtp)2(PPh3)(H2O)], [Zn(Hahtp)(bpy)Cl2], [Pd(phen)(ahtp]Cl, [Pd(Hahtp)(PPh3)2]Cl2, [Ag(ahtp)(H2O)2], [Ag(ahtp)(PPh3)(H2O)], [Ag(ahtp)L] (L = bpy, phen), have been synthesized and characterized on the basis of spectral (IR, 1H-NMR, ESI-mass and UV-visible), elemental analysis, thermal and molar conductivity measurements. Three modes of chelations have been observed for Hahtp; as a neutral bidentate ligand through cyclic nitrogen and thione sulfur atoms, mononegative bidentate ligand through either the deprotonated cyclic nitrogen and thione sulfur atoms or the deprotonated hydroxy and cyclic nitrogen atoms; all forming four-membered chelating rings. The free Hahtp and its complexes, [Zn(ahtp)2(H2O)2], [Zn(Hahtp)2(PPh3)(H2O)], [Zn(Hahtp)(bpy)Cl2], [Pd(phen)(Hahtp]Cl and [Ag(Hahtp)(PPh3)(H2O)] have been tested against the human breast cancer MDA-MB231 cell line. The [Ag(ahtp)(PPh3)(H2O)] complex exhibits the highest efficacy with a mean IC50 value of 4.7 μM.

  4. A Single-Site Platinum CO Oxidation Catalyst in Zeolite KLTL: Microscopic and Spectroscopic Determination of the Locations of the Platinum Atoms

    SciTech Connect

    Kistler, Joseph D.; Chotigkrai, Nutchapon; Xu, Pinghong; Enderle, Bryan; Praserthdam, Piyasan; Chen, Cong-Yan; Browning, Nigel D.; Gates, Bruce C.

    2014-07-01

    A stable site-isolated mononuclear platinum catalyst with a well-defined structure is presented. Platinum complexes supported in zeolite KLTL were synthesized from [Pt(NH3)4](NO3)2, oxidized at 633 K, and used to catalyze CO oxidation. Finally, IR and X-ray absorption spectra and electron micrographs determine the structures and locations of the platinum complexes in the zeolite pores, demonstrate the platinum-support bonding, and show that the platinum remained site isolated after oxidation and catalysis.

  5. Inclusion Complex of Novel Curcumin Analogue CDF and β-Cyclodextrin (1:2) and Its Enhanced In Vivo Anticancer Activity Against Pancreatic Cancer

    PubMed Central

    Dandawate, Prasad R.; Vyas, Alok; Ahmad, Aamir; Banerjee, Sanjeev; Deshpande, Jyoti; Swamy, K. Venkateswara; Jamadar, Abeda; Dumhe-Klaire, Anne Catherine

    2013-01-01

    Purpose Several formulations have been proposed to improve the systemic delivery of novel cancer therapeutic compounds, including cyclodextrin derivatives. We aimed to synthesize and characterize of CDF-β-cyclodextrin inclusion complex (1:2) (CDFCD). Methods The compound was characterized by Fourier transform infrared, differential scanning calorimetry, powder X-ray diffraction studies, H1 & C13 NMR studies and scanning electron microscopic analysis. Its activity was tested against multiple cancer cell lines, and in vivo bioavailability was checked. Results CDF-β-cyclodextrin was found to lower IC50 value by half when tested against multiple cancer cell lines. It preferentially accumulated in the pancreas, where levels of CDF-β-cyclodextrin in mice were 10 times higher than in serum, following intravenous administration of an aqueous CDF-β-cyclodextrin preparation. Conclusions Novel curcumin analog CDF preferentially accumulates in the pancreas, leading to its potent anticancer activity against pancreatic cancer cells. Synthesis of such CDF-β-cyclodextrin self-assembly is an effective strategy to enhance its bioavailability and tissue distribution, warranting further evaluation for CDF delivery in clinical settings for treatment of human malignancies. PMID:22322899

  6. Derivation of structure-activity relationships from the anticancer properties of ruthenium(II) arene complexes with 2-aryldiazole ligands.

    PubMed

    Martínez-Alonso, Marta; Busto, Natalia; Jalón, Félix A; Manzano, Blanca R; Leal, José M; Rodríguez, Ana M; García, Begoña; Espino, Gustavo

    2014-10-20

    The ligands 2-pyridin-2-yl-1H-benzimidazole (HL(1)), 1-methyl-2-pyridin-2-ylbenzimidazole (HL(2)), and 2-(1H-imidazol-2-yl)pyridine (HL(3)) and the proligand 2-phenyl-1H-benzimidazole (HL(4)) have been used to prepare five different types of new ruthenium(II) arene compounds: (i) monocationic complexes with the general formula [(η(6)-arene)RuCl(κ(2)-N,N-HL)]Y [HL = HL(1), HL(2), or HL(3); Y = Cl or BF4; arene = 2-phenoxyethanol (phoxet), benzene (bz), or p-cymene (p-cym)]; (ii) dicationic aqua complexes of the formula [(η(6)-arene)Ru(OH2)(κ(2)-N,N-HL(1))](Y)2 (Y = Cl or TfO; arene = phoxet, bz, or p-cym); (iii) the nucleobase derivative [(η(6)-arene)Ru(9-MeG)(κ(2)-N,N-HL(1))](PF6)2 (9-MeG = 9-methylguanine); (iv) neutral complexes consistent with the formulation [(η(6)-arene)RuCl(κ(2)-N,N-L(1))] (arene = bz or p-cym); (v) the neutral cyclometalated complex [(η(6)-p-cym)RuCl(κ(2)-N,C-L(4))]. The cytototoxic activity of the new ruthenium(II) arene compounds has been evaluated in several cell lines (MCR-5, MCF-7, A2780, and A2780cis) in order to establish structure-activity relationships. Three of the compounds with the general formula [(η(6)-arene)RuCl(κ(2)-N,N-HL(1))]Cl differing in the arene moiety have been studied in depth in terms of thermodynamic dissociation constants, aquation kinetic constants, and DNA binding measurements. The biologically most active compound is the p-cym derivative, which strongly destabilizes the DNA double helix, whereas those with bz and phoxet have only a small effect on the stability of the DNA double helix. Moreover, the inhibitory activity of several compounds toward CDK1 has also been evaluated. The DNA binding ability of some of the studied compounds and their CDK1 inhibitory effect suggest a multitarget mechanism for their biological activity. PMID:25302401

  7. Advances in drug delivery system for platinum agents based combination therapy

    PubMed Central

    Kang, Xiang; Xiao, Hai-Hua; Song, Hai-Qin; Jing, Xia-Bin; Yan, Le-San; Qi, Ruo-Gu

    2015-01-01

    Platinum-based anticancer agents are widely used as first-line drugs in cancer chemotherapy for various solid tumors. However, great side effects and occurrence of resistance remain as the major drawbacks for almost all the platinum drugs developed. To conquer these problems, new strategies should be adopted for platinum drug based chemotherapy. Modern nanotechnology has been widely employed in the delivery of various therapeutics and diagnostic. It provides the possibility of targeted delivery of a certain anticancer drug to the tumor site, which could minimize toxicity and optimize the drug efficacy. Here, in this review, we focused on the recent progress in polymer based drug delivery systems for platinum-based combination therapy. PMID:26779373

  8. PLATINUM-GROUP METALS

    EPA Science Inventory

    The document assembles, organizes, and evaluates all pertinent information (up to April 1976) about the effects on man and his environment that result either directly or indirectly from pollution by platinum-group metals: iridium (Ir), osmium (Os), palladium (Pd), platinum (Pt), ...

  9. Gold(I) complexes with alkylated PTA (1,3,5-triaza-7-phosphaadamantane) phosphanes as anticancer metallodrugs.

    PubMed

    García-Moreno, Elena; Gascón, Sonia; Atrián-Blasco, Elena; Rodriguez-Yoldi, M Jesus; Cerrada, Elena; Laguna, Mariano

    2014-05-22

    New stable thiolate gold(I) derivatives containing the alkylated phosphanes [PTA-CH2Ph]Br and [PTA-CH2COOMe]Br derived from 1,3,5-triaza-7-phosphaadamantane (PTA) have been prepared by different routes of synthesis. By the use of basic media to deprotonate the corresponding thiol in the former and by transmetallation reactions from tin (IV) complexes, in the later, thus avoiding side reactions on the phosphane. Strong antiproliferative effects are observed for most of the compounds, including the chloro- and bromo precursors with the series of phosphanes derived from PTA, in human colon cancer cell lines (Caco-2, PD7 and TC7 clones). Apoptosis-induced cell death is found for all compounds, being the thiolate derivatives with [PTA-CH2Ph]Br the most effective, as shown by an annexin-V/propidium iodide double-staining assay. PMID:24732792

  10. Molecular Structure of an Anticancer Drug-DNA Complex: Daunomycin Plus d(CpGpTpApCpG)

    NASA Astrophysics Data System (ADS)

    Quigley, Gary J.; Wang, Andrew H.-J.; Ughetto, Giovanni; van der Marel, Gijs; van Boom, Jacques H.; Rich, Alexander

    1980-12-01

    The structure of the crystalline deunomycin-d(CpGpTpApCpG) complex has been solved by x-ray diffraction analysis. The DNA forms a six-base-pair right-handed double helix with two daunomycin molecules intercalated in the d(CpG) sequences. The daunomycin aglycone chromophore is oriented at right angles to the long dimension of the DNA base pairs and the cyclohexene ring rests in the minor groove. Substituents on this ring have hydrogen bonding interactions to the base pairs above and below the intercalation site. These appear to be specific for anthracycline antibiotics. The amino sugar lies in the minor groove of the double helix without bonding to the DNA. The DNA double helix is distorted in a novel manner in accommodating the drug.

  11. Classification of current anticancer immunotherapies.

    PubMed

    Galluzzi, Lorenzo; Vacchelli, Erika; Bravo-San Pedro, José-Manuel; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P; Coussens, Lisa; Dhodapkar, Madhav V; Eggermont, Alexander M; Fearon, Douglas T; Fridman, Wolf H; Fučíková, Jitka; Gabrilovich, Dmitry I; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M; Klein, Eva; Knuth, Alexander; Lewis, Claire E; Liblau, Roland; Lotze, Michael T; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J; Mittendorf, Elizabeth A; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E; Pienta, Kenneth J; Porgador, Angel; Prendergast, George C; Rabinovich, Gabriel A; Restifo, Nicholas P; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J; Speiser, Daniel E; Spisek, Radek; Srivastava, Pramod K; Talmadge, James E; Tartour, Eric; Van Der Burg, Sjoerd H; Van Den Eynde, Benoît J; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S; Whiteside, Theresa L; Wolchok, Jedd D; Zitvogel, Laurence; Zou, Weiping; Kroemer, Guido

    2014-12-30

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into "passive" and "active" based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519

  12. Classification of current anticancer immunotherapies

    PubMed Central

    Vacchelli, Erika; Pedro, José-Manuel Bravo-San; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N.; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P.; Coussens, Lisa; Dhodapkar, Madhav V.; Eggermont, Alexander M.; Fearon, Douglas T.; Fridman, Wolf H.; Fučíková, Jitka; Gabrilovich, Dmitry I.; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M.; Klein, Eva; Knuth, Alexander; Lewis, Claire E.; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J.; Mittendorf, Elizabeth A.; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E.; Pienta, Kenneth J.; Porgador, Angel; Prendergast, George C.; Rabinovich, Gabriel A.; Restifo, Nicholas P.; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J.; Speiser, Daniel E.; Spisek, Radek; Srivastava, Pramod K.; Talmadge, James E.; Tartour, Eric; Van Der Burg, Sjoerd H.; Van Den Eynde, Benoît J.; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S.; Whiteside, Theresa L.; Wolchok, Jedd D.; Zitvogel, Laurence; Zou, Weiping

    2014-01-01

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519

  13. Thiophene complexes of the platinum group metals. 2. Preparation and characterization of cationic thiophene complexes of [(cyclooctadiene)Ir][BF[sub 4

    SciTech Connect

    Polam, J.R.; Porter, L.C. )

    1993-09-01

    Cleavage of chloro-bridged rhodium and iridium dimers, [(NBD)RhCl][sub 2] and [(COD)IrCl][sub 2], in methanol leads to the formation of cationic (COD)[sub 2]Ir[sup +] and (NBD)Rh[sup +] monomers, respectively. Reaction of these cationic species with 2-methylthiophene and 2,5-dimethylthiophene results in the formation of complexes in which the thiophene coordinates in an [eta][sup 5] manner. With benzothiophene and dibenzothiophene, complexes bearing a 1:1 metal:ligand stoichiometry are obtained with the ligand coordinating in an [eta][sup 6] fashion using the six carbon atoms of the arene ring. Good yields of these Rh and Ir products are obtained with the exception of those of reactions involving thiophene, where only small amounts of product were obtained. A crystal structure determination of the cationic (cyclooctadiene)rhodium 2,5-dimethylthiophene complex shows that the thiophene ligand binds to the transition metal center in an [eta][sup 5] manner. The S atom is displaced 0.1888 A from the least-squares plane defined by the four carbon ring atoms and displays C-S bond lengths similar to those found in free thiophene. 17 refs., 2 figs., 3 tabs.

  14. Identification of unprecedented anticancer properties of high molecular weight biomacromolecular complex containing bovine lactoferrin (HMW-bLf).

    PubMed

    Ebrahim, Fawzi; Shankaranarayanan, Jayanth Suryanarayanan; Kanwar, Jagat R; Gurudevan, Sneha; Krishnan, Uma Maheswari; Kanwar, Rupinder K

    2014-01-01

    With the successful clinical trials, multifunctional glycoprotein bovine lactoferrin is gaining attention as a safe nutraceutical and biologic drug targeting cancer, chronic-inflammatory, viral and microbial diseases. Interestingly, recent findings that human lactoferrin oligomerizes under simulated physiological conditions signify the possible role of oligomerization in the multifunctional activities of lactoferrin molecule during infections and in disease targeting signaling pathways. Here we report the purification and physicochemical characterization of high molecular weight biomacromolecular complex containing bovine lactoferrin (≥250 kDa), from bovine colostrum, a naturally enriched source of lactoferrin. It showed structural similarities to native monomeric iron free (Apo) lactoferrin (∼78-80 kDa), retained anti-bovine lactoferrin antibody specific binding and displayed potential receptor binding properties when tested for cellular internalization. It further displayed higher thermal stability and better resistance to gut enzyme digestion than native bLf monomer. High molecular weight bovine lactoferrin was functionally bioactive and inhibited significantly the cell proliferation (p<0.01) of human breast and colon carcinoma derived cells. It induced significantly higher cancer cell death (apoptosis) and cytotoxicity in a dose-dependent manner in cancer cells than the normal intestinal cells. Upon cellular internalization, it led to the up-regulation of caspase-3 expression and degradation of actin. In order to identify the cutting edge future potential of this bio-macromolecule in medicine over the monomer, its in-depth structural and functional properties need to be investigated further. PMID:25222273

  15. Identification of Unprecedented Anticancer Properties of High Molecular Weight Biomacromolecular Complex Containing Bovine Lactoferrin (HMW-bLf)

    PubMed Central

    Kanwar, Jagat R.; Gurudevan, Sneha; Krishnan, Uma Maheswari; Kanwar, Rupinder K.

    2014-01-01

    With the successful clinical trials, multifunctional glycoprotein bovine lactoferrin is gaining attention as a safe nutraceutical and biologic drug targeting cancer, chronic-inflammatory, viral and microbial diseases. Interestingly, recent findings that human lactoferrin oligomerizes under simulated physiological conditions signify the possible role of oligomerization in the multifunctional activities of lactoferrin molecule during infections and in disease targeting signaling pathways. Here we report the purification and physicochemical characterization of high molecular weight biomacromolecular complex containing bovine lactoferrin (≥250 kDa), from bovine colostrum, a naturally enriched source of lactoferrin. It showed structural similarities to native monomeric iron free (Apo) lactoferrin (∼78–80 kDa), retained anti-bovine lactoferrin antibody specific binding and displayed potential receptor binding properties when tested for cellular internalization. It further displayed higher thermal stability and better resistance to gut enzyme digestion than native bLf monomer. High molecular weight bovine lactoferrin was functionally bioactive and inhibited significantly the cell proliferation (p<0.01) of human breast and colon carcinoma derived cells. It induced significantly higher cancer cell death (apoptosis) and cytotoxicity in a dose-dependent manner in cancer cells than the normal intestinal cells. Upon cellular internalization, it led to the up-regulation of caspase-3 expression and degradation of actin. In order to identify the cutting edge future potential of this bio-macromolecule in medicine over the monomer, its in-depth structural and functional properties need to be investigated further. PMID:25222273

  16. Platinum-Mediated Activation of Coordinated Organonitriles by Telluroethers in Tetrahydrofuran: Isolation, Structural Characterization, and Density Functional Theory Analysis of Intermediate Complexes.

    PubMed

    Kolay, Siddhartha; Wadawale, Amey; Nigam, Sandeep; Kumar, Mukesh; Majumder, Chiranjib; Das, Dasarathi; Jain, Vimal K

    2015-12-21

    The reactions of [PtCl2(NCR)2] with telluroethers (ArAr'Te) in organic solvents have been investigated. The reactions in dichloromethane yield [PtCl2(TeArAr')2], while those in tetrahydrofuran (THF) give different products depending on the steric demands of the aryl groups on tellurium, the molarity of the reactants, and the reaction conditions. The reactions between [PtCl2(PhCN)2] and TeArAr' in 1:1 molar ratio at room temperature in THF yield several products, like [PtCl2(TeArAr')2] (Ar/Ar' = Ph/Ph, o-tol/Mes, Mes/Mes), [PtCl2(PhCN){NC(O)Ph[TeMes(o-tol)]}], and [PtCl2{NC(O)Ph(TeMes2)}2]. The reaction with TeMes2 in refluxing THF gave [PtCl2{NC(Ph)C4H7O}{NC(O)Ph(TeMes2)}] and [PtCl(TeMes2){Te(Mes)CH2C6H2Me2}], depending on the duration of heating. Reaction of [PtCl2(PhCN)2] with TeArMes afforded [PtCl2(TeArMes)2] (Ar = Ph, o-tol, and Mes), the formation of which decreased with increasing steric demand of the Ar group, together with [PtCl2{NC(O)Ph(TeArMes)}2]. The telluroether in the latter binds to nitrogen, and tellurium exists in the formal oxidation state of +4 (from XPS). The tellurium in these complexes exhibits secondary interactions with platinum (J((195)Pt-(125)Te) = 309-347 Hz) and with the carbonyl oxygen. These complexes slowly dissociate in solution to give [PtCl2(TeMesAr){NC(O)Ph(TeMesAr)}], finally leading to the formation of [PtCl2(TeMesAr)2]. Molecular structures of trans-[PtCl2(PhCN){NC(O)Ph[TeMes(o-tol)]}], trans-[PtCl2{NC(O)Ph(TeMes2)}2], trans-[PtCl2{NC(Ph)C4H7O}{NC(O)Ph(TeMes2)}], trans-[PtCl2{NC(O)Ph[TeMes(o-tol)]}2], trans-[PtCl2(TeMes2){NC(O)Ph(TeMes2)}], trans-[PtCl2{NC(O)Me(TeMes2)}2], and [PtCl(Te-o-tol){NC(O)Ph}2] have been unambiguously established by single-crystal X-ray diffraction analyses. Density functional theory calculations for some of the complexes were performed, and geometrical parameters are in good agreement with the values obtained from X-ray analyses. PMID:26669361

  17. Cell Permeating Nano-Complexes of Amphiphilic Polyelectrolytes Enhance Solubility, Stability, and Anti-Cancer Efficacy of Curcumin.

    PubMed

    Fatima, Munazza T; Chanchal, Abhishek; Yavvari, Prabhu S; Bhagat, Somnath D; Gujrati, Mansi; Mishra, Ram K; Srivastava, Aasheesh

    2016-07-11

    Many hydrophobic drugs encounter severe bioavailability issues owing to their low aqueous solubility and limited cellular uptake. We have designed a series of amphiphilic polyaspartamide polyelectrolytes (PEs) that solubilize such hydrophobic drugs in aqueous medium and enhance their cellular uptake. These PEs were synthesized through controlled (∼20 mol %) derivatization of polysuccinimide (PSI) precursor polymer with hydrophobic amines (of varying alkyl chain lengths, viz. hexyl, octyl, dodecyl, and oleyl), while the remaining succinimide residues of PSI were opened using a protonable and hydrophilic amine, 2-(2-amino-ethyl amino) ethanol (AE). Curcumin (Cur) was employed as a representative hydrophobic drug to explore the drug-delivery potential of the resulting PEs. Unprecedented enhancement in the aqueous solubility of Cur was achieved by employing these PEs through a rather simple protocol. In the case of PEs containing oleyl/dodecyl residues, up to >65000× increment in the solubility of Cur in aqueous medium could be achieved without requiring any organic solvent at all. The resulting suspensions were physically and chemically stable for at least 2 weeks. Stable nanosized polyelectrolyte complexes (PECs) with average hydrodynamic diameters (DH) of 150-170 nm (without Cur) and 220-270 nm (after Cur loading) were obtained by using submolar sodium polyaspartate (SPA) counter polyelectrolyte. The zeta potential of these PECs ranged from +36 to +43 mV. The PEC-formation significantly improved the cytocompatibility of the PEs while affording reconstitutable nanoformulations having up to 40 wt % drug-loading. The Cur-loaded PECs were readily internalized by mammalian cells (HEK-293T, MDA-MB-231, and U2OS), majorly through clathrin-mediated endocytosis (CME). Cellular uptake of Cur was directly correlated with the length of the alkyl chain present in the PECs. Further, the PECs significantly improved nuclear transport of Cur in cancer cells, resulting in their

  18. The binding of platinum hexahalides (Cl, Br and I) to hen egg-white lysozyme and the chemical transformation of the PtI{sub 6} octahedral complex to a PtI{sub 3} moiety bound to His15

    SciTech Connect

    Tanley, Simon W. M.; Starkey, Laurina-Victoria; Lamplough, Lucinda; Kaenket, Surasek; Helliwell, John R.

    2014-08-29

    The platinum hexahalides have an octahedral arrangement of six halogen atoms bound to a Pt centre, thus having an octahedral shape that could prove to be useful in interpreting poor electron-density maps. In a detailed characterization, PtI{sub 6} chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15 of HEWL was also observed, which was not observed for PtBr{sub 6} or PtCl{sub 6}. This study examines the binding and chemical stability of the platinum hexahalides K{sub 2}PtCl{sub 6}, K{sub 2}PtBr{sub 6} and K{sub 2}PtI{sub 6} when soaked into pre-grown hen egg-white lysozyme (HEWL) crystals as the protein host. Direct comparison of the iodo complex with the chloro and bromo complexes shows that the iodo complex is partly chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15, a chemical behaviour that is not exhibited by the chloro or bromo complexes. Each complex does, however, bind to HEWL in its octahedral form either at one site (PtI{sub 6}) or at two sites (PtBr{sub 6} and PtCl{sub 6}). As heavy-atom derivatives of a protein, the octahedral shape of the hexahalides could be helpful in cases of difficult-to-interpret electron-density maps as they would be recognisable ‘objects’.

  19. Synthesis, characterisation, and preliminary anti-cancer photodynamic therapeutic in vitro studies of mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes

    PubMed Central

    Taylor, Patrick; Magnusen, Anthony R.; Moffett, Erick T.; Meyer, Kyle; Hong, Yiling; Ramsdale, Stuart E.; Gordon, Michelle; Stubbs, Javelyn; Seymour, Luke A.; Acharya, Dhiraj; Weber, Ralph T.; Smith, Paul F.; Dismukes, G. Charles; Ji, Ping; Menocal, Laura; Bai, Fengwei; Williams, Jennie L.; Cropek, Donald M.; Jarrett, William L.

    2013-01-01

    We report the synthesis and characterisation of mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes, which were used as potential photodynamic therapeutic agents for melanoma cell growth inhibition. The novel complexes, [Ru(pbt)2(phen2DTT)](PF6)2•1.5H2O 1 (where phen2DTT = 1,4-bis(1,10-phenanthrolin-5-ylsulfanyl)butane-2,3-diol and pbt = 2-(2'-pyridyl)benzothiazole) and [Ru(pbt)2(tpphz)](PF6)2•3H2O 2 (where tpphz = tetrapyrido[3,2-a:2′,3′-c:3″,2″-h:2‴,3‴-j]phenazine) were synthesised and characterised. Compound 1 was reacted with [VO(sal-L-tryp)(H2O)] (where sal-L-tryp = N-salicylidene-L-tryptophanate) to produce [Ru(pbt)2(phen2DTT)VO(sal-L-tryp)](PF6)2•5H2O 4; while [VO(sal-L-tryp)(H2O)] was reacted with compound 2 to produce [Ru(pbt)2(tpphz)VO(sal-L-tryp)](PF6)2•6H2O 3. All complexes were characterised by elemental analysis, HRMS, ESI MS, UV-visible absorption, ESR spectroscopy, and cyclic voltammetry, where appropriate. In vitro cell toxicity studies (with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay) via dark and light reaction conditions were carried out with sodium diaqua-4,4',4”,4”'tetrasulfophthalocyaninecobaltate(II) (Na4[Co(tspc)(H2O)2]), [VO(sal-L-tryp)(phen)]•H2O, and the chloride salts of complexes 3 and 4. Such studies involved A431, human epidermoid carcinoma cells; human amelanotic malignant melanoma cells; and HFF, non-cancerous human skin fibroblast cells. Both chloride salts of complexes 3 and 4 were found to be more toxic to melanoma cells than to non-cancerous fibroblast cells, and preferentially led to apoptosis of the melanoma cells over non-cancerous skin cells. The anti-cancer property of the chloride salts of complexes 3 and 4 was further enhanced when treated cells were exposed to light, while no such effect was observed on non-cancerous skin fibroblast cells. ESR and 51V NMR spectroscopic studies were also used to assess the stability of the chloride salts of

  20. Improving Platinum Efficiency:. Nanoformulations

    NASA Astrophysics Data System (ADS)

    Carmona, Rolando; Liang, Xing-Jie

    2013-09-01

    Platinum-based drugs continue being the support of therapy for many different kinds of cancer. Cancer patients often present irreversible resistance to platinum after repeated treatment in clinic. Despite of the great efforts, chemoresistance (intrinsic or acquired) already is a major limitation in the management of this disease. In this review, the last current research on cancer characteristic and cancer chemical resistance is summarized, the major and novel strategies to reverse resistance to platinum- based drugs are discussed and this article mainly emphasizes the contribution of nanotechnology and combination therapies to target sites and reduce the cancer chemoresistance.

  1. Solar abundance of platinum

    PubMed Central

    Burger, Harry; Aller, Lawrence H.

    1975-01-01

    Three lines of neutral platinum, located at λ 2997.98 Å, λ 3064.71 Å, and λ 3301.86 Å have been used to determine the solar platinum abundance by the method of spectral synthesis. On the scale, log A(H) = 12.00, the thus-derived solar platinum abundance is 1.75 ± 0.10, in fair accord with Cameron's value of log A(Pt) = 1.69 derived by Mason from carbonaceous chondrites and calculated on the assumption that log A(Si) = 7.55 in the sun. PMID:16592278

  2. Hydrogen-bonding pincer complexes with two protic N-heterocyclic carbenes from direct metalation of a 1,8-bis(imidazol-1-yl)carbazole by platinum, palladium, and nickel.

    PubMed

    Marelius, David C; Darrow, Evan H; Moore, Curtis E; Golen, James A; Rheingold, Arnold L; Grotjahn, Douglas B

    2015-07-27

    Pincer protic N-heterocyclic carbene (PNHC) complexes were synthesized by direct metalation, the formation of a metal carbon bond from an unfunctionalized CH bond in a single synthetic step. Significantly, direct metalation succeeded even for a first-row metal, nickel. The chloride complexes were isolated and then converted to the acetate, triflate, or in the platinum case, a hydride analogue. Crystal structures and (1) H, (13) C, and (15) N NMR data, as well as IR spectra, document the effects of intramolecular hydrogen bonding and the planar but flexible pincer framework. Anti-Markovnikov addition of OH bonds to alkynes, including catalyzed alkyne hydration, were demonstrated on the Pt triflate analog. PMID:26134355

  3. Induction of cell death by ternary copper(II) complexes of L-tyrosine and diimines: role of coligands on DNA binding and cleavage and anticancer activity.

    PubMed

    Ramakrishnan, Sethu; Rajendiran, Venugopal; Palaniandavar, Mallayan; Periasamy, Vaiyapuri Subbarayan; Srinag, Bangalore Suresh; Krishnamurthy, Hanumanthappa; Akbarsha, Mohammad Abdulkader

    2009-02-16

    viscosity of DNA bound to 1 decreases, indicating the shortening of the DNA chain length by means of the formation of kinks or bends. All complexes exhibit effective DNA (pUC19 DNA) cleavage at 100 microM complex concentrations, and the order of DNA cleavage ability varies as 3 > 2 > 4 > 1. Interestingly, 3 exhibits a DNA cleavage rate constant that is higher than that of the other complexes only at 100 microM concentration, whereas 4 exhibits the highest cleavage rate constant at 80 microM complex concentration. The oxidative DNA cleavage follows the order 4 > 3 > 2 > 1. Mechanistic studies reveal that the DNA cleavage pathway involves hydroxyl radicals. Interestingly, only 4 displays efficient photonuclease activity upon irradiation with 365 nm light, which occurs through double-strand DNA breaks involving hydroxyl radicals. Furthermore, cytotoxicity studies on the nonsmall lung cancer (H-460) cell line show that the IC(50) values of 2-4 are more or less equal to cisplatin for the same cell line, indicating that they have the potential to act as very effective anticancer drugs in a time-dependent manner. The study of cytological changes reveals the higher induction of apoptosis and mitotic catastrophe for 4 and 3, respectively. The alkaline single-cell gel electrophoresis (comet assay), DNA laddering, and AO/EB and Hoechst 33258 staining assays have also been employed in finding the extent of DNA damage. Flow cytometry analysis shows an increase in the percentage of cells with apoptotic morphological features in the sub-G(0)/G(1) phase for 4, whereas it shows mitotic catastrophe for 3. PMID:19140687

  4. Synthesis and crystal structure of new dicopper(II) complexes having asymmetric N,N'-bis(substituted)oxamides with DNA/protein binding ability: In vitro anticancer activity and molecular docking studies.

    PubMed

    Zheng, Kang; Zhu, Ling; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-08-01

    Two new dicopper(II) complexes bridged by asymmetric N,N'-bis(substituted)oxamide ligands: N-(5-chloro-2-hydroxyphenyl)-N'-[2-(dimethylamino)ethyl]oxamide (H3chdoxd) and N-hydroxypropyl-N'-(2-carboxylatophenyl)oxamide (H3oxbpa), and end-capped with 2,2'-bipyridine (bpy), namely [Cu2(ClO4)(chdoxd)(CH3OH)(bpy)]·H2O (1) and [Cu2(pic)(oxbpa)(CH3OH)(bpy)]·0.5CH3OH (2) (pic denotes picrate anion), have been synthesized and characterized by elemental analysis, molar conductivity measurement, IR and electronic spectral studies, and single-crystal X-ray diffraction. The X-ray diffraction analysis revealed that both the copper(II) ions bridged by the cis-oxamido ligands in dicopper(II) complexes 1 and 2 are all in square-pyramidal environments with the corresponding Cu⋯Cu separations of 5.194(3) and 5.1714(8)Å, respectively. In the crystals of the two complexes, there are abundant hydrogen bonds and π-π stacking interactions contributing to the supramolecular structure. The reactivities toward herring sperm DNA (HS-DNA) and bovine serum albumin (BSA) of the two complexes are studied both theoretically and experimentally, indicating that both the two complexes can interact with the DNA in the mode of intercalation, and effectively bind to BSA via the favored binding sites Trp134 for the complex 1 and Trp213 for the complex 2. Interestingly, the in vitro anticancer activities of the two complexes against the selected tumor cell lines are consistent with their DNA/BSA-binding affinities following the order of 1>2. The effects of coordinated counterions in the two complexes on DNA/BSA-binding ability and in vitro anticancer activity are preliminarily discussed. PMID:26057022

  5. Determination of platinum in blood by adsorptive voltammetry.

    PubMed

    Nygren, O; Vaughan, G T; Florence, T M; Morrison, G M; Warner, I M; Dale, L S

    1990-08-01

    This work describes a sensitive method for the determination of platinum in blood, which can be used for determining the natural levels of platinum in human blood, for monitoring patients treated with platinum cytotoxic drugs, and for monitoring occupational exposure to these drugs and other platinum compounds. The method involves dry ashing of blood samples in a muffle furnace and determination of platinum by adsorptive voltammetric (AV) measurement of the catalytic reduction of protons by the platinum-formazone complex. The detection limit for a 100-microL sample of blood is 0.017 micrograms/L, with a recovery of 94% and a relative standard deviation of 7% at a platinum level of 1 microgram/L. By using this method, the natural levels of platinum in human blood were found to be in the range 0.1-2.8 micrograms/L (median = 0.6 micrograms/L). These results were verified by inductively coupled plasma mass spectrometry (ICP-MS) with blood prepared by wet ashing and using gold as an internal standard. PMID:2400106

  6. The second-generation anticancer drug Nedaplatin: a theoretical investigation on the hydrolysis mechanism.

    PubMed

    Alberto, Marta E; Lucas, Maria Fatima A; Pavelka, Matej; Russo, Nino

    2009-10-29

    The hydrolysis reaction processes of the second-generation platinum derivative Nedaplatin have been studied using density functional theory (DFT) combined with the conductor-like dielectric continuum model (CPCM) approach, in order to obtain detailed data on its mechanism of action. The first and the second hydrolysis of Nedaplatin, corresponding to the ring opening followed by the loss of the ligand, respectively, have been explored in neutral and acid conditions. The influence of an extra water molecule which could assist the degradation processes has also been considered including in our models an explicit water molecule other than the reactive one. The computed potential energy surfaces show that the rate limiting step in neutral conditions is the first hydrolysis process and, consequently, the double hydrated complex is suggested to be the species reacting with the DNA purine bases, while in acid conditions the trend is different, with the second hydrolysis process being the rate limiting step. The results obtained in this work allow us to make a comparison with the trends previously found for the other platinum anticancer drugs currently used in the medical protocols. PMID:19778071

  7. Electrolyte disorders associated with the use of anticancer drugs.

    PubMed

    Liamis, George; Filippatos, Theodosios D; Elisaf, Moses S

    2016-04-15

    The use of anticancer drugs is beneficial for patients with malignancies but is frequently associated with the occurrence of electrolyte disorders, which can be hazardous and in many cases fatal. The review presents the electrolyte abnormalities that can occur with the use of anticancer drugs and provides the related mechanisms. Platinum-containing anticancer drugs induce hypomagnesemia, hypokalemia and hypocalcemia. Moreover, platinum-containing drugs are associated with hyponatremia, especially when combined with large volumes of hypotonic fluids aiming to prevent nephrotoxicity. Alkylating agents have been linked with the occurrence of hyponatremia [due to syndrome of inappropriate antidiuretic hormone secretion (SIADH)] and Fanconi's syndrome (hypophosphatemia, aminoaciduria, hypouricemia and/or glucosuria). Vinca alkaloids are associated with hyponatremia due to SIADH. Epidermal growth factor receptor monoclonal antibody inhibitors induce hypomagnesemia, hypokalemia and hypocalcemia. Other, monoclonal antibodies, such as cixutumumab, cause hyponatremia due to SIADH. Tyrosine kinase inhibitors are linked to hyponatremia and hypophosphatemia. Mammalian target of rapamycin inhibitors induce hyponatremia (due to aldosterone resistance), hypokalemia and hypophosphatemia. Other drugs such as immunomodulators or methotrexate have been also associated with hyponatremia. The administration of estrogens at high doses, streptozocin, azacitidine and suramin may induce hypophosphatemia. Finally, the drug-related tumor lysis syndrome is associated with hyperphosphatemia, hyperkalemia and hypocalcemia. The prevention of electrolyte derangements may lead to reduction of adverse events during the administration of anticancer drugs. PMID:26939882

  8. DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine

    NASA Astrophysics Data System (ADS)

    Anjomshoa, Marzieh; Fatemi, Seyed Jamilaldin; Torkzadeh-Mahani, Masoud; Hadadzadeh, Hassan

    2014-06-01

    hydrophobic interaction is main force in the binding of the complex to BSA. Moreover, to evaluate the anticancer properties, the cytotoxicity of the complex has been tested against the human breast adenocarcinoma (MCF-7) cell lines using the MTT assay. The results indicate that the parent complex displays cytotoxicity against human breast cancer cell lines (MCF-7) with an IC50 value of 10.44 μM. It is remarkable that the complex can introduce as a potential anticancer drug.

  9. cis-bis(pyridine)platinum(II) organoamides with unexpected growth inhibition properties and antitumor activity.

    PubMed

    Webster, L K; Deacon, G B; Buxton, D P; Hillcoat, B L; James, A M; Roos, I A; Thomson, R J; Wakelin, L P; Williams, T L

    1992-09-01

    The platinum(II) organoamides [Pt(NRCH2)2L2] (L = pyridine (py), R = p-HC6F4, C6F5,p-IC6F4,p-CIC6F4,p-C6F5C6F4; L = 4-methylpyridine, R = p-HC6F4) and [Pt(NRCH2CH2NR')(py)2] (R = p-HC6F4, R' = C6F5, p-BrC6F4, or p-MeC6F4) inhibit the growth of murine L1210 leukemia cells in culture with ID50 values for continuous exposure in the range 0.6-2.7 microM. Representative complexes are also active against L1210 cells in 2-h pulse exposures, as well as against the cisplatin-resistant variant L1210/DDP and human colonic carcinoma cell lines HT 29 and BE. Three complexes [Pt(NRCH2)2L2] (R = p-HC6F4, C6F5, or p-IC6F4) have good activity (T/C greater than or equal to 180%) against P388 leukemia in mice, and all other compounds tested are active except when R = p-C6F5C6F4, L = py. Although the molecular basis of the biological activity of these complexes is not known, the observation of good activity for amineplatinum(II) compounds with no hydrogen substituents on the nitrogen donor atoms introduces a new factor in the anticancer behavior of platinum(II) complexes. PMID:1527784

  10. Cis-Diammine(Pyridine)Chloroplatinum(II), a Monofunctional Platinum(II) Antitumor Agent: Uptake, Structure, Function, And Prospects

    SciTech Connect

    Lovejoy, K.S.; Todd, R.C.; Zhang, S.; McCormick, M.S.; D'Aquino, J.A.; Reardon, J.T.; Sancar, A.; Giacomini, K.M.; Lippard, S.J.

    2009-05-19

    We have identified unique chemical and biological properties of a cationic monofunctional platinum(II) complex, cis-diammine(pyridine)chloroplatinum(II), cis-[Pt(NH{sub 3}){sub 2}(py)Cl]{sup +} or cDPCP, a coordination compound previously identified to have significant anticancer activity in a mouse tumor model. This compound is an excellent substrate for organic cation transporters 1 and 2, also designated SLC22A1 and SLC22A2, respectively. These transporters are abundantly expressed in human colorectal cancers, where they mediate uptake of oxaliplatin, cis-[Pt(DACH)(oxalate)] (DACH = trans-R,R-1,2-diaminocyclohexane), an FDA-approved first-line therapy for colorectal cancer. Unlike oxaliplatin, however, cDPCP binds DNA monofunctionally, as revealed by an x-ray crystal structure of cis-{l_brace}Pt(NH{sub 3}){sub 2}(py){r_brace}{sup 2+} bound to the N7 atom of a single guanosine residue in a DNA dodecamer duplex. Although the quaternary structure resembles that of B-form DNA, there is a base-pair step to the 5{prime} side of the Pt adduct with abnormally large shift and slide values, features characteristic of cisplatin intrastrand cross-links. cDPCP effectively blocks transcription from DNA templates carrying adducts of the complex, unlike DNA lesions of other monofunctional platinum(II) compounds like {l_brace}Pt(dien){r_brace}{sup 2+}. cDPCP-DNA adducts are removed by the nucleotide excision repair apparatus, albeit much less efficiently than bifunctional platinum-DNA intrastrand cross-links. These exceptional characteristics indicate that cDPCP and related complexes merit consideration as therapeutic options for treating colorectal and other cancers bearing appropriate cation transporters.

  11. Experimental partitioning of Zr, Ti, and Nb between silicate liquid and a complex noble metal alloy and the partitioning of Ti between perovskite and platinum metal

    NASA Technical Reports Server (NTRS)

    Jurewicz, Stephen R.; Jones, John H.

    1993-01-01

    El Goresy et al.'s observation of Nb, Zr, and Ta in refractory platinum metal nuggets (RPMN's) from Ca-Al-rich inclusions (CAI's) in the Allende meteorite led them to propose that these lithophile elements alloyed in the metallic state with noble metals in the early solar nebula. However, Grossman pointed out that the thermodynamic stability of Zr in the oxide phase is vastly greater than metallic Zr at estimated solar nebula conditions. Jones and Burnett suggested this discrepancy may be explained by the very non-ideal behavior of some lithophile transition elements in noble metal solutions and/or intermetallic compounds. Subsequently, Fegley and Kornacki used thermodynamic data taken from the literature to predict the stability of several of these intermetallic compounds at estimated solar nebula conditions. Palme and Schmitt and Treiman et al. conducted experiments to quantify the partitioning behavior of certain lithophile elements between silicate liquid and Pt-metal. Although their results were somewhat variable, they did suggest that Zr partition coefficients were too small to explain the observed 'percent' levels in some RPMN's. Palme and Schmitt also observed large partition coefficients for Nb and Ta. No intermetallic phases were identified. Following the work of Treiman et al., Jurewicz and Jones performed experiments to examine Zr, Nb, and Ti partitioning near solar nebula conditions. Their results showed that Zr, Nb, and Ti all have an affinity for the platinum metal, with Nb and Ti having a very strong preference for the metal. The intermetallic phases (Zr,Fe)Pt3, (Nb,Fe)Pt3, and (Ti,Fe)Pt3 were identified. Curiously, although both experiments and calculations indicate that Ti should partition strongly into Pt-metal (possibly as TiPt3), no Ti has ever been observed in any RPMN's. Fegley and Kornacki also noticed this discrepancy and hypothesized that the Ti was stabilized in perovskite which is a common phase in Allende CAI's.

  12. Anticancer Molecular Mechanisms of Resveratrol

    PubMed Central

    Varoni, Elena M.; Lo Faro, Alfredo Fabrizio; Sharifi-Rad, Javad; Iriti, Marcello

    2016-01-01

    Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Though it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin, and developmental pathways); signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; and immune surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multidrug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment. PMID:27148534

  13. Ruthenium(III) S-methylisothiosemicarbazone Schiff base complexes bearing PPh3/AsPh3 coligand: synthesis, structure and biological investigations, including antioxidant, DNA and protein interaction, and in vitro anticancer activities.

    PubMed

    Prakash, Govindan; Manikandan, Rajendran; Viswanathamurthi, Periasamy; Velmurugan, Krishnaswamy; Nandhakumar, Raju

    2014-09-01

    New Ru(III) isothiosemicarbazone complexes [RuCl(EPh3)L(1-4)] (E=P or As) were obtained from the reactions between [RuCl3(EPh3)3] and bis(salicylaldehyde)-S-methylisothiosemicarbazone (H2L(1-3))/bis(2-hydroxy-naphthaldehyde)-S-methylisothiosemicarbazone (H2L(4)) ligands. The new complexes were characterized by using elemental analyses and various spectral (UV-Vis, IR, (1)H NMR, FAB-Mass and EPR) methods. The redox properties of the complexes were studied by using cyclic voltammetric method. The new complexes were subjected to various biological investigations such as antioxidant assays involving DPPH radical, hydroxyl radical, nitric oxide radical and hydrogen peroxide, DNA/protein interaction studies and in vitro cytotoxic studies against human breast cancer cell line (MCF-7). New complexes showed excellent free radicals scavenging ability and could bind with DNA via intercalation. Protein binding studies using fluorescence spectroscopy showed that the new complexes could bind strongly with bovine serum albumin (BSA). Photo cleavage experiments using DNA of E-coli bacterium exhibited the DNA cleavage ability of the complexes. Further, the in vitro anticancer activity studies on the new complexes against MCF-7 cell line exhibited the ability of Ru(III) isothiosemicarbazone complexes to suppress the development of malignant neoplastic disease cells. PMID:24911273

  14. Synthesis and structure elucidation of new μ-oxamido-bridged dicopper(II) complex with in vitro anticancer activity: A combined study from experiment verification and docking calculation on DNA/protein-binding property.

    PubMed

    Zhu, Ling; Zheng, Kang; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2016-02-01

    A new oxamido-bridged dicopper(II) complex with formula of [Cu2(deap)(pic)2], where H2deap and pic represent N,N'-bis[3-(diethylamino)propyl]oxamide and picrate, respectively, was synthesized and characterized by elemental analyses, molar conductance measurements, IR and electronic spectral study, and single-crystal X-ray diffraction. The crystal structure analyses revealed that the two copper(II) atoms in the dicopper(II) complex are bridged by the trans-deap(2-) ligand with the distances of 5.2116(17)Å, and the coordination environment around the copper(II) atoms can be described as a square-planar geometry. Hydrogen bonding and π-π stacking interactions link the dicopper(II) complex into a three-dimensional infinite network. The DNA/protein-binding properties of the complex are investigated by molecular docking and experimental assays. The results indicate that the dicopper(II) complex can interact with HS-DNA in the mode of intercalation and effectively quench the intrinsic fluorescence of protein BSA by 1:1 binding with the most possible binding site in the proximity of Trp134. The in vitro anticancer activities suggest that the complex is active against the selected tumor cell lines, and IC50 values for SMMC-7721 and HepG2 are lower than cisplatin. The effects of the electron density distribution of the terminal ligand and the chelate ring arrangement around copper(II) ions bridged by symmetric N,N'-bis(substituted)oxamides on DNA/BSA-binding ability and in vitro anticancer activity are preliminarily discussed. PMID:26773872

  15. Biological role in the transformation of platinum-group mineral grains

    NASA Astrophysics Data System (ADS)

    Reith, Frank; Zammit, Carla M.; Shar, Sahar S.; Etschmann, Barbara; Bottrill, Ralph; Southam, Gordon; Ta, Christine; Kilburn, Matthew; Oberthür, Thomas; Ball, Andrew S.; Brugger, Joël

    2016-04-01

    Platinum-group elements are strategically important metals. Finding new deposits is becoming increasingly difficult owing to our limited understanding of the processes that affect their mobility in surface environments. Microorganisms have been shown to promote the mobility of metals around ore deposits. Here we show that microorganisms influence the mobility of platinum-group elements in mineral grains collected from Brazil, Australia and Colombia. Scanning electron microscopy showed biofilms covering the platinum-group mineral grains. The biofilms contained abundant platinum-group element nanoparticles and microcrystalline aggregates, and were dominated by Proteobacteria, many of which were closely related to known metal-resistant species. Some platinum-group mineral grains contained carbon, nitrogen, sulfur, selenium and iodine, suggesting the grains may be biogenic in origin. Molecular analyses show that Brazilian platinum-palladium grains hosted specific bacterial communities, which were different in composition from communities associated with gold grains, or communities in surrounding soils and sediments. Nano-phase metallic platinum accumulated when a metallophillic bacterium was incubated with a percolating platinum-containing medium, suggesting that biofilms can cause the precipitation of mobile platinum complexes. We conclude that biofilms are capable of forming or transforming platinum-group mineral grains, and may play an important role for platinum-group element dispersion and re-concentration in surface environments.

  16. A theoretical study on tuning the electronic structures and photophysical properties of newly designed platinum(II) complexes by adding substituents on functionalized ligands as highly efficient OLED emitters.

    PubMed

    Zhang, Luqiong; Tian, Li; Li, Ming; He, Rongxing; Shen, Wei

    2014-05-01

    By imitating FIrpic, seven new platinum(II) complexes with pic (pic = picolinate) ligand have been designed to be guest materials by means of adding different substituents to functionalized ligands (ppy and fpy, ppy = phenylpyridyl-N,C and fpy = 2-(9',9'-diethyl-9H-fluorenyl)pyridyl-N,C). In order to reveal their molecular structures, photophysical properties and structure-property relationships with typical host materials, an in-depth theoretical investigation was performed via quantum chemical calculations. The electronic structures and photophysical properties of these complexes were investigated by density functional theory (DFT) and time-dependent density functional theory (TDDFT) using the B3LYP functional with LANL2DZ and 6-31G* basis sets. It turns out that electronic structures and photophysical properties can be tuned by substituent modifications on functionalized ligands. This work highlights that the match between guest materials and host materials in typical OLED structures can be weighed by the energy levels of the HOMO and LUMO and the adiabatic triplet energy of each complex. Also, a combined analysis of electronic structures, host-guest match, reorganization energies (λ) and triplet exciton generation fraction (χ(T)) is helpful in exploring triplet emitters with high phosphorescence efficiency in OLEDs, which is an interesting and creative aspect of this work. Thereinto, λ reveals the capability of carrier transport and the balance between holes and electrons, whilst structural parameters and d-orbital splittings show that those complexes that have strong electron-withdrawing and electron-donating groups are nonemissive. Consequently, complexes 3-7 can be better triplet emitters than FIrpic. Moreover, the emission colors could be predicted by the 0-0 transition energy (E(0-0)) instead of the triplet vertical transition energy (E(vert)). Accordingly, complexes 3, 4 and 6 would be efficient phosphorescent materials with different predicted

  17. A mononuclear Ni(II) complex with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine: DNA- and BSA-binding and anticancer activity against human breast carcinoma cells

    NASA Astrophysics Data System (ADS)

    Anjomshoa, Marzieh; Hadadzadeh, Hassan; Fatemi, Seyed Jamilaldin; Torkzadeh-Mahani, Masoud

    2015-02-01

    DNA- and BSA-binding properties of a mononuclear Ni(II) complex, [Ni(dppt)2Cl2] (dppt = 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), have been investigated under physiological conditions. The interaction of the complex with the fish sperm DNA (FS-DNA) has been studied by UV-Vis absorption, thermal denaturation, viscosity measurement, competitive DNA-binding studies with ethidium bromide (EB) by fluorescence, and gel electrophoresis technique. The experimental results indicate that the complex interacts with DNA by intercalative binding mode. The competitive study with ethidium bromide (EB) shows that the complex competes for the DNA-binding sites with EB and displaces the DNA-bound EB molecule. The interactions of the dppt ligand and the complex with BSA have been studied by UV-Vis absorption and fluorescence spectroscopic techniques. The values of Kb for the BSA-dppt and the BSA-complex systems at room temperature were calculated to be 0.14 × 104 M-1 and 0.32 × 105 M-1, respectively, indicating that the complex has stronger tendency to bind with BSA than the dppt ligand. The quenching constants (Ksv), binding constants (Kbin), and number of binding sites (n) at different temperatures, as well as the binding distance (r) and thermodynamic parameters (ΔH°, ΔS° and ΔG°) have been calculated for the BSA-dppt and the BSA-complex systems. The cytotoxicities of the dppt ligand and the complex have been also tested against the human breast adenocarcinoma (MCF-7) cell line using the MTT assay. The results indicate that the dppt ligand and the complex display cytotoxicity against human breast cancer cell lines (MCF-7) with the IC50 values of 17.35 μM and 13.00 μM, respectively. It is remarkable that the complex can introduce as a potential anticancer drug.

  18. Investigation of the complexation of the anti-cancer drug novantrone with the hairpin structure of the deoxyheptanucleotide 5‧-d(GpCpGpApApGpC)

    NASA Astrophysics Data System (ADS)

    Kostjukov, V. V.; Pahomov, V. I.; Andrejuk, D. D.; Davies, D. B.; Evstigneev, M. P.

    2007-10-01

    In aqueous solution the deoxyheptanucleotide, 5'-d(GpCpGpApApGpC), exists as a very stable hairpin structure in equilibrium with small proportions of the single-stranded and duplex forms. Complexation of the anti-cancer drug novantrone (mitoxantrone) with the DNA heptamer was investigated by one- and two-dimensional 500 MHz 1H NMR spectroscopy (2M-TOCSY, 2M-NOESY) and molecular dynamics simulations. The proton chemical shifts of NOV in mixed solutions with the heptamer were measured as a function of concentration and temperature and the equilibrium association parameters were determined for complexation of NOV with the three forms of the heptamer. The spatial structure of the complex of the antibiotic with the hairpin form of the heptamer was built on the basis of 2D-NOE data. The conformational dynamics of the complex and its interaction with the water environment were investigated by molecular dynamics methods. The results suggest that NOV complexes with the hairpin form of the heptamer in solution by intercalation. Complexation of NOV with the hairpin stem results in a disruption of about one half of the intramolecular water bridges of the hairpin, which is considered to be the main reason for the observed decrease in the thermodynamical stability of the hairpin on binding with the ligand.

  19. Metal–Arene Complexes with Indolo[3,2-c]-quinolines: Effects of Ruthenium vs Osmium and Modifications of the Lactam Unit on Intermolecular Interactions, Anticancer Activity, Cell Cycle, and Cellular Accumulation

    PubMed Central

    2013-01-01

    Six novel ruthenium(II)– and osmium(II)–arene complexes with three modified indolo[3,2-c]quinolines have been synthesized in situ starting from 2-aminoindoloquinolines and 2-pyridinecarboxaldehyde in the presence of [M(p-cymene)Cl2]2 (M = Ru, Os) in ethanol. All complexes have been characterized by elemental analysis, spectroscopic techniques (1H, 13C NMR, IR, UV–vis), and ESI mass spectrometry, while four complexes were investigated by X-ray diffraction. The complexes have been tested for antiproliferative activity in vitro in A549 (non-small cell lung), SW480 (colon), and CH1 (ovarian) human cancer cell lines and showed IC50 values between 1.3 and >80 μM. The effects of Ru vs Os and modifications of the lactam unit on intermolecular interactions, antiproliferative activity, and cell cycle are reported. One ruthenium complex and its osmium analogue have been studied for anticancer activity in vivo applied both intraperitoneally and orally against the murine colon carcinoma model CT-26. Interestingly, the osmium(II) complex displayed significant growth-inhibitory activity in contrast to its ruthenium counterpart, providing stimuli for further investigation of this class of compounds as potential antitumor drugs. PMID:23431223

  20. The tumor proteasome as a novel target for gold(III) complexes: implications for breast cancer therapy

    PubMed Central

    Milacic, Vesna; Dou, Q. Ping

    2009-01-01

    Although cisplatin plays a vital role in the treatment of several types of human cancer, its wide use is limited by the development of drug resistance and associated toxic side effects. Gold and gold complexes have been used to treat a wide range of ailments for many centuries. In recent years, the use of gold(III) complexes as an alternative to cisplatin treatment was proposed due to the similarities of gold and platinum. Gold(III) is isoelectronic with platinum(II) and gold(III) complexes have the same square-planar geometries as platinum(II) complexes, such as cisplatin. Although it was originally thought that gold(III) complexes might have the same molecular target as cisplatin, several lines of data indicated that proteins, rather than DNA, are targeted by gold complexes. We have recently evaluated cytotoxic and anti-cancer effects of several gold(III) dithiocarbamates against human breast cancer cells in vitro and in vivo. We have identified the tumor proteasome as an important target for gold(III) complexes and have shown that proteasome inhibition by gold(III) complexes is associated with apoptosis induction in breast cancer cells in vitro and in vivo. Furthermore, treatment of human breast tumor-bearing nude mice with a gold(III) dithiocarbamate complex was associated with tumor growth inhibition, supporting the significance of its potential development for breast cancer treatment. PMID:20047011

  1. Induction of protein crystallization by platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Takeda, Yoshihiro; Mafuné, Fumitaka

    2016-03-01

    We have investigated effects of platinum nanoparticles (PtNPs) on protein crystal nucleation. The presence of PtNPs increased the number of crystals in a crystallization solution, indicating that the PtNPs have the ability to promote the crystal nucleation. Dynamic light scattering measurements revealed that the PtNP gathers more than 10 lysozyme molecules around it to form an embryonic complex of PtNP and lysozyme. Zeta potential measurements revealed that the charges of the lysozyme molecules were reduced by delocalization of their charges in the complex. As a result, the energy barrier of association between the complexes is reduced, followed by the nucleation.

  2. Growth of platinum nanocrystals

    SciTech Connect

    2009-01-01

    Movie showing the growth of platinum nanocrystals in a liquid cell observed in situ using the JEOL 3010 TEM at the National Center for Electron Microscopy. This is the first ever-real time movie showing nucleation and growth by monomer attachment or by smaller nanocrystals coalescing to form larger nanocrystals. All the nanocrystals end up being roughly the same shape and size. http://newscenter.lbl.gov/feature-stories/2009/08/04/growth-spurts/

  3. Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: Antimicrobial evaluation and anticancer studies

    NASA Astrophysics Data System (ADS)

    Dhahagani, K.; Mathan Kumar, S.; Chakkaravarthi, G.; Anitha, K.; Rajesh, J.; Ramu, A.; Rajagopal, G.

    2014-01-01

    Metal(II) chelates of Schiff bases derived from the condensation of 4-morpholinoaniline with substituted salicylaldehyde have been prepared and characterized by 1H NMR, IR, electronic, EPR, and magnetic measurement studies. The complexes are of the type M(X-MPMP)2 [where M = Cu(II), Co(II)), Zn(II), or VO(IV); MPMP = 2-[(4 morpholinophenyl imino) methyl] 4-X-phenol, X = Cl, (L1H), X = Br (L2H)]. Single crystal X-ray crystallography studies confirm the structure of newly synthesized Schiff bases. The Schiff bases act as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The free ligands and metal complexes are screened for their biopotency. Metal complexes exhibit better activity than ligands. Anticancer activity of ligands and their metal complexes are evaluated in human heptocarcinoma(HepG2) cells. The preliminary bioassay indicates that the Schiff base and its zinc complex exhibit inhibitory activity against the human gastric cancer cell lines.

  4. Synthesis, characterization and antimicrobial activity of novel platinum(IV) and palladium(II) complexes with meso-1,2-diphenyl-ethylenediamine-N,N‧-di-3-propanoic acid - Crystal structure of H2-1,2-dpheddp·2HCl·H2O

    NASA Astrophysics Data System (ADS)

    Radić, Gordana P.; Glođović, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Garcia-Granda, Santiago; Roces, Laura; Menéndez-Taboada, Laura; Radojević, Ivana D.; Stefanović, Olgica D.; Čomić, Ljiljana R.; Trifunović, Srećko R.

    2012-12-01

    In the reaction of meso-1,2-diphenyl-ethylenediamine (1,2-dphen) with neutralized 3-chlor-propanoic acid, the new linear tetradentate edda-like ligand (edda = ethylenediamine-N,N'-diacetic ion) meso-1,2-diphenyl-ethylenediamine-N,N'-di-3-propanoic acid dihydrochloride monohydrate (H2-1,2-dpheddp·2HCl·H2O) was prepared. The corresponding platinum(IV) complex, s-cis-dichlorido-(meso-1,2-diphenyl-ethylenediamine-N,N'-di-3-propanoate)-platinum(IV) ([PtCl2(1,2-dpheddp)]) was synthesized by heating potassium-hexachloridoplatinate(IV) and H2-1,2-dpheddp·2HCl·H2O on steam bath for 12 h with neutralization by means of lithium-hydroxide. The palladium(II) complex, cis-dichlorido-(meso-1,2-diphenyl-ethylenediamine-N,N'-di-3-propanoate)-palladium(II) ([PdCl2(1,2-dpheddp)]) was obtained in the similar way using potassium-tetrachloridopalladate(II), H2-1,2-dpheddp·2HCl·H2O and lithium-hydroxide. The compounds were characterized by elemental analysis and infrared spectroscopy. The spectroscopically predicted structure of the synthesized tetradentate ligand was confirmed by X-ray analysis of the H2-1,2-dpheddp·2HCl·H2O. Antimicrobial activity of the ligand and corresponding palladium(II) and platinum(IV) complexes is investigated against 25 species of microorganisms. Testing is preformed by microdilution method and minimum inhibitory concentrations (MIC) and minimum microbicidal concentration (MMC) have been determined. The difference between antimicrobial activity of the ligand and corresponding platinum(IV) and palladium(II) complex is noticed and, in general, palladium(II) complex was the most active.

  5. New bimetallic palladium(ii) and platinum(ii) complexes: studies of the nucleophilic substitution reactions, interactions with CT-DNA, bovine serum albumin and cytotoxic activity.

    PubMed

    Jovanović, Snežana; Obrenčević, Katarina; Bugarčić, Živadin D; Popović, Iva; Žakula, Jelena; Petrović, Biljana

    2016-08-01

    Two new dinuclear bimetallic complexes, [{PdCl(bipy)}{μ-(pyrazine)}{PtCl(bipy)}]Cl(ClO4) (1) (bipy is 2,2'-bipyridine) and [{PdCl(en)}{μ-(pyrazine)}{PtCl(en)}]Cl(ClO4) (2) (en is ethylenediamine), have been synthesized and characterized by elemental microanalysis, IR, (1)H NMR spectroscopy and MALDI-TOF mass spectrometry. The pKa values of the coordinated water molecules of the diaqua species were determined as well. Substitution reactions of complexes (1) and (2) with thiourea (Tu), l-methionine (l-Met), l-cysteine (l-Cys), l-histidine (l-His) and guanosine-5'-monophosphate (5'-GMP) were studied under the pseudo-first order conditions as a function of nucleophile concentration and temperature. The order of reactivity of nucleophiles was: Tu > l-Met > l-Cys > l-His > 5'-GMP. Substitution reactions with Tu, l-Cys and l-His were followed by decomposition of bimetallic complexes to the corresponding substituted mononuclear complexes [Pd(N-N)(Nu)2] and [Pt(N-N)(Nu)2] (N-N = bipy, en), releasing the bridging ligand. However, the structures of starting bimetallic complexes were preserved during the reactions with l-Met and 5'-GMP. The absorption spectroscopic study of interactions of calf-thymus DNA (CT-DNA) with complexes (1), (2) and [{PdCl(bipy)}{μ-(NH2(CH2)6H2N)} {PtCl(bipy)}]Cl(ClO4) (3), has shown that all the complexes exhibit high intrinsic binding constants (Kb = 10(4)-10(5) M(-1)). DNA-ethidium bromide (DNA-EB) fluorescence was quenched after addition of complexes (1), (2) or (3), indicating displacement of intercalating EB by complexes. All complexes have shown good binding affinity to bovine serum albumin protein (BSA). Chemosensitivity of A375 (human melanoma) and HeLa (human cervical cancer) cell lines toward complexes (1), (2) and (3) was analyzed by SRB assay. Complex (1) displayed significant inhibitory effect on the growth of both cell lines. PMID:27431616

  6. Influence of reducing agents on the cytotoxic activity of platinum(IV) complexes: induction of G2/M arrest, apoptosis and oxidative stress in A2780 and cisplatin resistant A2780cis cell lines.

    PubMed

    Pichler, Verena; Göschl, Simone; Schreiber-Brynzak, Ekaterina; Jakupec, Michael A; Galanski, Markus; Keppler, Bernhard K

    2015-07-01

    The concept of Pt(IV) prodrug design is one advanced strategy to increase the selectivity for cancer cells and to reduce systemic toxicity in comparison to established platinum-based chemotherapy. Pt(IV) complexes are thought to be activated by reduction via physiological reductants, such as ascorbic acid or glutathione. Nevertheless, only few investigations on the link between the reduction rate, which is influenced by the reductant, and the ligand sphere of the Pt(IV) metal centre have been performed so far. Herein, we investigated a set of Pt(IV) compounds with varying rates of reduction with respect to their cytotoxicity and drug accumulation in A2780 and A2780cis ovarian cancer cell lines, their influence on the cell cycle, efficiency of triggering apoptosis, and ability to interfere with plasmid DNA (pUC19). The effects caused by Pt(IV) compounds were compared without or with extracellularly added ascorbic acid and glutathione (or its precursor N-acetylcysteine) to gain understanding of the impact of increased levels of the reductant on the activity of such complexes. Our results demonstrate that reduction is required prior to plasmid interaction. Furthermore, the rate of reduction is crucial for the efficiency of this set of Pt(IV) compounds. The substances that are reduced least likely showed similar performances, whereas the fastest reducing substance was negatively affected by an increased extracellular level of reducing agents, with reduced cytotoxicity and lower efficiency in inducing apoptosis and G2/M arrest. These results confirm the connection between reduction and activity, and prove the strong impact of the reduction site on the activity of Pt(IV) complexes. PMID:26073554

  7. Electronic spectra and photophysics of platinum(II) complexes with alpha-diimine ligands - Solid-state effects. I - Monomers and ligand pi dimers

    NASA Technical Reports Server (NTRS)

    Miskowski, Vincent M.; Houlding, Virginia H.

    1989-01-01

    Two types of emission behavior for Pt(II) complexes containing alpha-diimine ligands have been observed in dilute solution. If the complex also has weak field ligands such as chloride, ligand field (d-d) excited states become the lowest energy excited states. If only strong field ligands are present, a diimine 3(pi-pi/asterisk/) state becomes the lowest. In none of the cases studied did metal-to-ligand charge transfer excited state lie lowest.

  8. The Bushveld Complex, South Africa: formation of platinum-palladium, chrome- and vanadium-rich layers via hydrodynamic sorting of a mobilized cumulate slurry in a large, relatively slowly cooling, subsiding magma chamber

    NASA Astrophysics Data System (ADS)

    Maier, W. D.; Barnes, S.-J.; Groves, D. I.

    2013-01-01

    Platinum-group element (PGE) deposits in the Bushveld Complex and other layered intrusions form when large, incompletely solidified magma chambers undergo central subsidence in response to crustal loading, resulting in slumping of semi-consolidated cumulate slurries to the centres of the intrusions and hydrodynamic unmixing of the slurries to form dense layers enriched in sulfides, oxides, olivine and pyroxene and less dense layers enriched in plagioclase. The most economic PGE, Cr and V reefs form in large, multiple-replenished intrusions because these cool relatively slowly and their central portions subside prior to termination of magmatism and complete cumulate solidification. The depth of emplacement has to be relatively shallow as, otherwise, ductile crust would not be able to flex and collapse. In smaller intrusions, cooling rates are faster, subsidence is less pronounced and, where it occurs, the cumulate may be largely solidified, resulting in insignificant mush mobility and mineral sorting. Layering is thus less pronounced and less regular and continuous and the grades of the reefs are lower, but the reefs can be relatively thicker. An additional factor controlling the PGE, Cr and V prospectivity of intrusions is their location within cratons. Intra-cratonic environments offer more stable emplacement conditions that are more amenable to the formation of large, layered igneous bodies. Furthermore, intrusions sited within cratons are more readily preserved because cratons are underlain by thick, buoyant keels of harzburgite that prevent plate tectonic recycling and destruction of crust.

  9. Anticancer activity of ferrocenylthiosemicarbazones.

    PubMed

    Sandra, Cortez-Maya; Elena, Klimova; Marcos, Flores-Alamo; Elena, Martínez-Klimova; Arturo, Ramírez-Ramírez; Teresa, Ramírez Apan; Marcos, Martínez-García

    2014-03-01

    Aliphatic and aromatic ferrocenylthiosemicarbazones were synthesized. The characterization of the new ferrocenylthiosemicarbazones was done by IR, (1)H-NMR and (13)C-NMR spectroscopy, elemental analysis and X-ray diffraction studies. The biological activity of the obtained compounds was assessed in terms of anticancer activity. Their activity against U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma), K562 (human chronic myelogenous leukemia), HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma) and SKLU-1 (human lung adenocarcinoma) cell lines was studied and compared with cisplatin. All tested compounds showed good activity and the aryl-chloro substituted ferrocenylthiosemicarbazones showed the best anticancer activity. PMID:24144199

  10. Platinum in Earth surface environments

    NASA Astrophysics Data System (ADS)

    Reith, F.; Campbell, S. G.; Ball, A. S.; Pring, A.; Southam, G.

    2014-04-01

    Platinum (Pt) is a rare precious metal that is a strategic commodity for industries in many countries. The demand for Pt has more than doubled in the last 30 years due to its role in the catalytic conversion of CO, hydrocarbons and NOx in modern automobiles. To explore for new Pt deposits, process ores and deal with ecotoxicological effects of Pt mining and usage, the fundamental processes and pathways of Pt dispersion and re-concentration in surface environments need to be understood. Hence, the aim of this review is to develop a synergistic model for the cycling of Pt in Earth surface environments. This is achieved by integrating the geological/(biogeo)chemical literature, which focuses on naturally occurring Pt mobility around ore deposits, with the environmental/ecotoxicological literature dealing with anthropogenic Pt dispersion. In Pt deposits, Pt occurs as sulfide-, telluride- and arsenide, native metal and alloyed to other PGEs and iron (Fe). Increased mining and utilization of Pt combined with the burning of fossil fuels have led to the dispersion of Pt-containing nano- and micro-particles. Hence, soils and sediments in industrialized areas, urban environments and along major roads are now commonly Pt enriched. Platinum minerals, nuggets and anthropogenic particles are transformed by physical and (bio)geochemical processes. Complexation of Pt ions with chloride, thiosulfate, ammonium, cyanide, low- and high molecular weight organic acids (LMWOAs and HMWOAs) and siderophores can facilitate Pt mobilization. Iron-oxides, clays, organic matter and (micro)biota are known to sequester Pt-complexes and -particles. Microbes and plants are capable of bioaccumulating and reductively precipitating mobile Pt complexes. Bioaccumulation can lead to toxic effects on plants and animals, including humans. (Bio)mineralization in organic matter-rich sediments can lead to the formation of secondary Pt particles and -grains. Ultimately, Pt is enriched in oceanic sediments

  11. Ion exchange equilibria in simultaneous extraction of platinum(II, IV) and rhodium(III) from hydrochloric solutions

    NASA Astrophysics Data System (ADS)

    Mel'nikov, A. M.; Kononova, O. N.; Pavlenko, N. I.; Krylov, A. S.

    2012-06-01

    Regularities of sorption extraction of platinum(II, IV) and rhodium(III) by anion exchangers of various physical and chemical structure in the presence of hydrochloric media were studied. It is established that AM-2B, Purolite A 500, and Purolite S 985 ionites adsorb complex anions of platinum metals employing mixed mechanism. A high affinity of the studied anionites for the studied complex anions of platinum and rhodium is established.

  12. Mixed-metal chloro sulfido cluster complex of molybdenum and platinum, (Mo sub 3 Pt sub 2 S sub 4 Cl sub 4 (PEt sub 3 ) sub 6 )

    SciTech Connect

    Saito, Taro; Tsuboi, Toshio; Kajitani, Yoshimichi; Yamagata, Tsuneaki; Imoto, Hideo )

    1991-09-04

    In the authors recent publication, syntheses of mixed-metal chloro sulfido and chloro selenido complexes of molybdenum and nickel were reported. They were prepared by the reaction of (Mo{sub 3}X{sub 4}Cl{sub 4}(PEt{sub 3}){sub 3}(MeOH){sub 2}) (X = S, Se){sup 2} with Ni(cod){sub 2} (cod = 1,5-cyclooctadiene). In the present study, another excellent building block compound, Pt(cot){sub 2}, was reacted with the same trinuclear molybdenum complex, and the mixed-metal cluster complex (Mo{sub 3}Pt{sub 2}S{sub 4}Cl{sub 4}(PEt{sub 3}){sub 6}) (1) with an unexpected structure was obtained.

  13. Water-soluble oxoglaucine-Y(III), Dy(III) complexes: in vitro and in vivo anticancer activities by triggering DNA damage, leading to S phase arrest and apoptosis.

    PubMed

    Wei, Jian-Hua; Chen, Zhen-Feng; Qin, Jiao-Lan; Liu, Yan-Cheng; Li, Zhu-Quan; Khan, Taj-Malook; Wang, Meng; Jiang, Yan-Hua; Shen, Wen-Ying; Liang, Hong

    2015-07-01

    Complexes of yttrium(III) and dysprosium(III) with the traditional Chinese medicine active ingredient oxoglaucine (OG), namely [Y(OG)2(NO3)3]·CH3OH (1) and [Dy(OG)2(NO3)3]·H2O (2), were synthesized and characterized by elemental analysis, IR, ESI-MS, (1)H and (13)C NMR as well as single-crystal X-ray diffraction analysis. In vitro the complexes exhibited higher anticancer activity than the free ligand OG against the tested cancer cell lines. Among the tested cell lines, HepG2 is the most sensitive to the complexes. Complex 2 can trigger DNA damage in HepG2 cells, resulting in cell cycle arrest in the S phase and leading to cell apoptosis. The S phase cell-cycle arrest is caused via the ATM (ataxia-telangiectasia mutated)-Chk2-Cdc25A pathway. Chk2 is phosphorylated and activated in an ATM-dependent manner. It, in turn, phosphorylates Cdc25A phosphatise on serine124, causing the inactivation of Cdc25A in ubiquitin-mediated proteolytic degradation. The cyclin-Cdk complexes of the S phase could also be inhibited by limited supply of cyclins A and E. This irreversible cell cycle arrest process ultimately induces mitochondria-involved apoptotic cell death via the activation of Bcl-2 protein. Complex e2 ffectively inhibited tumour growth in the BEL-7402 xenograft mouse model and exhibited higher safety in vivo than cisplatin. PMID:26017376

  14. Innovative use of platinum compounds to selectively detect live microorganisms by polymerase chain reaction.

    PubMed

    Soejima, Takashi; Minami, Jun-Ichi; Xiao, Jin-Zhong; Abe, Fumiaki

    2016-02-01

    PCR cannot distinguish live microorganisms from dead ones. To circumvent this disadvantage, ethidium/propidium-monoazide (EMA/PMA) and psoralen to discriminate live from dead bacteria have been used for 2 decades. These methods require the use of numerous laborious procedures. We introduce an innovative method that uses platinum compounds, which are primarily used as catalysts in organic chemistry and partly used as anti-cancer drugs. Microorganisms are briefly exposed to platinum compounds in vivo, and these compounds penetrate dead (compromised) microorganisms but not live ones and are chelated by chromosomal DNA. The use of platinum compounds permits clear discrimination between live and dead microorganisms in water and milk (including Cronobacter sakazakii and Escherichia coli) via PCR compared with typically used PMA. This platinum-PCR method could enable the specific detection of viable coliforms in milk at a concentration of 5-10 CFU mL(-1) specified by EU/USA regulations after a 4-h process. For sample components, environmental water contains lower levels of PCR inhibitors than milk does, and milk is similar to infant formula, skim milk and blood; thus, the use of the platinum-PCR method could also prevent food poisoning due to the presence of C. sakazakii in dairy products. This method could provide outstanding rapidity for use in environmental/food/clinical tests. Platinum-PCR could also be a substitute for the typical culture-based methods currently used. PMID:26192088

  15. Comparison of platinum, palladium, and rhodium distributions in some layered intrusions with special reference to the late differentiates (upper zone) of the Bushveld complex, South Africa.

    USGS Publications Warehouse

    Page, N.J.; Von Gruenewaldt, G.; Haffty, J.; Aruscavage, P. J.

    1982-01-01

    The Stillwater, Fiskenaesset and Bushveld complexes have many similarities. The trends of the Pt/(Pt + Pd) and its correlation with Mg/(Mg + Fe2+) are presented. Presumably the Pt/(Pt + Pd) variations are related to changes in major mineral compositions. -K.A.R.

  16. Probing the biological evaluations of a new designed Pt(II) complex using spectroscopic and theoretical approaches: human hemoglobin as a target.

    PubMed

    Abazari, Omid; Shafaei, Zahra; Divsalar, Adeleh; Eslami-Moghadam, Mahbubeh; Ghalandari, Behafarid; Saboury, Ali Akbar

    2016-05-01

    In recent years, using heavy metal compounds such as platinum as anticancer agent is one of the common ways in chemical therapy. In this study, a new anticancer compound of glycine derivatives of Pt(II) complex (amyl-glycine1, 10-phenanthroline Platinum nitrate) was designed, and the biological effects of this novel compound on the al