Science.gov

Sample records for antidiabetic compound isolated

  1. Anti-diabetic properties of flavonoid compounds isolated from Hyphaene thebaica epicarp on alloxan induced diabetic rats

    PubMed Central

    Salib, Josline Y.; Michael, Helana N.; Eskande, Emad Fawzy

    2013-01-01

    Background: Diabetes mellitus, becoming the third killer of mankind after cancer and cardiovascular diseases, is one of the most challenging diseases facing health care professionals today. That is why; there has been a growing interest in the therapeutic use of natural products for diabetes, especially those derived from plants. Aim: To evaluate the anti-diabetic activity together with the accompanying biological effects of the fractions and the new natural compounds of Hyphaene thebaica (HT) epicarp. Materials and Methods: 500 g of coarsely powdered of (HT) fruits epicarp were extracted by acetone. The acetone crude extract was fractionated with methanol and ethyl acetate leaving a residual water-soluble fraction WF. The anti-diabetic effects of the WF and one of its compounds of the acetone extract of the (HT) epicarp were investigated in this study using 40 adult male rats. Results: Phytochemical investigation of active WF revealed the presence of ten different flavonoids, among which two new natural compounds luteolin 7-O-[6”-O-α-Lrhamnopyranosyl]-β-D-galactopyranoside 3 and chrysoeriol 7-O-β-D-galactopyranosyl(1→2)-α-L-arabinofuranoside 5 were isolated. Supplementation of the WF improved glucose and insulin tolerance and significantly lowered blood glycosylated hemoglobin levels. On the other hand, compound 5 significantly reduced AST and ALT levels of liver, respectively. Likewise, the kidney functions were improved for both WF and compound 5, whereby both urea and creatinine levels in serum were highly significant Conclusion: The results justify the use of WF and compound 5 of the (HT) epicarp as anti-diabetic agent, taking into consideration that the contents of WF were mainly flavonoids PMID:23598921

  2. Antidiabetic compounds from Sarracenia purpurea used traditionally by the Eeyou Istchee Cree First Nation.

    PubMed

    Muhammad, Asim; Guerrero-Analco, Jose A; Martineau, Louis C; Musallam, Lina; Madiraju, Padma; Nachar, Abir; Saleem, Ammar; Haddad, Pierre S; Arnason, John T

    2012-07-27

    Through ethnobotanical surveys, the CIHR Team in Aboriginal Antidiabetic Medicines identified 17 boreal forest plants stemming from the pharmacopeia of the Cree First Nations of Eeyou Istchee (James Bay region of Northern Quebec) that were used traditionally against diabetes symptoms. The leaves of Sarracenia purpurea (pitcher plant), one of the identified Cree plants, exhibited marked antidiabetic activity in vitro by stimulating glucose uptake in C2C12 mouse muscle cells and by reducing glucose production in H4IIE rat liver cells. Fractionation guided by glucose uptake in C2C12 cells resulted in the isolation of 11 compounds from this plant extract, including a new phenolic glycoside, flavonoid glycosides, and iridoids. Compounds 6 (isorhamnetin-3-O-glucoside), 8 [kaempferol-3-O-(6″-caffeoylglucoside], and 11 (quercetin-3-O-galactoside) potentiated glucose uptake in vitro, which suggests they represent active principles of S. purpurea (EC(50) values of 18.5, 13.8, and 60.5 μM, respectively). This is the first report of potentiation of glucose uptake by compounds 6 and 8, while compound 11 (isolated from Vaccinium vitis) was previously shown to enhance glucose uptake. Treatment of H4IIE liver cells with the new compound 1, 6'-O-caffeoylgoodyeroside, decreased hepatic glucose production by reducing glucose-6-phosphatase enzymatic activity (IC(50) = 13.6 μM), which would contribute to lowering glycemia and to the antidiabetic potential of S. purpurea. PMID:22738356

  3. Isolation of Antidiabetic Principle from Fruit Rinds of Punica granatum

    PubMed Central

    Jain, Vishal; Viswanatha, G. L.; Manohar, D.; Shivaprasad, H. N.

    2012-01-01

    Present study was aimed to isolate and evaluate the antidiabetic activity of phytoconstituents from fruit rinds of Punica granatum. With the above objectives Valoneic acid dilactone (VAD) was isolated from methanolic fruit rind extracts of Punica granatum (MEPG) and confirmed by 1H-NMR, 13C-NMR, and mass spectral data. Antidiabetic activity was evaluated by Aldose reductase, α-amylase and PTP1B inhibition assays in in vitro and Alloxan-induced diabetes in rats was used as an in vivo model. In bioactivity studies, MEPG and VAD have showed potent antidiabetic activity in α-amylase, aldose reductase, and PTP1B inhibition assays with IC50 values of 1.02, 2.050, 26.25 μg/mL and 0.284, 0.788, 12.41 μg/mL, respectively. Furthermore, in alloxan-induced diabetes model MEPG (200 and 400 mg/kg, p.o.) and VAD (10, 25, and 50 mg/kg, p.o.) have showed significant and dose dependent antidiabetic activity by maintaining the blood glucose levels within the normal limits. Inline with the biochemical findings histopathology of MEPG (200 and 400 mg/kg, p.o.), VAD (10, 25, and 50 mg/kg, p.o.), and glibenclamide (10 mg/kg, p.o.) treated animals showed significant protection against alloxan-induced pancreatic tissue damage. These findings suggest that MEPG and VAD possess significant antidiabetic activity in both in vitro and in vivo models. PMID:22919408

  4. Biguanide related compounds in traditional antidiabetic functional foods.

    PubMed

    Perla, Venu; Jayanty, Sastry S

    2013-06-01

    Biguanides such as metformin are widely used worldwide for the treatment of type-2 diabetes. The identification of guanidine and related compounds in French lilac plant (Galega officinalis L.) led to the development of biguanides. Despite of their plant origin, biguanides have not been reported in plants. The objective of this study was to quantify biguanide related compounds (BRCs) in experimentally or clinically substantiated antidiabetic functional plant foods and potatoes. The corrected results of the Voges-Proskauer (V-P) assay suggest that the highest amounts of BRCs are present in green curry leaves (Murraya koenigii (L.) Sprengel) followed by fenugreek seeds (Trigonella foenum-graecum L.), green bitter gourd (Momordica charantia Descourt.), and potato (Solanum tuberosum L.). Whereas, garlic (Allium sativum L.), and sweet potato (Ipomea batatas (L.) Lam.) contain negligible amounts of BRCs. In addition, the possible biosynthetic routes of biguanide in these plant foods are discussed. PMID:23411283

  5. Promising anti-diabetic potential of capillin and capillinol isolated from Artemisia capillaris.

    PubMed

    Islam, Md Nurul; Choi, Ran Joo; Jung, Hyun Ah; Oh, Sang Ho; Choi, Jae Sue

    2016-03-01

    Caffeoylquinic acids, flavonoids, and coumarins isolated from Artemisia capillaris have recently emerged as therapeutic candidates for diabetes and diabetic complications; however, there have been very few studies of the anti-diabetic potential of polyacetylenes. In the present study, we investigated the anti-diabetic potential of two polyacetylenes isolated from A. capillaris, namely capillin and capillinol by investigating their ability to inhibit α-glucosidase, protein tyrosine phosphatase 1B (PTP1B), and rat lens aldose reductase (RLAR). Capillin displayed potent inhibitory activity against α-glucosidase, PTP1B, and RLAR, while capillinol showed moderate inhibitory activity against α-glucosidase and PTP1B at the concentrations tested. In addition, a kinetic study revealed that capillin inhibited α-glucosidase and RLAR in a noncompetitive manner, while inhibited PTP1B in a mixed-type manner. Capillinol inhibited α-glucosidase and PTP1B in a mixed-type manner. Docking simulations of these compounds demonstrated negative binding energies and close proximity to residues in the binding pocket of PTP1B, indicating that these polyacetylenes have a high affinity and tight binding capacity for the active site of the enzyme. Furthermore, capillin dose-dependently inhibited peroxynitrite (ONOO(-))-mediated tyrosine nitration. The results clearly demonstrate the promising potential of capillin and capillinol as therapeutic interventions for the management of diabetes as well as diabetes-associated complications. PMID:26832324

  6. Anti-diabetic activity of a mineraloid isolate, in vitro and in genetically diabetic mice.

    PubMed

    Deneau, Joel; Ahmed, Taufeeq; Blotsky, Roger; Bojanowski, Krzysztof

    2011-01-01

    Type II diabetes is a metabolic disease mediated through multiple molecular pathways. Here, we report anti-diabetic effect of a standardized isolate from a fossil material - a mineraloid leonardite - in in vitro tests and in genetically diabetic mice. The mineraloid isolate stimulated mitochondrial metabolism in human fibroblasts and this stimulation correlated with enhanced expression of genes coding for mitochondrial proteins such as ATP synthases and ribosomal protein precursors, as measured by DNA microarrays. In the diabetic animal model, consumption of the Totala isolate resulted in decreased weight gain, blood glucose, and glycated hemoglobin. To our best knowledge, this is the first description ever of a fossil material having anti-diabetic activity in pre-clinical models. PMID:22002216

  7. Role of the antidiabetic drugs: Glibenclamide and metformin on the contractility of isolated rat uteri.

    PubMed

    Kelany, Mohamed Elsayed; Alqahtani, Saeed; Alkuriji, Afrah; Al-Omar, SulimanYousef

    2016-01-01

    The current investigation has designed to study the role of two antidiabetics, glibenclamide and metformin on the spontaneous uterine contractions in the non-diabetic non-pregnant female rats. The rat uteri were isolated and allocated to two groups: 1)the glibenclamide group: After recording the normal spontaneous uterine contractions, the vehicle (ethanol) and glibenclamide molar concentrations (10(-7), 10(-6) and 10(-5) M) were analyzed on uterine contractions by recording on smoked paper on a rotating kymograph drum, and 2) the metformin group: After recording the normal spontaneous uterine contractions, the metformin concentrations (10(-7), 10(-6) and 10(-5) M) were analyzed on uterine contractions. Responses to the two drugs and vehicle control (ethanol) were recorded for 30 min. Glibenclamide has not significantly effected on the amplitude and frequency of spontaneous contractions of the isolated rat uteri. Metformin also has no significant effect on the amplitude and frequency of spontaneous contractions of the isolated rat uteri. In conclusion, the two oral antidiabetics glibenclamide and metformin have not changed both the amplitude and frequency of spontaneous uterine contractions in the non-pregnant non-diabetic female rats. PMID:26826839

  8. Antidiabetic oils.

    PubMed

    Berraaouan, Ali; Abid, Sanae; Bnouham, Mohamed

    2013-11-01

    Many studies have demonstrated evidence of the health benefits of natural products. Plant extracts have been tested on a variety of physiological disorders, including diabetes mellitus. Studies have tested aqueous extracts, plant fractions extracts, families of active of compounds, and specific active compounds. In this review, we describe the antidiabetic effects of vegetable oils. Information was collected from ScienceDirect and PubMed databases using the following key words: Diabetes mellitus, Oils, Vegetable oils, Type 1 diabetes, type 2 diabetes, antidiabetic effect, antihyperglycemic, antidiabetic oil. We have compiled approximately ten vegetable oils with including experimental studies that have demonstrated benefits on diabetes mellitus. There are soybean, argan, olive, palm, walnut, black cumin, safflower, Colocynth, Black seed, Rice bran, Cinnamom, and Rocket oils. For each vegetable oil, we investigated on the plant's traditional uses, their pharmacological activities and their antidiabetic effects. It seems that many vegetable oils are really interesting and can be used in the improvement of human health, particularly, to prevent or to treat diabetes mellitus complications. PMID:24111621

  9. Mechanism of Antidiabetic Action of Compound GII Purified from Fenugreek (Trigonella foenum graecum) Seeds.

    PubMed

    Puri, D; Prabhu, K M; Dev, G; Agarwal, S; Murthy, P S

    2011-10-01

    To study the mechanism of action of water soluble compound GII purified from fenugreek (Trigonella foenum graecum) seeds which was shown earlier to have antidiabetic effect in the subdiabetic, moderately and severely diabetic rabbits. In rabbits (1-1.5 kg bw) diabetes was induced by intravenous injection of 80 mg/kg bw of alloxan. They were fed with GII at a dose of 50 mg/kg bw daily once in the morning for 15 days in the subdiabetic and moderately diabetic and 30 days in the severely diabetic rabbits. Serum total cholesterol (TC), triglycerides (TG), LDL + VLDL cholesterol [(LDL + VLDL)C], HDL cholesterol [(HDL)C], total tissue lipids, glycogen and enzymes of carbohydrate metabolism (glycolysis, gluconeogenesis, polyol pathway) hexokinase, glucokinase, pyruvate kinase, malic enzyme, glucose-6-phosphatase, glucose-6-phosphate dehydrogenase, aldose reductase and sorbitol dehydrogenase and antioxidant enzymes glutathione peroxidase, glutathione reductase and superoxide dismutase were estimated. Liver and kidney function parameters were also estimated. Treatment with GII for 15 days in the subdiabetic and moderately diabetic rabbits and for 30 days in the severely diabetic rabbits (i) decreased the elevated lipids TC, TG, (LDL + VLDL)C and increased the decreased (HDL)C, (ii) decreased the elevated liver and heart total lipids, TC and TG, (iii) increased the decreased liver and muscle glycogen, (iv) increased the decreased hexokinase, glucokinase, pyruvate kinase, malic enzyme, glucose-6-phosphate dehydrogenase, superoxide dismutase, glutathione peroxidase, (v) decreased the increased glucose-6-phosphatase, sorbitol dehydrogenase, aldose reductase. Results thus show that treatment with GII compound purified from fenugreek seeds for 15 days in the subdiabetic and moderately diabetic and 30 days in the severely diabetic rabbits corrects the altered serum lipids, tissue lipids, glycogen, enzymes of glycolysis, gluconeogenesis, glycogen metabolism, polyol

  10. Antidiabetic Effect of GII Compound Purified from Fenugreek (Trigonella foenum graecum Linn) Seeds in Diabetic Rabbits.

    PubMed

    Puri, D; Prabhu, K M; Murthy, P S

    2012-01-01

    Aim is to study the antidiabetic effect of a compound GII purified earlier from the water extract of fenugreek (Trigonella foenum graecum) seeds by Murthy and his colleagues (patented in India and USA) in diabetic rabbits. Diabetes was induced in rabbits by injecting 80 mg/kg bw of alloxan intravenously into rabiits. Rabbits were subdivided into subdiabetic [fasting blood sugar (FBG) up to 120 mg/dl with abnormal glucose tolerance in glucose tolerance test (GTT)], moderately diabetic (FBG below 250 mg/dl) and severely diabetic (FBG above 250 mg/dl). Blood glucose and glycosylated hemoglobin (HbA1C) were estimated by procedures in the kits of Stangen Immunodiagnostics, Mumbai using, respectively, glucose oxidase method and absorbance at 415 nm. Serum insulin was estimated by the ELISA method as described in the kit of Boehringer Mannheim Immunodiagnostics, Mumbai, India. GII was found to improve blood glucose utilization in GTT and reduced FBG and HbA1C. In the present communication detailed studies were carried out with GII in the subdiabetic, moderately diabetic and severely diabetic rabbits. GII at a dose of 50 mg/kg bw per day brought down the elevated FBG levels in the untreated subdiabetic (FBG 96.6 ± 7 mg/dl), moderately diabetic (150.1 ± 14 mg/dl) and severely diabetic rabbits (427 ± 46 mg/dl) to normal in 12, 15 and 28 days of treatment. It improved serum HbA1C and insulin levels also in these rabbits. Intermittent therapy once a week for 6 weeks with GII at the same dose brought down the FBG values to normal in the subdiabetic (FBG 96.0 ± 2 mg/dl) and in the moderately diabetic rabbits to 133.0 ± 12 mg/dl. After stopping therapy of the subdiabetic and moderately diabetic rabbits whose FBG values came to normal after treatment with GII 50 mg/kg bw, the values remained normal for 1 week and showed a tendency to increase only after 15 days. If these animal studies are applicable to humans these results indicate that a

  11. Interaction of Glucagon G-Protein Coupled Receptor with Known Natural Antidiabetic Compounds: Multiscoring In Silico Approach

    PubMed Central

    Baig, M. H.; Ahmad, K.; Hasan, Q.; Khan, M. K. A.; Rao, N. S.; Kamal, M. A.; Choi, I.

    2015-01-01

    Glucagon receptor (GCGR) is a secretin-like (class B) family of G-protein coupled receptors (GPCRs) in humans that plays an important role in elevating the glucose concentration in blood and has thus become one of the promising therapeutic targets for treatment of type 2 diabetes mellitus. GCGR based inhibitors for the treatment of type 2 diabetes are either glucagon neutralizers or small molecular antagonists. Management of diabetes without any side effects is still a challenge to the medical system, and the search for a new and effective natural GCGR antagonist is an important area for the treatment of type 2 diabetes. In the present study, a number of natural compounds containing antidiabetic properties were selected from the literature and their binding potential against GCGR was determined using molecular docking and other in silico approaches. Among all selected natural compounds, curcumin was found to be the most effective compound against GCGR followed by amorfrutin 1 and 4-hydroxyderricin. These compounds were rescored to confirm the accuracy of binding using another scoring function (x-score). The final conclusions were drawn based on the results obtained from the GOLD and x-score. Further experiments were conducted to identify the atomic level interactions of selected compounds with GCGR. PMID:26236379

  12. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States.

    PubMed

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production. PMID:27187352

  13. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    PubMed Central

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production. PMID:27187352

  14. Target guided isolation, in-vitro antidiabetic, antioxidant activity and molecular docking studies of some flavonoids from Albizzia Lebbeck Benth. bark

    PubMed Central

    2014-01-01

    Background Albizzia Lebbeck Benth. is traditionally important plant and is reported to possess a variety of pharmacological actions. The present research exertion was undertaken to isolate and characterized the flavonoids from the extract of stem bark of Albizzia Lebbeck Benth. and to evaluate the efficacy of the isolated flavonoids on in-vitro models of type-II diabetes. Furthermore, the results of in-vitro experimentation inveterate by the molecular docking studies of the isolated flavonoids on α-glucosidase and α-amylase enzymes. Methods Isolation of the flavonoids from the methanolic extract of stem bark of A. Lebbeck Benth was executed by the Silica gel (Si) column chromatography to yield different fractions. These fractions were then subjected to purification to obtain three important flavonoids. The isolated flavonoids were then structurally elucidated with the assist of 1H-NMR, 13C-NMR, and Mass spectroscopy. In-vitro experimentation was performed with evaluation of α-glucosidase, α-amylase and DPPH inhibition capacity. Molecular docking study was performed with GLIDE docking software. Results Three flavonoids, (1) 5-deoxyflavone (geraldone), (2) luteolin and (3) Isookanin were isolated from the EtOAc fraction of the methanolic extract of Albizzia lebbeck Benth bark. (ALD). All the compounds revealed to inhibit the α-glucosidase and α-amylase enzymes in in-vitro investigation correlating to reduce the plasma glucose level. Molecular docking study radically corroborates the binding affinity and inhibition of α-glucosidase and α-amylase enzymes. Conclusion The present research exertion demonstrates the anti-diabetic and antioxidant activity of the important isolated flavonoids with inhibition of α-glucosidase, α-amylase and DPPH which is further supported by molecular docking analysis. PMID:24886138

  15. Recent Advances in Astragalus membranaceus Anti-Diabetic Research: Pharmacological Effects of Its Phytochemical Constituents

    PubMed Central

    Agyemang, Kojo; Han, Lifeng; Liu, Erwei; Zhang, Yi; Wang, Tao; Gao, Xiumei

    2013-01-01

    The disease burden of diabetes mellitus is increasing throughout the world. The need for more potent drugs to complement the present anti-diabetic drugs has become an imperative. Astragalus membranaceus, a key component of most Chinese herbal anti-diabetic formulas, has been an important prospect for lead anti-diabetic compounds. It has been progressively studied for its anti-diabetic properties. Ethnopharmacological studies have established its potential to alleviate diabetes mellitus. Recent studies have sought to relate its chemical constituents to types 1 and 2 diabetes mellitus. Its total polysaccharides, saponins, and flavonoids fractions and several isolated compounds have been the most studied. The total polysaccharides fraction demonstrated activity to both types 1 and 2 diabetes mellitus. This paper discusses the anti-diabetic effects and pharmacological action of the chemical constituents in relation to types 1 and 2 diabetes mellitus. PMID:24348714

  16. Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties.

    PubMed

    Graf, Brittany L; Poulev, Alexander; Kuhn, Peter; Grace, Mary H; Lila, Mary Ann; Raskin, Ilya

    2014-11-15

    Quinoa (Chenopodium quinoa Willd.) contains high levels of biologically active phytoecdysteroids, which have been implicated in plant defense from insects, and have shown a range of beneficial pharmacological effects in mammals. We demonstrated that the most prevalent phytoecdysteroid, 20-hydroxyecdysone (20HE), was secreted (leached) from intact quinoa seeds into water during the initial stages of seed germination. Leaching efficiency was optimized by ethanol concentration (70% ethanol), temperature (80°C), time (4h), and solvent ratio (5 ml/g seed). When compared to extraction of macerated seeds, the leaching procedure released essentially all the 20HE available in the seeds (491 μg/g seed). The optimized quinoa leachate (QL), containing 0.86% 20HE, 1.00% total phytoecdysteroids, 2.59% flavonoid glycosides, 11.9% oil, and 20.4% protein, significantly lowered fasting blood glucose in obese, hyperglycemic mice. Leaching effectively releases and concentrates bioactive phytochemicals from quinoa seeds, providing an efficient means to produce a food-grade mixture that may be useful for anti-diabetic applications. PMID:24912714

  17. Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties

    PubMed Central

    Graf, Brittany L.; Poulev, Alexander; Kuhn, Peter; Grace, Mary H.; Lila, Mary Ann; Raskin, Ilya

    2014-01-01

    Quinoa (Chenopodium quinoa Willd.) contains high levels of biologically active phytoecdysteroids, which have been implicated in plant defense from insects, and have shown a range of beneficial pharmacological effects in mammals. We demonstrated that the most prevalent phytoecdysteroid, 20-hydroxyecdysone (20HE), was secreted (leached) from intact quinoa seeds into water during the initial stages of seed germination. Leaching efficiency was optimized by ethanol concentration (70% ethanol), temperature (80°C), time (4 h), and solvent ratio (5 ml/g seed). When compared to extraction of macerated seeds, the leaching procedure released essentially all the 20HE available in the seeds (491 μg/g seed). The optimized quinoa leachate (QL), containing 0.86% 20HE, 1.00% total phytoecdysteroids, 2.59% flavonoid glycosides, 11.9% oil, and 20.4% protein, significantly lowered fasting blood glucose in obese, hyperglycemic mice. Leaching effectively releases and concentrates bioactive phytochemicals from quinoa seeds, providing an efficient means to produce a food-grade mixture that may be useful for anti-diabetic applications. PMID:24912714

  18. An in silico study on antidiabetic activity of bioactive compounds in Euphorbia thymifolia Linn.

    PubMed

    Nguyen Vo, T Hoang; Tran, Ngan; Nguyen, Dat; Le, Ly

    2016-01-01

    Herbal medicines have become strongly preferred treatment to reduce the negative impacts of diabetes mellitus (DM) and its severe complications due to lesser side effects and low cost. Recently, strong anti-hyperglycemic effect of Euphorbia thymifolia Linn. (E. thymifolia) on mice models has reported but the action mechanism of its bioactive compounds has remained unknown. This study aimed to evaluate molecular interactions existing between various bioactive compounds in E. thymifolia and targeted proteins related to Type 2 DM. This process involved the molecular docking of 3D structures of those substances into 4 targeted proteins: 11-β hydroxysteroid dehydrogenase type 1, glutamine: fructose-6-phosphate amidotransferase, protein-tyrosine phosphatase 1B and mono-ADP-ribosyltransferase sirtuin-6. In the next step, LigandScout was applied to evaluate the bonds formed between 20 ligands and the binding sites of each targeted proteins. The results identified seven bioactive compounds with high binding affinity (<-8.0 kcal/mol) to all 4 targeted proteins including β-amyrine, taraxerol, 1-O-galloyl-β-d-glucose, corilagin, cosmosiin, quercetin-3-galactoside and quercitrin. The pharmacophore features were also explained in 2D figures which indicated hydrophobic interactions, hydrogen bond acceptors and hydrogen bond donors forming between carbonyl oxygen molecules of those ligands and active site residues of 4 targeted protein.Graphical abstract Euphorbia thymifolia Linn. is a small prostrate herbaceous annual weed that can positively impact on reducing hyperglycemic effect. In order to clearly understand about molecular level of the its bioactive compounds, in silico approach is performed. PMID:27588252

  19. Antidiabetic Agents.

    ERIC Educational Resources Information Center

    Plummer, Nancy; Michael, Nancy, Ed.

    This module on antidiabetic agents is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…

  20. Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action †

    PubMed Central

    Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2013-01-01

    The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories. PMID:23880931

  1. Chemical compounds isolated from Talinum triangulare (Portulacaceae).

    PubMed

    de Oliveira Amorim, Ana Paula; de Carvalho, Almir Ribeiro; Lopes, Norberto Peporine; Castro, Rosane Nora; de Oliveira, Marcia Cristina Campos; de Carvalho, Mário Geraldo

    2014-10-01

    This first phytochemical study of Talinum triangulare Leach (Portulacaceae), also known as 'cariru', which is a commonly consumed food in Northern Brazil, allowed the isolation and structural determination of four new compounds: one acrylamide, 3-N-(acryloyl, N-pentadecanoyl) propanoic acid (5), and three new phaeophytins named (15(1)S, 17R, 18R)-Ficuschlorin D acid (3(1),3(2)-didehydro-7-oxo-17(3)-O-phytyl-rhodochlorin-15-acetic acid), (13), Talichorin A (17R, 18R)-phaeophytin b-15(1)-hidroxy, 15(2),15(3)-acetyl-13(1)-carboxilic acid (14), and (15(1)S, 17R, 18R)-phaeophytin b peroxylactone or (15(1)S, 17R, 18R)-hydroperoxy-ficuschlorin D (16), together with twelve known compounds, including four phaeophytins (11,12, 15 and 17). The structures of the compounds were established on the basis of 1D and 2D NMR, IR, HRESI-MS spectra, including GC-MS, and HPLC-UV analysis, as well as comparisons with the literature data. The CD spectra data analysis were used to define the absolute configuration of phaeophytins 12 (13(2)R, 17R, 18R)-13(2)-hydroxyphaeophytin a, 13 and 16, 15 (15(1)S, 17R, 18R)-3(1),3(2)-didehydro-15(1)-hydroxyrhodochlorin-15-acetic acid δ-lactone-15(2)-methyl-17(3)-phytyl ester and 17 (17R, 18R)-purpurin 18-phytyl ester. PMID:24799228

  2. Anti-diabetic property of Tinospora cordifolia and its active compound is mediated through the expression of Glut-4 in L6 myotubes.

    PubMed

    Sangeetha, M K; Priya, C D Mohana; Vasanthi, Hannah R

    2013-02-15

    Tinospora cordifolia is a well reported plant possessing numerous medicinal values including anti-diabetic property. Aim of the present study is to study the mechanism of action of Tinospora cordifolia and its active compound in differentiated myocytes, L6 cells. Key marker of diabetes in cells is the insulin dependent glucose transporter-4 (Glut-4) which also responds to exogenous chemicals, and is over expressed up to 5- and 4-fold, by Tinospora cordifolia and palmatine, respectively. Next to Glut-4, the predominant protein influencing glucose metabolism is PPARα and γ whose expressions were also positively modulated. Further, the inhibitors of insulin pathway prevented glucose uptake mediated by Tinospora cordifolia and palmatine which shows that the activity is majorly mediated through insulin pathway. PMID:23290487

  3. Antibacterial properties of compounds isolated from Carpobrotus edulis.

    PubMed

    Martins, A; Vasas, A; Viveiros, M; Molnár, J; Hohmann, J; Amaral, L

    2011-05-01

    Several compounds isolated from the plant Carpobrotus edulis were evaluated for their activity against multidrug-resistant (MDR) bacteria and their efflux pump systems. Amongst the compounds isolated, six compounds were tested, namely uvaol, β-amyrin, oleanolic acid, catechin, epicatechin and monogalactosyldiacylglycerol. Oleanolic acid presented high antibacterial activity against a large number of bacterial strains. The triterpene uvaol was the most active compound for modulation of efflux activity by MDR Gram-positive strains. PMID:21411294

  4. Bioactivity-guided Isolation of antiosteoporotic compounds from Ligustrum lucidum.

    PubMed

    Chen, Qianfeng; Yang, Lijuan; Zhang, Guolin; Wang, Fei

    2013-07-01

    The fruits of Ligustrum lucidum (FLL) has long been used for the treatment of osteoporosis in China, but the antiosteoporotic compounds in FLL are still poorly understood. In this study, the alkaline phosphatase (ALP) activity-guided isolation of osteogenic components from FLL was carried out by using osteoblast-like UMR-106 cells. Eight compounds, namely tyrosol (1), tyrosyl acetate (2), hydroxytyrosol (3), salidroside (4), oleoside dimethyl ester (5), oleoside-7-ethyl-11-methyl ester (6), nuzhenide (7), and G13 (8), were isolated and identified. Further study showed that compounds 3, 4, 7, and 8 increased ALP activity in UMR-106 cells. Compounds 5, 6, and 7 promoted the proliferation of UMR-106 cells. The aqueous extract of FLL-activated ERα/β-mediated gene transcription, whereas the isolated compounds were inactive. All eight isolated compounds also exhibited antioxidative activity, with compounds 1, 2, and 3 being the most potent. These results indicate that the antiosteoporotic effect of FLL is derived from different compounds together with different mechanisms such as ER-dependent or independent pathways and antioxidative effects. Salidroside (4) and nuzhenide (7) warrant further investigation as new pharmaceutical tools for the prevention and treatment of osteoporosis. PMID:22893624

  5. Antidiabetic activity of the chemical constituents of Combretum dolichopetalum root in mice.

    PubMed

    Uzor, Philip F; Osadebe, Patience O

    2016-01-01

    The root of Combretum dolichopetalum (Combreatacea) is used in ethnomedicine for the management of diabetes mellitus. Though some compounds have been isolated from it, the antidiabetic principles have not been identified. The present study was designed to evaluate the chemical constituents from the root of C. dolichopetalum with a view to identifying the antidiabetic principles. The constituents include the alkaloids, echinulin (1) and arestrictin B (2), the terpenoids, arjunolic acid (3) and 4'-dihydrophaseic acid (4) as well as the phenolic acids, ellagic acid (5) and 3, 4, 3'-tri-O-methylellagic acid (6). Twenty eight mice (in seven groups, n = 4) were made diabetic using alloxan monohydrate (i.p., 120 mg/kg) and treated orally with either the vehicle (control group), any of the constituents or glibenclamide (standard drug). The fasting blood glucose of the diabetic animals was monitored for nine hours. Results showed that all the chemical constituents (1-6) exhibited significant (p < 0.05) antidiabetic activity comparable to glibenclamide. The alkaloids exhibited the most profound antidiabetic activity. The present study has thus identified the antidiabetic principles of C. dolichopetalum root as echinulin, arestrictin B, arjunolic acid, 4'-dihydrophaseic acid, ellagic acid and 3, 4, 3'-tri-O-methylellagic acid. The study has further validated the ethnomedicinal use of the root of C. dolichopetalum in diabetes. PMID:27298614

  6. Antidiabetic activity of the chemical constituents of Combretum dolichopetalum root in mice

    PubMed Central

    Uzor, Philip F.; Osadebe, Patience O.

    2016-01-01

    The root of Combretum dolichopetalum (Combreatacea) is used in ethnomedicine for the management of diabetes mellitus. Though some compounds have been isolated from it, the antidiabetic principles have not been identified. The present study was designed to evaluate the chemical constituents from the root of C. dolichopetalum with a view to identifying the antidiabetic principles. The constituents include the alkaloids, echinulin (1) and arestrictin B (2), the terpenoids, arjunolic acid (3) and 4'-dihydrophaseic acid (4) as well as the phenolic acids, ellagic acid (5) and 3, 4, 3'-tri-O-methylellagic acid (6). Twenty eight mice (in seven groups, n = 4) were made diabetic using alloxan monohydrate (i.p., 120 mg/kg) and treated orally with either the vehicle (control group), any of the constituents or glibenclamide (standard drug). The fasting blood glucose of the diabetic animals was monitored for nine hours. Results showed that all the chemical constituents (1-6) exhibited significant (p < 0.05) antidiabetic activity comparable to glibenclamide. The alkaloids exhibited the most profound antidiabetic activity. The present study has thus identified the antidiabetic principles of C. dolichopetalum root as echinulin, arestrictin B, arjunolic acid, 4'-dihydrophaseic acid, ellagic acid and 3, 4, 3'-tri-O-methylellagic acid. The study has further validated the ethnomedicinal use of the root of C. dolichopetalum in diabetes. PMID:27298614

  7. Antidiabetic and Antioxidant Effects and Phytochemicals of Mulberry Fruit (Morus alba L.) Polyphenol Enhanced Extract

    PubMed Central

    Wang, Yihai; Xiang, Limin; Wang, Chunhua; Tang, Chao; He, Xiangjiu

    2013-01-01

    The antidiabetic and antioxidant activities of the ethyl acetate-soluble extract (MFE) of mulberry fruit (Morus alba L.) were investigated. In vitro, MFE showed potent α-glucosidase inhibitory activity and radical-scavenging activities against DPPH and superoxide anion radicals. In vivo, MFE could significantly decrease fasting blood glucose (FBG) and glycosylated serum protein (GSP), and increase antioxidant enzymatic activities (SOD, CAT, GSH-Px) in streptozotocin (STZ)-induced diabetic mice. Bioactivity-guided fractionation of the MFE led to the isolation of 25 phenolic compounds, and their structures were identified on the basis of MS and NMR data. All the 25 compounds were isolated from mulberry fruit for the first time. Also, the α-glucosidase inhibitory activity and antioxidant activity of the phenolics were evaluated. Potent α-glucosidase inhibitory and radical-scavenging activities of these phenolics suggested that they may be partially responsible for the antidiabetic and antioxidant activities of mulberry fruit. PMID:23936259

  8. Bioassay Directed Isolation and Biological Evaluation of Compounds Isolated from Rubus fairholmianus Gard.

    PubMed Central

    Plackal George, Blassan; Thangaraj, Parimelazhagan; Sulaiman, Cheruthazhakkatt; Piramanayagam, Shanmughavel; Ramaswamy, Sathish Kumar

    2014-01-01

    The in vitro and in silico analysis of Rubus fairholmianus acetone extract for antioxidant, antiproliferative, and anti-inflammatory activity led to the isolation of six compounds. Amongst all the six isolated compounds tested, 1-(2-hydroxyphenyl)-4-methylpentan-1-one (compound 1) and 2-[(3-methylbutoxy) carbonyl] benzoic acid (compound 2) were found to be more active in inhibiting BRCA and COX target proteins, which also showed the better results for DPPH and ABTS radical scavenging assays. The promising results of this investigation emphasize the importance of using R. fairholmianus in the treatment of radical generated disorders mainly cancer and other inflammatory diseases. PMID:25254204

  9. [Isolation and identification of triterpenoide compound from Patrinia scabiosaefolia].

    PubMed

    Yang, B; Tong, L; Jin, M; Zhao, W; Chen, Y

    1998-10-01

    In this paper, a triterpenoide was isolated from the roots and rhizomes of Patrinia scabiosaefolia Fish ex Link. Its structure was identified by combination of chemical reactions and spectrum analysis as 28-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl-hederagenin ester. The compound was found in the Patrinia for the first time. PMID:12569829

  10. Isolation and identification of phenolic compounds from Gynura divaricata leaves

    PubMed Central

    Wan, Chunpeng; Yu, Yanying; Zhou, Shouran; Tian, Shuge; Cao, Shuwen

    2011-01-01

    Background: Phenolic constituents were the principle bioactivity compounds exist in Gynura divaricata, little phenolic compounds were reported from the plant previously. Materials and Methods: 60% ethanol extract from the leaves of Gynura divaricata were isolated and purified by column chromatography of Silica gel, ODS and Sephadex LH-20, the structures of the isolated compounds were identified by UV, 1H-NMR, 13C-NMR and MS spectroscopic techniques. Additionally, a high-performance liquid chromatography-diode array detector-electrospray ionization-mass (HPLC-DAD-ESI-MS) analytical method was developed to identify some minor constituents in the n-butanol fraction of the ethanol extract of Gynura divaricata. Results: Six flavonols and one Dicaffeoylquinic acid were isolated from the leaves of Gynura divaricata, and these compounds were identified as follows: quercetin (1), kaempferol (2), kaempferol-3-O-β-D-glucopyranoside (3), quercetin-3-O-rutinoside (4), kaempferol-3,7-di-O-β-D-glucopyranoside (5), kaempferol-3-O-rutinoside-7-O-β-D-glucopyranoside (6), and 3,5-dicaffeoylquinic acid (7). A total of 13 compounds, including 9 flavonol glycosides and 4 phenolic acids, were tentatively identified by comparing their retention time (RT), UV, and MS spectrum values with those that had been identified and the published data. Conclusion: This was the first time to use the HPLC-DAD-ESI-MS method to identify the phytochemicals of the genera Gynura. Moreover, compounds (6) and (7) have been isolated for the first time from the genus Gynura. PMID:21716618

  11. Antidiabetic effects of scoparic acid D isolated from Scoparia dulcis in rats with streptozotocin-induced diabetes.

    PubMed

    Latha, Muniappan; Pari, Leelavinothan; Ramkumar, Kunga Mohan; Rajaguru, Palanisamy; Suresh, Thangaraj; Dhanabal, Thangavel; Sitasawad, Sandhya; Bhonde, Ramesh

    2009-01-01

    We evaluated the antihyperglycaemic effect of scoparic acid D (SAD), a diterpenoid isolated from the ethanol extract of Scoparia dulcis in streptozotocin (STZ)-induced diabetic male Wistar rats. SAD was administered orally at a dose of 10, 20 and 40 mg kg(-1) bodyweight for 15 days. At the end of the experimental period, the SAD-treated STZ diabetic rats showed decreased levels of glucose as compared with diabetic control rats. The improvement in blood glucose levels of SAD-treated rats was associated with a significant increase in plasma insulin levels. SAD at a dose of 20 mg kg(-1) bodyweight exhibited a significant effect when compared with other doses. Further, the effect of SAD was tested on STZ-treated rat insulinoma cell lines (RINm5F cells) and isolated islets in vitro. SAD at a dose of 20 microg mL(-1) evoked two-fold stimulation of insulin secretion from isolated islets, indicating its insulin secretagogue activity. Further, SAD protected STZ-mediated cytotoxicity and nitric oxide (NO) production in RINm5F cells. The present study thus confirms the antihyperglycaemic effect of SAD and also demonstrated the consistently strong cytoprotective properties of SAD. PMID:19606382

  12. Toxicological studies of two compounds isolated from Loranthus globosus Roxb.

    PubMed

    Islam, Robiul; Alam, A H M Khurshid; Rahman, B M; Salam, K A; Hossain, Aslam; Baki, Abdullahil; Sadik, Golam

    2007-06-15

    The sub-acute toxicities of two compounds 3,4-dimethoxycinnamyl alcohol (1) and 3,4,5-trimethoxycinnamyl alcohol (2) isolated from the plant Loranthus globosus Roxb were studied on long Evan's rats. The studies included the gross general observation such as changes in body weight, haematological profiles [total count of Red Blood Cells (RBC) and White Blood Cells (WBC), differential count of WBC, platelet count and Haemoglobin (Hb)%], biochemical parameters of blood [Serum Glutamate Oxaloacetate Transaminase (SGOT), Serum Glutamate Pyruvate Transaminase (SGPT), Serum Alkaline Phosphatase (SALP), urea and creatinine) and histopathology of the liver, kidney, heart and lung of both control and experimental groups of rats. The changes in haematological and biochemical parameters were statistically not significant after the administration of compounds 1 and 2 in a dose of 300 microg/rat/day for consecutive 14 days. No abnormality was found in the histopathology of the liver, kidney, heart and lung in the experimental groups of rats following same dose when compared with control group. This preliminary study suggests that the isolated compounds may be used safely for clinical trial. PMID:19093449

  13. Antileishmanial Activity of Compounds Isolated from Sassafras albidum.

    PubMed

    Pulivarthi, Divya; Steinberg, Kelly Marie; Monzote, Lianet; Piñón, Abel; Setzer, William N

    2015-07-01

    Leishmaniasis is a neglected tropical disease caused by Leishmania parasitic protozoa, which currently lacks efficient treatment. Natural products have shown promise as a potential source for antiprotozoal drugs. This work focuses on the antileishmanial potential of Sassafras albidum (Lauraceae) bark extract. The crude bark extract of S. albidum showed excellent antileishmanial activity with an IC50 value less than 12.5 μg/mL against promastigotes of L. amazonensis. The chloroform stem bark extract of S. albidum was subjected to preparative column chromatography. Five compounds were isolated, purified by recrystallization, and identified as sesamin, spinescin, β-sitosterol, hexatriacontanal, and 1-triacontanol. Antileishmanial and cytotoxic screening were performed on these compounds. Sesamin exhibited the best activity against L. amazonensis with an IC50 of 15.8 μg/mL and was not cytotoxic to mouse macrophage cells (CC50 > 100 μg/mL). PMID:26411017

  14. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis

    PubMed Central

    Joray, Mariana Belén; Trucco, Lucas Daniel; González, María Laura; Napal, Georgina Natalia Díaz; Palacios, Sara María; Bocco, José Luis; Carpinella, María Cecilia

    2015-01-01

    The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2′,4′-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4′-dihydroxy-3′-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1–5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6–9.9 μM) and a lower effect against CML cells (IC50 = 27.5–30.0 μM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound. PMID:26819623

  15. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis.

    PubMed

    Joray, Mariana Belén; Trucco, Lucas Daniel; González, María Laura; Napal, Georgina Natalia Díaz; Palacios, Sara María; Bocco, José Luis; Carpinella, María Cecilia

    2015-01-01

    The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2',4'-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4'-dihydroxy-3'-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1-5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6-9.9 μM) and a lower effect against CML cells (IC50 = 27.5-30.0 μM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound. PMID:26819623

  16. Screening for antiviral activities of isolated compounds from essential oils.

    PubMed

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60-80% and sesquiterpenes suppressed herpes virus infection by 40-98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV. PMID:20008902

  17. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    PubMed Central

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV. PMID:20008902

  18. Potential antidiabetic and antioxidant activities of Morus indica and Asystasia gangetica in alloxan-induced diabetes mellitus

    PubMed Central

    Kumar, R Pradeep; Sujatha, D; Saleem, TS Mohamed; Chetty, C Madhusudhana; Ranganayakulu, D

    2010-01-01

    Herbal drugs are frequently considered to be less toxic and also free from side effects, than synthetic ones. Hence, the present study was designed to investigate one such combination of herbal drugs, Asystasia gangetica and Morus indica for their antidiabetic and antioxidant potential against alloxan-induced diabetes in albino rats. The effect of both individual and a combination of Asystasia gangetica and Morus indica on blood glucose and liver glycogen were studied in the diabetic rats. The study also assessed for the effect of selected plant extracts for their effect on Superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and Lipid peroxidation (LPO) in the homogenates of the pancreas. The results of the present study attests significant antidiabetic and antioxidant potential for the selected plants individually and also in combination as a prominent decrease in blood glucose and liver glycogen was observed in the rats treated with the extracts of the selected plants. Similarly, the levels of the protective antioxidant enzymes like SOD, CAT and GSH were increased along with decrease in the LPO levels. The present study provides a scientific evidence for antidiabetic and antioxidant potential of Asystasia gangetica and Morus indica. Further studies to isolate bioactive compounds will pave the way to identify potential lead compounds for developing safe and efficacious antidiabetic agents.

  19. In vitro antidiabetic potential of the fruits of Crataegus pinnatifida

    PubMed Central

    Chowdhury, S.S.; Islam, M.N.; Jung, H.A.; Choi, J.S.

    2014-01-01

    In an attempt to develop alternative medicine for the treatment of diabetes and related complications, the antidiabetic potential of the fruits of Crataegus pinnatifida was evaluated. The antidiabetic potential of the methanol (MeOH) extract as well as different solvent soluble fractions of the fruits of C. pinnatifida was evaluated via α-glucosidase, protein tyrosine phosphatase 1B (PTP1B), rat lens aldose reductase (RLAR), and advanced glycation end products (AGEs) formation inhibitory assays. The MeOH extract showed potent inhibitory activity against α-glucosidase, PTP1B, and AGEs formation with IC50 values of 122.11, 3.66 and 65.83 μg/ml respectively, while it showed moderate inhibitory activity against RLAR with the IC50 value of 160.54 μg/ml. Among different fractions, the ethyl acetate (EtOAc) and the dichloromethane (CH2Cl2) fractions were found as active fractions exhibiting potential α-glucosidase, PTP1B, RLAR inhibitory, and AGEs formation inhibitory activities. Seven compounds including hyperoside, chlorogenic acid, ursolic acid, oleanolic acid, 3-epicorosolic acid, β-sitosterol, β-sitosterol glucoside were isolated from these two fractions. 3-Epicorosolic acid showed both potent α-glucosidase and PTP1B inhibitory activities with IC50 values of 30.18 and 4.08 μg/ml respectively. Moreover, kinetic study revealed that 3-epicorosolic acid showed mixed type inhibition against PTP1B, while it showed uncompetitive inhibition against α-glucosidase. Therefore, these results suggest that the fruits of C. pinnatifida and its constituents have potential antidiabetic activity which might be used as a functional food for the treatment of diabetes and associated complications. PMID:25598795

  20. Isolation of the anthropogenic compound fluoranthene in a screening of Chinese medicinal plants for antiviral compounds.

    PubMed

    Yip, L; Hudson, J B; Towers, G H

    1995-04-01

    Thirty-one species of medicinal plants used in the treatment of diseases of viral origin in Yunnan Province of China were assayed for inhibition of Sindbis and murine cytomegalovirus in mammalian cell cultures. Sixteen species displayed antiviral activity. A compound, which exhibited long wavelength UV-mediated antiviral activity, was isolated from leaves and twigs of Elsholtzia ciliata (Lamiaceae) using bioassay-guided fractionation and identified as the polycyclic aromatic hydrocarbon, fluoranthene. The discovery of an anthropogenic photosensitizer with antiviral activity in a plant has implications in studies of plants as sources of bioactive constituents. PMID:7753931

  1. Bioactivity-guided isolation of antiproliferative compounds from Centaurea arenaria.

    PubMed

    Csapi, Bence; Hajdú, Zsuzsanna; Zupkó, István; Berényi, Agnes; Forgo, Peter; Szabó, Pál; Hohmann, Judit

    2010-11-01

    The antiproliferative effects of n-hexane, chloroform and aqueous methanol extracts prepared from the whole plant of Centaurea arenaria M.B. ex Willd. were investigated against cervix adenocarcinoma (HeLa), breast adenocarcinoma (MCF7) and skin epidermoid carcinoma (A431) cells, using the MTT assay. The chloroform extract displayed high tumour cell proliferation inhibitory activity (higher than 85% at 10 μg/mL concentration), and was therefore subjected to a bioassay-guided multistep separation procedure. Flavonoids (eupatilin, eupatorin, 3'-methyleupatorin, apigenin and isokaempferid), lignans (arctigenin, arctiin and matairesinol), the sesquiterpene cnicin, serotonin conjugates (moschamine and cis-moschamine), β-amyrin and β-sitosterin-β-D-glycopyranoside, identified by means of UV, MS and NMR spectroscopy, were obtained for the first time from this species. The isolated compounds were also evaluated for their tumour cell growth inhibitory activities on HeLa, MCF7 and A431 cells, and different types of secondary metabolites were found to be responsible for the antitumour effects of the extracts; in addition to moderately active compounds (isokaempferid and moschamine), especially apigenin, eupatorin, arctigenin, arctiin, matairesinol and cnicin exert marked antitumour effects against these cell lines. PMID:21031625

  2. Synthesis and Antidiabetic Evaluation of Benzenesulfonamide Derivatives

    PubMed Central

    Hosseinzadeh, Nouraddin; Seraj, Soodeh; Bakhshi-Dezffoli, Mohamad Ebrahim; Hasani, Mohammad; Khoshneviszadeh, Mehdi; Fallah-Bonekohal, Saeed; Abdollahi, Mohammad; Foroumadi, Alireza; Shafiee, Abbas

    2013-01-01

    The complex metabolic syndrome, diabetes mellitus, is a major human health concern in the world and is estimated to affect 300 million people by the year 2025. Several drugs such as sulfonylureas and biguanides are presently available to reduce hyperglycemia in diabetes mellitus. These drugs have side effects and thus searching for a new class of compounds is essential to overcome this problems. A series of seven novel N-(4-phenylthiazol-2-yl)benzenesulfonamides derivatives were synthesized and assayed in-vivo to investigate their antidiabetic activities by streptozotocin-induced model in rat. These derivatives showed considerable biological efficacy when compared to glibenclamide, a potent and well-known antidiabetic agent, as a reference drug. Four of the compounds were effective, amongst which 13 show more prominent activity at 100 mg/Kg p.o. The experimental results are statistically significant at p < 0.05 level. PMID:24250607

  3. Anion Gap Toxicity in Alloxan Induced Type 2 Diabetic Rats Treated with Antidiabetic Noncytotoxic Bioactive Compounds of Ethanolic Extract of Moringa oleifera

    PubMed Central

    2014-01-01

    Moringa oleifera (MO) is used for a number of therapeutic purposes. This raises the question of safety and possible toxicity. The objective of the study was to ascertain the safety and possible metabolic toxicity in comparison with metformin, a known drug associated with acidosis. Animals confirmed with diabetes were grouped into 2 groups. The control group only received oral dose of PBS while the test group was treated with ethanolic extract of MO orally twice daily for 5-6 days. Data showed that the extract significantly lowered glucose level to normal values and did not cause any significant cytotoxicity compared to the control group (P = 0.0698); there was no gain in weight between the MO treated and the control groups (P > 0.8115). However, data showed that treatment with an ethanolic extract of MO caused a decrease in bicarbonate (P < 0.0001), and more than twofold increase in anion gap (P < 0.0001); metformin treatment also decreased bicarbonate (P < 0.0001) and resulted in a threefold increase in anion gap (P < 0.0001). Conclusively, these data show that while MO appears to have antidiabetic and noncytotoxic properties, it is associated with statistically significant anion gap acidosis in alloxan induced type 2 diabetic rats. PMID:25548560

  4. Marine pharmacology in 2001–2002: Marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action

    PubMed Central

    Mayer, Alejandro M.S.; Hamann, Mark T.

    2016-01-01

    During 2001–2002, research on the pharmacology of marine chemicals continued to be global in nature involving investigators from Argentina, Australia, Brazil, Canada, China, Denmark, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Pakistan, the Philippines, Russia, Singapore, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Thailand, United Kingdom, and the United States. This current article, a sequel to the authors’ 1998, 1999 and 2000 marine pharmacology reviews, classifies 106 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria, on the basis of peer-reviewed preclinical pharmacology. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 56 marine chemicals. An additional 19 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as to possess anti-inflammatory and antidiabetic effects. Finally, 31 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2001–2002 pharmacological research with marine chemicals continued to contribute potentially novel chemical leads for the ongoing global search for therapeutic agents for the treatment of multiple disease categories. PMID:15919242

  5. Interaction between Human Serum Albumin and antidiabetic compounds and its influence on the O2((1)Δg)-mediated degradation of the protein.

    PubMed

    Challier, C; Beassoni, P; Boetsch, C; García, N A; Biasutti, M A; Criado, S

    2015-01-01

    The complexity depicted by disease scenarios as diabetes mellitus, constitutes a very interesting field of study when drugs and biologically relevant components may be affected by such environments. In this report, the interaction between the protein Human Serum Albumin (HSA) and two antidiabetics (Andb), Gliclazide (Gli) and Glipizide (Glip) was studied through fluorescence and docking assays, in order to characterize these systems. On the basis that HSA and Andb can be exposed in vivo at high Reactive Oxygen Species (ROS) concentrations in diabetic patients, the degradative process of the protein free and bound to Andb, in presence of the species singlet molecular oxygen (O2((1)Δg)), was evaluated. Fluorescence and docking assays indicated that Gli, as well as Glip bind to HSA on two sites, with binding constants values in the order of 10(4)-10(5)M(-1). Likewise, docking assays revealed that the location of Gli or Glip on the protein may be the HSA binding sites II and III. Thermodynamic parameters showed that the interaction between HSA and Glip is a favored, enthalpically-controlled process. Oxygen uptake experiments indicated that Glip is less photooxidizable than Gli through a O2((1)Δg)-mediated process. Besides, the protein-Andb binding produced a decrease in the overall rate constant for O2((1)Δg) quenching as compared to the value for the free protein. This fact could be interpreted in terms of a reduction in the availability of Tyrosine residues in the bonded protein, with a concomitant decrease in the physical quenching deactivation of the oxidative species. PMID:25490375

  6. Anti-diabetic Activity.

    PubMed

    2016-01-01

    The hyperglycaemia continues to be a major health problem in India and other developing countries. This imbalance of blood glucose causes serious health problems such as damages to the blood vessel, poor healing of wounds, retinal damage, renal damage--kidney failure. The in vitro enzyme models and evaluation of hypoglycaemic effect of sample on normal and glucose-loaded rats has been used as a prediction experiment in this chapter before going for anti-diabetic experiment using animal models. PMID:26939280

  7. Antidiabetic activity and chemical constituents of the aerial parts of Heracleum dissectum Ledeb.

    PubMed

    Zhang, Hailong; Su, Yaping; Wang, Xinrui; Mi, Jie; Huo, Yayu; Wang, Zhigang; Liu, Ying; Gao, Yang

    2017-01-01

    Heracleum dissectum Ledeb. has long been used as a wild edible vegetable by local people in China. The purpose of this study is to investigate the antidiabetic potential of aerial part of H. dissectum methanol extract (HdME) and the chemical constituents. Ten compounds including eight coumarins were isolated and four of them were found from H. dissectum for the first time. HdME potently inhibited the elevation of plasma glucose after its oral administration to glucose-loaded mice, and its petroleum ether (PE) fraction exerted the greatest inhibitory activities. Meanwhile, HdME (125 and 250mg/kg) also significantly decreased the blood glucose level in STZ-induced diabetic mice, but had no effect in normoglycemic mice. Additionally, HdME showed weak inhibitory effects on α-glucosidase activity and DPPH free radicals scavenging. In conclusion, HdME has antidiabetic action and PE fraction is the active part where coumarins possibly play an important role in antidiabetic activity. PMID:27507512

  8. A method of isolating organic compounds present in water

    NASA Technical Reports Server (NTRS)

    Calder, G. V.; Fritz, J.; Junk, G. A.

    1972-01-01

    Water sample is passed through a column containing macroreticular resin, which absorbs only nonionic organic compounds. These compounds are selectively separated using aqueous eluents of varying pH, or completely exuded with small amount of an organic eluent.

  9. Effect of stevia and citric acid on the stability of phenolic compounds and in vitro antioxidant and antidiabetic capacity of a roselle (Hibiscus sabdariffa L.) beverage.

    PubMed

    Pérez-Ramírez, Iza F; Castaño-Tostado, Eduardo; Ramírez-de León, José A; Rocha-Guzmán, Nuria E; Reynoso-Camacho, Rosalía

    2015-04-01

    Plant infusions are consumed due to their beneficial effects on health, which is attributed to their bioactive compounds content. However, these compounds are susceptible to degradation during processing and storage. The objective of this research was to evaluate the effect of stevia and citric acid on the stability of phenolic compounds, antioxidant capacity and carbohydrate-hydrolysing enzyme inhibitory activity of roselle beverages during storage. The optimum extraction conditions of roselle polyphenolic compounds was of 95 °C/60 min, which was obtained by a second order experimental design. The incorporation of stevia increased the stability of colour and some polyphenols, such as quercetin, gallic acid and rosmarinic acid, during storage. In addition, stevia decreased the loss of ABTS, DPPH scavenging activity and α-amylase inhibitory capacity, whereas the incorporation of citric acid showed no effect. These results may contribute to the improvement of technological processes for the elaboration of hypocaloric and functional beverages. PMID:25442634

  10. Isolation of bioactive biphenyl compounds from the twigs of Chaenomeles sinensis.

    PubMed

    Kim, Chung Sub; Subedi, Lalita; Kwon, Oh Kil; Kim, Sun Yeou; Yeo, Eui-Ju; Choi, Sang Un; Lee, Kang Ro

    2016-01-15

    Investigation of the MeOH extract of Chaenomeles sinensis twigs resulted in the isolation of seven biphenyl compounds (1-7) including a new compound, chaenomin (1). The chemical structures of the isolated compounds were elucidated by extensive NMR data ((1)H and (13)C NMR, (1)H-(1)H COSY, HSQC and HMBC), specific optical rotation, and chemical reaction. Compounds 2 and 6 showed potent cytotoxic activities against four cancer cell lines (A549, SK-OV-3, SK-MEL-2, and HCT15), and compound 7 exhibited potent anti-neuroinflammatory and NGF-potentiating activity. PMID:26706168

  11. Effectively designed molecularly imprinted polymers for selective isolation of the antidiabetic drug metformin and its transformation product guanylurea from aqueous media.

    PubMed

    Kyzas, George Z; Nanaki, Stavroula G; Koltsakidou, Anastasia; Papageorgiou, Myrsini; Kechagia, Maria; Bikiaris, Dimitrios N; Lambropoulou, Dimitra A

    2015-03-25

    In the present study, two novel molecularly imprinted polymers (MIPs) with remarkable recognition properties for metformin and its transformation product, guanylurea, have been prepared for their selective, enrichment, isolation and removal from aqueous media. The prepared adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and swelling experiments. The performance of the prepared MIPs was evaluated by various parameters including the influence of pH, contact time, temperature and initial compound concentration. The effects on the adsorption behavior of the removal process parameters were studied and the equilibrium data were fitted by the Langmuir and Freundlich models. Due to the imprinting effect, adsorption performance of MIPs was always superior to its corresponding NIP (non-imprinted polymer), with maximum adsorption capacity ∼80 mg g(-1) for both MIPs. Stability and reusability of the MIPs up to the 5th cycle meant that they could be applied repeatedly without losing substantial removal ability. In the next step, the prepared MIP nanoparticles were evaluated as sorbents in a dispersive solid phase extraction (D-SPE) configuration for selective enrichment and determination of metformin and guanylurea in different aqueous matrices. Under the working extraction conditions, the D-SPE method showed good linearity in the range of 50-1000 ng L(-1), repeatability of the extractions (RSD 2.1-5.1%, n=3), and low limits of detection (1.5-3.4 ng L(-1)). The expanded uncertainty of the data obtained was estimated following a bottom-up approach. The proposed method combined the advantages of MIPs and D-SPE, and it could become an alternative tool for analyzing the residues of METF and its transformation product GUA in complex water matrices, such as wastewaters. PMID:25732690

  12. Bioactivity guided isolation of antimicrobial compounds from Lythrum salicaria.

    PubMed

    Becker, Hans; Scher, Jochen M; Speakman, John-Bryan; Zapp, Josef

    2005-09-01

    Lythrum salicaria extracts showed activity against the phytopathogenic fungus Cladosporium cucumerinum and activity against the bacteria Staphylococcus aureus, Proteus mirabilis and Microccocus luteus. Bioautography on thin-layer chromatograms was used to isolate the two antifungal triterpenoids oleanolic and ursolic acid. The hexahydroxydiphenoyl ester vescalagin was isolated as active principle of the antibacterial activity. Furthermore, the flavon-C-glucosides vitexin, isovitexin, orientin and isoorientin were isolated. PMID:15975734

  13. [Cardiovascular safety of antidiabetics].

    PubMed

    Aline Roth, Pressl-Wenger; Jornayvaz, François R

    2016-06-01

    Type 2 diabetes is characterized by a high risk of micro- and macro-vascular complications. Cardiovascular diseases are the leading cause of death of diabetic patients. In this context, the search for molecules decreasing cardiovascular mortality makes sense. Until the EMPA-REG OUTCOME study published late 2015, showing a reduction of cardiovascular mortality of patients treated with empagliflozin, an SGLT2 inhibitor, there was no molecule known to decrease cardiovascular mortality. The purpose of this article is to review the various existing antidiabetic molecules and their impact (positive/neutral/negative) on cardiovascular mortality. PMID:27487675

  14. Antidiabetic medications and polypharmacy.

    PubMed

    Peron, Emily P; Ogbonna, Kelechi C; Donohoe, Krista L

    2015-02-01

    Polypharmacy, or the use of multiple medications, is a serious concern for providers who care for older adults, as polypharmacy is associated with medication nonadherence, drug-drug interactions, drug-disease interactions, and adverse drug events. Multiple medications, high chronic disease burden, and age-related physiologic changes make management of older adults with diabetes increasingly difficult. Given high medication burden and potential for increased medication sensitivity in this patient population, it is prudent that providers are aware of potential risks and benefits of antidiabetic medications and implement shared decision-making practices to ensure appropriate care for older adults with diabetes. PMID:25453298

  15. High-Resolution α-Glucosidase Inhibition Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of Antidiabetic Compounds in Eremanthus crotonoides (Asteraceae).

    PubMed

    Silva, Eder Lana E; Lobo, Jonathas Felipe Revoredo; Vinther, Joachim Møllesøe; Borges, Ricardo Moreira; Staerk, Dan

    2016-01-01

    α-Glucosidase inhibitors decrease the cleavage- and absorption rate of monosaccharides from complex dietary carbohydrates, and represent therefore an important class of drugs for management of type 2 diabetes. In this study, a defatted ethyl acetate extract of Eremanthus crotonoides leaves with an inhibitory concentration (IC50) of 34.5 μg/mL towards α-glucosidase was investigated by high-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR. This led to identification of six α-glucosidase inhibitors, namely quercetin (16), trans-tiliroside (17), luteolin (19), quercetin-3-methyl ether (20), 3,5-di-O-caffeoylquinic acid n-butyl ester (26) and 4,5-di-O-caffeoylquinic acid n-butyl ester (29). In addition, nineteen other metabolites were identified. The most active compounds were the two regioisomeric di-O-caffeoylquinic acid derivatives 26 and 29, with IC50 values of 5.93 and 5.20 μM, respectively. This is the first report of the α-glucosidase inhibitory activity of compounds 20, 26, and 29, and the findings support the important role of Eremanthus species as novel sources of new drugs and/or herbal remedies for treatment of type 2 diabetes. PMID:27322221

  16. An overview on antidiabetic medicinal plants having insulin mimetic property

    PubMed Central

    Patel, DK; Prasad, SK; Kumar, R; Hemalatha, S

    2012-01-01

    Diabetes mellitus is one of the common metabolic disorders acquiring around 2.8% of the world's population and is anticipated to cross 5.4% by the year 2025. Since long back herbal medicines have been the highly esteemed source of medicine therefore, they have become a growing part of modern, high-tech medicine. In view of the above aspects the present review provides profiles of plants (65 species) with hypoglycaemic properties, available through literature source from various database with proper categorization according to the parts used, mode of reduction in blood glucose (insulinomimetic or insulin secretagogues activity) and active phytoconstituents having insulin mimetics activity. From the review it was suggested that, plant showing hypoglycemic potential mainly belongs to the family Leguminoseae, Lamiaceae, Liliaceae, Cucurbitaceae, Asteraceae, Moraceae, Rosaceae and Araliaceae. The most active plants are Allium sativum, Gymnema sylvestre, Citrullus colocynthis, Trigonella foenum greacum, Momordica charantia and Ficus bengalensis. The review describes some new bioactive drugs and isolated compounds from plants such as roseoside, epigallocatechin gallate, beta-pyrazol-1-ylalanine, cinchonain Ib, leucocyandin 3-O-beta-d-galactosyl cellobioside, leucopelargonidin-3- O-alpha-L rhamnoside, glycyrrhetinic acid, dehydrotrametenolic acid, strictinin, isostrictinin, pedunculagin, epicatechin and christinin-A showing significant insulinomimetic and antidiabetic activity with more efficacy than conventional hypoglycaemic agents. Thus, from the review majorly, the antidiabetic activity of medicinal plants is attributed to the presence of polyphenols, flavonoids, terpenoids, coumarins and other constituents which show reduction in blood glucose levels. The review also discusses the management aspect of diabetes mellitus using these plants and their active principles. PMID:23569923

  17. An overview on antidiabetic medicinal plants having insulin mimetic property.

    PubMed

    Patel, D K; Prasad, S K; Kumar, R; Hemalatha, S

    2012-04-01

    Diabetes mellitus is one of the common metabolic disorders acquiring around 2.8% of the world's population and is anticipated to cross 5.4% by the year 2025. Since long back herbal medicines have been the highly esteemed source of medicine therefore, they have become a growing part of modern, high-tech medicine. In view of the above aspects the present review provides profiles of plants (65 species) with hypoglycaemic properties, available through literature source from various database with proper categorization according to the parts used, mode of reduction in blood glucose (insulinomimetic or insulin secretagogues activity) and active phytoconstituents having insulin mimetics activity. From the review it was suggested that, plant showing hypoglycemic potential mainly belongs to the family Leguminoseae, Lamiaceae, Liliaceae, Cucurbitaceae, Asteraceae, Moraceae, Rosaceae and Araliaceae. The most active plants are Allium sativum, Gymnema sylvestre, Citrullus colocynthis, Trigonella foenum greacum, Momordica charantia and Ficus bengalensis. The review describes some new bioactive drugs and isolated compounds from plants such as roseoside, epigallocatechin gallate, beta-pyrazol-1-ylalanine, cinchonain Ib, leucocyandin 3-O-beta-d-galactosyl cellobioside, leucopelargonidin-3- O-alpha-L rhamnoside, glycyrrhetinic acid, dehydrotrametenolic acid, strictinin, isostrictinin, pedunculagin, epicatechin and christinin-A showing significant insulinomimetic and antidiabetic activity with more efficacy than conventional hypoglycaemic agents. Thus, from the review majorly, the antidiabetic activity of medicinal plants is attributed to the presence of polyphenols, flavonoids, terpenoids, coumarins and other constituents which show reduction in blood glucose levels. The review also discusses the management aspect of diabetes mellitus using these plants and their active principles. PMID:23569923

  18. Isolation, identification, and quantification of roasted coffee antibacterial compounds.

    PubMed

    Daglia, Maria; Papetti, Adele; Grisoli, Pietro; Aceti, Camilla; Spini, Valentina; Dacarro, Cesare; Gazzani, Gabriella

    2007-12-12

    Coffee brew is a widely consumed beverage with multiple biological activities due both to naturally occurring components and to the hundreds of chemicals that are formed during the roasting process. Roasted coffee extract possesses antibacterial activity against a wide range of microorganisms, including Staphylococcus aureus and Streptococcus mutans, whereas green coffee extract exhibits no such activity. The naturally occurring coffee compounds, such as chlorogenic acids and caffeine, cannot therefore be responsible for the significant antibacterial activity exerted by coffee beverages against both bacteria. The very low minimum inhibitory concentration (MIC) found for standard glyoxal, methylglyoxal, and diacetyl compounds formed during the roasting process points to these alpha-dicarbonyl compounds as the main agents responsible for the antibacterial activity of brewed coffee against Sa. aureus and St. mutans. However, their low concentrations determined in the beverage account for only 50% of its antibacterial activity. The addition of caffeine, which has weak intrinsic antibacterial activity, to a mixture of alpha-dicarbonyl compounds at the concentrations found in coffee demonstrated that caffeine synergistically enhances the antibacterial activity of alpha-dicarbonyl compounds and that glyoxal, methylglyoxal, and diacetyl in the presence of caffeine account for the whole antibacterial activity of roasted coffee. PMID:18001036

  19. A Quantum Chemical and Statistical Study of Cytotoxic Activity of Compounds Isolated from Curcuma zedoaria.

    PubMed

    Hamdi, Omer Abdalla Ahmed; Anouar, El Hassane; Shilpi, Jamil A; Trabolsy, Zuhra Bashir Khalifa Al; Zain, Sharifuddin Bin Md; Zakaria, Nur Shahidatul Shida; Zulkefeli, Mohd; Weber, Jean-Frédéric F; Malek, Sri Nurestri A; Rahman, Syarifah Nur Syed Abdul; Awang, Khalijah

    2015-01-01

    A series of 21 compounds isolated from Curcuma zedoaria was subjected to cytotoxicity test against MCF7; Ca Ski; PC3 and HT-29 cancer cell lines; and a normal HUVEC cell line. To rationalize the structure-activity relationships of the isolated compounds; a set of electronic; steric and hydrophobic descriptors were calculated using density functional theory (DFT) method. Statistical analyses were carried out using simple and multiple linear regressions (SLR; MLR); principal component analysis (PCA); and hierarchical cluster analysis (HCA). SLR analyses showed that the cytotoxicity of the isolated compounds against a given cell line depend on certain descriptors; and the corresponding correlation coefficients (R2) vary from 0%-55%. MLR results revealed that the best models can be achieved with a limited number of specific descriptors applicable for compounds having a similar basic skeleton. Based on PCA; HCA and MLR analyses; active compounds were classified into subgroups; which was in agreement with the cell based cytotoxicity assay. PMID:25923077

  20. Isolation and identification of active compounds from Drimys winteri barks.

    PubMed

    Cechinel Filho, V; Schlemper, V; Santos, A R; Pinheiro, T R; Yunes, R A; Mendes, G L; Calixto, J B; Delle Monache, F

    1998-10-01

    The barks of Drimys winteri are used in folk medicine as a remedy to treat several diseases, including dolorous processes. Previous pre-clinical experiments carried out in our laboratories revealed that the hydroalcoholic extract of this plant showed anti-allergenic, anti-inflammatory and antinociceptive properties. Such promising results led us to determine the analgesic compounds present in D. winteri. Through conventional chromatographic procedures with fractions of CH2Cl2 and EtOAc obtained from methanolic extract, it was found that polygodial (1), 1-beta-(p-methoxycynnamyl) polygodial (2), taxifolin (3) and astilbin (4), are the main components of these fractions. Compounds 1 and 2 exhibited marked antinociceptive action by intraperitoneal and oral routes against acetic acid-induced abdominal constrictions in mice, suggesting that they are responsible, at least partially, for the antinociceptive effects of this plant. In addition, both compounds were notably more potent than aspirin and acetaminophen, two well-known drugs used here as comparison. PMID:9849632

  1. Bioassay-guided isolation and identification of antioxidative compounds from the bark of Eugenia polyantha.

    PubMed

    Lelono, Raden Arthur Ario; Tachibana, Sanro

    2013-08-15

    Eugenia polyantha bark extracts were found to have potential antioxidative activities. This study is an effort to investigate the antioxidative compounds in E. polyantha. In vitro antioxidatve assay were used as guided tools for the isolation of antioxidative compounds. The methanol-water extracts showed the highest level of free radical-scavenging activity (ED50) = 180 microg mL(-1) and protection from beta-carotene bleaching (8.7 microg mL(-1)). The methanol-water (1:1) extracts exhibited strong DPPH scavenging activity and protection against beta carotene bleaching and was subjected to repeated silica gel column chromatography. The n-butanol, acetone and ethyl acetate solubles exhibited the highest antioxidative activities, derivatization was conducted to the isolated antioxidative compounds prior to identification. Catechin, gallic acid and rutin were isolated from those solubles as active compounds present in the Eugenia polyantha bark. PMID:24498834

  2. Antidiabetic Effect of Schisandrae Chinensis Fructus Involves Inhibition of the Sodium Glucose Cotransporter.

    PubMed

    Qu, Yue; Chan, Judy Yuet-Wa; Wong, Chun-Wai; Cheng, Ling; Xu, Chuanshan; Leung, Albert Wing-Nang; Lau, Clara Bik-San

    2014-11-18

    Preclinical Research Schisandrae Chinensis Fructus (SCF), the fruit of Schisandra chinensis (Turcz.) Baill. (family Schisandraceae) is traditionally used as a tonic and antidiabetic agent in Asia. In this study, SCF was investigated for its effects on sodium glucose cotransporters 1 and 2 (SGLT 1 and 2) expressed in a COS-7 cell line for its specificity in inhibiting SGLT2, which is a novel mechanism to screen for potential antidiabetic agents. Using a bioassay-guided fractionation, we then tried to isolate and identify the active fraction(s)/component(s). The ethanol extract of SCF at a concentration of 1 mg/mL significantly inhibited 89% of SGLT1 and 73% of SGLT2 activities in a [(14) C]-α-methyl-d-glucopyranoside ([(14) C]-AMG) uptake assay. Fractionation of the ethanol extract yielded nine fractions, of which F8, at a concentration of 1 mg/mL, was specific in inhibiting SGLT 2 (42% inhibition, P < 0.001), without inhibiting SGLT 1. Using LC/MS-MS, three compounds, deoxyschisandrin, schisandrin B (γ-schisandrin) and schisandrin were identified in F8 and their amounts quantified. However, subsequent evaluation in the [(14) C]-AMG uptake assay showed that these three compounds failed to inhibit SGLT 2 activity indicating that the SGLT active component(s) from SCF have yet to be identified. PMID:25407144

  3. Characterization of a fluorescent compound isolated from Legionella pneumophila

    SciTech Connect

    Swanson, S.J.

    1987-01-01

    Legionella pneumophila requires the presence of amino acids for growth and utilizes them for energy. Along with other amino acids, either phenylalanine or tyrosine is essential for the growth of the organism and tyrosine has been identified as an energy source. When L. pneumophila is grown in the presence of tyrosine, a brown melanin-like pigment is produced. A green fluorescent pigment, fg2, was isolated from centrifuged culture fluid after the organism was grown in the presence of tyrosine. Fg2 is water soluble with a molecular weight of 152 as determined by mass spectral analysis. A mutant of L. pneumophila unable to produce fg2 was isolated to assist in elucidation of the biosynthesis of fg2. Radiolabeling experiments were utilized to conclude that neither tyrosine nor any other amino acid was a precursor in the biosynthesis of fg2. Shikimic acid, an intermediate in tyrosine biosynthesis, was found to also be an intermediate in the biosynthesis of fg2. A series of experiments in which L. pneumophila was grown in a chemically defined medium containing various combinations of aromatic amino acids determined that fg2 and the brown pigment always occur in tandem.

  4. Anti-Diabetic and Hepato-Renal Protective Effects of Ziyuglycoside II Methyl Ester in Type 2 Diabetic Mice

    PubMed Central

    Son, Dong Ju; Hwang, Seock Yeon; Kim, Myung-Hyun; Park, Un Kyu; Kim, Byoung Soo

    2015-01-01

    Type 2 diabetes is a metabolic disorder caused by abnormal carbohydrate metabolism, and closely associated with abnormal lipid metabolism and hepato-renal dysfunction. This study investigated the anti-diabetic and hepato-renal protective properties of ziyuglycoside I (ZG01) derivative on type 2 diabetes. ZG01 was isolated from roots of Sanguisorba officinalis and chemically modified by deglycosylation and esterification to obtained ziyuglycoside II methyl ester (ZG02-ME). Here, we showed that ZG02-ME has stronger anti-diabetic activity than the original compound (ZG01) through decreasing blood glucose, glycated hemoglobin (HbA1c), and insulin levels in a mouse model of type 2 diabetes (db/db mice). We further found that ZG02-ME treatment effectively ameliorated serum insulin, leptin and C-peptide levels, which are key metabolic hormones, in db/db mice. In addition, we showed that elevated basal blood lipid levels were decreased by ZG02-ME treatment in db/db mice. Furthermore, treatment of ZG02-ME significantly decreased serum AST, ALT, BUN, creatinine, and liver lipid peroxidation in db/db mice. These results demonstrated that compared to ZG01, chemically modified ZG02-ME possess improved anti-diabetic properties, and has hepato-renal protective activities in type 2 diabetes. PMID:26198246

  5. Anti-Diabetic and Hepato-Renal Protective Effects of Ziyuglycoside II Methyl Ester in Type 2 Diabetic Mice.

    PubMed

    Son, Dong Ju; Hwang, Seock Yeon; Kim, Myung-Hyun; Park, Un Kyu; Kim, Byoung Soo

    2015-07-01

    Type 2 diabetes is a metabolic disorder caused by abnormal carbohydrate metabolism, and closely associated with abnormal lipid metabolism and hepato-renal dysfunction. This study investigated the anti-diabetic and hepato-renal protective properties of ziyuglycoside I (ZG01) derivative on type 2 diabetes. ZG01 was isolated from roots of Sanguisorba officinalis and chemically modified by deglycosylation and esterification to obtained ziyuglycoside II methyl ester (ZG02-ME). Here, we showed that ZG02-ME has stronger anti-diabetic activity than the original compound (ZG01) through decreasing blood glucose, glycated hemoglobin (HbA1c), and insulin levels in a mouse model of type 2 diabetes (db/db mice). We further found that ZG02-ME treatment effectively ameliorated serum insulin, leptin and C-peptide levels, which are key metabolic hormones, in db/db mice. In addition, we showed that elevated basal blood lipid levels were decreased by ZG02-ME treatment in db/db mice. Furthermore, treatment of ZG02-ME significantly decreased serum AST, ALT, BUN, creatinine, and liver lipid peroxidation in db/db mice. These results demonstrated that compared to ZG01, chemically modified ZG02-ME possess improved anti-diabetic properties, and has hepato-renal protective activities in type 2 diabetes. PMID:26198246

  6. Isolation and chemopreventive evaluation of novel naphthoquinone compounds from Alkanna tinctoria.

    PubMed

    Tung, Nguyen Huu; Du, Guang-Jian; Yuan, Chun-Su; Shoyama, Yukihiro; Wang, Chong-Zhi

    2013-11-01

    Botanically derived natural products have recently become an attractive source of new chemotherapeutic agents. To explore active anticolorectal cancer compounds, we carried out phytochemical studies on Alkanna tinctoria and isolated eight quinone compounds. Using different spectral methods, compounds were identified as alkannin (1), acetylalkannin (2), angelylalkannin (3), 5-methoxyangenylalkannin (4), dimethylacryl alkannin (5), arnebifuranone (6), alkanfuranol (7), and alkandiol (8). Compounds 4, 7, and 8 are novel compounds. The structures of the three novel compounds were elucidated on the basis of extensive spectroscopic evidence including high-resolution mass spectrometry and nuclear magnetic resonance spectra. The antiproliferative effects of these eight compounds on HCT-116 and SW-480 human colorectal cancer cells were determined using the MTS method. Cell cycle and apoptosis were determined using flow cytometry. Enzymatic activities of caspases were determined using a colorimetric assay, and interactions of compound 4 and caspase 9 were explored by docking analysis. Among the eight compounds, alkannin (1), angelylalkannin (3), and 5-methoxyangenylalkannin (4) showed strong antiproliferative effects, whereas compound 4 showed the most potent effects. Compound 4 arrested cancer cells in the S and G2/M phases, and significantly induced cell apoptosis. The apoptotic effects of compound 4 were supported by caspase assay and docking analysis. The structural-functional relationship assay suggested that to increase anticancer potential, future modifications on alkannin (1) should focus on the hydroxyl groups at C-5 and C-8. PMID:24025561

  7. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating

    SciTech Connect

    Eglinton, T.I.; Aluwihare, L.I.; McNichol, A.P.; Bauer, J.E.; Druffel, E.R.M.

    1996-03-01

    This paper describes the application of a novel, practical approach for isolation of individual compounds from complex organic matrices for natural abundance radiocarbon measurement. This is achieved through the use of automated pereparative capillary gas chromatography (PCGC) to separate and recover sufficient quantities of individual target compounds for {sup 14}C analysis by accelerator mass spectrometry (AMS). We developed and tested this approach using a suite of samples (plant lipids, petroleums) whose ages spanned the {sup 14}C time scale and which contained a variety of compound types (fatty acids, sterols, hydrocarbons). Comparison of individual compound and bulk radiocarbon signatures for the isotopically homogeneous samples studied revealed that {Delta}{sup 14}C values generally agreed well ({+-}10%). Background contamination was assessed at each stage of the isolation procedure, and incomplete solvent removal prior to combustion was the only significant source of additional carbon. Isotope fractionation was addressed through compound-specific stable carbon isotopic analyses. Fractionation of isotopes during isolation of individual compounds was minimal (<5% for {delta}{sup 13}C), provided the entire peak was collected during PCGC. Trapping of partially coeluting peaks did cause errors, and these results highlight the importance of conducting stable carbon isotopic measurements of each trapped compound in concert with AMS for reliable radiocarbon measurements. 29 refs., 9 figs., 2 tabs.

  8. Extraction, identification, fractionation and isolation of phenolic compounds in plants with hepatoprotective effects.

    PubMed

    Pereira, Carla; Barros, Lillian; Ferreira, Isabel C F R

    2016-03-15

    The liver is one of the most important organs of human body, being involved in several vital functions and regulation of physiological processes. Given its pivotal role in the excretion of waste metabolites and drugs detoxification, the liver is often subjected to oxidative stress that leads to lipid peroxidation and severe cellular damage. The conventional treatments of liver diseases such as cirrhosis, fatty liver and chronic hepatitis are frequently inadequate due to side effects caused by hepatotoxic chemical drugs. To overcome this problematic paradox, medicinal plants, owing to their natural richness in phenolic compounds, have been intensively exploited concerning their extracts and fraction composition in order to find bioactive compounds that could be isolated and applied in the treatment of liver ailments. The present review aimed to collect the main results of recent studies carried out in this field and systematize the information for a better understanding of the hepatoprotective capacity of medicinal plants in in vitro and in vivo systems. Generally, the assessed plant extracts revealed good hepatoprotective properties, justifying the fractionation and further isolation of phenolic compounds from different parts of the plant. Twenty-five phenolic compounds, including flavonoids, lignan compounds, phenolic acids and other phenolic compounds, have been isolated and identified, and proved to be effective in the prevention and/or treatment of chemically induced liver damage. In this perspective, the use of medicinal plant extracts, fractions and phenolic compounds seems to be a promising strategy to avoid side effects caused by hepatotoxic chemicals. PMID:26333346

  9. Characterization of bovine viral diarrhea virus isolates resistant to a novel antiviral compound obtained from persistently infected calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to characterize isolates resistant to a novel antiviral compound (DB772) isolated from persistently infected (PI) calves treated with the compound. Viral isolates were obtained from four Angus-cross beef calves (A,B,C,D) persistently infected with BVDV type 1 or 2 ...

  10. Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer

    PubMed Central

    Talero, Elena; García-Mauriño, Sofía; Ávila-Román, Javier; Rodríguez-Luna, Azahara; Alcaide, Antonio; Motilva, Virginia

    2015-01-01

    The risk of onset of cancer is influenced by poorly controlled chronic inflammatory processes. Inflammatory diseases related to cancer development include inflammatory bowel disease, which can lead to colon cancer, or actinic keratosis, associated with chronic exposure to ultraviolet light, which can progress to squamous cell carcinoma. Chronic inflammatory states expose these patients to a number of signals with tumorigenic effects, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) activation, pro-inflammatory cytokines and prostaglandins release and ROS production. In addition, the participation of inflammasomes, autophagy and sirtuins has been demonstrated in pathological processes such as inflammation and cancer. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon and skin cancer chemopreventive properties of substances from marine environment, including microalgae species and their products (carotenoids, fatty acids, glycolipids, polysaccharides and proteins). This review summarizes the main mechanisms of actions of these compounds in the chemoprevention of these cancers. These actions include suppression of cell proliferation, induction of apoptosis, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity. PMID:26437418

  11. Isolation and identification of antimicrobial compound from Mentha longifolia L. leaves grown wild in Iraq

    PubMed Central

    Al-Bayati, Firas A

    2009-01-01

    Background Mentha longifolia L. (Lamiaceae) leaves have been traditionally implemented in the treatment of minor sore throat and minor mouth or throat irritation by the indigenous people of Iraq, although the compounds responsible for the medicinal properties have not been identified. In the present study, an antimicrobial compound was isolated and characterized, and its biological activity was assessed. Methods The compound was isolated and characterized from the extracted essential oil using different spectral techniques: TLC, FTIR spectra and HPLC. Antimicrobial activity of the compound was assessed using both disc diffusion and microdilution method in 96 multi-well microtiter plates. Results A known compound was isolated from the essential oil of the plant and was identified as (-) menthol. The isolated compound was investigated for its antimicrobial activity against seven selected pathogenic and non-pathogenic microorganisms: Staphylococcus aureus, Streptococcus mutans, Streptococcus faecalis, Streptococcus pyogenis, Lactobacillus acidophilus, Pseudomonas aeruginosa and the yeast Candida albicans. Menthol at different concentrations (1:1, 1:5, 1:10, 1:20) was active against all tested bacteria except for P. aeruginosa, and the highest inhibitory effect was observed against S. mutans (zone of inhibition: 25.3 mm) using the disc diffusion method. Minimal inhibitory concentration MIC values ranged from 15.6–125.0 μg/ml, and the most promising results were observed against S. aureus and S. mutans (MIC 15.6 μg/ml) while, S. faecalis, S. pyogenis and L. acidophilus ranked next (MIC 31.2 μg/ml). Furthermore, menthol achieved considerable antifungal activity against the yeast C. albicans (zone of inhibition range: 7.1–18.5 mm; MIC: 125.0). Conclusion The isolation of an antimicrobial compound from M. longifolia leaves validates the use of this plant in the treatment of minor sore throat and minor mouth or throat irritation. PMID:19523224

  12. Bio-assay Guided Isolation of Anti-cancer Compounds from Anthocephalus cadamba Bark.

    PubMed

    Kumar, Deepak; Tejaswi, Chilukuri; Rasamalla, Saiprasanna; Mallick, Sumana; Pala, Bikas C

    2015-08-01

    Anthocephalus cadamba, an important plant in the traditional system of medicine in India, is reported to possess anticancer activity. Guided by bio-assay tests using human colorectal (HCT116) and hepatocellular carcinoma (HepG2) cell lines, it has been shown to contain three active constituents, the triterpenoid saponins 3-O-[α-L-rhamnopyranosyl]-quinovic acid (1) and 3-O-[α-L-rhamnopyranosyl]-quinovic acid 28-O-[β-D-glucopyranosyl] ester (2), and the alkaloid cadambine (3). The structures of the isolated compounds were established using spectroscopic techniques. The isolated compounds demonstrated concentration dependent inhibition of both the cell lines, where compound 3 proved to be the most potent inhibitor of cell line HCT116 (IC50 45 +/- 4 μg/mL) and compound 2 demonstrated maximum inhibitory activity against HepG2 cell line with an IC50 value of 89 +/- 7 μg/mL. PMID:26434112

  13. Newer antidiabetic drugs in Ramadan.

    PubMed

    Bajaj, Sarita

    2015-05-01

    The management of diabetes in the month of Ramadan can be very challenging. On one hand there is the issue of fasting associated hypoglycaemia, and on the other, fasting as well as post prandial hyperglycaemia. Under such circumstances, a planned regimen needs to be followed to keep the blood glucose levels under control. The same oral antidiabetic agents that were used prior to the fast are used during Ramadan with modification in dosage and timing. With the advent of newer anti-diabetic agents, there is a good scope for better control and reduced complications. PMID:26013784

  14. HYPOGLYCEMIA INDUCED BY ANTIDIABETIC SULFONYLUREAS.

    PubMed

    Confederat, Luminiţa; Constantin, Sandra; Lupaşcu, Florentina; Pânzariu, Andreea; Hăncianu, Monica; Profire, Lenuţa

    2015-01-01

    Diabetes mellitus is a major health problem due to its increasing prevalence and life-threatening complications. Antidiabetic sulfonylureas represent the first-line drugs in type 2 diabetes even though the most common associated risk is pharmacologically-induced hypoglycemia. In the development of this side effect are involved several factors including the pharmacokinetic and pharmacodynamic profile of the drug, patient age and behavior, hepatic or renal dysfunctions, or other drugs associated with a high risk of interactions. If all these are controlled, the risk-benefit balance can be equal to other oral antidiabetic drugs. PMID:26204670

  15. Natural compounds isolated from Brazilian plants are potent inhibitors of hepatitis C virus replication in vitro

    PubMed Central

    Jardim, A.C.G.; Igloi, Z.; Shimizu, J.F.; Santos, V.A.F.F.M.; Felippe, L.G.; Mazzeu, B.F.; Amako, Y.; Furlan, M.; Harris, M.; Rahal, P.

    2015-01-01

    Compounds extracted from plants can provide an alternative approach to new therapies. They present characteristics such as high chemical diversity, lower cost of production and milder or inexistent side effects compared with conventional treatment. The Brazilian flora represents a vast, largely untapped, resource of potential antiviral compounds. In this study, we investigate the antiviral effects of a panel of natural compounds isolated from Brazilian plants species on hepatitis C virus (HCV) genome replication. To do this we used firefly luciferase-based HCV sub-genomic replicons of genotypes 2a (JFH-1), 1b and 3a and the compounds were assessed for their effects on both HCV replication and cellular toxicity. Initial screening of compounds was performed using the maximum non-toxic concentration and 4 compounds that exhibited a useful therapeutic index (favourable ratio of cytotoxicity to antiviral potency) were selected for extra analysis. The compounds APS (EC50 = 2.3 μM), a natural alkaloid isolated from Maytrenus ilicifolia, and the lignans 3∗43 (EC50 = 4.0 μM), 3∗20 (EC50 = 8.2 μM) and 5∗362 (EC50 = 38.9 μM) from Peperomia blanda dramatically inhibited HCV replication as judged by reductions in luciferase activity and HCV protein expression in both the subgenomic and infectious systems. We further show that these compounds are active against a daclatasvir resistance mutant subgenomic replicon. Consistent with inhibition of genome replication, production of infectious JFH-1 virus was significantly reduced by all 4 compounds. These data are the first description of Brazilian natural compounds possessing anti-HCV activity and further analyses are being performed in order to investigate the mode of action of those compounds. PMID:25557602

  16. New cytotoxic compounds of endophytic fungus Alternaria sp. isolated from Broussonetia papyrifera (L.) Vent.

    PubMed

    Zhang, Naidan; Zhang, Chunyan; Xiao, Xiao; Zhang, Qiaoyan; Huang, Baokang

    2016-04-01

    From the ethyl acetate extract of a culture of the endophytic fungus Alternaria species G7 in Broussonetia papyrifera, a new compound altertoxin IV (1) together with nine known compounds were isolated and identified by means of bioassay-guided fractionation. The structures of these compounds were established on the basis of spectroscopic methods, among which the absolute configuration of compound 1, a new tetrahydroperylenone derivative, was determined by means of X-Ray Crystallographic analysis. The isolated compounds were subjected to cytotoxic activity against three human cancer cell lines (A549, MG-63, and SMMC-7721). Compound 2 showed significant cytotoxic activities against tested cell lines, with IC50 values of 1.47, 2.11 and 7.34 μg/mL, respectively. Additionally, compound 4 also exhibited significant cytotoxic activities against cell lines MG-63 and SMMC-7721, with IC50 values of 0.53 and 2.92 μg/mL. Endophytic fungi Alternaria from B. papyrifera might be promising sources of natural bioactive and novel metabolites. PMID:27001249

  17. Isolation, identification and quantification of unsaturated fatty acids, amides, phenolic compounds and glycoalkaloids from potato peel.

    PubMed

    Wu, Zhi-Gang; Xu, Hai-Yan; Ma, Qiong; Cao, Ye; Ma, Jian-Nan; Ma, Chao-Mei

    2012-12-15

    Eleven compounds were isolated from potato peels and identified. Their structures were determined by interpretation of UV, MS, 1D, and 2D NMR spectral data and by comparison with reported data. The main components of the potato peels were found to be chlorogenic acid and other phenolic compounds, accompanied by 2 glycoalkaloids, 3 low-molecular-weight amide compounds, and 2 unsaturated fatty acids, including an omega-3 fatty acid. The potato peels showed more potent radical scavenging activity than the flesh. The quantification of the 11 components indicated that the potato peels contained a higher amount of phenolic compounds than the flesh. These results suggest that peel waste from the industry of potato chips and fries may be a source of useful compounds for human health. PMID:22980823

  18. Isolation and identification of nematode-antagonistic compounds from the fungus Aspergillus candidus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An isolate of the fungus Aspergillus candidus was tested for production of nematicidal compounds. Adults of the nematode Ditylenchus destructor were completely inactive after 24 hr exposure to soy medium in which A. candidus was cultured. Column, thin layer and preparative chromatographies, and spec...

  19. Sulfated phenolic compounds from Limonium caspium: Isolation, structural elucidation, and biological evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three new compounds, 5-methyldihydromyricetin (1), 5-methyldihydromyricetin-3'-O-sulfate (2) and ß-D-glucopyranoside, 3-methyl, but-3-en-1-yl 4-O-a-L-rhamnopyranosyl (3) have been isolated from the Limonium caspium, together with dihydromyricetin (4), dihydromyricetin-3'-O-sulfate (5), myricetin-3'-...

  20. Two new compounds, deacetylisowortmins A and B, isolated from an endophytic Fungus, Talaromyces wortmannii LGT-4.

    PubMed

    Fu, Guang-Chao; Yang, Zhong-Duo; Zhou, Shuang-Yan; Yu, Hai-Tao; Zhang, Fei; Yao, Xiao-Jun

    2016-07-01

    Two new compounds, deacetylisowortmins A (1) and B (2), were isolated from Talaromyces wortmannii LGT-4. Their structures were established by 1D and 2D NMR spectra, as well as comparison of the experimental and calculated electronic circular dichroism spectra. Monoamine oxidase and acetylcholinesterase inhibitory activities of 1 and 2 were also evaluated. PMID:26729481

  1. Preliminary In Vitro and In Vivo Evaluation of Antidiabetic Activity of Ducrosia anethifolia Boiss. and Its Linear Furanocoumarins

    PubMed Central

    Shalaby, Nagwa M. M.; Abd-Alla, Howaida I.; Aly, Hanan F.; Albalawy, Marzougah A.; Shaker, Kamel H.; Bouajila, Jalloul

    2014-01-01

    Aim. Ducrosia anethifolia is used as flavoring additive. There have been little detailed phytochemical reports on this genus and the antidiabetic activity of this plant is not yet evaluated. Method. Structure of compounds was deduced by spectroscopic analyses. Preliminary in vitro evaluation of the antidiabetic activity of crude extract and its furanocoumarins was carried out (α-amylase, α-glucosidase, and β-galactosidase). The in vivo activity was investigated by measuring some oxidative stress markers. Biomarkers of liver injury and kidney were also determined. Results. Eight linear furanocoumarins, psoralen, 5-methoxypsoralen, 8-methoxypsoralen, imperatorin, isooxypeucedanin, pabulenol, oxypeucedanin methanolate, oxypeucedanin hydrate, and 3-O-glucopyranosyl-β-sitosterol, were isolated. All compounds were reported for the first time from the genus Ducrosia except pabulenol. The blood glucose level, liver function enzymes, total protein, lipid, and cholesterol levels were significantly normalized by extract treatment. The antioxidant markers, glucolytic, and gluconeogenic enzymes were significantly ameliorated and the elevated level of kidney biomarkers in the diabetic groups was restored. The compounds showed inhibitory activity in a concentration dependant manner. Imperatorin and 5-methoxypsoralen showed the most potent inhibiting power. Conclusion. D. anethifolia extract showed hypoglycemic, hypolipidemic, and antioxidant effect as well as ameliorating kidney function. This extract and some linear furanocoumarins exhibited carbohydrate metabolizing enzymes inhibitory effect. PMID:24800231

  2. Yeast α-Glucosidase Inhibitory Phenolic Compounds Isolated from Gynura medica Leaf

    PubMed Central

    Tan, Chao; Wang, Qunxing; Luo, Chunhua; Chen, Sai; Li, Qianyuan; Li, Peng

    2013-01-01

    Gynura medica leaf extract contains significant amounts of flavonols and phenolic acids and exhibits powerful hypoglycemic activity against diabetic rats in vivo. However, the hypoglycemic active constituents that exist in the plant have not been fully elaborated. The purpose of this study is to isolate and elaborate the hypoglycemic activity compounds against inhibition the yeast α-glucosidase in vitro. Seven phenolic compounds including five flavonols and two phenolic acids were isolated from the leaf of G. medica. Their structures were identified by the extensive NMR and mass spectral analyses as: kaempferol (1), quercetin (2), kaempferol-3-O-β-D-glucopyranoside (3), kaempferol-3-O-rutinoside (4), rutin (5), chlorogenic acid (6) and 3,5-dicaffeoylquinic acid methyl ester (7). All of the compounds except 1 and 3 were isolated for the first time from G. medica. Compounds 1–7 were also assayed for their hypoglycemic activity against yeast α-glucosidase in vitro. All of the compounds except 1 and 6 showed good yeast α-glucosidase inhibitory activity with the IC50 values of 1.67 mg/mL, 1.46 mg/mL, 0.38 mg/mL, 0.10 mg/mL and 0.53 mg/mL, respectively. PMID:23358246

  3. Antifungal activity of schinol and a new biphenyl compound isolated from Schinus terebinthifolius against the pathogenic fungus Paracoccidioides brasiliensis

    PubMed Central

    2010-01-01

    Background The aim of this study was to isolate and identify the antifungal compounds from the extracts of Schinus terebinthifolius (Anacardiaceae) against clinical isolates of the pathogenic fungus Paracoccidioides brasiliensis. Methods The hexane and dichlomethane fractions from leaves and stems of S. terebinthifolius were fractionated using several chromatography techniques to afford four compounds. Results The compounds isolated from S. terebinthifolius were identified as schinol (1), a new biphenyl compound, namely, 4'-ethyl-4-methyl-2,2',6,6'-tetrahydroxy[1,1'-biphenyl]-4,4'-dicarboxylate (2), quercetin (3), and kaempferol (4). Compounds 1 and 2 were active against different strains of P. brasiliensis, showing a minimal inhibitory concentration value against the isolate Pb B339 of 15.6 μg/ml. The isolate Pb 1578 was more sensitive to compound 1 with a MIC value of 7.5 μg/ml. Schinol presented synergistic effect only when combined with itraconazole. The compounds isolated from S. terebinthifolius were not able to inhibit cell wall synthesis or assembly using the sorbitol assay. Conclusion This work reveals for the first time the occurrence of compound 2 and discloses activity of compounds 1 and 2 against several clinical isolates of P. brasiliensis. These results justify further studies to clarify the mechanisms of action of these compounds. PMID:20939907

  4. Honey - A Novel Antidiabetic Agent

    PubMed Central

    Erejuwa, Omotayo O.; Sulaiman, Siti A.; Wahab, Mohd S. Ab

    2012-01-01

    Diabetes mellitus remains a burden worldwide in spite of the availability of numerous antidiabetic drugs. Honey is a natural substance produced by bees from nectar. Several evidence-based health benefits have been ascribed to honey in the recent years. In this review article, we highlight findings which demonstrate the beneficial or potential effects of honey in the gastrointestinal tract (GIT), on the gut microbiota, in the liver, in the pancreas and how these effects could improve glycemic control and metabolic derangements. In healthy subjects or patients with impaired glucose tolerance or diabetes mellitus, various studies revealed that honey reduced blood glucose or was more tolerable than most common sugars or sweeteners. Pre-clinical studies provided more convincing evidence in support of honey as a potential antidiabetic agent than clinical studies did. The not-too-impressive clinical data could mainly be attributed to poor study designs or due to the fact that the clinical studies were preliminary. Based on the key constituents of honey, the possible mechanisms of action of antidiabetic effect of honey are proposed. The paper also highlights the potential impacts and future perspectives on the use of honey as an antidiabetic agent. It makes recommendations for further clinical studies on the potential antidiabetic effect of honey. This review provides insight on the potential use of honey, especially as a complementary agent, in the management of diabetes mellitus. Hence, it is very important to have well-designed, randomized controlled clinical trials that investigate the reproducibility (or otherwise) of these experimental data in diabetic human subjects. PMID:22811614

  5. Effects of marmin, a compound isolated from Aegle marmelos Correa, on contraction of the guinea pig-isolated trachea.

    PubMed

    Nugroho, Agung Endro; Anas, Yance; Arsito, Puguh Novi; Wibowo, Joko Tri; Riyanto, Sugeng; Sukari, Mohamad Aspollah

    2011-10-01

    Marmin or 7-(6',7'-dihydroxygeranyl-oxy)coumarin is a compound isolated from Aegle marmelos Correa. In the study, we examined the effects of marmin on the contraction of guinea pig-isolated trachea stimulated by several inducers, namely histamine, metacholine, compound 48/80. We also evaluated its action against contraction induced by extracellular or intracellular calcium ion. The possibility of marmin to potentiate the relaxation effect of isoprenaline was also studied. Marmin added in the organ bath at 10 min prior to the agonist inhibited the contraction elicited by histamine and metacholine in a concentration-dependent manner. Moreover, marmin antagonized the histamine-induced contraction in competitive manner. Marmin mildly potentiated the relaxation effect of isoprenaline. In the study, marmin abrogated the contraction of tracheal smooth muscle induced by compound 48/80, an inducer of histamine release. Besides, marmin successfully inhibited CaCl(2)-induced contraction in Ca(2+)-free Krebs solution. Marmin also inhibited two phases of contraction which were consecutively induced by metacholine and CaCl(2) in Ca(2+)-free Krebs solution. Based on the results we concluded that marmin could inhibit contraction of the guinea-pig tracheal smooth muscle, especially by interfering histamine receptor, inhibiting the histamine release from mast, inhibiting intracellular Ca(2+) release from the intracellular store and the Ca(2+) influx through voltage-dependent Ca(2+) channels. PMID:21959801

  6. Bonded-phase extraction column isolation of organic compounds in groundwater at a hazardous waste site

    USGS Publications Warehouse

    Rostad, C.E.; Pereira, W.E.; Ratcliff, S.M.

    1984-01-01

    A procedure for isolation of hazardous organic compounds from water for gas chromatography/mass spectrometry analysis Is presented and applied to creosote- and pentachlorophenol-contaminated groundwater resulting from wood-treatment processes. This simple procedure involved passing a 50-100-mL sample through a bonded-phase extraction column, eluting the trapped organic compounds from the column with 2-4 mL of solvent, and evaporating the sample to 100 ??L with a stream of dry nitrogen, after which the sample was ready for gas chromatography/mass spectrometry analysis. Representative compounds indicative of creosote contamination were used for recovery and precision studies from the cyclohexyl-bonded phase. Recovery of these compounds from n-octyl-, n-octadecyl-, cyclohexyl-, and phenyl-bonded phases was compared. The bonded phase that exhibited the best recovery and least bias toward acidic or basic cmpounds was the n-octadecyl phase. Detailed compound Identification Is given for compounds Isolated from creosote- and pentachlorophenol-contaminated groundwater using the cyclohexyl-bonded phase.

  7. Isolation and identification of aromatic compounds in Lion's Mane Mushroom and their anticancer activities.

    PubMed

    Li, Wei; Zhou, Wei; Kim, Eun-Ji; Shim, Sang Hee; Kang, Hee Kyoung; Kim, Young Ho

    2015-03-01

    Lion's Mane Mushroom (Hericium erinaceum) is a traditional edible mushroom widely used in culinary applications and as an herbal medicine in East Asian countries. In the present study, two new aromatic compounds, hericerin A (1) and isohericenone J (5), along with five known compounds, isoericerin (2), hericerin (3), N-De phenylethyl isohericerin (4), hericenone J (6), and 4-[3',7'-dimethyl-2',6'-octadienyl]-2-formyl-3-hydroxy-5-methyoxybenzylalcohol (7), were isolated from a methanol extract of the fruiting bodies of H. erinaceum. The chemical structures of the compounds were determined from mass spectra and 1D- and 2D NMR spectroscopy. The anticancer effects of the isolated compounds were examined in HL-60 human acute promyelocytic leukaemia cells. Hericerin A (1) and hericerin (3) significantly reduced cell proliferation with IC50 values of 3.06 and 5.47 μM, respectively. These same compounds also induced apoptosis of HL-60 cells, accompanied by time-dependent down-regulation of p-AKT and c-myc levels. These data suggest that compounds 1 and 3 from H. erinaceum are suitable for use in potential cancer treatments. PMID:25306354

  8. Sulfated phenolic compounds from Limonium caspium: Isolation, structural elucidation, and biological evaluation

    PubMed Central

    Gadetskaya, Anastassiya V.; Tarawneh, Amer H.; Zhusupova, Galiya E.; Gemejiyeva, Nadezhda G.; Cantrell, Charles L.; Cutler, Stephen J.; Ross, Samir A.

    2016-01-01

    Three new compounds, (2S,3S)-5-methyldihydromyricetin (1), (2S,3S)-5-methyldihydromyricetin-3′-O-sulfate (2) and β-D-glucopyranoside, 3-methyl, but-3-en-1-yl 4-O-α-L-rhamnopyranosyl (3) have been isolated from the Limonium caspium, together with dihydromyricetin (4), dihydromyricetin-3′-O-sulfate (5), myricetin-3′-O-sulfate (6), 5-methylmyricetin (7), myricetin (8), myricetin-3-O-β-glucoside (9), as well as phloridzin (10), and tyramine (11). Compounds 5 and 6 were isolated for the first time as acids. This is the first report of all these compounds from this plant. Their structures were established by extensive NMR studies (1H NMR, 13C NMR, DEPT, 1H–1H COSY, HSQC, HMBC) as well as HRESIMS. All isolated compounds were evaluated for their antibacterial, antifungal, antimalarial and antileishmanial activities. Compounds 7, 8 and 9 exhibited good antifungal activity against Candida glabrata with IC50 values of 6.79, 15.37 and 8.53 μg/mL, respectively. Compound 8 displayed significant antimalarial activity against resistant and sensitive strains of Plasmodium falciparum with IC50 values of 1.82 and 1.51 μg/mL, respectively. Compounds 1, 4, 6, 8 and 9 showed excellent activity against Trypanosoma brucei with IC50 values of 6.93, 9.65, 8.52, 7.67 and 6.31 μg/mL, respectively. To date, this is the first report on the phytochemical and biological activity of secondary metabolites from L. caspium. PMID:26025854

  9. Activity of compound G2 isolated from alfalfa roots against medically important yeasts.

    PubMed Central

    Polacheck, I; Zehavi, U; Naim, M; Levy, M; Evron, R

    1986-01-01

    An antimycotic agent was isolated from roots of alfalfa and further purified to yield a nonhemolytic, homogeneous compound (G2). This compound contained considerable activity against 10 medically important yeasts. MICs obtained by both agar and broth dilution methods ranged from 3 to 15 micrograms/ml. Compound G2 was fungicidal at a relatively low concentration for nine different species of yeasts tested (minimum fungicidal concentrations ranged between 6 and 24 micrograms/ml). The considerable stability of compound G2 and its strong inhibitory and fungicidal activity against a broad range of yeasts suggest that after further development it might be useful as an active agent in the treatment of mycotic infections. PMID:3767342

  10. Isolation and Identification of an Antiproliferative Compound from Fructose-Tryptophan Maillard Reaction Products.

    PubMed

    Lee, Sang Hoon; Jeong, Su Jeong; Jang, Gwi Yeong; Kim, Min Young; Hwang, In Guk; Kim, Hyun Young; Woo, Koan Sik; Hwang, Bang Yeon; Song, Jin; Lee, Junsoo; Jeong, Heon Sang

    2016-04-20

    This study was performed to isolate and identify a compound with antiproliferative activity against human stomach cancer cell lines, from fructose-tryptophan Maillard reaction products (MRPs). The MRPs, prepared from a fructose-tryptophan solution heated at 130 °C for 2 h, were fractionated into five solvent fractions: n-hexane, chloroform, ethyl acetate, butanol, and water. The highest antiproliferative activity was found in the chloroform fraction (85.93% at 200 μg/mL), and the active compound from this chloroform fraction was purified by silica gel column chromatography, TLC, and preparative HPLC. The antiproliferative activity (IC50) of the active compound was 42.24 μg/mL, and the active compound was identified as perlolyrine (C16H10N2O2) by (1)H/(13)C NMR, DEPT, HMBC, and LC-ESI-MS. Therefore, this research may be useful in developing perlolyrine as a functional therapeutic agent. PMID:27041128

  11. Biomolecular Characterization of Putative Antidiabetic Herbal Extracts.

    PubMed

    Stadlbauer, Verena; Haselgrübler, Renate; Lanzerstorfer, Peter; Plochberger, Birgit; Borgmann, Daniela; Jacak, Jaroslaw; Winkler, Stephan M; Schröder, Klaus; Höglinger, Otmar; Weghuber, Julian

    2016-01-01

    Induction of GLUT4 translocation in the absence of insulin is considered a key concept to decrease elevated blood glucose levels in diabetics. Due to the lack of pharmaceuticals that specifically increase the uptake of glucose from the blood circuit, application of natural compounds might be an alternative strategy. However, the effects and mechanisms of action remain unknown for many of those substances. For this study we investigated extracts prepared from seven different plants, which have been reported to exhibit anti-diabetic effects, for their GLUT4 translocation inducing properties. Quantitation of GLUT4 translocation was determined by total internal reflection fluorescence (TIRF) microscopy in insulin sensitive CHO-K1 cells and adipocytes. Two extracts prepared from purslane (Portulaca oleracea) and tindora (Coccinia grandis) were found to induce GLUT4 translocation, accompanied by an increase of intracellular glucose concentrations. Our results indicate that the PI3K pathway is mainly responsible for the respective translocation process. Atomic force microscopy was used to prove complete plasma membrane insertion. Furthermore, this approach suggested a compound mediated distribution of GLUT4 molecules in the plasma membrane similar to insulin stimulated conditions. Utilizing a fluorescent actin marker, TIRF measurements indicated an impact of purslane and tindora on actin remodeling as observed in insulin treated cells. Finally, in-ovo experiments suggested a significant reduction of blood glucose levels under tindora and purslane treated conditions in a living organism. In conclusion, this study confirms the anti-diabetic properties of tindora and purslane, which stimulate GLUT4 translocation in an insulin-like manner. PMID:26820984

  12. Biomolecular Characterization of Putative Antidiabetic Herbal Extracts

    PubMed Central

    Stadlbauer, Verena; Haselgrübler, Renate; Lanzerstorfer, Peter; Plochberger, Birgit; Borgmann, Daniela; Jacak, Jaroslaw; Winkler, Stephan M.; Schröder, Klaus; Höglinger, Otmar; Weghuber, Julian

    2016-01-01

    Induction of GLUT4 translocation in the absence of insulin is considered a key concept to decrease elevated blood glucose levels in diabetics. Due to the lack of pharmaceuticals that specifically increase the uptake of glucose from the blood circuit, application of natural compounds might be an alternative strategy. However, the effects and mechanisms of action remain unknown for many of those substances. For this study we investigated extracts prepared from seven different plants, which have been reported to exhibit anti-diabetic effects, for their GLUT4 translocation inducing properties. Quantitation of GLUT4 translocation was determined by total internal reflection fluorescence (TIRF) microscopy in insulin sensitive CHO-K1 cells and adipocytes. Two extracts prepared from purslane (Portulaca oleracea) and tindora (Coccinia grandis) were found to induce GLUT4 translocation, accompanied by an increase of intracellular glucose concentrations. Our results indicate that the PI3K pathway is mainly responsible for the respective translocation process. Atomic force microscopy was used to prove complete plasma membrane insertion. Furthermore, this approach suggested a compound mediated distribution of GLUT4 molecules in the plasma membrane similar to insulin stimulated conditions. Utilizing a fluorescent actin marker, TIRF measurements indicated an impact of purslane and tindora on actin remodeling as observed in insulin treated cells. Finally, in-ovo experiments suggested a significant reduction of blood glucose levels under tindora and purslane treated conditions in a living organism. In conclusion, this study confirms the anti-diabetic properties of tindora and purslane, which stimulate GLUT4 translocation in an insulin-like manner. PMID:26820984

  13. Chloroaluminate ionic liquids as reagents for isolating soluble hexanuclear zirconium halide cluster compounds.

    PubMed

    Sun, D; Hughbanks, T

    2000-05-01

    Ambient-temperature chloroaluminate molten salts, mixtures of aluminum trichloride (AlCl3) and 1-ethyl-3-methylimidazolium chloride (ImCl), have been used as solvents to excise and isolate centered hexanuclear zirconium halide clusters from their solid-state precursors. Cluster compounds synthesized via high-temperature reactions, KZr6CCl15 and Li2Zr6MnCl15, were dissolved into basic molten salts at 100-110 degrees C. The C-centered cluster compound, Im4Zr6CCl18, was isolated in 70% yield, and the Mn-centered cluster compound, Im5Zr6MnCl18.C7H(8).2CH3CN, was isolated in 54% yield. Im5Zr6BCl18 is efficiently oxidized by ferrocenium tetrafluoroborate, and one-electron-oxidized B-centered cluster, [(Zr6B)Cl18]4-, was isolated in 90% yield as the salt Im4Zr6BCl18. PMID:11428116

  14. Inhibition of soluble epoxide hydrolase activity by compounds isolated from the aerial parts of Glycosmis stenocarpa.

    PubMed

    Kim, Jang Hoon; Morgan, Abubaker M A; Tai, Bui Huu; Van, Doan Thi; Cuong, Nguyen Manh; Kim, Young Ho

    2016-08-01

    The aim of this study is to search for soluble epoxide hydrolase (sEH) inhibitors from natural plants, bioassay-guided fractionation of lipophilic n-hexane and chloroform layers of an extract of the aerial parts of Glycosmis stenocarpa led to the isolation of 12 compounds (1-12) including murrayafoline-A (1), isomahanine (2), bisisomahanine (3), saropeptate (4), (24 S)-ergost-4-en-3,6-dione (5), stigmasta-4-en-3,6-dion (6), stigmast-4-en-3-one (7), β-sitosterol (8), 24-methylpollinastanol (9), trans-phytol (10), neosarmentol III (11) and (+)-epiloliolide (12). Their structures were elucidated on the basis of spectroscopic data. Among them, neosarmentol III (11) was isolated from nature for the first time. All the isolated compounds were evaluated for their inhibitory activity against sEH. Among isolated carbazole-type compounds, isomahanine (2) and bisisomahanine (3) were identified as a potent inhibitor of sEH, with IC50 values of 22.5 ± 1.7 and 7.7 ± 1.2 µM, respectively. Moreover, the inhibitory action of 2 and 3 represented mixed-type enzyme inhibition. PMID:26444316

  15. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata.

    PubMed

    Specian, Vânia; Sarragiotto, Maria Helena; Pamphile, João Alencar; Clemente, Edmar

    2012-07-01

    Endophytic microorganisms, defined as fungi or bacteria that colonize the interior of plants without causing any immediate negative effects or damages, have reciprocal relationships with host plants. In some cases their presence is beneficial to the host due to the synthesis of bioactive compounds, among which several alcohols, esters, ketones and others that may react with other compounds and may be lethal to pathogenic microorganisms. Diaporthe helianthi (Phomopsis helianthi in its anamorphic phase) is available worldwide, especially in Europe, Asia and America. Isolated in Europe as an agent of the sunflower stem cancer, it has also been endophytically isolated from tropical and temperate plants. A D. helianthi strain isolated from Luehea divaricata has been employed in current research. An investigation of the secondary metabolite from D. helianthi by CC and NMR of (1)H and (13)C yielded the separation of 10 fractions and the identification of the phenolic compound 2(-4 hydroxyphenyl)-ethanol (Tyrosol). Its antimicrobial reaction was tested and the ensuing antagonistic effects on the human pathogenic bacteria Enterococcus hirae, Escherichia coli, Micrococcus luteus, Salmonella typhi, Staphylococcus aureus, phytopathogenic Xanthomonas asc. phaseoli and phytopathogenic fungi were demonstrated. Results show that bioactive compounds and Tyrosol produced by D. helianthi have a biotechnological potential. PMID:24031942

  16. Blackberry seed extracts and isolated polyphenolic compounds showing protective effect on human lymphocytes DNA.

    PubMed

    Gođevac, Dejan; Tešević, Vele; Vajs, Vlatka; Milosavljević, Slobodan; Stanković, Miroslava

    2011-09-01

    The tentative identification of seed extracts from 3 cultivars of blackberry (blackberry seed extracts [BSEs]) constituents was performed by LC/UV/MS technique. The identified compounds belonged to ellagitannins, galic acid derivatives, and ellagic acid derivatives. Two ellagitannins, Lambertianin C and Sanguiniin H-6, and an ellagic acid derivative, 4-α-L-arabinofuranosylellagic acid, were isolated using semipreparative High-performance liquid chromatography. The structure elucidations were based on high resolution-mass spectrometry and nuclear magnetic resonance studies. The BSEs and 3 isolated pure compounds were tested for in vitro protective effect on chromosome aberrations in peripheral human lymphocytes using cytochalasin-B blocked micronucleus (MN) assay. The frequency of MN was scored in binucleated cells, and nuclear proliferation index was calculated. Among the tested extracts, the seeds of cv. Thornfree at concentration of 1 μg/mL exhibit the most prominent effect decreasing the frequency of MN by 62.4%, when compared with the controls cell cultures. Antioxidant potential of pure ellagitannins cannot explain the strong effect of BSEs. The assumption was that better antioxidant effect of BSEs result from synergistic effects of individual compounds contained in the extracts and/or some minor components possessed strong activity. PraCTICAL APPLICATION: Our results provide evidence of protective effects of BSEs and isolated pure compounds on cytogenetic damages in human lymphocytes. Thus, BSEs could exert beneficial effects in quite a few diseases, because many of the biological actions have been attributed to their antioxidant properties. PMID:21824137

  17. GC-MS study of compounds isolated from Coffea arabica flowers by different extraction techniques.

    PubMed

    Stashenko, Elena E; Martínez, Jairo René; Cárdenas-Vargas, Silvia; Saavedra-Barrera, Rogerio; Durán, Diego Camilo

    2013-09-01

    Headspace (HS), extractive, and distillative methods were employed to isolate volatile and semivolatile compounds from fresh Coffea arabica flowers. Static HS solid-phase microextraction (HS-SPME), microwave-assisted HS-SPME (MW-HS-SPME) with simultaneous hydrodistillation, and extraction with hexane or supercritical CO2 -isolated mixtures in which around 150 different chemical substances were identified or tentatively identified by GC-MS analysis. n-Pentadecane (20-37% relative peak area, RPA) was the most abundant compound in the HS fractions from fresh flowers, followed by 8-heptadecene (8-20% RPA) and geraniol (6-14% RPA). Hydrocarbons (mostly C13 -C30 paraffins) were the predominant compound class in all the sorptive extractions (HS-SPME, MW-HS-SPME, distillate), followed by terpenoids or oxygenated compounds (which varied with the isolation technique). Caffeine, a distinctive component of coffee fruits and beans, was also found in relatively high amounts in the supercritical CO2 extract of C. arabica flowers. PMID:23801537

  18. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata

    PubMed Central

    Specian, Vânia; Sarragiotto, Maria Helena; Pamphile, João Alencar; Clemente, Edmar

    2012-01-01

    Endophytic microorganisms, defined as fungi or bacteria that colonize the interior of plants without causing any immediate negative effects or damages, have reciprocal relationships with host plants. In some cases their presence is beneficial to the host due to the synthesis of bioactive compounds, among which several alcohols, esters, ketones and others that may react with other compounds and may be lethal to pathogenic microorganisms. Diaporthe helianthi (Phomopsis helianthi in its anamorphic phase) is available worldwide, especially in Europe, Asia and America. Isolated in Europe as an agent of the sunflower stem cancer, it has also been endophytically isolated from tropical and temperate plants. A D. helianthi strain isolated from Luehea divaricata has been employed in current research. An investigation of the secondary metabolite from D. helianthi by CC and NMR of 1H and 13C yielded the separation of 10 fractions and the identification of the phenolic compound 2(-4 hydroxyphenyl)-ethanol (Tyrosol). Its antimicrobial reaction was tested and the ensuing antagonistic effects on the human pathogenic bacteria Enterococcus hirae, Escherichia coli, Micrococcus luteus, Salmonella typhi, Staphylococcus aureus, phytopathogenic Xanthomonas asc. phaseoli and phytopathogenic fungi were demonstrated. Results show that bioactive compounds and Tyrosol produced by D. helianthi have a biotechnological potential. PMID:24031942

  19. Anti-inflammatory effects of phenolic compounds isolated from the flowers of Nymphaea mexicana Zucc.

    PubMed

    Hsu, Chin-Lin; Fang, Song-Chwan; Yen, Gow-Chin

    2013-08-01

    Nymphaea mexicana Zucc. is an aquatic plant species which belongs to the family Nymphaea and is commonly known as the yellow water lily. The aim of this work was to study the in vitro antiinflammatory effects of phenolic compounds isolated from the flowers of Nymphaea mexicana Zucc. Seven phenolic compounds including vanillic acid, 4-methoxy-3,5-dihydroxybenzoic acid, (2R,3R)-3,7-dihydroxyflavanone, naringenin (4), kaempferol 3-O-(3-O-acetyl-a-L-rhamnopyranoside), kaempferol 3-O-(2-O-acetyl-a-L-rhamnopyranoside), and quercetin 3-(30 0-acetylrhamnoside) (7) were isolated from the flowers of Nymphaea mexicana Zucc. These results revealed that compound 4 has the most prominent inhibitory effect on the LPS-stimulated nitric oxide (NO), monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor-alpha (TNF-a) production in RAW 264.7 macrophages. In addition, compound 4 also inhibited LPS-mediated induction of protein expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and phospho-ERK in RAW 264.7 macrophages. Thus, compound 4 from the flowers of Nymphaea mexicana Zucc. may provide a potential therapeutic approach for inflammation-associated disorders. PMID:23727892

  20. Determination of the antibacterial activity of crude extracts and compounds isolated from Hortia oreadica (Rutaceae) against oral pathogens

    PubMed Central

    Severino, Vanessa Gisele Pasqualotto; da Silva, Maria Fátima das Graças Fernandes; Lucarini, Rodrigo; Montanari, Lilian Bueno; Cunha, Wilson Roberto; Vinholis, Adriana Helena Chicharo; Martins, Carlos Henrique Gomes

    2009-01-01

    Extracts from Hortia oreadica afforded four dihydrocinnamic acid derivatives, isolated from the n-hexane extract, as well as limonoid guyanin and the furoquinoline alkaloid dictamnine, both isolated from the dichloromethane extract. The extracts and the isolated compounds were tested against some oral pathogens, so as to investigate their antibacterial activity. The results showed that the n-hexane extract and the compound dictamnine are the most active against the selected microorganisms PMID:24031396

  1. Antifungal, antioxidant and larvicidal activities of compounds isolated from the heartwood of Mansonia gagei.

    PubMed

    Tiew, P; Ioset, J R; Kokpol, U; Chavasiri, W; Hostettmann, K

    2003-02-01

    Eleven compounds isolated from the heartwood of Mansonia gagei were tested for their antifungal activities against Cladosporium cucumerinum and Candida albicans, as well as for their larvicidal activities against Aedes aegypti and radical scavenging properties in a DPPH assay. Mansonone C (4) was found to be the most interesting compound with antifungal activities against Cladosporium cucumerinum and Candida albicans as well as for its larvicidal properties against Aedes aegypti. Mansonone E (5) was active against Cladosporium cucumerinum and Candida albicans. Two coumarin derivatives, mansorin A (1) and mansorin B (2) were also found to be active against Cladosporium cucumerinum, while mansonone N (9) was the only isolated product to show radical scavenging properties. PMID:12601687

  2. Bioassay-guided isolation and evaluation of antimicrobial compounds from Ixora megalophylla against some oral pathogens.

    PubMed

    Panyo, J; Matsunami, K; Panichayupakaranant, P

    2016-09-01

    Context Ixora megalophylla Chamch. (Rubiaceae) is a new plant species recently found in southern Thailand. Ethyl acetate extracts of its leaves and stems showed antimicrobial activities. Objectives To isolate and identify the antimicrobial compounds from I. megalophylla leaves and stems. Materials and methods The dried leaves (1.7 kg) and stems (3.5 kg) were consecutively extracted with petroleum ether (5 L × 4), ethyl acetate (5 L × 3) and ethanol (5 L × 4) under reflux conditions. The ethyl acetate extract was subjected to an antimicrobial assay guided isolation with Candida albicans and Streptococcus mutans. Compounds 1-10 were identified by (1)H NMR, (13)C NMR and EI-MS. Minimal lethal concentration (MLC) against C. albicans and Streptococcus spp. was determined using a broth microdilution method for 48 and 24 h, respectively. Results and discussion On the basis of the antimicrobial assay guided isolation, 10 known compounds, including vanillic acid (1), syringic acid (2), 4-hydroxy benzaldehyde (3), scopoletin (4), loliolide (5), syringaldehyde (6), sinapaldehyde (7), coniferaldehyde (8), syringaresinol (9) and 2,2'-dithiodipyridine (10), were identified. Compounds 1-5 were purified from the ethyl acetate extract of the leaves, while 6-9 and 10 were from the ethyl acetate and ethanol extracts of the stems, respectively. Among these isolates, 10 showed the strongest antibacterial activities against S. mutans and Streptococcus mitis, with minimum inhibitory concentrations (MICs) of 2-4 μg/mL, and MLC of 4 μg/mL, as well as having a weak antifungal activity against C. albicans (MIC of 125 μg/mL). This is the first report of the antimicrobial activities of 10. PMID:26809027

  3. Antimicrobial compounds from endophytic Streptomyces sp. BCC72023 isolated from rice (Oryza sativa L.).

    PubMed

    Supong, Khomsan; Thawai, Chitti; Choowong, Wilunda; Kittiwongwattana, Chokchai; Thanaboripat, Dusanee; Laosinwattana, Chamroon; Koohakan, Prommart; Parinthawong, Nonglak; Pittayakhajonwut, Pattama

    2016-05-01

    An endophytic actinomycete strain BCC72023 was isolated from rice (Oryza sativa L.) and identified as the genus Streptomyces, based on phenotypic, chemotaxonomic and 16S rRNA gene sequence analyses. The strain showed 99.80% similarity compared with Streptomyces samsunensis M1463(T). Chemical investigation led to the isolation of three macrolides, efomycins M (1), G (2) and oxohygrolidin (3), along with two polyethers, abierixin (4) and 29-O-methylabierixin (5). To our knowledge, this is the first report of efomycin M being isolated from a natural source. The compounds were identified using spectroscopic techniques and comparison with previously published data. All compounds exhibited antimalarial activity against the Plasmodium falciparum, K-1 strain, a multidrug-resistant strain, with IC50 values in a range of 1.40-5.23 μg/ml. In addition, these compounds were evaluated for biological activity against Mycobacterium tuberculosis, Bacillus cereus, Colletotrichum gloeosporioides and Colletotrichum capsici, as well as cytotoxicity against both cancerous (MCF-7, KB, NCI-H187) and non-cancerous (Vero) cells. PMID:26809052

  4. Purification and characterization of antifungal compounds from Lactobacillus plantarum HD1 isolated from kimchi.

    PubMed

    Ryu, Eun Hye; Yang, Eun Ju; Woo, Eun Rhan; Chang, Hae Choon

    2014-08-01

    Strain HD1 with antifungal activity was isolated from kimchi and identified as Lactobacillus plantarum. Antifungal compounds from Lb. plantarum HD1 were active against food- and feed-borne filamentous fungi and yeasts in a spot-on-the-lawn assay. Antifungal activity of Lb. plantarum HD1 was stronger against filamentous fungi than yeast. Antifungal compounds were purified using solid phase extraction (SPE) and recycling preparative-HPLC. Structures of the antifungal compounds were elucidated by electrospray ionization-mass spectrometry and nuclear magnetic resonance. Active compounds from Lb. plantarum HD1 were identified as 5-oxododecanoic acid (MW 214), 3-hydroxy decanoic acid (MW 188), and 3-hydroxy-5-dodecenoic acid (MW 214). To investigate the potential application of these antifungal compounds for reduction of fungal spoilage in foods, Korean draft rice wine was used as a food model. White film-forming yeasts were observed in control draft rice wine after 11 days of incubation. However, film-forming yeasts were not observed in draft rice wine treated with SPE-prepared culture supernatant of Lb. plantarum HD1 (equivalent to 2.5% addition of culture supernatant) until 27 days of incubation. The addition of antifungal compounds to Korean draft rice wine extended shelf-life up to 27 days at 10 °C without any sterilization process. Therefore, the antifungal activity of Lb. plantarum HD1 may lead to the development of powerful biopreservative systems capable of preventing food- and feed-borne fungal spoilage. PMID:24750809

  5. [Antibacterial activity of polyphenolic compounds isolated from plants of Geraniaceae and Rosaceae families].

    PubMed

    Nikitina, V S; Kuz'mina, L Iu; Melent'ev, A I; Shendel', G V

    2007-01-01

    Polyphenolic compounds present in extracts of plants belonging to the families Geraniaceae (blood-red cranesbill, wood cranesbill, meadow cranesbill, and alfilaria) and Rosaceae (red raspberry, European dewberry, and tormentil) have been tested for their activity against gram-positive and gram-negative bacteria of the genera Azotobacter, Bacillus, and Pseudomonas. The bacteriostatic activity exhibited some species-related features and depended on the polarity of the extracting agent. The bacteriostatic activity of plant-derived phenolic compounds correlated with their antioxidant potential. The plants of the families Geraniaceae and Rosaceae offer promise as a source of raw material for isolation of polyphenolic compounds exhibiting bactericidal activity, including against opportunistic pathogens (B. cereus, E. coli, P. aeruginosa, and S. aureus strains). PMID:18173115

  6. Isolation of phytotoxic compounds from tree-of-heaven (Ailanthus altissima swingle).

    PubMed

    De Feo, Vincenzo; De Martino, Laura; Quaranta, Emilia; Pizza, Cosimo

    2003-02-26

    The aqueous root extract of Ailanthus altissima showed allelopathic activity against radish (Raphanus sativus L. cv. "Saxa"), garden cress (Lepidium sativum L.), and purslane (Portulaca oleracea L.) seeds. A bioassay-oriented purification of active extracts, chromatographic fractions, and compounds demonstrated dose-dependent activity on germination and radicle growth of test seeds; radish seed was the most sensitive to allelochemicals. Active compounds have been isolated: ailanthone, ailanthinone, chaparrine, and ailanthinol B (quassinoid derivatives); the alkaloid 1-methoxycanthin-6-one is not active. The compound with greatest inhibitory activity is ailanthone. The data obtained suggest a possible use of tree-of-heaven root extracts or of its active constituents as natural herbicides. PMID:12590453

  7. Marine AChE inhibitors isolated from Geodia barretti: natural compounds and their synthetic analogs.

    PubMed

    Olsen, Elisabeth K; Hansen, Espen; W K Moodie, Lindon; Isaksson, Johan; Sepčić, Kristina; Cergolj, Marija; Svenson, Johan; Andersen, Jeanette H

    2016-02-01

    Barettin, 8,9-dihydrobarettin, bromoconicamin and a novel brominated marine indole were isolated from the boreal sponge Geodia barretti collected off the Norwegian coast. The compounds were evaluated as inhibitors of electric eel acetylcholinesterase. Barettin and 8,9-dihydrobarettin displayed significant inhibition of the enzyme, with inhibition constants (Ki) of 29 and 19 μM respectively towards acetylcholinesterase via a reversible noncompetitive mechanism. These activities are comparable to those of several other natural acetylcholinesterase inhibitors of marine origin. Bromoconicamin was less potent against acetylcholinesterase, and the novel compound was inactive. Based on the inhibitory activity, a library of 22 simplified synthetic analogs was designed and prepared to probe the role of the brominated indole, common to all the isolated compounds. From the structure-activity investigation it was shown that the brominated indole motif is not sufficient to generate a high acetylcholinesterase inhibitory activity, even when combined with natural cationic ligands for the acetylcholinesterase active site. The four natural compounds were also analysed for their butyrylcholinesterase inhibitory activity in addition and shown to display comparable activities. The study illustrates how both barettin and 8,9-dihydrobarettin display additional bioactivities which may help to explain their biological role in the producing organism. The findings also provide new insights into the structure-activity relationship of both natural and synthetic acetylcholinesterase inhibitors. PMID:26695619

  8. Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria

    PubMed Central

    Mohamed, Magdy El-Said; Al-Yacoub, Zakariya H.; Vedakumar, John V.

    2015-01-01

    Microorganisms possess enormous highly specific metabolic activities, which enable them to utilize and transform nearly every known chemical class present in crude oil. In this context, one of the most studied biocatalytic processes is the biodesulfurization (BDS) of thiophenic sulfur-containing compounds such as benzothiophene (BT) and dibenzothiophene (DBT) in crude oils and refinery streams. Three newly isolated bacterial strains, which were affiliated as Rhodococcus sp. strain SA11, Stenotrophomonas sp. strain SA21, and Rhodococcus sp. strain SA31, were enriched from oil contaminated soil in the presence of DBT as the sole S source. GC-FID analysis of DBT-grown cultures showed consumption of DBT, transient formation of DBT sulfone (DBTO2) and accumulation of 2-hydroxybiphenyl (2-HBP). Molecular detection of the plasmid-borne dsz operon, which codes for the DBT desulfurization activity, revealed the presence of dszA, dszB, and dszC genes. These results point to the operation of the known 4S pathway in the BDS of DBT. The maximum consumption rate of DBT was 11 μmol/g dry cell weight (DCW)/h and the maximum formation rate of 2-HBP formation was 4 μmol/g DCW/h. Inhibition of both cell growth and DBT consumption by 2-HBP was observed for all isolates but SA11 isolate was the least affected. The isolated biocatalysts desulfurized other model DBT alkylated homologs. SA11 isolate was capable of desulfurizing BT as well. Resting cells of SA11 exhibited 10% reduction in total sulfur present in heavy crude oil and 18% reduction in total sulfur present in the hexane-soluble fraction of the heavy crude oil. The capabilities of the isolated bacteria to survive and desulfurize a wide range of S compounds present in crude oil are desirable traits for the development of a robust BDS biocatalyst to upgrade crude oils and refinery streams. PMID:25762990

  9. From antidiabetic to antifungal: discovery of highly potent triazole-thiazolidinedione hybrids as novel antifungal agents.

    PubMed

    Wu, Shanchao; Zhang, Yongqiang; He, Xiaomeng; Che, Xiaoying; Wang, Shengzheng; Liu, Yang; Jiang, Yan; Liu, Na; Dong, Guoqiang; Yao, Jianzhong; Miao, Zhenyuan; Wang, Yan; Zhang, Wannian; Sheng, Chunquan

    2014-12-01

    In an attempt to discover a new generation of triazole antifungal agents, a series of triazole-thiazolidinedione hybrids were designed and synthesized by molecular hybridization of the antifungal agent fluconazole and rosiglitazone (an antidiabetic). Most of the target compounds showed good to excellent inhibitory activity against a variety of clinically important fungal pathogens. In particular, compounds (Z)-5-(2,4-dichlorobenzylidene)-3-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)thiazolidine-2,4-dione) (15 c), (Z)-3-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)-5-(furan-3-ylmethylene)thiazolidine-2,4-dione (15 j), and (Z)-3-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)-5-(furan-3-ylmethylene)thiazolidine-2,4-dione (15 r) were highly active against Candida albicans, with MIC80 values in the range of 0.03-0.15 μM. Moreover, compounds 15 j and 15 r were found to be effective against four fluconazole-resistant clinical isolates; these two compounds are particularly promising antifungal leads for further optimization. Molecular docking studies revealed that the hydrogen bonding interactions between thiazolidinedione and CYP51 from C. albicans are important for antifungal activity. This study also demonstrates the effectiveness of molecular hybridization in antifungal drug discovery. PMID:25196996

  10. Naturally Occurring Carbazole Alkaloids from Murraya koenigii as Potential Antidiabetic Agents.

    PubMed

    Patel, Om P S; Mishra, Akansha; Maurya, Ranjani; Saini, Deepika; Pandey, Jyotsana; Taneja, Isha; Raju, Kanumuri S R; Kanojiya, Sanjeev; Shukla, Sanjeev K; Srivastava, Mahendra N; Wahajuddin, M; Tamrakar, Akhilesh K; Srivastava, Arvind K; Yadav, Prem P

    2016-05-27

    This study identified koenidine (4) as a metabolically stable antidiabetic compound, when evaluated in a rodent type 2 model (leptin receptor-deficient db/db mice), and showed a considerable reduction in the postprandial blood glucose profile with an improvement in insulin sensitivity. Biological studies were directed from the preliminary in vitro evaluation of the effects of isolated carbazole alkaloids (1-6) on glucose uptake and GLUT4 translocation in L6-GLUT4myc myotubes, followed by an investigation of their activity (2-5) in streptozotocin-induced diabetic rats. The effect of koenidine (4) on GLUT4 translocation was mediated by the AKT-dependent signaling pathway in L6-GLUT4myc myotubes. Moreover, in vivo pharmacokinetic studies of compounds 2 and 4 clearly showed that compound 4 was 2.7 times more bioavailable than compound 2, resulting in a superior in vivo efficacy. Therefore, these studies suggested that koenidine (4) may serve as a promising lead natural scaffold for managing insulin resistance and diabetes. PMID:27136692

  11. Isolation and identification of plant phenolic compounds in birch leaves: Air pollution stress and leaf phenolics

    NASA Astrophysics Data System (ADS)

    Loponen, Jyrki Mikael

    Chromatographic (analytical and preparative HPLC), chemical (hydrolysis) and spectroscopic (UV, 1H NMR, 13C NMR and MS) techniques proved to be suitable tools for the structure identification of plant phenolic compounds. More than 30 individual phenolic compounds were detected and quantified. Detailed information of the structures of individual compounds was determined after isolation from birch leaves. Ten flavonoid glycosides were identified. Two of them, myricetin-3-O-α-L-(acetyl)-rhamnopyranoside and quercetin-3-O-α-L-(4/prime'-O-acetyl)- rhamnopyranoside, have been rarely found in birch leaves. Further, some characterized major phenolics with non- flavonoid structures in our study were 1-O-galloyl- β-D-(2-O-acetyl)-glucopyranose, gallic, chlorogenic, neochlorogenic, cis- and trans-forms of 3- and 5-p-coumaroylquinic acids. The presence of gallotannin group was evidenced by strong positive correlations between concentrations of these gallotannins (preliminary identified by HPLC and UV spectra) and the protein precipitation capacity of extracts. Content of gallotannins decreased with leaf growth and maturation. It is known that concentrations of phenolic compounds regularly increase in slowly growing stressed plants and therefore, it is natural that they are also sensitive to different forms of air pollution. Total content and the contents of some individual phenolics correlated negatively with the distance from the pollution source in our study area. In addition to comparing absolute concentrations of compounds in question, the within-tree correlations or within-tree variations of the relevant compounds between polluted and control areas were an alternative approach. Differences in pairwise correlations between the investigated leaf phenolic compounds indicated the competition between some gallotannins and p-coumaroylquinic acids on the polluted but not on the control site. Air pollution seems to be a stress factor for birch trees associated with

  12. Isolation of cholinesterase and β-secretase 1 inhibiting compounds from Lycopodiella cernua.

    PubMed

    Nguyen, Van Thu; To, Dao Cuong; Tran, Manh Hung; Oh, Sang Ho; Kim, Jeong Ah; Ali, Md Yousof; Woo, Mi-Hee; Choi, Jae Sue; Min, Byung Sun

    2015-07-01

    Three new serratene-type triterpenoids (1-3) and a new hydroxy unsaturated fatty acid (13) together with nine known compounds (4-12) were isolated from Lycopodiella cernua. The chemical structures were established using NMR, MS, and Mosher's method. Compound 13 showed the most potent inhibitory activity against acetylcholinesterase (AChE) with an IC50 value of 0.22μM. For butyrylcholinesterase (BChE) inhibitory activity, 5 showed the most potent activity with an IC50 value of 0.42μM. Compound 2 showed the most potent activity with an IC50 of 0.23μM for BACE-1 inhibitory activity. The kinetic activities were investigated to determine the type of enzyme inhibition involved. The types of AChE inhibition shown by compounds 4, 5, and 13 were mixed; BChE inhibition by 5 was competitive, while 2 and 6 showed mixed-types. In addition, molecular docking studies were performed to investigate the interaction of these compounds with the pocket sites of AChE. The docking results revealed that the tested inhibitors 3, 4, and 13 were stably present in several pocket domains of the AChE residue. PMID:26003344

  13. Structure and antioxidant activity of phenolic compounds isolated from the edible fruits and stem bark of Harpephyllum caffrum.

    PubMed

    Moodley, Roshila; Koorbanally, Neil A; Shahidul Islam, Md; Jonnalagadda, Sreekanth B

    2014-01-01

    Antioxidant activity in edible fruits is an important characteristic in the choice of fruits for human consumption, and has profound influence on nutrition and health. Two pharmacologically active triterpenoids, β-sitosterol and lupeol, and the powerful flavan-3-ol antioxidant, (+)-catechin, were isolated from the edible fruits of Harpephyllum caffrum while a mixture of cardanols, an alkyl p-coumaric acid ester, and (+)-catechin were isolated from the stem bark. This is the first report of these compounds being isolated from this plant. The antioxidant capacity of (+)-catechin was higher than the other isolated compounds as well as the known antioxidant, ascorbic acid. PMID:25310809

  14. Isolation and identification of the phenolic compounds from the roots of Sanguisorba officinalis L. and their antioxidant activities.

    PubMed

    Zhang, Shuang; Liu, Xin; Zhang, Zi-Long; He, Lu; Wang, Zhe; Wang, Guang-Shu

    2012-01-01

    Four phenolic compounds were isolated from the roots of Sanguisorba officinalis L. by silica gel column chromatography and preparative HPLC. On the basis of chemical and spectroscopic methods, their structures were identified as methyl 4-O-β-D-glucopyranosy-5-hydroxy-3-methoxylbenzoate (1), 3,3′,4′-tri-O-methylellagic acid (2), fisetinidol-(4α-8)-catechin (3), and (+)-catechin (4). Compound 1 is a new phenolic glycoside and compounds 2 and 3 were isolated from the Sanguisorba genus for the first time. Compounds 1–4 were also assayed for their antioxidant activities using the DPPH free radical assay. PMID:23178307

  15. Isolation and identification of compounds responsible for antioxidant capacity of Euryale ferox seeds.

    PubMed

    Song, Chang-Wei; Wang, Shu-Mei; Zhou, Li-Li; Hou, Fan-Fan; Wang, Kai-Jin; Han, Quan-Bin; Li, Ning; Cheng, Yong-Xian

    2011-02-23

    Euryale ferox seed is consumed medicinally or for food in China. The present study revealed it to contain significant antioxidant activity, which may be associated with its medical applications as a proteinuria inhibitor of diabetic nephropathy. This study resulted in the identification of 3 new sesquineolignans, named euryalins A-C (1-3), and 16 known compounds, which were all first isolated from this plant apart from 5,7,4-trihydroxy-flavanone. The antioxidant potential of the partial isolates was evaluated using the DPPH radical scavenging assay and mesangial cellular assay. Compounds 2, rel-(2α,3β)-7-O-methylcedrusin (4), syringylglycerol-8-O-4-(sinapyl alcohol) ether (5), and (+)-syringaresinol (7) were found to be most active on DPPH assay, whereas compounds 2, 4, 7, (1R,2R,5R,6S)-2-(3,4-dimethoxyphenyl)-6-(3,4-dihydroxyphenyl)-3,7-dioxabicyclo[3.3.0]octane, and buddlenol E could significantly inhibit high glucose-stimulated reactive oxygen species production in mesangial cells. The results suggested that E. ferox seed could be considered as an excellent source of natural antioxidants and is useful in the prevention of diabetic nephropathy. PMID:21280632

  16. Isolation and identification of cytotoxic compounds from the rhizomes of Paris quadrifolia L.

    PubMed Central

    Gajdus, Jerzy; Kaczyński, Zbigniew; Kawiak, Anna; Łojkowska, Ewa; Stefanowicz-Hajduk, Justyna; Ochocka, J. Renata; Stepnowski, Piotr

    2014-01-01

    Background: Paris quadrifolia L. is a medicinal plant which contains steroidal saponins. The present study reports isolation and structural identification of six pennogenyl saponins obtained from P. quadrifolia rhizomes. The four spirostan saponins were obtained from P. quadrifolia for the first time. The cytotoxic effects of the sub-fractions and six compounds isolated from the plant extract were evaluated on tumour cells. Materials and Methods: Ethanol extract from the rhizomes of P. quadrifolia were partinioned using column chromatography. The saponins were isolated from the obtained sub-fractions by isocratic RP HPLC and their structures were determined by means of 1D and 2D NMR spectroscopy and MALDI TOF MS. The cytotoxic effects of the sub-fractions and the isolated compounds were tested against human promyelocytic leukaemia cells (HL-60), human cervical adenocarcinoma cells (HeLa) and human breast cancer cells (MCF-7) using the [(3-(4,5-dimethylthiazol-2-yl)]-2,5-diphenyltetrazolium bromide (MTT) assay. Results: Six pennogenyl saponins were isolated from P. quadrifolia rhizomes: pennogenin 3-O-β-D-glucopyranoside (1), pennogenin 3-O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside (2), pennogenin 3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (3), pennogenin 3-O-α-L-rhamnopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside (4), pennogenin 3-O-α-L-rhamnopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside (5), pennogenin 3-O-α-L-rhamnopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside (6). Pennogenyl saponins 5 and 6 exhibited cytotoxic activity against HL-60, HeLa and MCF-7 tumour cells with IC50 values of 1.0 ± 0.04 μg/ml, 1.8 ± 0.072 μg/ml and 2.4 ± 0.096 μg/ml respectively, and 2.0 ± 0.08 μg/ml, 2.5 ± 0.125 μg/ml and 3.2 ± 0.128 μg/ml respectively. Conclusion: Compounds 1-4 were isolated from this species for the first time. PMID:24991111

  17. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don.

    PubMed

    Tiong, Soon Huat; Looi, Chung Yeng; Hazni, Hazrina; Arya, Aditya; Paydar, Mohammadjavad; Wong, Won Fen; Cheah, Shiau-Chuen; Mustafa, Mohd Rais; Awang, Khalijah

    2013-01-01

    Catharanthus roseus (L.) G. Don is a herbal plant traditionally used by local populations in India, South Africa, China and Malaysia to treat diabetes. The present study reports the in vitro antioxidant and antidiabetic activities of the major alkaloids isolated from Catharanthus roseus (L.) G. Don leaves extract. Four alkaloids--vindoline I, vindolidine II, vindolicine III and vindolinine IV--were isolated and identified from the dichloromethane extract (DE) of this plant's leaves. DE and compounds I-III were not cytotoxic towards pancreatic β-TC6 cells at the highest dosage tested (25.0 µg/mL). All four alkaloids induced relatively high glucose uptake in pancreatic β-TC6 or myoblast C2C12 cells, with III showing the highest activity. In addition, compounds II-IV demonstrated good protein tyrosine phosphatase-1B (PTP-1B) inhibition activity, implying their therapeutic potential against type 2 diabetes. III showed the highest antioxidant potential in ORAC and DPPH assays and it also alleviated H₂O₂-induced oxidative damage in β-TC6 cells at 12.5 µg/mL and 25.0 µg/mL. PMID:23955322

  18. Anti-proliferative effect of a compound isolated from Cassia auriculata against human colon cancer cell line HCT 15.

    PubMed

    Esakkirajan, M; Prabhu, N M; Arulvasu, C; Beulaja, M; Manikandan, R; Thiagarajan, R; Govindaraju, K; Prabhu, D; Dinesh, D; Babu, G; Dhanasekaran, G

    2014-01-01

    The compound was isolated from leaves of Cassia auriculata and its structure was characterized using high-performance liquid chromatography (HPLC), liquid chromatography mass spectrometry (LC-MS), UV-vis spectroscopy (UV-vis), fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, cytotoxicity, nuclear morphology and lactate dehydrogenase assay of isolated compound was tested against human colon cancer cell line HCT 15. The isolated compound, 4-(4-chlorobenzyl)-2,3,4,5,6,7-hexahydro-7-(2-ethoxyphenyl)benzo[h][1,4,7]triazecin-8(1H)-one at 25μg/ml concentration and by 48h showed 50% inhibition of human colon cancer cells (HCT 15). The results suggest that isolated compound from C. auriculata has potential to prevent colon cancer cell line. PMID:24211805

  19. Isolation of functional RNA from plant tissues rich in phenolic compounds.

    PubMed

    Schneiderbauer, A; Sandermann, H; Ernst, D

    1991-08-15

    A method for the isolation of RNA from different tissues of trees (seedlings, saplings, and adult trees) is described. Using this procedure it is possible to remove large amounts of disturbing polyphenolic compounds from nucleic acids. The method involves an acetone treatment of the freeze-dried and powdered plant material, the use of high salt concentrations in the extraction buffer and an aqueous two-phase system. These steps were combined with the conventional phenol/chloroform extraction and CsCl centrifugation. The method has been successfully applied to the isolation and purification of RNA from pine (Pinus sylvestris L. and Pinus mugo Turr.), Norway spruce (Picea abies L.), and beech (Fagus sylvatica L.). The functional quality of RNA extracted by this procedure has been characterized by its uv spectrum, by agarose gel electrophoresis with ethidium bromide staining, Northern blot hybridization, and in vitro translation. PMID:1719845

  20. Bioassay-Guided Isolation of Compounds from Datura stramonium with TRAIL-Resistance Overcoming Activity.

    PubMed

    Karmakar, Utpal K; Toume, Kazufumi; Ishikawa, Naoki; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2016-02-01

    TRAIL is a potent inducer of apoptosis in most cancer cells, but not in normal cells, and therefore has deserved intense interest as a promising agent for cancer therapy. In the search for bioactive natural products for overcoming TRAIL-resistance, we previously reported a number of active compounds. In our screening program on natural resources targeting overcoming TRAIL-resistance, activity-guided fractionation of the MeOH extract of Datura stramonium leaves led to the isolation of three alkaloids--scopolamine (1), trigonelline (2), and tyramine (3). Compounds 1, 2, and 3 exhibited TRAIL-resistance overcoming activity at 50, 150, and 100 µM, respectively in TRAIL-resistant AGS cells. PMID:27032197

  1. Isolation and characterization of wound-induced compounds from the leaves of Citrus hassaku.

    PubMed

    Asai, Tomonori; Matsukawa, Tetsuya; Ishihara, Atsushi; Kajiyama, Shin'ichiro

    2016-08-01

    Citrus plants are world widely cultivated as horticultural tree crops, and nowadays their pharmacological activities have been well studied. Since research of defense responses in citrus plants have been mainly focused on the post-harvested fruits because of their commercial importance, defense mechanisms during their developmental stages have not been well understood. In the present study, two wound-induced compounds were isolated from leaves of Citrus hassaku, and their structures were elucidated by high-resolution electron spray ionization mass spectra (HRESIMS) and nuclear magnetic resonance (NMR) analyses. One of these compounds was identified as a known flavanone, hesperetin. The other was characterized as a novel furofuran lignan, and was named 'biscitrusnin-A'. Their antimicrobial activities were also evaluated. PMID:26852089

  2. Effects of compound D600 (methoxyverapamil) on drug-induced contractions of isolated dog uterine muscle.

    PubMed

    Calixto, J B; Antônio, A

    1986-01-01

    The contractile responses of the isolated dog uterus to acetylcholine (Ach), oxytocin (Ot), histamine (Hist) and barium chloride (Ba2+) were non-competitively blocked by compound D600. This compound was significantly more potent against Ba2+-induced contractions. Increasing the calcium (Ca2+) concentration from 0.2 to 2.5 mM reverted the inhibitory effects of D600 against Ach, Ot, Hist and 1 mM Ba2+. The blockade produced by D600 against 30 mM Ba2+ was not reversed by increasing the Ca2+ concentration. In high K+-depolarizing solution, D600 produced a parallel and concentration-dependent displacement to the right to the concentration-response curves of both Ca2+ and Ba2+. The Schild plot yielded similar pA2 values for D600 against Ca2+ and Ba2+. PMID:3699446

  3. Bioactivity-guided isolation of new antiproliferative compounds from Juniperus foetidissima Willd.

    PubMed

    Rafieian-Kopaei, Mahmood; Suleimani Dehkordi, Ibrahim; Ghanadian, Mustafa; Shokrollahi, Ardeshir; Aghaei, Mahmoud; Syed Majid, Ayatollahi; Choudhary, M Iqbal

    2016-09-01

    Based on a literature survey on cytotoxic medicinal plants, Juniper species were identified as interesting source of antitumor compounds. Using bioassay-guided fractionation against Caov-4 cancer cells on acetone extract of leaves and branchlets of Juniperus foetidissima led to the isolation of a new 3H-benzofuaran-2-one: 4-methyl-3-methoxy-3H-benzofuaran-2-one (1), a new sesquiterpene: 4,9(α)-dihydroxy-nardosin-6-en (2) and an already known labdane-type diterpene: 15-hydroxy-8(17),13(E)-labdadiene-19-carboxilic acid (3). Compounds 1-3 exhibited cytotoxic effects, with moderate cytotoxicity against the EJ-138 bladder and CAOV-4 ovary cancer cell lines. PMID:26506268

  4. Isolation of Bioactive Compounds from Sunflower Leaves (Helianthus annuus L.) Extracted with Supercritical Carbon Dioxide.

    PubMed

    El Marsni, Zouhir; Torres, Ascension; Varela, Rosa M; Molinillo, José M G; Casas, Lourdes; Mantell, Casimiro; Martinez de la Ossa, Enrique J; Macias, Francisco A

    2015-07-22

    The work described herein is a continuation of our initial studies on the supercritical fluid extraction (SFE) with CO2 of bioactive substances from Helianthus annuus L. var. Arianna. The selected SFE extract showed high activity in the wheat coleoptile bioassay, in Petri dish phytotoxicity bioassays, and in the hydroponic culture of tomato seeds. Chromatographic fractionations of the extracts and a spectroscopic analysis of the isolated compounds showed 52 substances belonging to 10 different chemical classes, which were mainly sesquiterpene lactones, diterpenes, and flavonoids. Heliannuol M (31), helivypolides K and L (36, 37), and helieudesmanolide B (38) are described for the first time in the literature. Metabolites have been tested in the etiolated wheat coleoptile bioassay with good results in a noteworthy effect on germination. The most active compounds were also tested on tomato seeds, heliannuol A (30) and leptocarpin (45) being the most active, with values similar to those of the commercial herbicide. PMID:26151222

  5. Identification of a bioactive compound isolated from Brazilian propolis type 6.

    PubMed

    Castro, Myrella Lessio; do Nascimento, Andréa Mendes; Ikegaki, Masaharu; Costa-Neto, Cláudio M; Alencar, Severino M; Rosalen, Pedro L

    2009-07-15

    A prenylated benzophenone, hyperibone A, was isolated from the hexane fraction of Brazilian propolis type 6. Its structure was determined by spectral analysis including 2D NMR. This compound exhibited cytotoxic activity against HeLa tumor cells (IC(50)=0.1756microM), strong antimicrobial activity (MIC range-0.73-6.6microg/mL; MBC range-2.92-106microg/mL) against Streptococcus mutans, Streptococcus sobrinus, Streptococcus oralis, Staphylococcus aureus, and Actinomyces naeslundii, and the results of its cytotoxic and antimicrobial activities were considered good. PMID:19497755

  6. Antimutagenic Compounds of White Shrimp (Litopenaeus vannamei): Isolation and Structural Elucidation.

    PubMed

    López-Saiz, Carmen-María; Hernández, Javier; Cinco-Moroyoqui, Francisco-Javier; Velázquez, Carlos; Ocaño-Higuera, Víctor-Manuel; Plascencia-Jatomea, Maribel; Robles-Sánchez, Maribel; Machi-Lara, Lorena; Burgos-Hernández, Armando

    2016-01-01

    According to the World Health Organization, cancer is the main cause of mortality worldwide; thus, the search of chemopreventive compounds to prevent the disease has become a priority. White shrimp (Litopenaeus vannamei) has been reported as a source of compounds with chemopreventive activities. In this study, shrimp lipids were extracted and then fractionated in order to isolate those compounds responsible for the antimutagenic activity. The antimutagenic activity was assessed by the inhibition of the mutagenic effect of aflatoxin B1 on TA98 and TA100 Salmonella tester strains using the Ames test. Methanolic fraction was responsible for the highest antimutagenic activity (95.6 and 95.9% for TA98 and TA100, resp.) and was further separated into fifteen different subfractions (M1-M15). Fraction M8 exerted the highest inhibition of AFB1 mutation (96.5 and 101.6% for TA98 and TA100, resp.) and, after further fractionation, four subfractions M8a, M8b, M8c, and M8d were obtained. Data from (1)H and (13)C NMR, and mass spectrometry analysis of fraction M8a (the one with the highest antimutagenic activity), suggest that the compound responsible for its antimutagenicity is an apocarotenoid. PMID:27006678

  7. Antimutagenic Compounds of White Shrimp (Litopenaeus vannamei): Isolation and Structural Elucidation

    PubMed Central

    López-Saiz, Carmen-María; Hernández, Javier; Cinco-Moroyoqui, Francisco-Javier; Velázquez, Carlos; Ocaño-Higuera, Víctor-Manuel; Plascencia-Jatomea, Maribel; Robles-Sánchez, Maribel; Machi-Lara, Lorena; Burgos-Hernández, Armando

    2016-01-01

    According to the World Health Organization, cancer is the main cause of mortality worldwide; thus, the search of chemopreventive compounds to prevent the disease has become a priority. White shrimp (Litopenaeus vannamei) has been reported as a source of compounds with chemopreventive activities. In this study, shrimp lipids were extracted and then fractionated in order to isolate those compounds responsible for the antimutagenic activity. The antimutagenic activity was assessed by the inhibition of the mutagenic effect of aflatoxin B1 on TA98 and TA100 Salmonella tester strains using the Ames test. Methanolic fraction was responsible for the highest antimutagenic activity (95.6 and 95.9% for TA98 and TA100, resp.) and was further separated into fifteen different subfractions (M1–M15). Fraction M8 exerted the highest inhibition of AFB1 mutation (96.5 and 101.6% for TA98 and TA100, resp.) and, after further fractionation, four subfractions M8a, M8b, M8c, and M8d were obtained. Data from 1H and 13C NMR, and mass spectrometry analysis of fraction M8a (the one with the highest antimutagenic activity), suggest that the compound responsible for its antimutagenicity is an apocarotenoid. PMID:27006678

  8. Identification of PPARgamma Partial Agonists of Natural Origin (II): In Silico Prediction in Natural Extracts with Known Antidiabetic Activity

    PubMed Central

    Guasch, Laura; Sala, Esther; Mulero, Miquel; Valls, Cristina; Salvadó, Maria Josepa; Pujadas, Gerard; Garcia-Vallvé, Santiago

    2013-01-01

    Background Natural extracts have played an important role in the prevention and treatment of diseases and are important sources for drug discovery. However, to be effectively used in these processes, natural extracts must be characterized through the identification of their active compounds and their modes of action. Methodology/Principal Findings From an initial set of 29,779 natural products that are annotated with their natural source and using a previously developed virtual screening procedure (carefully validated experimentally), we have predicted as potential peroxisome proliferators-activated receptor gamma (PPARγ) partial agonists 12 molecules from 11 extracts known to have antidiabetic activity. Six of these molecules are similar to molecules with described antidiabetic activity but whose mechanism of action is unknown. Therefore, it is plausible that these 12 molecules could be the bioactive molecules responsible, at least in part, for the antidiabetic activity of the extracts containing them. In addition, we have also identified as potential PPARγ partial agonists 10 molecules from 16 plants with undescribed antidiabetic activity but that are related (i.e., they are from the same genus) to plants with known antidiabetic properties. None of the 22 molecules that we predict as PPARγ partial agonists show chemical similarity with a group of 211 known PPARγ partial agonists obtained from the literature. Conclusions/Significance Our results provide a new hypothesis about the active molecules of natural extracts with antidiabetic properties and their mode of action. We also suggest plants with undescribed antidiabetic activity that may contain PPARγ partial agonists. These plants represent a new source of potential antidiabetic extracts. Consequently, our work opens the door to the discovery of new antidiabetic extracts and molecules that can be of use, for instance, in the design of new antidiabetic drugs or functional foods focused towards the

  9. Chemical Constituents Analysis and Antidiabetic Activity Validation of Four Fern Species from Taiwan

    PubMed Central

    Chen, Chen-Yu; Chiu, Fu-Yu; Lin, Yenshou; Huang, Wei-Jan; Hsieh, Po-Shiuan; Hsu, Feng-Lin

    2015-01-01

    Pterosins are abundant in ferns, and pterosin A was considered a novel activator of adenosine monophosphate-activated protein kinase, which is crucial for regulating blood glucose homeostasis. However, the distribution of pterosins in different species of ferns from various places in Taiwan is currently unclear. To address this question, the distribution of pterosins, glucose-uptake efficiency, and protective effects of pterosin A on β-cells were examined. Our results showed that three novel compounds, 13-chloro-spelosin 3-O-β-d-glucopyranoside (1), (3R)-Pterosin D 3-O-β-d-(3'-p-coumaroyl)-glucopyranoside (2), and (2R,3R)-Pterosin L 3-O-β-d-(3'-p-coumaroyl)-glucopyranoside (3), were isolated for the first time from four fern species (Ceratopteris thalictroides, Hypolepis punctata, Nephrolepis multiflora, and Pteridium revolutum) along with 27 known compounds. We also examined the distribution of these pterosin compounds in the mentioned fern species (except N. multiflora). Although all pterosin analogs exhibited the same effects in glucose uptake assays, pterosin A prevented cell death and reduced reactive oxygen species (ROS) production. This paper is the first report to provide new insights into the distribution of pterosins in ferns from Taiwan. The potential anti-diabetic activity of these novel phytocompounds warrants further functional studies. PMID:25622260

  10. Antidiabetic Effect and Mode of Action of Cytopiloyne

    PubMed Central

    Chang, Cicero Lee-Tian; Liu, Hsien-Yueh; Kuo, Tien-Fen; Hsu, Yi-Jou; Shen, Ming-Yi; Pan, Chien-Yuan

    2013-01-01

    Cytopiloyne was identified as a novel polyacetylenic compound. However, its antidiabetic properties are poorly understood. The aim of the present study was to investigate the anti-diabetic effect and mode of action of cytopiloyne on type 2 diabetes (T2D). We first evaluated the therapeutic effect of cytopiloyne on T2D in db/db mice. We found that one dose of cytopiloyne reduced postprandial glucose levels while increasing blood insulin levels. Accordingly, long-term treatment with cytopiloyne reduced postprandial blood glucose levels, increased blood insulin, improved glucose tolerance, suppressed the level of glycosylated hemoglobin A1c (HbA1c), and protected pancreatic islets in db/db mice. Next, we studied the anti-diabetic mechanism of action of cytopiloyne. We showed that cytopiloyne failed to decrease blood glucose in streptozocin- (STZ-)treated mice whose β cells were already destroyed. Additionally, cytopiloyne dose dependently increased insulin secretion and expression in β cells. The increase of insulin secretion/expression of cytopiloyne was regulated by protein kinase Cα (PKCα) and its activators, calcium, and diacylglycerol (DAG). Overall, our data suggest that cytopiloyne treats T2D via regulation of insulin production involving the calcium/DAG/PKCα cascade in β cells. These data thus identify the molecular mechanism of action of cytopiloyne and prove its therapeutic potential in T2D. PMID:23573144

  11. EVALUATION OF GAS CHROMATOGRAPHY/MATRIX ISOLATION INFRARED SPECTROMETRY FOR THE DETERMINATION OF SEMIVOLATILE ORGANIC COMPOUNDS IN AIR SAMPLE EXTRACTS

    EPA Science Inventory

    The capabilities of gas chromatography/matrix isolation-infrared (GC/MI-IR) spectrometry for determination of semivolatile organic compounds (SVOCs) in air sample extracts were evaluated. ystematic experiment, using xylene isomers as test compounds, were conducted to determine th...

  12. [Synthesis of novel beta-aminoalcohols containing nabumetone moiety with potential antidiabetic activity].

    PubMed

    Zhang, Kun; Yan, Ju-fang; Tang, Xue-mei; Liu, Hong-ping; Fan, Li; Zhou, Guang-ming; Yang, Da-cheng

    2011-04-01

    Twenty five new beta-aminoalcohols containing nabumetone moiety were prepared via the reduction of potassium borohydride with a convenient and efficient procedure, starting from beta-aminoketones that have been synthesized by our group. Their chemical structures were determined by IR, MS, 1H NMR, 13C NMR, HR-MS and antidiabetic activities were screened in vitro. Preliminary results revealed that the antidiabetic activity of most beta-aminoalcohols were better than that of the corresponding beta-aminoketones. Although most compounds showed weak antidiabetic activity, the alpha-glucosidase inhibitory activity of compounds 5hd(1) and 5id(2) reached 74.37% and 90.15%, respectively, which were superior to the positive control. The relative peroxisome proliferator-activated receptor response element (PPRE) activity of five compounds were more than 60%, among them compound 5ca possessed the highest activity (112.59%). As lead molecules of antidiabetic agents, compounds 5hd(1), 5id(2) and 5ca deserve further study. PMID:21751495

  13. A newly isolated Streptomyces sp. CS392 producing three antimicrobial compounds.

    PubMed

    Cho, Seung Sik; Choi, Yun Hee; Simkhada, Jaya Ram; Mander, Poonam; Park, Da Jeong; Yoo, Jin Cheol

    2012-01-01

    With the aim of isolating new microbes capable of producing strong antimicrobial substances, strain CS392 was screened from 700 soil isolates preserved in our laboratory. The strain was related to genus Streptomyces based on various characteristics. Three highly active antimicrobial compounds, C1, C2 and C3, produced by the strain were purified by solvent extraction followed by silica gel column chromatography. These compounds were highly active against various Gram-positive resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), and vancomycin-resistant Enterococcus (VRE). Among three, C3 was the most active against MRSA and VRSA with minimal inhibitory concentration (MIC) of 2 μg/ml while C2 and C3 had MIC values of 4 μg/ml for the strains. In case of Bacillus subtilis ATCC6633, C1 and C3 were more effective with MIC values of 0.5 μg/ml than C2 with MIC of 2 μg/ml. Those antibiotics were variably active (MIC of 4-32 μg/ml) against Micrococcus luteus ATCC 9341, Enterococcus faecalis ATCC 29212, Mycobacterium smegmatis ATCC 9341 and VRE. PMID:21909674

  14. Cysticidal activity of extracts and isolated compounds from Teloxys graveolens: In vitro and in vivo studies.

    PubMed

    Palomares-Alonso, Francisca; Rojas-Tomé, Irma Susana; Juárez Rocha, Victorino; Palencia Hernández, Guadalupe; González-Maciel, Angélica; Ramos-Morales, Andrea; Santiago-Reyes, Rosalba; González-Hernández, Iliana Elvira; Jung-Cook, Helgi

    2015-09-01

    In the search of new alternatives for neurocysticercosis treatment, the cysticidal activity of organic extracts of Teloxys graveolens was evaluated. The in vitro activity of hexane, ethyl acetate and methanol extracts against Taenia crassiceps cysts was tested and the selectivity index relative to human fibroblasts was determined. Subsequently, the in vivo efficacy of the methanolic extract at doses of 200 and 500 mg/kg in the murine cysticercosis model was evaluated. The ultrastructural effects in vitro and in vivo of the methanolic extract were also investigated using scanning electron microscopy. Additionally, a bioassay-guided fractionation for the isolation of the cysticidal components was performed. Our in vitro findings revealed that all extracts exhibited good cysticidal activity with EC50 values from 44.8 to 67.1 µg/mL. Although the ethyl acetate and methanolic extracts displayed low cytotoxicity, the methanolic extract was the most selective. The methanolic extract also showed in vivo efficacy which was similar to that obtained with ABZ. Significant alterations were found on the germinal layer of the cysts, with a high accumulation of granules of glycogen and vacuoles. The bioguided fractionation of methanolic extract led to the isolation of three flavonoids: chrysin, pinocembrin and pinostrobin; among them, pinocembrin was the compound that displayed cysticidal activity. This is the first study which reveals that T. graveolens could be a potential source for cysticidal and non-toxic compounds. PMID:26072200

  15. Natural antifouling compounds produced by a novel fungus Aureobasidium pullulans HN isolated from marine biofilm.

    PubMed

    Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2013-12-15

    A fungus, Aureobasidium pullulans, was isolated from marine biofilm and identified. A bioassay-guided fractionation procedure was developed to isolate and purify antifouling compounds from A. pullulans HN. The procedure was: fermentation broth-aeration and addition of sodium thiosulfate-graduated pH and liquid-liquid extraction-SPE purification-GC-MS analysis. Firstly, the fermentation broth was tested for its toxicity. Then it was treated with aeration and addition of sodium thiosulfate, and its toxicity was almost not changed. Lastly, antifouling compounds were extracted at different pH, the extract had high toxicity at pH 2 but almost no toxicity at pH 10, which suggested the toxicants should be fatty acids. The EC50 of the extract against Skeletonema costatum was 90.9 μg ml(-1), and its LC50 against Balanus amphitrete larvae was 22.2 μg ml(-1). After purified by HLB SPE column, the EC50 of the extract against S. costatum was 49.4 μg ml(-1). The myristic and palmitic acids were found as the main toxicants by GC-MS. PMID:24210009

  16. Antibacterial activity of isolated phenolic compounds from cranberry (Vaccinium macrocarpon) against Escherichia coli.

    PubMed

    Rodríguez-Pérez, Celia; Quirantes-Piné, Rosa; Uberos, José; Jiménez-Sánchez, Cecilia; Peña, Alejandro; Segura-Carretero, Antonio

    2016-03-01

    Phenolic compounds from a cranberry extract were isolated in order to assess their contribution to the antibacterial activity against uropathogenic strains of Escherichia coli (UPEC). With this purpose, a total of 25 fractions from a cranberry extract were isolated using semipreparative high performance liquid chromatography (HPLC) and characterized based on the results obtained by reversed-phase HPLC coupled to mass spectrometry detection. Then, the effects on UPEC surface hydrophobicity and biofilm formation of the cranberry extract as well as the purest fractions (a total of 13) were tested. As expected, the whole extract presented a powerful antibacterial activity against UPEC while the selected fractions presented a different behavior. Myricetin and quercitrin significantly decreased (p < 0.05) E. coli biofilm formation compared with the control, while dihydroferulic acid glucuronide, procyanidin A dimer, quercetin glucoside, myricetin and prodelphinidin B led to a significant decrease of the surface hydrophobicity compared with the control. The results suggest that apart from proanthocyanidins, other compounds, mainly flavonoids, can act against E. coli biofilm formation and also modify UPEC surface hydrophobicity in vitro, one of the first steps of adhesion. PMID:26902395

  17. Immunomodulatory potencies of isolated compounds from Crataegus azarolus through their antioxidant activities.

    PubMed

    Mustapha, Nadia; Mokdad-Bzéouich, Imèn; Sassi, Aicha; Abed, Besma; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-06-01

    The search of natural immunomodulatory agents has become an area of great interest in order to reduce damage to the human body. In this study, the immunomodulatory potential of Crataegus azarolus and its isolated hyperoside on mouse lymphocytes and macrophages in vitro was assessed. The effect of C. azarolus natural compounds on splenocytes proliferation, natural killer (NK) and cytotoxic T lymphocytes (CTL) activities, and on macrophage-mediated cytotoxicity were assessed by MTT test. Phagocytic activity and inhibition of nitric oxide (NO) release by macrophages were also evaluated. The antioxidant capacity of these products was evaluated by determining their cellular antioxidant activity (CAA) in splenocytes and macrophages. Depending on the concentrations, both ethyl acetate (EA) extract and hyperoside (Hyp) from C. azarolus affect macrophage functions by modulating their lysosomal enzyme activity and nitric oxide release. Whereas, the above-mentioned products significantly promote LPS and lectin-stimulated splenocyte proliferation, implying a potential activation of lymphocytes B and T enhancing humoral and cellular immune responses. Moreover, EA extract and Hyp could enhance the activity of NK and T lymphocytes cells, as well as the macrophages-mediated cytotoxicity against B16F10 cells. The anti-inflammatory activity was concomitant with the cellular antioxidant effect of the tested compounds against macrophages and splenocytes. Collectively, C. azarolus and its isolated hyperoside exhibited an immunomodulatory effect through their antioxidant activity. These findings suggest that C. azarolus should be explored as a novel potential immunomodulatory agent for the treatment of inflammatory diseases. PMID:26711781

  18. Antihistamine Effect of a Pure Bioactive Compound Isolated from Slug (Diplosolenodes occidentalis) Material

    PubMed Central

    Jacob, AS; Simon, OR; Wheatle, D; Ruddock, P; McCook, K

    2014-01-01

    ABSTRACT Objective: Folklore claims of the therapeutic effect of garden slug (Diplosolenodes occidentalis) extract used to relieve bronchoconstriction in asthmatic individuals were never validated scientifically. The aim of this study was to isolate the pure bioactive compound from slug extract causing this effect. Methods: The crude ground material was prepared in ethanol and after filtration, separation by flash column chromatography method was done. The structure was elucidated by data from hydrogen and carbon nuclear magnetic resonance (NMR) profiles. The bioactive compound was assessed for dose dependent response effects on guinea pig tracheal smooth muscle pre-contracted with histamine. Receptor specificity studies were done by using HTMT dimaleate (H1 agonist). The type of antagonism was also identified. Results: The pure component isolated from garden slug material was identified by spectral studies as glyceryl trilinolenate. It caused dose-dependent relaxation in guinea pig tracheal smooth muscle strips pre-contracted with histamine, it acted via H1 type receptors and showed non-competitive antagonism. Conclusion: Glyceryl trilinolenate produced dose-dependent relaxation in tracheal smooth muscle strips in the presence of the agonist histamine. Glyceryl trilinolenate displayed non-competitive antagonism at H1 receptors in the trachea. This agent was able to alleviate bronchoconstriction in individuals presenting with atopic asthma in rural agricultural areas in Jamaica (verbal communications). It is possible that glyceryl trilinolenate can be used therapeutically to produce tracheal smooth muscle relaxation in individuals presenting with atopic asthma. PMID:25781274

  19. Isolation and partial characterization of antimicrobial compounds from a new strain Nonomuraea sp. NM94.

    PubMed

    Badji, Boubekeur; Mostefaoui, Abdellah; Sabaou, Nasserdine; Lebrihi, Ahmed; Mathieu, Florence; Seguin, Elisabeth; Tillequin, François

    2007-06-01

    An actinomycete strain NM94 was isolated from a Saharan soil sample by a dilution agar plating method using chitin-vitamins B medium supplemented with penicillin. The strain presented the morphological and chemical characteristics of the genus Nonomuraea. On the basis of 16S rDNA analysis and physiological tests, this isolate was found to be quite different from the known species of Nonomuraea and might be new. The strain NM94 secreted several antibiotics on yeast extract malt extract glucose medium that were active against some Gram-positive bacteria, yeast, and fungi. The antibiotics were extracted with dichloromethane and detected by bioautography on silica gel plates using Mucor ramannianus and Bacillus subtilis as the test organisms. Among these antibiotics, a complex called 94A showed interesting antifungal activity. It was selected and purified by reverse-phase HPLC. This complex was composed of five compounds. Spectroscopic studies by infrared, mass, and (1)H NMR of the compounds were carried out. Initial results showed that these molecules differed from the known antibiotics produced by other Nonomuraea species. PMID:17318487

  20. Isolation of a compound from Eupatorium adenophorum (Spreng.) [Ageratina adenophora (Spreng.)] causing hepatotoxicity in mice.

    PubMed

    Oelrichs, P B; Calanasan, C A; MacLeod, J K; Seawright, A A; Ng, J C

    1995-01-01

    Regular ingestion of Eupatorium adenophorum [Ageratina adenophora (Spreng.)] or Crofton weed causes chronic pulmonary disease in horses mainly in Australia, New Zealand, and the Himalayas. The disease is characterized by pulmonary interstitial fibrosis, emphysema, alveolar epithelisation and reduced tolerance to exercise. Horses apparently are the only animals affected and there are numerous reports of farms losing all their horses. The disorder was produced experimentally in horse feeding trials, and it was shown that characteristic lesions occurred in the lungs. In studies with laboratory animals, mice were shown to be suitable test animals, but in this species lesions occur in the liver rather than the lungs. The hepatic injury in these animals is characterized by multiple areas of focal necrosis of the parenchyma associated with degeneration and loss of the epithelium lining the small bile ducts. The active principle 9-oxo-10,11 dehydroagerophorone responsible for these lesions in mice has been isolated from E. adenophorum. Although the compound has been shown to exhibit toxicity to larvae of invertebrate species, no mammalian toxicity studies have been previously reported involving the isolated toxin. The mechanism of the toxic effect of the compound as well as its possible relevance to the respiratory disease in the horse remain to be investigated. PMID:8581319

  1. Resistance to the quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil in Pseudomonas aeruginosa clinical isolates.

    PubMed

    García-Contreras, Rodolfo; Martínez-Vázquez, Mariano; Velázquez Guadarrama, Norma; Villegas Pañeda, Alejandra Guadalupe; Hashimoto, Takahiro; Maeda, Toshinari; Quezada, Héctor; Wood, Thomas K

    2013-06-01

    The quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil inhibit the pathogenicity of the Pseudomonas aeruginosa laboratory strains PA01 and PA14; however, there is no report studying the effectiveness of these compounds for clinical isolates. Therefore, the effect of both quorum quenchers on the production of pyocyanin, elastase and alkaline protease of eight clinical strains from children was evaluated. Although both compounds were in general effective for the attenuation of these factors, three strains resistant to C-30 were found. For 5-fluorouracil, PA01 and some clinical isolates showed resistance for at least one phenotype. PMID:23620228

  2. Isolation, Partial Purification and Characterization of an Antimicrobial Compound, Produced by Bacillus atrophaeus

    PubMed Central

    Ebrahimipour, Gholam Hossein; Khosravibabadi, Zahra; Sadeghi, Hossein; Aliahmadi, Atusa

    2014-01-01

    Background: Antibiotics are usually assumed as secondary metabolites produced during the idiophase of microbial growth, which can kill or inhibit the growth of other microorganisms. Nowadays, indiscriminate use of antibiotics has resulted in resistant microorganisms. Therefore, screening researches on products with antimicrobial activities are necessary. Objectives: To find new antibiotics to defend against pathogenic microorganisms resistant to common antibiotics, the bacterium isolated from skin of the frog called Rana ridibunda was studied for its antimicrobial activities. Materials and Methods: An antibiotic-producing bacterium was isolated from the frog skin. The bacterium was identified based on 16SrDNA sequencing and biochemical and morphological characteristics. Antimicrobial activity of the culture supernatant was examined against laboratorial standard bacteria by disc diffusion and minimum inhibitory concentration (MIC) methods. To characterize the produced antimicrobial compound, the culture supernatant of the bacterium was washed by chloroform and dried at 40°C; then, the antimicrobial substance was extracted by methanol and acetone and detected by bioautography on silica gel plates. Dialysis tube was used to find the molecular weight of this substance. Results: The isolated bacterium was identified as a new strain of Bacillus atrophaeus. The antimicrobial substance exhibited heat stability between 25ºC and 100ºC and was active in a broad pH range from 2.0 to 11.0. The bioautography assay showed that methanol was the optimum solvent for the extraction of antimicrobial substance. The dialysis tube indicated that the antimicrobial substance weight was less than 1 kDa and the compound did not precipitate with ammonium sulfate. Conclusions: This study showed that some properties of antimicrobial substances produced by the GA strain differed from other peptide antibiotics produced by the genus Bacillus such as bacitracin, which increases the likelihood of

  3. Antinociceptive and anti-inflammatory effects of compounds isolated from Scaphyglottis livida and Maxillaria densa.

    PubMed

    Déciga-Campos, Myrna; Palacios-Espinosa, Juan Francisco; Reyes-Ramírez, Adelfo; Mata, Rachel

    2007-11-01

    Oral administration of a CH(2)Cl(2)-MeOH (1:1) extract of Scaphyglottis livida produced dose-dependent antinociceptive and anti-inflammatory effects when tested in mice and rats using the hot-plate (150-600 mg/kg) and carrageenan-induced inflammation (150-600 mg/kg) models, respectively. Morphine (1.5-6 mg/kg, p.o.) and indomethacin (10-40 mg/kg, p.o.) were used as positive controls, respectively. Four compounds were isolated from the active extract of Scaphyglottis livida, namely 5alpha-lanosta-24,24-dimethyl-9(11),25-dien-3beta-ol (LDD), 24,24,dimethyl-9,19-cyclolanosta-9(11),25-dien-3-one (cyclobalanone), gigantol and 3,4'-dihydroxy-3',4,5-trimethoxybibenzyl (DTB). LDD and gigantol (25-100 mg/kg, p.o.) significantly increased the hot-plate latency in comparison to vehicle-treated mice and decreased carrageenan-induced inflammation in rats. The antinociception provoked by LDD and gigantol was partially blocked by naloxone (1mg/kg, i.p.). However, pretreatment with L-NAME (100 mg/kg, i.p.) and glibenclamide (10 mg/kg, i.p.) did not affect the antinociceptive response induced by LDD or gigantol suggesting that their pharmacological effect could be partially due to activation of opioid receptors. Moreover, a CH(2)Cl(2)-MeOH (1:1) extract of Maxillaria densa reduced acetic acid-induced abdominal writhes but was not able to produce antinociception in the hot-plate assay. Two compounds were isolated from the active extract of Maxillaria densa, namely fimbriol A and erianthridin. Both compounds partially reduced acetic acid-induced writhes. The results tend to support the popular use of this species in folk medicine for treatment of painful complaints. PMID:17855030

  4. Isolation of antibacterial compounds from Quercus dilatata L. through bioassay guided fractionation

    PubMed Central

    2012-01-01

    Background Four medicinal plants (Chrozophora hierosolymitana Spreng, Chrysanthemum leucanthemum L., Ephedra gerardiana Wall. ex Stapf, and Quercus dilatata L.) used by indigenous healers to treat various infectious diseases were selected for the present study. The major objective of the present study was isolation and characterization of antimicrobial components from the crude plant extracts using bioassay guided fractionation. Methods Seven methanolic extracts of the four plants were screened to identify any antimicrobial agents present in them. The active crude plant extract was fractionated first by solvent partitioning and then by HPLC. Characterization of the active fractions was done by using spectrophotometer. Results All the seven methanolic extracts showed low antifungal activity, however, when these extracts were tested for antibacterial activity, significant activity was exhibited by two extracts. The extract of aerial parts of Q. dilatata was most active and therefore, was selected for further analysis. Initially fractionation was done by solvent-solvent partitioning and out of six partitioned fractions, ethanol fraction was selected on the basis of results of antibacterial activity and phytochemical analysis. Further, fractionation was carried out by RP- HPLC and purified active subfractions were characterized by comparing their absorption spectra with that of the known natural products isolated from the plants of Quercus genus. Discussion and conclusion The results suggest that this is the first report of the isolated antibacterial compounds from this genus. PMID:22554280

  5. A Systematic Review of the Anticancer Properties of Compounds Isolated from Licorice (Gancao).

    PubMed

    Tang, Zheng-Hai; Li, Ting; Tong, Yun-Guang; Chen, Xiao-Jia; Chen, Xiu-Ping; Wang, Yi-Tao; Lu, Jin-Jian

    2015-12-01

    Licorice (Gancao in Chinese) has been used worldwide as a botanical source in medicine and as a sweetening agent in food products for thousands of years. Triterpene saponins and flavonoids are its main ingredients that exhibit a variety of biological activities, including hepatoprotective, antiulcer, anti-inflammatory, antiviral and anticancer effects among others. This review attempts to summarize the current knowledge on the anticancer properties and mechanisms of the compounds isolated from licorice and obtain new insights for further research and development of licorice. A broad spectrum of in vitro and in vivo studies have recently demonstrated that the mixed extracts and purified compounds from licorice exhibit evident anticancer properties by inhibition of proliferation, induction of cell cycle arrest, apoptosis, autophagy, differentiation, suppression of metastasis, angiogenesis, and sensitization of chemotherapy or radiotherapy. A combined treatment of licorice compounds and clinical chemotherapy drugs remarkably enhances anticancer effects and reduces the side effects of chemotherapeutics. Furthermore, glycyrrhizic acid and glycyrrhetinic acid in licorice have been indicated to present obvious liver-targeting effects in targeted drug delivery systems for hepatocellular carcinoma treatment. PMID:26695708

  6. Antiherpetic Plants: A Review of Active Extracts, Isolated Compounds, and Bioassays.

    PubMed

    Silva-Mares, David; Torres-López, Ernesto; Rivas-Galindo, Verónica M

    2016-04-01

    Herpes simplex is a disease that is widely distributed throughout the world. It is caused by herpes simplex virus type 1 (HSV-1) and simplex virus type 2 (HSV-2). The drugs of choice for treatment are acyclovir (ACV), Penciclovir (PCV) and other guanine analogues, which have the same mechanism of action. However, due to the constant increase of ACV-resistant strains in immunocompromised patients, it is necessary to find new treatment alternatives. It has been shown that natural products are a good alternative for the treatment of these diseases as well as being an excellent source of compounds with anti-herpetic activity, which may be useful for the development of new drugs and act through a mechanism of action different from ACV and PCV. This paper compiles reports on extracts and compounds isolated from plants that have anti-herpetic activity. We present an analysis of the solvents most widely used for extraction from plants as well as cells and commonly used methods for evaluating cytotoxic and anti-herpetic activity. Families that have a higher number of plants with anti-herpetic activity are evaluated, and we also highlight the importance of studies of mechanisms of action of extracts and compounds with anti-herpetic activity. PMID:27396217

  7. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals

    PubMed Central

    Tapiolas, Dianne; Motti, Cherie A.; Foret, Sylvain; Tebben, Jan; Willis, Bette L.; Bourne, David G.

    2016-01-01

    Bacterial communities associated with healthy corals produce antimicrobial compounds that inhibit the colonization and growth of invasive microbes and potential pathogens. To date, however, bacteria-derived antimicrobial molecules have not been identified in reef-building corals. Here, we report the isolation of an antimicrobial compound produced by Pseudovibrio sp. P12, a common and abundant coral-associated bacterium. This strain was capable of metabolizing dimethylsulfoniopropionate (DMSP), a sulfur molecule produced in high concentrations by reef-building corals and playing a role in structuring their bacterial communities. Bioassay-guided fractionation coupled with nuclear magnetic resonance (NMR) and mass spectrometry (MS), identified the antimicrobial as tropodithietic acid (TDA), a sulfur-containing compound likely derived from DMSP catabolism. TDA was produced in large quantities by Pseudovibrio sp., and prevented the growth of two previously identified coral pathogens, Vibrio coralliilyticus and V. owensii, at very low concentrations (0.5 μg/mL) in agar diffusion assays. Genome sequencing of Pseudovibrio sp. P12 identified gene homologs likely involved in the metabolism of DMSP and production of TDA. These results provide additional evidence for the integral role of DMSP in structuring coral-associated bacterial communities and underline the potential of these DMSP-metabolizing microbes to contribute to coral disease prevention. PMID:27602265

  8. Antibacterial, Antifungal, and Insecticidal Potentials of Oxalis corniculata and Its Isolated Compounds

    PubMed Central

    Rehman, Azizur; Rehman, Ali; Ahmad, Ijaz

    2015-01-01

    Oxalis corniculata is a common medicinal plant widely used against numerous infectious diseases. The agrochemical potential of methanolic extract, n-hexane, chloroform, ethyl acetate, and n-butanol fractions were assessed to measure the antibacterial, antifungal, and insecticidal activities of the plant. The crude, chloroform, and n-butanol soluble fractions showed excellent activities against Escherichia coli, Shigella dysenteriae, Salmonella typhi, and Bacillus subtilis but have no activity against Staphylococcus aureus. Similarly the crude, n-hexane, and chloroform fractions were also found to have significant activity against fungal strains including Fusarium solani, Aspergillus flexneri, and Aspergillus flavus and have no activity against Aspergillus niger. Chemical pesticides have shown very good results at the beginning, but with the passage of time the need was realized to use the natural plant sources for the safe control of insects. The current study will provide minor contribution towards it. High mortality rate was recorded for the crude extract and chloroform fraction against Tribolium castaneum. The two isolated compounds 5-hydroxy-6,7,8,4′-tetramethoxyflavone (1) and 5,7,4′-trihydroxy-6,8-dimethoxyflavone (2) were evaluated for antibacterial, antifungal, and insecticidal activities. The results showed that compound 2 was more active than compound 1 against the tested bacterial strains and insects. PMID:25873973

  9. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals.

    PubMed

    Raina, Jean-Baptiste; Tapiolas, Dianne; Motti, Cherie A; Foret, Sylvain; Seemann, Torsten; Tebben, Jan; Willis, Bette L; Bourne, David G

    2016-01-01

    Bacterial communities associated with healthy corals produce antimicrobial compounds that inhibit the colonization and growth of invasive microbes and potential pathogens. To date, however, bacteria-derived antimicrobial molecules have not been identified in reef-building corals. Here, we report the isolation of an antimicrobial compound produced by Pseudovibrio sp. P12, a common and abundant coral-associated bacterium. This strain was capable of metabolizing dimethylsulfoniopropionate (DMSP), a sulfur molecule produced in high concentrations by reef-building corals and playing a role in structuring their bacterial communities. Bioassay-guided fractionation coupled with nuclear magnetic resonance (NMR) and mass spectrometry (MS), identified the antimicrobial as tropodithietic acid (TDA), a sulfur-containing compound likely derived from DMSP catabolism. TDA was produced in large quantities by Pseudovibrio sp., and prevented the growth of two previously identified coral pathogens, Vibrio coralliilyticus and V. owensii, at very low concentrations (0.5 μg/mL) in agar diffusion assays. Genome sequencing of Pseudovibrio sp. P12 identified gene homologs likely involved in the metabolism of DMSP and production of TDA. These results provide additional evidence for the integral role of DMSP in structuring coral-associated bacterial communities and underline the potential of these DMSP-metabolizing microbes to contribute to coral disease prevention. PMID:27602265

  10. [Pharmacogenetics of oral antidiabetic treatment].

    PubMed

    Tkáč, Ivan

    2016-03-01

    Pharmacogenetics is the study of how genes (individual genotypes) affect a persons response to drugs. At present, recommendations made about the treatment of some monogenic forms of diabetes are based on genetic diagnostics. The first studies in the field of pharmacogenetics of oral antidiabetics have now been published which have identified associations of individual genetic variants with response to treatment. The response to sulfonylurea derivatives was significantly associated with the variants KCNJ11/ABCC8, TCF7L2 and CYP2C9. The response to metformin treatment was associated with the genetic variants ATM and SLC47A1. The response to treatment with glitazones was associated with the genetic variant PPARG. The therapeutic response to the treatment with gliptins was associated with the genetic variants TCF7L2 and CTRB1/2. It may be expected that in the near future pharmacogenetic knowledge will also be used within personalized treatment of type 2 diabetes. PMID:27180666

  11. Screening and isolation of the algicidal compounds from marine green alga Ulva intestinalis

    NASA Astrophysics Data System (ADS)

    Sun, Xue; Jin, Haoliang; Zhang, Lin; Hu, Wei; Li, Yahe; Xu, Nianjun

    2015-07-01

    Twenty species of seaweed were collected from the coast of Zhejiang, China, extracted with ethanol, and screened for algicidal activity against red tide microalgae Heterosigma akashiwo and Prorocentrum micans. Inhibitory effects of fresh and dried tißsues of green alga Ulva intestinalis were assessed and the main algicidal compounds were isolated, purified, and identified. Five seaweed species, U. intestinalis, U. fasciata, Grateloupia romosissima, Chondria crassicaulis, and Gracilariopsis lemaneiformis, were investigated for their algicidal activities. Fresh tissues of 8.0 and 16.0 mg/mL of U. intestinalis dissolved in media significantly inhibited growth of H. akashiwo and P. micans, respectively. Dried tissue and ethyl acetate (EtOAc) extracts of U. intestinalis at greater than 1.2 and 0.04 mg/mL, respectively, were fatal to H. akashiwo, while its water and EtOAc extracts in excess of 0.96 and 0.32 mg/mL, respectively, were lethal to P. micans. Three algicidal compounds in the EtOAc extracts were identified as 15-ethoxy- (6z,9z,12z)-hexadecatrienoic acid (I), (6E,9E,12E)-(2-acetoxy-β-D-glucose)-octadecatrienoic acid ester (II) and hexadecanoic acid (III). Of these, compound II displayed the most potent algicidal activity with IC50 values of 4.9 and 14.1 µg/mL for H. akashiwo and P. micans, respectively. Compound I showed moderate algicidal activity with IC50 values of 13.4 and 24.7 µg/mL for H. akashiwo and P. micans, respectively. These findings suggested that certain macroalgae or products therefrom could be used as effective biological control agents against red tide algae.

  12. Screening and isolation of the algicidal compounds from marine green alga Ulva intestinalis

    NASA Astrophysics Data System (ADS)

    Sun, Xue; Jin, Haoliang; Zhang, Lin; Hu, Wei; Li, Yahe; Xu, Nianjun

    2016-07-01

    Twenty species of seaweed were collected from the coast of Zhejiang, China, extracted with ethanol, and screened for algicidal activity against red tide microalgae Heterosigma akashiwo and Prorocentrum micans. Inhibitory effects of fresh and dried tißsues of green alga Ulva intestinalis were assessed and the main algicidal compounds were isolated, purified, and identified. Five seaweed species, U. intestinalis, U. fasciata, Grateloupia romosissima, Chondria crassicaulis, and Gracilariopsis lemaneiformis, were investigated for their algicidal activities. Fresh tissues of 8.0 and 16.0 mg/mL of U. intestinalis dissolved in media significantly inhibited growth of H. akashiwo and P. micans, respectively. Dried tissue and ethyl acetate (EtOAc) extracts of U. intestinalis at greater than 1.2 and 0.04 mg/mL, respectively, were fatal to H. akashiwo, while its water and EtOAc extracts in excess of 0.96 and 0.32 mg/mL, respectively, were lethal to P. micans. Three algicidal compounds in the EtOAc extracts were identified as 15-ethoxy-(6z,9z,12z)-hexadecatrienoic acid (I), (6E,9E,12E)-(2-acetoxy- β-D-glucose)-octadecatrienoic acid ester (II) and hexadecanoic acid (III). Of these, compound II displayed the most potent algicidal activity with IC50 values of 4.9 and 14.1 µg/mL for H. akashiwo and P. micans, respectively. Compound I showed moderate algicidal activity with IC50 values of 13.4 and 24.7 µg/mL for H. akashiwo and P. micans, respectively. These findings suggested that certain macroalgae or products therefrom could be used as effective biological control agents against red tide algae.

  13. Isolation and Characterization of the Anticancer Compound Piceatannol from Sophora Interrupta Bedd

    PubMed Central

    Mathi, Pardhasaradhi; Das, Snehasish; Nikhil, Kumar; Roy, Partha; Yerra, Srikanth; Ravada, Suryachandra Rao; Bokka, Venkata Raman; Botlagunta, Mahendran

    2015-01-01

    Background: Sophora belongs to the family of Fabaceae and the species in this genus are currently used as a folklore medicine for preventing a variety of ailments including cancer. Our aim was to identify and validate an anticancer compound from Sophora interrupta using multi-spectroscopic, anticancer screening, and molecular docking approach. Methods: The cytotoxicity of the various solvent extracts, petroleum ether, n-butanol, and ethyl acetate (EtOAc) of the S. interrupta root powder was evaluated in a breast cancer cell lines (MCF-7). The extract that had anticancer activity was subjected to column chromatography based on the polarity of the solvents. The anticancer activity of the elution fractions was validated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The isolated metabolite fraction with anticancer activity was run through a C18 column isocratic and gradient high-performance liquid chromatography (HPLC). The structure of the isolated compound was characterized using 1H nuclear magnetic resonance (NMR), 13C-NMR, Fourier transform infrared spectroscopy, and liquid chromatography-mass spectrometer methods. Results: The crude EtAOc extract effectively inhibited the proliferation of MCF-7 cells. The column eluted chloroform and EtOAc (4:6) fraction of the EtOAc extract showed significant anticancer activity in the MCF-7 cells compared with normal mesenchymal stem cells. This fraction showed three major peaks in the HPLC chromatogram and the first major peak with a retention time (RT) of 7.153 was purified using preparative-HPLC. The structure of the compound is a piceatannol, which is a metabolic product of resveratrol. Piceatannol formed direct two hydrogen bond interactions between Cys912 (2H), and Glu878 of vascular endothelial growth factor receptor 1 (VEGFR1) with a glide-score (G-score) of −10.193, and two hydrogen bond interactions between Cys919, and Asp1046 of VEGFR2, with a G-score of −8.359. The structure is

  14. Apoptosis mediated anti-proliferative effect of compound isolated from Cassia auriculata leaves against human colon cancer cell line

    NASA Astrophysics Data System (ADS)

    Esakkirajan, M.; Prabhu, N. M.; Manikandan, R.; Beulaja, M.; Prabhu, D.; Govindaraju, K.; Thiagarajan, R.; Arulvasu, C.; Dhanasekaran, G.; Dinesh, D.; Babu, G.

    2014-06-01

    A compound was isolated from Cassia auriculata leaves and characterized by high-performance liquid chromatography (HPLC), liquid chromatography mass spectrometry (LC-MS), UV-vis spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR). The in vitro anticancer effect of the compound isolated from C. auriculata was evaluated in human colon cancer cells HCT 15 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cytotoxicity, nuclear morphology analysis and measurement of lactate dehydrogenase. The isolated compound 4-(2,5 dichlorobenzyl)-2,3,4,5,6,7 hexahydro7(4 methoxyphenyl)benzo[h][1,4,7] triazecin8(1H)-one showed 50% inhibition of HCT 15 cells when tested at 20 μg/ml after 24 h incubation. Cytotoxicity, nuclear morphology and lactate dehydrogenase assays clearly show potent anticancer activity of the isolated compound against colon cancer. Thus, the in vitro findings suggest that the compound isolated from C. auriculata leaves have potent anti-cancer properties with possible clinical applications.

  15. Apoptosis mediated anti-proliferative effect of compound isolated from Cassia auriculata leaves against human colon cancer cell line.

    PubMed

    Esakkirajan, M; Prabhu, N M; Manikandan, R; Beulaja, M; Prabhu, D; Govindaraju, K; Thiagarajan, R; Arulvasu, C; Dhanasekaran, G; Dinesh, D; Babu, G

    2014-06-01

    A compound was isolated from Cassia auriculata leaves and characterized by high-performance liquid chromatography (HPLC), liquid chromatography mass spectrometry (LC-MS), UV-vis spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR). The in vitro anticancer effect of the compound isolated from C. auriculata was evaluated in human colon cancer cells HCT 15 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cytotoxicity, nuclear morphology analysis and measurement of lactate dehydrogenase. The isolated compound 4-(2,5 dichlorobenzyl)-2,3,4,5,6,7 hexahydro7(4 methoxyphenyl)benzo[h][1,4,7] triazecin8(1H)-one showed 50% inhibition of HCT 15 cells when tested at 20μg/ml after 24h incubation. Cytotoxicity, nuclear morphology and lactate dehydrogenase assays clearly show potent anticancer activity of the isolated compound against colon cancer. Thus, the in vitro findings suggest that the compound isolated from C. auriculata leaves have potent anti-cancer properties with possible clinical applications. PMID:24657422

  16. Examinations of the matrix isolation fourier transform infrared spectra of organic compounds: Part XII

    SciTech Connect

    Coleman, W. M., III; Gordon, B. M.; Lawrence, B. M.

    1989-02-01

    Matrix isolation Fourier transform infrared spectra (MI/FT-IR), massspectra (MS), carbon-13 Nuclear Magnetic Resonance (/sup 13/C-NMR) spectra,condensed-phase infrared spectra, and vapor-phase infrared (IR)spectra are presented for a series of terpene compounds. Subtle differencesin positional and configurational isomers commonly found withterpenes could be easily detected by the MI/FT-IR spectra. The resultsare comparable in some aspects to those obtainable from /sup 13/C-NMR andthin-film IR; however, most importantly, they are acquired at the lownanogram level for MI/FT-IR, as compared to the milligram level forthe other techniques. These results represent an advance in the technologyavailable for the analysis of complex mixtures such as essential oilscontaining terpene-like molecules.

  17. Review of clinical studies of Polygonum multiflorum Thunb. and its isolated bioactive compounds.

    PubMed

    Bounda, Guy-Armel; Feng, Y U

    2015-01-01

    Polygonum multiflorum Thunb. (PMT), officially listed in the Chinese Pharmacopoeia, is one of the most popular perennial Chinese traditional medicines known as He shou wu in China and East Asia, and as Fo-ti in North America. Mounting pharmacological studies have stressed out its key benefice for the treatment of various diseases and medical conditions such as liver injury, cancer, diabetes, alopecia, atherosclerosis, and neurodegenerative diseases as well. International databases such as PubMed/Medline, Science citation Index and Google Scholar were searched for clinical studies recently published on P. multiflorum. Various clinical studies published articles were retrieved, providing information relevant to pharmacokinetics-pharmacodynamics analysis, sleep disorders, dyslipidemia treatment, and neurodegenerative diseases. This review is an effort to update the clinical picture of investigations ever carried on PMT and/or its isolated bio-compounds and to enlighten its therapeutic assessment. PMID:26130933

  18. Review of clinical studies of Polygonum multiflorum Thunb. and its isolated bioactive compounds

    PubMed Central

    Bounda, Guy-Armel; Feng, YU

    2015-01-01

    Polygonum multiflorum Thunb. (PMT), officially listed in the Chinese Pharmacopoeia, is one of the most popular perennial Chinese traditional medicines known as He shou wu in China and East Asia, and as Fo-ti in North America. Mounting pharmacological studies have stressed out its key benefice for the treatment of various diseases and medical conditions such as liver injury, cancer, diabetes, alopecia, atherosclerosis, and neurodegenerative diseases as well. International databases such as PubMed/Medline, Science citation Index and Google Scholar were searched for clinical studies recently published on P. multiflorum. Various clinical studies published articles were retrieved, providing information relevant to pharmacokinetics-pharmacodynamics analysis, sleep disorders, dyslipidemia treatment, and neurodegenerative diseases. This review is an effort to update the clinical picture of investigations ever carried on PMT and/or its isolated bio-compounds and to enlighten its therapeutic assessment. PMID:26130933

  19. Isolation of Streptomyces sp. strain capable of butyltin compounds degradation with high efficiency.

    PubMed

    Bernat, Przemysław; Długoński, Jerzy

    2009-11-15

    Dibutyltin (DBT), a widely used plastic stabilizer, has been detected in the environment as well as in human tissues. DBT is considered to be highly neurotoxic and immunotoxic. Hence, DBT needs to be considered as a potential toxic chemical. Degradation of butyltin compounds by Streptomyces sp. isolated from plant waste composting heaps was studied. Glucose grown cells degraded organotin from 10 to 40 mg l(-1). After 1 day of incubation 90% of DBT (added at 20 mg l(-1)) was converted to less toxic derivative--monobutyltin (MBT). DBT metabolism was inhibited by metyrapone addition, a known cytochrome P-450 inhibitor. It could provide evidence that cytochrome P-450 system is involved in DBT metabolism in Streptomyces sp. IM P102. Moreover, according to our knowledge, the degradation of DBT by actinobacterium has not been previously described. PMID:19592163

  20. Isolation of borrelidin as a phytotoxic compound from a potato pathogenic streptomyces strain.

    PubMed

    Cao, Zhisheng; Khodakaramian, Gholam; Arakawa, Kenji; Kinashi, Haruyasu

    2012-01-01

    Streptomyces species strain GK18, isolated in Iran, induced deep-pitted lesions on potato tubers, lesions different from the raised lesions induced by the usual scab-causing phytotoxin, thaxtomin. In addition, neither thaxtomin production nor hybridization to its biosynthetic probe was detected for strain GK18, suggesting the production of a different phytotoxin. The active component was extracted with ethyl acetate from culture filtrate of strain GK18, purified by gel filtration and silica gel chromatography, and identified as an 18-membered macrolide, borrelidin, by spectroscopic analysis. The purified borrelidin induced necrosis on potato tuber slices and inhibited the growth of shoots and roots of radish seedlings. This is the first report on the phytotoxicity of borrelidin as a possible causative compound of potato scab disease. PMID:22313786

  1. Examinations Of The Matrix Isolation Fourier Transform Infrared Spectra Of Organic Compounds.

    NASA Astrophysics Data System (ADS)

    Coleman, W. M.

    1989-12-01

    Matrix isolation Fourier transform infrared spectra (MI/FT-IR), mass spectra (MS), carbon-13 Nuclear Magnetic Resonance (13C-NMR) spectra, condensed phase infrared spectra and vapor phase infrared (IR) spectra are presented for a series of terpene compounds. Subtle differences in positional and configurational isomers commonly found with terpenes could be easily detected by the. MI/FT-IR spqctra. The results are comparable in some aspects to those obtainable from IJC-NMR and thin film IR, however, most importantly, they are acquired at the low nanogram level for MI/FTIR as compared to the milligram level for the other techniques. These results represent an advance in the technology available for the analysis of complex mixtures such as essential oils containing terpene-like molecules.

  2. Anti-diabetic and Anti-hyperlipidemic Effects and Safety of Salacia reticulata and Related Species.

    PubMed

    Stohs, Sidney J; Ray, Sidhartha

    2015-07-01

    Extracts of Salacia reticulata Wight (Hypocrataceae) roots, stems, and leaves have been used in Asia for hundreds of years for the folkloric treatment of diabetes and other health problems. Constituents that have been identified as exhibiting anti-diabetic effects include salacinol, kotalanol, ponkorinol, salaprinol, and their corresponding de-0-sulfonated compounds. Mangiferin, kotalagenin 16-acetate and various proanthocyanidin oligomers have also been isolated. Studies indicate that Salacia extracts modulate multiple targets that influence carbohydrate and lipid metabolism including α-glucosidase, aldose reductase, pancreatic lipase, peroxisomal proliferator-activated receptor-α, glucose transporter-4 mediated glucose uptake, and angiotensin II type 1 receptor. Furthermore, Salacia extracts exhibit free radical scavenging, antioxidant and hepatoprotectant activities. In human studies, Salacia extracts have been shown to decrease plasma glucose and insulin levels, decrease HbA1c, and modulate serum lipid levels with no adverse effects being reported. Similar results have been demonstrated in rat and mouse models as well as in vitro systems. Safety of S. reticulata and other Salacia species as S. oblonga and S. chinensis in rats and mice indicate that extracts are exceedingly safe. No clinical studies have examined the effects of Salacia extracts on human weight loss, although weight loss and decreases in weight gain have been demonstrated in animal models. Because of the large number of pharmacologically active compounds, it is difficult to establish standards for extracts. PMID:26031882

  3. Membrane filtration of agro-industrial wastewaters and isolation of organic compounds with high added values.

    PubMed

    Zagklis, Dimitris P; Paraskeva, Christakis A

    2014-01-01

    The aim of the current study was the exploitation of agro-industrial wastes or by-products such as olive mill wastewater (OMW) and defective wines. A cost-effective system for their maximum exploitation is suggested, using a combined process of membrane filtration and other physicochemical processes. Wastewaters are first treated in a membrane system (prefiltration, ultrafiltration, nanofiltration, and reverse osmosis) where pure water and other organic fractions (by-products) are obtained. Organic fractions, called hereafter byproducts and not wastes, are further treated for the separation of organic compounds and isolation of high added value products. Experiments were performed with OMW and defective wines as characteristic agro-industrial wastewaters. Profit from the exploitation of agro-industrial wastewaters can readily help the depreciation of the indeed high cost process of membrane filtration. The simple phenolic fraction of the OMW was successfully isolated from the rest of the waste, and problems occurring during winemaking, such as high volatile acidity and odours, were tackled. PMID:24434988

  4. Isolation and identification of bioactive compounds from chloroform fraction of methanolic extract of Carissa opaca roots.

    PubMed

    Ahmed, Dildar; Fatima, Khaizran; Saeed, Ramsha; Masih, Rashid

    2016-09-01

    Carissa opaca is a shrub known for its variety of medicinal applications. This study reports isolation and identification of four chemical compounds from its roots for the first time. The methanolic extract of the roots was fractionated into various solvents with increasing polarity. Chloroform fraction was subjected to column and thin layer chromatography to ultimately yield 2H-cyclopropanaphthalene-2-one, 7-hydroxy-6-methoxy-2H-1-benzopyran-2-one, 3-(4-methoxyphenyl)-2,6-dimethylbenzofuran and 5(1H)-azulenone, 2,4,6,7,8,8a-hexahydro-3,8-dimethyl-4-(1-methylethylidene)-,(8S-cis). They were identified by GC-MS analysis. The compounds exhibited considerable antimicrobial activities against Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger with zones of inhibition ranging from 10 to 13 mm as compared to the standard drug amoxicillin with zones of inhibition 13-17 mm under the similar conditions. In conclusion, the roots of C. opaca can provide new leads for future antimicrobial drugs. PMID:26539756

  5. Radical scavenging ability of some compounds isolated from Piper cubeba towards free radicals.

    PubMed

    Aboul-Enein, Hassan Y; Kładna, Aleksandra; Kruk, Irena

    2011-01-01

    The purpose of this study was to identify the antioxidant activity of 16 compounds isolated from Piper cubeba (CNCs) through the extent of their capacities to scavenge free radicals, hydroxyl radical (HO(•)), superoxide anion radical O•(2)(-) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(•)), in different systems. Electron paramagnetic resonance (EPR) and 5,5-dimethyl-1-pyrroline-N-oxide, DMPO, as the spin trap, and chemiluminescence techniques were applied. Using the Fenton-like reaction [Fe(II) + H(2)O(2)], CNCs were found to inhibit DMPO-OH radical formation ranging from 5 to 57% at 1.25 mmol L(-1) concentration. The examined CNCs also showed a high DPPH antiradical activity (ranging from 15 to 99% at 5 mmol L(-1) concentration). Furthermore, the results indicated that seven of the 16 tested compounds may catalyse the conversion of superoxide radicals generated in the potassium superoxide/18-crown-6 ether system, thus showing superoxide dismutase-like activity. The data obtained suggest that radical scavenging properties of CNCs might have potential application in many plant medicines. PMID:21681910

  6. Antidiabetic, Chemical, and Physical Properties of Organic Vanadates as Presumed Transition-State Inhibitors for Phosphatases.

    PubMed

    Crans, Debbie C

    2015-12-18

    Studies of antidiabetic vanadium compounds, specifically the organic vanadate esters, are reviewed with regard to their chemistry and biological properties. The compounds are described from the perspective of how the fundamental chemistry and properties of organic vanadate esters impact their effects as inhibitors for phosphatases based on the structural information obtained from vanadium-phosphatase complexes. Vanadium compounds have been reported to have antidiabetic properties for more than a century. The structures and properties of organic vanadate complexes are reviewed, and the potency of such vanadium coordination complexes as antidiabetic agents is described. Because such compounds form spontaneously in aqueous environments, the reactions with most components in any assay or cellular environment has potential to be important and should be considered. Generally, the active form of vanadium remains elusive, although studies have been reported of a number of promising vanadium compounds. The description of the antidiabetic properties of vanadium compounds is described here in the context of recent characterization of vanadate-phosphatase protein structures by data mining. Organic vanadate ester compounds are generally four coordinate or five coordinate with the former being substrate analogues and the latter being transition-state analogue inhibitors. These studies demonstrated a framework for characterization of five-coordinate trigonal bipyramidal vanadium inhibitors by comparison with the reported vanadium-protein phosphatase complexes. The binding of the vanadium to the phosphatases is either as a five-coordinate exploded transition-state analogue or as a high energy intermediate, respectively. Even if potency as an inhibitor requires trigonal bipyramidal geometry of the vanadium when bound to the protein, such geometry can be achieved upon binding from compounds with other geometries. Desirable properties of ligands are identified and analyzed. Ligand

  7. Isolation, structure elucidation and enzyme inhibition studies of a new hydroxy ester and other compounds from Berberis jaeschkeana Schneid stem.

    PubMed

    Alamzeb, Muhammad; Khan, M Rafiullah; Mamoon-Ur-Rashid; Ali, Saqib; Khan, Ashfaq Ahmad

    2015-01-01

    Bioassay-guided isolation and fractionation of Berberis jaeschkeana Schneid var. jaeschkeana stem resulted in the isolation and characterisation of a new long chain hydroxy ester named as berberinol (1) along with six known compounds (2-7). All the structures were established from 1D and 2D spectroscopic data. Crude extract, sub-fractions and all the isolated compounds were evaluated for their anti-fungal and urease enzyme inhibition properties. All of the sub-fractions and compounds showed good anti-fungal and urease enzyme inhibition properties. Minimum inhibitory concentrations (MICs) were calculated for all active samples in case of urease enzyme inhibition. MICs values were found to be in the range of 39.03-49.78 μg/mL for urease enzyme inhibition. PMID:25604951

  8. Isolation and Structural Elucidation of Antiproliferative Compounds of Lipidic Fractions from White Shrimp Muscle (Litopenaeus vannamei)

    PubMed Central

    López-Saiz, Carmen-María; Velázquez, Carlos; Hernández, Javier; Cinco-Moroyoqui, Francisco-Javier; Plascencia-Jatomea, Maribel; Robles-Sánchez, Maribel; Machi-Lara, Lorena; Burgos-Hernández, Armando

    2014-01-01

    Shrimp is one of the most popular seafood items worldwide, and has been reported as a source of chemopreventive compounds. In this study, shrimp lipids were separated by solvent partition and further fractionated by semi-preparative RP-HPLC and finally by open column chromatography in order to obtain isolated antiproliferative compounds. Antiproliferative activity was assessed by inhibition of M12.C3.F6 murine cell growth using the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay. The methanolic fraction showed the highest antiproliferative activity; this fraction was separated into 15 different sub-fractions (M1–M15). Fractions M8, M9, M10, M12, and M13 were antiproliferative at 100 µg/mL and they were further tested at lower concentrations. Fractions M12 and M13 exerted the highest growth inhibition with an IC50 of 19.5 ± 8.6 and 34.9 ± 7.3 µg/mL, respectively. Fraction M12 was further fractionated in three sub-fractions M12a, M12b, and M12c. Fraction M12a was identified as di-ethyl-hexyl-phthalate, fraction M12b as a triglyceride substituted by at least two fatty acids (predominantly oleic acid accompanied with eicosapentaenoic acid) and fraction M12c as another triglyceride substituted with eicosapentaenoic acid and saturated fatty acids. Bioactive triglyceride contained in M12c exerted the highest antiproliferative activity with an IC50 of 11.33 ± 5.6 µg/mL. Biological activity in shrimp had been previously attributed to astaxanthin; this study demonstrated that polyunsaturated fatty acids are the main compounds responsible for antiproliferative activity. PMID:25526568

  9. Isolation and Identification of Antifungal Compounds from Bacillus subtilis C9 Inhibiting the Growth of Plant Pathogenic Fungi

    PubMed Central

    Islam, Md. Rezuanul; Jeong, Yong Tae; Lee, Yong Se

    2012-01-01

    Antagonistic microorganisms against Rhizoctonia solani were isolated and their antifungal activities were investigated. Two hundred sixteen bacterial isolates were isolated from various soil samples and 19 isolates were found to antagonize the selected plant pathogenic fungi with varying degrees. Among them, isolate C9 was selected as an antagonistic microorganism with potential for use in further studies. Treatment with the selected isolate C9 resulted in significantly reduced incidence of stem-segment colonization by R. solani AG2-2(IV) in Zoysia grass and enhanced growth of grass. Through its biochemical, physiological, and 16S rDNA characteristics, the selected bacterium was identified as Bacillus subtilis subsp. subtilis. Mannitol (1%) and soytone (1%) were found to be the best carbon and nitrogen sources, respectively, for use in antibiotic production. An antibiotic compound, designated as DG4, was separated and purified from ethyl acetate extract of the culture broth of isolate C9. On the basis of spectral data, including proton nuclear magneric resonance (1H NMR), carbon nuclear magneric resonance (13C NMR), and mass analyses, its chemical structure was established as a stereoisomer of acetylbutanediol. Application of the ethyl acetate extract of isolate C9 to several plant pathogens resulted in dose-dependent inhibition. Treatment with the purified compound (an isomer of acetylbuanediol) resulted in significantly inhibited growth of tested pathogens. The cell free culture supernatant of isolate C9 showed a chitinase effect on chitin medium. Results from the present study demonstrated the significant potential of the purified compound from isolate C9 for use as a biocontrol agent as well as a plant growth promoter with the ability to trigger induced systemic resistance of plants. PMID:22783136

  10. Fishing for Nature's Hits: Establishment of the Zebrafish as a Model for Screening Antidiabetic Natural Products

    PubMed Central

    Tabassum, Nadia; Tai, Hongmei; Jung, Da-Woon; Williams, Darren R.

    2015-01-01

    Diabetes mellitus affects millions of people worldwide and significantly impacts their quality of life. Moreover, life threatening diseases, such as myocardial infarction, blindness, and renal disorders, increase the morbidity rate associated with diabetes. Various natural products from medicinal plants have shown potential as antidiabetes agents in cell-based screening systems. However, many of these potential “hits” fail in mammalian tests, due to issues such as poor pharmacokinetics and/or toxic side effects. To address this problem, the zebrafish (Danio rerio) model has been developed as a “bridge” to provide an experimentally convenient animal-based screening system to identify drug candidates that are active in vivo. In this review, we discuss the application of zebrafish to drug screening technologies for diabetes research. Specifically, the discovery of natural product-based antidiabetes compounds using zebrafish will be described. For example, it has recently been demonstrated that antidiabetic natural compounds can be identified in zebrafish using activity guided fractionation of crude plant extracts. Moreover, the development of fluorescent-tagged glucose bioprobes has allowed the screening of natural product-based modulators of glucose homeostasis in zebrafish. We hope that the discussion of these advances will illustrate the value and simplicity of establishing zebrafish-based assays for antidiabetic compounds in natural products-based laboratories. PMID:26681965

  11. Surface topographical and ultrastructural alterations of Raillietina echinobothrida and Ascaridia galli induced by a compound isolated from Acacia oxyphylla.

    PubMed

    Roy, B; Dasgupta, S; Manivel, V; Parameswaran, P S; Giri, B R

    2012-04-30

    The stem bark of Acacia oxyphylla Graham ex Bentham is used as an anthelmintic by the natives of Mizoram (North-East India). Therefore, the aim of the study was to assess the effect of the active compound isolated from A. oxyphylla on the tegument of adult Raillietina echinobothrida and Ascaridia galli. The test parasites R. echinobothrida and A. galli were incubated in physiological buffered saline containing 0.0005, 0.001, 0.05, 0.1 and 1mg/ml of the isolated compound. The alterations in the tegument of the parasites post paralysis were examined using electron microscopes. The compound reduced the cestode's motility soon after incubation, but did not induce paralysis in the nematodes till about 11-14 h at highest concentration. The compound caused extensive digestion of cestode tegument as evident by electron microscopy. Disorganization of muscle bundles, loss of cell-cell contact, extreme vacuolization and oedema were some of the changes observed. Loss of cellular organelles combined with distortion of those present was markedly noted throughout the parasite tissue. Deformation and disorganization of epicuticle, disruption of mitochondrial and nuclear membrane were also observed in nematode exposed to the active compound of the plant. Substantial structural deformities in the treated parasites are indicative of an efficient vermicidal activity of the isolated compound against cestodes and nematodes. PMID:22265802

  12. Proteinase-producing halophilic lactic acid bacteria isolated from fish sauce fermentation and their ability to produce volatile compounds.

    PubMed

    Udomsil, Natteewan; Rodtong, Sureelak; Tanasupawat, Somboon; Yongsawatdigul, Jirawat

    2010-07-15

    Halophilic lactic acid bacteria were isolated from fish sauce mashes fermented at 1 to 12 months. Seven out of sixty-four isolates were selected according to their proteolytic activity and growth at 25% NaCl for characterization and investigation of volatile compound production. All selected isolates were Gram-positive cocci with pairs/tetrads and grew at 0-25% NaCl, pH 4.5-9.0. Results of 16S rRNA gene sequence analysis showed 99% homology to Tetragenococcus halophilus ATCC 33315. The restriction fragment length polymorphism (RFLP) patterns of all isolates were also similar to those of T. halophilus ATCC 33315. These isolates were, thus, identified as T. halophilus. All isolates hydrolyzed fish protein in the medium containing 25% NaCl. Intracellular aminopeptidase of 7 isolates exhibited the highest activity of 2.85-3.67 U/ml toward Ala-p-nitroanilide (Ala-pNA). T.halophilus strains MS33 and M11 showed the highest alanyl aminopeptidase activity (P<0.05), and produced histamine in mGYP broth containing 5 and 25% NaCl in the level of 6.62-22.55 and 13.14-20.39 mg/100ml, respectively. Predominant volatile compounds of fish broth containing 25% NaCl inoculated with T. halophilus MS33 and MRC5-5-2 were 1-propanol, 2-methylpropanal, and benzaldehyde, corresponding to major volatile compounds in fish sauce. T.halophilus appeared to play an important role in volatile compound formation during fish sauce fermentation. PMID:20541276

  13. Immunomodulatory Effects of a Bioactive Compound Isolated from Dryopteris crassirhizoma on the Grass Carp Ctenopharyngodon idella

    PubMed Central

    Chi, Cheng; Giri, Sib Sankar; Jun, Jin Woo; Kim, Hyoun Joong; Yun, Saekil; Kim, Sang Guen

    2016-01-01

    In the present study, we investigated effects of compound kaempferol 3-a-L-(4-O-acetyl)rhamnopyranoside-7-a-L-rhamnopyranoside (SA) isolated from Dryopteris crassirhizoma during immune-related gene expression in Ctenopharyngodon idella head kidney macrophages (CIHKM). The expression of immune-related genes (IL-1β, TNF-α, MyD88, and Mx1) were investigated using real-time PCR at 2 h, 8 h, 12 h, and 24 h after incubation with 1, 10, and 50 μg mL−1 of SA. Furthermore, fish were injected intraperitoneally with 100 μL of SA, and immune parameters such as lysozyme activity, complement C3, SOD, phagocytic activity, and IgM level were examined at 1, 2, and 3 weeks after injection. The differential expression of cytokines was observed after exposure to SA. IL-1β genes displayed significant expression at 2 and 8 h after exposure to 1–10 μg mL−1 of SA. SA also induced gene expression of cytokines such as MyD88, Mx1, and TNF-α. Furthermore, enhanced immune parameters in grass carp confirmed the immunomodulatory activity of SA. Interestingly, this compound has no toxic effect on CIHKM cells as tested by MTT assay. In addition, fish immunised with 10 μg mL−1 of SA exhibited maximum resistance against Aeromonas hydrophila infection. These results suggest that SA has the potential to stimulate immune responses in grass carp. PMID:27294155

  14. Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) Sweet.

    PubMed

    Abdul Rahuman, A; Gopalakrishnan, Geetha; Venkatesan, P; Geetha, Kannappan

    2008-04-01

    Larvicidal activity of crude hexane, ethyl acetate, petroleum ether, acetone and methanol extracts of five medicinal plants, Abutilon indicum, Aegle marmelos, Euphorbia thymifolia, Jatropha gossypifolia and Solanum torvum were assayed for their toxicity against the early fourth-instar larvae of Culex quinquefasciatus. The larval mortality was observed after 24 h exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in petroleum ether extract of A. indicum. In the present study, bioassay-guided fractionation of A. indicum led to the separation and identification of a beta-sitosterol as a potential new mosquito larvicidal compound with LC50 value of 11.49, 3.58 and 26.67 ppm against Aedes aegypti L, Anopheles stephensi Liston and C. quinquefasciatus Say (Diptera: Culicidae), respectively. 1H NMR, 13C NMR and mass spectral data confirmed the identification of the active compound. beta-sitosterol has been recognized as the active ingredient of many medicinal plant extracts. All the crude extracts when screened for their larvicidal activities indicated toxicity against the larvae of C. quinquefasciatus. This article reports the isolation and identification of the beta-sitosterol as well as bioassay data for the crude extracts. There are no reports of beta-sitosterol in the genus A. indicum, and their larvicidal activities are being evaluated for the first time. Results of this study show that the petroleum ether extract of A. indicum may be considered as a potent source and beta-sitosterol as a new natural mosquito larvicidal agent. PMID:18176816

  15. Antidiabetic drugs and risk of cancer.

    PubMed

    Tokajuk, Anna; Krzyżanowska-Grycel, Edyta; Tokajuk, Adrian; Grycel, Sławomir; Sadowska, Anna; Car, Halina

    2015-12-01

    Antidiabetic drugs are an important group of medications used worldwide. They differ from each other in the mechanisms of lowering blood glucose as well as in adverse effects that may affect the course of the treatment and its efficacy. In recent years, new drugs have been discovered in order to improve the maintenance of proper blood glucose level and to reduce unwanted effects of these drugs. Their growing administration is related to the increasing incidence of diabetes observed in all countries in the world. Epidemiological data indicate that diabetes increases the risk of cancer, as well as the risk of death linked with neoplasms. It is still unknown whether this is an effect of antidiabetic drugs or just the effect of diabetes itself. In recent years there have been numerous investigations and meta-analyzes, based on both comparative and cohort studies trying to establish the relationship between antidiabetic pharmacotherapy and the incidence and mortality due to cancer. According to their findings, most of antidiabetic drugs increase the risk of cancer while only few of them show antitumor properties. Different mechanisms of action of glucose-lowering drugs may be responsible for these effects. However, most of the published studies concerning the influence of these drugs on cancer incidence were designed with some limitations and differed from each other in the approach. In this review, we discuss the association between antidiabetic drugs used in monotherapy or polytherapy and cancer risk, and consider potential mechanisms responsible for the observed effects. PMID:26481548

  16. Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds

    PubMed Central

    Bhore, Subhash J; Ravichantar, Nithya; Loh, Chye Ying

    2010-01-01

    Endophytic bacteria are harmless in most plant species; and known to boost the growth and development of the host plants probably by secreting growth hormones. The isolation, identification and screening of endophytic bacteria for the plant growth regulators like cytokinin are needed to get the leads for their applications in agriculture sector. We describe the isolation and identification of the bacterial endophytes from the leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] and their screening for cytokinin-like compounds. We isolated three endophytic bacteria from the leaves of G. procumbens collected from the forest research institute of Malaysia (FRIM). They were further identified using amplified 16S rRNA gene sequence based method of bacterial identification. The ethyl acetate extracts of the isolates-broth were analyzed using cucumber cotyledon greening bioassay (CCGB) to determine the presence of cytokinin-like compounds. Consequently, the bacterial putative endophytes were identified as Psuedomonas resinovorans, Paenibacillus polymaxa, and Acenitobacter calcoaceticus. Broth-extracts from two (Psuedomonas resinovorans and Paenibacillus polymaxa) of the three putative bacterial endophytes show the positive results in their screening for cytokinin-like compounds using CCGB. Thus, we hypothesize that the bacterial putative endophytes of G. procumbens that produce cytokinin-like compounds might have a role in the growth and development of G. procumbens. Abbreviations CCGB - Cucumber cotyledon greening bioassay, rDNA - Ribosomal DNA, K12, BAP - 6-Benzylaminopurine, Db1, MSA - Multiple sequence alignment. 8081, PMID:21364796

  17. Chemical analysis and antimicrobial activity of the resin Ladano, of its essential oil and of the isolated compounds.

    PubMed

    Demetzos, C; Stahl, B; Anastassaki, T; Gazouli, M; Tzouvelekis, L S; Rallis, M

    1999-02-01

    Fractionation of the resin Ladano from Cistus creticus subsp. creticus and susceptibility testing using the chromatographic fractions showed that its antistaphylococcal activity was mainly due to the diterpene sclareol. The antimicrobial activity of its essential oil, of the chromatographic fractions, and of the isolated compounds was also evaluated against Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus hominis. PMID:10083849

  18. Isolation and structural elucidation of cytotoxic compounds from the root bark of Diospyros quercina (Baill.) endemic to Madagascar

    PubMed Central

    Ruphin, Fatiany Pierre; Baholy, Robijaona; Emmanuel, Randrianarivo; Amelie, Raharisololalao; Martin, Marie-Therese; Koto–te-Nyiwa, Ngbolua

    2014-01-01

    Objective To isolate and characterize the cytotoxic compounds from Diospyros quercina (Baill.) G.E. Schatz & Lowry (Ebenaceae). Methods An ethno-botanical survey was conducted in the south of Madagascar from July to August 2010. Bio-guided fractionation assay was carried out on the root bark of Diospyros quercina, using cytotoxicity bioassay on murine P388 leukemia cell lines as model. The structures of the cytotoxic compounds were elucidated by 1D and 2D NMR spectroscopy and mass spectrometry. Results Biological experiments resulted in the isolation of three bioactive pure compounds (named TR-21, TR-22, and TR-23) which exhibited very good in vitro cytotoxic activities with the IC50 values of (0.017 5±0.0060) µg/mL, (0.089±0.005) µg/mL and (1.027±0.070) µg/mL respectively. Thus, they support the claims of traditional healers and suggest the possible correlation between the chemical composition of this plant and its wide use in Malagasy folk medicine to treat cancer. Conclusions The ability of isolated compounds in this study to inhibit cell growth may represent a rational explanation for the use of Diospyros quercina root bark in treating cancer by Malagasy traditional healers. Further studies are, therefore, necessary to evaluate the in vivo anti-neoplastic activity of these cytotoxic compounds as effective anticancer drugs. PMID:25182433

  19. Saponins: Anti-diabetic principles from medicinal plants - A review.

    PubMed

    Elekofehinti, Olusola Olalekan

    2015-06-01

    Diabetes mellitus (DM) represents a global health problem. It is the most common of the endocrine disorders and is characterized by chronic hyperglycemia due to relative or absolute lack of insulin secretion or insulin actions. According to the World Health Organization projections, the diabetes population is likely to increase to 300 million or more by the year 2025. Current synthetic agents and insulin used effectively for the treatment of diabetes are scarce especially in rural areas, expensive and have prominent adverse effects. Complementary and alternative approaches to diabetes management such as isolation of phytochemicals with anti-hyperglycemic activities from medicinal plants is therefore imperative. Saponins are phytochemical with structural diversity and biological activities. This paper reviews saponins and various plants from which they were isolated as well as properties that make them ideal for antidiabetic remedy. PMID:25753168

  20. Anti-oxidative and cholinesterase inhibitory effects of leaf extracts and their isolated compounds from two closely related Croton species.

    PubMed

    Ndhlala, Ashwell R; Aderogba, Mutalib A; Ncube, Bhekumthetho; Van Staden, Johannes

    2013-01-01

    A comparative evaluation of the antioxidant and acetylcholinesterase inhibitory activity of the leaf extracts of Croton gratissimus and Croton zambesicus (subgratissimus) and compounds isolated from the extracts was carried out to determine their potential and suitability or otherwise as a substitute for each other in the management of oxidative and neurodegenerative conditions. Different antioxidant assays (DPPH, FRAP, β-carotene-linoleic and the lipid peroxidation models) and the microplate assay for acetylcholinesterase (AChE) inhibition were carried out separately to study the activities of the crude leaf extracts and four solvent fractions from each of the two Croton species. Bioassay guided fractionation was used to target antioxidant constituents of the crude extracts and ethyl acetate fractions of 20% aqueous methanol extract of C. gratissimus on silica gel and Sephadex LH-20 columns resulted in the isolation of kaempferol-3-O-β-6''(p-coumaroyl) glucopyranoside (tiliroside, 2), apigenin-6-C-glucoside (isovitexin, 3) and kampferol (4). The extract of C. zambesicus yielded quercetin-3-O-β-6''(p-coumaroyl) glucopyranoside-3'-methyl ether (helichrysoside- 3'-methyl ether, 1), kaempferol-3-O-β-6''(p-coumaroyl) glucopyranoside (tiliroside, 2) and apigenin-6-C-glucoside (isovitexin, 3). Three of the isolated compounds and their different combinations were also included in the bioassays. In all the assays performed, the antioxidant capacity and AChE inhibitory effects of C. zambesicus extracts were weaker than those of C. gratissimus. This suggests that C. gratissimus may not be substituted by C. zambesicus, despite the similarity in some of their constituents. Generally, the combinations made from the isolated compounds showed better activities in most of the assays compared to the individual isolated compounds. This suggests mechanisms such as synergism and/or additive effects to be taking place. This study established low, moderate and high antioxidant

  1. Selectivity of compounds isolated from the leaves of Nerium indicum Mill. on various human cancer cell lines.

    PubMed

    Mae, S H W; Sofia, M; Bolhuis, R L H; Nooter, K; Oostrum, R G; Subagus, W; Ibnu, G G

    2008-07-01

    The leaves of Nerium indicum Mill. have been utilized traditionally to cure cancer. By Bioassay (BST) guided isolation method, six compounds were isolated from the CHCl3 extract of the leaves. Selectivity of these compounds (in 0.6-12,500 ng/ml) was tested on various human cancer (MCF7, EVSA-T, T47D, H226, IGROV, A498, WIDR, M19, HeLa) and normal (Vero) cells in vitro. Doxorubicin and cysplatin were used as positive controls. The result indicated that NiO2D (5alpha-oleandrin) possessed the best cytotoxic effect on HeLa cells (IC50, 8.38 x10(-6) mM) and NiO2C (16, 17-dehidrodeasetil-5alpha-oleandrin) on A498 cells (IC50, 1.43 x 10(-6) mM). Those two compounds were not cytotoxic to normal cell. PMID:19024965

  2. Antiviral activity of chemical compound isolated from Artemisia morrisonensis against hepatitis B virus in vitro.

    PubMed

    Huang, Tsurng-Juhn; Liu, Shu-Heng; Kuo, Yu-Cheng; Chen, Chia-Wen; Chou, Shen-Chieh

    2014-01-01

    The compound p-hydroxyacetophenone (PHAP) isolated from Artemisia morrisonensis was found to have potential anti-HBV effects in HepG2 2.2.15 cells. We clarified its antiviral mode further and HBV-transfected Huh7 cells were used as the platform. During viral gene expression, treatment with PHAP had no apparent effects on the viral precore/pregenomic RNA. However, the 2.4-kb preS RNA of viral surface gene increased significantly relative to the 2.1-kb S RNA with PHAP. Promoter activity analysis demonstrated that PHAP had a potent effect on augmenting the viral preS promoter activity. The subsequent increase in the large surface protein and induce endoplasmic reticular (ER) stress has been reported previously. Interestingly, PHAP specifically reduced ER stress related GRP78 RNA/protein levels, but not those of GRP94, in treated Huh7 cells while PHAP also led to the significant intracellular accumulation of virus. Moreover, treatment with the ER chaperone inducer thapsigargin relieved the inhibitory effect of PHAP based on the supernatant HBV DNA levels of HBV-expressed cells. In conclusion, this study suggests that the mechanism of HBV inhibition by PHAP might involve the regulation of viral surface gene expression and block virion secretion by interference with the ER stress signaling pathway. PMID:24269476

  3. Antipoliovirus Activity of the Organic Extract of Eupatorium buniifolium: Isolation of Euparin as an Active Compound

    PubMed Central

    Visintini Jaime, María Florencia; Campos, Rodolfo H.; Martino, Virginia S.; Cavallaro, Lucía V.; Muschietti, Liliana V.

    2013-01-01

    The antiviral activity of the organic extract (OE) of Eupatorium buniifolium against poliovirus type 1 was determined by in vitro assays with an effective concentration 50 (EC50) of 23.3 ± 3.3 µg/mL. Bioassay-guided fractionation of the OE allowed the isolation of an active principle that was identified by spectroscopic methods (1H- and 13C-NMR, EI-MS, UV, and IR spectroscopy) as the benzofuran euparin. The plaque reduction assay in Vero cells was used to assess the antiviral activity of euparin against poliovirus types 1, 2, and 3 with EC50 values of 0.47, 0.12, and 0.15 µg/mL, respectively. Moreover, this compound showed high selectivity indexes of 284.9, 1068, and 854.7, respectively. In order to identify the mechanism by which euparin exerts its antiviral activity, the virucidal effect, the pretreatment of Vero cells, and the time of action on one viral replication cycle were evaluated. Results obtained demonstrated that euparin exerts its effect during the early events of the replication cycle, from the virus adsorption to cells up to the first twenty minutes after infection. This is the first report on the presence of euparin in E. buniifolium and its antiviral activity. PMID:23956770

  4. Isolation of Bioactive Compounds That Relate to the Anti-Platelet Activity of Cymbopogon ambiguus

    PubMed Central

    Grice, I. Darren; Rogers, Kelly L.; Griffiths, Lyn R.

    2011-01-01

    Infusions and decoctions of Cymbopogon ambiguus have been used traditionally in Australia for the treatment of headache, chest infections and muscle cramps. The aim of the present study was to screen and identify bioactive compounds from C. ambiguus that could explain this plant's anti-headache activity. A dichloromethane extract of C. ambiguus was identified as having activity in adenosine-diphosphate-induced human platelet aggregation and serotonin-release inhibition bioassays. Subsequent fractionation of this extract led to the isolation of four phenylpropenoids, eugenol, elemicin, eugenol methylether and trans-isoelemicin. While both eugenol and elemicin exhibited dose-dependent inhibition of ADP-induced human platelet serotonin release, only eugenol displayed potent inhibitory activity with an IC50 value of 46.6 μM, in comparison to aspirin, with an IC50 value of 46.1 μM. These findings provide evidence to support the therapeutic efficacy of C. ambiguus in the non-conventional treatment of headache and inflammatory conditions. PMID:20047890

  5. Isolation and characterization of indigenous Streptomyces and Lentzea strains from soils containing boron compounds in Argentina.

    PubMed

    Moraga, Norma Beatriz; Poma, Hugo Ramiro; Amoroso, María Julia; Rajal, Verónica Beatriz

    2014-06-01

    The Salta Province - in the northwest of Argentina - is the main worldwide producer of hydroboracite and leads in exports of boron mineral and its derivatives in Latin America. In addition to the natural presence of boron compounds in the soils, there are others contaminated due to the boron mining industry. Although some bacteria are known to require boron for their growth or to be capable of storing boron, no studies have been published about Streptomyces or Lentzea genera's capacity to tolerate high boron concentrations, or about their metabolic capacities in boron contaminated environments. The results of this research show the isolation and molecular characterization of eight strains belonging to the actinobacteria phylum collected from different soils contaminated with high boron concentration in Salta state. The boron tolerance assays, which show that three of the strains were able to tolerate up 60-80 mM boron, demonstrate the potential capability of this group of bacteria to grow and maybe to remove boron from the environment. They appear to be promising, considering that these microorganisms are infrequent pathogens, are metabolically versatile and many Streptomyces can synthesize boron containing metabolites. PMID:23686918

  6. Investigation of gastroprotective compounds at subcellular level in isolated gastric mucosal cells.

    PubMed

    Nagy, L; Morales, R E; Beinborn, M; Vattay, P; Szabo, S

    2000-12-01

    We tested the hypothesis that recognized gastroprotective agents exert direct protection against ethanol-induced injury in isolated rat gastric mucosal cells in vitro. If protection exists, we also wanted to identify subcellular targets in the reversible and/or irreversible stages of cell injury. Ethanol-induced cell injury was quantified by measuring plasma membrane leakage (trypan blue exclusion and lactate dehydrogenase release), mitochondrial integrity (succinic dehydrogenase), and nuclear damage (ethidium bromide-DNA fluorescence). Initial cell viability and responsiveness were estimated by the effects of carbachol, carbachol + atropine, or 16,16-dimethyl-PGE(2) on chief cell pepsinogen secretion. Enriched parietal cells were stimulated by histamine, carbachol, or histamine + IBMX. Preincubation of cells with PG, sucrose octasulfate, or the sulfhydryl compounds N-acetylcysteine, taurine, or cysteamine increased cell resistance

  7. Protein tyrosine phosphatase 1B inhibitors isolated from Artemisia roxburghiana.

    PubMed

    Shah, Muhammad Raza; Ishtiaq; Hizbullah, Syed Muhammad; Habtemariam, Solomon; Zarrelli, Armando; Muhammad, Akhtar; Collina, Simona; Khan, Inamulllah

    2016-08-01

    Artemisia roxburghiana is used in traditional medicine for treating various diseases including diabetes. The present study was designed to evaluate the antidiabetic potential of active constituents by using protein tyrosine phosphatase 1B (PTP1B) as a validated target for management of diabetes. Various compounds were isolated as active principles from the crude methanolic extract of aerial parts of A. roxburghiana. All compounds were screened for PTP1B inhibitory activity. Molecular docking simulations were performed to investigate the mechanism behind PTP1B inhibition of the isolated compound and positive control, ursolic acid. Betulinic acid, betulin and taraxeryl acetate were the active PTP1B principles with IC50 values 3.49 ± 0.02, 4.17 ± 0.03 and 87.52 ± 0.03 µM, respectively. Molecular docking studies showed significant molecular interactions of the triterpene inhibitors with Gly220, Cys215, Gly218 and Asp48 inside the active site of PTP1B. The antidiabetic activity of A. roxburghiana could be attributed due to PTP1B inhibition by its triterpene constituents, betulin, betulinic acid and taraxeryl acetate. Computational insights of this study revealed that the C-3 and C-17 positions of the compounds needs extensive optimization for the development of new lead compounds. PMID:26118418

  8. Characterization of an Antibacterial Compound, 2-Hydroxyl Indole-3-Propanamide, Produced by Lactic Acid Bacteria Isolated from Fermented Batter.

    PubMed

    Jeevaratnam, Kadirvelu; Vidhyasagar, Venkatasubramanian; Agaliya, Perumal Jayaprabha; Saraniya, Appukuttan; Umaiyaparvathy, Muthukandan

    2015-09-01

    Lactic acid bacteria are known to produce numerous antimicrobial compounds that are active against various pathogens. Here, we have purified and characterized a novel low-molecular-weight (LMW) antimicrobial compound produced by Lactobacillus and Pediococcus isolated from fermented idly and uttapam batter. The LMW compound was extracted from cell-free supernatant using ice-cold acetone, purified by gel permeation and hydrophobic interaction chromatography. It exhibited antimicrobial activity against Gram-positive and Gram-negative pathogenic bacteria sparing the probiotic strains like Lactobacillus rhamnosus. The molecular weight of the LMW compound was identified as 204 Da using LC-MS-ESI. In addition, the structure of the compound was predicted using spectroscopic methods like FTIR and NMR and identified as 2-hydroxyl indole-3-propanamide. The LMW compound was differentiated from its related compound, tryptophan, by Salkowski reaction and thin-layer chromatography. This novel LMW compound, 2-hydroxyl indole-3-propanamide, may have an effective application as an antibiotic which can spare prevailing probiotic organisms but target only the pathogenic strains. PMID:26201479

  9. Antidiabetic activity of Terminalia catappa Linn fruits.

    PubMed

    Nagappa, A N; Thakurdesai, P A; Venkat Rao, N; Singh, Jiwan

    2003-09-01

    In view of alleged antidiabetic potential, effect of the petroleum ether, methanol, and aqueous extracts of Terminalia catappa Linn (combretaceae) fruit, on fasting blood sugar levels and serum biochemical analysis in alloxan-induced diabetic rats were investigated. All the three extracts of Terminalia catappa produced a significant antidiabetic activity at dose levels 1/5 of their lethal doses. Concurrent histological studies of the pancreas of these animals showed comparable regeneration by methanolic and aqueous extracts which were earlier, necrosed by alloxan. PMID:12902049

  10. Immobilized magnetic beads based multi-target affinity selection coupled with high performance liquid chromatography-mass spectrometry for screening anti-diabetic compounds from a Chinese medicine "Tang-Zhi-Qing".

    PubMed

    Tao, Yi; Chen, Zhui; Zhang, Yufeng; Wang, Yi; Cheng, Yiyu

    2013-05-01

    We developed an approach for screening bioactive compounds from botanical drug using multiple target-immobilized magnetic beads coupled with high performance liquid chromatography-mass spectrometry. This novel approach was called magnetic beads based multi-target affinity selection-mass spectrometry (MT-ASMS). It can enrich and identify different types of ligands from mixture extracts. Multiple targets (maltase, invertase, lipase) were immobilized on the magnetic beads by covalent linkage using 1-(3-dimethyl-aminopropyl)-3-ethyl-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as reaction reagents, respectively. The properties of enzyme conjugated magnetic beads were characterized using transmission electron microscopy, X-ray diffractometer and vibration sample magnetometer. Several factors including pH, ion strength, incubation time and temperature were optimized using three known ligands (caffeic acid, ferulic acid, and hesperidin). The established MT-ASMS approach was applied to screening for ligands from a Chinese medicine "Tang-Zhi-Qing", which was used to treat type II diabetes in China. Seven bound compounds were identified via liquid chromatography-mass spectrometry (LC/MS). Five active compounds including 2,3,4,6-tetra-O-galloyl-D-glucose, 1,2,3,4-tetra-O-galloyl-D-glucose, 1,2,3,4,6-penta-O-galloyl-d-glucose, quercetin-3-O-β-D-glucuronide and quercetin-3-O-β-D-glucoside were identified and their activities were validated by conventional inhibitory assay. Our findings suggested that the proposed approach is efficient in screening compounds with multiple activities from extracts of botanical drugs. PMID:23501439

  11. Bioassay-guided isolation of novel compound from Paeonia suffruticosa Andrews roots as an IL-1β inhibitor.

    PubMed

    Choi, Yun-Hyeok; Yoo, Hee-Jung; Noh, Ill Chan; Lee, Jeong-Min; Park, Jae Won; Choi, Wahn Soo; Choi, Jung Ho

    2012-05-01

    The inhibition of Interleukin-1beta (IL-1β) is of substantial interest for the treatment of rheumatoid arthritis. Using an in vitro assay with RAW 264.7 cells, oxo-acetic acid 2-ethoxy-4-(3-hydroxy-2-oxopropyl) phenyl ester (1) was isolated from the roots of Paeonia suffruticosa Andrews as an inhibitor of IL-1β with an IC(50) value of 56 μM. Compound 1 is a novel phenylesteric compound from P. suffruticosa Andrews. Compound 1 was shown to inhibit the production of pro-inflammatory cytokines in RAW 264.7 cells. Thus, a possible new action of novel compound is provided explaining the anti-rheumatoid arthritic properties of P. suffruticosa Andrews. PMID:22644848

  12. Isolation and identification of antiproliferative compounds from the roots of Tetrastigma hemsleyanum against MDA-MB-435S cell lines.

    PubMed

    Lin, Zhucan; Chen, Liyun; Qiu, Qi; Guo, Suhua

    2016-07-01

    This present study aimed to elucidate antiproliferative activity of four extracts (CHCl3, EtOAc, n-BuOH and H2O) and chemical constituents isolated from the most potent extract of Tetrastigma hemsleyanum Diels et. Gilg (TDG) against MDA-MB-435S cell lines using the MTT assay at various concentrations in vitro. Ten compounds were isolated and identified as (1) β-sitosterol, (2) palmitic acid, (3) protocatechuic acid, (4) salicylic acid, (5) p-hydroxybenzoic acid, (6) resveratrol, (7) trans-4-hydroxycinnamic acid, (8) kaempferol, (9) quercetin, and (10) isoquercitrin. Compounds 3, 5-7, 10 were the first report of isolation from this plant. Moreover, antiproliferative activity displayed that the CHCl3, H2O extracts and compounds 6, 8 exhibited obvious inhibitory effects on MDA-MB-435S cell lines with IC50 values 100.28± 2.64, 127.48±3.45, 92.39±1.68 and 120.30±1.97μ/mL, respectively. Thus the obtained results indicate antiproliferative activity of TDG against MDA-MB-435S cell lines is ascribable to the most potent CHCl3 extract along with active compounds 6 and 8, which could be considered as a potential chemotherapeutic agent in breast cancer. PMID:27393430

  13. Novel Antiphytopathogenic Compound 2-Heptyl-5-Hexylfuran-3-Carboxylic Acid, Produced by Newly Isolated Pseudomonas sp. Strain SJT25 ▿†

    PubMed Central

    Wang, Xiao-Ying; Xu, Yu-Quan; Lin, Shuang-Jun; Liu, Zhen-Zhen; Zhong, Jian-Jiang

    2011-01-01

    Pseudomonas sp. strain SJT25, which strongly antagonizes plant pathogens, was isolated from rice rhizosphere soil by a bioactivity-guided approach. A novel antiphytopathogenic compound was isolated from the fermentation broth of Pseudomonas sp. SJT25 and identified as 2-heptyl-5-hexylfuran-3-carboxylic acid. This compound showed antimicrobial activities both in vitro and in vivo. PMID:21742907

  14. Antioxidant Activity of Marine Algal Polyphenolic Compounds: A Mechanistic Approach.

    PubMed

    Fernando, I P Shanura; Kim, Misook; Son, Kwang-Tae; Jeong, Yoonhwa; Jeon, You-Jin

    2016-07-01

    Polyphenolic compounds isolated from marine algae exhibit a broad spectrum of beneficial biological properties, including antioxidant, anticancer, antimicrobial, anti-inflammatory, and antidiabetic activities, along with several other bioactivities centered on their antioxidant properties. Consequently, polyphenolic compounds are increasingly being investigated for their potential use in food, cosmetic, and pharmaceutical applications. The antioxidant activities of these compounds have been explored widely through experimental studies. Nonetheless, a theoretical understanding of the structural and electronic properties could broaden research perspectives, leading to the identification and synthesis of efficient structural analogs with prophylactic uses. This review briefly summarizes the current state of knowledge regarding antioxidant polyphenolic compounds in marine algae with an attempt to describe the structure-activity relationship. PMID:27332715

  15. Evaluation of Mixed Probiotic Starter Cultures Isolated from Kimchi on Physicochemical and Functional Properties, and Volatile Compounds of Fermented Hams.

    PubMed

    Kim, Young Joo; Park, Sung Yong; Lee, Hong Chul; Yoo, Seung Seok; Oh, Sejong; Kim, Kwang Hyun; Chin, Koo Bok

    2016-01-01

    The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham. PMID:27499673

  16. Evaluation of Mixed Probiotic Starter Cultures Isolated from Kimchi on Physicochemical and Functional Properties, and Volatile Compounds of Fermented Hams

    PubMed Central

    Yoo, Seung Seok

    2016-01-01

    The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham. PMID:27499673

  17. Anti microbial and anti-oxidant properties of the isolated compounds from the methanolic extract from the leaves of Tectona grandis.

    PubMed

    Nayeem, Naira; Karvekar, Md

    2011-09-01

    The compounds Gallic acid (GA), rutin(R), quercitin (Q), ellagic acid (EA) and sitosterol(S) were isolated from the methanolic extract of the leaves of Tectona grandis. These compounds were subjected to antimicrobial and antioxidant activity. The zone of inhibition of isolated compounds was evaluated by cup plate method against bacteria i.e. Staphylococcus aureus, Bacillus subtilis, Eschericia coli, Klebsiella pneumoniae and fungi Candida albicans. The anti oxidant activity of the extract and the isolated compounds were evaluated by using 1, 1-Diphenyl-2-picryl-hydrazyl (DPPH). Rutin has shown significant anti microbial activity against both the gram positive and gram negative bacteria when compared to the other compounds. The results of the anti oxidant activity revealed that quercitin showed good activity followed by rutin gallic acid, ellagic acid and sitosterol. The difference in both these activities of the isolated compounds was attributed to the number and position of the phenolic OH groups. PMID:24826018

  18. Tanjungides A and B: New Antitumoral Bromoindole Derived Compounds from Diazona cf formosa. Isolation and Total Synthesis

    PubMed Central

    Murcia, Carmen; Coello, Laura; Fernández, Rogelio; Martín, María Jesús; Reyes, Fernando; Francesch, Andrés; Munt, Simon; Cuevas, Carmen

    2014-01-01

    Tanjungides A (1) (Z isomer) and B (2) (E isomer), two novel dibrominated indole enamides, have been isolated from the tunicate Diazona cf formosa. Their structures were determined by spectroscopic methods including HRMS, and extensive 1D and 2D NMR. The stereochemistry of the cyclised cystine present in both compounds was determined by Marfey’s analysis after chemical degradation and hydrolysis. We also report the first total synthesis of these compounds using methyl 1H-indole-3-carboxylate as starting material and a linear sequence of 11 chemical steps. Tanjungides A and B exhibit significant cytotoxicity against human tumor cell lines. PMID:24566261

  19. Development of antidiabetic nanomedicine from stevioside.

    PubMed

    Yadav, Subhash C; Yadav, Sudesh K; Sood, Anil; Sharma, Mohit; Singh, Bikram

    2011-02-01

    Stevioside, a non-caloric sweetener has huge therapeutic potential as an antidiabetic biomolecule. Stevioside nano-bioconjugated on PEG-PLA nanoparticles of size 150-170 nm showed the initial burst phase followed by the slow controlled release of 2 h and 21 days respectively. PMID:21485800

  20. [Screening and identification of low temperature-adapted antagonistic Bacillus isolated from Kekexili region of West China and the analysis of the isolates lipopeptide compounds].

    PubMed

    Xie, Yong-Li; Gao, Xue-Wen

    2013-01-01

    The research and exploitation of special microbial resources in extreme environment is of scientific significance and has broad applied prospect. In this paper, eight Bacillus strains isolated from the vegetation rhizospheres in Kekexili extreme region of Qinghai Province and presented good growth status at low temperature 4 and 10 degrees C were identified. Through physiological and biochemical analysis, rep-PCR fingerprinting, and 16S rDNA and gyrB partial sequence analyses, the eight strains were identified as Bacillus mojavensis (3 isolates), Bacillus amyloliquefaciens (1 isolate), and Bacillus simplex (4 isolates). The agar plate antagonistic test showed that four of the isolates presented distinct antagonistic activity to Sclerotinia sclerotiorum and Xanthomonas oryzae pv. oryzae. The MALDI-TOF-MS analysis showed that the strain KKD1 (B. mojavensis) produced fengycin and surfactin, whereas the strain KKD2 (B. amyloliquefaciens) produced iturin A, surfactin and fengycin, suggesting that the bio-control efficacy of the Bacillus strains could be related to the synthesis and excretion of the antifungal lipopeptide compounds. This study provided the bacterial resources for the research and exploitation of low temperature-adapted Bacillus bio-fertilizers and bio-pesticides. PMID:23718003

  1. Isolation, structural characterization and in silico drug-like properties prediction of a natural compound from the ethanolic extract of Cayratia trifolia (L.)

    PubMed Central

    Perumal, Palanisamy Chella; Sowmya, Sundaram; Pratibha, Prabhakaran; Vidya, Balasubramanian; Anusooriya, Palanirajan; Starlin, Thangarajan; Ravi, Subban; Gopalakrishnan, Velliyur Kanniappan

    2015-01-01

    Background: Natural products have continually played an important role in drug discovery because it serves as active principles in drugs as well as templates for synthesis of new drugs. Cayratia trifolia (L.) is a medicinal plant, which has been reported to have antiviral, antibacterial, antiprotozoal, hypoglycemic, anticancer and diuretic activities. Objective: Therefore, the objective of this study is to isolate and identify the natural compound from the ethanolic extract of Cayratia trifolia (L.) and to predict the Absorption, Distribution, Metabolism and Excretion (ADME) properties of isolated natural compound. Materials and Methods: Column chromatography and thin layer chromatography were used to isolate the natural compound and Fourier-transform infrared (FTIR) spectroscopy was used to predict the functional groups present in the isolated natural compound. The structural characterization studies were functionally carried out using 1H, 13C, two-dimensional nuclear magnetic resonance (NMR) and mass spectrometry methods. Results: FTIR showed that, the groups of OH, C-H, C = C may be present in the isolated natural compound. 1H, 13C, two-dimensional NMR and mass spectrometry data suggests that the isolated natural compound probably like linoleic acid. In silico ADME properties, prediction of the compound was under acceptable range. Conclusion: Based on the results, it can be concluded that, the isolated natural compound of linoleic acid that has been exhibited good medicinal properties. PMID:25598646

  2. Antidiabetic activity of Helicteres angustifolia root.

    PubMed

    Hu, Xuansheng; Cheng, Delin; Zhang, Zhenya

    2016-06-01

    Context The root of Helicteres angustifolia L. (Sterculiaceae) has been used as folk herbal drug to treat cancer, bacterial infections, inflammatory, and flu in China. However, there is no report on its antidiabetic activity. Objective This study evaluates the antidiabetic activity of ethanol extract from H. angustifolia root. Materials and methods The promoting effect of H. angustifolia root ethanol extract (25, 50, and 100 μg/mL) on glucose uptake was evaluated using HepG2 cell, differentiated C2C12 myotubes, and differentiated 3T3-L1 adipocytes. The antidiabetic activity of the extract was assessed in vivo using STZ-induced diabetic rats by orally administration of the extract (200 and 400 mg/kg b.w.) once per day for 28 d. Blood glucose, TG, TC, TP, HDL-C, UA, BUN, AST, ALT, insulin, and HOMA-IR were analyzed. Results The results showed that the extract increased glucose uptake in C2C12 myotubes and 3T3-L1 adipocytes with an IC50 value of 79.95 and 135.96 μg/mL, respectively. And about 12%, 19%, and 10% (p < 0.05) in HepG2 cells when compared with the control at the concentration of 25, 50, and 100 μg/mL, respectively. After 28 days' treatment with the extract, significant reduction was observed in blood glucose, HOMA-IR, TC, TG, UA, BUN, AST, and ALT levels, while the levels of TP and HDL cholesterol increased. Discussion and conclusion These results suggest that H. angustifolia root ethanol extract possess potent antidiabetic activity, which is the first report on antidiabetic activity of this plant. PMID:26866383

  3. Botanical, Pharmacological, Phytochemical, and Toxicological Aspects of the Antidiabetic Plant Bidens pilosa L.

    PubMed

    Yang, Wen-Chin

    2014-01-01

    Bidens pilosa L. is an easy-to-grow, widespread, and palatable perennial on earth. Hence, it has traditionally been used as foods and medicines without noticeable adverse effects. Despite significant advancement in chemical and biological studies of B. pilosa over the past few years, comprehensive and critical reviews on its anti-diabetic properties are missing. The present review is to summarize up-to-date information on the pharmacology, phytochemistry, and toxicology of B. pilosa, in regard to type 1 diabetes and type 2 diabetes from the literature. In addition to botanical studies and records of the traditional use of B. pilosa in diabetes, scientific studies investigating antidiabetic action of this species and its active phytochemicals are presented and discussed. The structure and biosynthesis of B. pilosa and its polyynes in relation to their anti-diabetic action and mechanism are emphasized. Although some progress has been made, rigorous efforts are further required to unlock the molecular basis and structure-activity relationship of the polyynes isolated from B. pilosa before their clinical applications. The present review provides preliminary information and gives guidance for further anti-diabetic research and development of this plant. PMID:24616740

  4. Interaction of mouse intestinal P-glycoprotein with oral antidiabetic drugs and its inhibitors.

    PubMed

    Kalsi, Harman; Grewal, Ravneet K

    2015-09-01

    Type 2 diabetes (T2DM) is a progressive insulin secretory defect accompanied by resistance to insulin, and thereby making glycemic control a major concern in the treatment of these patients. Oral drug administration, though a popular option for its non-invasiveness, suffer from poor bioavailability. It could be related to the efflux transport of intestinal P-glycoprotein (Pgp). In the present study, we explored the binding interactions of antidiabetic drugs i.e., sulfonylurea drugs (glimepiride, glipizide, glyburide) and rapid acting insulin secretagogues viz., nateglinide, repaglinide and rosiglitazone; and Pgp inhibitors i.e., Generation I (verapamil and tamoxifen), III (tetradrine and tariquidar), and natural inhibitors (fumagillin and piperine) in mouse Pgp model. Our results revealed that fumagillin piperine and verapamil possess maximum interaction energies with Pgp compared to antidiabetic drugs. These observations elucidate the role of fumagillin and piperine as potential natural compounds which could intervene in the efflux action of Pgp in extruding the antidiabetic drugs and may have implications for increasing efficacy of oral antidiabetic therapy. PMID:26548081

  5. Antidiabetic Effect of an Active Components Group from Ilex kudingcha and Its Chemical Composition

    PubMed Central

    Song, Chengwu; Xie, Chao; Zhou, Zhiwen; Yu, Shanggong; Fang, Nianbai

    2012-01-01

    The leaves of Ilex kudingcha are used as an ethnomedicine in the treatment of symptoms related with diabetes mellitus and obesity throughout the centuries in China. The present study investigated the antidiabetic activities of an active components group (ACG) obtained from Ilex kudingcha in alloxan-induced type 2 diabetic mice. ACG significantly reduced the elevated levels of serum glycaemic and lipids in type 2 diabetic mice. 3-Hydroxy-3-methylglutaryl coenzyme A reductase and glucokinase were upregulated significantly, while fatty acid synthetase, glucose-6-phosphatase catalytic enzyme was downregulated in diabetic mice after treatment of ACG. These findings clearly provided evidences regarding the antidiabetic potentials of ACG from Ilex kudingcha. Using LC-DAD/HR-ESI-TOF-MS, six major components were identified in ACG. They are three dicaffeoylquinic acids that have been reported previously, and three new triterpenoid saponins, which were the first time to be identified in Ilex kudingcha. It is reasonable to assume that antidiabetic activity of Ilex kudingcha against hyperglycemia resulted from these six major components. Also, synergistic effects among their compounds may exist in the antidiabetic activity of Ilex kudingcha. PMID:22474502

  6. A new dammarane saponin and other triterpenoids from Siolmatra brasiliensis and evaluation of the antidiabetic activity of its extract.

    PubMed

    Dos Santos, Carlos Henrique Corrêa; Borges, Izabeau Pontes; da Silva, Virgínia Claudia; de Sousa, Paulo Teixeira; Kawashita, Nair Honda; Baviera, Amanda Martins; Carvalho, Mario Geraldo de

    2016-09-01

    Context Siolmatra brasiliensis (Cogn.) Baill (Cucurbitaceae) is a climbing plant widely used for the treatment of diabetes mellitus symptoms. Objective This work evaluates the antidiabetic activity of an extract of S. brasiliensis in streptozotocin-diabetic rats and promotes the phytochemical investigation to isolate the major compounds of the same extract. Materials and methods Male Wistar rats were divided into normal (N) and diabetic rats (DC) treated with water; diabetic rats treated with 3U insulin (DI) or with 250 (DSb250) or 500 mg/kg (DSb500) of hydroalcoholic extract of the stalks of S. brasiliensis, via oral gavage, for 21 days. Physiological and biochemical parameters classically altered in diabetes were monitored. The triterpenoids were isolated from the ethyl acetate fraction under silica gel column chromatography and Sephadex-LH20 methods and their structures were determined by NMR, HR-ESI-MS and DC analysis. Results When compared with DC, DSb250 rats showed a reduction in the hyperglycemia (DC: 26.46 ± 0.69 versus DSb250: 19.67 ± 1.06 mmol/L) and glycosuria (DC: 43.02 ± 3.19 versus DSb250: 28.46 ± 2.14 mmol/24 h) and increase in hepatic glycogen (DC: 14.44 ± 1.26 versus DSb250: 22.08 ± 4.26 mg/g). Three known cucurbitacins were isolated from a hydroalcoholic extract of S. brasiliensis, i.e., cayaponosides A1, B4, D, and a new dammarane saponin 3-O-β-d-gentiobiosyl-26-O-β-d-glucopyranosyl-20-hydroxydammar-24-ene. The structures of these compounds were elucidated by spectral data analysis of the natural products and their acetyl derivatives. Discussion and conclusion The known cucurbitacins and/or the new identified saponin may be related with the antidiabetic activity of S. brasiliensis. PMID:26810155

  7. Natural Phyto-Bioactive Compounds for the Treatment of Type 2 Diabetes: Inflammation as a Target

    PubMed Central

    Gothai, Sivapragasam; Ganesan, Palanivel; Park, Shin-Young; Fakurazi, Sharida; Choi, Dong-Kug; Arulselvan, Palanisamy

    2016-01-01

    Diabetes is a metabolic, endocrine disorder which is characterized by hyperglycemia and glucose intolerance due to insulin resistance. Extensive research has confirmed that inflammation is closely involved in the pathogenesis of diabetes and its complications. Patients with diabetes display typical features of an inflammatory process characterized by the presence of cytokines, immune cell infiltration, impaired function and tissue destruction. Numerous anti-diabetic drugs are often prescribed to diabetic patients, to reduce the risk of diabetes through modulation of inflammation. However, those anti-diabetic drugs are often not successful as a result of side effects; therefore, researchers are searching for efficient natural therapeutic targets with less or no side effects. Natural products’ derived bioactive molecules have been proven to improve insulin resistance and associated complications through suppression of inflammatory signaling pathways. In this review article, we described the extraction, isolation and identification of bioactive compounds and its molecular mechanisms in the prevention of diabetes associated complications. PMID:27527213

  8. Toxic Compound, Anti-Nutritional Factors and Functional Properties of Protein Isolated from Detoxified Jatropha curcas Seed Cake

    PubMed Central

    Saetae, Donlaporn; Suntornsuk, Worapot

    2011-01-01

    Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications. PMID:21339978

  9. Antidermatophytic and Toxicological Evaluations of Dichloromethane-Methanol Extract, Fractions and Compounds Isolated from Coula edulis

    PubMed Central

    Tamokou, Jean De Dieu; Kuiate, Jules Roger; Gatsing, Donatien; Efouet, Alango Pépin Nken; Njouendou, Abdel Jélil

    2011-01-01

    Background: Coula edulis Bail (Olacaceae), is an evergreen tree growing to a height of 25. This study aimed at evaluating the antidermatophytic and toxicological properties of the stem bark of C. edulis extract as well as fractions and compounds isolated from it. Methods: The plant extract was prepared by maceration in CH2Cl2-MeOH (1:1 v/v). The fractionation of this extract was done by silica gel column chromatography. Antidermatophytic activities were assayed using agar dilution method. The acute and sub-acute toxicities of oral administrations of the extract were studied in rodents. Results: The crude extract of C. edulis displayed antidermatophytic activity against the tested microorganisms with highest activity against Microsporum audouinii and Trichophyton mentagrophytes. The fractionation enhanced the antidermatophytic activity in fraction F3 (MIC=0.62-1.25 mg/ml) compared to the crude extract (MIC=1.25-5 mg/ml). Further fractionation and purification of the fractions F2 and F3 gave respectively 3-O-β-D-glucopyranoside of sitosterol (MIC=0.20-0.40 mg/ml) and a mixture of β-sitosterol, stigmasterol and n-hexadecanoid acid (MIC=0.80 mg/ml). The median lethal doses (LD50) of the crude extract were 16.8 and 19.6 g/kg body weight (BW) in male and female mice, respectively. At 200 mg/kg BW, there was a decrease in body weight gain, food and water consumptions. Gross anatomical analysis revealed white vesicles on the liver of the rats treated with the extract at 200 mg/kg BW. This dose also induced significant (P<0.05) changes on hematological and biochemical parameters in rats after 28 days of treatment. Conclusion: These data suggest that the CH2Cl2-MeOH (1:1 v/v) extract of C. edulis stem bark possesses antidermatophytic properties. They also show that at high doses (≥ 200 mg/kg BW), the extract has significant hepatotoxic and nephrotoxic activities. PMID:23357938

  10. Isolation and Chemical Structural Characterisation of a Compound with Antioxidant Activity from the Roots of Senna italica

    PubMed Central

    Mokgotho, Matlou Phineas; Gololo, Stanley Sechene; Masoko, Peter; Shai, Leshwene Jeremiah; Bagla, Victor Patrick; Eloff, Jacobus Nicolaas

    2013-01-01

    Senna italica, a member of the Fabaceae family (subfamily Caesalpiniaceae), is widely used in South African traditional medicine to treat a number of disease conditions. Aqueous extracts of the plant are mainly used to treat sexually transmitted infections and intestinal complications. The roots of S. italica were ground to a fine powder and sequentially extracted with n-hexane, dichloromethane, acetone, and methanol using serial exhaustive extraction (SEE) method. Thin layer chromatography was used to analyse the phytochemical composition of the extracts and DPPH radical scavenging method to detect the presence of antioxidant compounds. The bioassay guided fractionation of the acetone fraction afforded an antioxidant compound with free radical scavenging activity. The isolated compound was subsequently identified as 3,4′,5-trihydroxystilbene (resveratrol). This study represents the first report of the stilbene resveratrol in S. italica. PMID:23843877

  11. Inhibitory Activities of Phenolic Compounds Isolated from Adina rubella Leaves Against 5α-Reductase Associated with Benign Prostatic Hypertrophy.

    PubMed

    Yin, Jun; Heo, Jun Hyeok; Hwang, Yoon Jeong; Le, Thi Tam; Lee, Min Won

    2016-01-01

    Adina rubella Hance (AR), a plant native to Korea, has been used as traditional medicine for dysentery, eczema, intoxication, and external hemorrhages. Previous phytochemical studies of AR have reported several components, including terpenoids, phenolics, and alkaloids. The current study evaluated the anti-oxidative and anti-inflammatory activities and 5α-reductase inhibition of isolated compounds of AR leaves to find a potential therapeutic agent for benign prostatic hypertrophy (BPH). Repeated chromatographic isolation of an 80% acetone extract of AR leaves yielded seven phenolic compounds: caffeic acid (1), chlorogenic acid (2), methyl chlorogenate (3), quercetin-3-rutinoside (4), kaempferol-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (5), hyperoside (6), and grandifloroside (7). Compound 7 is a novel compound in AR. Caffeoyl derivatives 1-3 and 7 showed good anti-oxidative activities. In particular, caffeic acid (1) and grandifloroside (7) showed potent anti-inflammatory activities, and 7 also exhibited potent inhibitory activity against TNF-α and 5α-reductase. Our results show that the extract and grandifloroside (7) from leaves of AR might be developed as a source of potent anti-oxidative and anti-inflammatory agents and therapeutic agent for BPH. PMID:27399661

  12. Isolation and identification of biologically active compounds from Forsythia viridissima flowers.

    PubMed

    Tokar, Magdalena; Klimek, Barbara

    2004-01-01

    Flavonol glycosides, rutin and isoquercitrin, lignan glycosides, arctiin and matairesinoside, as well as phenylethanoid verbascoside (= acteoside), ursolic acid and beta-sitosterol have been isolated from the flowers of Forsythia viridissima. Two other isolated substances were characterized respectively as a wax and a hydrocoloidal polysaccharide consisting of galactose, galacturonic acid, arabinose, glucose, xylose, and rhamnose. PMID:15481244

  13. ANALYSIS OF NITROCRESOLS AND RELATED COMPOUNDS BY GAS CHROMATOGRAPHY/MATRIX-ISOLATION INFRARED SPECTROMETRY

    EPA Science Inventory

    The presence of nitrocresols and related compounds in the atmosphere has caused recent concerns regarding the potential for human health risks. everal of these compounds are suspected mutagens and are toxic to animal and plant life. itrocresols can be formed from the photooxidati...

  14. Methanobactin: a copper binding compound having antibiotic and antioxidant activity isolated from methanotrophic bacteria

    DOEpatents

    DiSpirito, Alan A.; Zahn, James A.; Graham, David W.; Kim, Hyung J.; Alterman, Michail; Larive, Cynthia

    2007-04-03

    A means and method for treating bacterial infection, providing antioxidant activity, and chelating copper using a copper binding compound produced by methanotrophic bacteria is described. The compound, known as methanobactin, is the first of a new class of antibiotics having gram-positive activity. Methanobactin has been sequenced, and its structural formula determined.

  15. Neuroprotective and Cognition-Enhancing Effects of Compound K Isolated from Red Ginseng.

    PubMed

    Seo, Ji Yeon; Ju, Sung Hee; Oh, Jisun; Lee, Seung Kwon; Kim, Jong-Sang

    2016-04-13

    The present study was aimed at elucidating the effect of compound K derived from red ginseng on memory function in mouse model and glutamate-induced cytotoxicity in mouse hippocampal HT22 cells. Compound K induced antioxidant enzymes in nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated manner, and effectively attenuated cytotoxicity and mitochondrial damage induced by glutamate in HT22 cells. However, the cytoprotective effect by compound K was abolished by heme oxygenase-1 inhibitor, tin protophorphyrin IX, suggesting that neuroprotective effect of compound K was caused by its Nrf2-mediated induction of antioxidant enzymes. Further, memory deficit induced by scopolamine was restored by compound K, which did not inhibit acetylcholine esterase, in C57BL/6 mice but not in Nrf2 knockout mice as assessed by passive avoidance test, Y-maze and water maze tests, suggesting that scopolamine-induced memory impairment was overcome by the induction of Nrf2-mediated antioxidant enzymes by the compound K. Overall, our data indicate that compound K could be useful in prevention and treatment of reactive oxygen species-induced neurological disorders such as Alzheimer's disease. PMID:27012214

  16. Occurrence of UV-Absorbing, Mycosporine-Like Compounds among Cyanobacterial Isolates and an Estimate of Their Screening Capacity

    PubMed Central

    Garcia-Pichel, Ferran; Castenholz, Richard W.

    1993-01-01

    A survey of 20 strains of cyanobacteria (belonging to 13 genera) isolated from habitats exposed to strong insolation revealed that 13 strains contained one or more water-soluble, UV-absorbing, mycosporine amino acid (MAA)-like compounds. Some of the compounds were identical in several strains. In all, 13 distinct compounds were found. The UV absorption spectra of MAAs complemented well that of the extracellular sunscreen pigment scytonemin, which many of the strains also produced. Even though the specific MAA contents were variable among strains, they were invariably higher when the cultures were grown with UV radiation than when it was absent. In five strains tested, the MAA complement accumulated as a solute in the cytoplasmic cell fraction. The sunscreen capacities of MAA and scytonemin and their combined capacity were estimated for each strain and condition on the basis of the specific contents, cell size, and cellular location of the compounds. The estimates suggested that significant, albeit not complete, protection from UV photodamage could be gained from the possession of either MAA or scytonemin but especially from simultaneous screening by both types of compounds. PMID:16348839

  17. Finding Needles in a Haystack: Application of Network Analysis and Target Enrichment Studies for the Identification of Potential Anti-Diabetic Phytochemicals

    PubMed Central

    Fayaz, Shaik M.; Suvanish Kumar, Valsala S.; Rajanikant, Krishnamurthy G.

    2014-01-01

    Diabetes mellitus is a debilitating metabolic disorder and remains a significant threat to public health. Herbal medicines have been proven to be effective anti-diabetic agents compared to synthetic drugs in terms of side effects. However, the complexity in their chemical constituents and mechanism of action, hinder the effort to discover novel anti-diabetic drugs. Hence, understanding the biological and chemical basis of pharmacological action of phytochemicals is essential for the discovery of potential anti-diabetic drugs. Identifying important active compounds, their protein targets and the pathways involved in diabetes would serve this purpose. In this context, the present study was aimed at exploring the mechanism of action of anti-diabetic plants phytochemicals through network and chemical-based approaches. This study also involves a focused and constructive strategy for preparing new effective anti-diabetic formulations. Further, a protocol for target enrichment was proposed, to identify novel protein targets for important active compounds. Therefore, the successive use of network analysis combined with target enrichment studies would accelerate the discovery of potential anti-diabetic phytochemicals. PMID:25396726

  18. Isolation, Purification, and Structural Identification of an Antifungal Compound from a Trichoderma Strain.

    PubMed

    Li, Chong-Wei; Song, Rui-Qing; Yang, Li-Bin; Deng, Xun

    2015-08-01

    Trichoderma strain T-33 has been demonstrated to have inhibitory effect on the fungus species Cytospora chrysosperma. Here, an active antifungal compound was obtained from Trichoderma strain T-33 extract via combined separation technologies, including organic solvent extraction, liquid chromatography, and thin-layer chromatography. The purified compound was further characterized by advanced analytical technologies to elucidate its chemical structure. Results indicated that the active antifungal compound in Trichoderma strain T-33 extract is 2,5- cyclohexadiene-1,4-dione-2,6-bis (1,1-dimethylethyl). PMID:25876599

  19. Mosquitocidal Properties of Natural Product Compounds Isolated From Chinese Herbs and Synthetic Analogs of Curcumin

    PubMed Central

    ANSTROM, DAVID M.; ZHOU, XIA; KALK, CODY N.; SONG, BAOAN; LAN, QUE

    2012-01-01

    Because of resistance to current insecticides and to environmental, health, and regulatory concerns, naturally occurring compounds and their derivatives are of increasing interest for the development of new insecticidal compounds against vectors of disease-causing pathogens. Fifty-eight compounds, either extracted and purified from plants native to China or synthetic analogs of curcumin, were evaluated for both their larvicidal activity against Aedes aegypti (L.) and their ability to inhibit binding of cholesterol to Ae. aegypti sterol carrier protein-2 in vitro. Of the compounds tested, curcumin analogs seem especially promising in that of 24 compounds tested five were inhibitors of Ae. aegyptisterol carrier protein-2 with EC50 values ranging from 0.65 to 62.87 μM, and three curcumin analogs exhibited larvicidal activity against fourth instar Ae. aegypti larvae with LC50 values ranging from 17.29 to 27.90 μM. Adding to the attractiveness of synthetic curcumin analogs is the relative ease of synthesizing a large diversity of compounds; only a small fraction of such diversity has been sampled in this study. PMID:22493854

  20. Isolation, identification, and antibacterial activity of chemical compounds from ethanolic extract of suji leaf (Pleomele angusifolia NE Brown)

    NASA Astrophysics Data System (ADS)

    Faridah; Natalia; Lina, Maria; W, Hendig

    2014-03-01

    Suji (Pleomele angustifolia NE Brown) is one of the medicinal plants of the tribe of Liliaceae, empirically useful to treat coughs and respiratory diseases such as tuberculosis (TB) and pneumonia. In this study, ethanolic extract of suji leaves was tested its activity against bacteria that attacks the respiratory organs, namely Mycobacterium tuberculosis and Streptococcus pneumoniae, using a paper disc diffusion and dilution agar method. These extracts have activity in inhibiting the growth of M. tuberculosis at a concentration of 8 mg and against S. pneumoniae at a concentration of 4 mg. The fractions were tested their antibacterial activity against Streptococcus pneumoniae using paper disc diffusion method. The most active fraction was chosen based on the inhibition diameter. The fractions contained flavonoids, steroids, and essential oils. The precipitate isolated from the extraction process shows needle-shaped, white, cold and tasteless crystals. Moreover, the HPLC analysis of isolate revealed a single peak with a retention time of 7.183 minutes. The exact compounds in the isolate could not be determined but it was known the compounds contained the functional groups of alkene, alkane, C=O, -OH. Test results obtained from UV-Vis spectrophotometer provides maximum absorption at a wavelength of 203.0 nm.

  1. A pharmacological perspective on the use of Brazilian Red Propolis and its isolated compounds against human diseases.

    PubMed

    Freires, Irlan Almeida; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2016-03-01

    Propolis is a complex resinous mixture collected by bees, with high medicinal, historical and economic value. The nutraceutical and pharmacological benefits of propolis have been extensively explored in several fields of medicine as an important resource for prevention and treatment of oral and systemic diseases. A relatively new type of propolis, named red propolis (in Brazil, Brazilian Red Propolis - BRP), has been arousing attention for the promising pharmacological properties of some of its isolated compounds (vestitol, neovestitol, quercetin, medicarpin, formononetin, etc). Due to a distinct chemical composition, BRP and its isolated compounds (mainly isoflavones) affect a wide range of biological targets and could have an impact against numerous diseases as an antimicrobial, anti-inflammatory and immunomodulatory, antioxidant and antiproliferative agent. In this review, we comprehensively address the main aspects related to BRP bioprospection, chemistry and therapeutic potential. Further information is provided on mechanisms of action discovered thus far as well as clinical use in humans and regulatory aspects. As of now, BRP and its isolated molecules remain a fascinating topic for further research and application in biomedical areas and dentistry. PMID:26840367

  2. Bioassay-Guided Isolation and Antioxidant Evaluation of Flavonoid Compound from Aerial Parts of Lippia nodiflora L.

    PubMed Central

    Sudha, A.; Srinivasan, P.

    2014-01-01

    The present study was designed to identify the DPPH (2, 2-diphenyl-1-picrylhydrazyl) free-radical scavenging constituents from methanol extract of L. nodiflora using bioassay-guided fractionation. The ethyl acetate fraction (EAF) revealed a strong antioxidant activity, compared to other fractions through in vitro DPPH radical-scavenging assay. The repeated fractionation of active EAF by silica gel column chromatography yielded a compound with strong antioxidant potential. The isolated bioactive compound was determined as 2-(3, 4-dimethoxyphenyl)-5-hydroxy-7-methoxy-4H-chromen-4-one (5-hydroxy-3′, 4′, 7-trimethoxyflavone), by comparing spectral data (UV, IR, 1H NMR, 13C NMR, and MS) with literature reports. The isolated compound demonstrated an excellent antioxidant activity through all antioxidant assays and also significantly inhibited lipid peroxidation at a concentration of 50 μg/mL. The results obtained suggested that extracts from L. nodiflora or its derived phytocompound can be used potentially as a bioactive source of natural antioxidants by contributing beneficial health effects. PMID:24967379

  3. Bioassay-guided isolation and identification of active compounds from Fructus Arctii against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus).

    PubMed

    Wang, Gao-xue; Han, Jing; Feng, Ting-ting; Li, Fu-yuan; Zhu, Bin

    2009-12-01

    Dactylogyrus intermedius is a significant monogenean parasite on the gills of cyprinid fishes and can cause serious problem in fish aquaculture. In the present study, bioassay-guided fractionation was employed to identify the active compounds from Fructus Arctii against D. intermedius. Five solvents (petroleum ether, chloroform, ethyl acetate, ethanol, and water) were applied for the extraction of Fructus Arctii. Among them, only the chloroform extract exhibited promising anthelmintic efficacy and therefore, subjected to the further isolation and purification using various chromatographic techniques. Two compounds showing potent activity were obtained and identified by spectral data (infrared, nuclear magnetic resonance, and mass spectrometry) as: arctigenin (1) and arctiin (2). They were found to be significantly effective against D. intermedius with median effective concentration (EC(50)) values of 0.62 and 3.55 mg L(-1), respectively. Arctigenin exhibited higher activity as compared with the positive control mebendazole with an EC(50) value of 1.25 mg L(-1). The 48-h acute toxicity tests (LC(50)) of arctigenin and arctiin were found to be 8.47 and 14.14 mg L(-1) for goldfish, respectively. These results provided evidence that the studied plant extract, as well as the isolated compounds, might be potential sources of new antiparasitic drug for the control of Dactylogyrus. PMID:19859737

  4. Separation of pineal extracts by gelfiltration. VI. Isolation and identification from sheep pineals of biopterin; comparison of the isolated compound with some synthetic pteridines and the biological activity in in vitro and in vivo bioassays.

    PubMed

    van der Have-Kirchberg, M L; de Morée, A; van Laar, J F; Gerwig, G J; Versluis, C; Ebels, I

    1977-01-01

    Aqueous extracts of sheep pineal bodies were separated on Sephadex G-25. Two low molecular weight Sephadex G-25 fractions, F2 and F3, were ultrafiltrated through the Amicon membrane UM-2. The UM-2 filtrate was subsequently filtrated through the ultramembrane UM-05 and the UM-05 filtrate was separated on Sephadex G-10 columns. After paper electrophoresis, preparative paper chromatography was carried out. The fluorescent band showing a Rf value identical with synthetic 6-biopterin was eluted; gas liquid chromatography and mass spectrometry of the isolated compound were carried out. The mass spectra of the isolated compound were shown to be identical with synthetic 6-biopterin. The results of the Crithidia fasciculata test and thinlayer chromatography study revealed that the isolated compound is identical with 6-L-erythro-biopterin. The activities of the isolated compound and of synthetic biopterin in in vitro and in vivo bioassays are demonstrated. PMID:874473

  5. Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity

    SciTech Connect

    Garcia-Pichel, F.; Castenholz, R.W. )

    1993-01-01

    Many cyanobacteria inhabit environments with intense solar radiation. Among the mechanisms to prevent UV photodamage are negative photomovements and the synthesis of UV sunscreen compounds. To assess how common and diverse UV sunscreen substances are among cyanobacteria living under intense solar radiation, the researchers analysed isolates of cyanobacteria for mycosporine amino acids (MAAs)-like, UV-absorbing, water-soluable substances. The cellular locations and the effect of UV radiation on their specific contents were also investigated. MAAs are common but diverse among terrestrial cyanobacteria, most often occuring in species with extracellular scytonemin. The spectral complementation suggests that the combined action of scytonemin and MAA may be responsible for sunscreen effects at shorter UV wavelengths, while the effect at longer wavelenths must be due solely to scytonemin. The authors conclude that these compounds have a significant effect in preventing UV radiation damage. 34 refs., 2 figs., 4 tabs.

  6. In vitro evaluation of anti-diabetic activity and cytotoxicity of chemically analysed Ocimum basilicum extracts.

    PubMed

    Kadan, Sleman; Saad, Bashar; Sasson, Yoel; Zaid, Hilal

    2016-04-01

    The aim of this study was to evaluate the role of glucose transporter-4 (GLUT4) in the anti-diabetic effects of methanol, hexane and dichloromethane extracts of the aerial parts of Ocimum basilicum (OB) and to analyze their phytochemical composition. Phytochemical analysis of the three extracts by GC/MS using the silylation derivatization technique revealed 53 compounds, 17 of them were found for the first time in OB. Cytotoxic and anti-diabetic properties of the extracts were evaluated using L6-GLUT4myc muscle cells stably expressing myc epitope at the exofacial loop (GLUT4). No cytotoxic effects were observed in treated cells up to 0.25 mg/ml extract as measured with MTT and LDH-leakage assays. GLUT4 translocation to the plasma membrane was elevated by 3.5 and 7 folds (-/+ insulin) after treatment with OB extracts for 20 h. Our findings suggest that the observed anti-diabetic properties of OB extracts are possibly mediated in part through one or more of the 17 new identified compound. PMID:26593590

  7. Synthesis and Biological Activity of Isoflavone Derivatives from Chickpea as Potent Anti-Diabetic Agents.

    PubMed

    Li, Pengshou; Shi, Xiaojuan; Wei, Ying; Qin, Lingling; Sun, Wen; Xu, Guangyuan; Xu, Tunhai; Liu, Tonghua

    2015-01-01

    A set of novel isoflavone derivatives from chickpea were synthesized. The structures of derivatives were identified by proton nuclear magnetic resonance (¹H-NMR), carbon-13 ((13)C)-NMR and mass spectrometry (MS) spectral analyses. Their anti-diabetic activities were evaluated using an insulin-resistant (IR) HepG2 cell model. Additionally, the structure-activity relationships of these derivatives were briefly discussed. Compounds 1c, 2h, 3b, and 5 and genistein exhibited significant glucose consumption-enhancing effects in IR-HepG2 cells. In addition, the combinations of genistein, 2h, and 3b (combination 6) and of 3b, genistein, and 1c (combination 10) exhibited better anti-diabetic activity than the individual compounds. At the same dosage, there was no difference in effect between the combination 10 and the positive control (p > 0.05). Aditionally, we found the differences between the combination 10 and combination 6 for the protective effect of HUVEC (human umbilical vein endothelial cells) under high glucose concentration. The protective effects of combination 10 was stronger than combination 6, which suggested that combination 10 may have a better hypoglycemic activity in future studies. This study provides useful clues for the further design and discovery of anti-diabetic agents. PMID:26393547

  8. Recent advances in understanding the anti-diabetic actions of dietary flavonoids

    PubMed Central

    Babu, Pon Velayutham Anandh; Liu, Dongmin; Gilbert, Elizabeth R.

    2013-01-01

    Flavonoids are polyphenolic compounds that are abundant in fruits and vegetables and increasing evidence demonstrates a positive relationship between consumption of flavonoid-rich foods and disease prevention. Epidemiological, in vitro and animal studies support the beneficial effects of dietary flavonoids on glucose and lipid homeostasis. It is encouraging that the beneficial effects of some flavonoids are at physiological concentrations and comparable to clinically-used anti-diabetic drugs; however, clinical research in this field and studies on the anti-diabetic effects of flavonoid metabolites are limited. Flavonoids act on various molecular targets and regulate different signaling pathways in pancreatic β-cells, hepatocytes, adipocytes, and skeletal myofibers. Flavonoids may exert beneficial effects in diabetes by (i) enhancing insulin secretion and reducing apoptosis and promoting proliferation of pancreatic β-cells, (ii) improving hyperglycemia through regulation of glucose metabolism in hepatocytes, (iii) reducing insulin resistance, inflammation and oxidative stress in muscle and fat, and (iv) increasing glucose uptake in skeletal muscle and white adipose tissue. This review highlights recent findings on the anti-diabetic effects of dietary flavonoids, including flavan-3-ols, flavanones, flavonols, anthocyanidins, flavones, and isoflavones, with particular emphasis on the studies that investigated the cellular and molecular mechanisms involved in the beneficial effects of the compounds. PMID:24029069

  9. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry.

    PubMed

    Essack, Magbubah; Alzubaidy, Hanin S; Bajic, Vladimir B; Archer, John A C

    2014-11-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  10. Theobroma cacao: Review of the Extraction, Isolation, and Bioassay of Its Potential Anti-cancer Compounds

    PubMed Central

    Baharum, Zainal; Akim, Abdah Md; Hin, Taufiq Yap Yun; Hamid, Roslida Abdul; Kasran, Rosmin

    2016-01-01

    Plants have been a good source of therapeutic agents for thousands of years; an impressive number of modern drugs used for treating human diseases are derived from natural sources. The Theobroma cacao tree, or cocoa, has recently garnered increasing attention and become the subject of research due to its antioxidant properties, which are related to potential anti-cancer effects. In the past few years, identifying and developing active compounds or extracts from the cocoa bean that might exert anti-cancer effects have become an important area of health- and biomedicine-related research. This review provides an updated overview of T. cacao in terms of its potential anti-cancer compounds and their extraction, in vitro bioassay, purification, and identification. This article also discusses the advantages and disadvantages of the techniques described and reviews the processes for future perspectives of analytical methods from the viewpoint of anti-cancer compound discovery. PMID:27019680

  11. Theobroma cacao: Review of the Extraction, Isolation, and Bioassay of Its Potential Anti-cancer Compounds.

    PubMed

    Baharum, Zainal; Akim, Abdah Md; Hin, Taufiq Yap Yun; Hamid, Roslida Abdul; Kasran, Rosmin

    2016-02-01

    Plants have been a good source of therapeutic agents for thousands of years; an impressive number of modern drugs used for treating human diseases are derived from natural sources. The Theobroma cacao tree, or cocoa, has recently garnered increasing attention and become the subject of research due to its antioxidant properties, which are related to potential anti-cancer effects. In the past few years, identifying and developing active compounds or extracts from the cocoa bean that might exert anti-cancer effects have become an important area of health- and biomedicine-related research. This review provides an updated overview of T. cacao in terms of its potential anti-cancer compounds and their extraction, in vitro bioassay, purification, and identification. This article also discusses the advantages and disadvantages of the techniques described and reviews the processes for future perspectives of analytical methods from the viewpoint of anti-cancer compound discovery. PMID:27019680

  12. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    PubMed Central

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  13. Isolation and structure of nocobactin NA, a lipid-soluble iron-binding compound from Nocardia asteroides

    PubMed Central

    Ratledge, Colin; Snow, G. Alan

    1974-01-01

    Nocobactin NA, a lipid-soluble iron-chelating product with an unusual and characteristic u.v.-absorption spectrum, was isolated from Nocardia asteroides grown under conditions of iron deficiency. Its structure was determined by physical methods and by synthesis of one of its degradation products. Nocobactin NA was obtained as a homologous mixture of compounds with side chains of differing length, and resembles mycobactin M in structure except that it has an oxazole ring in place of an oxazoline ring, and the side chains in the cobactin fragment are considerably shorter. PMID:4614794

  14. Examination of organic compounds from insoluble organic matter isolated from some Antarctic carbonaceous chondrites by heating experiments

    NASA Astrophysics Data System (ADS)

    Komiya, M.; Shimoyama, A.; Harada, K.

    1993-02-01

    Insoluble organic matter isolated from five Antarctic CM2 chondrites was heated in a thermal analyzer from room temperature to 800 C under helium atmosphere. Organic compounds from the thermal decomposition of the Yamato-791198 sample were studied by a gas chromatograph-mass spectrometer (GC-MS). The number of compounds identified was over 120, belonging mainly to the two following groups: (1) benzene and naphthalene, and their alkyl derivatives; and (2) sulfur-containing heterocycles and their alkyl derivatives. Small amounts of aliphatic hydrocarbons and nitriles were also detected. Relative amounts of compounds released from the five chondrite samples were monitored by the MS with increasing temperature. Yamato-74662 and Yamato-791198 showed organic compounds mainly over the temperature range of 300-600 C, while the other three (Yamato-793321, Yamato-86720, and Belgica-7904) did not show any, except small amounts of benzene. These results indicate that the insoluble organics in Yamato-74662 and Yamato-791198 possess a thermally labile organic fraction, whereas those in Yamato-793321, Yamato-86720, and Belgica-7904 do not and are graphitic. The difference between the insoluble organic fractions may be related to aqueous alteration and thermal metamorphism on the parent bodies.

  15. Isolation and Characterization of New Phenolic Compounds with Estrogen Biosynthesis-Inhibiting and Antioxidation Activities from Broussonetia papyrifera Leaves

    PubMed Central

    Yang, Chunyan; Li, Fu; Du, Baowen; Chen, Bin; Wang, Fei; Wang, Mingkui

    2014-01-01

    Broussonetia papyrifera leaves (BPL) as a traditional Chinese medicine are also used in livestock feed for stimulating reproduction, adipose tissue and muscle development; however, the mechanism of their action is still unknown. Through estrogen biosynthesis-guided fractionation in human ovarian granulosa-like KGN cells, five new phenolic glycosides, broussoside A–E(1–5), along with fifteen known dietary phenolic compounds, were isolated from the n-butanol extract of BPL, and their structures were elucidated on the basis of NMR spectra analysis and chemical evidence. New compounds 3, 4, 5 and the known compounds 9 and 10 were found to potently inhibit estrogen biosynthesis in KGN cells. In addition, compounds 9, 17, 18, and 20 showed strong antioxidant activity against ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) and DPPH (1, 1′-diphenyl -2-picryl-hydrazyl radical) assays. These findings suggest that BPL may improve meat quality through the regulation of estrogen biosynthesis. Furthermore, they may be useful for the discovery of potential aromatase modulators from natural products. Finally, they could be considered as a new source for natural antioxidants. PMID:24714659

  16. Melanin biosynthesis inhibitory activity of a compound isolated from young green barley (Hordeum vulgare L.) in B16 melanoma cells.

    PubMed

    Meng, Tian Xiao; Irino, Nobuto; Kondo, Ryuichiro

    2015-07-01

    In the course to find compounds that inhibit melanin biosynthesis (i.e., whitening agents), we evaluated the effects of the methanol-soluble fraction (i.e., the water-soluble portion of methanol extracts-CHP20P-MeOH eluted fraction) from young green barley leaves on melanin production in B16 melanoma cells. Activity-guided fractionation led to an isolate called tricin (compound 1) as an inhibitory compound of melanin production in B16 melanoma cells. Furthermore, tricin analogs such as tricetin, tricetin trimethyl ether, luteolin, and apigenin were used for analyzing the structure-activity relationships (SAR) of 5,7-dihydroxyflavones studies. Tricin demonstrated stronger inhibitory activity compared to three other compounds. The results suggest that a hydroxyl group at the C-4' position and methoxy groups at the C-3',5' positions of the tricin skeleton may have important roles in this inhibitory activity in B16 melanoma cells. Our results suggest that tricin inhibits melanin biosynthesis with higher efficacy than arbutin, and it could be used as a whitening agent. PMID:25827948

  17. Bioactivity guided isolation of antifungal compounds from the liverwort Bazzania trilobata (L.) S.F. Gray.

    PubMed

    Scher, Jochen M; Speakman, John-Bryan; Zapp, Josef; Becker, Hans

    2004-09-01

    A dichloromethane and a methanol extract of the liverwort Bazzania trilobata showed antifungal activity against the phytopathogenic fungi Botrytis cinerea, Cladosporium cucumerinum, Phythophthora infestans, Pyricularia oryzae and Septoria tritici. Bioautography on thin-layer chromatograms was used to isolate six antifungal sesquiterpenes: 5- and 7-hydroxycalamenene, drimenol, drimenal, viridiflorol, gymnomitrol and three bisbibenzyls: 6 ',8'-dichloroisoplagiochin C, isoplagiochin D and 6'-chloroisoplagiochin D. Furthermore we report the isolation of gymnomitr-8(12)-en-4-one and the new coumarin 7,8-dihydroxycoumarin-7-O-beta-D-glucuronide. Their structures have been elucidated based on extensive NMR spectral evidence. PMID:15451321

  18. Antibacterial and anti-inflammatory effects of Syzygium jambos L. (Alston) and isolated compounds on acne vulgaris

    PubMed Central

    2013-01-01

    Background Acne vulgaris is a chronic skin disorder leading to inflammation as a result of the production of reactive oxygen species due to the active involvement of Propionibacterium acnes (P. acnes) in the infection site of the skin. The current study was designed to assess the potential of the leaf extract of Syzygium jambos L. (Alston) and its compounds for antibacterial and anti-inflammatory activity against the pathogenic P. acnes. Methods The broth dilution method was used to assess the antibacterial activity. The cytotoxicity investigation on mouse melanocyte (B16-F10) and human leukemic monocyte lymphoma (U937) cells was done using sodium 3’-[1-(phenyl amino-carbonyl)-3,4-tetrazolium]-bis-[4-methoxy-6-nitrobenzene sulfonic acid hydrate (XTT) reagent. The non-toxic concentrations of the samples was investigated for the suppression of cytokines interleukin 8 (IL 8) and tumour necrosis factor (TNF α) by testing the supernatants in the co-culture of the human U937 cells and heat killed P. acnes using enzyme immunoassay kits (ELISA). The statistical analysis was done using the Graph Pad Prism 4 program. Results Bioassay guided isolation of ethanol extract of the leaves of S. jambos led to the isolation of three known compounds namely; squalene, an anacardic acid analogue and ursolic acid which are reported for the first time from this plant. The ethanol extract of S. jambos and one of the isolated compound namely, anacardic acid analogue were able to inhibit the growth of P. acnes with a noteworthy minimum inhibitory concentration (MIC) value of 31.3 and 7.9 μg/ml, respectively. The ethanol extract and three commercially acquired compounds namely; myricetin, myricitrin, gallic acid exhibited significant antioxidant activity with fifty percent inhibitory concentration (IC50) ranging between 0.8-1.9 μg/ml which was comparable to that of vitamin C, the reference antioxidant agent. The plant extract, compounds ursolic acid and myricitrin (commercially

  19. Novel Piperine Derivatives with Antidiabetic Effect as PPAR-γ Agonists.

    PubMed

    Kharbanda, Chetna; Alam, Mohammad Sarwar; Hamid, Hinna; Javed, Kalim; Bano, Sameena; Ali, Yakub; Dhulap, Abhijeet; Alam, Perwez; Pasha, M A Qadar

    2016-09-01

    Piperine is an alkaloid responsible for the pungency of black pepper. In this study, piperine isolated from Piper nigrum L. was hydrolyzed under basic condition to obtain piperic acid and was used as precursor to carry out the synthesis of twenty piperine derivatives containing benzothiazole moiety. All the benzothiazole derivatives were evaluated for their antidiabetic potential by OGT test followed by assessment of active derivatives on STZ-induced diabetic model. It was observed that nine of twenty novel piperine analogues (5b, 6a-h), showed significantly higher antidiabetic activity in comparison with rosiglitazone (standard). Furthermore, these active derivatives were evaluated for their action as PPAR-γ agonists demonstrating their mechanism of action. The effects on body weight, lipid peroxidation, and hepatotoxicity after administration with active derivatives were also studied to further establish these derivatives as lead molecules for treatment of diabetes with lesser side-effects. PMID:27037532

  20. Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats.

    PubMed

    Jemai, Hedya; El Feki, Abdelfattah; Sayadi, Sami

    2009-10-14

    This study was designed to test the antidiabetic and antioxidative activities of olive leaf oleuropein and hydroxytyrosol. Diabetes in Wistar rats was induced by intraperitoneal injections of alloxan. The serum glucose and cholesterol, hepatic glycogen, the thiobarbituric acid-reactive substances (TBARS), and the components of hepatic and serum antioxidant system were examined. Diabetic rats showed hyperglycemia, hypercholesterolemia, increased lipid peroxidation, and depletion in the antioxidant enzymes activities. The administration, for 4 weeks, of oleuropein and hydroxytyrosol rich extracts, leading to 8 and 16 mg/kg body weight of each compound, significantly decreased the serum glucose and cholesterols levels and restored the antioxidant perturbations. These results suggested that the antidiabetic effect of oleuropein and hydroxytyrosol might be due to their antioxidant activities restraining the oxidative stress which is widely associated with diabetes pathologies and complications. PMID:19725535

  1. Antioxidant capacities of seven flavonoid compounds isolated from pulp of acai fruit (Euterpe oleracea)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pulp of açai fruit (Euterpe oleracea Mart.) has been demonstrated to exhibit extremely high antioxidant capacity. Seven major flavonoids were isolated from freeze-dried acai pulp by various chromatographic methods. Their structures were elucidated as orientin (1), homoorientin (2), vitexin (3), ...

  2. Bioguided isolation, characterization, and biotransformation by Fusarium verticillioides of maize kernel compounds that inhibit fumonisin production.

    PubMed

    Atanasova-Penichon, Vessela; Bernillon, Stéphane; Marchegay, Gisèle; Lornac, Aurélia; Pinson-Gadais, Laetitia; Ponts, Nadia; Zehraoui, Enric; Barreau, Christian; Richard-Forget, Florence

    2014-10-01

    Fusarium verticillioides infects maize ears, causing ear rot disease and contamination of grain with fumonisin mycotoxins. This contamination can be reduced by the presence of bioactive compounds in kernels that are able to inhibit fumonisin biosynthesis. To identify such compounds, we used kernels from a maize genotype with moderate susceptibility to F. verticillioides, harvested at the milk-dough stage (i.e., when fumonisin production initiates in planta), and applied a bioguided fractionation approach. Chlorogenic acid was the most abundant compound in the purified active fraction and its contribution to fumonisin inhibitory activity was up to 70%. Moreover, using a set of maize genotypes with different levels of susceptibility, chlorogenic acid was shown to be significantly higher in immature kernels of the moderately susceptible group. Altogether, our data indicate that chlorogenic acid may considerably contribute to either maize resistance to Fusarium ear rot, fumonisin accumulation, or both. We further investigated the mechanisms involved in the inhibition of fumonisin production by chlorogenic acid and one of its hydrolyzed products, caffeic acid, by following their metabolic fate in supplemented F. verticillioides broths. Our data indicate that F. verticillioides was able to biotransform these phenolic compounds and that the resulting products can contribute to their inhibitory activity. PMID:25014591

  3. Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii.

    PubMed

    Miyasaki, Yoko; Rabenstein, John D; Rhea, Joshua; Crouch, Marie-Laure; Mocek, Ulla M; Kittell, Patricia Emmett; Morgan, Margie A; Nichols, Wesley Stephen; Van Benschoten, M M; Hardy, William David; Liu, George Y

    2013-01-01

    The number of fully active antibiotic options that treat nosocomial infections due to multidrug-resistant Acinetobacter baumannii (A. baumannii) is extremely limited. Magnolia officinalis, Mahonia bealei, Rabdosia rubescens, Rosa rugosa, Rubus chingii, Scutellaria baicalensis, and Terminalia chebula plant extracts were previously shown to have growth inhibitory activity against a multidrug-resistant clinical strain of A. baumannii. In this study, the compounds responsible for their antimicrobial activity were identified by fractionating each plant extract using high performance liquid chromatography, and determining the antimicrobial activity of each fraction against A. baumannii. The chemical structures of the fractions inhibiting >40% of the bacterial growth were elucidated by liquid chromatography/mass spectrometry analysis and nuclear magnetic resonance spectroscopy. The six most active compounds were identified as: ellagic acid in Rosa rugosa; norwogonin in Scutellaria baicalensis; and chebulagic acid, chebulinic acid, corilagin, and terchebulin in Terminalia chebula. The most potent compound was identified as norwogonin with a minimum inhibitory concentration of 128 µg/mL, and minimum bactericidal concentration of 256 µg/mL against clinically relevant strains of A. baumannii. Combination studies of norwogonin with ten anti-Gram negative bacterial agents demonstrated that norwogonin did not enhance the antimicrobial activity of the synthetic antibiotics chosen for this study. In conclusion, of all identified antimicrobial compounds, norwogonin was the most potent against multidrug-resistant A. baumannii strains. Further studies are warranted to ascertain the prophylactic and therapeutic potential of norwogonin for infections due to multidrug-resistant A. baumannii. PMID:23630600

  4. SEPARATION AND ISOLATION OF VOLATILE ORGANIC COMPOUNDS USING VACUUM DISTILLATION WITH GC/MS DETERMINATION

    EPA Science Inventory

    Vacuum distillation of water, soil, oil, and fish samples is presented as an alternative technique for determining volatile organic compounds (VOCs). Analyses of samples containing VOCs and non-VOCs at 50ppb concentrations were performed to evaluate method limitations. Analyte re...

  5. A new approach to the isolation of milligram amounts of significant geochemical compounds.

    NASA Technical Reports Server (NTRS)

    Wszolek, P. C.; Gelpi, E.; Burlingame, A. L.

    1972-01-01

    The modification of an automatic preparative collection system for gas-liquid chromatography is described that is designed to make the system operational for milligram-scale high-efficiency separations of selected components in a geological sample. The sample in question is an organic extract from the Green River Formation Oil Shale, and the compounds selected are the sterane and triterpane hydrocarbons.

  6. Antidiabetic actions of cocoa flavanols.

    PubMed

    Martin, Maria Ángeles; Goya, Luis; Ramos, Sonia

    2016-08-01

    Prevention of diabetes mellitus type 2 (DMT2) through the diet is receiving a growing interest and cocoa because of its polyphenolic compounds, mainly flavanols, has become an important potential chemopreventive natural agent. Cocoa and its main flavanols might contribute to prevent or delay diabetes mellitus type 2 by modulating insulin secretion in β-pancreatic cells and targeting insulin-sensitive tissues because of their insulin-like activity or through the regulation of key proteins of the insulin signaling route. Among other actions, cocoa flavanols have been proved to enhance glucose uptake through the promotion of glucose transport, to repress glucose production, or to improve lipid metabolism. Nevertheless, the molecular mechanisms of action involved in these effects are not fully understood and many points remain to be clarified. This review provides insights into the molecular machinery of the chemopreventive activity of cocoa and its flavanols by compiling cell culture and animal models studies, as well as evidence from human interventional trials. PMID:26824673

  7. Morphological and molecular identification of filamentous Aspergillus flavus and Aspergillus parasiticus isolated from compound feeds in South Africa.

    PubMed

    Iheanacho, Henry E; Njobeh, Patrick B; Dutton, Francis M; Steenkamp, Paul A; Steenkamp, Lucia; Mthombeni, Julian Q; Daru, Barnabas H; Makun, Anthony H

    2014-12-01

    Isolation of filamentous species of two Aspergillum genera from compound feeds produced in South Africa, and subsequent extraction of their individual DNA in this study, presents a simple but rapid molecular procedure for high through-put analysis of the individual morphological forms. DNA was successfully isolated from the Aspergillus spp. from agar cultures by use of a commercial kit. Agarose gel electrophoresis fractionation of the fungi DNA, showed distinct bands. The DNA extracted by this procedure appears to be relatively pure with a ratio absorbance at 260 and 280 nm. However, the overall morphological and molecular data indicated that 67.5 and 51.1% of feed samples were found to be contaminated with Aspergillus flavus and Aspergillus parasiticus, respectively, with poultry feed having the highest contamination mean level of 5.7 × 105 CFU/g when compared to cattle (mean: 4.0 × 106 CFU/g), pig (mean: 2.7 × 104 CFU/g) and horse (1.0 × 102 CFU) feed. This technique presents a readily achievable, easy to use method in the extraction of filamentous fungal DNA and it's identification. Hence serves as an important tool towards molecular study of these organisms for routine analysis check in monitoring and improving compound feed quality against fungal contamination. PMID:25084661

  8. Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae.

    PubMed

    Ni, Lixiao; Acharya, Kumud; Hao, Xiangyang; Li, Shiyin

    2012-08-01

    The goals of this work were to isolate and identify an anti-algal compound from extracts of Artemisia annua and study its mode of action on Microcystis aeruginosa. The anti-algal compound was isolated from the extracts using column chromatography and activity-guided fractionation methods. Artemisinin with strong anti-algal activity was identified by gas chromatography-mass spectrometry and (1)H Nuclear Magnetic Resonance. The EC(50) of artemisinin on M. aeruginosa was 3.2mg L(-1). Artemisinin decreased the soluble protein content and increased the superoxide dismutase activity and ascorbic acid content of M. aeruginosa, but exerted no effect on soluble sugar content. The results suggested the mode of action of artemisinin on algae may primarily be the increasing level of reactive oxygen species in algae cells. The results of our research could aid in the development of new anti-algal substances and lead to further study of mechanisms of inhibitory effect on algae. PMID:22658940

  9. Contrasting ex vivo efficacies of "reversed chloroquine" compounds in chloroquine-resistant Plasmodium falciparum and P. vivax isolates.

    PubMed

    Wirjanata, Grennady; Sebayang, Boni F; Chalfein, Ferryanto; Prayoga; Handayuni, Irene; Noviyanti, Rintis; Kenangalem, Enny; Poespoprodjo, Jeanne Rini; Burgess, Steven J; Peyton, David H; Price, Ric N; Marfurt, Jutta

    2015-09-01

    Chloroquine (CQ) has been the mainstay of malaria treatment for more than 60 years. However, the emergence and spread of CQ resistance now restrict its use to only a few areas where malaria is endemic. The aim of the present study was to investigate whether a novel combination of a CQ-like moiety and an imipramine-like pharmacophore can reverse CQ resistance ex vivo. Between March to October 2011 and January to September 2013, two "reversed chloroquine" (RCQ) compounds (PL69 and PL106) were tested against multidrug-resistant field isolates of Plasmodium falciparum (n = 41) and Plasmodium vivax (n = 45) in Papua, Indonesia, using a modified ex vivo schizont maturation assay. The RCQ compounds showed high efficacy against both CQ-resistant P. falciparum and P. vivax field isolates. For P. falciparum, the median 50% inhibitory concentrations (IC50s) were 23.2 nM for PL69 and 26.6 nM for PL106, compared to 79.4 nM for unmodified CQ (P < 0.001 and P = 0.036, respectively). The corresponding values for P. vivax were 19.0, 60.0, and 60.9 nM (P < 0.001 and P = 0.018, respectively). There was a significant correlation between IC50s of CQ and PL69 (Spearman's rank correlation coefficient [r s] = 0.727, P < 0.001) and PL106 (rs = 0.830, P < 0.001) in P. vivax but not in P. falciparum. Both RCQs were equally active against the ring and trophozoite stages of P. falciparum, but in P. vivax, PL69 and PL106 showed less potent activity against trophozoite stages (median IC50s, 130.2 and 172.5 nM) compared to ring stages (median IC50s, 17.6 and 91.3 nM). RCQ compounds have enhanced ex vivo activity against CQ-resistant clinical isolates of P. falciparum and P. vivax, suggesting the potential use of reversal agents in antimalarial drug development. Interspecies differences in RCQ compound activity may indicate differences in CQ pharmacokinetics between the two Plasmodium species. PMID:26149984

  10. Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.

    PubMed Central

    Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J

    1995-01-01

    Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found. PMID:7487007