These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

COMPARATIVE LIVER P450 ENZYME ACTIVITY AND HISTOPATHOLOGY IN MICE TREATED WITH THE CONAZOLE FUNGICIDES: MYCLOBUTANIL, PROPICONAZOLE AND TRIADIMETON  

EPA Science Inventory

Conazoles used in agriculture and pharmaceutical products comprise a class of chemicals which inhibit ergosterol biosynthesis to act as fungicides. Both propiconazole and triadimefon are hepatotoxic and hepatotumorigenic in mice, while myclobutanil is not a mouse liver tumorigen....

2

TRANSCRIPTIONAL PROFILES IN LIVER FROM RATS TREATED WITH TUMORIGENIC AND NON-TUMORIGENIC TRIAZOLE CONAZOLE FUNGICIDES: PROPICONAZOLE, TRIADIMEFON, AND MYCLOBUTANIL  

EPA Science Inventory

Conazoles are a class of fungicides used as pharmaceutical and agricultural agents. In chronic bioassays in rats, triadimefon was hepatotoxic and induced follicular cell adenomas in the thyroid gland, whereas, propiconazole and myclobutanil were hepatotoxic but had no effect on t...

3

TOXICITY PROFILES IN RATS TREATED WITH TUMORIGENIC AND NONTUMORIGENIC TRIAZOLE CONAZOLE FUNGICIDES: PROPICONAZOLE, TRIADIMEFON, AND MYCLOBUTANIL  

EPA Science Inventory

Conazoles are a class of azole based fungicides used in agriculture and as pharmaceutical products. They have a common mode of antifungal action through inhibition of ergosterol biosynthesis. Some members of this class have been shown to be hepatotoxic and will induce mouse hepa...

4

Inhibition of Rat and Human Steroidogenesis by Triazole Antifungals  

EPA Science Inventory

Environmental chemicals that alter steroid production could interfere with male reproductive development and function. Three agricultural antifungal triazoles (myclobutanil, propiconazole and triadimefon) that are known to modulate expression of cytochrome P450 (CYP) genes and e...

5

TOXICITY PROFILES IN MICE TREATED WITH HEPATOTUMORIGENIC AND NON-HEPATOTUMORIGENIC TRIAZOLE CONAZOLE FUNGICIDES: PROPICONAZOLE, TRIADIMEFON, AND MYCLOBUTANIL  

EPA Science Inventory

Conazoles comprise a class of fungicides used in agriculture and as pharmaceutical products. The fungicidal properties of conazoles are due to their inhibition of ergosterol biosynthesis. Certain conazoles are tumorigenic in rodents; both propiconazole and triadimefon are hepatot...

6

CAR and PXR-dependent transcriptional changes in the mouse liver after exposure to propiconazole  

EPA Science Inventory

Exposure to the conazoles propiconazole and triadimefon but not myclobutanilled to tumors in mice after 2 years. Transcript profiling studies in the livers ofwild-type mice after short-term exposure to the conazoles revealed signatures indicating the involvement ofthe nuclear rec...

7

INDUCTION OF CYTOCHROME P450 ISOFORMS IN RAT LIVER BY TWO CONAZOLES, TRIADIMEFON AND MYCLOBUTANIL  

EPA Science Inventory

1. This study was undertaken to examine the inductive effects of two triazole antifungal agents, myclobutanil and triadimefon on the expression of hepatic cytochrome P450 (CYP) genes and on the activities of CYP enzymes in male Sprague-Dawley rats. Rats were dosed by gavage for 1...

8

76 FR 27261 - Propiconazole; Pesticide Tolerances  

Federal Register 2010, 2011, 2012, 2013, 2014

...risk posed by human exposure to the pesticide. For hazards...no adverse effects are observed...the adverse effect expected in...epa.gov/pesticides/factsheets...propiconazole used for human risk assessment...assessment...

2011-05-11

9

78 FR 23497 - Propiconazole; Pesticide Tolerances  

Federal Register 2010, 2011, 2012, 2013, 2014

...malformations of the lung and kidneys, incomplete ossification of...phenobarbital, a known liver tumor promoter. Liver enzyme induction...Propiconazole produced liver tumors in male mice only at a high...is not expected; therefore, tumors are also not...

2013-04-19

10

40 CFR 180.443 - Myclobutanil; tolerances for residues.  

Code of Federal Regulations, 2010 CFR

...AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances...tolerances are established for residues of the fungicide myclobutanil...connection with use of the pesticide under...

2010-07-01

11

Propiconazole induces alterations in the hepatic metabolome of mice: relevance to propiconazole-induced hepatocarcinogenesis  

EPA Science Inventory

Propiconazole is a mouse hepatotumorigenic fungicide and has been the subject of recent mechanistic investigations on its carcinogenic mechanism of action. The goals of this study were: 1. To identify metabolomic changes induced in the liver by increasing doses of propiconazole i...

12

TOXICOGENOMIC STUDY OF TRIAZOLE FUNGICIDES AND PERFLUOROALKYL ACIDS  

EPA Science Inventory

Toxicogenomic analysis of five environmental contaminants was performed to investigate the ability of genomics to categorize chemicals and elucidate mechanisms of toxicity. Three triazole antifungals (myclobutanil, propiconazole and triadimefon) and two perfluorinated compounds (...

13

Toxicogenomic effects common to triazole antifungals and conserved between rats and humans  

SciTech Connect

The triazole antifungals myclobutanil, propiconazole and triadimefon cause varying degrees of hepatic toxicity and disrupt steroid hormone homeostasis in rodent in vivo models. To identify biological pathways consistently modulated across multiple timepoints and various study designs, gene expression profiling was conducted on rat livers from three separate studies with triazole treatment groups ranging from 6 h after a single oral gavage exposure, to prenatal to adult exposures via feed. To explore conservation of responses across species, gene expression from the rat liver studies were compared to in vitro data from rat and human primary hepatocytes exposed to the triazoles. Toxicogenomic data on triazoles from 33 different treatment groups and 135 samples (microarrays) identified thousands of probe sets and dozens of pathways differentially expressed across time, dose, and species - many of these were common to all three triazoles, or conserved between rodents and humans. Common and conserved pathways included androgen and estrogen metabolism, xenobiotic metabolism signaling through CAR and PXR, and CYP mediated metabolism. Differentially expressed genes included the Phase I xenobiotic, fatty acid, sterol and steroid metabolism genes Cyp2b2 and CYP2B6, Cyp3a1 and CYP3A4, and Cyp4a22 and CYP4A11; Phase II conjugation enzyme genes Ugt1a1 and UGT1A1; and Phase III ABC transporter genes Abcb1 and ABCB1. Gene expression changes caused by all three triazoles in liver and hepatocytes were concentrated in biological pathways regulating lipid, sterol and steroid homeostasis, identifying a potential common mode of action conserved between rodents and humans. Modulation of hepatic sterol and steroid metabolism is a plausible mode of action for changes in serum testosterone and adverse reproductive outcomes observed in rat studies, and may be relevant to human risk assessment.

Goetz, Amber K. [National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711 (United States); Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695 (United States); Dix, David J. [National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711 (United States)], E-mail: dix.david@epa.gov

2009-07-01

14

PROPICONAZOLE-INDUCED CARCINOGENESIS: ROLE OF OXIDATIVE STRESS  

EPA Science Inventory

Propiconazole is a systemic foliar fungicide with a broad range of activity. Rodents fed with propiconazole at high dose resulted in diminished body weight, increased liver weight of adults and pups, and eventually liver carcinogenesis. In order to unravel the toxic processes inv...

15

Enantioselectivity in tebuconazole and myclobutanil non-target toxicity and degradation in soils.  

PubMed

Tebuconazole and myclobutanil are two widely used triazole fungicides, both comprising two enantiomers with different fungicidal activity. However, their non-target toxicity and environmental behavior with respect to enantioselectivity have received limited attention. In the present study, tebuconazole and myclobutanil enantiomers were isolated and used to evaluate the occurrence of enantioselectivity in their acute toxicity to three non-target organisms (Scenedesmus obliquus, Daphnia magna, and Danio rerio). Significant differences were found: R-(-)-tebuconazole was about 1.4-5.9 times more toxic than S-(+)-tebuconazole; rac-myclobutanil was about 1.3-6.1 and 1.4-7.3 more toxic than (-)-myclobutanil and (+)-myclobutanil, respectively. Enantioselectivity was further investigated in terms of fungicide degradation in seven soil samples, which were selected to cover a broad range of soil properties. In aerobic or anaerobic soils, the S-(+)-tebuconazole degraded faster than R-(-)-tebuconazole, and the enantioselectivity showed a correlation with soil organic carbon content. (+)-Myclobutanil was preferentially degraded than (-)-myclobutanil in aerobic soils, whereas both enantiomers degraded at similar rates in anaerobic soils. Apparent correlations of enantioselectivity with soil pH and soil texture were observed for myclobutanil under aerobic conditions. In addition, both fungicides were configurationally stable in soils, i.e., no enantiomerization was found. Enantioselectivity may be a common phenomenon in both aquatic toxicity and biodegradation of chiral triazole fungicides, and this should be considered when assessing ecotoxicological risks of these compounds in the environment. PMID:25475972

Li, Yuanbo; Dong, Fengshou; Liu, Xingang; Xu, Jun; Han, Yongtao; Zheng, Yongquan

2015-03-01

16

40 CFR 180.434 - Propiconazole; tolerances for residues.  

Code of Federal Regulations, 2010 CFR

...false Propiconazole; tolerances for residues. 180.434 Section 180.434...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances §...

2010-07-01

17

Interaction of propiconazole in the peanut leafspot disease complex  

SciTech Connect

(/sup 14/C)-Propiconazole exhibited characteristics of an apoplastic xenobiotic being acropetally translocated via the transpiration stream to the foliage following root exposure in peanut (Arachis hypogeaea). When applied to leaves, radioactivity was detected distal to the point of application and accumulated along the margins of treated leaves. Redistribution to untreated plant parts was not observed. (/sup 14/C)-propiconazole rapidly penetrated the cuticle of leaves. However, leaves treated with a mixture of (/sup 14/C)-propiconazole and Penetrator 3 exhibited significantly greater foliar uptake of radioactivity than leaves treated with (/sup 14/C)-propiconazole alone. In replicated experiments, leafspot infection (caused by Cercospora arachidicola or Cercosporidium personatum) decreased quadratically with increasing application rate of Tilt 3.6EC (propiconazole) or Vangard 1.0EC (etaconazole). Combinations of fungicide and penetrator 3 gave slightly greater reductions of infection relative to fungicide alone but had no effect on yield. Propiconazole had no effect on the uptake or incorporation of (/sup 14/C)-acetate into the total lipid (TL) of peanut leaf tissue. (/sup 14/C) in the total fatty acids and non-saponifiable lipids was 10 to 20% greater, respectively, in treated tissue relative to the untreated control. Radioactivity of 4-demethyl sterols was up to 57% lower in treated leaves but no differences in radioactivity were detected in 4-methyl and 4,14-dimethyl sterols.

Hancock, H.G.

1985-01-01

18

Bioaccumulation and excretion of enantiomers of myclobutanil in Tenebrio molitor larvae through dietary exposure.  

PubMed

The bioaccumulation and excretion of enantiomers of myclobutanil in Tenebrio molitor larvae through dietary exposure under laboratory conditions were investigated using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. The wheat bran fed to Tenebrio molitor larvae was spiked with racemic myclobutanil at two dose levels of 20?mg/kg and 2?mg/kg (dry weight). The results showed that there was a significant trend of enantioselective bioaccumulation in the larvae with a preferential accumulation of (-)-myclobutanil in 20?mg/kg dose exposure, but it was not obviously observed in the 2?mg/kg dose group. A kinetic model considering enantiomerization between the two enantiomers based on first-order reactions was built and the rate constants were estimated to discuss the kinetic reason for the different concentrations of individual enantiomers in the larvae. The approximations implied an inversion between the two enantiomers with a relatively higher rate of the inversion from (-)-myclobutanil to (+)-myclobutanil. Meanwhile, analysis of data of excretion samples suggested the active excretion is probably an important pathway for the insect to eliminate myclobutanil rapidly with nonenantioselectivity as a passive transport process, which was consistent with the low accumulation efficiency of myclobutanil measured by BAF (bioaccumulation factor). PMID:24014248

Lv, Xiaotian; Liu, Chen; Li, Yaobin; Gao, Yongxin; Guo, Baoyuan; Wang, Huili; Li, Jianzhong

2013-12-01

19

MYCLOBUTANIL AND TRIADIMEFON METHABOLISM BY RAT CYP ISOFORMS AND LIVER MICROSOMES  

EPA Science Inventory

The mode of action of conazole fungicides is to inhibit cytochrome P450 (CYP) 51 activity and thus the biosynthesis of ergosterol by fungi. Conazoles can also modulate other CYP activities in vertebrate species including humans. Myclobutanil (MCL) and triadimefon (TRD) are ag...

20

Cytotoxic effects of propiconazole and its metabolites in mouse and human hepatoma cells and primary mouse hepatocytes  

EPA Science Inventory

Abstract: Propiconazole is a triazole-containing fungicide that is used agriculturally on grasses, fruits, grains, seeds, hardwoods, and conifers. Propiconazole is a mouse liver hepatotoxicant and a hepatocarcinogen and has adverse reproductive and developmental toxicities in exp...

21

Propiconazole inhibits steroidogenesis and reproduction in the fathead minnow (Pimephales promelas)  

EPA Science Inventory

This study assessed effects of the conazole-fungicide propiconazole on endocrine function and reproductive success of the fathead minnow, using an experimental approach based on previously defined adverse outcome pathways (AOPs) for chemicals that inhibit steroidogenesis in fish...

22

A microRNA signature for tumorigenic conazoles in mouse liver.  

EPA Science Inventory

Triadimefon, propiconazole and myclobutanil are conazoles, an important class of agricultural and therapeutic fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants o...

23

IN VIVO MUTAGENICITY OF CONAZOLE FUNGICIDES CORRELATES WITH TUMORIGENICITY-JOURNAL  

EPA Science Inventory

Triadimefon, propiconazole, and myclobutanil are conazoles, an important class of agricultural and therapeutic fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. All three conazoles are generally inactive in short-term genotoxicity t...

24

In vivo mutagenicity of conazole fungicides correlates with tumorigenicity  

EPA Science Inventory

Triadimefon, propiconazole, and myclobutanil are conazoles, an important class of agricultural and therapeutic fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. All three conazoles are generally inactive in short-term genotoxicity te...

25

A potential microRNA signature for tumorigenic conazoles in mouse liver  

EPA Science Inventory

Triadimefon, propiconazole and myclobutanil are conazoles, an important class of agricultural fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants of conazole tumor...

26

Altered microRNA expression induced by tumorigenic conazoles in mouse liver.  

EPA Science Inventory

Triadimefon, propiconazole, and myclobutanil are conazoles, an important class of agricultural and therapeutic fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants ...

27

Defining Adverse Outcome Pathways for Effects of the Fungicide Propiconazole of Fish Reproduction  

EPA Science Inventory

Adverse outcome pathways (AOPs) are used to describe the linkage of chemical interactions in terms of molecular initiating events to whole organism responses suitable for risk assessment. This study was conducted to develop AOPs for the model fungicide propiconazole relative to r...

28

[Determination of myclobutanil 25% WG degradation dynamics in ginseng root, stem, leaf and soil by HPLC-MS/MS].  

PubMed

A high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) method was developed for determining degradation dynamics and final residues of myclobutanil 25% WG in ginseng root, stem, leaf and soil. The samples were extracted with acetonitrile, cleaned-up with primary secondary amine (PSA) solid phase extraction cartridge, separated by Kromasil Eternity-5-C18 (2.1 mm x 150 mm, 5 microm) column with a gradient of acetonitrile and 0.1% formate in water as mobile phases, and analyzed with the multiple reaction monitoring (MRM) in positive ion mode by employing the external standard method. The average recoveries and the relative standard derivations (RSDs) of myclobutanil at the spiked level of 0.01-0.20 mg x kg(-1) were 80.9%-90.7% and 5.54%-9.29%, respectively, and the limit of quantification (LOQ) was 0.005 mg x kg(-1). The method with good reproducible, high precision and low detection limit could meet the requirements of residual analysis on ginseng production. The half-lives of myclobutanil were from 6.25 days to 9.94 days in ginseng root, stem, leaf and soil at spraying dosage of 1 152 g x hm(-2) The final residues were below 0.060 1 mg x kg(-1) in root, below 0.081 7 mg x kg(-1) in stem, 0.006 0-0.102 2 mg x kg(-1) in leaf and below 0.037 6 mg x kg(-1) in soil at spraying dosage range from 576 to 1 152 g x hm(-2). It is recommended that the MRLs of myclobutanil in dried ginseng may be suggested to be 0.10 mg x kg(-1) temporarily, and the preharvest interval was set at 35 days. PMID:25276964

Wang, Yan; Wang, Chun-Wei; Gao, Jie; Cui, Li-Li; Xu, Yun-Cheng

2014-07-01

29

Short-term effects of propiconazole on hypothalamic-pituitary-gonadal function in the fathead minnows (Pimephales promelas)  

EPA Science Inventory

Propiconazole is an ergosterol inhibitor commonly used in agriculture and has been detected in aquatic environments. Ergosterol inhibitors decrease fungal growth through effects on 14á-demethylase, a cytochrome P450 (CYP), isoform important for ergosterol biosynthesis. In higher ...

30

Enantioselective analysis of triazole fungicide myclobutanil in cucumber and soil under different application modes by chiral liquid chromatography/tandem mass spectrometry.  

PubMed

A sensitive and enantioselective method was developed and validated for the determination of myclobutanil enantiomers by chiral liquid chromatography coupled with tandem mass spectrometry. The separation and determination were performed using reversed-phase chromatography on a Chiralcel OD-RH column, with ACN-water (70/30, v/v) as the mobile phase under isocratic conditions at 0.5 mL/min flow rate. The matrix effect, linearity, precision, accuracy, and stability were evaluated. The proposed method then was successfully applied to the study of enantioselective degradation of rac-myclobutanil in cucumber and soil under different application modes. The results showed that the preferential degradation of (+)-myclobutanil resulted in an enrichment of the (-)-myclobutanil residue in plant and soil. Moreover, in cucumber, the stereoselective intensity of myclobutanil under root douche treatment was stronger than that under foliar spraying treatment, whereas in soil, the intensity was exactly opposite. The probable reasons underlying these enantioselective effects were also discussed. This study highlighted the importance of examining the fate of both enantiomers in the greenhouse system for the correct use of chiral pesticides. PMID:22288843

Dong, Fengshou; Cheng, Li; Liu, Xingang; Xu, Jun; Li, Jing; Li, Yuanbo; Kong, Zhiqiang; Jian, Qiu; Zheng, Yongquan

2012-02-29

31

Antifungal agents.  

PubMed

The four main classes of antifungal drugs are the polyenes, azoles, allylamines and echinocandins. Clinically useful "older" agents include topical azole formulations (for superficial yeast and dermatophyte infections), first-generation triazoles (fluconazole and itraconazole, for a range of superficial and invasive fungal infections), amphotericin B formulations (for a broad range of invasive fungal infections) and terbinafine (for dermatophyte infections). Clinically important "newer" agents include members of the echinocandin class (eg, caspofungin) and second-generation triazoles (eg, voriconazole and posaconazole). Voriconazole and posaconazole have broad-spectrum activity against yeasts and moulds, including Aspergillus species. Posaconazole is the only azole drug with activity against zygomycete fungi. Caspofungin and the other echinocandins are effective in treating Candida and Aspergillus infections. The azoles are relatively safe, but clinicians should be aware of drug-drug interactions and adverse effects, including visual disturbances (with voriconazole), elevations in liver transaminase levels, and skin rashes. Caspofungin has minimal adverse effects. Combination antifungal therapy may be appropriate in selected patients with invasive fungal infections, but is empiric and driven by individual physician practice. PMID:17908006

Chen, Sharon C A; Sorrell, Tania C

2007-10-01

32

Efficacy and mode of action of propiconazol against Phymatotrichum omnivorum on cotton  

E-print Network

. These fungicides are known to have specific modes of action in the fungal cell, and inhibit the growth of a wide range of organisms. One fungicide presently under investigation for the control of P. omnivorum is propiconazol. Sterols are a class of large..., 56). The latter is similar in color but has coarser, looser, mycelium and lacks the slender tapering hyphae that branches at right angles (60) 0. auzicomum occurs in Texas, but only as a saprophyte (55) . 0. omnivozum has sterile mycelia which...

Mathieson, John Todd

2012-06-07

33

Loss of Propiconazole and its Four Stereoisomers from the Water Phase of Two Soil-Water Slurries as Measured by Capillary Electrophoresis  

EPA Science Inventory

Propiconazole is a chiral fungicide used in agriculture for control of many fungal diseases on a variety of crops. This use provides opportunities for pollution of soil and, subsequently, groundwater. The rate of loss of propiconazole from the water phase of two different soil-wa...

34

Propiconazole enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras famesylation  

EPA Science Inventory

Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic ...

35

Residues and dissipation kinetics of triazole fungicides difenoconazole and propiconazole in wheat and soil in Chinese fields.  

PubMed

An analytical method for simultaneously determining the residues of difenoconazole and propiconazole in wheat straw, wheat grain and soil was developed. Mean recoveries and relative standard deviations in all samples ranged 86.2-101.3% and 3.1-12.1% for propiconazole and difenoconazole. The half-lives of difenoconazole and propiconazole were 3.6-5.5days and 5.1-6.9days in wheat straws, and 4.9-5.8days and 6.1-8.4days in soil, respectively. The residues in wheat grain were found to be <0.01mg/kg, based on the application rate (135g a.i./ha) and the pre-harvest interval (PHI=28days) recommended by the manufacturer. The results suggest that the use of difenoconazole and propiconazole on wheat is considered to be safe under the Good Agricultural Practices (GAP) in the Chinese fields, and the main factors for pesticide residue in crops are application times, rates and pre-harvest intervals. PMID:25172726

Zhang, Zhiyong; Jiang, Wayne; Jian, Qiu; Song, Wencheng; Zheng, Zuntao; Wang, Donglan; Liu, Xianjin

2015-02-01

36

Pediatric Antifungal Agents  

PubMed Central

Purpose of review In immunocompromised hosts, invasive fungal infections are common and fatal. In the past decade, the antifungal armamentarium against invasive mycoses has expanded greatly. The purpose of this report is to review the most recent literature addressing the use of antifungal agents in children. Recent findings Most studies evaluating the safety and efficacy of antifungal agents are limited to adults. However, important progress has been made in describing the pharmacokinetics and safety of newer antifungal agents in children, including the echinocandins. Summary Dosage guidelines for newer antifungal agents are currently based on adult and limited pediatric data. Because important developmental pharmacology changes occur throughout childhood impacting the pharmacokinetics of these agents, antifungal studies specifically designed for children are necessary. PMID:19741525

Cohen-Wolkowiez, Michael; Moran, Cassandra; Benjamin, Daniel K.; Smith, P Brian

2009-01-01

37

Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation  

SciTech Connect

Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular fractions from control, MVAL or propiconazole-treated cells revealed increased Ras protein in the cytoplasmic fraction of L-744,832-treated cells, while propiconazole or MVAL reversed these effects. Western blot analysis indicated that phosphorylation of Erk1/2, a protein downstream of Ras, was increased by propiconazole. These data indicate that propiconazole increases cell proliferation by increasing the levels of cholesterol biosynthesis intermediates presumably through a negative feedback mechanism within the pathway, a result of CYP51 inhibition. This feedback mechanism increases Erk1/2 signaling through mevalonate-mediated Ras activation. These results provide an explanation for the observed effects of propiconazole on hepatic cholesterol pathways and on the increased hepatic cell proliferation induced by propiconazole in mice. Highlights: ? Propiconazole increases cell proliferation in AML12 mouse hepatocytes. ? Propiconazole increases Ras farnesylation and alters Ras membrane localization. ? Propiconazole increases Erk1/2 phosphorylation. ? Dysregulation of the cholesterol biosynthesis pathway can explain these results. ? These results can explain similar effects induced by propiconazole in mice.

Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen, E-mail: nesnow.stephen@epa.gov

2012-04-15

38

EUCAST breakpoints for antifungals  

Microsoft Academic Search

Susceptibility testing of fungi and development of interpretative breakpoints has become increasingly important due to the growing incidence of invasive fungal infections, the number and classes of antifungals, and the emerging reports of acquired resistance. The subcommittee on antifungal susceptibility testing of the European Committee on Antibiotic Susceptibility Testing (EUCAST) has developed standards for susceptibility testing of fermentative yeasts and

J. L. Rodriguez-Tudela; M. C. Arendrup; M. Cuenca-Estrella; J. P. Donnelly; C. Lass-Florl

2010-01-01

39

Propiconazole Is a Specific and Accessible Brassinosteroid (BR) Biosynthesis Inhibitor for Arabidopsis and Maize  

PubMed Central

Brassinosteroids (BRs) are steroidal hormones that play pivotal roles during plant development. In addition to the characterization of BR deficient mutants, specific BR biosynthesis inhibitors played an essential role in the elucidation of BR function in plants. However, high costs and limited availability of common BR biosynthetic inhibitors constrain their key advantage as a species-independent tool to investigate BR function. We studied propiconazole (Pcz) as an alternative to the BR inhibitor brassinazole (Brz). Arabidopsis seedlings treated with Pcz phenocopied BR biosynthetic mutants. The steady state mRNA levels of BR, but not gibberellic acid (GA), regulated genes increased proportional to the concentrations of Pcz. Moreover, root inhibition and Pcz-induced expression of BR biosynthetic genes were rescued by 24epi-brassinolide, but not by GA3 co-applications. Maize seedlings treated with Pcz showed impaired mesocotyl, coleoptile, and true leaf elongation. Interestingly, the genetic background strongly impacted the tissue specific sensitivity towards Pcz. Based on these findings we conclude that Pcz is a potent and specific inhibitor of BR biosynthesis and an alternative to Brz. The reduced cost and increased availability of Pcz, compared to Brz, opens new possibilities to study BR function in larger crop species. PMID:22590578

Best, Norman B.; Budka, Joshua S.; Zhu, Jia-Ying; Choe, Sunghwa; Schulz, Burkhard

2012-01-01

40

Problems in Antifungal Chemotherapy  

Microsoft Academic Search

Summary The field of antifungal chemotherapy is undergoing rapid change at present, with an accelerating pace of introduction of new agents. The problems at present include the need for more effective agents, particularly with novel modes of action. Fungal infection must be considered more frequently in differential diagnosis, and methods developed for early diagnosis. The literature must be improved, with

D. A. Stevens

1987-01-01

41

Loss of Propiconazole and Its Four Stereoisomers from the Water Phase of Two Soil-Water Slurries as Measured by Capillary Electrophoresis  

PubMed Central

Propiconazole is a chiral fungicide used in agriculture for control of many fungal diseases on a variety of crops. This use provides opportunities for pollution of soil and, subsequently, groundwater. The rate of loss of propiconazole from the water phase of two different soil-water slurries spiked with the fungicide at 50 mg/L was followed under aerobic conditions over five months; the t1/2 was 45 and 51 days for the two soil slurries. To accurately assess environmental and human risk, it is necessary to analyze the separate stereoisomers of chiral pollutants, because it is known that for most such pollutants, both biotransformation and toxicity are likely to be stereoselective. Micellar electrokinetic chromatography (MEKC), the mode of capillary electrophoresis used for analysis of neutral chemicals, was used for analysis of the four propiconazole stereoisomers with time in the water phase of the slurries. MEKC resulted in baseline separation of all stereoisomers, while GC-MS using a chiral column gave only partial separation. The four stereoisomers of propiconazole were lost from the aqueous phase of the slurries at experimentally equivalent rates, i.e., there was very little, if any, stereoselectivity. No loss of propiconazole was observed from the autoclaved controls of either soil, indicating that the loss from active samples was most likely caused by aerobic biotansformation, with a possible contribution by sorption to the non-autoclaved active soils. MEKC is a powerful tool for separation of stereoisomers and can be used to study the fate and transformation kinetics of chiral pesticides in water and soil. PMID:21909317

Garrison, Arthur W.; Avants, Jimmy K.; Miller, Rebecca D.

2011-01-01

42

Trends in antifungal research  

Microsoft Academic Search

\\u000a With the increasing use of aggressive immunosuppressive therapies in the management of a variety of patient populations, the\\u000a continuing presence of the AIDS pandemic and the therapeutic advances employed in critical care settings, an increasing number\\u000a of serious fungal infections are being encountered by today’s practicing clinicians. Traditionally, antifungal drug therapy\\u000a has been delivered by means of intravenous infusion, oral

Vorapann Mahaguna; Robert O. Williams; Thomas C. Hardin

43

Antifungal Lock Therapy  

PubMed Central

The widespread use of intravascular devices, such as central venous and hemodialysis catheters, in the past 2 decades has paralleled the increasing incidence of catheter-related bloodstream infections (CR-BSIs). Candida albicans is the fourth leading cause of hospital-associated BSIs. The propensity of C. albicans to form biofilms on these catheters has made these infections difficult to treat due to multiple factors, including increased resistance to antifungal agents. Thus, curing CR-BSIs caused by Candida species usually requires catheter removal in addition to systemic antifungal therapy. Alternatively, antimicrobial lock therapy has received significant interest and shown promise as a strategy to treat CR-BSIs due to Candida species. The existing in vitro, animal, and patient data for treatment of Candida-related CR-BSIs are reviewed. The most promising antifungal lock therapy (AfLT) strategies include use of amphotericin, ethanol, or echinocandins. Clinical trials are needed to further define the safety and efficacy of AfLT. PMID:23070153

Walraven, Carla J.

2013-01-01

44

Tissue penetration of antifungal agents.  

PubMed

Understanding the tissue penetration of systemically administered antifungal agents is critical for a proper appreciation of their antifungal efficacy in animals and humans. Both the time course of an antifungal drug and its absolute concentrations within tissues may differ significantly from those observed in the bloodstream. In addition, tissue concentrations must also be interpreted within the context of the pathogenesis of the various invasive fungal infections, which differ significantly. There are major technical obstacles to the estimation of concentrations of antifungal agents in various tissue subcompartments, yet these agents, even those within the same class, may exhibit markedly different tissue distributions. This review explores these issues and provides a summary of tissue concentrations of 11 currently licensed systemic antifungal agents. It also explores the therapeutic implications of their distribution at various sites of infection. PMID:24396137

Felton, Timothy; Troke, Peter F; Hope, William W

2014-01-01

45

Tissue Penetration of Antifungal Agents  

PubMed Central

SUMMARY Understanding the tissue penetration of systemically administered antifungal agents is critical for a proper appreciation of their antifungal efficacy in animals and humans. Both the time course of an antifungal drug and its absolute concentrations within tissues may differ significantly from those observed in the bloodstream. In addition, tissue concentrations must also be interpreted within the context of the pathogenesis of the various invasive fungal infections, which differ significantly. There are major technical obstacles to the estimation of concentrations of antifungal agents in various tissue subcompartments, yet these agents, even those within the same class, may exhibit markedly different tissue distributions. This review explores these issues and provides a summary of tissue concentrations of 11 currently licensed systemic antifungal agents. It also explores the therapeutic implications of their distribution at various sites of infection. PMID:24396137

Felton, Timothy; Troke, Peter F.

2014-01-01

46

Alternative approaches to antifungal therapies  

PubMed Central

The expansive use of immunosuppressive medications in fields such as transplantational medicine and oncology, the higher frequency of invasive procedures in an aging population and the HIV/AIDS pandemic have increased the frequency of systemic fungal infections. At the same time, increased resistance of pathogenic fungi to classical antifungal agents has led to sustained research efforts targeting alternative antifungal strategies. In this review, we focus on two promising approaches: cationic peptides and the targeting of fungal virulence factors. Cationic peptides are small, predominantly positively charged protein fragments which exert direct and indirect antifungal activities, one mechanism of action being the permeabilization of the fungal membrane. They include lysozyme, defensins, and cathelicidins, as well as novel synthetic peptides. Amongst fungal virulence factors, the targeting of candidal secreted aspartic proteinases seems to be a particularly promising approach. PMID:23078400

Mehra, T; Köberle, M; Braunsdorf, C; Mailänder-Sanchez, D; Borelli, C; Schaller, M

2012-01-01

47

Comparison of echinocandin antifungals  

PubMed Central

The incidence of invasive fungal infections, especially those due to Aspergillus spp. and Candida spp., continues to increase. Despite advances in medical practice, the associated mortality from these infections continues to be substantial. The echinocandin antifungals provide clinicians with another treatment option for serious fungal infections. These agents possess a completely novel mechanism of action, are relatively well-tolerated, and have a low potential for serious drug–drug interactions. At the present time, the echinocandins are an option for the treatment of infections due Candida spp (such as esophageal candidiasis, invasive candidiasis, and candidemia). In addition, caspofungin is a viable option for the treatment of refractory aspergillosis. Although micafungin is not Food and Drug Administration-approved for this indication, recent data suggests that it may also be effective. Finally, caspofungin- or micafungin-containing combination therapy should be a consideration for the treatment of severe infections due to Aspergillus spp. Although the echinocandins share many common properties, data regarding their differences are emerging at a rapid pace. Anidulafungin exhibits a unique pharmacokinetic profile, and limited cases have shown a potential far activity in isolates with increased minimum inhibitory concentrations to caspofungin and micafungin. Caspofungin appears to have a slightly higher incidence of side effects and potential for drug–drug interactions. This, combined with some evidence of decreasing susceptibility among some strains of Candida, may lessen its future utility. However, one must take these findings in the context of substantially more data and use with caspofungin compared with the other agents. Micafungin appears to be very similar to caspofungin, with very few obvious differences between the two agents. PMID:18360617

Eschenauer, Gregory; DePestel, Daryl D; Carver, Peggy L

2007-01-01

48

ALTERATIONS IN A11 TRANS RETINOIC ACID METABOLISM IN LIVER MICROSOMES FROM MICE TREATED WITH HEPATOTUMORIGENIC AND NON-HEPATOTUMORIGENIC CONAZOLES  

EPA Science Inventory

Conazoles are fungicides used in crop protection and as pharmaceuticals. Triadimefon and propiconazole are hepatotumorigenic in mice, while myclobutanil is not. Previous toxicogenomic studies suggest that alteration of the retinoic acid metabolism pathway may be a key event in co...

49

COMPARISON OF HEPATIC GENE EXPRESSION PROFILES FROM MICE EXPOSED TO THREE TOXICOLOGICALLY DIFFERENT CONAZOLES  

EPA Science Inventory

Conazoles comprise a chemical class of fungicides used as agricultural and pham-taceutical products. Both propiconazole and triadimefon are hepatotoxic and hepatotumorigenic in mice, while myclobutanil is not a mouse liver tumorigen. The tumorigenic activities of these conazoles ...

50

RAMAN SPECTROSCOPY-BASED METABOLOMICS FOR DIFFERENTIATING EXPOSURES TO TRIAZOLE FUNGICIDES USING RAT URINE  

EPA Science Inventory

Normal Raman spectroscopy was evaluated as a metabolomic tool for assessing the impacts of exposure to environmental contaminants, using rat urine collected during the course of a toxicological study. Specifically, one of three triazole fungicides, myclobutanil, propiconazole or ...

51

Antifungal Application of Nonantifungal Drugs  

PubMed Central

Candida species are the cause of 60% of all mycoses in immunosuppressed individuals, leading to ?150,000 deaths annually due to systemic infections, whereas the current antifungal therapies either have toxic side effects or are insufficiently efficient. We performed a screening of two compound libraries, the Enzo and the Institute for Molecular Medicine Finland (FIMM) oncology collection library, for anti-Candida activity based on the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. From a total of 844 drugs, 26 agents showed activity against Candida albicans. Of those, 12 were standard antifungal drugs (SADs) and 7 were off-target drugs previously reported to be active against Candida spp. The remaining 7 off-target drugs, amonafide, tosedostat, megestrol acetate, melengestrol acetate, stanozolol, trifluperidol, and haloperidol, were identified with this screen. The anti-Candida activities of the new agents were investigated by three individual assays using optical density, ATP levels, and microscopy. The antifungal activities of these drugs were comparable to those of the SADs found in the screen. The aminopeptidase inhibitor tosedostat, which is currently in a clinical trial phase for anticancer therapy, displayed a broad antifungal activity against different Candida spp., including Candida glabrata. Thus, this screen reveals agents that were previously unknown to be anti-Candida agents, which allows for the design of novel therapies against invasive candidiasis. PMID:24277040

Stylianou, Marios; Kulesskiy, Evgeny; Lopes, José Pedro; Granlund, Margareta; Wennerberg, Krister

2014-01-01

52

Antifungal anthraquinones from Saprosma fragrans  

Microsoft Academic Search

A new 3,4-dihydroxy-1-methoxy anthraquinone-2-corboxaldehyde (1) together with a known anthraquinone, damnacanthal (2), were isolated from the chloroform fraction of the aerial part (whole plant without root) of Saprosma fragrans. The isolated anthraquinones (1) and (2) were found to exhibit antifungal activity against Trichophyton mentagrophytes and Sporitrichum schenckii. Their structures were established by chemical and spectral analysis.

D. N. Singh; N. Verma; S. Raghuwanshi; P. K. Shukla; D. K. Kulshreshtha

2006-01-01

53

Antifungal application of nonantifungal drugs.  

PubMed

Candida species are the cause of 60% of all mycoses in immunosuppressed individuals, leading to ?150,000 deaths annually due to systemic infections, whereas the current antifungal therapies either have toxic side effects or are insufficiently efficient. We performed a screening of two compound libraries, the Enzo and the Institute for Molecular Medicine Finland (FIMM) oncology collection library, for anti-Candida activity based on the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. From a total of 844 drugs, 26 agents showed activity against Candida albicans. Of those, 12 were standard antifungal drugs (SADs) and 7 were off-target drugs previously reported to be active against Candida spp. The remaining 7 off-target drugs, amonafide, tosedostat, megestrol acetate, melengestrol acetate, stanozolol, trifluperidol, and haloperidol, were identified with this screen. The anti-Candida activities of the new agents were investigated by three individual assays using optical density, ATP levels, and microscopy. The antifungal activities of these drugs were comparable to those of the SADs found in the screen. The aminopeptidase inhibitor tosedostat, which is currently in a clinical trial phase for anticancer therapy, displayed a broad antifungal activity against different Candida spp., including Candida glabrata. Thus, this screen reveals agents that were previously unknown to be anti-Candida agents, which allows for the design of novel therapies against invasive candidiasis. PMID:24277040

Stylianou, Marios; Kulesskiy, Evgeny; Lopes, José Pedro; Granlund, Margareta; Wennerberg, Krister; Urban, Constantin F

2014-01-01

54

Antifungal Susceptibility Tests of Aspergillus Species  

Microsoft Academic Search

\\u000a Although different methods are now available to assess the susceptibility of Aspergillus species to antifungal agents, there are still limited data correlating in vitro resistance with meaningful clinical endpoints.\\u000a Moreover, there is no consensus on the breakpoints to define resistance\\/susceptibility to different antifungal agents. This\\u000a chapter reviews the technical issues related to antifungal susceptibility tests for Aspergillus species, including the

Arnaldo Lopes Colombo; Viviane Reis; Patricio Godoy

55

Antifungal Susceptibility Testing and Therapy  

Microsoft Academic Search

\\u000a The development of new therapies to treat fatal diseases is creating an increasing number of patients who have predisposing\\u000a factors for infections by opportunistic yeasts. The rise in the prevalence of fungal infections has been the drive to develop\\u000a and license several new antifungal agents such as new formulations of polyenes, new triazole agents and echinocandins. The\\u000a availability of distinct

Manuel Cuenca-Estrella; Juan Luis Rodriguez-Tudela

56

Defensins: antifungal lessons from eukaryotes  

PubMed Central

Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed. PMID:24688483

Silva, Patrícia M.; Gonçalves, Sónia; Santos, Nuno C.

2014-01-01

57

Phenobarbital and propiconazole toxicogenomic profiles in mice show major similarities consistent with the key role that constitutive androstane receptor (CAR) activation plays in their mode of action  

PubMed Central

Toxicogenomics (TGx) is employed frequently to investigate underlying molecular mechanisms of the compound of interest and, thus, has become an aid to mode of action determination. However, the results and interpretation of a TGx dataset are influenced by the experimental design and methods of analysis employed. This article describes an evaluation and reanalysis, by two independent laboratories, of previously published TGx mouse liver microarray data for a triazole fungicide, propiconazole (PPZ), and the anticonvulsant drug phenobarbital (PB). Propiconazole produced an increase incidence of liver tumors in male CD-1 mice only at a dose that exceeded the maximum tolerated dose (2500 ppm). Firstly, we illustrate how experimental design differences between two in vivo studies with PPZ and PB may impact the comparisons of TGx results. Secondly, we demonstrate that different researchers using different pathway analysis tools can come to different conclusions on specific mechanistic pathways, even when using the same datasets. Finally, despite these differences the results across three different analyses also show a striking degree of similarity observed for PPZ and PB treated livers when the expression data are viewed as major signaling pathways and cell processes affected. Additional studies described here show that the postulated key event of hepatocellular proliferation was observed in CD-1 mice for both PPZ and PB, and that PPZ is also a potent activator of the mouse CAR nuclear receptor. Thus, with regard to the events which are hallmarks of CAR-induced effects that are key events in the mode of action (MOA) of mouse liver carcinogenesis with PB, PPZ-induced tumors can be viewed as being promoted by a similar PB-like CAR-dependent MOA. PMID:24675475

Currie, Richard A.; Peffer, Richard C.; Goetz, Amber K.; Omiecinski, Curtis J.; Goodman, Jay I.

2014-01-01

58

Antifungal proteins: More than antimicrobials?  

PubMed Central

Antimicrobial proteins (AMPs) are widely distributed in nature. In higher eukaryotes, AMPs provide the host with an important defence mechanism against invading pathogens. AMPs of lower eukaryotes and prokaryotes may support successful competition for nutrients with other microorganisms of the same ecological niche. AMPs show a vast variety in structure, function, antimicrobial spectrum and mechanism of action. Most interestingly, there is growing evidence that AMPs also fulfil important biological functions other than antimicrobial activity. The present review focuses on the mechanistic function of small, cationic, cysteine-rich AMPs of mammals, insects, plants and fungi with antifungal activity and specifically aims at summarizing current knowledge concerning additional biological properties which opens novel aspects for their future use in medicine, agriculture and biotechnology. PMID:23412850

Hegedüs, Nikoletta; Marx, Florentine

2013-01-01

59

Antifungal susceptibility of Malassezia pachydermatis biofilm.  

PubMed

Antifungal resistance has been associated with biofilm formation in many microorganisms, but not yet in Malassezia pachydermatis. This saprophytic yeast can cause otitis and dermatitis in dogs and has emerged as an important human pathogen, responsible for systemic infections in neonates in intensive care units. This study aims to evaluate the in vitro antifungal susceptibility of M. pachydermatis strains, in both their planktonic and sessile forms, to fluconazole, miconazole, ketoconazole, itraconazole, posaconazole, terbinafine and voriconazole using the XTT assay and Clinical and Laboratory Standards Institute (CLSI) microdilution method. The minimum inhibitory concentration (MIC) values recorded for each drug were significantly higher for sessile cells relative to planktonic cells to the extent that ? 90% of M. pachydermatis strains in their sessile form were classified as resistant to all antifungal agents tested. Data suggest that M. pachydermatis biofilm formation is associated with antifungal resistance, paving the way towards investigating drug resistance mechanisms in Malassezia spp. PMID:23834283

Figueredo, Luciana A; Cafarchia, Claudia; Otranto, Domenico

2013-11-01

60

Antifungal agents in current pediatric practice.  

PubMed

Invasive fungal infections are an important cause of morbidity and mortality in immunocompromised children. Increases in the incidence of systemic mycoses have been observed during the last 2 decades. Treatment of invasive fungal infections has improved through a better knowledge and application of current treatment strategies and through the development of new antifungal compounds. The purpose of this review is to provide antifungal treatment recommendations for pediatric patients that can help clinicians find the most suitable treatment for each specific case. PMID:23616182

Valerio, Cecinati; Perillo, Teresa; Brescia, Letizia; Russo, Fabio Giovanni

2013-06-01

61

Antifungal activity of five species of Polygala  

PubMed Central

Crude extracts and fractions of five species of Polygala – P. campestris, P. cyparissias, P. paniculata, P. pulchella and P. sabulosa – were investigated for their in vitro antifungal activity against opportunistic Candida species, Cryptococcus gattii and Sporothrix schenckii with bioautographic and microdilution assays. In the bioautographic assays, the major extracts were active against the fungi tested. In the minimal concentration inhibitory (MIC) assay, the hexane extract of P. paniculata and EtOAc fraction of P. sabulosa showed the best antifungal activity, with MIC values of 60 and 30 ?g/mL, respectively, against C. tropicalis, C. gattii and S. schenckii. The compounds isolated from P. sabulosa prenyloxycoumarin and 1,2,3,4,5,6-hexanehexol displayed antifungal activity against S. schenckii (with MICs of 125 ?g/mL and 250 ?g/mL, respectively) and C. gattii (both with MICs of 250 ?g/mL). Rutin and aurapten isolated from P. paniculata showed antifungal activity against C. gattii with MIC values of 60 and 250 ?g/mL, respectively. In the antifungal screening, few of the isolated compounds showed good antifungal inhibition. The compound ?-spinasterol showed broad activity against the species tested, while rutin had the best activity with the lowest MIC values for the microorganisms tested. These two compounds may be chemically modified by the introduction of a substitute group that would alter several physico-chemical properties of the molecule, such as hydrophobicity, electronic density and steric strain. PMID:24031724

Johann, Susana; Mendes, Beatriz G.; Missau, Fabiana C.; de Resende, Maria A.; Pizzolatti, Moacir G.

2011-01-01

62

21 CFR 333.210 - Antifungal active ingredients.  

Code of Federal Regulations, 2012 CFR

...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Topical Antifungal Drug Products § 333.210 Antifungal active ingredients....

2012-04-01

63

21 CFR 333.210 - Antifungal active ingredients.  

Code of Federal Regulations, 2014 CFR

...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Topical Antifungal Drug Products § 333.210 Antifungal active ingredients....

2014-04-01

64

21 CFR 333.210 - Antifungal active ingredients.  

Code of Federal Regulations, 2011 CFR

...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Topical Antifungal Drug Products § 333.210 Antifungal active ingredients....

2011-04-01

65

21 CFR 333.210 - Antifungal active ingredients.  

Code of Federal Regulations, 2013 CFR

...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Topical Antifungal Drug Products § 333.210 Antifungal active ingredients....

2013-04-01

66

ASDCD: Antifungal Synergistic Drug Combination Database  

PubMed Central

Finding effective drugs to treat fungal infections has important clinical significance based on high mortality rates, especially in an immunodeficient population. Traditional antifungal drugs with single targets have been reported to cause serious side effects and drug resistance. Nowadays, however, drug combinations, particularly with respect to synergistic interaction, have attracted the attention of researchers. In fact, synergistic drug combinations could simultaneously affect multiple subpopulations, targets, and diseases. Therefore, a strategy that employs synergistic antifungal drug combinations could eliminate the limitations noted above and offer the opportunity to explore this emerging bioactive chemical space. However, it is first necessary to build a powerful database in order to facilitate the analysis of drug combinations. To address this gap in our knowledge, we have built the first Antifungal Synergistic Drug Combination Database (ASDCD), including previously published synergistic antifungal drug combinations, chemical structures, targets, target-related signaling pathways, indications, and other pertinent data. Its current version includes 210 antifungal synergistic drug combinations and 1225 drug-target interactions, involving 105 individual drugs from more than 12,000 references. ASDCD is freely available at http://ASDCD.amss.ac.cn. PMID:24475134

Chen, Ming; Liu, Ming-Xi; Ren, Wei; Wang, Quan-Xin; Zhang, Li-Xin; Yan, Gui-Ying

2014-01-01

67

Antifungal Drug Resistance: Mechanisms, Epidemiology, and Consequences for Treatment  

Microsoft Academic Search

Antifungal resistance continues to grow and evolve and complicate patient management, despite the introduction of new antifungal agents. In vitro susceptibility testing is often used to select agents with likely activity for a given infection, but perhaps its most important use is in identifying agents that will not work, i.e., to detect resistance. Standardized methods for reliable in vitro antifungal

Michael A. Pfaller

68

Antifungal therapy in children: an update.  

PubMed

Invasive fungal infections are a common problem in children affected by primary or secondary immunodeficiencies. Thanks to an increased knowledge about their mechanisms of action and their pharmacokinetic and toxicity profiles, the use of these drugs in common and uncommon invasive infections in immunocompromised children has improved over the last decades. Choosing the most appropriate antifungal drug is a serious challenge for any clinician, also considering that, in most cases, therapy has to be started before cultures are available, the choice being driven by clinical symptoms and statistical criteria only. In this study, we performed a systematic review of literature, providing antifungal treatment recommendations for paediatric patients which can help clinicians find the most suitable treatment for each specific case. Principal antifungal drugs-ranging from first-generation antimycotics to the latest molecules-are classified according to their targets, and of each group, the pharmacokinetic profile, clinical indications and side effects are extensively described. PMID:22652706

Cecinati, Valerio; Guastadisegni, Chiara; Russo, Fabio Giovanni; Brescia, Letizia Pomponia

2013-04-01

69

Antifungal drugs during pregnancy: an updated review.  

PubMed

Antifungal prescription remains a challenge in pregnant women because of uncertainties regarding fetal toxicity and altered maternal pharmacokinetic parameters that may affect efficacy or increase maternal and fetal toxicity. We present updated data reviewing the available knowledge and current recommendations regarding antifungal prescription in pregnancy. Amphotericin B remains the first-choice parenteral drug in spite of its well-established toxicity. Topical drugs are used throughout pregnancy because of limited absorption. Recent data have clarified the teratogenic effect of high-dose fluconazole during the first trimester and provided reassuring cumulative data regarding its use at a single low dose in this key period. Recent data have also provided additional safety data on itraconazole and lipidic derivatives of amphotericin B. Regarding newer antifungal drugs, including posaconazole and echinocandins, clinical data are critically needed before considering prescription in pregnancy. PMID:25204341

Pilmis, Benoît; Jullien, Vincent; Sobel, Jack; Lecuit, Marc; Lortholary, Olivier; Charlier, Caroline

2015-01-01

70

Antifungal terpenoids from Hyalis argentea var. latisquama.  

PubMed

A detailed chemical study of the aerial parts and rhizomes of Hyalis argentea var. latisquama yielded a variety of sesqui- and diterpenes. In total, 26 compounds were isolated and identified, of which four are new, namely, two ent-kaurenes (1 and 2), a diterpene lactone (3), and a lindenanolide (4). The previously reported compounds included a series of lindenanolides, guaianolides, elemanolides, and additional diterpenes. The antifungal activity of the isolated compounds was tested against Cryptococcus neoformans and Candida albicans. Among the isolated compounds, the lindenanolides were the only structural class that showed strong antifungal activity, and onoseriolide acetate (5) was the most active. On the other hand, the isolated guaianolides were only moderately active, while the diterpenes did not show significant antifungal activity. PMID:25026191

Fernández, Lucía R; Butassi, Estefanía; Svetaz, Laura; Zacchino, Susana A; Palermo, Jorge A; Sánchez, Marianela

2014-07-25

71

Potato Dextrose Agar Antifungal Susceptibility Testing for Yeasts and Molds: Evaluation of Phosphate Effect on Antifungal Activity of CMT3  

Microsoft Academic Search

The broth macrodilution method (BMM) for antifungal susceptibility testing, approved by the National Committee for Clinical Laboratory Standards (NCCLS), was found to have deficiencies in testing of the antifungal activity of a new type of antifungal agent, a nonantibacterial chemically modified tetracycline (CMT-3). The high content of phosphate in the medium was found to greatly increase the MICs of CMT-3.

Yu Liu; George Tortora; Maria E. Ryan; Hsi-Ming Lee; Lorne M. Golub

2002-01-01

72

Temporal generation of multiple antifungal proteins in primed seeds.  

PubMed

A drastic increase of antifungal activity was demonstrated during plant seed germination and in seed protein extract in vitro. Multiple antifungal proteins with a wide spectrum of activity were generated and identified. Chromatographic and electrophoretic analysis demonstrated that during seed germination, more fractions with potent antifungal activity were generated, and the antifungal activity shifted from small molecules to high molecular proteins. This germination-related increase of antifungal activity were observed in all three plants tested, i.e., cheeseweed, cigar tree and wheat. This rapid increase of antifungal activity was also observed with incubation of seed proteins in vitro, suggesting that at least part of the antifungal protein generation is independent of gene expression. Seven antifungal proteins with activities against five different plant pathogens were isolated from the active fractions. However, random digestion of purified seed protein with multiple proteinases failed to generate any antifungal proteins. It is suggested that during plant seed germination, a regulated biochemical process takes place that results in the generation of multiple peptides or proteins with antifungal activities. This onset of antifungal proteins is transitional in nature, but could play an important role in the protection of plants in early stage of development when the more sophisticated defense system has yet to develop. PMID:11890698

Wang, Xing; Thoma, Richard S; Carroll, James A; Duffin, Kevin L

2002-03-22

73

ANTIFUNGAL ACTIVITY OF THIOPHENES FROM ECHINOPS RITRO  

Technology Transfer Automated Retrieval System (TEKTRAN)

Extracts from thirty plants of the Greek flora were evaluated for their antifungal activity using direct-bioautography assays with three Colletotrichum species. Among the bioactive extracts, the dichloromethane extract of the radix of Echinops ritro was the most potent. Bioassay-guided fractionation...

74

In vitro antifungal activity of Rhazya stricta.  

PubMed

Rhazya stricta is a small glabrous shrub, widely distributed throughout Western Asia from Yemen to Arabia, to the North West Province of India and abundantly found in various regions of Pakistan. Larvicidal and antifungal studies of polar and non polar aerial parts extracts of Rhazya stricta were performed using brine shrimps larvae for larvicidal study and for antifungal study microorganisms, Trichophyton longifusis, Aspergillus flavus, Candida albicans, Microsporum canis and Fusarium solani were used respectively. The methanol fraction showed significant cytotoxicity with LC50 17.809 microg/ml, having mortality rate 73.33% at highest dose. While pet-ether, chloroform and carbon tetrachloride possessed moderate to low cytotoxicity with their LC50 values 49.077 microg/ml, 95.859 microg/ml and 80.489 microg/ml respectively, ethyl acetate fraction showed no cytotoxicity. Results of antifungal studies showed that fractionated samples of methanol and chloroform possessed significant antifungal activities against, Trichophyton longifusis, Aspergillus flavus, Candida albicans and Fusarium solani respectively. Due to these promising results, further in vivo studies over R. stricta must be conducted. PMID:17604249

Khan, Saifullah; Khan, Gul Majid

2007-10-01

75

Resveratrol lacks antifungal activity against Candida albicans.  

PubMed

The putative candicidal activity of resveratrol is currently a matter of controversy. Here, the antifungal activity as well as the antioxidant response of resveratrol against Candida albicans, have been tested in a set of strains with a well-established genetic background At the doses usually employed in antifungal tests (10-40 ?g/ml), resveratrol has no effect on the exponential growth of the C. albicans CAI.4 strain, a tenfold increase (400 ?g/ml) was required in order to record a certain degree of cell killing, which was negligible in comparison with the strong antifungal effect caused by the addition of amphotericin B (5 ?g/ml). An identical pattern was recorded in the prototrophic strains of C. albicans SC5314 and RM-100, whereas the oxidative sensitive trehalose-deficient mutant (tps1/tps1 strain) was totally refractory to the presence of resveratrol. In turn, the serum-induced yeast-to-hypha transition remained unaffected upon addition of different concentrations of resveratrol. Determination of endogenous trehalose and catalase activity, two antioxidant markers in C. albicans; revealed no significant changes in their basal contents induced by resveratrol. Collectively, our results seem to dismiss a main antifungal role as well as the therapeutic application of resveratrol against the infections caused by C. albicans. PMID:22806119

Collado-González, Mar; Guirao-Abad, José P; Sánchez-Fresneda, Ruth; Belchí-Navarro, Sarai; Argüelles, Juan-Carlos

2012-06-01

76

Paracoccidioides brasiliensis, paracoccidioidomycosis, and antifungal antibiotics.  

PubMed

Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis (PCM), a human systemic, chronic and progressive mycosis. Preferred antifungals are sulfamethoxazol-trimethoprim, itraconazole, amphotericin B. Treatment is lengthy, the drugs may have undesirable side effects, and some are costly. Occasional resistant strains have been reported. Therefore, the search for more selective and efficient antifungals to treat this and other mycoses continues. Ajoene, chemically derived from garlic, behaves as an antifungal agent against P. brasiliensis and other fungi. Its antiproliferative effects in P. brasiliensis are associated with a reduction of phosphatidyl choline, a concomitant increase in its precursor phosphatidyl ethanolamine, and a large increase in unsaturated fatty acids in the pathogenic yeast phase. The sterol biosynthetic pathway has been largely studied for the search of antifungals. Azoles and allilamines act on differents steps of this pathway. However, they may interfere with similar steps in the host. Hence, the search for drugs that may act on more specific steps is ongoing. One such step focuses on the sterol C-methylations catalyzed by the enzyme (S)-adenosyl-L-methionine: Delta(24) - sterol methyl transferase (SMT). SMT inhibitors such as azasterols and derivatives (AZA1, AZA2, AZA3) have proven highly effective as antiproliferative agents against protozoa and some fungi, among them, P. brasiliensis. Their chemical synthesis and structure, and their molecular electrostatic potential are discussed in order to understand their mechanism of action, and derive rationally designed improvements on these molecules, that would favour a higher efficacy and selectivity. PMID:16181141

Visbal, G; San-Blas, G; Murgich, J; Franco, H

2005-09-01

77

Efflux-Mediated Antifungal Drug Resistance†  

PubMed Central

Summary: Fungi cause serious infections in the immunocompromised and debilitated, and the incidence of invasive mycoses has increased significantly over the last 3 decades. Slow diagnosis and the relatively few classes of antifungal drugs result in high attributable mortality for systemic fungal infections. Azole antifungals are commonly used for fungal infections, but azole resistance can be a problem for some patient groups. High-level, clinically significant azole resistance usually involves overexpression of plasma membrane efflux pumps belonging to the ATP-binding cassette (ABC) or the major facilitator superfamily class of transporters. The heterologous expression of efflux pumps in model systems, such Saccharomyces cerevisiae, has enabled the functional analysis of efflux pumps from a variety of fungi. Phylogenetic analysis of the ABC pleiotropic drug resistance family has provided a new view of the evolution of this important class of efflux pumps. There are several ways in which the clinical significance of efflux-mediated antifungal drug resistance can be mitigated. Alternative antifungal drugs, such as the echinocandins, that are not efflux pump substrates provide one option. Potential therapeutic approaches that could overcome azole resistance include targeting efflux pump transcriptional regulators and fungal stress response pathways, blockade of energy supply, and direct inhibition of efflux pumps. PMID:19366916

Cannon, Richard D.; Lamping, Erwin; Holmes, Ann R.; Niimi, Kyoko; Baret, Philippe V.; Keniya, Mikhail V.; Tanabe, Koichi; Niimi, Masakazu; Goffeau, Andre; Monk, Brian C.

2009-01-01

78

Antifungal Properties of Some Mexican Medicinal Plants  

Microsoft Academic Search

The antifungal properties of some extracts from Artemisia ludoviciana Nutt., Heliopsis longipes 'A. Gray' Blake., Satureja macrostema Benth. and Tagetes lucida Cav. were analyzed, using the agar disc diffusion method. After 72 h incubation, the plant extracts inhibited the growth of fungi, but the ethyl acetate and methanol-chloroform extracts from A. ludoviciana, H. longipes and T. lucida inhibited all the

Luz Maria Damian-Badillo; Rafael Salgado-Garciglia; Rosa Elisa Martinez-Munoz; Mauro Manuel Martinez-Pacheco

2008-01-01

79

Synthetic Multivalent Antifungal Peptides Effective against Fungi  

PubMed Central

Taking advantage of the cluster effect observed in multivalent peptides, this work describes antifungal activity and possible mechanism of action of tetravalent peptide (B4010) which carries 4 copies of the sequence RGRKVVRR through a branched lysine core. B4010 displayed better antifungal properties than natamycin and amphotericin B. The peptide retained significant activity in the presence of monovalent/divalent cations, trypsin and serum and tear fluid. Moreover, B4010 is non-haemolytic and non-toxic to mice by intraperitoneal (200 mg/kg) or intravenous (100 mg/kg) routes. S. cerevisiae mutant strains with altered membrane sterol structures and composition showed hyper senstivity to B4010. The peptide had no affinity for cell wall polysaccharides and caused rapid dissipation of membrane potential and release of vital ions and ATP when treated with C. albicans. We demonstrate that additives which alter the membrane potential or membrane rigidity protect C. albicans from B4010-induced lethality. Calcein release assay and molecular dynamics simulations showed that the peptide preferentially binds to mixed bilayer containing ergosterol over phophotidylcholine-cholesterol bilayers. The studies further suggested that the first arginine is important for mediating peptide-bilayer interactions. Replacing the first arginine led to a 2–4 fold decrease in antifungal activities and reduced membrane disruption properties. The combined in silico and in vitro approach should facilitate rational design of new tetravalent antifungal peptides. PMID:24498363

Li, Jianguo; Nandhakumar, Muruganantham; Aung, Thet Tun; Goh, Eunice; Chang, Jamie Ya Ting; Saraswathi, Padhmanaban; Tang, Charles; Safie, Siti Radiah Binte; Lin, Lim Yih; Riezman, Howard; Lei, Zhou; Verma, Chandra S.; Beuerman, Roger W.

2014-01-01

80

Mutation Spectrum Induced by Conazole Fungicides in LacI Transgenic C57BL/6 Mouse Liver.  

EPA Science Inventory

Conazoles are antifungal agents used in both agricultural and pharmaceutical settings. Some conazoles, including propiconazole and triadimefon, induce hepatocellular tumors in mice, while other conazoles do not. We reported in a previous study that both propiconazole and triadime...

81

Antifungal prophylaxis during neutropenia and immunodeficiency.  

PubMed Central

Fungal infections represent a major source of morbidity and mortality in patients with almost all types of immunodeficiencies. These infections may be nosocomial (aspergillosis) or community acquired (cryptococcosis), or both (candidiasis). Endemic mycoses such as histoplasmosis, coccidioidomycosis, and penicilliosis may infect many immunocompromised hosts in some geographic areas and thereby create major public health problems. With the wide availability of oral azoles, antifungal prophylactic strategies have been extensively developed. However, only a few well-designed studies involving strict criteria have been performed, mostly in patients with hematological malignancies or AIDS. In these situations, the best dose and duration of administration of the antifungal drug often remain to be determined. In high-risk neutropenic or bone marrow transplant patients, fluconazole is effective for the prevention of superficial and/or systemic candidal infections but is not always able to prolong overall survival and potentially selects less susceptible or resistant Candida spp. Primary prophylaxis against aspergillosis remains investigative. At present, no standard general recommendation for primary antifungal prophylaxis can be proposed for AIDS patients or transplant recipients. However, for persistently immunocompromised patients who previously experienced a noncandidal systemic fungal infection, prolonged suppressive antifungal therapy is often indicated to prevent a relapse. Better strategies for controlling immune deficiencies should also help to avoid some potentially life-threatening deep mycoses. When prescribing antifungal prophylaxis, physicians should be aware of the potential emergence of resistant strains, drug-drug interactions, and the cost. Well-designed, randomized, multicenter clinical trials in high-risk immunocompromised hosts are urgently needed to better define how to prevent severe invasive mycoses. PMID:9227863

Lortholary, O; Dupont, B

1997-01-01

82

IDENTIFICATION, CHARACTERIZATION AND ANTI-FUNGAL ACTVITIES OF SILK PROTEINS IN ASPERGILLUS FLAVUS  

E-print Network

IDENTIFICATION, CHARACTERIZATION AND ANTI-FUNGAL ACTVITIES OF SILK PROTEINS IN ASPERGILLUS FLAVUS 2006 #12;IDENTIFICATION, CHARACTERIZATION AND ANTI-FUNGAL ACTVITIES OF SILK PROTEINS IN ASPERGILLUS: IDENTIFICATION, CHARACTERIZATION AND ANTIFUNGAL ACTIVITIES OF SILK PROTEINS IN ASPERGILLUS FLAVUS RESISTANT

Ray, David

83

Efflux pump proteins in antifungal resistance.  

PubMed

It is now well-known that the enhanced expression of ATP binding cassette (ABC) and major facilitator superfamily (MFS) proteins contribute to the development of tolerance to antifungals in yeasts. For example, the azole resistant clinical isolates of the opportunistic human fungal pathogen Candida albicans show an overexpression of Cdr1p and/or CaMdr1p belonging to ABC and MFS superfamilies, respectively. Hence, azole resistant isolates display reduced accumulation of therapeutic drug due to its rapid extrusion and that facilitates its survival. Considering the importance of major antifungal transporters, the focus of recent research has been to understand the structure and function of these proteins to design inhibitors/modulators to block the pump protein activity so that the drug already in use could again sensitize resistant yeast cells. The review focuses on the structure and function of ABC and MFS transporters of Candida to highlight the recent advancement in the field. PMID:25221515

Prasad, Rajendra; Rawal, Manpreet K

2014-01-01

84

Antifungal Activity of Maytenin and Pristimerin  

PubMed Central

Fungal infections in humans have increased alarmingly in recent years, particularly in immunocompromised individuals. Among the infections systemic candidiasis, aspergillosis, cryptococcosis, paracoccidioidomycosis, and histoplasmosis mortality are more prevalent and more severe in humans. The current high incidence of dermatophytosis is in humans, especially as the main etiologic agents Trichophyton rubrum and Trichophyton mentagrophytes. Molecules pristimerin and maytenin obtained from the plant Maytenus ilicifolia (Celastraceae) are known to show various pharmacological activities. This study aimed to evaluate the spectrum of antifungal activity of maytenin and pristimerin and their cytotoxicity in human keratinocytes (NOK cells of the oral mucosa). It was concluded that the best spectrum of antifungal activity has been shown to maytenin with MIC varying from 0.12 to 125?mg/L, although it is also active with pristimerin MIC ranging between 0.12 and 250?mg/L. Regarding the toxicity, both showed to have high IC50. The SI showed high pristimerin against some species of fungi, but SI maytenin was above 1.0 for all fungi tested, showing a selective action of fungi. However, when comparing the two substances, maytenin also showed better results. The two molecules can be a possible prototype with a broad spectrum of action for the development of new antifungal agents. PMID:22675379

Gullo, Fernanda P.; Sardi, Janaina C. O.; Santos, Vânia A. F. F. M.; Sangalli-Leite, Fernanda; Pitangui, Nayla S.; Rossi, Suélen A.; de Paula e Silva, Ana C. A.; Soares, Luciana A.; Silva, Julhiany F.; Oliveira, Haroldo C.; Furlan, Maysa; Silva, Dulce H. S.; Bolzani, Vanderlan S.; Mendes-Giannini, Maria José S.; Fusco-Almeida, Ana Marisa

2012-01-01

85

Nonanoic Acid, an Antifungal Compound from Hibiscus syriacus Ggoma  

PubMed Central

The root of Hibiscus syriacus (Malvaceae) has been used for treatment of fungal diseases such as tinea pedis (athlete's foot). In this study, we investigated the antifungal constituent of the root of Hibiscus syriacus Ggoma, which was produced by a mutation breeding using gamma ray irradiation, and compared the antifungal activity of H. syriacus Ggoma and its parent type. According to the results, the methanolic extract of H. syriacus Ggoma exhibited four times higher antifungal activity than its parent type against Trichophyton mentagrophytes. Following purification through various column chromatographies, the antifungal substance was identified as nonanoic acid on the basis of spectroscopic analysis. PMID:22870060

Jang, Yun-Woo; Jung, Jin-Young; Lee, In-Kyoung

2012-01-01

86

Antifungal prophylaxis with itraconazole in neutropenic patients with acute leukaemia  

Microsoft Academic Search

The efficacy of antifungal prophylaxis with itraconazole capsules and its serum concentrations were evaluated in patients intensively treated for acute leukaemia. A consecutive group of patients without systemic antifungal prophylaxis (January 1993 to August 1994, period 1) was compared with another consecutive group of patients (period 2) who received itraconazole capsules (September 1994 to April 1995 400 mg\\/day, from May

A Glasmacher; E Molitor; C Hahn; K Bomba; S Ewig; C Leutner; E Wardelmann; IGH Schmidt-Wolf; J Mezger; G Marklein; T Sauerbruch

1998-01-01

87

Antifungal cyclic peptides from the marine sponge Microscleroderma herdmani  

Technology Transfer Automated Retrieval System (TEKTRAN)

Screening natural product extracts from National Cancer Institute Open Repository for antifungal discovery afforded hits for bioassay-guided fractionation. Upon LC-MS analysis of column fractions with antifungal activities to generate information on chemical structure, two new cyclic hexapeptides, m...

88

Ocular Fungal Isolates and Antifungal Susceptibility in Northern China  

Microsoft Academic Search

? PURPOSE: To analyze the distribution characteristics of ocular fungal isolates and antifungal susceptibility in vitro. ? DESIGN: A retrospective case-series descriptive study. ? METHODS: Two thousand one hundred and seventy- nine specimens collected from Tongren Hospital during 2001 to 2004 were identified at the Beijing Institute of Ophthalmology. Fungal culture-positive rate, antifungal susceptibility in vitro, and genus distribution of

SUN XUGUANG; WANG ZHIXIN; WANG ZHIQUN; LUO SHIYUN

89

Cuticular Antifungals in Spiders: Density- and Condition Dependence  

PubMed Central

Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities). For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders. PMID:24637563

González-Tokman, Daniel; Ruch, Jasmin; Pulpitel, Tamara; Ponton, Fleur

2014-01-01

90

In vitro methods for antifungal susceptibility testing of Trichophyton spp  

Microsoft Academic Search

In general, methods to test the susceptibility of fungi to antifungal drugs require standardized techniques, but so far there is no methodology that is widely applicable to dermatophytes. Here we introduced modifications to the protocols from documents of the National Committee for Clinical Laboratory Standards (CLSI) M38-A and the Antifungal Susceptibility Testing Subcommittee of the European Committee on Antimicrobial Susceptibility

Maria Elisabete da Silva Barros; Daniel de Assis Santos; Júnia Soares Hamdan

2006-01-01

91

Antifungal and antiviral products of marine organisms.  

PubMed

Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper ?-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of employing them in clinical practice are promising in view of the wealth of these compounds from marine organisms. The compounds may also be used in agriculture and the food industry. PMID:24562325

Cheung, Randy Chi Fai; Wong, Jack Ho; Pan, Wen Liang; Chan, Yau Sang; Yin, Cui Ming; Dan, Xiu Li; Wang, He Xiang; Fang, Evandro Fei; Lam, Sze Kwan; Ngai, Patrick Hung Kui; Xia, Li Xin; Liu, Fang; Ye, Xiu Yun; Zhang, Guo Qing; Liu, Qing Hong; Sha, Ou; Lin, Peng; Ki, Chan; Bekhit, Adnan A; Bekhit, Alaa El-Din; Wan, David Chi Cheong; Ye, Xiu Juan; Xia, Jiang; Ng, Tzi Bun

2014-04-01

92

Synthesis of the antifungal macrolide antibiotic (+)-roxaticin.  

PubMed

The total synthesis of the antifungal macrolide antibiotic roxaticin has been accomplished. The synthesis relies principally on aldol and directed reduction steps to construct the extended 1,3-polyol array present in the natural product. Three principal nonpolyene containing fragments were assembled and then coupled using Julia olefination and methyl ketone aldol addition reactions. A series of functionalization reactions incorporated the sensitive polyene and provided the protected roxaticin seco-acid, which was lactonized in good yield. Acidic deprotection completed this convergent synthesis of roxaticin. PMID:12952470

Evans, David A; Connell, Brian T

2003-09-10

93

Guaianolides from Centaurea nicolai: antifungal activity.  

PubMed

A new guaianolide, 3-deacetyl-9-O-acetylsalograviolide A, along with four known closely related lactones, salograviolide A, 9-O-acetylsalograviolide A, kandavanolide and salograviolide B were detected in the aerial parts of the flowering plant Centaurea nicolai. Antifungal tests performed on salograviolide A and its 9-O-acetyl and 3-O-deacetyl-9-O-acetyl derivatives revealed inhibitory activity against Aspergillus niger, A. ochraceus, Penicillium ochrochloron, Cladosporium cladosporoides, Fusarium tricinctum and Phomopsis helianthi. Neither of them was active against Trichoderma viride. PMID:10501024

Vajs, V; Todorovi?, N; Risti?, M; Tesevi?, V; Todorovi?, B; Jana?kovi?, P; Marin, P; Milosavljevi?, S

1999-10-01

94

Antifungal ether diglycosides from Matayba guianensis Aublet.  

PubMed

Since the 1960s, fungal infections have become a major worldwide public health problem. Antifungal treatments have many limitations, such as toxicity and resistance. Matayba guianensis Aublet (Sapindaceae) was chemically investigated as part of our ongoing search for lead molecules against fungi in the Brazilian Cerrado biome. The ethanolic extract of M. guianensis root bark revealed the presence of two previously unreported ether diglycosides: matayoside E (1) and F (2) with anti Candida activity, along with two known compounds: cupanioside (3) and stigmasterol (4). PMID:24485783

de Assis, Polyana A; Theodoro, Phellipe N E T; de Paula, José E; Araújo, Ana J; Costa-Lotufo, Letícia V; Michel, Sylvie; Grougnet, Raphaël; Kritsanida, Marina; Espindola, Laila S

2014-03-01

95

Colorimetric broth microdilution method for the antifungal screening of plant extracts against yeasts  

Microsoft Academic Search

Screening plant extracts for antifungal activity is increasing due to demand for new antifungal agents, but the testing methods present many challenges. Standard broth microdilution methods for antifungal susceptibility testing of available antifungal agents are available now, but these methods are optimised for single compounds instead of crude plant extracts. In this study we evaluated the standard NCCLS method as

Manjuan Liu; Veronique Seidel; David R. Katerere; Alexander I. Gray

2007-01-01

96

Synergistic Antifungal Effect of Glabridin and Fluconazole  

PubMed Central

The incidence of invasive fungal infections is increasing in recent years. The present study mainly investigated glabridin (Gla) alone and especially in combination with fluconazole (FLC) against Cryptococcus neoformans and Candida species (Candida albicans, Candida tropicalis, Candida krusei, Candida parapsilosis and Candida Glabratas) by different methods. The minimal inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) indicated that Gla possessed a broad-spectrum antifungal activity at relatively high concentrations. After combining with FLC, Gla exerted a potent synergistic effect against drug-resistant C. albicans and C. tropicalis at lower concentrations when interpreted by fractional inhibitory concentration index (FICI). Disk diffusion test and time-killing test confirming the synergistic fungicidal effect. Cell growth tests suggested that the synergistic effect of the two drugs depended more on the concentration of Gla. The cell envelop damage including a significant decrease of cell size and membrane permeability increasing were found after Gla treatment. Together, our results suggested that Gla possessed a synergistic effect with FLC and the cell envelope damage maybe contributed to the synergistic effect, which providing new information for developing novel antifungal agents. PMID:25058485

Liu, Wei; Li, Li Ping; Zhang, Jun Dong; Li, Qun; Shen, Hui; Chen, Si Min; He, Li Juan; Yan, Lan; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

2014-01-01

97

Potentiation of azole antifungals by 2-adamantanamine.  

PubMed

Azoles are among the most successful classes of antifungals. They act by inhibiting ?-14 lanosterol demethylase in the ergosterol biosynthesis pathway. Oropharyngeal candidiasis (OPC) occurs in about 90% of HIV-infected individuals, and 4 to 5% are refractory to current therapies, including azoles, due to the formation of resistant biofilms produced in the course of OPC. We reasoned that compounds affecting a different target may potentiate azoles to produce increased killing and an antibiofilm therapeutic. 2-Adamantanamine (AC17) was identified in a screen for compounds potentiating the action of miconazole against biofilms of Candida albicans. AC17, a close structural analog to the antiviral amantadine, did not affect the viability of C. albicans but caused the normally fungistatic azoles to become fungicidal. Transcriptome analysis of cells treated with AC17 revealed that the ergosterol and filamentation pathways were affected. Indeed, cells exposed to AC17 had decreased ergosterol contents and were unable to invade agar. In vivo, the combination of AC17 and fluconazole produced a significant reduction in fungal tissue burden in a guinea pig model of cutaneous candidiasis, while each treatment alone did not have a significant effect. The combination of fluconazole and AC17 also showed improved efficacy (P value of 0.018) compared to fluconazole alone when fungal lesions were evaluated. AC17 is a promising lead in the search for more effective antifungal therapeutics. PMID:23689724

Lafleur, Michael D; Sun, Lingmei; Lister, Ida; Keating, John; Nantel, Andre; Long, Lisa; Ghannoum, Mahmoud; North, Jeffrey; Lee, Richard E; Coleman, Ken; Dahl, Thomas; Lewis, Kim

2013-08-01

98

Resistance to antifungals that target CYP51.  

PubMed

Fungal diseases are an increasing global burden. Fungi are now recognised to kill more people annually than malaria, whilst in agriculture, fungi threaten crop yields and food security. Azole resistance, mediated by several mechanisms including point mutations in the target enzyme (CYP51), is increasing through selection pressure as a result of widespread use of triazole fungicides in agriculture and triazole antifungal drugs in the clinic. Mutations similar to those seen in clinical isolates as long ago as the 1990s in Candida albicans and later in Aspergillus fumigatus have been identified in agriculturally important fungal species and also wider combinations of point mutations. Recently, evidence that mutations originate in the field and now appear in clinical infections has been suggested. This situation is likely to increase in prevalence as triazole fungicide use continues to rise. Here, we review the progress made in understanding azole resistance found amongst clinically and agriculturally important fungal species focussing on resistance mechanisms associated with CYP51. Biochemical characterisation of wild-type and mutant CYP51 enzymes through ligand binding studies and azole IC50 determinations is an important tool for understanding azole susceptibility and can be used in conjunction with microbiological methods (MIC50 values), molecular biological studies (site-directed mutagenesis) and protein modelling studies to inform future antifungal development with increased specificity for the target enzyme over the host homologue. PMID:25320648

Parker, Josie E; Warrilow, Andrew G S; Price, Claire L; Mullins, Jonathan G L; Kelly, Diane E; Kelly, Steven L

2014-10-01

99

Sarcoidosis Treatment with Antifungal Medication: A Follow-Up  

PubMed Central

Introduction. The aim of the study was to compare treatment of sarcoidosis with antifungal or corticosteroid medication. Methods. In patients with sarcoidosis antifungal medication (n = 29), corticosteroids (n = 21) or a combination (n = 27) was given. Nine patients allotted to antifungal medication were later given corticosteroids because of the lack of regression of the disease. X-ray scores for the severity of granuloma infiltration were determined. Chitotriosidase and angiotensin converting enzyme were determined. The time in months till remission was observed as well as the number of recurrences.

Ter?elj, Marjeta; Salobir, Barbara; Zupancic, Mirjana; Rylander, Ragnar

2014-01-01

100

Antifungal activities of ethanolic extract from Jatropha curcas seed cake.  

PubMed

Phorbol ester extraction was carried out from Jatropha curcas seed cake, a by-product from the bio-diesel fuel industry. Four repeated extractions from 5 g J. curcas seed cake using 15 ml of 90% (v/v) ethanol and a shaking speed of 150 rev/min gave the highest yield of phosbol esters. The ethanolic extract of J. curcas seed cake showed antifungal activities against important phytofungal pathogens: Fusarium oxysporum, Pythium aphanidermatum, Lasiodiplodia theobromae, Curvularia lunata, Fusarium semitectum, Colletotrichum capsici and Colletotrichum gloeosporiodes. The extract contained phorbol esters mainly responsible for antifungal activities. The extract could therefore be used as an antifungal agent for agricultural applications. PMID:20208435

Saetae, Dolaporn; Suntornsuk, Worapot

2010-02-01

101

Antifungal susceptibility testing of Candida spp. by relative growth measurement at single concentrations of antifungal agents.  

PubMed Central

The relative growth (percentage of growth relative to control growth) of 496 isolates representing six Candida species was assessed as a means of determining in vitro susceptibilities of the isolates in microdilution plate wells containing single concentrations of each of seven antifungal agents. The relative growth data were highly reproducible. With flucytosine and amorolfine they correlated well with MICs, but for an azole antifungal agent, terconazole, they did not correlate with MICs. Distributions of relative growth percentages for different Candida spp. showed significant differences in species susceptibility to individual agents. For example, C. albicans was less susceptible than the other species to amorolfine; C. parapsilosis isolates were particularly susceptible to terbinafine; and C. glabrata, C. guilliermondii, and C. krusei isolates were less susceptible than C. albicans to fluconazole and ketoconazole but equally susceptible as or more susceptible than C. albicans to itraconazole. Differential patterns of susceptibility to individual azole antifungal agents were noted for some individual strains as well as for Candida spp. PMID:1416856

Odds, F C

1992-01-01

102

Overview of medically important antifungal azole derivatives.  

PubMed Central

Fungal infections are a major burden to the health and welfare of modern humans. They range from simply cosmetic, non-life-threatening skin infections to severe, systemic infections that may lead to significant debilitation or death. The selection of chemotherapeutic agents useful for the treatment of fungal infections is small. In this overview, a major chemical group with antifungal activity, the azole derivatives, is examined. Included are historical and state of the art information on the in vitro activity, experimental in vivo activity, mode of action, pharmacokinetics, clinical studies, and uses and adverse reactions of imidazoles currently marketed (clotrimazole, miconazole, econazole, ketoconazole, bifonazole, butoconazole, croconazole, fenticonazole, isoconazole, oxiconazole, sulconazole, and tioconazole) and under development (aliconazole and omoconazole), as well as triazoles currently marketed (terconazole) and under development (fluconazole, itraconazole, vibunazole, alteconazole, and ICI 195,739). PMID:3069196

Fromtling, R A

1988-01-01

103

Antifungal saponins from Paris polyphylla Smith.  

PubMed

Three steroidal saponins, including one new and two known compounds, were isolated from the rhizomes of Paris polyphylla Smith. One- and two-dimensional NMR, LC-MS, and interpretation of hydrolytic cleavage experiments led to the identification of the structure of the new saponin as ( 25R)-spirost-5-ene-3 beta,17 alpha-diol (pennogenin) 3- O-{ O- alpha- L-rhamnopyranosyl-(1-->2)- O-[ O- beta-xylopyranosyl-(1-->5)- alpha- L-arabinofuranosyl-(1-->4)]- beta- D-glucopyranoside}. The isolated saponins were evaluated for their antifungal activity against Cladosporium cladosporioides and Candida species and showed comparable activity to chemicals used in some commercial products. PMID:18729041

Deng, Dawei; Lauren, Denis R; Cooney, Janine M; Jensen, Dwayne J; Wurms, Kirstin V; Upritchard, Jenine E; Cannon, Richard D; Wang, Ming Zhong; Li, Ming Zhang

2008-09-01

104

Metabolic control of antifungal drug resistance.  

PubMed

Fungi have evolved an elegant repertoire of mechanisms to survive the cellular stress exerted by antifungal drugs such as azoles, which inhibit ergosterol biosynthesis inducing cell membrane stress. The evolution and maintenance of diverse resistance phenotypes is contingent upon cellular circuitry regulated by the molecular chaperone Hsp90 and its client protein calcineurin. Here, we establish a novel role for nutrients and nutrient signaling in azole resistance. The vulnerability of Saccharomyces cerevisiae azole resistance phenotypes to perturbation was contingent upon specific auxotrophies. Using strains that acquired azole resistance by Erg3 loss of function as a model for resistance that depends on cellular stress responses, we delineated genetic and environmental factors that mitigate the translation of genotype into resistance phenotype. Compromising a global regulator that couples growth and metabolism to environmental cues, Tor kinase, provides a powerful strategy to abrogate drug resistance of S. cerevisiae and Candida albicans with broad therapeutic potential. PMID:19595784

Robbins, Nicole; Collins, Cathy; Morhayim, Jess; Cowen, Leah E

2010-02-01

105

Antifungal 3-butylisocoumarins from Asteraceae-Anthemideae.  

PubMed

Seven new naturally occurring 3-butylisocoumarins were isolated and identified from lipophilic extracts of aerial as well as underground organs: corfin (17) and 3'-hydroxycorfin (18) from the roots of Chamaemelum mixtum and (-)-(R)-2'-methoxydihydroartemidin (5), (+)-(S,R)-epoxyartemidin (6a), dracumerin (12), (+)-(R)-(E)-3'-hydroxyartemidin (13), and capillarin isovalerate (20) from various organs of Artemisia dracunculus (tarragon). Furthermore, six known derivatives, artemidiol (7), (E/Z)-artemidin (11), capillarin (19), artemidinol (21), 8-hydroxyartemidin (22), and 8-hydroxycapillarin (23), were obtained. The antifungal activities of all naturally occurring derivatives were determined in a germ-tube inhibition test against a susceptible strain of rice blast fungus Pyricularia grisea. The 3-butyl side-chain is a prerequisite for high activity. Eleven structurally related synthetic derivatives were additionally tested to explore the influence of structural characteristics on activity. Benlate, blasticidin S, kresoxim-methyl, griseofulvin, and the carrot phytoalexin 6-methoxymellein all served as positive controls. PMID:14738379

Engelmeier, D; Hadacek, F; Hofer, O; Lutz-Kutschera, G; Nagl, M; Wurz, G; Greger, H

2004-01-01

106

Antifungal steroid saponins from Dioscorea cayenensis.  

PubMed

From the rhizomes of Dioscorea cayenensis Lam.-Holl (Dioscoreaceae), the new 26- O- beta- D-glucopyranosyl-22-methoxy-3 beta,26-dihydroxy-25( R)-furost-5-en-3- O- alpha- L-rhamnopyranosyl-(1-->4)- alpha- L-rhamnopyranosyl-(1-->4)-[ alpha- L-rhamnopyranosyl-(1-->2)]- beta- D-glucopyranoside ( 1) was isolated together with the known dioscin ( 2) and diosgenin 3- O- alpha- L-rhamnopyranosyl-(1-->4)- alpha- L-rhamnopyranosyl-(1-->4)-[ alpha- L-rhamnopyranosyl-(1-->2)]- beta- D-glucopyranoside ( 3). Their structures were established on the basis of spectral data. Compound 2 exhibited antifungal activity against the human pathogenic yeasts Candida albicans, C. glabrata and C. tropicalis (MICs of 12.5, 12.5 and 25 micro g/mL, respectively) whereas 3 showed weak activity and 1 was inactive. PMID:14765305

Sautour, M; Mitaine-Offer, A-C; Miyamoto, T; Dongmo, A; Lacaille-Dubois, M-A

2004-01-01

107

Antifungal activities of the oils of Nigella sativa seeds.  

PubMed

Antifungal activities of the oils of N. sativa seeds were tested against twenty fungi including pathogenic and industrial strains. All the oils were found to have significant activities against the fungi, but the volatile oil showed stronger and wider range of antifungal activities. MIC values of the volatile oil was also determined against three pathogenic fungi and lowest MIC was found against Aspergillus fumigatus. PMID:16414633

Islam, S K; Ahsan, M; Hassan, C M; Malek, M A

1989-01-01

108

Chemosensitization as a Means to Augment Commercial Antifungal Agents  

PubMed Central

Antimycotic chemosensitization and its mode of action are of growing interest. Currently, use of antifungal agents in agriculture and medicine has a number of obstacles. Foremost of these is development of resistance or cross-resistance to one or more antifungal agents. The generally high expense and negative impact, or side effects, associated with antifungal agents are two further issues of concern. Collectively, these problems are exacerbated by efforts to control resistant strains, which can evolve into a treadmill of higher dosages for longer periods. This cycle in turn, inflates cost of treatment, dramatically. A further problem is stagnation in development of new and effective antifungal agents, especially for treatment of human mycoses. Efforts to overcome some of these issues have involved using combinations of available antimycotics (e.g., combination therapy for invasive mycoses). However, this approach has had inconsistent success and is often associated with a marked increase in negative side effects. Chemosensitization by natural compounds to increase effectiveness of commercial antimycotics is a somewhat new approach to dealing with the aforementioned problems. The potential for safe natural products to improve antifungal activity has been observed for over three decades. Chemosensitizing agents possess antifungal activity, but at insufficient levels to serve as antimycotics, alone. Their main function is to disrupt fungal stress response, destabilize the structural integrity of cellular and vacuolar membranes or stimulate production of reactive oxygen species, augmenting oxidative stress and apoptosis. Use of safe chemosensitizing agents has potential benefit to both agriculture and medicine. When co-applied with a commercial antifungal agent, an additive or synergistic interaction may occur, augmenting antifungal efficacy. This augmentation, in turn, lowers effective dosages, costs, negative side effects and, in some cases, countermands resistance. PMID:22393330

Campbell, Bruce C.; Chan, Kathleen L.; Kim, Jong H.

2012-01-01

109

Synthesis and structure-activity relationship of antifungal coniothyriomycin analogues.  

PubMed

The structure of the antifungal metabolite coniothyriomycin was systematically modified by changing the acids of the open chain imide, modification of the hydrophobicity, variation in the degree of saturation, replacement of carbons by nitrogen or oxygen, and incorporation of the open chain molecule into cyclic arrangements. Structure-activity studies showed that antifungal activity was retained by replacement of phenylacetic acids by benzoic acids in the imide structure but diminished by hydrogenation of the fumaric ester part. PMID:12760686

Krohn, Karsten; Elsässer, Brigitta; Antus, Sándor; Kónya, Krisztina; Ammermann, Eberhard

2003-03-01

110

[Antifungal susceptibility testing in yeasts. Update and novelties].  

PubMed

This text reviews and updates the uses of the reference procedures for antifungal susceptibility testing in yeasts, the reliability of the commercial methods and the guidelines for the use of these procedures for patient management and for epidemiological reasons to determine the susceptibility profile and the emergence of resistances. Novelties in the procedures of setting clinical breakpoints of antifungal agents by both the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the US Clinical Laboratory Standards Institute (CLSI) are also reviewed. PMID:23453232

Cuenca-Estrella, Manuel; Alastruey-Izquierdo, Ana; Gómez-López, Alicia; Monzón, Araceli

2013-02-01

111

Antifungal effect and mechanism of garlic oil on Penicillium funiculosum.  

PubMed

Garlic oil is a kind of fungicide, but little is known about its antifungal effects and mechanism. In this study, the chemical constituents, antifungal activity, and effects of garlic oil were studied with Penicillium funiculosum as a model strain. Results showed that the minimum fungicidal concentrations (MFCs, v/v) were 0.125 and 0.0313 % in agar medium and broth medium, respectively, suggesting that the garlic oil had a strong antifungal activity. The main ingredients of garlic oil were identified as sulfides, mainly including disulfides (36 %), trisulfides (32 %) and monosulfides (29 %) by gas chromatograph-mass spectrometer (GC/MS), which were estimated as the dominant antifungal factors. The observation results by transmission electron microscope (TEM) and scanning electron microscope (SEM) indicated that garlic oil could firstly penetrate into hyphae cells and even their organelles, and then destroy the cellular structure, finally leading to the leakage of both cytoplasm and macromolecules. Further proteomic analysis displayed garlic oil was able to induce a stimulated or weakened expression of some key proteins for physiological metabolism. Therefore, our study proved that garlic oil can work multiple sites of the hyphae of P. funiculosum to cause their death. The high antifungal effects of garlic oil makes it a broad application prospect in antifungal industries. PMID:25012787

Li, Wen-Ru; Shi, Qing-Shan; Liang, Qing; Huang, Xiao-Mo; Chen, Yi-Ben

2014-10-01

112

ALTERATIONS IN mRNA GENE EXPRESSION ASSOCIATED WITH CHOLESTEROL METABOLISM, CELL CYCLE, AND OXIDATIVE STRESS INDUCED BY TRIAZOLE CONTAINING CONAZOLES IN RAT LIVER  

EPA Science Inventory

Conazoles are fungicides used as pharmaceuticals and in agriculture. Triadimefon was hepatotoxic and induced follicular cell adenomas in the thyroid gland. In contrast,propiconazole and myclobutanil were hepatotoxic but had no effect on the thyroid gland. It was proposed that tri...

113

EFFECT OF CONAZOLE FUNGICIDES ON REPRODUCTIVE DEVELOPMENT IN THE FEMALE RAT  

EPA Science Inventory

Three triazole fungicides were evaluated for effects on female rat reproductive development. Rats were exposed via feed to propiconazole (P) (100, 500, or 2500 ppm), myclobutanil (M) (100, 500, or 2000 ppm), or triadimefon (T) (100, 500, or 1800 ppm) from gestation day 6 to postn...

114

Antifungal innate immunity: recognition and inflammatory networks.  

PubMed

A large variety of fungi are present in the environment, among which a proportion colonizes the human body, usually without causing any harm. However, depending on the host immune status, commensals can become opportunistic pathogens that induce diseases ranging from superficial non-harmful infection to life-threatening systemic disease. The interplay between the host and the fungal commensal flora is being orchestrated by an efficient recognition of the microorganisms, which in turn ensures a proper balance between tolerance of the normal fungal flora and induction of immune defense mechanisms when invasion occurs. Pattern recognition receptors (PRRs) play a significant role in maintaining this balance due to their capacity to sense fungi and induce host responses such as the induction of proinflammatory cytokines involved in the activation of innate and adaptive immune responses. In the present review, we will discuss the most recent findings regarding the recognition of Candida albicans and Aspergillus fumigatus and the different types of immune cells that play a role in antifungal host defense. PMID:25527294

Becker, Katharina L; Ifrim, Daniela C; Quintin, Jessica; Netea, Mihai G; van de Veerdonk, Frank L

2015-03-01

115

Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread.  

PubMed

Lactobacilli convert linoleic acid to hydroxy fatty acids; however, this conversion has not been demonstrated in food fermentations and it remains unknown whether hydroxy fatty acids produced by lactobacilli have antifungal activity. This study aimed to determine whether lactobacilli convert linoleic acid to metabolites with antifungal activity and to assess whether this conversion can be employed to delay fungal growth on bread. Aqueous and organic extracts from seven strains of lactobacilli grown in modified De Man Rogosa Sharpe medium or sourdough were assayed for antifungal activity. Lactobacillus hammesii exhibited increased antifungal activity upon the addition of linoleic acid as a substrate. Bioassay-guided fractionation attributed the antifungal activity of L. hammesii to a monohydroxy C(18:1) fatty acid. Comparison of its antifungal activity to those of other hydroxy fatty acids revealed that the monohydroxy fraction from L. hammesii and coriolic (13-hydroxy-9,11-octadecadienoic) acid were the most active, with MICs of 0.1 to 0.7 g liter(-1). Ricinoleic (12-hydroxy-9-octadecenoic) acid was active at a MIC of 2.4 g liter(-1). L. hammesii accumulated the monohydroxy C(18:1) fatty acid in sourdough to a concentration of 0.73 ± 0.03 g liter(-1) (mean ± standard deviation). Generation of hydroxy fatty acids in sourdough also occurred through enzymatic oxidation of linoleic acid to coriolic acid. The use of 20% sourdough fermented with L. hammesii or the use of 0.15% coriolic acid in bread making increased the mold-free shelf life by 2 to 3 days or from 2 to more than 6 days, respectively. In conclusion, L. hammesii converts linoleic acid in sourdough and the resulting monohydroxy octadecenoic acid exerts antifungal activity in bread. PMID:23315734

Black, Brenna A; Zannini, Emanuele; Curtis, Jonathan M; Gänzle, Michael G

2013-03-01

116

Antifungal Hydroxy Fatty Acids Produced during Sourdough Fermentation: Microbial and Enzymatic Pathways, and Antifungal Activity in Bread  

PubMed Central

Lactobacilli convert linoleic acid to hydroxy fatty acids; however, this conversion has not been demonstrated in food fermentations and it remains unknown whether hydroxy fatty acids produced by lactobacilli have antifungal activity. This study aimed to determine whether lactobacilli convert linoleic acid to metabolites with antifungal activity and to assess whether this conversion can be employed to delay fungal growth on bread. Aqueous and organic extracts from seven strains of lactobacilli grown in modified De Man Rogosa Sharpe medium or sourdough were assayed for antifungal activity. Lactobacillus hammesii exhibited increased antifungal activity upon the addition of linoleic acid as a substrate. Bioassay-guided fractionation attributed the antifungal activity of L. hammesii to a monohydroxy C18:1 fatty acid. Comparison of its antifungal activity to those of other hydroxy fatty acids revealed that the monohydroxy fraction from L. hammesii and coriolic (13-hydroxy-9,11-octadecadienoic) acid were the most active, with MICs of 0.1 to 0.7 g liter?1. Ricinoleic (12-hydroxy-9-octadecenoic) acid was active at a MIC of 2.4 g liter?1. L. hammesii accumulated the monohydroxy C18:1 fatty acid in sourdough to a concentration of 0.73 ± 0.03 g liter?1 (mean ± standard deviation). Generation of hydroxy fatty acids in sourdough also occurred through enzymatic oxidation of linoleic acid to coriolic acid. The use of 20% sourdough fermented with L. hammesii or the use of 0.15% coriolic acid in bread making increased the mold-free shelf life by 2 to 3 days or from 2 to more than 6 days, respectively. In conclusion, L. hammesii converts linoleic acid in sourdough and the resulting monohydroxy octadecenoic acid exerts antifungal activity in bread. PMID:23315734

Black, Brenna A.; Zannini, Emanuele; Curtis, Jonathan M.

2013-01-01

117

In Search of the Holy Grail of Antifungal Therapy  

PubMed Central

The ideal antifungal agent remains an elusive goal for treatment of life-threatening systemic fungal infections. Such an agent would have broad antifungal activity, low rates of resistance, flexible routes of administration, few associated adverse events, and limited drug-drug interactions. Only three of the seven classes of antifungal agents currently available are suitable for treatment of systemic infection: the polyenes, the azoles, and the echinocandins. None match all the characteristics of an ideal agent, the Holy Grail of antifungal therapy. Academia and industry need to collaborate in the search for new lead antifungal compounds using traditional screening methods as well as the new pharmacogenomics methods. Enhancing efficacy and reducing toxicity of the currently available therapeutic agents is also another important avenue of study. As an example, the Mycosis Research Center at the University of Mississippi Medical Center has identified pyogenic polyenes in commercial preparations of amphotericin B deoxycholate which correlate with infusion related toxicities. A highly purified formulation of amphotericin B appears promising, with a better therapeutic index compared to its parent compound as evidenced by results of in vitro and in vivo studies reviewed in this presentation. PMID:18596853

Chapman, Stanley W.; Sullivan, Donna C.; Cleary, John D.

2008-01-01

118

Fungal endophytes: a potential source of antifungal compounds.  

PubMed

The prevalence of invasive fungal infections has increased significantly during organ transplantation, cancer chemotherapy and allogeneic bone marrow transplantation. However, only a limited number of antifungal agents are currently available for the treatment of life-threatening fungal infections. Although new antifungal agents have been introduced in the market, the development of resistance to antifungal drugs has become increasingly apparent, especially in patients with long term treatment. Microbial natural products have always been an alternative natural source for the isolation of novel molecules for various therapeutic applications. Endophytes are the microorganisms that colonize internal tissues of all plant species and represent an abundant and dependable source of bioactive and chemically novel compounds with potential for exploitation in a wide variety of medical, agricultural and industrial arenas. In the present review several metabolites obtained from endophytic fungi with a potential as antifungal agents are mentioned with bioactivity including volatile organic compounds. The compounds reported here with a diverse scaffold can be a potential starting point for new antifungal agents either as such or after chemical modification. PMID:22202019

Deshmukh, Sunil Kumar; Verekar, Shilpa Amit

2012-01-01

119

An antifungal defensin from Phaseolus vulgaris cv. 'Cloud Bean'.  

PubMed

An antifungal peptide with a defensin-like sequence and exhibiting a molecular mass of 7.3kDa was purified from dried seeds of Phaseolus vulgaris 'Cloud Bean'. The isolation procedure entailed anion exchange chromatography on DEAE-cellulose, affinity chromatography an Affi-gel blue gel, cation exchange chromatography on SP-Sepharose, and gel filtration by fast protein liquid chromatography on Superdex 75. Although the antifungal peptide was unadsorbed on DEAE-cellulose, it was adsorbed on both Affi-gel blue gel and SP-Sepharose. The antifungal peptide exerted antifungal activity against Mycosphaerella arachidicola with an IC(50) value of 1.8 ?M. It was also active against Fusarium oxysporum with an IC(50) value of 2.2 ?M. It had no inhibitory effect on HIV-1 reverse transcriptase when tested up to 100 ?M. Proliferation of L1210 mouse leukemia cells and MBL2 lymphoma cells was inhibited by the antifungal peptide with an IC(50) of 10 ?M and 40 ?M, respectively. PMID:20729048

Wu, Xiangli; Sun, Jian; Zhang, Guoqing; Wang, Hexiang; Ng, Tzi Bun

2011-01-15

120

A Chemically Modified Tetracycline (CMT3) Is a New Antifungal Agent  

Microsoft Academic Search

Several chemically modified tetracycline analogs (CMTs), which were chemically modified to eliminate their antibacterial efficacy, were unexpectedly found to have antifungal properties. Of 10 CMTs screened in vitro, all exhibited antifungal activities, although their efficacies varied. Among these compounds, CMT-315, -3, and -308 were found to be the most potent as antifungal agents. The MICs of CMT-3 against 47 strains

Yu Liu; Maria E. Ryan; Hsi-Ming Lee; Sanford Simon; George Tortora; Carol Lauzon; Michael K. Leung; Lorne M. Golub

2002-01-01

121

Antifungal activity of sakurasosaponin from the root extract of Jacquinia flammea  

Microsoft Academic Search

The methanolic crude extract from the roots of Jacquinia flammea showed moderate antifungal activity against dermatophytes and very strong antifungal activity against Colletotrichum gloeosporioides. The bioassay-guided purification of the extract, using a combination of vacuum-liquid chromatography and high performance liquid chromatography, allowed the identification of sakurasosaponin (1) as the main metabolite responsible for the antifungal activity.

K. García-Sosa; A. Sánchez-Medina; Sandra L. Álvarez; S. Zacchino; N. C. Veitch; P. Simá-Polanco; L. M. Peńa-Rodriguez

2011-01-01

122

Antifungal properties of yam (Dioscorea alata) peel extract.  

PubMed

The extraction of natural antifungal compounds from the peels of yam (Dioscorea alata) and the effect of these compounds on both the vegetative and reproductive structures of some yam not pathogens were studied. Four prominent antifungal components were obtained; one of the components was fully characterized and identified as beta-sitosterol. The antifungal activity of the compounds toward the germination of spores of two yam pathogens showed an inhibition of less than 57% at a concentration of 50 mg/L while inhibition on the elongation of germ-tubes of Fusarium moniliforme was as high as 82% at the same concentration. However, the ED50 for inhibition of germ-tube elongation in the yam compounds for the same organism was below 32 mg/L. The role of the yam compounds at high concentrations in disease resistance is discussed. PMID:9173001

Aderiye, B I; Ogundana, S K; Adesanya, S A; Roberts, M F

1996-01-01

123

Antifungal screening of medicinal plants of British Columbian native peoples.  

PubMed

One hundred methanolic plant extracts were screened for antifungal activity against 9 fungal species. Eighty-one were found to have some antifungal activity and 30 extracts showed activity against 4 or more of the fungi assayed. The extracts with the greatest fungal inhibition were prepared from Alnus rubra catkins, Artemisia ludoviciana aerial parts, Artemisia tridentata aerial parts, Geum macrophyllum roots, Mahonia aquifolium roots and Moneses uniflora aerial parts. In addition to these, extracts prepared from the following plants also exhibited antifungal activity against all 9 fungi: Asarum caudatum whole plant, Balsamorhiza sagittata roots, Empetrum nigrum branches, Fragaria chiloensis leaves, Gilia aggregata aerial parts and roots, Glehnia littoralis roots, Heracleum lanatum roots, Heuchera cylindrica roots and Rhus glabra branches. PMID:7898123

McCutcheon, A R; Ellis, S M; Hancock, R E; Towers, G H

1994-12-01

124

Hsp21 Potentiates Antifungal Drug Tolerance in Candida albicans  

PubMed Central

Systemic infections of humans with the fungal pathogen Candida albicans are associated with a high mortality rate. Currently, efficient treatment of these infections is hampered by the relatively low number of available antifungal drugs. We recently identified the small heat shock protein Hsp21 in C. albicans and demonstrated its fundamental role for environmental stress adaptation and fungal virulence. Hsp21 was found in several pathogenic Candida species but not in humans. This prompted us to investigate the effects of a broad range of different antifungal drugs on an Hsp21-null C. albicans mutant strain. Our results indicate that combinatorial therapy targeting Hsp21, together with specific antifungal drug targets, has strong synergistic potential. In addition, we demonstrate that Hsp21 is required for tolerance to ethanol-induced stress and induction of filamentation in response to pharmacological inhibition of Hsp90. These findings might pave the way for the development of new treatment strategies against Candida infections. PMID:23533680

Mayer, François L.; Wilson, Duncan; Hube, Bernhard

2013-01-01

125

Antifungal effect of TONS504-photodynamic therapy on Malassezia furfur.  

PubMed

Numerous reports indicate therapeutic efficacy of photodynamic therapy (PDT) against skin tumors, acne and for skin rejuvenation. However, few reports exist regarding its efficacy for fungal skin diseases. In order to determine the antifungal effect, PDT was applied on Malassezia furfur. M. furfur was cultured in the presence of a novel cationic photosensitizer, TONS504, and was irradiated with a 670-nm diode laser. TONS504-PDT showed a significant antifungal effect against M. furfur. The effect was irradiation dose- and TONS504 concentration-dependent and the maximal effect was observed at 100 J/cm2 and 1 ?g/mL, respectively. In conclusion, TONS504-PDT showed antifungal effect against M. furfur in vitro, and may be a new therapeutic modality for M. furfur-related skin disorders. PMID:25226792

Takahashi, Hidetoshi; Nakajima, Susumu; Sakata, Isao; Iizuka, Hajime

2014-10-01

126

Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment.  

PubMed

Antifungal resistance continues to grow and evolve and complicate patient management, despite the introduction of new antifungal agents. In vitro susceptibility testing is often used to select agents with likely activity for a given infection, but perhaps its most important use is in identifying agents that will not work, i.e., to detect resistance. Standardized methods for reliable in vitro antifungal susceptibility testing are now available from the Clinical and Laboratory Standards Institute (CLSI) in the United States and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) in Europe. Data gathered by these standardized tests are useful (in conjunction with other forms of data) for calculating clinical breakpoints and epidemiologic cutoff values (ECVs). Clinical breakpoints should be selected to optimize detection of non-wild-type (WT) strains of pathogens, and they should be species-specific and not divide WT distributions of important target species. ECVs are the most sensitive means of identifying strains with acquired resistance mechanisms. Various mechanisms can lead to acquired resistance of Candida species to azole drugs, the most common being induction of the efflux pumps encoded by the MDR or CDR genes, and acquisition of point mutations in the gene encoding for the target enzyme (ERG11). Acquired resistance of Candida species to echinocandins is typically mediated via acquisition of point mutations in the FKS genes encoding the major subunit of its target enzyme. Antifungal resistance is associated with elevated minimum inhibitory concentrations, poorer clinical outcomes, and breakthrough infections during antifungal treatment and prophylaxis. Candidemia due to Candida glabrata is becoming increasingly common, and C glabrata isolates are increasingly resistant to both azole and echinocandin antifungal agents. This situation requires continuing attention. Rates of azole-resistant Aspergillus fumigatus are currently low, but there are reports of emerging resistance, including multi-azole resistant isolates in parts of Europe. PMID:22196207

Pfaller, Michael A

2012-01-01

127

In Vitro Method To Study Antifungal Perfusion in Candida Biofilms  

PubMed Central

Antimycotic perfusion through Candida biofilms was demonstrated by a modification of a simple in vitro diffusion cell bioassay system. Using this model, the perfusion of three commonly used antifungal agents, amphotericin B, fluconazole, and flucytosine, was investigated in biofilms of three different Candida species (i.e., Candida albicans, Candida parapsilosis, and Candida krusei) that were developed on microporous filters. Scanning electron microscopy revealed that C. albicans formed a contiguous biofilm with tightly packed blastospores and occasional hyphae compared with C. parapsilosis and C. krusei, which developed confluent biofilms displaying structural heterogeneity and a lesser cell density, after 48 h of incubation on nutrient agar. Minor structural changes were also perceptible on the superficial layers of the biofilm after antifungal perfusion. The transport of antifungals to the distal biofilm-substratum interface was most impeded by C. albicans biofilms in comparison to C. parapsilosis and C. krusei. Fluconazole and flucytosine demonstrated similar levels of perfusion, while amphotericin B was the least penetrant through all three biofilms, although the latter appeared to cause the most structural damage to the superficial cells of the biofilm compared with the other antifungals. These results suggest that the antifungal perfusion through biofilm mode of growth in Candida is dependent both on the antimycotic and the Candida species in question, and in clinical terms, these phenomena could contribute to the failure of Candida biofilm-associated infections. Finally, the in vitro model we have described should serve as a useful system to investigate the complex interactions that appear to operate in vivo within the biofilm-antifungal interphase. PMID:15695686

Samaranayake, Y. H.; Ye, J.; Yau, J. Y. Y.; Cheung, B. P. K.; Samaranayake, L. P.

2005-01-01

128

Caenorhabditis elegans-based Model Systems for Antifungal Drug Discovery  

PubMed Central

The substantial morbidity and mortality associated with invasive fungal infections constitute undisputed tokens of their severity. The continued expansion of susceptible population groups (such as immunocompromised individuals, patients undergoing extensive surgery, and those hospitalized with serious underlying diseases especially in the intensive care unit) and the limitations of current antifungal agents due to toxicity issues or to the development of resistance, mandate the development of novel antifungal drugs. Currently, drug discovery is transitioning from the traditional in vitro large-scale screens of chemical libraries to more complex bioassays, including in vivo studies on whole animals; invertebrates, such as Caenorhabditis elegans, are thus gaining momentum as screening tools. Key pathogenesis features of fungal infections, including filament formation, are expressed in certain invertebrate and mammalian hosts; among the various potential hosts, C. elegans provides an attractive platform both for the study of host-pathogen interactions and the identification of new antifungal agents. Advantages of compound screening in this facile, relatively inexpensive and not as ethically challenged whole-animal context, include the simultaneous assessment of antifungal efficacy and toxicity that could result in the identification of compounds with distinct mechanisms of action, for example by promoting host immune responses or by impeding fungal virulence factors. With the recent advent of using predictive models to screen for compounds with improved chances of bioavailability in the nematode a priori, high-throughput screening of chemical libraries using the C. elegans-c. albicans antifungal discovery assay holds even greater promise for the identification of novel antifungal agents in the near future. PMID:21470110

Anastassopoulou, Cleo G.; Fuchs, Beth Burgwyn; Mylonakis, Eleftherios

2013-01-01

129

Atmospheric pressure cold plasma as an antifungal therapy  

SciTech Connect

A microhollow cathode based, direct-current, atmospheric pressure, He/O{sub 2} (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

Sun Peng; Wu Haiyan [College of Engineering, Peking University, Beijing 100871 (China); Sun Yi; Liu Wei; Li Ruoyu [Department of Dermatology and Venereology, Peking Univ. 1st Hospital and Research Center for Medical Mycology, Peking Univ., Beijing 100034 (China); Zhu Weidong; Lopez, Jose L. [Department of Applied Science and Technology and Center for Microplasma Science and Technology, Saint Peter's College, Jersey City, New Jersey 07306 (United States); Zhang Jue; Fang Jing [College of Engineering, Peking University, Beijing 100871 (China); Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

2011-01-10

130

Studies on the Antifungal Properties of N-Thiolated ?-Lactams  

PubMed Central

N-Thiolated ?-lactams have previously been shown to have antibacterial activity against a narrow selection of pathogenic bacteria including Staphylococcus aureus and Bacillus anthracis, as well as apoptotic-inducing activity in a variety of human cancer cell lines. We now have found that these lactams also possess antifungal activity against Candida and other fungi by exerting powerful cytostatic effects that disrupt the structural integrity of cytoplasmic membranes. The mode of action and structure-activity trends of these lactams as antifungals parallels that previously seen in our antibacterial studies PMID:18672374

O’Driscoll, Marci; Greenhalgh, Kerriann; Young, Ashley; Turos, Edward; Dickey, Sonja; Lim, Daniel V.

2008-01-01

131

Polyelectrolyte Multilayers Fabricated from Antifungal ?-Peptides: Design of Surfaces that Exhibit Antifungal Activity Against Candida albicans  

PubMed Central

The fungal pathogen Candida albicans can form biofilms on the surfaces of medical devices that are resistant to drug treatment and provide a reservoir for recurrent infections. The use of fungicidal or fungistatic materials to fabricate or coat the surfaces of medical devices has the potential to reduce or eliminate the incidence of biofilm-associated infections. Here, we report on (i) the fabrication of multilayered polyelectrolyte thin films (PEMs) that promote the surface-mediated release of an antifungal ?-peptide and (ii) the ability of these films to inhibit the growth of C. albicans on film-coated surfaces. We incorporated a fluorescently labeled antifungal ?-peptide into the structures of PEMs fabricated from poly-L-glutamic acid (PGA) and poly-L-lysine (PLL) using a layer-by-layer fabrication procedure. These films remained stable when incubated in culture media at 37 °C and released ?-peptide gradually into solution for up to 400 hours. Surfaces coated with ?-peptide-containing films inhibited the growth of C. albicans, resulting in a 20% reduction of cell viability after two hours and a 74% decrease in metabolic activity after seven hours when compared to cells incubated on PGA/PLL coated surfaces. In addition, ?-peptide-containing films inhibited hyphal elongation by 55%. These results, when combined, demonstrate that it is possible to fabricate ?-peptide-containing thin films that inhibit the growth and proliferation of C. albicans and provide the basis of an approach that could be used to inhibit the formation of C. albicans biofilms on film-coated surfaces. The layer-by-layer approach reported here could ultimately be used to coat the surfaces of catheters, surgical instruments, and other devices to inhibit drug-resistant C. albicans biofilm formation in clinical settings. PMID:20831274

Karlsson, Amy J.; Flessner, Ryan M.; Gellman, Samuel H.

2010-01-01

132

Identification and biological activity of antifungal saponins from shallot ( Allium cepa L. Aggregatum group).  

PubMed

The n-butanol extract of shallot basal plates and roots showed antifungal activity against plant pathogenic fungi. The purified compounds from the extract were examined for antifungal activity to determine the predominant antifungal compounds in the extract. Two major antifungal compounds purified were determined to be alliospiroside A (ALA) and alliospiroside B. ALA had prominent antifungal activity against a wide range of fungi. The products of acid hydrolysis of ALA showed a reduced antifungal activity, suggesting that the compound's sugar chain is essential for its antifungal activity. Fungal cells treated with ALA showed rapid production of reactive oxygen species. The fungicidal action of ALA was partially inhibited by a superoxide scavenger, Tiron, suggesting that superoxide anion generation in the fungal cells may be related to the compound's action. Inoculation experiments showed that ALA protected strawberry plants against Colletotrichum gloeosporioides , indicating that ALA has the potential to control anthracnose of the plant. PMID:24138065

Teshima, Yoshiki; Ikeda, Tsuyoshi; Imada, Kiyoshi; Sasaki, Kazunori; El-Sayed, Magdi A; Shigyo, Masayoshi; Tanaka, Shuhei; Ito, Shin-Ichi

2013-08-01

133

Determination of antifungal, biochemical and physiological features of Trichoderma koningiopsis  

Technology Transfer Automated Retrieval System (TEKTRAN)

Trichoderma koningiopsis is a species that has been recently identified and has not yet been published, but is in press. Due to the absence of reported data on this species, antifungal, biochemical and physiological features were analyzed for the Trichoderma koningiopsis strain isolated from root se...

134

Enhancement of commercial antifungal agents by kojic acid  

Technology Transfer Automated Retrieval System (TEKTRAN)

Kojic acid (KA), a natural by-product of fungal fermentation, is a commonly used food and cosmetic additive. We show that KA increases activity of amphotericin B and strobilurin, medical and agricultural antifungal agents, respectively, possibly targeting the fungal antioxidative system. KA shows pr...

135

Targeted versus universal antifungal prophylaxis among liver transplant recipients.  

PubMed

Guidelines recommend targeted antifungal prophylaxis for liver transplant (LT) recipients based on tiers of risk, rather than universal prophylaxis. The feasibility and efficacy of tiered, targeted prophylaxis is not well established. We performed a retrospective study of LT recipients who received targeted prophylaxis (n?=?145; voriconazole [VORI; 54%], fluconazole [8%], no antifungal [38%]) versus universal VORI prophylaxis (n?=?237). Median durations of targeted and universal prophylaxis were 11 and 6 days, respectively (p?antifungal prophylaxis in LT recipients was feasible and safe, effectively prevented IFIs and reduced the number of patients exposed to antifungals. Bile leaks and living donor transplants should be considered high-risk indications for prophylaxis. PMID:25359455

Eschenauer, G A; Kwak, E J; Humar, A; Potoski, B A; Clarke, L G; Shields, R K; Abdel-Massih, R; Silveira, F P; Vergidis, P; Clancy, C J; Nguyen, M H

2015-01-01

136

Antifungal activity in seed coat extracts of woodland plants  

Microsoft Academic Search

Aqueous extracts from seeds of four woodland ground flora species (Hyacinthoides non-scripta, Allium ursinum, Digitalis purpurea and Hypericum pulchrum) were tested for antifungal activity using a petriplate technique. Four species of fungi were investigated. The growth of three of these (Trichoderma viride, Rhizoctonia solani and Pythium sp.) was not affected by any of the seed coat extracts. The growth of

Susan J. Warr; Ken Thompson; Martin Kent

1992-01-01

137

Human Pharmacogenomic Variations and Their Implications for Antifungal Efficacy  

PubMed Central

Pharmacogenomics is defined as the study of the impacts of heritable traits on pharmacology and toxicology. Candidate genes with potential pharmacogenomic importance include drug transporters involved in absorption and excretion, phase I enzymes (e.g., cytochrome P450-dependent mixed-function oxidases) and phase II enzymes (e.g., glucuronosyltransferases) contributing to metabolism, and those molecules (e.g., albumin, A1-acid glycoprotein, and lipoproteins) involved in the distribution of antifungal compounds. By using the tools of population genetics to define interindividual differences in drug absorption, distribution, metabolism, and excretion, pharmacogenomic models for genetic variations in antifungal pharmacokinetics can be derived. Pharmacogenomic factors may become especially important in the treatment of immunocompromised patients or those with persistent or refractory mycoses that cannot be explained by elevated MICs and where rational dosage optimization of the antifungal agent may be particularly critical. Pharmacogenomics has the potential to shift the paradigm of therapy and to improve the selection of antifungal compounds and adjustment of dosage based upon individual variations in drug absorption, metabolism, and excretion. PMID:17041143

Meletiadis, Joseph; Chanock, Stephen; Walsh, Thomas J.

2006-01-01

138

Chemosensitization as a means to augment commercial antifungal agents  

Technology Transfer Automated Retrieval System (TEKTRAN)

There is growing list of papers on antimycotic chemosensitization and the mechanisms by which they function. Currently, antifungal agents used in agriculture and in human or veterinary medicine are confronted by a number of obstacles, the main one being continual development of resistance to one, or...

139

Standardization of Antifungal Susceptibility Variables for a Semiautomated Methodology  

Microsoft Academic Search

Recently, the methodology that will serve as a basis of the standard for antifungal susceptibility testing of fermentative yeasts of the European Committee on Antibiotic Susceptibility Testing has been described. This procedure employs a spectrophotometric method for both inoculum adjustment and endpoint determination. However, the utilization of a spectrophotometer requires studies for standardization. The present work analyzes the following parameters:

JUAN L. RODRIGUEZ-TUDELA; MANUEL CUENCA-ESTRELLA; TERESA M. DIAZ-GUERRA; EMILIA MELLADO

2001-01-01

140

In vitro antifungal susceptibility of Scopulariopsis brevicaulis isolates.  

PubMed

In humans, Scopulariopsis is mainly associated with onychomycoses, rarely with cutaneous infections or with invasive mycoses. However, during the last two decades, deep infections caused by members of this genus have been increasing. Scopulariopsis brevicaulis is the most common species described as an etiologic agent of human disease. Previous antifungal susceptibility studies indicate that this species is resistant in vitro to the broad-spectrum antifungal agents that are available today. Here, we describe the antifungal activity of amphotericin B, terbinafine, ciclopirox, itraconazole, ketoconazole, and voriconazole against 40 S. brevicaulis isolates. Antifungal susceptibility tests were performed using a modified Clinical and Laboratory Standards Institute M38-A2 procedure. The results showed that itraconazole had the highest minimal inhibitory concentration (MIC) of >16?mg/l; amphotericin B, voriconazole, and ketoconazole MICs were ranging from 4 to >16?mg/l, 8 to >16?mg/l, and 8 to >16?mg/l, respectively; and the best activity was found with terbinafine and ciclopirox with MICs ranging from 0.5 to 16?mg/l and 1 to 8?mg/l, respectively. PMID:25049036

Skóra, Magdalena; Macura, Anna B; Bulanda, Ma?gorzata

2014-10-01

141

Evaluation of the antifungal activity and modulation between Cajanus cajan (L.) Millsp. leaves and roots ethanolic extracts and conventional antifungals  

PubMed Central

Background: The use and investigation of natural products with antimicrobial activity from vegeral source have been reported by several researchers. Cajanus cajan (Fabaceae) is a multiple use specie mainly as human food. In popular medicine, diverse parts of the plant are used as sedative and to treat cough, hepatitis, and diabetes. Materials and Methods: This study shows the characterization of secondary metabolites present in ehtanolic extracts from leaves and roots of Cajanus cajan by phytochemical prospection. The evaluation of the antifungal activity was performed by the microdilution method, and from the subinhibitory concentrations (MIC 1/8) the modulatory activity of antifungical (fluconazole and ketoconazole) was analyzed by the direct contact assay against C. albicans ATCC40006, Candida krusei ATCC 6538 and Candida tropicalis ATCC 40042. Results: The results showed the presence of tannins, flavonoids, and alkaloids in both extracts as the clinically relevant antifungal activity. The modulatory potential is presented by the antifungal tested against yeasts. Conclusion: The extracts studied here have demonstrated to be a new therapeutic source to treat these microorganism-associated diseases. PMID:22701281

Brito, Samara A.; Rodrigues, Fabíola F. G.; Campos, Adriana R.; da Costa, José G. M.

2012-01-01

142

In vitro screening of 10 edible thai plants for potential antifungal properties.  

PubMed

Growing rates of fungal infections and increasing resistance against standard antifungal drugs can cause serious health problems. There is, therefore, increasing interest in the potential use of medicinal plants as novel antifungal agents. This study investigates the antifungal properties of crude plant extracts from ten medicinal plant species. Crude samples were extracted using the hot water extraction process. The minimum inhibitory concentrations (MIC) and diameter zone of inhibition were determined in each extract against ten fungal strains, and fluconazole was used as a positive control. The cytotoxicity of crude extracts on in vitro human skin fibroblast (HSF) cell models was determined by MTT assay. Of the ten crude extracts, Psidium guajava L. exhibited the highest antifungal activity, diameter zone of inhibition, and percentage HSF cell viability. Although all extracts exhibited antifungal activity, Psidium guajava L. had the greatest potential for developing antifungal treatments. PMID:24516502

Suwanmanee, Supattra; Kitisin, Thitinan; Luplertlop, Natthanej

2014-01-01

143

In Vitro Screening of 10 Edible Thai Plants for Potential Antifungal Properties  

PubMed Central

Growing rates of fungal infections and increasing resistance against standard antifungal drugs can cause serious health problems. There is, therefore, increasing interest in the potential use of medicinal plants as novel antifungal agents. This study investigates the antifungal properties of crude plant extracts from ten medicinal plant species. Crude samples were extracted using the hot water extraction process. The minimum inhibitory concentrations (MIC) and diameter zone of inhibition were determined in each extract against ten fungal strains, and fluconazole was used as a positive control. The cytotoxicity of crude extracts on in vitro human skin fibroblast (HSF) cell models was determined by MTT assay. Of the ten crude extracts, Psidium guajava L. exhibited the highest antifungal activity, diameter zone of inhibition, and percentage HSF cell viability. Although all extracts exhibited antifungal activity, Psidium guajava L. had the greatest potential for developing antifungal treatments. PMID:24516502

Luplertlop, Natthanej

2014-01-01

144

Novel antifungal activity of purpurin against Candida species in vitro.  

PubMed

The antifungal activity of purpurin (1,2,4-trihydroxy-9,10-anthraquinone), a natural red anthraquinone pigment in madder root (Rubia tinctorum L.), was evaluated by a broth microdilution assay against a total of 24 Candida isolates representing six species. The minimum inhibitory concentration (MIC) range of purpurin was 1.28-5.12 ?g/ml. Mechanistic studies using the rhodamine 6G extrusion assay indicated that purpurin inhibited the energy-dependent efflux pumps of the Candida isolates in a dose-dependent manner. Furthermore, purpurin demonstrated a dose-dependent depolarization of mitochondrial membrane potential, one of the biochemical checkpoints regulating cell death in eukaryotic cells, suggesting a possible linkage between purpurin antifungal mechanism and Candida apoptosis. PMID:20392152

Kang, Kai; Fong, Wing-Ping; Tsang, Paul Wai-Kei

2010-11-01

145

Rondonin an antifungal peptide from spider (Acanthoscurria rondoniae) haemolymph.  

PubMed

Antimicrobial activities were detected in the haemolymph of the spider Acanthoscurrria rondoniae. A novel antifungal peptide, rondonin, was purified by reverse phase high performance liquid chromatography (RP-HPLC). Rondonin has an amino acid sequence of IIIQYEGHKH and a molecular mass of 1236.776 Da. This peptide has identity to a C-terminal fragment of the "d" subunit of haemocyanin from the spiders Eurypelma californicum and Acanthoscurria gomesiana. A synthetic peptide mimicking rondonin had identical characteristics to those of the isolated material, confirming its sequence. The synthetic peptide was active only against fungus. These data led us to conclude that the antifungal activity detected in the plasma of these spiders is the result of enzymatic processing of a protein that delivers oxygen in the haemolymph of many chelicerate. Several studies have suggested that haemocyanins are involved in the arthropod immune system, and the activity of this haemocyanin fragment reinforces this idea. PMID:24371568

Riciluca, K C T; Sayegh, R S R; Melo, R L; Silva, P I

2012-01-01

146

BIOSYNTHESIS OF MYCOBACILLIN, A NEW ANTIFUNGAL PEPTIDE I.  

PubMed Central

Banerjee, Arun B. (University of Calcutta, Calcutta, India), and S. K. Bose. Biosynthesis of mycobacillin, a new antifungal peptide. I. Role of nucleic acid. J. Bacteriol. 87:1397–1401. 1964.—The biosynthesis of mycobacillin, a cyclic polypeptide antifungal antibiotic, was studied in relation to the effect of chloramphenicol, 6-azathymine, and 5-bromouracil on the process. It was found that chloramphenicol inhibits both mycobacillin synthesis and growth, whereas nucleic acid base analogues inhibit only growth and nucleic acid synthesis but not mycobacillin formation. A change in the concentration of labeled aspartic acid in the general metabolic pool led to a corresponding change in the specific activity of aspartic acid isolated from different peptide fragments of the mycobacillin molecule, suggesting that mycobacillin synthesis occurs by way of linear addition of amino acid to the peptide chain. PMID:14188719

Banerjee, Arun B.; Bose, S. K.

1964-01-01

147

Structural characteristics of tenecin 3, an insect antifungal protein.  

PubMed

Tenecin 3, an antifungal protein, previously isolated from the insect Tenebrio molitor, inhibits growth of the fungus Candida albicans. However, the antifungal mechanism and functions of tenecin 3 remain unknown. As an initial step to study the mechanism and functions, physical and structural properties of tenecin 3 were examined by circular dichroism (CD) analysis and 2D nuclear overhauser effect spectroscopy. These analyses suggest that tenecin 3 has a propensity of random structure with very loose turn-like elements. The CD results also indicate that this random structural propensity is not significantly affected by temperature, pH, and by the presence of organic solvents or sodium dodecyl sulfate (SDS) micelles. However, the hydrodynamic studies suggest that tenecin 3 is not in extended form in spite of its random structural feature. PMID:10204073

Lee, Y T; Kim, D H; Suh, J Y; Chung, J H; Lee, B L; Lee, Y; Choi, B S

1999-03-01

148

A chitinase with antifungal activity from the mung bean.  

PubMed

A chitinase with antifungal activity was isolated from mung bean (Phaseolus mungo) seeds. The procedure entailed aqueous extraction, (NH4)2SO4 precipitation, ion-exchange chromatography on CM-Sepharose, high-performance liquid chromatography (HPLC) on Poros HS-20, and gel filtration on Sephadex G-75. The protein exhibited a molecular mass of 30.8 kDa in SDS-polyacrylamide gel electrophoresis. Its pI was 6.3 as determined by isoelectric focusing. The specific activity of the chitinase was estimated to be 3.81 U/mg. The enzyme expressed its optimum activity at pH 5.4 and was stable from 40 to 50 degrees C. It exerted antifungal action toward Fusarium solani, Fusarium oxysporum, Mycosphaerella arachidicola, Pythium aphanidermatum, and Sclerotium rolfsii. PMID:15766863

Wang, Shaoyun; Wu, Jinhong; Rao, Pingfan; Ng, Tzi Bun; Ye, Xiuyun

2005-04-01

149

Inhibitors of amino acids biosynthesis as antifungal agents.  

PubMed

Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy. PMID:25408465

Jastrz?bowska, Kamila; Gabriel, Iwona

2015-02-01

150

Efinaconazole solution 10%: topical antifungal therapy for toenail onychomycosis.  

PubMed

Toenail onychomycosis is a common disease with limited treatment options, as treatment failures and relapses frequently are encountered. Many patients experience long-term disease that affects multiple toenails and causes substantial discomfort and pain. Although many patients prefer topical therapies, treatment efficacy with ciclopirox and amorolfine lacquers has been disappointing. Efinaconazole solution 10% is a new triazole antifungal agent specifically developed for the treatment of onychomycosis. Efinaconazole has shown a broad spectrum of antifungal activity in vitro and is more potent than ciclopirox against common onychomycosis pathogens. It has lower keratin binding and quicker drug release from keratin than ciclopirox and amorolfine and exhibits remarkably greater in vivo activity. Efinaconazole has limited or no potential for drug interactions and a low resistance potential. Efinaconazole provides a viable alternative to oral therapy for the treatment of toenail onychomycosis. PMID:24195094

Tosti, Antonella

2013-10-01

151

Diagnosis of Antifungal Drug Resistance Mechanisms in Fungal Pathogens: Transcriptional Gene Regulation  

Microsoft Academic Search

Several fungal species can cause mild to severe diseases in humans. Antifungal strategies have been made possible by the development\\u000a of several drugs with antifungal activity against these pathogenic fungi. Fungi have counteracted antifungal agents in several\\u000a cases by developing resistance mechanisms. These mechanisms are based on the modifications of drug target genes and on the\\u000a regulation of drug-resistance genes.

Dominique Sanglard

2011-01-01

152

Antifungal aryltetralin lignans from leaves of Podophyllum hexandrum  

Microsoft Academic Search

Two aryltetralin lignans, 4?-O-demethyldehydropodophyllotoxin and picropodophyllone, which were earlier reported as semi-synthetic products, were isolated from the leaves of Podophyllum hexandrum of Pakistani origin. Two known aryltetralin lignans, isopicropodophyllone and dehydropodophyllotoxin, were also isolated. Structures were identified by spectroscopic methods. The two new lignans showed strong antifungal activity against Epidermophyton floccosum, Curvularia lunata, Nigrospora oryzae, Microsporum canis, Allescheria boydii and

Atta-ur-Rahman; M. Ashraf; M. Iqbal Choudhary; M. H. Kazmi

1995-01-01

153

Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action  

PubMed Central

K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20?s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate (FITC), 20–25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30–80% in 15 min) of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications.

Shrestha, Sanjib K.; Chang, Cheng-Wei T.; Meissner, Nicole; Oblad, John; Shrestha, Jaya P.; Sorensen, Kevin N.; Grilley, Michelle M.; Takemoto, Jon Y.

2014-01-01

154

Steroidal saponins from Smilax medica and their antifungal activity.  

PubMed

Three new steroidal saponins (1-3) were isolated from the roots of Smilax medica, together with the known disporoside A (4). The structures of the new compounds were elucidated mainly by extensive spectroscopic analysis (1D and 2D NMR, FABMS, and HRESIMS). Compounds 1, 2, and 4 demonstrated weak antifungal activity against the human pathogenic yeasts Candida albicans, C. glabrata, and C.tropicalis, with MIC values between 12.5 and 50 microg/mL. PMID:16252913

Sautour, Marc; Miyamoto, Tomofumi; Lacaille-Dubois, Marie-Aleth

2005-10-01

155

Essential oil of Psidium cattleianum leaves: Antioxidant and antifungal activity.  

PubMed

Abstract Context: Psidium cattleianum Sabine (Myrtacea) is rich in vitamin C and phenolic compounds, including epicatechin and gallic acid as the main components. Objective: To evaluate the antifungal and antioxidant capacity in vitro of the essential oil of araçá (EOA). The acute toxicity of the EOA also was evaluated in mice. Materials and methods: The leaves of the P. cattleianum were extracted by steam distillation. The antioxidant capacity was evaluated by in vitro tests [1,1-diphenyl-2-picryl-hydrazyl (DPPH), 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), ferric ion reducing antioxidant power (FRAP), linoleic acid oxidation, thiobarbituric acid reactive species (TBARS)], and ex vivo analysis [TBARS, ?-aminulevunilate dehydratase (?-Ala-D) and catalase activity, non-protein thiols (NPSH), and ascorbic acid levels]. The toxicity was studied in mice by a single oral administration of EOA; and the antifungal activity was performed with five strains of fungi. Results: The EOA exhibited antioxidant activity in the FRAP assay and reduced lipid peroxidation in the cortex (Imax?=?32.90?±?2.62%), hippocampus (IC50?=?48.00?±?3.00?µg/ml and Imax?=?32.90?±?2.62%), and cerebellum (Imax?=?45.40?±?14.04%) of mice. Acute administration of the EOA by the oral route did not cause toxicological effects in mice (LD50?>?500?µg/ml). The EOA also showed antifungal activity through of the determination minimum inhibitory concentration (MIC) values ranging from 41.67?±?18.04 to 166.70?±?72.17?µg/ml for tested strains. Conclusion: The results of present study indicate that EOA possess antioxidant properties, antifungal and not cause toxicity at tested doses. PMID:25420516

Castro, Micheli R; Victoria, Francine N; Oliveira, Daniela H; Jacob, Raquel G; Savegnago, Lucielli; Alves, Diego

2014-11-25

156

Chemical analysis and antifungal activity of Thymus striatus.  

PubMed

The essential oil composition from Thymus striatus collected from Mountain Orjen (Montenegro) has been investigated by gas chromatography-mass spectrometry. Thymol, gamma-terpinene and p-cymene were found to be the major components. Furthermore, the oil and its major component, thymol, were analysed for potential antifungal activity against plant, animal and human pathogenic fungi from different genera by a macrodilution test. The oil exhibited a strong inhibitory effect against all fungi investigated. PMID:14750199

Couladis, M; Tzakou, O; Kujundzic, S; Sokovic, M; Mimica-Dukic, N

2004-01-01

157

In vitro activity of systemic antifungal agents against Malassezia furfur.  

PubMed Central

The activity of four antifungal agents against 15 systemic (blood and vascular catheter) and 10 superficial (skin) Malassezia furfur isolates was evaluated. MIC ranges were similar for the two groups of organisms: amphotericin B, 0.3 to 2.5 micrograms/ml; flucytosine, greater than 100 micrograms/ml; miconazole, 0.4 to 1.5 micrograms/ml; and ketoconazole, 0.025 to 0.4 micrograms/ml. PMID:3619430

Marcon, M J; Durrell, D E; Powell, D A; Buesching, W J

1987-01-01

158

Antifungal activity of cucumber ?-1,3-glucanase and chitinase  

Microsoft Academic Search

An acidic ?-1,3-glucanase and three isoforms of chitinase (A, B, C) were isolated and purified from cucumber (Cucumis sativusL.) leaves inoculated with a necrogenic fungus,Colletotrichum lagenarium. Tests of antifungal activity toC. lagenarium in vitrowere conducted with the purified ?-1,3-glucanase, the three purified isoforms of chitinase and with intercellular wash fluids (ICF) from cucumber leaves above those inoculated withC. lagenariumor those

C. Ji; J. Ku?

1996-01-01

159

Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action.  

PubMed

K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20's antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate (FITC), 20-25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30-80% in 15 min) of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications. PMID:25538692

Shrestha, Sanjib K; Chang, Cheng-Wei T; Meissner, Nicole; Oblad, John; Shrestha, Jaya P; Sorensen, Kevin N; Grilley, Michelle M; Takemoto, Jon Y

2014-01-01

160

ANTIBACTERIAL AND ANTIFUNGAL EFFECTS OF SOFT CONTACT LENS DISINFECTION SOLUTIONS  

Microsoft Academic Search

Absia'act -- A\\/ms: To study the antibacterial and antifungal effects of soft contact lens disinfection solutions. Methods: Eight contact lens disinfection solutions containing hydrogen peroxide or biguanides or polyquad compounds were evaluated with respect to their ability to disinfect a saline solution experimentally contaminated with different bacteria and with a fungus. We used cultures in blood Agar, MueUer-Hinton agar and

Juan Cano-Parra; Inmaculada Bueno-Gimeno; Robert Mont

161

Antifungal and cytotoxic activities of Nannorrhops ritchiana roots extract.  

PubMed

This atudy was designed to evaluate the antifungal and cytotoxic activities of the Nannorrhops ritchiana (Mazari Palm) 80% methanol extract (NR-M) and its four crude extracts i.e., petroleum ether (NR-A), dichloromethane (NR-B), ethyl acetate (NR-C) and butanol (NR-D). The antifungal activity was determined by agar tube dilution method against nine fungal strains; Aspergillus flavus, Trichophyton longifusis, Trichophyton mentagrophytes, Aspergillus flavus and Microsporum canis were susceptible to the extracts with percentage inhibition of (70-80%). Extracts exhibited significant and good antifungal activity against various fungal strains. The results were deduced by comparing with those for miconazole, amphotericin B and ketoconazole as standard drugs. The fractions of methanolic extract were assayed for their brine shrimp cytotoxic activity. They exhibited low toxicity with LC50 values ranging from 285.7 to 4350.75 ?g/mL at the concentration of obtained results warrant follow up through bioassay guided isolation of the active principles, future antiinfectious research. PMID:25362807

Rashid, Rehana; Mukhtar, Farah; Khan, Abida

2014-01-01

162

First report of an antifungal amidase from Peltophorum pterocarpum. [corrected].  

PubMed

A 60 kDa antifungal amidase was purified from Peltophorum pterocarpum [corrected] seeds using an isolation procedure that entailed ion-exchange chromatography on Q-Sepharose, ion-exchange chromatography on DEAE-cellulose and FPLC-gel filtration on Superdex 75. Unlike most other antifungal proteins isolated previously, it was adsorbed on Q-Sepharose and DEAE-cellulose. The isolated protein, designated as peltopterin, exhibited an N-terminal amino acid sequence closely resembling those of amidases. It exhibited amidase activity and digested iodoacetamide with an optimum pH and temperature at pH 9 and 50 degrees C, respectively. It also hydrolyzed acrylamide and urea. It impeded mycelial growth in Rhizotonia solani with an IC(50) of 0.65 microm. Chitin deposition at hyphal tips in R. solani was observed by staining with Congo red after incubation with peltopterin. Its antifungal activity was stable throughout pH 0-14 and 25-100 degrees C. It potently inhibited HIV-1 reverse transcriptase with an IC(50) of 27 nm. PMID:19688818

Lam, Sze Kwan; Ng, Tzi Bun

2010-05-01

163

Vaginal yeasts in the era of "over the counter" antifungals  

PubMed Central

Objective: To establish whether there has been any rise in the prevalence of non-albicans Candida species isolated from vaginal swabs since the introduction of "over the counter" antifungal treatments. Method: A retrospective review looking at all positive vaginal yeast isolates collected from women attending one genitourinary medicine clinic during the 6 year period from 1993 to 1998 inclusive. All positive vaginal yeast isolates were included, regardless of whether or not the patients were symptomatic. Isolates from HIV positive women were excluded from the analysis. Result: No increase in non-albicans vaginal yeast isolates was shown during the period studied. The proportion of non-albicans yeasts remained constant at approximately 5% of the total yeasts isolated. The most common non-albicans yeast isolated was C glabrata. Conclusion: There is no evidence from this study to suggest that the increasing use of "over the counter" antifungal treatment has selected for atypical, possibly inherently azole resistant, strains of vaginal yeasts in HIV seronegative women. Key Words: vulvovaginal candidiasis; non-albicans species; antifungal drug resistance PMID:11221124

Walker, P; Reynolds, M; Ashbee, H; Brown, C; Evans, E

2000-01-01

164

Antifungal defensins and their role in plant defense  

PubMed Central

Since the beginning of the 90s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP) have been studied. However, Broekaert et al. (1995) only coined the term “plant defensin,” after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity toward microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM). Its low effective concentration towards fungi, ranging from 0.1 to 10 ?M and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i) the most studied plant defensins and their fungal targets; (ii) the molecular features of plant defensins and their relation with antifungal activity; (iii) the possibility of using plant defensin(s) genes to generate fungi resistant GM crops and biofungicides; and (iv) a brief discussion about the absence of products in the market containing plant antifungal defensins. PMID:24765086

Lacerda, Ariane F.; Vasconcelos, Érico A. R.; Pelegrini, Patrícia Barbosa; Grossi de Sa, Maria F.

2014-01-01

165

Synthesis and antifungal properties of sulfanilamide derivatives of chitosan.  

PubMed

Sulfanilamide derivatives of chitosan (2-(4-acetamido-2-sulfanimide)-chitosan (HSACS, LSACS), 2-(4-acetamido-2-sulfanimide)-6-sulfo-chitosan (HSACSS, LSACSS) and 2-(4-acetamido-2-sulfanimide)-6-carboxymethyl-chitosan (HSACMCS, LSACMCS)) were prepared using different molecular weights of chitosan (CS), carboxymethyl chitosan (CMCS) and chitosan sulfates (CSS) reacted with 4-acetamidobenzene sulfonyl chloride in dimethylsulfoxide solution. The structures of the derivatives were characterized by FT-IR spectroscopy and elemental analysis, which showed that the substitution degree of sulfanilamide group of HSACS, HSACSS, HSACMCS, LSACS, LSACSS and LSACMCS were 0.623, 0.492, 0.515, 0.576, 0.463 and 0.477, respectively. The solubility of the derivatives (pH<7.5) was higher than that of chitosan (pH<6.5). The antifungal activities of the derivatives against Aiternaria solani and Phomopsis asparagi were evaluated based on the method of Jasso et al. in the experiment. The results indicated that all the prepared sulfanilamide derivatives had a significant inhibiting effect on the investigated fungi in the polymer concentration range from 50 to 500 microg mL(-1). The antifungal activities of the derivatives increased with increasing the molecular weight, concentration or the substitution degree. The sulfanilamide derivatives of CS, CMCS and CSS show stronger antifungal activities than CS, CMCS and CSS. PMID:17765881

Zhong, Zhimei; Chen, Rong; Xing, Ronge; Chen, Xiaolin; Liu, Song; Guo, Zhanyong; Ji, Xia; Wang, Lin; Li, Pengcheng

2007-11-26

166

Synthesis and antifungal activity of thiadiazole-functionalized chitosan derivatives.  

PubMed

A groups of novel water soluble chitosan derivatives containing 1,3,4-thiadiazole group were synthesized including 1,3,4-thiadiazole (TPCTS), 2-methyl-1,3,4-thiadiazole (MTPCTS), and 2-phenyl-1,3,4-thiadiazole (PTPCTS). Their antifungal activity against three kinds of phytopathogens was estimated by hypha measurement in vitro, and the fungicidal assessment shows that the synthesized chitosan derivatives have excellent activity against tested fungi. Of all the synthesized chitosan derivatives, MTPCTS inhibited the growth of the tested phytopathogens most effectively with inhibitory indices of 75.3%, 82.5%, and 65.8% against Colletotrichum lagenarium (Pass) Ell.et halst, Phomopsis asparagi (Sacc.) Bubak, and Monilinia fructicola (Wint.) Honey respectively at 1.0 mg/mL. These indices are higher than those of chitosan. These data also demonstrate that the hydrophobic moiety (alkyl and phenyl) and the length of alkyl substituent in thiadiazole tend to affect the antifungal activity of chitosan derivatives. It is hypothesized that thiadiazole groups enable the synthesized chitosan to possess obviously better antifungal activity and good solubility in water. PMID:23624516

Li, Qing; Ren, Jianming; Dong, Fang; Feng, Yan; Gu, Guodong; Guo, Zhanyong

2013-05-24

167

Antibacterial and antifungal effects of essential oils from coniferous trees.  

PubMed

Essential oils have potential biological effects, i.e., antibiotic, anticarcinogenic, and sedative effects during stress. In the present study, we investigated the antibacterial and antifungal effects of essential oils extracted from the coniferous species Pinus densiflora, Pinus koraiensis, and Chamaecyparis obtusa, because their biological activities have not been yet elucidated. The essential oils were quantified using gas chromatography and identified in gas chromatography-mass spectrometric analysis. Simultaneously, antibacterial and antifungal assays were performed using the essential oils distilled from the needles of coniferous trees. The major components and the percentage of each essential oil were: 19.33% beta-thujene in P. densiflora; 10.49% alpha-pinene in P. koraiensis; 10.88% bornyl acetate in C. obtusa. The essential oils from P. densiflora and C. obtusa have antibacterial effects, whereas essential oils from P. koraiensis and C. obtusa have antifungal effects. These results indicate that the essential oils from the three coniferous trees, which have mild antimicrobial properties, can inhibit the growth of gram-positive and gram-negative bacteria and fungi. PMID:15187434

Hong, Eui-Ju; Na, Ki-Jeung; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

2004-06-01

168

Benzofurazan derivatives as antifungal agents against phytopathogenic fungi.  

PubMed

A series of benzofurazan derivatives were prepared and evaluated for their biological activities against four important phytopathogenic fungi, namely, Rhizoctonia solani, Sclerotinia sclerotiorum, Fusarium graminearum and Phytophthora capsici, using the mycelium growth inhibition method. The structures of these compounds were characterized by (1)H NMR, (13)C NMR, and HRMS. N-(3-chloro-4-fluorophenyl)-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine (A3) displayed the maximum antifungal activity against R. solani (IC50 = 1.91 ?g/mL), which is close to that of the positive control Carbendazim (IC50 = 1.42 ?g/mL). For other benzofurazan derivatives with nitro group at R(4) position (A series), 9 out of 30 compounds exhibited high antifungal effect against strain R. solani, with IC50 values less than 5 ?g/mL. Most of the derivatives with substituents at R(2) and R(3) positions (B series) displayed moderate growth inhibition against S. sclerotiorum (IC50 < 25 ?g/mL). Also, several benzofuran derivatives with nitro group at R(4) position and another conjugated aromatic ring at the R(1) position of the phenyl ring displayed high antifungal capability against strain R. solani. Compounds with substituents at R(2) and R(3) position had moderate efficacy against strain S. sclerotiorum. PMID:24813881

Wang, Lili; Zhang, Ying-Ying; Wang, Lei; Liu, Feng-you; Cao, Ling-Ling; Yang, Jing; Qiao, Chunhua; Ye, Yonghao

2014-06-10

169

Antifungal Properties of Chenopodium ambrosioides Essential Oil Against Candida Species  

PubMed Central

The essential oil of the aerial part (leaves, flowers and stem) of Chenopodium ambrosioides was obtained by hydrodistillation and its chemical composition analyzed by GC and GC/MS, which permitted the identification of 14 components, representing 98.8% of the total oil. Major components were ?-terpinene (51.3%), p-cymene (23.4%) and p-mentha-1,8-dične (15.3%). The antifungal properties of this essential oil were investigated in vitro by the well diffusion and broth microdilution methods. The in vitro antifungal activity was concentration dependent and minimum inhibitory concentration values varied from 0.25 to 2 mg/mL. The in vivo antifungal activity was evaluated on an induced vaginal candidiasis rat model. The in vivo activity of the oil on mice vaginal candidiasis was not dose-dependent. Indeed, all the three tested doses; 0.1%, 1% and 10% led to the recovery of mice from the induced infection after 12 days of treatment. The effect of the essential oil on C. albicans ATCC 1663 fatty acid profile was studied. This oil has a relatively important dose-dependent effect on the fatty acids profile.

Chekem, Marie Stéphanie Goka; Lunga, Paul Keilah; Tamokou, Jean De Dieu; Kuiate, Jules Roger; Tane, Pierre; Vilarem, Gerard; Cerny, Muriel

2010-01-01

170

Cytotoxic, trypanocidal, and antifungal activities of Eugenia jambolana L.  

PubMed

Chagas' disease, caused by Trypanosoma cruzi, is considered a public health problem. Nowadays, chemotherapy is the only available treatment for this disease, and the drugs currently used, nifurtimox and benzonidazole, present high toxicity levels. Alternatives for replacing these drugs are natural extracts from Eugenia jambolana, a plant used in traditional medicine because of its antimicrobial and biological activities. An ethanol extract from E. jambolana was prepared. To research in vitro anti-epimastigote activity, T. cruzi CL-B5 clone was used. Epimastigotes were inoculated at a concentration of 1×10(5)/mL in 200 ?L of tryptose-liver infusion. For the cytotoxicity assay J774 macrophages were used. To examine antifungal activity, Candida albicans, Candida tropicalis, and Candida krusei were used. This is the first record of trypanocide activity for E. jambolana. The effective concentration capable of killing 50% of the parasites was 56.42 ?g/mL. The minimum inhibitory concentration was ?1,024 ?g/mL. Metronidazole showed a potentiation of its antifungal effect when combined with the ethanol extract of E. jambolana. Thus our results indicate that E. jambolana could be a source of plant-derived natural products with anti-epimastigote and antifungal modifying activity with moderate toxicity. PMID:21877946

dos Santos, Karla K A; Matias, Edinardo F F; Tintino, Saulo R; Souza, Celestina E S; Braga, Maria F B M; Guedes, Gláucia M M; Rolón, Miriam; Vega, Celeste; de Arias, Antonieta Rojas; Costa, José G M; Menezes, Irwin A; Coutinho, Henrique D M

2012-01-01

171

77 FR 38199 - Propiconazole; Pesticide Tolerances  

Federal Register 2010, 2011, 2012, 2013, 2014

...posed by human exposure to the pesticide. For hazards...no adverse effects are observed...the adverse effect expected...epa.gov/pesticides/factsheets...used for human risk assessment...cumulating effects from substances...epa.gov/pesticides/cumulative...conducted a human health...

2012-06-27

172

Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity  

Microsoft Academic Search

The increasing incidence of drug-resistant pathogens and host toxicity of existing antifungals attracts attention toward the efficacy of natural products as antifungals in mucocutaneous infections and combinational therapies. The composition and antifungal activity of the essential oil obtained from Ocimum sanctum (OSEO) was studied. On GC–MS analysis, OSEO showed a high content of methyl chavicol (44.63%) and linalool (21.84%). Antifungal

Amber Khan; Aijaz Ahmad; Feroz Akhtar; Snowber Yousuf; Immaculata Xess; Luqman A. Khan; Nikhat Manzoor

2010-01-01

173

International Interlaboratory Proficiency Testing Program for Measurement of Azole Antifungal Plasma Concentrations?  

PubMed Central

An international interlaboratory proficiency testing program for the measurement of antifungal drugs was initiated in 2007. This first round was limited to azole antifungals: fluconazole, itraconazole and hydroxyitraconazole, voriconazole, and posaconazole. The results demonstrate the need for and utility of an ongoing proficiency testing program to further improve the analytical methods for routine patient management and clinical research. PMID:19015363

Brüggemann, Roger J. M.; Touw, Daan J.; Aarnoutse, Rob E.; Verweij, Paul E.; Burger, David M.

2009-01-01

174

Antifungal activity of the essential oil from Calendula officinalis L. (asteraceae) growing in Brazil  

PubMed Central

This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using disk-diffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested. PMID:24031180

Gazim, Zilda Cristiane; Rezende, Claudia Moraes; Fraga, Sandra Regina; Svidzinski, Terezinha Inez Estivaleti; Cortez, Diógenes Aparicio Garcia

2008-01-01

175

Synthesis and antifungal activity of functionalized 2,3-spirostane isomers  

Microsoft Academic Search

Invasive fungal infections are a major complication for individuals with compromised immune systems. One of the most significant challenges in the treatment of invasive fungal infections is the increased resistance of many organisms to widely used antifungals, making the development of novel antifungal agents essential. Many naturally occurring products have been found to be effective antimicrobial agents. In particular, saponins

Sunil Kumar Upadhyay; Clinton C. Creech; Katharine L. Bowdy; Edwin D. Stevens; Branko S. Jursic; Donna M. Neumann

2011-01-01

176

Antifungal, mosquito deterrent, and larvicidal activity of N-(benzylidene)-3-cyclohexylpropionic acid hydrazide derivatives  

Technology Transfer Automated Retrieval System (TEKTRAN)

Hydrazone derivatives possess good antifungal and insecticidal activities and their structure are used in pesticide design. In the present study, ten hydrazone derivatives (2a-j) were evaluated for their antifungal activity against Colletotrichum, Botrytis, Fusarium and Phomopsis species and for the...

177

Some Antifungal Properties of Sorbic Acid Extracted from Berries of Rowan (Sorbus Aucuparia).  

ERIC Educational Resources Information Center

The food preservative sorbic acid can be extracted from Eurasian mountain ash berries (commercially available) and used to show antifungal properties in microbiological investigations. Techniques for extraction, purification, ultraviolet analysis, and experiments displaying antifungal activity are described. A systematic search for similar…

Brunner, Ulrich

1985-01-01

178

Antifungal activity of Lactobacillus paracasei ssp. tolerans isolated from a sourdough bread culture  

Microsoft Academic Search

Lactic acid bacteria were isolated from four different sourdough bread cultures previously investigated for antifungal activity. A total of 116 isolates were obtained and screened for antifungal activity against a battery of molds. The most inhibitory isolate obtained was identified by API 50 CHL and 16s ribosomal RNA genotyping and found to be Lactobacillus paracasei ssp. tolerans. This isolate completely

Yousef I. Hassan; Lloyd B. Bullerman

2008-01-01

179

Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba  

Microsoft Academic Search

An antifungal peptide from leaves of Ginkgo biloba, designated GAFP, has been isolated. Its molecular mass of 4244.0 Da was determined by mass spectrometry. The complete amino acid sequence was obtained from automated Edman degradation. GAFP exhibited antifungal activity towards Pellicularia sasakii Ito, Alternaria alternata (Fries) Keissler, Fusarium graminearum Schw. and Fusarium moniliforme. Its activities differed among various fungi. GAFP

Xu Huang; Wei-jun Xie; Zhen-zhen Gong

2000-01-01

180

Antifungal Activity of Flocculosin, a Novel Glycolipid Isolated from Pseudozyma flocculosa  

PubMed Central

Flocculosin, a glycolipid isolated from the yeast-like fungus Pseudozyma flocculosa, was investigated for in vitro antifungal activity. The compound displayed antifungal properties against several pathogenic yeasts. Synergistic activity was observed between flocculosin and amphotericin B, and no significant cytotoxicity was demonstrated when tested against human cell lines. PMID:15793149

Mimee, Benjamin; Labbé, Caroline; Pelletier, René; Bélanger, Richard R.

2005-01-01

181

In vitro Antifungal Activity of Thai Herb and Spice Extracts against Food Spoilage Fungi  

Microsoft Academic Search

The screening of Thai herbs and spices was carried out to investigate their in vitro antifungal activity against Aspergillus niger, A. oryzaeand Penicilliumsp. by using agar well diffusion method. Of thirteen plants tested, crude ethanol extracts of three, namely Piper betel, Boesenbergia pandurata, Andrographis paniculata exhibited antifungal activity against all test microorganisms. Penicillium sp. was more resistant to the extracts

Penkhae Wanchaitanawong; Piyamat Chaungwanit; Ngamtip Poovarodom; Sunee Nitisinprasert

182

Antifungal leaf-surface metabolites correlate with fungal abundance in sagebrush populations.  

PubMed

A central component in understanding plant-enemy interactions is to determine whether plant enemies, such as herbivores and pathogens, mediate the evolution of plant secondary metabolites. Using 26 populations of a broadly distributed plant species, sagebrush (Artemisia tridentata), we examined whether sagebrush populations in habitats with a greater prevalence of fungi contained antifungal secondary metabolites on leaf surfaces that were more active and diverse than sagebrush populations in habitats less favorable to fungi. Because moisture and temperature play a key role in the epidemiology of most plant-pathogen interactions, we also examined the relationship between the antifungal activity of secondary metabolites and the climate of a site. We evaluated the antifungal activity of sagebrush secondary metabolites against two fungi, a wild Penicillium sp. and a laboratory yeast, Saccharomyces cerevisiae, using a filter-paper disk assay and bioautography. Comparing the 26 sagebrush populations, we found that fungal abundance was a good predictor of both the activity (r2 = 0.36 for Saccharomyces, r2 = 0.37 for Penicillium) and number (r2 = 0.34 for Saccharomyces) of antifungal secondary metabolites. This suggests that selection imposed by fungal pathogens has led to more effective antifungal secondary metabolites. We found that the antifungal activity of sagebrush secondary metabolites was negatively related to average vapor pressure deficit of the habitat (r2 = 0.60 for Saccharomyces, r2 = 0.61 for Penicillium). Differences in antifungal activity among populations were not due to the amount of secondary metabolites, but rather to qualitative differences in the composition of antifungal compounds. Although all populations in habitats with high fungal prevalence had secondary metabolites with high antifungal activity, different suites of compounds were responsible for this activity, suggesting independent outcomes of selection on plants by fungal pathogens. The location of antifungal secondary metabolites on the leaf surface is consistent with their putative defense role, and we found no evidence supporting other functions, such as protection from ultraviolet light or oxidation. That the antifungal activity of sagebrush secondary metabolites was similar for two different fungi provides support for broad antifungal defenses. The incidence and severity of fungal disease in the field (caused by Puccinia tanaceti) were similar in moist and dry habitats, possibly reflecting an equilibrium between plant defense and fungal attack, as sites with greater fungal abundance compensated with more effective secondary metabolites. The geographic correlation between fungal abundance and antifungal secondary metabolites of sagebrush, coupled with our other data showing heritable variation in these metabolites, suggests that pathogenic fungi have selected for antifungal secondary metabolites in sagebrush. PMID:12523559

Talley, Sharon M; Coley, Phyllis D; Kursar, Thomas A

2002-11-01

183

A radish seed antifungal peptide with a high amyloid fibril-forming propensity.  

PubMed

The amyloid fibril-forming ability of two closely related antifungal and antimicrobial peptides derived from plant defensin proteins has been investigated. As assessed by sequence analysis, thioflavin T binding, transmission electron microscopy, atomic force microscopy and X-ray fiber diffraction, a 19 amino acid fragment from the C-terminal region of Raphanus sativus antifungal protein, known as RsAFP-19, is highly amyloidogenic. Further, its fibrillar morphology can be altered by externally controlled conditions. Freezing and thawing led to amyloid fibril formation which was accompanied by loss of RsAFP-19 antifungal activity. A second, closely related antifungal peptide displayed no fibril-forming capacity. It is concluded that while fibril formation is not associated with the antifungal properties of these peptides, the peptide RsAFP-19 is of potential use as a controllable, highly amyloidogenic small peptide for investigating the structure of amyloid fibrils and their mechanism of formation. PMID:23665069

Garvey, Megan; Meehan, Sarah; Gras, Sally L; Schirra, Horst J; Craik, David J; Van der Weerden, Nicole L; Anderson, Marilyn A; Gerrard, Juliet A; Carver, John A

2013-08-01

184

Antifungal activity of gold nanoparticles prepared by solvothermal method  

SciTech Connect

Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ? Effect of reducing agents on the morphology of gold nanoparticles. ? Highly uniform and monodisperse gold nanoparticles (7 nm). ? Highest surface area of gold nanoparticles (329 m{sup 2/}g). ? Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India)] [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India)] [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Manzoor, Nikhat; Ahmad, Aijaz [Department of Biosciences, Jamia Millia Islamia, New Delhi 110025 (India)] [Department of Biosciences, Jamia Millia Islamia, New Delhi 110025 (India); Ahmed, Jahangeer [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States)] [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Al-Shihri, Ayed S. [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia)] [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia)

2013-01-15

185

A chitinase with antifungal activity from the mung bean  

Microsoft Academic Search

A chitinase with antifungal activity was isolated from mung bean (Phaseolus mungo) seeds. The procedure entailed aqueous extraction, (NH4)2SO4 precipitation, ion-exchange chromatography on CM-Sepharose, high-performance liquid chromatography (HPLC) on Poros HS-20, and gel filtration on Sephadex G-75. The protein exhibited a molecular mass of 30.8kDa in SDS–polyacrylamide gel electrophoresis. Its pI was 6.3 as determined by isoelectric focusing. The specific

Xiuyun Ye; Tzi Bun Ng

2005-01-01

186

Antifungal and Antioxidant Activities of Pyrrolidone Thiosemicarbazone Complexes  

PubMed Central

Metal complexes of (Z)-2-(pyrrolidin-2-ylidene)hydrazinecarbothioamide (L) with Cu(II), Co(II), and Ni(II) chlorides were tested against selected types of fungi and were found to have significant antifungal activities. The free-radical-scavenging ability of the metal complexes was determined by their interaction with the stable free radical 2,2??-diphenyl-1-picrylhydrazyl, and all the compounds showed encouraging antioxidant activities. DFT calculations of the Cu complex were performed using molecular structures with optimized geometries. Molecular orbital calculations provide a detailed description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms. PMID:22400016

Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

2012-01-01

187

Antifungal and antioxidant activities of pyrrolidone thiosemicarbazone complexes.  

PubMed

Metal complexes of (Z)-2-(pyrrolidin-2-ylidene)hydrazinecarbothioamide (L) with Cu(II), Co(II), and Ni(II) chlorides were tested against selected types of fungi and were found to have significant antifungal activities. The free-radical-scavenging ability of the metal complexes was determined by their interaction with the stable free radical 2,2''-diphenyl-1-picrylhydrazyl, and all the compounds showed encouraging antioxidant activities. DFT calculations of the Cu complex were performed using molecular structures with optimized geometries. Molecular orbital calculations provide a detailed description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms. PMID:22400016

Al-Amiery, Ahmed A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar

2012-01-01

188

Cytotoxic and Antifungal Activities of Diverse ?-Naphthylamine Derivatives  

PubMed Central

Diverse ?-naphthylamine derivatives were easily prepared from corresponding aldimines derived from commercially available ?-naphthaldehyde and anilines or isomeric pyridinecarboxyaldehydes and ?-naphthylamine. The secondary amines obtained were tested as possible antifungal and cytotoxic agents. The diverse N-aryl-N-[1-(1-naphthyl)but-3-enyl]amines obtained were active (IC50 < 10 ?g/mL) against breast (MCF-7), non-small cell lung (H-460), and central nervous system (SF-268) human cancer cell lines, while N-(pyridinylmethyl)-naphthalen-1-amines resulted in activity against (MIC 25–32 ?g/mL) some human opportunistic pathogenic fungi including yeasts, hialohyphomycetes, and dermatophytes. PMID:23264936

Kouznetsov, Vladímir V.; Zacchino, Susana A.; Sortino, Maximiliano; Vargas Méndez, Leonor Y.; Gupta, Mahabir P.

2012-01-01

189

Synthesis of biotin conjugates of the antifungal compound cymoxanil.  

PubMed

Biotin conjugates are of considerable value in investigating the mode of action of biologically active compounds. Two biotin conjugates related to the antifungal compound cymoxanil [1-(2-cyano-2-methoximinoacetyl)-3-ethyl urea] were prepared as the first step in an effort to employ display cloning to identify the compound's target site. In the first conjugate, prepared in five steps, the biotin moiety was attached at the position occupied by the ethyl group in cymoxanil. In the second conjugate, prepared in four steps, the biotin moiety was attached through the oxime functional group. PMID:11975188

Evans, Karen Anderson; Kane, Charles T; Tice, Colin M

2002-04-01

190

Evaluation of the antifungal potential of Brazilian Cerrado medicinal plants.  

PubMed

Therapeutic limitations, development of fungal drug resistance, drug-related toxicity, drug interactions and insufficient bioavailability of the currently available antifungal drugs have made the development of drugs necessary that would be able to treat the emerging fungal infections. The Cerrado is the second greater biome of Brazil and it was identified as one of the most distinguished biomes of South America, becoming an important source of innovative vegetal molecules to treat several conditions. Thus, the objective of this study was to evaluate the antifungal potential of Cerrado plants, mainly those used to treat infections and wounds. A total of 57 extracts were screened by the agar-well diffusion technique against Candida albicans and Trichophyton rubrum. The most promising extracts were tested in smaller concentrations and their minimal inhibitory concentrations (MIC) were determined by microdilution method. Results were analysed statistically by anova tests. Extracts of Kielmeyera coriacea, Renealmia alpinia, Stryphnodendron adstringens and Tabebuia caraiba were very active against T. rubrum, presented geometric means of the MIC values between 170.39 and 23.23 microg ml(-1). Extracts of Cerrado plants are of particular interest as source of new agents for the treatment of dermatophytic infections. PMID:19207849

Melo e Silva, Fernanda; de Paula, José Elias; Espindola, Laila Salmen

2009-11-01

191

The Antifungal Protein from Aspergillus giganteus Causes Membrane Permeabilization  

PubMed Central

We investigated the inhibitory effects of the antifungal protein (AFP) from Aspergillus giganteus on the growth of several filamentous fungi. For this purpose, the MICs of AFP were determined and ranged from 0.1 ?g/ml for Fusarium oxysporum to 200 ?g/ml for Aspergillus nidulans. The antifungal activity of AFP was diminished in the presence of cations. We were able to show that incubation of AFP-sensitive fungi with the protein resulted in membrane permeabilization using an assay based on the uptake of the fluorescent dye SYTOX Green. No permeabilization by AFP could be detected at concentrations below the species-specific MIC. Furthermore, AFP-induced permeabilization could readily be detected after 5 min of incubation. Localization experiments with fluorescein isothiocyanate-labeled AFP and immunofluorescence staining with an AFP-specific antibody supported the observation that the protein interacts with membranes. After treatment of AFP-sensitive fungi with AFP, the protein was localized at the plasma membrane, whereas it was mainly detected inside the cells of AFP-resistant fungi. We conclude from these data that the growth-inhibitory effect of AFP is caused by permeabilization of the fungal membranes. PMID:12543664

Theis, T.; Wedde, M.; Meyer, V.; Stahl, U.

2003-01-01

192

Antifungals: Need to Search for a New Molecular Target  

PubMed Central

In the 1990s, drug resistance has become an important problem in a variety of infectious diseases including human immunodeficiency virus infection, tuberculosis, and other bacterial infections which have profound effects on human health. At the same time, there have been dramatic increase in the incidence of fungal infections, which are probably the result of alterations in immune status associated with the acquired immuno deficiency syndrome epidemic, cancer chemotherapy, and organ and bone marrow transplantation. The rise in the incidence of fungal infections has exacerbated the need for the next generation of antifungal agents, since many of the currently available drugs have undesirable side effects, are ineffective against new or reemerging fungi, or lead to the rapid development of the resistance. This review will focus on the pathogenic yeast Candida albicans, since a large body of work on the factors and mechanism associated with antifungal drug resistance in this organism is reported sufficiently. It will certainly elaborate the probable molecular targets for drug design, discovered to date. PMID:20046765

Sangamwar, A. T.; Deshpande, U. D.; Pekamwar, S. S.

2008-01-01

193

Methylxanthine Inhibit Fungal Chitinases and Exhibit Antifungal Activity  

PubMed Central

Chitinases are necessary for fungal cell wall remodeling and cell replication. Methylxanthines have been shown to competitively inhibit family 18 chitinases in vitro. We sought to determine the effects of methylxanthines on fungal chitinases. Fungi demonstrated variable chitinase activity and incubation with methylxanthines (0.5–10 mM) resulted in a dose-dependent decrease in this activity. All fungi tested, except for Candida spp., demonstrated growth inhibition in the presence of methylxanthines at a concentration of 10 mM. India ink staining demonstrated impaired budding and decreased cell size for methylxanthine-treated Cryptococcus neoformans. C. neoformans and Aspergillus fumigatus treated with pentoxifylline also exhibited abnormal cell morphology. In addition, pentoxifylline-treated C. neoformans exhibited increased susceptibility to calcofluor and a leaky melanin phenotype consistent with defective cell wall function. Our data suggest that a variety of fungi express chitinases and that methylxanthines have antifungal properties related to their inhibition of fungal chitinases. Our results highlight the potential utility of targeting chitinases in the development of novel antifungal therapies. PMID:21968902

Tsirilakis, Kalliope; Kim, Christy; Vicencio, Alfin G.; Andrade, Christopher; Casadevall, Arturo; Goldman, David L.

2015-01-01

194

Antifungal activity of lectins against yeast of vaginal secretion  

PubMed Central

Lectins are carbohydrate-binding proteins of non-imune origin. This group of proteins is distributed widely in nature and they have been found in viruses, microorganisms, plants and animals. Lectins of plants have been isolated and characterized according to their chemical, physical-chemical, structural and biological properties. Among their biological activities, we can stress its fungicidal action. It has been previously described the effect of the lectins Dviol, DRL, ConBr and LSL obtained from the seeds of leguminous plants on the growth of yeasts isolated from vaginal secretions. In the present work the experiments were carried out in microtiter plates and the results interpreted by both methods: visual observations and a microplate reader at 530nm. The lectin concentrations varied from 0.5 to 256?g/mL, and the inoculum was established between 65-70% of trammitance. All yeast samples isolated from vaginal secretion were evaluated taxonomically, where were observed macroscopic and microscopic characteristics to each species. The LSL lectin did not demonstrate any antifungal activity to any isolate studied. The other lectins DRL, ConBr and DvioL, showed antifungal potential against yeast isolated from vaginal secretion. These findings offering offer a promising field of investigation to develop new therapeutic strategies against vaginal yeast infections, collaborating to improve women's health. PMID:24031889

Gomes, Bruno Severo; Siqueira, Ana Beatriz Sotero; de Cássia Carvalho Maia, Rita; Giampaoli, Viviana; Teixeira, Edson Holanda; Arruda, Francisco Vassiliepe Sousa; do Nascimento, Kyria Santiago; de Lima, Adriana Nunes; Souza-Motta, Cristina Maria; Cavada, Benildo Sousa; Porto, Ana Lúcia Figueiredo

2012-01-01

195

Inflammatory monocytes orchestrate innate antifungal immunity in the lung.  

PubMed

Aspergillus fumigatus is an environmental fungus that causes invasive aspergillosis (IA) in immunocompromised patients. Although -CC-chemokine receptor-2 (CCR2) and Ly6C-expressing inflammatory monocytes (CCR2?Mo) and their derivatives initiate adaptive pulmonary immune responses, their role in coordinating innate immune responses in the lung remain poorly defined. Using conditional and antibody-mediated cell ablation strategies, we found that CCR2?Mo and monocyte-derived dendritic cells (Mo-DCs) are essential for innate defense against inhaled conidia. By harnessing fluorescent Aspergillus reporter (FLARE) conidia that report fungal cell association and viability in vivo, we identify two mechanisms by which CCR2?Mo and Mo-DCs exert innate antifungal activity. First, CCR2?Mo and Mo-DCs condition the lung inflammatory milieu to augment neutrophil conidiacidal activity. Second, conidial uptake by CCR2?Mo temporally coincided with their differentiation into Mo-DCs, a process that resulted in direct conidial killing. Our findings illustrate both indirect and direct functions for CCR2?Mo and their derivatives in innate antifungal immunity in the lung. PMID:24586155

Espinosa, Vanessa; Jhingran, Anupam; Dutta, Orchi; Kasahara, Shinji; Donnelly, Robert; Du, Peicheng; Rosenfeld, Jeffrey; Leiner, Ingrid; Chen, Chiann-Chyi; Ron, Yacov; Hohl, Tobias M; Rivera, Amariliz

2014-02-01

196

Chemical composition, antifungal and insecticidal activities of Hedychium essential oils.  

PubMed

The antimicrobial properties of essential oils have been documented, and their use as "biocides" is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and three insects, the azalea lace bug (Stephanitis pyrioides), the yellow fever mosquito (Aedes aegypti), and the red imported fire ant (Solenopsis invicta). Hedychium oils were rich in monoterpenes and sesquiterpenes, especially 1,8-cineole (0.1%-42%), linalool (<0.1%-56%), a-pinene (3%-17%), b-pinene (4%-31%), and (E)-nerolidol (0.1%-20%). Hedychium oils had no antifungal effect on C. gloeosporioides, C. fragariae, and C. acutatum, but most Hedychium oils effectively killed azalea lace bugs. The oils also show promise as an adult mosquito repellent, but they would make rather poor larvicides or adulticides for mosquito control. Hedychium oils acted either as a fire ant repellent or attractant, depending on plant genotype and oil concentration. PMID:23579997

Sakhanokho, Hamidou F; Sampson, Blair J; Tabanca, Nurhayat; Wedge, David E; Demirci, Betul; Baser, Kemal Husnu Can; Bernier, Ulrich R; Tsikolia, Maia; Agramonte, Natasha M; Becnel, James J; Chen, Jian; Rajasekaran, Kanniah; Spiers, James M

2013-01-01

197

Lavandula luisieri essential oil as a source of antifungal drugs.  

PubMed

This work reports the antifungal activity of Lavandula luisieri essential oils against yeast, dermatophyte and Aspergillus strains responsible for human infections and food contamination. The oil's cytotoxicity and its effect on the yeast-mycelium transition in Candida albicans, an important virulence factor, were also evaluated. Analyses by GC and GC/MS showed a peculiar composition of irregular monoterpenes. Significant differences between the samples occurred in the amounts of 1,8-cineole, fenchone and trans-?-necrodyl acetate. The oil with higher amounts of irregular monoterpenes was the most effective. The influence of the oils on the dimorphic transition in C. albicans was also studied through the germ tube inhibition assay. Filamentation was completely inhibited at concentrations sixteen times lower than the minimal inhibitory concentration. The results support the use of L. luiseiri essential oils in the development of new phytopharmaceuticals and food preservatives and emphasise its antifungal properties at concentrations not cytotoxic or with very low detrimental effects on mammalian cells. PMID:22953886

Zuzarte, M; Gonçalves, M J; Cruz, M T; Cavaleiro, C; Canhoto, J; Vaz, S; Pinto, E; Salgueiro, L

2012-12-01

198

Pr-1, a novel antifungal protein from pumpkin rinds.  

PubMed

A novel antifungal protein, M(r) = ca. 40 kDa, was isolated from pumpkin rind and designated Pr-1. When purified by anion exchange chromatography and HPLC, it inhibited growth of several fungi including Botrytis cinerea, Fusarium oxysporum, Fusarium solani and Rhizoctonia solani, as well as the yeast, Candida albicans, at 10-20 microM. It did not inhibit growth of Escherichia coli or Staphylococcus aureus even at 200 microM. Laser scanning microscopy of fungal cells exposed to rhodamine-labeled Pr-1 revealed that the protein accumulated and was localized on the cell surface. Uptake of the vital stain, SYTOX Green, was enhanced when fungal conidia were treated with Pr-1 suggesting that the protein has membrane permeabilization activity. Pr-1 was thermostable at 70 degrees C and did not lyse human red blood cells at 128 microM suggesting that the protein may be useful as an antifungal agent with little, if any human cytotoxicity. PMID:19760117

Park, Seong-Cheol; Lee, Jung Ro; Kim, Jin-Young; Hwang, Indeok; Nah, Jae-Woon; Cheong, Hyeonsook; Park, Yoonkyung; Hahm, Kyung-Soo

2010-01-01

199

Antibacterial, antifungal, and antiviral activities of some flavonoids.  

PubMed

Antibacterial and antifungal activities of six plant-derived flavonoids representing two different structural groups were evaluated against standard strains of Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis and their drug-resistant isolates, as well as fungi (Candida albicans, C. krusei) using the microdilution broth method. Herpes simplex virus Type-1 and Parainfluenza-3 virus were employed for antiviral assessment of the flavonoids using Madin-Darby bovine kidney and Vero cell lines. Ampicillin, gentamycin, ofloxacin, levofloxacin, fluconazole, ketoconazole, acyclovir, and oseltamivir were used as the control agents. All tested compounds (32-128 microg/ml) showed strong antimicrobial and antifungal activities against isolated strains of P. aeruginosa, A. baumanni, S. aureus, and C. krusei. Rutin, 5,7-dimethoxyflavanone-4'-O-beta-D-glucopyranoside and 5,7,3'-trihydroxy-flavanone-4'-O-beta-D-glucopyranoside (0.2-0.05 microg/ml) were active against PI-3, while 5,7-dimethoxyflavanone-4'-O-[2''-O-(5'''-O-trans-cinnamoyl)-beta-D-apiofuranosyl]-beta-D-glucopyranoside (0.16-0.2 microg/ml) inhibited potently HSV-1. PMID:19840899

Orhan, Didem Deliorman; Ozçelik, Berrin; Ozgen, Selda; Ergun, Fatma

2010-08-20

200

Glycerol Enhances the Antifungal Activity of Dairy Propionibacteria  

PubMed Central

Dairy propionibacteria are widely used in starter cultures for Swiss type cheese. These bacteria can ferment glucose, lactic acid, and glycerol into propionic acid, acetic acid, and carbon dioxide. This research examined the antifungal effect of dairy propionibacteria when glycerol was used as carbon source for bacterial growth. Five type strains of propionibacteria were tested against the yeast Rhodotorula mucilaginosa and the molds Penicillium commune and Penicillium roqueforti. The conversion of 13C glycerol by Propionibacterium jensenii was followed with nuclear magnetic resonance. In a dual culture assay, the degree of inhibition of the molds was strongly enhanced by an increase in glycerol concentrations, while the yeast was less affected. In broth cultures, decreased pH in glycerol medium was probably responsible for the complete inhibition of the indicator fungi. NMR spectra of the glycerol conversion confirmed that propionic acid was the dominant metabolite. Based on the results obtained, the increased antifungal effect seen by glycerol addition to cultures of propionibacteria is due to the production of propionic acid and pH reduction of the medium. PMID:21331381

Lind, Helena; Broberg, Anders; Jacobsson, Karin; Jonsson, Hans; Schnürer, Johan

2010-01-01

201

Inflammatory Monocytes Orchestrate Innate Antifungal Immunity in the Lung  

PubMed Central

Aspergillus fumigatus is an environmental fungus that causes invasive aspergillosis (IA) in immunocompromised patients. Although -CC-chemokine receptor-2 (CCR2) and Ly6C-expressing inflammatory monocytes (CCR2+Mo) and their derivatives initiate adaptive pulmonary immune responses, their role in coordinating innate immune responses in the lung remain poorly defined. Using conditional and antibody-mediated cell ablation strategies, we found that CCR2+Mo and monocyte-derived dendritic cells (Mo-DCs) are essential for innate defense against inhaled conidia. By harnessing fluorescent Aspergillus reporter (FLARE) conidia that report fungal cell association and viability in vivo, we identify two mechanisms by which CCR2+Mo and Mo-DCs exert innate antifungal activity. First, CCR2+Mo and Mo-DCs condition the lung inflammatory milieu to augment neutrophil conidiacidal activity. Second, conidial uptake by CCR2+Mo temporally coincided with their differentiation into Mo-DCs, a process that resulted in direct conidial killing. Our findings illustrate both indirect and direct functions for CCR2+Mo and their derivatives in innate antifungal immunity in the lung. PMID:24586155

Dutta, Orchi; Kasahara, Shinji; Donnelly, Robert; Du, Peicheng; Rosenfeld, Jeffrey; Leiner, Ingrid; Chen, Chiann-Chyi; Ron, Yacov; Hohl, Tobias M.; Rivera, Amariliz

2014-01-01

202

Structural Basis of Human CYP51 Inhibition by Antifungal Azoles  

SciTech Connect

The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B{prime} helix and F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.

Strushkevich, Natallia; Usanov, Sergey A.; Park, Hee-Won (Toronto); (IBC-Belarus)

2010-09-22

203

The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex.  

PubMed

Candida parapsilosis complex comprises three closely related species, C. parapsilosis sensu stricto, Candida metapsilosis and Candida orthopsilosis. In the last decade, antifungal resistance to azoles and caspofungin among C. parapsilosis sensu lato strains has been considered a matter of concern worldwide. In the present study, we evaluated the synergistic potential of antifungals and the calcineurin inhibitor cyclosporin A (Cys) against planktonic and biofilms of C. parapsilosis complex from clinical sources. Susceptibility assays with amphotericin, fluconazole, voriconazole, caspofungin and Cys were performed by microdilution in accordance with Clinical and Laboratory Standards Institute guidelines. Synergy testing against planktonic cells of C. parapsilosis sensu lato strains was assessed by the chequerboard method. Combinations formed by antifungals with Cys were evaluated against mature biofilms in microtitre plates. No differences in the antifungal susceptibility pattern among species were observed, but C. parapsilosis sensu stricto strains were more susceptible to Cys than C. orthopsilosis and C. metapsilosis. Synergism between antifungals and Cys was observed in C. parapsilosis sensu lato strains. Combinations formed by antifungals and Cys were able to prevent biofilm formation and showed an inhibitory effect against mature biofilms of C. parapsilosis sensu stricto, C. metapsilosis and C. orthopsilosis. These results strengthen the potential of calcineurin inhibition as a promising approach to enhance the efficiency of antifungal drugs. PMID:24722799

Cordeiro, Rossana de Aguiar; Macedo, Ramila de Brito; Teixeira, Carlos Eduardo Cordeiro; Marques, Francisca Jakelyne de Farias; Bandeira, Tereza de Jesus Pinheiro Gomes; Moreira, José Luciano Bezerra; Brilhante, Raimunda Sâmia Nogueira; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

2014-07-01

204

Inhibitory effects of antifungal proteins on human immunodeficiency virus type 1 reverse transcriptase, protease and integrase.  

PubMed

A variety of antifungal proteins were isolated from seeds of leguminous plants including French bean, cowpea, field bean, mung bean, peanut and red kidney bean. They were assayed for ability to inhibit human immunodeficiency virus type I (HIV-1) reverse transcriptase, protease and integrase, enzymes essential to the life cycle of HIV-1 . It was found that the cowpea beta-antifungal protein had a high potency in inhibiting HIV-1 protease and HIV-1 integrase. Cowpea alpha-antifungal protein was potent in inhibiting HIV-1 reverse transcriptase and HIV-1 integrase. Peanut antifungal protein was characterized by a high inhibitory activity against HIV-1 integrase and an intermediate potency in inhibiting HIV- I reverse transcriptase and HIV- I protease. French bean thaumatin-like protein expressed low HIV- I protease inhibitory activity and red kidney bean lectin inhibited HIV- I integrase by only a very small extent. Antifungal proteins from the field bean and mung bean had an intermediate potency in inhibitory HIV-1 protease and integrase. However, mung bean antifungal protein was not capable of inhibiting HIV-1 reverse transcriptase. The results indicate that nearly all leguminous antifungal proteins examined were able to inhibit HIV-1 reverse transcriptase, protease and integrase to some extent. PMID:11855377

Ng, T B; Au, T K; Lam, T L; Ye, X Y; Wan, D C C

2002-01-11

205

Antifungal Susceptibility Profiles of 1698 Yeast Reference Strains Revealing Potential Emerging Human Pathogens  

PubMed Central

New molecular identification techniques and the increased number of patients with various immune defects or underlying conditions lead to the emergence and/or the description of novel species of human and animal fungal opportunistic pathogens. Antifungal susceptibility provides important information for ecological, epidemiological and therapeutic issues. The aim of this study was to assess the potential risk of the various species based on their antifungal drug resistance, keeping in mind the methodological limitations. Antifungal susceptibility profiles to the five classes of antifungal drugs (polyens, azoles, echinocandins, allylamines and antimetabolites) were determined for 1698 yeast reference strains belonging to 992 species (634 Ascomycetes and 358 Basidiomycetes). Interestingly, geometric mean minimum inhibitory concentrations (MICs) of all antifungal drugs tested were significantly higher for Basidiomycetes compared to Ascomycetes (p<0.001). Twenty four strains belonging to 23 species of which 19 were Basidiomycetes seem to be intrinsically “resistant” to all drugs. Comparison of the antifungal susceptibility profiles of the 4240 clinical isolates and the 315 reference strains belonging to 53 shared species showed similar results. Even in the absence of demonstrated in vitro/in vivo correlation, knowing the in vitro susceptibility to systemic antifungal agents and the putative intrinsic resistance of yeast species present in the environment is important because they could become opportunistic pathogens. PMID:22396754

Desnos-Ollivier, Marie; Robert, Vincent; Raoux-Barbot, Dorothée; Groenewald, Marizeth; Dromer, Françoise

2012-01-01

206

Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt.  

PubMed

Lactic acid bacteria with antifungal properties can be used to control spoilage of food and feed. Previously, most of the identified metabolites have been isolated from cell-free fermentate of lactic acid bacteria with methods suboptimal for detecting possible contribution from volatiles to the antifungal activity. The role of volatile compounds in the antifungal activity of Lactobacillus paracasei DGCC 2132 in a chemically defined interaction medium (CDIM) and yogurt was therefore investigated with a sampling technique minimizing volatile loss. Diacetyl was identified as the major volatile produced by L. paracasei DGCC 2132 in CDIM. When the strain was added to a yogurt medium diacetyl as well as other volatiles also increased but the metabolome was more complex. Removal of L. paracasei DGCC 2132 cells from CDIM fermentate resulted in loss of both volatiles, including diacetyl, and the antifungal activity towards two strains of Penicillium spp. When adding diacetyl to CDIM or yogurt without L. paracasei DGCC 2132, marked inhibition was observed. Besides diacetyl, the antifungal properties of acetoin were examined, but no antifungal activity was observed. Overall, the results demonstrate the contribution of diacetyl in the antifungal effect of L. paracasei DGCC 2132 and indicate that the importance of volatiles may have been previously underestimated. PMID:25461608

Aunsbjerg, S D; Honoré, A H; Marcussen, J; Ebrahimi, P; Vogensen, F K; Benfeldt, C; Skov, T; Knřchel, S

2015-02-01

207

Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans.  

PubMed

Biofilm formation involving profuse hyphal growth is a major characteristic of Candida spp. and confers higher antifungal resistance than its planktonic mode of growth. We investigated the antifungal susceptibility of Candida albicans and its hyphal mutants (Delta efg1/efg1, Delta cph1/cph1 and DeltaDelta cph1/cph1 efg1/efg1) to commonly used antifungals during planktonic, adhesion and biofilm modes of growth. The minimum inhibitory concentration (MIC) of each antifungal agent was determined for a lower inoculum (1x10(3) cells/mL) and higher inoculum (1x10(7) cells/mL) of planktonic Candida. Furthermore, MICs of C. albicans biofilms and adhesion modes of growth were determined with a standard XTT assay. Candida albicans in adhesion and biofilm modes of growth, but not in planktonic mode, were resistant to all five antifungal agents tested. Although Delta efg1/efg1 and DeltaDelta cph1/cph1 efg1/efg1 mutants formed less biofilm than wild-type C. albicans SC5314, they were similarly resistant to caspofungin. However, these mutants were more sensitive to amphotericin B and nystatin than the wild-type. Adhesion per se confers increased resistance to antifungal agents, which is further pronounced in the biofilm mode of Candida. Filamentation does not appear to be a major determinant of the antifungal resistance in Candida biofilms. PMID:19376687

Watamoto, T; Samaranayake, L P; Jayatilake, J A M S; Egusa, H; Yatani, H; Seneviratne, C J

2009-10-01

208

In Vitro and In Vivo Activity of a Novel Antifungal Small Molecule against Candida Infections  

PubMed Central

Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC) 0.2 – 1.6 µg/ml). In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use. PMID:24465737

Yuen, Kwok Yong; Wang, Yu; Yang, Dan; Samaranayake, Lakshman Perera

2014-01-01

209

Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones  

PubMed Central

Background The currently available antifungal drugs suffer from toxicity, greatest potential drug interactions with other drugs, insufficient pharmacokinetics properties, and development of resistance. Thus, development of new antifungal agents with optimum pharmacokinetics and less toxicity is urgent task. In the search for new azole antifungals, we have been previously described azolylchromanone oxime ethers as rigid analogs of oxiconazole. In continuation of our work, we incorporated phenylhydrazone moiety instead of oxime ether fragment in azolylchromanone derivatives. Methods The 3-azolyl-4-chromanone phenylhydrazones were synthesized via ring closure of 2-azolyl-2'-hydroxyacetophenones and subsequent reaction with phenylhydrazine. The biological activity of title compounds was evaluated against different pathogenic fungi including Candida albicans, Saccharomyces cerevisiae, Aspergillus niger, and Microsporum gypseum. Docking study, in silico toxicity risks and drug-likeness predictions were used to better define of title compounds as antifungal agents. Results The in vitro antifungal activity of compounds based on MIC values revealed that all compounds showed good antifungal activity against C. albicans, S. cerevisiae and M. gypseum at concentrations less than 16 ?g/mL. Among the test compounds, 2-methyl-3-imidazolyl derivative 3b showed the highest values of drug-likeness and drug-score. Conclusion The 3-azolyl-4-chromanone phenylhydrazones considered as analogs of 3-azolyl-4-chromanone oxime ethers basically designed as antifungal agents. The antifungal activity of title compounds was comparable to that of standard drug fluconazole. The drug-likeness data of synthesized compounds make them promising leads for future development of antifungal agents. PMID:23351328

2012-01-01

210

In vitro and in vivo activity of a novel antifungal small molecule against Candida infections.  

PubMed

Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC) 0.2-1.6 µg/ml). In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use. PMID:24465737

Wong, Sarah Sze Wah; Kao, Richard Yi Tsun; Yuen, Kwok Yong; Wang, Yu; Yang, Dan; Samaranayake, Lakshman Perera; Seneviratne, Chaminda Jayampath

2014-01-01

211

Antifungal constituents of the essential oil fraction of Artemisia dracunculus L. Var. dracunculus.  

PubMed

The isolation and structure elucidation of antifungal constituents of the steam-distilled essential oil fraction of Artemisia dracunculus are described. Antifungal activities of 5-phenyl-1,3-pentadiyne and capillarin against Colletrotichum fragariae, Colletrotichum gloeosporioides, and Colletrotichum acutatum are reported for the first time. The relative abundance of 5-phenyl-1,3-pentadiyne is about 11% of the steam-distilled oil, as determined by GC-MS. Methyleugenol was also isolated and identified as an antifungal constituent of the oil. PMID:12428948

Meepagala, Kumudini M; Sturtz, George; Wedge, David E

2002-11-20

212

Enhancement of the Antifungal Activity of Antimicrobial Drugs by Eugenia uniflora L.  

PubMed Central

Abstract Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity. PMID:23819641

Santos, Karla K.A.; Matias, Edinardo F.F.; Tintino, Saulo R.; Souza, Celestina E.S.; Braga, Maria F.B.M.; Guedes, Gláucia M.M.; Costa, José G.M.; Menezes, Irwin R.A.

2013-01-01

213

Three conazoles increase hepatic microsomal retinoic acid metabolism and decrease mouse hepatic retinoic acid levels in vivo  

SciTech Connect

Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels on cell proliferation in the mouse tumorigenesis process are discussed.

Chen, P.-J. [Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan (China); Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, B143-06, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 (United States); Padgett, William T.; Moore, Tanya; Winnik, Witold; Lambert, Guy R.; Thai, Sheau-Fung; Hester, Susan D. [Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, B143-06, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 (United States); Nesnow, Stephen [Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, B143-06, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 (United States)], E-mail: nesnow.stephen@epa.gov

2009-01-15

214

Molluscicidal and antifungal activity of Erigeron speciosus steam distillate.  

PubMed

The steam-distilled fraction of the aerial parts of Erigeron speciosus (Lindl) DC was tested for activity against strawberry plant pathogenic fungi Botrytis cinerea Pers ex Fr, Colletotrichum acutatum Simmonds, C fragariae Brooks, C gloeosporioides (Penz) Penz & Sacc, and the intermediate host snail Planobdella trivolvis that harbors the trematode, Bolbophorus confusus, that infests and causes severe infections in pond-raised catfish in the Mississippi Delta region of the USA. Bioautography on silica TLC plates demonstrated antifungal activity in the steam distillate. Preliminary bioassays of the steam distillate indicated the presence of phytochemicals toxic to P trivolvis. The bioactive compounds methyl 2Z, 8Z-deca-2,8-diene-4,6-diynoate and its 2E, 8E isomer were isolated by bioassay-guided fractionation and chromatographic techniques and identified by 1H NMR spectroscopy. PMID:12400444

Meepagala, Kumudini M; Sturtz, George; Wise, David; Wedge, David E

2002-10-01

215

Secondary antifungal prophylaxis in pediatric hematopoietic stem cell transplants.  

PubMed

Invasive fungal infections (IFIs) constitute a leading cause of morbidity and infection-related mortality among hematopoietic stem cell transplant (HSCT) recipients. With the use of secondary prophylaxis, a history of IFI is not an absolute contraindication to allo-HSCT. However, still, IFI recurrence remains a risk factor for transplant-related mortality. In this study, of the 105 children undergoing HSCT between April 2010 and February 2013, 10 patients who had IFI history before transplantation and had undergone allo-HSCT were evaluated retrospectively to investigate results of secondary prophylaxis. In conclusion, our study shows that amphotericin B and caspofungin was successful as secondary antifungal prophylaxis agents with no relapse of IFI. In addition, after engraftment, secondary prophylaxis was continued with voriconazole orally in 4 patients that yielded good results. PMID:25522351

Azik, Fatih M; Tezer, Hasan; Parlakay, Aslinur O; Aksu, Tekin; Bayram, Cengiz; Fettah, Ali; Tavil, Betül; Tunç, Bahattin

2015-01-01

216

A lectin with antifungal activity from the mussel Crenomytilus grayanus.  

PubMed

Lectins (carbohydrate-binding proteins) are well known to actively participate in the defense functions of vertebrates and invertebrates where they play an important role in the recognition of foreign particles. In this study, we investigated of in vitro antifungal activity of lectin from the mussel Crenomytilus grayanus (CGL). Enzyme-linked immunosorbent assay indicated that CGL was predominantly detectable in tissues of mantle and to a lesser degree in the tissues of muscle, hepatopancreas, gill and hemocytes. After challenged by Pichia pastoris the level of CGL was upregulated and reached the maximum level at 12 h post challenge and recovered to the original level at 24 h. The lectin was capable of inhibiting the germination of spores and hyphal growth in the fungi. All these results indicated that CGL is involved in the innate immune response in mollusc animals. PMID:25482060

Chikalovets, Irina V; Chernikov, Oleg V; Pivkin, Mikhail V; Molchanova, Valentina I; Litovchenko, Alina P; Li, Wei; Lukyanov, Pavel A

2015-02-01

217

Endophytic bacteria from banana cultivars and their antifungal activity.  

PubMed

Endophytic microorganisms consist of fungi, bacteria, and actinomycetes that play important roles in the process of plant adaptation to the environment. Currently, the natural associations between microorganisms and plant species are being explored for a large number of biotechnological applications. In this study, 122 endophytic bacteria were isolated from 5 cultivars of Musa spp from the state of Amazonas (Brazil). Four strains were selected because they exhibited antagonistic activities against Fusarium oxysporum f. sp cubense and Colletotrichum guaranicola, with inhibitions ranging from 19 to 30% and 27 to 35%, respectively. Phylogenetic analysis of the 16S rDNA regions of these bacteria with antifungal activity showed that they are phylogenetically related to 3 different species of Bacillus - B. amyloliquefaciens, B. subtilis subsp subtilis, and B. thuringiensis. PMID:25366756

Souza, A; Cruz, J C; Sousa, N R; Procópio, A R L; Silva, G F

2014-01-01

218

In vitro antifungal susceptibility of Malassezia furfur from bloodstream infections.  

PubMed

Fungaemia caused by Malassezia spp. in hospitalized patients requires prompt and appropriate therapy, but standard methods for the definition of the in vitro antifungal susceptibility have not been established yet. In this study, the in vitro susceptibility of Malassezia furfur from bloodstream infections (BSIs) to amphotericin B (AMB), fluconazole (FLC), itraconazole (ITC), posaconazole (POS) and voriconazole (VRC) was assessed using the broth microdilution (BMD) method of the Clinical and Laboratory Standards Institute (CLSI) with different media such as modified Sabouraud dextrose broth (SDB), RPMI and Christensen's urea broth (CUB). Optimal broth media that allow sufficient growth of M. furfur, and produce reliable and reproducible MICs using the CLSI BMD protocol were assessed. Thirty-six M. furfur isolates collected from BSIs of patients before and during AMB therapy, and receiving FLC prophylaxis, were tested. A good growth of M. furfur was observed in RPMI, CUB and SDB at 32 °C for 48 and 72 h. No statistically significant differences were detected between the MIC values registered after 48 and 72 h incubation. ITC, POS and VRC displayed lower MICs than FLC and AMB. These last two antifungal drugs showed higher and lower MICs, respectively, when the isolates were tested in SDB. SDB is the only medium in which it is possible to detect isolates with high FLC MICs in patients receiving FLC prophylaxis. A large number of isolates showed high AMB MIC values regardless of the media used. In conclusion, SDB might be suitable to determine triazole susceptibility. However, the media, the drug formulation or the breakpoints herein applied might not be useful for assessing the AMB susceptibility of M. furfur from BSIs. PMID:25168965

Iatta, Roberta; Figueredo, Luciana A; Montagna, Maria Teresa; Otranto, Domenico; Cafarchia, Claudia

2014-11-01

219

Self-assembled cardanol azo derivatives as antifungal agent with chitin-binding ability.  

PubMed

Cardanol is a non-isoprenoic phenolic lipid-mixture of distilled cashew nut shell liquid obtained from Anacardium occidentale. Herein, cardanol is purified from cashew nut shell liquid (CNSL) and synthesized to new compounds with different azo amphiphiles. These synthesized compounds are allowed to self-assembled in hydrophobic environment and checked antifungal activity against Candida albicans. Self-assembled structure of CABA showed higher antifungal activity (16?g/mL) and chitin-binding ability in comparison to CAP and CANB. Furthermore, the self-assembled azo amphiphiles are immobilized with silver ions to prepare hydrogel which showed eight folds enhanced antifungal activity. Toxicity is reduced by several folds of self-assembled or hydrogel structure in comparison to pure compounds. Thus, the self-assembled structure of amphiphiles and their hydrogels have been found to be new macromolecules of interest with potential use as antifungal drugs. PMID:24836571

Mahata, Denial; Mandal, Santi M; Bharti, Rashmi; Gupta, Vinay Krishna; Mandal, Mahitosh; Nag, Ahindra; Nando, Golok B

2014-08-01

220

Primary or secondary antifungal prophylaxis in patients with hematological maligancies: efficacy and damage  

PubMed Central

Background Patients with hematological malignancies often develop febrile neutropenia (FN) as a complication of cancer chemotherapy. Primary or secondary antifungal prophylaxis is recommended for patients with hematological malignancies to reduce the risk of invasive fungal infection (IFI). This study retrospectively evaluated the efficacy and potential harm of administration of primary and secondary antifungal prophylaxis to patients with hematological malignancies at one hospital. Methods All patients with hematological malignancies older than 14 years of age who had experienced at least one FN attack during chemotherapy while being treated at one hospital between November 2010 and November 2012 were retrospectively evaluated. Results A total of 282 FN episodes in 126 consecutive patients were examined during a 2-year study period. The mean patient age was 51.73±14.4 years (range: 17–82 years), and 66 patients were male. Primary prophylaxis with posaconazole was administered to 13 patients and systemic antifungal treatment under induction or consolidation chemotherapy to seven patients. Of 26 patients who received secondary antifungal prophylaxis with either oral voriconazole (n=17) or posaconazole (n=6) during 46 FN episodes, systemic antifungal therapy was administered in 16 of 38 episodes and three of eight episodes, respectively. Secondary antifungal prophylaxis with caspofungin was found effective in treating six FN episodes in three patients who had experienced at least two persistent candidemia attacks. The mortality rates associated with IFI were 9% in the first year, 2% in the second year, and 6% overall. The mortality rates associated with candidemia were 33% in the first year, 22% in the second year, and 27% overall. Conclusion Primary antifungal prophylaxis should be administered to selected patients on the basis of consideration of efficacy, cost, and potential harm. Use of secondary prophylaxis may reduce systemic antifungal use and IFI frequency but may increase risk of colonization and infection with azole-resistant fungal strains. PMID:24855365

Gedik, Habip; ?im?ek, Funda; Y?ld?rmak, Taner; Kantürk, Arzu; Ar?ca, Deniz; Ayd?n, Demet; Demirel, Naciye; Yoku?, Osman

2014-01-01

221

Production and Characterization of Antifungal Compounds Produced by Lactobacillus plantarum IMAU10014  

Microsoft Academic Search

Lactobacillus plantarum IMAU10014 was isolated from koumiss that produces a broad spectrum of antifungal compounds, all of which were active against plant pathogenic fungi in an agar plate assay. Two major antifungal compounds were extracted from the cell-free supernatant broth of L. plantarum IMAU10014. 3-phenyllactic acid and Benzeneacetic acid, 2-propenyl ester were carried out by HPLC, LC-MS, GC-MS, NMR analysis.

HaiKuan Wang; YanHua Yan; JiaMing Wang; HePing Zhang; Wei Qi

2012-01-01

222

Small Cysteine-Rich Antifungal Proteins from Radish: Their Role in Host Defense  

Microsoft Academic Search

Radish seeds have previously been shown to contain two homologous, 5-kD cysteine-rich proteins designated Raphanus sativus-antifungal protein 1 (RsAFPl) and RsAFP2, both of which exhibit potent antifungal activity in vitro. We now demonstrate that these proteins are located in the cell wall and occur predominantly in the outer cell layers lining differ- ent seed organs. Moreover, RsAFPs are preferentially released

Franky R. G. Terras; Kristel Eggermont; Valentina Kovaleva; Natasha V. Raikhel; Rupert W. Osborn; Anthea Kester; Jozef Vanderleyden; Bruno P. A. Cammue; Willem F. Broekaert

1995-01-01

223

Cyanobacteria, Lyngbya aestuarii and Aphanothece bullosa as antifungal and antileishmanial drug resources  

PubMed Central

Objective To investigate two cyanobacteria isolated from different origins i.e. Lyngbya aestuarii (L. aestuarii) from brackish water and Aphanothece bullosa (A. bullosa) from fresh water paddy fields for antifungal and antileishmanila activity taking Candida albicans and Leishmania donovain as targets. Methods Biomass of L. aestuarii and A. bullosa were harvested after 40 and 60 d respectively and lyophilized twice in methanol (100%) and redissolved in methanol (5%) for bioassay. Antifungal bioassay was done by agar well diffusion method while antileishmanial, by counting cell numbers and flageller motility observation of promastigotes and amastigotes from L. donovani. Fluconazole and 5% methanol were used as control. Results Both the cyanobacteria were found to be potent source of antifungal activity keeping fluconazole as positive control, however, methanolic crude extract (15 mg/mL) of A. bullosa was found more potent (larger inhibition zone) over that of methanolic crude extract of L. aestuarii. Similarly antileishmanial activity of crude extract (24.0 mg/mL) of A. bullosa was superior over that of methanolic crude extract of L. aestuarii (25.6 mg/mL). Conclusions Antifungal and antileishmanial drugs are still limited in the market. Screening of microbes possessing antifungal and antileishmanial activity drug is of prime importance. Cyanobacteria are little explored in this context because most of the drugs in human therapy are derived from microorganisms, mainly bacterial, fungal and actinomycetes. Thus in the present study two cyanobacterial strains from different origins showed potent source of antifungal and antileishmanial biomolecules. PMID:23730558

Kumar, Maheep; Tripathi, Manoj Kumar; Srivastava, Akanksha; Gour, Jalaj Kumar; Singh, Rakesh Kumar; Tilak, Ragini; Asthana, Ravi Kumar

2013-01-01

224

Establishment of a novel model of onychomycosis in rabbits for evaluation of antifungal agents.  

PubMed

We developed a novel model of onychomycosis in which we observed fungi in the deep layer of the nail, and we used the model to evaluate the efficacy of two topical antifungal drugs. To establish an experimental, in vivo model of onychomycosis, we applied Trichophyton mentagrophytes TIMM2789 to the nails of the hind limbs of rabbits that underwent steroid treatment. The nails were taken from the rabbits' feet at 0, 2, and 6 weeks after a 2-week infection. The localization of the fungi was evaluated histopathologically. Some fungi were seen to penetrate to the nail bed, and the infection rate in the sample at 0, 2, and 6 weeks after infection was 57, 87, and 93%, respectively. In addition, fungi proliferated and moved proximally into the nail plate in a manner that depended on the duration of infection. Second, using this model we evaluated antifungal efficacy both by the culture recovery method and histopathological examination. Two topical antifungal drugs, 8% ciclopirox nail lacquer and 5% amorolfine nail lacquer, were applied to the nail for 4 weeks in each group. On histopathological examination, two antifungal treatment groups showed no significant difference against the nontreated control group. However, there were a significantly low fungus-positive rate and intensity of the recovery of fungi on culture between antifungal treatment and nontreated control groups. We therefore suggest that we have established an in vivo model of onychomycosis that is useful for the evaluation of the efficacy of antifungal agents. PMID:21555762

Shimamura, Tsuyoshi; Kubota, Nobuo; Nagasaka, Saori; Suzuki, Taku; Mukai, Hideki; Shibuya, Kazutoshi

2011-07-01

225

In vitro antifungal activity and mechanism of essential oil from fennel (Foeniculum vulgare L.) on dermatophyte species.  

PubMed

Fennel seed essential oil (FSEO) is a plant-derived natural therapeutic against dermatophytes. In this study, the antifungal effects of FSEO were investigated from varied aspects, such as MIC and minimum fungicidal concentration, mycelia growth, spore germination and biomass. The results indicated that FSEO had potent antifungal activities on Trichophyton rubrum ATCC 40051, Trichophyton tonsurans 10-0400, Microsporum gypseum 44693-1 and Trichophyton mentagrophytes 10-0060, which is better than the commonly used antifungal agents fluconazole and amphotericin B. Flow cytometry and transmission electron microscopy experiments suggested that the antifungal mechanism of FSEO was to damage the plasma membrane and intracellular organelles. Further study revealed that it could also inhibit the mitochondrial enzyme activities, such as succinate dehydrogenase, malate dehydrogenase and ATPase. With better antifungal activity than the commonly used antifungal agents and less possibility of inducing drug resistance, FSEO could be used as a potential antidermatophytic agent. PMID:25351709

Zeng, Hong; Chen, Xinping; Liang, Jingnan

2015-01-01

226

40 CFR 180.443 - Myclobutanil; tolerances for residues.  

Code of Federal Regulations, 2014 CFR

...liver 0.2 Cherry, sweet 5.0 Cherry, tart 5.0 Cilantro, leaves 9.0 Cotton, undelinted seed 0.02 Currant...Soybean, forage 3.5 Soybean, hay 15 Soybean, refined oil 0.40 Soybean, seed 0.25 Spearmint, tops...

2014-07-01

227

40 CFR 180.443 - Myclobutanil; tolerances for residues.  

Code of Federal Regulations, 2013 CFR

...liver 0.2 Cherry, sweet 5.0 Cherry, tart 5.0 Cilantro, leaves 9.0 Cotton, undelinted seed 0.02 Currant...Soybean, forage 3.5 Soybean, hay 15 Soybean, refined oil 0.40 Soybean, seed 0.25 Spearmint, tops...

2013-07-01

228

40 CFR 180.443 - Myclobutanil; tolerances for residues.  

Code of Federal Regulations, 2011 CFR

...liver 0.2 Cherry, sweet 5.0 Cherry, tart 5.0 Cilantro, leaves 9.0 Cotton, undelinted seed 0.02 Currant...Soybean, forage 3.5 Soybean, hay 15 Soybean, refined oil 0.40 Soybean, seed 0.25 Spearmint, tops...

2011-07-01

229

Isolation and identification of 5-hydroxyl-5-methyl-2-hexenoic acid from Actinoplanes sp. HBDN08 with antifungal activity  

Microsoft Academic Search

A bioactivity-guided approach was employed to isolate and determine the chemical identity of bioactive constituents with antifungal activity from Actinoplanes sp. HBDN08. The structure of the antifungal metabolite was elucidated as 5-hydroxyl-5-methyl-2-hexenoic acid on the basis of spectral analysis. This compound showed strong in vitro antifungal activity against Botrytis cinerea, Cladosporium cucumerinum and Corynespora cassiicola, with an IC50 of 32.45,

Ji Zhang; Xiang-Jing Wang; Yi-Jun Yan; Ling Jiang; Ji-Dong Wang; Bao-Ju Li; Wen-Sheng Xiang

2010-01-01

230

Structure–antifungal activity relationship of His-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH 2 and analogues  

Microsoft Academic Search

The synthesis, in vitro evaluation and conformational study of His-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH2 and analogues acting as antifungal agents are reported. Among them, His-Phe-Lys-Trp-Gly-Arg-Phe-Val-NH2 exhibited a moderate but significant antifungal activity against Cryptococcus neoformans, Candida albicans and Candida tropicalis. A theoretical study allows us to propose a biologically relevant conformation for these octapeptides acting as antifungal agents. In addition, these theoretical calculations allow

Marcelo F. Masman; Csaba Somlai; Francisco M. Garibotto; Ana M. Rodríguez; Agustina de la Iglesia; Susana A. Zacchino; Botond Penke; Ricardo D. Enriz

2008-01-01

231

In vitro antifungal susceptibility testing of Scopulariopsis brevicaulis strains using agar diffusion method.  

PubMed

The genus Scopulariopsis is a common soil saprotroph and has been isolated from air, organic waste and also from plant, animal and human tissues. Scopulariopsis has mainly been associated in humans with superficial mycoses, but it has also been described as the cause of subcutaneous and invasive infections. The most common aetiological agent of infections in humans is Scopulariopsis brevicaulis. This species has been reported to be resistant in vitro to broad-spectrum antifungal agents available today. The aim of the study was to establish in vitro antifungal susceptibility of 35 S. brevicaulis strains against amphotericin B (AMB), flucytosine (FC), caspofungin (CAS), terbinafine (TER), ciclopirox (CIC), voriconazole (VOR), clotrimazole (CTR), miconazole (MCZ), econazole (ECO), ketoconazole (KET), itraconazole (ITR), and fluconazole (FLU). Antifungal susceptibility tests were evaluated by an agar diffusion method (Neo-Sensitabs, Rosco, Denmark). AMB, FC, CAS, ITR and FLU showed no antifungal activity against S. brevicaulis. TER, CIC, CTR, KET, VOR, ECO, and MCZ revealed inhibitory activity for S. brevicaulis, but it varied for each of the drugs. The best antifungal effect was observed for TER and CIC. All isolates had large inhibition zones for TER and CIC. CTR was also inhibitory for all tested S. brevicaulis isolates, but the diameters of inhibition zones were smaller than for TER and CIC. Nearly 89% isolates showed inhibition zones for KET and the mean diameter of the inhibition zone was comparable to CTR. The least antifungal activity exhibited VQR, ECO and MCZ. Because of the multiresistance of S. brevicaulis, infections due to this species may not respond to particular antifungal treatment and other therapeutic approaches should be considered, e.g., combined therapy and/or surgery. PMID:21682097

Skóra, Magdalena; Macura, Anna B

2011-01-01

232

Antifungal activity of resveratrol derivatives against Candida species.  

PubMed

trans-Resveratrol (1a) is a phytoalexin produced by plants in response to infections by pathogens. Its potential activity against clinically relevant opportunistic fungal pathogens has previously been poorly investigated. Evaluated herein are the candidacidal activities of oligomers (2a, 3-5) of 1a purified from Vitis vinifera grape canes and several analogues (1b-1j) of 1a obtained through semisynthesis using methylation and acetylation. Moreover, trans-?-viniferin (2a), a dimer of 1a, was also subjected to methylation (2b) and acetylation (2c) under nonselective conditions. Neither the natural oligomers of 1a (2a, 3-5) nor the derivatives of 2a were active against Candida albicans SC5314. However, the dimethoxy resveratrol derivatives 1d and 1e exhibited antifungal activity against C. albicans with minimum inhibitory concentration (MIC) values of 29-37 ?g/mL and against 11 other Candida species. Compound 1e inhibited the yeast-to-hyphae morphogenetic transition of C. albicans at 14 ?g/mL. PMID:25014026

Houillé, Benjamin; Papon, Nicolas; Boudesocque, Leslie; Bourdeaud, Eric; Besseau, Sébastien; Courdavault, Vincent; Enguehard-Gueiffier, Cécile; Delanoue, Guillaume; Guérin, Laurence; Bouchara, Jean-Philippe; Clastre, Marc; Giglioli-Guivarc'h, Nathalie; Guillard, Jérôme; Lanoue, Arnaud

2014-07-25

233

Clotrimazole: a review of its antifungal activity and therapeutic efficacy.  

PubMed

Clotrimazole 2, a synthetic imidazole derivative, is primarily used locally in the treatment of vaginal and skin infections due to yeasts and dermatophytes. In vitro, it is most active against Candida spp., Trichophyton spp., Microsporum spp. and Malazzesia fuffur (Pityrosporon orbiculare). In addition, it has some in vitro activity against certain Gram-positive bacteria, and at very high concentrations has activity against Trichomonas spp. In the treatment of vaginal candidiasis, clotrimazole vaginal tablets have produced cure rates comparable with those of conventional nystatin vaginal tablets. There have been no published comparisons with nystatin vaginal cream or foaming vaginal tablets - nystatin dosage forms preferred by some clinicians. Cootrimazole has also been successful in patients who had failed to respond to other antifungal agents such as nystatin and amphotericin B. Results in trichomonal vaginitis are not impressive. Skin infections caused by Candida or dermatophytes have been effectively treated with topical application of clotrimazole. In comparative trials, clotrimazole cream has been as effective as Whitfield's ointment and tolnaftate in the treatment of dermatophytoses, and as effective as nystatin in cutaneous candidiasis. Clotrimazole topical preparations are generally well tolerated, but local irritation has necessitated withdrawal of therapy in a few cases. Candidal septicemia and urinary and pulmonary candidiasis have been cured with oral clotrimazole therapy. Results in other types of serious fungal infections, including pulmonary aspergillosis, have been disappointing. A limiting factor in oral clotrimazole therapy is the high incidence of gastro-intestinal disturbances and neurological reactions. PMID:1097234

Sawyer, P R; Brogden, R N; Pinder, R M; Speight, T M; Avery

1975-01-01

234

Bioactivity of Backhousia citriodora: antibacterial and antifungal activity.  

PubMed

Backhousia citriodora products are used as bushfoods and flavorings and by the aromatherapy industry. The antimicrobial activity of 4 samples of B. citriodora oil, leaf paste, commercial tea (0.2 and 0.02 g/mL), and hydrosol (aqueous distillate) were tested against 13 bacteria and 8 fungi. Little or no activity was found to be associated with the leaf tea and hydrosol, respectively. Leaf paste displayed antimicrobial activity against 7 bacteria including Clostridium perfringens, Pseudomonas aeruginosa, and a hospital isolate of methicillin resistant Staphylococcus aureus (MRSA). The 4 essential oils were found to be effective antibacterial and antifungal agents; however, variation was apparent between oils that did not correlate with citral content. The antimicrobial activity of B. citriodoraessential oils was found to be greater than that of citral alone and often superior to Melaleuca alternifolia essential oil. B. citriodora has significant antimicrobial activity that has potential as an antiseptic or surface disinfectant or for inclusion in foods as a natural antimicrobial agent. PMID:12502388

Wilkinson, Jenny M; Hipwell, Michael; Ryan, Tracey; Cavanagh, Heather M A

2003-01-01

235

Novel Antifungal Mechanism of Resveratrol: Apoptosis Inducer in Candida albicans.  

PubMed

Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a well-known natural polyphenolic compound that has garnered considerable interest because of its bioavailability and pharmacokinetics in humans. Although the antimicrobial activity of resveratrol has recently been focused, however, the antifungal activity and its mechanism are still largely unknown. Here, we report for the first time the potential of resveratrol as an apoptosis inducer in the human pathogenic fungus Candida albicans. The results showed that resveratrol exerted its effects from the early to the late stages of apoptosis and involved the activity of reactive oxygen species, particularly hydroxyl radicals ((?)OH). DiOC6(3) and JC-1 staining indicated that loss of mitochondrial membrane potential (?? m) is a key event in resveratrol-induced apoptosis. Finally, we investigated metacaspase activation resulting from mitochondrial dysfunction. The result showed that resveratrol strongly activated metacaspase and promoted cytochrome c release. In summary, resveratrol induces fungal apoptosis through a caspase-dependent mitochondrial pathway and is a potential agent for treating human fungal diseases. PMID:25413604

Lee, Juneyoung; Lee, Dong Gun

2015-03-01

236

Biosynthesis and pathway engineering of antifungal polyene macrolides in actinomycetes.  

PubMed

Polyene macrolides are a large family of natural products typically produced by soil actinomycetes. Polyene macrolides are usually biosynthesized by modular and large type I polyketide synthases (PKSs), followed by several steps of sequential post-PKS modifications such as region-specific oxidations and glycosylations. Although known as powerful antibiotics containing potent antifungal activities (along with additional activities against parasites, enveloped viruses and prion diseases), their high toxicity toward mammalian cells and poor distribution in tissues have led to the continuous identification and structural modification of polyene macrolides to expand their general uses. Advances in in-depth investigations of the biosynthetic mechanism of polyene macrolides and the genetic manipulations of the polyene biosynthetic pathways provide great opportunities to generate new analogues. Recently, a novel class of polyene antibiotics was discovered (a disaccharide-containing NPP) that displays better pharmacological properties such as improved water-solubility and reduced hemolysis. In this review, we summarize the recent advances in the biosynthesis, pathway engineering, and regulation of polyene antibiotics in actinomycetes. PMID:23515854

Kong, Dekun; Lee, Mi-Jin; Lin, Shuangjun; Kim, Eung-Soo

2013-06-01

237

Antimicrobial and Antifungal Activity of Pelargonium roseum Essential Oils  

PubMed Central

Purpose: The antiseptic qualities of aromatic and medicinal plants and their extracts have been recognized since antiquity, while attempts to characterize these properties in the laboratory date back the beginning of the XXth century. In the current study essential oils obtained from Pelargonium roseum (Geraniacea) were analyzed for their antibacterial and antifungal activities. Methods: The antimicrobial activity of the Pelargonium essential oil was tested against Gram-negative bacteria (Pseudomonas aeruginosa, Proteus mirabilis, Escherichia coli), Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis) and fungi (Candida albicans). Disc diffusion method was used to study antimicrobial activity. Results: Inhibition zones showed that the studied essential oils were active against all of the studied bacteria. In the case of Candida albicans, the complete inhibition of the fungus’s development was observed. In the cases of Pseudomonas aeruginosa and Staphylococcus aureus we observed an inhibition comparable to that obtained by the use of an appropriate antimicrobial substance. Conclusion: The volatile oils exhibited considerable inhibitory effects against all the organisms under test, in some cases comparable with those of the reference antibiotics. There were no considerable differences between the antimicrobial activities of the oil obtained by distillation and commercially available Pelargonium oils. PMID:25671182

Carmen, Gâlea; Hancu, Gabriel

2014-01-01

238

Antifungal dimeric chalcone derivative kamalachalcone E from Mallotus philippinensis.  

PubMed

From the red coloured extract (Kamala) prepared through acetone extraction of the fresh whole uncrushed fruits of Mallotus philippinensis, one new dimeric chalcone (1) along with three known compounds 1-(5,7-dihydroxy-2,2,6-trimethyl-2H-1-benzopyran-8-yl)-3-phenyl-2-propen-1-one (2), rottlerin (3) and 4'-hydroxyrottlerin (4) were isolated. The structure of compound 1 was elucidated by 1D and 2D NMR analyses that included HSQC, HMBC, COSY and ROESY experiments along with the literature comparison. Compounds 1-4 were evaluated for antifungal activity against different human pathogenic yeasts and filamentous fungi. The antiproliferative activity of the compounds was evaluated against Thp-1 cell lines. Compounds 1 and 2 both exhibited IC50 of 8, 4 and 16 ?g/mL against Cryptococcus neoformans PRL518, C. neoformans ATCC32045 and Aspergillus fumigatus, respectively. Compound 4, at 100 ?g/mL, showed 54% growth inhibition of Thp-1 cell lines. PMID:24099509

Kulkarni, Roshan R; Tupe, Santosh G; Gample, Suwarna P; Chandgude, Macchindra G; Sarkar, Dhiman; Deshpande, Mukund V; Joshi, Swati P

2014-01-01

239

Mono- and sesquiterpenes and antifungal constituents from Artemisia species.  

PubMed

In addition to beta-sitosterol and alpha-amyrin detected in all the investigated species, the extract of the aerial parts of Artemisia giraldii var. giraldii gave stigmasterol, daucosterol, sesamine, luteolin, eupafolin, hispidulin, eupatilin, belamcanidin, pinitol, artemin, ridentin, and a new antifungal monoterpene (named santolinylol) while that of the aerial parts of A. mongolica afforded sesamine, eupafolin, eupatilin, matricarin, and a new germacranolide (3-oxo-11 alpha H-germacra-1(10)E,4Z-dien-12,6 alpha-olide), and that of the aerial parts of A. vestita yielded stigmasterol, daucosterol, umbelliferone, scopolin, scoparone, and isoscopoletin-O-glucoside. Pinitol, first reisolated from Artemisia genus, was shown to inhibit the growth of the human pathogenic fungi Candida albicans, Aspergillus flavus, A. niger, Geotrichun candidum, Trichophyton rubrum, and Epidermophyton floccosum. Umbelliferone was also active against Candida tropicalis, A. flavus, G. candidum, T. rubrum, and E. floccosum. The flavones hispidulin and belamcanidin were almost equally inhibitory to the growth of A. flavus, G. candidum, T. rubrum, and E. floccosum, and santolinylol to C. albicans, A. flavus, A. niger, G. candidum, T. rubrum, and E. floccosum. In addition, ridentin was active against the growth of the plant pathogenic fungus Cladosporium cucumerinum. PMID:10083848

Tan, R X; Lu, H; Wolfender, J L; Yu, T T; Zheng, W F; Yang, L; Gafner, S; Hostettmann, K

1999-02-01

240

Chitinase A from Stenotrophomonas maltophilia shows transglycosylation and antifungal activities.  

PubMed

Stenotrophomonas maltophilia chitinase (StmChiA and StmChiB) genes were cloned and expressed as soluble proteins of 70.5 and 41.6 kDa in Escherichia coli. Ni-NTA affinity purified StmChiA and StmChiB were optimally active at pH 5.0 and 7.0, respectively and exhibited broad range pH activity. StmChiA and StmChiB had an optimum temperature of 40°C and are stable up to 50 and 40°C, respectively. Hydrolytic activity on chitooligosaccharides indicated that StmChiA was an endo-acting enzyme releasing chitobiose and StmChiB was both exo/endo-acting enzyme with the release of GlcNAc as the final product. StmChiA showed higher preference to ?-chitin and exhibited transglycosylation on even chain length tetra- and hexameric substrates. StmChiA, and not StmChiB, was active on chitinous polymers and showed antifungal activity against Fusarium oxysporum. PMID:23428818

Suma, Katta; Podile, Appa Rao

2013-04-01

241

Comparison of in vitro antifungal activities of efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis.  

PubMed

Onychomycosis is a common fungal nail infection in adults that is difficult to treat. The in vitro antifungal activity of efinaconazole, a novel triazole antifungal, was evaluated in recent clinical isolates of Trichophyton rubrum, Trichophyton mentagrophytes, and Candida albicans, common causative onychomycosis pathogens. In a comprehensive survey of 1,493 isolates, efinaconazole MICs against T. rubrum and T. mentagrophytes ranged from ? 0.002 to 0.06 ?g/ml, with 90% of isolates inhibited (MIC90) at 0.008 and 0.015 ?g/ml, respectively. Efinaconazole MICs against 105 C. albicans isolates ranged from ? 0.0005 to >0.25 ?g/ml, with 50% of isolates inhibited (MIC50) by 0.001 and 0.004 ?g/ml at 24 and 48 h, respectively. Efinaconazole potency against these organisms was similar to or greater than those of antifungal drugs currently used in onychomycosis, including amorolfine, ciclopirox, itraconazole, and terbinafine. In 13 T. rubrum toenail isolates from onychomycosis patients who were treated daily with topical efinaconazole for 48 weeks, there were no apparent increases in susceptibility, suggesting low potential for dermatophytes to develop resistance to efinaconazole. The activity of efinaconazole was further evaluated in another 8 dermatophyte, 15 nondermatophyte, and 10 yeast species (a total of 109 isolates from research repositories). Efinaconazole was active against Trichophyton, Microsporum, Epidermophyton, Acremonium, Fusarium, Paecilomyces, Pseudallescheria, Scopulariopsis, Aspergillus, Cryptococcus, Trichosporon, and Candida and compared favorably to other antifungal drugs. In conclusion, efinaconazole is a potent antifungal with a broad spectrum of activity that may have clinical applications in onychomycosis and other mycoses. PMID:23318803

Jo Siu, William J; Tatsumi, Yoshiyuki; Senda, Hisato; Pillai, Radhakrishnan; Nakamura, Takashi; Sone, Daisuke; Fothergill, Annette

2013-04-01

242

Comparison of In Vitro Antifungal Activities of Efinaconazole and Currently Available Antifungal Agents against a Variety of Pathogenic Fungi Associated with Onychomycosis  

PubMed Central

Onychomycosis is a common fungal nail infection in adults that is difficult to treat. The in vitro antifungal activity of efinaconazole, a novel triazole antifungal, was evaluated in recent clinical isolates of Trichophyton rubrum, Trichophyton mentagrophytes, and Candida albicans, common causative onychomycosis pathogens. In a comprehensive survey of 1,493 isolates, efinaconazole MICs against T. rubrum and T. mentagrophytes ranged from ?0.002 to 0.06 ?g/ml, with 90% of isolates inhibited (MIC90) at 0.008 and 0.015 ?g/ml, respectively. Efinaconazole MICs against 105 C. albicans isolates ranged from ?0.0005 to >0.25 ?g/ml, with 50% of isolates inhibited (MIC50) by 0.001 and 0.004 ?g/ml at 24 and 48 h, respectively. Efinaconazole potency against these organisms was similar to or greater than those of antifungal drugs currently used in onychomycosis, including amorolfine, ciclopirox, itraconazole, and terbinafine. In 13 T. rubrum toenail isolates from onychomycosis patients who were treated daily with topical efinaconazole for 48 weeks, there were no apparent increases in susceptibility, suggesting low potential for dermatophytes to develop resistance to efinaconazole. The activity of efinaconazole was further evaluated in another 8 dermatophyte, 15 nondermatophyte, and 10 yeast species (a total of 109 isolates from research repositories). Efinaconazole was active against Trichophyton, Microsporum, Epidermophyton, Acremonium, Fusarium, Paecilomyces, Pseudallescheria, Scopulariopsis, Aspergillus, Cryptococcus, Trichosporon, and Candida and compared favorably to other antifungal drugs. In conclusion, efinaconazole is a potent antifungal with a broad spectrum of activity that may have clinical applications in onychomycosis and other mycoses. PMID:23318803

Tatsumi, Yoshiyuki; Senda, Hisato; Pillai, Radhakrishnan; Nakamura, Takashi; Sone, Daisuke; Fothergill, Annette

2013-01-01

243

Determination of antifungal activities in serum samples from mice treated with different antifungal drugs allows detection of an active metabolite of itraconazole.  

PubMed

To establish an in vitro method of predicting in vivo efficacy of antifungal drugs against Candida albicans and Aspergillus fumigatus, the antifungal activities of fluconazole, itraconazole, and amphotericin B were determined in mouse serum. The minimum inhibitory concentration (MIC) of each drug was measured using mouse serum as a diluent. For C. albicans, the assay endpoint of azoles was defined as inhibition of mycelial extension (mMIC) and for A. fumigatus, as no growth (MIC). The MICs of amphotericin B for both pathogens were defined as the MIC at which no mycelial growth occurred. Serum MIC or mMIC determinations were then used to estimate the concentration of the drugs in serum of mice treated with antifungal drugs by multiplying the antifungal titer of the serum samples by the serum (m)MIC. The serum drug concentrations were also determined by HPLC. The serum concentrations estimated microbiologically showed good agreement with those determined by HPLC, except for itraconazole. Analysis of the serum samples from itraconazole-treated mice by a sensitive bioautography revealed the presence of additional spots, not seen in control samples of itraconazole. The bioautography assay demonstrated that the additional material detected in serum from mice treated with itraconazole was an active metabolite of itraconazole. The data showed that the apparent reduction in the itraconazole serum concentration as determined by HPLC was the result of the formation of an active metabolite, and that the use of a microbiological method to measure serum concentrations of drugs can provide a method for prediction of in vivo efficacy of antifungal drugs. PMID:16625050

Maki, Katsuyuki; Watabe, Etsuko; Iguchi, Yumi; Nakamura, Hideko; Tomishima, Masaki; Ohki, Hidenori; Yamada, Akira; Matsumoto, Satoru; Ikeda, Fumiaki; Tawara, Shuichi; Mutoh, Seitaro

2006-01-01

244

Antifungal activity of redox-active benzaldehydes that target cellular antioxidation  

PubMed Central

Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI). Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1?, sod2?, glr1?) and two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus (sakA?, mpkC?), indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations. Effective inhibition of fungal growth can also be achieved using combinations of these benzaldehydes. Conclusions Natural benzaldehydes targeting cellular antioxidation components of fungi, such as superoxide dismutases, glutathione reductase, etc., effectively inhibit fungal growth. They possess antifungal or chemosensitizing capacity to enhance efficacy of conventional antifungal agents. Chemosensitization can reduce costs, abate resistance, and alleviate negative side effects associated with current antifungal treatments. PMID:21627838

2011-01-01

245

Purification and Molecular Identification of an Antifungal Peptide from the Hemolymph of Musca domestica (housefly)  

PubMed Central

Antibacterial and antifungal peptides found in houseflies (Musca domestica) in large number are indispensable components of its immune defense mechanism. In this study the anterior tip of the larvae of housefly was cut off with a pair of fine scissors and hemolymph was collected and exuded in an ice-cold test tube. From the hemolymph an antifungal substance was isolated by solid-phase extraction combined with reverse phase-high performance liquid chromotography (RP-HPLC) and named as Musca domestica antifungal peptide-1 (MAF-1). Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed its molecular weight was 17 kDa. UV absorption spectra revealed that this antifungal substance possessed the characteristics of protein peptides. Analysis by fingerprint-identification and tandem mass spectrometry suggested MAF-1 was an unknown protein. Edman degradation identified the sequence of 30 amino acids of its N-terminal which matched no peptide in the MASCOT search database, indicating MAF-1 was a novel insect antifungal peptide. Mass spectrometry showed the precise molecular weight of MAF-1 was 17203.384 Da. Its isoelectric point was acidic. PMID:19728925

Fu, Ping; Wu, Jianwei; Guo, Guo

2009-01-01

246

Epidemiology and antifungal susceptibilities of yeasts causing vulvovaginitis in a teaching hospital.  

PubMed

Vulvovaginal candidiasis is one of the most common mycosis. However, the information about antifungal susceptibilities of the yeasts causing this infection is scant. We studied 121 yeasts isolated from 118 patients with vulvovaginal candidiasis. The isolates were identified by phenotypic and molecular methods, including four phenotypic methods described to differentiate Candida albicans from C. dubliniensis. Antifungal susceptibility testing was performed according to CLSI documents M27A3 and M27S4 using the drugs available as treatment option in the hospital. Diabetes, any antibacterial and amoxicillin treatment were statistically linked with vulvovaginal candidiasis, while oral contraceptives were not considered a risk factor. Previous azole-based over-the-counter antifungal treatment was statistically associated with non-C.albicans yeasts infections. The most common isolated yeast species was C. albicans (85.2 %) followed by C. glabrata (5 %), Saccharomyces cerevisiae (3.3 %), and C. dubliniensis (2.5 %). Fluconazole- and itraconazole-reduced susceptibility was observed in ten and in only one C. albicans strains, respectively. All the C. glabrata isolates showed low fluconazole MICs. Clotrimazole showed excellent potency against all but seven isolates (three C. glabrata, two S. cerevisiae, one C. albicans and one Picchia anomala). Any of the strains showed nystatin reduced susceptibility. On the other hand, terbinafine was the less potent drug. Antifungal resistance is still a rare phenomenon supporting the use of azole antifungals as empirical treatment of vulvovaginal candidiasis. PMID:25005365

Gamarra, Soledad; Morano, Susana; Dudiuk, Catiana; Mancilla, Estefanía; Nardin, María Elena; de Los Angeles Méndez, Emilce; Garcia-Effron, Guillermo

2014-10-01

247

Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities.  

PubMed

The potential antifungal effects of Thymus vulgaris L., Thymus tosevii L., Mentha spicata L., and Mentha piperita L. (Labiatae) essential oils and their components against 17 micromycetal food poisoning, plant, animal and human pathogens are presented. The essential oils were obtained by hydrodestillation of dried plant material. Their composition was determined by GC-MS. Identification of individual constituents was made by comparison with analytical standards, and by computer matching mass spectral data with those of the Wiley/NBS Library of Mass Spectra. MIC's and MFC's of the oils and their components were determined by dilution assays. Thymol (48.9%) and p-cymene (19.0%) were the main components of T. vulgaris, while carvacrol (12.8%), a-terpinyl acetate (12.3%), cis-myrtanol (11.2%) and thymol (10.4%) were dominant in T. tosevii. Both Thymus species showed very strong antifungal activities. In M. piperita oil menthol (37.4%), menthyl acetate (17.4%) and menthone (12.7%) were the main components, whereas those of M. spicata oil were carvone (69.5%) and menthone (21.9%). Mentha sp. showed strong antifungal activities, however lower than Thymus sp. The commercial fungicide, bifonazole, used as a control, had much lower antifungal activity than the oils and components investigated. It is concluded that essential oils of Thymus and Mentha species possess great antifungal potential and could be used as natural preservatives and fungicides. PMID:19136911

Sokovi?, Marina D; Vukojevi?, Jelena; Marin, Petar D; Brki?, Dejan D; Vajs, Vlatka; van Griensven, Leo J L D

2009-01-01

248

Synthesis, Structure-Activity Relationships (SAR) and in Silico Studies of Coumarin Derivatives with Antifungal Activity  

PubMed Central

The increased incidence of opportunistic fungal infections, associated with greater resistance to the antifungal drugs currently in use has highlighted the need for new solutions. In this study twenty four coumarin derivatives were screened in vitro for antifungal activity against strains of Aspergillus. Some of the compounds exhibited significant antifungal activity with MICs values ranging between 16 and 32 ?g/mL. The structure-activity relationships (SAR) study demonstrated that O-substitutions are essential for antifungal activity. It also showed that the presence of a short aliphatic chain and/or electron withdrawing groups (NO2 and/or acetate) favor activity. These findings were confirmed using density functional theory (DFT), when calculating the LUMO density. In Principal Component Analysis (PCA), two significant principal components (PCs) explained more than 60% of the total variance. The best Partial Least Squares Regression (PLS) model showed an r2 of 0.86 and q2cv of 0.64 corroborating the SAR observations as well as demonstrating a greater probe N1 interaction for active compounds. Descriptors generated by TIP correlogram demonstrated the importance of the molecular shape for antifungal activity. PMID:23306152

de Araújo, Rodrigo S. A.; Guerra, Felipe Q. S.; de O. Lima, Edeltrudes; de Simone, Carlos A.; Tavares, Josean F.; Scotti, Luciana; Scotti, Marcus T.; de Aquino, Thiago M.; de Moura, Ricardo O.; Mendonça, Francisco J. B.; Barbosa-Filho, José M.

2013-01-01

249

Purification and molecular identification of an antifungal peptide from the hemolymph of Musca domestica (housefly).  

PubMed

Antibacterial and antifungal peptides found in houseflies (Musca domestica) in large number are indispensable components of its immune defense mechanism. In this study the anterior tip of the larvae of housefly was cut off with a pair of fine scissors and hemolymph was collected and exuded in an ice-cold test tube. From the hemolymph an antifungal substance was isolated by solid-phase extraction combined with reverse phase-high performance liquid chromotography (RP-HPLC) and named as Musca domestica antifungal peptide-1 (MAF-1). Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed its molecular weight was 17 kDa. UV absorption spectra revealed that this antifungal substance possessed the characteristics of protein peptides. Analysis by fingerprint-identification and tandem mass spectrometry suggested MAF-1 was an unknown protein. Edman degradation identified the sequence of 30 amino acids of its N-terminal which matched no peptide in the MASCOT search database, indicating MAF-1 was a novel insect antifungal peptide. Mass spectrometry showed the precise molecular weight of MAF-1 was 17203.384 Da. Its isoelectric point was acidic. PMID:19728925

Fu, Ping; Wu, Jianwei; Guo, Guo

2009-08-01

250

Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats  

PubMed Central

Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole) electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical conformation of gelatin and the presence of gelatin decreased the hemolytic activity of polyenes. The polyene-loaded fiber mats were noncytotoxic to primary human corneal and sclera fibroblasts. The reduction of toxicity with complete retention of activity of the polyene antifungal-loaded gelatin fiber mats can provide new opportunities in the management of superficial skin infections. PMID:24920895

Lakshminarayanan, Rajamani; Sridhar, Radhakrishnan; Loh, Xian Jun; Nandhakumar, Muruganantham; Barathi, Veluchamy Amutha; Kalaipriya, Madhaiyan; Kwan, Jia Lin; Liu, Shou Ping; Beuerman, Roger Wilmer; Ramakrishna, Seeram

2014-01-01

251

Antifungal Activities of Peptides Derived from Domain 5 of High-Molecular-Weight Kininogen  

PubMed Central

In both immunocompromised and immunocompetent patients, Candida and Malassezia are causing or triggering clinical manifestations such as cutaneous infections and atopic eczema. The innate immune system provides rapid responses to microbial invaders, without requiring prior stimulation, through a sophisticated system of antimicrobial peptides (AMPs). High molecular weight kininogen (HMWK) and components of the contact system have previously been reported to bind to Candida and other pathogens, leading to activation of the contact system. A cutaneous Candida infection is characterized by an accumulation of neutrophils, leading to an inflammatory response and release of enzymatically active substances. In the present study we demonstrate that antifungal peptide fragments are generated through proteolytic degradation of HMWK. The recombinant domain 5 (rD5) of HMWK, D5-derived peptides, as well as hydrophobically modified D5-derived peptides efficiently killed Candida and Malassezia. Furthermore, the antifungal activity of modified peptides was studied at physiological conditions. Binding of a D5-derived peptide, HKH20 (His479-His498), to the fungal cell membrane was visualized by fluorescence microscopy. Our data disclose a novel antifungal activity of D5-derived peptides and also show that proteolytic cleavage of HMWK results in fragments exerting antifungal activity. Of therapeutic interest is that structurally modified peptides show an enhanced antifungal activity. PMID:21941573

Sonesson, Andreas; Nordahl, Emma Andersson; Malmsten, Martin; Schmidtchen, Artur

2011-01-01

252

Antifungal activities of peptides derived from domain 5 of high-molecular-weight kininogen.  

PubMed

In both immunocompromised and immunocompetent patients, Candida and Malassezia are causing or triggering clinical manifestations such as cutaneous infections and atopic eczema. The innate immune system provides rapid responses to microbial invaders, without requiring prior stimulation, through a sophisticated system of antimicrobial peptides (AMPs). High molecular weight kininogen (HMWK) and components of the contact system have previously been reported to bind to Candida and other pathogens, leading to activation of the contact system. A cutaneous Candida infection is characterized by an accumulation of neutrophils, leading to an inflammatory response and release of enzymatically active substances. In the present study we demonstrate that antifungal peptide fragments are generated through proteolytic degradation of HMWK. The recombinant domain 5 (rD5) of HMWK, D5-derived peptides, as well as hydrophobically modified D5-derived peptides efficiently killed Candida and Malassezia. Furthermore, the antifungal activity of modified peptides was studied at physiological conditions. Binding of a D5-derived peptide, HKH20 (His(479)-His(498)), to the fungal cell membrane was visualized by fluorescence microscopy. Our data disclose a novel antifungal activity of D5-derived peptides and also show that proteolytic cleavage of HMWK results in fragments exerting antifungal activity. Of therapeutic interest is that structurally modified peptides show an enhanced antifungal activity. PMID:21941573

Sonesson, Andreas; Nordahl, Emma Andersson; Malmsten, Martin; Schmidtchen, Artur

2011-01-01

253

Determination of Antifungal Susceptibility Patterns Among the Clinical Isolates of Candida Species  

PubMed Central

Context: Candida species are opportunistic yeasts that cause infections ranging from simple dermatosis to potentially life-threatening fungemia. The emergence of resistance to antifungal drugs has been increased in the past two decades. Aim: the present study we determined to find out the susceptibility profiles of clinical isolates of Candida species against four antifungal drugs, including amphotericin B, ketoconazole, fluconazole and itraconazole. Materials and Methods: Antifungal susceptibility testing of the yeasts was done in accordance with the proposed guidelines for antifungal disk diffusion susceptibility testing of yeasts based on the CLSI document M44-A. Results: A total of 206 yeast isolates were assessed. Among the evaluated Candida species, the highest rates of resistance to ketoconazole were seen in Candida glabrata (16.6%) and Candida albicans (3.2%). Susceptibility and intermediate response to fluconazole were seen in 96.6% and 3.4% of the Candida isolates, respectively. A total of 19 (9.2%) yeast isolates showed petite phenomenon including 11 C. glabrata, 3 C. albicans, 2 Candida dubliniensis and one isolate of each Candida krusei and Candida parapsilosis. Conclusion: The high number of petite mutation in the isolated yeasts should be seriously considered since it may be one of the reasons of antifungal treatment failure. PMID:22223999

Zomorodian, Kamiar; Rahimi, Mohammad Javad; Pakshir, Kayvan; Motamedi, Marjan; Ghiasi, Moosa Rahimi; Rezashah, Hasanein

2011-01-01

254

Candidal colonization, strain diversity, and antifungal susceptibility among adult diabetic patients  

PubMed Central

BACKGROUND AND OBJECTIVES: Candidal colonization in diabetics is a matter of debate. The aim of this study is to investigate oral candidal colonization, strain diversity, antifungal susceptibility, and the influence of local and systemic host factors on candidal colonization in adult diabetics. METHODS: We conducted a case-control study that compared 150 diabetics (49 type 1, 101 type 2) with 50 healthy controls. Two salivary samples were collected, using the oral rinse sampling method: one for salivary flow rate and pH determination, and the other for candidal colonization assessment. The candidal isolates were identified and tested in vitro for antifungal susceptibility using the commercial kit, Candifast. The relationship between specific host factors and candidal colonization was also investigated. RESULTS: Diabetics had a higher candidal carriage rate compared to controls, but not density. Candida albicans was the most frequently isolated species, but diabetics had a variety of other candidal species present. None of the control samples were resistant to any tested antifungal, while the diabetic samples had differing resistances to azole antifungals. Although there was a significant positive correlation between glycemic control and candidal colonization in type 2 diabetics, there was a negative correlation between salivary pH and candidal carriage in the controls versus density in type 2 diabetics. CONCLUSION: Diabetic patients not only had a higher candidal carriage rate, but also a variety of candidal species that were resistant to azole antifungals. Oral candidal colonization was significantly associated with glycemic control, type of diabetes, and salivary pH. PMID:20220258

Al-Attas, Safia A.; Amro, Soliman O.

2010-01-01

255

Antifungal property of hibicuslide C and its membrane-active mechanism in Candida albicans.  

PubMed

In this study, the antifungal activity and mode of action(s) of hibicuslide C derived from Abutilon theophrasti were investigated. Antifungal susceptibility testing showed that hibicuslide C possessed potent activities toward various fungal strains and less hemolytic activity than amphotericin B. To understand the antifungal mechanism(s) of hibicuslide C in Candida albicans, flow cytometric analysis with propidium iodide was done. The results showed that hibicuslide C perturbed the plasma membrane of the C. albicans. The analysis of the transmembrane electrical potential with 3,3'-dipropylthiacarbocyanine iodide [DiSC3(5)] indicated that hibicuslide C induced membrane depolarization. Furthermore, model membrane studies were performed with calcein encapsulating large unilamellar vesicles (LUVs) and FITC-dextran (FD) loaded LUVs. These results demonstrated that the antifungal effects of hibicuslide C on the fungal plasma membrane were through the formation of pores with radii between 2.3 nm and 3.3 nm. Finally, in three dimensional flow cytometric contour plots, a reduced cell sizes by the pore-forming action of hibicuslide C were observed. Therefore, the present study suggests that hibicuslide C exerts its antifungal effect by membrane-active mechanism. PMID:23816874

Hwang, Ji Hong; Jin, Qinglong; Woo, Eun-Rhan; Lee, Dong Gun

2013-10-01

256

A Screening Assay Based on Host-Pathogen Interaction Models Identifies a Set of Novel Antifungal Benzimidazole Derivatives?  

PubMed Central

Fungal infections are a serious health problem in clinics, especially in the immune-compromised patient. Disease ranges from widespread superficial infections like vulvovaginal infections to life-threatening systemic candidiasis. Especially for systemic mycoses, only a limited arsenal of antifungals is available. The most commonly used classes of antifungal compounds used include azoles, polyenes, and echinocandins. Due to emerging resistance to standard therapy, significant side effects, and high costs for several antifungals, there is a medical need for new antifungals in the clinic and general practice. In order to expand the arsenal of compounds with antifungal activities, we screened a compound library including more than 35,000 individual compounds derived from organic synthesis as well as combinatorial compound collections representing mixtures of compounds for antimycotic activity. In total, more than 100,000 compounds were screened using a new type of activity-selectivity assay, analyzing both the antifungal activity and the compatibility with human cells at the same time. One promising hit, an (S)-2-aminoalkyl benzimidazole derivative, was developed among a series of lead compounds showing potent antifungal activity. (S)-2-(1-Aminoisobutyl)-1-(3-chlorobenzyl) benzimidazole showed the highest antifungal activity and the best compatibility with human cells in several cell culture models and against a number of clinical isolates of several species of pathogenic Candida yeasts. Transcriptional profiling indicates that the newly discovered compound is a potential inhibitor of the ergosterol pathway, in contrast to other benzimidazole derivatives, which target microtubules. PMID:21746957

Burger-Kentischer, Anke; Finkelmeier, Doris; Keller, Petra; Bauer, Jörg; Eickhoff, Holger; Kleymann, Gerald; Abu Rayyan, Walid; Singh, Anurag; Schröppel, Klaus; Lemuth, Karin; Wiesmüller, Karl-Heinz; Rupp, Steffen

2011-01-01

257

Chiral profiling of azole antifungals in municipal wastewater and recipient rivers of the Pearl River Delta, China.  

PubMed

Enantiomeric compositions and fractions (EFs) of three chiral imidazole (econazole, ketoconazole, and miconazole) and one chiral triazole (tebuconazole) antifungals were investigated in wastewater, river water, and bed sediment of the Pearl River Delta, South China. The imidazole pharmaceuticals in the untreated wastewater were racemic to weakly nonracemic (EFs of 0.450-0.530) and showed weak enantioselectivity during treatment in the sewage treatment plant. The EFs of the dissolved azole antifungals were usually different from those of the sorbed azoles in the suspended particulate matter, suggesting different behaviors for the enantiomers of the chiral azole antifungals in the dissolved and particulate phases of the wastewater. The azole antifungals were widely present in the rivers. The bed sediment was a sink for the imidazole antifungals. The imidazoles were prevalently racemic, whereas tebuconazole was widely nonracemic in the rivers. Seasonal effects were observed on distribution and chirality of the azole antifungals. Concentrations of the azole antifungals in the river water were relatively higher in winter than in spring and summer while the EF of miconazole in the river water was higher in summer. The mechanism of enantiomeric behavior of the chiral azole antifungals in the environment warrants further research. PMID:23749368

Huang, Qiuxin; Wang, Zhifang; Wang, Chunwei; Peng, Xianzhi

2013-12-01

258

Comparative Antifungal Activities and Plasma Pharmacokinetics of Micafungin (FK463) against Disseminated Candidiasis and Invasive Pulmonary Aspergillosis in Persistently Neutropenic Rabbits  

Microsoft Academic Search

Micafungin (FK463) is an echinocandin that demonstrates potent in vitro antifungal activities against Candida and Aspergillus species. However, little is known about its comparative antifungal activities in persis- tently neutropenic hosts. We therefore investigated the plasma micafungin pharmacokinetics and antifungal activities of micafungin against experimental disseminated candidiasis and invasive pulmonary aspergillosis in persistently neutropenic rabbits. The groups with disseminated candidiasis

Vidmantas Petraitis; Ruta Petraitiene; Andreas H. Groll; Kristin Roussillon; Melissa Hemmings; Caron A. Lyman; Tin Sein; John Bacher; Ihor Bekersky; Thomas J. Walsh

2002-01-01

259

Candida Infections, Causes, Targets, and Resistance Mechanisms: Traditional and Alternative Antifungal Agents  

PubMed Central

The genus Candida includes about 200 different species, but only a few species are human opportunistic pathogens and cause infections when the host becomes debilitated or immunocompromised. Candida infections can be superficial or invasive. Superficial infections often affect the skin or mucous membranes and can be treated successfully with topical antifungal drugs. However, invasive fungal infections are often life-threatening, probably due to inefficient diagnostic methods and inappropriate initial antifungal therapies. Here, we briefly review our current knowledge of pathogenic species of the genus Candida and yeast infection causes and then focus on current antifungal drugs and resistance mechanisms. An overview of new therapeutic alternatives for the treatment of Candida infections is also provided. PMID:23878798

Spampinato, Claudia

2013-01-01

260

A novel antifungal protein with lysozyme-like activity from seeds of Clitoria ternatea.  

PubMed

An antifungal protein with a molecular mass of 14.3 kDa was isolated from the seeds of butterfly pea (Clitoria ternatea) and designated as Ct protein. The antifungal protein was purified using different methods including ammonium sulphate precipitation, ion exchange chromatography on DEAE-cellulose and gel filtration on Sephadex G-50 column. Ct protein formed a single colourless rod-shaped crystal by hanging drop method after 7 days of sample loading. The protein showed lytic activity against Micrococcus luteus and broad-spectrum, fungicidal activity, particularly against the most clinically relevant yeasts, such as Cryptococcus neoformans, Cryptococcus albidus, Cryptococcus laurentii, Candida albicans and Candida parapsilosis. It also exerted an inhibitory activity on mycelial growth in several mould species including Curvularia sp., Alternaria sp., Cladosporium sp., Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Rhizopus sp., and Sclerotium sp. The present study adds to the literature on novel seed proteins with antifungal activity. PMID:24691882

K, Ajesh; K, Sreejith

2014-06-01

261

Synthesis and antifungal properties of (4-tolyloxy)-pyrimidyl-?-aminophosphonates chitosan derivatives.  

PubMed

A novel class of ?-aminophosphonate chitosan derivatives was investigated. These chitosan derivatives consist of (4-tolyloxy)-pyrimidyl-dimethyl-?-amino-phosphonate chitosan (?-ATPMCS) and (4-tolyloxy)-pyrimidyl-diethyl-?-aminophosphonate chitosan (?-ATPECS). Their structures were well defined. Antifungal activity of them against some crop-threatening pathogenic fungi was tested in vitro. The derivatives were found to have a broad-spectrum antifungal activity that was obviously enhanced compared with chitosan. At 250 mg/L, both ?-ATPMCS and ?-ATPECS even inhibited growth of Phomopsis asparagi (Sacc.) (P. asparagi) and Fusarium oxysporum (F. oxysporum) at 100%, which was even stronger than polyoxin whose antifungal index was 37.2% and 32.1%, respectively. Additionally, the initial mechanism of the chitosan derivatives in F. oxysporum model was studied. It was found that the derivatives may have an effect on membrane permeability of the fungi. The results demonstrated the derivatives may serve as attractive candidates in crop protection. PMID:24183805

Qin, Yukun; Xing, Ronge; Liu, Song; Yu, Huahua; Li, Kecheng; Hu, Linfeng; Li, Pengcheng

2014-02-01

262

Antifungal activity of chemically different essential oils from wild Tunisian Thymus spp.  

PubMed

Essential oils isolated by using hydrodistillation from the aerial parts of Thymus algeriensis and Thymus capitatus Hoff. et Link. from different locations of Tunisia (Kef, Takelsa, Zaghouan, Fahs and Toukeber) were characterised. The chemical composition was analysed by using gas chromatography/mass spectrometry, the major component of T. capitatus from Kef and T. algeriensis was thymol while carvacrol was the main component of T. capitatus from Zaghouan, Fahs and Toukeber. The antifungal activity of the oils and some pure components was assessed by the in vitro assay against several fungi and oomycetes. T. capitatus (chemotype carvacrol) exhibited the strongest antifungal activity followed by T. capitatus (chemotype thymol) and T. algeriensis, indicating that carvacrol might have a stronger antifungal activity than thymol. PMID:25484099

Maissa, Ben Jabeur; Walid, Hamada

2014-12-01

263

Antifungal activity of Leuconostoc citreum and Weissella confusa in rice cakes.  

PubMed

The antifungal activity of organic acids greatly improves the shelf life of bread and bakery products. However, little is known about the effect of lactic acid fermentation on fungal contamination in rice cakes. Here, we show that lactic acid fermentation in rice dough can greatly retard the growth of three fungal species when present in rice cakes, namely Cladosporium sp. YS1, Neurospora sp. YS3, and Penicillium crustosum YS2. The antifungal activity of the lactic acid bacteria against these fungi was much better than that of 0.3% calcium propionate. We found that organic acids including lactic and acetic acid, which are byproducts of lactic fermentation or can be artificially added, were the main antifungal substances. We also found that some Leuconostoc citreum and Weissella confusa strains could be good starter species for rice dough fermentation. These results imply that these lactic acid bacteria can be applicable to improve the preservation of rice cakes. PMID:23124754

Baek, Eunjong; Kim, Hyojin; Choi, Hyejung; Yoon, Sun; Kim, Jeongho

2012-10-01

264

Antifungal activity of CHE-23C, a dimeric sesquiterpene from Chloranthus henryi.  

PubMed

An antifungal compound was isolated from methanol extracts of stems and roots of Chloranthus henryi Hemsl. using ethyl acetate extraction and various chromatographic techniques. On the basis of spectroscopic analyses including mass and various NMR, the structure of the compound was identified as a dimeric sesquiterpene, CHE-23C. The compound showed potent antifungal activities (MICs = 1-32 microg/mL) in vitro against various phytopathogenic fungi such as Alternaria kikuchiana , Botrytis cinerea , Colletotrichum lagenarium , Magnaporthe grisea , Pythium ultimum , and Phytophthora infestans . In particular, it exhibited 91 and 100% disease-control activity in vivo against tomato late blight (P. infestans) and wheat leaf rust ( Puccinia recondita ) at concentrations of 33 and 100 microg/mL, respectively. The disease-control activity of this compound was stronger than that of the commercially available fungicide chlorothalonil, but weaker than that of dimethomorph. Therefore, the compound might serve as an interesting lead to develop effective antifungal agents. PMID:19566082

Lee, Yun Mi; Moon, Jae Sun; Yun, Bong-Sik; Park, Ki Duk; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Sang Han; Kim, Sung Uk

2009-07-01

265

Haliscosamine: a new antifungal sphingosine derivative from the Moroccan marine sponge Haliclona viscosa.  

PubMed

In the aim of searching for new antifungal products from marine origin, we have isolated a sphingosine derivative, (9Z)-2-amino-docos-9-ene-1,3,13,14-tetraol (Haliscosamine) from the Moroccan sea sponge Haliclona viscosa using bio-guided (antifungal) HPLC methods. The molecular structure of this compound was elucidated by spectrometric techniques IR, UV, MS and NMR. The isolated metabolite showed a significant antifungal activity against Cryptococcus and Candida species and a weak general toxicity in the brine shrimp lethality test. Further research is needed to study its in vivo activity, as well as to elucidate the mechanism underlying its activity in the hope of a future use in medical mycology. PMID:23961377

El-Amraoui, Belkassem; Biard, Jean-Fançois; Fassouane, Aziz

2013-01-01

266

Triterpenoid glycosides from Medicago sativa as antifungal agents against Pyricularia oryzae.  

PubMed

The antifungal properties of saponin mixtures from alfalfa (Medicago sativa L.) tops and roots, the corresponding mixtures of prosapogenins from tops, and purified saponins and sapogenins against the causal agent of rice blast Pyricularia oryzae isolates are presented. In vitro experiments highlighted a range of activities, depending upon the assayed metabolite. The antifungal effects of the most promising prosapogenin mixture from alfalfa tops were confirmed by means of in planta tests using three different Italian cultivars of rice (Oryza sativa L. ssp. japonica), known to possess high, medium, and low blast resistance. The evidenced antifungal properties of the tested metabolites allowed some considerations on their structure-activity relationship. Results indicate that prosapogenins are active compounds to prevent the fungal attack of P. oryzae on different rice cultivars. Therefore, if properly formulated, these substances could represent a promising and environmentally friendly treatment to control rice blast. PMID:25361378

Abbruscato, Pamela; Tosi, Solveig; Crispino, Laura; Biazzi, Elisa; Menin, Barbara; Picco, Anna M; Pecetti, Luciano; Avato, Pinarosa; Tava, Aldo

2014-11-19

267

Antifungal activity of C3a and C3a-derived peptides against Candida.  

PubMed

Antimicrobial peptides are generated during activation of the complement system [Nordahl et al. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:16879-16884]. Here we show that the anaphylatoxin C3a exerts antimicrobial effects against the yeast Candida. Fluorescence microscopy and electron microscopy analysis demonstrated that C3a-derived peptides bound to the cell surface of Candida, and induced membrane perturbations and release of extracellular material. Various Candida isolates were found to induce complement degradation, leading to generation of C3a. Arginine residues were found to be critical for the antifungal and membrane breaking activity of a C3a-derived antimicrobial peptide, CNY21 (C3a; Cys57-Arg77). A CNY21 variant with increased positive net charge displayed enhanced antifungal activity. Thus, C3a-derived peptides can be utilized as templates in the development of peptide-based antifungal therapies. PMID:17169328

Sonesson, Andreas; Ringstad, Lovisa; Nordahl, Emma Andersson; Malmsten, Martin; Mörgelin, Matthias; Schmidtchen, Artur

2007-02-01

268

Alocasin, an anti-fungal protein from rhizomes of the giant taro Alocasia macrorrhiza.  

PubMed

An anti-fungal protein designated alocasin was isolated from the rhizomes of the giant taro Alocasia macrorrhiza. The isolation protocol involved ion exchange chromatography on diethylaminoethyl (DEAE)-cellulose, ion exchange chromatography on sulfopropyl (SP)-Sepharose, and gel filtration on Superdex 75. Alocasin, which was unadsorbed on DEAE-cellulose and SP-Sepharose, possessed the N-terminal sequence APEGEV, which exhibited some similarity to that of the miraculin-like anti-fungal protein from Pisum sativum legumes. It demonstrated a molecular mass of 11kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, and displayed anti-fungal activity against Botrytis cinerea. Alocasin reduced the activity of HIV-1 reverse transcriptase. It exhibited weak hemagglutinating activity, only at a concentration of 1mg/ml. PMID:12651101

Wang, H X; Ng, T B

2003-03-01

269

Chemical characterization and antifungal activity of essential oil of capitula from wild Indian Tagetes patula L.  

PubMed

The essential oil extracted by steam distillation from the capitula of Indian Tagetes patula, Asteraceae, was evaluated for its antifungal properties and analyzed by gas chromatography and gas chromatography-mass spectrometry. Thirty compounds were identified, representing 89.1% of the total detected. The main components were piperitone (24.74%), piperitenone (22.93%), terpinolene (7.8%), dihydro tagetone (4.91%), cis-tagetone (4.62%), limonene (4.52%), and allo-ocimene (3.66%). The oil exerted a good antifungal activity against two phytopathogenic fungi, Botrytis cinerea and Penicillium digitatum, providing complete growth inhibition at 10 microl/ml and 1.25 microl/ml, respectively. The contribution of the two main compounds, piperitone and piperitenone, to the antifungal efficacy was also evaluated and ultrastructural modifications in mycelia were observed via electron microscopy, evidencing large alterations in hyphal morphology and a multisite mechanism of action. PMID:15868213

Romagnoli, C; Bruni, R; Andreotti, E; Rai, M K; Vicentini, C B; Mares, D

2005-04-01

270

Synthesis and conformational analysis of His-Phe-Arg-Trp-NH2 and analogues with antifungal properties.  

PubMed

The synthesis, in vitro evaluation, and conformational study of His-Phe-Arg-Trp-NH2 and related derivatives acting as antifungal agents are reported. Among them, His-Phe-Arg-Trp-NH2 and His-Tyr-Arg-Trp-NH2 exhibited antifungal activity against Cryptococcus neoformans. Antifungal activity of these compounds appears to be closely related to the alpha-MSH effect. A conformational and electronic study allows us to propose a biologically relevant conformation for these tetrapeptides acting as antifungal agents. In addition, these theoretical calculations permit us to determine the minimal structural requirements to produce the antifungal response and may provide a guide for the design of compounds with this biological activity. PMID:16926096

Masman, Marcelo F; Rodríguez, Ana M; Svetaz, Laura; Zacchino, Susana A; Somlai, Csaba; Csizmadia, Imre G; Penke, Botond; Enriz, Ricardo D

2006-11-15

271

Human Neutrophil-Mediated Nonoxidative Antifungal Activity against Cryptococcus neoformans  

PubMed Central

It has long been appreciated that polymorphonuclear leukocytes (PMN) kill Cryptococcus neoformans, at least in part via generation of fungicidal oxidants. The aim of this study was to examine the contribution of nonoxidative mechanisms to the inhibition and killing of C. neoformans. Treatment of human PMN with inhibitors and scavengers of respiratory burst oxidants only partially reversed anticryptococcal activity, suggesting that both oxidative and nonoxidative mechanisms were operative. To define the mediators of nonoxidative anticryptococcal activity, PMN were fractionated into cytoplasmic, primary (azurophil) granule, and secondary (specific) granule fractions. Incubation of C. neoformans with these fractions for 18 h resulted in percents inhibition of growth of 67.4 ± 3.4, 84.6 ± 4.4, and 29.2 ± 10.5 (mean ± standard error, n = 3), respectively. Anticryptococcal activity of the cytoplasmic fraction was abrogated by zinc and depletion of calprotectin. Antifungal activity of the primary granules was significantly reduced by pronase treatment, boiling, high ionic strength, and magnesium but not calcium. Fractionation of the primary granules by reverse phase high-pressure liquid chromatography on a C4 column over an acetonitrile gradient revealed multiple peaks with anticryptococcal activity. Of these, peaks 1 and 6 had substantial fungistatic and fungicidal activity. Peak 1 was identified by acid-urea polyacrylamide gel electrophoresis (PAGE) and mass spectroscopy as human neutrophil proteins (defensins) 1 to 3. Analysis of peak 6 by sodium dodecyl sulfate-PAGE revealed multiple bands. Thus, human PMN have nonoxidative anticryptococcal activity residing principally in their cytoplasmic and primary granule fractions. Calprotectin mediates the cytoplasmic activity, whereas multiple proteins, including defensins, are responsible for activity of the primary granules. PMID:11035733

Mambula, Salamatu S.; Simons, Elizabeth R.; Hastey, Ryan; Selsted, Michael E.; Levitz, Stuart M.

2000-01-01

272

Laccase Catalyzed Synthesis of Iodinated Phenolic Compounds with Antifungal Activity  

PubMed Central

Iodine is a well known antimicrobial compound. Laccase, an oxidoreductase which couples the one electron oxidation of diverse phenolic and non-phenolic substrates to the reduction of oxygen to water, is capable of oxidizing unreactive iodide to reactive iodine. We have shown previously that laccase-iodide treatment of spruce wood results in a wash-out resistant antimicrobial surface. In this study, we investigated whether phenolic compounds such as vanillin, which resembles sub-structures of softwood lignin, can be directly iodinated by reacting with laccase and iodide, resulting in compounds with antifungal activity. HPLC-MS analysis showed that vanillin was converted to iodovanillin by laccase catalysis at an excess of potassium iodide. No conversion of vanillin occurred in the absence of enzyme. The addition of redox mediators in catalytic concentrations increased the rate of iodide oxidation ten-fold and the yield of iodovanillin by 50%. Iodinated phenolic products were also detected when o-vanillin, ethyl vanillin, acetovanillone and methyl vanillate were incubated with laccase and iodide. At an increased educt concentration of 0.1 M an almost one to one molar ratio of iodide to vanillin could be used without compromising conversion rate, and the insoluble iodovanillin product could be recovered by simple centrifugation. The novel enzymatic synthesis procedure fulfills key criteria of green chemistry. Biocatalytically produced iodovanillin and iodo-ethyl vanillin had significant growth inhibitory effects on several wood degrading fungal species. For Trametes versicolor, a species causing white rot of wood, almost complete growth inhibition and a partial biocidal effect was observed on agar plates. Enzymatic tests indicated that the iodinated compounds acted as enzyme responsive, antimicrobial materials. PMID:24594755

Ihssen, Julian; Schubert, Mark; Thöny-Meyer, Linda; Richter, Michael

2014-01-01

273

In Vitro and In Vivo antifungal activities of selected Cameroonian dietary spices  

PubMed Central

Background Spices and herbs have been used in food since ancient times to give taste and flavor and also as food preservatives and disease remedies. In Cameroon, the use of spices and other aromatic plants as food flavoring is an integral part of dietary behavior, but relatively little is known about their antifungal potential. The present work was designed to assess the antifungal properties of extracts from spices used in Cameroonian dietary. Methods The in vitro antifungal activities of twenty three extracts from twenty one spices were assessed by the broth micro-dilution method against eight fungi. Also, the in vivo activity of Olax subscorpioidea extract (the most active extract) was evaluated in rat model of disseminated candidiasis due to Candida albicans by estimating the fungal burden in blood and kidney. Results Seven extracts (30%) exhibited moderate to significant antifungal activities, inhibiting the growth of the microorganisms at concentrations ranging from 0.048 to 0.39 mg/mL. Olax subscorpioidea extract exhibited the highest antifungal activity particularly against?Candida albicans and Candida tropicalis (MIC of 0.097 mg/mL and 0.048 mg/mL respectively). Sixteen extracts (70%) were weakly active (MICs?>?6.25 mg/mL). Oral administration of O. subscorpioidea extract at the dose 2 g/kg of body weight (bw) to artificially infected rats revealed a drop in the number of colony forming units per milliliter (cfu/mL) of Candida albicans cells in the blood below the detection limit (100 cfu/mL) while a modest decrease was observed in the kidney. Conclusion The present work shows that some of the spices studied possess interesting antifungal properties and could be used to treat candidiasis. Among the plant species tested, Olax subscorpioidea displayed the most promising result. PMID:24533718

2014-01-01

274

Cell Density and Cell Aging as Factors Modulating Antifungal Resistance of Candida albicans Biofilms ?  

PubMed Central

Biofilm formation is a major virulence attribute of Candida pathogenicity which contributes to higher antifungal resistance. We investigated the roles of cell density and cellular aging on the relative antifungal susceptibility of planktonic, biofilm, and biofilm-derived planktonic modes of Candida. A reference and a wild-type strain of Candida albicans were used to evaluate the MICs of caspofungin (CAS), amphotericin B (AMB), nystatin (NYT), ketoconazole (KTC), and flucytosine (5FC). Standard, NCCLS, and European Committee on Antibiotic Susceptibility Testing methods were used for planktonic MIC determination. Candida biofilms were then developed on polystyrene wells, and MICs were determined with a standard 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide assay. Subsequently, antifungal susceptibility testing was performed for greater inoculum concentrations and 24- and 48-h-old cultures of planktonic Candida. Furthermore, Candida biofilm-derived planktonic cells (BDPC) were also subjected to antifungal susceptibility testing. The MICs for both C. albicans strains in the planktonic mode were low, although on increasing the inoculum concentration (up to 1 × 108 cells/ml), a variable MIC was noted. On the contrary, for Candida biofilms, the MICs of antifungals were 15- to >1,000-fold higher. Interestingly, the MICs for BDPC were lower and were similar to those for planktonic-mode cells, particularly those of CAS and AMB. Our data indicate that higher antifungal resistance of Candida biofilms is an intrinsic feature possibly related to the biofilm architecture rather than cellular density or cellular aging. PMID:18625775

Seneviratne, C. J.; Jin, L. J.; Samaranayake, Y. H.; Samaranayake, L. P.

2008-01-01

275

Synergistic Fungistatic Effects of Lactoferrin in Combination with Antifungal Drugs against Clinical Candida Isolates  

PubMed Central

Because of the rising incidence of failures in the treatment of oropharyngeal candidosis in the case of severely immunosuppressed patients (mostly human immunodeficiency virus [HIV]-infected patients), there is need for the development of new, more effective agents and/or compounds that support the activity of the common antifungal agents. Since lactoferrin is one of the nonspecific host defense factors present in saliva that exhibit antifungal activity, we studied the antifungal effects of human, bovine, and iron-depleted lactoferrin in combination with fluconazole, amphotericin B, and 5-fluorocytosine in vitro against clinical isolates of Candida species. Distinct antifungal activities of lactoferrin were observed against clinical isolates of Candida. The MICs generally were determined to be in the range of 0.5 to 100 mg · ml?1. Interestingly, in the combination experiments we observed pronounced cooperative activity against the growth of Candida by using lactoferrin and the three antifungals tested. Only in a limited concentration range was minor antagonism detected. The use of lactoferrin and fluconazole appeared to be the most successful combination. Significant reductions in the minimal effective concentrations of fluconazole were found when it was combined with a relatively low lactoferrin concentration (1 mg/ml). Such combinations still resulted in complete growth inhibition, while synergy of up to 50% against several Candida species was observed. It is concluded that the combined use of lactoferrin and antifungals against severe infections with Candida is an attractive therapeutic option. Since fluconazole-resistant Candida species have frequently been reported, especially in HIV-infected patients, the addition of lactoferrin to the existing fluconazole therapy could postpone the occurrence of species resistance against fluconazole. Clinical studies to further elucidate the potential utility of this combination therapy have been initiated. PMID:10543740

Kuipers, M. E.; de Vries, H. G.; Eikelboom, M. C.; Meijer, D. K. F.; Swart, P. J.

1999-01-01

276

Cell density and cell aging as factors modulating antifungal resistance of Candida albicans biofilms.  

PubMed

Biofilm formation is a major virulence attribute of Candida pathogenicity which contributes to higher antifungal resistance. We investigated the roles of cell density and cellular aging on the relative antifungal susceptibility of planktonic, biofilm, and biofilm-derived planktonic modes of Candida. A reference and a wild-type strain of Candida albicans were used to evaluate the MICs of caspofungin (CAS), amphotericin B (AMB), nystatin (NYT), ketoconazole (KTC), and flucytosine (5FC). Standard, NCCLS, and European Committee on Antibiotic Susceptibility Testing methods were used for planktonic MIC determination. Candida biofilms were then developed on polystyrene wells, and MICs were determined with a standard 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide assay. Subsequently, antifungal susceptibility testing was performed for greater inoculum concentrations and 24- and 48-h-old cultures of planktonic Candida. Furthermore, Candida biofilm-derived planktonic cells (BDPC) were also subjected to antifungal susceptibility testing. The MICs for both C. albicans strains in the planktonic mode were low, although on increasing the inoculum concentration (up to 1 x 10(8) cells/ml), a variable MIC was noted. On the contrary, for Candida biofilms, the MICs of antifungals were 15- to >1,000-fold higher. Interestingly, the MICs for BDPC were lower and were similar to those for planktonic-mode cells, particularly those of CAS and AMB. Our data indicate that higher antifungal resistance of Candida biofilms is an intrinsic feature possibly related to the biofilm architecture rather than cellular density or cellular aging. PMID:18625775

Seneviratne, C J; Jin, L J; Samaranayake, Y H; Samaranayake, L P

2008-09-01

277

Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals.  

PubMed

Biofilm formation is a major virulence attribute of Candida albicans and is directly associated with therapeutic failure. One method by which Candida acquires antifungal resistance is the expression of drug-resistance genes. This study aimed to evaluate the transcriptional regulation of several genes associated with antifungal resistance of C. albicans under planktonic, recently adhered and biofilm growth modes and in C. albicans biofilms in response to antifungal agents. Initially, the antifungal susceptibility of C. albicans cultures in different growth modes was evaluated by standard antifungal susceptibility testing. Next, to assess CDR1, CDR2, MDR1, ERG11, FKS1 and PIL1 expression, RNA was harvested from cells in each growth mode, and from biofilms after drug treatment, and subjected to quantitative real-time RT-PCR (qRT-PCR). Biofilm C. albicans was more resistant to antifungals than recently adhered cells and stationary-phase planktonic cultures. Transcriptional expression of CDR1, CDR2, MDR1, ERG11 and FKS1 was lower in recently adhered C. albicans than in the stationary-phase planktonic cultures. In contrast, PIL1 levels were significantly increased in recently adhered and biofilm modes of growth. The expression of MDR1 in biofilms greatly increased on challenge with amphotericin B but not with the other drugs tested (P<0.01). ERG11 was significantly upregulated by ketoconazole (P<0.01). Caspofungin and amphotericin B significantly upregulated FKS1 expression, whereas they significantly downregulated PIL1 expression (P<0.01). These results indicate that the expression of drug-resistance genes is associated with higher drug resistance of Candida biofilms, and lay a foundation for future large-scale genome-wide expression analysis. PMID:21474609

Watamoto, T; Samaranayake, L P; Egusa, H; Yatani, H; Seneviratne, C J

2011-09-01

278

AS2077715: a novel antifungal antibiotic produced by Capnodium sp. 339855.  

PubMed

A novel antifungal agent, AS2077715, was isolated from the fermentation broth of a fungal strain (339855) identified as a new Capnodium species based on morphological characteristics and large-subunit ribosomal DNA sequencing. AS2077715 was isolated as a white powder via solvent extraction, HP-20 and ODS-B column chromatography and crystallization, and was determined to have the molecular formula C25H41NO7. AS2077715 has a structure related to that of funiculosin, an inhibitor of mitochondrial cytochrome bc1 complex (complex III), and showed antifungal activity against Trichophyton species. PMID:24865863

Ohsumi, Keisuke; Masaki, Teruhisa; Takase, Shigehiro; Watanabe, Masato; Fujie, Akihiko

2014-10-01

279

The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles.  

PubMed

The antibacterial and antifungal activity of a low melting point soda-lime glass powder containing silver nanoparticles has been studied. Nano-Ag sepiolite fibres containing monodispersed silver nanoparticles (d(50) approximately 11 +/- 9 nm) were used as the source of silver. This powder presents a high antibacterial (against gram-positive and gram-negative bacteria) as well as antifungal (against I. orientalis) activity. The observed high activity against yeast has been explained by considering the inhibitory effect of the Ca(2+) lixiviated from the glass on the growth of the yeast colonies. PMID:19417439

Esteban-Tejeda, L; Malpartida, F; Esteban-Cubillo, A; Pecharromán, C; Moya, J S

2009-02-25

280

Synthesis and antifungal evaluation of novel triazole derivatives as inhibitors of cytochrome P450 14?-demethylase  

Microsoft Academic Search

A series of 1-(1H-1,2,4-triazol-1-yl)-2-(2,4-difluorophenyl)-3-substituted-2-propanols (1a–v, 2a–w), which are analogues of fluconazole, have been designed and synthesized as the potential antifungal agents by the click reaction. Click reaction approach toward the synthesis of two sets of novel 1,2,3-triazolyl linked triazole antifungal derivatives 1a–v, 2a–w was achieved by Cu(I)-catalyzed 1,3-dipolar cycloaddition of propargylated intermediate 8 with substituted azidomethyl benzene. The 1,2,3-triazolyl group

Shichong Yu; Xiaoyun Chai; Honggang Hu; Yongzheng Yan; Zhongjun Guan; Yan Zou; Qingyan Sun; Qiuye Wu

2010-01-01

281

Essential oil composition and antifungal activity of Foeniculum vulgare Mill obtained by different distillation conditions.  

PubMed

The influence of different hydrodistillation conditions was evaluated from the standpoint of essential oil yield, chemical composition and antifungal activity from seeds of Foeniculum vulgare Mill. Three hydrodistillation conditions were considered. The main constituents of the oils were: (E)-anethole (72.27%-74.18%), fenchone (11.32%-16.35%) and methyl chavicol (3.78%-5.29%). The method of distillation significantly effected the essential oil yield and quantitative composition, although the antifungal activity of the oils against some fungi was only slightly altered. PMID:12722142

Mimica-Duki?, N; Kujundzi?, S; Sokovi?, M; Couladis, M

2003-04-01

282

The chemical composition of some Lauraceae essential oils and their antifungal activities.  

PubMed

The antifungal activity of Aniba rosaeodora, Laurus nobilis, Sassafras albidum and Cinnamomum zeylanicum essential oils were investigated against 17 micromycetes. Among the tested fungal species were food poisoning, spoilage fungi, plant and animal pathogens. In order to determine fungistatic and fungicidal concentrations (MIC and MFC) macrodilution and microdilution tests were used. Linalool was the main component in the essential oil of A. rosaeodora, while 1.8-cineole was dominant in L. nobilis. In sassafras essential oil safrole was the major component and in the oil of C. zeylanicum the main component was trans-cinnamaldehyde. The essential oil of cinnamon showed the strongest antifungal activity. PMID:15478207

Simi?, A; Sokovi?, M D; Risti?, M; Gruji?-Jovanovi?, S; Vukojevi?, J; Marin, P D

2004-09-01

283

Antifungal Activity of Decyl Gallate against Several Species of Pathogenic Fungi  

PubMed Central

This work aims to demonstrate that the gallic acid structure modification to the decyl gallate (G14) compound contributed to increase the antifungal activity against several species of pathogenic fungi, mainly, Candida spp., Cryptococcus spp., Paracoccidioides spp., and Histoplasma capsulatum, according to standardized microdilution method described by Clinical Laboratory Standard Institute (CLSI) documents. Moreover this compound has a particularly good selectivity index value, which makes it an excellent candidate for broad-spectrum antifungal prototype and encourages the continuation of subsequent studies for the discovery of its mechanism of action. PMID:25505923

de Paula e Silva, Ana Carolina Alves; Costa-Orlandi, Caroline Barcelos; Gullo, Fernanda Patrícia; Sangalli-Leite, Fernanda; de Oliveira, Haroldo Cesar; da Silva, Julhiany de Fátima; Rossi, Suélen Andrea; Benaducci, Tatiane; Wolf, Vanessa Gonçalves; Regasini, Luis Octávio; Petrônio, Maicon Segalla; Silva, Dulce Helena Siqueira; Bolzani, Vanderlan S.; Mendes-Giannini, Maria José Soares

2014-01-01

284

Antifungal effect of various essential oils against Candida albicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris.  

PubMed

The antifungal effect of the essential oil from Satureja montana L., Lavandula angustifolia Mill., Lavandula hybrida Reverchon, Syzygium aromaticum (L.) Merril and Perry, Origanum vulgare L., Rosmarinus officinalis L. and six chemotypes of Thymus vulgaris L. on Candida albicans growth were studied. The most efficiency was obtained with the essential oil from Thymus vulgaris thymol chemotype (MIC 80% = 0.016 microL/mL and Kaff = 296 microL/mL). The presence in the culture medium of essential oil from Thymus vulgaris thymol chemotype (0.01, 0.1, 0.2, 0.3 microg/mL) and amphotericin B involved a decrease of the MIC 80% of amphotericin B. In contrast, the combination of amphotericin B and low concentrations (0.00031-0.0025 microg/mL) of essential oil was antagonistic. The strongest decrease (48%) of the MIC 80% was obtained with medium containing 0.2 microL/mL of essential oil. These results signify that the essential oil of Thymus vulgaris thymol chemotype potentiates the antifungal action of amphotericin B suggesting a possible utilization of this essential oil in addition to antifungal drugs for the treatment of mycoses. PMID:15742351

Giordani, R; Regli, P; Kaloustian, J; Mikaďl, C; Abou, L; Portugal, H

2004-12-01

285

Antifungal highly oxygenated guaianolides and other constituents from Ajania fruticulosa.  

PubMed

Three highly oxygenated guaianolides were isolated from the aerial parts of Ajania fruticulosa along with 17 known phytochemicals including a triterpene (alpha-amyrin), two plant sterols (beta-sitosterol, daucosterol), four flavonoids (axillarin, centaureidin, santin and 5,7,4'-trihydroxy-3,3'-dimethoxyflavone), and ten sesquiterpenes [1alpha-hydroperoxy-4beta,8alpha,10alpha,13-tetrahydroxyguaia-2-en-12,6alpha-olide, 1alpha-hydroperoxy-4alpha,10alpha-dihydroxyguaia-9alpha-angeloyloxyguaia-2,11(13)-dien-12,6alpha-olide, 3beta,4alpha-dihydroxyguaia-11(13),10(14)-dien-12,6alpha-olide, 1alpha,4alpha,10alpha-trihydroxy-9alpha-angeloyloxyguaia-2,11(13)-dien-12,6alpha-olide, 1beta,2beta-epoxy-3beta,4alpha,10alpha-trihydroxy-guaia-11(13)-en-12,6alpha-olide and 2-oxo-8alpha-hydroxyguaia-1(10),3,11(13)-trien-12,6alpha-olide, ketoplenolide B, alantolactone, 9beta-hydroxyeudesma-4,11(13)-dien-12-oic acid and 9beta-acetoxyeudesma-4,11(13)-dien-12-oic acid]. The structures of the three guaianolides were elucidated by a combination of spectroscopic methods (EIMS, HREIMS, COSY, HMQC, HMBC and NOESY) as 1beta,2beta-epoxy-3beta,4alpha,8beta,10alpha-tetrahydroxyguaia-11(13)-en-12,6alpha-olide (1), 1beta,2beta-epoxy-3beta,4alpha,9alpha,10alpha-tetrahydroxyguaia-11(13)-en-12,6alpha-olide (2) and 1beta,2beta-epoxy-10alpha-hydroperoxy-3beta,4alpha,8beta-trihydroxyguaia-11(13)-en-12,6alpha-olide (3), respectively. Antifungal bioassay of all isolates showed that guaianolides 1, 2, 3, and 1beta,2beta-epoxy-3beta,4alpha,10alpha-trihydroxyguaia-11(13)-en-12,6alpha-olide were inhibitory to the growth of Candida albicans with MICs being 20, 20, 20, and 40 microg/ml, respectively. PMID:11730880

Meng, J C; Hu, Y F; Chen, J H; Tan, R X

2001-12-01

286

Consensus guidelines for the use of empiric and diagnostic-driven antifungal treatment strategies in haematological malignancy, 2014.  

PubMed

Invasive fungal disease (IFD) causes significant morbidity and mortality in patients undergoing allogeneic haemopoietic stem cell transplantation or chemotherapy for haematological malignancy. Much of these adverse outcomes are due to the limited ability of traditional diagnostic tests (i.e. culture and histology) to make an early and accurate diagnosis. As persistent or recurrent fevers of unknown origin (PFUO) in neutropenic patients despite broad-spectrum antibiotics have been associated with the development of IFD, most centres have traditionally administered empiric antifungal therapy (EAFT) to patients with PFUO. However, use of an EAFT strategy has not been shown to have an overall survival benefit and is associated with excessive antifungal therapy use. As a result, the focus has shifted to developing more sensitive and specific diagnostic tests for early and more targeted antifungal treatment. These tests, including the galactomannan enzyme-linked immunosorbent assay and Aspergillus polymerase chain reaction (PCR), have enabled the development of diagnostic-driven antifungal treatment (DDAT) strategies, which have been shown to be safe and feasible, reducing antifungal usage. In addition, the development of effective antifungal prophylactic strategies has changed the landscape in terms of the incidence and types of IFD that clinicians have encountered. In this review, we examine the current role of EAFT and provide up-to-date data on the newer diagnostic tests and algorithms available for use in EAFT and DDAT strategies, within the context of patient risk and type of antifungal prophylaxis used. PMID:25482742

Morrissey, C O; Gilroy, N M; Macesic, N; Walker, P; Ananda-Rajah, M; May, M; Heath, C H; Grigg, A; Bardy, P G; Kwan, J; Kirsa, S W; Slavin, M; Gottlieb, T; Chen, S

2014-12-01

287

Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil  

Microsoft Academic Search

The antileishmanial and antifungal activity of 24 methanol extracts from 20 plants, all of them used in the Brazilian traditional medicine for the treatment of several infectious and inflammatory disorders, were evaluated against promastigotes forms of two species of Leishmania (L. amazonensis and L. chagasi) and two yeasts (Candida albicans and Cryptococcus neoformans). Among the 20 tested methanolic extracts, those

Fernanda G. Braga; Maria Lúcia M. Bouzada; Rodrigo L. Fabri; Magnum de O. Matos; Francis O. Moreira; Elita Scio; Elaine S. Coimbra

2007-01-01

288

Chemical Composition and Antifungal Activity of Angelica sinensis Essential Oil Against Three Colletotrichum Species  

Technology Transfer Automated Retrieval System (TEKTRAN)

Chemical fungicides are an important component in disease management for most crops. As part of a program to discover natural product-based fungicides, several sensitive assay systems have been developed for the evaluation of naturally occurring antifungal agents. In this study, we focused on the di...

289

Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi.  

PubMed

This review covers important anticancer and antifungal compounds reported from filamentous fungi and in particular from Aspergillus, Penicillium and Talaromyces. The taxonomy of these fungi is not trivial, so a focus of this review has been to report the correct identity of the producing organisms based on substantial previous in-house chemotaxonomic studies. PMID:24064454

Bladt, Tanja Thorskov; Frisvad, Jens Christian; Knudsen, Peter Boldsen; Larsen, Thomas Ostenfeld

2013-01-01

290

Antibiofilm activity and post antifungal effect of lemongrass oil on clinical Candida dubliniensis isolate  

Microsoft Academic Search

Candidal infections are often difficult to eradicate due to the resistance of biofilms to antifungal agents. This study aimed at determining the effects of lemongrass (Cymbopogon citratus DC) oil against Candida dubliniensis in both planktonic and biofilms form. The results from broth microdilution method revealed that the minimum inhibitory and minimum fungicidal concentration of lemongrass oil on C. dubliniensis were

S. Taweechaisupapong; P. Ngaonee; P. Patsuk; W. Pitiphat; W. Khunkitti

291

The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus.  

PubMed

The essential oil extracted from the seeds of dill (Anethum graveolens L.) was demonstrated in this study as a potential source of an eco-friendly antifungal agent. To elucidate the mechanism of the antifungal action further, the effect of the essential oil on the plasma membrane and mitochondria of Aspergillus flavus was investigated. The lesion in the plasma membrane was detected through flow cytometry and further verified through the inhibition of ergosterol synthesis. The essential oil caused morphological changes in the cells of A. flavus and a reduction in the ergosterol quantity. Moreover, mitochondrial membrane potential (MMP), acidification of external medium, and mitochondrial ATPase and dehydrogenase activities were detected. The reactive oxygen species (ROS) accumulation was also examined through fluorometric assay. Exposure to dill oil resulted in an elevation of MMP, and in the suppression of the glucose-induced decrease in external pH at 4 µl/ml. Decreased ATPase and dehydrogenase activities in A. flavus cells were also observed in a dose-dependent manner. The above dysfunctions of the mitochondria caused ROS accumulation in A. flavus. A reduction in cell viability was prevented through the addition of L-cysteine, which indicates that ROS is an important mediator of the antifungal action of dill oil. In summary, the antifungal activity of dill oil results from its ability to disrupt the permeability barrier of the plasma membrane and from the mitochondrial dysfunction-induced ROS accumulation in A. flavus. PMID:22272289

Tian, Jun; Ban, Xiaoquan; Zeng, Hong; He, Jingsheng; Chen, Yuxin; Wang, Youwei

2012-01-01

292

The Petasis Reaction: Microscale Synthesis of a Tertiary Amine Antifungal Analog  

ERIC Educational Resources Information Center

Students prepare a tertiary amine antifungal analog in an upper-level undergraduate organic laboratory. A microscale Petasis reaction is performed to generate a liquid compound readily characterized via IR and proton NMR spectroscopy. The biological relevance of the product is highlighted, with the tertiary amine scaffold being an important…

Koroluk, Katherine J.; Jackson, Derek A.; Dicks, Andrew P.

2012-01-01

293

Synthesis and antifungal properties of ?-methoxy and ?-hydroxyl substituted 4-thiatetradecanoic acids  

PubMed Central

4-Thiatetradecanoic acid exhibited weak antifungal activities against Candida albicans (ATCC 60193), Cryptococcus neoformans (ATCC 66031), and Aspergillus niger (ATCC 16404) (MIC = 4.8-12.7 mM). It has been demonstrated that ?-methoxylation efficiently blocks ?-oxidation and significantly improve the antifungal activities of fatty acids. We examined whether antifungal activity of 4-thiatetradecanoic acid can be improved by ?-substitution. The unprecedented (±)-2-hydroxy-4-thiatetradecanoic acid was synthesized in four steps (20% overall yield), while the (±)-2-methoxy-4-thiatetradecanoic acid was synthesized in five steps (14% overall yield) starting from 1-decanethiol. The key step in the synthesis was the hydrolysis of a trimethylsilyloxynitrile. In general, the novel (±)-2-methoxy-4-thiatetradecanoic acid displayed significantly higher antifungal activities against Candida albicans (ATCC 60193), Cryptococcus neoformans (ATCC 66031), and Aspergillus niger (ATCC 16404) (MIC = 0.8-1.2 mM), when compared with 4-thiatetradecanoic acid. In the case of C. neoformans the (±)-2-hydroxy-4-thiatetradecanoic acid was more fungitoxic (MIC = 0.17 mM) than the ?-methoxylated analog, but not as effective against A. niger (MIC = 5.5 mM). The enhanced fungitoxicity of the (±)-2-methoxy-4-thiatetradecanoic acid, as compared to decylthiopropionic acid, might be the result of a longer half-life in the cells due to a blocked ?-oxidation pathway which results in more time to exert its toxic effects. Thus, these novel fatty acids may have applications as probes to study fatty acid metabolic routes in human cells. PMID:17662704

Carballeira, Néstor M.; O’Neill, Rosann; Parang, Keykavous

2007-01-01

294

Phytotoxic, antifungal activities and acute toxicity studies of the crude extract and compounds from Diospyros canaliculata.  

PubMed

In vitro biological activities including phytotoxic, antifungal activities as well as acute toxicity of the methanol extract, fractions and/or isolated compounds from the stem bark of Diospyros canaliculata were investigated. Well agar diffusion and macrodilution assays were used for investigating the antifungal activity. A phytotoxicity assay was performed against Lemna minor while an acute toxicity assay was performed in mice via oral administration. As a result, plumbagin (5-hydroxy-2-methyl-1,4-naphtoquinone) and two known pentacyclic triterpenes (lupeol and lupenone) were isolated from the extract. With regards the antifungal activities, the inhibition zones varied from 16.51 to 24.86 mm and from 20.50 to 25.10 mm for the extract and plumbagin, respectively. The minimum inhibitory concentrations of the extract and plumbagin ranged between 12.5-25 and 0.78-1.56 µg mL(-1), respectively. At 50 µg mL(-1), the hexane fraction showed phytotoxic activities similar to paraquat, the standard phytotoxic inhibitor. The extract was found to be non-toxic to mice after administration per os. Based on the current findings, we can conclude that this extract is non toxic, with significant phytotoxic and antifungal properties due to the presence of plumbagin. PMID:21462073

Dzoyem, J P; Kechia, F A; Kuete, V; Pieme, A C; Akak, C M; Tangmouo, J G; Lohoue, P J

2011-04-01

295

“In vitro” antifungal activity of ozonized sunflower oil on yeasts from onychomycosis  

PubMed Central

The “in vitro” antifungal activity of ozonized sunflower oil (Bioperoxoil®) was tested on 101 samples of yeasts originating from onychomycosis using the disk diffusion method. The oil was efficacious against several clinical fungal strains: Candida parapsilosis, Candida albicans, Trichosporon asahii, Candida tropicalis and Candida guilliermondii. PMID:24031958

Guerrer, L.V.; Cunha, K. C.; Nogueira, M. C. L.; Cardoso, C. C.; Soares, M. M. C. N.; Almeida, M. T. G.

2012-01-01

296

Modeling Production of Antifungal Compounds and their Role in Biocontrol Inhibitory Activity  

Technology Transfer Automated Retrieval System (TEKTRAN)

Partial Least Squares (PLS) regression modeling was used to relate the antifungal activity of B. subtilis solid-state fermentation extracts to the individual HPLC peaks from those extracts. A model was developed that predicted bioassay inhibition based on extract HPLC profile (R2 = 0.99). Concentr...

297

Antifungal activities of actinomycete strains associated with high-altitude sagebrush rhizosphere.  

PubMed

The antifungal-producing potential of actinomycete populations from the rhizosphere of low-altitude sagebrush, Artemisia tridentata, has been examined. In a continued investigation of new sources of antifungal-producing microorganisms, this study examined the antifungal-producing potential of actinomycetes from the rhizosphere of high-altitude A. tridentata. With high-altitude sagebrush, rhizosphere soil actinomycete numbers were one to four orders of magnitude higher than those found in nonrhizosphere bulk soils and different from those found with the low-altitude plants. A total of 122 actinomycete isolates was screened against nine fungal species and six bacterial species for the production of antimicrobial compounds. Four rhizosphere isolates, Streptomyces amakusaensis, S. coeruleorubidus, S. hawaiiensis and S. scabies, showed broad-spectrum antifungal activity against three or more fungal species in plate assays. In liquid antagonism assays, mycelium production by Aspergillus niger was reduced by up to 50% by two of the actinomycete isolates. These results demonstrate the potential of rhizosphere microbiology in the search for new antimicrobials. PMID:16044290

Jiménez-Esquilín, A E; Roane, T M

2005-08-01

298

Antifungal Activity of Chitosan Nanoparticles and Correlation with Their Physical Properties  

PubMed Central

The need of natural antimicrobials is paramount to avoid harmful synthetic chemicals. The study aimed to determine the antifungal activity of natural compound chitosan and its nanoparticles forms against Candida albicans, Fusarium solani and Aspergillus niger. Chitosan nanoparticles were prepared from low (LMW), high molecular weight (HMW) chitosan and its derivative, trimethyl chitosan (TMC). Particle size was increased when chitosan/TMC concentration was increased from 1 to 3 mg/mL. Their zeta potential ranged from +22 to +55?mV. Chitosan nanoparticles prepared from different concentrations of LMW and HMW were also found to serve a better inhibitory activity against C. albicans (MICLMW = 0.25–0.86?mg/mL and MICHMW = 0.6–1.0?mg/mL) and F. solani (MICLMW = 0.86–1.2?mg/mL and MICHMW = 0.5–1.2?mg/mL) compared to the solution form (MIC = 3?mg/mL for both MWs and species). This inhibitory effect was also influenced by particle size and zeta potential of chitosan nanoparticles. Besides, Aspergillus niger was found to be resistant to chitosan nanoparticles except for nanoparticles prepared from higher concentrations of HMW. Antifungal activity of nanoparticles prepared from TMC was negligible. The parent compound therefore could be formulated and applied as a natural antifungal agent into nanoparticles form to enhance its antifungal activity. PMID:22829829

Ing, Ling Yien; Zin, Noraziah Mohamad; Sarwar, Atif; Katas, Haliza

2012-01-01

299

Generation and characterization of transgenic plum lines expressing the Gastrodia anti-fungal protein  

Technology Transfer Automated Retrieval System (TEKTRAN)

The Gastrodia anti-fungal protein (GAFP) is a monocot mannose-binding plant lectin isolated from the Asiatic orchid Gastrodia elata. This lectin has provided documented disease resistance in transgenic tobacco and cotton against several root diseases, but it's potential to confer disease resistance...

300

Antifungal activity of crude extracts and essential oil of Moringa oleifera Lam  

Microsoft Academic Search

Investigations were carried out to evaluate the therapeutic properties of the seeds and leaves of Moringa oleifera Lam as herbal medicines. Ethanol extracts showed anti-fungal activities in vitro against dermatophytes such as Trichophyton rubrum, Trichophyton mentagrophytes, Epidermophyton floccosum, and Microsporum canis. GC–MS analysis of the chemical composition of the essential oil from leaves showed a total of 44 compounds. Isolated

Ping-Hsien Chuang; Chi-Wei Lee; Jia-Ying Chou; M. Murugan; Bor-Jinn Shieh; Hueih-Min Chen

2007-01-01

301

Short Communication Antifungal activity of crude extracts and essential oil of Moringa oleifera Lam  

Microsoft Academic Search

Investigations were carried out to evaluate the therapeutic properties of the seeds and leaves of Moringa oleifera Lam as herbal medi- cines. Ethanol extracts showed anti-fungal activities in vitro against dermatophytes such as Trichophyton rubrum, Trichophyton mentagro- phytes, Epidermophyton Xoccosum, and Microsporum canis. GC-MS analysis of the chemical composition of the essential oil from leaves showed a total of 44

Ping-Hsien Chuang; Chi-Wei Lee; Jia-Ying Chou; M. Murugan; Bor-Jinn Shieh; Hueih-Min Chen

302

In vitro antifungal activity of phenylheptatriyne from Bidens cernua L. against yeasts  

Microsoft Academic Search

In vitro antifungal activity of phenylheptatriyne from Bidens cernua L. (Asteraceae) was studied using broth macrodilution method against 125 strains of yeasts including 104 clinical and other isolates of Candida spp. (C. albicans, C. krusei, C. tropicalis, C. guilliermondii, C. parapsilosis, C. glabrata, C. inconspicua), 16 strains of basidiomycetous yeasts (Cryptococcus neoformans, C. albidus, Trichosporon cutaneum, Rhodotorula glutinis) and five

N. P. Rybalchenko; V. A. Prykhodko; S. S. Nagorna; N. N. Volynets; A. N. Ostapchuk; V. V. Klochko; T. V. Rybalchenko; L. V. Avdeeva

2010-01-01

303

Antifungal Activities of Tacrolimus and Azole Agents against the Eleven Currently Accepted Malassezia Species  

Microsoft Academic Search

The lipophilic yeast Malassezia is an exacerbating factor in atopic dermatitis (AD) and colonizes the skin surface of patients with AD. With the goal of reducing the number of Malassezia cells, we investigated the antifungal activities of a therapeutic agent for AD, tacrolimus, and the azole agents itraconazole and keto- conazole against Malassezia species in vitro. We examined 125 strains

Takashi Sugita; Mami Tajima; Tomonobu Ito; Masuyoshi Saito; Ryoji Tsuboi; Akemi Nishikawa

2005-01-01

304

Antifungal activity and pore-forming mechanism of astacidin 1 against Candida albicans.  

PubMed

In a previous report, a novel antibacterial peptide astacidin 1 (FKVQNQHGQVVKIFHH) was isolated from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. In this study, the antifungal activity and mechanism of astacidin 1 were evaluated. Astacidin 1 exhibited antifungal activity against Candida albicans, Trichosporon beigelii, Malassezia furfur, and Trichophyton rubrum. Also, astacidin 1 had fungal cell selectivity in human erythrocytes without causing hemolysis. To understand the antifungal mechanism, membrane studies were done against C. albicans and T. beigelii. Flow cytometric analysis and K(+) measurement showed membrane damage, resulting in membrane permeabilization and K(+) release-induced membrane depolarization. Furthermore, the calcein leakage from liposomes mimicking C. albicans membrane demonstrated that the membrane-active action was driven by pore-forming mechanism. Live cell imaging using fluorescein isothiocyanate-labeled dextrans of various sizes suggested that the radii of pores formed in the C. albicans membrane were 1.4-2.3 nm. Therefore, the present study suggests that astacidin 1 exerts its antifungal effect by damaging the fungal membrane via pore formation. PMID:24955933

Choi, Hyemin; Lee, Dong Gun

2014-10-01

305

Isolating antifungals from fungus-growing ant symbionts using a genome-guided chemistry approach.  

PubMed

We describe methods used to isolate and identify antifungal compounds from actinomycete strains associated with the leaf-cutter ant Acromyrmex octospinosus. These ants use antibiotics produced by symbiotic actinomycete bacteria to protect themselves and their fungal cultivar against bacterial and fungal infections. The fungal cultivar serves as the sole food source for the ant colony, which can number up to tens of thousands of individuals. We describe how we isolate bacteria from leaf-cutter ants collected in Trinidad and analyze the antifungal compounds made by two of these strains (Pseudonocardia and Streptomyces spp.), using a combination of genome analysis, mutagenesis, and chemical isolation. These methods should be generalizable to a wide variety of insect-symbiont situations. Although more time consuming than traditional activity-guided fractionation methods, this approach provides a powerful technique for unlocking the complete biosynthetic potential of individual strains and for avoiding the problems of rediscovery of known compounds. We describe the discovery of a novel nystatin compound, named nystatin P1, and identification of the biosynthetic pathway for antimycins, compounds that were first described more than 60 years ago. We also report that disruption of two known antifungal pathways in a single Streptomyces strain has revealed a third, and likely novel, antifungal plus four more pathways with unknown products. This validates our approach, which clearly has the potential to identify numerous new compounds, even from well-characterized actinomycete strains. PMID:23084933

Seipke, Ryan F; Grüschow, Sabine; Goss, Rebecca J M; Hutchings, Matthew I

2012-01-01

306

The Mechanism of Antifungal Action of Essential Oil from Dill (Anethum graveolens L.) on Aspergillus flavus  

PubMed Central

The essential oil extracted from the seeds of dill (Anethum graveolens L.) was demonstrated in this study as a potential source of an eco-friendly antifungal agent. To elucidate the mechanism of the antifungal action further, the effect of the essential oil on the plasma membrane and mitochondria of Aspergillus flavus was investigated. The lesion in the plasma membrane was detected through flow cytometry and further verified through the inhibition of ergosterol synthesis. The essential oil caused morphological changes in the cells of A. flavus and a reduction in the ergosterol quantity. Moreover, mitochondrial membrane potential (MMP), acidification of external medium, and mitochondrial ATPase and dehydrogenase activities were detected. The reactive oxygen species (ROS) accumulation was also examined through fluorometric assay. Exposure to dill oil resulted in an elevation of MMP, and in the suppression of the glucose-induced decrease in external pH at 4 µl/ml. Decreased ATPase and dehydrogenase activities in A. flavus cells were also observed in a dose-dependent manner. The above dysfunctions of the mitochondria caused ROS accumulation in A. flavus. A reduction in cell viability was prevented through the addition of L-cysteine, which indicates that ROS is an important mediator of the antifungal action of dill oil. In summary, the antifungal activity of dill oil results from its ability to disrupt the permeability barrier of the plasma membrane and from the mitochondrial dysfunction-induced ROS accumulation in A. flavus. PMID:22272289

Tian, Jun; Ban, Xiaoquan; Zeng, Hong; He, Jingsheng; Chen, Yuxin; Wang, Youwei

2012-01-01

307

New Advances in Fatty Acids as Antimalarial, Antimycobacterial and Antifungal Agents  

PubMed Central

This review deals with the most recent findings on the antimalarial, antimycobacterial, and antifungal properties of fatty acids, with particular emphasis on novel marine fatty acids. The first section deals with the most recent and some background literature on what has been the latest developments with respect to fatty acids as antimalarial agents and the importance of enzyme inhibition, in particular the inhibition of the enoyl-ACP-reductase (Fab I) of P. falciparum, the principal agent responsible for malaria. This section of the review also emphasizes the latest antimalarial research with the very long-chain ?5,9 fatty acids from sponges. The second section of the review deals with the recent literature on the antimycobacterial activity of fatty acids and the importance of enzyme inhibition, in particular the inhibition of the enoyl-ACP-reductase (InhA) of M. tuberculosis for antimycobacterial activity. The inhibitory activities of the ?5,9 fatty acids against InhA as well as that of the ?-methoxylated fatty acids are also discussed. The importance of ?5,9 fatty acids as topoisomerase I inhibitors and its connection to cancer is also reviewed. The last part of the review, the antifungal section, also emphasizes the most recent research with antifungal fatty acids and the importance of enzyme inhibition, in particular N-myristoyltransferase (NMT) inhibition, for antifungal activity. This last section of the review emphasizes the latest research with the ?-methoxylated fatty acids but the importance of acetylenic fatty acids is also considered. PMID:18023422

Carballeira, N.M.

2008-01-01

308

Antifungal activity of several medicinal plants extracts against the early blight pathogen (Alternaria solani)  

Microsoft Academic Search

The antifungal activity for several medicinal plants against the early blight fungus (Alternaria solani) has been investigated. These plants were Syrian marjoram (Majorana syriaca), rosemary (Rosmarinus officinalis), Greek sage (Salvia fruticosa), roselle (Hibiscus sabdariffa) and cotton lavender (Santolina chamaecyparissus). The inhibitory effect of these extracts on the radial mycelial growth as well as on spore germination was measured in vitro

Saba J. Goussous; Firas M. Abu el-Samen; Ragheb A. Tahhan

2010-01-01

309

Eupatorium capillifolium essential oil: chemical composition antifungal activity and insecticidal activity  

Technology Transfer Automated Retrieval System (TEKTRAN)

Natural plant extracts often contain compounds that are useful in pest management applications. The essential oil of Eupatorium capillifolium (dog-fennel) was investigated for antifungal and insecticidal activities. Essential oil obtained by hydrodistillation of aerial parts was analyzed by gas chro...

310

Identification of medicinal species and antifungal property of a Dong ethnic drug  

PubMed Central

Objective: To identify the medicinal species in the Zi Hua Di Ding (ZHDD) prescription commonly used by the Dong ethnic people, and investigate the potential mechanism involved with the anti-fungal properties on Trichophyton rubrum. Methods: DNA barcode technique was used to identify the species in the ZHDD prescription. In vitro study was performed to investigate the antifungal properties of the identified Viola philippica on the T. rubrum. Microscopy was used to observe the growth of the T. rubrum. Results: The ZHDD prescription is a mixture of V. philippica and V. inconspicua, and its antifungal properties was superior to the single component. V. philippica could affect the surface and flexibility of hypha, and contribute to the generation of branches. In addition, it could damage the biofilm. Conclusions: Using the DNA barcode technique, we identify the ZHDD prescription is a mixture of V. philippica and V. inconspicua, and its antifungal properties was superior to the single component. V. philippica could affect the growth and biofilm formation of T. rubrum. PMID:25663999

Sun, Zhirong; Du, Yuan; Cheng, Lili; Zhu, Nannan

2014-01-01

311

[Research status of natural compounds combine with antifungal agents against drug-resistent Candida albicans].  

PubMed

To against the emergence of drug-resistent candidiasis, the studys of synergism of natural compounds combine with antifungal agents in vitro showed a continuous growth in recent years. The paper reviewed recent progresses to compare the synergetic effect by FICI method, and to conclude the synergetic mechanisms which have been confirmed as a reference for futher study. PMID:24754163

Wan, Jiang-Fan; Tang, Chun-Ping; Shen, Zhi-Bin; Jiang, Tao

2014-01-01

312

Reliability of the WIDERYST Susceptibility Testing System for Detection of In Vitro Antifungal Resistance in Yeasts  

Microsoft Academic Search

This study evaluated the WIDERYST system, a commercially available computer-assisted image-processing device for the antifungal susceptibility testing of yeasts. A collection of 90 clinical isolates selected to represent ranges of susceptibilities in vitro as broad as possible was tested. An evaluation compared the results obtained by the new system with those achieved by both the Clinical and Laboratory Standards Institute

Manuel Cuenca-Estrella; Alicia Gomez-Lopez; M. Olga Gutierrez; M. Jose Buitrago; Juan L. Rodriguez-Tudela

2008-01-01

313

Antifungal Effects on Metabolite Profiles of Medically Important Yeast Species Measured by Nuclear Magnetic Resonance Spectroscopy  

Microsoft Academic Search

Drug-induced inhibition of fungal growth is used in the diagnostic laboratory to predict therapeutic efficacy but is relatively slow, and determination of endpoints can be problematic. Nuclear magnetic resonance (NMR) spectroscopy identifies the metabolic complement of microorganisms while monitoring utilization of constit- uents of the incubation medium. This technique may provide a rapid and objective indicator of antifungal effects. We

Muireann Coen; Jennifer Bodkin; Damla Power; William A. Bubb; Uwe Himmelreich; Philip W. Kuchel; Tania C. Sorrell

2006-01-01

314

Antifungal susceptibilities of Cryptococcus neoformans cerebrospinal fluid isolates from AIDS patients in Kenya.  

PubMed

Poor susceptibility of Cryptococcus neoformans to fluconazole (FLC) is a matter of concern among clinicians in Africa. The emergence of resistance to FLC was recently reported in Kenya, but it is not known whether it is widespread. Thus, there is need for more antifungal drug susceptibility studies in Kenya. The aim of this study was to measure the in vitro antifungal drug susceptibilities of incident C. neoformans isolates from acquired immunodeficiency syndrome patients in Kenya. Antifungal susceptibility testing was performed in 67 C. neoformans isolates by broth microdilution method as outlined in the Clinical and Laboratory Standards Institute document M27-A3 using FLC, amphotericin B (AMB), voriconazole (VOR), ravuconazole (RAV) and flucytosine (5-FC). Isolates were grown on l-canavanine glycine bromothymol blue medium for serotype identification. Six per cent of the isolates were identified as C. neoformans var. gattii serotype B or C and 94% as C. neoformans var. neoformans. All isolates tested were susceptible to AMB, VOR and RAV (100%), and high susceptibilities were seen to FLC (97%), and 5-FC (90%). Only 3% and 10% of the isolates' susceptibility to FLC and 5-FC, respectively, was dose-dependent or intermediate. These results demonstrate high susceptibilities of incident C. neoformans isolates to FLC and AMB, antifungals used for treatment of cryptococcal meningitis in Kenya. PMID:21535451

Mdodo, Rennatus; Moser, Stephen A; Jaoko, Walter; Baddley, John; Pappas, Peter; Kempf, Mirjam-Colette; Aban, Inmaculada; Odera, Susan; Jolly, Pauline

2011-09-01

315

Compositions and antifungal activities of essential oils of some Algerian aromatic plants.  

PubMed

Essential oils extracted from ten Algerian plants were analyzed for their potential activity against Candida albicans. The highest efficiency was obtained with the essential oil from Thymus numidicus which showed antifungal effect 1357 fold stronger than that measured with amphotericin B. PMID:18164558

Giordani, Roger; Hadef, Youcef; Kaloustian, Jacques

2008-04-01

316

In Vitro Antifungal Activity of Ankaferd Blood Stopper Against Candida albicans  

PubMed Central

Background Candida albicans is a memeber of the oral flora that can lead to various complications in immunosupresive patients after oral surgery processes. Ankaferd Blood Stopper® (ABS) is a medical plant extract that is safe to use in patients with dental surgery bleedings in Turkey. Objective The study evaluated the antifungal activity of ABS medicinal plant extract against C albicans using the agar diffusion and broth microdilution methods. Methods The plant extract antifungal activity was assessed in vitro either by applying the ABS extract directly and by applying different concentrations of ABS onto Candida culture. For these experiments, an agar diffusion method was used. To determine the minimum inhibitory concentration (MIC), a broth microdilution method was used. Results Different volumes of the active substance (10, 20, 30, and 40 ?L) were applied onto Candida (0.5 McFarland solution) cultivated plate; Candida growth was inhibited in accordance with the volumes of ABS. However, when various dilutions of ABS (1:2, 1:20, 1:40, and 1:80) were added as drops containing 20 ?L, no antifungal effects were found. No MIC values were identified using broth microdilution. When different dilutions of ABS containing 100 ?L of 0.5 McFarland solution of C albicans were cultured depending on the time (10, 20, 30, and 40 minutes), the effect of the duration was not significant. Conclusion The various tests were carried out to investigate antifungal effects of ABS on Candida, but none were found. PMID:24648581

Ciftci, Sevgi; Keskin, Fahriye; Keceli Ozcan, Sema; Erdem, Mehmet Ali; Cankaya, Burak; Bingol, Recep; Kasapoglu, Cetin

2011-01-01

317

Antifungal and antibacterial activity of Haliclona sp. from the Persian Gulf, Iran.  

PubMed

In this study, antifungal and antibacterial activities of diethyl ether, methanol and aqueous extracts of Haliclona sp. were assessed (in vitro). The antibacterial activity of the extracts was determined by broth dilution methods against clinical Gram-negative bacteria: Escherichia coli, Pseudomonas aeruginosa and Gram-positive bacteria: Staphylococcus aureus aureus, Bacillus subtilis spizizenii. The antifungal activity of the extracts was determined by using a broth microdilution test against clinical fungi Candida albicans and Aspergillus fumigatus. Our results showed diethyl ether extract of Haliclona sp. was active on Gram-positive bacteria. In addition, methanol extract in comparison with diethyl ether extract had better activity against C. albicans (MIC: 0.75 mg/mL, MFC: 1.5mg/mL) and A. fumigatus (MIC: 2mg/mL, MFC: 3mg/mL). Aqueous extract had neither antifungal nor antibacterial activities. Based our results, Haliclona sp. can be considered as a source of novel antibiotic and antifungal. PMID:24934592

Nazemi, M; Alidoust Salimi, M; Alidoust Salimi, P; Motallebi, A; Tamadoni Jahromi, S; Ahmadzadeh, O

2014-09-01

318

Spice-Derived Essential Oils: Effective Antifungal and Possible Therapeutic Agents  

Microsoft Academic Search

Essential oils derived from 20 spices were investigated for their antifungal activity against Aspergillus niger, Candida albicans, Candida blanki, Candida cylindracea, Candida glabrata, Candida krusei, Candida tropicalis, and Saccharomyces cerevisiae using the disc diffusion method. The sensitivity of fungi to various essential oils was compared with standard ketoconazole and an activity index (AI) was determined. Inhibitory patterns varied with the

Vilas A. Kamble; Sahadeo D. Patil

2008-01-01

319

Successful use of combination antifungal therapy in the treatment of coccidioides meningitis.  

PubMed Central

Coccidioidal meningitis is a highly lethal condition with a high morbidity and relapse rate caused by Coccidioides immitis. This case report highlights the difficulty in diagnosing and treating coccidioidal meningitis, and discusses a novel combination antifungal therapy (voriconazole and liposomal amphotericin B), which was used to treat this patient. Images Figure 1 Figure 2 PMID:16775917

Antony, Suresh J.; Jurczyk, Peter; Brumble, Lisa

2006-01-01

320

Hevein: an antifungal protein from rubber-tree ( Hevea brasiliensis ) latex  

Microsoft Academic Search

Several chitin-binding proteins were isolated from the “bottom fraction” of Hevea brasiliensis (Müll.) Arg. latex. One of these chitin-binding proteins is hevein, a small monomeric protein which strongly resembles the lectin from stinging nettle (Urtica dioica L.). Like the latter, hevein showed strong antifungal activity against several fungi in vitro. The possible involvement of this protein in the defense against

Jan Van Parijs; Willem F. Broekaert; Irwin J. Goldstein; Willy J. Peumans

1991-01-01

321

Methoxybifurcarenone: an antifungal and antibacterial meroditerpenoid from the brown alga Cystoseira tamariscifolia  

Microsoft Academic Search

A meroditerpenoid metabolite has been isolated from the brown alga Cystoseira tamariscifolia and characterized as methoxybifurcarenone, by spectral analysis. Methoxybifurcarenone possesses antifungal activity against three tomato pathogenic fungi: Botrytis cinerea, Fusarium oxysporum sp. mycopersici and Verticillium alboatrum and antibacterial activity against Agrobacterium tumefaciens and Escherichia coli.

Ahmed Bennamara; Abdelmjid Abourriche; Mohamed Berrada; M'hamed Charrouf; Nezha Chaib; Mohammed Boudouma; François Xavier Garneau

1999-01-01

322

Optimization for the Production of Surfactin with a New Synergistic Antifungal Activity  

PubMed Central

Background Two of our long term efforts are to discover compounds with synergistic antifungal activity from metabolites of marine derived microbes and to optimize the production of the interesting compounds produced by microorganisms. In this respect, new applications or mechanisms of already known compounds with a high production yield could be continually identified. Surfactin is a well-known lipopeptide biosurfactant with a broad spectrum of antimicrobial and antiviral activity; however, there is less knowledge on surfactin’s antifungal activity. In this study, we investigated the synergistic antifungal activity of C15-surfactin and the optimization of its production by the response surface method. Methodology/Principal Findings Using a synergistic antifungal screening model, we found that the combination of C15-surfactin and ketoconazole (KTC) showed synergistic antifungal effect on Candida albicans SC5314 when the concentrations of C15-surfactin and KTC were 6.25 µg/mL and 0.004 µg/mL, respectively. These concentrations were lower than their own efficient antifungal concentrations, which are >100 µg/mL and 0.016 µg/mL, respectively. The production of C15-surfactin from Bacillus amyloliquefaciens was optimized by the response surface methodology in shaker flask cultivation. The Plackett-Burman design found sucrose, ammonium nitrate and NaH2PO4.2H2O to have significant effects on C15-surfactin production. The optimum values of the tested variables were 21.17 g/L sucrose, 2.50 g/L ammonium nitrate and 11.56 g/L NaH2PO4·2H2O. A production of 134.2 mg/L, which were in agreement with the prediction, was observed in a verification experiment. In comparison to the production of original level (88.6 mg/L), a 1.52-fold increase had been obtained. Conclusion/Significance This work first found that C15-surfactin was an efficient synergistic antifungal agent, and demonstrated that response surface methodology was an effective method to improve the production of C15-surfactin. PMID:22629294

Liu, Mei; Dai, Huanqin; Song, Fuhang; Yu, Zhenyan; Wang, Shujin; Hu, Jiangchun; Kokare, Chandrakant R.; Zhang, Lixin

2012-01-01

323

Histone deacetylase inhibitors for enhancing activity of antifungal agent: a patent evaluation of WO2014041424(A1).  

PubMed

Novel histone deacetylase inhibitors have been developed for the antifungal therapy. Molecule 8 exhibited potent antifungal activities with MIC values of 0.25/0.25, 0.12/0.25, 0.12/0.12 µg/ml against Candida albicans, C. parapsilosis and C. glabrata after 24/48 h incubation, respectively. Most of the synthesized compound showed significantly synergistic effects with fluconazole in the biological assay. The discovery of these molecules makes positive contributions to the development of potent and safe antifungal drugs. PMID:25381141

Zhang, Lei; Xu, Wenfang

2015-02-01

324

In vitro antifungal activity of hydroxychavicol isolated from Piper betle L  

PubMed Central

Background Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies. Methods The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide. Results Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 ?g/ml for yeasts, 125 to 500 ?g/ml for Aspergillus species, and 7.81 to 62.5 ?g/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 × MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 × MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 × to 8 × MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol. Conclusions The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida infections. PMID:20128889

2010-01-01

325

In vivo application of a small molecular weight antifungal protein of Penicillium chrysogenum (PAF)  

SciTech Connect

The antifungal protein of Penicillium chrysogenum (PAF) inhibits the growth of important pathogenic filamentous fungi, including members of the Aspergillus family and some dermatophytes. Furthermore, PAF was proven to have no toxic effects on mammalian cells in vitro. To prove that PAF could be safely used in therapy, experiments were carried out to investigate its in vivo effects. Adult mice were inoculated with PAF intranasally in different concentrations, up to 2700 ?g·kg{sup ?1} daily, for 2 weeks. Even at the highest concentration – a concentration highly toxic in vitro for all affected molds – used, animals neither died due to the treatment nor were any side effects observed. Histological examinations did not find pathological reactions in the liver, in the kidney, and in the lungs. Mass spectrometry confirmed that a measurable amount of PAF was accumulated in the lungs after the treatment. Lung tissue extracts from PAF treated mice exerted significant antifungal activity. Small-animal positron emission tomography revealed that neither the application of physiological saline nor that of PAF induced any inflammation while the positive control lipopolysaccharide did. The effect of the drug on the skin was examined in an irritative dermatitis model where the change in the thickness of the ears following PAF application was found to be the same as in control and significantly less than when treated with phorbol-12-myristate-13-acetate used as positive control. Since no toxic effects of PAF were found in intranasal application, our result is the first step for introducing PAF as potential antifungal drug in therapy. - Highlights: • PAF, the antifungal protein of Penicillium chrysogenum, was not toxic in mice. • Its intranasal application didn't induce pathological reactions in the lung. • PAF retained its antifungal activity in lung extracts. • Its application on the skin did not cause inflammation.

Palicz, Zoltán; Jenes, Ágnes; Gáll, Tamás [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Miszti-Blasius, Kornél [Department of Clinical Biochemistry and Molecular Pathology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Kollár, Sándor; Kovács, Ilona [Department of Pathology, Kenézy Hospital LTD, Debrecen (Hungary); Emri, Miklós; Márián, Teréz [Department of Nuclear Medicine, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Leiter, Éva; Pócsi, István [Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, Centre of Arts, Humanities and Sciences, University of Debrecen, Debrecen (Hungary); Cs?sz, Éva; Kalló, Gerg? [Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Heged?s, Csaba; Virág, László [Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Csernoch, László [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Szentesi, Péter, E-mail: szentesi.peter@med.unideb.hu [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary)

2013-05-15

326

Effects of hydrophobicity on the antifungal activity of alpha-helical antimicrobial peptides.  

PubMed

We utilized a series of analogs of D-V13K (a 26-residue amphipathic alpha-helical antimicrobial peptide, denoted D1) to compare and contrast the role of hydrophobicity on antifungal and antibacterial activity to the results obtained previously with Pseudomonas aeruginosa strains. Antifungal activity for zygomycota fungi decreased with increasing hydrophobicity (D-V13K/A12L/A20L/A23L, denoted D4, the most hydrophobic analog was sixfold less active than D1, the least hydrophobic analog). In contrast, antifungal activity for ascomycota fungi increased with increasing hydrophobicity (D4, the most hydrophobic analog was fivefold more active than D1). Hemolytic activity is dramatically affected by increasing hydrophobicity with peptide D4 being 286-fold more hemolytic than peptide D1. The therapeutic index for peptide D1 is 1569-fold and 62-fold better for zygomycota fungi and ascomycota fungi, respectively, compared with peptide D4. To reduce the hemolytic activity of peptide D4 and improve/maintain the antifungal activity of D4, we substituted another lysine residue in the center of the non-polar face (V16K) to generate D5 (D-V13K/V16K/A12L/A20L/A23L). This analog D5 decreased hemolytic activity by 13-fold, enhanced antifungal activity to zygomycota fungi by 16-fold and improved the therapeutic index by 201-fold compared with D4 and represents a unique approach to control specificity while maintaining high hydrophobicity in the two hydrophobic segments on the non-polar face of D5. PMID:19090916

Jiang, Ziqing; Kullberg, Bart Jan; van der Lee, Hein; Vasil, Adriana I; Hale, John D; Mant, Colin T; Hancock, Robert E W; Vasil, Michael L; Netea, Mihai G; Hodges, Robert S

2008-12-01

327

Syntheses of new rare earth complexes with carboxymethylated polysaccharides and evaluation of their in vitro antifungal activities.  

PubMed

In the present paper, La, Eu and Yb were selected to represent light, middle and heavy rare earths to form complexes with polysaccharides through chelating coordination of carboxyl groups, which were added into polysaccharide chains by means of carboxymethylation. Their antifungal activities against plant pathogenic fungi were evaluated using growth rate method. These rare earth complexes exhibited various antifungal activities against the tested fungi, depending on rare earth elements, polysaccharide types and fungal species. Among these three metal elements (i.e. La, Eu and Yb), Yb formed the complexes with the most effective antifungal properties. Furthermore, the results showed that ligands of carboxymethylated polysaccharides played a key role in promoting cytotoxicity of the rare earth complexes. Carboxymethylated Ganoderma applanatum polysaccharide (CGAP) was found to be the most effective ligand to form complexes with antifungal activities, followed by carboxymethylated lentinan (CLNT) and carboxymethylated Momordica charantia polysaccharide (CMCP). PMID:25256475

Sun, Xiaobo; Jin, Xiaozhe; Pan, Wei; Wang, Jinping

2014-11-26

328

Antifungal susceptibility and growth inhibitory response of oral Candida species to Brucea javanica Linn. extract  

PubMed Central

Background Candida species have been associated with the emergence of resistant strains towards selected antifungal agents. Plant products have been used traditionally as alternative medicine to ease candidal infections. The present study was undertaken to investigate the antifungal susceptibility patterns and growth inhibiting effect of Brucea javanica seeds extract against Candida species. Methods A total of seven Candida strains that includes Candida albicans ATCC14053, Candida dubliniensis ATCCMYA-2975, Candida glabrata ATCC90030, Candida krusei ATCC14243, Candida lusitaniae ATCC64125, Candida parapsilosis ATCC22019 and Candida tropicalis ATCC13803 were used in this study. The antifungal activity, minimum inhibitory concentration and minimum fungicidal concentration of B. javanica extract were evaluated. Each strain was cultured in Yeast Peptone Dextrose broth under four different growth environments; (i) in the absence and presence of B. javanica extract at respective concentrations of (ii) 1 mg/ml (iii) 3 mg/ml and (iv) 6 mg/ml. The growth inhibitory responses of the candidal cells were determined based on changes in the specific-growth rates (?) and doubling time (g). The values in the presence of extract were computed as percentage in the optical density relative to that of the total cells suspension in the absence of extract. Results B. javanica seeds extract exhibited antifungal properties. C. tropicalis showed the highest growth rate; 0.319?±?0.002 h-1, while others were in the range of 0.141?±?0.001 to 0.265?±?0.005 h-1. In the presence of extract, the lag and log phases were extended and deviated the ?- and g-values. B. javanica extract had significantly reduced the ?-values of C. dubliniensis, C. krusei and C. parapsilosis at more than 80% (??antifungal activity against seven oral Candida species. The fungistatic and growth inhibiting effects of B. javanica extract have shown that it has potential to be considered as a promising candidate for the development of antifungal agent in oral health products. PMID:24305010

2013-01-01

329

Antifungal activity, biofilm-controlling effect, and biocompatibility of poly(N-vinyl-2-pyrrolidinone)-grafted denture materials.  

PubMed

Colonization and biofilm-formation of Candida species on denture surfaces cause Candida-associated denture stomatitis (CADS), a common, recurring disease affecting up to 67% of denture wearers. We developed poly(N-vinyl-2-pyrrolidinone)-grafted denture materials that can be repeatedly recharged with various antifungal drugs to achieve long-term antifungal and biofilm-controlling effects. The monomer, N-vinyl-2-pyrrolidinone (NVP), was grafted onto poly(methyl methacrylate) denture resins through plasma-initiated grafting polymerization. The physical properties and biocompatibility of the resulting resins were not negatively affected by the presence of up to 7.92% of grafted poly (N-vinyl-2-pyrrolidinone) (PNVP). Miconazole and chlorhexidine digluconate (CD) were used as model antifungal drugs. PNVP grafting significantly increased the drug absorption capability of the resulting denture materials. Further, the new materials showed sustained drug release and provided antifungal effects for weeks (in the case of CD) to months (in the case of miconazole). The drug-depleted resins could be recharged with the same or a different class of antifungal drug to further extend antifungal duration. If needed, drugs on the PNVP-grafted denture materials could be "washed out" (quenched) by treating with PNVP aqueous solutions to stop drug release. These results point to great potentials of the new materials in controlling biofilm-formation in a wide range of device-related applications. PMID:23708753

Sun, Xinbo; Cao, Zhengbing; Yeh, Chih-Ko; Sun, Yuyu

2013-10-01

330

Isolation and identification of 5-hydroxyl-5-methyl-2-hexenoic acid from Actinoplanes sp. HBDN08 with antifungal activity.  

PubMed

A bioactivity-guided approach was employed to isolate and determine the chemical identity of bioactive constituents with antifungal activity from Actinoplanes sp. HBDN08. The structure of the antifungal metabolite was elucidated as 5-hydroxyl-5-methyl-2-hexenoic acid on the basis of spectral analysis. This compound showed strong in vitro antifungal activity against Botrytis cinerea, Cladosporium cucumerinum and Corynespora cassiicola, with an IC(50) of 32.45, 27.17, and 30.66 mg/L, respectively; however, it only moderately inhibited hyphal growth of Rhizoctonia solani with an IC(50) of 61.64 mg/L. The in vivo antifungal activity under greenhouse conditions demonstrated that 5-hydroxyl-5-methyl-2-hexenoic acid could effectively control the diseases caused by B. cinerea, C. cucumerinum and C. cassiicola with 71.42%, 78.63% and 65.13% control values at 350 mg/L, respectively. This strong antifungal activity suggests that 5-hydroxyl-5-methyl-2-hexenoic acid might be a promising candidate for new antifungal agents. PMID:20584599

Zhang, Ji; Wang, Xiang-Jing; Yan, Yi-Jun; Jiang, Ling; Wang, Ji-Dong; Li, Bao-Ju; Xiang, Wen-Sheng

2010-11-01

331

Antifungal activity, biofilm-controlling effect, and biocompatibility of poly(N-vinyl-2-pyrrolidinone)-grafted denture materials  

PubMed Central

Colonization and biofilm-formation of Candida species on denture surfaces cause Candida-associated denture stomatitis (CADS), a common, recurring disease affecting up to 67% of denture wearers. We developed poly(N-vinyl-2-pyrrolidinone)-grafted denture materials that can be repeatedly recharged with various antifungal drugs to achieve long-term antifungal and biofilm-controlling effects. The monomer, N-vinyl-2-pyrrolidinone (NVP), was grafted onto poly(methyl methacrylate) denture resins through plasma-initiated grafting polymerization. The physical properties and biocompatibility of the resulting resins were not negatively affected by the presence of up to 7.92% of grafted poly (N-vinyl-2-pyrrolidinone) (PNVP). Miconazole and chlorhexidine digluconate (CD) were used as model antifungal drugs. PNVP grafting significantly increased the drug absorption capability of the resulting denture materials. Further, the new materials showed sustained drug release and provided antifungal effects for weeks (in the case of CD) to months (in the case of miconazole). The drug-depleted resins could be recharged with the same or a different class of antifungal drug to further extend antifungal duration. If needed, drugs on the PNVP-grafted denture materials could be “washed out” (quenched) by treating with PNVP aqueous solutions to stop drug release. These results point to great potentials of the new materials in controlling biofilm-formation in a wide range of device-related applications. PMID:23708753

Sun, Xinbo; Cao, Zhengbing; Yeh, Chih-Ko; Sun, Yuyu

2013-01-01

332

Imidazolylchromanones containing alkyl side chain as lanosterol 14?-demethylase inhibitors: synthesis, antifungal activity and docking study.  

PubMed

Previously, 2-alkylchromans have been introduced as non-azole inhibitors of 14?-demethylase. Accordingly, we incorporated imidazole ring on the 3-position of 2-alkylchromanones to design new inhibitors of 14?-demethylase and potential antifungal agents. Thus, a series of 2-alkyl-3-imidazolylchromanones were synthesized starting from 2-hydroxyphenacyl bromide. The trans-configuration of compounds was confirmed by NMR-spectroscopy. The antifungal activity of title compounds were evaluated against different fungi in comparison with fluconazole and miconazole. trans-2-(1-Pentyl)-3-imidazolylchroman-4-one (4d) showed the most potent activity against yeasts comparable to fluconazole. The experimental data based on (1)H NMR spectroscopy revealed that 2-alkyl side chain and 3-imidazolyl moiety in compound 4d exist predominantly in the di-equatorial conformation. While docking study with 14?-demethylase demonstrated that the di-axial form of compound 4d can be considered as active conformation. PMID:23488742

Emami, Saeed; Banipoulad, Touba; Irannejad, Hamid; Foroumadi, Alireza; Falahati, Mehraban; Ashrafi-Khozani, Mahtab; Sharifynia, Somaye

2014-04-01

333

Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1.  

PubMed

Streptomyces sp. TD-1 was identified as Streptomyces alboflavus based on its morphological characteristics, physiological properties, and 16S rDNA gene sequence analysis. The antifungal activity of the volatile-producing S. alboflavus TD-1 was investigated. Results showed that volatiles generated by S. alboflavus TD-1 inhibited storage fungi Fusarium moniliforme Sheldon, Aspergillus flavus, Aspergillus ochraceus, Aspergillus niger, and Penicillum citrinum in vitro. GC/MS analysis revealed that 27 kinds of volatile organic compounds were identified from the volatiles of S. alboflavus TD-1 mycelia, among which the most abundant compound was 2-methylisoborneol. Dimethyl disulfide was proved to have antifungal activity against F. moniliforme by fumigation in vitro. PMID:23351181

Wang, Changlu; Wang, Zhifang; Qiao, Xi; Li, Zhenjing; Li, Fengjuan; Chen, Mianhua; Wang, Yurong; Huang, Yufang; Cui, Haiyan

2013-04-01

334

The possible mechanism of rhapontigenin influencing antifungal activity on Candida albicans.  

PubMed

Rhapontigenin, an aglycone of rhapontin, was produced by biotransformation and we investigated its antifungal activity against Candida albicans, one of the most important opportunistic fungal pathogens. Rhapontigenin is found to have, in vitro, inhibitory activity with a minimal inhibitory concentration (MIC) value against all test isolates of 128-256 ?g/ml. We detected increased reactive oxygen species (ROS) levels in yeast cultures treated with rhapontigenin at the MIC. Rhapontigenin inhibited DNA, RNA, and protein synthesis, especially RNA synthesis, and induced morphological changes and apoptosis of C. albicans. The apoptotic effect of rhapontigenin on C. albicans at subinhibitory concentrations was higher in the stationary growth phase than in the exponential phase, while the opposite results were noted with amphotericin B. The mechanism of antifungal activity of rhapontigenin may be associated with the generation of ROS that might induce apoptosis and it may also involve the inhibition of ergosterol biosynthesis. PMID:22662760

Kim, Narae; Kim, Jeong-Keun; Hwang, Dahyun; Lim, Young-Hee

2013-01-01

335

Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum.  

PubMed

The chemical composition of Citrus reticulata Blanco essential oil was analysed using GC/MS. Monoterpene hydrocarbons (C10H16) constituted the majority (88.96%, w/w) of the total oil. The oils dose-dependently inhibited Penicillium italicum and Penicillium digitatum. The anti-fungal activity of the oils against P. italicum was attributed to citronellol, octanal, citral, decanal, nonanal, ?-pinene, linalool, and ?-terpinene, whereas anti-fungal activity against P. digitatum is attributed to octanal, decanal, nonanal, limonene, citral, ?-terpinene, linalool, and ?-terpineol. The oils altered the hyphal morphology of P. italicum and P. digitatum by causing loss of cytoplasm and distortion of the mycelia. The oils significantly altered extracellular conductivity, the release of cell constituents, and the total lipid content of P. italicum and P. digitatum. The results suggest that C. reticulata Blanco essential oils generate cytotoxicity in P. italicum and P. digitatum by disrupting cell membrane integrity and causing the leakage of cell components. PMID:24491729

Tao, Nengguo; Jia, Lei; Zhou, Haien

2014-06-15

336

Antifungal activity of hypothemycin against Peronophythora litchii in vitro and in vivo.  

PubMed

The antifungal activity of a natural resorcylic acid lactone, hypothemycin (HPM), against Peronophythora litchii in vitro and in vivo was investigated. HPM treatment substantially suppressed spore germination of P. litchi, with the inhibition rate of 100% when 0.78 ?g/mL HPM was applied. Similarly, mycelial growth of P. litchii was efficiently inhibited. Furthermore, HPM caused the ultrastructural modifications of P. litchii, including the disruption of the cell wall and the endomembrane system, especially the plasma membrane, mitochondria, and vacuoles, which led to the destruction of the cellular integrity. Moreover, application of HPM significantly reduced decay and suppressed peel browning of postharvest litchi fruit inoculated with P. litchii during storage at 28 °C. Overall, these findings suggested that HPM exhibited excellent antifungal activity against P. litchii both in vitro and in vivo, which could be helpful for the storage of harvest litchi fruit. PMID:24106914

Xu, Liangxiong; Xue, Jinghua; Wu, Ping; Wang, Duoduo; Lin, Lijing; Jiang, Yueming; Duan, Xuewu; Wei, Xiaoyi

2013-10-23

337

Antifungal Activity of Lactic Acid Bacteria Isolated from Kimchi Against Aspergillus fumigatus  

PubMed Central

More than 120 isolates of lactic acid bacteria obtained from Kimchi was screened for antifungal activity against Aspergillus fumigatus. Approximately 10% of the isolates showed inhibitory activity and only 4.16% (five isolates) exhibited strong activity against the indicator fungus A. fumigatus. The five isolates showed a wide rang of antifungal activity against A. flavus, Fusarium moniliforme, Penicillium commune, and Rhizopus oryzae. They were identified by 16S rDNA sequencing as Lactobacillus cruvatus, L. lactis subsp. lactis, L. casei, L. pentosus, and L. sakei. The effect of Lactobacillus on mycelial growth and fungal biomass as well as its ability to produce toxic compounds were determined. The results indicate that the three species, Lactobacillus casei, L. lactis subsp. lactis, and L. pentosus, are active against A. fumigatus. PMID:24049503

2005-01-01

338

A new furoquinoline alkaloid with antifungal activity from the leaves of Ruta chalepensis L.  

PubMed

Bioassay-guided separation with an eye toward antifungal activity led to the isolation of the new alkaloid 5-(1?,1?-dimethylallyl)-8-hydroxyfuro[2-3-b] quinoline (1) and the known biscoumarin daphnoretin (2) as the active constituents of the chloroform extract obtained from the leaves of Ruta chalepensis. The structures of the metabolites were elucidated on the basis of their spectral characteristics (NMR, UV, and MS) and were compared with the literature. The antifungal activity of the isolated compounds was evaluated against the phytopathogenic fungi Rhizoctonia solani, Sclerotium rolfsii, and Fusarium solani, which cause root-rot and wilt diseases in several economically important food crops such as potato, sugar beet, and tomato. PMID:22491304

Emam, A; Eweis, M; Elbadry, M

2010-12-01

339

Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil.  

PubMed

The antileishmanial and antifungal activity of 24 methanol extracts from 20 plants, all of them used in the Brazilian traditional medicine for the treatment of several infectious and inflammatory disorders, were evaluated against promastigotes forms of two species of Leishmania (L. amazonensis and L. chagasi) and two yeasts (Candida albicans and Cryptococcus neoformans). Among the 20 tested methanolic extracts, those of Vernonia polyanthes was the most active against L. amazonensis (IC(50) of 4 microg/ml), those of Ocimum gratissimum exhibited the best activity against L. chagasi (IC(50) of 71 microg/ml). Concerning antifungical activity, Schinus terebintifolius, O. gratissimum, Cajanus cajan, and Piper aduncum extracts were the most active against C. albicans (MIC of 1.25 mg/ml) whereas Bixa orellana, O. gratissimum and Syzygium cumini exhibited the best activity against C. neoformans (MIC of 0.078 mg/ml). PMID:17234373

Braga, Fernanda G; Bouzada, Maria Lúcia M; Fabri, Rodrigo L; de O Matos, Magnum; Moreira, Francis O; Scio, Elita; Coimbra, Elaine S

2007-05-01

340

Synthesis and antifungal activity of 1,2,3-triazole phenylhydrazone derivatives.  

PubMed

A series of 1,2,3-triazole phenylhydrazone derivatives were designed and synthesized as antifungal agents. Their structures were determined based on (1)H-NMR spectroscopy, MS, elemental analysis and X-ray single-crystal diffraction. The antifungal activities were evaluated against four phytopathogenic fungi including Rhizoctonia solani, Sclerotinia sclerotiorum, Fusarium graminearum and Phytophthora capsici, by the mycelium growth inhibition method in vitro. Compound 5p exhibited significant anti-phytopathogenic activity, with the EC50 values of 0.18, 2.28, 1.01, and 1.85 ?g mL(-1), respectively. In vivo testing demonstrated that 5p was effective in the control of rice sheath blight, rape sclerotinia rot and fusarium head blight. A 3D-QSAR model was built for a systematic SAR profile to explore more potent 1,2,3-triazole phenylhydrazone analogs as novel fungicides. PMID:25374053

Dai, Zhi-Cheng; Chen, Yong-Fei; Zhang, Mao; Li, Sheng-Kun; Yang, Ting-Ting; Shen, Li; Wang, Jian-Xin; Qian, Shao-Song; Zhu, Hai-Liang; Ye, Yong-Hao

2015-01-14

341

Antifungal effects of Allium sativum (garlic) extract against the Aspergillus species involved in otomycosis.  

PubMed

Otomycosis due to saprophytic keratolytic fungi represents a small percentage of clinical external otitis. Although there are certain antibacterial and antifungal agents available, they usually are very caustic, potentially ototoxic and cannot be used if the ear drum is perforated. Garlic is utilized as a folk medicine in many countries for its antimicrobial and other beneficial properties. In response to a lack of otic preparations, the authors studied the efficacy of garlic extracts against the fungi belonging to the genus Aspergillus which are the most common cause of this infection. Aqueous garlic extract (AGE) and concentrated garlic oil (CGO) along with various commercial garlic supplements and pharmaceutical prescriptions were used in an in-vitro study. AGE and especially CGO were found to have antifungal activity. These agents showed similar or better inhibitory effects than the pharmaceutical preparations and demonstrated similar minimum inhibitory concentrations. PMID:7765862

Pai, S T; Platt, M W

1995-01-01

342

Econazole nitrate-loaded MCM-41 for an antifungal topical powder formulation.  

PubMed

The aim of this article was to prepare a topical powder for the treatment of fungal infections, such as Candida intertrigo and tinea pedis. Thus, an econazole nitrate (ECO) formulation with improved drug dissolution and proper moisture adsorption was designed. ECO was melt with the mesoporous silicate MCM-41 (drug/MCM-41 1/3) and the resulting inclusion compound was characterized by X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). The drug loading was confirmed by the decrease of specific surface area and pore volume between MCM-41 and the inclusion compound. Formulations containing the inclusion compound were prepared and submitted to in vitro dissolution test and in vitro antifungal activity. A remarkable dissolution rate improvement as well as a higher antifungal activity was observed for the inclusion compound if compared to a commercial product. Moisture sorption properties for MCM-41 and formulations were evaluated as well. PMID:20845470

Ambrogi, Valeria; Perioli, Luana; Pagano, Cinzia; Marmottini, Fabio; Moretti, Massimo; Mizzi, Fabiola; Rossi, Carlo

2010-11-01

343

Endophytic fungi diversity of aquatic/riparian plants and their antifungal activity in vitro.  

PubMed

Two hundred and fourteen endophytic fungi were isolated from 500 segments of aquatic/riparian plants Ottelia acuminata, Myriophyllum verticillatum, Equisetum arvense, Cardamine multijuga, and Impatiens chinensis. They were identified to 31 taxa in which Cladosporium, Fusarium, and Geotrichum were the dominant genera. Among all isolates, 169 (79%) were anamorphic fungi, 1 (0.5%) was an teleomorphic ascomycete and 44 (21%) were sterile mycelia. There were significant differences in the colonization frequency of endophytes between the five plant species (X~2=51.128, P<0.001, Chi-square test). The riparian plants harboured more endophytes than the submerged plants. The antifungal activity of these isolates against Fusarium solani and Phytophthora nicotianae in vitro were tested and 28 (13.1%) isolates showed antifungal activities with more than 30% growth inhibition rate against the two pathogens. PMID:20221722

Li, Hai-Yan; Zhao, Chun-An; Liu, Chen-Jian; Xu, Xiao-Fei

2010-02-01

344

Antifungal prophylaxis in liver transplant recipients: a randomized placebo-controlled study.  

PubMed

The aim of this study was to evaluate the efficacy of two antifungal prophylaxis regimens in liver transplant recipients. One hundred and twenty-nine consecutive recipients were randomized to receive sequential treatment with intravenous liposomal amphotericin B + oral itraconazole, intravenous fluconazole + oral itraconazole, or intravenous and oral placebo. Frequency and incidence of mycotic colonization, local and systemic infection of mycotic origin, causes of death, and possible risk factors for mycotic infection were evaluated. The incidence of mycotic colonization was higher in the placebo group ( P<0.01), but there was no significant difference in the incidence of infection between the three groups. Pre-transplant colonization, severity of liver disease, and graft rejection were all risk factors for the development of fungal infection. The routine use of antifungal prophylaxis for all liver transplant recipients does not seem to be justified. PMID:12122510

Biancofiore, Gianni; Bindi, Maria L; Baldassarri, Rubia; Romanelli, Anna Maria; Catalano, Gabriele; Filipponi, Franco; Vagelli, Antonio; Mosca, Franco

2002-07-01

345

Synthesis of biocontrol macromolecules by derivative of chitosan with surfactin and antifungal evaluation.  

PubMed

A derivative of chitosan was prepared with chitosan and ?-cyclodextrins, which was synthesized by the immobilization reaction, as a carrier to adsorb surfactin produced from Bacillus amyloliquefaciens and got biological macromolecules. The antifungal activity against three sapstain fungi by a combination of macromolecules was tested. The results showed that the macromolecules inhibited the mycelium growth of sapstain fungi Lasiodiplodia rubropurpurea, L. crassispora, and L. theobromae by about 73.22%, 76.72%, and 70.22%, respectively. The macromolecules were relatively thermally stable with more than 50% of the antifungal activity even after being held at 121°C for 30 min. Meanwhile, the activity of the macromolecules remained more than 55% at a pH value ranging from 4 to 12. The macromolecules were resistant to hydrolysis by most protein-denaturing detergents and other enzymes. The results indicated the macromolecules might provide an alternative bioresource for the bio-control of sapstain. PMID:24530369

Yuan, Bo; Xu, Pei-Yuan; Zhang, Yue-Ji; Wang, Pei-Pei; Yu, Hong; Jiang, Ji-Hong

2014-05-01

346

[Methods for studying the in vitro susceptibility of Candida spp. to antifungals].  

PubMed

In recent years, an increase of systemic Candida infections was noted. Thus, identification and susceptibility testing to antifungals became of considerable importance. The technique of dilution in liquid medium developed by « National committee for clinical laboratory standards » NCCLS or more recently named CLSI « Clinical and laboratory standards institute » is the reference method most used. The European committee "European committee on antibiotic susceptibility testing" or EUCAST has made progress by determining the susceptibility of strains within a shorter time. However, the use of these techniques is limited especially in clinical microbiology laboratories. Other techniques for determining antifungal sensitivity have been developed such as those based on agar diffusion (E-test and disk diffusion), on microdilution (Sensititre yeastOne, Vitek 2 AST-YS01), on flow cytometry techniques and the MALDI-TOF. PMID:23207806

Abbes, Salma; Trabelsi, Houaida; Amouri, Imen; Sallemi, Hayet; Nej, Sourour; Fatma, Chaikhrouhou; Makni, Fattouma; Ayadi, Ali

2012-01-01

347

Antifungal susceptibility of emerging opportunistic yeasts and yeast-like fungi from Rhea americana.  

PubMed

Opportunistic yeasts and yeast-like fungi have been recognized as important pathogens in high-risk patients. This study aimed to evaluate the presence of these microorganisms in the microbiota of captive rheas and to investigate the antifungal susceptibility of the isolated strains. Isolates representing Magnusiomyces capitatus (Geotrichum capitatum, n = 11), Trichosporon mucoides (n = 11), Trichosporon asteroides (n = 5), Rhodotorula mucilaginosa (n = 4), Trichosporon asahii (n = 3), Trichosporon cutaneum (n = 3), and Trichosporon ovoides (n = 3) were obtained from the oropharynx, cloaca, and feces of 58 animals. Most of the isolates were susceptible to antifungals in vitro; however, resistance against fluconazole (n = 1) and itraconazole (n = 2) was detected among T. mucoides. This study indicates that healthy rheas can be reservoirs of opportunistic pathogens. Primary resistance to azoles in T. mucoides obtained from these animals demonstrates the potential risk to humans. PMID:23899001

de Aguiar Cordeiro, Rossana; Pereira de Alencar, Lucas; Nogueira Brilhante, Raimunda Sâmia; de Souza Collares Maia Castelo-Branco, Débora; Cordeiro Teixeira, Carlos Eduardo; de Brito Macedo, Ramila; Teixeira Lima, Daniel; Paiva de Araújo Neto, Manoel; Jalles Monteiro, André; Dutra Alves, Nilza; Franco de Oliveira, Moacir; Costa Sidrim, José Júlio; Rocha Gadelha, Marcos Fábio

2013-08-01

348

Chromatographic and electrophoretic techniques used in the analysis of triazole antifungal agents-a review.  

PubMed

Systematic review of literature coupled with integrative research of published data for triazole antifungal agents was done. The investigated literature covered chromatographic and electrophoretic methods developed in the last 10 years (2000-2009). The aim of this review was to compare different methodologies, assess preferences in the selection of analytical methods and to find still existing analytical problems. Last decade is characterized by dynamic development of instrumental methods, that results in advance and diversity of applied analytical procedures. The main focus was given to high-performance liquid chromatography (HPLC), the technique of choice in the analysis of most of pharmaceuticals. The review includes literature on 8 triazole antifungal drugs: fluconazole, itraconazole and terconazole from the first generation and posaconazole, voriconazole, ravuconazole, isavuconazole and albaconazole classified in second generation. Investigations of pharmaceutical formulations and biological samples were considered. PMID:20801303

Ekiert, R J; Krzek, J; Talik, P

2010-09-15

349

Quantitative structure-activity relationship of antifungal activity of rosin derivatives.  

PubMed

To develop new rosin-based wood preservatives with good antifungal activity, 24 rosin derivatives were synthesized, bioassay tested with Trametes versicolor and Gloeophyllum trabeum, and subjected to analysis of their quantitative structure-activity relationships (QSAR). A QSAR analysis using Ampac 9.2.1 and Codessa 2.7.16 software built two QSAR models of antifungal ratio for T. versicolor and G. trabeum with values of R(2)=0.9740 and 0.9692, respectively. Based on the models, tri-N-(3-hydroabietoxy-2-hydroxy) propyl-triethyl ammonium chloride was designed and the bioassay test result proved its better inhibitory effect against the two selected fungi as expected. PMID:25466709

Wang, Hui; Nguyen, Thi Thanh Hien; Li, Shujun; Liang, Tao; Zhang, Yuanyuan; Li, Jian

2015-01-15

350

Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis  

PubMed Central

Background Sterol biosynthesis is an essential pathway for fungal survival, and is the biochemical target of many antifungal agents. The antifungal drugs most widely used to treated fungal infections are compounds that inhibit cytochrome P450-dependent C14?-demethylase (CYP51), but other enzymes of this pathway, such as squalene synthase (SQS) which catalyses the first committed step in sterol biosynthesis, could be viable targets. The aim of this study was to evaluate the antifungal activity of SQS inhibitors on Candida albicans, Candida tropicalis and Candida parapsilopsis strains. Methods Ten arylquinuclidines that act as SQS inhibitors were tested as antiproliferative agents against three ATCC strains and 54 clinical isolates of Candida albicans, Candida tropicalis and Candida parapsilopsis. Also, the morphological alterations induced in the yeasts by the experimental compounds were evaluated by fluorescence and transmission electron microscopy. Results The most potent arylquinuclidine derivative (3-[1'-{4'-(benzyloxy)-phenyl}]-quinuclidine-2-ene) (WSP1267) had a MIC50 of 2 ?g/ml for all species tested and MIC90 varying from 4 ?g/ml to 8 ?g/ml. Ultrathin sections of C. albicans treated with 1 ?g/ml of WSP1267 showed several ultrastructural alterations, including (a) loss of cell wall integrity, (b) detachment of the plasma membrane from the fungal cell wall, (c) accumulation of small vesicles in the periplasmic region, (d) presence of large electron-dense vacuoles and (e) significantly increased cell size and cell wall thickness. In addition, fluorescence microscopy of cells labelled with Nile Red showed an accumulation of lipid droplets in the cytoplasm of treated yeasts. Nuclear staining with DAPI revealed the appearance of uncommon yeast buds without a nucleus or with two nuclei. Conclusion Taken together, our data demonstrate that arylquinuclidine derivatives could be useful as lead compounds for the rational synthesis of new antifungal drugs. PMID:21255433

2011-01-01

351

Antifungal activity of n-tributyltin acetate against some common yam rot fungi.  

PubMed Central

The antifungal activity of n-tributyltin acetate (TBTA) was examined in relation to combating yam rot disease. TBTA exhibited a significant effect in vitro and in vivo on four yam rot fungal isolates tested. However, the in vitro toxicity of TBTA was drastically reduced when 2.5% Tween 80 was the solvent instead of 25% acetone, as indicated by the MICs of 156.0 and 5.0 micrograms/ml, respectively. PMID:1610202

Olurinola, P F; Ehinmidu, J O; Bonire, J J

1992-01-01

352

Antifungal substances produced by Penicillium oxalicum strain PY1—potential antibiotics against plant pathogenic fungi  

Microsoft Academic Search

This paper reports the isolation from soil of Penicillium strain PY-1 with strong antagonistic activity against plant pathogenic fungi. On the basis of its morphological characteristics\\u000a and the sequence of the ITS region, strain PY-1 was identified as P. oxalicum. Strain PY-1 produces antifungal substances that suppress the mycelial growth of Sclerotinia sclerotiorum and many other plant pathogenic fungi tested;

Liping Yang; Jiatao Xie; Daohong Jiang; Yanping Fu; Guoqing Li; Fangcan Lin

2008-01-01

353

Antifungal Activity of LY303366, a Novel Echinocandin B, in Experimental Disseminated Candidiasis in Rabbits  

Microsoft Academic Search

The safety and antifungal activity of LY303366 (LY), a new broad-spectrum semisynthetic echinocandin, were studied against disseminated candidiasis in persistently neutropenic rabbits. In vitro time-kill assays demonstrated that LY has concentration-dependent fungicidal activity. The pharmacokinetics of LY in the plasma of nonneutropenic rabbits suggested a linear relationship between dose and area under the curve (AUC). The times spent above the

RUTA PETRAITIENE; VIDMANTAS PETRAITIS; ANDREAS H. GROLL; MYRNA CANDELARIO; TIN SEIN; AARON BELL; CARON A. LYMAN; CARL L. MCMILLIAN; JOHN BACHER; THOMAS J. WALSH

1999-01-01

354

Antifungal activity of lemongrass ( Cympopogon citratus L.) essential oil against key postharvest pathogens  

Microsoft Academic Search

Lemongrass (Cympopogon citratus L.) oil (ranging between 25 and 500 ppm) was tested for antifungal activity against Colletotrichum coccodes, Botrytis cinerea, Cladosporium herbarum, Rhizopus stolonifer and Aspergillus niger in vitro. Oil-enrichment resulted in significant (P<0.05) reduction on subsequent colony development for the examined pathogens. Fungal spore production inhibited up to 70% at 25 ppm of lemongrass oil concentration when compared with equivalent

Nikos G. Tzortzakis; Costas D. Economakis

2007-01-01

355

Facile preparation of silver nanoparticles immobilized on chitin nanofiber surfaces to endow antifungal activities.  

PubMed

Silver nanoparticles were prepared on chitin nanofiber surfaces by UV light reduction of silver ions. The chitin nanofibers could be efficient substrates to immobilize silver nanoparticles with stable dispersion states. The dispersion and the nanocomposite film with acrylic resin showed characteristic absorption property in the visible light region due to the effect of the silver nanoparticles. Silver nanoparticles endowed strong antifungal activity to chitin nanofibers. PMID:25498704

Ifuku, Shinsuke; Tsukiyama, Yui; Yukawa, Taisuke; Egusa, Mayumi; Kaminaka, Hironori; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki

2015-03-01

356

Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole.  

PubMed

Thymol (THY) and carvacrol (CARV), the principal chemical components of thyme oil have long been known for their wide use in medicine due to antimicrobial and disinfectant properties. This study, however, draws attention to a possible synergistic antifungal effect of these monoterpenes with azole antimycotic-fluconazole. Resistance to azoles in Candida albicans involves over-expression of efflux-pump genes MDR1, CDR1, CDR2 or mutations and over-expression of target gene ERG11. The inhibition of drug efflux pumps is considered a feasible strategy to overcome clinical antifungal resistance. To put forward this approach, we investigated the combination effects of these monoterpenes and FLC against 38 clinically obtained FLC-sensitive, and eleven FLC-resistant Candida isolates. Synergism was observed with combinations of THY-FLC and CARV-FLC evaluated by checkerboard microdilution method and nature of the interactions was calculated by FICI. In addition, antifungal activity was assessed using agar-diffusion and time-kill curves. The drug efflux activity was determined using two dyes, Rhodamine6G (R6G) and fluorescent Hoechst 33342. No significant differences were observed in dye uptakes between FLC-susceptible and resistant isolates, incubated in glucose free buffer. However, a significantly higher efflux was recorded in FLC-resistant isolates when glucose was added. Both monoterpenes inhibited efflux by 70-90%, showing their high potency to block drug transporter pumps. Significant differences, in the expression levels of CDR1 and MDR1, induced by monoterpenes revealed reversal of FLC-resistance. The selectively fungicidal characteristics and ability to restore FLC susceptibility in resistant isolates signify a promising candidature of THY and CARV as antifungal agents in combinational treatments for candidiasis. PMID:23111348

Ahmad, Aijaz; Khan, Amber; Manzoor, Nikhat

2013-01-23

357

Influence of nitrogen fertilizers on yield and antifungal bioactivity of Tulbaghia violacea L.  

PubMed

Tulbaghia is known to have antifungal properties that can be used in the treatment of both human and plant pathogens and is used in traditional medicine in South Africa. Increasing demands for plant material makes it necessary to cultivate this species on a large scale. Unfortunately, cultivation can lead to a reduction in the biological activity of plants making them unsuitable for use. In light of the lack of knowledge regarding the agronomic requirements of this plant, the aim of this study was to determine the effect of several rates and two forms of nitrogenous fertilizer on the yield and biological activity of Tulbaghia violacea. Plants were cultivated in sand while the basic fertilization used was the same as that of garlic (20 kg P ha(-1), 75 kg K ha(-1)), a plant from the same family, containing similar active ingredients. Nitrogen was applied once at the beginning of the trial at rates of 30, 60, 120, and 180 kg ha(-1) in the form of either nitrate or ammonium. Vegetative growth was quantified in terms of number of leaves and leaf area as well as root and leaf dry mass, while harvested material was tested for antifungal activity. The results indicated that compared with the untreated control, increasing N-rates in both the nitrate and ammonium forms increased leaf number and leaf area as well as both root and leaf dry mass. However, at a rate above 60 kg ha(-1), and especially at 180 kg ha(-1), the nitrate form stimulated growth more markedly than the ammonium form, whereas antifungal activity decreased sharply and almost linearly as the application rate was increased. Although growth was not stimulated to the same extent by the ammonium form, it increased the in-vitro antifungal activity at different levels during different times of the growing season. From an ornamental perspective, nitrate is the preferred nitrogenous form but, from a bioactivity perspective, ammonium is recommended. PMID:19244293

van den Heever, E; Allemann, J; Pretorius, Jc

2008-11-01

358

Antifungal nitro compounds from Skunk Cabbage ( Lysichitum americanum) leaves treated with cupric chloride  

Microsoft Academic Search

Two nitro compounds, 2-(4-methoxyphenyl)-1-nitroethane named as lysichitalexin and 2-(4-hydroxyphenyl)-1-nitroethane were isolated as stress metabolites from the leaves of Lysichitum americanum Hultén and St. John treated with cupric chloride. Their structures were determined by spectroscopic methods and chemical reactions. The former compound showed antifungal activities against Fusarium oxysporum and Cladosporium herbarum. Both compounds were isolated for the first time from this

Fujinori Hanawa; Satoshi Tahara; G. H. Neil Towers

2000-01-01

359

Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam.  

PubMed

Investigations were carried out to evaluate the therapeutic properties of the seeds and leaves of Moringa oleifera Lam as herbal medicines. Ethanol extracts showed anti-fungal activities in vitro against dermatophytes such as Trichophyton rubrum, Trichophyton mentagrophytes, Epidermophyton floccosum, and Microsporum canis. GC-MS analysis of the chemical composition of the essential oil from leaves showed a total of 44 compounds. Isolated extracts could be of use for the future development of anti-skin disease agents. PMID:16406607

Chuang, Ping-Hsien; Lee, Chi-Wei; Chou, Jia-Ying; Murugan, M; Shieh, Bor-Jinn; Chen, Hueih-Min

2007-01-01

360

Antifungal amphidinol 18 and its 7-sulfate derivative from the marine dinoflagellate Amphidinium carterae.  

PubMed

Two new polyketides of the amphidinol family, amphidinol 18 (AM18, 1) and its corresponding 7-sulfate derivative (AM19, 2), have been isolated from the MeOH extract of the dinoflagellate Amphidinium carterae. Structure elucidation of the two polyoxygenated molecules has been accomplished by extensive use of spectroscopic and spectrometric techniques. AM18 exhibited antifungal activity against Candida albicans at 9 ?g/mL. PMID:24926538

Nuzzo, Genoveffa; Cutignano, Adele; Sardo, Angela; Fontana, Angelo

2014-06-27

361

Design, synthesis, antifungal activity, and ADME prediction of functional analogues of terbinafine  

Microsoft Academic Search

From the earlier quantitative structure–activity relationship (QSAR) and molecular modeling studies, a series of quinoline\\u000a derivatives 5a–h mimicking terbinafine and containing different bulky aromatic rings in the side chain were designed using LeapFrog, a de\\u000a novo drug design program. The designed compounds were synthesized and screened for antifungal activity in vitro against C. albicans. Of the ten compounds designed and synthesized,

Prashant S. Kharkar; Meenakshi N. Deodhar; Vithal M. Kulkarni

2009-01-01

362

Purification and Characterization of Novel Antifungal Compounds from the Sourdough Lactobacillus plantarum Strain 21B  

Microsoft Academic Search

ml21 was not effective under the same assay conditions, while sodium benzoate caused inhibition similar to L. plantarum 21B. After extraction with ethyl acetate, preparative silica gel thin-layer chromatography, and chromatographic and spectroscopic analyses, novel antifungal compounds such as phenyllactic and 4-hydroxy- phenyllactic acids were identified in the culture filtrate of L. plantarum 21B. Phenyllactic acid was contained at the

PAOLA LAVERMICOCCA; FRANCESCA VALERIO; ANTONIO EVIDENTE; SILVIA LAZZARONI; ALDO CORSETTI; MARCO GOBBETTI

2000-01-01

363

Roles of calcineurin and Crz1 in antifungal susceptibility and virulence of Candida glabrata.  

PubMed

A Candida glabrata calcineurin mutant exhibited increased susceptibility to both azole antifungal and cell wall-damaging agents and was also attenuated in virulence. Although a mutant lacking the downstream transcription factor Crz1 displayed a cell wall-associated phenotype intermediate to that of the calcineurin mutant and was modestly attenuated in virulence, it did not show increased azole susceptibility. These results suggest that calcineurin regulates both Crz1-dependent and -independent pathways depending on the type of stress. PMID:20100876

Miyazaki, Taiga; Yamauchi, Shunsuke; Inamine, Tatsuo; Nagayoshi, Yosuke; Saijo, Tomomi; Izumikawa, Koichi; Seki, Masafumi; Kakeya, Hiroshi; Yamamoto, Yoshihiro; Yanagihara, Katsunori; Miyazaki, Yoshitsugu; Kohno, Shigeru

2010-04-01

364

Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP Study).  

PubMed

A population-based survey was conducted to investigate the epidemiology of and antifungal resistance in Spanish clinical strains of filamentous fungi isolated from deep tissue samples, blood cultures, and respiratory samples. The study was conducted in two different periods (October 2010 and May 2011) to analyze seasonal variations. A total of 325 strains were isolated in 29 different hospitals. The average prevalence was 0.016/1,000 inhabitants [corrected]. Strains were identified by sequencing of DNA targets and susceptibility testing by the European Committee for Antimicrobial Susceptibility Testing reference procedure. The most frequently isolated genus was Aspergillus, accounting for 86.3% of the isolates, followed by Scedosporium at 4.7%; the order Mucorales at 2.5%; Penicillium at 2.2%, and Fusarium at 1.2%. The most frequent species was Aspergillus fumigatus (48.5%), followed by A. flavus (8.4%), A. terreus (8.1%), A. tubingensis (6.8%), and A. niger (6.5%). Cryptic/sibling Aspergillus species accounted for 12% of the cases. Resistance to amphotericin B was found in 10.8% of the isolates tested, while extended-spectrum triazole resistance ranged from 10 to 12.7%, depending on the azole tested. Antifungal resistance was more common among emerging species such as those of Scedosporium and Mucorales and also among cryptic species of Aspergillus, with 40% of these isolates showing resistance to all of the antifungal compounds tested. Cryptic Aspergillus species seem to be underestimated, and their correct classification could be clinically relevant. The performance of antifungal susceptibility testing of the strains implicated in deep infections and multicentric studies is recommended to evaluate the incidence of these cryptic species in other geographic areas. PMID:23669377

Alastruey-Izquierdo, A; Mellado, E; Peláez, T; Pemán, J; Zapico, S; Alvarez, M; Rodríguez-Tudela, J L; Cuenca-Estrella, M

2013-07-01

365

Antifungal activity of olive leaf ( Olea Europaea L.) extracts from the Trilye Region of Turkey  

Microsoft Academic Search

Antimicrobial properties of olive leaf extract on some yeast were examined in this study. Fresh olive leaf extracts were prepared\\u000a using various solvents (water, ethanol, acetone, ethyl acetate) in Soxhlet apparatus. Antimicrobial effects of these extacts\\u000a were tested againstSaccharomyces cerevisiae ATCC 9763,Schizosaccharomyces pombe, Saccharomyces uvarum, Candida oleophila, Metschnikowia fructicola andKloeckera apiculata. The antifungal activities of these extracts were tested by

Mihriban Korukluoglu; Yasemin Sahan; Aycan Yigit; Reyhan Karakas

2006-01-01

366

Antifungal Therapy for Invasive Fungal Diseases in Allogeneic Stem Cell Transplant Recipients: An Update  

Microsoft Academic Search

Invasive fungal diseases (IFDs) remain a major cause of morbidity and mortality in allogeneic stem cell transplant (SCT) recipients.\\u000a While the most common pathogens are Candida spp. and Aspergillus spp., the incidence of infections caused by non-albicans Candida species as well as molds such as Zygomycetes has increased. For many years, amphotericin B deoxycholate (AMB-D) was the only\\u000a available antifungal

Dustin T. Wilson; Richard H. Drew; John R. Perfect

2009-01-01

367

Antifungal activity and cytotoxicity of zinc, calcium, or copper alginate fibers.  

PubMed

The antifungal properties and cytotoxicity of alginate fibers were investigated to widen their application in tissue engineering. Calcium, zinc, and copper alginate fibers were separately prepared by replacing Na(+) with Ca(2+), Zn(2+), or Cu(2+). The antifungal properties of the three alginate fibers were studied after coming into contact with Candida albicans. Then, the fungal inhibitory rates were measured using the plate-count method following shake-flask test. Moreover, an inhibition-zone test and observation by scanning electron microscopy were carried out. The inhibitory rate of the calcium, copper, and zinc alginate fibers were, respectively, 49.1, 68.6, and 92.2 %. The results from inhibition-zone test and shake-flask test show that zinc alginate fibers have the most significant antifungal action and that copper alginate fibers have obvious inhibitory action, but the calcium alginate fibers have weak inhibitory effects. The scanning electron micrographs similarly illustrate that the fungal surfaces show most scraggly after the interaction between C. albicans and zinc alginate fibers. Moreover, the relative growth rates of zinc or calcium alginate fibers in human embryonic kidney cells and human fibroblast cells were more than 100 %. No significant results were obtained (P>0.05). The calcium alginate fibers in human fibroblast cells were not much different from the negative control group (P>0.05). However, zinc alginate fibers had a significant change (P<0.05). Therefore, the excellent antifungal property of zinc alginate fibers demonstrates potential application in skin tissue engineering comparing with calcium or copper alginate fibers. PMID:22426818

Gong, Ying; Han, Guangting; Zhang, Yuanming; Pan, Ying; Li, Xianbo; Xia, Yanzhi; Wu, Yan

2012-09-01

368

In Vitro and In Vivo Assessment of Dermatophyte Acquired Resistance to Efinaconazole, a Novel Triazole Antifungal  

PubMed Central

Efinaconazole is a novel triazole antifungal drug for the topical treatment of onychomycosis, a nail infection caused mainly by dermatophytes. We assessed the potential of efinaconazole to induce resistance in dermatophytes by continuous exposure of Trichophyton rubrum strains to efinaconazole in vitro (12 passages) and in a guinea pig onychomycosis model (8 weeks). There was no evidence of efinaconazole resistance development in the tested strains under the experimental conditions used. PMID:24867968

Watanabe, Yoko; Kumagai, Naomichi; Katafuchi-Nagashima, Maria; Sugiura, Keita; Pillai, Radhakrishnan; Tatsumi, Yoshiyuki

2014-01-01

369

Antifungal Azoles: Structural Insights into Undesired Tight Binding to Cholesterol-Metabolizing CYP46A1  

PubMed Central

Although there are currently three generations of antifungal azoles on the market, even the third-generation agents show undesirable interactions with human cytochrome P450 (P450) enzymes. CYP46A1 is a cholesterol-metabolizing P450 in the brain that tightly binds a number of structurally distinct azoles. Previously, we determined the crystal structures of CYP46A1 in complex with voriconazole and clotrimazole, and in the present work we cocrystallized the P450 with posaconazole at 2.5 Ĺ resolution. This long antifungal drug coordinates the P450 heme iron with the nitrogen atom of its terminal azole ring and adopts a linear configuration occupying the whole length of the substrate access channel and extending beyond the protein surface. Numerous drug-protein interactions determine the submicromolar Kd of posaconazole for CYP46A1. We compared the crystal structure of posaconazole-bound CYP46A1 with those of the P450 in complex with other drugs, including the antifungal voriconazole and clotrimazole. We also analyzed the accommodation of posaconazole in the active site of the target enzymes, CYPs 51, from several pathogenic species. These and the solution studies with different marketed azoles, collectively, allowed us to identify the determinants of tight azole binding to CYP46A1 and generate an overall picture of azole binding to this important P450. The data obtained suggest that development of CYP51-specific antifungal agents will continue to be a challenge. Therefore, structural understanding of the azole binding not only to CYPs 51 from the pathogenic species but also to different human P450s is required to deal efficiently with this challenge. PMID:23604141

Mast, Natalia; Zheng, Wenchao; Stout, C. David

2013-01-01

370

Fungicidal Action of Aureobasidin A, a Cyclic Depsipeptide Antifungal Antibiotic, againstSaccharomyces cerevisiae  

Microsoft Academic Search

Aureobasidin A, an antifungal antibiotic inhibiting a wide range of pathogenic fungi, is lethal for growing cells of susceptible fungi. We did cytological studies on the mechanism of its fungicidal action against Saccharomyces cerevisiae. When cultures were treated with 5.0 mg of aureobasidin A per ml, the numbers of viablecellsstartedtodecreaseafter2to3hofincubation,andmostcellshadlostviabilityafter5to6h.When cell death in the treated cultures began, amino acids released

MASAHIRO ENDO; KAZUTOH TAKESAKO; IKUNOSHIN KATO; ANDHIDEYO YAMAGUCHI

1997-01-01

371

Population-Based Survey of Filamentous Fungi and Antifungal Resistance in Spain (FILPOP Study)  

PubMed Central

A population-based survey was conducted to investigate the epidemiology of and antifungal resistance in Spanish clinical strains of filamentous fungi isolated from deep tissue samples, blood cultures, and respiratory samples. The study was conducted in two different periods (October 2010 and May 2011) to analyze seasonal variations. A total of 325 strains were isolated in 29 different hospitals. The average prevalence was 0.0016/1,000 inhabitants. Strains were identified by sequencing of DNA targets and susceptibility testing by the European Committee for Antimicrobial Susceptibility Testing reference procedure. The most frequently isolated genus was Aspergillus, accounting for 86.3% of the isolates, followed by Scedosporium at 4.7%; the order Mucorales at 2.5%; Penicillium at 2.2%, and Fusarium at 1.2%. The most frequent species was Aspergillus fumigatus (48.5%), followed by A. flavus (8.4%), A. terreus (8.1%), A. tubingensis (6.8%), and A. niger (6.5%). Cryptic/sibling Aspergillus species accounted for 12% of the cases. Resistance to amphotericin B was found in 10.8% of the isolates tested, while extended-spectrum triazole resistance ranged from 10 to 12.7%, depending on the azole tested. Antifungal resistance was more common among emerging species such as those of Scedosporium and Mucorales and also among cryptic species of Aspergillus, with 40% of these isolates showing resistance to all of the antifungal compounds tested. Cryptic Aspergillus species seem to be underestimated, and their correct classification could be clinically relevant. The performance of antifungal susceptibility testing of the strains implicated in deep infections and multicentric studies is recommended to evaluate the incidence of these cryptic species in other geographic areas. PMID:23669377

Mellado, E.; Peláez, T.; Pemán, J.; Zapico, S.; Alvarez, M.; Rodríguez-Tudela, J. L.; Cuenca-Estrella, M.

2013-01-01

372

A fungal chitinase gene from Rhizopus oligosporus confers antifungal activity to transgenic tobacco  

Microsoft Academic Search

We have studied whether a chitinase involved in cell autolysis of a filamentous fungus, Rhizopus oligosporus, can operate as an antifungal defense system in tobacco. The chi1 gene was introduced into tobacco by the Agrobacterium tumefaciens leaf disc system. Among 22 transgenic tobacco plants, 2 were selected and their individual homozygous progeny, Tch1-1 and Tch2-1, were studied. Chitinase activity in

T. Terakawa; N. Takaya; H. Horiuchi; M. Koike; M. Takagi

1997-01-01

373

A fungal chitinase gene from Rhizopus oligosporus confers antifungal activity to transgenic tobacco  

Microsoft Academic Search

We have studied whether a chitinase involved in cell autolysis of a filamentous fungus,Rhizopus oligosporus, can operate as an antifungal defense system in tobacco. Thechi1 gene was introduced into tobacco by theAgrobacterium tumefaciens leaf disc system. Among 22 transgenic tobacco plants, 2 were selected and their individual homozygous progeny, Tch1-1 and Tch2-1, were studied. Chitinase activity in the extracts of

T. Terakawa; N. Takaya; H. Horiuchi; M. Koike; M. Takagi

1997-01-01

374

Disseminated mucormycosis in a paediatric patient: Lichthemia corymbifera successfully treated with combination antifungal therapy  

PubMed Central

Mucormycosis is a severe fungal infection that largely affects immunocompromised individuals. It carries a high morbidity and mortality rate and is characterised by extensive angioinvasion and necrosis of host tissue. This case report details success in treating disseminated mucormycosis in a paediatric patient with an underlying haematological malignancy. Treatment included institution of combination antifungal therapy with liposomal amphotericin B and caspofungin, aggressive surgical debridement of infected tissue and reversal of underlying immunosuppression. PMID:25379392

Campbell, Anita; Cooper, Celia; Davis, Stephen

2014-01-01

375

Extracellular chitinases of fluorescent pseudomonads antifungal to Fusarium oxysporum f. sp. dianthi causing carnation wilt.  

PubMed

Vascular wilt of carnation caused by Fusarium oxysporum f. sp. dianthi (Prill. & Delacr.) W. C. Synder & H.N. Hans inflicts substantial yield and quality loss to the crop. Mycolytic enzymes such as chitinases are antifungal and contribute significantly to the antagonistic activity of fluorescent pseudomonads belonging to plant-growth-promoting rhizobacteria. Fluorescent pseudomonads antagonistic to the vascular wilt pathogen were studied for their ability to grow and produce chitinases on different substrates. Bacterial cells grown on chitin-containing media showed enhanced growth and enzyme production with increased anti-fungal activity against the pathogen. Furthermore, the cell-free bacterial culture filtrate from chitin-containing media also significantly inhibited the mycelial growth. Both the strains and their cell-free culture filtrate from chitin-amended media showed the formation of lytic zones on chitin agar, indicating chitinolytic ability. Extracellular proteins of highly antagonistic bacterial strain were isolated from cell-free extracts of media amended with chitin and fungal cell wall. These cell-free conditioned media contained one to seven polypeptides. Western blot analysis revealed two isoforms of chitinase with molecular masses of 43 and 18.5 kDa. Further plate assay for mycelial growth inhibition showed the 43-kDa protein to be antifungal. The foregoing studies clearly established the significance of chitinases in the antagonism of fluorescent pseudomonads, showing avenues for possible exploitation in carnation wilt management. PMID:16550458

Ajit, Naosekpam Singh; Verma, Rajni; Shanmugam, V

2006-04-01

376

Systematic Phenotyping of a Large-Scale Candida glabrata Deletion Collection Reveals Novel Antifungal Tolerance Genes  

PubMed Central

The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes. PMID:24945925

Hiller, Ekkehard; Istel, Fabian; Tscherner, Michael; Brunke, Sascha; Ames, Lauren; Firon, Arnaud; Green, Brian; Cabral, Vitor; Marcet-Houben, Marina; Jacobsen, Ilse D.; Quintin, Jessica; Seider, Katja; Frohner, Ingrid; Glaser, Walter; Jungwirth, Helmut; Bachellier-Bassi, Sophie; Chauvel, Murielle; Zeidler, Ute; Ferrandon, Dominique; Gabaldón, Toni; Hube, Bernhard; d'Enfert, Christophe; Rupp, Steffen; Cormack, Brendan; Haynes, Ken; Kuchler, Karl

2014-01-01

377

Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29*  

PubMed Central

An antifungal protein was isolated from a culture of Bacillus subtilis strain B29. The isolation procedure comprised ion exchange chromatography on diethylaminoethyl (DEAE)-52 cellulose and gel filtration chromatography on Bio-Gel® P-100. The protein was absorbed on DEAE-cellulose and Bio-Gel® P-100. The purified antifungal fraction was designated as B29I, with a molecular mass of 42.3 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pI value 5.69 by isoelectric focusing (IEF)-PAGE, and 97.81% purity by high performance liquid chromatography (HPLC). B29I exhibited inhibitory activity on mycelial growth in Fusarium oxysporum, Rhizoctonia solani, Fusarium moniliforme, and Sclerotinia sclerotiorum. The 50% inhibitory concentrations (IC50) of its antifungal activity toward Fusarium oxysporum and Rhizoctonia solani were 45 and 112 ?mol/L, respectively. B29I also demonstrated an inhibitory effect on conidial spore germination of Fusarium oxysporum and suppression of germ-tube elongation, and induced distortion, tumescence, and rupture of a portion of the germinated spores. PMID:19353744

Li, Jing; Yang, Qian; Zhao, Li-hua; Zhang, Shu-mei; Wang, Yu-xia; Zhao, Xiao-yu

2009-01-01

378

Antifungal activity of diketopiperazines and stilbenes against plant pathogenic fungi in vitro.  

PubMed

The present study aimed to investigate antifungal activity of a stilbene and diketopiperazine compounds against plant pathogenic fungi, including Phytophthora capsici, P. colocasiae, Botrytis cinerea and Colletotrichum gloeosporioides. Minimal inhibition concentrations (MIC) and minimal fungicidal concentrations (MFC) of stilbenes and diketopiperazines for each fungus were determined using microplate method. Best activity was recorded by stilbenes against P. capsici and P. colocasiae. All four test compounds were effective in inhibiting different stages of the life cycle of test fungi. Stilbenes were more effective than diketopiperazines in inhibiting mycelial growth and inhibiting different stages of the life cycle of P. capsici and P. colocasiae. Rupture of released zoospores induced by stilbenes was reduced by addition of 100 mM glucose. The effects of stilbenes on mycelial growth and zoospore release, but not zoospore rupture, were reduced largely when pH value was above 7. In addition, stilbenes were investigated for its antifungal stability against Phytophthora sp. The results showed that stilbenes maintained strong fungistatic activity over a wide pH range (pH 4–9) and temperature range (70–120 °C). The compound stilbenes exhibited strong and stable broad-spectrum antifungal activity, and had a significant fungicidal effect on fungal cells. Results from prebiocontrol evaluations performed to date are probably useful in the search for alternative approaches to controlling serious plant pathogens. PMID:24122628

Kumar, S Nishanth; Nambisan, Bala

2014-01-01

379

Isolation and characterization of an antifungal protein from Bacillus licheniformis HS10.  

PubMed

Bacillus licheniformis HS10 is a good biocontrol agent against Pseudoperonospora cubensis which caused cucumber downy disease. To identify and characterize the antifungal proteins produced by B.licheniformis HS10, the proteins from HS10 were isolated by using 30-60% ammonium sulfate precipitation, and purified with column chromatography on DEAE Sepharose Fast Flow, RESOURCE Q and Sephadex G-75. And the SDS-PAGE and MALDI-TOF/TOF-MS analysis results demonstrated that the antifungal protein was a monomer with molecular weight of about 55 kDa, identified as carboxypeptidase. Our experiments also showed that the antifungal protein from B. licheniformis HS10 had significantly inhibition on eight different kinds of plant pathogenic fungi, and it was stable with good biological activity at as high as 100°C for 30 min and in pH value ranged from 6 to 10. The biological activity was negatively affected by protease K and 10mM metal cations except Ca(2+). PMID:25445597

Wang, Zhixin; Wang, Yunpeng; Zheng, Li; Yang, Xiaona; Liu, Hongxia; Guo, Jianhua

2014-11-01

380

Evaluation of Antifungal Activity and Mechanism of Action of Citral against Candida albicans.  

PubMed

Candida albicans is a yeast that commensally inhabits the human body and can cause opportunistic or pathogenic infections. Objective. To investigate the antifungal activity of citral against C. albicans. Methodology. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) were determined by the broth microdilution techniques. We also investigated possible citral action on cell walls (0.8?M sorbitol), cell membranes (citral to ergosterol binding), the time-kill curve, and biological activity on the yeast's morphology. Results. The MIC and MFC of citral were, respectively, 64?µg/mL and 256?µg/mL. Involvement with the cell wall and ergosterol binding were excluded as possible mechanisms of action. In the morphological interference assay, it was observed that the product inhibited pseudohyphae and chlamydoconidia formation. The MIC and the MFC of citral required only 4 hours of exposure to effectively kill 99.9% of the inoculum. Conclusion. Citral showed in vitro antifungal potential against strains of C. albicans. Citral's mechanism of action does not involve the cell wall or ergosterol, and further study is needed to completely describe its effects before being used in the future as a component of new antifungals. PMID:25250053

Leite, Maria Clerya Alvino; Bezerra, André Parente de Brito; de Sousa, Janiere Pereira; Guerra, Felipe Queiroga Sarmento; Lima, Edeltrudes de Oliveira

2014-01-01

381

Chemical composition and in vitro antifungal activity screening of the Allium ursinum L. (Liliaceae).  

PubMed

The objective of the study was to summarize the methods for isolating and identifying natural sulfur compounds from Allium ursinum (ramson) and to discuss the active constituents with regard to antifungal action. Using chromatographic techniques, the active constituents were isolated and subsequently identified. Analyses by high-performance liquid chromatography (HPLC) suggested that these compounds were sulfur constituents, with a characteristic absorbance at 250 nm. Gas chromatography-mass spectrometry (GC-MS) analyses allowed the chemical structures of the isolated constituents to be postulated. We adopted the same methods to identify the health-giving profiling of ramsons and the effects are thought to be primarily derived from the presence and breakdown of the alk(en)ylcysteine sulphoxide, alliin and its subsequent breakdown to allicin (sulfur-compounds of ramson) in connection with antifungal action. The aim of the study was the characterization of the chemical composition of ramsons and the testing of the action of the in vitro extracts, on different strains of Candida albicans. The main goal was to highlight the most efficient extracts of Allium ursinum that can provide long-term antifungal activity without remissions. The extracts from Allium ursinum plants, inhibited growth of Candida spp. cells at concentrations ranging from 0.5 to 4.0 mg/mL, while that of adherent cells at concentrations ranging from 1.0 to > 4.0 mg/mL, depending on the yeast and plant species. PMID:22408399

Bagiu, Radu Vasile; Vlaicu, Brigitha; Butnariu, Monica

2012-01-01

382

A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles.  

PubMed

Here we reported a residue-free green nanotechnology which synergistically enhance the pesticides efficiency and successively eliminate its residue. We built up a composite antifungal system by a simple pre-treating and assembling procedure for investigating synergy. Investigations showed 0.25 g/L ZnO nanoparticles (NPs) with 0.01 g/L thiram could inhibit the fungal growth in a synergistic mode. More importantly, the 0.25 g/L ZnO NPs completely degraded 0.01 g/L thiram under simulated sunlight irradiation within 6 hours. It was demonstrated that the formation of ZnO-thiram antifungal system, electrostatic adsorption of ZnO NPs to fungi cells and the cellular internalization of ZnO-thiram composites played important roles in synergy. Oxidative stress test indicated ZnO-induced oxidative damage was enhanced by thiram that finally result in synergistic antifungal effect. By reducing the pesticides usage, this nanotechnology could control the plant disease economically, more significantly, the following photocatalytic degradation of pesticide greatly benefit the human social by avoiding negative influence of pesticide residue on public health and environment. PMID:25023938

Xue, Jingzhe; Luo, Zhihui; Li, Ping; Ding, Yaping; Cui, Yi; Wu, Qingsheng

2014-01-01

383

Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins.  

PubMed

Fungal disease is an increasing problem in both agriculture and human health. Treatment of human fungal disease involves the use of chemical fungicides, which generally target the integrity of the fungal plasma membrane or cell wall. Chemical fungicides used for the treatment of plant disease, have more diverse mechanisms of action including inhibition of sterol biosynthesis, microtubule assembly and the mitochondrial respiratory chain. However, these treatments have limitations, including toxicity and the emergence of resistance. This has led to increased interest in the use of antimicrobial peptides for the treatment of fungal disease in both plants and humans. Antimicrobial peptides are a diverse group of molecules with differing mechanisms of action, many of which remain poorly understood. Furthermore, it is becoming increasingly apparent that stress response pathways are involved in the tolerance of fungi to both chemical fungicides and antimicrobial peptides. These signalling pathways such as the cell wall integrity and high-osmolarity glycerol pathway are triggered by stimuli, such as cell wall instability, changes in osmolarity and production of reactive oxygen species. Here we review stress signalling induced by treatment of fungi with chemical fungicides and antifungal peptides. Study of these pathways gives insight into how these molecules exert their antifungal effect and also into the mechanisms used by fungi to tolerate sub-lethal treatment by these molecules. Inactivation of stress response pathways represents a potential method of increasing the efficacy of antifungal molecules. PMID:24526056

Hayes, Brigitte M E; Anderson, Marilyn A; Traven, Ana; van der Weerden, Nicole L; Bleackley, Mark R

2014-07-01

384

Ciprofloxacin shows synergism with classical antifungals against Histoplasma capsulatum var. capsulatum and Coccidioides posadasii.  

PubMed

This study evaluated the in vitro interaction between ciprofloxacin (CIP) and classical antifungals against Histoplasma capsulatum var. capsulatum in mycelial (n?=?16) and yeast-like forms (n?=?9) and Coccidioides posadasii in mycelial form (n?=?16). This research was conducted through broth microdilution and macrodilution, according to Clinical Laboratory Standards Institute. Inocula were prepared to obtain from 0.5?×?10(3) to 2.5?×?10(4) ?cfu?ml(-1) for H. capsulatum and from 10(3) to 5?×?10(3) ?cfu?ml(-1) for C. posadasii. Initially, minimum inhibitory concentration (MIC) for each drug alone was determined. Then, these MICs were used as the highest concentration for each drug during combination assays. The procedures were performed in duplicate. For all combination assays, MICs were defined as the lowest concentration capable of inhibiting 80% of visible fungal growth, when compared to the drug-free control. Drug interaction was evaluated by paired sample t-Student test. The obtained data showed a significant MIC reduction for most tested combinations of CIP with antifungals, except for that of CIP and voriconazole against yeast-like H. capsulatum. This study brings potential alternatives for the treatment of histoplasmosis and coccidioidomycosis, raising the possibility of using CIP as an adjuvant antifungal therapy, providing perspectives to delineate in vivo studies. PMID:23205615

Brilhante, R S N; Caetano, E P; Sidrim, J J C; Cordeiro, R A; Camargo, Z P; Fechine, M A B; Lima, R A C; Castelo Branco, D S C M; Marques, F J F; Mesquita, J R L; Lima, D T; Monteiro, A J; Rocha, M F G

2013-05-01

385

Chemical Composition and in Vitro Antifungal Activity Screening of the Allium ursinum L. (Liliaceae)  

PubMed Central

The objective of the study was to summarize the methods for isolating and identifying natural sulfur compounds from Allium ursinum (ramson) and to discuss the active constituents with regard to antifungal action. Using chromatographic techniques, the active constituents were isolated and subsequently identified. Analyses by high-performance liquid chromatography (HPLC) suggested that these compounds were sulfur constituents, with a characteristic absorbance at 250 nm. Gas chromatography-mass spectrometry (GC-MS) analyses allowed the chemical structures of the isolated constituents to be postulated. We adopted the same methods to identify the health-giving profiling of ramsons and the effects are thought to be primarily derived from the presence and breakdown of the alk(en)ylcysteine sulphoxide, alliin and its subsequent breakdown to allicin (sulfur-compounds of ramson) in connection with antifungal action. The aim of the study was the characterization of the chemical composition of ramsons and the testing of the action of the in vitro extracts, on different strains of Candida albicans. The main goal was to highlight the most efficient extracts of Allium ursinum that can provide long-term antifungal activity without remissions. The extracts from Allium ursinum plants, inhibited growth of Candida spp. cells at concentrations ranging from 0.5 to 4.0 mg/mL, while that of adherent cells at concentrations ranging from 1.0 to > 4.0 mg/mL, depending on the yeast and plant species. PMID:22408399

Bagiu, Radu Vasile; Vlaicu, Brigitha; Butnariu, Monica

2012-01-01

386

Antifungal prophylaxis in hematopoietic stem cell transplant recipients: the unfinished tale of imperfect success.  

PubMed

Antifungal prophylaxis in hematopoietic stem cell transplant recipients is a rapidly evolving field. For this prophylaxis to be beneficial and cost-effective, the risk of a life-threatening invasive fungal infection (IFI) should outweigh the risks of toxic effects and drug interactions introduced by the antifungal agent used. Not all hematopoietic stem cell transplant recipients have the same risk of IFIs. New prophylactic strategies using risk stratification and new broad-spectrum antifungals have the potential for reducing IFI-associated mortality in these patients. Further refinement of risk stratification and risk/benefit analysis (including pharmacoeconomic analysis) is needed. Stratification of IFI risk could be further sharpened based on emerging genetic and metabolic risk factors. However, 10 years after deciphering the human genome, it is unclear whether the genomic revolution would pay off for identifying the SCT recipients at highest risk for IFIs. Empiricism and reliance on institution-specific epidemiologic data are still expected to be a major part of the 'art and science' of risk stratification for fungal infections in SCT. PMID:21042306

Kontoyiannis, D P

2011-02-01

387

Effect of substrate on the production of antifungal volatiles from Bacillus subtilis.  

PubMed

An antibiotic-producing strain of Bacillus subtilis has been shown to produce potent antifungal volatiles (AFV). These volatiles are active against a range of fungal species and are produced on a range of growth media and in loam-based compost. In vitro antifungal volatile activity on nutrient agar is enhanced with the addition of D-glucose, complex carbohydrates and peptones. The addition of L-glucose led to significantly less AFV activity than comparable levels of D-glucose. Growth studies in liquid culture revealed that B. subtilis failed to grow in response to L-glucose. Further growth studies on solid media showed no clear correlation between enhanced bacterial growth and increases in in vitro AFV activity in response to supply of substrates. Low level AFV activity was also detected from oilseed rape roots inoculated with B. subtilis. Gas chromatography mass spectrometry headspace analysis of B. subtilis cultures grown on various substrates revealed common similarities between substrates promoting AFV activity, although it was not possible to isolate individual antifungal compounds. PMID:8200865

Fiddaman, P J; Rossall, S

1994-04-01

388

Systematic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes.  

PubMed

The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes. PMID:24945925

Schwarzmüller, Tobias; Ma, Biao; Hiller, Ekkehard; Istel, Fabian; Tscherner, Michael; Brunke, Sascha; Ames, Lauren; Firon, Arnaud; Green, Brian; Cabral, Vitor; Marcet-Houben, Marina; Jacobsen, Ilse D; Quintin, Jessica; Seider, Katja; Frohner, Ingrid; Glaser, Walter; Jungwirth, Helmut; Bachellier-Bassi, Sophie; Chauvel, Murielle; Zeidler, Ute; Ferrandon, Dominique; Gabaldón, Toni; Hube, Bernhard; d'Enfert, Christophe; Rupp, Steffen; Cormack, Brendan; Haynes, Ken; Kuchler, Karl

2014-06-01

389

Antifungal activity of plant extracts against Arthrinium sacchari and Chaetomium funicola.  

PubMed

Various plant extracts were examined for antifungal activity with the objective of improving the commercial sterility of aseptically filled tea beverage products in PET bottles. When the hot water extract and the methanol extract of 29 samples were measured for their antifungal activity against Arthrinium sacchari M001 and Chaetomium funicola M002 strains, five samples, Acer nikoense, Glycyrrhiza glabra, Lagerstroemia speciosa, Psidium guajava and Thea sinensis, showed high activity. Of these, the extracts from A. nikoense, G. glabra and T. sinensis were fractionated by extraction with CHCl3, and the CHCl3-soluble fractions from G. glabra showed antifungal activity with minimum inhibitory concentrations (MICs) between 62.5 and 125 microg/ml against the above-mentioned two fungi. When the EtOAc-soluble fraction of A. nikoense was used, the MIC against A. sacchari M001 was 62.5 microg/ml. However, none of the fractions from A. nikoense or T. sinensis showed high activity against C. funicola M002 and their MICs were greater than 500 microg/ml. A licorice preparation made from the commercially available oil-based extract of G. glabra showed a low MIC of 25 microg/ml against five tested strains of filamentous fungi, but not against Aspergillus fumigatus M008, in a blended tea. Consequently, the possibility of adding a licorice preparation made from the oil-based extract of G. glabra to tea beverages (aseptically filled into PET bottles) was suggested. PMID:16232887

Sato, J; Goto, K; Nanjo, F; Kawai, S; Murata, K

2000-01-01

390

A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles  

PubMed Central

Here we reported a residue-free green nanotechnology which synergistically enhance the pesticides efficiency and successively eliminate its residue. We built up a composite antifungal system by a simple pre-treating and assembling procedure for investigating synergy. Investigations showed 0.25?g/L ZnO nanoparticles (NPs) with 0.01?g/L thiram could inhibit the fungal growth in a synergistic mode. More importantly, the 0.25?g/L ZnO NPs completely degraded 0.01?g/L thiram under simulated sunlight irradiation within 6?hours. It was demonstrated that the formation of ZnO-thiram antifungal system, electrostatic adsorption of ZnO NPs to fungi cells and the cellular internalization of ZnO-thiram composites played important roles in synergy. Oxidative stress test indicated ZnO-induced oxidative damage was enhanced by thiram that finally result in synergistic antifungal effect. By reducing the pesticides usage, this nanotechnology could control the plant disease economically, more significantly, the following photocatalytic degradation of pesticide greatly benefit the human social by avoiding negative influence of pesticide residue on public health and environment. PMID:25023938

Xue, Jingzhe; Luo, Zhihui; Li, Ping; Ding, Yaping; Cui, Yi; Wu, Qingsheng

2014-01-01

391

Gymnin, a potent defensin-like antifungal peptide from the Yunnan bean (Gymnocladus chinensis Baill).  

PubMed

From the seeds of the Yunnan bean, we purified an antifungal peptide using affinity chromatography on Affi-gel blue gel, FPLC-ion exchange chromatography on Mono S, and FPLC-gel filtration on Superdex 75. The antifungal peptide was adsorbed on Affi-gel blue gel at pH 7.8 and Mono S at pH 4.5. It exhibited a molecular mass of 6.5 kDa in both gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its N-terminal sequence closely resembled defensin-related peptides. The peptide exerted antifungal activity toward the fungal species Fusarium oxysporum and Mycosphaerella arachidicola, with an IC50 of 2 microM for the former fungus and 10 microM for the latter. It manifested a weaker mitogenic activity toward murine splenocytes than Concanavalin A. It also displayed antiproliferative activity on a murine leukemia (L1210), a hepatoma (HepG2), and a murine leukemia (M1) cell line. It inhibited human immunodeficiency virus-1 reverse transcriptase with an IC50 of 200 microM. PMID:14499273

Wong, Jack H; Ng, T B

2003-07-01

392

The Antifungal Plant Defensin HsAFP1 from Heuchera sanguinea Induces Apoptosis in Candida albicans  

PubMed Central

Plant defensins are active against plant and human pathogenic fungi (such as Candida albicans) and baker's yeast. However, they are non-toxic to human cells, providing a possible source for treatment of fungal infections. In this study, we characterized the mode of action of the antifungal plant defensin HsAFP1 from coral bells by screening the Saccharomyces cerevisiae deletion mutant library for mutants with altered HsAFP1 sensitivity and verified the obtained genetic data by biochemical assays in S. cerevisiae and C. albicans. We identified 84 genes, which when deleted conferred at least fourfold hypersensitivity or resistance to HsAFP1. A considerable part of these genes were found to be implicated in mitochondrial functionality. In line, sodium azide, which blocks the respiratory electron transport chain, antagonized HsAFP1 antifungal activity, suggesting that a functional respiratory chain is indispensable for HsAFP1 antifungal action. Since mitochondria are the main source of cellular reactive oxygen species (ROS), we investigated the ROS-inducing nature of HsAFP1. We showed that HsAFP1 treatment of C. albicans resulted in ROS accumulation. As ROS accumulation is one of the phenotypic markers of apoptosis in yeast, we could further demonstrate that HsAFP1 induced apoptosis in C. albicans. These data provide novel mechanistic insights in the mode of action of a plant defensin. PMID:21993350

Aerts, An M.; Bammens, Leen; Govaert, Gilmer; Carmona-Gutierrez, Didac; Madeo, Frank; Cammue, Bruno P. A.; Thevissen, Karin

2011-01-01

393

Antifungal activity, toxicity and chemical composition of the essential oil of Coriandrum sativum L. fruits.  

PubMed

The aims of this study were to test the antifungal activity, toxicity and chemical composition of essential oil from C. sativum L. fruits. The essential oil, obtained by hydro-distillation, was analyzed by gas chromatography/mass spectroscopy. Linalool was the main constituent (58.22%). The oil was considered bioactive, showing an LC?? value of 23 ?g/mL in the Artemia salina lethality test. The antifungal activity was evaluated against Microsporum canis and Candida spp. by the agar-well diffusion method and the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) were established by the broth microdilution method. The essential oil induced growth inhibition zones of 28 ± 5.42 and 9.25 ± 0.5 for M. canis and Candida spp. respectively. The MICs and MFCs for M. canis strains ranged from 78 to 620 and 150 to 1,250 ?g/mL, and the MICs and MFCs for Candida spp strains ranged from 310 to 620 and 620 to 1,250 ?g/mL, respectively. C. sativum essential oil is active in vitro against M. canis and Candida spp. demonstrating good antifungal activity. PMID:22785271

Soares, Bruna V; Morais, Selene M; dos Santos Fontenelle, Raquel Oliveira; Queiroz, Vanessa A; Vila-Nova, Nadja S; Pereira, Christiana M C; Brito, Edy S; Neto, Manoel A S; Brito, Erika H S; Cavalcante, Carolina S P; Castelo-Branco, Débora S C M; Rocha, Marcos F G

2012-01-01

394

Antifungal compounds from turmeric and nutmeg with activity against plant pathogens.  

PubMed

The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides. Among the active extracts, turmeric and nutmeg were the most active and were chosen for further investigation. The bioassay-guided fractionation led to the isolation of three compounds from turmeric (1-3) and three compounds from nutmeg (4-6). Their chemical structures were elucidated by spectroscopic analysis including HR-MS, 1D, and 2D NMR as curcumin (1), demethoxycurcumin (2) and bisdemethoxy-curcumin (3), erythro-(7R,8R)-?(8')-4,7-dihydroxy-3,3',5'-trimethoxy-8-O-4'-neolignan (4), erythro-(7R,8R)-?8'-7-acetoxy-3,4,3',5'-tetra-methoxy-8-O-4'-neolignan (5), and 5-hydroxy-eugenol (6). The isolated compounds were subsequently evaluated using a 96-well microbioassay against plant pathogens. At 30 ?M, compounds 2 and 3 possessed the most antifungal activity against Phomopsis obscurans and Phomopsis viticola, respectively. PMID:25173461

Radwan, Mohamed M; Tabanca, Nurhayat; Wedge, David E; Tarawneh, Amer H; Cutler, Stephen J

2014-12-01

395

Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans.  

PubMed

This work studied the antifungal mechanism of dill seed essential oil (DSEO) against Candida albicans. Flow cytometric analysis and inhibition of ergosterol synthesis were performed to clarify the mechanism of action of DSEO on C. albicans. Upon treatment of cells with DSEO, propidium iodide penetrated C. albicans through a lesion in its plasma membrane. DSEO also significantly reduced the amount of ergosterol. These findings indicate that the plasma membrane of C. albicans was damaged by DSEO. The effect of DSEO on the functions of the mitochondria in C. albicans was also studied. We assayed the mitochondrial membrane potential (mt??) using rhodamine 123 and determined the production of mitochondrial dysfunction-induced reactive oxygen species (ROS) via flow cytometry. The effects of the antioxidant l-cysteine (Cys) on DSEO-induced ROS production and the antifungal effect of DSEO on C. albicans were investigated. Exposure to DSEO increased mt??. Dysfunctions in the mitochondria caused ROS accumulation in C. albicans. This increase in the level of ROS production and DSEO-induced decrease in cell viability were prevented by the addition of Cys, indicating that ROS are an important mediator of the antifungal action of DSEO. These findings indicate that the cytoplasmic membrane and mitochondria are the main anti-Candida targets of DSEO. PMID:23657528

Chen, Yuxin; Zeng, Hong; Tian, Jun; Ban, Xiaoquan; Ma, Bingxin; Wang, Youwei

2013-08-01

396

Forward Modeling of the Coumarin Antifungals; SPR/SAR Based Perspective  

PubMed Central

Although, coumarins are a group of compounds which are naturally found in some plants, they can be synthetically produced as well. Because of their diverse derivatives, origin and properties most of them can be used for medicinal purposes. For example, they can be used against fungal diseases or in studying structure and biological properties of antifungal agents to discover new compounds with the similar activity. A Structure Property/Activity Relationship (SAR) can be utilized in prediction of biological activity of desired molecules. In order to represent a relationship between the physicochemical properties of coumarin compounds and their biological activities, 68 coumarins and coumarin derivatives with already reported antifungal activities were selected and eleven attributes were generated. The descriptors were used to perform artificial neural network (ANN) and to build a model for predicting effectiveness of the new ones. The correlation coefficient between the experimental and the predicted MIC values pertaining to all the coumarins was 0.984. This study paves the way for further researches about antifungal activity of coumarins, and offers a powerful tool in modeling and prediction of their bioactivities. PMID:23407575

Soltani, Saeed; Dianat, Shima; Sardari, Soroush

2009-01-01

397

Endophytic bacterial communities in ginseng and their antifungal activity against pathogens.  

PubMed

Plant roots are associated with diverse communities of endophytic bacteria which do not exert adverse effects. The diversity of bacterial endophytes associated with ginseng roots cultivated in three different areas in Korea was investigated. Sixty-three colonies were isolated from the interior of ginseng roots. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates belonged to three major phylogenetic groups: the high G+C Gram-positive bacteria (HGCGPB), low G+C Gram-positive bacteria (LGCGPB), and the Proteobacteria. The dominant species at the three different ginseng growing areas were: HGCGPB at Ganghwa (55.0%), LGCGPB at Geumsan (45.5%), and Proteobacteria at Jinan (61.9%). Most cellulase-, xylanase-, and pectinase-producing colonies among the isolates belong to the LGCGPB group, except for Pectobacterium carotovora which belonged to the Proteobacteria. The 13 isolates belonging to LGCGPB and Proteobacteria were assessed for their antifungal activity against phytopathogenic fungi such as Rhizoctonia solani. Among them, Paenibacillus polymyxa GS01, Bacillus sp. GS07, and Pseudomonas poae JA01 show potential activity as biocontrol agents against phytopathogenic fungi. Finally, most of the low G+C Gram-positive bacteria with antifungal activity against phytopathogenic microorganisms showed cellulolytic enzyme activity while some Proteobacteria with the antifungal activity and the high G+C Gram-positive bacteria did not show any cellulolytic activity. PMID:17492474

Cho, Kye Man; Hong, Su Young; Lee, Sun Mi; Kim, Yong Hee; Kahng, Goon Gjung; Lim, Yong Pyo; Kim, Hoon; Yun, Han Dae

2007-08-01

398

Antifungal Spectrum, In Vivo Efficacy, and Structure–Activity Relationship of Ilicicolin H  

PubMed Central

Ilicicolin H is a polyketide—nonribosomal peptide synthase (NRPS)—natural product isolated from Gliocadium roseum, which exhibits potent and broad spectrum antifungal activity, with sub-?g/mL MICs against Candida spp., Aspergillus fumigatus, and Cryptococcus spp. It showed a novel mode of action, potent inhibition (IC50 = 2–3 ng/mL) of the mitochondrial cytochrome bc1 reductase, and over 1000-fold selectivity relative to rat liver cytochrome bc1 reductase. Ilicicolin H exhibited in vivo efficacy in murine models of Candida albicans and Cryptococcus neoformans infections, but efficacy may have been limited by high plasma protein binding. Systematic structural modification of ilicicolin H was undertaken to understand the structural requirement for the antifungal activity. The details of the biological activity of ilicicolin H and structural modification of some of the key parts of the molecule and resulting activity of the derivatives are discussed. These data suggest that the ?-keto group is critical for the antifungal activity. PMID:24900384

2012-01-01

399

Synthesis, characterization and antifungal activity of quaternary derivatives of chitosan on Aspergillus flavus.  

PubMed

Two series of new chitosan derivatives were synthesized by reaction of deacetylated chitosan (CH) with propyl (CH-Propyl) and pentyl (CH-Pentyl) trimethylammonium bromides to obtain derivatives with increasing degrees of substitution (DS). The derivatives were characterized by (1)H NMR and potentiometric titration techniques and their antifungal activities on the mycelial growth of Aspergillus flavus were investigated in vitro. The antifungal activities increase with DS and the more substituted derivatives of both series, CH-Propyl and CH-Pentyl, exhibited antifungal activities respectively three and six times higher than those obtained with commercial and deacetylated chitosan. The minimum inhibitory concentrations (MIC) were evaluated at 24, 48 and 72 h by varying the polymer concentration from 0.5 to 16 g/L and the results showed that the quaternary derivatives inhibited the fungus growth at polymer concentrations four times lower than that obtained with deacetylated chitosan (CH). The chitosans modified with pentyltrimethylammonium bromide exhibited higher activity and results are discussed taking into account the degree of substitution (DS). PMID:22819383

de Oliveira Pedro, Rafael; Takaki, Mirelle; Gorayeb, Teresa Cristina Castilho; Del Bianchi, Vanildo Luiz; Thomeo, Joăo Cláudio; Tiera, Marcio José; de Oliveira Tiera, Vera Aparecida

2013-01-15

400

Antifungal effect of ophthalmic preservatives phenylmercuric nitrate and benzalkonium chloride on ocular pathogenic filamentous fungi.  

PubMed

In the present study, the antifungal effects of phenylmercuric nitrate and benzalkonium chloride versus those of natamycin and ketoconazole were assessed against 216 filamentous fungi isolates from cases of fungal keratitis. They included 112 Fusarium isolates, 94 Aspergillus isolates, and 10 Alternaria alternata isolates. The strains were tested by broth dilution antifungal susceptibility testing of filamentous fungi approved by the Clinical and Laboratory Standards Institute M38-A document. The results showed that the MIC(50) values of phenylmercuric nitrate were 0.0156, 0.0156, and 0.0313 ?g/mL for Fusarium spp., Aspergillus spp., and A. alternata, respectively. The MIC(90) values of phenylmercuric nitrate were 0.0313, 0.0313, and 0.0313 ?g/mL for Fusarium spp., Aspergillus spp., and A. alternata, respectively. The MIC(50) values of benzalkonium chloride were 16, 32, and 8 ?g/mL for Fusarium spp., Aspergillus spp., and A. alternata, respectively. The MIC(90) values of benzalkonium chloride were 32, 32, and 16 ?g/mL for Fusarium spp., Aspergillus spp., and A. alternata, respectively. The study indicates that phenylmercuric nitrate has considerable antifungal activity and its effect is significantly superior to those of benzalkonium chloride, natamycin, and ketoconazole against ocular pathogenic filamentous fungi in vitro, deserving further investigation for treating fungal keratitis as a main drug. PMID:23102555

Xu, Yan; He, Yi; Li, Xiaohua; Gao, Chuanwen; Zhou, Lutan; Sun, Shengtao; Pang, Guangren

2013-01-01

401

Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity.  

PubMed

This investigation was undertaken to identify the major secondary metabolite, produced by two Trichoderma harzianum strains (T-4 and T-5) with their antifungal activity against phytopathogenic fungi using poison food technique. The ethyl acetate extract was subjected to column chromatography using n-hexane, ethyl acetate and methanol gradually. Chromatographic separation of ethyl acetate extract of T. harzianum (T-4) resulted in the isolation and identification of palmitic acid (1), 1,8-dihydroxy-3-methylanthraquinone (2), 6-pentyl-2H-pyran-2-one (3), 2(5H)-furanone (4), stigmasterol (5) and ?-sitosterol (6), while T. harzianum (T-5) gave palmitic acid (1), 1-hydroxy-3-methylanthraquinone (7), ?-decanolactone (8), 6-pentyl-2H-pyran-2-one (3), ergosterol (9), harzianopyridone (10) and 6-methyl-1,3,8-trihydroxyanthraquinone (11) as major metabolites. Among compounds screened for antifungal activity, compound 10 was found to be most active (EC50 35.9-50.2 ?g mL(- 1)). In conclusion, the present investigation provided significant information about antifungal activity and compounds isolated from two different strains of T. harzianum obtained from two different Himalayan locations. PMID:25248548

Ahluwalia, Vivek; Kumar, Jitendra; Rana, Virendra S; Sati, Om P; Walia, S

2014-09-24

402

Antifungal activity of Cymbopogon winterianus jowitt ex bor against Candida albicans.  

PubMed

Candida albicans is an opportunistic yeast and a member of the normal human flora that commonly causes infections in patients with any type of deficiency of the immune system. The essential oils have been tested for antimycotic activity and pose much potential as antifungal agents. This work investigated the activity of the essential oil of Cymbopogon winterianus against C. albicans by MIC, MFC and time-kill methods. The essential oil (EO) was obtained by hydrodistillation using a Clevenger-type apparatus. It was tested fifteen strains of C. albicans. The MIC was determined by the microdilution method and the MFC was determined when an aliquot of the broth microdilution was cultivated in SDA medium. The phytochemical analysis of EO showed presence of citronellal (23,59%), geraniol (18,81%) and citronellol (11,74%). The EO showed antifungal activity, and the concentrations 625 µg/mL and 1250 µg/mL inhibited the growth of all strains tested and it was fungicidal, respectively. The antimicrobial activity of various concentrations of EO was analyzed over time, it was found concentration-dependent antifungal activity, whose behavior was similar to amphotericin B and nystatin. PMID:24031651

de Oliveira, Wylly Araújo; de Oliveira Pereira, Fillipe; de Luna, Giliara Carol Diniz Gomes; Lima, Igara Oliveira; Wanderley, Paulo Alves; de Lima, Rita Baltazar; de Oliveira Lima, Edeltrudes

2011-04-01

403

Antifungal activity of Cymbopogon winterianus jowitt ex bor against Candida albicans  

PubMed Central

Candida albicans is an opportunistic yeast and a member of the normal human flora that commonly causes infections in patients with any type of deficiency of the immune system. The essential oils have been tested for antimycotic activity and pose much potential as antifungal agents. This work investigated the activity of the essential oil of Cymbopogon winterianus against C. albicans by MIC, MFC and time-kill methods. The essential oil (EO) was obtained by hydrodistillation using a Clevenger-type apparatus. It was tested fifteen strains of C. albicans. The MIC was determined by the microdilution method and the MFC was determined when an aliquot of the broth microdilution was cultivated in SDA medium. The phytochemical analysis of EO showed presence of citronellal (23,59%), geraniol (18,81%) and citronellol (11,74%). The EO showed antifungal activity, and the concentrations 625 µg/mL and 1250 µg/mL inhibited the growth of all strains tested and it was fungicidal, respectively. The antimicrobial activity of various concentrations of EO was analyzed over time, it was found concentration-dependent antifungal activity, whose behavior was similar to amphotericin B and nystatin. PMID:24031651

de Oliveira, Wylly Araújo; de Oliveira Pereira, Fillipe; de Luna, Giliara Carol Diniz Gomes; Lima, Igara Oliveira; Wanderley, Paulo Alves; de Lima, Rita Baltazar; de Oliveira Lima, Edeltrudes

2011-01-01

404

An ancient plant Lawsonia inermis (henna): Determination of in vitro antifungal activity against dermatophytes species.  

PubMed

World is endowed with a rich wealth of medicinal plants. There is a widespread belief that green medicines are healthier and more harmless or safer than synthetic ones. Medicinal plants have been used to cure a number of diseases. The ancient plant Lawsonia inermis or henna is used as medicinal plant because of its attributed strong fungicidal, anti-inflammatory, analgesic, antibacterial, virucidal, antiparasitic, antiamoebiasis, astringent, antihemorrhagic, hypotensive, sedative, anticancer effect and possible anti-sweating properties. In this study, we investigated antifungal activity of L. inermis against clinical dermatophytes species. This study was carried out using 70 clinical isolates of dermatophytes representing six different species; 44 Trichophyton rubrum, 8 Trichophyton mentagrophytes, 6 Microsporum canis, 6 Trichophyton tonsurans, 4 Epidermophyton floccosum, and 2 Trichophyton violaceum. The antifungal activity of L. inermis (henna) was determined by agar diffusion method and henna was used as paste form. Henna paste showed the high antifungal activity against all dermatophytes species (20 to 50mm inhibition zone). PMID:25442917

Gozubuyuk, G S; Aktas, E; Yigit, N

2014-12-01

405

Metal-based carboxamide-derived compounds endowed with antibacterial and antifungal activity.  

PubMed

A series of three bioactive thiourea (carboxamide) derivatives, N-(dipropylcarbamothioyl)-thiophene-2-carboxamide (L(1)), N-(dipropylcarbamothioyl)-5-methylthiophene-2-carboxamide (L(2)) and 5-bromo-N-(dipropylcarbamothioyl)furan-2-carboxamide (L(3)) and their cobalt(II), copper(II), nickel(II) and zinc(II) complexes (1)-(12) have been synthesized and characterized by their IR,(1)H-NMR spectroscopy, mass spectrometry and elemental analysis data. The Crystal structure of one of the ligand, N-(dipropylcarbamothioyl)thiophene-2-carboxamide (L(1)) and its nickel(II) and copper(II) complexes were determined from single crystal X-ray diffraction data. All the ligands and metal(II) complexes have been subjected to in vitro antibacterial and antifungal activity against six bacterial species (Escherichia coli. Shigella flexneri. Pseudomonas aeruginosa. Salmonella typhi. Staphylococcus aureus and Bacillus subtilis) and for antifungal activity against six fungal strains (Trichophyton longifusus. Candida albicans. Aspergillus flavus. Microsporum canis. Fusarium solani and Candida glabrata). The in vitro antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent than the parent ligands against one or more bacterial and fungal strains. PMID:23914928

Hanif, Muhammad; Chohan, Zahid H; Winum, Jean-Yves; Akhtar, Javeed

2014-08-01

406

In Vitro Antifungal Activity of Burkholderia gladioli pv. agaricicola against Some Phytopathogenic Fungi  

PubMed Central

The trend to search novel microbial natural biocides has recently been increasing in order to avoid the environmental pollution from use of synthetic pesticides. Among these novel natural biocides are the bioactive secondary metabolites of Burkholderia gladioli pv. agaricicola (Bga). The aim of this study is to determine antifungal activity of Bga strains against some phytopathogenic fungi. The fungicidal tests were carried out using cultures and cell-free culture filtrates against Botrytis cinerea, Aspergillus flavus, Aspergillus niger, Penicillium digitatum, Penicillium expansum, Sclerotinia sclerotiorum and Phytophthora cactorum. Results demonstrated that all tested strains exert antifungal activity against all studied fungi by producing diffusible metabolites which are correlated with their ability to produce extracellular hydrolytic enzymes. All strains significantly reduced the growth of studied fungi and the bacterial cells were more bioactive than bacterial filtrates. All tested Bulkholderia strains produced volatile organic compounds (VOCs), which inhibited the fungal growth and reduced the growth rate of Fusarium oxysporum and Rhizoctonia solani. GC/MS analysis of VOCs emitted by strain Bga 11096 indicated the presence of a compound that was identified as 1-methyl-4-(1-methylethenyl)-cyclohexene, a liquid hydrocarbon classified as cyclic terpene. This compound could be responsible for the antifungal activity, which is also in agreement with the work of other authors. PMID:23208371

Elshafie, Hazem S.; Camele, Ippolito; Racioppi, Rocco; Scrano, Laura; Iacobellis, Nicola S.; Bufo, Sabino A.

2012-01-01

407

Optimizing topical antifungal therapy for superficial cutaneous fungal infections: focus on topical naftifine for cutaneous dermatophytosis.  

PubMed

Superficial cutaneous fungal infections (SCFIs) are commonly encountered in clinical practice in the United States, and comprise infections of the skin by dermatophytes and yeasts. The most common organisms causing SCFI are dermatophytes, especially Trichophyton spp. With the exception of onchomycosis and tinea capitis, most cases of SCFIs are amenable to properly selected topical antifungal therapy used over an adequate period of time.

A variety of topical antifungal agents are available for the treatment of SCFIs, and they encompass a few major chemical classes: the polyenes (ie, nystatin), imidazoles (ie, ketoconazole, econazole, oxiconazole, etc), allylamines (ie, naftifine, terbinafine), benzylamines (ie, butenafine), and hydroxypyridones (ie, ciclopirox). The 2 major classes that represent the majority of available topical antifungal agents are the azoles and the allylamines. Overall, the allylamines are superior to the azoles in activity against dermatophytes, although both are clinically effective. The reverse is true against yeasts such as Candida spp and Malassezia spp, although topical allylamines have proven to be efficacious in some cases of tinea versicolor and cutaneous candidiasis.

Naftifine, a topical allylamine, is fungicidal in vitro against a wide spectrum of dermatophyte fungi and has been shown to be highly effective against a variety of cutaneous dermatophyte infections. Rapid onset of clinical activity and favorable data on sustained clearance of infection have been documented with naftifine. The more recent addition of naftifine 2% cream has expanded the armamentarium, with data supporting a clinically relevant therapeutic reservoir effect after completion of therapy. PMID:24196340

Del Rosso, James Q; Kircik, Leon H

2013-11-01

408

Psychrotolerant antifungal Streptomyces isolated from Tawang, India and the shift in chitinase gene family.  

PubMed

A total of 210 Streptomyces were isolated from the soil samples of Tawang, India where temperature varied from 5 °C during daytime to -2 °C during the night. Based on antifungal activity, a total of 33 strains, putatively Streptomyces spp., were selected. Optimal growth temperature for the 33 strains was 16 °C, with growth occurring down to 6 °C but not above 30 °C. Phylogenetic analysis based on 16S rDNA sequences revealed the taxonomic affiliation of the 33 strains as species of Streptomyces. To examine the relatedness of the chitinase genes from six strong antifungal Streptomyces strains, a phylogenetic tree was constructed using the catalytic domain nucleotide sequences and resulted in seven distinct monophyletic groups. A quantitative PCR study for chitinase expressing ability revealed that of the six antifungal strains tested, the strain Streptomyces roseochromogenus TSR12 was the most active producer of family 18 chitinase genes. Streptomyces strains with enhanced inhibitory potential usually encode a family 19 chitinase gene; however, our present study did not show expression of this family in the six strains tested. PMID:24085523

Debnath, Rajal; Saikia, Ratul; Sarma, Rupak K; Yadav, Archana; Bora, Tarun C; Handique, Pratap J

2013-11-01

409

Combination antifungal therapy for invasive mould diseases in haematologic patients. An update on clinical data.  

PubMed

Invasive mould diseases (IMDs) are often encountered in haematologic patients who undergo chemotherapy or who require allogeneic haematopoietic stem cell transplantation (allo-HSCT), and still represent a challenge for physicians. The availability of antifungals with different targets has set the foundation to improve the outcomes of patients with IMDs and also to develop innovative therapeutic approaches. Among these, using combinations of antifungal drugs is an attractive option for reasons such as the broader spectrum of activity, synergy between compounds with different targets, and a reduced risk of fungal resistance. In addition, in vitro studies and animal models have provided evidence supporting the use of combination strategies. Although no controlled, well-powered, prospective clinical trials are yet available to demonstrate the superiority of combination versus monotherapy, the persistently high mortality rate associated with IMDs has stimulated the use of combinations of antifungal drugs, both in adult and paediatric patients. In this paper, we review the recent published literature on combination therapy for the treatment of IMDs in adult and paediatric haematologic patients. PMID:25466728

Candoni, Anna; Aversa, Franco; Busca, Alessandro; Cesaro, Simone; Girmenia, Corrado; Luppi, Mario; Rossi, Giuseppe; Venditti, Adriano; Nosari, Anna Maria; Pagano, Livio

2015-02-01

410

Chemical Composition, Antifungal and Antibiofilm Activities of the Essential Oil of Mentha piperita L.  

PubMed Central

Variations in quantity and quality of essential oil (EO) from the aerial parts of cultivated Mentha piperita were determined. The EO of air-dried sample was obtained by a hydrodistillation method and analyzed by a gas chromatography/mass spectrometry (GC/MS). The antifungal activity of the EO was investigated by broth microdilution methods as recommended by Clinical and Laboratory Standards Institute. A biofilm formation inhibition was measured by using an XTT reduction assay. Menthol (53.28%) was the major compound of the EO followed by Menthyl acetate (15.1%) and Menthofuran (11.18%). The EO exhibited strong antifungal activities against the examined fungi at concentrations ranging from 0.12 to 8.0??L/mL. In addition, the EO inhibited the biofilm formation of Candida albicans and C. dubliniensis at concentrations up to 2??L/mL. Considering the wide range of the antifungal activities of the examined EO, it might be potentially used in the management of fungal infections or in the extension of the shelf life of food products. PMID:23304561

Saharkhiz, Mohammad Jamal; Motamedi, Marjan; Zomorodian, Kamiar; Pakshir, Keyvan; Miri, Ramin; Hemyari, Kimia

2012-01-01

411

Antifungal susceptibility and virulence attributes of bloodstream isolates of Candida from Hong Kong and Finland.  

PubMed

Candida bloodstream infection has dramatically increased in the last decade due to the growing number of immunocompromised populations worldwide. In this study, we evaluated the antifungal susceptibility profiles and virulence attributes of Candida bloodstream isolates (CBIs) derived from Hong Kong and Finland, information which are vital for devising empirical clinical strategies. Susceptibility testing of a wide range of antifungals including fluconazole, itraconazole, voriconazole, ketoconazole, 5-fluorocytosine, amphotericin B and caspofungin was performed. Haemolytic activity and secretion of proteinase of CBIs were also examined. All CBIs derived from Hong Kong were susceptible to all the antifungals tested whilst some CBIs from Finland were resistant to azoles and caspofungin. C. albicans, C. glabrata and C. tropicalis showed higher haemolytic activity whereas C. parapsilosis and C. guilliermondii were non-haemolytic in general. Proteinase activity of the Finland C. albicans isolates was significantly higher than the Hong Kong isolates. Our data provide a glimpse of the possible evolutionary changes in pathogenic potential of Candida that may be occurring in different regions of the world. Therefore, continuous surveillance and availability of local data should be taken into consideration when treating candidemia patients. PMID:21744043

Seneviratne, C J; Wong, S S W; Yuen, K Y; Meurman, J H; Pärnänen, P; Vaara, M; Samaranayake, L P

2011-11-01

412

Virulence Factors Contributing to Pathogenicity of Candida tropicalis and Its Antifungal Susceptibility Profile  

PubMed Central

The incidence of invasive candidiasis has increased over the past few decades. Although Candida albicans remains by far the most common species encountered, in recent years shift towards non-albicans Candida species like Candida tropicalis is noted. Here in this study we determined the virulence factors and antifungal susceptibility profile of 125 C. tropicalis isolated from various clinical specimens. Biofilm formation was seen in 53 (42.4%) isolates. Coagulase production was noted in 18 (14.4%) isolates. Phospholipase enzyme was the major virulent factor produced by C. tropicalis isolates. A total of 39 biofilm forming isolates showed phospholipase activity. Proteinase activity was demonstrated by 65 (52%) isolates. A total of 38 (30.4%) isolates showed haemolytic activity. Maximum isolates demonstrated resistance to fluconazole. Fluconazole resistance was more common in C. tropicalis isolated from blood cultures. Antifungal resistance was more in isolates possessing the ability to produce phospholipase and biofilm. C. tropicalis exhibit a great degree of variation not only in their pathogenicity but also in their antifungal susceptibility profile. The identification of virulence attributes specific for each species and their correlation with each other will aid in the understanding of the pathogenesis of infection. PMID:24803934

Deorukhkar, Sachin C.; Saini, Santosh

2014-01-01

413

Comparison of susceptibility and transcription profile of the new antifungal hassallidin A with caspofungin  

SciTech Connect

This is First report on the antifungal effects of the new glycolipopeptide hassallidin A. Due to related molecular structure moieties between hassallidin A and the established antifungal drug caspofungin we assumed parallels in the effects on cell viability. Therefore we compared hassallidin A with caspofungin by antifungal susceptibility testing and by analysing the genome-wide transcriptional profile of Candida albicans. Furthermore, we examined modifications in ultracellular structure due to hassallidin A treatment by electron microscopy. Hassallidin A was found to be fungicidal against all tested Candida species and Cryptococcus neoformans isolates. MICs ranged from 4 to 8 {mu}g/ml, independently from the species. Electron microscopy revealed noticeable ultrastructural changes in C. albicans cells exposed to hassallidin A. Comparing the transcriptional profile of C. albicans cells treated with hassallidin A to that of cells exposed to caspofungin, only 20 genes were found to be similarly up- or down-regulated in both assays, while 227 genes were up- or down-regulated induced by hassallidin A specifically. Genes up-regulated in cells exposed to hassallidin A included metabolic and mitotic genes, while genes involved in DNA repair, vesicle docking, and membrane fusion were down-regulated. In summary, our data suggest that, although hassallidin A and caspofungin have similar structures, however, the effects on susceptibility and transcriptional response to yeasts seem to be different.

Neuhof, Torsten [Technische Universitaet Berlin, Institut fuer Chemie, FG Biochemie und Molekulare Biologie, 10587 Berlin (Germany)]. E-mail: t.neuhof@gmx.de; Seibold, Michael [Robert Koch-Institut, FG 16, 13353 Berlin (Germany); Thewes, Sascha [Robert Koch-Institut, FG 16, 13353 Berlin (Germany); Laue, Michael [Robert Koch-Institut, ZBS4, 13353 Berlin (Germany); Han, Chang-Ok [Robert Koch-Institut, FG 16, 13353 Berlin (Germany); Hube, Bernhard [Robert Koch-Institut, FG 16, 13353 Berlin (Germany); Doehren, Hans von [Technische Universitaet Berlin, Institut fuer Chemie, FG Biochemie und Molekulare Biologie, 10587 Berlin (Germany)

2006-10-20

414

Genomic identification of potential targets unique to Candida albicans for the discovery of antifungal agents.  

PubMed

Despite of modern antifungal therapy, the mortality rates of invasive infection with human fungal pathogen Candida albicans are up to 40%. Studies suggest that drug resistance in the three most common species of human fungal pathogens viz., C. albicans, Aspergillus fumigatus (causing mortality rate up to 90%) and Cryptococcus neoformans (causing mortality rate up to 70%) is due to mutations in the target enzymes or high expression of drug transporter genes. Drug resistance in human fungal pathogens has led to an imperative need for the identification of new targets unique to fungal pathogens. In the present study, we have used a comparative genomics approach to find out potential target proteins unique to C. albicans, an opportunistic fungus responsible for severe infection in immune-compromised human. Interestingly, many target proteins of existing antifungal agents showed orthologs in human cells. To identify unique proteins, we have compared proteome of C. albicans [SC5314] i.e., 14,633 total proteins retrieved from the RefSeq database of NCBI, USA with proteome of human and non-pathogenic yeast Saccharomyces cerevisiae. Results showed that 4,568 proteins were identified unique to C. albicans as compared to those of human and later when these unique proteins were compared with S. cerevisiae proteome, finally 2,161 proteins were identified as unique proteins and after removing repeats total 1,618 unique proteins (42 functionally known, 1,566 hypothetical and 10 unknown) were selected as potential antifungal drug targets unique to C. albicans. PMID:24102473

Tripathi, Himanshu; Luqman, Suaib; Meena, Abha; Khan, Feroz

2014-01-01

415

Antifungal activity and identification of Lactobacilli, isolated from traditional dairy product "katak".  

PubMed

Filamentous moulds are the main spoilage microorganisms, responsible for significant economic losses and several healthy risks in human food chain. The lactic acid bacteria (LAB), especially lactobacilli could be a natural antagonist of these dangerous organisms. In Bulgaria, a very limited data exists on the antifungal activity of LAB microbiota of fermented dairy products. In the present study, four active strains were isolated from traditional fermented curd/yogurt-like product "katak", produced in Bulgaria from centuries. The new isolates KR3, KR4, KR51 and KR53 were identified by API 50 CH biochemical test and different molecular methods (species-specific PCR, RAPD-PCR and 16S rDNA sequence analysis) as Lactobacillus brevis. According to our knowledge, this is the first data on the molecular characterization of the Lactobacillus microbiota of "katak". A broad spectrum of antifungal activity of the four L. brevis KR strains against test-cultures representatives of carcinogenic, toxigenic, deteriorative and allergenic fungi from the genera Aspergillus, Fusarium, Penicillium and Trichoderma was estimated. Strains L. brevis KR3, KR4 and KR51 completely suppress the growth of Penicillium claviforme, Aspergillus awamori and Aspergillus niger. With regard to Aspergillus flavus and Trichoderma viride, a lower and strain-specific inhibitory activity was observed. The antifungal activity of our new L. brevis isolates seems to be a promising advantage of these four strains, suggesting their potential applications in different food technologies as bio-preservative agents against moulds. PMID:24887637

Tropcheva, Rositsa; Nikolova, Dilyana; Evstatieva, Yana; Danova, Svetla

2014-08-01

416

Concurrent purification of two defense proteins from French bean seeds: a defensin-like antifungal peptide and a hemagglutinin.  

PubMed

A purification protocol is described herein for concurrent isolation of two defense proteins including a 6-kDa defensin-like antifungal peptide and a 60-kDa dimeric hemagglutinin from seeds of the French bean (Phaseolus vulgaris). It involved ion-exchange chromatography on SP-Sepharose, affinity chromatography on Affi-gel blue gel, ion-exchange chromatography on Q-Sepharose, and gel filtration on Superdex Peptide (for defensin-like antifungal peptide) or Superdex 200 (for hemagglutinin). Both antifungal and hemagglutinating activities were adsorbed on SP-Sepharose and then on Affi-gel blue gel. Hemagglutinin was subsequently unadsorbed and defensin-like antifungal peptide adsorbed on Q-Sepharose. The antifungal activity of the antifungal peptide was stable in the temperature range of 0-90 degrees C for 20 min, in the pH range of 4-10, and after exposure to trypsin (1 mg/ml) at 37 degrees C for 1 h. The hemagglutinin was stable from 10 to 80 degrees C, from pH 1 to 12, and after treatment with trypsin at 37 degrees C for 2 h. It inhibited [methyl-(3)H]thymidine incorporation into breast cancer (MCF-7), leukemia (L1210), hepatoma (HepG2) and human embryonic liver (WRL68) cells with an IC50 of 6.6, 7, 13 and 15 microM, respectively, and elicited maximal mitogenic response from mouse splenocytes at 1 microM concentration. It curtailed HIV-1 reverse transcriptase activity with an IC50 of 1.9 microM, but was devoid of antifungal activity. PMID:17994641

Leung, Edwin H W; Wong, Jack H; Ng, T B

2008-03-01

417

Systemic Antifungal Prescribing in Neonates and Children: Outcomes from the Antibiotic Resistance and Prescribing in European Children (ARPEC) Study.  

PubMed

The appropriate use of systemic antifungals is vital in the prevention and treatment of invasive fungal infection (IFI) in immunosuppressed children and neonates. This multicenter observational study describes the inpatient prescribing practice of antifungal drugs for children and neonates and identifies factors associated with prescribing variability. A single-day point prevalence study of antimicrobial use in hospitalized neonates and children was performed between October and December 2012. The data were entered through a study-specific Web-based portal using a standardized data entry protocol. Data were recorded from 17,693 patients from 226 centers. A total of 136 centers recorded data from 1,092 children and 380 neonates receiving at least one antifungal agent. The most frequently prescribed systemic antifungals were fluconazole (n = 355) and amphotericin B deoxycholate (n = 195). The most common indications for antifungal administration in children were medical prophylaxis (n = 325), empirical treatment of febrile neutropenia (n = 122), and treatment of confirmed or suspected IFI (n = 100 [14%]). The treatment of suspected IFI in low-birthweight neonates accounted for the majority of prescriptions in the neonatal units (n = 103). An analysis of variance (ANOVA) demonstrated no significant effect of clinical indication (prophylaxis or treatment of systemic or localized infection) on the total daily dose (TDD). Fewer than one-half of the patients (n = 371) received a TDD within the dosing range recommended in the current guidelines. Subtherapeutic doses were prescribed in 416 cases (47%). The predominance of fluconazole and high incidence of subtherapeutic doses in participating hospitals may contribute to suboptimal clinical outcomes and an increased predominance of resistant pathogenic fungi. A global consensus on antifungal dosing and coordinated stewardship programs are needed to promote the consistent and appropriate use of antifungal drugs in neonates and children. PMID:25403672

Lestner, J M; Versporten, A; Doerholt, K; Warris, A; Roilides, E; Sharland, M; Bielicki, J; Goossens, H

2015-02-01

418

The serum glucan level and pathological changes of antifungal treatment for lower respiratory tract infection of Candida albicans.  

PubMed

Due to the fact that Candida albicans colonizes in the upper respiratory tracts of healthy people, whether or not its isolation from airway secretions is sufficient to warrant treatment remains controversial. The animal models of immunosuppressive rats with pulmonary candidiasis were established by the intratracheal inoculating suspensions of C. albicans, and the animals were divided into the following three groups: (1) antifungal treatment group, (2) saline control group, and (3) blank control group. We noted the following in our studies: (1) The fungal load of the saline control group gradually increased such that it was higher than those of the antifungal treated group and was significant from the fourth day of treatment (P < 0.01). (2) The serum (1,3)-?-D-glucan (BG) in the saline control group also gradually increased so that it was significantly higher than found with the treated group by the sixth day of treatment (P < 0.05), and in fact, the rank of pulmonary colony count and BG in the two groups at different time points showed an almost perfect linear correlation. (3) The median survival period of the rats in the antifungal treated group and saline control group was 15 and 8 days respectively, no rats died in the blank control group. (4) The lung lesions from the saline control group gradually became more aggravated than those in the antifungal treated group; no significant pathological changes were found in the blank control group. Antifungal treatment (micafungin) is capable of efficaciously decreasing the lung fungal burden, and continuous monitoring of BG is useful for the evaluation of therapeutic effect of antifungals. Infection of C. albicans with associated pathological damage implies the need for antifungal therapy. PMID:25550389

Xu, Wen-Ming; Shui, Wei; Lin, Jian-Cong; Lin, Zhen-Qiu; Li, Ming; Xing, Yan-Li; Zhang, Chang-Ran

2015-02-01

419

Candida albicans Biofilm Chip (CaBChip) for High-throughput Antifungal Drug Screening  

PubMed Central

Candida albicans remains the main etiological agent of candidiasis, which currently represents the fourth most common nosocomial bloodstream infection in US hospitals1. These opportunistic infections pose a growing threat for an increasing number of compromised individuals, and carry unacceptably high mortality rates. This is in part due to the limited arsenal of antifungal drugs, but also to the emergence of resistance against the most commonly used antifungal agents. Further complicating treatment is the fact that a majority of manifestations of candidiasis are associated with the formation of biofilms, and cells within these biofilms show increased levels of resistance to most clinically-used antifungal agents2. Here we describe the development of a high-density microarray that consists of C. albicans nano-biofilms, which we have named CaBChip3. Briefly, a robotic microarrayer is used to print yeast cells of C. albicans onto a solid substrate. During printing, the yeast cells are enclosed in a three dimensional matrix using a volume as low as 50 nL and immobilized on a glass substrate with a suitable coating. After initial printing, the slides are incubated at 37 °C for 24 hours to allow for biofilm development. During this period the spots grow into fully developed "nano-biofilms" that display typical structural and phenotypic characteristics associated with mature C. albicans biofilms (i.e. morphological complexity, three dimensional architecture and drug resistance)4. Overall, the CaBChip is composed of ~750 equivalent and spatially distinct biofilms; with the additional advantage that multiple chips can be printed and processed simultaneously. Cell viability is estimated by measuring the fluorescent intensity of FUN1 metabolic stain using a microarray scanner. This fungal chip is ideally suited for use in true high-throughput screening for antifungal drug discovery. Compared to current standards (i.e. the 96-well microtiter plate model of biofilm formation5), the main advantages of the fungal biofilm chip are automation, miniaturization, savings in amount and cost of reagents and analyses time, as well as the elimination of labor intensive steps. We believe that such chip will significantly speed up the antifungal drug discovery process. PMID:22847237

Srinivasan, Anand; Lopez-Ribot, Jose L.; Ramasubramanian, Anand K.

2012-01-01

420

Biochemical characterization of fruit-specific pathogenesis-related antifungal protein from basrai banana.  

PubMed

Pathogenesis-related/thaumatin like (PR-5/TL) antifungal protein from basrai banana was purified by using a simple protocol consisting of ammonium sulphate precipitation, affinity chromatography (Affi-gel blue gel), Q-Sepharose chromatography and gel filtration on Sephadex G-75. The purified protein with acidic character (pI 6.67) has molecular weight of 21.155 kDa, as determined by MALDI-TOF mass spectrometry. The purified protein shared N-terminal sequence homology with other TLPs. Crude banana extract inhibited the growth of Fusarium oxysporum, Aspergillus niger, Aspergillus fumigatus and Trichoderma viride with IC?? values (determined by Probit analysis) 15 ?M (slope=0.086, ?(2)=17.843, P=0.033), 17 ?M (slope=0.183, ?(2)=61.533, P=0.011), 6.5 ?M (slope=0.211, ?(2)=14.380, P=0.023) and 29.11 ?M (slope=0.072, ?(2)=45.768, P=0.014). The purified antifungal protein repressed the growth of F. oxysporum, A. niger, A. fumigatus and T. viride with IC?? values 9.7 ?M (slope=0.056, ?(2)=11.538, P=0.021), 11.83 ?M (slope=0.127, ?(2)=42.82, P=0.00), 4.61 ?M (slope=0.150, ?(2)=10.199, P=0.017) and 21.43 ?M (slope=0.053, ?(2)=33.693, P=0.00), respectively. The IC50 values of antifungal activity of crude banana extract were higher than the purified antifungal protein. It indicated that proteins in crude banana extract have antagonistic effect on the fungal growth. White bread is particularly vulnerable by fungal pathogens. Purified antifungal protein suppressed the growth of Aspergillus phoenicis and Aspergillus flavus on white bread suggesting that this protein can be used as a preservative in the bakery industry as well as in other relevant food processing industries. PMID:24192113

Yasmin, Nusrat; Saleem, Mahjabeen

2014-01-01

421

Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles.  

PubMed

The recent strategy to improve the efficacy of drugs is to combine them with metal nanoparticles for the control of microbial infections. Considering this fact, we developed a low cost and eco-friendly method for silver nanoparticles synthesis using the cell free supernatant of Delftia sp. strain KCM-006 and their application as antifungal agents and as a drug carrier. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical and monodispersed silver nanoparticles with an average size of 9.8nm. The synthesized nanoparticles were found to be photoluminescent, highly stable and crystalline in nature having a zeta potential of -31mV. The silver nanoparticles exhibited very good antifungal activity against various pathogenic Candida strains. Furthermore, the efficacy of nanoparticles was increased by conjugating the antifungal drug Miconazole to silver nanoparticles which exhibited significant fungicidal activity, inhibition of ergosterol biosynthesis and biofilm inhibition by increasing ROS levels. In addition, the cell viability and immunocytochemistry analysis against different normal cell lines including Chinese hamster ovary cells (CHO), human lung cell line (MRC5) and human vascular endothelial cells (HUVEC) demonstrated that these nanoparticles were non-toxic up to a concentration of 20?M. In conclusion, these results suggest that the synthesized nanoparticles find application as both antifungal agents and drug delivery vehicles. This is a first report on the preparation of silver nanoparticles using culture supernatant from Delftia sp. and also on the conjugation of Miconazole, an antifungal drug, to the bacterial silver nanoparticles. PMID:25460601

Kumar, C Ganesh; Poornachandra, Y

2015-01-01

422

A genomewide screen in Schizosaccharomyces pombe for genes affecting the sensitivity of antifungal drugs that target ergosterol biosynthesis.  

PubMed

We performed a genomewide screen for altered sensitivity to antifungal drugs, including clotrimazole and terbinafine, that target ergosterol biosynthesis using a Schizosaccharomyces pombe gene deletion library consisting of 3,004 nonessential haploid deletion mutants. We identified 109 mutants that were hypersensitive and 11 mutants that were resistant to these antifungals. Proteins whose absence rendered cells sensitive to these antifungals were classified into various functional categories, including ergosterol biosynthesis, membrane trafficking, histone acetylation and deacetylation, ubiquitination, signal transduction, ribosome biosynthesis and assembly, regulation of transcription and translation, cell wall organization and biogenesis, mitochondrion function, amino acid metabolism, nucleic acid metabolism, lipid metabolism, meiosis, and other functions. Also, proteins whose absence rendered cells resistant to these antifungals were classified into functional categories including mitochondrion function, ubiquitination, membrane trafficking, cell polarity, chromatin remodeling, and some unknown functions. Furthermore, the 109 sensitive mutants were tested for sensitivity to micafungin, another antifungal drug that inhibits (1,3)-?-D-glucan synthase, and 57 hypersensitive mutants were identified, suggesting that these mutants were defective in cell wall integrity. Altogether, our findings in fission yeast have shed light on molecular pathways associated with the cellular response to ergosterol biosynthesis inhibitors and may provide useful information for developing strategies aimed at sensitizing cells to these drugs. PMID:22252817

Fang, Yue; Hu, Lingling; Zhou, Xin; Jaiseng, Wurentuya; Zhang, Ben; Takami, Tomonori; Kuno, Takayoshi

2012-04-01

423

A Genomewide Screen in Schizosaccharomyces pombe for Genes Affecting the Sensitivity of Antifungal Drugs That Target Ergosterol Biosynthesis  

PubMed Central

We performed a genomewide screen for altered sensitivity to antifungal drugs, including clotrimazole and terbinafine, that target ergosterol biosynthesis using a Schizosaccharomyces pombe gene deletion library consisting of 3,004 nonessential haploid deletion mutants. We identified 109 mutants that were hypersensitive and 11 mutants that were resistant to these antifungals. Proteins whose absence rendered cells sensitive to these antifungals were classified into various functional categories, including ergosterol biosynthesis, membrane trafficking, histone acetylation and deacetylation, ubiquitination, signal transduction, ribosome biosynthesis and assembly, regulation of transcription and translation, cell wall organization and biogenesis, mitochondrion function, amino acid metabolism, nucleic acid metabolism, lipid metabolism, meiosis, and other functions. Also, proteins whose absence rendered cells resistant to these antifungals were classified into functional categories including mitochondrion function, ubiquitination, membrane trafficking, cell polarity, chromatin remodeling, and some unknown functions. Furthermore, the 109 sensitive mutants were tested for sensitivity to micafungin, another antifungal drug that inhibits (1,3)-?-d-glucan synthase, and 57 hypersensitive mutants were identified, suggesting that these mutants were defective in cell wall integrity. Altogether, our findings in fission yeast have shed light on molecular pathways associated with the cellular response to ergosterol biosynthesis inhibitors and may provide useful information for developing strategies aimed at sensitizing cells to these drugs. PMID:22252817

Hu, Lingling; Zhou, Xin; Jaiseng, Wurentuya; Zhang, Ben; Takami, Tomonori; Kuno, Takayoshi

2012-01-01

424

Susceptibility of clinical Candida species isolates to antifungal agents by E-test, Southern Iran: A five year study  

PubMed Central

Background and Objectives The incidence of fungal infections in immunocompromised patients, especially by Candida species, has increased in recent years. This study was designed to identify Candida species and determine antifungal susceptibility patterns of 595 yeast strains isolated from various clinical specimens. Material and Methods Identification of the isolates were determined by the API 20 C AUX kit and antifungal susceptibilities of the species to fluconazole, amphotericin B, ketoconazole, itraconazole, voriconazole, and caspofungin were determined by the agar-based E-test method. Results Candida albicans (48%) was the most frequently isolated species, followed by Candida kruzei (16.1%), Candida glabrata (13.5%), Candida kefyr (7.4%), Candida parapsilosis (4.8%), Candida tropicalis (1.7%) and other species (8.5%). Resistance varies depending on the species and the respective antifungal agents. Comparing the MIC90 for all the strains, the lower MIC90 was observed for caspofungin (0.5 µg/ml). The MIC90 for all Candida species were 64 µg/ml for fluconazole, 0.75 µg/ml for amphotericin B, 4 µg/ml for ketoconazole, 4 µg/ml for itraconazole, and 2 µg/ml for voriconazole. Conclusions Species definition and determination of antifungal susceptibility patterns are advised for the proper management and treatment of patients at risk for systemic candidiasis. Resistance to antifungal agents is an alarming sign for the emerging common nosocomial fungal infections. PMID:22530086

Badiee, P; Alborzi, A

2011-01-01

425

In-vitro Activity of 10 Antifungal Agents against 320 Dermatophyte Strains Using Microdilution Method in Tehran  

PubMed Central

Dermatophyte fungi are the etiologic agents of skin infections commonly referred to as ringworm. These infections are not dangerous but as a chronic cutaneous infections they may be difficult to treat and can also cause physical discomfort for patients. They are considered important as a public health problem as well. No information is available regarding the efficacy of antifungal agents against dermatophytes in Tehran. Therefore, in this study we evaluated the efficacy of 10 systemic and topical antifungal medications using CLSI broth microdilution method (M38-A). The antifungal agents used included griseofulvin, terbinafine, itraconazole, ketoconazole, fluconazole, voriconazole, clotrimazole, ciclopirox olamine, amorolfine and naftifine.Fifteen different species of dermatophytes which were mostly clinical isolates were used as follows; T. mentagrophytes, T. rubrum, E. floccosum, M. canis, T. verrucosum, T. tonsurans, M. gypseum, T. violaceum, M. ferruginum, M. fulvum, T. schoenleinii, M. racemosum, T. erinacei, T. eriotrephon and Arthroderma benhamiae. The mean number of fungi particles (conidia) inoculated was 1.25 ×10? CFU/mL. Results were read after 7 days of incubation at 28 °C. According to the obtained results,itraconazole and terbinafine showed the lowest and fluconazole had the greatest MIC values for the most fungi tested. Based on the results, it is necessary to do more research and design a reliable standard method for determination of antifungal susceptibility to choose proper antibiotics with fewer side effects and decrease antifungal resistance and risk of treatment failure. PMID:24250660

Adimi, Parvaneh; Hashemi, Seyed Jamal; Mahmoudi, Mahmood; Mirhendi, Hossein; Shidfar, Mohammad Reza; Emmami, Masood; Rezaei-Matehkolaei, Ali; Gramishoar, Mohsen; Kordbacheh, Parivash

2013-01-01

426

Purification and identification of a novel antifungal protein secreted by Penicillium citrinum from the Southwest Indian Ocean.  

PubMed

A novel antifungal protein produced by the fungal strain Penicillium citrinum W1, which was isolated from a Southwest Indian Ocean sediment sample, was purified and characterized. The culture supernatant of P. citrinum W1 inhibited the mycelial growth of some plant pathogenic fungi. After saturation of P. citrinum W1 culture supernatants with ammonium sulfate and ion-exchange chromatography, an antifungal protein (PcPAF) was purified. The N-terminal amino acid sequence analysis showed that PcPAF might be an unknown antifungal protein. PcPAF displayed antifungal activity against Trichoderma viride, Fusarium oxysporum, Paecilomyces variotii, and Alternaria longipes at minimum inhibitory concentrations of 1.52, 6.08, 3.04, and 6.08 µg/disc, respectively. PcPAF possessed high thermostability and had a certain extent of protease and metal ion resistance. The results suggested that PcPAF may represent a novel antifungal protein with potential application in controlling plant pathogenic fungal infection. PMID:24931500

Wen, Chao; Guo, Wenbin; Chen, Xinhua

2014-10-01

427

Identification and characterization of an antifungal protein AfAFPR9 produced by marine derived Aspergillus fumigatus R9.  

PubMed

A fungal strain R9 was isolated from the South Atlantic sediment sample and identified as Aspergillus fumigatus. An antifungal protein AfAFPR9 was purified from the culture supernatant of Aspergillus fumigatus R9. AfAFPR9 was identified to be restrictocin, which belonged to a member of ribosome-inactivating proteins (RIPs), by MALDI-TOF-TOF-MS. AfAFPR9 displayed antifungal activity against plant pathogenic Fusarium oxysporum, Alternaria longipes, Colletotrichum gloeosporioides, Paecilomyces variotii, and Trichoderma viride at minimum inhibitory concentrations (MICs) of 0.6, 0.6, 1.2, 1.2, and 2.4 ?g/disc, respectively. Moreover, AfAFPR9 exhibits a certain extent of thermostability, metal ion and denaturant tolerance. The iodoacetamide assay showed that the disulfide bridge in AfAFPR9 was indispensable for its antifungal action. The cDNA encoding for AfAFPR9 was then cloned from A. fumigatus R9 by RT-PCR and heterologously expressed in E. coli. The recombinant AfAFPR9 protein exhibited obvious antifungal activity against C. gloeosporioides, T. viride, and A. longipes. These results reveal the antifungal properties of a RIP member (AfAFPR9) from marine derived Aspergillus fumigatus and facilitate its potential application in controlling plant pathogenic fungi. PMID:25394604

Rao, Qi; Guo, Wenbin; Chen, Xinhua

2014-11-14

428

Two new cyclopeptides from the co-culture broth of two marine mangrove fungi and their antifungal activity  

PubMed Central

Background: The strategy that co-cultivation two microorganisms in a single confined environment were recently developed to generate new active natural products. In the study, two new cyclic tetrapeptides, cyclo (D-Pro-L-Tyr-L-Pro-L-Tyr) (1) and cyclo (Gly-L-Phe-L-Pro-L-Tyr) (2) were isolated from the co-culture broth of two mangrove fungi Phomopsis sp. K38 and Alternaria sp. E33. Their antifungal activity against Candida albicans, Gaeumannomyces graminis, Rhzioctonia cerealis, Helminthosporium sativum and Fusarium graminearum was evaluated. Materials and Methods: Different column chromatographic techniques with different solvent systems were used to separate the constituents of the n-butyl alcohol extract of the culture broth. The structures of compounds 1 and 2 were identified by analysis of spectroscopic data (one-dimensional, two-dimensional - nuclear magnetic resonance, mass spectrometry) and Marfey's analytic method. Dilution method was used for the evaluation of antifungal activity. Results: Compounds 1 and 2 were identified as cyclo (D-Pro-L-Tyr-L-Pro-L-Tyr) and cyclo (Gly-L-Phe-L-Pro-L-Tyr), respectively. Compounds 1 and 2 showed moderate to high antifungal activities as compared with the positive control. Conclusions: Compounds 1 and 2 are new cyclopeptides with moderate antifungal activity being worthy of consideration for the development and research of antifungal agents. PMID:25422539

Huang, Song; Ding, Weijia; Li, Chunyuan; Cox, Daniel G.

2014-01-01

429

Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity.  

PubMed

The increasing incidence of drug-resistant pathogens and host toxicity of existing antifungals attracts attention toward the efficacy of natural products as antifungals in mucocutaneous infections and combinational therapies. The composition and antifungal activity of the essential oil obtained from Ocimum sanctum (OSEO) was studied. On GC-MS analysis, OSEO showed a high content of methyl chavicol (44.63%) and linalool (21.84%). Antifungal activity of OSEO and its two main constituents was determined against sixty clinical and five standard laboratory isolates of Candida. OSEO, methyl chavicol and linalool showed inhibitory activity toward all tested strains. The mechanism of their fungicidal action was assessed by studying their effect on the plasma membrane using flow cytometry, confocal imaging and determination of the levels of ergosterol, a fungal-specific sterol. Propidium iodide rapidly penetrated a majority of yeast cells when they were treated with OSEO concentrations just above MIC, implying that fungicidal activity resulted from extensive lesions of the plasma membrane. OSEO and its components also caused a considerable reduction in the amount of ergosterol. The present study indicates that OSEO, methyl chavicol and linalool have significant antifungal activity against Candida, including azole-resistant strains, advocating further investigation for clinical applications in the treatment of fungal infections. PMID:20868749

Khan, Amber; Ahmad, Aijaz; Akhtar, Feroz; Yousuf, Snowber; Xess, Immaculata; Khan, Luqman A; Manzoor, Nikhat

2010-12-01

430

In-vitro Activity of 10 Antifungal Agents against 320 Dermatophyte Strains Using Microdilution Method in Tehran.  

PubMed

Dermatophyte fungi are the etiologic agents of skin infections commonly referred to as ringworm. These infections are not dangerous but as a chronic cutaneous infections they may be difficult to treat and can also cause physical discomfort for patients. They are considered important as a public health problem as well. No information is available regarding the efficacy of antifungal agents against dermatophytes in Tehran. Therefore, in this study we evaluated the efficacy of 10 systemic and topical antifungal medications using CLSI broth microdilution method (M38-A). The antifungal agents used included griseofulvin, terbinafine, itraconazole, ketoconazole, fluconazole, voriconazole, clotrimazole, ciclopirox olamine, amorolfine and naftifine.Fifteen different species of dermatophytes which were mostly clinical isolates were used as follows; T. mentagrophytes, T. rubrum, E. floccosum, M. canis, T. verrucosum, T. tonsurans, M. gypseum, T. violaceum, M. ferruginum, M. fulvum, T. schoenleinii, M. racemosum, T. erinacei, T. eriotrephon and Arthroderma benhamiae. The mean number of fungi particles (conidia) inoculated was 1.25 ×10? CFU/mL. Results were read after 7 days of incubation at 28 °C. According to the obtained results,itraconazole and terbinafine showed the lowest and fluconazole had the greatest MIC values for the most fungi tested. Based on the results, it is necessary to do more research and design a reliable standard method for determination of antifungal susceptibility to choose proper antibiotics with fewer side effects and decrease antifungal resistance and risk of treat