Sample records for antigen-based malaria vaccine

  1. Designing malaria vaccines to circumvent antigen variability.

    PubMed

    Ouattara, Amed; Barry, Alyssa E; Dutta, Sheetij; Remarque, Edmond J; Beeson, James G; Plowe, Christopher V

    2015-12-22

    Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines. Copyright © 2015. Published by Elsevier Ltd.

  2. Designing malaria vaccines to circumvent antigen variability✩

    PubMed Central

    Ouattara, Amed; Barry, Alyssa E.; Dutta, Sheetij; Remarque, Edmond J.; Beeson, James G.; Plowe, Christopher V.

    2016-01-01

    Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines. PMID:26475447

  3. Recent advances in recombinant protein-based malaria vaccines

    PubMed Central

    Draper, Simon J.; Angov, Evelina; Horii, Toshihiro; Miller, Louis H.; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle–including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. PMID:26458807

  4. Recent advances in recombinant protein-based malaria vaccines.

    PubMed

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro; Miller, Louis H; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-12-22

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle-including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. A Novel Malaria Vaccine Candidate Antigen Expressed in Tetrahymena thermophila

    PubMed Central

    Eleni-Muus, Janna; Aldag, Ingo; Samuel, Kay; Creasey, Alison M.; Hartmann, Marcus W. W.; Cavanagh, David R.

    2014-01-01

    Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens. PMID:24489871

  6. A Novel Virus-Like Particle Based Vaccine Platform Displaying the Placental Malaria Antigen VAR2CSA.

    PubMed

    Thrane, Susan; Janitzek, Christoph M; Agerbæk, Mette Ø; Ditlev, Sisse B; Resende, Mafalda; Nielsen, Morten A; Theander, Thor G; Salanti, Ali; Sander, Adam F

    2015-01-01

    Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA) and is responsible for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have failed during clinical testing, virus-like particle (VLP) based vaccines (e.g., the licensed human papillomavirus vaccines) have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response. We have developed a VLP vaccine display platform by identifying regions of the HPV16 L1 coat protein where a biotin acceptor site (AviTagTM) can be inserted without compromising VLP-assembly. Subsequent biotinylation of Avi-L1 VLPs allow us to anchor monovalent streptavidin (mSA)-fused proteins to the biotin, thereby obtaining a dense and repetitive VLP-display of the vaccine antigen. The mSA-VAR2CSA antigen was delivered on the Avi-L1 VLP platform and tested in C57BL/6 mice in comparison to two soluble protein-based vaccines consisting of naked VAR2CSA and mSA-VAR2CSA. The mSA-VAR2CSA Avi-L1 VLP and soluble mSA-VAR2CSA vaccines induced higher antibody titers than the soluble naked VAR2CSA vaccine after three immunizations. The VAR2CSA Avi-L1 VLP vaccine induced statistically significantly higher endpoint titres compared to the soluble mSA-VAR2CSA vaccine, after 1st and 2nd immunization; however, this difference was not statistically significant after 3rd immunization. Importantly, the VLP-VAR2CSA induced antibodies were functional in inhibiting the binding of parasites to CSA

  7. Identification of Novel Pre-Erythrocytic Malaria Antigen Candidates for Combination Vaccines with Circumsporozoite Protein

    PubMed Central

    Sahu, Tejram; Malkov, Vlad; Morrison, Robert; Pei, Ying; Juompan, Laure; Milman, Neta; Zarling, Stasya; Anderson, Charles; Wong-Madden, Sharon; Wendler, Jason; Ishizuka, Andrew; MacMillen, Zachary W.; Garcia, Valentino; Kappe, Stefan H. I.; Krzych, Urszula; Duffy, Patrick E.

    2016-01-01

    Malaria vaccine development has been hampered by the limited availability of antigens identified through conventional discovery approaches, and improvements are needed to enhance the efficacy of the leading vaccine candidate RTS,S that targets the circumsporozoite protein (CSP) of the infective sporozoite. Here we report a transcriptome-based approach to identify novel pre-erythrocytic vaccine antigens that could potentially be used in combination with CSP. We hypothesized that stage-specific upregulated genes would enrich for protective vaccine targets, and used tiling microarray to identify P. falciparum genes transcribed at higher levels during liver stage versus sporozoite or blood stages of development. We prepared DNA vaccines for 21 genes using the predicted orthologues in P. yoelii and P. berghei and tested their efficacy using different delivery methods against pre-erythrocytic malaria in rodent models. In our primary screen using P. yoelii in BALB/c mice, we found that 16 antigens significantly reduced liver stage parasite burden. In our confirmatory screen using P. berghei in C57Bl/6 mice, we confirmed 6 antigens that were protective in both models. Two antigens, when combined with CSP, provided significantly greater protection than CSP alone in both models. Based on the observations reported here, transcriptional patterns of Plasmodium genes can be useful in identifying novel pre-erythrocytic antigens that induce protective immunity alone or in combination with CSP. PMID:27434123

  8. Identification of Novel Pre-Erythrocytic Malaria Antigen Candidates for Combination Vaccines with Circumsporozoite Protein.

    PubMed

    Speake, Cate; Pichugin, Alexander; Sahu, Tejram; Malkov, Vlad; Morrison, Robert; Pei, Ying; Juompan, Laure; Milman, Neta; Zarling, Stasya; Anderson, Charles; Wong-Madden, Sharon; Wendler, Jason; Ishizuka, Andrew; MacMillen, Zachary W; Garcia, Valentino; Kappe, Stefan H I; Krzych, Urszula; Duffy, Patrick E

    2016-01-01

    Malaria vaccine development has been hampered by the limited availability of antigens identified through conventional discovery approaches, and improvements are needed to enhance the efficacy of the leading vaccine candidate RTS,S that targets the circumsporozoite protein (CSP) of the infective sporozoite. Here we report a transcriptome-based approach to identify novel pre-erythrocytic vaccine antigens that could potentially be used in combination with CSP. We hypothesized that stage-specific upregulated genes would enrich for protective vaccine targets, and used tiling microarray to identify P. falciparum genes transcribed at higher levels during liver stage versus sporozoite or blood stages of development. We prepared DNA vaccines for 21 genes using the predicted orthologues in P. yoelii and P. berghei and tested their efficacy using different delivery methods against pre-erythrocytic malaria in rodent models. In our primary screen using P. yoelii in BALB/c mice, we found that 16 antigens significantly reduced liver stage parasite burden. In our confirmatory screen using P. berghei in C57Bl/6 mice, we confirmed 6 antigens that were protective in both models. Two antigens, when combined with CSP, provided significantly greater protection than CSP alone in both models. Based on the observations reported here, transcriptional patterns of Plasmodium genes can be useful in identifying novel pre-erythrocytic antigens that induce protective immunity alone or in combination with CSP.

  9. Recombinant modified vaccinia virus Ankara-based malaria vaccines.

    PubMed

    Sebastian, Sarah; Gilbert, Sarah C

    2016-01-01

    A safe and effective malaria vaccine is a crucial part of the roadmap to malaria elimination/eradication by the year 2050. Viral-vectored vaccines based on adenoviruses and modified vaccinia virus Ankara (MVA) expressing malaria immunogens are currently being used in heterologous prime-boost regimes in clinical trials for induction of strong antigen-specific T-cell responses and high-titer antibodies. Recombinant MVA is a safe and well-tolerated attenuated vector that has consistently shown significant boosting potential. Advances have been made in large-scale MVA manufacture as high-yield producer cell lines and high-throughput purification processes have recently been developed. This review describes the use of MVA as malaria vaccine vector in both preclinical and clinical studies in the past 5 years.

  10. Secreted HSP Vaccine for Malaria Prophylaxis

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-13-2-0098 TITLE: Secreted HSP Vaccine for Malaria Prophylaxis PRINCIPAL INVESTIGATOR: Dr. Eckhard R. Podack...model. 15. SUBJECT TERMS Malaria , Plasmodium Falciparum, circumsporozoite protein, apical membrane antigen-1, vaccine , heat shock proteins, gp96...approach to stimulate cytotoxic T cells against malaria antigens and investigate the optimal vaccination route to target these T cells to the liver. To

  11. Malaria vaccines and the new malaria agenda.

    PubMed

    Greenwood, B M; Targett, G A T

    2011-11-01

    The development of an effective malaria vaccine has taken many decades, but there is now a good chance that the first malaria vaccine will be licensed within the next few years. However, this vaccine (RTS,S) will not be fully effective, and more efficacious, second-generation vaccines will be needed. Good progress is being made in the development of potential vaccines directed at each of the three main stages of the parasite's life cycle, with a variety of different approaches, but many challenges remain, e.g. overcoming the problem of polymorphism in many key parasite antigens. It is likely vaccines that are effective enough to block transmission, and thus contribute to increasing drives towards malaria elimination, will need to contain antigens from different stages of the parasite's life cycle. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  12. Malaria vaccines: high-throughput tools for antigens discovery with potential for their development

    PubMed Central

    Céspedes, Nora; Vallejo, Andrés; Arévalo-Herrera, Myriam

    2013-01-01

    Malaria is a disease induced by parasites of the Plasmodium genus, which are transmitted by Anopheles mosquitoes and represents a great socio-economic burden Worldwide. Plasmodium vivax is the second species of malaria Worldwide, but it is the most prevalent in Latin America and other regions of the planet. It is currently considered that vaccines represent a cost-effective strategy for controlling transmissible diseases and could complement other malaria control measures; however, the chemical and immunological complexity of the parasite has hindered development of effective vaccines. Recent availability of several genomes of Plasmodium species, as well as bioinformatic tools are allowing the selection of large numbers of proteins and analysis of their immune potential. Herein, we review recently developed strategies for discovery of novel antigens with potential for malaria vaccine development. PMID:24892459

  13. The future for blood-stage vaccines against malaria.

    PubMed

    Richards, Jack S; Beeson, James G

    2009-07-01

    Malaria is a leading cause of mortality and morbidity globally, and effective vaccines are urgently needed. Malaria vaccine approaches can be broadly grouped as pre-erythrocytic, blood stage and transmission blocking. This review focuses on blood-stage vaccines, and considers the evidence supporting the development of blood-stage vaccines, the advantages and challenges of this approach, potential targets, human vaccine studies and future directions. There is a strong rationale for the development of vaccines based on antigens of blood-stage parasites. Symptomatic malaria is caused by blood-stage parasitemia and acquired immunity in humans largely targets blood-stage antigens. Several candidate vaccines have proved efficacious in animal models and at least one vaccine showed partial efficacy in a clinical trial. At present, all leading candidate blood-stage antigens are merozoite proteins, located on the merozoite surface or within the apical organelles. Major challenges and priorities include overcoming antigenic diversity, identification of protective epitopes, understanding the nature and targets of protective immune responses, and defining antigen combinations that give the greatest efficacy. Additionally, objective criteria and approaches are needed to prioritize the large number of candidate antigens, and strong candidates need to be tested in clinical trials as quickly as possible.

  14. An edible vaccine for malaria using transgenic tomatoes of varying sizes, shapes and colors to carry different antigens.

    PubMed

    Chowdhury, Kamal; Bagasra, Omar

    2007-01-01

    Malaria, a disease caused by protozoan parasites of genus Plasmodium, is one of the world's biggest scourges. Over two billion individuals reside in the malaria endemic areas and the disease affects 300-500 million people annually. As a result of malarial-infection, an estimated three million lives are lost annually, among them over one million children (majority under 5 years of age). The mortality due to malaria has increased because of the spread of drug-resistant strains of the parasite, the breakdown of health services in many affected areas, the interaction of the disease with human immunodeficiency virus (HIV) infection, and possibly the effects of climate change. Infants and young children with malaria often die from severe anemia, cerebral involvement,or prostration caused by overwhelming infection; many new borns die from complications of low birth weight caused by maternal malaria during pregnancy. The scarce economic resources and lack of communication, infrastructure and adequate means of travel in the endemic areas make it extremely difficult to implement traditional infection control measures (i.e., mosquito control, preventive anti-malarial drugs and nets). To make the matter worse, both malarial parasites and its insect vectors are increasingly becoming resistant to anti-malarial agents (chloroquine) and insecticides (both DDT and melathione and related chemicals), respectively. By conventional wisdom, the immune mechanisms responsible for protection against malaria will require a multiple of 10-15 antigen targets for proper protection against various stages of malarial infection. By standard vaccination protocols, such a large number of targets would not be appropriate to be used for vaccination as a single dose due to antigenic competition. It would be almost impossible to immunize over two billion individuals who live in malaria susceptible areas with several carefully crafted immunization schedules delivered 4-6 weeks apart in the form of two

  15. Induction of immunity following vaccination with a chemically attenuated malaria vaccine correlates with persistent antigenic stimulation.

    PubMed

    Reiman, Jennifer M; Kumar, Sanjai; Rodriguez, Ingrid B; Gnidehou, Sedami; Ito, Koichi; Stanisic, Danielle I; Lee, Moses; McPhun, Virginia; Majam, Victoria; Willemsen, Nicole M; Batzloff, Michael R; Raja, Amber I; Dooley, Brad; Hoffman, Stephen L; Yanow, Stephanie K; Good, Michael F

    2018-01-01

    Blood stage malaria parasites attenuated with seco-cyclopropyl pyrrolo indole (CPI) analogues induce robust immunity in mice to homologous and heterologous malaria parasites and are being considered for the development of a human vaccine. However, it is not understood how attenuated parasites induce immunity. We showed that following vaccination, parasite DNA persisted in blood for several months, raising the possibility that ongoing immune stimulation may be critical. However, parasites were not seen microscopically beyond 24 h postvaccination. We aimed to provide a mechanistic understanding of immune induction. Mice were vaccinated with chemically attenuated Plasmodium chabaudi parasites. PCR and adoptive transfer studies were used to determine the presence of parasites and antigen in vivo . In other experiments, Plasmodium falciparum parasitised red blood cells were attenuated in vitro and RNA and antigen expression studied. We show that blood transferred from vaccinated mice into naïve mice activates T cells and induces complete protective immunity in the recipient mice strongly suggesting that there is persistence of parasite antigen postvaccination. This is supported by the presence of parasite RNA in vaccinated mice and both RNA and antigen expression in P. falciparum cultures treated with CPI drugs in vitro . In addition, drugs that block parasite growth also prevent the induction of immunity in vaccinated mice, indicating that some growth of attenuated parasites is required for immune induction. Attenuated parasites persist at submicroscopic levels in the blood of mice postvaccination with the ability to activate T cells and induce ongoing protective immune responses.

  16. Secreted HSP Vaccine for Malaria Prophylaxis

    DTIC Science & Technology

    2017-10-01

    thereby stimulating an avid, antigen specific, cytotoxic CD8 T cell response. Here we developed malaria vaccine that relies on secreted gp96-Ig...vaccine is expected to provide prophylactic immunity for malaria by removing infected liver cells before sporozoites can replicate and spread to the...vaccine to the immunogenicity of NMRC-M3V-D/Ad-PfCA vaccine. We found that gp96-Ig vaccination provided stronger antigen specific CD8 T cell

  17. Fusion of antigen to a dendritic cell targeting chemokine combined with adjuvant yields a malaria DNA vaccine with enhanced protective capabilities.

    PubMed

    Luo, Kun; Zhang, Hong; Zavala, Fidel; Biragyn, Arya; Espinosa, Diego A; Markham, Richard B

    2014-01-01

    Although sterilizing immunity to malaria can be elicited by irradiated sporozoite vaccination, no clinically practical subunit vaccine has been shown to be capable of preventing the approximately 600,000 annual deaths attributed to this infection. DNA vaccines offer several potential advantages for a disease that primarily affects the developing world, but new approaches are needed to improve the immunogenicity of these vaccines. By using a novel, lipid-based adjuvant, Vaxfectin, to attract immune cells to the immunization site, in combination with an antigen-chemokine DNA construct designed to target antigen to immature dendritic cells, we elicited a humoral immune response that provided sterilizing immunity to malaria challenge in a mouse model system. The chemokine, MIP3αCCL20, did not significantly enhance the cellular infiltrate or levels of cytokine or chemokine expression at the immunization site but acted with Vaxfectin to reduce liver stage malaria infection by orders of magnitude compared to vaccine constructs lacking the chemokine component. The levels of protection achieved were equivalent to those observed with irradiated sporozoites, a candidate vaccine undergoing development for further large scale clinical trial. Only vaccination with the combined regimen of adjuvant and chemokine provided 80-100% protection against the development of bloodstream infection. Treating the immunization process as requiring the independent steps of 1) attracting antigen-presenting cells to the site of immunization and 2) specifically directing vaccine antigen to the immature dendritic cells that initiate the adaptive immune response may provide a rational strategy for the development of a clinically applicable malaria DNA vaccine.

  18. Malaria vaccines: past, present and future.

    PubMed

    von Seidlein, Lorenz; Bejon, Philip

    2013-12-01

    The currently available malaria control tools have allowed malaria elimination in many regions but there remain many regions where malaria control has made little progress. A safe and protective malaria vaccine would be a huge asset for malaria control. Despite the many challenges, efforts continue to design and evaluate malaria vaccine candidates. These candidates target different stages in the life cycle of Plasmodia. The most advanced vaccine candidates target the pre-erythrocytic stages in the life cycle of the parasite and include RTS,S/AS01, which has progressed through clinical development to the stage that it may be licensed in 2015. Attenuated whole-parasite vaccine candidates are highly protective, but there are challenges to manufacture and to administration. Cellular immunity is targeted by the prime-boost approach. Priming vectors trigger only modest responses but these are focused on the recombinant antigen. Boosting vectors trigger strong but broad non-specific responses. The heterologous sequence produces strong immunological responses to the recombinant antigen. Candidates that target the blood stages of the parasite have to result in an immune response that is more effective than the response to an infection to abort or control the infection of merozoites and hence disease. Finally, the sexual stages of the parasite offer another target for vaccine development, which would prevent the transmission of malaria. Today it seems unlikely that any candidate targeting a single antigen will provide complete protection against an organism of the complexity of Plasmodium. A systematic search for vaccine targets and combinations of antigens may be a more promising approach.

  19. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    PubMed

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  20. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    PubMed Central

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  1. A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria.

    PubMed

    Lozano, José Manuel; Varela, Yahson; Silva, Yolanda; Ardila, Karen; Forero, Martha; Guasca, Laura; Guerrero, Yuly; Bermudez, Adriana; Alba, Patricia; Vanegas, Magnolia; Patarroyo, Manuel Elkin

    2017-11-01

    Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of Pf CSP, STARP; MSA1 and Pf 155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei -ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.

  2. Particle-based platforms for malaria vaccines.

    PubMed

    Wu, Yimin; Narum, David L; Fleury, Sylvain; Jennings, Gary; Yadava, Anjali

    2015-12-22

    Recombinant subunit vaccines in general are poor immunogens likely due to the small size of peptides and proteins, combined with the lack or reduced presentation of repetitive motifs and missing complementary signal(s) for optimal triggering of the immune response. Therefore, recombinant subunit vaccines require enhancement by vaccine delivery vehicles in order to attain adequate protective immunity. Particle-based delivery platforms, including particulate antigens and particulate adjuvants, are promising delivery vehicles for modifying the way in which immunogens are presented to both the innate and adaptive immune systems. These particle delivery platforms can also co-deliver non-specific immunostimodulators as additional adjuvants. This paper reviews efforts and advances of the Particle-based delivery platforms in development of vaccines against malaria, a disease that claims over 600,000 lives per year, most of them are children under 5 years of age in sub-Sahara Africa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Development of replication-deficient adenovirus malaria vaccines.

    PubMed

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  4. Mother-Newborn Pairs in Malawi Have Similar Antibody Repertoires to Diverse Malaria Antigens.

    PubMed

    Boudová, Sarah; Walldorf, Jenny A; Bailey, Jason A; Divala, Titus; Mungwira, Randy; Mawindo, Patricia; Pablo, Jozelyn; Jasinskas, Algis; Nakajima, Rie; Ouattara, Amed; Adams, Matthew; Felgner, Philip L; Plowe, Christopher V; Travassos, Mark A; Laufer, Miriam K

    2017-10-01

    Maternal antibodies may play a role in protecting newborns against malaria disease. Plasmodium falciparum parasite surface antigens are diverse, and protection from infection requires allele-specific immunity. Although malaria-specific antibodies have been shown to cross the placenta, the extent to which antibodies that respond to the full repertoire of diverse antigens are transferred from the mother to the infant has not been explored. Understanding the breadth of maternal antibody responses and to what extent these antibodies are transferred to the child can inform vaccine design and evaluation. We probed plasma from cord blood and serum from mothers at delivery using a customized protein microarray that included variants of malaria vaccine target antigens to assess the intensity and breadth of seroreactivity to three malaria vaccine candidate antigens in mother-newborn pairs in Malawi. Among the 33 paired specimens that were assessed, mothers and newborns had similar intensity and repertoire of seroreactivity. Maternal antibody levels against vaccine candidate antigens were the strongest predictors of infant antibody levels. Placental malaria did not significantly impair transplacental antibody transfer. However, mothers with placental malaria had significantly higher antibody levels against these blood-stage antigens than mothers without placental malaria. The repertoire and levels of infant antibodies against a wide range of malaria vaccine candidate antigen variants closely mirror maternal levels in breadth and magnitude regardless of evidence of placental malaria. Vaccinating mothers with an effective malaria vaccine during pregnancy may induce high and potentially protective antibody repertoires in newborns. Copyright © 2017 American Society for Microbiology.

  5. Novel Antigen Identification Method for Discovery of Protective Malaria Antigens by Rapid Testing of DNA Vaccines Encoding Exons from the Parasite Genome

    PubMed Central

    Haddad, Diana; Bilcikova, Erika; Witney, Adam A.; Carlton, Jane M.; White, Charles E.; Blair, Peter L.; Chattopadhyay, Rana; Russell, Joshua; Abot, Esteban; Charoenvit, Yupin; Aguiar, Joao C.; Carucci, Daniel J.; Weiss, Walter R.

    2004-01-01

    We describe a novel approach for identifying target antigens for preerythrocytic malaria vaccines. Our strategy is to rapidly test hundreds of DNA vaccines encoding exons from the Plasmodium yoelii yoelii genomic sequence. In this antigen identification method, we measure reduction in parasite burden in the liver after sporozoite challenge in mice. Orthologs of protective P. y. yoelii genes can then be identified in the genomic databases of Plasmodium falciparum and Plasmodium vivax and investigated as candidate antigens for a human vaccine. A pilot study to develop the antigen identification method approach used 192 P. y. yoelii exons from genes expressed during the sporozoite stage of the life cycle. A total of 182 (94%) exons were successfully cloned into a DNA immunization vector with the Gateway cloning technology. To assess immunization strategies, mice were vaccinated with 19 of the new DNA plasmids in addition to the well-characterized protective plasmid encoding P. y. yoelii circumsporozoite protein. Single plasmid immunization by gene gun identified a novel vaccine target antigen which decreased liver parasite burden by 95% and which has orthologs in P. vivax and P. knowlesi but not P. falciparum. Intramuscular injection of DNA plasmids produced a different pattern of protective responses from those seen with gene gun immunization. Intramuscular immunization with plasmid pools could reduce liver parasite burden in mice despite the fact that none of the plasmids was protective when given individually. We conclude that high-throughput cloning of exons into DNA vaccines and their screening is feasible and can rapidly identify new malaria vaccine candidate antigens. PMID:14977966

  6. Assessment of Antibodies Induced by Multivalent Transmission-Blocking Malaria Vaccines.

    PubMed

    Menon, Vinay; Kapulu, Melissa C; Taylor, Iona; Jewell, Kerry; Li, Yuanyuan; Hill, Fergal; Long, Carole A; Miura, Kazutoyo; Biswas, Sumi

    2017-01-01

    A malaria transmission-blocking vaccine would be a critical tool in achieving malaria elimination and eradication. By using chimpanzee adenovirus serotype 63 and modified vaccinia virus Ankara viral vectored vaccines, we investigated whether incorporating two antigens into one vaccine would result in higher transmission-reducing activity than one antigen. We demonstrated that when Pfs25 was administered with other antigens Pfs28 or Pfs230C, either concurrently as a mixed vaccine or co-expressed as a dual-antigen vaccine, the antibody response in mice to each antigen was comparable to a monoantigen vaccine, without immunological interference. However, we found that the transmission-reducing activity (functional activity) of dual-antigen vaccines was not additive. Dual-antigen vaccines generally only elicited similar transmission-reducing activity to monoantigen vaccines and in one instance had lower transmission-reducing activity. We found that despite the lack of immunological interference of dual-antigen vaccines, they are still not as effective at blocking malaria transmission as Pfs25-IMX313, the current leading candidate for viral vectored vaccines. Pfs25-IMX313 elicited similar quality antibodies to dual-antigen vaccines, but higher antibody titers.

  7. The use of transgenic parasites in malaria vaccine research.

    PubMed

    Othman, Ahmad Syibli; Marin-Mogollon, Catherin; Salman, Ahmed M; Franke-Fayard, Blandine M; Janse, Chris J; Khan, Shahid M

    2017-07-01

    Transgenic malaria parasites expressing foreign genes, for example fluorescent and luminescent proteins, are used extensively to interrogate parasite biology and host-parasite interactions associated with malaria pathology. Increasingly transgenic parasites are also exploited to advance malaria vaccine development. Areas covered: We review how transgenic malaria parasites are used, in vitro and in vivo, to determine protective efficacy of different antigens and vaccination strategies and to determine immunological correlates of protection. We describe how chimeric rodent parasites expressing P. falciparum or P. vivax antigens are being used to directly evaluate and rank order human malaria vaccines before their advancement to clinical testing. In addition, we describe how transgenic human and rodent parasites are used to develop and evaluate live (genetically) attenuated vaccines. Expert commentary: Transgenic rodent and human malaria parasites are being used to both identify vaccine candidate antigens and to evaluate both sub-unit and whole organism vaccines before they are advanced into clinical testing. Transgenic parasites combined with in vivo pre-clinical testing models (e.g. mice) are used to evaluate vaccine safety, potency and the durability of protection as well as to uncover critical protective immune responses and to refine vaccination strategies.

  8. Seasonal vaccination against malaria: a potential use for an imperfect malaria vaccine.

    PubMed

    Greenwood, Brian; Dicko, Alassane; Sagara, Issaka; Zongo, Issaka; Tinto, Halidou; Cairns, Matthew; Kuepfer, Irene; Milligan, Paul; Ouedraogo, Jean-Bosco; Doumbo, Ogobara; Chandramohan, Daniel

    2017-05-02

    In many parts of the African Sahel and sub-Sahel, where malaria remains a major cause of mortality and morbidity, transmission of the infection is highly seasonal. Seasonal malaria chemoprevention (SMC), which involves administration of a full course of malaria treatment to young children at monthly intervals during the high transmission season, is proving to be an effective malaria control measure in these areas. However, SMC does not provide complete protection and it is demanding to deliver for both families and healthcare givers. Furthermore, there is a risk of the emergence in the future of resistance to the drugs, sulfadoxine-pyrimethamine and amodiaquine, that are currently being used for SMC. Substantial progress has been made in the development of malaria vaccines during the past decade and one malaria vaccine, RTS,S/AS01, has received a positive opinion from the European Medicines Authority and will soon be deployed in large-scale, pilot implementation projects in sub-Saharan Africa. A characteristic feature of this vaccine, and potentially of some of the other malaria vaccines under development, is that they provide a high level of efficacy during the period immediately after vaccination, but that this wanes rapidly, perhaps because it is difficult to develop effective immunological memory to malaria antigens in subjects exposed previously to malaria infection. A potentially effective way of using malaria vaccines with high initial efficacy but which provide only a short period of protection could be annual, mass vaccination campaigns shortly before each malaria transmission season in areas where malaria transmission is confined largely to a few months of the year.

  9. Genome-based vaccine design: the promise for malaria and other infectious diseases.

    PubMed

    Doolan, Denise L; Apte, Simon H; Proietti, Carla

    2014-10-15

    Vaccines are one of the most effective interventions to improve public health, however, the generation of highly effective vaccines for many diseases has remained difficult. Three chronic diseases that characterise these difficulties include malaria, tuberculosis and HIV, and they alone account for half of the global infectious disease burden. The whole organism vaccine approach pioneered by Jenner in 1796 and refined by Pasteur in 1857 with the "isolate, inactivate and inject" paradigm has proved highly successful for many viral and bacterial pathogens causing acute disease but has failed with respect to malaria, tuberculosis and HIV as well as many other diseases. A significant advance of the past decade has been the elucidation of the genomes, proteomes and transcriptomes of many pathogens. This information provides the foundation for new 21st Century approaches to identify target antigens for the development of vaccines, drugs and diagnostic tests. Innovative genome-based vaccine strategies have shown potential for a number of challenging pathogens, including malaria. We advocate that genome-based rational vaccine design will overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued vaccine developers for many years. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Effects of transmission-blocking vaccines simultaneously targeting pre- and post-fertilization antigens in the rodent malaria parasite Plasmodium yoelii.

    PubMed

    Zheng, Li; Pang, Wei; Qi, Zanmei; Luo, Enjie; Cui, Liwang; Cao, Yaming

    2016-08-08

    Transmission-blocking vaccine (TBV) is a promising strategy for interrupting the malaria transmission cycle. Current TBV candidates include both pre- and post-fertilization antigens expressed during sexual development of the malaria parasites. We tested whether a TBV design combining two sexual-stage antigens has better transmission-blocking activity. Using the rodent malaria model Plasmodium yoelii, we pursued a DNA vaccination strategy with genes encoding the gametocyte antigen Pys48/45 and the major ookinete surface protein Pys25. Immunization of mice with DNA constructs expression either Pys48/45 or Pys25 elicited strong antibody responses, which specifically recognized a ~45 and ~25 kDa protein from gametocyte and ookinete lysates, respectively. Immune sera from mice immunized with DNA constructs expressing Pys48/45 and Pys25 individually and in combination displayed evident transmission-blocking activity in in vitro ookinete culture and direct mosquito feeding experiments. With both assays, the Pys25 sera had higher transmission-blocking activity than the Pys48/45 sera. Intriguingly, compared with the immunization with the individual DNA vaccines, immunization with both DNA constructs produced lower antibody responses against individual antigens. The resultant immune sera from the composite vaccination had significantly lower transmission-blocking activity than those from Pys25 DNA immunization group, albeit the activity was substantially higher than that from the Pys48 DNA vaccination group. This result suggested that vaccination with the two DNA constructs did not achieve a synergistic effect, but rather caused interference in inducing antigen-specific antibody responses. This result has important implications for future design of composite vaccines targeting different sexual antigens.

  11. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine.

    PubMed

    Moon, James J; Suh, Heikyung; Polhemus, Mark E; Ockenhouse, Christian F; Yadava, Anjali; Irvine, Darrell J

    2012-01-01

    The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.

  12. Molecular Basis of Allele-Specific Efficacy of a Blood-Stage Malaria Vaccine: Vaccine Development Implications

    PubMed Central

    Ouattara, Amed; Takala-Harrison, Shannon; Thera, Mahamadou A.; Coulibaly, Drissa; Niangaly, Amadou; Saye, Renion; Tolo, Youssouf; Dutta, Sheetij; Heppner, D. Gray; Soisson, Lorraine; Diggs, Carter L.; Vekemans, Johan; Cohen, Joe; Blackwelder, William C.; Dube, Tina; Laurens, Matthew B.; Doumbo, Ogobara K.; Plowe, Christopher V.

    2013-01-01

    The disappointing efficacy of blood-stage malaria vaccines may be explained in part by allele-specific immune responses that are directed against polymorphic epitopes on blood-stage antigens. FMP2.1/AS02A, a blood-stage candidate vaccine based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, had allele-specific efficacy against clinical malaria in a phase II trial in Malian children. We assessed the cross-protective efficacy of the malaria vaccine and inferred which polymorphic amino acid positions in AMA1 were the targets of protective allele-specific immune responses. FMP2.1/AS02A had the highest efficacy against AMA1 alleles that were identical to the 3D7 vaccine-type allele at 8 highly polymorphic amino acid positions in the cluster 1 loop (c1L) but differed from 3D7 elsewhere in the molecule. Comparison of the incidence of vaccine-type alleles before and after vaccination in the malaria vaccine and control groups and examination of the patterns of allele change at polymorphic positions in consecutive malaria episodes suggest that the highly polymorphic amino acid position 197 in c1L was the most critical determinant of allele-specific efficacy. These results indicate that a multivalent AMA1 vaccine with broad efficacy could include only a limited set of key alleles of this extremely polymorphic antigen. PMID:23204168

  13. Blood Interferon Signatures Putatively Link Lack of Protection Conferred by the RTS,S Recombinant Malaria Vaccine to an Antigen-specific IgE Response

    PubMed Central

    Rinchai, Darawan; Presnell, Scott; Vidal, Marta; Dutta, Sheetij; Chauhan, Virander; Cavanagh, David; Moncunill, Gemma; Dobaño, Carlota; Chaussabel, Damien

    2017-01-01

    Malaria remains a major cause of mortality and morbidity worldwide. Progress has been made in recent years with the development of vaccines that could pave the way towards protection of hundreds of millions of exposed individuals. Here we used a modular repertoire approach to re-analyze a publically available microarray blood transcriptome dataset monitoring the response to malaria vaccination. We report the seminal identification of interferon signatures in the blood of subjects on days 1, 3 and 14 following administration of the third dose of the RTS,S recombinant malaria vaccine. These signatures at day 1 correlate with protection, and at days 3 and 14 to susceptibility to subsequent challenge of study subjects with live parasites. In addition we putatively link the decreased abundance of interferon-inducible transcripts observed at days 3 and 14 post-vaccination with the elicitation of an antigen-specific IgE response in a subset of vaccine recipients that failed to be protected by the RTS,S vaccine. Furthermore, profiling of antigen-specific levels of IgE in a Mozambican cohort of malaria-exposed children vaccinated with RTS,S identified an association between elevated baseline IgE levels and subsequent development of naturally acquired malaria infection during follow up. Taken together these findings warrant further investigation of the role of antigen-specific IgE in conferring susceptibility to malaria infection. PMID:28883910

  14. Secreted HSP Vaccine for Malaria Prophylaxis

    DTIC Science & Technology

    2016-10-26

    AWARD NUMBER: W81XWH-13-2-0098 TITLE: Secreted HSP Vaccine for Malaria Prophylaxis PRINCIPAL INVESTIGATOR: Dr. Natasa Strbo CONTRACTING ORGANIZATION...Secreted HSP Vaccine for Malaria Prophylaxis 4. TITLE AND SUBTITLE NATASA STRBO, M.D., D.SC NAME(S) AND E-M tzA UNIVERS]TY OF MTAMI 1600 NW 1OTH AVENUE ROOM...Here we developed malaria vaccine that relies on secreted gp96-lg chaperon-ing Plasmodium falciparum antigenic sporozoite proteins CSP and AMA1. The

  15. Prediction of merozoite surface protein 1 and apical membrane antigen 1 vaccine efficacies against Plasmodium chabaudi malaria based on prechallenge antibody responses.

    PubMed

    Lynch, Michelle M; Cernetich-Ott, Amy; Weidanz, William P; Burns, James M

    2009-03-01

    For the development of blood-stage malaria vaccines, there is a clear need to establish in vitro measures of the antibody-mediated and the cell-mediated immune responses that correlate with protection. In this study, we focused on establishing correlates of antibody-mediated immunity induced by immunization with apical membrane antigen 1 (AMA1) and merozoite surface protein 1(42) (MSP1(42)) subunit vaccines. To do so, we exploited the Plasmodium chabaudi rodent model, with which we can immunize animals with both protective and nonprotective vaccine formulations and allow the parasitemia in the challenged animals to peak. Vaccine formulations were varied with regard to the antigen dose, the antigen conformation, and the adjuvant used. Prechallenge antibody responses were evaluated by enzyme-linked immunosorbent assay and were tested for a correlation with protection against nonlethal P. chabaudi malaria, as measured by a reduction in the peak level of parasitemia. The analysis showed that neither the isotype profile nor the avidity of vaccine-induced antibodies correlated with protective efficacy. However, high titers of antibodies directed against conformation-independent epitopes were associated with poor vaccine performance and may limit the effectiveness of protective antibodies that recognize conformation-dependent epitopes. We were able to predict the efficacies of the P. chabaudi AMA1 (PcAMA1) and P. chabaudi MSP1(42) (PcMSP1(42)) vaccines only when the prechallenge antibody titers to both refolded and reduced/alkylated antigens were considered in combination. The relative importance of these two measures of vaccine-induced responses as predictors of protection differed somewhat for the PcAMA1 and the PcMSP1(42) vaccines, a finding confirmed in our final immunization and challenge study. A similar approach to the evaluation of vaccine-induced antibody responses may be useful during clinical trials of Plasmodium falciparum AMA1 and MSP1(42) vaccines.

  16. Prediction of Merozoite Surface Protein 1 and Apical Membrane Antigen 1 Vaccine Efficacies against Plasmodium chabaudi Malaria Based on Prechallenge Antibody Responses▿

    PubMed Central

    Lynch, Michelle M.; Cernetich-Ott, Amy; Weidanz, William P.; Burns, James M.

    2009-01-01

    For the development of blood-stage malaria vaccines, there is a clear need to establish in vitro measures of the antibody-mediated and the cell-mediated immune responses that correlate with protection. In this study, we focused on establishing correlates of antibody-mediated immunity induced by immunization with apical membrane antigen 1 (AMA1) and merozoite surface protein 142 (MSP142) subunit vaccines. To do so, we exploited the Plasmodium chabaudi rodent model, with which we can immunize animals with both protective and nonprotective vaccine formulations and allow the parasitemia in the challenged animals to peak. Vaccine formulations were varied with regard to the antigen dose, the antigen conformation, and the adjuvant used. Prechallenge antibody responses were evaluated by enzyme-linked immunosorbent assay and were tested for a correlation with protection against nonlethal P. chabaudi malaria, as measured by a reduction in the peak level of parasitemia. The analysis showed that neither the isotype profile nor the avidity of vaccine-induced antibodies correlated with protective efficacy. However, high titers of antibodies directed against conformation-independent epitopes were associated with poor vaccine performance and may limit the effectiveness of protective antibodies that recognize conformation-dependent epitopes. We were able to predict the efficacies of the P. chabaudi AMA1 (PcAMA1) and P. chabaudi MSP142 (PcMSP142) vaccines only when the prechallenge antibody titers to both refolded and reduced/alkylated antigens were considered in combination. The relative importance of these two measures of vaccine-induced responses as predictors of protection differed somewhat for the PcAMA1 and the PcMSP142 vaccines, a finding confirmed in our final immunization and challenge study. A similar approach to the evaluation of vaccine-induced antibody responses may be useful during clinical trials of Plasmodium falciparum AMA1 and MSP142 vaccines. PMID:19116303

  17. Cross-stage immunity for malaria vaccine development.

    PubMed

    Nahrendorf, Wiebke; Scholzen, Anja; Sauerwein, Robert W; Langhorne, Jean

    2015-12-22

    A vaccine against malaria is urgently needed for control and eventual eradication. Different approaches are pursued to induce either sterile immunity directed against pre-erythrocytic parasites or to mimic naturally acquired immunity by controlling blood-stage parasite densities and disease severity. Pre-erythrocytic and blood-stage malaria vaccines are often seen as opposing tactics, but it is likely that they have to be combined into a multi-stage malaria vaccine to be optimally safe and effective. Since many antigenic targets are shared between liver- and blood-stage parasites, malaria vaccines have the potential to elicit cross-stage protection with immune mechanisms against both stages complementing and enhancing each other. Here we discuss evidence from pre-erythrocytic and blood-stage subunit and whole parasite vaccination approaches that show that protection against malaria is not necessarily stage-specific. Parasites arresting at late liver-stages especially, can induce powerful blood-stage immunity, and similarly exposure to blood-stage parasites can afford pre-erythrocytic immunity. The incorporation of a blood-stage component into a multi-stage malaria vaccine would hence not only combat breakthrough infections in the blood should the pre-erythrocytic component fail to induce sterile protection, but would also actively enhance the pre-erythrocytic potency of this vaccine. We therefore advocate that future studies should concentrate on the identification of cross-stage protective malaria antigens, which can empower multi-stage malaria vaccine development. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. The March Toward Malaria Vaccines.

    PubMed

    Hoffman, Stephen L; Vekemans, Johan; Richie, Thomas L; Duffy, Patrick E

    2015-12-01

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  19. The March Toward Malaria Vaccines

    PubMed Central

    Hoffman, Stephen L.; Vekemans, Johan; Richie, Thomas L.; Duffy, Patrick E.

    2016-01-01

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  20. The march toward malaria vaccines

    PubMed Central

    Hoffman, Stephen L.; Vekemans, Johan; Richie, Thomas L.; Duffy, Patrick E.

    2016-01-01

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  1. The march toward malaria vaccines.

    PubMed

    Hoffman, Stephen L; Vekemans, Johan; Richie, Thomas L; Duffy, Patrick E

    2015-11-27

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  2. A review of malaria vaccine clinical projects based on the WHO rainbow table

    PubMed Central

    2012-01-01

    Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below. PMID:22230255

  3. Transcriptional changes induced by candidate malaria vaccines and correlation with protection against malaria in a human challenge model

    PubMed Central

    Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V.S.; Fletcher, Helen A.

    2015-01-01

    Introduction The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. Methods We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Results Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. Conclusions These results represent novel insights into the immune repertoires involved in malaria vaccination. PMID:26256523

  4. Protection of Rhesus Monkeys by a DNA Prime/Poxvirus Boost Malaria Vaccine Depends on Optimal DNA Priming and Inclusion of Blood Stage Antigens

    PubMed Central

    Weiss, Walter R.; Kumar, Anita; Jiang, George; Williams, Jackie; Bostick, Anthony; Conteh, Solomon; Fryauff, David; Aguiar, Joao; Singh, Manmohan; O'Hagan, Derek T.; Ulmer, Jeffery B.; Richie, Thomas L.

    2007-01-01

    Background We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine. Methodology In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-γ, and by ELISA. Conclusions 1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher

  5. Towards functional antibody-based vaccines to prevent pre-erythrocytic malaria infection.

    PubMed

    Sack, Brandon; Kappe, Stefan H I; Sather, D Noah

    2017-05-01

    An effective malaria vaccine would be considered a milestone of modern medicine, yet has so far eluded research and development efforts. This can be attributed to the extreme complexity of the malaria parasites, presenting with a multi-stage life cycle, high genome complexity and the parasite's sophisticated immune evasion measures, particularly antigenic variation during pathogenic blood stage infection. However, the pre-erythrocytic (PE) early infection forms of the parasite exhibit relatively invariant proteomes, and are attractive vaccine targets as they offer multiple points of immune system attack. Areas covered: We cover the current state of and roadblocks to the development of an effective, antibody-based PE vaccine, including current vaccine candidates, limited biological knowledge, genetic heterogeneity, parasite complexity, and suboptimal preclinical models as well as the power of early stage clinical models. Expert commentary: PE vaccines will need to elicit broad and durable immunity to prevent infection. This could be achievable if recent innovations in studying the parasites' infection biology, rational vaccine selection and design as well as adjuvant formulation are combined in a synergistic and multipronged approach. Improved preclinical assays as well as the iterative testing of vaccine candidates in controlled human malaria infection trials will further accelerate this effort.

  6. Vaccines against malaria-still a long way to go.

    PubMed

    Matuschewski, Kai

    2017-08-01

    Several species of Plasmodium cause a broad spectrum of human disease that range from nausea and fever to severe anemia, cerebral malaria, and multiorgan failure. In malaria-endemic countries, continuous exposure to Plasmodium sporozoite inoculations and subsequent blood infections elicit only partial and short-lived immunity, which gradually develops over many years of parasite exposure and multiple clinical episodes. The ambitious goal of malaria vaccinology over the past 70 years has been to develop an immunization strategy that mounts protection superior to naturally acquired immunity. Herein, three principal concepts in evidence-based malaria vaccine development are compared. Feasible leads are typically stand-alone subunit vaccine approaches that block Plasmodium parasite life cycle progression or parasite/host interactions, and they constitute the majority of candidates in preclinical research and early clinical testing. Integrated approaches incorporate malaria antigen(s) into licensed or emerging pediatric vaccine formulations. This strategy can complement the malaria control portfolio even if the antimalarial component is only partially effective and has led to the development of the only candidate vaccine to date, namely RTS,S-AS01. Experimental whole parasite vaccine approaches have been repeatedly shown to elicit sterile and lasting protection against identical parasite strains, but mass production, proof of broad protection against different parasite strains, and routes of vaccine delivery remain significant translational road blocks. Global access to an effective and affordable malaria vaccine will critically depend on innovative translational research that builds on a better molecular understanding of Plasmodium biology and host immunity. © 2017 Federation of European Biochemical Societies.

  7. Transcriptional changes induced by candidate malaria vaccines and correlation with protection against malaria in a human challenge model.

    PubMed

    Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V S; Fletcher, Helen A

    2015-09-29

    The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. These results represent novel insights into the immune repertoires involved in malaria vaccination. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine.

    PubMed

    Theisen, Michael; Jore, Matthijs M; Sauerwein, Robert

    2017-04-01

    Malaria is a devastating vector-borne disease caused by the Plasmodium parasite, resulting in almost 0.5 million casualties per year. The parasite has a complex life-cycle that includes asexual replication in human red blood cells, causing symptomatic malaria, and sexual stages which are essential for the transmission to the mosquito vector. A vaccine targeting the sexual stages of the parasite and thus blocking transmission will be instrumental for the eradication of malaria. One of the leading transmission blocking vaccine candidates is the sexual stage antigen Pfs48/45. Areas covered: PubMed was searched to review the progress and future prospects for clinical development of a Pfs48/45-based subunit vaccine. We will focus on biological function, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production of recombinant protein and preclinical studies. Expert commentary: Pfs48/45 is one of the lead-candidates for a transmission blocking vaccine and should be further explored in clinical trials.

  9. A semi-synthetic whole parasite vaccine designed to protect against blood stage malaria.

    PubMed

    Giddam, Ashwini Kumar; Reiman, Jennifer M; Zaman, Mehfuz; Skwarczynski, Mariusz; Toth, Istvan; Good, Michael F

    2016-10-15

    Although attenuated malaria parasitized red blood cells (pRBCs) are promising vaccine candidates, their application in humans may be restricted for ethical and regulatory reasons. Therefore, we developed an organic microparticle-based delivery platform as a whole parasite malaria-antigen carrier to mimic pRBCs. Killed blood stage parasites were encapsulated within liposomes that are targeted to antigen presenting cells (APCs). Mannosylated lipid core peptides (MLCPs) were used as targeting ligands for the liposome-encapsulated parasite antigens. MLCP-liposomes, but not unmannosylated liposomes, were taken-up efficiently by APCs which then significantly upregulated expression of MHC-ll and costimulatory molecules, CD80 and CD86. Two such vaccines using rodent model systems were constructed - one with Plasmodium chabaudi and the other with P. yoelii. MLCP-liposome vaccines were able to control the parasite burden and extended the survival of mice. Thus, we have demonstrated an alternative delivery system to attenuated pRBCs with similar vaccine efficacy and added clinical advantages. Such liposomes are promising candidates for a human malaria vaccine. Attenuated whole parasite-based vaccines, by incorporating all parasite antigens, are very promising candidates, but issues relating to production, storage and safety concerns are significantly slowing their development. We therefore developed a semi-synthetic whole parasite malaria vaccine that is easily manufactured and stored. Two such prototype vaccines (a P. chabaudi and a P. yoelii vaccine) have been constructed. They are non-infectious, highly immunogenic and give good protection profiles. This semi-synthetic delivery platform is an exciting strategy to accelerate the development of a licensed malaria vaccine. Moreover, this strategy can be potentially applied to a wide range of pathogens. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. European Vaccine Initiative: lessons from developing malaria vaccines.

    PubMed

    Geels, Mark J; Imoukhuede, Egeruan B; Imbault, Nathalie; van Schooten, Harry; McWade, Terry; Troye-Blomberg, Marita; Dobbelaer, Roland; Craig, Alister G; Leroy, Odile

    2011-12-01

    For over 10 years, the European Vaccine Initiative (EVI; European Malaria Vaccine Initiative until 2009) has contributed to the development of 24 malaria candidate vaccine antigens with 13 vaccine candidates being advanced into Phase I clinical trials, two of which have been transitioned for further clinical development in sub-Saharan Africa. Since its inception the EVI organization has operated as a funding agency, but with a clear service-oriented strategy. The scientific successes and difficulties encountered during these years and how these efforts have led to standardization and harmonization in vaccine development through large-scale European consortia are discussed. In the future, the EVI will remain instrumental in the pharmaceutical and clinical development of vaccines against 'diseases of poverty' with a continued focus on malaria. EVI will continue to focus on funding and managing preclinical evaluation up to Phase I/II clinical trials and strengthening the vaccine-development infrastructure in Europe, albeit with a global orientation.

  11. Research toward Malaria Vaccines

    NASA Astrophysics Data System (ADS)

    Miller, Louis H.; Howard, Russell J.; Carter, Richard; Good, Michael F.; Nussenzweig, Victor; Nussenzweig, Ruth S.

    1986-12-01

    Malaria exacts a toll of disease to people in the Tropics that seems incomprehensible to those only familiar with medicine and human health in the developed world. The methods of molecular biology, immunology, and cell biology are now being used to develop an antimalarial vaccine. The Plasmodium parasites that cause malaria have many stages in their life cycle. Each stage is antigenically distinct and potentially could be interrupted by different vaccines. However, achieving complete protection by vaccination may require a better understanding of the complexities of B- and T-cell priming in natural infections and the development of an appropriate adjuvant for use in humans.

  12. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery

    PubMed Central

    Davoodi-Semiromi, Abdoreza; Schreiber, Melissa; Nallapali, Samson; Verma, Dheeraj; Singh, Nameirakpam D.; Banks, Robert K.; Chakrabarti, Debopam; Daniell, Henry

    2009-01-01

    Summary Cholera and malaria are major diseases causing high mortality. The only licensed cholera vaccine is expensive; immunity is lost in children within 3 years and adults are not fully protected. No vaccine is yet available for malaria. Therefore, in this study, the cholera toxin-B subunit (CTB) of Vibrio cholerae fused to malarial vaccine antigens apical membrane antigen-1 (AMA1) and merozoite surface protein-1 (MSP1) was expressed in lettuce and tobacco chloroplasts. Southern blot analysis confirmed homoplasmy and stable integration of transgenes. CTB-AMA1 and CTB-MSP1 fusion proteins accumulated up to 13.17% and 10.11% (total soluble protein, TSP) in tobacco and up to 7.3% and 6.1% (TSP) in lettuce respectively. Nine groups of mice (n = 10/group) were immunized subcutaneously (SQV) or orally (ORV) with purified antigens or transplastomic tobacco leaves. Significant levels of antigen-specific antibody titres of immunized mice completely inhibited proliferation of the malarial parasite and cross-reacted with the native parasite proteins in immunoblots and immunofluorescence studies. Protection against cholera toxin challenge in both ORV (100%) and SQV (89%) mice correlated with CTB-specific titres of intestinal, serum IgA and IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. Increasing numbers of interleukin-10+ T cell but not Foxp3+ regulatory T cells, suppression of interferon-γ and absence of interleukin-17 were observed in protected mice, suggesting that immunity is conferred via the Tr1/Th2 immune response. Dual immunity against two major infectious diseases provided by chloroplast-derived vaccine antigens for long-term (>300 days, 50% of mouse life span) offers a realistic platform for low cost vaccines and insight into mucosal and systemic immunity. PMID:20051036

  13. Malaria invasion ligand RH5 and its prime candidacy in blood-stage malaria vaccine design

    PubMed Central

    Ord, Rosalynn L; Rodriguez, Marilis; Lobo, Cheryl A

    2015-01-01

    With drug resistance to available therapeutics continuing to develop against Plasmodium falciparum malaria, the development of an effective vaccine candidate remains a major research goal. Successful interruption of invasion of parasites into erythrocytes during the blood stage of infection will prevent the severe clinical symptoms and complications associated with malaria. Previously studied blood stage antigens have highlighted the hurdles that are inherent to this life-cycle stage, namely that highly immunogenic antigens are also globally diverse, resulting in protection only against the vaccine strain, or that naturally acquired immunity to blood stage antigens do not always correlate with actual protection. The blood stage antigen reticulocyte binding homolog RH5 is essential for parasite viability, has globally limited diversity, and is associated with protection from disease. Here we summarize available information on this invasion ligand and recent findings that highlight its candidacy for inclusion in a blood-stage malaria vaccine. PMID:25844685

  14. Malaria vaccines and human immune responses.

    PubMed

    Long, Carole A; Zavala, Fidel

    2016-08-01

    Despite reductions in malaria episodes and deaths over the past decade, there is still significant need for more effective tools to combat this serious global disease. The positive results with the Phase III trial of RTS,S directed to the circumsporozoite protein of Plasmodium falciparum have established that a vaccine against malaria can provide partial protection to children in endemic areas, but its limited efficacy and relatively short window of protection mandate that new generations of more efficacious vaccines must be sought. Evidence shows that anti-parasite immune responses can control infection against other stages as well, but translating these experimental findings into vaccines for blood stages has been disappointing and clinical efforts to test a transmission blocking vaccine are just beginning. Difficulties include the biological complexity of the organism with a large array of stage-specific genes many of which in the erythrocytic stages are antigenically diverse. In addition, it appears necessary to elicit high and long-lasting antibody titers, address the redundant pathways of merozoite invasion, and still seek surrogate markers of protective immunity. Most vaccine studies have focused on a single or a few antigens with an apparent functional role, but this is likely to be too restrictive, and broad, multi-antigen, multi-stage vaccines need further investigation. Finally, novel tools and biological insights involving parasite sexual stages and the mosquito vector will provide new avenues for reducing or blocking malaria transmission. Published by Elsevier Ltd.

  15. Engineering of Genetically Arrested Parasites (GAPs) For a Precision Malaria Vaccine.

    PubMed

    Kreutzfeld, Oriana; Müller, Katja; Matuschewski, Kai

    2017-01-01

    Continuous stage conversion and swift changes in the antigenic repertoire in response to acquired immunity are hallmarks of complex eukaryotic pathogens, including Plasmodium species, the causative agents of malaria. Efficient elimination of Plasmodium liver stages prior to blood infection is one of the most promising malaria vaccine strategies. Here, we describe different genetically arrested parasites (GAPs) that have been engineered in Plasmodium berghei, P. yoelii and P. falciparum and compare their vaccine potential. A better understanding of the immunological mechanisms of prime and boost by arrested sporozoites and experimental strategies to enhance vaccine efficacy by further engineering existing GAPs into a more immunogenic form hold promise for continuous improvements of GAP-based vaccines. A critical hurdle for vaccines that elicit long-lasting protection against malaria, such as GAPs, is safety and efficacy in vulnerable populations. Vaccine research should focus on solutions toward turning malaria into a vaccine-preventable disease, which would offer an exciting new path of malaria control.

  16. Malaria vaccines: the case for a whole-organism approach.

    PubMed

    Pinzon-Charry, Alberto; Good, Michael F

    2008-04-01

    Malaria is a significant health problem causing morbidity and mortality worldwide. Vaccine development has been an imperative for decades. However, the intricacy of the parasite's lifecycle coupled with the lack of evidence for robust infection-induced immunity has made vaccine development exceptionally difficult. To review some of the key advances in the field and discuss potential ways forward for a whole-organism vaccine. The authors searched PubMed using the words 'malaria and vaccine'. We searched for manuscripts detailing antigen characterisation and vaccine strategies with emphasis on subunit versus whole-parasite approaches. Abstracts were selected and relevant articles are discussed. The searches were not restricted by language or date. The early cloning of malaria antigens has fuelled rapid development of subunit vaccines. However, the disappointing results of clinical trials have resulted in reappraisal of current strategies. Whole-parasite approaches have re-emerged as an alternative strategy. Immunization using radiation or genetically attenuated sporozoites has been shown to result in sterile immunity and immunization with blood-stage parasites curtailed by antimalarials has demonstrated delayed parasitemia in rodent models as well as in human malaria.

  17. The Use of Synthetic Carriers in Malaria Vaccine Design

    PubMed Central

    Powles, Liam; Xiang, Sue D.; Selomulya, Cordelia; Plebanski, Magdalena

    2015-01-01

    Malaria vaccine research has been ongoing since the 1980s with limited success. However, recent improvements in our understanding of the immune responses required to combat each stage of infection will allow for intelligent design of both antigens and their associated delivery vaccine vehicles/vectors. Synthetic carriers (also known as vectors) are usually particulate and have multiple properties, which can be varied to control how an associated vaccine interacts with the host, and consequently how the immune response develops. This review comprehensively analyzes both historical and recent studies in which synthetic carriers are used to deliver malaria vaccines. Furthermore, the requirements for a synthetic carrier, such as size, charge, and surface chemistry are reviewed in order to understand the design of effective particle-based vaccines against malaria, as well as providing general insights. Synthetic carriers have the ability to alter and direct the immune response, and a better control of particle properties will facilitate improved vaccine design in the near future. PMID:26529028

  18. The path of malaria vaccine development: challenges and perspectives.

    PubMed

    Arama, C; Troye-Blomberg, M

    2014-05-01

    Malaria is a life-threatening disease caused by parasites of the Plasmodium genus. In many parts of the world, the parasites have developed resistance to a number of antimalarial agents. Key interventions to control malaria include prompt and effective treatment with artemisinin-based combination therapies, use of insecticidal nets by individuals at risk and active research into malaria vaccines. Protection against malaria through vaccination was demonstrated more than 30 years ago when individuals were vaccinated via repeated bites by Plasmodium falciparum-infected and irradiated but still metabolically active mosquitoes. However, vaccination with high doses of irradiated sporozoites injected into humans has long been considered impractical. Yet, following recent success using whole-organism vaccines, the approach has received renewed interest; it was recently reported that repeated injections of irradiated sporozoites increased protection in 80 vaccinated individuals. Other approaches include subunit malaria vaccines, such as the current leading candidate RTS,S (consisting of fusion between a portion of the P. falciparum-derived circumsporozoite protein and the hepatitis B surface antigen), which has been demonstrated to induce reasonably good protection. Although results have been encouraging, the level of protection is generally considered to be too low to achieve eradication of malaria. There is great interest in developing new and better formulations and stable delivery systems to improve immunogenicity. In this review, we will discuss recent strategies to develop efficient malaria vaccines. © 2014 The Association for the Publication of the Journal of Internal Medicine.

  19. A 2020 vision for vaccines against HIV, tuberculosis and malaria.

    PubMed

    Rappuoli, Rino; Aderem, Alan

    2011-05-26

    Acquired immune deficiency syndrome (AIDS), malaria and tuberculosis collectively cause more than five million deaths per year, but have nonetheless eluded conventional vaccine development; for this reason they represent one of the major global public health challenges as we enter the second decade of the twenty-first century. Recent trials have provided evidence that it is possible to develop vaccines that can prevent infection by human immunodeficiency virus (HIV) and malaria. Furthermore, advances in vaccinology, including novel adjuvants, prime-boost regimes and strategies for intracellular antigen presentation, have led to progress in developing a vaccine against tuberculosis. Here we discuss these advances and suggest that new tools such as systems biology and structure-based antigen design will lead to a deeper understanding of mechanisms of protection which, in turn, will lead to rational vaccine development. We also argue that new and innovative approaches to clinical trials will accelerate the availability of these vaccines.

  20. Blood-stage malaria vaccines: post-genome strategies for the identification of novel vaccine candidates.

    PubMed

    Ntege, Edward H; Takashima, Eizo; Morita, Masayuki; Nagaoka, Hikaru; Ishino, Tomoko; Tsuboi, Takafumi

    2017-08-01

    An efficacious malaria vaccine is necessary to advance the current control measures towards malaria elimination. To-date, only RTS,S/AS01, a leading pre-erythrocytic stage vaccine completed phase 3 trials, but with an efficacy of 28-36% in children, and 18-26% in infants, that waned over time. Blood-stage malaria vaccines protect against disease, and are considered effective targets for the logical design of next generation vaccines to improve the RTS,S field efficacy. Therefore, novel blood-stage vaccine candidate discovery efforts are critical, albeit with several challenges including, high polymorphisms in vaccine antigens, poor understanding of targets of naturally protective immunity, and difficulties in the expression of high AT-rich plasmodial proteins. Areas covered: PubMed ( www.ncbi.nlm.nih.gov/pubmed ) was searched to review the progress and future prospects of malaria vaccine research and development. We focused on post-genome vaccine candidate discovery, malaria vaccine development, sequence diversity, pre-clinical and clinical trials. Expert commentary: Post-genome high-throughput technologies using wheat germ cell-free protein synthesis technology and immuno-profiling with sera from malaria patients with clearly defined outcomes are highlighted to overcome current challenges of malaria vaccine candidate discovery.

  1. A Field Trial to Assess a Blood-Stage Malaria Vaccine

    PubMed Central

    Thera, Mahamadou A.; Doumbo, Ogobara K.; Coulibaly, Drissa; Laurens, Matthew B.; Ouattara, Amed; Kone, Abdoulaye K.; Guindo, Ando B.; Traore, Karim; Traore, Idrissa; Kouriba, Bourema; Diallo, Dapa A.; Diarra, Issa; Daou, Modibo; Dolo, Amagana; Tolo, Youssouf; Sissoko, Mahamadou S.; Niangaly, Amadou; Sissoko, Mady; Takala-Harrison, Shannon; Lyke, Kirsten E.; Wu, Yukun; Blackwelder, William C.; Godeaux, Olivier; Vekemans, Johan; Dubois, Marie-Claude; Ballou, W. Ripley; Cohen, Joe; Thompson, Darby; Dube, Tina; Soisson, Lorraine; Diggs, Carter L.; House, Brent; Lanar, David E.; Dutta, Sheetij; Heppner, D. Gray; Plowe, Christopher V.

    2011-01-01

    BACKGROUND Blood-stage malaria vaccines are intended to prevent clinical disease. The malaria vaccine FMP2.1/AS02A, a recombinant protein based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, has previously been shown to have immunogenicity and acceptable safety in Malian adults and children. METHODS In a double-blind, randomized trial, we immunized 400 Malian children with either the malaria vaccine or a control (rabies) vaccine and followed them for 6 months. The primary end point was clinical malaria, defined as fever and at least 2500 parasites per cubic millimeter of blood. A secondary end point was clinical malaria caused by parasites with the AMA1 DNA sequence found in the vaccine strain. RESULTS The cumulative incidence of the primary end point was 48.4% in the malaria-vaccine group and 54.4% in the control group; efficacy against the primary end point was 17.4% (hazard ratio for the primary end point, 0.83; 95% confidence interval [CI], 0.63 to 1.09; P = 0.18). Efficacy against the first and subsequent episodes of clinical malaria, as defined on the basis of various parasite-density thresholds, was approximately 20%. Efficacy against clinical malaria caused by parasites with AMA1 corresponding to that of the vaccine strain was 64.3% (hazard ratio, 0.36; 95% CI, 0.08 to 0.86; P = 0.03). Local reactions and fever after vaccination were more frequent with the malaria vaccine. CONCLUSIONS On the basis of the primary end point, the malaria vaccine did not provide significant protection against clinical malaria, but on the basis of secondary results, it may have strain-specific efficacy. If this finding is confirmed, AMA1 might be useful in a multicomponent malaria vaccine. PMID:21916638

  2. Protein-protein conjugate nanoparticles for malaria antigen delivery and enhanced immunogenicity

    PubMed Central

    Scaria, Puthupparampil V.; Jones, David S.; Barnafo, Emma; Fischer, Elizabeth R.; Anderson, Charles; MacDonald, Nicholas J.; Lambert, Lynn; Rausch, Kelly M.; Narum, David L.

    2017-01-01

    Chemical conjugation of polysaccharide to carrier proteins has been a successful strategy to generate potent vaccines against bacterial pathogens. We developed a similar approach for poorly immunogenic malaria protein antigens. Our lead candidates in clinical trials are the malaria transmission blocking vaccine antigens, Pfs25 and Pfs230D1, individually conjugated to the carrier protein Exoprotein A (EPA) through thioether chemistry. These conjugates form nanoparticles that show enhanced immunogenicity compared to unconjugated antigens. In this study, we examined the broad applicability of this technology as a vaccine development platform, by comparing the immunogenicity of conjugates prepared by four different chemistries using different malaria antigens (PfCSP, Pfs25 and Pfs230D1), and carriers such as EPA, TT and CRM197. Several conjugates were synthesized using thioether, amide, ADH and glutaraldehyde chemistries, characterized for average molecular weight and molecular weight distribution, and evaluated in mice for humoral immunogenicity. Conjugates made with the different chemistries, or with different carriers, showed no significant difference in immunogenicity towards the conjugated antigens. Since particle size can influence immunogenicity, we tested conjugates with different average size in the range of 16–73 nm diameter, and observed greater immunogenicity of smaller particles, with significant differences between 16 and 73 nm particles. These results demonstrate the multiple options with respect to carriers and chemistries that are available for protein-protein conjugate vaccine development. PMID:29281708

  3. Potency assay design for adjuvanted recombinant proteins as malaria vaccines.

    PubMed

    Giersing, Birgitte K; Dubovsky, Filip; Saul, Allan; Denamur, Francoise; Minor, Philip; Meade, Bruce

    2006-05-15

    Many licensed vaccines are composed of live, attenuated or inactivated whole-cell microorganisms, or they comprise purified components from whole-cell extracts or culture supernatants. For some diseases, pathology is fairly well understood, and there may be known correlates of protection that provide obvious parameters for assessment of vaccine potency. However, this is not always the case, and some effective vaccines are routinely used even though the mechanisms or correlates of protection are unknown. Some more modern vaccine approaches employ purified recombinant proteins, based on molecules that appear on the surface of the pathogen. This is one of the strategies that has been adopted in the quest to develop a malaria vaccine. Use of these parasite antigens as vaccine candidates is supported by substantial epidemiological data, and some have demonstrated the ability to elicit protective responses in animal models of malaria infection. However, there is as yet no immunological correlate of protection and no functional assays or animal models that have demonstrated the ability to predict efficacy in humans. There is little precedence for the most appropriate and practical method for assessing potency of vaccines based on these recombinant molecules for malaria vaccines. This is likely because the majority of malaria vaccine candidates have only recently entered clinical evaluation. The PATH Malaria Vaccine Initiative (MVI) convened a panel with expertise in potency assay design from industry, governmental institutions, and regulatory bodies to discuss and review the rationale, available methods, and best approaches for assessing the potency of recombinant proteins, specifically for their use as malarial vaccines. The aim of this meeting was to produce a discussion document on the practical potency assessment of recombinant protein malaria vaccines, focusing on early phase potency assay development.

  4. Malaria vaccine clinical trials: what’s on the horizon

    PubMed Central

    Moreno, Alberto; Joyner, Chester

    2015-01-01

    Significant progress towards a malaria vaccine, specifically for Plasmodium falciparum, has been made in the past few years with the completion of numerous clinical trials. Each trial has utilized a unique combination of antigens, delivery platforms, and adjuvants, and the data that has been obtained provides critical information that has poises the research community for the development of next generation malaria vaccines. Despite the progress towards a P. falciparum vaccine, P. vivax vaccine research requires more momentum and additional investigations to identify novel vaccine candidates. In this review, recently completed and ongoing malaria vaccine clinical trials as well as vaccine candidates that are in the development pipeline are reviewed. Perspectives for future research using post-genomic mining, nonhuman primate models, and systems biology are also discussed. PMID:26172291

  5. A Malaria Vaccine Based on the Polymorphic Block 2 Region of MSP-1 that Elicits a Broad Serotype-Spanning Immune Response

    PubMed Central

    Cowan, Graeme J. M.; Creasey, Alison M.; Dhanasarnsombut, Kelwalin; Thomas, Alan W.; Remarque, Edmond J.; Cavanagh, David R.

    2011-01-01

    Polymorphic parasite antigens are known targets of protective immunity to malaria, but this antigenic variation poses challenges to vaccine development. A synthetic MSP-1 Block 2 construct, based on all polymorphic variants found in natural Plasmodium falciparum isolates has been designed, combined with the relatively conserved Block 1 sequence of MSP-1 and expressed in E.coli. The MSP-1 Hybrid antigen has been produced with high yield by fed-batch fermentation and purified without the aid of affinity tags resulting in a pure and extremely thermostable antigen preparation. MSP-1 hybrid is immunogenic in experimental animals using adjuvants suitable for human use, eliciting antibodies against epitopes from all three Block 2 serotypes. Human serum antibodies from Africans naturally exposed to malaria reacted to the MSP-1 hybrid as strongly as, or better than the same serum reactivities to individual MSP-1 Block 2 antigens, and these antibody responses showed clear associations with reduced incidence of malaria episodes. The MSP-1 hybrid is designed to induce a protective antibody response to the highly polymorphic Block 2 region of MSP-1, enhancing the repertoire of MSP-1 Block 2 antibody responses found among immune and semi-immune individuals in malaria endemic areas. The target population for such a vaccine is young children and vulnerable adults, to accelerate the acquisition of a full range of malaria protective antibodies against this polymorphic parasite antigen. PMID:22073118

  6. Chimeric parasites as tools to study Plasmodium immunology and assess malaria vaccines.

    PubMed

    Cockburn, Ian

    2013-01-01

    The study of pathogen immunity relies upon being able to track antigen specific immune responses and assess their protective capacity. To study immunity to Plasmodium antigens, chimeric rodent or human malaria parasites that express proteins from other Plasmodium species or unrelated species have been developed. Different types of chimeric parasites have been used to address a range of specific questions. Parasites expressing model T cell epitopes have been used to monitor cellular immune responses to the preerythrocytic and blood stages of malaria. Other parasites have been used to assess the functional significance of immune responses targeting particular proteins. Finally, a number of rodent malaria parasites that express vaccine-candidate antigens from P. falciparum and P. vivax have been used in functional assays of vaccine-induced antibody responses. Here, I review the experimental contributions that have been made using these parasites, and discuss the potential of these approaches to continue advancing our understanding of malaria immunology and vaccine research.

  7. Development of a bivalent conjugate vaccine candidate against malaria transmission and typhoid fever.

    PubMed

    An, So Jung; Scaria, Puthupparampil V; Chen, Beth; Barnafo, Emma; Muratova, Olga; Anderson, Charles; Lambert, Lynn; Chae, Myung Hwa; Yang, Jae Seung; Duffy, Patrick E

    2018-05-17

    Immune responses to poorly immunogenic antigens, such as polysaccharides, can be enhanced by conjugation to carriers. Our previous studies indicate that conjugation to Vi polysaccharide of Salmonella Typhi may also enhance immunogenicity of some protein carriers. We therefore explored the possibility of generating a bivalent vaccine against Plasmodium falciparum malaria and typhoid fever, which are co-endemic in many parts of the world, by conjugating Vi polysaccharide, an approved antigen in typhoid vaccine, to Pfs25, a malaria transmission blocking vaccine antigen in clinical trials. Vi-Pfs25 conjugates induced strong immune responses against both Vi and Pfs25 in mice, whereas the unconjugated antigens are poorly immunogenic. Functional assays of immune sera revealed potent transmission blocking activity mediated by anti-Pfs25 antibody and serum bactericidal activity due to anti-Vi antibody. Pfs25 conjugation to Vi modified the IgG isotype distribution of antisera, inducing a Th2 polarized immune response against Vi antigen. This conjugate may be further developed as a bivalent vaccine to concurrently target malaria and typhoid fever. Copyright © 2018. Published by Elsevier Ltd.

  8. Vaccines Against Malaria

    PubMed Central

    Ouattara, Amed; Laurens, Matthew B.

    2015-01-01

    Despite global efforts to control malaria, the illness remains a significant public health threat. Currently, there is no licensed vaccine against malaria, but an efficacious vaccine would represent an important public health tool for successful malaria elimination. Malaria vaccine development continues to be hindered by a poor understanding of antimalarial immunity, a lack of an immune correlate of protection, and the genetic diversity of malaria parasites. Current vaccine development efforts largely target Plasmodium falciparum parasites in the pre-erythrocytic and erythrocytic stages, with some research on transmission-blocking vaccines against asexual stages and vaccines against pregnancy-associated malaria. The leading pre-erythrocytic vaccine candidate is RTS,S, and early results of ongoing Phase 3 testing show overall efficacy of 46% against clinical malaria. The next steps for malaria vaccine development will focus on the design of a product that is efficacious against the highly diverse strains of malaria and the identification of a correlate of protection against disease. PMID:25452593

  9. Assessment of the Plasmodium falciparum Preerythrocytic Antigen UIS3 as a Potential Candidate for a Malaria Vaccine.

    PubMed

    Longley, Rhea J; Halbroth, Benedict R; Salman, Ahmed M; Ewer, Katie J; Hodgson, Susanne H; Janse, Chris J; Khan, Shahid M; Hill, Adrian V S; Spencer, Alexandra J

    2017-03-01

    Efforts are under way to improve the efficacy of subunit malaria vaccines through assessments of new adjuvants, vaccination platforms, and antigens. In this study, we further assessed the Plasmodium falciparum antigen upregulated in infective sporozoites 3 (PfUIS3) as a vaccine candidate. PfUIS3 was expressed in the viral vectors chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) and used to immunize mice in a prime-boost regimen. We previously demonstrated that this regimen could provide partial protection against challenge with chimeric P. berghei parasites expressing PfUIS3. We now show that ChAd63-MVA PfUIS3 can also provide partial cross-species protection against challenge with wild-type P. berghei parasites. We also show that PfUIS3-specific cellular memory responses could be recalled in human volunteers exposed to P. falciparum parasites in a controlled human malaria infection study. When ChAd63-MVA PfUIS3 was coadministered with the vaccine candidate P. falciparum thrombospondin-related adhesion protein (PfTRAP) expressed in the ChAd63-MVA system, there was no significant change in immunogenicity to either vaccine. However, when mice were challenged with double chimeric P. berghei - P. falciparum parasites expressing both PfUIS3 and PfTRAP, vaccine efficacy was improved to 100% sterile protection. This synergistic effect was evident only when the two vaccines were mixed and administered at the same site. We have therefore demonstrated that vaccination with PfUIS3 can induce a consistent delay in patent parasitemia across mouse strains and against chimeric parasites expressing PfUIS3 as well as wild-type P. berghei ; when this vaccine is combined with another partially protective regimen (ChAd63-MVA PfTRAP), complete protection is induced. Copyright © 2017 Longley et al.

  10. CD8+ T-cell mediated anti-malaria protection induced by malaria vaccines; assessment of hepatic CD8+ T cells by SCBC assay.

    PubMed

    Zhou, Jing; Kaiser, Alaina; Ng, Colin; Karcher, Rachel; McConnell, Tim; Paczkowski, Patrick; Fernandez, Cristina; Zhang, Min; Mackay, Sean; Tsuji, Moriya

    2017-07-03

    Malaria is a severe infectious disease with relatively high mortality, thus having been a scourge of humanity. There are a few candidate malaria vaccines that have shown a protective efficacy in humans against malaria. One of the candidate human malaria vaccines, which is based on human malaria sporozoites and called PfSPZ Vaccine, has been shown to protect a significant proportion of vaccine recipients from getting malaria. PfSPZ Vaccine elicits a potent response of hepatic CD8+ T cells that are specific for malaria antigens in non-human primates. To further characterize hepatic CD8+ T cells induced by the sporozoite-based malaria vaccine in a mouse model, we have used a cutting-edge Single-cell Barcode (SCBC) assay, a recently emerged approach/method for investigating the nature of T-cells responses during infection or cancer. Using the SCBC technology, we have identified a population of hepatic CD8+ T cells that are polyfunctional at a single cell level only in a group of vaccinated mice upon malaria challenge. The cytokines/chemokines secreted by these polyfunctional CD8+ T-cell subsets include MIP-1α, RANTES, IFN-γ, and/or IL-17A, which have shown to be associated with protective T-cell responses against certain pathogens. Therefore, a successful induction of such polyfunctional hepatic CD8+ T cells may be a key to the development of effective human malaria vaccine. In addition, the SCBC technology could provide a new level of diagnostic that will allow for a more accurate determination of vaccine efficacy.

  11. Vaccine candidates for malaria: what's new?

    PubMed

    Takashima, Eizo; Morita, Masayuki; Tsuboi, Takafumi

    2016-01-01

    Although it is more than a decade since the parasite genome information was obtained, standardized novel genome-wide selection/prioritization strategies for candidacy of malaria vaccine antigens are still sought. In the quest to systematically identify candidates, it is impossible to overemphasize the usefulness of wheat germ cell-free technology in expressing quality proteins for the post-genome vaccine candidate discovery.

  12. TLR-adjuvanted nanoparticle vaccines differentially influence the quality and longevity of responses to malaria antigen Pfs25.

    PubMed

    Thompson, Elizabeth A; Ols, Sebastian; Miura, Kazutoyo; Rausch, Kelly; Narum, David L; Spångberg, Mats; Juraska, Michal; Wille-Reece, Ulrike; Weiner, Amy; Howard, Randall F; Long, Carole A; Duffy, Patrick E; Johnston, Lloyd; O'Neil, Conlin P; Loré, Karin

    2018-05-17

    Transmission-blocking vaccines (TBVs) are considered an integral element of malaria eradication efforts. Despite promising evaluations of Plasmodium falciparum Pfs25-based TBVs in mice, clinical trials have failed to induce robust and long-lived Ab titers, in part due to the poorly immunogenic nature of Pfs25. Using nonhuman primates, we demonstrate that multiple aspects of Pfs25 immunity were enhanced by antigen encapsulation in poly(lactic-co-glycolic acid)-based [(PLGA)-based] synthetic vaccine particles (SVP[Pfs25]) and potent TLR-based adjuvants. SVP[Pfs25] increased Ab titers, Pfs25-specific plasmablasts, circulating memory B cells, and plasma cells in the bone marrow when benchmarked against the clinically tested multimeric form Pfs25-EPA given with GLA-LSQ. SVP[Pfs25] also induced the first reported Pfs25-specific circulating Th1 and Tfh cells to our knowledge. Multivariate correlative analysis indicated several mechanisms for the improved Ab responses. While Pfs25-specific B cells were responsible for increasing Ab titers, T cell responses stimulated increased Ab avidity. The innate immune activation differentially stimulated by the adjuvants revealed a strong correlation between type I IFN polarization, induced by R848 and CpG, and increased Ab half-life and longevity. Collectively, the data identify ways to improve vaccine-induced immunity to poorly immunogenic proteins, both by the choice of antigen and adjuvant formulation, and highlight underlying immunological mechanisms.

  13. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya.

    PubMed

    Ogutu, Bernhards R; Apollo, Odika J; McKinney, Denise; Okoth, Willis; Siangla, Joram; Dubovsky, Filip; Tucker, Kathryn; Waitumbi, John N; Diggs, Carter; Wittes, Janet; Malkin, Elissa; Leach, Amanda; Soisson, Lorraine A; Milman, Jessica B; Otieno, Lucas; Holland, Carolyn A; Polhemus, Mark; Remich, Shon A; Ockenhouse, Christian F; Cohen, Joe; Ballou, W Ripley; Martin, Samuel K; Angov, Evelina; Stewart, V Ann; Lyon, Jeffrey A; Heppner, D Gray; Withers, Mark R

    2009-01-01

    The antigen, falciparum malaria protein 1 (FMP1), represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1) of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System), it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccine's safety, immunogenicity, and efficacy in African children. A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12-47 months in general good health.Children were randomised in a 1ratio1 fashion to receive either FMP1/AS02 (50 microg) or Rabipur(R) rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature >/=37.5 degrees C with asexual parasitaemia of >/=50,000 parasites/microL of blood) occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE) was measured over a six-month period following third vaccinations. 374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-1(42) antibody concentrations increased from1.3 microg/mL to 27.3 microg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: -26% to +28%; p-value = 0.7). FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-1(42) vaccine development should focus on other formulations and antigen constructs

  14. Blood Stage Malaria Vaccine Eliciting High Antigen-Specific Antibody Concentrations Confers No Protection to Young Children in Western Kenya

    PubMed Central

    Ogutu, Bernhards R.; Apollo, Odika J.; McKinney, Denise; Okoth, Willis; Siangla, Joram; Dubovsky, Filip; Tucker, Kathryn; Waitumbi, John N.; Diggs, Carter; Wittes, Janet; Malkin, Elissa; Leach, Amanda; Soisson, Lorraine A.; Milman, Jessica B.; Otieno, Lucas; Holland, Carolyn A.; Polhemus, Mark; Remich, Shon A.; Ockenhouse, Christian F.; Cohen, Joe; Ballou, W. Ripley; Martin, Samuel K.; Angov, Evelina; Stewart, V. Ann; Lyon, Jeffrey A.; Heppner, D. Gray; Withers, Mark R.

    2009-01-01

    Objective The antigen, falciparum malaria protein 1 (FMP1), represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1) of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System), it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccine's safety, immunogenicity, and efficacy in African children. Methods A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12–47 months in general good health.Children were randomised in a 1∶1 fashion to receive either FMP1/AS02 (50 µg) or Rabipur® rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature ≥37.5°C with asexual parasitaemia of ≥50,000 parasites/µL of blood) occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE) was measured over a six-month period following third vaccinations. Results 374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-142 antibody concentrations increased from1.3 µg/mL to 27.3 µg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: −26% to +28%; p-value = 0.7). Conclusions FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-142 vaccine development should focus on other formulations and antigen

  15. Vaccines against malaria.

    PubMed

    Ouattara, Amed; Laurens, Matthew B

    2015-03-15

    Despite global efforts to control malaria, the illness remains a significant public health threat. Currently, there is no licensed vaccine against malaria, but an efficacious vaccine would represent an important public health tool for successful malaria elimination. Malaria vaccine development continues to be hindered by a poor understanding of antimalarial immunity, a lack of an immune correlate of protection, and the genetic diversity of malaria parasites. Current vaccine development efforts largely target Plasmodium falciparum parasites in the pre-erythrocytic and erythrocytic stages, with some research on transmission-blocking vaccines against asexual stages and vaccines against pregnancy-associated malaria. The leading pre-erythrocytic vaccine candidate is RTS,S, and early results of ongoing Phase 3 testing show overall efficacy of 46% against clinical malaria. The next steps for malaria vaccine development will focus on the design of a product that is efficacious against the highly diverse strains of malaria and the identification of a correlate of protection against disease. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. High-Density Peptide Arrays for Malaria Vaccine Development.

    PubMed

    Loeffler, Felix F; Pfeil, Johannes; Heiss, Kirsten

    2016-01-01

    The development of an efficacious and practicable vaccine conferring sterile immunity towards a Plasmodium infection represents a not yet achieved goal. A crucial factor for the impact of a given anti-plasmodial subunit vaccine is the identification of the most potent parasitic components required to induce protection from both infection and disease. Here, we present a method based on a novel high-density peptide array technology that allows for a flexible readout of malaria antibodies. Peptide arrays applied as a screening method can be used to identify novel immunogenic antibody epitopes under a large number of potential antigens/peptides. Ultimately, discovered antigen candidates and/or epitope sequences can be translated into vaccine prototype design. The technology can be further utilized to unravel antibody-mediated immune responses (e.g., involved in the establishment of semi-immunity) and moreover to confirm vaccine potency during the process of clinical development by verifying the induced antibody responses following vaccination.

  17. Vaccine candidate discovery for the next generation of malaria vaccines.

    PubMed

    Tuju, James; Kamuyu, Gathoni; Murungi, Linda M; Osier, Faith H A

    2017-10-01

    Although epidemiological observations, IgG passive transfer studies and experimental infections in humans all support the feasibility of developing highly effective malaria vaccines, the precise antigens that induce protective immunity remain uncertain. Here, we review the methodologies applied to vaccine candidate discovery for Plasmodium falciparum malaria from the pre- to post-genomic era. Probing of genomic and cDNA libraries with antibodies of defined specificities or functional activity predominated the former, whereas reverse vaccinology encompassing high throughput in silico analyses of genomic, transcriptomic or proteomic parasite data sets is the mainstay of the latter. Antibody-guided vaccine design spanned both eras but currently benefits from technological advances facilitating high-throughput screening and downstream applications. We make the case that although we have exponentially increased our ability to identify numerous potential vaccine candidates in a relatively short space of time, a significant bottleneck remains in their validation and prioritization for evaluation in clinical trials. Longitudinal cohort studies provide supportive evidence but results are often conflicting between studies. Demonstration of antigen-specific antibody function is valuable but the relative importance of one mechanism over another with regards to protection remains undetermined. Animal models offer useful insights but may not accurately reflect human disease. Challenge studies in humans are preferable but prohibitively expensive. In the absence of reliable correlates of protection, suitable animal models or a better understanding of the mechanisms underlying protective immunity in humans, vaccine candidate discovery per se may not be sufficient to provide the paradigm shift necessary to develop the next generation of highly effective subunit malaria vaccines. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  18. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria

    PubMed Central

    Beeson, James G.; Drew, Damien R.; Boyle, Michelle J.; Feng, Gaoqian; Fowkes, Freya J.I.; Richards, Jack S.

    2016-01-01

    Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. PMID:26833236

  19. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria.

    PubMed

    Beeson, James G; Drew, Damien R; Boyle, Michelle J; Feng, Gaoqian; Fowkes, Freya J I; Richards, Jack S

    2016-05-01

    Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. © FEMS 2016.

  20. Ex vivo tetramer staining and cell surface phenotyping for early activation markers CD38 and HLA-DR to enumerate and characterize malaria antigen-specific CD8+ T-cells induced in human volunteers immunized with a Plasmodium falciparum adenovirus-vectored malaria vaccine expressing AMA1.

    PubMed

    Schwenk, Robert; Banania, Glenna; Epstein, Judy; Kim, Yohan; Peters, Bjoern; Belmonte, Maria; Ganeshan, Harini; Huang, Jun; Reyes, Sharina; Stryhn, Anette; Ockenhouse, Christian F; Buus, Soren; Richie, Thomas L; Sedegah, Martha

    2013-10-29

    Malaria is responsible for up to a 600,000 deaths per year; conveying an urgent need for the development of a malaria vaccine. Studies with whole sporozoite vaccines in mice and non-human primates have shown that sporozoite-induced CD8+ T cells targeting liver stage antigens can mediate sterile protection. There is a need for a direct method to identify and phenotype malaria vaccine-induced CD8+ T cells in humans. Fluorochrome-labelled tetramers consisting of appropriate MHC class I molecules in complex with predicted binding peptides derived from Plasmodium falciparum AMA-1 were used to label ex vivo AMA-1 epitope specific CD8+ T cells from research subjects responding strongly to immunization with the NMRC-M3V-Ad-PfCA (adenovirus-vectored) malaria vaccine. The identification of these CD8+ T cells on the basis of their expression of early activation markers was also investigated. Analyses by flow cytometry demonstrated that two of the six tetramers tested: TLDEMRHFY: HLA-A*01:01 and NEVVVKEEY: HLA-B*18:01, labelled tetramer-specific CD8+ T cells from two HLA-A*01:01 volunteers and one HLA-B*18:01 volunteer, respectively. By contrast, post-immune CD8+ T cells from all six of the immunized volunteers exhibited enhanced expression of the CD38 and HLA-DRhi early activation markers. For the three volunteers with positive tetramer staining, the early activation phenotype positive cells included essentially all of the tetramer positive, malaria epitope- specific CD8+ T cells suggesting that the early activation phenotype could identify all malaria vaccine-induced CD8+ T cells without prior knowledge of their exact epitope specificity. The results demonstrated that class I tetramers can identify ex vivo malaria vaccine antigen-specific CD8+ T cells and could therefore be used to determine their frequency, cell surface phenotype and transcription factor usage. The results also demonstrated that vaccine antigen-specific CD8+ T cells could be identified by activation markers

  1. Transmission blocking malaria vaccines: Assays and candidates in clinical development.

    PubMed

    Sauerwein, R W; Bousema, T

    2015-12-22

    Stimulated by recent advances in malaria control and increased funding, the elimination of malaria is now considered to be an attainable goal for an increasing number of malaria-endemic regions. This has boosted the interest in transmission-reducing interventions including vaccines that target sexual, sporogenic, and/or mosquito-stage antigens to interrupt malaria transmission (SSM-VIMT). SSM-VIMT aim to prevent human malaria infection in vaccinated communities by inhibiting parasite development within the mosquito after a blood meal taken from a gametocyte carrier. Only a handful of target antigens are in clinical development and progress has been slow over the years. Major stumbling blocks include (i) the expression of appropriately folded target proteins and their downstream purification, (ii) insufficient induction of sustained functional blocking antibody titers by candidate vaccines in humans, and (iii) validation of a number of (bio)-assays as correlate for blocking activity in the field. Here we discuss clinical manufacturing and testing of current SSM-VIMT candidates and the latest bio-assay development for clinical evaluation. New testing strategies are discussed that may accelerate the evaluation and application of SSM-VIMT. Copyright © 2015. Published by Elsevier Ltd.

  2. Potentiation by a novel alkaloid glycoside adjuvant of a protective cytotoxic T cell immune response specific for a preerythrocytic malaria vaccine candidate antigen.

    PubMed

    Heal, K G; Sheikh, N A; Hollingdale, M R; Morrow, W J; Taylor-Robinson, A W

    2001-07-20

    We have recently demonstrated that the novel glycoalkaloid tomatine, derived from leaves of the wild tomato Lycopersicon pimpinellifolium, can act as a powerful adjuvant for the elicitation of antigen-specific CD8+ T cell responses. Here, we have extended our previous investigation with the model antigen ovalbumin to an established malaria infection system in mice and evaluated the cellular immune response to a major preerythrocytic stage malaria vaccine candidate antigen when administered with tomatine. The defined MHC H-2kd class I-binding 9-mer peptide (amino acids 252-260) from Plasmodium berghei circumsporozoite (CS) protein was prepared with tomatine to form a molecular aggregate formulation and this used to immunise BALB/c (H-2kd) mice. Antigen-specific IFN-gamma secretion and cytotoxic T lymphocyte activity in vitro were both significantly enhanced compared to responses detected from similarly stimulated splenocytes from naive and tomatine-saline-immunised control mice. Moreover, when challenged with P. berghei sporozoites, mice immunised with the CS 9-mer-tomatine preparation had a significantly delayed onset of erythrocytic infection compared to controls. The data presented validate the use of tomatine to potentiate a cellular immune response to antigenic stimulus by testing in an important biologically relevant system. Specifically, the processing of the P. berghei CS 9-mer as an exogenous antigen and its presentation via MHC class I molecules to CD8+ T cells led to an immune response that is an in vitro correlate of protection against preerythrocytic malaria. This was confirmed by the protective capacity of the 9-mer-tomatine combination upon in vivo immunisation. These findings merit further work to optimise the use of tomatine as an adjuvant in malaria vaccine development.

  3. Improving the malaria transmission-blocking activity of a Plasmodium falciparum 48/45 based vaccine antigen by SpyTag/SpyCatcher mediated virus-like display.

    PubMed

    Singh, Susheel K; Thrane, Susan; Janitzek, Christoph M; Nielsen, Morten A; Theander, Thor G; Theisen, Michael; Salanti, Ali; Sander, Adam F

    2017-06-27

    Malaria is a devastating disease caused by Plasmodium parasites, resulting in almost 0.5 million deaths per year. The Pfs48/45 protein exposed on the P. falciparum sexual stages is one of the most advanced antigen candidates for a transmission-blocking (TB) vaccine in the clinical pipeline. However, it remains essential to identify an optimal vaccine formulation that can facilitate induction of a long-lasting TB anti-Pfs48/45 response. Here we report on the development and evaluation of two Pfs48/45-based virus-like particle (VLP) vaccines generated using the AP205 SpyTag/Catcher VLP system. Two different recombinant proteins (SpyCatcher-R0.6C and SpyCatcher-6C), comprising the Pfs48/45-6C region, were covalently attached to the surface of Spy-tagged Acinetobacter phage AP205 VLPs. Resulting Pfs48/45-VLP complexes appeared as non-aggregated particles of ∼30nm, each displaying an average of 216 (R0.6C) or 291 (6C) copies of the antigens. Both R0.6C and 6C VLP conjugates were strongly reactive with a monoclonal antibody (mAb45.1) targeting a conformational TB Pfs48/45 epitope, suggesting that the TB epitope is accessible for immune recognition on the particles. To select the most suitable vaccine formulation for downstream clinical studies the two VLP vaccines were tested in CD1 mice using different adjuvant formulations. The study demonstrates that VLP-display of R0.6C and 6C significantly increases antigen immunogenicity when using Montanide ISA 720 VG as extrinsic adjuvant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The stage-specific in vitro efficacy of a malaria antigen cocktail provides valuable insights into the development of effective multi-stage vaccines.

    PubMed

    Spiegel, Holger; Boes, Alexander; Kastilan, Robin; Kapelski, Stephanie; Edgue, Güven; Beiss, Veronique; Chubodova, Ivana; Scheuermayer, Matthias; Pradel, Gabriele; Schillberg, Stefan; Reimann, Andreas; Fischer, Rainer

    2015-10-01

    Multicomponent vaccines targeting different stages of Plasmodium falciparum represent a promising, holistic concept towards better malaria vaccines. Additionally, an effective vaccine candidate should demonstrate cross-strain specificity because many antigens are polymorphic, which can reduce vaccine efficacy. A cocktail of recombinant fusion proteins (VAMAX-Mix) featuring three diversity-covering variants of the blood-stage antigen PfAMA1, each combined with the conserved sexual-stage antigen Pfs25 and one of the pre-erythrocytic-stage antigens PfCSP_TSR or PfCelTOS, or the additional blood-stage antigen PfMSP1_19, was produced in Pichia pastoris and used to immunize rabbits. The immune sera and purified IgG were used to perform various assays determining antigen specific titers and in vitro efficacy against different parasite stages and strains. In functional in vitro assays we observed robust inhibition of blood-stage (up to 90%), and sexual-stage parasites (up to 100%) and biased inhibition of pre-erythrocytic parasites (0-40%). Cross-strain blood-stage efficacy was observed in erythrocyte invasion assays using four different P. falciparum strains. The quantification of antigen-specific IgGs allowed the determination of specific IC50 values. The significant difference in antigen-specific IC50 requirements, the direct correlation between antigen-specific IgG and the relative quantitative representation of antigens within the cocktail, provide valuable implementations for future multi-stage, multi-component vaccine designs. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Vaccines for preventing malaria (blood-stage).

    PubMed

    Graves, P; Gelband, H

    2006-10-18

    A malaria vaccine is needed because of the heavy burden of mortality and morbidity due to this disease. This review describes the results of trials of blood (asexual)-stage vaccines. Several are under development, but only one (MSP/RESA, also known as Combination B) has been tested in randomized controlled trials. To assess the effect of blood-stage malaria vaccines in preventing infection, disease, and death. In March 2006, we searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (The Cochrane Library 2006, Issue 1), MEDLINE, EMBASE, LILACS, and the Science Citation Index. We also searched conference proceedings and reference lists of articles, and contacted organizations and researchers in the field. Randomized controlled trials comparing blood-stage vaccines (other than SPf66) against P. falciparum, P. vivax, P. malariae, or P. ovale with placebo, control vaccine, or routine antimalarial control measures in people of any age receiving a challenge malaria infection. Both authors independently assessed trial quality and extracted data. Results for dichotomous data were expressed as relative risks (RR) with 95% confidence intervals (CI). Five trials of MSP/RESA vaccine with 217 participants were included; all five reported on safety, and two on efficacy. No severe or systemic adverse effects were reported at doses of 13 to 15 microg of each antigen (39 to 45 microg total). One small efficacy trial with 17 non-immune participants with blood-stage parasites showed no reduction or delay in parasite growth rates after artificial challenge. In the second efficacy trial in 120 children aged five to nine years in Papua New Guinea, episodes of clinical malaria were not reduced, but MSP/RESA significantly reduced parasite density only in children who had not been pretreated with an antimalarial drug (sulfadoxine-pyrimethamine). Infections with the 3D7 parasite subtype of MSP2 (the variant included in the vaccine) were reduced (RR 0.38, 95% CI 0.26 to

  6. Overcoming Antigenic Diversity by Enhancing the Immunogenicity of Conserved Epitopes on the Malaria Vaccine Candidate Apical Membrane Antigen-1

    PubMed Central

    Dutta, Sheetij; Dlugosz, Lisa S.; Drew, Damien R.; Ge, Xiopeng; Ababacar, Diouf; Rovira, Yazmin I.; Moch, J. Kathleen; Shi, Meng; Long, Carole A.; Foley, Michael; Beeson, James G.; Anders, Robin F.; Miura, Kazutoyo; Haynes, J. David; Batchelor, Adrian H.

    2013-01-01

    Malaria vaccine candidate Apical Membrane Antigen-1 (AMA1) induces protection, but only against parasite strains that are closely related to the vaccine. Overcoming the AMA1 diversity problem will require an understanding of the structural basis of cross-strain invasion inhibition. A vaccine containing four diverse allelic proteins 3D7, FVO, HB3 and W2mef (AMA1 Quadvax or QV) elicited polyclonal rabbit antibodies that similarly inhibited the invasion of four vaccine and 22 non-vaccine strains of P. falciparum. Comparing polyclonal anti-QV with antibodies against a strain-specific, monovalent, 3D7 AMA1 vaccine revealed that QV induced higher levels of broadly inhibitory antibodies which were associated with increased conserved face and domain-3 responses and reduced domain-2 response. Inhibitory monoclonal antibodies (mAb) raised against the QV reacted with a novel cross-reactive epitope at the rim of the hydrophobic trough on domain-1; this epitope mapped to the conserved face of AMA1 and it encompassed the 1e-loop. MAbs binding to the 1e-loop region (1B10, 4E8 and 4E11) were ∼10-fold more potent than previously characterized AMA1-inhibitory mAbs and a mode of action of these 1e-loop mAbs was the inhibition of AMA1 binding to its ligand RON2. Unlike the epitope of a previously characterized 3D7-specific mAb, 1F9, the 1e-loop inhibitory epitope was partially conserved across strains. Another novel mAb, 1E10, which bound to domain-3, was broadly inhibitory and it blocked the proteolytic processing of AMA1. By itself mAb 1E10 was weakly inhibitory but it synergized with a previously characterized, strain-transcending mAb, 4G2, which binds close to the hydrophobic trough on the conserved face and inhibits RON2 binding to AMA1. Novel inhibition susceptible regions and epitopes, identified here, can form the basis for improving the antigenic breadth and inhibitory response of AMA1 vaccines. Vaccination with a few diverse antigenic proteins could provide universal

  7. Cryopreservation-related loss of antigen-specific IFNγ producing CD4+ T-cells can skew immunogenicity data in vaccine trials: Lessons from a malaria vaccine trial substudy.

    PubMed

    Ford, Tom; Wenden, Claire; Mbekeani, Alison; Dally, Len; Cox, Josephine H; Morin, Merribeth; Winstone, Nicola; Hill, Adrian V S; Gilmour, Jill; Ewer, Katie J

    2017-04-04

    Ex vivo functional immunoassays such as ELISpot and intracellular cytokine staining (ICS) by flow cytometry are crucial tools in vaccine development both in the identification of novel immunogenic targets and in the immunological assessment of samples from clinical trials. Cryopreservation and subsequent thawing of PBMCs via validated processes has become a mainstay of clinical trials due to processing restrictions inherent in the disparate location and capacity of trial centres, and also in the need to standardize biological assays at central testing facilities. Logistical and financial requirement to batch process samples from multiple study timepoints are also key. We used ELISpot and ICS assays to assess antigen-specific immunogenicity in blood samples taken from subjects enrolled in a phase II malaria heterologous prime-boost vaccine trial and showed that the freeze thaw process can result in a 3-5-fold reduction of malaria antigen-specific IFNγ-producing CD3 + CD4 + effector populations from PBMC samples taken post vaccination. We have also demonstrated that peptide responsive CD8 + T cells are relatively unaffected, as well as CD4 + T cell populations that do not produce IFNγ. These findings contribute to a growing body of data that could be consolidated and synthesised as guidelines for clinical trials with the aim of increasing the efficiency of vaccine development pipelines. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Enhanced Vaccine-Induced CD8+ T Cell Responses to Malaria Antigen ME-TRAP by Fusion to MHC Class II Invariant Chain

    PubMed Central

    Spencer, Alexandra J.; Cottingham, Matthew G.; Jenks, Jennifer A.; Longley, Rhea J.; Capone, Stefania; Colloca, Stefano; Folgori, Antonella; Cortese, Riccardo; Nicosia, Alfredo; Bregu, Migena; Hill, Adrian V. S.

    2014-01-01

    The orthodox role of the invariant chain (CD74; Ii) is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA), higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required. PMID:24945248

  9. Designing a VAR2CSA-based vaccine to prevent placental malaria.

    PubMed

    Fried, Michal; Duffy, Patrick E

    2015-12-22

    Placental malaria (PM) due to Plasmodium falciparum is a major cause of maternal, fetal and infant mortality, but the mechanisms of pathogenesis and protective immunity are relatively well-understood for this condition, providing a path for vaccine development. P. falciparum parasites bind to chondroitin sulfate A (CSA) to sequester in the placenta, and women become resistant over 1-2 pregnancies as they acquire antibodies that block adhesion to CSA. The protein VAR2CSA, a member of the PfEMP1 variant surface antigen family, mediates parasite adhesion to CSA, and is the leading target for a vaccine to prevent PM. Obstacles to PM vaccine development include the large size (∼ 350 kD), high cysteine content, and sequence variation of VAR2CSA. A number of approaches have been taken to identify the combination of VAR2CSA domains and alleles that can induce broadly active antibodies that block adhesion of heterologous parasite isolates to CSA. This review summarizes these approaches, which have examined VAR2CSA fragments for binding activity, antigenicity with naturally acquired antibodies, and immunogenicity in animals for inducing anti-adhesion or surface-reactive antibodies. Two products are expected to enter human clinical studies in the near future based on N-terminal VAR2CSA fragments that have high binding affinity for CSA, and additional proteins preferentially expressed by placental parasites are also being examined for their potential contribution to a PM vaccine. Copyright © 2015. Published by Elsevier Ltd.

  10. Fya/Fyb antigen polymorphism in human erythrocyte Duffy antigen affects susceptibility to Plasmodium vivax malaria

    PubMed Central

    King, Christopher L.; Adams, John H.; Xianli, Jia; Grimberg, Brian T.; McHenry, Amy M.; Greenberg, Lior J.; Siddiqui, Asim; Howes, Rosalind E.; da Silva-Nunes, Monica; Ferreira, Marcelo U.; Zimmerman, Peter A.

    2011-01-01

    Plasmodium vivax (Pv) is a major cause of human malaria and is increasing in public health importance compared with falciparum malaria. Pv is unique among human malarias in that invasion of erythrocytes is almost solely dependent on the red cell's surface receptor, known as the Duffy blood-group antigen (Fy). Fy is an important minor blood-group antigen that has two immunologically distinct alleles, referred to as Fya or Fyb, resulting from a single-point mutation. This mutation occurs within the binding domain of the parasite's red cell invasion ligand. Whether this polymorphism affects susceptibility to clinical vivax malaria is unknown. Here we show that Fya, compared with Fyb, significantly diminishes binding of Pv Duffy binding protein (PvDBP) at the erythrocyte surface, and is associated with a reduced risk of clinical Pv in humans. Erythrocytes expressing Fya had 41–50% lower binding compared with Fyb cells and showed an increased ability of naturally occurring or artificially induced antibodies to block binding of PvDBP to their surface. Individuals with the Fya+b− phenotype demonstrated a 30–80% reduced risk of clinical vivax, but not falciparum malaria in a prospective cohort study in the Brazilian Amazon. The Fya+b− phenotype, predominant in Southeast Asian and many American populations, would confer a selective advantage against vivax malaria. Our results also suggest that efficacy of a PvDBP-based vaccine may differ among populations with different Fy phenotypes. PMID:22123959

  11. Development of malaria transmission-blocking vaccines: from concept to product.

    PubMed

    Wu, Yimin; Sinden, Robert E; Churcher, Thomas S; Tsuboi, Takafumi; Yusibov, Vidadi

    2015-06-01

    Despite decades of effort battling against malaria, the disease is still a major cause of morbidity and mortality. Transmission-blocking vaccines (TBVs) that target sexual stage parasite development could be an integral part of measures for malaria elimination. In the 1950s, Huff et al. first demonstrated the induction of transmission-blocking immunity in chickens by repeated immunizations with Plasmodium gallinaceum-infected red blood cells. Since then, significant progress has been made in identification of parasite antigens responsible for transmission-blocking activity. Recombinant technologies accelerated evaluation of these antigens as vaccine candidates, and it is possible to induce effective transmission-blocking immunity in humans both by natural infection and now by immunization with recombinant vaccines. This chapter reviews the efforts to produce TBVs, summarizes the current status and advances and discusses the remaining challenges and approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A prime-boost immunization regimen based on a simian adenovirus 36 vectored multi-stage malaria vaccine induces protective immunity in mice.

    PubMed

    Fonseca, Jairo A; McCaffery, Jessica N; Kashentseva, Elena; Singh, Balwan; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2017-05-31

    Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4 + T cell responses. Based on evidence that viral vectors increase CD8 + T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8 + T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8 + T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Reducing empiricism in malaria vaccine design.

    PubMed

    Moorthy, Vasee S; Kieny, Marie Paule

    2010-03-01

    Gains in the control of malaria and the promising progress of a malaria vaccine that is partly efficacious do not reduce the need for a high-efficacy vaccine in the longer term. Evidence supports the feasibility of developing a highly efficacious malaria vaccine. However, design of candidate malaria vaccines remains empirical and is necessarily based on many unproven assumptions because much of the knowledge needed to design vaccines and to predict efficacy is not available. Data to inform key questions of vaccine science might allow the design of vaccines to progress to a less empirical stage, for example through availability of assay results associated with vaccine efficacy. We discuss six strategic gaps in knowledge that contribute to empiricism in the design of vaccines. Comparative evaluation, assay and model standardisation, greater sharing of information, collaboration and coordination between groups, and rigorous evaluation of existing datasets are steps that can be taken to enable reductions in empiricism over time. 2010 Elsevier Ltd. All rights reserved.

  14. Toward the development of effective transmission-blocking vaccines for malaria.

    PubMed

    Nikolaeva, Daria; Draper, Simon J; Biswas, Sumi

    2015-05-01

    The continued global burden of malaria can in part be attributed to a complex lifecycle, with both human hosts and mosquito vectors serving as transmission reservoirs. In preclinical models of vaccine-induced immunity, antibodies to parasite sexual-stage antigens, ingested in the mosquito blood meal, can inhibit parasite survival in the insect midgut as judged by ex vivo functional studies such as the membrane feeding assay. In an era of renewed political momentum for malaria elimination and eradication campaigns, such observations have fueled support for the development and implementation of so-called transmission-blocking vaccines. While leading candidates are being evaluated using a variety of promising vaccine platforms, the field is also beginning to capitalize on global '-omics' data for the rational genome-based selection and unbiased characterization of parasite and mosquito proteins to expand the candidate list. This review covers the progress and prospects of these recent developments.

  15. Live attenuated pre-erythrocytic malaria vaccines.

    PubMed

    Keitany, Gladys J; Vignali, Marissa; Wang, Ruobing

    2014-01-01

    Although recent control measures have significantly reduced malaria cases and deaths in many endemic areas, an effective vaccine will be essential to eradicate this parasitic disease. Malaria vaccine strategies developed to date focus on different phases of the parasite's complex life cycle in the human host and mosquito vector, and include both subunit-based and whole-parasite vaccines. This review focuses on the 3 live-attenuated malaria vaccination strategies that have been tested in humans to date, and discusses their progress, challenges and the immune correlates of protection that have been identified.

  16. Surface antigens of Plasmodium falciparum gametocytes--a new class of transmission-blocking vaccine targets?

    PubMed

    Sutherland, Colin J

    2009-08-01

    The re-establishment of elimination and eradication on the malaria control agenda has led to calls for renewed effort in the development of parasite transmission-blocking interventions. Vaccines are ideally suited to this task, but progress towards an anti-gamete transmission-blocking vaccine, designed to act on parasites in blood-fed mosquitoes, has been slow. Recent work has confirmed that the surface of the gametocyte-infected erythrocyte presents antigens to the host immune system, and elicits specific humoral immune responses to these antigens, termed gametocyte surface antigens (GSAs). Likely candidate molecules, including antigens encoded by sub-telomeric multi-gene families, are discussed, and a hypothetical group of parasite molecules involved in spatial and temporal signal transduction in the human host is proposed, the tropins and circadins. The next steps for development of anti-gametocyte transmission-blocking vaccines for P. falciparum and the other human malaria species are considered.

  17. The utility of Plasmodium berghei as a rodent model for anti-merozoite malaria vaccine assessment

    PubMed Central

    Goodman, Anna L.; Forbes, Emily K.; Williams, Andrew R.; Douglas, Alexander D.; de Cassan, Simone C.; Bauza, Karolis; Biswas, Sumi; Dicks, Matthew D. J.; Llewellyn, David; Moore, Anne C.; Janse, Chris J.; Franke-Fayard, Blandine M.; Gilbert, Sarah C.; Hill, Adrian V. S.; Pleass, Richard J.; Draper, Simon J.

    2013-01-01

    Rodent malaria species Plasmodium yoelii and P. chabaudi have been widely used to validate vaccine approaches targeting blood-stage merozoite antigens. However, increasing data suggest the P. berghei rodent malaria may be able to circumvent vaccine-induced anti-merozoite responses. Here we confirm a failure to protect against P. berghei, despite successful antibody induction against leading merozoite antigens using protein-in-adjuvant or viral vectored vaccine delivery. No subunit vaccine approach showed efficacy in mice following immunization and challenge with the wild-type P. berghei strains ANKA or NK65, or against a chimeric parasite line encoding a merozoite antigen from P. falciparum. Protection was not improved in knockout mice lacking the inhibitory Fc receptor CD32b, nor against a Δsmac P. berghei parasite line with a non-sequestering phenotype. An improved understanding of the mechanisms responsible for protection, or failure of protection, against P. berghei merozoites could guide the development of an efficacious vaccine against P. falciparum. PMID:23609325

  18. Progress with new malaria vaccines.

    PubMed Central

    Webster, Daniel; Hill, Adrian V. S.

    2003-01-01

    Malaria is a parasitic disease of major global health significance that causes an estimated 2.7 million deaths each year. In this review we describe the burden of malaria and discuss the complicated life cycle of Plasmodium falciparum, the parasite responsible for most of the deaths from the disease, before reviewing the evidence that suggests that a malaria vaccine is an attainable goal. Significant advances have recently been made in vaccine science, and we review new vaccine technologies and the evaluation of candidate malaria vaccines in human and animal studies worldwide. Finally, we discuss the prospects for a malaria vaccine and the need for iterative vaccine development as well as potential hurdles to be overcome. PMID:14997243

  19. Development and Assessment of Transgenic Rodent Parasites for the Preclinical Evaluation of Malaria Vaccines.

    PubMed

    Espinosa, Diego A; Radtke, Andrea J; Zavala, Fidel

    2016-01-01

    Rodent transgenic parasites are useful tools for the preclinical evaluation of malaria vaccines. Over the last decade, several studies have reported the development of transgenic rodent parasites expressing P. falciparum antigens for the assessment of vaccine-induced immune responses, which traditionally have been limited to in vitro assays. However, the genetic manipulation of rodent Plasmodium species can have detrimental effects on the parasite's infectivity and development. In this chapter, we present a few guidelines for designing transfection plasmids, which should improve transfection efficiency and facilitate the generation of functional transgenic parasite strains. In addition, we provide a transfection protocol for the development of transgenic P. berghei parasites as well as practical methods to assess the viability and infectivity of these newly generated strains throughout different stages of their life cycle. These techniques should allow researchers to develop novel rodent malaria parasites expressing antigens from human malaria species and to determine whether these transgenic strains are fully infectious and thus represent stringent platforms for the in vivo evaluation of malaria vaccine candidates.

  20. Fy(a)/Fy(b) antigen polymorphism in human erythrocyte Duffy antigen affects susceptibility to Plasmodium vivax malaria.

    PubMed

    King, Christopher L; Adams, John H; Xianli, Jia; Grimberg, Brian T; McHenry, Amy M; Greenberg, Lior J; Siddiqui, Asim; Howes, Rosalind E; da Silva-Nunes, Monica; Ferreira, Marcelo U; Zimmerman, Peter A

    2011-12-13

    Plasmodium vivax (Pv) is a major cause of human malaria and is increasing in public health importance compared with falciparum malaria. Pv is unique among human malarias in that invasion of erythrocytes is almost solely dependent on the red cell's surface receptor, known as the Duffy blood-group antigen (Fy). Fy is an important minor blood-group antigen that has two immunologically distinct alleles, referred to as Fy(a) or Fy(b), resulting from a single-point mutation. This mutation occurs within the binding domain of the parasite's red cell invasion ligand. Whether this polymorphism affects susceptibility to clinical vivax malaria is unknown. Here we show that Fy(a), compared with Fy(b), significantly diminishes binding of Pv Duffy binding protein (PvDBP) at the erythrocyte surface, and is associated with a reduced risk of clinical Pv in humans. Erythrocytes expressing Fy(a) had 41-50% lower binding compared with Fy(b) cells and showed an increased ability of naturally occurring or artificially induced antibodies to block binding of PvDBP to their surface. Individuals with the Fy(a+b-) phenotype demonstrated a 30-80% reduced risk of clinical vivax, but not falciparum malaria in a prospective cohort study in the Brazilian Amazon. The Fy(a+b-) phenotype, predominant in Southeast Asian and many American populations, would confer a selective advantage against vivax malaria. Our results also suggest that efficacy of a PvDBP-based vaccine may differ among populations with different Fy phenotypes.

  1. Effects of sex, parity, and sequence variation on seroreactivity to candidate pregnancy malaria vaccine antigens.

    PubMed

    Oleinikov, Andrew V; Rossnagle, Eddie; Francis, Susan; Mutabingwa, Theonest K; Fried, Michal; Duffy, Patrick E

    2007-07-01

    Plasmodium falciparum-infected erythrocytes adhere to chondroitin sulfate A (CSA) to sequester in the human placenta, and pregnancy malaria (PM) is associated with the development of disease in and the death of both mother and child. A PM vaccine appears to be feasible, because women become protected as they develop antibodies against placental infected erythrocytes (IEs). Two IE surface molecules, VAR1CSA and VAR2CSA, bind CSA in vitro and are potential vaccine candidates. We expressed all domains of VAR1CSA and VAR2CSA as mammalian cell surface proteins, using a novel approach that allows rapid purification, immobilization, and quantification of target antigen. For serum samples from East Africa, we measured reactivity to all domains, and we examined the effects of host sex and parity, as well as the effects of parasite antigenic variation. Serum samples obtained from multigravid women had a higher reactivity to all VAR2CSA domains than did those obtained from primigravid women or from men. Conversely, serum samples obtained from men had consistently higher reactivity to VAR1CSA domains than did those obtained from gravid women. Seroreactivity was strongly influenced by antigenic variation of VAR2CSA Duffy binding-like domains. Women acquire antibodies to VAR2CSA over successive pregnancies, but they lose reactivity to VAR1CSA. Serum reactivity to VAR2CSA is variant specific, and future studies should examine the degree to which functional antibodies, such as binding-inhibition antibodies, are variant specific.

  2. [Perspectives and challenges of malaria vaccine. Why we must do more].

    PubMed

    Leroy, Odile

    2007-10-01

    During the last 10 years the development of a malaria vaccine has attracted an increasing amount of attention both from the political sector and from financial investors. This has led to a number of major scientific and technological advances, but much remains to be done. Numerous potential target antigens are under investigation, and most research is focusing on a subunit vaccine. Irradiated attenuated sporozoites are also a promising approach, even if major technological and regulatory challenges remain to be overcome. Barriers to vaccine development include an inadequate understanding of certain aspects of host-parasite biology and protective immune responses. Other challenges are to increase the antigenicity of some antigens, and to optimize the quality of the immune response. However, research funding remains the main obstacle.

  3. Optimal control for Malaria disease through vaccination

    NASA Astrophysics Data System (ADS)

    Munzir, Said; Nasir, Muhammad; Ramli, Marwan

    2018-01-01

    Malaria is a disease caused by an amoeba (single-celled animal) type of plasmodium where anopheles mosquito serves as the carrier. This study examines the optimal control problem of malaria disease spread based on Aron and May (1982) SIR type models and seeks the optimal solution by minimizing the prevention of the spreading of malaria by vaccine. The aim is to investigate optimal control strategies on preventing the spread of malaria by vaccination. The problem in this research is solved using analytical approach. The analytical method uses the Pontryagin Minimum Principle with the symbolic help of MATLAB software to obtain optimal control result and to analyse the spread of malaria with vaccination control.

  4. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.

    PubMed

    Dauvillée, David; Delhaye, Stéphane; Gruyer, Sébastien; Slomianny, Christian; Moretz, Samuel E; d'Hulst, Christophe; Long, Carole A; Ball, Steven G; Tomavo, Stanislas

    2010-12-15

    Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS), the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii. We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS) are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species. This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that efficient production

  5. Immune response to the hepatitis B antigen in the RTS,S/AS01 malaria vaccine, and co-administration with pneumococcal conjugate and rotavirus vaccines in African children: A randomized controlled trial.

    PubMed

    Valéa, Innocent; Adjei, Samuel; Usuf, Effua; Traore, Ousmane; Ansong, Daniel; Tinto, Halidou; Owusu Boateng, Harry; Leach, Amanda; Mwinessobaonfou Some, Athanase; Buabeng, Patrick; Vekemans, Johan; Nana, Louis Arnaud; Kotey, Amos; Vandoolaeghe, Pascale; Ouedraogo, Florence; Sambian, David; Lievens, Marc; Tahita, Marc Christian; Rettig, Theresa; Jongert, Erik; Lompo, Palpouguini; Idriss, Ali; Borys, Dorota; Ouedraogo, Sayouba; Prempeh, Frank; Habib, Md Ahsan; Schuerman, Lode; Sorgho, Hermann; Agbenyega, Tsiri

    2018-04-09

    The RTS,S/AS01 malaria vaccine (Mosquirix) reduces the incidence of Plasmodium falciparum malaria and is intended for routine administration to infants in Sub-Saharan Africa. We evaluated the immunogenicity and safety of 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV; Synflorix) and human rotavirus vaccine (HRV; Rotarix) when co-administered with RTS,S/AS01 ( www.clinicaltrials.gov NCT01345240) in African infants. 705 healthy infants aged 8-12 weeks were randomized to receive three doses of either RTS,S/AS01 or licensed hepatitis B (HBV; Engerix B) vaccine (control) co-administered with diphtheria-tetanus-acellular pertussis-Haemophilus influenzae type-b-conjugate vaccine (DTaP/Hib) and trivalent oral poliovirus vaccine at 8-12-16 weeks of age, because DTaP/Hib was not indicated before 8 weeks of age. The vaccination schedule can still be considered broadly applicable because it was within the age range recommended for EPI vaccination. PHiD-CV or HRV were either administered together with the study vaccines, or after a 2-week interval. Booster doses of PHiD-CV and DTaP/Hib were administered at age 18 months. Non-inferiority of anti-HBV surface antigen antibody seroprotection rates following co-administration with RTS,S/AS01 was demonstrated compared to the control group (primary objective). Pre-specified non-inferiority criteria were reached for PHiD-CV (for 9/10 vaccine serotypes), HRV, and aP antigens co-administered with RTS,S/AS01 as compared to HBV co-administration (secondary objectives). RTS,S/AS01 induced a response to circumsporozoite protein in all groups. Pain and low grade fever were reported more frequently in the PHiD-CV group co-administered with RTS,S/AS01 than PHiD-CV co-administered with HBV. No serious adverse events were considered to be vaccine-related. RTS,S/AS01 co-administered with pediatric vaccines had an acceptable safety profile. Immune responses to RTS,S/AS01 and to co-administered PHi

  6. Differing rates of antibody acquisition to merozoite antigens in malaria: implications for immunity and surveillance.

    PubMed

    McCallum, Fiona J; Persson, Kristina E M; Fowkes, Freya J I; Reiling, Linda; Mugyenyi, Cleopatra K; Richards, Jack S; Simpson, Julie A; Williams, Thomas N; Gilson, Paul R; Hodder, Anthony N; Sanders, Paul R; Anders, Robin F; Narum, David L; Chitnis, Chetan; Crabb, Brendan S; Marsh, Kevin; Beeson, James G

    2017-04-01

    Antibodies play a key role in acquired human immunity to Plasmodium falciparum (Pf) malaria and target merozoites to reduce or prevent blood-stage replication and the development of disease. Merozoites present a complex array of antigens to the immune system, and currently, there is only a partial understanding of the targets of protective antibodies and how responses to different antigens are acquired and boosted. We hypothesized that there would be differences in the rate of acquisition of antibodies to different antigens and how well they are boosted by infection, which impacts the acquisition of immunity. We examined responses to a range of merozoite antigens in 2 different cohorts of children and adults with different age structures and levels of malaria exposure. Overall, antibodies were associated with age, exposure, and active infection, and the repertoire of responses increased with age and active infection. However, rates of antibody acquisition varied between antigens and different regions within an antigen following exposure to malaria, supporting our hypothesis. Antigen-specific responses could be broadly classified into early response types in which antibodies were acquired early in childhood exposure and late response types that appear to require substantially more exposure for the development of substantial levels. We identified antigen-specific responses that were effectively boosted after recent infection, whereas other responses were not. These findings advance our understanding of the acquisition of human immunity to malaria and are relevant to the development of malaria vaccines targeting merozoite antigens and the selection of antigens for use in malaria surveillance. © Society for Leukocyte Biology.

  7. Challenges of assessing the clinical efficacy of asexual blood-stage Plasmodium falciparum malaria vaccines.

    PubMed

    Sheehy, Susanne H; Douglas, Alexander D; Draper, Simon J

    2013-09-01

    In the absence of any highly effective vaccine candidate against Plasmodium falciparum malaria, it remains imperative for the field to pursue all avenues that may lead to the successful development of such a formulation. The development of a subunit vaccine targeting the asexual blood-stage of Plasmodium falciparum malaria infection has proven particularly challenging with only limited success to date in clinical trials. However, only a fraction of potential blood-stage vaccine antigens have been evaluated as targets, and a number of new promising candidate antigen formulations and delivery platforms are approaching clinical development. It is therefore essential that reliable and sensitive methods of detecting, or ruling out, even modest efficacy of blood-stage vaccines in small clinical trials be established. In this article we evaluate the challenges facing blood-stage vaccine developers, assess the appropriateness and limitations of various in vivo approaches for efficacy assessment and suggest future directions for the field.

  8. Polymorphism in liver-stage malaria vaccine candidate proteins: immune evasion and implications for vaccine design.

    PubMed

    Flanagan, Katie L; Wilson, Kirsty L; Plebanski, Magdalena

    2016-01-01

    The pre-erythrocytic stage of infection by malaria parasites represents a key target for vaccines that aim to eradicate malaria. Two important broad immune evasion strategies that can interfere with vaccine efficacy include the induction of dendritic cell (DC) dysfunction and regulatory T cells (Tregs) by blood-stage malaria parasites, leading to inefficient priming of T cells targeting liver-stage infections. The parasite also uses 'surgical strike' strategies, whereby polymorphism in pre-erythrocytic antigens can interfere with host immunity. Specifically, we review how even single amino acid changes in T cell epitopes can lead to loss of binding to major histocompatibility complex (MHC), lack of cross-reactivity, or antagonism and immune interference, where simultaneous or sequential stimulation with related variants of the same T cell epitope can cause T cell anergy or the conversion of effector to immunosuppressive T cell phenotypes.

  9. Naturally acquired immune responses to malaria vaccine candidate antigens MSP3 and GLURP in Guahibo and Piaroa indigenous communities of the Venezuelan Amazon.

    PubMed

    Baumann, Andreas; Magris, Magda M; Urbaez, Marie-Luz; Vivas-Martinez, Sarai; Durán, Rommy; Nieves, Tahidid; Esen, Meral; Mordmüller, Benjamin G; Theisen, Michael; Avilan, Luisana; Metzger, Wolfram G

    2012-02-15

    Malaria transmission in most of Latin America can be considered as controlled. In such a scenario, parameters of baseline immunity to malaria antigens are of specific interest with respect to future malaria eradication efforts. A cross-sectional study was carried out in two indigenous population groups in Amazonas/Venezuela. Data from the regional malaria documentation system were extracted and participants from the ethnic groups of the Guahibo (n = 180) and Piaroa (n = 295) were investigated for the presence of Plasmodium parasites and naturally acquired antibodies to Plasmodium falciparum antigens in serum. The GMZ2 vaccine candidate proteins MSP3 and GLURP were chosen as serological markers. The incidence of P. falciparum in both communities was found to be less than 2%, and none of the participants harboured P. falciparum at the time of the cross-sectional. Nearly a quarter of the participants (111/475; 23,4%) had positive antibody titres to at least one of the antigens. 53/475 participants (11.2%) were positive for MSP3, and 93/475 participants (19.6%) were positive for GLURP. High positive responses were detected in 36/475 participants (7.6%) and 61/475 participants (12.8%) for MSP3 and GLURP, respectively. Guahibo participants had significantly higher antibody titres than Piaroa participants. Considering the low incidence of P. falciparum, submicroscopical infections may explain the comparatively high anti-P. falciparum antibody concentrations.

  10. Tricomponent Immunopotentiating System as a Novel Molecular Design Strategy for Malaria Vaccine Development ▿

    PubMed Central

    Miyata, Takeshi; Harakuni, Tetsuya; Tsuboi, Takafumi; Sattabongkot, Jetsumon; Ikehara, Ayumu; Tachibana, Mayumi; Torii, Motomi; Matsuzaki, Goro; Arakawa, Takeshi

    2011-01-01

    The creation of subunit vaccines to prevent malaria infection has been hampered by the intrinsically weak immunogenicity of the recombinant antigens. We have developed a novel strategy to increase immune responses by creating genetic fusion proteins to target specific antigen-presenting cells (APCs). The fusion complex was composed of three physically linked molecular entities: (i) a vaccine antigen, (ii) a multimeric α-helical coiled-coil core, and (iii) an APC-targeting ligand linked to the core via a flexible linker. The vaccine efficacy of the tricomponent complex was evaluated using an ookinete surface protein of Plasmodium vivax, Pvs25, and merozoite surface protein-1 of Plasmodium yoelii. Immunization of mice with the tricomponent complex induced a robust antibody response and conferred substantial levels of P. vivax transmission blockade as evaluated by a membrane feed assay, as well as protection from lethal P. yoelii infection. The observed effect was strongly dependent on the presence of all three components physically integrated as a fusion complex. This system, designated the tricomponent immunopotentiating system (TIPS), onto which any recombinant protein antigens or nonproteinaceous substances could be loaded, may be a promising strategy for devising subunit vaccines or adjuvants against various infectious diseases, including malaria. PMID:21807905

  11. Strain-specific Plasmodium falciparum growth inhibition among Malian children immunized with a blood-stage malaria vaccine.

    PubMed

    Laurens, Matthew B; Kouriba, Bourema; Bergmann-Leitner, Elke; Angov, Evelina; Coulibaly, Drissa; Diarra, Issa; Daou, Modibo; Niangaly, Amadou; Blackwelder, William C; Wu, Yukun; Cohen, Joe; Ballou, W Ripley; Vekemans, Johan; Lanar, David E; Dutta, Sheetij; Diggs, Carter; Soisson, Lorraine; Heppner, D Gray; Doumbo, Ogobara K; Plowe, Christopher V; Thera, Mahamadou A

    2017-01-01

    The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1) and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 and FVO strains in vitro using high-throughput growth inhibition assay (GIA) testing. Sera from 400 children randomized to receive either malaria vaccine or a control rabies vaccine were assessed at baseline and over two annual malaria transmission seasons after immunization. Baseline GIA against vaccine strain 3D7 and FVO strain was similar in both groups, but more children in the malaria vaccine group than in the control group had 3D7 and FVO GIA activity ≥15% 30 days after the last vaccination (day 90) (49% vs. 16%, p<0.0001; and 71.8% vs. 60.4%, p = 0.02). From baseline to day 90, 3D7 GIA in the vaccine group was 7.4 times the mean increase in the control group (p<0.0001). In AMA1 vaccinees, 3D7 GIA activity subsequently returned to baseline one year after vaccination (day 364) and did not correlate with efficacy in the extended efficacy time period to day 730. In Cox proportional hazards regression models with time-varying covariates, there was a slight suggestion of an association between 3D7 GIA activity and increased risk of clinical malaria between day 90 and day 240. We conclude that vaccination with this AMA1-based malaria vaccine increased inhibition of parasite growth, but this increase was not associated with allele-specific efficacy in the first malaria season. These results provide a framework for testing functional immune correlates of protection against clinical malaria in field trials, and will help to guide similar analyses for next-generation malaria vaccines. Clinical trials registry: This clinical trial was registered on clinicaltrials.gov, registry

  12. Strain-specific Plasmodium falciparum growth inhibition among Malian children immunized with a blood-stage malaria vaccine

    PubMed Central

    Kouriba, Bourema; Bergmann-Leitner, Elke; Angov, Evelina; Coulibaly, Drissa; Diarra, Issa; Daou, Modibo; Niangaly, Amadou; Blackwelder, William C.; Wu, Yukun; Cohen, Joe; Ballou, W. Ripley; Vekemans, Johan; Lanar, David E.; Dutta, Sheetij; Diggs, Carter; Soisson, Lorraine; Heppner, D. Gray; Doumbo, Ogobara K.; Plowe, Christopher V.; Thera, Mahamadou A.

    2017-01-01

    The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1) and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 and FVO strains in vitro using high-throughput growth inhibition assay (GIA) testing. Sera from 400 children randomized to receive either malaria vaccine or a control rabies vaccine were assessed at baseline and over two annual malaria transmission seasons after immunization. Baseline GIA against vaccine strain 3D7 and FVO strain was similar in both groups, but more children in the malaria vaccine group than in the control group had 3D7 and FVO GIA activity ≥15% 30 days after the last vaccination (day 90) (49% vs. 16%, p<0.0001; and 71.8% vs. 60.4%, p = 0.02). From baseline to day 90, 3D7 GIA in the vaccine group was 7.4 times the mean increase in the control group (p<0.0001). In AMA1 vaccinees, 3D7 GIA activity subsequently returned to baseline one year after vaccination (day 364) and did not correlate with efficacy in the extended efficacy time period to day 730. In Cox proportional hazards regression models with time-varying covariates, there was a slight suggestion of an association between 3D7 GIA activity and increased risk of clinical malaria between day 90 and day 240. We conclude that vaccination with this AMA1-based malaria vaccine increased inhibition of parasite growth, but this increase was not associated with allele-specific efficacy in the first malaria season. These results provide a framework for testing functional immune correlates of protection against clinical malaria in field trials, and will help to guide similar analyses for next-generation malaria vaccines. Clinical trials registry: This clinical trial was registered on clinicaltrials.gov, registry

  13. Demonstration of the Blood-Stage Plasmodium falciparum Controlled Human Malaria Infection Model to Assess Efficacy of the P. falciparum Apical Membrane Antigen 1 Vaccine, FMP2.1/AS01

    PubMed Central

    Payne, Ruth O.; Milne, Kathryn H.; Elias, Sean C.; Edwards, Nick J.; Douglas, Alexander D.; Brown, Rebecca E.; Silk, Sarah E.; Biswas, Sumi; Miura, Kazutoyo; Roberts, Rachel; Rampling, Thomas W.; Venkatraman, Navin; Hodgson, Susanne H.; Labbé, Geneviève M.; Halstead, Fenella D.; Poulton, Ian D.; Nugent, Fay L.; de Graaf, Hans; Sukhtankar, Priya; Williams, Nicola C.; Ockenhouse, Christian F.; Kathcart, April K.; Qabar, Aziz N.; Waters, Norman C.; Soisson, Lorraine A.; Birkett, Ashley J.; Cooke, Graham S.; Faust, Saul N.; Woods, Colleen; Ivinson, Karen; McCarthy, James S.; Diggs, Carter L.; Vekemans, Johan; Long, Carole A.; Hill, Adrian V. S.; Lawrie, Alison M.; Dutta, Sheetij; Draper, Simon J.

    2016-01-01

    Background. Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine candidates in small proof-of-concept phase 2a clinical trials. Efficacy testing of blood-stage malaria parasite vaccines, however, has generally relied on larger-scale phase 2b field trials in malaria-endemic populations. We report the use of a blood-stage P. falciparum CHMI model to assess blood-stage vaccine candidates, using their impact on the parasite multiplication rate (PMR) as the primary efficacy end point. Methods. Fifteen healthy United Kingdom adult volunteers were vaccinated with FMP2.1, a protein vaccine that is based on the 3D7 clone sequence of apical membrane antigen 1 (AMA1) and formulated in Adjuvant System 01 (AS01). Twelve vaccinees and 15 infectivity controls subsequently underwent blood-stage CHMI. Parasitemia was monitored by quantitative real-time polymerase chain reaction (PCR) analysis, and PMR was modeled from these data. Results. FMP2.1/AS01 elicited anti-AMA1 T-cell and serum antibody responses. Analysis of purified immunoglobulin G showed functional growth inhibitory activity against P. falciparum in vitro. There were no vaccine- or CHMI-related safety concerns. All volunteers developed blood-stage parasitemia, with no impact of the vaccine on PMR. Conclusions. FMP2.1/AS01 demonstrated no efficacy after blood-stage CHMI. However, the model induced highly reproducible infection in all volunteers and will accelerate proof-of-concept testing of future blood-stage vaccine candidates. Clinical Trials Registration. NCT02044198. PMID:26908756

  14. Antigenicity and Immunogenicity in HIV-1 Antibody-Based Vaccine Design

    PubMed Central

    Kong, Leopold; Sattentau, Quentin J

    2012-01-01

    Neutralizing antibodies can protect from infection by immunodeficiency viruses. However, the induction by active vaccination of antibodies that can potently neutralize a broad range of circulating virus strains is a goal not yet achieved, despite more than 2 decades of research. Here we review progress made in the field, from early empirical studies to today’s rational structure-based vaccine antigen design. We discuss the existence of broadly neutralizing antibodies, their implications for epitope discovery and recent progress made in antigen design. Finally, we consider the relationship between antigenicity and immunogenicity for B cell recognition and antibody production, a major hurdle for rational vaccine design to overcome. PMID:23227445

  15. A Research Agenda for Malaria Eradication: Vaccines

    PubMed Central

    2011-01-01

    Vaccines could be a crucial component of efforts to eradicate malaria. Current attempts to develop malaria vaccines are primarily focused on Plasmodium falciparum and are directed towards reducing morbidity and mortality. Continued support for these efforts is essential, but if malaria vaccines are to be used as part of a repertoire of tools for elimination or eradication of malaria, they will need to have an impact on malaria transmission. We introduce the concept of “vaccines that interrupt malaria transmission” (VIMT), which includes not only “classical” transmission-blocking vaccines that target the sexual and mosquito stages but also pre-erythrocytic and asexual stage vaccines that have an effect on transmission. VIMT may also include vaccines that target the vector to disrupt parasite development in the mosquito. Importantly, if eradication is to be achieved, malaria vaccine development efforts will need to target other malaria parasite species, especially Plasmodium vivax, where novel therapeutic vaccines against hypnozoites or preventive vaccines with effect against multiple stages could have enormous impact. A target product profile (TPP) for VIMT is proposed and a research agenda to address current knowledge gaps and develop tools necessary for design and development of VIMT is presented. PMID:21311586

  16. A research agenda for malaria eradication: vaccines.

    PubMed

    2011-01-25

    Vaccines could be a crucial component of efforts to eradicate malaria. Current attempts to develop malaria vaccines are primarily focused on Plasmodium falciparum and are directed towards reducing morbidity and mortality. Continued support for these efforts is essential, but if malaria vaccines are to be used as part of a repertoire of tools for elimination or eradication of malaria, they will need to have an impact on malaria transmission. We introduce the concept of "vaccines that interrupt malaria transmission" (VIMT), which includes not only "classical" transmission-blocking vaccines that target the sexual and mosquito stages but also pre-erythrocytic and asexual stage vaccines that have an effect on transmission. VIMT may also include vaccines that target the vector to disrupt parasite development in the mosquito. Importantly, if eradication is to be achieved, malaria vaccine development efforts will need to target other malaria parasite species, especially Plasmodium vivax, where novel therapeutic vaccines against hypnozoites or preventive vaccines with effect against multiple stages could have enormous impact. A target product profile (TPP) for VIMT is proposed and a research agenda to address current knowledge gaps and develop tools necessary for design and development of VIMT is presented.

  17. Steady progress toward a malaria vaccine.

    PubMed

    Lyke, Kirsten E

    2017-10-01

    Great progress has been made in reducing malaria morbidity and mortality, yet the parasite continues to cause a startling 200 million infections and 500 000 deaths annually. Malaria vaccine development is pushing new boundaries by steady advancement toward a licensed product. Despite 50 years of research, the complexity of Plasmoidum falciparum confounds all attempts to eradicate the organism. This very complexity has pushed the boundaries of vaccine development to new heights, yet it remains to be seen if an affordable vaccine can provide durable and high-level protection. Novel vaccines such as RTS,S/AS01E are on the edge of licensure, but old techniques have resurged with the ability to deliver vialed, whole organism vaccines. Novel adjuvants, multistage/multiantigen approaches and transmission blocking vaccines all contribute to a multipronged battle plan to conquer malaria. Vaccines are the most cost-effective tools to control infectious diseases, yet the complexity of malaria has frustrated all attempts to develop an effective product. This review concentrates on recent advances in malaria vaccine development that lend hope that a vaccine can be produced and malaria eradicated.

  18. Advances and challenges in malaria vaccine development.

    PubMed

    Crompton, Peter D; Pierce, Susan K; Miller, Louis H

    2010-12-01

    Malaria caused by Plasmodium falciparum remains a major public health threat, especially among children and pregnant women in Africa. An effective malaria vaccine would be a valuable tool to reduce the disease burden and could contribute to elimination of malaria in some regions of the world. Current malaria vaccine candidates are directed against human and mosquito stages of the parasite life cycle, but thus far, relatively few proteins have been studied for potential vaccine development. The most advanced vaccine candidate, RTS,S, conferred partial protection against malaria in phase II clinical trials and is currently being evaluated in a phase III trial in Africa. New vaccine targets need to be identified to improve the chances of developing a highly effective malaria vaccine. A better understanding of the mechanisms of naturally acquired immunity to malaria may lead to insights for vaccine development.

  19. Malaria vaccine R&D in the Decade of Vaccines: breakthroughs, challenges and opportunities.

    PubMed

    Birkett, Ashley J; Moorthy, Vasee S; Loucq, Christian; Chitnis, Chetan E; Kaslow, David C

    2013-04-18

    While recent progress has been made in reducing malaria mortality with other interventions, vaccines are still urgently needed to further reduce the incidence of clinical disease, including during pregnancy, and to provide "herd protection" by blocking parasite transmission. The most clinically advanced candidate, RTS,S, is presently undergoing Phase 3 evaluation in young African children across 13 clinical sites in eight African countries. In the 12-month period following vaccination, RTS,S conferred approximately 50% protection from clinical Plasmodium falciparum disease in children aged 5-17 months, and approximately 30% protection in children aged 6-12 weeks when administered in conjunction with Expanded Program for Immunization (EPI) vaccines. The development of more highly efficacious vaccines to prevent clinical disease caused by both P. falciparum and Plasmodium vivax, as well as vaccines to support elimination efforts by inducing immunity that blocks malaria parasite transmission, are priorities. Some key barriers to malaria vaccine development include: a paucity of well-characterized target immunogens and an absence of clear correlates of protection to enable vaccine development targeting all stages of the P. falciparum and P. vivax lifecycles; a limited number of safe and effective delivery systems, including adjuvants, that induce potent, long-lived protective immunity, be it by antibody, CD4+, and/or CD8+ T cell responses; and, for vaccines designed to provide "herd protection" by targeting sexual stage and/or mosquito antigens, the lack of a clear clinical and regulatory pathway to licensure using non-traditional endpoints. Recommendations to overcome these, and other key challenges, are suggested in this document. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Vaccines for Malaria: How Close Are We?

    PubMed Central

    Thera, Mahamadou A.; Plowe, Christopher V.

    2012-01-01

    Vaccines are the most powerful public health tools mankind has created, but malaria parasites are bigger, more complicated, and wilier than the viruses and bacteria that have been conquered or controlled with vaccines. Despite decades of research toward a vaccine for malaria, this goal has remained elusive. Nevertheless, recent advances justify optimism that a licensed malaria vaccine is within reach. A subunit recombinant protein vaccine that affords in the neighborhood of 50% protective efficacy against clinical malaria is in the late stages of clinical evaluation in Africa. Incremental improvements on this successful vaccine are possible and worth pursuing, but the best hope for a highly efficacious malaria vaccine that would improve prospects for malaria eradication may lie with the use of attenuated whole parasites and powerful immune-boosting adjuvants. PMID:22077719

  1. Vaccines for malaria: how close are we?

    PubMed

    Thera, Mahamadou A; Plowe, Christopher V

    2012-01-01

    Vaccines are the most powerful public health tools mankind has created, but malaria parasites are bigger, more complicated, and wilier than the viruses and bacteria that have been conquered or controlled with vaccines. Despite decades of research toward a vaccine for malaria, this goal has remained elusive. Nevertheless, recent advances justify optimism that a licensed malaria vaccine is within reach. A subunit recombinant protein vaccine that affords in the neighborhood of 50% protective efficacy against clinical malaria is in the late stages of clinical evaluation in Africa. Incremental improvements on this successful vaccine are possible and worth pursuing, but the best hope for a highly efficacious malaria vaccine that would improve prospects for malaria eradication may lie with the use of attenuated whole parasites and powerful immune-boosting adjuvants.

  2. Sterile Protection against Plasmodium knowlesi in Rhesus Monkeys from a Malaria Vaccine: Comparison of Heterologous Prime Boost Strategies

    PubMed Central

    Jiang, George; Shi, Meng; Conteh, Solomon; Richie, Nancy; Banania, Glenna; Geneshan, Harini; Valencia, Anais; Singh, Priti; Aguiar, Joao; Limbach, Keith; Kamrud, Kurt I.; Rayner, Jonathan; Smith, Jonathan; Bruder, Joseph T.; King, C. Richter; Tsuboi, Takafumi; Takeo, Satoru; Endo, Yaeta; Doolan, Denise L.; Richie, Thomas L.; Weiss, Walter R.

    2009-01-01

    Using newer vaccine platforms which have been effective against malaria in rodent models, we tested five immunization regimens against Plasmodium knowlesi in rhesus monkeys. All vaccines included the same four P. knowlesi antigens: the pre-erythrocytic antigens CSP, SSP2, and erythrocytic antigens AMA1, MSP1. We used four vaccine platforms for prime or boost vaccinations: plasmids (DNA), alphavirus replicons (VRP), attenuated adenovirus serotype 5 (Ad), or attenuated poxvirus (Pox). These four platforms combined to produce five different prime/boost vaccine regimens: Pox alone, VRP/Pox, VRP/Ad, Ad/Pox, and DNA/Pox. Five rhesus monkeys were immunized with each regimen, and five Control monkeys received a mock vaccination. The time to complete vaccinations was 420 days. All monkeys were challenged twice with 100 P. knowlesi sporozoites given IV. The first challenge was given 12 days after the last vaccination, and the monkeys receiving the DNA/Pox vaccine were the best protected, with 3/5 monkeys sterilely protected and 1/5 monkeys that self-cured its parasitemia. There was no protection in monkeys that received Pox malaria vaccine alone without previous priming. The second sporozoite challenge was given 4 months after the first. All 4 monkeys that were protected in the first challenge developed malaria in the second challenge. DNA, VRP and Ad5 vaccines all primed monkeys for strong immune responses after the Pox boost. We discuss the high level but short duration of protection in this experiment and the possible benefits of the long interval between prime and boost. PMID:19668343

  3. Parasite Carbohydrate Vaccines.

    PubMed

    Jaurigue, Jonnel A; Seeberger, Peter H

    2017-01-01

    Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases-malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma , and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development.

  4. Parasite Carbohydrate Vaccines

    PubMed Central

    Jaurigue, Jonnel A.; Seeberger, Peter H.

    2017-01-01

    Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases—malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma, and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development. PMID:28660174

  5. Differential T-cell responses to a chimeric Plasmodium falciparum antigen; UB05-09, correlates with acquired immunity to malaria.

    PubMed

    Dinga, J N; Njimoh, D L; Kiawa, B; Djikeng, A; Nyasa, R B; Nkuo-Akenji, T; Pellé, R; Titanji, V P K

    2016-05-01

    The development of a sterilizing and cost-effective vaccine against malaria remains a major problem despite recent advances. In this study, it is demonstrated that two antigens of P. falciparum UB05, UB09 and their chimera UB05-09 can serve as protective immunity markers by eliciting higher T-cell responses in malaria semi-immune subjects (SIS) than in frequently sick subjects (FSS) and could be used to distinguish these two groups. UB05, UB09 and UB05-09 were cloned, expressed in E. coli, purified and used to stimulate PBMCs isolated from 63 subjects in a malaria endemic area, for IFN-γ production, which was measured by the ELISpot assay. The polymorphism of UB09 gene in the malaria infected population was also studied by PCR/sequencing of the gene in P. falciparum field isolates. All three antigens were preferentially recognized by PBMCs from SIS. IFN-γ production induced by these antigens correlated with the absence of fever and parasitaemia. UB09 was shown to be relatively well-conserved in nature. It is concluded that UB05, UB09 and the chimera UB05-09 posses T-cell epitopes that are associated with protection against malaria and could thus be used to distinguish SIS from FSS eventhough acute infection with malaria has been shown to reduce cytokine production in some studies. Further investigations of these antigens as potential diagnostic and/or vaccine candidates for malaria are indicated. © 2016 John Wiley & Sons Ltd.

  6. Demonstration of the Blood-Stage Plasmodium falciparum Controlled Human Malaria Infection Model to Assess Efficacy of the P. falciparum Apical Membrane Antigen 1 Vaccine, FMP2.1/AS01.

    PubMed

    Payne, Ruth O; Milne, Kathryn H; Elias, Sean C; Edwards, Nick J; Douglas, Alexander D; Brown, Rebecca E; Silk, Sarah E; Biswas, Sumi; Miura, Kazutoyo; Roberts, Rachel; Rampling, Thomas W; Venkatraman, Navin; Hodgson, Susanne H; Labbé, Geneviève M; Halstead, Fenella D; Poulton, Ian D; Nugent, Fay L; de Graaf, Hans; Sukhtankar, Priya; Williams, Nicola C; Ockenhouse, Christian F; Kathcart, April K; Qabar, Aziz N; Waters, Norman C; Soisson, Lorraine A; Birkett, Ashley J; Cooke, Graham S; Faust, Saul N; Woods, Colleen; Ivinson, Karen; McCarthy, James S; Diggs, Carter L; Vekemans, Johan; Long, Carole A; Hill, Adrian V S; Lawrie, Alison M; Dutta, Sheetij; Draper, Simon J

    2016-06-01

    Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine candidates in small proof-of-concept phase 2a clinical trials. Efficacy testing of blood-stage malaria parasite vaccines, however, has generally relied on larger-scale phase 2b field trials in malaria-endemic populations. We report the use of a blood-stage P. falciparum CHMI model to assess blood-stage vaccine candidates, using their impact on the parasite multiplication rate (PMR) as the primary efficacy end point. Fifteen healthy United Kingdom adult volunteers were vaccinated with FMP2.1, a protein vaccine that is based on the 3D7 clone sequence of apical membrane antigen 1 (AMA1) and formulated in Adjuvant System 01 (AS01). Twelve vaccinees and 15 infectivity controls subsequently underwent blood-stage CHMI. Parasitemia was monitored by quantitative real-time polymerase chain reaction (PCR) analysis, and PMR was modeled from these data. FMP2.1/AS01 elicited anti-AMA1 T-cell and serum antibody responses. Analysis of purified immunoglobulin G showed functional growth inhibitory activity against P. falciparum in vitro. There were no vaccine- or CHMI-related safety concerns. All volunteers developed blood-stage parasitemia, with no impact of the vaccine on PMR. FMP2.1/AS01 demonstrated no efficacy after blood-stage CHMI. However, the model induced highly reproducible infection in all volunteers and will accelerate proof-of-concept testing of future blood-stage vaccine candidates. NCT02044198. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  7. Immunogenicity and Protection Efficacy of Subunit-based Smallpox Vaccines Using Variola Major Antigens

    PubMed Central

    Sakhatskyy, Pavlo; Wang, Shixia; Zhang, Chuanyou; Chou, Te-Hui; Kishko, Michael; Lu, Shan

    2008-01-01

    The viral strain responsible for smallpox infection is variola major (VARV). As a result of the successful eradication of smallpox with the vaccinia virus (VACV), the general population is no longer required to receive a smallpox vaccine, and will have no protection against smallpox. This lack of immunity is a concern due to the potential for use of smallpox as a biological weapon. Considerable progress has been made in the development of subunit-based smallpox vaccines resulting from the identification of VACV protective antigens. It also offers the possibility of using antigens from VARV to formulate the next generation subunit-based smallpox vaccines. Here, we show that codon-optimized DNA vaccines expressing three VARV antigens (A30, B7 and F8) and their recombinant protein counterparts elicited high-titer, cross-reactive, VACV neutralizing antibody responses in mice. Vaccinated mice were protected from intraperitoneal and intranasal challenges with VACV. These results suggest the feasibility of a subunit smallpox vaccine based on the VARV antigen sequences to induce immunity against poxvirus infection. PMID:17950773

  8. Immunogenicity and protection efficacy of subunit-based smallpox vaccines using variola major antigens.

    PubMed

    Sakhatskyy, Pavlo; Wang, Shixia; Zhang, Chuanyou; Chou, Te-Hui; Kishko, Michael; Lu, Shan

    2008-02-05

    The viral strain responsible for smallpox infection is variola major (VARV). As a result of the successful eradication of smallpox with the vaccinia virus (VACV), the general population is no longer required to receive a smallpox vaccine, and will have no protection against smallpox. This lack of immunity is a concern due to the potential for use of smallpox as a biological weapon. Considerable progress has been made in the development of subunit-based smallpox vaccines resulting from the identification of VACV protective antigens. It also offers the possibility of using antigens from VARV to formulate the next generation subunit-based smallpox vaccines. Here, we show that codon-optimized DNA vaccines expressing three VARV antigens (A30, B7 and F8) and their recombinant protein counterparts elicited high-titer, cross-reactive, VACV neutralizing antibody responses in mice. Vaccinated mice were protected from intraperitoneal and intranasal challenges with VACV. These results suggest the feasibility of a subunit smallpox vaccine based on VARV antigen sequences to induce immunity against poxvirus infection.

  9. Identification of Plasmodium falciparum reticulocyte binding protein homologue 5-interacting protein, PfRipr, as a highly conserved blood-stage malaria vaccine candidate.

    PubMed

    Ntege, Edward H; Arisue, Nobuko; Ito, Daisuke; Hasegawa, Tomoyuki; Palacpac, Nirianne M Q; Egwang, Thomas G; Horii, Toshihiro; Takashima, Eizo; Tsuboi, Takafumi

    2016-11-04

    Genetic variability in Plasmodium falciparum malaria parasites hampers current malaria vaccine development efforts. Here, we hypothesize that to address the impact of genetic variability on vaccine efficacy in clinical trials, conserved antigen targets should be selected to achieve robust host immunity across multiple falciparum strains. Therefore, suitable vaccine antigens should be assessed for levels of polymorphism and genetic diversity. Using a total of one hundred and two clinical isolates from a region of high malaria transmission in Uganda, we analyzed extent of polymorphism and genetic diversity in four recently reported novel blood-stage malaria vaccine candidate proteins: Rh5 interacting protein (PfRipr), GPI anchored micronemal antigen (PfGAMA), rhoptry-associated leucine zipper-like protein 1 (PfRALP1) and Duffy binding-like merozoite surface protein 1 (PfMSPDBL1). In addition, utilizing the wheat germ cell-free system, we expressed recombinant proteins for the four candidates based on P. falciparum laboratory strain 3D7 sequences, immunized rabbits to obtain specific antibodies (Abs) and performed functional growth inhibition assay (GIA). The GIA activity of the raised Abs was demonstrated using both homologous 3D7 and heterologous FVO strains in vitro. Both pfripr and pfralp1 are less polymorphic but the latter is comparatively more diverse, with varied number of regions having insertions and deletions, asparagine and 6-mer repeats in the coding sequences. Pfgama and pfmspdbl1 are polymorphic and genetically diverse among the isolates with antibodies against the 3D7-based recombinant PfGAMA and PfMSPDBL1 inhibiting merozoite invasion only in the 3D7 but not FVO strain. Moreover, although Abs against the 3D7-based recombinant PfRipr and PfRALP1 proteins potently inhibited merozoite invasion of both 3D7 and FVO, the GIA activity of anti-PfRipr was much higher than that of anti-PfRALP1. Thus, PfRipr is regarded as a promising blood-stage vaccine

  10. Safety and Immunogenicity of an AMA-1 Malaria Vaccine in Malian Adults: Results of a Phase 1 Randomized Controlled Trial

    PubMed Central

    Thera, Mahamadou A.; Doumbo, Ogobara K.; Coulibaly, Drissa; Diallo, Dapa A.; Kone, Abdoulaye K.; Guindo, Ando B.; Traore, Karim; Dicko, Alassane; Sagara, Issaka; Sissoko, Mahamadou S.; Baby, Mounirou; Sissoko, Mady; Diarra, Issa; Niangaly, Amadou; Dolo, Amagana; Daou, Modibo; Diawara, Sory I.; Heppner, D. Gray; Stewart, V. Ann; Angov, Evelina; Bergmann-Leitner, Elke S.; Lanar, David E.; Dutta, Sheetij; Soisson, Lorraine; Diggs, Carter L.; Leach, Amanda; Owusu, Alex; Dubois, Marie-Claude; Cohen, Joe; Nixon, Jason N.; Gregson, Aric; Takala, Shannon L.; Lyke, Kirsten E.; Plowe, Christopher V.

    2008-01-01

    Background The objective was to evaluate the safety, reactogenicity and immunogenicity of the AMA-1-based blood-stage malaria vaccine FMP2.1/AS02A in adults exposed to seasonal malaria. Methodology/Principal Findings A phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02A is a recombinant protein (FMP2.1) based on apical membrane antigen-1 (AMA-1) from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert). Sixty healthy, malaria-experienced adults aged 18–55 y were recruited into 2 cohorts and randomized to receive either a half dose or full dose of the malaria vaccine (FMP2.1 25 µg/AS02A 0.25 mL or FMP2.1 50 µg/AS02A 0.5 mL) or rabies vaccine given in 3 doses at 0, 1 and 2 mo, and were followed for 1 y. Solicited symptoms were assessed for 7 d and unsolicited symptoms for 30 d after each vaccination. Serious adverse events were assessed throughout the study. Titers of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed on sera collected at pre- and post-vaccination time points. Transient local pain and swelling were common and more frequent in both malaria vaccine dosage groups than in the comparator group. Anti-AMA-1 antibodies increased significantly in both malaria vaccine groups, peaking at nearly 5-fold and more than 6-fold higher than baseline in the half-dose and full-dose groups, respectively. Conclusion/Significance The FMP2.1/AS02A vaccine had a good safety profile, was well-tolerated, and was highly immunogenic in malaria-exposed adults. This malaria vaccine is being evaluated in Phase 1 and 2 trials in children at this site. Trial Registration ClinicalTrials.gov NCT00308061 PMID:18213374

  11. ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: assessment of efficacy against mosquito bite challenge in humans.

    PubMed

    Sheehy, Susanne H; Duncan, Christopher J A; Elias, Sean C; Choudhary, Prateek; Biswas, Sumi; Halstead, Fenella D; Collins, Katharine A; Edwards, Nick J; Douglas, Alexander D; Anagnostou, Nicholas A; Ewer, Katie J; Havelock, Tom; Mahungu, Tabitha; Bliss, Carly M; Miura, Kazutoyo; Poulton, Ian D; Lillie, Patrick J; Antrobus, Richard D; Berrie, Eleanor; Moyle, Sarah; Gantlett, Katherine; Colloca, Stefano; Cortese, Riccardo; Long, Carole A; Sinden, Robert E; Gilbert, Sarah C; Lawrie, Alison M; Doherty, Tom; Faust, Saul N; Nicosia, Alfredo; Hill, Adrian V S; Draper, Simon J

    2012-12-01

    The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1-results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets.

  12. ChAd63-MVA–vectored Blood-stage Malaria Vaccines Targeting MSP1 and AMA1: Assessment of Efficacy Against Mosquito Bite Challenge in Humans

    PubMed Central

    Sheehy, Susanne H; Duncan, Christopher JA; Elias, Sean C; Choudhary, Prateek; Biswas, Sumi; Halstead, Fenella D; Collins, Katharine A; Edwards, Nick J; Douglas, Alexander D; Anagnostou, Nicholas A; Ewer, Katie J; Havelock, Tom; Mahungu, Tabitha; Bliss, Carly M; Miura, Kazutoyo; Poulton, Ian D; Lillie, Patrick J; Antrobus, Richard D; Berrie, Eleanor; Moyle, Sarah; Gantlett, Katherine; Colloca, Stefano; Cortese, Riccardo; Long, Carole A; Sinden, Robert E; Gilbert, Sarah C; Lawrie, Alison M; Doherty, Tom; Faust, Saul N; Nicosia, Alfredo; Hill, Adrian VS; Draper, Simon J

    2012-01-01

    The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1—results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets. PMID:23089736

  13. Decrease in circulating CD25(hi)Foxp3(+) regulatory T cells following vaccination with the candidate malaria vaccine RTS,S.

    PubMed

    Parsons, Emily; Epstein, Judith; Sedegah, Martha; Villasante, Eileen; Stewart, Ann

    2016-08-31

    Regulatory T (Treg) cells have been shown in some cases to limit vaccine-specific immune responses and impact efficacy. Very little is known about the regulatory responses to the leading malaria vaccine candidate, RTS,S. The goal of this study was to begin to characterize the regulatory responses to the RTS,S vaccine. Using multi-parameter flow cytometry, we examined responses in 13 malaria naïve adult volunteers who received 2 doses of RTS,S given eight weeks apart. Five of these volunteers had previously received 3 doses of a candidate DNA-CSP vaccine, with the final dose given approximately one year prior to the first dose of the RTS,S vaccine. We found that the frequency of CD25(hi)Foxp3(+) Treg cells decreased following administration of RTS,S (p=0.0195), with no differences based on vaccine regimen. There was a concomitant decrease in CTLA-4 expression on CD25(hi)Foxp3(+) Treg cells (p=0.0093) and PD-1 levels on CD8(+) T cells (p=0.0002). Additionally, the frequency of anergic CTLA-4(+)CCR7(+) T cells decreased following vaccination. An inverse correlation was observed between the frequency of Plasmodium falciparum circumsporozoite protein (PfCSP)-specific IFN-γ and PfCSP-specific IL-10, as well as an inverse correlation between IL-10 induced by Hepatitis B surface antigen, the carrier of RTS,S, and PfCSP-specific IFN-γ, suggesting that immunity against the vaccine backbone could impact vaccine immunogenicity. These results have implications for future malaria vaccine design. Copyright © 2016. Published by Elsevier Ltd.

  14. Progress with viral vectored malaria vaccines: A multi-stage approach involving "unnatural immunity".

    PubMed

    Ewer, Katie J; Sierra-Davidson, Kailan; Salman, Ahmed M; Illingworth, Joseph J; Draper, Simon J; Biswas, Sumi; Hill, Adrian V S

    2015-12-22

    Viral vectors used in heterologous prime-boost regimens are one of very few vaccination approaches that have yielded significant protection against controlled human malaria infections. Recently, protection induced by chimpanzee adenovirus priming and modified vaccinia Ankara boosting using the ME-TRAP insert has been correlated with the induction of potent CD8(+) T cell responses. This regimen has progressed to field studies where efficacy against infection has now been reported. The same vectors have been used pre-clinically to identify preferred protective antigens for use in vaccines against the pre-erythrocytic, blood-stage and mosquito stages of malaria and this work is reviewed here for the first time. Such antigen screening has led to the prioritization of the PfRH5 blood-stage antigen, which showed efficacy against heterologous strain challenge in non-human primates, and vectors encoding this antigen are in clinical trials. This, along with the high transmission-blocking activity of some sexual-stage antigens, illustrates well the capacity of such vectors to induce high titre protective antibodies in addition to potent T cell responses. All of the protective responses induced by these vectors exceed the levels of the same immune responses induced by natural exposure supporting the view that, for subunit vaccines to achieve even partial efficacy in humans, "unnatural immunity" comprising immune responses of very high magnitude will need to be induced. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. WHO policy development processes for a new vaccine: case study of malaria vaccines.

    PubMed

    Milstien, Julie; Cárdenas, Vicky; Cheyne, James; Brooks, Alan

    2010-06-24

    , the lead-time between the date of product regulatory approval and a recommendation for its use in developing countries is decreasing. This study presents approaches to define in advance core data needs to support evidence-based decisions, to further decrease this lead-time, accelerating the availability of a malaria vaccine. Specific policy areas for which information should be collected are defined, including studying its use within the context of other malaria interventions.

  16. Status of vaccine research and development of vaccines for malaria.

    PubMed

    Birkett, Ashley J

    2016-06-03

    Despite recent progress in reducing deaths attributable to malaria, it continues to claim approximately 500,000 lives per year and is associated with approximately 200 million infections. New tools, including safe and effective vaccines, are needed to ensure that the gains of the last 15 years are leveraged toward achieving the ultimate goal of malaria parasite eradication. In 2015, the European Medicines Agency announced the adoption of a positive opinion for the malaria vaccine candidate most advanced in development, RTS,S/AS01, which provides modest protection against clinical malaria; in early 2016, WHO recommended large-scale pilot implementations of RTS,S in settings of moderate-to-high malaria transmission. In alignment with these advancements, the community goals and preferred product characteristics for next-generation vaccines have been updated to inform the development of vaccines that are highly efficacious in preventing clinical malaria, and those needed to accelerate parasite elimination. Next-generation vaccines, targeting all stages of the parasite lifecycle, are in early-stage development with the most advanced in Phase 2 trials. Importantly, progress is being made in the definition of feasible regulatory pathways to accelerate timelines, including for vaccines designed to interrupt transmission of parasites from humans to mosquitoes. The continued absence of financially lucrative, high-income markets to drive investment in malaria vaccine development points to continued heavy reliance on public and philanthropic funding. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  17. Secreted HSP Vaccine for Malaria Prophylaxis

    DTIC Science & Technology

    2015-10-01

    Award Number: W81XWH-13-2-0098 TITLE: Secreted HSP Vaccine for Malaria Prophylaxis PRINCIPAL INVESTIGATOR: Dr. Natasa Strbo CONTRACTING...REPORT DATE October 2015 2. REPORT TYPE Annual 3. DATES COVERED 30 Sep 2014 - 29 Sep 2015 4. TITLE AND SUBTITLE Secreted HSP Vaccine for Malaria ...We have also started manufacturing GMP-grade vaccine material for use in non-human primate studies . 15. SUBJECT TERMS- Malaria , Plasmodium

  18. Malaria vaccine offers hope. International / Africa.

    PubMed

    1995-03-13

    Colombian professor Manuel Patarroyo developed a new malaria vaccine (SPF66). In February 1995, WHO and the Colombian government agreed to establish a manufacturing plant in Colombia for mass production of SPF66. This vaccine is likely to be available to persons in Africa, where 90% of all annual global cases live. In fact, Africa witnesses one million of 1.5 million annual malaria cases. Many children die from malaria. An extensive clinical trial of the SPF66 vaccine in Colombia achieved a 22-77% protection rate. The young and the very old had the high protection rates. A series of human clinical trials in the Gambia and Tanzania indicate that SPF66 produces a strong immune response against malaria without any harmful side effects. The results of field tests in the Gambia and Thailand and of trials in Colombia are expected in 1995. If the vaccine could reduce the incidence of malaria by just 50%, the lives of as many as 500,000 African children could be saved. SPF66 contains a combination of synthetic peptides (=or 2 amino acids). Mass production would make it affordable (estimated $5/injection). At least five other malaria vaccines hold promise and are ready for human testing in endemic countries. SPF66 is approximately three years ahead of all other promising malaria vaccines. 20 more vaccines are in the development stage. The large scale production of SPF66 in Colombia could begin within three years. Professor Patarroyo has financed his 12-year-old research himself because he wants to protect the lives of persons in developing countries. In 1992, the Congo's president petitioned the international community at the WHO summit in Amsterdam to join the fight against malaria since it is now in a position to defeat malaria since it finished the cold war.

  19. Enhanced acquired antibodies to a chimeric Plasmodium falciparum antigen; UB05-09 is associated with protective immunity against malaria.

    PubMed

    Dinga, J N; Gamua, S D; Titanji, V P K

    2017-08-01

    It has been shown that covalently linking two antigens could enhance the immunogenicity of the chimeric construct. To prioritize such a chimera for malaria vaccine development, it is necessary to demonstrate that naturally acquired antibodies against the chimera are associated with protection from malaria. Here, we probe the ability of a chimeric construct of UB05 and UB09 antigens (UB05-09) to better differentiate between acquired immune protection and susceptibility to malaria. In a cross-sectional study, recombinant UB05-09 chimera and the constituent antigens were used to probe for specific antibodies in the plasma from children and adults resident in a malaria-endemic zone, using the enzyme-linked immunosorbent assay (ELISA). Anti-UB05-09 antibody levels doubled that of its constituent antigens, UB09 and UB05, and this correlated with protection against malaria. The presence of enhanced UB05-09-specific antibody correlated with the absence of fever and parasitaemia, which are the main symptoms of malaria infection. The chimera is more effective in detecting and distinguishing acquired protective immunity against malaria than any of its constituents taken alone. Online B-cell epitope prediction tools confirmed the presence of B-cell epitopes in the study antigens. UB05-09 chimera is a marker of protective immunity against malaria that needs to be studied further. © 2017 John Wiley & Sons Ltd.

  20. Implications of the licensure of a partially efficacious malaria vaccine on evaluating second-generation vaccines.

    PubMed

    Fowkes, Freya J I; Simpson, Julie A; Beeson, James G

    2013-10-30

    Malaria is a leading cause of morbidity and mortality, with approximately 225 million clinical episodes and >1.2 million deaths annually attributed to malaria. Development of a highly efficacious malaria vaccine will offer unparalleled possibilities for disease prevention and remains a key priority for long-term malaria control and elimination. The Malaria Vaccine Technology Roadmap's goal is to 'develop and license a first-generation malaria vaccine that has protective efficacy of more than 50%'. To date, malaria vaccine candidates have only been shown to be partially efficacious (approximately 30% to 60%). However, licensure of a partially effective vaccine will create a number of challenges for the development and progression of new, potentially more efficacious, malaria vaccines in the future. In this opinion piece we discuss the methodological, logistical and ethical issues that may impact on the feasibility and implementation of superiority, non-inferiority and equivalence trials to assess second generation malaria vaccines in the advent of the licensure of a partially efficacious malaria vaccine. Selecting which new malaria vaccines go forward, and defining appropriate methodology for assessment in logistically challenging clinical trials, is crucial. It is imperative that the scientific community considers all the issues and starts planning how second-generation malaria vaccines will advance in the advent of licensure of a partially effective vaccine.

  1. Antigenic Distance Measurements for Seasonal Influenza Vaccine Selection

    PubMed Central

    Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2011-01-01

    Influenza vaccination is one of the major options to counteract the effects of influenza diseases. Selection of an effective vaccine strain is the key to the success of an effective vaccination program since vaccine protection can only be achieved when the selected influenza vaccine strain matches the antigenic variants causing future outbreaks. Identification of an antigenic variant is the first step to determine whether vaccine strain needs to be updated. Antigenic distance derived from immunological assays, such as hemagglutination inhibition, is commonly used to measure the antigenic closeness between circulating strains and the current influenza vaccine strain. Thus, consensus on an explicit and robust antigenic distance measurement is critical in influenza surveillance. Based on the current seasonal influenza surveillance procedure, we propose and compare three antigenic distance measurements, including Average antigenic distance (A-distance), Mutual antigenic distance (M-distance), and Largest antigenic distance (L-distance). With the assistance of influenza antigenic cartography, our simulation results demonstrated that M-distance is a robust influenza antigenic distance measurement. Experimental results on both simulation and seasonal influenza surveillance data demonstrate that M-distance can be effectively utilized in influenza vaccine strain selection. PMID:22063385

  2. Implications of the licensure of a partially efficacious malaria vaccine on evaluating second-generation vaccines

    PubMed Central

    2013-01-01

    Background Malaria is a leading cause of morbidity and mortality, with approximately 225 million clinical episodes and >1.2 million deaths annually attributed to malaria. Development of a highly efficacious malaria vaccine will offer unparalleled possibilities for disease prevention and remains a key priority for long-term malaria control and elimination. Discussion The Malaria Vaccine Technology Roadmap’s goal is to 'develop and license a first-generation malaria vaccine that has protective efficacy of more than 50%’. To date, malaria vaccine candidates have only been shown to be partially efficacious (approximately 30% to 60%). However, licensure of a partially effective vaccine will create a number of challenges for the development and progression of new, potentially more efficacious, malaria vaccines in the future. In this opinion piece we discuss the methodological, logistical and ethical issues that may impact on the feasibility and implementation of superiority, non-inferiority and equivalence trials to assess second generation malaria vaccines in the advent of the licensure of a partially efficacious malaria vaccine. Conclusions Selecting which new malaria vaccines go forward, and defining appropriate methodology for assessment in logistically challenging clinical trials, is crucial. It is imperative that the scientific community considers all the issues and starts planning how second-generation malaria vaccines will advance in the advent of licensure of a partially effective vaccine. PMID:24228861

  3. Baculovirus-vectored multistage Plasmodium vivax vaccine induces both protective and transmission-blocking immunities against transgenic rodent malaria parasites.

    PubMed

    Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E; Yoshida, Shigeto

    2014-10-01

    A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Why functional pre-erythrocytic and bloodstage malaria vaccines fail: a meta-analysis of fully protective immunizations and novel immunological model.

    PubMed

    Guilbride, D Lys; Gawlinski, Pawel; Guilbride, Patrick D L

    2010-05-19

    Clinically protective malaria vaccines consistently fail to protect adults and children in endemic settings, and at best only partially protect infants. We identify and evaluate 1916 immunization studies between 1965-February 2010, and exclude partially or nonprotective results to find 177 completely protective immunization experiments. Detailed reexamination reveals an unexpectedly mundane basis for selective vaccine failure: live malaria parasites in the skin inhibit vaccine function. We next show published molecular and cellular data support a testable, novel model where parasite-host interactions in the skin induce malaria-specific regulatory T cells, and subvert early antigen-specific immunity to parasite-specific immunotolerance. This ensures infection and tolerance to reinfection. Exposure to Plasmodium-infected mosquito bites therefore systematically triggers immunosuppression of endemic vaccine-elicited responses. The extensive vaccine trial data solidly substantiate this model experimentally. We conclude skinstage-initiated immunosuppression, unassociated with bloodstage parasites, systematically blocks vaccine function in the field. Our model exposes novel molecular and procedural strategies to significantly and quickly increase protective efficacy in both pipeline and currently ineffective malaria vaccines, and forces fundamental reassessment of central precepts determining vaccine development. This has major implications for accelerated local eliminations of malaria, and significantly increases potential for eradication.

  5. Enhancing immunogenicity and transmission-blocking activity of malaria vaccines by fusing Pfs25 to IMX313 multimerization technology.

    PubMed

    Li, Yuanyuan; Leneghan, Darren B; Miura, Kazutoyo; Nikolaeva, Daria; Brian, Iona J; Dicks, Matthew D J; Fyfe, Alex J; Zakutansky, Sarah E; de Cassan, Simone; Long, Carole A; Draper, Simon J; Hill, Adrian V S; Hill, Fergal; Biswas, Sumi

    2016-01-08

    Transmission-blocking vaccines (TBV) target the sexual-stages of the malaria parasite in the mosquito midgut and are widely considered to be an essential tool for malaria elimination. High-titer functional antibodies are required against target antigens to achieve effective transmission-blocking activity. We have fused Pfs25, the leading malaria TBV candidate antigen to IMX313, a molecular adjuvant and expressed it both in ChAd63 and MVA viral vectors and as a secreted protein-nanoparticle. Pfs25-IMX313 expressed from viral vectors or as a protein-nanoparticle is significantly more immunogenic and gives significantly better transmission-reducing activity than monomeric Pfs25. In addition, we demonstrate that the Pfs25-IMX313 protein-nanoparticle leads to a qualitatively improved antibody response in comparison to soluble Pfs25, as well as to significantly higher germinal centre (GC) responses. These results demonstrate that antigen multimerization using IMX313 is a very promising strategy to enhance antibody responses against Pfs25, and that Pfs25-IMX313 is a highly promising TBV candidate vaccine.

  6. Phase I Clinical Trial of a Recombinant Blood Stage Vaccine Candidate for Plasmodium falciparum Malaria Based on MSP1 and EBA175

    PubMed Central

    Chitnis, Chetan E.; Mukherjee, Paushali; Mehta, Shantanu; Yazdani, Syed Shams; Dhawan, Shikha; Shakri, Ahmad Rushdi; Bharadwaj, Rukmini; Gupta, Puneet Kumar; Hans, Dhiraj; Mazumdar, Suman; Singh, Bijender; Kumar, Sanjeev; Pandey, Gaurav; Parulekar, Varsha; Imbault, Nathalie; Shivyogi, Preethi; Godbole, Girish; Mohan, Krishna; Leroy, Odile; Singh, Kavita; Chauhan, Virander S.

    2015-01-01

    Background A phase I randomised, controlled, single blind, dose escalation trial was conducted to evaluate safety and immunogenicity of JAIVAC-1, a recombinant blood stage vaccine candidate against Plasmodium falciparum malaria, composed of a physical mixture of two recombinant proteins, PfMSP-119, the 19 kD conserved, C-terminal region of PfMSP-1 and PfF2 the receptor-binding F2 domain of EBA175. Method Healthy malaria naïve Indian male subjects aged 18–45 years were recruited from the volunteer database of study site. Fifteen subjects in each cohort, randomised in a ratio of 2:1 and meeting the protocol specific eligibility criteria, were vaccinated either with three doses (10μg, 25μg and 50μg of each antigen) of JAIVAC-1 formulated with adjuvant Montanide ISA 720 or with standard dosage of Hepatitis B vaccine. Each subject received the assigned vaccine in the deltoid muscle of the upper arms on Day 0, Day 28 and Day 180. Results JAIVAC-1 was well tolerated and no serious adverse event was observed. All JAIVAC-1 subjects sero-converted for PfF2 but elicited poor immune response to PfMSP-119. Dose-response relationship was observed between vaccine dose of PfF2 and antibody response. The antibodies against PfF2 were predominantly of IgG1 and IgG3 isotype. Sera from JAIVAC-1 subjects reacted with late schizonts in a punctate pattern in immunofluorescence assays. Purified IgG from JAIVAC-1 sera displayed significant growth inhibitory activity against Plasmodium falciparum CAMP strain. Conclusion Antigen PfF2 should be retained as a component of a recombinant malaria vaccine but PfMSP-119 construct needs to be optimised to improve its immunogenicity. Trial Registration Clinical Trial Registry, India CTRI/2010/091/000301 PMID:25927360

  7. In silico epitope mapping and experimental evaluation of the Merozoite Adhesive Erythrocytic Binding Protein (MAEBL) as a malaria vaccine candidate.

    PubMed

    Cravo, Pedro; Machado, Renato B; Leite, Juliana A; Leda, Taizy; Suwanarusk, Rossarin; Bittencourt, Najara; Albrecht, Letusa; Judice, Carla; Lopes, Stefanie C P; Lacerda, Marcus V G; Ferreira, Marcelo U; Soares, Irene S; Goh, Yun Shan; Bargieri, Daniel Y; Nosten, François; Russell, Bruce; Rénia, Laurent; Costa, Fabio T M

    2018-01-10

    Technical limitations for culturing the human malaria parasite Plasmodium vivax have impaired the discovery of vaccine candidates, challenging the malaria eradication agenda. The immunogenicity of the M2 domain of the Merozoite Adhesive Erythrocytic Binding Protein (MAEBL) antigen cloned from the Plasmodium yoelii murine parasite, has been previously demonstrated. Detailed epitope mapping of MAEBL through immunoinformatics identified several MHCI, MHCII and B cell epitopes throughout the peptide, with several of these lying in the M2 domain and being conserved between P. vivax, P. yoelii and Plasmodium falciparum, hinting that the M2-MAEBL is pan-reactive. This hypothesis was tested through functional assays, showing that P. yoelii M2-MAEBL antisera are able to recognize and inhibit erythrocyte invasion from both P. falciparum and P. vivax parasites isolated from Thai patients, in ex vivo assays. Moreover, the sequence of the M2-MAEBL is shown to be highly conserved between P. vivax isolates from the Amazon and Thailand, indicating that the MAEBL antigen may constitute a vaccine candidate outwitting strain-specific immunity. The MAEBL antigen is promising candidate towards the development of a malaria vaccine.

  8. Comparison of Biological Activity of Human Anti-Apical Membrane Antigen-1 Antibodies Induced by Natural Infection and Vaccination

    PubMed Central

    Miura, Kazutoyo; Zhou, Hong; Moretz, Samuel E.; Diouf, Ababacar; Thera, Mahamadou A; Dolo, Amagana; Doumbo, Ogobara; Malkin, Elissa; Diemert, David; Miller, Louis H.; Mullen, Gregory E.D.; Long, Carole A.

    2009-01-01

    Vaccines represent a significant potential means of decreasing global morbidity and mortality due to malaria. Clinical trials in the U.S. with Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) showed that the vaccine induced biologically active antibodies judged by an in vitro parasite Growth Inhibition Assay (GIA). However, the same vaccine in Malian adults did not increase biological activity although it elevated ELISA titers. As GIA has been used to evaluate the biological activity of antibodies induced by blood-stage malarial vaccine candidates, we explored this discrepancy in this study. We affinity purified AMA1-specific antibodies from both US vaccinees and from non-vaccinated individuals living in a malaria-endemic area of Mali, and performed ELISA and GIA. Both AMA1-specifc antibodies induced by vaccination (US) and by natural infection (Mali) have comparable biological activity in GIA when the ELISA titer is normalized. However, a fraction of Malians’ IgG which did not bind to AMA1 protein (Mali-non-AMA1 IgG) reduced the biological activity of the AMA1 antibodies from US vaccinees; in contrast, US-non-AMA1 IgGs did not show a reduction of the biological activity. Further investigation revealed that the reduction was due to malaria-specific IgGs in the Mali-non-AMA1 IgGs. The fact that both US- and Mali-AMA1-specific antibodies showed comparable biological activity supports further development of AMA1-based vaccines. However, the reduction of biological activity of AMA1-specific antibody by other malaria-specific IgGs likely explains the limited effect on growth-inhibitory activity of antibodies induced by AMA1 vaccination in Malian adults and may complicate efforts to develop a blood-stage malaria vaccine. PMID:19050299

  9. Malaria vaccines: looking back and lessons learnt

    PubMed Central

    Lorenz, Veronique; Karanis, Panagiotis

    2011-01-01

    The current status of malaria vaccine approaches has the background of a long and arduous path of malaria disease control and vaccine development. Here, we critically review with regard to unilateral interventional approaches and highlight the impact of socioeconomic elements of malaria endemicity. The necessity of re-energizing basic research of malaria life-cycle and Plasmodium developmental biology to provide the basis for promising and cost-effective vaccine approaches and to reach eradication goals is more urgent than previously believed. We closely analyse the flaws of various vaccine approaches, outline future directions and challenges that still face us and conclude that the focus of the field must be shifted to the basic research efforts including findings on the skin stage of infection. We also reflect on economic factors of vaccine development and the impact of public perception when it comes to vaccine uptake. PMID:23569729

  10. Workshop report: Malaria vaccine development in Europe--preparing for the future.

    PubMed

    Viebig, Nicola K; D'Alessio, Flavia; Draper, Simon J; Sim, B Kim Lee; Mordmüller, Benjamin; Bowyer, Paul W; Luty, Adrian J F; Jungbluth, Stefan; Chitnis, Chetan E; Hill, Adrian V S; Kremsner, Peter; Craig, Alister G; Kocken, Clemens H M; Leroy, Odile

    2015-11-17

    The deployment of a safe and effective malaria vaccine will be an important tool for the control of malaria and the reduction in malaria deaths. With the launch of the 2030 Malaria Vaccine Technology Roadmap, the malaria community has updated the goals and priorities for the development of such a vaccine and is now paving the way for a second phase of malaria vaccine development. During a workshop in Brussels in November 2014, hosted by the European Vaccine Initiative, key players from the European, North American and African malaria vaccine community discussed European strategies for future malaria vaccine development in the global context. The recommendations of the European malaria community should guide researchers, policy makers and funders of global health research and development in fulfilling the ambitious goals set in the updated Malaria Vaccine Technology Roadmap. Copyright © 2015.

  11. Newcastle disease virus vectored vaccines as bivalent or antigen delivery vaccines

    PubMed Central

    2017-01-01

    Recent advances in reverse genetics techniques make it possible to manipulate the genome of RNA viruses such as Newcastle disease virus (NDV). Several NDV vaccine strains have been used as vaccine vectors in poultry, mammals, and humans to express antigens of different pathogens. The safety, immunogenicity, and protective efficacy of these NDV-vectored vaccines have been evaluated in pre-clinical and clinical studies. The vaccines are safe in mammals, humans, and poultry. Bivalent NDV-vectored vaccines against pathogens of economic importance to the poultry industry have been developed. These bivalent vaccines confer solid protective immunity against NDV and other foreign antigens. In most cases, NDV-vectored vaccines induce strong local and systemic immune responses against the target foreign antigen. This review summarizes the development of NDV-vectored vaccines and their potential use as a base for designing other effective vaccines for veterinary and human use. PMID:28775971

  12. Tomatine adjuvantation of protective immunity to a major pre-erythrocytic vaccine candidate of malaria is mediated via CD8+ T cell release of IFN-gamma.

    PubMed

    Heal, Karen G; Taylor-Robinson, Andrew W

    2010-01-01

    The glycoalkaloid tomatine, derived from the wild tomato, can act as a powerful adjuvant to elicit an antigen-specific cell-mediated immune response to the circumsporozoite (CS) protein, a major pre-erythrocytic stage malaria vaccine candidate antigen. Using a defined MHC-class-I-restricted CS epitope in a Plasmodium berghei rodent model, antigen-specific cytotoxic T lymphocyte activity and IFN-gamma secretion ex vivo were both significantly enhanced compared to responses detected from similarly stimulated splenocytes from naive and tomatine-saline-immunized mice. Further, through lymphocyte depletion it is demonstrated that antigen-specific IFN-gamma is produced exclusively by the CD8(+) T cell subset. We conclude that the processing of the P. berghei CS peptide as an exogenous antigen and its presentation via MHC class I molecules to CD8(+) T cells leads to an immune response that is an in vitro correlate of protection against pre-erythrocytic malaria. Further characterization of tomatine as an adjuvant in malaria vaccine development is indicated.

  13. A Plasmodium vivax Plasmid DNA- and Adenovirus-Vectored Malaria Vaccine Encoding Blood-Stage Antigens AMA1 and MSP142 in a Prime/Boost Heterologous Immunization Regimen Partially Protects Aotus Monkeys against Blood-Stage Challenge.

    PubMed

    Obaldia, Nicanor; Stockelman, Michael G; Otero, William; Cockrill, Jennifer A; Ganeshan, Harini; Abot, Esteban N; Zhang, Jianfeng; Limbach, Keith; Charoenvit, Yupin; Doolan, Denise L; Tang, De-Chu C; Richie, Thomas L

    2017-04-01

    Malaria is caused by parasites of the genus Plasmodium , which are transmitted to humans by the bites of Anopheles mosquitoes. After the elimination of Plasmodium falciparum , it is predicted that Plasmodium vivax will remain an important cause of morbidity and mortality outside Africa, stressing the importance of developing a vaccine against P. vivax malaria. In this study, we assessed the immunogenicity and protective efficacy of two P. vivax antigens, apical membrane antigen 1 (AMA1) and the 42-kDa C-terminal fragment of merozoite surface protein 1 (MSP1 42 ) in a plasmid recombinant DNA prime/adenoviral (Ad) vector boost regimen in Aotus monkeys. Groups of 4 to 5 monkeys were immunized with plasmid DNA alone, Ad alone, prime/boost regimens with each antigen, prime/boost regimens with both antigens, and empty vector controls and then subjected to blood-stage challenge. The heterologous immunization regimen with the antigen pair was more protective than either antigen alone or both antigens delivered with a single vaccine platform, on the basis of their ability to induce the longest prepatent period and the longest time to the peak level of parasitemia, the lowest peak and mean levels of parasitemia, the smallest area under the parasitemia curve, and the highest self-cure rate. Overall, prechallenge MSP1 42 antibody titers strongly correlated with a decreased parasite burden. Nevertheless, a significant proportion of immunized animals developed anemia. In conclusion, the P. vivax plasmid DNA/Ad serotype 5 vaccine encoding blood-stage parasite antigens AMA1 and MSP1 42 in a heterologous prime/boost immunization regimen provided significant protection against blood-stage challenge in Aotus monkeys, indicating the suitability of these antigens and this regimen for further development. Copyright © 2017 American Society for Microbiology.

  14. Whole organism blood stage vaccines against malaria.

    PubMed

    Stanisic, Danielle I; Good, Michael F

    2015-12-22

    Despite a century of research focused on the development and implementation of effective control strategies, infection with the malaria parasite continues to result in significant morbidity and mortality worldwide. An effective malaria vaccine is considered by many to be the definitive solution. Yet, after decades of research, we are still without a vaccine that is capable of inducing robust, long lasting protection in naturally exposed individuals. Extensive sub-unit vaccine development focused on the blood stage of the malaria parasite has thus far yielded disappointing results. There is now a renewed focus on whole parasite vaccine strategies, particularly as they may overcome some of the inherent weaknesses deemed to be associated with the sub-unit approach. This review discusses the whole parasite vaccine strategy focusing on the blood stage of the malaria parasite, with an emphasis on recent advances and challenges in the development of killed and live attenuated vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The use of a P. falciparum specific coiled-coil domain to construct a self-assembling protein nanoparticle vaccine to prevent malaria.

    PubMed

    Karch, Christopher P; Doll, Tais A P F; Paulillo, Sara M; Nebie, Issa; Lanar, David E; Corradin, Giampietro; Burkhard, Peter

    2017-09-06

    The parasitic disease malaria remains a major global public health concern and no truly effective vaccine exists. One approach to the development of a malaria vaccine is to target the asexual blood stage that results in clinical symptoms. Most attempts have failed. New antigens such as P27A and P27 have emerged as potential new vaccine candidates. Multiple studies have demonstrated that antigens are more immunogenic and are better correlated with protection when presented on particulate delivery systems. One such particulate delivery system is the self-assembling protein nanoparticle (SAPN) that relies on coiled-coil domains of proteins to form stable nanoparticles. In the past we have used de novo designed amino acid domains to drive the formation of the coiled-coil scaffolds which present the antigenic epitopes on the particle surface. Here we use naturally occurring domains found in the tex1 protein to form the coiled-coil scaffolding of the nanoparticle. Thus, by engineering P27A and a new extended form of the coiled-coil domain P27 onto the N and C terminus of the SAPN protein monomer we have developed a particulate delivery system that effectively displays both antigens on a single particle that uses malaria tex1 sequences to form the nanoparticle scaffold. These particles are immunogenic in a murine model and induce immune responses similar to the ones observed in seropositive individuals in malaria endemic regions. We demonstrate that our P27/P27A-SAPNs induce an immune response akin to the one in seropositive individuals in Burkina Faso. Since P27 is highly conserved among different Plasmodium species, these novel SAPNs may even provide cross-protection between Plasmodium falciparum and Plasmodium vivax the two major human malaria pathogens. As the SAPNs are also easy to manufacture and store they can be delivered to the population in need without complication thus providing a low cost malaria vaccine.

  16. Expression, purification and re folding of a self-assembling protein nanoparticle (SAPN) malaria vaccine

    PubMed Central

    Guo, Qin; Dasgupta, Debleena; Doll, Tais A.P.F.; Burkhard, Peter; Lanar, David E.

    2013-01-01

    There are many ways to present antigens to the immune system. We have used a repetitive antigen display technology that relies on the self-assembly of 60 protein chains into a spherical self-assembling protein nanoparticle (SAPN) to develop a vaccine against Plasmodium falciparum malaria. The protein sequence contains selected B- and T-cell epitopes of the circumsporozoite protein of P. falciparum (PfCSP) and, when assembled into a nanoparticle induces strong, long-lived and protective immune responses against the PfCSP. Here we describe the conditions needed for promoting self-assembly of a P. falciparum vaccine nanoparticle, PfCSP-KMY-SAPN, and note pitfalls that may occur when determining conditions for other SAPN vaccines. Attention was paid to selecting processes that were amenable to scale up and cGMP manufacturing. PMID:23548672

  17. MALVAC 2012 scientific forum: accelerating development of second-generation malaria vaccines

    PubMed Central

    2012-01-01

    The World Health Organization (WHO) convened a malaria vaccines committee (MALVAC) scientific forum from 20 to 21 February 2012 in Geneva, Switzerland, to review the global malaria vaccine portfolio, to gain consensus on approaches to accelerate second-generation malaria vaccine development, and to discuss the need to update the vision and strategic goal of the Malaria Vaccine Technology Roadmap. This article summarizes the forum, which included reviews of leading Plasmodium falciparum vaccine candidates for pre-erythrocytic vaccines, blood-stage vaccines, and transmission-blocking vaccines. Other major topics included vaccine candidates against Plasmodium vivax, clinical trial site capacity development in Africa, trial design considerations for a second-generation malaria vaccine, adjuvant selection, and regulatory oversight functions including vaccine licensure. PMID:23140365

  18. A phase 2b randomized, controlled trial of the efficacy of the GMZ2 malaria vaccine in African children.

    PubMed

    Sirima, Sodiomon B; Mordmüller, Benjamin; Milligan, Paul; Ngoa, Ulysse Ateba; Kironde, Fred; Atuguba, Frank; Tiono, Alfred B; Issifou, Saadou; Kaddumukasa, Mark; Bangre, Oscar; Flach, Clare; Christiansen, Michael; Bang, Peter; Chilengi, Roma; Jepsen, Søren; Kremsner, Peter G; Theisen, Michael

    2016-08-31

    GMZ2 is a recombinant protein malaria vaccine, comprising two blood-stage antigens of Plasmodium falciparum, glutamate-rich protein and merozoite surface protein 3. We assessed efficacy of GMZ2 in children in Burkina Faso, Gabon, Ghana and Uganda. Children 12-60months old were randomized to receive three injections of either 100μg GMZ2 adjuvanted with aluminum hydroxide or a control vaccine (rabies) four weeks apart and were followed up for six months to measure the incidence of malaria defined as fever or history of fever and a parasite density ⩾5000/μL. A cohort of 1849 children were randomized, 1735 received three doses of vaccine (868 GMZ2, 867 control-vaccine). There were 641 malaria episodes in the GMZ2/Alum group and 720 in the control group. In the ATP analysis, vaccine efficacy (VE), adjusted for age and site was 14% (95% confidence interval [CI]: 3.6%, 23%, p-value=0.009). In the ITT analysis, age-adjusted VE was 11.3% (95% CI 2.5%, 19%, p-value=0.013). VE was higher in older children. In GMZ2-vaccinated children, the incidence of malaria decreased with increasing vaccine-induced anti-GMZ2 IgG concentration. There were 32 cases of severe malaria (18 in the rabies vaccine group and 14 in the GMZ2 group), VE 27% (95% CI -44%, 63%). GMZ2 is the first blood-stage malaria vaccine to be evaluated in a large multicenter trial. GMZ2 was well tolerated and immunogenic, and reduced the incidence of malaria, but efficacy would need to be substantially improved, using a more immunogenic formulation, for the vaccine to have a public health role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Extended Safety, Immunogenicity and Efficacy of a Blood-Stage Malaria Vaccine in Malian Children: 24-Month Follow-Up of a Randomized, Double-Blinded Phase 2 Trial

    PubMed Central

    Laurens, Matthew B.; Thera, Mahamadou A.; Coulibaly, Drissa; Ouattara, Amed; Kone, Abdoulaye K.; Guindo, Ando B.; Traore, Karim; Traore, Idrissa; Kouriba, Bourema; Diallo, Dapa A.; Diarra, Issa; Daou, Modibo; Dolo, Amagana; Tolo, Youssouf; Sissoko, Mahamadou S.; Niangaly, Amadou; Sissoko, Mady; Takala-Harrison, Shannon; Lyke, Kirsten E.; Wu, Yukun; Blackwelder, William C.; Godeaux, Olivier; Vekemans, Johan; Dubois, Marie-Claude; Ballou, W. Ripley; Cohen, Joe; Dube, Tina; Soisson, Lorraine; Diggs, Carter L.; House, Brent; Bennett, Jason W.; Lanar, David E.; Dutta, Sheetij; Heppner, D. Gray; Plowe, Christopher V.; Doumbo, Ogobara K.

    2013-01-01

    Background The FMP2.1/AS02A candidate malaria vaccine was tested in a Phase 2 study in Mali. Based on results from the first eight months of follow-up, the vaccine appeared well-tolerated and immunogenic. It had no significant efficacy based on the primary endpoint, clinical malaria, but marginal efficacy against clinical malaria in secondary analyses, and high allele-specific efficacy. Extended follow-up was conducted to evaluate extended safety, immunogenicity and efficacy. Methods A randomized, double-blinded trial of safety, immunogenicity and efficacy of the candidate Plasmodium falciparum apical membrane antigen 1 (AMA1) vaccine FMP2.1/AS02A was conducted in Bandiagara, Mali. Children aged 1–6 years were randomized in a 1∶1 ratio to receive FMP2.1/AS02A or control rabies vaccine on days 0, 30 and 60. Using active and passive surveillance, clinical malaria and adverse events as well as antibodies against P. falciparum AMA1 were monitored for 24 months after the first vaccination, spanning two malaria seasons. Findings 400 children were enrolled. Serious adverse events occurred in nine participants in the FMP2.1/AS02A group and three in the control group; none was considered related to study vaccination. After two years, anti-AMA1 immune responses remained significantly higher in the FMP2.1/AS02A group than in the control group. For the entire 24-month follow-up period, vaccine efficacy was 7.6% (p = 0.51) against first clinical malaria episodes and 9.9% (p = 0.19) against all malaria episodes. For the final 16-month follow-up period, vaccine efficacy was 0.9% (p = 0.98) against all malaria episodes. Allele-specific efficacy seen in the first malaria season did not extend into the second season of follow-up. Interpretation Allele-specific vaccine efficacy was not sustained in the second malaria season, despite continued high levels of anti-AMA1 antibodies. This study presents an opportunity to evaluate correlates of partial protection against

  20. Community perceptions of malaria and vaccines in two districts of Mozambique

    PubMed Central

    2012-01-01

    Background Malaria is a leading cause of mortality and morbidity in Mozambique, with nearly three-quarters of the country’s malaria-related deaths occurring in children younger than five years. A malaria vaccine is not yet available, but planning is underway for a possible introduction, as soon as one becomes available. In an effort to inform the planning process, this study explored sociocultural and health communications issues among individuals at the community level who are both responsible for decisions about vaccine use and who are likely to influence decisions about vaccine use. Methods Researchers conducted a qualitative study in two malaria-endemic districts in southern Mozambique. Using criterion-based sampling, they conducted 23 focus group discussions and 26 in-depth interviews. Implementation was guided by the engagement of community stakeholders. Results Community members recognize that malaria contributes to high death rates and affects the workforce, school attendance, and the economy. Vaccines are seen as a means to reduce the threat of childhood illnesses and to keep children and the rest of the community healthy. Perceived constraints to accessing vaccine services include long queues, staff shortages, and a lack of resources at health care facilities. Local leaders play a significant role in motivating caregivers to have their children vaccinated. Participants generally felt that a vaccine could help to prevent malaria, although some voiced concern that the focus was only on young children and not on older children, pregnant women, and the elderly. Probed on their understanding of vaccine efficacy, participants voiced various views, including the perception that while some vaccines did not fully prevent disease they still had important benefits. Overall, it would be essential for local leaders to be involved in the design of specific messages for a future malaria vaccine communications strategy, and for those messages to be translated into

  1. Community perceptions of malaria and vaccines in two districts of Mozambique.

    PubMed

    Bingham, Allison; Gaspar, Felisbela; Lancaster, Kathryn; Conjera, Juliana; Collymore, Yvette; Ba-Nguz, Antoinette

    2012-11-28

    Malaria is a leading cause of mortality and morbidity in Mozambique, with nearly three-quarters of the country's malaria-related deaths occurring in children younger than five years. A malaria vaccine is not yet available, but planning is underway for a possible introduction, as soon as one becomes available. In an effort to inform the planning process, this study explored sociocultural and health communications issues among individuals at the community level who are both responsible for decisions about vaccine use and who are likely to influence decisions about vaccine use. Researchers conducted a qualitative study in two malaria-endemic districts in southern Mozambique. Using criterion-based sampling, they conducted 23 focus group discussions and 26 in-depth interviews. Implementation was guided by the engagement of community stakeholders. Community members recognize that malaria contributes to high death rates and affects the workforce, school attendance, and the economy. Vaccines are seen as a means to reduce the threat of childhood illnesses and to keep children and the rest of the community healthy. Perceived constraints to accessing vaccine services include long queues, staff shortages, and a lack of resources at health care facilities. Local leaders play a significant role in motivating caregivers to have their children vaccinated. Participants generally felt that a vaccine could help to prevent malaria, although some voiced concern that the focus was only on young children and not on older children, pregnant women, and the elderly. Probed on their understanding of vaccine efficacy, participants voiced various views, including the perception that while some vaccines did not fully prevent disease they still had important benefits. Overall, it would be essential for local leaders to be involved in the design of specific messages for a future malaria vaccine communications strategy, and for those messages to be translated into local languages. Acceptance of

  2. Stakeholders' opinions and questions regarding the anticipated malaria vaccine in Tanzania.

    PubMed

    Mtenga, Sally; Kimweri, Angela; Romore, Idda; Ali, Ali; Exavery, Amon; Sicuri, Elisa; Tanner, Marcel; Abdulla, Salim; Lusingu, John; Kafuruki, Shubi

    2016-04-05

    Within the context of combined interventions, malaria vaccine may provide additional value in malaria prevention. Stakeholders' perspectives are thus critical for informed recommendation of the vaccine in Tanzania. This paper presents the views of stakeholders with regards to malaria vaccine in 12 Tanzanian districts. Quantitative and qualitative methods were employed. A structured questionnaire was administered to 2123 mothers of under five children. Forty-six in-depth interviews and 12 focus group discussions were conducted with teachers, religious leaders, community health workers, health care professionals, and scientists. Quantitative data analysis involved frequency distributions and cross tabulations using Chi square test to determine the association between malaria vaccine acceptability and independent variables. Qualitative data were analysed thematically. Overall, 84.2% of the mothers had perfect acceptance of malaria vaccine. Acceptance varied significantly according to religion, occupation, tribe and region (p < 0.001). Ninety two percent reported that they will accept the malaria vaccine despite the need to continue using insecticide-treated nets (ITNs), while 88.4% reported that they will accept malaria vaccine even if their children get malaria less often than non-vaccinated children. Qualitative results revealed that the positive opinions towards malaria vaccine were due to a need for additional malaria prevention strategies and expectations that the vaccine will reduce visits to the health facility, deaths, malaria episodes and treatment-related expenses. Vaccine related questions included its side effects, efficacy, protective duration, composition, interaction with other medications, provision schedule, availability to the pregnant women, mode of administration (oral or injection?) and whether a child born of HIV virus or with a chronic illness will be eligible for the vaccine? Stakeholders had high acceptance and positive opinions towards the

  3. Vaccines of the future.

    PubMed

    Nossal, G J V

    2011-12-30

    Vaccines of the future can be divided into three broad groups, namely those of the near future (<10 years); the medium-term future (10-19 years); and the long-term future (20-50 years). For the near future, there is some "low hanging fruit" which is clearly on the horizon, such as a Vi-conjugate vaccine for typhoid or a protein-based vaccine for Neisseria meningitidis serogroup B. Just slightly more distant will be vaccines for shigellosis and a common protein vaccine for Streptococcus pneumoniae. Also in this group, but not as far advanced, will be a vaccine for Group A streptococcus. I place vaccines for the "big three", malaria, tuberculosis and HIV/AIDS in the medium term basket. The sporozoite malaria vaccine RTS-S is closest, but surely a definitive malaria vaccine will also require antigens from other stages of the life cycle. A tuberculosis vaccine will be either a re-engineered BCG; or a molecular vaccine with several protein antigens; or one based on prime-boost strategies. What will delay this is the high cost of clinical trials. For HIV/AIDS, the partial success of the Sanofi-Pasteur prime-boost vaccine has given some hope. I still place much faith in antibody-based vaccines and especially on mimotopes of the env transitional state assumed after initial CD4 binding. Monoclonal antibodies are also leading us in interesting directions. Longer term, the vaccine approach will be successful for autoimmune diseases, e.g. juvenile diabetes and coeliac disease. Cancer vaccines are also briefly surveyed. Adjunct issues needing to be addressed include more extensive combinations; alternate delivery systems; and more intelligently designed adjuvants based on knowledge of the innate immune system. Copyright © 2011. Published by Elsevier Ltd.

  4. Comparison of allele frequencies of Plasmodium falciparum merozoite antigens in malaria infections sampled in different years in a Kenyan population.

    PubMed

    Ochola-Oyier, Lynette Isabella; Okombo, John; Wagatua, Njoroge; Ochieng, Jacob; Tetteh, Kevin K; Fegan, Greg; Bejon, Philip; Marsh, Kevin

    2016-05-06

    Plasmodium falciparum merozoite antigens elicit antibody responses in malaria-endemic populations, some of which are clinically protective, which is one of the reasons why merozoite antigens are the focus of malaria vaccine development efforts. Polymorphisms in several merozoite antigen-encoding genes are thought to arise as a result of selection by the human immune system. The allele frequency distribution of 15 merozoite antigens over a two-year period, 2007 and 2008, was examined in parasites obtained from children with uncomplicated malaria. In the same population, allele frequency changes pre- and post-anti-malarial treatment were also examined. Any gene which showed a significant shift in allele frequencies was also assessed longitudinally in asymptomatic and complicated malaria infections. Fluctuating allele frequencies were identified in codons 147 and 148 of reticulocyte-binding homologue (Rh) 5, with a shift from HD to YH haplotypes over the two-year period in uncomplicated malaria infections. However, in both the asymptomatic and complicated malaria infections YH was the dominant and stable haplotype over the two-year and ten-year periods, respectively. A logistic regression analysis of all three malaria infection populations between 2007 and 2009 revealed, that the chance of being infected with the HD haplotype decreased with time from 2007 to 2009 and increased in the uncomplicated and asymptomatic infections. Rh5 codons 147 and 148 showed heterogeneity at both an individual and population level and may be under some degree of immune selection.

  5. Malaria vaccine: the pros and cons.

    PubMed

    Saleh, J A; Yusuph, H; Zailani, S B; Aji, B

    2010-01-01

    Malaria is an important parasitic disease of humans caused by infection with a parasite of the genus Polasmodium and transmitted by female anopheles. Infection caused by P. falciparum is the most serious of all the other species (P. ovale, P. vivax and P. malariae) especially in terms of morbidity and mortality hence the reason why most of the research has been focussed on this species. The disease affects up to about 40 per cent of the world's population with around 300-500 million people currently infected and mainly in the tropics. It has a high morbidity and mortality especially in resource-poor tropical and subtropical regions with an economic fall of about US$ 12 billion annually in Africa alone. relevant literatures were reviewed from medical journals, library search and internet source. Other relevant websites like PATH, Malaria Vaccine Initiative and Global Fund were also visited to source for information. The key words employed were: malaria, vaccine, anopheles mosquito, insecticide treated bed-nets, pyrethroids and Plasmodium. several studies have underscored the need to develop an effective human malaria vaccine for the control and possible eradication of malaria across the globe with the view to reduce the morbidity and mortality associated with the disease, improve on the social and economic losses and also protect those at risk. It is very obvious that the need for effective human malaria vaccine is not only to serve those living in malaria endemic regions but also the non-immune travellers especially those travelling to malaria endemic areas; this would offer cost effective means of preventing the disease, reducing the morbidity and mortality associated with it in addition to closing the gap left by other control measures. It is very obvious that there is no single control measure known to be effective in the control of malaria, hence the need for combination of more than one method with the aim of achieving synergy in the total control and possible

  6. Functional evaluation of malaria Pfs25 DNA vaccine by in vivo electroporation in olive baboons.

    PubMed

    Kumar, Rajesh; Nyakundi, Ruth; Kariuki, Thomas; Ozwara, Hastings; Nyamongo, Onkoba; Mlambo, Godfree; Ellefsen, Barry; Hannaman, Drew; Kumar, Nirbhay

    2013-06-28

    Plasmodium falciparum Pfs25 antigen, expressed on the surface of zygotes and ookinetes, is one of the leading targets for the development of a malaria transmission-blocking vaccine (TBV). Our laboratory has been evaluating DNA plasmid based Pfs25 vaccine in mice and non-human primates. Previously, we established that in vivo electroporation (EP) delivery is an effective method to improve the immunogenicity of DNA vaccine encoding Pfs25 in mice. In order to optimize the in vivo EP procedure and test for its efficacy in more clinically relevant larger animal models, we employed in vivo EP to evaluate the immune response and protective efficacy of Pfs25 encoding DNA vaccine in nonhuman primates (olive baboons, Papio anubis). The results showed that at a dose of 2.5mg DNA vaccine, antibody responses were significantly enhanced with EP as compared to without EP resulting in effective transmission blocking efficiency. Similar immunogenicity enhancing effect of EP was also observed with lower doses (0.5mg and 1mg) of DNA plasmids. Further, final boosting with a single dose of recombinant Pfs25 protein resulted in dramatically enhanced antibody titers and significantly increased functional transmission blocking efficiency. Our study suggests priming with DNA vaccine via EP along with protein boost regimen as an effective method to elicit potent immunogenicity of malaria DNA vaccines in nonhuman primates and provides the basis for further evaluation in human volunteers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Induction of Strain-Transcending Immunity against Plasmodium chabaudi adami Malaria with a Multiepitope DNA Vaccine

    PubMed Central

    Scorza, T.; Grubb, K.; Smooker, P.; Rainczuk, A.; Proll, D.; Spithill, T. W.

    2005-01-01

    A major goal of current malaria vaccine programs is to develop multivalent vaccines that will protect humans against the many heterologous malaria strains that circulate in endemic areas. We describe a multiepitope DNA vaccine, derived from a genomic Plasmodium chabaudi adami DS DNA expression library of 30,000 plasmids, which induces strain-transcending immunity in mice against challenge with P. c. adami DK. Segregation of this library and DNA sequence analysis identified vaccine subpools encoding open reading frames (ORFs)/peptides of >9 amino acids [aa] (the V9+ pool, 303 plasmids) and >50 aa (V50+ pool, 56 plasmids), respectively. The V9+ and V50+ plasmid vaccine subpools significantly cross-protected mice against heterologous P. c. adami DK challenge, and protection correlated with the induction of both specific gamma interferon production by splenic cells and opsonizing antibodies. Bioinformatic analysis showed that 22 of the V50+ ORFs were polypeptides conserved among three or more Plasmodium spp., 13 of which are predicted hypothetical proteins. Twenty-nine of these ORFs are orthologues of predicted Plasmodium falciparum sequences known to be expressed in the blood stage, suggesting that this vaccine pool encodes multiple blood-stage antigens. The results have implications for malaria vaccine design by providing proof-of-principle that significant strain-transcending immunity can be induced using multiepitope blood-stage DNA vaccines and suggest that both cellular responses and opsonizing antibodies are necessary for optimal protection against P. c. adami. PMID:15845504

  8. Immune Responses Induced by Gene Gun or Intramuscular Injection of DNA Vaccines That Express Immunogenic Regions of the Serine Repeat Antigen from Plasmodium falciparum

    PubMed Central

    Belperron, Alexia A.; Feltquate, David; Fox, Barbara A.; Horii, Toshihiro; Bzik, David J.

    1999-01-01

    The liver- and blood-stage-expressed serine repeat antigen (SERA) of Plasmodium falciparum is a candidate protein for a human malaria vaccine. We compared the immune responses induced in mice immunized with SERA-expressing plasmid DNA vaccines delivered by intramuscular (i.m.) injection or delivered intradermally by Gene Gun immunization. Mice were immunized with a pcdna3 plasmid encoding the entire 47-kDa domain of SERA (amino acids 17 to 382) or the N-terminal domain (amino acids 17 to 110) of SERA. Minimal antibody responses were detected following DNA vaccination with the N-terminal domain of SERA, suggesting that the N-terminal domain alone is not highly immunogenic by this route of vaccine delivery. Immunization of mice by Gene Gun delivery of the 47-kDa domain of SERA elicited a significantly higher serum antibody titer to the antigen than immunization of mice by i.m. injection with the same plasmid did. The predominant isotype subclass of the antibodies elicited to the SERA protein following i.m. and Gene Gun immunizations with SERA plasmid DNA was immunoglobulin G1. Coimmunization of mice with SERA plasmid DNA and a plasmid expressing the hepatitis B surface antigen (pCMV-s) by the i.m. route resulted in higher anti-SERA titers than those generated in mice immunized with the SERA DNA plasmid alone. Vaccination with DNA may provide a viable alternative or may be used in conjunction with protein-based subunit vaccines to maximize the efficacy of a human malaria vaccine that includes immunogenic regions of the SERA protein. PMID:10496891

  9. Epitope-based recombinant diagnostic antigen to distinguish natural infection from vaccination with hepatitis A virus vaccines.

    PubMed

    Su, Qiudong; Guo, Minzhuo; Jia, Zhiyuan; Qiu, Feng; Lu, Xuexin; Gao, Yan; Meng, Qingling; Tian, Ruiguang; Bi, Shengli; Yi, Yao

    2016-07-01

    Hepatitis A virus (HAV) infection can stimulate the production of antibodies to structural and non-structural proteins of the virus. However, vaccination with an inactivated or attenuated HAV vaccine produces antibodies mainly against structural proteins, whereas no or very limited antibodies are produced against the non-structural proteins. Current diagnostic assays to determine exposure to HAV, such as the Abbott HAV AB test, detect antibodies only to the structural proteins and so are not able to distinguish a natural infection from vaccination with an inactivated or attenuated virus. Here, we constructed a recombinant tandem multi-epitope diagnostic antigen (designated 'H1') based on the immune-dominant epitopes of the non-structural proteins of HAV to distinguish the two situations. H1 protein expressed in Escherichia coli and purified by affinity and anion exchange chromatography was applied in a double-antigen sandwich ELISA for the detection of anti-non-structural HAV proteins, which was confirmed to distinguish a natural infection from vaccination with an inactivated or attenuated HAV vaccine. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Malaria vaccine: WHO position paper, January 2016 - Recommendations.

    PubMed

    2018-06-14

    This article presents the World Health Organization's (WHO) recommendations on the use of malaria vaccine excerpted from the WHO position paper on malaria vaccine published in the Weekly epidemiological Record in January 2016 [1]. The current document is the first WHO position paper on malaria vaccination and focuses primarily on the available evidence concerning the only malaria vaccine having received a positive regulation assessment from the European Medicines Agency (EMA) [2]. The position paper gives consideration to the epidemiological features of the disease and assesses the potential use of the vaccine for public health benefits. Footnotes to this paper provide a number of core references including references to grading tables that assess the quality of the scientific evidence, and to the evidence to recommendation table. In accordance with its mandate to provide guidance to Member States on health policy matters, WHO issues a series of regularly updated position papers on vaccines and combinations of vaccines against diseases that have an international public health impact. These papers are concerned primarily with the use of vaccines in large-scale immunization programmes; they summarize essential background information on diseases and vaccines, and conclude with WHO's current position on the use of vaccines in the global context. This paper reflects the joint recommendation of the WHO's Strategic Advisory Group of Experts (SAGE) on immunization and the Malaria Policy Advisory Committee (MPAC). These recommendations were discussed by SAGE and MPAC at the October 2015 SAGE meeting. Evidence presented at the meeting can be accessed at http://www.who.int/immunization/sage/previous/en/index.html. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Design of a Phase III cluster randomized trial to assess the efficacy and safety of a malaria transmission blocking vaccine.

    PubMed

    Delrieu, Isabelle; Leboulleux, Didier; Ivinson, Karen; Gessner, Bradford D

    2015-03-24

    Vaccines interrupting Plasmodium falciparum malaria transmission targeting sexual, sporogonic, or mosquito-stage antigens (SSM-VIMT) are currently under development to reduce malaria transmission. An international group of malaria experts was established to evaluate the feasibility and optimal design of a Phase III cluster randomized trial (CRT) that could support regulatory review and approval of an SSM-VIMT. The consensus design is a CRT with a sentinel population randomly selected from defined inner and buffer zones in each cluster, a cluster size sufficient to assess true vaccine efficacy in the inner zone, and inclusion of ongoing assessment of vaccine impact stratified by distance of residence from the cluster edge. Trials should be conducted first in areas of moderate transmission, where SSM-VIMT impact should be greatest. Sample size estimates suggest that such a trial is feasible, and within the range of previously supported trials of malaria interventions, although substantial issues to implementation exist. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines.

    PubMed

    Richie, Thomas L; Billingsley, Peter F; Sim, B Kim Lee; James, Eric R; Chakravarty, Sumana; Epstein, Judith E; Lyke, Kirsten E; Mordmüller, Benjamin; Alonso, Pedro; Duffy, Patrick E; Doumbo, Ogobara K; Sauerwein, Robert W; Tanner, Marcel; Abdulla, Salim; Kremsner, Peter G; Seder, Robert A; Hoffman, Stephen L

    2015-12-22

    Sanaria Inc. has developed methods to manufacture, purify and cryopreserve aseptic Plasmodium falciparum (Pf) sporozoites (SPZ), and is using this platform technology to develop an injectable PfSPZ-based vaccine that provides high-grade, durable protection against infection with Pf malaria. Several candidate vaccines are being developed and tested, including PfSPZ Vaccine, in which the PfSPZ are attenuated by irradiation, PfSPZ-CVac, in which fully infectious PfSPZ are attenuated in vivo by concomitant administration of an anti-malarial drug, and PfSPZ-GA1, in which the PfSPZ are attenuated by gene knockout. Forty-three research groups in 15 countries, organized as the International PfSPZ Consortium (I-PfSPZ-C), are collaborating to advance this program by providing intellectual, clinical, and financial support. Fourteen clinical trials of these products have been completed in the USA, Europe and Africa, two are underway and at least 12 more are planned for 2015-2016 in the US (four trials), Germany (2 trials), Tanzania, Kenya, Mali, Burkina Faso, Ghana and Equatorial Guinea. Sanaria anticipates application to license a first generation product as early as late 2017, initially to protect adults, and a year later to protect all persons >6 months of age for at least six months. Improved vaccine candidates will be advanced as needed until the following requirements have been met: long-term protection against natural transmission, excellent safety and tolerability, and operational feasibility for population-wide administration. Here we describe the three most developed whole PfSPZ vaccine candidates, associated clinical trials, initial plans for licensure and deployment, and long-term objectives for a final product suitable for mass administration to achieve regional malaria elimination and eventual global eradication. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines

    PubMed Central

    Richie, Thomas L.; Billingsley, Peter F.; Sim, B. Kim Lee; James, Eric R.; Chakravarty, Sumana; Epstein, Judith E.; Lyke, Kirsten E.; Mordmüller, Benjamin; Alonso, Pedro; Duffy, Patrick E.; Doumbo, Ogobara K.; Sauerwein, Robert W.; Tanner, Marcel; Abdulla, Salim; Kremsner, Peter G.; Seder, Robert A.; Hoffman, Stephen L.

    2016-01-01

    Sanaria Inc. has developed methods to manufacture, purify and cryopreserve aseptic Plasmodium falciparum (Pf) sporozoites (SPZ), and is using this platform technology to develop an injectable PfSPZ-based vaccine that provides high-grade, durable protection against infection with Pf malaria. Several candidate vaccines are being developed and tested, including PfSPZ Vaccine, in which the PfSPZ are attenuated by irradiation, PfSPZ-CVac, in which fully infectious PfSPZ are attenuated in vivo by concomitant administration of an anti-malarial drug, and PfSPZ-GA1, in which the PfSPZ are attenuated by gene knockout. Forty-three research groups in 15 countries, organized as the International PfSPZ Consortium (I-PfSPZ-C), are collaborating to advance this program by providing intellectual, clinical, and financial support. Fourteen clinical trials of these products have been completed in the USA, Europe and Africa, two are underway and at least 12 more are planned for 2015–2016 in the US (four trials), Germany (2 trials), Tanzania, Kenya, Mali, Burkina Faso, Ghana and Equatorial Guinea. Sanaria anticipates application to license a first generation product as early as late 2017, initially to protect adults, and a year later to protect all persons >6 months of age for at least six months. Improved vaccine candidates will be advanced as needed until the following requirements have been met: long-term protection against natural transmission, excellent safety and tolerability, and operational feasibility for population-wide administration. Here we describe the three most developed whole PfSPZ vaccine candidates, associated clinical trials, initial plans for licensure and deployment, and long-term objectives for a final product suitable for mass administration to achieve regional malaria elimination and eventual global eradication. PMID:26469720

  14. Microneedle Array Design Determines the Induction of Protective Memory CD8+ T Cell Responses Induced by a Recombinant Live Malaria Vaccine in Mice

    PubMed Central

    Carey, John B.; Pearson, Frances E.; Vrdoljak, Anto; McGrath, Marie G.; Crean, Abina M.; Walsh, Patrick T.; Doody, Timothy; O'Mahony, Conor; Hill, Adrian V. S.; Moore, Anne C.

    2011-01-01

    Background Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC), must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID) with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8+ T cell responses to a malaria antigen induced by a live vaccine. Methodology and Findings Recombinant modified vaccinia virus Ankara (MVA) expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes. Conclusions/Significance This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8+ T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction

  15. Strain Selection for Generation of O-Antigen-Based Glycoconjugate Vaccines against Invasive Nontyphoidal Salmonella Disease

    PubMed Central

    Saul, Allan; MacLennan, Calman A.; Micoli, Francesca; Rondini, Simona

    2015-01-01

    Nontyphoidal Salmonellae, principally S. Typhimurium and S. Enteritidis, are a major cause of invasive bloodstream infections in sub-Saharan Africa with no vaccine currently available. Conjugation of lipopolysaccharide O-antigen to a carrier protein constitutes a promising vaccination strategy. Here we describe a rational process to select the most appropriate isolates of Salmonella as source of O-antigen for developing a bivalent glycoconjugate vaccine. We screened a library of 30 S. Typhimurium and 21 S. Enteritidis in order to identify the most suitable strains for large scale O-antigen production and generation of conjugate vaccines. Initial screening was based on growth characteristics, safety profile of the isolates, O-antigen production, and O-antigen characteristics in terms of molecular size, O-acetylation and glucosylation level and position, as determined by phenol sulfuric assay, NMR, HPLC-SEC and HPAEC-PAD. Three animal isolates for each serovar were identified and used to synthesize candidate glycoconjugate vaccines, using CRM197 as carrier protein. The immunogenicity of these conjugates and the functional activity of the induced antibodies was investigated by ELISA, serum bactericidal assay and flow cytometry. S. Typhimurium O-antigen showed high structural diversity, including O-acetylation of rhamnose in a Malawian invasive strain generating a specific immunodominant epitope. S. Typhimurium conjugates provoked an anti-O-antigen response primarily against the O:5 determinant. O-antigen from S. Enteritidis was structurally more homogeneous than from S. Typhimurium, and no idiosyncratic antibody responses were detected for the S. Enteritidis conjugates. Of the three initially selected isolates, two S. Typhimurium (1418 and 2189) and two S. Enteritidis (502 and 618) strains generated glycoconjugates able to induce high specific antibody levels with high breadth of serovar-specific strain coverage, and were selected for use in vaccine production. The

  16. Antigenic value of lyophilized phenolized antirabies vaccine.

    PubMed

    VEERARAGHAVAN, N; SUBRAHMANYAN, T P

    1961-01-01

    The authors present the results of experiments, carried out at the Pasteur Institute of Southern India, Coonoor, in which various preparations of lyophilized and liquid phenolized antirabies vaccines were assessed for antigenicity in relation to the NIH (United States National Institutes of Health) Reference Vaccine 164 (the proposed International Reference Preparation of Rabies Vaccine). The claim that phenolized antirabies vaccines can be lyophilized without loss of antigenicity was fully substantiated: the lyophilized vaccines were found to possess high antigenic values and to retain their antigenicity better than the liquid vaccines during storage under the same conditions.

  17. Antigenic value of lyophilized phenolized antirabies vaccine

    PubMed Central

    Veeraraghavan, N.; Subrahmanyan, T. P.

    1961-01-01

    The authors present the results of experiments, carried out at the Pasteur Institute of Southern India, Coonoor, in which various preparations of lyophilized and liquid phenolized antirabies vaccines were assessed for antigenicity in relation to the NIH (United States National Institutes of Health) Reference Vaccine 164 (the proposed International Reference Preparation of Rabies Vaccine). The claim that phenolized antirabies vaccines can be lyophilized without loss of antigenicity was fully substantiated: the lyophilized vaccines were found to possess high antigenic values and to retain their antigenicity better than the liquid vaccines during storage under the same conditions. PMID:13925168

  18. Vaccine approaches to malaria control and elimination: Insights from mathematical models.

    PubMed

    White, Michael T; Verity, Robert; Churcher, Thomas S; Ghani, Azra C

    2015-12-22

    A licensed malaria vaccine would provide a valuable new tool for malaria control and elimination efforts. Several candidate vaccines targeting different stages of the malaria parasite's lifecycle are currently under development, with one candidate, RTS,S/AS01 for the prevention of Plasmodium falciparum infection, having recently completed Phase III trials. Predicting the public health impact of a candidate malaria vaccine requires using clinical trial data to estimate the vaccine's efficacy profile--the initial efficacy following vaccination and the pattern of waning of efficacy over time. With an estimated vaccine efficacy profile, the effects of vaccination on malaria transmission can be simulated with the aid of mathematical models. Here, we provide an overview of methods for estimating the vaccine efficacy profiles of pre-erythrocytic vaccines and transmission-blocking vaccines from clinical trial data. In the case of RTS,S/AS01, model estimates from Phase II clinical trial data indicate a bi-phasic exponential profile of efficacy against infection, with efficacy waning rapidly in the first 6 months after vaccination followed by a slower rate of waning over the next 4 years. Transmission-blocking vaccines have yet to be tested in large-scale Phase II or Phase III clinical trials so we review ongoing work investigating how a clinical trial might be designed to ensure that vaccine efficacy can be estimated with sufficient statistical power. Finally, we demonstrate how parameters estimated from clinical trials can be used to predict the impact of vaccination campaigns on malaria using a mathematical model of malaria transmission. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Community perceptions of a malaria vaccine in the Kintampo districts of Ghana

    PubMed Central

    2013-01-01

    Background Malaria remains the leading cause of morbidity and mortality in sub-Saharan Africa despite tools currently available for its control. Making malaria vaccine available for routine use will be a major hallmark, but its acceptance by community members and health professionals within the health system could pose considerable challenge as has been found with the introduction of polio vaccinations in parts of West Africa. Some of these challenges may not be expected since decisions people make are many a time driven by a complex myriad of perceptions. This paper reports knowledge and perceptions of community members in the Kintampo area of Ghana where malaria vaccine trials have been ongoing as part of the drive for the first-ever licensed malaria vaccine in the near future. Methods Both qualitative and quantitative methods were used in the data collection processes. Women and men whose children were or were not involved in the malaria vaccine trial were invited to participate in focus group discussions (FGDs). Respondents, made up of heads of religious groupings in the study area, health care providers, traditional healers and traditional birth attendants, were also invited to participate in in-depth interviews (IDIs). A cross-sectional survey was conducted in communities where the malaria vaccine trial (Mal 047RTS,S) was carried out. In total, 12 FGDs, 15 IDIs and 466 household head interviews were conducted. Results Knowledge about vaccines was widespread among participants. Respondents would like their children to be vaccinated against all childhood illnesses including malaria. Knowledge of the long existing routine vaccines was relatively high among respondents compared to hepatitis B and Haemophilus influenza type B vaccines that were introduced more recently in 2002. There was no clear religious belief or sociocultural practice that will serve as a possible barrier to the acceptance of a malaria vaccine. Conclusion With the assumption that a malaria

  20. Community perceptions of a malaria vaccine in the Kintampo districts of Ghana.

    PubMed

    Febir, Lawrence G; Asante, Kwaku P; Dzorgbo, Dan-Bright S; Senah, Kojo A; Letsa, Timothy S; Owusu-Agyei, Seth

    2013-05-07

    Malaria remains the leading cause of morbidity and mortality in sub-Saharan Africa despite tools currently available for its control. Making malaria vaccine available for routine use will be a major hallmark, but its acceptance by community members and health professionals within the health system could pose considerable challenge as has been found with the introduction of polio vaccinations in parts of West Africa. Some of these challenges may not be expected since decisions people make are many a time driven by a complex myriad of perceptions. This paper reports knowledge and perceptions of community members in the Kintampo area of Ghana where malaria vaccine trials have been ongoing as part of the drive for the first-ever licensed malaria vaccine in the near future. Both qualitative and quantitative methods were used in the data collection processes. Women and men whose children were or were not involved in the malaria vaccine trial were invited to participate in focus group discussions (FGDs). Respondents, made up of heads of religious groupings in the study area, health care providers, traditional healers and traditional birth attendants, were also invited to participate in in-depth interviews (IDIs). A cross-sectional survey was conducted in communities where the malaria vaccine trial (Mal 047RTS,S) was carried out. In total, 12 FGDs, 15 IDIs and 466 household head interviews were conducted. Knowledge about vaccines was widespread among participants. Respondents would like their children to be vaccinated against all childhood illnesses including malaria. Knowledge of the long existing routine vaccines was relatively high among respondents compared to hepatitis B and Haemophilus influenza type B vaccines that were introduced more recently in 2002. There was no clear religious belief or sociocultural practice that will serve as a possible barrier to the acceptance of a malaria vaccine. With the assumption that a malaria vaccine will be as efficacious as other

  1. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    PubMed Central

    Chuang, Ilin; Sedegah, Martha; Cicatelli, Susan; Spring, Michele; Polhemus, Mark; Tamminga, Cindy; Patterson, Noelle; Guerrero, Melanie; Bennett, Jason W.; McGrath, Shannon; Ganeshan, Harini; Belmonte, Maria; Farooq, Fouzia; Abot, Esteban; Banania, Jo Glenna; Huang, Jun; Newcomer, Rhonda; Rein, Lisa; Litilit, Dianne; Richie, Nancy O.; Wood, Chloe; Murphy, Jittawadee; Sauerwein, Robert; Hermsen, Cornelus C.; McCoy, Andrea J.; Kamau, Edwin; Cummings, James; Komisar, Jack; Sutamihardja, Awalludin; Shi, Meng; Epstein, Judith E.; Maiolatesi, Santina; Tosh, Donna; Limbach, Keith; Angov, Evelina; Bergmann-Leitner, Elke; Bruder, Joseph T.; Doolan, Denise L.; King, C. Richter; Carucci, Daniel; Dutta, Sheetij; Soisson, Lorraine; Diggs, Carter; Hollingdale, Michael R.; Ockenhouse, Christian F.; Richie, Thomas L.

    2013-01-01

    Background Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. Methodology/Principal Findings The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. Significance The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was

  2. Progress and prospects for blood-stage malaria vaccines.

    PubMed

    Miura, Kazutoyo

    2016-06-01

    There have been significant decreases in malaria mortality and morbidity in the last 10-15 years, and the most advanced pre-erythrocytic malaria vaccine, RTS,S, received a positive opinion from European regulators in July 2015. However, no blood-stage vaccine has reached a phase III trial. The first part of this review summarizes the pros and cons of various assays and models that have been and will be used to predict the efficacy of blood-stage vaccines. In the second part, blood-stage vaccine candidates that showed some efficacy in human clinical trials or controlled human malaria infection models are discussed. Then, candidates under clinical investigation are described in the third part, and other novel candidates and strategies are reviewed in the last part.

  3. Malaria vaccine development and how external forces shape it: an overview.

    PubMed

    Lorenz, Veronique; Karanis, Gabriele; Karanis, Panagiotis

    2014-06-30

    The aim of this paper is to analyse the current status and scientific value of malaria vaccine approaches and to provide a realistic prognosis for future developments. We systematically review previous approaches to malaria vaccination, address how vaccine efforts have developed, how this issue may be fixed, and how external forces shape vaccine development. Our analysis provides significant information on the various aspects and on the external factors that shape malaria vaccine development and reveal the importance of vaccine development in our society.

  4. Pre-clinical and clinical development of the first placental malaria vaccine.

    PubMed

    Pehrson, Caroline; Salanti, Ali; Theander, Thor G; Nielsen, Morten A

    2017-06-01

    Malaria during pregnancy is a massive health problem in endemic areas. Placental malaria infections caused by Plasmodium falciparum are responsible for up to one million babies being born with a low birth weight every year. Significant efforts have been invested into preventing the condition. Areas covered: Pub Med was searched using the broad terms 'malaria parasite placenta' to identify studies of interactions between parasite and host, 'prevention of placental malaria' to identify current strategies to prevent placental malaria, and 'placental malaria vaccine' to identify pre-clinical vaccine development. However, all papers from these searches were not systematically included. Expert commentary: The first phase I clinical trials of vaccines are well underway. Trials testing efficacy are more complicated to carry out as only women that are exposed to parasites during pregnancy will contribute to endpoint measurements, further it may require extensive follow-up to establish protection. Future second generation vaccines may overcome the inherent challenges in making an effective placental malaria vaccine.

  5. A malaria vaccine for travelers and military personnel: Requirements and top candidates.

    PubMed

    Teneza-Mora, Nimfa; Lumsden, Joanne; Villasante, Eileen

    2015-12-22

    Malaria remains an important health threat to non-immune travelers with the explosive growth of global travel. Populations at high risk of acquiring malaria infections include once semi-immune travelers who visit friends and relatives, military forces, business travelers and international tourists with destinations to sub-Saharan Africa, where malaria transmission intensity is high. Most malaria cases have been associated with poor compliance with existing preventive measures, including chemoprophylaxis. High risk groups would benefit immensely from an efficacious vaccine to protect them against malaria infection and together make up a sizable market for such a vaccine. The attributes of an ideal malaria vaccine for non-immune travelers and military personnel include a protective efficacy of 80% or greater, durability for at least 6 months, an acceptable safety profile and compatibility with existing preventive measures. It is very likely that a malaria vaccine designed to effectively prevent infection and clinical disease in the non-immune traveler and military personnel will also protect semi-immune residents of malaria-endemic areas and contribute to malaria elimination by reducing or blocking malaria transmission. The RTS,S vaccine (GlaxoSmithKline) and the PfSPZ Vaccine (Sanaria Inc) are the leading products that would make excellent vaccine candidates for these vulnerable populations. Published by Elsevier Ltd.

  6. Safety and immunogenicity of heterologous prime-boost immunisation with Plasmodium falciparum malaria candidate vaccines, ChAd63 ME-TRAP and MVA ME-TRAP, in healthy Gambian and Kenyan adults.

    PubMed

    Ogwang, Caroline; Afolabi, Muhammed; Kimani, Domtila; Jagne, Ya Jankey; Sheehy, Susanne H; Bliss, Carly M; Duncan, Christopher J A; Collins, Katharine A; Garcia Knight, Miguel A; Kimani, Eva; Anagnostou, Nicholas A; Berrie, Eleanor; Moyle, Sarah; Gilbert, Sarah C; Spencer, Alexandra J; Soipei, Peninah; Mueller, Jenny; Okebe, Joseph; Colloca, Stefano; Cortese, Riccardo; Viebig, Nicola K; Roberts, Rachel; Gantlett, Katherine; Lawrie, Alison M; Nicosia, Alfredo; Imoukhuede, Egeruan B; Bejon, Philip; Urban, Britta C; Flanagan, Katie L; Ewer, Katie J; Chilengi, Roma; Hill, Adrian V S; Bojang, Kalifa

    2013-01-01

    Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified vaccinia Virus Ankara (MVA) vectored vaccines is a strategy recently shown to be capable of inducing strong cell mediated responses against several antigens from the malaria parasite. ChAd63-MVA expressing the Plasmodium falciparum pre-erythrocytic antigen ME-TRAP (multiple epitope string with thrombospondin-related adhesion protein) is a leading malaria vaccine candidate, capable of inducing sterile protection in malaria naïve adults following controlled human malaria infection (CHMI). We conducted two Phase Ib dose escalation clinical trials assessing the safety and immunogenicity of ChAd63-MVA ME-TRAP in 46 healthy malaria exposed adults in two African countries with similar malaria transmission patterns. ChAd63-MVA ME-TRAP was shown to be safe and immunogenic, inducing high-level T cell responses (median >1300 SFU/million PBMC). ChAd63-MVA ME-TRAP is a safe and highly immunogenic vaccine regimen in adults with prior exposure to malaria. Further clinical trials to assess safety and immunogenicity in children and infants and protective efficacy in the field are now warranted. Pactr.org PACTR2010020001771828 Pactr.org PACTR201008000221638 ClinicalTrials.gov NCT01373879 NCT01373879 ClinicalTrials.gov NCT01379430 NCT01379430.

  7. DNA vaccines: roles against diseases

    PubMed Central

    Khan, Kishwar Hayat

    2013-01-01

    Vaccination is the most successful application of immunological principles to human health. Vaccine efficacy needs to be reviewed from time to time and its safety is an overriding consideration. DNA vaccines offer simple yet effective means of inducing broad-based immunity. These vaccines work by allowing the expression of the microbial antigen inside host cells that take up the plasmid. These vaccines function by generating the desired antigen inside the cells, with the advantage that this may facilitate presentation through the major histocompatibility complex. This review article is based on a literature survey and it describes the working and designing strategies of DNA vaccines. Advantages and disadvantages for this type of vaccines have also been explained, together with applications of DNA vaccines. DNA vaccines against cancer, tuberculosis, Edwardsiella tarda, HIV, anthrax, influenza, malaria, dengue, typhoid and other diseases were explored. PMID:24432284

  8. Vaccines to Accelerate Malaria Elimination and Eventual Eradication.

    PubMed

    Healer, Julie; Cowman, Alan F; Kaslow, David C; Birkett, Ashley J

    2017-09-01

    Remarkable progress has been made in coordinated malaria control efforts with substantial reductions in malaria-associated deaths and morbidity achieved through mass administration of drugs and vector control measures including distribution of long-lasting insecticide-impregnated bednets and indoor residual spraying. However, emerging resistance poses a significant threat to the sustainability of these interventions. In this light, the malaria research community has been charged with the development of a highly efficacious vaccine to complement existing malaria elimination measures. As the past 40 years of investment in this goal attests, this is no small feat. The malaria parasite is a highly complex organism, exquisitely adapted for survival under hostile conditions within human and mosquito hosts. Here we review current vaccine strategies to accelerate elimination and the potential for novel and innovative approaches to vaccine design through a better understanding of the host-parasite interaction. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  9. Clinical development of placental malaria vaccines and immunoassays harmonization: a workshop report.

    PubMed

    Chêne, Arnaud; Houard, Sophie; Nielsen, Morten A; Hundt, Sophia; D'Alessio, Flavia; Sirima, Sodiomon B; Luty, Adrian J F; Duffy, Patrick; Leroy, Odile; Gamain, Benoit; Viebig, Nicola K

    2016-09-17

    Placental malaria caused by Plasmodium falciparum infection constitutes a major health problem manifesting as severe disease and anaemia in the mother, impaired fetal development, low birth weight or spontaneous abortion. Prevention of placental malaria currently relies on two key strategies that are losing efficacy due to spread of resistance: long-lasting insecticide-treated nets and intermittent preventive treatment during pregnancy. A placental malaria vaccine would be an attractive, cost-effective complement to the existing control tools. Two placental malaria vaccine candidates are currently in Phase Ia/b clinical trials. During two workshops hosted by the European Vaccine Initiative, one in Paris in April 2014 and the other in Brussels in November 2014, the main actors in placental malaria vaccine research discussed the harmonization of clinical development plans and of the immunoassays with a goal to define standards that will allow comparative assessment of different placental malaria vaccine candidates. The recommendations of these workshops should guide researchers and clinicians in the further development of placental malaria vaccines.

  10. Progress and prospects for blood-stage malaria vaccines

    PubMed Central

    Miura, Kazutoyo

    2016-01-01

    ABSTRACT There have been significant decreases in malaria mortality and morbidity in the last 10-15 years, and the most advanced pre-erythrocytic malaria vaccine, RTS,S, received a positive opinion from European regulators in July 2015. However, no blood-stage vaccine has reached a phase III trial. The first part of this review summarizes the pros and cons of various assays and models that have been and will be used to predict the efficacy of blood-stage vaccines. In the second part, blood-stage vaccine candidates that showed some efficacy in human clinical trials or controlled human malaria infection models are discussed. Then, candidates under clinical investigation are described in the third part, and other novel candidates and strategies are reviewed in the last part. PMID:26760062

  11. Peptide/protein vaccine delivery system based on PLGA particles.

    PubMed

    Allahyari, Mojgan; Mohit, Elham

    2016-03-03

    Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted.

  12. Peptide/protein vaccine delivery system based on PLGA particles

    PubMed Central

    Allahyari, Mojgan; Mohit, Elham

    2016-01-01

    abstract Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted. PMID:26513024

  13. Modeling the public health impact of malaria vaccines for developers and policymakers

    PubMed Central

    2013-01-01

    Background Efforts to develop malaria vaccines show promise. Mathematical model-based estimates of the potential demand, public health impact, and cost and financing requirements can be used to inform investment and adoption decisions by vaccine developers and policymakers on the use of malaria vaccines as complements to existing interventions. However, the complexity of such models may make their outputs inaccessible to non-modeling specialists. This paper describes a Malaria Vaccine Model (MVM) developed to address the specific needs of developers and policymakers, who need to access sophisticated modeling results and to test various scenarios in a user-friendly interface. The model’s functionality is demonstrated through a hypothetical vaccine. Methods The MVM has three modules: supply and demand forecast; public health impact; and implementation cost and financing requirements. These modules include pre-entered reference data and also allow for user-defined inputs. The model includes an integrated sensitivity analysis function. Model functionality was demonstrated by estimating the public health impact of a hypothetical pre-erythrocytic malaria vaccine with 85% efficacy against uncomplicated disease and a vaccine efficacy decay rate of four years, based on internationally-established targets. Demand for this hypothetical vaccine was estimated based on historical vaccine implementation rates for routine infant immunization in 40 African countries over a 10-year period. Assumed purchase price was $5 per dose and injection equipment and delivery costs were $0.40 per dose. Results The model projects the number of doses needed, uncomplicated and severe cases averted, deaths and disability-adjusted life years (DALYs) averted, and cost to avert each. In the demonstration scenario, based on a projected demand of 532 million doses, the MVM estimated that 150 million uncomplicated cases of malaria and 1.1 million deaths would be averted over 10 years. This is

  14. Modeling the public health impact of malaria vaccines for developers and policymakers.

    PubMed

    Nunes, Julia K; Cárdenas, Vicky; Loucq, Christian; Maire, Nicolas; Smith, Thomas; Shaffer, Craig; Måseide, Kårstein; Brooks, Alan

    2013-07-01

    Efforts to develop malaria vaccines show promise. Mathematical model-based estimates of the potential demand, public health impact, and cost and financing requirements can be used to inform investment and adoption decisions by vaccine developers and policymakers on the use of malaria vaccines as complements to existing interventions. However, the complexity of such models may make their outputs inaccessible to non-modeling specialists. This paper describes a Malaria Vaccine Model (MVM) developed to address the specific needs of developers and policymakers, who need to access sophisticated modeling results and to test various scenarios in a user-friendly interface. The model's functionality is demonstrated through a hypothetical vaccine. The MVM has three modules: supply and demand forecast; public health impact; and implementation cost and financing requirements. These modules include pre-entered reference data and also allow for user-defined inputs. The model includes an integrated sensitivity analysis function. Model functionality was demonstrated by estimating the public health impact of a hypothetical pre-erythrocytic malaria vaccine with 85% efficacy against uncomplicated disease and a vaccine efficacy decay rate of four years, based on internationally-established targets. Demand for this hypothetical vaccine was estimated based on historical vaccine implementation rates for routine infant immunization in 40 African countries over a 10-year period. Assumed purchase price was $5 per dose and injection equipment and delivery costs were $0.40 per dose. The model projects the number of doses needed, uncomplicated and severe cases averted, deaths and disability-adjusted life years (DALYs) averted, and cost to avert each. In the demonstration scenario, based on a projected demand of 532 million doses, the MVM estimated that 150 million uncomplicated cases of malaria and 1.1 million deaths would be averted over 10 years. This is equivalent to 943 uncomplicated cases

  15. Rhesus macaque and mouse models for down-selecting circumsporozoite protein based malaria vaccines differ significantly in immunogenicity and functional outcomes.

    PubMed

    Phares, Timothy W; May, Anthony D; Genito, Christopher J; Hoyt, Nathan A; Khan, Farhat A; Porter, Michael D; DeBot, Margot; Waters, Norman C; Saudan, Philippe; Dutta, Sheetij

    2017-03-13

    Non-human primates, such as the rhesus macaques, are the preferred model for down-selecting human malaria vaccine formulations, but the rhesus model is expensive and does not allow for direct efficacy testing of human malaria vaccines. Transgenic rodent parasites expressing genes of human Plasmodium are now routinely used for efficacy studies of human malaria vaccines. Mice have however rarely predicted success in human malaria trials and there is scepticism whether mouse studies alone are sufficient to move a vaccine candidate into the clinic. A comparison of immunogenicity, fine-specificity and functional activity of two Alum-adjuvanted Plasmodium falciparum circumsporozoite protein (CSP)-based vaccines was conducted in mouse and rhesus models. One vaccine was a soluble recombinant protein (CSP) and the other was the same CSP covalently conjugated to the Qβ phage particle (Qβ-CSP). Mice showed different kinetics of antibody responses and different sensitivity to the NANP-repeat and N-terminal epitopes as compared to rhesus. While mice failed to discern differences between the protective efficacy of CSP versus Qβ-CSP vaccine following direct challenge with transgenic Plasmodium berghei parasites, rhesus serum from the Qβ-CSP-vaccinated animals induced higher in vivo sporozoite neutralization activity. Despite some immunologic parallels between models, these data demonstrate that differences between the immune responses induced in the two models risk conflicting decisions regarding potential vaccine utility in humans. In combination with historical observations, the data presented here suggest that although murine models may be useful for some purposes, non-human primate models may be more likely to predict the human response to investigational vaccines.

  16. Steps toward a globally available malaria vaccine: harnessing the potential of algae for future low cost vaccines.

    PubMed

    Jones, Carla S; Mayfield, Stephen P

    2013-01-01

    Malaria is an infectious disease that threatens half of the world's population. This debilitating disease is caused by infection from parasites of the genus Plasmodium. Insecticides, bed nets and drug therapies have lowered the prevalence and death rate associated with malaria but this disease continues to plague many populations around the world. In recent years, many organizations have suggested developing methods for a complete eradication of malaria. The most straightforward and effective method for this potential eradication will be through the development of a low-cost vaccine. To achieve eradication, it will be necessary to develop new vaccine candidates and novel systems for both the production and delivery of these vaccines. Recently, the green algae Chlamydomonas reinhardtii has been used for the recombinant expression of malaria vaccine candidates including the transmission blocking vaccine candidate Pfs48/45. Here, we discuss the potential of this research on the future development of a low-cost malaria vaccine candidate.

  17. A Novel Vaccine Delivery Model of the Apicomplexan Eimeria tenella Expressing Eimeria maxima Antigen Protects Chickens against Infection of the Two Parasites.

    PubMed

    Tang, Xinming; Liu, Xianyong; Yin, Guangwen; Suo, Jingxia; Tao, Geru; Zhang, Sixin; Suo, Xun

    2017-01-01

    Vaccine delivery is critical in antigen discovery and vaccine efficacy and safety. The diversity of infectious diseases in humans and livestock has required the development of varied delivery vehicles to target different pathogens. In livestock animals, previous strategies for the development of coccidiosis vaccines have encountered several hurdles, limiting the development of multiple species vaccine formulations. Here, we describe a novel vaccine delivery system using transgenic Eimeria tenella expressing immunodominant antigens of Eimeria maxima . In this delivery system, the immune mapped protein 1 of E. maxima (EmIMP1) was delivered by the closely related species of E. tenella to the host immune system during the whole endogenous life cycle. The overexpression of the exogenous antigen did not interfere with the reproduction and immunogenicity of transgenic Eimeria . After immunization with the transgenic parasite, we detected EmIMP1's and E. maxima oocyst antigens' specific humoral and cellular immune responses. In particular, we observed partial protection of chickens immunized with transgenic E. tenella against subsequent E. maxima infections. Our results demonstrate that the transgenic Eimeria parasite is an ideal coccidia antigen delivery vehicle and represents a new type of coccidiosis vaccines. In addition, this model could potentially be used in the development of malaria live sporozoite vaccines, in which antigens from different strains can be expressed in the vaccine strain.

  18. Malaria vaccine research and development: the role of the WHO MALVAC committee

    PubMed Central

    2013-01-01

    The WHO Malaria Vaccine Advisory Committee (MALVAC) provides advice to WHO on strategic priorities, activities and technical issues related to global efforts to develop vaccines against malaria. MALVAC convened a series of meetings to obtain expert, impartial consensus views on the priorities and best practice for vaccine-related research and development strategies. The technical areas covered during these consultations included: guidance on clinical trial design for candidate sporozoite and asexual blood stage vaccines; measures of efficacy of malaria vaccines in Phase IIb and Phase III trials; standardization of immunoassays; the challenges of developing assays and designing trials for interventions against malaria transmission; modelling impact of anti-malarial interventions; whole organism malaria vaccines, and Plasmodium vivax vaccine-related research and evaluation. These informed discussions and opinions are summarized here to provide guidance on harmonization of strategies to help ensure high standards of practice and comparability between centres and the outcome of vaccine trials. PMID:24112689

  19. Willingness to pay for hypothetical malaria vaccines in rural Burkina Faso.

    PubMed

    Sauerborn, Rainer; Gbangou, Adjima; Dong, Hengjin; Przyborski, Jude M; Lanzer, Michael

    2005-01-01

    This study aims to set priorities for anti-disease malaria vaccines by determining community preference in a hyperendemic area. A bidding game technique was used to elucidate willingness to pay in rural Burkina Faso and 2,326 adults were interviewed. It is shown that there are significant differences between community preference for an anti-disease vaccine aimed at reducing pathology in pregnant women, and for a vaccine directed against childhood malaria. While the target population was willing to pay CFAfr 2101 for a vaccine against maternal malaria, its members were prepared to pay only CFAfr 1433 for a vaccine against childhood malaria. Whilst it is increasingly likely that anti-disease malaria vaccines will become available in the foreseeable future, lessons from the past suggest that a lack of acceptance and support from the intended recipients may lead to less than optimal compliance, and hence efficacy. For the planning of vaccine development and application strategies, it is therefore highly important to take community views into account. Here it is argued that such information could help researchers and funding agencies to set priorities for future vaccine research.

  20. Adjuvanted pandemic influenza vaccine: variation of emulsion components affects stability, antigen structure, and vaccine efficacy

    PubMed Central

    Fox, Christopher B.; Barnes V, Lucien; Evers, Tara; Chesko, James D.; Vedvick, Thomas S.; Coler, Rhea N.; Reed, Steven G.; Baldwin, Susan L.

    2012-01-01

    Please cite this paper as: Fox et al. (2012) Adjuvanted pandemic influenza vaccine: variation of emulsion components affects stability, antigen structure, and vaccine efficacy. Influenza and Other Respiratory Viruses DOI: 10.1111/irv.12031. Abstract Background  Adjuvant formulations are critical components of modern vaccines based on recombinant proteins, which are often poorly immunogenic without additional immune stimulants. Oil‐in‐water emulsions comprise an advanced class of vaccine adjuvants that are components of approved seasonal and pandemic influenza vaccines. However, few reports have been published that systematically evaluate the in vitro stability and in vivo adjuvant effects of different emulsion components. Objectives  To evaluate distinct classes of surfactants, oils, and excipients, for their effects on emulsion particle size stability, antigen structural interactions, and in vivo activity when formulated with a recombinant H5N1 antigen. Methods  Emulsions were manufactured by high pressure homogenization and characterized alone or in the presence of vaccine antigen by dynamic light scattering, zeta potential, viscosity, pH, hemolytic activity, electron microscopy, fluorescence spectroscopy, and SDS‐PAGE. In vivo vaccine activity in the murine model was characterized by measuring antibody titers, antibody‐secreting plasma cells, hemagglutination inhibition titers, and cytokine production. Results  We demonstrate that surfactant class and presence of additional excipients are not critical for biological activity, whereas oil structure is crucial. Moreover, we report that simplified two‐component emulsions appear more stable by particle size than more complex formulations.Finally, differences in antigen structural interactions with the various emulsions do not appear to correlate with in vivo activity. Conclusions  Oil‐in‐water emulsions can significantly enhance antibody and cellular immune responses to a pandemic influenza

  1. Whole parasite blood stage malaria vaccines: a convergence of evidence.

    PubMed

    McCarthy, James S; Good, Michael F

    2010-01-01

    There is a growing realization of the limitations of recombinant protein-based malaria vaccines. This, coupled with a better understanding of the protective immunity to malaria, both in animal models and in naturally exposed human populations and experimentally infected volunteers, as well as the increased capacity to manipulate parasites provides new impetus to evaluate whole blood stage parasite approaches to malaria vaccine development. In this review previous studies in rodents and primates of whole killed and attenuated blood stage vaccines, and recent work on the effect of genetically attenuated parasites on immunity in rodent models of blood stage immunity are discussed. The relationship between these findings and what is now known about protective immunity in human populations, specifically against the blood stages of the parasite lifecycle is discussed and recent findings from human experimental infection are be reviewed. Finally, the prospect for and impediments to the development whole blood stage parasites are reviewed.

  2. Safety and Immunogenicity of Heterologous Prime-Boost Immunisation with Plasmodium falciparum Malaria Candidate Vaccines, ChAd63 ME-TRAP and MVA ME-TRAP, in Healthy Gambian and Kenyan Adults

    PubMed Central

    Kimani, Domtila; Jagne, Ya Jankey; Sheehy, Susanne H.; Bliss, Carly M.; Duncan, Christopher J. A.; Collins, Katharine A.; Garcia Knight, Miguel A.; Kimani, Eva; Anagnostou, Nicholas A.; Berrie, Eleanor; Moyle, Sarah; Gilbert, Sarah C.; Spencer, Alexandra J.; Soipei, Peninah; Mueller, Jenny; Okebe, Joseph; Colloca, Stefano; Cortese, Riccardo; Viebig, Nicola K.; Roberts, Rachel; Gantlett, Katherine; Lawrie, Alison M.; Nicosia, Alfredo; Imoukhuede, Egeruan B.; Bejon, Philip; Urban, Britta C.; Flanagan, Katie L.; Ewer, Katie J.; Chilengi, Roma; Hill, Adrian V. S.; Bojang, Kalifa

    2013-01-01

    Background Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified vaccinia Virus Ankara (MVA) vectored vaccines is a strategy recently shown to be capable of inducing strong cell mediated responses against several antigens from the malaria parasite. ChAd63-MVA expressing the Plasmodium falciparum pre-erythrocytic antigen ME-TRAP (multiple epitope string with thrombospondin-related adhesion protein) is a leading malaria vaccine candidate, capable of inducing sterile protection in malaria naïve adults following controlled human malaria infection (CHMI). Methodology We conducted two Phase Ib dose escalation clinical trials assessing the safety and immunogenicity of ChAd63-MVA ME-TRAP in 46 healthy malaria exposed adults in two African countries with similar malaria transmission patterns. Results ChAd63-MVA ME-TRAP was shown to be safe and immunogenic, inducing high-level T cell responses (median >1300 SFU/million PBMC). Conclusions ChAd63-MVA ME-TRAP is a safe and highly immunogenic vaccine regimen in adults with prior exposure to malaria. Further clinical trials to assess safety and immunogenicity in children and infants and protective efficacy in the field are now warranted. Trial Registration Pactr.org PACTR2010020001771828 Pactr.org PACTR201008000221638 ClinicalTrials.gov NCT01373879 NCT01373879 ClinicalTrials.gov NCT01379430 NCT01379430 PMID:23526949

  3. Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy.

    PubMed

    Bennett, Jason W; Yadava, Anjali; Tosh, Donna; Sattabongkot, Jetsumon; Komisar, Jack; Ware, Lisa A; McCarthy, William F; Cowden, Jessica J; Regules, Jason; Spring, Michele D; Paolino, Kristopher; Hartzell, Joshua D; Cummings, James F; Richie, Thomas L; Lumsden, Joanne; Kamau, Edwin; Murphy, Jittawadee; Lee, Cynthia; Parekh, Falgunee; Birkett, Ashley; Cohen, Joe; Ballou, W Ripley; Polhemus, Mark E; Vanloubbeeck, Yannick F; Vekemans, Johan; Ockenhouse, Christian F

    2016-02-01

    A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use. We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15 μg, 30 μg, or 60 μg respectively of VMP001, all formulated in 500 μL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls. The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period. This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials.

  4. Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy

    PubMed Central

    Bennett, Jason W.; Yadava, Anjali; Tosh, Donna; Sattabongkot, Jetsumon; Komisar, Jack; Ware, Lisa A.; McCarthy, William F.; Cowden, Jessica J.; Regules, Jason; Spring, Michele D.; Paolino, Kristopher; Hartzell, Joshua D.; Cummings, James F.; Richie, Thomas L.; Lumsden, Joanne; Kamau, Edwin; Murphy, Jittawadee; Lee, Cynthia; Parekh, Falgunee; Birkett, Ashley; Cohen, Joe; Ballou, W. Ripley; Polhemus, Mark E.; Vanloubbeeck, Yannick F.; Vekemans, Johan; Ockenhouse, Christian F.

    2016-01-01

    Background A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use. Methods We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15μg, 30μg, or 60μg respectively of VMP001, all formulated in 500μL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls. Results The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period. Significance This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for

  5. Development of vaccines for Plasmodium vivax malaria.

    PubMed

    Mueller, Ivo; Shakri, Ahmad Rushdi; Chitnis, Chetan E

    2015-12-22

    Plasmodium vivax continues to cause significant morbidity outside Africa with more than 50% of malaria cases in many parts of South and South-east Asia, Pacific islands, Central and South America being attributed to P. vivax infections. The unique biology of P. vivax, including its ability to form latent hypnozoites that emerge months to years later to cause blood stage infections, early appearance of gametocytes before clinical symptoms are apparent and a shorter development cycle in the vector makes elimination of P. vivax using standard control tools difficult. The availability of an effective vaccine that provides protection and prevents transmission would be a valuable tool in efforts to eliminate P. vivax. Here, we review the latest developments related to P. vivax malaria vaccines and discuss the challenges as well as directions toward the goal of developing highly efficacious vaccines against P. vivax malaria. Copyright © 2015. Published by Elsevier Ltd.

  6. Liposomes containing monophosphoryl lipid A and QS-21 serve as an effective adjuvant for soluble circumsporozoite protein malaria vaccine FMP013.

    PubMed

    Genito, Christopher J; Beck, Zoltan; Phares, Timothy W; Kalle, Fanta; Limbach, Keith J; Stefaniak, Maureen E; Patterson, Noelle B; Bergmann-Leitner, Elke S; Waters, Norman C; Matyas, Gary R; Alving, Carl R; Dutta, Sheetij

    2017-07-05

    Malaria caused by Plasmodium falciparum continues to threaten millions of people living in the tropical parts of the world. A vaccine that confers sterile and life-long protection remains elusive despite more than 30years of effort and resources invested in solving this problem. Antibodies to a malaria vaccine candidate circumsporozoite protein (CSP) can block invasion and can protect humans against malaria. We have manufactured the Falciparum Malaria Protein-013 (FMP013) vaccine based on the nearly full-length P. falciparum CSP 3D7 strain sequence. We report here immunogenicity and challenge data on FMP013 antigen in C57BL/6 mice formulated with two novel adjuvants of the Army Liposome Formulation (ALF) series and a commercially available adjuvant Montanide ISA 720 (Montanide) as a control. ALF is a liposomal adjuvant containing a synthetic monophosphoryl lipid A (3D-PHAD®). In our study, FMP013 was adjuvanted with ALF alone, ALF containing aluminum hydroxide (ALFA) or ALF containing QS-21 (ALFQ). Adjuvants ALF and ALFA induced similar antibody titers and protection against transgenic parasite challenge that were comparable to Montanide. ALFQ was superior to the other three adjuvants as it induced higher antibody titers with improved boosting after the third immunization, higher serum IgG2c titers, and enhanced protection. FMP013+ALFQ also augmented the numbers of splenic germinal center-derived activated B-cells and antibody secreting cells compared to Montanide. Further, FMP013+ALFQ induced antigen-specific IFN-γ ELISPOT activity, CD4 + T-cells and a T H 1-biased cytokine profile. These results demonstrate that soluble CSP can induce a potent and sterile protective immune response when formulated with the QS-21 containing adjuvant ALFQ. Comparative mouse immunogenicity data presented here were used as the progression criteria for an ongoing non-human primate study and a regulatory toxicology study in preparation for a controlled human malaria infection (CHMI

  7. Immunogenicity and in vitro Protective Efficacy of a Recombinant Multistage Plasmodium falciparum Candidate Vaccine

    NASA Astrophysics Data System (ADS)

    Shi, Ya Ping; Hasnain, Seyed E.; Sacci, John B.; Holloway, Brian P.; Fujioka, Hisashi; Kumar, Nirbhay; Wohlhueter, Robert; Hoffman, Stephen L.; Collins, William E.; Lal, Altaf A.

    1999-02-01

    Compared with a single-stage antigen-based vaccine, a multistage and multivalent Plasmodium falciparum vaccine would be more efficacious by inducing "multiple layers" of immunity. We have constructed a synthetic gene that encodes for 12 B cell, 6 T cell proliferative, and 3 cytotoxic T lymphocyte epitopes derived from 9 stage-specific P. falciparum antigens corresponding to the sporozoite, liver, erythrocytic asexual, and sexual stages. The gene was expressed in the baculovirus system, and a 41-kDa antigen, termed CDC/NIIMALVAC-1, was purified. Immunization in rabbits with the purified protein in the presence of different adjuvants generated antibody responses that recognized vaccine antigen, linear peptides contained in the vaccine, and all stages of P. falciparum. In vitro assays of protection revealed that the vaccine-elicited antibodies strongly inhibited sporozoite invasion of hepatoma cells and growth of blood-stage parasites in the presence of monocytes. These observations demonstrate that a multicomponent, multistage malaria vaccine can induce immune responses that inhibit parasite development at multiple stages. The rationale and approach used in the development of a multicomponent P. falciparum vaccine will be useful in the development of a multispecies human malaria vaccine and vaccines against other infectious diseases.

  8. Willingness to pay for three hypothetical malaria vaccines in Nigeria.

    PubMed

    Udezi, Waka Anthony; Usifoh, Cyril Odianose; Ihimekpen, Omoyeme Oluwatosin

    2010-08-01

    Unlike some African countries that have reported a approximately 50% reduction in malaria deaths in recent years, Nigeria has shown no evidence of a systematic decline in malaria burden. An important and sustainable reduction in malaria burden cannot be achieved unless an effective and inexpensive malaria vaccine becomes available. The goals of this study were to determine the willingness to pay (WTP) for 3 hypothetical malaria vaccines with different levels of protection (in years), effectiveness, and adverse effects; and to identify factors that influence the price that people are willing to pay in Nigeria. With the aid of a questionnaire, a contingent valuation method using payment cards was used to elicit WTP values for 3 hypothetical malaria vaccines. Payment cards contained both a description of the features of the vaccine being evaluated and price options. The 3 hypothetical vaccines had the following characteristics: vaccine A was 75% effective, protected for 3 years, and was well tolerated; vaccine B was 85% effective, protected for 6 years, and was less well tolerated than vaccine A; and vaccine C was 95% effective and protected for 12 years, but was the least well tolerated. Participants consisted of a convenience sample of individuals who were at the pharmacy waiting area of the state-owned hospitals located in Benin City and Warri, Nigeria. Every third patient or caregiver who was in the pharmacy to fill a prescription was asked to take part in the study as they waited to see the pharmacist. If consent was not granted, the next person in line was approached to be interviewed. Linear multiple regression analysis and nonparametric Kruskal-Wallis, Mann-Whitney, or chi(2) test was applied in inferential analysis, where necessary, to investigate the effects of sociodemographic factors on WTP. Prices on payment cards were expressed in Nigerian naira (NGN 150.00 approximately US $1.00), but study results were expressed in US dollars. A total of 359

  9. The role of vitamin D in malaria.

    PubMed

    Lương, Khanh Vinh Quốc; Nguyễn, Lan Thi Hoàng

    2015-01-15

    An abnormal calcium-parathyroid hormone (PTH)-vitamin D axis has been reported in patients with malaria infection. A role for vitamin D in malaria has been suggested by many studies. Genetic studies have identified numerous factors that link vitamin D to malaria, including human leukocyte antigen genes, toll-like receptors, heme oxygenase-1, angiopoietin-2, cytotoxic T lymphocyte antigen-4, nucleotide-binding oligomerization domain-like receptors, and Bcl-2. Vitamin D has also been implicated in malaria via its effects on the Bacillus Calmette-Guerin (BCG) vaccine, matrix metalloproteinases, mitogen-activated protein kinase pathways, prostaglandins, reactive oxidative species, and nitric oxide synthase. Vitamin D may be important in malaria; therefore, additional research on its role in malaria is needed.

  10. Perceptions of malaria and vaccines in Kenya.

    PubMed

    Ojakaa, David; Yamo, Emmanuel; Collymore, Yvette; Ba-Nguz, Antoinette; Bingham, Allison

    2011-10-01

    Malaria is a leading cause of morbidity and mortality in Kenya. To confront malaria, the Government of Kenya has been implementing and coordinating three approaches - vector control by distributing insecticide-treated bed nets and indoor residual spraying, case management, and the management of malaria during pregnancy. Immunization is recognized as one of the most cost-effective public health interventions. Efforts are underway to develop a malaria vaccine. The most advanced (RTS,S), is currently going through phase 3 trials. Although recent studies show the overwhelming support in the community for the introduction of a malaria vaccine, two issues - culture and the delivery of child immunization services - need to be considered. Alongside the modern methods of malaria control described above, traditional methods coexist and act as barriers to attainment of universal immunization. The gender dimension of the immunization programme (where women are the main child caretakers) will also need to be addressed. There is an age dimension to child immunization programmes. Two age cohorts of parents, caregivers, or family members deserve particular attention. These are the youth who are about to initiate childbearing, and the elderly (particularly mother-in-laws who often play a role in child-rearing). Mothers who are less privileged and socially disadvantaged need particular attention when it comes to child immunization. Access to immunization services is often characterized in some Kenyan rural communities in terms of living near the main road, or in the remote inaccessible areas. Should a malaria vaccine become available in the future, a strategy to integrate it into the immunization programme in Kenya should take into account at least two issues. First, it must address the fact that alongside the formal approach in malaria control, there exist the informal traditional practices among communities. Secondly, it must address particular issues in the delivery of

  11. A Novel Vaccine Delivery Model of the Apicomplexan Eimeria tenella Expressing Eimeria maxima Antigen Protects Chickens against Infection of the Two Parasites

    PubMed Central

    Tang, Xinming; Liu, Xianyong; Yin, Guangwen; Suo, Jingxia; Tao, Geru; Zhang, Sixin; Suo, Xun

    2018-01-01

    Vaccine delivery is critical in antigen discovery and vaccine efficacy and safety. The diversity of infectious diseases in humans and livestock has required the development of varied delivery vehicles to target different pathogens. In livestock animals, previous strategies for the development of coccidiosis vaccines have encountered several hurdles, limiting the development of multiple species vaccine formulations. Here, we describe a novel vaccine delivery system using transgenic Eimeria tenella expressing immunodominant antigens of Eimeria maxima. In this delivery system, the immune mapped protein 1 of E. maxima (EmIMP1) was delivered by the closely related species of E. tenella to the host immune system during the whole endogenous life cycle. The overexpression of the exogenous antigen did not interfere with the reproduction and immunogenicity of transgenic Eimeria. After immunization with the transgenic parasite, we detected EmIMP1’s and E. maxima oocyst antigens’ specific humoral and cellular immune responses. In particular, we observed partial protection of chickens immunized with transgenic E. tenella against subsequent E. maxima infections. Our results demonstrate that the transgenic Eimeria parasite is an ideal coccidia antigen delivery vehicle and represents a new type of coccidiosis vaccines. In addition, this model could potentially be used in the development of malaria live sporozoite vaccines, in which antigens from different strains can be expressed in the vaccine strain. PMID:29375584

  12. Acquired Antibodies to Merozoite Antigens in Children from Uganda with Uncomplicated or Severe Plasmodium falciparum Malaria

    PubMed Central

    Ahmed Ismail, Hodan; Ribacke, Ulf; Reiling, Linda; Normark, Johan; Egwang, Tom; Kironde, Fred; Beeson, James G.; Wahlgren, Mats

    2013-01-01

    Malaria can present itself as an uncomplicated or severe disease. We have here studied the quantity and quality of antibody responses against merozoite antigens, as well as multiplicity of infection (MOI), in children from Uganda. We found higher levels of IgG antibodies toward erythrocyte-binding antigen EBA181, MSP2 of Plasmodium falciparum 3D7 and FC27 (MSP2-3D7/FC27), and apical membrane antigen 1 (AMA1) in patients with uncomplicated malaria by enzyme-linked immunosorbent assay (ELISA) but no differences against EBA140, EBA175, MSP1, and reticulocyte-binding protein homologues Rh2 and Rh4 or for IgM against MSP2-3D7/FC27.Patients with uncomplicated malaria were also shown to have higher antibody affinities for AMA1 by surface plasmon resonance (SPR). Decreased invasion of two clinical P. falciparum isolates in the presence of patient plasma correlated with lower initial parasitemia in the patients, in contrast to comparisons of parasitemia to ELISA values or antibody affinities, which did not show any correlations. Analysis of the heterogeneity of the infections revealed a higher MOI in patients with uncomplicated disease, with the P. falciparum K1 MSP1 (MSP1-K1) and MSP2-3D7 being the most discriminative allelic markers. Higher MOIs also correlated positively with higher antibody levels in several of the ELISAs. In conclusion, certain antibody responses and MOIs were associated with differences between uncomplicated and severe malaria. When different assays were combined, some antibodies, like those against AMA1, seemed particularly discriminative. However, only decreased invasion correlated with initial parasitemia in the patient, signaling the importance of functional assays in understanding development of immunity against malaria and in evaluating vaccine candidates. PMID:23740926

  13. Evaluation of the efficacy of ChAd63-MVA vectored vaccines expressing circumsporozoite protein and ME-TRAP against controlled human malaria infection in malaria-naive individuals.

    PubMed

    Hodgson, Susanne H; Ewer, Katie J; Bliss, Carly M; Edwards, Nick J; Rampling, Thomas; Anagnostou, Nicholas A; de Barra, Eoghan; Havelock, Tom; Bowyer, Georgina; Poulton, Ian D; de Cassan, Simone; Longley, Rhea; Illingworth, Joseph J; Douglas, Alexander D; Mange, Pooja B; Collins, Katharine A; Roberts, Rachel; Gerry, Stephen; Berrie, Eleanor; Moyle, Sarah; Colloca, Stefano; Cortese, Riccardo; Sinden, Robert E; Gilbert, Sarah C; Bejon, Philip; Lawrie, Alison M; Nicosia, Alfredo; Faust, Saul N; Hill, Adrian V S

    2015-04-01

    Circumsporozoite protein (CS) is the antigenic target for RTS,S, the most advanced malaria vaccine to date. Heterologous prime-boost with the viral vectors simian adenovirus 63 (ChAd63)-modified vaccinia virus Ankara (MVA) is the most potent inducer of T-cells in humans, demonstrating significant efficacy when expressing the preerythrocytic antigen insert multiple epitope-thrombospondin-related adhesion protein (ME-TRAP). We hypothesized that ChAd63-MVA containing CS may result in a significant clinical protective efficacy. We conducted an open-label, 2-site, partially randomized Plasmodium falciparum sporozoite controlled human malaria infection (CHMI) study to compare the clinical efficacy of ChAd63-MVA CS with ChAd63-MVA ME-TRAP. One of 15 vaccinees (7%) receiving ChAd63-MVA CS and 2 of 15 (13%) receiving ChAd63-MVA ME-TRAP achieved sterile protection after CHMI. Three of 15 vaccinees (20%) receiving ChAd63-MVA CS and 5 of 15 (33%) receiving ChAd63-MVA ME-TRAP demonstrated a delay in time to treatment, compared with unvaccinated controls. In quantitative polymerase chain reaction analyses, ChAd63-MVA CS was estimated to reduce the liver parasite burden by 69%-79%, compared with 79%-84% for ChAd63-MVA ME-TRAP. ChAd63-MVA CS does reduce the liver parasite burden, but ChAd63-MVA ME-TRAP remains the most promising antigenic insert for a vectored liver-stage vaccine. Detailed analyses of parasite kinetics may allow detection of smaller but biologically important differences in vaccine efficacy that can influence future vaccine development. NCT01623557. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  14. Macromolecular systems for vaccine delivery.

    PubMed

    MuŽíková, G; Laga, R

    2016-10-20

    Vaccines have helped considerably in eliminating some life-threatening infectious diseases in past two hundred years. Recently, human medicine has focused on vaccination against some of the world's most common infectious diseases (AIDS, malaria, tuberculosis, etc.), and vaccination is also gaining popularity in the treatment of cancer or autoimmune diseases. The major limitation of current vaccines lies in their poor ability to generate a sufficient level of protective antibodies and T cell responses against diseases such as HIV, malaria, tuberculosis and cancers. Among the promising vaccination systems that could improve the potency of weakly immunogenic vaccines belong macromolecular carriers (water soluble polymers, polymer particels, micelles, gels etc.) conjugated with antigens and immunistumulatory molecules. The size, architecture, and the composition of the high molecular-weight carrier can significantly improve the vaccine efficiency. This review includes the most recently developed (bio)polymer-based vaccines reported in the literature.

  15. Malaria Infections Do Not Compromise Vaccine-Induced Immunity against Tuberculosis in Mice

    PubMed Central

    Parra, Marcela; Derrick, Steven C.; Yang, Amy; Tian, JinHua; Kolibab, Kristopher; Oakley, Miranda; Perera, Liyanage P.; Jacobs, William R.; Kumar, Sanjai; Morris, Sheldon L.

    2011-01-01

    Background Given the considerable geographic overlap in the endemic regions for malaria and tuberculosis, it is probable that co-infections with Mycobacterium tuberculosis and Plasmodium species are prevalent. Thus, it is quite likely that both malaria and TB vaccines may be used in the same populations in endemic areas. While novel vaccines are currently being developed and tested individually against each of these pathogens, the efficacy of these vaccines has not been evaluated in co-infection models. To further assess the effectiveness of these new immunization strategies, we investigated whether co-infection with malaria would impact the anti-tuberculosis protection induced by four different types of TB vaccines in a mouse model of pulmonary tuberculosis. Principal Findings Here we show that the anti-tuberculosis protective immunity induced by four different tuberculosis vaccines was not impacted by a concurrent infection with Plasmodium yoelii NL, a nonlethal form of murine malaria. After an aerogenic challenge with virulent M. tuberculosis, the lung bacterial burdens of vaccinated animals were not statistically different in malaria infected and malaria naïve mice. Multi-parameter flow cytometric analysis showed that the frequency and the median fluorescence intensities (MFI) for specific multifunctional T (MFT) cells expressing IFN-γ, TNF-α, and/or IL-2 were suppressed by the presence of malaria parasites at 2 weeks following the malaria infection but was not affected after parasite clearance at 7 and 10 weeks post-challenge with P. yoelii NL. Conclusions Our data indicate that the effectiveness of novel TB vaccines in protecting against tuberculosis was unaffected by a primary malaria co-infection in a mouse model of pulmonary tuberculosis. While the activities of specific MFT cell subsets were reduced at elevated levels of malaria parasitemia, the T cell suppression was short-lived. Our findings have important relevance in developing strategies for the

  16. NIAID meeting report: improving malaria vaccine strategies through the application of immunological principles.

    PubMed

    Mo, Annie X Y; Augustine, Alison Deckhut

    2014-02-26

    A highly efficacious vaccine to prevent malaria infection or clinical disease is still far from reality despite several decades of intensive effort and a growing global commitment in malaria vaccine development. Further understanding of the mechanisms required for induction of effective host immune responses and maintenance of long-term protective immunity is needed to facilitate rational approaches for vaccine design and evaluation. The National Institute of Allergy and Infectious Diseases (NIAID) conducted a workshop on June 18-19, 2012 with experts in the fields of malaria vaccine development, malaria immunology, and basic immunology to address issues associated with improving our current understanding of malaria vaccine immunity. This report summarizes the discussion and major recommendations generated by the workshop participants regarding the application of recent advances in basic immunology and state-of-the-art immunological tools to improve progress and help address current challenges and knowledge gaps in malaria vaccine development. Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  17. Acceptance of a malaria vaccine by caregivers of sick children in Kenya

    PubMed Central

    2014-01-01

    Background Several malaria vaccines are currently in clinical trials and are expected to provide an improved strategy for malaria control. Prior to introduction of a new vaccine, policymakers must consider the socio cultural environment of the region to ensure widespread community approval. This study investigated the acceptance of a malaria vaccine by child caregivers and analysed factors that influence these. Methods Interviews from a standard questionnaire were conducted with 2,003 caregivers at 695 randomly selected health facilities across Kenya during the Kenya Service Provision Assessment Survey 2010. Multinomial regression of quantitative data was conducted using STATA to analyse determinants of caregivers accepting malaria vaccination of their child. Results Mothers represented 90% of caregivers interviewed who brought their child to the health facility, and 77% of caregivers were 20-34 years old. Overall, 88% of respondents indicated that they would accept a malaria vaccine, both for a child in their community and their own child. Approval for a vaccine was highest in malaria-endemic Nyanza Province at 98.9%, and lowest in the seasonal transmission area of North Eastern Province at 23%. Although 94% of respondents who had attended at least some school reported they would accept the vaccine for a child, only 56% of those who had never attended school would do so. The likelihood of accepting one’s own child to be immunized was correlated with province, satisfaction with health care services in the facility attended, age of the caregiver, and level of education. Conclusions Results from this study indicate a need for targeted messages and education on a malaria vaccine, particularly for residents of regions where acceptance is low, older caregivers, and those with low literacy and school-attendance levels. This study provides critical evidence to inform policy for a new malaria vaccine that will support its timely and comprehensive uptake in Kenya. PMID

  18. Antigens for a Vaccine that Prevents Severe Malaria

    DTIC Science & Technology

    2007-03-01

    famously, the coinciding geographic distributions of malaria transmission and the thalassemias prompted Haldane to propose the ‘malaria hypothesis...Haldane’s speculation centered on the frequency of thalassemia in Mediterranean populations, for which he predicted that the deleterious effects of the...erythrocytes (IEs) [10,11] and enhanced immune responses against IEs [12]. In the case of enhanced immunity, thalassemia increases the incidence of

  19. Acceptability of a herd immunity-focused, transmission-blocking malaria vaccine in malaria-endemic communities in the Peruvian Amazon: an exploratory study.

    PubMed

    White, Sara E; Harvey, Steven A; Meza, Graciela; Llanos, Alejandro; Guzman, Mitchel; Gamboa, Dionicia; Vinetz, Joseph M

    2018-04-27

    A transmission-blocking vaccine (TBV) to prevent malaria-infected humans from infecting mosquitoes has been increasingly considered as a tool for malaria control and elimination. This study tested the hypothesis that a malaria TBV would be acceptable among residents of a malaria-hypoendemic region. The study was carried out in six Spanish-speaking rural villages in the Department of Loreto in the Peruvian Amazon. These villages comprise a cohort of 430 households associated with the Peru-Brazil International Centre for Excellence in Malaria Research. Individuals from one-third (143) of enrolled households in an ongoing longitudinal, prospective cohort study in 6 communities in Loreto, Peru, were randomly selected to participate by answering a pre-validated questionnaire. All 143 participants expressed desire for a malaria vaccine in general; only 1 (0.7%) expressed unwillingness to receive a transmission-blocking malaria vaccine. Injection was considered most acceptable for adults (97.2%); for children drops in the mouth were preferred (96.8%). Acceptability waned marginally with the prospect of multiple injections (83.8%) and different projected efficacies at 70 and 50% (90.1 and 71.8%, respectively). Respondents demonstrated clear understanding that the vaccine was for community, rather than personal, protection against malaria infection. In this setting of the Peruvian Amazon, a transmission-blocking malaria vaccine was found to be almost universally acceptable. This study is the first to report that residents of a malaria-endemic region have been queried regarding a malaria vaccine strategy that policy-makers in the industrialized world often dismiss as altruistic.

  20. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model.

    PubMed

    Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T

    2017-07-03

    A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.

  1. Experience and challenges from clinical trials with malaria vaccines in Africa

    PubMed Central

    2013-01-01

    Malaria vaccines are considered amongst the most important modalities for potential elimination of malaria disease and transmission. Research and development in this field has been an area of intense effort by many groups over the last few decades. Despite this, there is currently no licensed malaria vaccine. Researchers, clinical trialists and vaccine developers have been working on many approached to make malaria vaccine available. African research institutions have developed and demonstrated a great capacity to undertake clinical trials in accordance to the International Conference on Harmonization-Good Clinical Practice (ICH-GCP) standards in the last decade; particularly in the field of malaria vaccines and anti-malarial drugs. This capacity is a result of networking among African scientists in collaboration with other partners; this has traversed both clinical trials and malaria control programmes as part of the Global Malaria Action Plan (GMAP). GMAP outlined and support global strategies toward the elimination and eradication of malaria in many areas, translating in reduction in public health burden, especially for African children. In the sub-Saharan region the capacity to undertake more clinical trials remains small in comparison to the actual need. However, sustainability of the already developed capacity is essential and crucial for the evaluation of different interventions and diagnostic tools/strategies for other diseases like TB, HIV, neglected tropical diseases and non-communicable diseases. There is urgent need for innovative mechanisms for the sustainability and expansion of the capacity in clinical trials in sub-Saharan Africa as the catalyst for health improvement and maintained. PMID:23496910

  2. Experience and challenges from clinical trials with malaria vaccines in Africa.

    PubMed

    Mwangoka, Grace; Ogutu, Bernhards; Msambichaka, Beverly; Mzee, Tutu; Salim, Nahya; Kafuruki, Shubis; Mpina, Maxmillian; Shekalaghe, Seif; Tanner, Marcel; Abdulla, Salim

    2013-03-04

    Malaria vaccines are considered amongst the most important modalities for potential elimination of malaria disease and transmission. Research and development in this field has been an area of intense effort by many groups over the last few decades. Despite this, there is currently no licensed malaria vaccine. Researchers, clinical trialists and vaccine developers have been working on many approached to make malaria vaccine available.African research institutions have developed and demonstrated a great capacity to undertake clinical trials in accordance to the International Conference on Harmonization-Good Clinical Practice (ICH-GCP) standards in the last decade; particularly in the field of malaria vaccines and anti-malarial drugs. This capacity is a result of networking among African scientists in collaboration with other partners; this has traversed both clinical trials and malaria control programmes as part of the Global Malaria Action Plan (GMAP). GMAP outlined and support global strategies toward the elimination and eradication of malaria in many areas, translating in reduction in public health burden, especially for African children. In the sub-Saharan region the capacity to undertake more clinical trials remains small in comparison to the actual need.However, sustainability of the already developed capacity is essential and crucial for the evaluation of different interventions and diagnostic tools/strategies for other diseases like TB, HIV, neglected tropical diseases and non-communicable diseases. There is urgent need for innovative mechanisms for the sustainability and expansion of the capacity in clinical trials in sub-Saharan Africa as the catalyst for health improvement and maintained.

  3. RTS,S: Toward a first landmark on the Malaria Vaccine Technology Roadmap.

    PubMed

    Kaslow, David C; Biernaux, Sophie

    2015-12-22

    The Malaria Vaccine Technology Roadmap calls for a 2015 landmark goal of a first-generation malaria vaccine that has protective efficacy against severe disease and death, lasting longer than one year. This review focuses on product development efforts over the last five years of RTS,S, a pre-erythrocytic, recombinant subunit, adjuvanted, candidate malaria vaccine designed with this goal of a first-generation malaria vaccine in mind. RTS,S recently completed a successful pivotal Phase III safety, efficacy and immunogenicity study. Although vaccine efficacy was found to be modest, a substantial number of cases of clinical malaria were averted over a 3-4 years period, particularly in settings of significant disease burden. European regulators have subsequently adopted a positive opinion under the Article 58 procedure for an indication of active immunization of children aged 6 weeks up to 17 months against malaria caused by Plasmodium falciparum and against hepatitis B. Further evaluations of the benefit, risk, feasibility and cost-effectiveness of RTS,S are now anticipated through policy and financing reviews at the global and national levels. Copyright © 2015. Published by Elsevier Ltd.

  4. Health and reproductive profiles of malaria antigen-producing transgenic goats derived by somatic cell nuclear transfer.

    PubMed

    Behboodi, E; Ayres, S L; Memili, E; O'Coin, M; Chen, L H; Reggio, B C; Landry, A M; Gavin, W G; Meade, H M; Godke, R A; Echelard, Y

    2005-01-01

    Nuclear transfer (NT) using transfected primary cells is an efficient approach for the generation of transgenic goats. However, reprogramming abnormalities associated with this process might result in compromised animals. We examined the health, reproductive performance, and milk production of four transgenic does derived from somatic cell NT. Goats were derived from two fetal cell lines, each transfected with a transgene expressing a different version of the MSP-1(42) malaria antigen, either glycosylated or non-glycosylated. Two female kids were produced per cell line. Health and growth of these NT animals were monitored and compared with four age-matched control does. There were no differences in birth and weaning weights between NT and control animals. The NT does were bred and produced a total of nine kids. The control does delivered five kids. The NT does expressing the glycosylated antigen lactated only briefly, probably as a result of over-expression of the MSP-1(42) protein. However, NT does expressing the non-glycosylated antigen had normal milk yields and produced the recombinant protein. These data demonstrated that the production of healthy transgenic founder goats by somatic cell NT is readily achievable and that these animals can be used successfully for the production of a candidate Malaria vaccine.

  5. Co-expression of Interleukin-15 Enhances the Protective Immune Responses Induced by Immunization with a Murine Malaria MVA-Based Vaccine Encoding the Circumsporozoite Protein.

    PubMed

    Parra, Marcela; Liu, Xia; Derrick, Steven C; Yang, Amy; Molina-Cruz, Alvaro; Barillas-Mury, Carolina; Zheng, Hong; Thao Pham, Phuong; Sedegah, Martha; Belmonte, Arnel; Litilit, Dianne D; Waldmann, Thomas A; Kumar, Sanjai; Morris, Sheldon L; Perera, Liyanage P

    2015-01-01

    Malaria remains a major global public health problem with an estimated 200 million cases detected in 2012. Although the most advanced candidate malaria vaccine (RTS,S) has shown promise in clinical trials, its modest efficacy and durability have created uncertainty about the impact of RTS,S immunization (when used alone) on global malaria transmission. Here we describe the development and characterization of a novel modified vaccinia virus Ankara (MVA)-based malaria vaccine which co-expresses the Plasmodium yoelii circumsporozoite protein (CSP) and IL-15. Vaccination/challenge studies showed that C57BL/6 mice immunized with the MVA-CSP/IL15 vaccine were protected significantly better against a P. yoelii 17XNL sporozoite challenge than either mice immunized with an MVA vaccine expressing only CSP or naïve controls. Importantly, the levels of total anti-CSP IgG were elevated about 100-fold for the MVA-CSP/IL15 immunized group compared to mice immunized with the MVA-CSP construct that does not express IL-15. Among the IgG subtypes, the IL-15 expressing MVA-CSP vaccine induced levels of IgG1 (8 fold) and IgG2b (80 fold) higher than the MVA-CSP construct. The significantly enhanced humoral responses and protection detected after immunization with the MVA-CSP/IL15 vaccine suggest that this IL-15 expressing MVA construct could be considered in the development of future malaria immunization strategies.

  6. [Vaccinations and malaria prophylaxis for international travelers].

    PubMed

    Alberer, Martin; Löscher, Thomas

    2015-05-01

    The prevention of infectious diseases by vaccination and by counselling about malaria prophylaxis is a central aspect of travel medicine. Besides mandatory vaccinations required for entry to certain countries various vaccinations may be indicated depending on destination and type of travel as well as on individual risks of the traveler. In addition, pre-travel counselling should always include a check-up of standard vaccinations. Protection against mosquito bites is the basis of malaria prophylaxis. The addition of chemoprophylaxis is warranted in high risk areas. When regular chemoprophylaxis is not applied it is recommended to carry an appropriate antimalarial drug which can be used for emergency stand-by treatment in case of unexplained fever and when medical attention is not available within 24 hours. Travelers should realize that self-treatment is a first-aid measure and that they should still seek medical advice as soon as possible. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Safety and Allele-Specific Immunogenicity of a Malaria Vaccine in Malian Adults: Results of a Phase I Randomized Trial

    PubMed Central

    Thera, Mahamadou A; Doumbo, Ogobara K; Coulibaly, Drissa; Diallo, Dapa A; Sagara, Issaka; Dicko, Alassane; Diemert, David J; Heppner, D. Gray; Stewart, V. Ann; Angov, Evelina; Soisson, Lorraine; Leach, Amanda; Tucker, Kathryn; Lyke, Kirsten E; Plowe, Christopher V

    2006-01-01

    Objectives: The objectives were to evaluate the safety, reactogenicity, and allele-specific immunogenicity of the blood-stage malaria vaccine FMP1/AS02A in adults exposed to seasonal malaria and the impact of natural infection on vaccine-induced antibody levels. Design: We conducted a randomized, double-blind, controlled phase I clinical trial. Setting: Bandiagara, Mali, West Africa, is a rural town with intense seasonal transmission of Plasmodium falciparum malaria. Participants: Forty healthy, malaria-experienced Malian adults aged 18–55 y were enrolled. Interventions: The FMP1/AS02A malaria vaccine is a 42-kDa recombinant protein based on the carboxy-terminal end of merozoite surface protein-1 (MSP-142) from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The control vaccine was a killed rabies virus vaccine (Imovax). Participants were randomized to receive either FMP1/AS02A or rabies vaccine at 0, 1, and 2 mo and were followed for 1 y. Outcome Measures: Solicited and unsolicited adverse events and allele-specific antibody responses to recombinant MSP-142 and its subunits derived from P. falciparum strains homologous and heterologous to the 3D7 vaccine strain were measured. Results: Transient local pain and swelling were more common in the malaria vaccine group than in the control group (11/20 versus 3/20 and 10/20 versus 6/20, respectively). MSP-142 antibody levels rose during the malaria transmission season in the control group, but were significantly higher in malaria vaccine recipients after the second immunization and remained higher after the third immunization relative both to baseline and to the control group. Immunization with the malaria vaccine was followed by significant increases in antibodies recognizing three diverse MSP-142 alleles and their subunits. Conclusions: FMP1/AS02A was well tolerated and highly immunogenic in adults exposed to intense seasonal malaria transmission and elicited immune responses to genetically diverse parasite

  8. Designing vaccines based on biology of human dendritic cell subsets

    PubMed Central

    Palucka, Karolina; Banchereau, Jacques; Mellman, Ira

    2010-01-01

    The effective vaccines developed against a variety of infectious agents, including polio, measles and Hepatitis B, represent major achievements in medicine. These vaccines, usually composed of microbial antigens, are often associated with an adjuvant that activates dendritic cells (DCs). Many infectious diseases are still in need of an effective vaccine including HIV, malaria, hepatitis C and tuberculosis. In some cases, the induction of cellular rather than humoral responses may be more important as the goal is to control and eliminate the existing infection rather than to prevent it. Our increased understanding of the mechanisms of antigen presentation, particularly with the description of DC subsets with distinct functions, as well as their plasticity in responding to extrinsic signals, represent opportunities to develop novel vaccines. In addition, we foresee that this increased knowledge will permit us to design vaccines that will reprogram the immune system to intervene therapeutically in cancer, allergy and autoimmunity. PMID:21029958

  9. Antigen discovery and delivery of subunit vaccines by nonliving bacterial ghost vectors.

    PubMed

    Walcher, Petra; Mayr, Ulrike B; Azimpour-Tabrizi, Chakameh; Eko, Francis O; Jechlinger, Wolfgang; Mayrhofer, Peter; Alefantis, Tim; Mujer, Cesar V; DelVecchio, Vito G; Lubitz, Werner

    2004-12-01

    The bacterial ghost (BG) platform system is a novel vaccine delivery system endowed with intrinsic adjuvant properties. BGs are nonliving Gram-negative bacterial cell envelopes which are devoid of their cytoplasmic contents, yet maintain their cellular morphology and antigenic structures, including bioadhesive properties. The main advantages of BGs as carriers of subunit vaccines include their ability to stimulate a high immune response and to target the carrier itself to primary antigen-presenting cells. The intrinsic adjuvant properties of BGs enhance the immune response to target antigens, including T-cell activation and mucosal immunity. Since native and foreign antigens can be carried in the envelope complex of BGs, combination vaccines with multiple antigens of diverse origin can be presented to the immune system simultaneously. Beside the capacity of BGs to function as carriers of protein antigens, they also have a high loading capacity for DNA. Thus, loading BGs with recombinant DNA takes advantage of the excellent bioavailability for DNA-based vaccines and the high expression rates of the DNA-encoded antigens in target cell types such as macrophages and dendritic cells. There are many spaces within BGs including the inner and outer membranes, the periplasmic space and the internal lumen which can carry antigens, DNA or mediators of the immune response. All can be used for subunit antigen to design new vaccine candidates with particle presentation technology. In addition, the fact that BGs can also carry piggyback large-size foreign antigen particles, increases the technologic usefulness of BGs as combination vaccines against viral and bacterial pathogens. Furthermore, the BG antigen carriers can be stored as freeze-dried preparations at room temperature for extended periods without loss of efficacy. The potency, safety and relatively low production cost of BGs offer a significant technical advantage over currently utilized vaccine technologies.

  10. Comparison of Current Regulatory Status for Gene-Based Vaccines in the U.S., Europe and Japan

    PubMed Central

    Nakayama, Yoshikazu; Aruga, Atsushi

    2015-01-01

    Gene-based vaccines as typified by plasmid DNA vaccines and recombinant viral-vectored vaccines are expected as promising solutions against infectious diseases for which no effective prophylactic vaccines exist such as HIV, dengue virus, Ebola virus and malaria, and for which more improved vaccines are needed such as tuberculosis and influenza virus. Although many preclinical and clinical trials have been conducted to date, no DNA vaccines or recombinant viral-vectored vaccines expressing heterologous antigens for human use have yet been licensed in the U.S., Europe or Japan. In this research, we describe the current regulatory context for gene-based prophylactic vaccines against infectious disease in the U.S., Europe, and Japan. We identify the important considerations, in particular, on the preclinical assessments that would allow these vaccines to proceed to clinical trials, and the differences on the regulatory pathway for the marketing authorization in each region. PMID:26344953

  11. How might infant and paediatric immune responses influence malaria vaccine efficacy?

    PubMed

    Moormann, A M

    2009-09-01

    Naturally acquired immunity to malaria requires repeat infections yet does not engender sterile immunity or long-lasting protective immunologic memory. This renders infants and young children the most susceptible to malaria-induced morbidity and mortality, and the ultimate target for a malaria vaccine. The prevailing paradigm is that infants initially garner protection due to transplacentally transferred anti-malarial antibodies and other intrinsic factors such as foetal haemoglobin. As these wane infants have an insufficient immune repertoire to prevent genetically diverse Plasmodium infections and an inability to control malaria-induced immunopathology. This Review discusses humoral, cell-mediated and innate immune responses to malaria and how each contributes to protection - focusing on how deficiencies in infant and paediatric immune responses might influence malaria vaccine efficacy in this population. In addition, burgeoning evidence suggests a role for inhibitory receptors that limit immunopathology and guide the development of long-lived immunity. Precisely how age or malaria infections influence the function of these regulators is unknown. Therefore the possibility that infants may not have the immune-dexterity to balance effective parasite clearance with timely immune-regulation leading to protective immunologic memory is considered. And thus, malaria vaccines tested in adults and older children may not be predictive for trials conducted in infants.

  12. Characterization and standardization of Sabin based inactivated polio vaccine: proposal for a new antigen unit for inactivated polio vaccines.

    PubMed

    Westdijk, Janny; Brugmans, Debbie; Martin, Javier; van't Oever, Aart; Bakker, Wilfried A M; Levels, Lonneke; Kersten, Gideon

    2011-04-18

    GMP-batches of Sabin-IPV were characterized for their antigenic and immunogenic properties. Antigenic fingerprints of Sabin-IPV reveal that the D-antigen unit is not a fixed amount of antigen but depends on antibody and assay type. Instead of the D-antigen unit we propose standardization of IPV based on a combination of protein amount for dose and D-antigenicity for quality of the vaccine. Although Sabin-IPV type 2 is less immunogenic than regular wild type IPV type 2, the immunogenicity (virus neutralizing titers) per microgram antigen for Sabin-IPV type 2 is in the same order as for wild type serotypes 1 and 3. The latter observations are in line with data from human trials. This suggests that a higher dose of Sabin-IPV type 2 to compensate for the lower rat immunogenicity may not be necessary. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Cancer vaccine--Antigenics.

    PubMed

    2002-01-01

    Antigenics is developing a therapeutic cancer vaccine based on heat-shock proteins (HSPs). The vaccine [HSPPC-96, Oncophage] is in a pivotal phase III clinical trial for renal cancer at 80 clinical sites worldwide. The trial is enrolling at least 500 patients who are randomised to receive surgical removal of the primary tumour followed by out-patient treatment with Oncophage((R)) or surgery only. This study was initiated on the basis of results from a pilot phase I/II study and preliminary results from a phase II study in patients with renal cell cancer. In October 2001, Oncophage was designated as a fast-track product by the Food and Drug Administration in the US for the treatment of renal cell carcinoma. Oncophage is in phase I/II trials in Italy for colorectal cancer (30 patients) and melanoma. The trials in Italy are being conducted at the Istituto dei Tumouri, Milan (in association with Sigma-Tau). Preliminary data from the phase II trial for melanoma was presented at the AACR-NCI-EORTC International Conference in Florida, USA, in October 2001. Oncophage is also in a phase I/II (42 patients) and a phase II trial (84 patients) in the US for renal cell cancer, a phase II trial in the US for non-Hodgkin's lymphoma (35 patients), a phase II trial in the US for sarcoma (20-35 patients), a phase I/II trial in the US for melanoma (36 patients), and phase I/II trials in Germany for gastric (30 patients) and pancreatic cancers. A pilot phase I trial in patients with pancreatic cancer began in the US in 1997 with 5 patients enrolled. In November 2000, Antigenics announced that this trial had been expanded to a phase I/II study which would now include survival as an endpoint and would enroll 5 additional patients. The US trials are being performed at Memorial Sloan-Kettering Cancer Center and the M.D. Anderson Cancer Center. The trials in Germany are being carried out at Johannes Gutenberg-University Hospital, Mainz. Oncophage is an autologous vaccine consisting of

  14. Plasmodium knowlesi Sporozoite Antigen: Expression by Infectious Recombinant Vaccinia Virus

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey L.; Godson, G. Nigel; Nussenzweig, Victor; Nussenzweig, Ruth S.; Barnwell, John; Moss, Bernard

    1984-04-01

    The gene coding for the circumsporozoite antigen of the malaria parasite Plasmodium knowlesi was inserted into the vaccinia virus genome under the control of a defined vaccinia virus promoter. Cells infected with the recombinant virus synthesized polypeptides of 53,000 to 56,000 daltons that reacted with monoclonal antibody against the repeating epitope of the malaria protein. Furthermore, rabbits vaccinated with the recombinant virus produced antibodies that bound specifically to sporozoites. These data provide evidence for expression of a cloned malaria gene in mammalian cells and illustrate the potential of vaccinia virus recombinants as live malaria vaccines.

  15. Clinical trial in healthy malaria-naïve adults to evaluate the safety, tolerability, immunogenicity and efficacy of MuStDO5, a five-gene, sporozoite/hepatic stage Plasmodium falciparum DNA vaccine combined with escalating dose human GM-CSF DNA

    PubMed Central

    Richie, Thomas L.; Charoenvit, Yupin; Wang, Ruobing; Epstein, Judith E.; Hedstrom, Richard C.; Kumar, Sanjai; Luke, Thomas C.; Freilich, Daniel A.; Aguiar, Joao C.; Sacci, Jr., John B.; Sedegah, Martha; Nosek, Jr., Ronald A.; De La Vega, Patricia; Berzins, Mara P.; Majam, Victoria F.; Abot, Esteban N.; Ganeshan, Harini; Richie, Nancy O.; Banania, Jo Glenna; Baraceros, Maria Fe B.; Geter, Tanya G.; Mere, Robin; Bebris, Lolita; Limbach, Keith; Hickey, Bradley W.; Lanar, David E.; Ng, Jennifer; Shi, Meng; Hobart, Peter M.; Norman, Jon A.; Soisson, Lorraine A.; Hollingdale, Michael R.; Rogers, William O.; Doolan, Denise L.; Hoffman, Stephen L.

    2012-01-01

    When introduced in the 1990s, immunization with DNA plasmids was considered potentially revolutionary for vaccine development, particularly for vaccines intended to induce protective CD8 T cell responses against multiple antigens. We conducted, in 1997−1998, the first clinical trial in healthy humans of a DNA vaccine, a single plasmid encoding Plasmodium falciparum circumsporozoite protein (PfCSP), as an initial step toward developing a multi-antigen malaria vaccine targeting the liver stages of the parasite. As the next step, we conducted in 2000–2001 a clinical trial of a five-plasmid mixture called MuStDO5 encoding pre-erythrocytic antigens PfCSP, PfSSP2/TRAP, PfEXP1, PfLSA1 and PfLSA3. Thirty-two, malaria-naïve, adult volunteers were enrolled sequentially into four cohorts receiving a mixture of 500 μg of each plasmid plus escalating doses (0, 20, 100 or 500 μg) of a sixth plasmid encoding human granulocyte macrophage-colony stimulating factor (hGM-CSF). Three doses of each formulation were administered intramuscularly by needle-less jet injection at 0, 4 and 8 weeks, and each cohort had controlled human malaria infection administered by five mosquito bites 18 d later. The vaccine was safe and well-tolerated, inducing moderate antigen-specific, MHC-restricted T cell interferon-γ responses but no antibodies. Although no volunteers were protected, T cell responses were boosted post malaria challenge. This trial demonstrated the MuStDO5 DNA and hGM-CSF plasmids to be safe and modestly immunogenic for T cell responses. It also laid the foundation for priming with DNA plasmids and boosting with recombinant viruses, an approach known for nearly 15 y to enhance the immunogenicity and protective efficacy of DNA vaccines. PMID:23151451

  16. Enhancing Malaria Vaccine Development by the Naval Medical Research Center

    DTIC Science & Technology

    2003-03-01

    optimized in Milestone 1 of this Phase II project. Reduction in particle size of the biopolymeric carrier was sufficient for intramuscular administration of...glycolide) (PLGA) with incorporated DNA plasmid were developed for systemic administration of DNA plasmids for use as a malaria vaccine. Objectives in...with incorporated DNA plasmid were developed for systemic administration of DNA plasmids for use as a malaria vaccine. Objectives in Milestone 1

  17. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine.

    PubMed

    Mordmüller, Benjamin; Surat, Güzin; Lagler, Heimo; Chakravarty, Sumana; Ishizuka, Andrew S; Lalremruata, Albert; Gmeiner, Markus; Campo, Joseph J; Esen, Meral; Ruben, Adam J; Held, Jana; Calle, Carlos Lamsfus; Mengue, Juliana B; Gebru, Tamirat; Ibáñez, Javier; Sulyok, Mihály; James, Eric R; Billingsley, Peter F; Natasha, K C; Manoj, Anita; Murshedkar, Tooba; Gunasekera, Anusha; Eappen, Abraham G; Li, Tao; Stafford, Richard E; Li, Minglin; Felgner, Phil L; Seder, Robert A; Richie, Thomas L; Sim, B Kim Lee; Hoffman, Stephen L; Kremsner, Peter G

    2017-02-23

    A highly protective malaria vaccine would greatly facilitate the prevention and elimination of malaria and containment of drug-resistant parasites. A high level (more than 90%) of protection against malaria in humans has previously been achieved only by immunization with radiation-attenuated Plasmodium falciparum (Pf) sporozoites (PfSPZ) inoculated by mosquitoes; by intravenous injection of aseptic, purified, radiation-attenuated, cryopreserved PfSPZ ('PfSPZ Vaccine'); or by infectious PfSPZ inoculated by mosquitoes to volunteers taking chloroquine or mefloquine (chemoprophylaxis with sporozoites). We assessed immunization by direct venous inoculation of aseptic, purified, cryopreserved, non-irradiated PfSPZ ('PfSPZ Challenge') to malaria-naive, healthy adult volunteers taking chloroquine for antimalarial chemoprophylaxis (vaccine approach denoted as PfSPZ-CVac). Three doses of 5.12 × 10 4 PfSPZ of PfSPZ Challenge at 28-day intervals were well tolerated and safe, and prevented infection in 9 out of 9 (100%) volunteers who underwent controlled human malaria infection ten weeks after the last dose (group III). Protective efficacy was dependent on dose and regimen. Immunization with 3.2 × 10 3 (group I) or 1.28 × 10 4 (group II) PfSPZ protected 3 out of 9 (33%) or 6 out of 9 (67%) volunteers, respectively. Three doses of 5.12 × 10 4 PfSPZ at five-day intervals protected 5 out of 8 (63%) volunteers. The frequency of Pf-specific polyfunctional CD4 memory T cells was associated with protection. On a 7,455 peptide Pf proteome array, immune sera from at least 5 out of 9 group III vaccinees recognized each of 22 proteins. PfSPZ-CVac is a highly efficacious vaccine candidate; when we are able to optimize the immunization regimen (dose, interval between doses, and drug partner), this vaccine could be used for combination mass drug administration and a mass vaccination program approach to eliminate malaria from geographically defined areas.

  18. Synergistic and antagonistic interactions between bednets and vaccines in the control of malaria.

    PubMed

    Artzy-Randrup, Yael; Dobson, Andrew P; Pascual, Mercedes

    2015-03-10

    It is extremely likely that the malaria vaccines currently in development will be used in conjunction with treated bednets and other forms of malaria control. The interaction of different intervention methods is at present poorly understood in a disease such as malaria where immunity is more complex than for other pathogens that have been successfully controlled by vaccination. Here we develop a general mathematical model of malaria transmission to examine the interaction between vaccination and bednets. Counterintuitively, we find that the frailty of malaria immunity will potentially cause both synergistic and antagonistic interactions between vaccination and the use of bednets. We explore the conditions that create these tensions, and outline strategies that minimize their detrimental impact. Our analysis specifically considers the three leading vaccine classes currently in development: preerythrocytic (PEV), blood stage (BSV), and transmission blocking (TBV). We find that the combination of BSV with treated bednets can lead to increased morbidity with no added value in terms of elimination; the interaction is clearly antagonistic. In contrast, there is strong synergy between PEV and treated bednets that may facilitate elimination, although transient stages are likely to increase morbidity. The combination of TBV with treated bednets is synergistic, lowering both morbidity and elimination thresholds. Our results suggest that vaccines will not provide a straightforward solution to malaria control, and that future programs need to consider the synergistic and antagonistic interactions between vaccines and treated bednets.

  19. Limited antigenic variation in the Trypanosoma cruzi candidate vaccine antigen TSA-1.

    PubMed

    Knight, J M; Zingales, B; Bottazzi, M E; Hotez, P; Zhan, B

    2014-12-01

    Chagas disease (American trypanosomiasis caused by Trypanosoma cruzi) is one of the most important neglected tropical diseases in the Western Hemisphere. The toxicities and limited efficacies of current antitrypanosomal drugs have prompted a search for alternative technologies such as a therapeutic vaccine comprised of T. cruzi antigens, including a recombinant antigen encoding the N-terminal 65 kDa portion of Trypomastigote surface antigen-1 (TSA-1). With at least six known genetically distinct T. cruzi lineages, variability between the different lineages poses a unique challenge for the development of broadly effective therapeutic vaccine. The variability across the major lineages in the current vaccine candidate antigen TSA-1 has not previously been addressed. To assess the variation in TSA-1, we cloned and sequenced TSA-1 from several different T. cruzi strains representing three of the most clinically relevant lineages. Analysis of the different alleles showed limited variation in TSA-1 across the different strains and fit with the current theory for the evolution of the different lineages. Additionally, minimal variation in known antigenic epitopes for the HLA-A 02 allele suggests that interlineage variation in TSA-1 would not impair the range and efficacy of a vaccine containing TSA-1. © 2014 John Wiley & Sons Ltd.

  20. New malaria vaccine candidates based on the Plasmodium vivax Merozoite Surface Protein-1 and the TLR-5 agonist Salmonella Typhimurium FliC flagellin.

    PubMed

    Bargieri, Daniel Y; Rosa, Daniela S; Braga, Catarina J M; Carvalho, Bruna O; Costa, Fabio T M; Espíndola, Noeli Maria; Vaz, Adelaide José; Soares, Irene S; Ferreira, Luis C S; Rodrigues, Mauricio M

    2008-11-11

    The present study evaluated the immunogenicity of new malaria vaccine formulations based on the 19kDa C-terminal fragment of Plasmodium vivax Merozoite Surface Protein-1 (MSP1(19)) and the Salmonella enterica serovar Typhimurium flagellin (FliC), a Toll-like receptor 5 (TLR5) agonist. FliC was used as an adjuvant either admixed or genetically linked to the P. vivax MSP1(19) and administered to C57BL/6 mice via parenteral (s.c.) or mucosal (i.n.) routes. The recombinant fusion protein preserved MSP1(19) epitopes recognized by sera collected from P. vivax infected humans and TLR5 agonist activity. Mice parenterally immunized with recombinant P. vivax MSP1(19) in the presence of FliC, either admixed or genetically linked, elicited strong and long-lasting MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass response. Incorporation of another TLR agonist, CpG ODN 1826, resulted in a more balanced response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response measured by interferon-gamma secretion. Finally, we show that MSP1(19)-specific antibodies recognized the native protein expressed on the surface of P. vivax parasites harvested from infected humans. The present report proposes a new class of malaria vaccine formulation based on the use of malarial antigens and the innate immunity agonist FliC. It contains intrinsic adjuvant properties and enhanced ability to induce specific humoral and cellular immune responses when administered alone or in combination with other adjuvants.

  1. Impact of In Utero Exposure to Malaria on Fetal T Cell Immunity.

    PubMed

    Odorizzi, Pamela M; Feeney, Margaret E

    2016-10-01

    Pregnancy-associated malaria, including placental malaria, causes significant morbidity and mortality worldwide. Recently, it has been suggested that in utero exposure of the fetus to malaria antigens may negatively impact the developing immune system and result in tolerance to malaria. Here, we review our current knowledge of fetal immunity to malaria, focusing on the dynamic interactions between maternal malaria infection, placental development, and the fetal immune system. A better understanding of the long-term impact of in utero malaria exposure on the development of natural immunity to malaria, immune responses to other childhood pathogens, and vaccine immunogenicity is urgently needed. This may guide the implementation of novel chemoprevention strategies during pregnancy and facilitate the push toward malaria vaccines. Published by Elsevier Ltd.

  2. Malaria in pregnancy: the relevance of animal models for vaccine development.

    PubMed

    Doritchamou, Justin; Teo, Andrew; Fried, Michal; Duffy, Patrick E

    2017-10-06

    Malaria during pregnancy due to Plasmodium falciparum or P. vivax is a major public health problem in endemic areas, with P. falciparum causing the greatest burden of disease. Increasing resistance of parasites and mosquitoes to existing tools, such as preventive antimalarial treatments and insecticide-treated bed nets respectively, is eroding the partial protection that they offer to pregnant women. Thus, development of effective vaccines against malaria during pregnancy is an urgent priority. Relevant animal models that recapitulate key features of the pathophysiology and immunology of malaria in pregnant women could be used to accelerate vaccine development. This review summarizes available rodent and nonhuman primate models of malaria in pregnancy, and discusses their suitability for studies of biologics intended to prevent or treat malaria in this vulnerable population.

  3. Design of a phase III multicenter trial to evaluate the efficacy of the RTS,S/AS01 malaria vaccine in children across diverse transmission settings in Africa

    PubMed Central

    2011-01-01

    Background GlaxoSmithKline Biologicals and the PATH Malaria Vaccine Initiative are working in partnership to develop a malaria vaccine to protect infants and children living in malaria endemic regions of sub-Saharan Africa, which can be delivered through the Expanded Programme on Immunization. The RTS,S/AS candidate vaccine has been evaluated in multiple phase I/II studies and shown to have a favourable safety profile and to be well-tolerated in both adults and children. This paper details the design of the phase III multicentre efficacy trial of the RTS,S/AS01 malaria vaccine candidate, which is pivotal for licensure and policy decision-making. Methods The phase III trial is a randomized, controlled, multicentre, participant- and observer-blind study on-going in 11 centres associated with different malaria transmission settings in seven countries in sub-Saharan Africa. A minimum of 6,000 children in each of two age categories (6-12 weeks, 5-17 months) have been enrolled. Children were randomized 1:1:1 to one of three study groups: (1) primary vaccination with RTS,S/AS01 and booster dose of RTS,S/AS01; (2) primary vaccination with RTS,S/AS01 and a control vaccine at time of booster; (3) primary vaccination with control vaccine and a control vaccine at time of booster. Primary vaccination comprises three doses at monthly intervals; the booster dose is administered at 18 months post-primary course. Subjects will be followed to study month 32. The co-primary objectives are the evaluation of efficacy over one year post-dose 3 against clinical malaria when primary immunization is delivered at: (1) 6-12 weeks of age, with co-administration of DTPwHepB/Hib antigens and OPV; (2) 5-17 months of age. Secondary objectives include evaluation of vaccine efficacy against severe malaria, anaemia, malaria hospitalization, fatal malaria, all-cause mortality and other serious illnesses including sepsis and pneumonia. Efficacy of the vaccine against clinical malaria under different

  4. Seven-Year Efficacy of RTS,S/AS01 Malaria Vaccine among Young African Children.

    PubMed

    Olotu, Ally; Fegan, Gregory; Wambua, Juliana; Nyangweso, George; Leach, Amanda; Lievens, Marc; Kaslow, David C; Njuguna, Patricia; Marsh, Kevin; Bejon, Philip

    2016-06-30

    The candidate malaria vaccine RTS,S/AS01 is being evaluated in order to inform a decision regarding its inclusion in routine vaccination schedules. We conducted 7 years of follow-up in children who had been randomly assigned, at 5 to 17 months of age, to receive three doses of either the RTS,S/AS01 vaccine or a rabies (control) vaccine. The end point was clinical malaria (temperature of ≥37.5°C and infection with Plasmodium falciparum of >2500 parasites per cubic millimeter). In an analysis that was not prespecified, the malaria exposure of each child was estimated with the use of information on the prevalence of malaria among residents within a 1-km radius of the child's home. Vaccine efficacy was defined as 1 minus the hazard ratio or the incidence-rate ratio, multiplied by 100, in the RTS,S/AS01 group versus the control group. Over 7 years of follow-up, we identified 1002 episodes of clinical malaria among 223 children randomly assigned to the RTS,S/AS01 group and 992 episodes among 224 children randomly assigned to the control group. The vaccine efficacy, as assessed by negative binomial regression, was 4.4% (95% confidence interval [CI], -17.0 to 21.9; P=0.66) in the intention-to-treat analysis and 7.0% (95% CI, -14.5 to 24.6; P=0.52) in the per-protocol analysis. Vaccine efficacy waned over time (P=0.006 for the interaction between vaccination and time), including negative efficacy during the fifth year among children with higher-than-average exposure to malaria parasites (intention-to-treat analysis: -43.5%; 95% CI, -100.3 to -2.8 [P=0.03]; per-protocol analysis: -56.8%; 95% CI, -118.7 to -12.3 [P=0.008]). A three-dose vaccination with RTS,S/AS01 was initially protective against clinical malaria, but this result was offset by rebound in later years in areas with higher-than-average exposure to malaria parasites. (Funded by the PATH Malaria Vaccine Initiative and others; ClinicalTrials.gov number, NCT00872963.).

  5. Community perceptions of malaria and vaccines in the South Coast and Busia regions of Kenya.

    PubMed

    Ojakaa, David I; Ofware, Peter; Machira, Yvonne W; Yamo, Emmanuel; Collymore, Yvette; Ba-Nguz, Antoinette; Vansadia, Preeti; Bingham, Allison

    2011-05-30

    Malaria is a leading cause of morbidity and mortality in children younger than 5 years in Kenya. Within the context of planning for a vaccine to be used alongside existing malaria control methods, this study explores sociocultural and health communications issues among individuals who are responsible for or influence decisions on childhood vaccination at the community level. This qualitative study was conducted in two malaria-endemic regions of Kenya--South Coast and Busia. Participant selection was purposive and criterion based. A total of 20 focus group discussions, 22 in-depth interviews, and 18 exit interviews were conducted. Participants understand that malaria is a serious problem that no single tool can defeat. Communities would welcome a malaria vaccine, although they would have questions and concerns about the intervention. While support for local child immunization programs exists, limited understanding about vaccines and what they do is evident among younger and older people, particularly men. Even as health care providers are frustrated when parents do not have their children vaccinated, some parents have concerns about access to and the quality of vaccination services. Some women, including older mothers and those less economically privileged, see themselves as the focus of health workers' negative comments associated with either their parenting choices or their children's appearance. In general, parents and caregivers weigh several factors--such as personal opportunity costs, resource constraints, and perceived benefits--when deciding whether or not to have their children vaccinated, and the decision often is influenced by a network of people, including community leaders and health workers. The study raises issues that should inform a communications strategy and guide policy decisions within Kenya on eventual malaria vaccine introduction. Unlike the current practice, where health education on child welfare and immunization focuses on women, the

  6. Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines.

    PubMed

    Moyle, Peter Michael

    Traditional vaccination approaches (e.g. live attenuated or killed microorganisms) are among the most effective means to prevent the spread of infectious diseases. These approaches, nevertheless, have failed to yield successful vaccines against many important pathogens. To overcome this problem, methods have been developed to identify microbial components, against which protective immune responses can be elicited. Subunit antigens identified by these approaches enable the production of defined vaccines, with improved safety profiles. However, they are generally poorly immunogenic, necessitating their administration with potent immunostimulatory adjuvants. Since few safe and effective adjuvants are currently used in vaccines approved for human use, with those available displaying poor potency, or an inability to stimulate the types of immune responses required for vaccines against specific diseases (e.g. cytotoxic lymphocytes (CTLs) to treat cancers), the development of new vaccines will be aided by the availability of characterized platforms of new adjuvants, improving our capacity to rationally select adjuvants for different applications. One such approach, involves the addition of microbial components (pathogen-associated molecular patterns; PAMPs), that can stimulate strong immune responses, into subunit vaccine formulations. The conjugation of PAMPs to subunit antigens provides a means to greatly increase vaccine potency, by targeting immunostimulation and antigen to the same antigen presenting cell. Thus, methods that enable the efficient, and inexpensive production of antigen-adjuvant fusions represent an exciting mean to improve immunity towards subunit antigens. Herein we review four protein-based adjuvants (flagellin, bacterial lipoproteins, the extra domain A of fibronectin (EDA), and heat shock proteins (Hsps)), which can be genetically fused to antigens to enable recombinant production of antigen-adjuvant fusion proteins, with a focus on their

  7. Preparing for future efficacy trials of severe malaria vaccines.

    PubMed

    Gonçalves, Bronner P; Prevots, D Rebecca; Kabyemela, Edward; Fried, Michal; Duffy, Patrick E

    2016-04-07

    Severe malaria is a major cause of mortality in children, but comprises only a small proportion of Plasmodium falciparum infections in naturally exposed populations. The evaluation of vaccines that prevent severe falciparum disease will require clinical trials whose primary efficacy endpoint will be severe malaria risk during follow-up. Here, we show that such trials are feasible with fewer than 1000 participants in areas with intense malaria transmission during the age interval when severe malaria incidence peaks. Published by Elsevier Ltd.

  8. Mouse models expressing human carcinoembryonic antigen (CEA) as a transgene: Evaluation of CEA-based cancer vaccines

    PubMed Central

    Hance, Kenneth W.; Zeytin, Hasan E.; Greiner, John W.

    2010-01-01

    In recent years, investigators have carried out several studies designed to evaluate whether human tumor-associated antigens might be exploited as targets for active specific immunotherapy, specifically human cancer vaccines. Not too long ago such an approach would have been met with considerable skepticism because the immune system was believed to be a rigid discriminator between self and non-self which, in turn, protected the host from a variety of pathogens. That viewpoint has been challenged in recent years by a series of studies indicating that antigenic determinants of self have not induced absolute host immune tolerance. Moreover, under specific conditions that evoke danger signals, peptides from self-antigen can be processed by the antigen-presenting cellular machinery, loaded onto the major histocompatibility antigen groove to serve as targets for immune intervention. Those findings provide the rationale to investigate a wide range of tumor-associated antigens, including differentiation antigens, oncogenes, and tumor suppressor genes as possible immune-based targets. One of those tumor-associated antigens is the carcinoembryonic antigen (CEA). Described almost 40 years ago, CEA is a Mr 180–200,000 oncofetal antigen that is one of the more widely studied human tumor-associated antigens. This review will provide: (i) a brief overview of the CEA gene family, (ii) a summary of early preclinical findings on overcoming immune tolerance to CEA, and (iii) the rationale to develop mouse models which spontaneously develop gastrointestinal tumors and express the CEA transgene. Those models have been used extensively in the study of overcoming host immune tolerance to CEA, a self, tumor-associated antigen, and the experimental findings have served as the rationale for the design of early clinical trials to evaluate CEA-based cancer vaccines. PMID:15888344

  9. RTS,S/AS01E Malaria Vaccine Induces Memory and Polyfunctional T Cell Responses in a Pediatric African Phase III Trial.

    PubMed

    Moncunill, Gemma; De Rosa, Stephen C; Ayestaran, Aintzane; Nhabomba, Augusto J; Mpina, Maximillian; Cohen, Kristen W; Jairoce, Chenjerai; Rutishauser, Tobias; Campo, Joseph J; Harezlak, Jaroslaw; Sanz, Héctor; Díez-Padrisa, Núria; Williams, Nana Aba; Morris, Daryl; Aponte, John J; Valim, Clarissa; Daubenberger, Claudia; Dobaño, Carlota; McElrath, M Juliana

    2017-01-01

    Comprehensive assessment of cellular responses to the RTS,S/AS01E vaccine is needed to understand potential correlates and ultimately mechanisms of protection against malaria disease. Cellular responses recognizing the RTS,S/AS01E-containing circumsporozoite protein (CSP) and Hepatitis B surface antigen (HBsAg) were assessed before and 1 month after primary vaccination by intracellular cytokine staining and 16-color flow cytometry in 105 RTS,S/AS01-vaccinated and 74 rabies-vaccinated participants (controls) in a pediatric phase III trial in Africa. RTS,S/AS01E-vaccinated children had significantly higher frequencies of CSP- and HBsAg-specific CD4 + T cells producing IL-2, TNF-α, and CD40L and HBsAg-specific CD4 + T producing IFN-γ and IL-17 than baseline and the control group. Vaccine-induced responses were identified in both central and effector memory (EM) compartments. EM CD4 + T cells expressing IL-4 and IL-21 were detected recognizing both vaccine antigens. Consistently higher response rates to both antigens in RTS,S/AS01E-vaccinated than comparator-vaccinated children were observed. RTS,S/AS01E induced polyfunctional CSP- and HBsAg-specific CD4 + T cells, with a greater degree of polyfunctionality in HBsAg responses. In conclusion, RTS,S/AS01E vaccine induces T cells of higher functional heterogeneity and polyfunctionality than previously characterized. Responses detected in memory CD4 + T cell compartments may provide correlates of RTS,S/AS01-induced immunity and duration of protection in future correlates of immunity studies.

  10. Cancer vaccines: an update with special focus on ganglioside antigens.

    PubMed

    Bitton, Roberto J; Guthmann, Marcel D; Gabri, Mariano R; Carnero, Ariel J L; Alonso, Daniel F; Fainboim, Leonardo; Gomez, Daniel E

    2002-01-01

    Vaccine development is one of the most promising and exciting fields in cancer research; numerous approaches are being studied to developed effective cancer vaccines. The aim of this form of therapy is to teach the patient's immune system to recognize the antigens expressed in tumor cells, but not in normal tissue, to be able to destroy these abnormal cells leaving the normal cells intact. In other words, is an attempt to teach the immune system to recognize antigens that escaped the immunologic surveillance and are by it, therefore able to survive and, in time, disseminate. However each research group developing a cancer vaccine, uses a different technology, targeting different antigens, combining different carriers and adjuvants, and using different immunization schedules. Most of the vaccines are still experimental and not approved by the US or European Regulatory Agencies. In this work, we will offer an update in the knowledge in cancer immunology and all the anticancer vaccine approaches, with special emphasis in ganglioside based vaccines. It has been demonstrated that quantitative and qualitative changes occur in ganglioside expression during the oncogenic transformation. Malignant transformation appears to activate enzymes associated with ganglioside glycosylation, resulting in altered patterns of ganglioside expression in tumors. Direct evidence of the importance of gangliosides as potential targets for active immunotherapy has been suggested by the observation that human monoclonal antibodies against these glycolipids induce shrinkage of human cutaneous melanoma metastasis. Thus, the cellular over-expression and shedding of gangliosides into the interstitial space may play a central role in cell growth regulation, immune tolerance and tumor-angiogenesis, therefore representing a new target for anticancer therapy. Since 1993 researchers at the University of Buenos Aires and the University of Quilmes (Argentina), have taken part in a project carried out by

  11. Assessing the economic benefits of vaccines based on the health investment life course framework: a review of a broader approach to evaluate malaria vaccination.

    PubMed

    Constenla, Dagna

    2015-03-24

    Economic evaluations have routinely understated the net benefits of vaccination by not including the full range of economic benefits that accrue over the lifetime of a vaccinated person. Broader approaches for evaluating benefits of vaccination can be used to more accurately calculate the value of vaccination. This paper reflects on the methodology of one such approach - the health investment life course approach - that looks at the impact of vaccine investment on lifetime returns. The role of this approach on vaccine decision-making will be assessed using the malaria health investment life course model example. We describe a framework that measures the impact of a health policy decision on government accounts over many generations. The methodological issues emerging from this approach are illustrated with an example from a recently completed health investment life course analysis of malaria vaccination in Ghana. Beyond the results, various conceptual and practical challenges of applying this framework to Ghana are discussed in this paper. The current framework seeks to understand how disease and available technologies can impact a range of economic parameters such as labour force participation, education, healthcare consumption, productivity, wages or economic growth, and taxation following their introduction. The framework is unique amongst previous economic models in malaria because it considers future tax revenue for governments. The framework is complementary to cost-effectiveness and budget impact analysis. The intent of this paper is to stimulate discussion on how existing and new methodology can add to knowledge regarding the benefits from investing in new and underutilized vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Immunoproteomic analysis of Plasmodium falciparum antigens using sera from patients with clinical history of imported malaria

    PubMed Central

    2013-01-01

    Background The malaria caused by Plasmodium falciparum remains a serious public health problem in the world, due largely to the absence of an effective vaccine. There is a lack of information on the structural properties and antigens capable of activating the immunological mechanisms for the induction of protective immunity. Therefore, the objective of this study is to evaluate the serological reactivity of sera from individuals with imported malaria and identify major immunogenic proteins. Methods The study was conducted in 227 individuals with imported malaria and 23 healthy individuals who had never been in areas endemic for malaria. The determination of anti-P. falciparum IgG antibodies was performed by an ELISA validated and optimized for this study. Sera showing higher reactivity to anti-P. falciparum by ELISA were analysed by immunoblotting and immunogenic proteins were identified by mass spectroscopy. Results The results of anti-P. falciparum antibodies research by ELISA indicates 78 positive, 137 negative and 12 indeterminate sera. Analysis of immunoblotting demonstrated a consistent pattern with respect to immunoreactivity of antigens with molecular weights in the range of 40 to 60 kDa. Between 40 and 60 kDa six immunogenic proteins were identified: elongation factor-1 alpha (EF-1α), protein disulphide isomerase (PDI); phosphoglycerate kinase (PGK); 78 kDa glucose-regulated protein homologue (GRP-78); rhoptry-associated protein 2 (RAP-2) and rhoptry-associated protein 3 (RAP-3). Conclusions It was identified immunogenic proteins essential for parasite survival in the host, two of which (RAP-2 and RAP-3) are already described in the literature as proteins that play an important role in the invasion of erythrocytes by extracellular merozoites. PMID:23506095

  13. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines.

    PubMed

    Goyvaerts, Cleo; Breckpot, Karine

    2015-01-01

    In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.

  14. Preclinical profiling of the immunogenicity of a two-component subunit malaria vaccine candidate based on virosome technology.

    PubMed

    Okitsu, Shinji L; Mueller, Markus S; Amacker, Mario; Vogel, Denise; Westerfeld, Nicole; Robinson, John A; Zurbriggen, Rinaldo; Pluschke, Gerd

    2008-01-01

    Presentation of synthetic peptides on immunopotentiating reconstituted influenza virosomes is a promising technology for subunit vaccine development. An optimized virosomally delivered peptide representing 5 NPNA repeats of P. falciparum circumsporozoite protein is highly immunogenic in mice. Antibodies against this peptide (UK-39) inhibit sporozoite invasion of human hepatocytes. A second peptide (AMA49-C1) based on domain III of apical membrane antigen 1, induces antibodies that inhibit blood-stage parasite growth in vitro. Here we show a detailed pre-clinical profiling of these virosomally formulated peptides alone and in combination in mice and rabbits. Two immunizations with virosomally formulated UK-39 or AMA49-C1 were enough to elicit high titers of parasite cross-reactive antibodies in both species. A low dose of 10 microg UK-39 was enough to induce maximal titers in rabbits. Higher doses of peptide did not increase antibody titers. In contrast, AMA49-C1 induced higher antibody titers with 25 and 50 microg peptide. Combination of UK-39 and AMA49- C1 on separate virosomes did not have any negative effect on anti-peptide antibody titers in mice or rabbits. No MHC restriction was observed in the development of humoral responses in outbred rabbits with different immunogenetic backgrounds. All vaccine formulations were safe in toxicity studies in rabbits and rats. Taken together, low amounts of synthetic peptides delivered on virosomes induced high antibody titers in mice and rabbits. Moreover, different peptides could be combined without interfering with individual anti-peptide responses, augmenting the value of this system for the development of a multivalent malaria vaccine.

  15. Diabetes tolerogenic vaccines targeting antigen-specific inflammation

    PubMed Central

    Geng, Shuang; Zhang, Huiyuan; Zhou, Xian; He, Yue; Zhang, Xiaoqian; Xie, Xiaoping; Li, Chaofan; He, Zhonghuai; Yu, Qingling; Zhong, Yiwei; Lowrie, Douglas B; Zheng, Guoxing; Wang, Bin

    2015-01-01

    Tolerance controls the magnitude of inflammation, and balance between beneficial and harmful effects of inflammation is crucial for organ function and survival. Inadequate tolerance leads to various inflammatory diseases. Antigen specific tolerance is ideal for inflammation control as alternative anti-inflammatory interventions are non-specific and consequently increase the risk of infection and tumorigenesis. With inherent antigen specificity, tolerogenic vaccines are potentially ideal for control of inflammation. Although the concept of tolerogenic vaccines is still in its infancy, tolerogenic mucosal vaccines and specific immuno-therapies have long been proven effective in pioneering examples. Now a body of evidence supporting the concept of tolerogenic vaccines has also accumulated. Here we comment on recent successes of the tolerogenic vaccine concept, present new evidence with a type 1 diabetes vaccine as an example and draw conclusions on the advantages and potential for inflammatory disease control at the bedside. PMID:25622092

  16. The RTS,S/AS01 malaria vaccine in children 5 to 17 months of age at first vaccination.

    PubMed

    Vandoolaeghe, Pascale; Schuerman, Lode

    2016-12-01

    The RTS,S/AS01 malaria vaccine received a positive scientific opinion from the European Medicines Agency in July 2015. The World Health Organization recommended pilot implementation of the vaccine in children at least 5 months of age according to an initial 3-dose schedule given at least 1 month apart, and a 4th dose 15-18 months post-dose 3. Clinical trials and mathematical modeling demonstrated that the partial protection provided by RTS,S/AS01 against malaria has the potential to provide substantial public health benefit when used in parallel with other malaria interventions, especially in highly endemic regions. The highest impact was seen with 4 vaccine doses in children aged 5 months or older. The vaccine will be evaluated in real-life settings to further assess its impact on mortality, vaccine safety in the context of routine immunization, and programmatic feasibility of delivering a 4-dose vaccination schedule requiring new immunization contacts. If successful, this will pave the way for larger-scale implementation.

  17. High Antibody Responses against Plasmodium falciparum in Immigrants after Extended Periods of Interrupted Exposure to Malaria

    PubMed Central

    Jiménez, Alfons; Nhabomba, Augusto; Casas-Vila, Núria; Puyol, Laura; Campo, Joseph J.; Manaca, Maria Nelia; Aguilar, Ruth; Pinazo, María-Jesús; Almirall, Mercè; Soler, Cristina; Muñoz, José; Bardají, Azucena; Angov, Evelina; Dutta, Sheetij; Chitnis, Chetan E.; Alonso, Pedro L.; Gascón, Joaquim; Dobaño, Carlota

    2013-01-01

    Background Malaria immunity is commonly believed to wane in the absence of Plasmodium falciparum exposure, based on limited epidemiological data and short-lived antibody responses in some longitudinal studies in endemic areas. Methods A cross-sectional study was conducted among sub-Saharan African adults residing in Spain for 1 up to 38 years (immigrants) with clinical malaria (n=55) or without malaria (n=37), naïve adults (travelers) with a first clinical malaria episode (n=20) and life-long malaria exposed adults from Mozambique (semi-immune adults) without malaria (n=27) or with clinical malaria (n=50). Blood samples were collected and IgG levels against the erythrocytic antigens AMA-1 and MSP-142 (3D7 and FVO strains), EBA-175 and DBL-α were determined by Luminex. IgG levels against antigens on the surface of infected erythrocytes (IEs) were measured by flow cytometry. Results Immigrants without malaria had lower IgG levels than healthy semi-immune adults regardless of the antigen tested (P≤0.026), but no correlation was found between IgG levels and time since migration. Upon reinfection, immigrants with malaria had higher levels of IgG against all antigens than immigrants without malaria. However, the magnitude of the response compared to semi-immune adults with malaria depended on the antigen tested. Thus, immigrants had higher IgG levels against AMA-1 and MSP-142 (P≤0.015), similar levels against EBA-175 and DBL-α, and lower levels against IEs (P≤0.016). Immigrants had higher IgG levels against all antigens tested compared to travelers (P≤0.001), both with malaria. Conclusions Upon cessation of malaria exposure, IgG responses to malaria-specific antigens were maintained to a large extent, although the conservation and the magnitude of the recall response depended on the nature of the antigen. Studies on immigrant populations can shed light on the factors that determine the duration of malaria specific antibody responses and its effect on

  18. Peptides containing antigenic and cationic domains have enhanced, multivalent immunogenicity when bound to DNA vaccines.

    PubMed

    Riedl, Petra; Reimann, Jörg; Schirmbeck, Reinhold

    2004-02-01

    We explored strategies to codeliver DNA- and peptide-based vaccines in a way that enhances the immunogenicity of both components of the combination vaccine for T cells. Specific CD8(+) T cell responses to an antigenic peptide are primed when the peptide is fused to a cationic peptide domain that is bound to plasmid DNA or oligonucleotides (ODN; with or without CpG motifs). Plasmid DNA mixed with antigenic/cationic peptides or histones forms large complexes with different biological properties depending on the molar ratios of peptide/protein and polynucleotide. Complexes containing high (but not low) molar ratios of cationic peptide to DNA facilitate transfection (DNA uptake and expression of the plasmid-encoded product) of cells. In contrast, complexes containing low (but not high) molar ratios of cationic peptide to DNA prime potent multispecific T cell responses after a single intramuscular injection of the complexes. The general validity of this observation was confirmed mixing different antigenic/cationic peptides with different DNA vaccines. In these vaccine formulations, multispecific CD8(+) T cell responses specific for epitopes of the peptide- as well as the DNA-based vaccine were efficiently coprimed, together with humoral antibody responses to conformational determinants of large viral antigens encoded by the DNA vaccine. The data indicate that mixtures of DNA vaccines with antigenic, cationic peptides are immunogenic vaccine formulations particularly suited for the induction of multispecific T cell responses.

  19. New insight-guided approaches to detect, cure, prevent and eliminate malaria.

    PubMed

    Kumar, Sushil; Kumari, Renu; Pandey, Richa

    2015-05-01

    New challenges posed by the development of resistance against artemisinin-based combination therapies (ACTs) as well as previous first-line therapies, and the continuing absence of vaccine, have given impetus to research in all areas of malaria control. This review portrays the ongoing progress in several directions of malaria research. The variants of RTS,S and apical membrane antigen 1 (AMA1) are being developed and test adapted as multicomponent and multistage malaria control vaccines, while many other vaccine candidates and methodologies to produce antigens are under experimentation. To track and prevent the spread of artemisinin resistance from Southeast Asia to other parts of the world, rolling circle-enhanced enzyme activity detection (REEAD), a time- and cost-effective malaria diagnosis in field conditions, and a DNA marker associated with artemisinin resistance have become available. Novel mosquito repellents and mosquito trapping and killing techniques much more effective than the prevalent ones are undergoing field testing. Mosquito lines stably infected with their symbiotic wild-type or genetically engineered bacteria that kill sympatric malaria parasites are being constructed and field tested for stopping malaria transmission. A complementary approach being pursued is the addition of ivermectin-like drug molecules to ACTs to cure malaria and kill mosquitoes. Experiments are in progress to eradicate malaria mosquito by making it genetically male sterile. High-throughput screening procedures are being developed and used to discover molecules that possess long in vivo half life and are active against liver and blood stages for the fast cure of malaria symptoms caused by simple or relapsing and drug-sensitive and drug-resistant types of varied malaria parasites, can stop gametocytogenesis and sporogony and could be given in one dose. Target-based antimalarial drug designing has begun. Some of the putative next-generation antimalarials that possess in their

  20. Development of a multicomponent vaccine for Streptococcus pyogenes based on the antigenic targets of IVIG.

    PubMed

    Reglinski, Mark; Lynskey, Nicola N; Choi, Yoon Jung; Edwards, Robert J; Sriskandan, Shiranee

    2016-04-01

    Despite over a century of research and the careful scrutiny of many promising targets, there is currently no vaccine available for the prevention of Streptococcus pyogenes infection. Through analysis of the protective, anti-streptococcal components of pooled human immunoglobulin, we previously identified ten highly conserved and invariant S. pyogenes antigens that contribute to anti-streptococcal immunity in the adult population. We sought to emulate population immunity to S. pyogenes through a process of active vaccination, using the antigens targeted by pooled human immunoglobulin. Seven targets were produced recombinantly and mixed to form a multicomponent vaccine (Spy7). Vaccinated mice were challenged with S. pyogenes isolates representing four globally relevant serotypes (M1, M3, M12 and M89) using an established model of invasive disease. Vaccination with Spy7 stimulated the production of anti-streptococcal antibodies, and limited systemic dissemination of M1 and M3 S. pyogenes from an intramuscular infection focus. Vaccination additionally attenuated disease severity due to M1 S. pyogenes as evidenced by reduction in weight loss, and modulated cytokine release. Spy7 vaccination successfully stimulated the generation of protective anti-streptococcal immunity in vivo. Identification of reactive antigens using pooled human immunoglobulin may represent a novel route to vaccine discovery for extracellular bacteria. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Development of a multicomponent vaccine for Streptococcus pyogenes based on the antigenic targets of IVIG

    PubMed Central

    Reglinski, Mark; Lynskey, Nicola N.; Choi, Yoon Jung; Edwards, Robert J.; Sriskandan, Shiranee

    2016-01-01

    Summary Objectives Despite over a century of research and the careful scrutiny of many promising targets, there is currently no vaccine available for the prevention of Streptococcus pyogenes infection. Through analysis of the protective, anti-streptococcal components of pooled human immunoglobulin, we previously identified ten highly conserved and invariant S. pyogenes antigens that contribute to anti-streptococcal immunity in the adult population. We sought to emulate population immunity to S. pyogenes through a process of active vaccination, using the antigens targeted by pooled human immunoglobulin. Methods Seven targets were produced recombinantly and mixed to form a multicomponent vaccine (Spy7). Vaccinated mice were challenged with S. pyogenes isolates representing four globally relevant serotypes (M1, M3, M12 and M89) using an established model of invasive disease. Results Vaccination with Spy7 stimulated the production of anti-streptococcal antibodies, and limited systemic dissemination of M1 and M3 S. pyogenes from an intramuscular infection focus. Vaccination additionally attenuated disease severity due to M1 S. pyogenes as evidenced by reduction in weight loss, and modulated cytokine release. Conclusion Spy7 vaccination successfully stimulated the generation of protective anti-streptococcal immunity in vivo. Identification of reactive antigens using pooled human immunoglobulin may represent a novel route to vaccine discovery for extracellular bacteria. PMID:26880087

  2. Effect of intermittent preventive treatment for malaria during infancy on serological responses to measles and other vaccines used in the Expanded Programme on Immunization: results from five randomised controlled trials.

    PubMed

    Crawley, Jane; Sismanidis, Charalambos; Goodman, Tracey; Milligan, Paul

    2012-09-15

    Intermittent preventive treatment for malaria during infancy (IPTi) is the administration of a full therapeutic course of antimalarial drugs to infants living in settings where malaria is endemic, at the time of routine vaccination in the first year of life. We investigated whether IPTi with sulfadoxine-pyrimethamine or other antimalarial drug combinations adversely affected serological responses to vaccines used in the Expanded Programme on Immunization (EPI). The study was done in a subset of children enrolled in five randomised controlled trials in Navrongo, Ghana; Kilimanjaro, Tanzania; Manhica, Mozambique; Kisumu, Kenya; and Bungoma, Kenya. All infants presenting for the second dose of the diphtheria-tetanus-pertussis vaccination (given at 8-10 weeks of age) were eligible, and analyses included all children who had received measles vaccination (at 9 months of age) and at least one dose of IPTi or placebo. Blood samples were collected before and after vaccination, and antibody titres were measured by plaque reduction neutralisation (measles, yellow fever), microneutralisation (polio serotypes 1 and 3), and ELISA (all other EPI antigens). Laboratory personnel were unaware of the randomisation groups. We compared the proportion of infants in the IPTi and placebo groups who did not attain protective antibody titres after vaccination, using a one-sided significance non-inferiority margin of 5% for measles (the primary endpoint) and 10% for other EPI antigens. Between September, 2000, and May, 2008, 8416 children were enrolled in the five studies. Paired samples from 2368 children from sites where sulfadoxine-pyrimethamine was compared with placebo were analysed for measles antibodies. 464 children with detectable measles antibody in their sample before vaccination were excluded, leaving 1904 individuals (934 placebo and 970 sulfadoxine-pyrimethamine) in the study. IPTi with sulfadoxine-pyrimethamine did not have a clinically significant effect on immune responses

  3. Efficacy of phase 3 trial of RTS, S/AS01 malaria vaccine: The need for an alternative development plan.

    PubMed

    Mahmoudi, Shima; Keshavarz, Hossein

    2017-09-02

    Although vaccines would be the ideal tool for control, prevention, elimination, and eradication of many infectious diseases, developing of parasites vaccines such as malaria vaccine is very complex. The most advanced malaria vaccine candidate RTS,S, a pre-erythrocytic vaccine, has been recommended for licensure by EMEA. The results of this phase III trial suggest that this candidate malaria vaccine has relatively little efficacy, and the vaccine apparently will not meet the goal of malaria eradication by itself. Since there are many vaccine candidates in the pipeline 1 that are being evaluated in vaccine trials, further study on using of alternative parasite targets and vaccination strategies are highly recommended.

  4. Cross-species malaria immunity induced by chemically attenuated parasites

    PubMed Central

    Good, Michael F.; Reiman, Jennifer M.; Rodriguez, I. Bibiana; Ito, Koichi; Yanow, Stephanie K.; El-Deeb, Ibrahim M.; Batzloff, Michael R.; Stanisic, Danielle I.; Engwerda, Christian; Spithill, Terry; Hoffman, Stephen L.; Lee, Moses; McPhun, Virginia

    2013-01-01

    Vaccine development for the blood stages of malaria has focused on the induction of antibodies to parasite surface antigens, most of which are highly polymorphic. An alternate strategy has evolved from observations that low-density infections can induce antibody-independent immunity to different strains. To test this strategy, we treated parasitized red blood cells from the rodent parasite Plasmodium chabaudi with seco-cyclopropyl pyrrolo indole analogs. These drugs irreversibly alkylate parasite DNA, blocking their ability to replicate. After administration in mice, DNA from the vaccine could be detected in the blood for over 110 days and a single vaccination induced profound immunity to different malaria parasite species. Immunity was mediated by CD4+ T cells and was dependent on the red blood cell membrane remaining intact. The human parasite, Plasmodium falciparum, could also be attenuated by treatment with seco-cyclopropyl pyrrolo indole analogs. These data demonstrate that vaccination with chemically attenuated parasites induces protective immunity and provide a compelling rationale for testing a blood-stage parasite-based vaccine targeting human Plasmodium species. PMID:23863622

  5. A systems approach to designing next generation vaccines: combining α-galactose modified antigens with nanoparticle platforms

    NASA Astrophysics Data System (ADS)

    Phanse, Yashdeep; Carrillo-Conde, Brenda R.; Ramer-Tait, Amanda E.; Broderick, Scott; Kong, Chang Sun; Rajan, Krishna; Flick, Ramon; Mandell, Robert B.; Narasimhan, Balaji; Wannemuehler, Michael J.

    2014-01-01

    Innovative vaccine platforms are needed to develop effective countermeasures against emerging and re-emerging diseases. These platforms should direct antigen internalization by antigen presenting cells and promote immunogenic responses. This work describes an innovative systems approach combining two novel platforms, αGalactose (αGal)-modification of antigens and amphiphilic polyanhydride nanoparticles as vaccine delivery vehicles, to rationally design vaccine formulations. Regimens comprising soluble αGal-modified antigen and nanoparticle-encapsulated unmodified antigen induced a high titer, high avidity antibody response with broader epitope recognition of antigenic peptides than other regimen. Proliferation of antigen-specific CD4+ T cells was also enhanced compared to a traditional adjuvant. Combining the technology platforms and augmenting immune response studies with peptide arrays and informatics analysis provides a new paradigm for rational, systems-based design of next generation vaccine platforms against emerging and re-emerging pathogens.

  6. Community perceptions of malaria and vaccines in the South Coast and Busia regions of Kenya

    PubMed Central

    2011-01-01

    Background Malaria is a leading cause of morbidity and mortality in children younger than 5 years in Kenya. Within the context of planning for a vaccine to be used alongside existing malaria control methods, this study explores sociocultural and health communications issues among individuals who are responsible for or influence decisions on childhood vaccination at the community level. Methods This qualitative study was conducted in two malaria-endemic regions of Kenya--South Coast and Busia. Participant selection was purposive and criterion based. A total of 20 focus group discussions, 22 in-depth interviews, and 18 exit interviews were conducted. Results Participants understand that malaria is a serious problem that no single tool can defeat. Communities would welcome a malaria vaccine, although they would have questions and concerns about the intervention. While support for local child immunization programs exists, limited understanding about vaccines and what they do is evident among younger and older people, particularly men. Even as health care providers are frustrated when parents do not have their children vaccinated, some parents have concerns about access to and the quality of vaccination services. Some women, including older mothers and those less economically privileged, see themselves as the focus of health workers' negative comments associated with either their parenting choices or their children's appearance. In general, parents and caregivers weigh several factors--such as personal opportunity costs, resource constraints, and perceived benefits--when deciding whether or not to have their children vaccinated, and the decision often is influenced by a network of people, including community leaders and health workers. Conclusions The study raises issues that should inform a communications strategy and guide policy decisions within Kenya on eventual malaria vaccine introduction. Unlike the current practice, where health education on child welfare and

  7. Vaccine antigens modulate the innate response of monocytes to Al(OH)3

    PubMed Central

    Brummelman, Jolanda; van Els, Cécile A. C. M.; Marino, Fabio; Heck, Albert J. R.; van Riet, Elly; Metz, Bernard; Kersten, Gideon F. A.; Pennings, Jeroen L. A.; Meiring, Hugo D.

    2018-01-01

    Aluminum-based adjuvants have widely been used in human vaccines since 1926. In the absence of antigens, aluminum-based adjuvants can initiate the inflammatory preparedness of innate cells, yet the impact of antigens on this response has not been investigated so far. In this study, we address the modulating effect of vaccine antigens on the monocyte-derived innate response by comparing processes initiated by Al(OH)3 and by Infanrix, an Al(OH)3-adjuvanted trivalent combination vaccine (DTaP), containing diphtheria toxoid (D), tetanus toxoid (T) and acellular pertussis (aP) vaccine antigens. A systems-wide analysis of stimulated monocytes was performed in which full proteome analysis was combined with targeted transcriptome analysis and cytokine analysis. This comprehensive study revealed four major differences in the monocyte response, between plain Al(OH)3 and DTaP stimulation conditions: (I) DTaP increased the anti-inflammatory cytokine IL-10, whereas Al(OH)3 did not; (II) Al(OH)3 increased the gene expression of IFNγ, IL-2 and IL-17a in contrast to the limited induction or even downregulation by DTaP; (III) increased expression of type I interferons-induced proteins was not observed upon DTaP stimulation, but was observed upon Al(OH)3 stimulation; (IV) opposing regulation of protein localization pathways was observed for Al(OH)3 and DTaP stimulation, related to the induction of exocytosis by Al(OH)3 alone. This study highlights that vaccine antigens can antagonize Al(OH)3-induced programming of the innate immune responses at the monocyte level. PMID:29813132

  8. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus).

    PubMed

    Munang'andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-12-13

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia ( Niloticus oreochromis ) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy.

  9. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Munang’andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-01-01

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia (Niloticus oreochromis) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy. PMID:27983591

  10. Prime-boost bacillus Calmette-Guérin vaccination with lentivirus-vectored and DNA-based vaccines expressing antigens Ag85B and Rv3425 improves protective efficacy against Mycobacterium tuberculosis in mice.

    PubMed

    Xu, Ying; Yang, Enzhuo; Wang, Jianguang; Li, Rui; Li, Guanghua; Liu, Guoyuan; Song, Na; Huang, Qi; Kong, Cong; Wang, Honghai

    2014-10-01

    To prevent the global spread of tuberculosis (TB), more effective vaccines and vaccination strategies are urgently needed. As a result of the success of bacillus Calmette-Guérin (BCG) in protecting children against miliary and meningeal TB, the majority of individuals will have been vaccinated with BCG; hence, boosting BCG-primed immunity will probably be a key component of future vaccine strategies. In this study, we compared the ability of DNA-, protein- and lentiviral vector-based vaccines that express the antigens Ag85B and Rv3425 to boost the effects of BCG in the context of immunity and protection against Mycobacterium tuberculosis in C57BL/6 mice. Our results demonstrated that prime-boost BCG vaccination with a lentiviral vector expressing the antigens Ag85B and Rv3425 significantly enhanced immune responses, including T helper type 1 and CD8(+) cytotoxic T lymphocyte responses, compared with DNA- and protein-based vaccines. However, lentivirus-vectored and DNA-based vaccines greatly improved the protective efficacy of BCG against M. tuberculosis, as indicated by a lack of weight loss and significantly reduced bacterial loads and histological damage in the lung. Our study suggests that the use of lentiviral or DNA vaccines containing the antigens Ag85B and Rv3425 to boost BCG is a good choice for the rational design of an efficient vaccination strategy against TB. © 2014 John Wiley & Sons Ltd.

  11. Viral Vector Malaria Vaccines Induce High-Level T Cell and Antibody Responses in West African Children and Infants.

    PubMed

    Bliss, Carly M; Drammeh, Abdoulie; Bowyer, Georgina; Sanou, Guillaume S; Jagne, Ya Jankey; Ouedraogo, Oumarou; Edwards, Nick J; Tarama, Casimir; Ouedraogo, Nicolas; Ouedraogo, Mireille; Njie-Jobe, Jainaba; Diarra, Amidou; Afolabi, Muhammed O; Tiono, Alfred B; Yaro, Jean Baptiste; Adetifa, Uche J; Hodgson, Susanne H; Anagnostou, Nicholas A; Roberts, Rachel; Duncan, Christopher J A; Cortese, Riccardo; Viebig, Nicola K; Leroy, Odile; Lawrie, Alison M; Flanagan, Katie L; Kampmann, Beate; Imoukhuede, Egeruan B; Sirima, Sodiomon B; Bojang, Kalifa; Hill, Adrian V S; Nébié, Issa; Ewer, Katie J

    2017-02-01

    Heterologous prime-boosting with viral vectors encoding the pre-erythrocytic antigen thrombospondin-related adhesion protein fused to a multiple epitope string (ME-TRAP) induces CD8 + T cell-mediated immunity to malaria sporozoite challenge in European malaria-naive and Kenyan semi-immune adults. This approach has yet to be evaluated in children and infants. We assessed this vaccine strategy among 138 Gambian and Burkinabe children in four cohorts: 2- to 6-year olds in The Gambia, 5- to 17-month-olds in Burkina Faso, and 5- to 12-month-olds and 10-week-olds in The Gambia. We assessed induction of cellular immunity, taking into account the distinctive hematological status of young infants, and characterized the antibody response to vaccination. T cell responses peaked 7 days after boosting with modified vaccinia virus Ankara (MVA), with highest responses in infants aged 10 weeks at priming. Incorporating lymphocyte count into the calculation of T cell responses facilitated a more physiologically relevant comparison of cellular immunity across different age groups. Both CD8 +  and CD4 + T cells secreted cytokines. Induced antibodies were up to 20-fold higher in all groups compared with Gambian and United Kingdom (UK) adults, with comparable or higher avidity. This immunization regimen elicited strong immune responses, particularly in young infants, supporting future evaluation of efficacy in this key target age group for a malaria vaccine. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Cellular and humoral immune responses against the Plasmodium vivax MSP-119 malaria vaccine candidate in individuals living in an endemic area in north-eastern Amazon region of Brazil

    PubMed Central

    2013-01-01

    Background Plasmodium vivax merozoite surface protein-1 (MSP-1) is an antigen considered to be one of the leading malaria vaccine candidates. PvMSP-1 is highly immunogenic and evidences suggest that it is target for protective immunity against asexual blood stages of malaria parasites. Thus, this study aims to evaluate the acquired cellular and antibody immune responses against PvMSP-1 in individuals naturally exposed to malaria infections in a malaria-endemic area in the north-eastern Amazon region of Brazil. Methods The study was carried out in Paragominas, Pará State, in the Brazilian Amazon. Blood samples were collected from 35 individuals with uncomplicated malaria. Peripheral blood mononuclear cells were isolated and the cellular proliferation and activation was analysed in presence of 19 kDa fragment of MSP-1 (PvMSP-119) and Plasmodium falciparum PSS1 crude antigen. Antibodies IgE, IgM, IgG and IgG subclass and the levels of TNF, IFN-γ and IL-10 were measured by enzyme-linked immunosorbent assay. Results The prevalence of activated CD4+ was greater than CD8+ T cells, in both ex-vivo and in 96 h culture in presence of PvMSP-119 and PSS1 antigen. A low proliferative response against PvMSP-119 and PSS1 crude antigen after 96 h culture was observed. High plasmatic levels of IFN-γ and IL-10 as well as lower TNF levels were also detected in malaria patients. However, in the 96 h supernatant culture, the dynamics of cytokine responses differed from those depicted on plasma assays; in presence of PvMSP-119 stimulus, higher levels of TNF were noted in supernatant 96 h culture of malaria patient’s cells while low levels of IFN-γ and IL-10 were verified. High frequency of malaria patients presenting antibodies against PvMSP-119 was evidenced, regardless class or IgG subclass.PvMSP-119-induced antibodies were predominantly on non-cytophilic subclasses. Conclusions The results presented here shows that PvMSP-119 was able to induce a high cellular activation

  13. Extending antigen release from particulate vaccines results in enhanced antitumor immune response.

    PubMed

    Kapadia, Chintan H; Tian, Shaomin; Perry, Jillian L; Sailer, David; Christopher Luft, J; DeSimone, Joseph M

    2018-01-10

    Tumor-specific CD8 + cytotoxic T lymphocytes (CTLs) play a critical role in an anti-tumor immune response. However, vaccination intended to elicit a potent CD8 + T cell responses employing tumor-associated peptide antigens, are typically ineffective due to poor immunogenicity. Previously, we engineered a polyethylene glycol (PEG) hydrogel-based subunit vaccine for the delivery of an antigenic peptide and CpG (adjuvant) to elicit potent CTLs. In this study, we further examined the effect of antigen release kinetics on their induced immune responses. A CD8 + T cell epitope peptide from OVA (CSIINFEKL) and CpG were co-conjugated to nanoparticles utilizing either a disulfide or a thioether linkage. Subsequent studies comparing peptide release rates as a function of linker, determined that the thioether linkage provided sustained release of peptide over 72h. Ability to control the release of peptide resulted in both higher and prolonged antigen presentation when compared to disulfide-linked peptide. Both NP vaccine formulations resulted in activation and maturation of bone marrow derived dendritic cells (BMDCs) and induced potent CD8 + T cell responses when compared to soluble antigen and soluble CpG. Immunization with either disulfide or thioether linked vaccine constructs effectively inhibited EG7-OVA tumor growth in mice, however only treatment with the thioether linked vaccine construct resulted in enhanced survival. Copyright © 2017. Published by Elsevier B.V.

  14. Transcriptionally active PCR for antigen identification and vaccine development: in vitro genome-wide screening and in vivo immunogenicity

    PubMed Central

    Regis, David P.; Dobaño, Carlota; Quiñones-Olson, Paola; Liang, Xiaowu; Graber, Norma L.; Stefaniak, Maureen E.; Campo, Joseph J.; Carucci, Daniel J.; Roth, David A.; He, Huaping; Felgner, Philip L.; Doolan, Denise L.

    2009-01-01

    We have evaluated a technology called Transcriptionally Active PCR (TAP) for high throughput identification and prioritization of novel target antigens from genomic sequence data using the Plasmodium parasite, the causative agent of malaria, as a model. First, we adapted the TAP technology for the highly AT-rich Plasmodium genome, using well-characterized P. falciparum and P. yoelii antigens and a small panel of uncharacterized open reading frames from the P. falciparum genome sequence database. We demonstrated that TAP fragments encoding six well-characterized P. falciparum antigens and five well-characterized P. yoelii antigens could be amplified in an equivalent manner from both plasmid DNA and genomic DNA templates, and that uncharacterized open reading frames could also be amplified from genomic DNA template. Second, we showed that the in vitro expression of the TAP fragments was equivalent or superior to that of supercoiled plasmid DNA encoding the same antigen. Third, we evaluated the in vivo immunogenicity of TAP fragments encoding a subset of the model P. falciparum and P. yoelii antigens. We found that antigen-specific antibody and cellular immune responses induced by the TAP fragments in mice were equivalent or superior to those induced by the corresponding plasmid DNA vaccines. Finally, we developed and demonstrated proof-of-principle for an in vitro humoral immunoscreening assay for down-selection of novel target antigens. These data support the potential of a TAP approach for rapid high throughput functional screening and identification of potential candidate vaccine antigens from genomic sequence data. PMID:18164079

  15. Transcriptionally active PCR for antigen identification and vaccine development: in vitro genome-wide screening and in vivo immunogenicity.

    PubMed

    Regis, David P; Dobaño, Carlota; Quiñones-Olson, Paola; Liang, Xiaowu; Graber, Norma L; Stefaniak, Maureen E; Campo, Joseph J; Carucci, Daniel J; Roth, David A; He, Huaping; Felgner, Philip L; Doolan, Denise L

    2008-03-01

    We have evaluated a technology called transcriptionally active PCR (TAP) for high throughput identification and prioritization of novel target antigens from genomic sequence data using the Plasmodium parasite, the causative agent of malaria, as a model. First, we adapted the TAP technology for the highly AT-rich Plasmodium genome, using well-characterized P. falciparum and P. yoelii antigens and a small panel of uncharacterized open reading frames from the P. falciparum genome sequence database. We demonstrated that TAP fragments encoding six well-characterized P. falciparum antigens and five well-characterized P. yoelii antigens could be amplified in an equivalent manner from both plasmid DNA and genomic DNA templates, and that uncharacterized open reading frames could also be amplified from genomic DNA template. Second, we showed that the in vitro expression of the TAP fragments was equivalent or superior to that of supercoiled plasmid DNA encoding the same antigen. Third, we evaluated the in vivo immunogenicity of TAP fragments encoding a subset of the model P. falciparum and P. yoelii antigens. We found that antigen-specific antibody and cellular immune responses induced by the TAP fragments in mice were equivalent or superior to those induced by the corresponding plasmid DNA vaccines. Finally, we developed and demonstrated proof-of-principle for an in vitro humoral immunoscreening assay for down-selection of novel target antigens. These data support the potential of a TAP approach for rapid high throughput functional screening and identification of potential candidate vaccine antigens from genomic sequence data.

  16. A whole-killed, blood-stage lysate vaccine protects against the malaria liver stage.

    PubMed

    Lu, X; Liu, T; Zhu, F; Chen, L; Xu, W

    2017-01-01

    Although the attenuated sporozoite is the most efficient vaccine to prevent infection with the malaria parasite, the limitation of a source of sterile sporozoites greatly hampers its application. In this study, we found that the whole-killed, blood-stage lysate vaccine could confer protection against the blood stage as well as the liver stage. Although the protective immunity induced by the whole-organism vaccine against the blood stage is dependent on parasite-specific CD4 + T-cell responses and antibodies, in mice immunized with the whole-killed, blood-stage lysate vaccine, CD8 + , but not CD4 + effector T-cell responses greatly contributed to protection against the liver stage. Thus, our data suggested that the whole-killed, blood-stage lysate vaccine could be an alternative promising strategy to prevent malaria infection and to reduce the morbidity and mortality of patients with malaria. © 2016 John Wiley & Sons Ltd.

  17. Nanoparticle formulation enhanced protective immunity provoked by PYGPI8p-transamidase related protein (PyTAM) DNA vaccine in Plasmodium yoelii malaria model.

    PubMed

    Cherif, Mahamoud Sama; Shuaibu, Mohammed Nasir; Kodama, Yukinobu; Kurosaki, Tomoaki; Helegbe, Gideon Kofi; Kikuchi, Mihoko; Ichinose, Akitoyo; Yanagi, Tetsuo; Sasaki, Hitoshi; Yui, Katsuyuki; Tien, Nguyen Huy; Karbwang, Juntra; Hirayama, Kenji

    2014-04-07

    We have previously reported the new formulation of polyethylimine (PEI) with gamma polyglutamic acid (γ-PGA) nanoparticle (NP) to have provided Plasmodium yoelii merozoite surface protein-1 (PyMSP-1) plasmid DNA vaccine with enhanced protective cellular and humoral immunity in the lethal mouse malaria model. PyGPI8p-transamidase-related protein (PyTAM) was selected as a possible candidate vaccine antigen by using DNA vaccination screening from 29 GPI anchor and signal sequence motif positive genes picked up using web-based bioinformatics tools; though the observed protection was not complete. Here, we observed augmented protective effect of PyTAM DNA vaccine by using PEI and γ-PGA complex as delivery system. NP-coated PyTAM plasmid DNA immunized mice showed a significant survival rate from lethal P. yoelii challenge infection compared with naked PyTAM plasmid or with NP-coated empty plasmid DNA group. Antigen-specific IgG1 and IgG2b subclass antibody levels, proportion of CD4 and CD8T cells producing IFN-γ in the splenocytes and IL-4, IFN-γ, IL-12 and TNF-α levels in the sera and in the supernatants from ex vivo splenocytes culture were all enhanced by the NP-coated PyTAM DNA vaccine. These data indicates that NP augments PyTAM protective immune response, and this enhancement was associated with increased DC activation and concomitant IL-12 production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Convalescent Plasmodium falciparum-specific seroreactivity does not correlate with paediatric malaria severity or Plasmodium antigen exposure.

    PubMed

    Kessler, Anne; Campo, Joseph J; Harawa, Visopo; Mandala, Wilson L; Rogerson, Stephen J; Mowrey, Wenzhu B; Seydel, Karl B; Kim, Kami

    2018-04-25

    Antibody immunity is thought to be essential to prevent severe Plasmodium falciparum infection, but the exact correlates of protection are unknown. Over time, children in endemic areas acquire non-sterile immunity to malaria that correlates with development of antibodies to merozoite invasion proteins and parasite proteins expressed on the surface of infected erythrocytes. A 1000 feature P. falciparum 3D7 protein microarray was used to compare P. falciparum-specific seroreactivity during acute infection and 30 days after infection in 23 children with uncomplicated malaria (UM) and 25 children with retinopathy-positive cerebral malaria (CM). All children had broad P. falciparum antibody reactivity during acute disease. IgM reactivity decreased and IgG reactivity increased in convalescence. Antibody reactivity to CIDR domains of "virulent" PfEMP1 proteins was low with robust reactivity to the highly conserved, intracellular ATS domain of PfEMP1 in both groups. Although children with UM and CM differed markedly in parasite burden and PfEMP1 exposure during acute disease, neither acute nor convalescent PfEMP1 seroreactivity differed between groups. Greater seroprevalence to a conserved Group A-associated ICAM binding extracellular domain was observed relative to linked extracellular CIDRα1 domains in both case groups. Pooled immune IgG from Malawian adults revealed greater reactivity to PfEMP1 than observed in children. Children with uncomplicated and cerebral malaria have similar breadth and magnitude of P. falciparum antibody reactivity. The utility of protein microarrays to measure serological recognition of polymorphic PfEMP1 antigens needs to be studied further, but the study findings support the hypothesis that conserved domains of PfEMP1 are more prominent targets of cross reactive antibodies than variable domains in children with symptomatic malaria. Protein microarrays represent an additional tool to identify cross-reactive Plasmodium antigens including Pf

  19. Policy analysis for deciding on a malaria vaccine RTS,S in Tanzania.

    PubMed

    Romore, Idda; Njau, Ritha J A; Semali, Innocent; Mwisongo, Aziza; Ba Nguz, Antoinette; Mshinda, Hassan; Tanner, Marcel; Abdulla, Salim

    2016-03-08

    Traditionally, it has taken decades to introduce new interventions in low-income countries. Several factors account for these delays, one of which is the absence of a framework to facilitate comprehensive understanding of policy process to inform policy makers and stimulate the decision-making process. In the case of the proposed introduction of malaria vaccines in Tanzania, a specific framework for decision-making will speed up the administrative process and shorten the time until the vaccine is made available to the target population. Qualitative research was used as a basis for developing the Policy Framework. Interviews were conducted with government officials, bilateral and multilateral partners and other stakeholders in Tanzania to assess malaria treatment policy changes and to draw lessons for malaria vaccine adoption. The decision-making process for adopting malaria interventions and new vaccines in general takes years, involving several processes: meetings and presentations of scientific data from different studies with consistent results, packaging and disseminating evidence and getting approval for use by the Ministry of Health and Social Welfare (MOHSW). It is influenced by contextual factors; Promoting factors include; epidemiological and intervention characteristics, country experiences of malaria treatment policy change, presentation and dissemination of evidence, coordination and harmonization of the process, use of international scientific evidence. Barriers factors includes; financial sustainability, competing health and other priorities, political will and bureaucratic procedures, costs related to the adoption and implementations of interventions, supply and distribution and professional compliance with anti-malarial drugs. The framework facilitates the synthesis of information in a coherent way, enabling a clearer understanding of the policy process, thereby speeding up the policy decision-making process and shortening the time for a malaria

  20. Bacteriophage T4 as a Nanoparticle Platform to Display and Deliver Pathogen Antigens: Construction of an Effective Anthrax Vaccine.

    PubMed

    Tao, Pan; Li, Qin; Shivachandra, Sathish B; Rao, Venigalla B

    2017-01-01

    Protein-based subunit vaccines represent a safer alternative to the whole pathogen in vaccine development. However, limitations of physiological instability and low immunogenicity of such vaccines demand an efficient delivery system to stimulate robust immune responses. The bacteriophage T4 capsid-based antigen delivery system can robustly elicit both humoral and cellular immune responses without any adjuvant. Therefore, it offers a strong promise as a novel antigen delivery system. Currently Bacillus anthracis, the causative agent of anthrax, is a serious biothreat agent and no FDA-approved anthrax vaccine is available for mass vaccination. Here, we describe a potential anthrax vaccine using a T4 capsid platform to display and deliver the 83 kDa protective antigen, PA, a key component of the anthrax toxin. This T4 vaccine platform might serve as a universal antigen delivery system that can be adapted to develop vaccines against any infectious disease.

  1. Development of a transmission-blocking malaria vaccine: progress, challenges, and the path forward.

    PubMed

    Nunes, Julia K; Woods, Colleen; Carter, Terrell; Raphael, Theresa; Morin, Merribeth J; Diallo, Diadier; Leboulleux, Didier; Jain, Sanjay; Loucq, Christian; Kaslow, David C; Birkett, Ashley J

    2014-09-29

    New interventions are needed to reduce morbidity and mortality associated with malaria, as well as to accelerate elimination and eventual eradication. Interventions that can break the cycle of parasite transmission, and prevent its reintroduction, will be of particular importance in achieving the eradication goal. In this regard, vaccines that interrupt malaria transmission (VIMT) have been highlighted as an important intervention, including transmission-blocking vaccines that prevent human-to-mosquito transmission by targeting the sexual, sporogonic, or mosquito stages of the parasite (SSM-VIMT). While the significant potential of this vaccine approach has been appreciated for decades, the development and licensure pathways for vaccines that target transmission and the incidence of infection, as opposed to prevention of clinical malaria disease, remain ill-defined. This article describes the progress made in critical areas since 2010, highlights key challenges that remain, and outlines important next steps to maximize the potential for SSM-VIMTs to contribute to the broader malaria elimination and eradication objectives. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. A consultation on the optimization of controlled human malaria infection by mosquito bite for evaluation of candidate malaria vaccines.

    PubMed

    Laurens, Matthew B; Duncan, Christopher J; Epstein, Judith E; Hill, Adrian V; Komisar, Jack L; Lyke, Kirsten E; Ockenhouse, Christian F; Richie, Thomas L; Roestenberg, Meta; Sauerwein, Robert W; Spring, Michele D; Talley, Angela K; Moorthy, Vasee S

    2012-08-03

    Early clinical investigations of candidate malaria vaccines and antimalarial medications increasingly employ an established model of controlled human malaria infection (CHMI). Study results are used to guide further clinical development of vaccines and antimalarial medications as CHMI results to date are generally predictive of efficacy in malaria-endemic areas. The urgency to rapidly develop an efficacious malaria vaccine has increased demand for efficacy studies that include CHMI and the need for comparability of study results among the different centres conducting CHMI. An initial meeting with the goal to optimize and standardise CHMI procedures was held in 2009 with follow-up meetings in March and June 2010 to harmonise methods used at different centres. The end result is a standardised document for the design and conduct of CHMI and a second document for the microscopy methods used to determine the patency endpoint. These documents will facilitate high accuracy and comparability of CHMI studies and will be revised commensurate with advances in the field. Copyright © 2012. Published by Elsevier Ltd.. All rights reserved.

  3. Multiple Antigen Peptide Vaccines against Plasmodium falciparum Malaria

    DTIC Science & Technology

    2010-01-01

    Robert A. Boykins/ Victoria Majam,l Hong Zheng,1 Rana Chattopadhyay,l Patricia de Ia Vcga,3 J. Kathleen Moch ,J J. David Hayncs,3 Igor M. Belyakov,2...K. Moch , and D. S. Smoot. 2002. Erythroc-ytic malaria growth or invasion inhibition assays with emphasis on suspension culture GIA. Methods Mol. Med

  4. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides

    NASA Astrophysics Data System (ADS)

    Tao, Yu; Zhang, Yan; Ju, Enguo; Ren, Hui; Ren, Jinsong

    2015-07-01

    We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments.We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments. Electronic supplementary information (ESI

  5. Native Mass Spectrometry, Ion mobility, and Collision-Induced Unfolding Categorize Malaria Antigen/Antibody Binding

    NASA Astrophysics Data System (ADS)

    Huang, Yining; Salinas, Nichole D.; Chen, Edwin; Tolia, Niraj H.; Gross, Michael L.

    2017-09-01

    Plasmodium vivax Duffy Binding Protein (PvDBP) is a promising vaccine candidate for P. vivax malaria. Recently, we reported the epitopes on PvDBP region II (PvDBP-II) for three inhibitory monoclonal antibodies (2D10, 2H2, and 2C6). In this communication, we describe the combination of native mass spectrometry and ion mobility (IM) with collision induced unfolding (CIU) to study the conformation and stabilities of three malarial antigen-antibody complexes. These complexes, when collisionally activated, undergo conformational changes that depend on the location of the epitope. CIU patterns for PvDBP-II in complex with antibody 2D10 and 2H2 are highly similar, indicating comparable binding topology and stability. A different CIU fingerprint is observed for PvDBP-II/2C6, indicating that 2C6 binds to PvDBP-II on an epitope different from 2D10 and 2H2. This work supports the use of CIU as a means of classifying antigen-antibody complexes by their epitope maps in a high throughput screening workflow. [Figure not available: see fulltext.

  6. Novel Antigen Identification Method for Discovery of Protective Malaria Antigens by Rapid Testing of DNA Vaccines Encoding Exons from the Parasite Genome

    DTIC Science & Technology

    2004-03-01

    EAA21673 1,443 — — Xeroderma pigmentosum G N&I region, helix-hairpin-helix class P.f., P.k., P.b., P.v. PY02286 EAA21722 696 — — Hypothetical protein...ND PY01828 Gene gun 0.1 2,560 640 Pos IM 0.1 Neg Neg ND CSP Gene gun 0.1 2,560 Neg Neg IM 2.7* 2,560 Neg ND a Parasite burden in liver is in...negative; Pos , positive; ND, not done. c Sera tested at a single dilution (1:80). VOL. 72, 2004 DISCOVERY OF PROTECTIVE MALARIA PARASITE ANTIGENS 1599

  7. Salmonella-based plague vaccines for bioterrorism.

    PubMed

    Calhoun, Leona Nicole; Kwon, Young-Min

    2006-04-01

    Yersinia pestis, the causative agent of plague, is an emerging threat as a means of bioterrorism. Accordingly, the Working Group on Civilian Biodefense, as well as the Centers for Disease Control and Prevention, has specified Y. pestis as a prime candidate for use in bioterrorism. As the threat of bioterrorism increases, so does the need for an effective vaccine against this potential agent. Experts agree that a stable, non-invasive vaccine would be necessary for the rapid large-scale immunization of a population following a bioterrorism attack. Thus far, live Salmonella-based oral vaccines show the most potential for this purpose. When delivered via a mucosal route, Salmonella-based plague vaccines show the ability to protect against the deadly pneumonic form of plague. Also, mass production, distribution, and administration are easier and less costly for attenuated Salmonella-based plague vaccines than for plague vaccines consisting of purified proteins. Most attenuated Salmonella-based plague vaccines have utilized a plasmid-based expression system to deliver plague antigen(s) to the mucosa. However, these systems are frequently associated with plasmid instability, an increased metabolic burden upon the vaccine strain, and highly undesirable antibiotic resistance genes. The future of Salmonella-based plague vaccines seems to lie in the use of chromosomally encoded plague antigens and the use of in vivo inducible promoters to drive their expression. This method of vaccine development has been proven to greatly increase the retention of foreign genes, and also eliminates the need for antibiotic resistance genes within Salmonella-based vaccines.

  8. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    PubMed

    Fonseca, Jairo Andres; Cabrera-Mora, Monica; Kashentseva, Elena A; Villegas, John Paul; Fernandez, Alejandra; Van Pelt, Amelia; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2016-01-01

    A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective

  9. Heat-precipitation allows the efficient purification of a functional plant-derived malaria transmission-blocking vaccine candidate fusion protein.

    PubMed

    Beiss, Veronique; Spiegel, Holger; Boes, Alexander; Kapelski, Stephanie; Scheuermayer, Matthias; Edgue, Gueven; Sack, Markus; Fendel, Rolf; Reimann, Andreas; Schillberg, Stefan; Pradel, Gabriele; Fischer, Rainer

    2015-07-01

    Malaria is a vector-borne disease affecting more than two million people and accounting for more than 600,000 deaths each year, especially in developing countries. The most serious form of malaria is caused by Plasmodium falciparum. The complex life cycle of this parasite, involving pre-erythrocytic, asexual and sexual stages, makes vaccine development cumbersome but also offers a broad spectrum of vaccine candidates targeting exactly those stages. Vaccines targeting the sexual stage of P. falciparum are called transmission-blocking vaccines (TBVs). They do not confer protection for the vaccinated individual but aim to reduce or prevent the transmission of the parasite within a population and are therefore regarded as an essential tool in the fight against the disease. Malaria predominantly affects large populations in developing countries, so TBVs need to be produced in large quantities at low cost. Combining the advantages of eukaryotic expression with a virtually unlimited upscaling potential and a good product safety profile, plant-based expression systems represent a suitable alternative for the production of TBVs. We report here the high level (300 μg/g fresh leaf weight (FLW)) transient expression in Nicotiana benthamiana leaves of an effective TBV candidate based on a fusion protein F0 comprising Pfs25 and the C0-domain of Pfs230, and the implementation of a simple and cost-effective heat treatment step for purification that yields intact recombinant protein at >90% purity with a recovery rate of >70%. The immunization of mice clearly showed that antibodies raised against plant-derived F0 completely blocked the formation of oocysts in a malaria transmission-blocking assay (TBA) making F0 an interesting TBV candidate or a component of a multi-stage malaria vaccine cocktail. © 2015 Wiley Periodicals, Inc.

  10. A PfRH5-Based Vaccine Is Efficacious against Heterologous Strain Blood-Stage Plasmodium falciparum Infection in Aotus Monkeys

    PubMed Central

    Douglas, Alexander D.; Baldeviano, G. Christian; Lucas, Carmen M.; Lugo-Roman, Luis A.; Crosnier, Cécile; Bartholdson, S. Josefin; Diouf, Ababacar; Miura, Kazutoyo; Lambert, Lynn E.; Ventocilla, Julio A.; Leiva, Karina P.; Milne, Kathryn H.; Illingworth, Joseph J.; Spencer, Alexandra J.; Hjerrild, Kathryn A.; Alanine, Daniel G.W.; Turner, Alison V.; Moorhead, Jeromy T.; Edgel, Kimberly A.; Wu, Yimin; Long, Carole A.; Wright, Gavin J.; Lescano, Andrés G.; Draper, Simon J.

    2015-01-01

    Summary Antigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans. PMID:25590760

  11. Active immunization against Plasmodium berghei malaria in mice, using different preparations of plasmodial antigen and different pathways of administration*

    PubMed Central

    Jerusalem, Christoph; Eling, Wynand

    1969-01-01

    With regard to the effectiveness of the antigens in inducing clinical immunity against malaria parasites, the minimum amount of living antigen developed in mice during controlled low parasitaemia with Plasmodium berghei has been estimated and compared with the amount of non-living antigen obtained by various methods of freeing parasites from their erythrocyte hosts. Whereas about 100 mg of living antigen per kg of body-weight are sufficient to induce a degree of hyperimmunity, 1240 mg/kg of a freshly prepared crude antigen are necessary to enable the mice to survive a challenge infection while 3500 mg—7000 mg/kg of a vaccine prepared from freshly isolated plasmodia are necessary to produce a degree of immunity comparable with hyperimmunity. It appears, therefore, that every manipulation of the parasitized erythrocyte or the isolated plasmodium outside the host organism, as well as a storage time in excess of 36 hours, causes a reduction in antigenicity, up to a factor of 10-2. However, this decrease in antigenicity is disproportionate compared with the reduced rate of infectivity of stored, parasitized erythrocytes and isolated parasites. After an incubation period of 18 hours, the ID100 increases from 2 × 10 to 5 × 107 parasites. Therefore, the differences between the essential amount of living plasmodia and non-living antigen may be due to other, hitherto unknown, factors and not exclusively to degradation of the most important antigen. The saponin method of freeing parasites from their erythrocyte hosts was found to yield the purest antigen. Preparations of parasites obtained by treating parasitized erythrocytes with anti-erythrocyte serum or with formalin were highly contaminated with remnants of the host cells and showed no better antigenic qualities than the parasites isolated by means of saponin. Since the decrease of antigenicity associated with harvesting and isolation procedures is constant, vaccination with a fractionated antigen pool should be

  12. Sequential Phase 1 and Phase 2 randomized, controlled trials of the safety, immunogenicity and efficacy of combined pre-erythrocytic vaccine antigens RTS,S and TRAP formulated with AS02 Adjuvant System in healthy, malaria naïve adults.

    PubMed

    Kester, Kent E; Gray Heppner, D; Moris, Philippe; Ofori-Anyinam, Opokua; Krzych, Urszula; Tornieporth, Nadia; McKinney, Denise; Delchambre, Martine; Ockenhouse, Christian F; Voss, Gerald; Holland, Carolyn; Beckey, Jolie Palensky; Ballou, W Ripley; Cohen, Joe

    2014-11-20

    In an attempt to improve the efficacy of the candidate malaria vaccine RTS,S/AS02, two studies were conducted in 1999 in healthy volunteers of RTS,S/AS02 in combination with recombinant Plasmodium falciparum thrombospondin-related anonymous protein (TRAP). In a Phase 1 safety and immunogenicity study, volunteers were randomized to receive TRAP/AS02 (N=10), RTS,S/AS02 (N=10), or RTS,S+TRAP/AS02 (N=20) at 0, 1 and 6-months. In a Phase 2 challenge study, subjects were randomized to receive either RTS,S+TRAP/AS02 (N=25) or TRAP/AS02 (N=10) at 0 and 1-month, or to a challenge control group (N=8). In both studies, the combination vaccine had an acceptable safety profile and was acceptably tolerated. Antigen-specific antibodies, lymphoproliferative responses, and IFN-γ production by ELISPOT assay elicited with the combination vaccine were qualitatively similar to those generated by the single component vaccines. However, post-dose 2 anti-CS antibodies in the RTS,S+TRAP/AS02 vaccine recipients were lower than in the RTS,S/AS02 vaccine recipients. After challenge, 10 of 11 RTS,S+TRAP/AS02 vaccinees, 5 of 5 TRAP/AS02 vaccinees, and 8 of 8 infectivity controls developed parasitemia, with median pre-patent periods of 13.0, 11.0, and 12.0 days, respectively. The absence of any prevention or delay of parasitemia by TRAP/AS02 suggests no apparent added value of TRAP/AS02 as a candidate vaccine. The absence of significant protection or delay of parasitemia in the 11 RTS,S+TRAP/AS02 vaccine recipients contrasts with previous 2 dose studies of RTS,S/AS02. The small sample size did not permit identifying statistically significant differences between the study arms. However, we speculate, within the constraints of the challenge study, that the presence of the TRAP antigen may have interfered with the vaccine efficacy previously observed with this regimen of RTS,S/AS02, and that any future TRAP-based vaccines should consider employing alternative vaccine platforms. Copyright © 2014

  13. HIV-1 vaccine strategies utilizing viral vectors including antigen- displayed inoviral vectors.

    PubMed

    Hassapis, Kyriakos A; Kostrikis, Leondios G

    2013-12-01

    Antigen-presenting viral vectors have been extensively used as vehicles for the presentation of antigens to the immune system in numerous vaccine strategies. Particularly in HIV vaccine development efforts, two main viral vectors have been used as antigen carriers: (a) live attenuated vectors and (b) virus-like particles (VLPs); the former, although highly effective in animal studies, cannot be clinically tested in humans due to safety concerns and the latter have failed to induce broadly neutralizing anti-HIV antibodies. For more than two decades, Inoviruses (non-lytic bacterial phages) have also been utilized as antigen carriers in several vaccine studies. Inoviral vectors are important antigen-carriers in vaccine development due to their ability to present an antigen on their outer architecture in many copies and to their natural high immunogenicity. Numerous fundamental studies have been conducted, which have established the unique properties of antigen-displayed inoviral vectors in HIV vaccine efforts. The recent isolation of new, potent anti-HIV broadly neutralizing monoclonal antibodies provides a new momentum in this emerging technology.

  14. Safety and immunogenicity of heterologous prime-boost immunization with viral-vectored malaria vaccines adjuvanted with Matrix-M™.

    PubMed

    Venkatraman, Navin; Anagnostou, Nicholas; Bliss, Carly; Bowyer, Georgina; Wright, Danny; Lövgren-Bengtsson, Karin; Roberts, Rachel; Poulton, Ian; Lawrie, Alison; Ewer, Katie; V S Hill, Adrian

    2017-10-27

    The use of viral vectors in heterologous prime-boost regimens to induce potent T cell responses in addition to humoral immunity is a promising vaccination strategy in the fight against malaria. We conducted an open-label, first-in-human, controlled Phase I study evaluating the safety and immunogenicity of Matrix-M adjuvanted vaccination with a chimpanzee adenovirus serotype 63 (ChAd63) prime followed by a modified vaccinia Ankara (MVA) boost eight weeks later, both encoding the malaria ME-TRAP antigenic sequence (a multiple epitope string fused to thrombospondin-related adhesion protein). Twenty-two healthy adults were vaccinated intramuscularly with either ChAd63-MVA ME-TRAP alone (n=6) or adjuvanted with 25μg (n=8) or 50μg (n=8) Matrix-M. Vaccinations appeared to be safe and generally well tolerated, with the majority of local and systemic adverse events being mild in nature. The addition of Matrix-M to the vaccine did not increase local reactogenicity; however, systemic adverse events were reported more frequently by volunteers who received adjuvanted vaccine in comparison to the control group. T cell ELISpot responses peaked at 7-days post boost vaccination with MVA ME-TRAP in all three groups. TRAP-specific IgG responses were highest at 28-days post boost with MVA ME-TRAP in all three groups. There were no differences in cellular and humoral immunogenicity at any of the time points between the control group and the adjuvanted groups. We demonstrate that Matrix-M can be safely used in combination with ChAd63-MVA ME-TRAP heterologous prime-boost immunization without any reduction in cellular or humoral immunogenicity. Clinical Trials Registration NCT01669512. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A pilot study with a therapeutic vaccine based on hydroxyapatite ceramic particles and self-antigens in cancer patients

    PubMed Central

    Ciocca, Daniel R.; Frayssinet, Patrick; Cuello-Carrión, F. Darío

    2007-01-01

    the comparative histological and immunohistochemical study performed in the pre- and postvaccine biopsy taken from a patient with inflammatory breast carcinoma. However, we cannot ruled out that the vaccine could also be producing an antibody(ies)-mediated response. In conclusion, this therapeutic vaccine based on HA ceramic particles and self-antigens can be safely administered and is showing some encouraging clinical results in cancer patients. PMID:17441505

  16. Randomized, placebo-controlled trial to assess the safety and immunogenicity of an adenovirus type 35-based circumsporozoite malaria vaccine in healthy adults.

    PubMed

    Creech, C Buddy; Dekker, Cornelia L; Ho, Dora; Phillips, Shanda; Mackey, Sally; Murray-Krezan, Cristina; Grazia Pau, Maria; Hendriks, Jenny; Brown, Valerie; Dally, Leonard G; Versteege, Isabella; Edwards, Kathryn M

    2013-12-01

    Malaria results in over 650,000 deaths each year; thus, there is an urgent need for an effective vaccine. Pre-clinical studies and recently reported human trials suggest that pre-erythrocytic stage vaccines can provide protection against infection. A Phase 1, randomized, placebo-controlled, dose-escalation study was conducted with a vaccine composed of a replication-deficient adenovirus-35 backbone with P. falciparum circumsporozoite (CS) surface antigen (Ad35.CS.01). Healthy adult subjects received three doses of 10 (8), 10 (9), 10 (10), or 10 (11) vp/mL Ad35.CS.01 vaccine or saline placebo intramuscularly at 0, 1, and 6-mo intervals. Adverse events were assessed and anti-CS antibody responses were determined by ELISA. Seventy-two individuals were enrolled, with age, gender, and ethnicity similar across each study arm. While the vaccine was generally well tolerated, adverse events were more frequent in the highest dose groups (10 (10) and 10 (11) vp/mL). More robust humoral responses were also noted at the highest doses, with 73% developing a positive ELISA response after the three dose series of 10 (11) vp/mL. The Ad35.CS.01 vaccine was most immunogenic at the highest dosages (10 (10) and 10 (11) vp/mL). Reactogenicity findings were more common after the 10 (11) vp/mL dose, although most were mild or moderate in nature and resolved without therapy.

  17. Whole-Killed Blood-Stage Vaccine-Induced Immunity Suppresses the Development of Malaria Parasites in Mosquitoes.

    PubMed

    Zhu, Feng; Liu, Taiping; Zhao, Chenhao; Lu, Xiao; Zhang, Jian; Xu, Wenyue

    2017-01-01

    As a malaria transmission-blocking vaccine alone does not confer a direct benefit to the recipient, it is necessary to develop a vaccine that not only blocks malaria transmission but also protects vaccinated individuals. In this study we observed that a whole-killed blood-stage vaccine (WKV) not only conferred protection against the blood-stage challenge but also markedly inhibited the transmission of different strains of the malaria parasite. Although the parasitemia is much lower in WKV-immunized mice challenged with malaria parasites, the gametocytemia is comparable between control and immunized mice during the early stages of infection. The depletion of CD4 + T cells prior to the adoptive transfer of parasites into WKV-immunized mice has no effect on the development of the malaria parasite in the mosquito, but the adoptive transfer of the serum from the immunized mice into the parasite-inoculated mice remarkably suppresses the development of malaria parasites in mosquitoes. Furthermore, immunized mice challenged with the malaria parasite generate higher levels of parasite-specific Abs and the inflammatory cytokines MCP-1 and IFN-γ. However, the adoptive transfer of parasite-specific IgG or the depletion of MCP-1, but not IFN-γ, to some extent is closely associated with the suppression of malaria parasite development in mosquitoes. These data strongly suggest that WKV-induced immune responses confer protection against the mosquito stage, which is largely dependent on malaria parasite-specific Abs and MCP-1. This finding sheds new light on blocking malaria transmission through the immunization of individuals with the WKV. Copyright © 2016 by The American Association of Immunologists, Inc.

  18. Development of whole sporozoite malaria vaccines.

    PubMed

    Hollingdale, Michael R; Sedegah, Martha

    2017-01-01

    Despite recent advances, malaria remains a major health threat both to populations in endemic areas as well travelers, including military personnel, to these areas. Subunit vaccines have not yet achieved sufficient efficacy needed for use in any of these at risk populations. Areas covered: This review discusses the current status of various whole sporozoite vaccine approaches and is mainly focused on current clinical trials. Expert commentary: Nearly 100% efficacy was achieved by administering multiple bites of radiation-attenuated sporozoite (RAS) Plasmodium falciparum-infected mosquitoes; this is impractical for widespread use. Now, this high level efficacy has been reproduced using purified, metabolically active RAS (PfSPZ Sanaria® Vaccine), which is undergoing extensive clinical testing. Alternative whole sporozoite vaccines include immunization with fully infectious sporozoites under chloroquine prophylaxis (CPS) or as genetically-attenuated parasites (GAP). By also manufacturing purified infectious sporozoites, it is now possible to combine these with CPS and GAP, as well as perform challenge studies using controlled doses of sporozoites.

  19. Structural and Computational Biology in the Design of Immunogenic Vaccine Antigens

    PubMed Central

    Liljeroos, Lassi; Malito, Enrico; Ferlenghi, Ilaria; Bottomley, Matthew James

    2015-01-01

    Vaccination is historically one of the most important medical interventions for the prevention of infectious disease. Previously, vaccines were typically made of rather crude mixtures of inactivated or attenuated causative agents. However, over the last 10–20 years, several important technological and computational advances have enabled major progress in the discovery and design of potently immunogenic recombinant protein vaccine antigens. Here we discuss three key breakthrough approaches that have potentiated structural and computational vaccine design. Firstly, genomic sciences gave birth to the field of reverse vaccinology, which has enabled the rapid computational identification of potential vaccine antigens. Secondly, major advances in structural biology, experimental epitope mapping, and computational epitope prediction have yielded molecular insights into the immunogenic determinants defining protective antigens, enabling their rational optimization. Thirdly, and most recently, computational approaches have been used to convert this wealth of structural and immunological information into the design of improved vaccine antigens. This review aims to illustrate the growing power of combining sequencing, structural and computational approaches, and we discuss how this may drive the design of novel immunogens suitable for future vaccines urgently needed to increase the global prevention of infectious disease. PMID:26526043

  20. Structural and Computational Biology in the Design of Immunogenic Vaccine Antigens.

    PubMed

    Liljeroos, Lassi; Malito, Enrico; Ferlenghi, Ilaria; Bottomley, Matthew James

    2015-01-01

    Vaccination is historically one of the most important medical interventions for the prevention of infectious disease. Previously, vaccines were typically made of rather crude mixtures of inactivated or attenuated causative agents. However, over the last 10-20 years, several important technological and computational advances have enabled major progress in the discovery and design of potently immunogenic recombinant protein vaccine antigens. Here we discuss three key breakthrough approaches that have potentiated structural and computational vaccine design. Firstly, genomic sciences gave birth to the field of reverse vaccinology, which has enabled the rapid computational identification of potential vaccine antigens. Secondly, major advances in structural biology, experimental epitope mapping, and computational epitope prediction have yielded molecular insights into the immunogenic determinants defining protective antigens, enabling their rational optimization. Thirdly, and most recently, computational approaches have been used to convert this wealth of structural and immunological information into the design of improved vaccine antigens. This review aims to illustrate the growing power of combining sequencing, structural and computational approaches, and we discuss how this may drive the design of novel immunogens suitable for future vaccines urgently needed to increase the global prevention of infectious disease.

  1. Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis.

    PubMed

    Toyoda, Mao; Hama, Susumu; Ikeda, Yutaka; Nagasaki, Yukio; Kogure, Kentaro

    2015-04-10

    Transdermal vaccination with cancer antigens is expected to become a useful anti-cancer therapy. However, it is difficult to accumulate enough antigen in the epidermis for effective exposure to Langerhans cells because of diffusion into the skin and muscle. Carriers, such as liposomes and nanoparticles, may be useful for the prevention of antigen diffusion. Iontophoresis, via application of a small electric current, is a noninvasive and efficient technology for transdermal drug delivery. Previously, we succeeded in the iontophoretic transdermal delivery of liposomes encapsulating insulin, and accumulation of polymer-based nanoparticle nanogels in the stratum corneum of the skin. Therefore, in the present study, we examined the use of iontophoresis with cancer antigen gp-100 peptide KVPRNQDWL-loaded nanogels for anti-cancer vaccination. Iontophoresis resulted in the accumulation of gp-100 peptide and nanogels in the epidermis, and subsequent increase in the number of Langerhans cells in the epidermis. Moreover, tumor growth was significantly suppressed by iontophoresis of the antigen peptide-loaded nanogels. Thus, iontophoresis of the antigen peptide-loaded nanogels may serve as an effective transdermal delivery system for anti-cancer vaccination. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. On the efficacy of malaria DNA vaccination with magnetic gene vectors.

    PubMed

    Nawwab Al-Deen, Fatin; Ma, Charles; Xiang, Sue D; Selomulya, Cordelia; Plebanski, Magdalena; Coppel, Ross L

    2013-05-28

    We investigated the efficacy and types of immune responses from plasmid malaria DNA vaccine encoding VR1020-PyMSP119 condensed on the surface of polyethyleneimine (PEI)-coated SPIONs. In vivo mouse studies were done firstly to determine the optimum magnetic vector composition, and then to observe immune responses elicited when magnetic vectors were introduced via different administration routes. Higher serum antibody titers against PyMSP119 were observed with intraperitoneal and intramuscular injections than subcutaneous and intradermal injections. Robust IgG2a and IgG1 responses were observed for intraperitoneal administration, which could be due to the physiology of peritoneum as a major reservoir of macrophages and dendritic cells. Heterologous DNA prime followed by single protein boost vaccination regime also enhanced IgG2a, IgG1, and IgG2b responses, indicating the induction of appropriate memory immunity that can be elicited by protein on recall. These outcomes support the possibility to design superparamagnetic nanoparticle-based DNA vaccines to optimally evoke desired antibody responses, useful for a variety of diseases including malaria. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    PubMed Central

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  4. Cellular vaccines in listeriosis: role of the Listeria antigen GAPDH.

    PubMed

    Calderón-González, Ricardo; Frande-Cabanes, Elisabet; Bronchalo-Vicente, Lucía; Lecea-Cuello, M Jesús; Pareja, Eduardo; Bosch-Martínez, Alexandre; Fanarraga, Mónica L; Yañez-Díaz, Sonsoles; Carrasco-Marín, Eugenio; Alvarez-Domínguez, Carmen

    2014-01-01

    The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs) and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and several epitopes such as the LLO peptides, LLO189-201 and LLO91-99 and the GAPDH peptide, GAPDH1-22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1-22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91-99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1-22-specific CD4(+) and CD8(+) immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4(+) and CD8(+) epitopes.

  5. Vaccinations and Malaria Chemoprophylaxis of Adolescents Traveling From Greece to International Destinations: A Nine-Year Prospective Study.

    PubMed

    Maltezou, Helena C; Pavli, Androula; Theodoridou, Kalliopi; Katerelos, Panos; Spilioti, Athina; Tedoma, Anastasia; Lymperi, Ioanna; Theodoridou, Maria

    2018-05-01

    There are few publications focusing on vaccination and malaria chemoprophylaxis in adolescent travelers. We assessed pretravel vaccinations and malaria chemoprophylaxis of adolescents 12-18 years old traveling from Greece to international destinations. We prospectively studied 239 adolescents 12-18 years old during 2008-2016. A standard questionnaire was used to collect data. Adolescents sought pretravel services at a mean of 24.1 days before departure. Their main destinations were sub-Saharan Africa (79 adolescents; 33.1%), Latin America (56; 23.5%) and North America (26; 10.9%). Almost half (46.1%) of them planned to stay abroad for at least 3 months. Sixteen (7.4%) adolescents planned to visit friends and relatives. The yellow fever vaccine and the typhoid vaccine were the most frequently administered vaccines (74.1% and 20.5%, respectively), while the hepatitis A vaccine and the tetanus-diphtheria vaccine accounted for most routine vaccinations (18% and 14.2%, respectively). The rabies and the typhoid fever vaccines were administered inadequately to adolescents traveling to endemic areas. Malaria chemoprophylaxis should have been prescribed in many cases traveling to sub-Saharan Africa and the Indian subcontinent. Only a small number of adolescents from Greece traveling abroad seek pretravel counseling. We found significant gaps in typhoid fever and rabies vaccinations of adolescents traveling to endemic areas. We also found gaps in prescription of malaria chemoprophylaxis for those traveling to high-risk areas. There is a need to develop communication strategies to access adolescent travelers and improve appropriate vaccination and use of malaria chemoprophylaxis.

  6. Mimotope-Based Vaccines of Leishmania infantum Antigens and Their Protective Efficacy against Visceral Leishmaniasis

    PubMed Central

    Costa, Lourena Emanuele; Goulart, Luiz Ricardo; Pereira, Nathália Cristina de Jesus; Lima, Mayara Ingrid Sousa; Duarte, Mariana Costa; Martins, Vivian Tamietti; Lage, Paula Sousa; Menezes-Souza, Daniel; Ribeiro, Tatiana Gomes; Melo, Maria Norma; Fernandes, Ana Paula; Soto, Manuel; Tavares, Carlos Alberto Pereira; Chávez-Fumagalli, Miguel Angel; Coelho, Eduardo Antonio Ferraz

    2014-01-01

    Background The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL). Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs' sera. Methodology/Main Findings Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin), showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies. Conclusions/Significance This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the parasite burden. This

  7. Mimotope-based vaccines of Leishmania infantum antigens and their protective efficacy against visceral leishmaniasis.

    PubMed

    Costa, Lourena Emanuele; Goulart, Luiz Ricardo; Pereira, Nathália Cristina de Jesus; Lima, Mayara Ingrid Sousa; Duarte, Mariana Costa; Martins, Vivian Tamietti; Lage, Paula Sousa; Menezes-Souza, Daniel; Ribeiro, Tatiana Gomes; Melo, Maria Norma; Fernandes, Ana Paula; Soto, Manuel; Tavares, Carlos Alberto Pereira; Chávez-Fumagalli, Miguel Angel; Coelho, Eduardo Antonio Ferraz

    2014-01-01

    The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL). Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs' sera. Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin), showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies. This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the parasite burden. This is the first study that describes phage-displayed peptides as

  8. Protective-antigen (PA) based anthrax vaccines confer protection against inhalation anthrax by precluding the establishment of a systemic infection

    PubMed Central

    Merkel, Tod J; Perera, Pin-Yu; Lee, Gloria M; Verma, Anita; Hiroi, Toyoko; Yokote, Hiroyuki; Waldmann, Thomas A; Perera, Liyanage P

    2013-01-01

    An intense effort has been launched to develop improved anthrax vaccines that confer rapid, long lasting protection preferably with an extended stability profile amenable for stockpiling. Protective antigen (PA)-based vaccines are most favored as immune responses directed against PA are singularly protective, although the actual protective mechanism remains to be unraveled. Herein we show that contrary to the prevailing view, an efficacious PA-based vaccine confers protection against inhalation anthrax by preventing the establishment of a toxin-releasing systemic infection. Equally importantly, antibodies measured by the in vitro lethal toxin neutralization activity assay (TNA) that is considered as a reliable correlate of protection, especially for PA protein-based vaccines adjuvanted with aluminum salts appear to be not absolutely essential for this protective immune response. PMID:23787486

  9. Protective-antigen (PA) based anthrax vaccines confer protection against inhalation anthrax by precluding the establishment of a systemic infection.

    PubMed

    Merkel, Tod J; Perera, Pin-Yu; Lee, Gloria M; Verma, Anita; Hiroi, Toyoko; Yokote, Hiroyuki; Waldmann, Thomas A; Perera, Liyanage P

    2013-09-01

    An intense effort has been launched to develop improved anthrax vaccines that confer rapid, long lasting protection preferably with an extended stability profile amenable for stockpiling. Protective antigen (PA)-based vaccines are most favored as immune responses directed against PA are singularly protective, although the actual protective mechanism remains to be unraveled. Herein we show that contrary to the prevailing view, an efficacious PA-based vaccine confers protection against inhalation anthrax by preventing the establishment of a toxin-releasing systemic infection. Equally importantly, antibodies measured by the in vitro lethal toxin neutralization activity assay (TNA) that is considered as a reliable correlate of protection, especially for PA protein-based vaccines adjuvanted with aluminum salts appear to be not absolutely essential for this protective immune response.

  10. Photochemical Internalization of Peptide Antigens Provides a Novel Strategy to Realize Therapeutic Cancer Vaccination

    PubMed Central

    Haug, Markus; Brede, Gaute; Håkerud, Monika; Nedberg, Anne Grete; Gederaas, Odrun A.; Flo, Trude H.; Edwards, Victoria T.; Selbo, Pål K.; Høgset, Anders; Halaas, Øyvind

    2018-01-01

    Effective priming and activation of tumor-specific CD8+ cytotoxic T lymphocytes (CTLs) is crucial for realizing the potential of therapeutic cancer vaccination. This requires cytosolic antigens that feed into the MHC class I presentation pathway, which is not efficiently achieved with most current vaccination technologies. Photochemical internalization (PCI) provides an emerging technology to route endocytosed material to the cytosol of cells, based on light-induced disruption of endosomal membranes using a photosensitizing compound. Here, we investigated the potential of PCI as a novel, minimally invasive, and well-tolerated vaccination technology to induce priming of cancer-specific CTL responses to peptide antigens. We show that PCI effectively promotes delivery of peptide antigens to the cytosol of antigen-presenting cells (APCs) in vitro. This resulted in a 30-fold increase in MHC class I/peptide complex formation and surface presentation, and a subsequent 30- to 100-fold more efficient activation of antigen-specific CTLs compared to using the peptide alone. The effect was found to be highly dependent on the dose of the PCI treatment, where optimal doses promoted maturation of immature dendritic cells, thus also providing an adjuvant effect. The effect of PCI was confirmed in vivo by the successful induction of antigen-specific CTL responses to cancer antigens in C57BL/6 mice following intradermal peptide vaccination using PCI technology. We thus show new and strong evidence that PCI technology holds great potential as a novel strategy for improving the outcome of peptide vaccines aimed at triggering cancer-specific CD8+ CTL responses. PMID:29670624

  11. A phase 1, randomized, controlled dose-escalation study of EP-1300 polyepitope DNA vaccine against Plasmodium falciparum malaria administered via electroporation.

    PubMed

    Spearman, Paul; Mulligan, Mark; Anderson, Evan J; Shane, Andi L; Stephens, Kathy; Gibson, Theda; Hartwell, Brooke; Hannaman, Drew; Watson, Nora L; Singh, Karnail

    2016-11-04

    Plasmodium falciparum malaria is one of the leading infectious causes of childhood mortality in Africa. EP-1300 is a polyepitope plasmid DNA vaccine expressing 38 cytotoxic T cell epitopes and 16 helper T cell epitopes derived from P. falciparum antigens expressed predominantly in the liver phase of the parasite's life cycle. We performed a phase 1 randomized, placebo-controlled, dose escalation clinical trial of the EP-1300 DNA vaccine administered via electroporation using the TriGrid Delivery System device (Ichor Medical Systems). Although the delivery of the EP-1300 DNA vaccine via electroporation was safe, tolerability was less than that usually observed with standard needle and syringe intramuscular administration. This was primarily due to acute local discomfort at the administration site during electroporation. Despite the use of electroporation, the vaccine was poorly immunogenic. The reasons for the poor immunogenicity of this polyepitope DNA vaccine remain uncertain. ClinicalTrials.gov NCT01169077. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Vaccination of carp against SVCV with an oral DNA vaccine or an insect cells-based subunit vaccine.

    PubMed

    Embregts, C W E; Rigaudeau, D; Tacchi, L; Pijlman, G P; Kampers, L; Veselý, T; Pokorová, D; Boudinot, P; Wiegertjes, G F; Forlenza, M

    2018-03-19

    We recently reported on a successful vaccine for carp against SVCV based on the intramuscular injection of a DNA plasmid encoding the SVCV glycoprotein (SVCV-G). This shows that the intramuscular (i.m.) route of vaccination is suitable to trigger protective responses against SVCV, and that the SVCV G-protein is a suitable vaccine antigen. Yet, despite the general success of DNA vaccines, especially against fish rhabdoviruses, their practical implementation still faces legislative as well as consumer's acceptance concerns. Furthermore, the i.m. route of plasmid administration is not easily combined with most of the current vaccination regimes largely based on intraperitoneal or immersion vaccination. For this reason, in the current study we evaluated possible alternatives to a DNA-based i.m. injectable vaccine using the SVCV-G protein as the vaccine antigen. To this end, we tested two parallel approaches: the first based on the optimization of an alginate encapsulation method for oral delivery of DNA and protein antigens; the second based on the baculovirus recombinant expression of transmembrane SVCV-G protein in insect cells, administered as whole-cell subunit vaccine through the oral and injection route. In addition, in the case of the oral DNA vaccine, we also investigated the potential benefits of the mucosal adjuvants Escherichia coli lymphotoxin subunit B (LTB). Despite the use of various vaccine types, doses, regimes, and administration routes, no protection was observed, contrary to the full protection obtained with our reference i.m. DNA vaccine. The limited protection observed under the various conditions used in this study, the nature of the host, of the pathogen, the type of vaccine and encapsulation method, will therefore be discussed in details to provide an outlook for future vaccination strategies against SVCV. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Characterization and storage of malaria antigens: Localization and chemical characterization of Plasmodium knowlesi schizont antigens

    PubMed Central

    Deans, J. A.; Cohen, S.

    1979-01-01

    The identification of malarial antigens that induce protective immunity could provide a rational basis for developing an effective antimalarial vaccine as well as specific serodiagnostic tests indicative of clinical immune status. Since protective immunity is probably induced by stage-dependent rather than stage-independent antigens, the antigenic composition of different stages of Plasmodium knowlesi has been compared, and a limited chemical characterization undertaken. This information should provide some insight into the types of preparative procedure appropriate for the purification of functionally important malarial antigens. PMID:120777

  14. Antibodies to Plasmodium falciparum antigens predict a higher risk of malaria but protection from symptoms once parasitemic.

    PubMed

    Greenhouse, Bryan; Ho, Benjamin; Hubbard, Alan; Njama-Meya, Denise; Narum, David L; Lanar, David E; Dutta, Sheetij; Rosenthal, Philip J; Dorsey, Grant; John, Chandy C

    2011-07-01

    Associations between antibody responses to Plasmodium falciparum antigens and protection against symptomatic malaria have been difficult to ascertain, in part because antibodies are potential markers of both exposure to P. falciparum and protection against disease. We measured IgG responses to P. falciparum circumsporozoite protein, liver-stage antigen 1, apical-membrane antigen 1 (AMA-1), and merozoite surface proteins (MSP) 1 and 3, in children in Kampala, Uganda, and measured incidence of malaria before and after antibody measurement. Stronger responses to all 5 antigens were associated with an increased risk of clinical malaria (P < .01) because of confounding with prior exposure to P. falciparum. However, with use of another assessment, risk of clinical malaria once parasitemic, stronger responses to AMA-1, MSP-1, and MSP-3 were associated with protection (odds ratios, 0.34, 0.36, and 0.31, respectively, per 10-fold increase; P < .01). Analyses assessing antibodies in combination suggested that any protective effect of antibodies was overestimated by associations between individual responses and protection. Using the risk of symptomatic malaria once parasitemic as an outcome may improve detection of associations between immune responses and protection from disease. Immunoepidemiology studies designed to detect mechanisms of immune protection should integrate prior exposure into the analysis and evaluate multiple immune responses.

  15. A multi-antigenic MVA vaccine increases efficacy of combination chemotherapy against Mycobacterium tuberculosis.

    PubMed

    Leung-Theung-Long, Stéphane; Coupet, Charles-Antoine; Gouanvic, Marie; Schmitt, Doris; Ray, Aurélie; Hoffmann, Chantal; Schultz, Huguette; Tyagi, Sandeep; Soni, Heena; Converse, Paul J; Arias, Lilibeth; Kleinpeter, Patricia; Sansas, Benoît; Mdluli, Khisimuzi; Vilaplana, Cristina; Cardona, Pere-Joan; Nuermberger, Eric; Marchand, Jean-Baptiste; Silvestre, Nathalie; Inchauspé, Geneviève

    2018-01-01

    Despite the existence of the prophylactic Bacille Calmette-Guérin (BCG) vaccine, infection by Mycobacterium tuberculosis (Mtb) remains a major public health issue causing up to 1.8 million annual deaths worldwide. Increasing prevalence of Mtb strains resistant to antibiotics represents an urgent threat for global health that has prompted a search for alternative treatment regimens not subject to development of resistance. Immunotherapy constitutes a promising approach to improving current antibiotic treatments through engagement of the host's immune system. We designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara (MVA) virus, denoted MVATG18598, which expresses ten antigens classically described as representative of each of different phases of Mtb infection. In vitro analysis coupled with multiple-passage evaluation demonstrated that this vaccine is genetically stable, i.e. fit for manufacturing. Using different mouse strains, we show that MVATG18598 vaccination results in both Th1-associated T-cell responses and cytolytic activity, targeting all 10 vaccine-expressed Mtb antigens. In chronic post-exposure mouse models, MVATG18598 vaccination in combination with an antibiotic regimen decreases the bacterial burden in the lungs of infected mice, compared with chemotherapy alone, and is associated with long-lasting antigen-specific Th1-type T cell and antibody responses. In one model, co-treatment with MVATG18598 prevented relapse of the disease after treatment completion, an important clinical goal. Overall, results demonstrate the capacity of the therapeutic MVATG18598 vaccine to improve efficacy of chemotherapy against TB. These data support further development of this novel immunotherapeutic in the treatment of Mtb infections.

  16. Role of non-human primates in malaria vaccine development: Memorandum from a WHO Meeting*

    PubMed Central

    1988-01-01

    This Memorandum discusses the coordination and standardization of malaria vaccine research in non-human primates to encourage optimum use of the available animals in experiments that are fully justified both scientifically and ethically. The requirements for experimentation in non-human primates, the availability of suitable animals for malaria vaccine studies, and the criteria for testing candidate vaccines are considered. The policy and legislation relevant to the use of non-human primates in biomedical research are also briefly discussed. The Memorandum concludes with eight recommendations. PMID:3266112

  17. Development of Yersinia pestis F1 antigen-loaded microspheres vaccine against plague

    PubMed Central

    Huang, Shih-shiung; Li, I-Hsun; Hong, Po-da; Yeh, Ming-kung

    2014-01-01

    Yersinia pestis F1 antigen-loaded poly(DL-lactide-co-glycolide)/polyethylene glycol (PEG) (PLGA/PEG) microspheres were produced using a water-in-oil-in-water emulsion/solvent extraction technique and assayed for their percent yield, entrapment efficiency, surface morphology, particle size, zeta potential, in vitro release properties, and in vivo animal protect efficacy. The Y. pestis F1 antigen-loaded microspheres (mean particle size 3.8 μm) exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (38.1%), and presented a controlled in vitro release profile with a low initial burst (18.5%), then continued to release Y. pestis F1 antigen over 70 days. The distribution (%) of Y. pestis F1 on the microspheres surface, outer layer, and core was 3.1%, 28.9%, and 60.7%, respectively. A steady release rate was noticed to be 0.55 μg Y. pestis F1 antigen/mg microspheres/day of Y. pestis F1 antigen release maintained for 42 days. The cumulative release amount at the 1st, 28th, and 42nd days was 8.2, 26.7, and 31.0 μg Y. pestis F1 antigen/mg microspheres, respectively. The 100 times median lethal dose 50% (LD50) of Y. pestis Yokohama-R strain by intraperitoneal injection challenge in mice test, in which mice received one dose of 40 μg F1 antigen content of PLGA/PEG microspheres, F1 antigen in Al(OH)3, and in comparison with F1 antigen in Al(OH)3 vaccine in two doses, was evaluated after given by subcutaneous immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with one dose of F1 antigen-loaded PLGA/PEG microspheres, and two doses of F1 antigen in Al(OH)3 vaccine (100%). In vivo vaccination studies also demonstrated that F1 vaccines microspheres had a protective ability; its steady-state IgG immune protection in mice plasma dramatic increased from 2 weeks (18,764±3,124) to 7 weeks (126,468±19,176) after vaccination. These findings strongly suggest that F1-antigen loaded

  18. Phase 1b randomized trial and follow-up study in Uganda of the blood-stage malaria vaccine candidate BK-SE36.

    PubMed

    Palacpac, Nirianne Marie Q; Ntege, Edward; Yeka, Adoke; Balikagala, Betty; Suzuki, Nahoko; Shirai, Hiroki; Yagi, Masanori; Ito, Kazuya; Fukushima, Wakaba; Hirota, Yoshio; Nsereko, Christopher; Okada, Takuya; Kanoi, Bernard N; Tetsutani, Kohhei; Arisue, Nobuko; Itagaki, Sawako; Tougan, Takahiro; Ishii, Ken J; Ueda, Shigeharu; Egwang, Thomas G; Horii, Toshihiro

    2013-01-01

    Up to now a malaria vaccine remains elusive. The Plasmodium falciparum serine repeat antigen-5 formulated with aluminum hydroxyl gel (BK-SE36) is a blood-stage malaria vaccine candidate that has undergone phase 1a trial in malaria-naive Japanese adults. We have now assessed the safety and immunogenicity of BK-SE36 in a malaria endemic area in Northern Uganda. We performed a two-stage, randomized, single-blinded, placebo-controlled phase 1b trial (Current Controlled trials ISRCTN71619711). A computer-generated sequence randomized healthy subjects for 2 subcutaneous injections at 21-day intervals in Stage1 (21-40 year-olds) to 1-mL BK-SE36 (BKSE1.0) (n = 36) or saline (n = 20) and in Stage2 (6-20 year-olds) to BKSE1.0 (n = 33), 0.5-mL BK-SE36 (BKSE0.5) (n = 33), or saline (n = 18). Subjects and laboratory personnel were blinded. Safety and antibody responses 21-days post-second vaccination (Day42) were assessed. Post-trial, to compare the risk of malaria episodes 130-365 days post-second vaccination, Stage2 subjects were age-matched to 50 control individuals. Nearly all subjects who received BK-SE36 had induration (Stage1, n = 33, 92%; Stage2, n = 63, 96%) as a local adverse event. No serious adverse event related to BK-SE36 was reported. Pre-existing anti-SE36 antibody titers negatively correlated with vaccination-induced antibody response. At Day42, change in antibody titers was significant for seronegative adults (1.95-fold higher than baseline [95% CI, 1.56-2.43], p = 0.004) and 6-10 year-olds (5.71-fold [95% CI, 2.38-13.72], p = 0.002) vaccinated with BKSE1.0. Immunogenicity response to BKSE0.5 was low and not significant (1.55-fold [95% CI, 1.24-1.94], p = 0.75). In the ancillary analysis, cumulative incidence of first malaria episodes with ≥5000 parasites/µL was 7 cases/33 subjects in BKSE1.0 and 10 cases/33 subjects in BKSE0.5 vs. 29 cases/66 subjects in the control group. Risk ratio for BKSE1.0 was 0.48 (95% CI, 0

  19. Experimental models in vaccine research: malaria and leishmaniasis.

    PubMed

    Teixeira, C; Gomes, R

    2013-02-01

    Animal models have a long history of being useful tools, not only to test and select vaccines, but also to help understand the elaborate details of the immune response that follows infection. Different models have been extensively used to investigate putative immunological correlates of protection against parasitic diseases that are important to reach a successful vaccine. The greatest challenge has been the improvement and adaptation of these models to reflect the reality of human disease and the screening of vaccine candidates capable of overcoming the challenge of natural transmission. This review will discuss the advantages and challenges of using experimental animal models for vaccine development and how the knowledge achieved can be extrapolated to human disease by looking into two important parasitic diseases: malaria and leishmaniasis.

  20. Factors Likely to Affect Community Acceptance of a Malaria Vaccine in Two Districts of Ghana: A Qualitative Study

    PubMed Central

    Meñaca, Arantza; Tagbor, Harry; Adjei, Rose; Bart-Plange, Constance; Collymore, Yvette; Ba-Nguz, Antoinette; Mertes, Kelsey; Bingham, Allison

    2014-01-01

    Malaria is a leading cause of morbidity and mortality among children in Ghana. As part of the effort to inform local and national decision-making in preparation for possible malaria vaccine introduction, this qualitative study explored community-level factors that could affect vaccine acceptance in Ghana and provides recommendations for a health communications strategy. The study was conducted in two purposively selected districts: the Ashanti and Upper East Regions. A total of 25 focus group discussions, 107 in-depth interviews, and 21 semi-structured observations at Child Welfare Clinics were conducted. Malaria was acknowledged to be one of the most common health problems among children. While mosquitoes were linked to the cause and bed nets were considered to be the main preventive method, participants acknowledged that no single measure prevented malaria. The communities highly valued vaccines and cited vaccination as the main motivation for taking children to Child Welfare Clinics. Nevertheless, knowledge of specific vaccines and what they do was limited. While communities accepted the idea of minor vaccine side effects, other side effects perceived to be more serious could deter families from taking children for vaccination, especially during vaccination campaigns. Attendance at Child Welfare Clinics after age nine months was limited. Observations at clinics revealed that while two different opportunities for counseling were offered, little attention was given to addressing mothers’ specific concerns and to answering questions related to child immunization. Positive community attitudes toward vaccines and the understanding that malaria prevention requires a comprehensive approach would support the introduction of a malaria vaccine. These attitudes are bolstered by a well-established child welfare program and the availability in Ghana of active, flexible structures for conveying health information to communities. At the same time, it would be important to

  1. Factors likely to affect community acceptance of a malaria vaccine in two districts of Ghana: a qualitative study.

    PubMed

    Meñaca, Arantza; Tagbor, Harry; Adjei, Rose; Bart-Plange, Constance; Collymore, Yvette; Ba-Nguz, Antoinette; Mertes, Kelsey; Bingham, Allison

    2014-01-01

    Malaria is a leading cause of morbidity and mortality among children in Ghana. As part of the effort to inform local and national decision-making in preparation for possible malaria vaccine introduction, this qualitative study explored community-level factors that could affect vaccine acceptance in Ghana and provides recommendations for a health communications strategy. The study was conducted in two purposively selected districts: the Ashanti and Upper East Regions. A total of 25 focus group discussions, 107 in-depth interviews, and 21 semi-structured observations at Child Welfare Clinics were conducted. Malaria was acknowledged to be one of the most common health problems among children. While mosquitoes were linked to the cause and bed nets were considered to be the main preventive method, participants acknowledged that no single measure prevented malaria. The communities highly valued vaccines and cited vaccination as the main motivation for taking children to Child Welfare Clinics. Nevertheless, knowledge of specific vaccines and what they do was limited. While communities accepted the idea of minor vaccine side effects, other side effects perceived to be more serious could deter families from taking children for vaccination, especially during vaccination campaigns. Attendance at Child Welfare Clinics after age nine months was limited. Observations at clinics revealed that while two different opportunities for counseling were offered, little attention was given to addressing mothers' specific concerns and to answering questions related to child immunization. Positive community attitudes toward vaccines and the understanding that malaria prevention requires a comprehensive approach would support the introduction of a malaria vaccine. These attitudes are bolstered by a well-established child welfare program and the availability in Ghana of active, flexible structures for conveying health information to communities. At the same time, it would be important to

  2. Variation in the immune responses against Plasmodium falciparum merozoite surface protein-1 and apical membrane antigen-1 in children residing in the different epidemiological strata of malaria in Cameroon.

    PubMed

    Kwenti, Tebit Emmanuel; Moye, Adzemye Linus; Wiylanyuy, Adzemye Basil; Njunda, Longdoh Anna; Nkuo-Akenji, Theresa

    2017-11-09

    Studies to assess the immune responses against malaria in Cameroonian children are limited. The purpose of this study was to assess the immune responses against Plasmodium falciparum merozoite surface protein-1 (MSP-1 19 ) and apical membrane antigen-1 (AMA-1) in children residing in the different epidemiological strata of malaria in Cameroon. In a cross-sectional survey performed between April and July 2015, 602 children between 2 and 15 years (mean ± SD = 5.7 ± 3.7), comprising 319 (53%) males were enrolled from five epidemiological strata of malaria in Cameroon including: the sudano-sahelian (SS) strata, the high inland plateau (HIP) strata, the south Cameroonian equatorial forest (SCEF) strata, the high western plateau (HWP) strata, and the coastal (C) strata. The children were screened for clinical malaria (defined by malaria parasitaemia ≥ 5000 parasites/µl plus axillary temperature ≥ 37.5 °C). Their antibody responses were measured against P. falciparum MSP-1 19 and AMA-1 vaccine candidate antigens using standard ELISA technique. A majority of the participants were IgG responders 72.1% (95% CI 68.3-75.6). The proportion of responders was higher in females (p = 0.002) and in children aged 10 years and above (p = 0.005). The proportion of responders was highest in Limbe (C strata) and lowest in Ngaoundere (HIP strata) (p < 0.0001). Similarly, the mean IgG antibody levels were higher in children aged 10 years and above (p < 0.0001) and in Limbe (p = 0.001). The IgG antibody levels against AMA-1 were higher in females (p = 0.028), meanwhile no gender disparity was observed with MSP-1. Furthermore the risk of clinical malaria (p < 0.0001) and the mean parasite density (p = 0.035) were higher in IgG non-responders. A high proportion of IgG responders was observed in this study, suggesting a high degree exposure of the target population to malaria parasites. The immune responses varied considerably across the different strata

  3. Cellular vaccines in listeriosis: role of the Listeria antigen GAPDH

    PubMed Central

    Calderón-González, Ricardo; Frande-Cabanes, Elisabet; Bronchalo-Vicente, Lucía; Lecea-Cuello, M. Jesús; Pareja, Eduardo; Bosch-Martínez, Alexandre; Fanarraga, Mónica L.; Yañez-Díaz, Sonsoles; Carrasco-Marín, Eugenio; Álvarez-Domínguez, Carmen

    2014-01-01

    The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs) and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and several epitopes such as the LLO peptides, LLO189−201 and LLO91−99 and the GAPDH peptide, GAPDH1−22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1−22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91−99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1−22-specific CD4+ and CD8+ immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4+ and CD8+ epitopes. PMID:24600592

  4. Malaria transmission blocking immunity and sexual stage vaccines for interrupting malaria transmission in Latin America

    PubMed Central

    Arévalo-Herrera, Myriam; Solarte, Yezid; Marin, Catherin; Santos, Mariana; Castellanos, Jenniffer; Beier, John C; Valencia, Sócrates Herrera

    2016-01-01

    Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB) immunity (TBI) and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV), would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America. PMID:21881775

  5. Graph-based optimization of epitope coverage for vaccine antigen design

    DOE PAGES

    Theiler, James Patrick; Korber, Bette Tina Marie

    2017-01-29

    Epigraph is a recently developed algorithm that enables the computationally efficient design of single or multi-antigen vaccines to maximize the potential epitope coverage for a diverse pathogen population. Potential epitopes are defined as short contiguous stretches of proteins, comparable in length to T-cell epitopes. This optimal coverage problem can be formulated in terms of a directed graph, with candidate antigens represented as paths that traverse this graph. Epigraph protein sequences can also be used as the basis for designing peptides for experimental evaluation of immune responses in natural infections to highly variable proteins. The epigraph tool suite also enables rapidmore » characterization of populations of diverse sequences from an immunological perspective. Fundamental distance measures are based on immunologically relevant shared potential epitope frequencies, rather than simple Hamming or phylogenetic distances. Here, we provide a mathematical description of the epigraph algorithm, include a comparison of different heuristics that can be used when graphs are not acyclic, and we describe an additional tool we have added to the web-based epigraph tool suite that provides frequency summaries of all distinct potential epitopes in a population. Lastly, we also show examples of the graphical output and summary tables that can be generated using the epigraph tool suite and explain their content and applications.« less

  6. Graph-based optimization of epitope coverage for vaccine antigen design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theiler, James Patrick; Korber, Bette Tina Marie

    Epigraph is a recently developed algorithm that enables the computationally efficient design of single or multi-antigen vaccines to maximize the potential epitope coverage for a diverse pathogen population. Potential epitopes are defined as short contiguous stretches of proteins, comparable in length to T-cell epitopes. This optimal coverage problem can be formulated in terms of a directed graph, with candidate antigens represented as paths that traverse this graph. Epigraph protein sequences can also be used as the basis for designing peptides for experimental evaluation of immune responses in natural infections to highly variable proteins. The epigraph tool suite also enables rapidmore » characterization of populations of diverse sequences from an immunological perspective. Fundamental distance measures are based on immunologically relevant shared potential epitope frequencies, rather than simple Hamming or phylogenetic distances. Here, we provide a mathematical description of the epigraph algorithm, include a comparison of different heuristics that can be used when graphs are not acyclic, and we describe an additional tool we have added to the web-based epigraph tool suite that provides frequency summaries of all distinct potential epitopes in a population. Lastly, we also show examples of the graphical output and summary tables that can be generated using the epigraph tool suite and explain their content and applications.« less

  7. Results from tandem Phase 1 studies evaluating the safety, reactogenicity and immunogenicity of the vaccine candidate antigen Plasmodium falciparum FVO merozoite surface protein-1 (MSP142) administered intramuscularly with adjuvant system AS01

    PubMed Central

    2013-01-01

    Background The development of an asexual blood stage vaccine against Plasmodium falciparum malaria based on the major merozoite surface protein-1 (MSP1) antigen is founded on the protective efficacy observed in preclinical studies and induction of invasion and growth inhibitory antibody responses. The 42 kDa C-terminus of MSP1 has been developed as the recombinant protein vaccine antigen, and the 3D7 allotype, formulated with the Adjuvant System AS02A, has been evaluated extensively in human clinical trials. In preclinical rabbit studies, the FVO allele of MSP142 has been shown to have improved immunogenicity over the 3D7 allele, in terms of antibody titres as well as growth inhibitory activity of antibodies against both the heterologous 3D7 and homologous FVO parasites. Methods Two Phase 1 clinical studies were conducted to examine the safety, reactogenicity and immunogenicity of the FVO allele of MSP142 in the adjuvant system AS01 administered intramuscularly at 0-, 1-, and 2-months: one in the USA and, after evaluation of safety data results, one in Western Kenya. The US study was an open-label, dose escalation study of 10 and 50 μg doses of MSP142 in 26 adults, while the Kenya study, evaluating 30 volunteers, was a double-blind, randomized study of only the 50 μg dose with a rabies vaccine comparator. Results In these studies it was demonstrated that this vaccine formulation has an acceptable safety profile and is immunogenic in malaria-naïve and malaria-experienced populations. High titres of anti-MSP1 antibodies were induced in both study populations, although there was a limited number of volunteers whose serum demonstrated significant inhibition of blood-stage parasites as measured by growth inhibition assay. In the US volunteers, the antibodies generated exhibited better cross-reactivity to heterologous MSP1 alleles than a MSP1-based vaccine (3D7 allele) previously tested at both study sites. Conclusions Given that the primary effector mechanism for

  8. The public health impact of malaria vaccine RTS,S in malaria endemic Africa: country-specific predictions using 18 month follow-up Phase III data and simulation models.

    PubMed

    Penny, Melissa A; Galactionova, Katya; Tarantino, Michael; Tanner, Marcel; Smith, Thomas A

    2015-07-29

    The RTS,S/AS01 malaria vaccine candidate recently completed Phase III trials in 11 African sites. Recommendations for its deployment will partly depend on predictions of public health impact in endemic countries. Previous predictions of these used only limited information on underlying vaccine properties and have not considered country-specific contextual data. Each Phase III trial cohort was simulated explicitly using an ensemble of individual-based stochastic models, and many hypothetical vaccine profiles. The true profile was estimated by Bayesian fitting of these models to the site- and time-specific incidence of clinical malaria in both trial arms over 18 months of follow-up. Health impacts of implementation via two vaccine schedules in 43 endemic sub-Saharan African countries, using country-specific prevalence, access to care, immunisation coverage and demography data, were predicted via weighted averaging over many simulations. The efficacy against infection of three doses of vaccine was initially approximately 65 % (when immunising 6-12 week old infants) and 80 % (children 5-17 months old), with a 1 year half-life (exponential decay). Either schedule will avert substantial disease, but predicted impact strongly depends on the decay rate of vaccine effects and average transmission intensity. For the first time Phase III site- and time-specific data were available to estimate both the underlying profile of RTS,S/AS01 and likely country-specific health impacts. Initial efficacy will probably be high, but decay rapidly. Adding RTS,S to existing control programs, assuming continuation of current levels of malaria exposure and of health system performance, will potentially avert 100-580 malaria deaths and 45,000 to 80,000 clinical episodes per 100,000 fully vaccinated children over an initial 10-year phase.

  9. Global Inhibition of DC Priming Capacity in the Spleen of Self-Antigen Vaccinated Mice Requires IL-10.

    PubMed

    Marvel, Douglas M; Finn, Olivera J

    2014-01-01

    Dendritic cells (DC) in the spleen are highly activated following intravenous vaccination with a foreign-antigen, promoting expansion of effector T cells, but remain phenotypically and functionally immature after vaccination with a self-antigen. Up-regulation or suppression of expression of a cohort of pancreatic enzymes 24-72 h post-vaccination can be used as a biomarker of stimulatory versus tolerogenic DC, respectively. Here we show, using MUC1 transgenic mice and a vaccine based on the MUC1 peptide, which these mice perceive as a self-antigen, that the difference in enzyme expression that predicts whether DC will promote immune response or immune tolerance is seen as early as 4-8 h following vaccination. We also identify early production of IL-10 as a predominant factor that both correlates with this early-time point and controls DC function. Pre-treating mice with an antibody against the IL-10 receptor prior to vaccination results in DC that up-regulate CD40, CD80, and CD86 and promote stronger IFNγ+ T cell responses. This study suggests that transient inhibition of IL-10 prior to vaccination could improve responses to cancer vaccines that utilize self-tumor antigens.

  10. The effect of immunization schedule with the malaria vaccine candidate RTS,S/AS01E on protective efficacy and anti-circumsporozoite protein antibody avidity in African infants.

    PubMed

    Ajua, Anthony; Lell, Bertrand; Agnandji, Selidji Todagbe; Asante, Kwaku Poku; Owusu-Agyei, Seth; Mwangoka, Grace; Mpina, Maxmilliam; Salim, Nahya; Tanner, Marcel; Abdulla, Salim; Vekemans, Johan; Jongert, Erik; Lievens, Marc; Cambron, Pierre; Ockenhouse, Chris F; Kremsner, Peter G; Mordmüller, Benjamin

    2015-02-13

    The malaria vaccine RTS,S induces antibodies against the Plasmodium falciparum circumsporozoite protein (CSP) and the concentration of Immunoglobulin G (IgG) against the repeat region of CSP following vaccination is associated with protection from P. falciparum malaria. So far, only the quantity of anti-CSP IgG has been measured and used to predict vaccination success, although quality (measured as avidity) of the antigen-antibody interaction shall be important since only a few sporozoites circulate for a short time after an infectious mosquito bite, likely requiring fast and strong binding. Quantity and avidity of anti-CSP IgG in African infants who received RTS,S/AS01E in a 0-1-2-month or a 0-1-7-month schedule in a phase 2 clinical trial were measured by enzyme-linked immunosorbent assay. Antibody avidity was defined as the proportion of IgG able to bind in the presence of a chaotropic agent (avidity index). The effect of CSP-specific IgG concentration and avidity on protective efficacy was modelled using Cox proportional hazards. After the third dose, quantity and avidity were similar between the two vaccination schedules. IgG avidity after the last vaccine injection was not associated with protection, whereas the change in avidity following second and third RTS,S/AS01E injection was associated with a 54% risk reduction of getting malaria (hazard ratio: 0.46; 95% confidence interval (CI): 0.22-0.99) in those participants with a change in avidity above the median. The change in anti-CSP IgG concentration following second and third injection was associated with a 77% risk reduction of getting malaria (hazard ratio: 0.23, 95% CI: 0.11-0.51). Change in IgG response between vaccine doses merits further evaluation as a surrogate marker for RTS,S efficacy. ClinicalTrials.gov Identifier NCT00436007 .

  11. Application of recombinant hemagglutinin proteins as alternative antigen standards for pandemic influenza vaccines.

    PubMed

    Choi, Yejin; Kwon, Seong Yi; Oh, Ho Jung; Shim, Sunbo; Chang, Seokkee; Chung, Hye Joo; Kim, Do Keun; Park, Younsang; Lee, Younghee

    2017-09-01

    The single radial immunodiffusion (SRID) assay, used to quantify hemagglutinin (HA) in influenza vaccines, requires reference reagents; however, because centralized production of reference reagents may slow the emergency deployment of vaccines, alternatives are needed. We investigated the production of HA proteins using recombinant DNA technology, rather than a traditional egg-based production process. The HA proteins were then used in an SRID assay as a reference antigen. We found that HA can be quantified in both egg-based and cell-based influenza vaccines when recombinant HAs (rHAs) are used as the reference antigen. Furthermore, we confirmed that rHAs obtained from strains with pandemic potential, such as H5N1, H7N3, H7N9, and H9N2 strains, can be utilized in the SRID assay. The rHA production process takes just one month, in contrast to the traditional process that takes three to four months. The use of rHAs may reduce the time required to produce reference reagents and facilitate timely introduction of vaccines during emergencies.

  12. Phase 1/2a Study of the Malaria Vaccine Candidate Apical Membrane Antigen-1 (AMA-1) Administered in Adjuvant System AS01B or AS02A

    DTIC Science & Technology

    2009-04-01

    purified saponin extract from the bark of the South American tree Quillaja saponaria, while AS02A is based on an oil-in-water emulsion with the same amounts... Technology in Health (PATH) Malaria Vaccine Initiative, Bethesda, Maryland, United States of America, 3 Department of Medical Microbiology, Radboud...Additionally, active immunization of rhesus monkeys with P. knowlesi AMA-1 adjuvanted in saponin resulted in some animals demonstrating a delayed

  13. A Review of Intra- and Extracellular Antigen Delivery Systems for Virus Vaccines of Finfish

    PubMed Central

    Munang'andu, Hetron Mweemba; Evensen, Øystein

    2015-01-01

    Vaccine efficacy in aquaculture has for a long time depended on evaluating relative percent survival and antibody responses after vaccination. However, current advances in vaccine immunology show that the route in which antigens are delivered into cells is deterministic of the type of adaptive immune response evoked by vaccination. Antigens delivered by the intracellular route induce MHC-I restricted CD8+ responses while antigens presented through the extracellular route activate MHC-II restricted CD4+ responses implying that the route of antigen delivery is a conduit to induction of B- or T-cell immune responses. In finfish, different antigen delivery systems have been explored that include live, DNA, inactivated whole virus, fusion protein, virus-like particles, and subunit vaccines although mechanisms linking these delivery systems to protective immunity have not been studied in detail. Hence, in this review we provide a synopsis of different strategies used to administer viral antigens via the intra- or extracellular compartments. Further, we highlight the differences in immune responses induced by antigens processed by the endogenous route compared to exogenously processed antigens. Overall, we anticipate that the synopsis put together in this review will shed insights into limitations and successes of the current vaccination strategies used in finfish vaccinology. PMID:26065009

  14. A multi-antigenic MVA vaccine increases efficacy of combination chemotherapy against Mycobacterium tuberculosis

    PubMed Central

    Coupet, Charles-Antoine; Gouanvic, Marie; Schmitt, Doris; Ray, Aurélie; Hoffmann, Chantal; Schultz, Huguette; Tyagi, Sandeep; Soni, Heena; Converse, Paul J.; Arias, Lilibeth; Kleinpeter, Patricia; Sansas, Benoît; Mdluli, Khisimuzi; Vilaplana, Cristina; Cardona, Pere-Joan; Nuermberger, Eric; Marchand, Jean-Baptiste; Silvestre, Nathalie; Inchauspé, Geneviève

    2018-01-01

    Despite the existence of the prophylactic Bacille Calmette-Guérin (BCG) vaccine, infection by Mycobacterium tuberculosis (Mtb) remains a major public health issue causing up to 1.8 million annual deaths worldwide. Increasing prevalence of Mtb strains resistant to antibiotics represents an urgent threat for global health that has prompted a search for alternative treatment regimens not subject to development of resistance. Immunotherapy constitutes a promising approach to improving current antibiotic treatments through engagement of the host’s immune system. We designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara (MVA) virus, denoted MVATG18598, which expresses ten antigens classically described as representative of each of different phases of Mtb infection. In vitro analysis coupled with multiple-passage evaluation demonstrated that this vaccine is genetically stable, i.e. fit for manufacturing. Using different mouse strains, we show that MVATG18598 vaccination results in both Th1-associated T-cell responses and cytolytic activity, targeting all 10 vaccine-expressed Mtb antigens. In chronic post-exposure mouse models, MVATG18598 vaccination in combination with an antibiotic regimen decreases the bacterial burden in the lungs of infected mice, compared with chemotherapy alone, and is associated with long-lasting antigen-specific Th1-type T cell and antibody responses. In one model, co-treatment with MVATG18598 prevented relapse of the disease after treatment completion, an important clinical goal. Overall, results demonstrate the capacity of the therapeutic MVATG18598 vaccine to improve efficacy of chemotherapy against TB. These data support further development of this novel immunotherapeutic in the treatment of Mtb infections. PMID:29718990

  15. Vaccination and the TAP-independent antigen processing pathways.

    PubMed

    López, Daniel; Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen

    2013-09-01

    The cytotoxic CD8(+) T lymphocyte-mediated cellular response is important for the elimination of virus-infected cells and requires the prior recognition of short viral peptide antigens previously translocated to the endoplasmic reticulum by the transporter associated with antigen processing (TAP). However, individuals with nonfunctional TAP complexes or infected cells with TAP molecules blocked by specific viral proteins, such as the cowpoxvirus, a component of the first source of early empirical vaccination against smallpox, are still able to present several HLA class I ligands generated by the TAP-independent antigen processing pathways to specific cytotoxic CD8(+) T lymphocytes. Currently, bioterrorism and emerging infectious diseases have renewed interest in poxviruses. Recent works that have identified HLA class I ligands and epitopes in virus-infected TAP-deficient cells have implications for the study of both the effectiveness of early empirical vaccination and the analysis of HLA class I antigen processing in TAP-deficient subjects.

  16. Algae-based oral recombinant vaccines

    PubMed Central

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  17. Potentiation of anthrax vaccines using protective antigen-expressing viral replicon vectors.

    PubMed

    Wang, Hai-Chao; An, Huai-Jie; Yu, Yun-Zhou; Xu, Qing

    2015-02-01

    DNA vaccines require improvement for human use because they are generally weak stimulators of the immune system in humans. The efficacy of DNA vaccines can be improved using a viral replicon as vector to administer antigen of pathogen. In this study, we comprehensively evaluated the conventional non-viral DNA, viral replicon DNA or viral replicon particles (VRP) vaccines encoding different forms of anthrax protective antigen (PA) for specific immunity and protective potency against anthrax. Our current results clearly suggested that these viral replicon DNA or VRP vaccines derived from Semliki Forest virus (SFV) induced stronger PA-specific immune responses than the conventional non-viral DNA vaccines when encoding the same antigen forms, which resulted in potent protection against challenge with the Bacillus anthracis strain A16R. Additionally, the naked PA-expressing SFV replicon DNA or VRP vaccines without the need for high doses or demanding particular delivery regimens elicited robust immune responses and afforded completely protective potencies, which indicated the potential of the SFV replicon as vector of anthrax vaccines for use in clinical application. Therefore, our results suggest that these PA-expressing SFV replicon DNA or VRP vaccines may be suitable as candidate vaccines against anthrax. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Experimental models in vaccine research: malaria and leishmaniasis

    PubMed Central

    Teixeira, C.; Gomes, R.

    2013-01-01

    Animal models have a long history of being useful tools, not only to test and select vaccines, but also to help understand the elaborate details of the immune response that follows infection. Different models have been extensively used to investigate putative immunological correlates of protection against parasitic diseases that are important to reach a successful vaccine. The greatest challenge has been the improvement and adaptation of these models to reflect the reality of human disease and the screening of vaccine candidates capable of overcoming the challenge of natural transmission. This review will discuss the advantages and challenges of using experimental animal models for vaccine development and how the knowledge achieved can be extrapolated to human disease by looking into two important parasitic diseases: malaria and leishmaniasis. PMID:23369975

  19. Preclinical evaluation of a chemically detoxified pneumolysin as pneumococcal vaccine antigen.

    PubMed

    Hermand, Philippe; Vandercammen, Annick; Mertens, Emmanuel; Di Paolo, Emmanuel; Verlant, Vincent; Denoël, Philippe; Godfroid, Fabrice

    2017-01-02

    The use of protein antigens able to protect against the majority of Streptococcus pneumoniae serotypes is envisaged as stand-alone and/or complement to the current capsular polysaccharide-based pneumococcal vaccines. Pneumolysin (Ply) is a key virulence factor that is highly conserved in amino acid sequence across pneumococcal serotypes, and therefore may be considered as a vaccine target. However, native Ply cannot be used in vaccines due to its intrinsic cytolytic activity. In the present work a completely, irreversibly detoxified pneumolysin (dPly) has been generated using an optimized formaldehyde treatment. Detoxi-fication was confirmed by dPly challenge in mice and histological analysis of the injection site in rats. Immunization with dPly elicited Ply-specific functional antibodies that were able to inhibit Ply activity in a hemolysis assay. In addition, immunization with dPly protected mice against lethal intranasal challenge with Ply, and intranasal immunization inhibited nasopharyngeal colonization after intranasal challenge with homologous or heterologous pneumococcal strain. Our findings supported dPly as a valid candidate antigen for further pneumococcal vaccine development.

  20. Preclinical evaluation of a chemically detoxified pneumolysin as pneumococcal vaccine antigen

    PubMed Central

    Hermand, Philippe; Vandercammen, Annick; Mertens, Emmanuel; Di Paolo, Emmanuel; Verlant, Vincent; Denoël, Philippe; Godfroid, Fabrice

    2017-01-01

    ABSTRACT The use of protein antigens able to protect against the majority of Streptococcus pneumoniae serotypes is envisaged as stand-alone and/or complement to the current capsular polysaccharide-based pneumococcal vaccines. Pneumolysin (Ply) is a key virulence factor that is highly conserved in amino acid sesec-typsecquence across pneumococcal serotypes, and therefore may be considered as a vaccine target. However, native Ply cannot be used in vaccines due to its intrinsic cytolytic activity. In the present work a completely, irreversibly detoxified pneumolysin (dPly) has been generated using an optimized formaldehyde treatment. Detoxi-fication was confirmed by dPly challenge in mice and histological analysis of the injection site in rats. Immunization with dPly elicited Ply-specific functional antibodies that were able to inhibit Ply activity in a hemolysis assay. In addition, immunization with dPly protected mice against lethal intranasal challenge with Ply, and intranasal immunization inhibited nasopharyngeal colonization after intranasal challenge with homologous or heterologous pneumococcal strain. Our findings supported dPly as a valid candidate antigen for further pneumococcal vaccine development. PMID:27768518

  1. Malaria prevalence defined by microscopy, antigen detection, DNA amplification and total nucleic acid amplification in a malaria-endemic region during the peak malaria transmission season.

    PubMed

    Waitumbi, John N; Gerlach, Jay; Afonina, Irina; Anyona, Samuel B; Koros, Joseph N; Siangla, Joram; Ankoudinova, Irina; Singhal, Mitra; Watts, Kate; Polhemus, Mark E; Vermeulen, Nicolaas M; Mahoney, Walt; Steele, Matt; Domingo, Gonzalo J

    2011-07-01

    To determine the malaria prevalence by microscopy, antigen detection and nucleic acid detection in a defined subpopulation in a Plasmodium falciparum-endemic region during the peak transmission season. Blood specimens were collected in a cross-sectional study involving children aged 5-10 years (n = 195) presenting with acute fever to two clinics in Western Kenya. All specimens underwent microscopy, HRP2 and aldolase antigen detection by enzyme immunoassay (EIA), parasite-specific DNA and total nucleic acid (RNA and DNA) by real-time PCR (qPCR) and reverse-transcriptase PCR (qRT-PCR). Microscopy detected 65/195 cases of malaria infection [95% confidence interval (CI) 52-78]. HRP2 and aldolase EIA had similar sensitivity levels detecting antigen in 65/195 (95% CI, 52-78) and 57/195 (95% CI, 45-70) cases. Discordants in antigen detection vs. microscopy occurred at <470 parasites/μl and <4900 parasites/μl for HRP2 and aldolase, respectively. Detection of total nucleic acid allowed a 3 log lower limit of detection than just DNA detection by real-time PCR in vitro. In clinical specimens, 114/195 (95% CI, 100-127) were qPCR positive (DNA), and 187/195 (95% CI, 179-191) were qRT-PCR positive (DNA plus RNA). The prevalence of submicroscopic malaria infection was significantly higher when detecting total nucleic acid than just DNA in this outpatient population during the high transmission season. Defining standards for submicroscopic infection will be important for control programmes, diagnostics development efforts and molecular epidemiology studies. © 2011 Blackwell Publishing Ltd.

  2. A plant-produced protective antigen vaccine confers protection in rabbits against a lethal aerosolized challenge with Bacillus anthracis Ames spores.

    PubMed

    Chichester, Jessica A; Manceva, Slobodanka D; Rhee, Amy; Coffin, Megan V; Musiychuk, Konstantin; Mett, Vadim; Shamloul, Moneim; Norikane, Joey; Streatfield, Stephen J; Yusibov, Vidadi

    2013-03-01

    The potential use of Bacillus anthracis as a bioterrorism weapon threatens the security of populations globally, requiring the immediate availability of safe, efficient and easily delivered anthrax vaccine for mass vaccination. Extensive research efforts have been directed toward the development of recombinant subunit vaccines based on protective antigen (PA), the principal virulence factor of B. anthracis. Among the emerging technologies for the production of these vaccine antigens is our launch vector-based plant transient expression system. Using this system, we have successfully engineered, expressed, purified and characterized full-length PA (pp-PA83) in Nicotiana benthamiana plants using agroinfiltration. This plant-produced antigen elicited high toxin neutralizing antibody titers in mice and rabbits after two vaccine administrations with Alhydrogel. In addition, immunization with this vaccine candidate protected 100% of rabbits from a lethal aerosolized B. anthracis challenge. The vaccine effects were dose-dependent and required the presence of Alhydrogel adjuvant. In addition, the vaccine antigen formulated with Alhydrogel was stable and retained immunogenicity after two-week storage at 4°C, the conditions intended for clinical use. These results support the testing of this vaccine candidate in human volunteers and the utility of our plant expression system for the production of a recombinant anthrax vaccine.

  3. Comparison of Plasmodium berghei challenge models for the evaluation of pre-erythrocytic malaria vaccines and their effect on perceived vaccine efficacy.

    PubMed

    Leitner, Wolfgang W; Bergmann-Leitner, Elke S; Angov, Evelina

    2010-05-27

    The immunological mechanisms responsible for protection against malaria infection vary among Plasmodium species, host species and the developmental stage of parasite, and are poorly understood. A challenge with live parasites is the most relevant approach to testing the efficacy of experimental malaria vaccines. Nevertheless, in the mouse models of Plasmodium berghei and Plasmodium yoelii, parasites are usually delivered by intravenous injection. This route is highly artificial and particularly in the P. berghei model produces inconsistent challenge results. The initial objective of this study was to compare an optimized intravenous (IV) delivery challenge model with an optimized single infectious mosquito bite challenge model. Finding shortcomings of both approaches, an alternative approach was explored, i.e., the subcutaneous challenge. Mice were infected with P. berghei sporozoites by intravenous (tail vein) injection, single mosquito bite, or subcutaneous injection of isolated parasites into the subcutaneous pouch at the base of the hind leg. Infection was determined in blood smears 7 and 14 days later. To determine the usefulness of challenge models for vaccine testing, mice were immunized with circumsporozoite-based DNA vaccines by gene gun. Despite modifications that allowed infection with a much smaller than reported number of parasites, the IV challenge remained insufficiently reliable and reproducible. Variations in the virulence of the inoculum, if not properly monitored by the rigorous inclusion of sporozoite titration curves in each experiment, can lead to unacceptable variations in reported vaccine efficacies. In contrast, mice with different genetic backgrounds were consistently infected by a single mosquito bite, without overwhelming vaccine-induced protective immune responses. Because of the logistical challenges associated with the mosquito bite model, the subcutaneous challenge route was optimized. This approach, too, yields reliable challenge

  4. Optimal vaccination and bednet maintenance for the control of malaria in a region with naturally acquired immunity.

    PubMed

    Prosper, Olivia; Ruktanonchai, Nick; Martcheva, Maia

    2014-07-21

    Following over two decades of research, the malaria vaccine candidate RTS,S has reached the final stages of vaccine trials, demonstrating an efficacy of roughly 50% in young children. Regions with high malaria prevalence tend to have high levels of naturally acquired immunity (NAI) to severe malaria; NAI is caused by repeated exposure to infectious bites and results in large asymptomatic populations. To address concerns about how these vaccines will perform in regions with existing NAI, we developed a simple malaria model incorporating vaccination and NAI. Typically, if the basic reproduction number (R0) for malaria is greater than unity, the disease will persist; otherwise, the disease will become extinct. However, analysis of this model revealed that NAI, compounded by a subpopulation with only partial protection to malaria, may render vaccination efforts ineffective and potentially detrimental to malaria control, by increasing R0 and increasing the likelihood of malaria persistence even when R0<1. The likelihood of this scenario increases when non-immune infected individuals are treated disproportionately compared with partially immune individuals - a plausible scenario since partially immune individuals are more likely to be asymptomatically infected. Consequently, we argue that active case-detection of asymptomatic infections is a critical component of an effective malaria control program. We then investigated optimal vaccination and bednet control programs under two endemic settings with varying levels of naturally acquired immunity: a typical setting under which prevalence decays when R0<1, and a setting in which subthreshold endemic equilibria exist. A qualitative comparison of the optimal control results under the first setting revealed that the optimal policy differs depending on whether the goal is to reduce total morbidity, or to reduce clinical infections. Furthermore, this comparison dictates that control programs should place less effort in

  5. Dual Plug-and-Display Synthetic Assembly Using Orthogonal Reactive Proteins for Twin Antigen Immunization.

    PubMed

    Brune, Karl D; Buldun, Can M; Li, Yuanyuan; Taylor, Iona J; Brod, Florian; Biswas, Sumi; Howarth, Mark

    2017-05-17

    Engineering modular platforms to control biomolecular architecture can advance both the understanding and the manipulation of biological systems. Icosahedral particles uniformly displaying single antigens stimulate potent immune activation and have been successful in various licensed vaccines. However, it remains challenging to display multiple antigens on a single particle and to induce broader immunity protective across strains or even against distinct diseases. Here, we design a dually addressable synthetic nanoparticle by engineering the multimerizing coiled-coil IMX313 and two orthogonally reactive split proteins. SpyCatcher protein forms an isopeptide bond with SpyTag peptide through spontaneous amidation. SnoopCatcher forms an isopeptide bond with SnoopTag peptide through transamidation. SpyCatcher-IMX-SnoopCatcher provides a modular platform, whereby SpyTag-antigen and SnoopTag-antigen can be multimerized on opposite faces of the particle simply upon mixing. We demonstrate efficient derivatization of the platform with model proteins and complex pathogen-derived antigens. SpyCatcher-IMX-SnoopCatcher was expressed in Escherichia coli and was resilient to lyophilization or extreme temperatures. For the next generation of malaria vaccines, blocking the transmission of the parasite from human to mosquito is an important goal. SpyCatcher-IMX-SnoopCatcher multimerization of the leading transmission-blocking antigens Pfs25 and Pfs28 greatly enhanced the antibody response to both antigens in comparison to the monomeric proteins. This dual plug-and-display architecture should help to accelerate vaccine development for malaria and other diseases.

  6. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis.

    PubMed

    Billeskov, Rolf; Lindenstrøm, Thomas; Woodworth, Joshua; Vilaplana, Cristina; Cardona, Pere-Joan; Cassidy, Joseph P; Mortensen, Rasmus; Agger, Else Marie; Andersen, Peter

    2017-01-01

    Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world's population with latent Mtb infection (LTBI), and 5-10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660) TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection.

  7. Global Inhibition of DC Priming Capacity in the Spleen of Self-Antigen Vaccinated Mice Requires IL-10

    PubMed Central

    Marvel, Douglas M.; Finn, Olivera J.

    2014-01-01

    Dendritic cells (DC) in the spleen are highly activated following intravenous vaccination with a foreign-antigen, promoting expansion of effector T cells, but remain phenotypically and functionally immature after vaccination with a self-antigen. Up-regulation or suppression of expression of a cohort of pancreatic enzymes 24–72 h post-vaccination can be used as a biomarker of stimulatory versus tolerogenic DC, respectively. Here we show, using MUC1 transgenic mice and a vaccine based on the MUC1 peptide, which these mice perceive as a self-antigen, that the difference in enzyme expression that predicts whether DC will promote immune response or immune tolerance is seen as early as 4–8 h following vaccination. We also identify early production of IL-10 as a predominant factor that both correlates with this early-time point and controls DC function. Pre-treating mice with an antibody against the IL-10 receptor prior to vaccination results in DC that up-regulate CD40, CD80, and CD86 and promote stronger IFNγ+ T cell responses. This study suggests that transient inhibition of IL-10 prior to vaccination could improve responses to cancer vaccines that utilize self-tumor antigens. PMID:24596571

  8. Antibodies against multiple merozoite surface antigens of the human malaria parasite Plasmodium falciparum inhibit parasite maturation and red blood cell invasion.

    PubMed

    Woehlbier, Ute; Epp, Christian; Hackett, Fiona; Blackman, Michael J; Bujard, Hermann

    2010-03-18

    Plasmodium falciparum merozoites expose at their surface a large protein complex, which is composed of fragments of merozoite surface protein 1 (MSP-1; called MSP-183, MSP-130, MSP-138, and MSP-142) plus associated processing products of MSP-6 and MSP-7. During erythrocyte invasion this complex, as well as an integral membrane protein called apical membrane antigen-1 (AMA-1), is shed from the parasite surface following specific proteolysis. Components of the MSP-1/6/7 complex and AMA-1 are presently under development as malaria vaccines. The specificities and effects of antibodies directed against MSP-1, MSP-6, MSP-7 on the growth of blood stage parasites were studied using ELISA and the pLDH-assay. To understand the mode of action of these antibodies, their effects on processing of MSP-1 and AMA-1 on the surface of merozoites were investigated. Antibodies targeting epitopes located throughout the MSP-1/6/7 complex interfere with shedding of MSP-1, and as a consequence prevent erythrocyte invasion. Antibodies targeting the MSP-1/6/7 complex have no effect on the processing and shedding of AMA-1 and, similarly, antibodies blocking the shedding of AMA-1 do not affect cleavage of MSP-1, suggesting completely independent functions of these proteins during invasion. Furthermore, some epitopes, although eliciting highly inhibitory antibodies, are only poorly recognized by the immune system when presented in the structural context of the intact antigen. The findings reported provide further support for the development of vaccines based on MSP-1/6/7 and AMA-1, which would possibly include a combination of these antigens.

  9. Unraveling Haplotype Diversity of the Apical Membrane Antigen-1 Gene in Plasmodium falciparum Populations in Thailand

    PubMed Central

    Lumkul, Lalita; Sawaswong, Vorthon; Simpalipan, Phumin; Kaewthamasorn, Morakot; Harnyuttanakorn, Pongchai; Pattaradilokrat, Sittiporn

    2018-01-01

    Development of an effective vaccine is critically needed for the prevention of malaria. One of the key antigens for malaria vaccines is the apical membrane antigen 1 (AMA-1) of the human malaria parasite Plasmodium falciparum, the surface protein for erythrocyte invasion of the parasite. The gene encoding AMA-1 has been sequenced from populations of P. falciparum worldwide, but the haplotype diversity of the gene in P. falciparum populations in the Greater Mekong Subregion (GMS), including Thailand, remains to be characterized. In the present study, the AMA-1 gene was PCR amplified and sequenced from the genomic DNA of 65 P. falciparum isolates from 5 endemic areas in Thailand. The nearly full-length 1,848 nucleotide sequence of AMA-1 was subjected to molecular analyses, including nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity and neutrality tests. Phylogenetic analysis and pairwise population differentiation (Fst indices) were performed to infer the population structure. The analyses identified 60 single nucleotide polymorphic loci, predominately located in domain I of AMA-1. A total of 31 unique AMA-1 haplotypes were identified, which included 11 novel ones. The phylogenetic tree of the AMA-1 haplotypes revealed multiple clades of AMA-1, each of which contained parasites of multiple geographical origins, consistent with the Fst indices indicating genetic homogeneity or gene flow among geographically distinct populations of P. falciparum in Thailand’s borders with Myanmar, Laos and Cambodia. In summary, the study revealed novel haplotypes and population structure needed for the further advancement of AMA-1-based malaria vaccines in the GMS. PMID:29742870

  10. [Experimental study on TCRbeta idiotypic antigenic determinants DNA vaccine to induce anti-lymphoma antibodies].

    PubMed

    Zhang, Yeping; Zhu, Ping; Shi, Yongjin; Liu, Jihua; Pu, Dingfang; Cao, Xianghong; Zhu, Qiang; Wang, Yijia; Ma, Mingxin; Yu, Jiren

    2002-02-01

    To investigate the anti-human CEM lymphoma cell activities induced by TCR idiotypic DNA vaccine containing different antigen determinants in BALB/c mice. The specific rearranged gene fragment encoding TCRVbeta region of CEM cell line was obtained by RT-PCR technique. The PCR product was cloned into eukaryocytic expression vector pcDNA3, which was used as DNA vaccine and template for PCR amplifying different antigen determinant. Gene fragments encoding different antigen determinant were amplified and cloned into pcDNA3, separately. The experimental mice were immunized by intramuscular injection of the DNA vaccines. The specific anti-idiotype antibodies were detected by indirect immunofluorescence assay. TCRbetaV of CEM cell line contains five antigen determinants. Specific anti-idiotype antibody was detected in all of the six mice immunized with DNA vaccine containing all the five determinants (the highest titer was 1:480). Although the antibody could also be detected in four of the six mice immunized with DNA vaccine containing four of the five antigen determinants, the antibody titer was lower (the highest titer was 1:80). DNA vaccine containing two of the five determinants could not induce the specific antibody. The idiotypic DNA vaccine containing the whole TCRbetaV five antigen determinants could induce the specific anti-lymphoma idiotypic antibody in BALB/c mice.

  11. A facile approach to enhance antigen response for personalized cancer vaccination

    NASA Astrophysics Data System (ADS)

    Li, Aileen Weiwei; Sobral, Miguel C.; Badrinath, Soumya; Choi, Youngjin; Graveline, Amanda; Stafford, Alexander G.; Weaver, James C.; Dellacherie, Maxence O.; Shih, Ting-Yu; Ali, Omar A.; Kim, Jaeyun; Wucherpfennig, Kai W.; Mooney, David J.

    2018-06-01

    Existing strategies to enhance peptide immunogenicity for cancer vaccination generally require direct peptide alteration, which, beyond practical issues, may impact peptide presentation and result in vaccine variability. Here, we report a simple adsorption approach using polyethyleneimine (PEI) in a mesoporous silica microrod (MSR) vaccine to enhance antigen immunogenicity. The MSR-PEI vaccine significantly enhanced host dendritic cell activation and T-cell response over the existing MSR vaccine and bolus vaccine formulations. Impressively, a single injection of the MSR-PEI vaccine using an E7 peptide completely eradicated large, established TC-1 tumours in about 80% of mice and generated immunological memory. When immunized with a pool of B16F10 or CT26 neoantigens, the MSR-PEI vaccine eradicated established lung metastases, controlled tumour growth and synergized with anti-CTLA4 therapy. Our findings from three independent tumour models suggest that the MSR-PEI vaccine approach may serve as a facile and powerful multi-antigen platform to enable robust personalized cancer vaccination.

  12. Modeling Combinations of Pre-erythrocytic Plasmodium falciparum Malaria Vaccines.

    PubMed

    Walker, Andrew S; Lourenço, José; Hill, Adrian V S; Gupta, Sunetra

    2015-12-01

    Despite substantial progress in the control of Plasmodium falciparum infection due to the widespread deployment of insecticide-treated bed nets and artemisinin combination therapies, malaria remains a prolific killer, with over half a million deaths estimated to have occurred in 2013 alone. Recent evidence of the development of resistance to treatments in both parasites and their mosquito vectors has underscored the need for a vaccine. Here, we use a mathematical model of the within-host dynamics of P. falciparum infection, fit to data from controlled human malaria infection clinical trials, to predict the efficacy of co-administering the two most promising subunit vaccines, RTS,S/AS01 and ChAd63-MVA ME-TRAP. We conclude that currently available technologies could be combined to induce very high levels of sterile efficacy, even in immune-naive individuals. © The American Society of Tropical Medicine and Hygiene.

  13. Antibodies to Plasmodium falciparum Antigens Predict a Higher Risk of Malaria But Protection From Symptoms Once Parasitemic

    PubMed Central

    Hubbard, Alan; Njama-Meya, Denise; Narum, David L.; Lanar, David E.; Dutta, Sheetij; Rosenthal, Philip J.; Dorsey, Grant; John, Chandy C.

    2011-01-01

    (See the article by Bejon et al, on pages 9–18, and Bousema et al, on pages 1–3.) Background. Associations between antibody responses to Plasmodium falciparum antigens and protection against symptomatic malaria have been difficult to ascertain, in part because antibodies are potential markers of both exposure to P. falciparum and protection against disease. Methods. We measured IgG responses to P. falciparum circumsporozoite protein, liver-stage antigen 1, apical-membrane antigen 1 (AMA-1), and merozoite surface proteins (MSP) 1 and 3, in children in Kampala, Uganda, and measured incidence of malaria before and after antibody measurement. Results. Stronger responses to all 5 antigens were associated with an increased risk of clinical malaria (P < .01) because of confounding with prior exposure to P. falciparum. However, with use of another assessment, risk of clinical malaria once parasitemic, stronger responses to AMA-1, MSP-1, and MSP-3 were associated with protection (odds ratios, 0.34, 0.36, and 0.31, respectively, per 10-fold increase; P < .01). Analyses assessing antibodies in combination suggested that any protective effect of antibodies was overestimated by associations between individual responses and protection. Conclusions. Using the risk of symptomatic malaria once parasitemic as an outcome may improve detection of associations between immune responses and protection from disease. Immunoepidemiology studies designed to detect mechanisms of immune protection should integrate prior exposure into the analysis and evaluate multiple immune responses. PMID:21628654

  14. Investigation on Sugar-Protein Connectivity in Salmonella O-Antigen Glycoconjugate Vaccines.

    PubMed

    De Benedetto, Gianluigi; Salvini, Laura; Gotta, Stefano; Cescutti, Paola; Micoli, Francesca

    2018-05-16

    Invasive nontyphoidal Salmonella disease, for which licensed vaccines are not available, is a leading cause of bloodstream infections in Africa. The O-antigen portion of lipopolysaccharide is a good target for protective immunity. Covalent conjugation of the O-antigen to a carrier protein increases its immunogenicity and O-antigen based glycoconjugate vaccines are currently under investigation at the preclinical stage. We developed a conjugation chemistry for linking O-antigen to CRM 197 carrier protein, through sequential insertion of adipic acid dihydrazide (ADH) and adipic acid bis( N-hydroxysuccinimide) ester (SIDEA) as linkers, without impacting O-antigen chain epitopes. Here the resulting sugar-protein connectivity has been investigated in detail. The core portion of the lipopolysaccharide was used as a model molecule to prepare CRM 197 conjugates, making structural investigations easier. The first step of reductive amination with ADH involves the terminal 3-deoxy-d- manno-oct-2-ulosonic acid (KDO) residue of the core region. The second reaction step resulted not to be selective, as SIDEA reacted with both ADH and pyrophosphorylethanolamine (PPEtN) of the core region, independently from the pH at which the reaction was performed. Peptide mapping analysis of the deglycosylated core-CRM 197 conjugates confirmed that lysine residues of CRM 197 were linked to SIDEA not only through KDO-ADH but also through PPEtN. This analysis also confirmed that the conjugation chemistry is random on the protein, involving a large number of lysine residues, particularly the surface exposed ones. The method for core-CRM 197 characterization was successfully extended to O-antigen-CRM 197 conjugate, confirming the results obtained with the core. This study not only allowed full characterization of OAg-CRM 197 conjugates, but can be applied to optimize synthesis and characterization of other OAg-based glycoconjugate vaccines. Analytical methods to investigate saccharide

  15. Antigenic variability: Obstacles on the road to vaccines against traditionally difficult targets.

    PubMed

    Servín-Blanco, R; Zamora-Alvarado, R; Gevorkian, G; Manoutcharian, K

    2016-10-02

    Despite the impressive impact of vaccines on public health, the success of vaccines targeting many important pathogens and cancers has to date been limited. The burden of infectious diseases today is mainly caused by antigenically variable pathogens (AVPs), which escape immune responses induced by prior infection or vaccination through changes in molecular structures recognized by antibodies or T cells. Extensive genetic and antigenic variability is the major obstacle for the development of new or improved vaccines against "difficult" targets. Alternative, qualitatively new approaches leading to the generation of disease- and patient-specific vaccine immunogens that incorporate complex permanently changing epitope landscapes of intended targets accompanied by appropriate immunomodulators are urgently needed. In this review, we highlight some of the most critical common issues related to the development of vaccines against many pathogens and cancers that escape protective immune responses owing to antigenic variation, and discuss recent efforts to overcome the obstacles by applying alternative approaches for the rational design of new types of immunogens.

  16. Safety and Immunogenicity of Influenza A H5 Subunit Vaccines: Effect of Vaccine Schedule and Antigenic Variant

    PubMed Central

    Frey, Sharon E.; Graham, Irene; Mulligan, Mark J.; Edupuganti, Srilatha; Jackson, Lisa A.; Wald, Anna; Poland, Gregory; Jacobson, Robert; Keyserling, Harry L.; Spearman, Paul; Hill, Heather; Wolff, Mark

    2011-01-01

    Background. The current US national stockpile of influenza H5 vaccine was produced using the antigen from the strain A/Vietnam/1203/2004 (a clade 1 H5 virus). Recent H5 disease has been caused by antigenically divergent H5 viruses, including A/Indonesia/05/2005 (a clade 2 H5 virus). Methods. The influence of schedule on the antibody response to 2 doses of H5 vaccines (one a clade 1 hemagglutinin protein [HA] vaccine and one a clade 2 HA vaccine) containing 90 μg of antigen was evaluated in healthy adults 18–49 years of age. Results. Two doses of vaccine were required to induce antibody titers ≥1:10 in most subjects. Accelerated schedules were immunogenic, and antibody developed after vaccinations on days 0 and 7, 0 and 14, and 0 and 28, with the day 0 and 7 schedule inducing lower titers than those induced with the other schedules. With mixed vaccine schedules of clade 1 followed by clade 2 vaccine administration, the first vaccination primed for a heterologous boost. The heterologous response was improved when the second vaccination was given 6 months after the first, compared with the response when the second vaccination was given after an interval of 1 month. Conclusions. An accelerated vaccine schedule of injections administered at days 0 and 14 was as immunogenic as a vaccine schedule of injections at days 0 and 28, but both schedules were inferior to a vaccine schedule of injections administered at 0 and 6 months for priming for heterologous vaccine boosting. Clinical Trial Registry Number: NCT00703053 PMID:21282194

  17. Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis.

    PubMed

    Cecílio, Pedro; Pérez-Cabezas, Begoña; Fernández, Laura; Moreno, Javier; Carrillo, Eugenia; Requena, José M; Fichera, Epifanio; Reed, Steven G; Coler, Rhea N; Kamhawi, Shaden; Oliveira, Fabiano; Valenzuela, Jesus G; Gradoni, Luigi; Glueck, Reinhard; Gupta, Gaurav; Cordeiro-da-Silva, Anabela

    2017-11-01

    The notion that previous infection by Leishmania spp. in endemic areas leads to robust anti-Leishmania immunity, supports vaccination as a potentially effective approach to prevent disease development. Nevertheless, to date there is no vaccine available for human leishmaniasis. We optimized and assessed in vivo the safety and immunogenicity of an innovative vaccine candidate against human visceral leishmaniasis (VL), consisting of Virus-Like Particles (VLP) loaded with three different recombinant proteins (LJL143 from Lutzomyia longipalpis saliva as the vector-derived (VD) component, and KMP11 and LeishF3+, as parasite-derived (PD) antigens) and adjuvanted with GLA-SE, a TLR4 agonist. No apparent adverse reactions were observed during the experimental time-frame, which together with the normal hematological parameters detected seems to point to the safety of the formulation. Furthermore, measurements of antigen-specific cellular and humoral responses, generally higher in immunized versus control groups, confirmed the immunogenicity of the vaccine formulation. Interestingly, the immune responses against the VD protein were reproducibly more robust than those elicited against leishmanial antigens, and were apparently not caused by immunodominance of the VD antigen. Remarkably, priming with the VD protein alone and boosting with the complete vaccine candidate contributed towards an increase of the immune responses to the PD antigens, assessed in the form of increased ex vivo CD4+ and CD8+ T cell proliferation against both the PD antigens and total Leishmania antigen (TLA). Overall, our immunogenicity data indicate that this innovative vaccine formulation represents a promising anti-Leishmania vaccine whose efficacy deserves to be tested in the context of the "natural infection".

  18. Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis

    PubMed Central

    Cecílio, Pedro; Pérez-Cabezas, Begoña; Fernández, Laura; Moreno, Javier; Carrillo, Eugenia; Requena, José M.; Fichera, Epifanio; Reed, Steven G.; Coler, Rhea N.; Kamhawi, Shaden; Oliveira, Fabiano; Valenzuela, Jesus G.; Gradoni, Luigi; Glueck, Reinhard; Gupta, Gaurav

    2017-01-01

    The notion that previous infection by Leishmania spp. in endemic areas leads to robust anti-Leishmania immunity, supports vaccination as a potentially effective approach to prevent disease development. Nevertheless, to date there is no vaccine available for human leishmaniasis. We optimized and assessed in vivo the safety and immunogenicity of an innovative vaccine candidate against human visceral leishmaniasis (VL), consisting of Virus-Like Particles (VLP) loaded with three different recombinant proteins (LJL143 from Lutzomyia longipalpis saliva as the vector-derived (VD) component, and KMP11 and LeishF3+, as parasite-derived (PD) antigens) and adjuvanted with GLA-SE, a TLR4 agonist. No apparent adverse reactions were observed during the experimental time-frame, which together with the normal hematological parameters detected seems to point to the safety of the formulation. Furthermore, measurements of antigen-specific cellular and humoral responses, generally higher in immunized versus control groups, confirmed the immunogenicity of the vaccine formulation. Interestingly, the immune responses against the VD protein were reproducibly more robust than those elicited against leishmanial antigens, and were apparently not caused by immunodominance of the VD antigen. Remarkably, priming with the VD protein alone and boosting with the complete vaccine candidate contributed towards an increase of the immune responses to the PD antigens, assessed in the form of increased ex vivo CD4+ and CD8+ T cell proliferation against both the PD antigens and total Leishmania antigen (TLA). Overall, our immunogenicity data indicate that this innovative vaccine formulation represents a promising anti-Leishmania vaccine whose efficacy deserves to be tested in the context of the “natural infection”. PMID:29176865

  19. Strong and multi-antigen specific immunity by hepatitis B core antigen (HBcAg)-based vaccines in a murine model of chronic hepatitis B: HBcAg is a candidate for a therapeutic vaccine against hepatitis B virus.

    PubMed

    Akbar, Sheikh Mohammad Fazle; Chen, Shiyi; Al-Mahtab, Mamun; Abe, Masanori; Hiasa, Yoichi; Onji, Morikazu

    2012-10-01

    Experimental evidence suggests that hepatitis B core antigen (HBcAg)-specific cytotoxic T lymphocytes (CTL) are essential for the control of hepatitis B virus (HBV) replication and prevention of liver damage in patients with chronic hepatitis B (CHB). However, most immune therapeutic approaches in CHB patients have been accomplished with hepatitis B surface antigen (HBsAg)-based prophylactic vaccines with unsatisfactory clinical outcomes. In this study, we prepared HBsAg-pulsed dendritic cells (DC) and HBcAg-pulsed DC by culturing spleen DC from HBV transgenic mice (HBV TM) and evaluated the immunomodulatory capabilities of these antigens, which may serve as a better therapy for CHB. The kinetics of HBsAg, antibody levels against HBsAg (anti-HBs), proliferation of HBsAg- and HBcAg-specific lymphocytes, production of antigen-specific CTL, and activation of endogenous DC were compared between HBV TM vaccinated with either HBsAg- or HBcAg-pulsed DC. Vaccination with HBsAg-pulsed DC induced HBsAg-specific immunity, but failed to induce HBcAg-specific immunity in HBV TM. However, immunization of HBV TM with HBcAg-pulsed DC resulted in: (1) HBsAg negativity, (2) production of anti-HBs, and (3) development of HBsAg- and HBcAg-specific T cells and CTL in the spleen and the liver. Additionally, significantly higher levels of activated endogenous DC were detected in HBV TM immunized with HBcAg-pulsed DC compared to HBsAg-pulsed DC (p<0.05). The capacity of HBcAg to modulate both HBsAg- and HBcAg-specific immunity in HBV TM, and activation of endogenous DC in HBV TM without inducing liver damage suggests that HBcAg should be an integral component of the therapeutic vaccine against CHB. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Using infective mosquitoes to challenge monkeys with Plasmodium knowlesi in malaria vaccine studies.

    PubMed

    Murphy, Jittawadee R; Weiss, Walter R; Fryauff, David; Dowler, Megan; Savransky, Tatyana; Stoyanov, Cristina; Muratova, Olga; Lambert, Lynn; Orr-Gonzalez, Sachy; Zeleski, Katie Lynn; Hinderer, Jessica; Fay, Michael P; Joshi, Gyan; Gwadz, Robert W; Richie, Thomas L; Villasante, Eileen Franke; Richardson, Jason H; Duffy, Patrick E; Chen, Jingyang

    2014-06-03

    When rhesus monkeys (Macaca mulatta) are used to test malaria vaccines, animals are often challenged by the intravenous injection of sporozoites. However, natural exposure to malaria comes via mosquito bite, and antibodies can neutralize sporozoites as they traverse the skin. Thus, intravenous injection may not fairly assess humoral immunity from anti-sporozoite malaria vaccines. To better assess malaria vaccines in rhesus, a method to challenge large numbers of monkeys by mosquito bite was developed. Several species and strains of mosquitoes were tested for their ability to produce Plasmodium knowlesi sporozoites. Donor monkey parasitaemia effects on oocyst and sporozoite numbers and mosquito mortality were documented. Methylparaben added to mosquito feed was tested to improve mosquito survival. To determine the number of bites needed to infect a monkey, animals were exposed to various numbers of P. knowlesi-infected mosquitoes. Finally, P. knowlesi-infected mosquitoes were used to challenge 17 monkeys in a malaria vaccine trial, and the effect of number of infectious bites on monkey parasitaemia was documented. Anopheles dirus, Anopheles crascens, and Anopheles dirus X (a cross between the two species) produced large numbers of P. knowlesi sporozoites. Mosquito survival to day 14, when sporozoites fill the salivary glands, averaged only 32% when donor monkeys had a parasitaemia above 2%. However, when donor monkey parasitaemia was below 2%, mosquitoes survived twice as well and contained ample sporozoites in their salivary glands. Adding methylparaben to sugar solutions did not improve survival of infected mosquitoes. Plasmodium knowlesi was very infectious, with all monkeys developing blood stage infections if one or more infected mosquitoes successfully fed. There was also a dose-response, with monkeys that received higher numbers of infected mosquito bites developing malaria sooner. Anopheles dirus, An. crascens and a cross between these two species all were

  1. Efficacy and Safety of the RTS,S/AS01 Malaria Vaccine during 18 Months after Vaccination: A Phase 3 Randomized, Controlled Trial in Children and Young Infants at 11 African Sites

    PubMed Central

    2014-01-01

    Background A malaria vaccine could be an important addition to current control strategies. We report the safety and vaccine efficacy (VE) of the RTS,S/AS01 vaccine during 18 mo following vaccination at 11 African sites with varying malaria transmission. Methods and Findings 6,537 infants aged 6–12 wk and 8,923 children aged 5–17 mo were randomized to receive three doses of RTS,S/AS01 or comparator vaccine. VE against clinical malaria in children during the 18 mo after vaccine dose 3 (per protocol) was 46% (95% CI 42% to 50%) (range 40% to 77%; VE, p<0.01 across all sites). VE during the 20 mo after vaccine dose 1 (intention to treat [ITT]) was 45% (95% CI 41% to 49%). VE against severe malaria, malaria hospitalization, and all-cause hospitalization was 34% (95% CI 15% to 48%), 41% (95% CI 30% to 50%), and 19% (95% CI 11% to 27%), respectively (ITT). VE against clinical malaria in infants was 27% (95% CI 20% to 32%, per protocol; 27% [95% CI 21% to 33%], ITT), with no significant protection against severe malaria, malaria hospitalization, or all-cause hospitalization. Post-vaccination anti-circumsporozoite antibody geometric mean titer varied from 348 to 787 EU/ml across sites in children and from 117 to 335 EU/ml in infants (per protocol). VE waned over time in both age categories (Schoenfeld residuals p<0.001). The number of clinical and severe malaria cases averted per 1,000 children vaccinated ranged across sites from 37 to 2,365 and from −1 to 49, respectively; corresponding ranges among infants were −10 to 1,402 and −13 to 37, respectively (ITT). Meningitis was reported as a serious adverse event in 16/5,949 and 1/2,974 children and in 9/4,358 and 3/2,179 infants in the RTS,S/AS01 and control groups, respectively. Conclusions RTS,S/AS01 prevented many cases of clinical and severe malaria over the 18 mo after vaccine dose 3, with the highest impact in areas with the greatest malaria incidence. VE was higher in children than in infants, but even at

  2. RTS,S vaccination is associated with serologic evidence of decreased exposure to Plasmodium falciparum liver- and blood-stage parasites.

    PubMed

    Campo, Joe J; Aponte, John J; Skinner, Jeff; Nakajima, Rie; Molina, Douglas M; Liang, Li; Sacarlal, Jahit; Alonso, Pedro L; Crompton, Peter D; Felgner, Philip L; Dobaño, Carlota

    2015-03-01

    The leading malaria vaccine candidate, RTS,S, targets the sporozoite and liver stages of the Plasmodium falciparum life cycle, yet it provides partial protection against disease associated with the subsequent blood stage of infection. Antibodies against the vaccine target, the circumsporozoite protein, have not shown sufficient correlation with risk of clinical malaria to serve as a surrogate for protection. The mechanism by which a vaccine that targets the asymptomatic sporozoite and liver stages protects against disease caused by blood-stage parasites remains unclear. We hypothesized that vaccination with RTS,S protects from blood-stage disease by reducing the number of parasites emerging from the liver, leading to prolonged exposure to subclinical levels of blood-stage parasites that go undetected and untreated, which in turn boosts pre-existing antibody-mediated blood-stage immunity. To test this hypothesis, we compared antibody responses to 824 P. falciparum antigens by protein array in Mozambican children 6 months after receiving a full course of RTS,S (n = 291) versus comparator vaccine (n = 297) in a Phase IIb trial. Moreover, we used a nested case-control design to compare antibody responses of children who did or did not experience febrile malaria. Unexpectedly, we found that the breadth and magnitude of the antibody response to both liver and asexual blood-stage antigens was significantly lower in RTS,S vaccinees, with the exception of only four antigens, including the RTS,S circumsporozoite antigen. Contrary to our initial hypothesis, these findings suggest that RTS,S confers protection against clinical malaria by blocking sporozoite invasion of hepatocytes, thereby reducing exposure to the blood-stage parasites that cause disease. We also found that antibody profiles 6 months after vaccination did not distinguish protected and susceptible children during the subsequent 12-month follow-up period but were strongly associated with exposure. Together

  3. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis

    PubMed Central

    Billeskov, Rolf; Lindenstrøm, Thomas; Woodworth, Joshua; Vilaplana, Cristina; Cardona, Pere-Joan; Cassidy, Joseph P.; Mortensen, Rasmus; Agger, Else Marie; Andersen, Peter

    2018-01-01

    Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world’s population with latent Mtb infection (LTBI), and 5–10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660) TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection. PMID:29379507

  4. Assessment of severe malaria in a multicenter, phase III, RTS, S/AS01 malaria candidate vaccine trial: case definition, standardization of data collection and patient care.

    PubMed

    Vekemans, Johan; Marsh, Kevin; Greenwood, Brian; Leach, Amanda; Kabore, William; Soulanoudjingar, Solange; Asante, Kwaku Poku; Ansong, Daniel; Evans, Jennifer; Sacarlal, Jahit; Bejon, Philip; Kamthunzi, Portia; Salim, Nahya; Njuguna, Patricia; Hamel, Mary J; Otieno, Walter; Gesase, Samwel; Schellenberg, David

    2011-08-04

    An effective malaria vaccine, deployed in conjunction with other malaria interventions, is likely to substantially reduce the malaria burden. Efficacy against severe malaria will be a key driver for decisions on implementation. An initial study of an RTS, S vaccine candidate showed promising efficacy against severe malaria in children in Mozambique. Further evidence of its protective efficacy will be gained in a pivotal, multi-centre, phase III study. This paper describes the case definitions of severe malaria used in this study and the programme for standardized assessment of severe malaria according to the case definition. Case definitions of severe malaria were developed from a literature review and a consensus meeting of expert consultants and the RTS, S Clinical Trial Partnership Committee, in collaboration with the World Health Organization and the Malaria Clinical Trials Alliance. The same groups, with input from an Independent Data Monitoring Committee, developed and implemented a programme for standardized data collection.The case definitions developed reflect the typical presentations of severe malaria in African hospitals. Markers of disease severity were chosen on the basis of their association with poor outcome, occurrence in a significant proportion of cases and on an ability to standardize their measurement across research centres. For the primary case definition, one or more clinical and/or laboratory markers of disease severity have to be present, four major co-morbidities (pneumonia, meningitis, bacteraemia or gastroenteritis with severe dehydration) are excluded, and a Plasmodium falciparum parasite density threshold is introduced, in order to maximize the specificity of the case definition. Secondary case definitions allow inclusion of co-morbidities and/or allow for the presence of parasitaemia at any density. The programmatic implementation of standardized case assessment included a clinical algorithm for evaluating seriously sick children

  5. An expanding toolkit for preclinical pre-erythrocytic malaria vaccine development: bridging traditional mouse malaria models and human trials

    PubMed Central

    Steel, Ryan WJ; Kappe, Stefan HI; Sack, Brandon K

    2016-01-01

    Malaria remains a significant public health burden with 214 million new infections and over 400,000 deaths in 2015. Elucidating relevant Plasmodium parasite biology can lead to the identification of novel ways to control and ultimately eliminate the parasite within geographic areas. Particularly, the development of an effective vaccine that targets the clinically silent pre-erythrocytic stages of infection would significantly augment existing malaria elimination tools by preventing both the onset of blood-stage infection/disease as well as spread of the parasite through mosquito transmission. In this Perspective, we discuss the role of small animal models in pre-erythrocytic stage vaccine development, highlighting how human liver-chimeric and human immune system mice are emerging as valuable components of these efforts. PMID:27855488

  6. An expanding toolkit for preclinical pre-erythrocytic malaria vaccine development: bridging traditional mouse malaria models and human trials.

    PubMed

    Steel, Ryan Wj; Kappe, Stefan Hi; Sack, Brandon K

    2016-12-01

    Malaria remains a significant public health burden with 214 million new infections and over 400,000 deaths in 2015. Elucidating relevant Plasmodium parasite biology can lead to the identification of novel ways to control and ultimately eliminate the parasite within geographic areas. Particularly, the development of an effective vaccine that targets the clinically silent pre-erythrocytic stages of infection would significantly augment existing malaria elimination tools by preventing both the onset of blood-stage infection/disease as well as spread of the parasite through mosquito transmission. In this Perspective, we discuss the role of small animal models in pre-erythrocytic stage vaccine development, highlighting how human liver-chimeric and human immune system mice are emerging as valuable components of these efforts.

  7. Antibody responses to P. falciparum blood stage antigens and incidence of clinical malaria in children living in endemic area in Burkina Faso.

    PubMed

    Cherif, Mariama K; Ouédraogo, Oumarou; Sanou, Guillaume S; Diarra, Amidou; Ouédraogo, Alphonse; Tiono, Alfred; Cavanagh, David R; Michael, Theisen; Konaté, Amadou T; Watson, Nora L; Sanza, Megan; Dube, Tina J T; Sirima, Sodiomon B; Nebié, Issa

    2017-09-08

    High parasite-specific antibody levels are generally associated with low susceptibility to Plasmodium falciparum malaria. This has been supported by several studies in which clinical malaria cases of P. falciparum malaria were reported to be associated with low antibody avidities. This study was conducted to evaluate the role of age, malaria transmission intensity and incidence of clinical malaria in the induction of protective humoral immune response against P. falciparum malaria in children living in Burkina Faso. We combined levels of IgG and IgG subclasses responses to P. falciparum antigens: Merozoite Surface Protein 3 (MSP3), Merozoite Surface Protein 2a (MSP2a), Merozoite Surface Protein 2b (MSP2b), Glutamate Rich Protein R0 (GLURP R0) and Glutamate Rich Protein R2 (GLURP R2) in plasma samples from 325 children under five (05) years with age, malaria transmission season and malaria incidence. We notice higher prevalence of P. falciparum infection in low transmission season compared to high malaria transmission season. While, parasite density was lower in low transmission than high transmission season. IgG against all antigens investigated increased with age. High levels of IgG and IgG subclasses to all tested antigens except for GLURP R2 were associated with the intensity of malaria transmission. IgG to MSP3, MSP2b, GLURP R2 and GLURP R0 were associated with low incidence of malaria. All IgG subclasses were associated with low incidence of P. falciparum malaria, but these associations were stronger for cytophilic IgGs. On the basis of the data presented in this study, we conclude that the induction of humoral immune response to tested malaria antigens is related to age, transmission season level and incidence of clinical malaria.

  8. Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery

    NASA Astrophysics Data System (ADS)

    Mody, Karishma T.; Popat, Amirali; Mahony, Donna; Cavallaro, Antonino S.; Yu, Chengzhong; Mitter, Neena

    2013-05-01

    Vaccines have been at the forefront of improving human health for over two centuries. The challenges faced in developing effective vaccines flow from complexities associated with the immune system and requirement of an efficient and safe adjuvant to induce a strong adaptive immune response. Development of an efficient vaccine formulation requires careful selection of a potent antigen, efficient adjuvant and route of delivery. Adjuvants are immunological agents that activate the antigen presenting cells (APCs) and elicit a strong immune response. In the past decade, the use of mesoporous silica nanoparticles (MSNs) has gained significant attention as potential delivery vehicles for various biomolecules. In this review, we aim to highlight the potential of MSNs as vaccine delivery vehicles and their ability to act as adjuvants. We have provided an overview on the latest progress on synthesis, adsorption and release kinetics and biocompatibility of MSNs as next generation antigen carriers and adjuvants. A comprehensive summary on the ability of MSNs to deliver antigens and elicit both humoral and cellular immune responses is provided. Finally, we give insight on fundamental challenges and some future prospects of these nanoparticles as adjuvants.

  9. Attenuated PfSPZ Vaccine induces strain-transcending T cells and durable protection against heterologous controlled human malaria infection.

    PubMed

    Lyke, Kirsten E; Ishizuka, Andrew S; Berry, Andrea A; Chakravarty, Sumana; DeZure, Adam; Enama, Mary E; James, Eric R; Billingsley, Peter F; Gunasekera, Anusha; Manoj, Anita; Li, Minglin; Ruben, Adam J; Li, Tao; Eappen, Abraham G; Stafford, Richard E; Kc, Natasha; Murshedkar, Tooba; Mendoza, Floreliz H; Gordon, Ingelise J; Zephir, Kathryn L; Holman, LaSonji A; Plummer, Sarah H; Hendel, Cynthia S; Novik, Laura; Costner, Pamela J M; Saunders, Jamie G; Berkowitz, Nina M; Flynn, Barbara J; Nason, Martha C; Garver, Lindsay S; Laurens, Matthew B; Plowe, Christopher V; Richie, Thomas L; Graham, Barney S; Roederer, Mario; Sim, B Kim Lee; Ledgerwood, Julie E; Hoffman, Stephen L; Seder, Robert A

    2017-03-07

    A live-attenuated malaria vaccine, Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine), confers sterile protection against controlled human malaria infection (CHMI) with Plasmodium falciparum (Pf) parasites homologous to the vaccine strain up to 14 mo after final vaccination. No injectable malaria vaccine has demonstrated long-term protection against CHMI using Pf parasites heterologous to the vaccine strain. Here, we conducted an open-label trial with PfSPZ Vaccine at a dose of 9.0 × 10 5 PfSPZ administered i.v. three times at 8-wk intervals to 15 malaria-naive adults. After CHMI with homologous Pf parasites 19 wk after final immunization, nine (64%) of 14 (95% CI, 35-87%) vaccinated volunteers remained without parasitemia compared with none of six nonvaccinated controls ( P = 0.012). Of the nine nonparasitemic subjects, six underwent repeat CHMI with heterologous Pf7G8 parasites 33 wk after final immunization. Five (83%) of six (95% CI, 36-99%) remained without parasitemia compared with none of six nonvaccinated controls. PfSPZ-specific T-cell and antibody responses were detected in all vaccine recipients. Cytokine production by T cells from vaccinated subjects after in vitro stimulation with homologous (NF54) or heterologous (7G8) PfSPZ were highly correlated. Interestingly, PfSPZ-specific T-cell responses in the blood peaked after the first immunization and were not enhanced by subsequent immunizations. Collectively, these data suggest durable protection against homologous and heterologous Pf parasites can be achieved with PfSPZ Vaccine. Ongoing studies will determine whether protective efficacy can be enhanced by additional alterations in the vaccine dose and number of immunizations.

  10. Identification of Streptococcus mitis321A vaccine antigens based on reverse vaccinology

    PubMed Central

    Zhang, Qiao; Lin, Kexiong; Wang, Changzheng; Xu, Zhi; Yang, Li; Ma, Qianli

    2018-01-01

    Streptococcus mitis (S. mitis) may transform into highly pathogenic bacteria. The aim of the present study was to identify potential antigen targets for designing an effective vaccine against the pathogenic S. mitis321A. The genome of S. mitis321A was sequenced using an Illumina Hiseq2000 instrument. Subsequently, Glimmer 3.02 and Tandem Repeat Finder (TRF) 4.04 were used to predict genes and tandem repeats, respectively, with DNA sequence function analysis using the Basic Local Alignment Search Tool (BLAST) in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of Orthologous Groups of proteins (COG) databases. Putative gene antigen candidates were screened with BLAST ahead of phylogenetic tree analysis. The DNA sequence assembly size was 2,110,680 bp with 40.12% GC, 6 scaffolds and 9 contig. Consequently, 1,944 genes were predicted, and 119 TRF, 56 microsatellite DNA, 10 minisatellite DNA and 154 transposons were acquired. The predicted genes were associated with various pathways and functions concerning membrane transport and energy metabolism. Multiple putative genes encoding surface proteins, secreted proteins and virulence factors, as well as essential genes were determined. The majority of essential genes belonged to a phylogenetic lineage, while 321AGL000129 and 321AGL000299 were on the same branch. The current study provided useful information regarding the biological function of the S. mitis321A genome and recommends putative antigen candidates for developing a potent vaccine against S. mitis. PMID:29620181

  11. Safety of currently licensed hepatitis B surface antigen vaccines in the United States, Vaccine Adverse Event Reporting System (VAERS), 2005-2015.

    PubMed

    Haber, Penina; Moro, Pedro L; Ng, Carmen; Lewis, Paige W; Hibbs, Beth; Schillie, Sarah F; Nelson, Noele P; Li, Rongxia; Stewart, Brock; Cano, Maria V

    2018-01-25

    Currently four recombinant hepatitis B (HepB) vaccines are in use in the United States. HepB vaccines are recommended for infants, children and adults. We assessed adverse events (AEs) following HepB vaccines reported to the Vaccine Adverse Event Reporting System (VAERS), a national spontaneous reporting system. We searched VAERS for reports of AEs following single antigen HepB vaccine and HepB-containing vaccines (either given alone or with other vaccines), from January 2005 - December 2015. We conducted descriptive analyses and performed empirical Bayesian data mining to assess disproportionate reporting. We reviewed serious reports including reports of special interest. VAERS received 20,231 reports following HepB or HepB-containing vaccines: 10,291 (51%) in persons <2 years of age; 2588 (13%) in persons 2-18 years and 5867 (29%) in persons >18 years; for 1485 (7.3%) age was missing. Dizziness and nausea (8.4% each) were the most frequently reported AEs following a single antigen HepB vaccine: fever (23%) and injection site erythema (11%) were most frequent following Hep-containing vaccines. Of the 4444 (22%) reports after single antigen HepB vaccine, 303 (6.8%) were serious, including 45 deaths. Most commonly reported cause of death was Sudden Infant Death Syndrome (197). Most common non-death serious reports following single antigen HepB vaccines among infants aged <1 month, were nervous system disorders (15) among children aged 1-23 months; infections and infestation (8) among persons age 2-18 years blood and lymphatic systemic disorders; and general disorders and administration site conditions among persons age >18 years. Most common vaccination error following single antigen HepB was incorrect product storage. Review current U.S.-licensed HepB vaccines administered alone or in combination with other vaccines did not reveal new or unexpected safety concerns. Vaccination errors were identified which indicate the need for training and education

  12. Fusion Protein Vaccines Targeting Two Tumor Antigens Generate Synergistic Anti-Tumor Effects

    PubMed Central

    Cheng, Wen-Fang; Chang, Ming-Cheng; Sun, Wei-Zen; Jen, Yu-Wei; Liao, Chao-Wei; Chen, Yun-Yuan; Chen, Chi-An

    2013-01-01

    Introduction Human papillomavirus (HPV) has been consistently implicated in causing several kinds of malignancies, and two HPV oncogenes, E6 and E7, represent two potential target antigens for cancer vaccines. We developed two fusion protein vaccines, PE(ΔIII)/E6 and PE(ΔIII)/E7 by targeting these two tumor antigens to test whether a combination of two fusion proteins can generate more potent anti-tumor effects than a single fusion protein. Materials and Methods In vivo antitumor effects including preventive, therapeutic, and antibody depletion experiments were performed. In vitro assays including intracellular cytokine staining and ELISA for Ab responses were also performed. Results PE(ΔIII)/E6+PE(ΔIII)/E7 generated both stronger E6 and E7-specific immunity. Only 60% of the tumor protective effect was observed in the PE(ΔIII)/E6 group compared to 100% in the PE(ΔIII)/E7 and PE(ΔIII)/E6+PE(ΔIII)/E7 groups. Mice vaccinated with the PE(ΔIII)/E6+PE(ΔIII)/E7 fusion proteins had a smaller subcutaneous tumor size than those vaccinated with PE(ΔIII)/E6 or PE(ΔIII)/E7 fusion proteins alone. Conclusion Fusion protein vaccines targeting both E6 and E7 tumor antigens generated more potent immunotherapeutic effects than E6 or E7 tumor antigens alone. This novel strategy of targeting two tumor antigens together can promote the development of cancer vaccines and immunotherapy in HPV-related malignancies. PMID:24058440

  13. Low doses of killed parasite in CpG elicit vigorous CD4+ T cell responses against blood-stage malaria in mice

    PubMed Central

    Pinzon-Charry, Alberto; McPhun, Virginia; Kienzle, Vivian; Hirunpetcharat, Chakrit; Engwerda, Christian; McCarthy, James; Good, Michael F.

    2010-01-01

    Development of a vaccine that targets blood-stage malaria parasites is imperative if we are to sustainably reduce the morbidity and mortality caused by this infection. Such a vaccine should elicit long-lasting immune responses against conserved determinants in the parasite population. Most blood-stage vaccines, however, induce protective antibodies against surface antigens, which tend to be polymorphic. Cell-mediated responses, on the other hand, offer the theoretical advantage of targeting internal antigens that are more likely to be conserved. Nonetheless, few of the current blood-stage vaccine candidates are able to harness vigorous T cell immunity. Here, we present what we believe to be a novel blood-stage whole-organism vaccine that, by combining low doses of killed parasite with CpG-oligodeoxynucleotide (CpG-ODN) adjuvant, was able to elicit strong and cross-reactive T cell responses in mice. Our data demonstrate that immunization of mice with 1,000 killed parasites in CpG-ODN engendered durable and cross-strain protection by inducing a vigorous response that was dependent on CD4+ T cells, IFN-γ, and nitric oxide. If applicable to humans, this approach should facilitate the generation of robust, cross-reactive T cell responses against malaria as well as antigen availability for vaccine manufacture. PMID:20628205

  14. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines

    NASA Astrophysics Data System (ADS)

    Nochi, Tomonori; Yuki, Yoshikazu; Takahashi, Haruko; Sawada, Shin-Ichi; Mejima, Mio; Kohda, Tomoko; Harada, Norihiro; Kong, Il Gyu; Sato, Ayuko; Kataoka, Nobuhiro; Tokuhara, Daisuke; Kurokawa, Shiho; Takahashi, Yuko; Tsukada, Hideo; Kozaki, Shunji; Akiyoshi, Kazunari; Kiyono, Hiroshi

    2010-07-01

    Nanotechnology is an innovative method of freely controlling nanometre-sized materials. Recent outbreaks of mucosal infectious diseases have increased the demands for development of mucosal vaccines because they induce both systemic and mucosal antigen-specific immune responses. Here we developed an intranasal vaccine-delivery system with a nanometre-sized hydrogel (`nanogel') consisting of a cationic type of cholesteryl-group-bearing pullulan (cCHP). A non-toxic subunit fragment of Clostridium botulinum type-A neurotoxin BoHc/A administered intranasally with cCHP nanogel (cCHP-BoHc/A) continuously adhered to the nasal epithelium and was effectively taken up by mucosal dendritic cells after its release from the cCHP nanogel. Vigorous botulinum-neurotoxin-A-neutralizing serum IgG and secretory IgA antibody responses were induced without co-administration of mucosal adjuvant. Importantly, intranasally administered cCHP-BoHc/A did not accumulate in the olfactory bulbs or brain. Moreover, intranasally immunized tetanus toxoid with cCHP nanogel induced strong tetanus-toxoid-specific systemic and mucosal immune responses. These results indicate that cCHP nanogel can be used as a universal protein-based antigen-delivery vehicle for adjuvant-free intranasal vaccination.

  15. Algae-Produced Pfs25 Elicits Antibodies That Inhibit Malaria Transmission

    PubMed Central

    Gregory, James A.; Li, Fengwu; Tomosada, Lauren M.; Cox, Chesa J.; Topol, Aaron B.; Vinetz, Joseph M.; Mayfield, Stephen

    2012-01-01

    Subunit vaccines are significantly more expensive to produce than traditional vaccines because they are based primarily on recombinant proteins that must be purified from the expression system. Despite the increased cost, subunit vaccines are being developed because they are safe, effective, and can elicit antibodies that confer protection against diseases that are not currently vaccine-preventable. Algae are an attractive platform for producing subunit vaccines because they are relatively inexpensive to grow, genetically tractable, easily scaled to large volumes, have a short generation time, and are devoid of inflammatory, viral, or prion contaminants often present in other systems. We tested whether algal chloroplasts can produce malaria transmission blocking vaccine candidates, Plasmodium falciparum surface protein 25 (Pfs25) and 28 (Pfs28). Antibodies that recognize Pfs25 and Pfs28 disrupt the sexual development of parasites within the mosquito midgut, thus preventing transmission of malaria from one human host to the next. These proteins have been difficult to produce in traditional recombinant systems because they contain tandem repeats of structurally complex epidermal growth factor-like domains, which cannot be produced in bacterial systems, and because they are not glycosylated, so they must be modified for production in eukaryotic systems. Production in algal chloroplasts avoids these issues because chloroplasts can fold complex eukaryotic proteins and do not glycosylate proteins. Here we demonstrate that algae are the first recombinant system to successfully produce an unmodified and aglycosylated version of Pfs25 or Pfs28. These antigens are structurally similar to the native proteins and antibodies raised to these recombinant proteins recognize Pfs25 and Pfs28 from P. falciparum. Furthermore, antibodies to algae-produced Pfs25 bind the surface of in-vitro cultured P. falciparum sexual stage parasites and exhibit transmission blocking activity. Thus

  16. MyD88/CD40 Genetic Adjuvant Function in Cutaneous Atypical Antigen-Presenting Cells Contributes to DNA Vaccine Immunogenicity

    PubMed Central

    Slawin, Kevin M.; Levitt, Jonathan M.; Spencer, David M.

    2016-01-01

    Therapeutic DNA-based vaccines aim to prime an adaptive host immune response against tumor-associated antigens, eliminating cancer cells primarily through CD8+ cytotoxic T cell-mediated destruction. To be optimally effective, immunological adjuvants are required for the activation of tumor-specific CD8+ T cells responses by DNA vaccination. Here, we describe enhanced anti-tumor efficacy of an in vivo electroporation-delivered DNA vaccine by inclusion of a genetically encoded chimeric MyD88/CD40 (MC) adjuvant, which integrates both innate and adaptive immune signaling pathways. When incorporated into a DNA vaccine, signaling by the MC adjuvant increased antigen-specific CD8+ T cells and promoted elimination of pre-established tumors. Interestingly, MC-enhanced vaccine efficacy did not require direct-expression of either antigen or adjuvant by local antigen-presenting cells, but rather our data supports a key role for MC function in “atypical” antigen-presenting cells of skin. In particular, MC adjuvant-modified keratinocytes increased inflammatory cytokine secretion, upregulated surface MHC class I, and were able to increase in vitro and in vivo priming of antigen-specific CD8+ T cells. Furthermore, in the absence of critical CD8α+/CD103+ cross-priming dendritic cells, MC was still able to promote immune priming in vivo, albeit at a reduced level. Altogether, our data support a mechanism by which MC signaling activates an inflammatory phenotype in atypical antigen-presenting cells within the cutaneous vaccination site, leading to an enhanced CD8+ T cell response against DNA vaccine-encoded antigens, through both CD8α+/CD103+ dendritic cell-dependent and independent pathways. PMID:27741278

  17. A mathematical model of the impact of present and future malaria vaccines.

    PubMed

    Wenger, Edward A; Eckhoff, Philip A

    2013-04-15

    With the encouraging advent of new malaria vaccine candidates, mathematical modelling of expected impacts of present and future vaccines as part of multi-intervention strategies is especially relevant. The impact of potential malaria vaccines is presented utilizing the EMOD model, a comprehensive model of the vector life cycle coupled to a detailed mechanistic representation of intra-host parasite and immune dynamics. Values of baseline transmission and vector feeding behaviour parameters are identified, for which local elimination is enabled by layering pre-erythrocytic vaccines of various efficacies on top of high and sustained insecticide-treated net coverage. The expected reduction in clinical cases is further explored in a scenario that targets children by adding a pre-erythrocytic vaccine to the EPI programme for newborns. At high transmission, there is a minimal reduction in clinical disease cases, as the time to infection is only slightly delayed. At lower transmission, there is an accelerating community-level protection that has subtle dependences on heterogeneities in vector behaviour, ecology, and intervention coverage. At very low transmission, the trend reverses as many children are vaccinated to prevent few cases. The maximum-impact setting is one in which the impact of increasing bed net coverage has saturated, vector feeding is primarily outdoors, and transmission is just above the threshold where small perturbations from a vaccine intervention result in large community benefits.

  18. Vaccines for the 21st century

    PubMed Central

    Delany, Isabel; Rappuoli, Rino; De Gregorio, Ennio

    2014-01-01

    In the last century, vaccination has been the most effective medical intervention to reduce death and morbidity caused by infectious diseases. It is believed that vaccines save at least 2–3 million lives per year worldwide. Smallpox has been eradicated and polio has almost disappeared worldwide through global vaccine campaigns. Most of the viral and bacterial infections that traditionally affected children have been drastically reduced thanks to national immunization programs in developed countries. However, many diseases are not yet preventable by vaccination, and vaccines have not been fully exploited for target populations such as elderly and pregnant women. This review focuses on the state of the art of recent clinical trials of vaccines for major unmet medical needs such as HIV, malaria, TB, and cancer. In addition, we describe the innovative technologies currently used in vaccine research and development including adjuvants, vectors, nucleic acid vaccines, and structure-based antigen design. The hope is that thanks to these technologies, more diseases will be addressed in the 21st century by novel preventative and therapeutic vaccines. PMID:24803000

  19. Generation and Characterization of Human Monoclonal Antibodies Targeting Anthrax Protective Antigen following Vaccination with a Recombinant Protective Antigen Vaccine.

    PubMed

    Chi, Xiangyang; Li, Jianmin; Liu, Weicen; Wang, Xiaolin; Yin, Kexin; Liu, Ju; Zai, Xiaodong; Li, Liangliang; Song, Xiaohong; Zhang, Jun; Zhang, Xiaopeng; Yin, Ying; Fu, Ling; Xu, Junjie; Yu, Changming; Chen, Wei

    2015-05-01

    The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the "next-generation" recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA-specific antibodies from a single donor following vaccination with the rPA vaccine. Antibody-secreting cells were isolated 7 days after the donor received a boost vaccination, and 34 fully human monoclonal antibodies (hMAb) were identified. Clones 8H6, 4A3, and 22F1 were able to neutralize lethal toxin (LeTx) both in vitro and in vivo. Clone 8H6 neutralized LeTx by preventing furin cleavage of PA in a dose-dependent manner. Clone 4A3 enhanced degradation of nicked PA, thereby interfering with PA oligomerization. The mechanism of 22F1 is still unclear. A fourth clone, 2A6, that was protective only in vitro was found to be neutralizing in vivo in combination with a toxin-enhancing antibody, 8A7, which binds to domain 3 of PA and PA oligomers. These results provide novel insights into the antibody response elicited by the rPA vaccine and may be useful for PA-based vaccine and immunotherapeutic cocktail design. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Booster vaccination of pre-school children with reduced-antigen-content diphtheria-tetanus-acellular pertussis-inactivated poliovirus vaccine co-administered with measles-mumps-rubella-varicella vaccine

    PubMed Central

    Ferrera, Giuseppe; Cuccia, Mario; Mereu, Gabriele; Icardi, Giancarlo; Bona, Gianni; Esposito, Susanna; Marchetti, Federico; Messier, Marc; Kuriyakose, Sherine; Hardt, Karin

    2012-01-01

    Background: Pertussis occurs in older children, adolescents and adults due to waning immunity after primary vaccination. Booster vaccination for pre-school children has been recommended in Italy since 1999. In this study (NCT00871000), the immunogenicity, safety and reactogenicity of a booster dose of reduced-antigen content diphtheria-tetanus-acellular pertussis-inactivated poliovirus vaccine (dTpa-IPV; GSK Biologicals Boostrix™-Polio; 3-component pertussis) vs. full-strength DTPa-IPV vaccine (sanofi-pasteur—MSD Tetravac™; 2-component pertussis) was evaluated in pre-school Italian children.   Methods: Healthy children aged 5–6 y primed in a routine vaccination setting with three doses of DTPa-based vaccines were enrolled and randomized (1:1) in this phase IIIb, booster study to receive a single dose of dTpa-IPV or DTPa-IPV; the MMRV vaccine was co-administered. Antibody concentrations/titers against diphtheria, tetanus, pertussis and poliovirus 1–3 were measured before and one month post-booster. Reactogenicity and safety was assessed. Results: 305 subjects were enrolled of whom 303 (dTpa-IPV = 151; DTPa-IPV = 152) received booster vaccination. One month post-booster, all subjects were seroprotected/seropositive for anti-diphtheria, anti-tetanus, anti-PT, anti-FHA and anti-poliovirus 1–3; 99.3% of dTpa-IPV and 60.4% of DTPa-IPV subjects were seropositive for anti-PRN; 98–100% of subjects were seropositive against MMRV antigens post-booster. Pain at the injection site (dTpa-IPV: 63.6%; DTPa-IPV: 63.2%) and fatigue (dTpa-IPV: 26.5%; DTPa-IPV: 23.7%) were the most commonly reported solicited local and general symptoms, during the 4-d follow-up period. No SAEs or fatalities were reported. Conclusions: The reduced-antigen-content dTpa-IPV vaccine was non-inferior to full-strength DTPa-IPV vaccine with respect to immunogenicity. The vaccine was well-tolerated and can be confidently used as a booster dose in pre-school children. PMID:22327497

  1. Oral Delivery of Probiotics Expressing Dendritic Cell-Targeting Peptide Fused with Porcine Epidemic Diarrhea Virus COE Antigen: A Promising Vaccine Strategy against PEDV.

    PubMed

    Wang, Xiaona; Wang, Li; Huang, Xuewei; Ma, Sunting; Yu, Meiling; Shi, Wen; Qiao, Xinyuan; Tang, Lijie; Xu, Yigang; Li, Yijing

    2017-10-25

    Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, is the causative agent of porcine epidemic diarrhea (PED) that damages intestinal epithelial cells and results in severe diarrhea and dehydration in neonatal suckling pigs with up to 100% mortality. The oral vaccine route is reported as a promising approach for inducing protective immunity against PEDV invasion. Furthermore, dendritic cells (DCs), professional antigen-presenting cells, link humoral and cellular immune responses for homeostasis of the intestinal immune environment. In this study, in order to explore an efficient oral vaccine against PEDV infection, a mucosal DC-targeting oral vaccine was developed using Lactobacillus casei to deliver the DC-targeting peptide (DCpep) fused with the PEDV core neutralizing epitope (COE) antigen. This probiotic vaccine could efficiently elicit secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses via oral vaccination in vivo. Significant differences ( p < 0.05) in the immune response levels were observed between probiotics expressing the COE-DCpep fusion protein and COE antigen alone, suggesting better immune efficiency of the probiotics vaccine expressing the DC-targeting peptide fused with PEDV COE antigen. This mucosal DC-targeting oral vaccine delivery effectively enhances vaccine antigen delivery efficiency, providing a useful strategy to induce efficient immune responses against PEDV infection.

  2. Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions

    PubMed Central

    Payne, Ruth O.; Silk, Sarah E.; Elias, Sean C.; Diouf, Ababacar; Galaway, Francis; de Graaf, Hans; Brendish, Nathan J.; Poulton, Ian D.; Griffiths, Oliver J.; Edwards, Nick J.; Jin, Jing; Labbé, Geneviève M.; Alanine, Daniel G.W.; Siani, Loredana; Di Marco, Stefania; Roberts, Rachel; Green, Nicky; Berrie, Eleanor; Ishizuka, Andrew S.; Nielsen, Carolyn M.; Bardelli, Martino; Partey, Frederica D.; Ofori, Michael F.; Barfod, Lea; Wambua, Juliana; Murungi, Linda M.; Osier, Faith H.; Biswas, Sumi; McCarthy, James S.; Minassian, Angela M.; Ashfield, Rebecca; Viebig, Nicola K.; Nugent, Fay L.; Douglas, Alexander D.; Wright, Gavin J.; Faust, Saul N.; Hill, Adrian V.S.; Long, Carole A.; Lawrie, Alison M.; Draper, Simon J.

    2017-01-01

    The development of a highly effective vaccine remains a key strategic goal to aid the control and eventual eradication of Plasmodium falciparum malaria. In recent years, the reticulocyte-binding protein homolog 5 (RH5) has emerged as the most promising blood-stage P. falciparum candidate antigen to date, capable of conferring protection against stringent challenge in Aotus monkeys. We report on the first clinical trial to our knowledge to assess the RH5 antigen — a dose-escalation phase Ia study in 24 healthy, malaria-naive adult volunteers. We utilized established viral vectors, the replication-deficient chimpanzee adenovirus serotype 63 (ChAd63), and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding RH5 from the 3D7 clone of P. falciparum. Vaccines were administered i.m. in a heterologous prime-boost regimen using an 8-week interval and were well tolerated. Vaccine-induced anti-RH5 serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been induced by immunization in humans, with levels greatly exceeding the serum antibody responses observed in African adults following years of natural malaria exposure. These data support the progression of RH5-based vaccines to human efficacy testing. PMID:29093263

  3. Assessment of severe malaria in a multicenter, phase III, RTS, S/AS01 malaria candidate vaccine trial: case definition, standardization of data collection and patient care

    PubMed Central

    2011-01-01

    Background An effective malaria vaccine, deployed in conjunction with other malaria interventions, is likely to substantially reduce the malaria burden. Efficacy against severe malaria will be a key driver for decisions on implementation. An initial study of an RTS, S vaccine candidate showed promising efficacy against severe malaria in children in Mozambique. Further evidence of its protective efficacy will be gained in a pivotal, multi-centre, phase III study. This paper describes the case definitions of severe malaria used in this study and the programme for standardized assessment of severe malaria according to the case definition. Methods Case definitions of severe malaria were developed from a literature review and a consensus meeting of expert consultants and the RTS, S Clinical Trial Partnership Committee, in collaboration with the World Health Organization and the Malaria Clinical Trials Alliance. The same groups, with input from an Independent Data Monitoring Committee, developed and implemented a programme for standardized data collection. The case definitions developed reflect the typical presentations of severe malaria in African hospitals. Markers of disease severity were chosen on the basis of their association with poor outcome, occurrence in a significant proportion of cases and on an ability to standardize their measurement across research centres. For the primary case definition, one or more clinical and/or laboratory markers of disease severity have to be present, four major co-morbidities (pneumonia, meningitis, bacteraemia or gastroenteritis with severe dehydration) are excluded, and a Plasmodium falciparum parasite density threshold is introduced, in order to maximize the specificity of the case definition. Secondary case definitions allow inclusion of co-morbidities and/or allow for the presence of parasitaemia at any density. The programmatic implementation of standardized case assessment included a clinical algorithm for evaluating

  4. Antibody Responses to a Novel Plasmodium falciparum Merozoite Surface Protein Vaccine Correlate with Protection against Experimental Malaria Infection in Aotus Monkeys

    PubMed Central

    Cavanagh, David R.; Kocken, Clemens H. M.; White, John H.; Cowan, Graeme J. M.; Samuel, Kay; Dubbeld, Martin A.; der Wel, Annemarie Voorberg-van; Thomas, Alan W.; McBride, Jana S.; Arnot, David E.

    2014-01-01

    The Block 2 region of the merozoite surface protein-1 (MSP-1) of Plasmodium falciparum has been identified as a target of protective immunity by a combination of seroepidemiology and parasite population genetics. Immunogenicity studies in small animals and Aotus monkeys were used to determine the efficacy of recombinant antigens derived from this region of MSP-1 as a potential vaccine antigen. Aotus lemurinus griseimembra monkeys were immunized three times with a recombinant antigen derived from the Block 2 region of MSP-1 of the monkey-adapted challenge strain, FVO of Plasmodium falciparum, using an adjuvant suitable for use in humans. Immunofluorescent antibody assays (IFA) against erythrocytes infected with P. falciparum using sera from the immunized monkeys showed that the MSP-1 Block 2 antigen induced significant antibody responses to whole malaria parasites. MSP-1 Block 2 antigen-specific enzyme-linked immunosorbent assays (ELISA) showed no significant differences in antibody titers between immunized animals. Immunized animals were challenged with the virulent P. falciparum FVO isolate and monitored for 21 days. Two out of four immunized animals were able to control their parasitaemia during the follow-up period, whereas two out of two controls developed fulminating parasitemia. Parasite-specific serum antibody titers measured by IFA were four-fold higher in protected animals than in unprotected animals. In addition, peptide-based epitope mapping of serum antibodies from immunized Aotus showed distinct differences in epitope specificities between protected and unprotected animals. PMID:24421900

  5. Novel transgenic rice-based vaccines.

    PubMed

    Azegami, Tatsuhiko; Itoh, Hiroshi; Kiyono, Hiroshi; Yuki, Yoshikazu

    2015-04-01

    Oral vaccination can induce both systemic and mucosal antigen-specific immune responses. To control rampant mucosal infectious diseases, the development of new effective oral vaccines is needed. Plant-based vaccines are new candidates for oral vaccines, and have some advantages over the traditional vaccines in cost, safety, and scalability. Rice seeds are attractive for vaccine production because of their stability and resistance to digestion in the stomach. The efficacy of some rice-based vaccines for infectious, autoimmune, and other diseases has been already demonstrated in animal models. We reported the efficacy in mice, safety, and stability of a rice-based cholera toxin B subunit vaccine called MucoRice-CTB. To advance MucoRice-CTB for use in humans, we also examined its efficacy and safety in primates. The potential of transgenic rice production as a new mucosal vaccine delivery system is reviewed from the perspective of future development of effective oral vaccines.

  6. T Cell Responses Induced by Adenoviral Vectored Vaccines Can Be Adjuvanted by Fusion of Antigen to the Oligomerization Domain of C4b-Binding Protein

    PubMed Central

    Forbes, Emily K.; de Cassan, Simone C.; Llewellyn, David; Biswas, Sumi; Goodman, Anna L.; Cottingham, Matthew G.; Long, Carole A.; Pleass, Richard J.; Hill, Adrian V. S.; Hill, Fergal; Draper, Simon J.

    2012-01-01

    Viral vectored vaccines have been shown to induce both T cell and antibody responses in animals and humans. However, the induction of even higher level T cell responses may be crucial in achieving vaccine efficacy against difficult disease targets, especially in humans. Here we investigate the oligomerization domain of the α-chain of C4b-binding protein (C4 bp) as a candidate T cell “molecular adjuvant” when fused to malaria antigens expressed by human adenovirus serotype 5 (AdHu5) vectored vaccines in BALB/c mice. We demonstrate that i) C-terminal fusion of an oligomerization domain can enhance the quantity of antigen-specific CD4+ and CD8+ T cell responses induced in mice after only a single immunization of recombinant AdHu5, and that the T cells maintain similar functional cytokine profiles; ii) an adjuvant effect is observed for AdHu5 vectors expressing either the 42 kDa C-terminal domain of Plasmodium yoelii merozoite surface protein 1 (PyMSP142) or the 83 kDa ectodomain of P. falciparum strain 3D7 apical membrane antigen 1 (PfAMA1), but not a candidate 128kDa P. falciparum MSP1 biallelic fusion antigen; iii) following two homologous immunizations of AdHu5 vaccines, antigen-specific T cell responses are further enhanced, however, in both BALB/c mice and New Zealand White rabbits no enhancement of functional antibody responses is observed; and iv) that the T cell adjuvant activity of C4 bp is not dependent on a functional Fc-receptor γ-chain in the host, but is associated with the oligomerization of small (<80 kDa) antigens expressed by recombinant AdHu5. The oligomerization domain of C4 bp can thus adjuvant T cell responses induced by AdHu5 vectors against selected antigens and its clinical utility as well as mechanism of action warrant further investigation. PMID:22984589

  7. The sickle-cell trait modifies the intensity and specificity of the immune response against P. falciparum malaria and leads to acquired protective immunity.

    PubMed

    Bayoumi, R A

    1987-03-01

    It is proposed that the in vivo mechanism of protection against falciparum malaria in individuals of the Hb AS genotype is not due solely to the adverse influence of Hb AS erythrocytes on the intraerythrocytic growth and development of P. falciparum. Instead, the simple physiological effect of Hb S on parasite growth appears to trigger an in vivo process of enhancement of the intensity and/or specificity of the host immune response, leading to acquired protective immunity, in a process simulating vaccination. Testing the hypothesis may lead to the identification of plasmodial antigens that induce protective responses in the human host and distinguish them from non-protective, immunosuppressive or decoy antigens that promote parasite survival. This may ultimately help in the selection of candidate antigens for a malaria blood-stage vaccine.

  8. Extended low-resolution structure of a Leptospira antigen offers high bactericidal antibody accessibility amenable to vaccine design

    PubMed Central

    Tseng, Andrew; Suguiura, Igor Massahiro de Souza; McDonough, Sean P; Sritrakul, Tepyuda; Li, Ting; Lin, Yi-Pin; Gillilan, Richard E

    2017-01-01

    Pathogens rely on proteins embedded on their surface to perform tasks essential for host infection. These obligatory structures exposed to the host immune system provide important targets for rational vaccine design. Here, we use a systematically designed series of multi-domain constructs in combination with small angle X-ray scattering (SAXS) to determine the structure of the main immunoreactive region from a major antigen from Leptospira interrogans, LigB. An anti-LigB monoclonal antibody library exhibits cell binding and bactericidal activity with extensive domain coverage complementing the elongated architecture observed in the SAXS structure. Combining antigenic motifs in a single-domain chimeric immunoglobulin-like fold generated a vaccine that greatly enhances leptospiral protection over vaccination with single parent domains. Our study demonstrates how understanding an antigen’s structure and antibody accessible surfaces can guide the design and engineering of improved recombinant antigen-based vaccines. PMID:29210669

  9. Study of rubella candidate vaccine based on a structurally modified plant virus.

    PubMed

    Trifonova, Ekaterina A; Zenin, Vladimir A; Nikitin, Nikolai A; Yurkova, Maria S; Ryabchevskaya, Ekaterina M; Putlyaev, Egor V; Donchenko, Ekaterina K; Kondakova, Olga A; Fedorov, Alexey N; Atabekov, Joseph G; Karpova, Olga V

    2017-08-01

    A novel rubella candidate vaccine based on a structurally modified plant virus - spherical particles (SPs) - was developed. SPs generated by the thermal remodelling of the tobacco mosaic virus are promising platforms for the development of vaccines. SPs combine unique properties: biosafety, stability, high immunogenicity and the effective adsorption of antigens. We assembled in vitro and characterised complexes (candidate vaccine) based on SPs and the rubella virus recombinant antigen. The candidate vaccine induced a strong humoral immune response against rubella. The IgG isotypes ratio indicated the predominance of IgG1 which plays a key role in immunity to natural rubella infection. The immune response was generally directed against the rubella antigen within the complexes. We suggest that SPs can act as a platform (depot) for the rubella antigen, enhancing specific immune response. Our results demonstrate that SPs-antigen complexes can be an effective and safe candidate vaccine against rubella. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mannan-decorated thiolated Eudragit microspheres for targeting antigen presenting cells via nasal vaccination.

    PubMed

    Li, Hui-Shan; Singh, Bijay; Park, Tae-Eun; Hong, Zhong-Shan; Kang, Sang-Kee; Cho, Chong-Su; Choi, Yun-Jaie

    2015-12-01

    Mucosal vaccination of protein as an antigen requires appropriate delivery or adjuvant systems to deliver antigen to mucosal immune cells efficiently and generate valid immune responses. For successful nasal immunization, the obstacles imposed by the normal process of mucociliary clearance which limits residence time of applied antigens and low antigen delivery to antigen presenting cells (APCs) in nasal associated lymphoid tissue (NALT) need to be overcome for the efficient vaccination. Here, we prepared mucoadhesive and mannan-decorated thiolated Eudragit microspheres (Man-TEM) as a nasal vaccine carrier to overcome the limitations. Mucoadhesive thiolated Eudragit (TE) were decorated with mannan for targeting mannose receptors (MR) in antigen presenting cells (APCs) to obtain efficient immune responses. The potential adjuvant ability of Man-TEM for intranasal immunization was confirmed by in vitro and in vivo experiments. In mechanistic study using APCs in vitro, we obtained that Man-TEM enhanced the receptor-mediated endocytosis by stimulating the MR receptors of APCs. The nasal vaccination of OVA-loaded Man-TEM in mice showed higher levels of serum IgG and mucosal sIgA than the soluble OVA group due to the specific recognition of MR of APCs by the mannan in the Man-TEM. These results suggest that mucoadhesive and Man-TEM may be a promising candidate for nasal vaccine delivery system to elicit systemic and mucosal immunity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Implementation workshop of WHO guidelines on evaluation of malaria vaccines: Current regulatory concepts and issues related to vaccine quality, Pretoria, South Africa 07 Nov 2014.

    PubMed

    Ho, Mei Mei; Baca-Estrada, Maria; Conrad, Christoph; Karikari-Boateng, Eric; Kang, Hye-Na

    2015-08-26

    The current World Health Organization (WHO) guidelines on the quality, safety and efficacy of recombinant malaria vaccines targeting the pre-erythrocytic and blood stages of Plasmodium falciparum were adopted by the WHO Expert Committee on Biological Standardization in 2012 to provide guidance on the quality, nonclinical and clinical aspects of recombinant malaria vaccines. A WHO workshop was organised to facilitate implementation into African (national/regional) regulatory practices, of the regulatory evaluation principles outlined in the guidelines regarding quality aspects. The workshop was used also to share knowledge and experience on regulatory topics of chemistry, manufacturing and control with a focus on vaccines through presentations and an interactive discussion using a case study approach. The basic principles and concepts of vaccine quality including consistency of production, quality control and manufacturing process were presented and discussed in the meeting. By reviewing and practicing a case study, better understanding on the relationship between consistency of production and batch release tests of an adjuvanted pre-erythrocytic recombinant malaria vaccine was reached. The case study exercise was considered very useful to understand regulatory evaluation principles of vaccines and a suggestion was made to WHO to provide such practices also through its Global Learning Opportunities for Vaccine Quality programme. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  12. Evolutionary dynamics of the immunodominant repeats of the Plasmodium vivax malaria-vaccine candidate circumsporozoite protein (CSP)

    PubMed Central

    Patil, Aarti; Orjuela-Sánchez, Pamela; da Silva-Nunes, Mônica; Ferreira, Marcelo U.

    2010-01-01

    The circumsporozoite protein (CSP) of Plasmodium vivax, a major target for malaria vaccine development, has immunodominant B-cell epitopes mapped to central nonapeptide repeat arrays. To determine whether rearrangements of repeat motifs during mitotic DNA replication of parasites create significant CSP diversity under conditions of low effective meiotic recombination rates, we examined csp alleles from sympatric P. vivax isolates systematically sampled from an area of low malaria endemicity in Brazil over a period of 14 months. Nine unique csp types, comprising six different nonapeptide repeats, were observed in 45 isolates analyzed. Identical or nearly identical repeats predominated in most arrays, consistent with their recent expansion. We found strong linkage disequilibrium at sites across the chromosome 8 segment flanking the csp locus, consistent with rare meiotic recombination in this region. We conclude that CSP repeat diversity may not be severely constrained by rare meiotic recombination in areas of low malaria endemicity. New repeat variants may be readily created by nonhomologous recombination even when meiotic recombination is rare, with potential implications for CSP-based vaccine development. PMID:20097310

  13. Plasmodium vivax malaria vaccines: why are we where we are?

    PubMed

    Reyes-Sandoval, Arturo; Bachmann, Martin F

    2013-12-01

    Malaria is one of the few diseases in which morbidity is still measured in hundreds of millions of cases every year. Plasmodium vivax and Plasmodium falciparum are responsible for nearly all the malaria cases in the world and despite difficulties in obtaining an exact number, estimates indicate an astonishing 349-552 million clinical cases of malaria due to P. falciparum in 2007 and between 132-391 million clinical episodes due to P. vivax in 2009. It is becoming evident that eradication of malaria will be an arduous task and P. vivax will be one of the most difficult species to eliminate and perhaps become the last standing malaria parasite. Indeed, in countries that succeed in decreasing the disease burden, nearly all the remaining malaria cases are caused by P. vivax. Such resilience is mainly due to the sophisticated mechanism that the parasite has evolved to remain dormant for months or years forming hypnozoites, a small structure in the liver that will be a major hurdle in the efforts toward malaria eradication. Furthermore, while clinical trials of vaccines against P. falciparum are making fast progress, a very different picture is seen with P. vivax, where only few candidates are currently active in clinical trials.

  14. Proteomics-driven Antigen Discovery for Development of Vaccines Against Gonorrhea*

    PubMed Central

    Zielke, Ryszard A.; Wierzbicki, Igor H.; Baarda, Benjamin I.; Gafken, Philip R.; Soge, Olusegun O.; Holmes, King K.; Jerse, Ann E.; Unemo, Magnus

    2016-01-01

    Expanding efforts to develop preventive gonorrhea vaccines is critical because of the dire possibility of untreatable gonococcal infections. Reverse vaccinology, which includes genome and proteome mining, has proven very successful in the discovery of vaccine candidates against many pathogenic bacteria. However, progress with this approach for a gonorrhea vaccine remains in its infancy. Accordingly, we applied a comprehensive proteomic platform—isobaric tagging for absolute quantification coupled with two-dimensional liquid chromatography and mass spectrometry—to identify potential gonococcal vaccine antigens. Our previous analyses focused on cell envelopes and naturally released membrane vesicles derived from four different Neisseria gonorrhoeae strains. Here, we extended these studies to identify cell envelope proteins of N. gonorrhoeae that are ubiquitously expressed and specifically induced by physiologically relevant environmental stimuli: oxygen availability, iron deprivation, and the presence of human serum. Together, these studies enabled the identification of numerous potential gonorrhea vaccine targets. Initial characterization of five novel vaccine candidate antigens that were ubiquitously expressed under these different growth conditions demonstrated that homologs of BamA (NGO1801), LptD (NGO1715), and TamA (NGO1956), and two uncharacterized proteins, NGO2054 and NGO2139, were surface exposed, secreted via naturally released membrane vesicles, and elicited bactericidal antibodies that cross-reacted with a panel of temporally and geographically diverse isolates. In addition, analysis of polymorphisms at the nucleotide and amino acid levels showed that these vaccine candidates are highly conserved among N. gonorrhoeae strains. Finally, depletion of BamA caused a loss of N. gonorrhoeae viability, suggesting it may be an essential target. Together, our data strongly support the use of proteomics-driven discovery of potential vaccine targets as a sound

  15. Factor H-binding protein, a unique meningococcal vaccine antigen.

    PubMed

    Pizza, Mariagrazia; Donnelly, John; Rappuoli, Rino

    2008-12-30

    GNA1870, also named factor H-binding protein (fHbp) or rLP-2086, is a genome-derived antigen and one of the components of a rationally designed vaccine against Neisseria meningitidis serogroup B, which has entered phase III clinical trials. It has been classified into three main non-cross-protective variant groups. GNA1870 has also been termed fHbp because of its ability to bind factor H, a key regulatory component of the alternative complement pathway. fHbp is important for survival in human blood, human sera, and in presence of antimicrobial peptides, independently of its expression level. All these properties make fHbp a unique vaccine antigen.

  16. A systematic review of safety data reporting in clinical trials of vaccines against malaria, tuberculosis, and human immunodeficiency virus.

    PubMed

    Tamminga, Cindy; Kavanaugh, Michael; Fedders, Charlotte; Maiolatesi, Santina; Abraham, Neethu; Bonhoeffer, Jan; Heininger, Ulrich; Vasquez, Carlos S; Moorthy, Vasee S; Epstein, Judith E; Richie, Thomas L

    2013-08-02

    Malaria, tuberculosis (TB) and human immunodeficiency virus (HIV) are diseases with devastating effects on global public health, especially in the developing world. Clinical trials of candidate vaccines for these diseases are being conducted at an accelerating rate, and require accurate and consistent methods for safety data collection and reporting. We performed a systematic review of publications describing the safety results from clinical trials of malaria, TB and HIV vaccines, to ascertain the nature and consistency of safety data collection and reporting. The target for the review was pre-licensure trials for malaria, TB and HIV vaccines published in English from 2000 to 2009. Search strategies were customized for each of the databases utilized (MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews and the Database of Reviews and Effects). Data extracted included age of trial participants, vaccine platform, route and method of vaccine administration, duration of participant follow-up, reporting of laboratory abnormalities, and the type, case definitions, severity, reporting methods and internal reporting consistency of adverse events. Of 2278 publications screened, 124 were eligible for inclusion (malaria: 66, TB: 9, HIV: 49). Safety data reporting was found to be highly variable among publications and often incomplete: overall, 269 overlapping terms were used to describe specific adverse events. 17% of publications did not mention fever. Descriptions of severity or degree of relatedness to immunization of adverse events were frequently omitted. 26% (32/124) of publications failed to report data on serious adverse events. The review demonstrated lack of standardized safety data reporting in trials for vaccines against malaria, TB and HIV. Standardization of safety data collection and reporting should be encouraged to improve data quality and comparability. The search strategy missed studies published in languages other than English and excluded studies

  17. Translating the Immunogenicity of Prime-boost Immunization With ChAd63 and MVA ME-TRAP From Malaria Naive to Malaria-endemic Populations

    PubMed Central

    Kimani, Domtila; Jagne, Ya Jankey; Cox, Momodou; Kimani, Eva; Bliss, Carly M; Gitau, Evelyn; Ogwang, Caroline; Afolabi, Muhammed O; Bowyer, Georgina; Collins, Katharine A; Edwards, Nick; Hodgson, Susanne H; Duncan, Christopher J A; Spencer, Alexandra J; Knight, Miguel G; Drammeh, Abdoulie; Anagnostou, Nicholas A; Berrie, Eleanor; Moyle, Sarah; Gilbert, Sarah C; Soipei, Peninah; Okebe, Joseph; Colloca, Stefano; Cortese, Riccardo; Viebig, Nicola K; Roberts, Rachel; Lawrie, Alison M; Nicosia, Alfredo; Imoukhuede, Egeruan B; Bejon, Philip; Chilengi, Roma; Bojang, Kalifa; Flanagan, Katie L; Hill, Adrian V S; Urban, Britta C; Ewer, Katie J

    2014-01-01

    To induce a deployable level of efficacy, a successful malaria vaccine would likely benefit from both potent cellular and humoral immunity. These requirements are met by a heterologous prime-boost immunization strategy employing a chimpanzee adenovirus vector followed by modified vaccinia Ankara (MVA), both encoding the pre-erythrocytic malaria antigen ME-thrombospondin-related adhesive protein (TRAP), with high immunogenicity and significant efficacy in UK adults. We undertook two phase 1b open-label studies in adults in Kenya and The Gambia in areas of similar seasonal malaria transmission dynamics and have previously reported safety and basic immunogenicity data. We now report flow cytometry and additional interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) data characterizing pre-existing and induced cellular immunity as well as anti-TRAP IgG responses. T-cell responses induced by vaccination averaged 1,254 spot-forming cells (SFC) per million peripheral blood mononuclear cells (PBMC) across both trials and flow cytometry revealed cytokine production from both CD4+ and CD8+ T cells with the frequency of CD8+ IFN-γ-secreting monofunctional T cells (previously shown to associate with vaccine efficacy) particularly high in Kenyan adults. Immunization with ChAd63 and MVA ME-TRAP induced strong cellular and humoral immune responses in adults living in two malaria-endemic regions of Africa. This prime-boost approach targeting the pre-erythrocytic stage of the malaria life-cycle is now being assessed for efficacy in a target population. PMID:24930599

  18. Simulated impact of RTS,S/AS01 vaccination programs in the context of changing malaria transmission.

    PubMed

    Brooks, Alan; Briët, Olivier J T; Hardy, Diggory; Steketee, Richard; Smith, Thomas A

    2012-01-01

    The RTS,S/AS01 pre-erythrocytic malaria vaccine is in phase III clinical trials. It is critical to anticipate where and how it should be implemented if trials are successful. Such planning may be complicated by changing levels of malaria transmission. Computer simulations were used to examine RTS,S/AS01 impact, using a vaccine profile based on phase II trial results, and assuming that protection decays only slowly. Settings were simulated in which baseline transmission (in the absence of vaccine) was fixed or varied between 2 and 20 infectious mosquito bites per person per annum (ibpa) over ten years. Four delivery strategies were studied: routine infant immunization (EPI), EPI plus infant catch-up, EPI plus school-based campaigns, and EPI plus mass campaigns. Impacts in changing transmission settings were similar to those in fixed settings. Assuming a persistent effect of vaccination, at 2 ibpa, the vaccine averted approximately 5-7 deaths per 1000 doses of vaccine when delivered via mass campaigns, but the benefit was less at higher transmission levels. EPI, catch-up and school-based strategies averted 2-3 deaths per 1000 doses in settings with 2 ibpa. In settings where transmission was decreasing or increasing, EPI, catch-up and school-based strategies averted approximately 3-4 deaths per 1000 doses. Where transmission is changing, it appears to be sufficient to consider simulations of pre-erythrocytic vaccine impact at a range of initial transmission levels. At 2 ibpa, mass campaigns averted the most deaths and reduced transmission, but this requires further study. If delivered via EPI, RTS,S/AS01 could avert approximately 6-11 deaths per 1000 vaccinees in all examined settings, similar to estimates for pneumococcal conjugate vaccine in African infants. These results support RTS,S/AS01 implementation via EPI, for example alongside vector control interventions, providing that the phase III trials provide support for our assumptions about efficacy.

  19. Safety and efficacy of the RTS,S/AS01E candidate malaria vaccine given with expanded-programme-on-immunisation vaccines: 19 month follow-up of a randomised, open-label, phase 2 trial.

    PubMed

    Asante, Kwaku Poku; Abdulla, Salim; Agnandji, Selidji; Lyimo, John; Vekemans, Johan; Soulanoudjingar, Solange; Owusu, Ruth; Shomari, Mwanajaa; Leach, Amanda; Jongert, Erik; Salim, Nahya; Fernandes, Jose F; Dosoo, David; Chikawe, Maria; Issifou, Saadou; Osei-Kwakye, Kingsley; Lievens, Marc; Paricek, Maria; Möller, Tina; Apanga, Stephen; Mwangoka, Grace; Dubois, Marie-Claude; Madi, Tigani; Kwara, Evans; Minja, Rose; Hounkpatin, Aurore B; Boahen, Owusu; Kayan, Kingsley; Adjei, George; Chandramohan, Daniel; Carter, Terrell; Vansadia, Preeti; Sillman, Marla; Savarese, Barbara; Loucq, Christian; Lapierre, Didier; Greenwood, Brian; Cohen, Joe; Kremsner, Peter; Owusu-Agyei, Seth; Tanner, Marcel; Lell, Bertrand

    2011-10-01

    The RTS,S/AS01(E) candidate malaria vaccine is being developed for immunisation of infants in Africa through the expanded programme on immunisation (EPI). 8 month follow-up data have been reported for safety and immunogenicity of RTS,S/AS01(E) when integrated into the EPI. We report extended follow-up to 19 months, including efficacy results. We did a randomised, open-label, phase 2 trial of safety and efficacy of the RTS,S/AS01(E) candidate malaria vaccine given with EPI vaccines between April 30, 2007, and Oct 7, 2009, in Ghana, Tanzania, and Gabon. Eligible children were 6-10 weeks of age at first vaccination, without serious acute or chronic illness. All children received the EPI diphtheria, tetanus, pertussis (inactivated whole-cell), and hepatitis-B vaccines, Haemophilus influenzae type b vaccine, and oral polio vaccine at study months 0, 1, and 2, and measles vaccine and yellow fever vaccines at study month 7. Participants were randomly assigned (1:1:1) to receive three doses of RTS,S/AS01(E) at 6, 10, and 14 weeks (0, 1, 2 month schedule) or at 6 weeks, 10 weeks, and 9 months (0, 2, 7 month schedule) or placebo. Randomisation was according to a predefined block list with a computer-generated randomisation code. Detection of serious adverse events and malaria was by passive case detection. Antibodies against Plasmodium falciparum circumsporozoite protein and HBsAg were monitored for 19 months. This study is registered with ClinicalTrials.gov, number NCT00436007. 511 children were enrolled. Serious adverse events occurred in 57 participants in the RTS,S/AS01(E) 0, 1, 2 month group (34%, 95% CI 27-41), 47 in the 0, 1, 7 month group (28%, 21-35), and 49 (29%, 22-36) in the control group; none were judged to be related to study vaccination. At month 19, anticircumsporozoite immune responses were significantly higher in the RTS,S/AS01(E) groups than in the control group. Vaccine efficacy for the 0, 1, 2 month schedule (2 weeks after dose three to month 19, site

  20. Th1 immune response to Plasmodium falciparum recombinant thrombospondin-related adhesive protein (TRAP) antigen is enhanced by TLR3-specific adjuvant, poly(I:C) in BALB/c mice.

    PubMed

    Mehrizi, A A; Ameri Torzani, M; Zakeri, S; Jafary Zadeh, A; Babaeekhou, L

    2018-07-01

    Sporozoite-based malaria vaccines have provided a gold standard for malaria vaccine development, and thrombospondin-related adhesive protein (TRAP) serves as the main vaccine candidate antigen on sporozoites. As recombinant malaria vaccine candidate antigens are poorly immunogenic, additional appropriate immunostimulants, such as an efficient adjuvant, are highly essential to modulate Th1-cell predominance and also to induce a protective and long-lived immune response. In this study, polyinosinic:polycytidylic acid [poly(I:C)], the ligand of TLR3, was considered as the potential adjuvant for vaccines targeting stronger Th1-based immune responses. For this purpose, BALB/c mice were immunized with rPfTRAP delivered in putative poly(I:C) adjuvant, and humoural and cellular immune responses were determined in different immunized mouse groups. Delivery of rPfTRAP with poly(I:C) induced high levels and titres of persisted and also high-avidity anti-rPfTRAP IgG antibodies comparable to complete Freund's adjuvant (CFA)/incomplete Freund's adjuvant (IFA) adjuvant after the second boost. In addition, rPfTRAP formulated with poly(I:C) elicited a higher ratio of IFN-γ/IL-5, IgG2a/IgG1, and IgG2b/IgG1 than with CFA/IFA, indicating that poly(I:C) supports the induction of a stronger Th1-based immune response. This is a first time study which reveals the potential of rPfTRAP delivery in poly(I:C) to increase the level, avidity and durability of both anti-PfTRAP cytophilic antibodies and Th1 cytokines. © 2018 John Wiley & Sons Ltd.

  1. Country planning for health interventions under development: lessons from the malaria vaccine decision-making framework and implications for other new interventions

    PubMed Central

    Brooks, Alan; Ba-Nguz, Antoinette

    2012-01-01

    Traditionally it has taken years or decades for new public health interventions targeting diseases found in developing countries to be accessible to those most in need. One reason for the delay has been insufficient anticipation of the eventual processes and evidence required for decision making by countries. This paper describes research into the anticipated processes and data needed to inform decision making on malaria vaccines, the most advanced of which is still in phase 3 trials. From 2006 to 2008, a series of country consultations in Africa led to the development of a guide to assist countries in preparing their malaria vaccine decision-making frameworks. The guide builds upon the World Health Organization’s Vaccine Introduction Guidelines. It identifies the processes and data for decisions, when they would be needed relative to the development timelines of the intervention, and where they will come from. Policy development will be supported by data (e.g. malaria disease burden; roles of other malaria interventions; malaria vaccine impact; economic and financial issues; malaria vaccine efficacy, quality and safety) as will implementation decisions (e.g. programmatic issues and socio-cultural environment). This generic guide can now be applied to any future malaria vaccine. The paper discusses the opportunities and challenges to early planning for country decision-making—from the potential for timely, evidence-informed decisions to the risks of over-promising around an intervention still under development. Careful and well-structured planning by countries is an important way to ensure that new interventions do not remain unused for years or decades after they become available. PMID:22513733

  2. Dry-coated live viral vector vaccines delivered by nanopatch microprojections retain long-term thermostability and induce transgene-specific T cell responses in mice.

    PubMed

    Pearson, Frances E; McNeilly, Celia L; Crichton, Michael L; Primiero, Clare A; Yukiko, Sally R; Fernando, Germain J P; Chen, Xianfeng; Gilbert, Sarah C; Hill, Adrian V S; Kendall, Mark A F

    2013-01-01

    The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara--two vectors under evaluation for the delivery of malaria antigens to humans--were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8(+) T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates.

  3. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model

    PubMed Central

    Cervantes-Villagrana, Alberto R.; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2018-01-01

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0–89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. PMID:23196205

  4. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model.

    PubMed

    Cervantes-Villagrana, Alberto R; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2013-01-11

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0-89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Prevalence of Plasmodium falciparum transmission reducing immunity among primary school children in a malaria moderate transmission region in Zimbabwe.

    PubMed

    Paul, Noah H; Vengesai, Arthur; Mduluza, Takafira; Chipeta, James; Midzi, Nicholas; Bansal, Geetha P; Kumar, Nirbhay

    2016-11-01

    Malaria continues to cause alarming morbidity and mortality in more than 100 countries worldwide. Antigens in the various life cycle stages of malaria parasites are presented to the immune system during natural infection and it is widely recognized that after repeated malaria exposure, adults develop partially protective immunity. Specific antigens of natural immunity represent among the most important targets for the development of malaria vaccines. Immunity against the transmission stages of the malaria parasite represents an important approach to reduce malaria transmission and is believed to become an important tool for gradual elimination of malaria. Development of immunity against Plasmodium falciparum sexual stages was evaluated in primary school children aged 6-16 years in Makoni district of Zimbabwe, an area of low to modest malaria transmission. Malaria infection was screened by microscopy, rapid diagnostic tests and finally using nested PCR. Plasma samples were tested for antibodies against recombinant Pfs48/45 and Pfs47 by ELISA. Corresponding serum samples were used to test for P. falciparum transmission reducing activity in Anopheles stephensi and An. gambiae mosquitoes using the membrane feeding assay. The prevalence of malaria diagnosed by rapid diagnostic test kit (Paracheck)™ was 1.7%. However, of the randomly tested blood samples, 66% were positive by nested PCR. ELISA revealed prevalence (64% positivity at 1:500 dilution, in randomly selected 66 plasma samples) of antibodies against recombinant Pfs48/45 (mean A 405nm=0.53, CI=0.46-0.60) and Pfs47 (mean A405nm=0.91, CI=0.80-1.02); antigens specific to the sexual stages. The mosquito membrane feeding assay demonstrated measurable transmission reducing ability of the samples that were positive for Pfs48/45 antibodies by ELISA. Interestingly, 3 plasma samples revealed enhancement of infectivity of P. falciparum in An. stephensi mosquitoes. These studies revealed the presence of antibodies with

  6. B-Cell Responses to Pregnancy-Restricted and -Unrestricted Plasmodium falciparum Erythrocyte Membrane Protein 1 Antigens in Ghanaian Women Naturally Exposed to Malaria Parasites

    PubMed Central

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F.; Barfod, Lea

    2014-01-01

    Protective immunity to Plasmodium falciparum malaria acquired after natural exposure is largely antibody mediated. IgG-specific P. falciparum EMP1 (PfEMP1) proteins on the infected erythrocyte surface are particularly important. The transient antibody responses and the slowly acquired protective immunity probably reflect the clonal antigenic variation and allelic polymorphism of PfEMP1. However, it is likely that other immune-evasive mechanisms are also involved, such as interference with formation and maintenance of immunological memory. We measured PfEMP1-specific antibody levels by enzyme-linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two commonly recognized PfEMP1 proteins (HB3VAR06 and IT4VAR60) implicated in rosetting and not pregnancy restricted. This enabled, for the first time, a direct comparison in the same individuals of immune responses specific for a clinically important parasite antigen expressed only during well-defined periods (pregnancy) to responses specific for comparable antigens expressed independent of pregnancy. Our data indicate that PfEMP1-specific B-cell memory is adequately acquired even when antigen exposure is infrequent (e.g., VAR2CSA-type PfEMP1). Furthermore, immunological memory specific for VAR2CSA-type PfEMP1 can be maintained for many years without antigen reexposure and after circulating antigen-specific IgG has disappeared. The study provides evidence that natural exposure to P. falciparum leads to formation of durable B-cell immunity to clinically important PfEMP1 antigens. This has encouraging implications for current efforts to develop PfEMP1-based vaccines. PMID:24566620

  7. Strategic evaluation of vaccine candidate antigens for the prevention of Visceral Leishmaniasis.

    PubMed

    Duthie, Malcolm S; Favila, Michelle; Hofmeyer, Kimberley A; Tutterrow, Yeung L; Reed, Steven J; Laurance, John D; Picone, Alessandro; Guderian, Jeffrey; Bailor, H Remy; Vallur, Aarthy C; Liang, Hong; Mohamath, Raodoh; Vergara, Julie; Howard, Randall F; Coler, Rhea N; Reed, Steven G

    2016-05-27

    Infection with Leishmania parasites results in a range of clinical manifestations and outcomes, the most severe of which is visceral leishmaniasis (VL). Vaccination will likely provide the most effective long-term control strategy, as the large number of vectors and potential infectious reservoirs renders sustained interruption of Leishmania parasite transmission extremely difficult. Selection of the best vaccine is complicated because, although several vaccine antigen candidates have been proposed, they have emerged following production in different platforms. To consolidate the information that has been generated into a single vaccine platform, we expressed seven candidates as recombinant proteins in E. coli. After verifying that each recombinant protein could be recognized by VL patients, we evaluated their protective efficacy against experimental L. donovani infection of mice. Administration in formulation with the Th1-potentiating adjuvant GLA-SE indicated that each antigen could elicit antigen-specific Th1 responses that were protective. Considering the ability to reduce parasite burden along with additional factors such as sequence identity across Leishmania species, we then generated a chimeric fusion protein comprising a combination of the 8E, p21 and SMT proteins. This E. coli -expressed fusion protein was also demonstrated to protect against L. donovani infection. These data indicate a novel recombinant vaccine antigen with the potential for use in VL control programs. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Expression of Plasmodium falciparum Circumsporozoite Proteins in Escherichia coli for Potential Use in a Human Malaria Vaccine

    NASA Astrophysics Data System (ADS)

    Young, James F.; Hockmeyer, Wayne T.; Gross, Mitchell; Ripley Ballou, W.; Wirtz, Robert A.; Trosper, James H.; Beaudoin, Richard L.; Hollingdale, Michael R.; Miller, Louis H.; Diggs, Carter L.; Rosenberg, Martin

    1985-05-01

    The circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum may be the most promising target for the development of a malaria vaccine. In this study, proteins composed of 16, 32, or 48 tandem copies of a tetrapeptide repeating sequence found in the CS protein were efficiently expressed in the bacterium Escherichia coli. When injected into mice, these recombinant products resulted in the production of high titers of antibodies that reacted with the authentic CS protein on live sporozoites and blocked sporozoite invasion of human hepatoma cells in vitro. These CS protein derivatives are therefore candidates for a human malaria vaccine.

  9. A Novel Protective Vaccine Antigen from the Core Escherichia coli Genome

    PubMed Central

    Moriel, Danilo G.; Tan, Lendl; Goh, Kelvin G. K.; Ipe, Deepak S.; Lo, Alvin W.; Peters, Kate M.

    2016-01-01

    ABSTRACT Escherichia coli is a versatile pathogen capable of causing intestinal and extraintestinal infections that result in a huge burden of global human disease. The diversity of E. coli is reflected by its multiple different pathotypes and mosaic genome composition. E. coli strains are also a major driver of antibiotic resistance, emphasizing the urgent need for new treatment and prevention measures. Here, we used a large data set comprising 1,700 draft and complete genomes to define the core and accessory genome of E. coli and demonstrated the overlapping relationship between strains from different pathotypes. In combination with proteomic investigation, this analysis revealed core genes that encode surface-exposed or secreted proteins that represent potential broad-coverage vaccine antigens. One of these antigens, YncE, was characterized as a conserved immunogenic antigen able to protect against acute systemic infection in mice after vaccination. Overall, this work provides a genomic blueprint for future analyses of conserved and accessory E. coli genes. The work also identified YncE as a novel antigen that could be exploited in the development of a vaccine against all pathogenic E. coli strains—an important direction given the high global incidence of infections caused by multidrug-resistant strains for which there are few effective antibiotics. IMPORTANCE E. coli is a multifaceted pathogen of major significance to global human health and an important contributor to increasing antibiotic resistance. Given the paucity of therapies still effective against multidrug-resistant pathogenic E. coli strains, novel treatment and prevention strategies are urgently required. In this study, we defined the core and accessory components of the E. coli genome by examining a large collection of draft and completely sequenced strains available from public databases. This data set was mined by employing a reverse-vaccinology approach in combination with proteomics

  10. Booster and higher antigen doses of inactivated influenza vaccine in HIV-infected patients.

    PubMed

    Johnston, Jessica A; Tincher, Lindsey B; Lowe, Denise K

    2013-12-01

    To review the literature regarding booster or higher doses of influenza antigen for increasing immunogenicity of inactivated influenza vaccine (IIV) in HIV-infected patients. MEDLINE (1966 to September 2013) was searched using the terms immunize, influenza, vaccine, and HIV or AIDS in combination with two-dose, booster-dose, increased antigen, or high-dose. One trial of booster dosing with standard doses (SDs) of IIV, trivalent (IIV3); 2 trials of booster dosing with intermediate doses (ID) of H1N1 IIV or IIV3; and 1 trial of high-dose (HD) IIV3 were identified. Trials administering 2-dose, booster-dose, or increased antigen of influenza vaccine to patients with HIV were reviewed. Because adjuvanted IIV is not available and IIV, quadrivalent was recently approved in the United States, studies evaluating these vaccines were excluded. HIV-infected individuals are at high risk for influenza-related complications; however, vaccination with SD IIV may not confer optimal protection. It has been postulated that booster or higher doses of influenza antigen may lead to increased immunogenicity. When ID and SD or ID with boosters were evaluated in HIV-infected patients, significant increases in surrogate markers for influenza protection were not achieved. However, HD IIV3 did result in significant increases in seroprotective antibody levels, though 'clinical' influenza was not evaluated. Currently, evidence is insufficient to reach conclusions about the efficacy of booster dosing, ID, or HD influenza vaccine in HIV-infected patients. Trials evaluating booster or higher-antigen doses of IIV for 'clinical' influenza are necessary before routinely recommending for HIV-infected patients.

  11. Capacitive malaria aptasensor using Plasmodium falciparum glutamate dehydrogenase as target antigen in undiluted human serum.

    PubMed

    Singh, Naveen K; Arya, Sunil K; Estrela, Pedro; Goswami, Pranab

    2018-06-08

    A capacitive aptasensor for detecting the malaria biomarker, Plasmodium falciparum glutamate dehydrogenase (PfGDH), directly in human serum samples developed. A thiolated ssDNA aptamer (NG3) that binds specifically to PfGDH antigen with high affinity (K d = 79 nM) was used to develop the aptasensor. The aptasensor produced capacitance response at an optimized frequency of 2 Hz in a non-Faradaic electrochemical impedance based signal transduction platform. The aptasensor exhibited a wide dynamic range of 100 fM-100 nM with a limits of detection of 0.77 pM in serum samples. The interference from other predominant malarial biomarkers, namely, Plasmodium falciparum -lactate dehydrogenase and -histidine rich protein-II on the aptasensor was negligible. This PfGDH aptasensor with highly sensitive and label free detection capability has great application potential for diagnosis of asymptotic malaria and monitoring the regression of malaria during treatment regime with antimalarial drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Rheumatoid arthritis vaccine therapies: perspectives and lessons from therapeutic ligand epitope antigen presentation system vaccines for models of rheumatoid arthritis

    PubMed Central

    Rosenthal, Kenneth S.; Mikecz, Katalin; Steiner, Harold L.; Glant, Tibor T.; Finnegan, Alison; Carambula, Roy E.; Zimmerman, Daniel H.

    2016-01-01

    The current status of therapeutic vaccines for autoimmune diseases is reviewed with rheumatoid arthritis as the focus. Therapeutic vaccines for autoimmune diseases must regulate or subdue responses to common self-antigens. Ideally, such a vaccine would initiate an antigen-specific modulation of the T-cell immune response that drives the inflammatory disease. Appropriate animal models and types of T helper cells and signature cytokine responses that drive autoimmune disease are also discussed. Interpretation of these animal models must be done cautiously because the means of initiation, autoantigens, and even the signature cytokine and T helper cell (Th1 or Th17) responses that are involved in the disease may differ significantly from those in humans. We describe ligand epitope antigen presentation system vaccine modulation of T-cell autoimmune responses as a strategy for the design of therapeutic vaccines for rheumatoid arthritis, which may also be effective in other autoimmune conditions. PMID:25787143

  13. Curdlan sulfate-O-linked quaternized chitosan nanoparticles: potential adjuvants to improve the immunogenicity of exogenous antigens via intranasal vaccination.

    PubMed

    Zhang, Shu; Huang, Shengshi; Lu, Lu; Song, Xinlei; Li, Pingli; Wang, Fengshan

    2018-01-01

    The development of ideal vaccine adjuvants for intranasal vaccination can provide convenience for many vaccinations. As an ideal intranasal vaccine adjuvant, it should have the properties of assisting soluble antigens to pass the mucosal barrier and potentiating both systemic and mucosal immunity via nasal administration. By using the advantages of polysaccharides, which can promote both T-helper 1 and 2 responses, curdlan sulfate (CS)- O -(2-hydroxyl)propyl-3-trimethyl ammonium chitosan chloride ( O -HTCC) nanoparticles were prepared by interacting CS with O -HTCC, and the adjuvancy of the nanoparticles was investigated. The results showed that the polysaccharide-based nanoparticles induced the proliferation and activation of antigen-presenting cells. High protein-loading efficiency was obtained by testing with the model antigen ovalbumin (Ova), and the Ova adsorbed onto the cationic CS/ O -HTCC complexes was taken up easily by the epithelium. To evaluate the capacity of the Ova/CS/ O -HTCC nanoparticles for immune enhancement in vivo, we collected and analyzed immunocytes, serum, and mucosal lavage fluid from intranasally vaccinated mice. The results showed that Ova/CS/ O -HTCC nanoparticles induced activation and maturation of antigen-presenting cells and provoked the proliferation and differentiation of lymphocytes more significantly compared to the immunization of Ova mixed with aluminum hydroxide gel. Furthermore, CS/ O -HTCC evoked a significantly higher level of Ova-specific antibodies. Therefore, these results suggest that CS/ O -HTCC nanoparticles are ideal vaccine adjuvants for soluble antigens used in intranasal or mucosal vaccination.

  14. Particle based vaccine formulations for transcutaneous immunization.

    PubMed

    Mittal, Ankit; Raber, Anne S; Lehr, Claus-Michael; Hansen, Steffi

    2013-09-01

    Vaccine formulations on the basis of nano- (NP) or microparticles (MP) can solve issues with stabilization, controlled release, and poor immunogenicity of antigens. Likewise transcutaneous immunization (TCI) promises superior immunogenicity as well as the advantages of needle-free application compared with conventional intramuscular injections. Thus the combination of both strategies seems to be a very valuable approach. However, until now TCI using particle based vaccine formulations has made no impact on medical practice. One of the main difficulties is that NPs and MPs cannot penetrate the skin to an extent that would allow the application of the required dose of antigen. This is due to the formidable stratum corneum (SC) barrier, the limited amount of antigen in the formulation and often an insufficient immunogenicity. A multitude of strategies are currently under investigation to overcome these issues. We highlight selected methods presenting a spectrum of solutions ranging from transfollicular delivery, to devices disrupting the SC barrier and the combination of particle based vaccines with adjuvants discussing their advantages and shortcomings. Some of these are currently at an experimental state while others are already in clinical testing. All methods have been shown to be capable of transcutaneous antigen delivery.

  15. Country specific predictions of the cost-effectiveness of malaria vaccine RTS,S/AS01 in endemic Africa.

    PubMed

    Galactionova, Katya; Tediosi, Fabrizio; Camponovo, Flavia; Smith, Thomas A; Gething, Peter W; Penny, Melissa A

    2017-01-03

    RTS,S/AS01 is a safe and moderately efficacious vaccine considered for implementation in endemic Africa. Model predictions of impact and cost-effectiveness of this new intervention could aid in country adoption decisions. The impact of RTS,S was assessed in 43 countries using an ensemble of models of Plasmodium falciparum epidemiology. Informed by the 32months follow-up data from the phase 3 trial, vaccine effectiveness was evaluated at country levels of malaria parasite prevalence, coverage of control interventions and immunization. Benefits and costs of the program incremental to routine malaria control were evaluated for a four dose schedule: first dose administered at six months, second and third - before 9months, and fourth dose at 27months of age. Sensitivity analyses around vaccine properties, transmission, and economic inputs were conducted. If implemented in all 43 countries the vaccine has the potential to avert 123 (117;129) million malaria episodes over the first 10years. Burden averted averages 18,413 (range of country median estimates 156-40,054) DALYs per 100,000 fully vaccinated children with much variation across settings primarily driven by differences in transmission intensity. At a price of $5 per dose program costs average $39.8 per fully vaccinated child with a median cost-effectiveness ratio of $188 (range $78-$22,448) per DALY averted; the ratio is lower by one third - $136 (range $116-$220) - in settings where parasite prevalence in children aged 2-10years is at or above 10%. RTS,S/AS01has the potential to substantially reduce malaria burden in children across Africa. Conditional on assumptions on price, coverage, and vaccine properties, adding RTS,S to routine malaria control interventions would be highly cost-effective. Implementation decisions will need to further consider feasibility of scaling up existing control programs, and operational constraints in reaching children at risk with the schedule. Copyright © 2016 The Author

  16. The Web-Based DNA Vaccine Database DNAVaxDB and Its Usage for Rational DNA Vaccine Design.

    PubMed

    Racz, Rebecca; He, Yongqun

    2016-01-01

    A DNA vaccine is a vaccine that uses a mammalian expression vector to express one or more protein antigens and is administered in vivo to induce an adaptive immune response. Since the 1990s, a significant amount of research has been performed on DNA vaccines and the mechanisms behind them. To meet the needs of the DNA vaccine research community, we created DNAVaxDB ( http://www.violinet.org/dnavaxdb ), the first Web-based database and analysis resource of experimentally verified DNA vaccines. All the data in DNAVaxDB, which includes plasmids, antigens, vaccines, and sources, is manually curated and experimentally verified. This chapter goes over the detail of DNAVaxDB system and shows how the DNA vaccine database, combined with the Vaxign vaccine design tool, can be used for rational design of a DNA vaccine against a pathogen, such as Mycobacterium bovis.

  17. Discrepancy between infectivity and antigenicity stabilization of oral poliovirus vaccine by a capsid-binding compound.

    PubMed Central

    Andries, K; Rombaut, B; Dewindt, B; Boeyé, A

    1994-01-01

    Two hundred forty pyridazinamine derivatives were tested for the ability to stabilize the antigenicity and infectivity of oral poliovirus vaccine subjected to 45 degrees C for 2 h. Seven compounds stabilized the antigenicity of all three vaccine strains and neutralized the viral particles in a way that is reversible by dilution. Of these, R 77975 (pirodavir) was selected for vaccine potency tests. Sabin type 2 and type 3 strains were subjected to 4, 25, 42, and 45 degrees C for 1 week in the presence and absence of R 77975. Although R 77975 particularly stabilized the infectivity of the most thermolabile vaccine strain (Sabin type 3), the protection did not exceed that of 1 M MgCl2. When virus was inactivated in the absence of R 77975, the native or N antigenicity changed in H antigenicity. However, in the presence of the capsid-binding compound, N antigenicity was preserved in particles that had lost infectivity. PMID:8151800

  18. Peptide vaccines prevent tumor growth by activating T cells that respond to native tumor antigens.

    PubMed

    Jordan, Kimberly R; McMahan, Rachel H; Kemmler, Charles B; Kappler, John W; Slansky, Jill E

    2010-03-09

    Peptide vaccines enhance the response of T cells toward tumor antigens and represent a strategy to augment antigen-independent immunotherapies of cancer. However, peptide vaccines that include native tumor antigens rarely prevent tumor growth. We have assembled a set of peptide variants for a mouse-colon tumor model to determine how to improve T-cell responses. These peptides have similar affinity for MHC molecules, but differ in the affinity of the peptide-MHC/T-cell receptor interaction with a tumor-specific T-cell clone. We systematically demonstrated that effective antitumor responses are generated after vaccination with variant peptides that stimulate the largest proportion of endogenous T cells specific for the native tumor antigen. Importantly, we found some variant peptides that strongly stimulated a specific T-cell clone in vitro, but elicited fewer tumor-specific T cells in vivo, and were not protective. The T cells expanded by the effective vaccines responded to the wild-type antigen by making cytokines and killing target cells, whereas most of the T cells expanded by the ineffective vaccines only responded to the peptide variants. We conclude that peptide-variant vaccines are most effective when the peptides react with a large responsive part of the tumor-specific T-cell repertoire.

  19. Protective vaccination and blood-stage malaria modify DNA methylation of gene promoters in the liver of Balb/c mice.

    PubMed

    Al-Quraishy, Saleh; Dkhil, Mohamed A; Abdel-Baki, Abdel-Azeem S; Ghanjati, Foued; Erichsen, Lars; Santourlidis, Simeon; Wunderlich, Frank; Araúzo-Bravo, Marcos J

    2017-05-01

    Epigenetic mechanisms such as DNA methylation are increasingly recognized to be critical for vaccination efficacy and outcome of different infectious diseases, but corresponding information is scarcely available for host defense against malaria. In the experimental blood-stage malaria Plasmodium chabaudi, we investigate the possible effects of a blood-stage vaccine on DNA methylation of gene promoters in the liver, known as effector against blood-stage malaria, using DNA methylation microarrays. Naturally susceptible Balb/c mice acquire, by protective vaccination, the potency to survive P. chabaudi malaria and, concomitantly, modifications of constitutive DNA methylation of promoters of numerous genes in the liver; specifically, promoters of 256 genes are hyper(=up)- and 345 genes are hypo(=down)-methylated (p < 0.05). Protective vaccination also leads to changes in promoter DNA methylation upon challenge with P. chabaudi at peak parasitemia on day 8 post infection (p.i.), when 571 and 1013 gene promoters are up- and down-methylated, respectively, in relation to constitutive DNA methylation (p < 0.05). Gene set enrichment analyses reveal that both vaccination and P. chabaudi infections mainly modify promoters of those genes which are most statistically enriched with functions relating to regulation of transcription. Genes with down-methylated promoters encompass those encoding CX3CL1, GP130, and GATA2, known to be involved in monocyte recruitment, IL-6 trans-signaling, and onset of erythropoiesis, respectively. Our data suggest that vaccination may epigenetically improve parts of several effector functions of the liver against blood-stage malaria, as, e.g., recruitment of monocyte/macrophage to the liver accelerated liver regeneration and extramedullary hepatic erythropoiesis, thus leading to self-healing of otherwise lethal P. chabaudi blood-stage malaria.

  20. Sperm fibrous sheath proteins: a potential new class of target antigens for use in human therapeutic cancer vaccines

    PubMed Central

    Chiriva-Internati, Maurizio; Cobos, Everardo; Da Silva, Diane M.

    2008-01-01

    Cancer vaccines have been demonstrated to be a promising strategy for treating human neoplastic disease, but one of the limitations of these vaccines remains the paucity of target antigens to which to direct an effective immune response. We hypothesize that sperm fibrous sheath proteins may be a new class of useful antigens for developing successful cancer vaccines. This hypothesis is supported by the expression of two sperm fibrous sheath proteins, called sperm protein 17 and calcium-binding tyrosine-phosphorylation regulated protein, in tumors of unrelated histological origin and their capability to induce T cell-based immune responses. PMID:18433090

  1. Fractional Third and Fourth Dose of RTS,S/AS01 Malaria Candidate Vaccine: A Phase 2a Controlled Human Malaria Parasite Infection and Immunogenicity Study.

    PubMed

    Regules, Jason A; Cicatelli, Susan B; Bennett, Jason W; Paolino, Kristopher M; Twomey, Patrick S; Moon, James E; Kathcart, April K; Hauns, Kevin D; Komisar, Jack L; Qabar, Aziz N; Davidson, Silas A; Dutta, Sheetij; Griffith, Matthew E; Magee, Charles D; Wojnarski, Mariusz; Livezey, Jeffrey R; Kress, Adrian T; Waterman, Paige E; Jongert, Erik; Wille-Reece, Ulrike; Volkmuth, Wayne; Emerling, Daniel; Robinson, William H; Lievens, Marc; Morelle, Danielle; Lee, Cynthia K; Yassin-Rajkumar, Bebi; Weltzin, Richard; Cohen, Joe; Paris, Robert M; Waters, Norman C; Birkett, Ashley J; Kaslow, David C; Ballou, W Ripley; Ockenhouse, Christian F; Vekemans, Johan

    2016-09-01

    Three full doses of RTS,S/AS01 malaria vaccine provides partial protection against controlled human malaria parasite infection (CHMI) and natural exposure. Immunization regimens, including a delayed fractional third dose, were assessed for potential increased protection against malaria and immunologic responses. In a phase 2a, controlled, open-label, study of healthy malaria-naive adults, 16 subjects vaccinated with a 0-, 1-, and 2-month full-dose regimen (012M) and 30 subjects who received a 0-, 1-, and 7-month regimen, including a fractional third dose (Fx017M), underwent CHMI 3 weeks after the last dose. Plasmablast heavy and light chain immunoglobulin messenger RNA sequencing and antibody avidity were evaluated. Protection against repeat CHMI was evaluated after 8 months. A total of 26 of 30 subjects in the Fx017M group (vaccine efficacy [VE], 86.7% [95% confidence interval [CI], 66.8%-94.6%]; P < .0001) and 10 of 16 in the 012M group (VE, 62.5% [95% CI, 29.4%-80.1%]; P = .0009) were protected against infection, and protection differed between schedules (P = .040, by the log rank test). The fractional dose boosting increased antibody somatic hypermutation and avidity and sustained high protection upon rechallenge. A delayed third fractional vaccine dose improved immunogenicity and protection against infection. Optimization of the RTS,S/AS01 immunization regimen may lead to improved approaches against malaria. NCT01857869. Published by Oxford University Press on behalf of the Infectious Diseases Society of America, 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  2. A comparative laboratory diagnosis of malaria: microscopy versus rapid diagnostic test kits.

    PubMed

    Azikiwe, C C A; Ifezulike, C C; Siminialayi, I M; Amazu, L U; Enye, J C; Nwakwunite, O E

    2012-04-01

    To compare the two methods of rapid diagnostic tests (RDTs) and microscopy in the diagnosis of malaria. RDTs and microscopy were carried out to diagnose malaria. Percentage malaria parasitaemia was calculated on thin films and all non-acute cases of plasmodiasis with less than 0.001% malaria parasitaemia were regarded as negative. Results were simply presented as percentage positive of the total number of patients under study. The results of RDTs were compared to those of microscopy while those of RDTs based on antigen were compared to those of RDTs based on antibody. Patients' follow-up was made for all cases. All the 200 patients under present study tested positive to RDTs based on malaria antibodies (serum) method (100%). 128 out of 200 tested positive to RDTs based on malaria antigen (whole blood) method (64%), while 118 out of 200 patients under present study tested positive to visual microscopy of Lieshman and diluted Giemsa (59%). All patients that tested positive to microscopy also tested positive to RDTs based on antigen. All patients on the second day of follow-up were non-febrile and had antimalaria drugs. We conclude based on the present study that the RDTs based on malaria antigen (whole blood) method is as specific as the traditional microscopy and even appears more sensitive than microscopy. The RDTs based on antibody (serum) method is unspecific thus it should not be encouraged. It is most likely that Africa being an endemic region, formation of certain levels of malaria antibody may not be uncommon. The present study also supports the opinion that a good number of febrile cases is not due to malaria. We support WHO's report on cost effectiveness of RDTs but, recommend that only the antigen based method should possibly, be adopted in Africa and other malaria endemic regions of the world.

  3. Measurement of ex vivo ELISpot interferon-gamma recall responses to Plasmodium falciparum AMA1 and CSP in Ghanaian adults with natural exposure to malaria.

    PubMed

    Ganeshan, Harini; Kusi, Kwadwo A; Anum, Dorothy; Hollingdale, Michael R; Peters, Bjoern; Kim, Yohan; Tetteh, John K A; Ofori, Michael F; Gyan, Ben A; Koram, Kwadwo A; Huang, Jun; Belmonte, Maria; Banania, Jo Glenna; Dodoo, Daniel; Villasante, Eileen; Sedegah, Martha

    2016-02-01

    Malaria eradication requires a concerted approach involving all available control tools, and an effective vaccine would complement these efforts. An effective malaria vaccine should be able to induce protective immune responses in a genetically diverse population. Identification of immunodominant T cell epitopes will assist in determining if candidate vaccines will be immunogenic in malaria-endemic areas. This study therefore investigated whether class I-restricted T cell epitopes of two leading malaria vaccine antigens, Plasmodium falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1), could recall T cell interferon-γ responses from naturally exposed subjects using ex vivo ELISpot assays. Thirty-five subjects aged between 24 and 43 years were recruited from a malaria-endemic urban community of Ghana in 2011, and their peripheral blood mononuclear cells (PBMCs) were tested in ELISpot IFN-γ assays against overlapping 15mer peptide pools spanning the entire CSP and AMA1 antigens, and 9-10mer peptide epitope mixtures that included previously identified and/or predicted human leukocyte antigen (HLA) class 1-restricted epitopes from same two antigens. For CSP, 26 % of subjects responded to at least one of the nine 15mer peptide pools whilst 17 % responded to at least one of the five 9-10mer HLA-restricted epitope mixtures. For AMA1, 63 % of subjects responded to at least one of the 12 AMA1 15mer peptide pools and 51 % responded to at least one of the six 9-10mer HLA-restricted epitope mixtures. Following analysis of data from the two sets of peptide pools, along with bioinformatics predictions of class I-restricted epitopes and the HLA supertypes expressed by a subset of study subjects, peptide pools that may contain epitopes recognized by multiple HLA supertypes were identified. Collectively, these results suggest that natural transmission elicits ELISpot IFN-γ activities to class 1-restricted epitopes that are largely HLA-promiscuous. These

  4. Genetic and antigenic relationship of foot-and-mouth disease virus serotype O isolates with the vaccine strain O1/BFS.

    PubMed

    Xu, Wanhong; Zhang, Zhidong; Nfon, Charles; Yang, Ming

    2018-05-15

    Foot-and-mouth disease serotype O viruses (FMDV/O) are responsible for the most outbreaks in FMD endemic countries. O1/BFS is one of the recommended FMD/O vaccine strains by World Reference Laboratory for FMD. In the current study, FMDV/O1 BFS vaccine strain and serotype O field isolates (45) were analyzed phylogenetically and antigenically to gain more insight into the genetic and antigenic characteristics of the vaccine strain and field isolates. O1/BFS showed similarity with 89% of the field isolates using a virus neutralization test (VNT). The P1 region encoding the FMDV capsid was sequenced and analysed for 46 strains of FMDV/O. Phylogenetic analysis showed these viruses originated from five continents and covered eight of 11 reported topotypes. Five isolates that demonstrated low antigenic similarities with O1/BFS were analyzed for their antigenic variation at the known neutralizing antigenic sites. Three of the five isolates demonstrated unique amino acid substitutions at various antigenic sites. No unique amino acid substitutions were observed for the other two unmatched isolates. Positively selected residues were identified on the surface of the FMD virus capsid supporting that it is important to continuously monitor field isolates for their antigenic and phenotypic changes. In conclusion, the vaccine strain O1/BFS is likely to confer protection against 89% of the 45 FMDV/O isolates based on VNT. Thus O1/BFS vaccine strain is still suitable for use in global FMD serotype O outbreak control. Combining data from phylogenetic, molecular and antigenic analysis can provide improvements in the process of vaccine selection. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  5. Mucosal Vaccination with Heterologous Viral Vectored Vaccine Targeting Subdominant SIV Accessory Antigens Strongly Inhibits Early Viral Replication.

    PubMed

    Xu, Huanbin; Andersson, Anne-Marie; Ragonnaud, Emeline; Boilesen, Ditte; Tolver, Anders; Jensen, Benjamin Anderschou Holbech; Blanchard, James L; Nicosia, Alfredo; Folgori, Antonella; Colloca, Stefano; Cortese, Riccardo; Thomsen, Allan Randrup; Christensen, Jan Pravsgaard; Veazey, Ronald S; Holst, Peter Johannes

    2017-04-01

    Conventional HIV T cell vaccine strategies have not been successful in containing acute peak viremia, nor in providing long-term control. We immunized rhesus macaques intramuscularly and rectally using a heterologous adenovirus vectored SIV vaccine regimen encoding normally weakly immunogenic tat, vif, rev and vpr antigens fused to the MHC class II associated invariant chain. Immunizations induced broad T cell responses in all vaccinees. Following up to 10 repeated low-dose intrarectal challenges, vaccinees suppressed early viral replication (P=0.01) and prevented the peak viremia in 5/6 animals. Despite consistently undetectable viremia in 2 out of 6 vaccinees, all animals showed evidence of infection induced immune responses indicating that infection had taken place. Vaccinees, with and without detectable viremia better preserved their rectal CD4+ T cell population and had reduced immune hyperactivation as measured by naïve T cell depletion, Ki-67 and PD-1 expression on T cells. These results indicate that vaccination towards SIV accessory antigens vaccine can provide a level of acute control of SIV replication with a suggestion of beneficial immunological consequences in infected animals of unknown long-term significance. In conclusion, our studies demonstrate that a vaccine encoding subdominant antigens not normally associated with virus control can exert a significant impact on acute peak viremia. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Two SmDLC antigens as potential vaccines against schistosomiasis.

    PubMed

    Diniz, Patricia Placoná; Nakajima, Erika; Miyasato, Patricia Aoki; Nakano, Eliana; de Oliveira Rocha, Márcia; Martins, Elizabeth Angelica Leme

    2014-12-01

    The Schistosoma mansoni transcriptome revealed new members of the dynein light chain family (DLC/LC8). The antigenicity and immunogenicity of these proteins, and their potential as vaccine candidates were investigated. Two DLC genes (DLC12_JI392413.1 and DLC13_JI387686.1) were cloned and the recombinant proteins produced in E. coli. The immunization of mice with the rDLCs, using alhydrogel as adjuvant, resulted in high titers of antibodies, indicated that these proteins are highly immunogenic. The anti-DLCs antibodies presented cross reactivity with both recombinant antigens and also recognized proteins from S. mansoni adult worm extracts. The DLC12 and DLC13 immunized animals were challenged by infection with cercariae and a protective profile was observed in three different assays, with a significant decreased in worm burden, of 43% and 51% respectively, when compared to the non-vaccinated group. The granulomas formation due to egg retention in the hepatic tissues was evaluated 45 days after infection. Smaller granulomas were observed in the liver of DLC immunized animals, up to 70% reduction in comparison to the granulomas size in the non-vaccinated animals. Fifty-five days after infection, the average size of the hepatic granulomas was still 25-35% smaller in the DLCs vaccinated groups. The interference of DLC immunization on the hepatic granuloma formation may reflect the lower worm burden and consequent decrease on the number of eggs retained in the liver, resulting in lower pro-inflammatory level in the tissue. The protective effect of DLCs immunization, decreasing the worm burden and delaying the rate of granuloma formation, suggests that these antigens should be further studied as potential vaccine candidates. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Not All Antigens Are Created Equally: Progress, Challenges, and Lessons Associated with Developing a Vaccine for Leishmaniasis

    PubMed Central

    Reed, Steven G.

    2017-01-01

    ABSTRACT From experimental models and the analyses of patients, it is well documented that antigen-specific T cells are critical for protection against Leishmania infection. Effective vaccines require both targeting to the pathogen and an immune stimulant to induce maturation of appropriate immune responses. While a great number of antigens have been examined as vaccine candidates against various Leishmania species, few have advanced to human or canine clinical trials. With emphasis on antigen expression, in this minireview we discuss some of the vaccine platforms that are currently being explored for the development of Leishmania vaccines. It is clear that the vaccine platform of choice can have a significant impact upon the level of protection induced by particular antigens, and we provide and highlight some examples for which the vaccine system used has impacted the protective efficacy imparted. PMID:28515135

  8. Not All Antigens Are Created Equally: Progress, Challenges, and Lessons Associated with Developing a Vaccine for Leishmaniasis.

    PubMed

    Duthie, Malcolm S; Reed, Steven G

    2017-07-01

    From experimental models and the analyses of patients, it is well documented that antigen-specific T cells are critical for protection against Leishmania infection. Effective vaccines require both targeting to the pathogen and an immune stimulant to induce maturation of appropriate immune responses. While a great number of antigens have been examined as vaccine candidates against various Leishmania species, few have advanced to human or canine clinical trials. With emphasis on antigen expression, in this minireview we discuss some of the vaccine platforms that are currently being explored for the development of Leishmania vaccines. It is clear that the vaccine platform of choice can have a significant impact upon the level of protection induced by particular antigens, and we provide and highlight some examples for which the vaccine system used has impacted the protective efficacy imparted. Copyright © 2017 American Society for Microbiology.

  9. Viral vector-based influenza vaccines.

    PubMed

    de Vries, Rory D; Rimmelzwaan, Guus F

    2016-11-01

    Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors.

  10. α-Thalassaemia trait is associated with antibody prevalence against malaria antigens AMA-1 and MSP-1.

    PubMed

    Daou, Modibo; Kituma, Elimsaada; Kavishe, Reginald; Chilongola, Jaffu; Mosha, Frank; van der Ven, André; Kouriba, Bourema; Bousema, Teun; Sauerwein, Robert; Doumbo, Ogobaro

    2015-04-01

    A longitudinal study was conducted in a low endemic area in northern Tanzania to examine the influence of the α-thalassaemia trait on malaria incidence and antibody responses to malaria apical membrane antigen-1 (AMA-1) and merozoite surface protein1-19 (MSP-119). Out of 394 children genotyped for α-thalassaemia trait, 4.1% (16 of 394) and 30.7% (121 of 394) were homozygous and heterozygous, respectively. During the 1 year follow-up, four incidents of malaria cases were detected without an evident association with α-thalassaemia. Being heterozygous or homozygous for α-thalassaemia was associated with an increased prevalence of antibodies to AMA-1 [odds ratio (OR): 1.83, 95% confidence interval (CI): 1.07-3.12, p = 0.027] and MSP-1 (OR: 2.04, 95% CI: 1.16-3.60, p = 0.013) after adjustment for age and reported bednet use. The observed association between α-thalassaemia and malaria antibody responses may reflect longer-term differences in antigen exposure or differences in antibody acquisition upon exposure in this low endemic setting. © The Author [2015]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Evidence for Globally Shared, Cross-Reacting Polymorphic Epitopes in the Pregnancy-Associated Malaria Vaccine Candidate VAR2CSA▿

    PubMed Central

    Avril, Marion; Kulasekara, Bridget R.; Gose, Severin O.; Rowe, Chris; Dahlbäck, Madeleine; Duffy, Patrick E.; Fried, Michal; Salanti, Ali; Misher, Lynda; Narum, David L.; Smith, Joseph D.

    2008-01-01

    Pregnancy-associated malaria (PAM) is characterized by the placental sequestration of Plasmodium falciparum-infected erythrocytes (IEs) with the ability to bind to chondroitin sulfate A (CSA). VAR2CSA is a leading candidate for a pregnancy malaria vaccine, but its large size (∼350 kDa) and extensive polymorphism may pose a challenge to vaccine development. In this study, rabbits were immunized with individual VAR2CSA Duffy binding-like (DBL) domains expressed in Pichia pastoris or var2csa plasmid DNA and sera were screened on different CSA-binding parasite lines. Rabbit antibodies to three recombinant proteins (DBL1, DBL3, and DBL6) and four plasmid DNAs (DBL1, DBL3, DBL5, and DBL6) reacted with homologous FCR3-CSA IEs. By comparison, antibodies to the DBL4 domain were unable to react with native VAR2CSA protein unless it was first partially proteolyzed with trypsin or chymotrypsin. To investigate the antigenic relationship of geographically diverse CSA-binding isolates, rabbit immune sera were screened on four heterologous CSA-binding lines from different continental origins. Antibodies did not target conserved epitopes exposed in all VAR2CSA alleles; however, antisera to several DBL domains cross-reacted on parasite isolates that had polymorphic loops in common with the homologous immunogen. This study demonstrates that VAR2CSA contains common polymorphic epitopes that are shared between geographically diverse CSA-binding lines. PMID:18250177

  12. Evidence for globally shared, cross-reacting polymorphic epitopes in the pregnancy-associated malaria vaccine candidate VAR2CSA.

    PubMed

    Avril, Marion; Kulasekara, Bridget R; Gose, Severin O; Rowe, Chris; Dahlbäck, Madeleine; Duffy, Patrick E; Fried, Michal; Salanti, Ali; Misher, Lynda; Narum, David L; Smith, Joseph D

    2008-04-01

    Pregnancy-associated malaria (PAM) is characterized by the placental sequestration of Plasmodium falciparum-infected erythrocytes (IEs) with the ability to bind to chondroitin sulfate A (CSA). VAR2CSA is a leading candidate for a pregnancy malaria vaccine, but its large size ( approximately 350 kDa) and extensive polymorphism may pose a challenge to vaccine development. In this study, rabbits were immunized with individual VAR2CSA Duffy binding-like (DBL) domains expressed in Pichia pastoris or var2csa plasmid DNA and sera were screened on different CSA-binding parasite lines. Rabbit antibodies to three recombinant proteins (DBL1, DBL3, and DBL6) and four plasmid DNAs (DBL1, DBL3, DBL5, and DBL6) reacted with homologous FCR3-CSA IEs. By comparison, antibodies to the DBL4 domain were unable to react with native VAR2CSA protein unless it was first partially proteolyzed with trypsin or chymotrypsin. To investigate the antigenic relationship of geographically diverse CSA-binding isolates, rabbit immune sera were screened on four heterologous CSA-binding lines from different continental origins. Antibodies did not target conserved epitopes exposed in all VAR2CSA alleles; however, antisera to several DBL domains cross-reacted on parasite isolates that had polymorphic loops in common with the homologous immunogen. This study demonstrates that VAR2CSA contains common polymorphic epitopes that are shared between geographically diverse CSA-binding lines.

  13. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination.

    PubMed

    Mahan, Alison E; Jennewein, Madeleine F; Suscovich, Todd; Dionne, Kendall; Tedesco, Jacquelynne; Chung, Amy W; Streeck, Hendrik; Pau, Maria; Schuitemaker, Hanneke; Francis, Don; Fast, Patricia; Laufer, Dagna; Walker, Bruce D; Baden, Lindsey; Barouch, Dan H; Alter, Galit

    2016-03-01

    Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo.  .

  14. Impact of malaria and helminth infections on immunogenicity of the human papillomavirus-16/18 AS04-adjuvanted vaccine in Tanzania.

    PubMed

    Brown, Joelle; Baisley, Kathy; Kavishe, Bazil; Changalucha, John; Andreasen, Aura; Mayaud, Philippe; Gumodoka, Balthazar; Kapiga, Saidi; Hayes, Richard; Watson-Jones, Deborah

    2014-01-23

    Endemic malaria and helminth infections in sub-Saharan Africa can act as immunological modulators and impact responses to standard immunizations. We conducted a cohort study to measure the influence of malaria and helminth infections on the immunogenicity of the bivalent HPV-16/18 vaccine. We evaluated the association between malaria and helminth infections, and HPV-16/18 antibody responses among 298 Tanzanian females aged 10-25 years enrolled in a randomized controlled trial of the HPV-16/18 vaccine. Malaria parasitaemia was diagnosed by examination of blood smears, and helminth infections were diagnosed by examination of urine and stool samples, respectively. Geometric mean antibody titres (GMT) against HPV-16/18 antibodies were measured by enzyme-linked immunosorbent assay. Parasitic infections were common; one-third (30.4%) of participants had a helminth infection and 10.2% had malaria parasitaemia. Overall, the vaccine induced high HPV-16/18 GMTs, and there was no evidence of a reduction in HPV-16 or HPV-18 GMT at Month 7 or Month 12 follow-up visits among participants with helminths or malaria. There was some evidence that participants with malaria had increased GMTs compared to those without malaria. The data show high HPV immunogenicity regardless of the presence of malaria and helminth infections. The mechanism and significance for the increase in GMT in those with malaria is unknown. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Laboratory diagnostics of malaria

    NASA Astrophysics Data System (ADS)

    Siahaan, L.

    2018-03-01

    Even now, malaria treatment should only be administered after laboratory confirmation. There are several principal methods for diagnosing malaria. All these methods have their disadvantages.Presumptive treatment of malaria is widely practiced where laboratory tests are not readily available. Microscopy of Giemsa-stained thick and thin blood films remains the gold standard for the diagnosis of malaria infection. The technique of slide preparation, staining and reading are well known and standardized, and so is the estimate of the parasite density and parasite stages. Microscopy is not always available or feasible at primary health services in limited resource settings due to cost, lack of skilled manpower, accessories and reagents required. Rapid diagnostic tests (RDTs) are potential tools for parasite-based diagnosis since the tests are accurate in detecting malaria infections and are easy to use. The test is based on the capture of parasite antigen that released from parasitized red blood cells using monoclonal antibodies prepared against malaria antigen target. Polymerase Chain Reaction (PCR), depend on DNA amplification approaches and have higher sensitivity than microscopy. PCR it is not widely used due to the lack of a standardized methodology, high costs, and the need for highly-trained staff.

  16. Dry-Coated Live Viral Vector Vaccines Delivered by Nanopatch Microprojections Retain Long-Term Thermostability and Induce Transgene-Specific T Cell Responses in Mice

    PubMed Central

    Pearson, Frances E.; McNeilly, Celia L.; Crichton, Michael L.; Primiero, Clare A.; Yukiko, Sally R.; Fernando, Germain J. P.; Chen, Xianfeng; Gilbert, Sarah C.; Hill, Adrian V. S.; Kendall, Mark A. F.

    2013-01-01

    The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara – two vectors under evaluation for the delivery of malaria antigens to humans – were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8+ T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates. PMID:23874462

  17. Chlamydia vaccine candidates and tools for chlamydial antigen discovery.

    PubMed

    Rockey, Daniel D; Wang, Jie; Lei, Lei; Zhong, Guangming

    2009-10-01

    The failure of the inactivated Chlamydia-based vaccine trials in the 1960s has led researchers studying Chlamydia to take cautious and rational approaches to develop safe and effective chlamydial vaccines. Subsequent research efforts focused on three areas. The first is the analysis of the immunobiology of chlamydial infection in animal models, with supporting clinical studies, to identify the immune correlates of both protective immunity and pathological responses. Second, recent radical improvements in genomics, proteomics and associated technologies have assisted in the implementation of creative approaches to search for suitable vaccine candidates. Third, progress in the analysis of host response and adjuvanticity regulating both innate and adaptive immunity at the mucosal site of infection has led to progress in the design of optimal delivery and adjuvant systems for enhancing protective immunity. Considerable progress has been made in the first two areas but research efforts to better define the factors that regulate immunity at mucosal sites of infection and to develop strategies to boost protective immunity via immunomodulation, effective delivery systems and potent adjuvants, have remained elusive. In this article, we will summarize progress in these areas with a focus on chlamydial vaccine antigen discovery, and discuss future directions towards the development of a safe and effective chlamydial vaccine.

  18. Evaluation of hydrophobic chitosan-based particulate formulations of porcine reproductive and respiratory syndrome virus vaccine candidate T cell antigens.

    PubMed

    Mokhtar, Helen; Biffar, Lucia; Somavarapu, Satyanarayana; Frossard, Jean-Pierre; McGowan, Sarah; Pedrera, Miriam; Strong, Rebecca; Edwards, Jane C; Garcia-Durán, Margarita; Rodriguez, Maria Jose; Stewart, Graham R; Steinbach, Falko; Graham, Simon P

    2017-09-01

    PRRS control is hampered by the inadequacies of existing vaccines to combat the extreme diversity of circulating viruses. Since immune clearance of PRRSV infection may not be dependent on the development of neutralising antibodies and the identification of broadly-neutralising antibody epitopes have proven elusive, we hypothesised that conserved T cell antigens represent potential candidates for development of a novel PRRS vaccine. Previously we had identified the M and NSP5 proteins as well-conserved targets of polyfunctional CD8 and CD4 T cells. To assess their vaccine potential, peptides representing M and NSP5 were encapsulated in hydrophobically-modified chitosan particles adjuvanted by incorporation of a synthetic multi-TLR2/TLR7 agonist and coated with a model B cell PRRSV antigen. For comparison, empty particles and adjuvanted particles encapsulating inactivated PRRSV-1 were prepared. Vaccination with the particulate formulations induced antigen-specific antibody responses, which were most pronounced following booster immunisation. M and NSP5-specific CD4, but not CD8, T cell IFN-γ reactivity was measurable following the booster immunisation in a proportion of animals vaccinated with peptide-loaded particles. Upon challenge, CD4 and CD8 T cell reactivity was detected in all groups, with the greatest responses being detected in the peptide vaccinated group but with limited evidence of an enhanced control of viraemia. Analysis of the lungs during the resolution of infection showed significant M/NSP5 specific IFN-γ responses from CD8 rather than CD4 T cells. Vaccine primed CD8 T cell responses may therefore be required for protection and future work should focus on enhancing the cross-presentation of M/NSP5 to CD8 T cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. pH-Responsive Nanoparticle Vaccines for Dual-Delivery of Antigens and Immunostimulatory Oligonucleotides

    PubMed Central

    Wilson, John T.; Keller, Salka; Manganiello, Matthew J.; Cheng, Connie; Lee, Chen-Chang; Opara, Chinonso; Convertine, Anthony; Stayton, Patrick S.

    2013-01-01

    Protein subunit vaccines offer important potential advantages over live vaccine vectors, but generally elicit weaker and shorter-lived cellular immune responses. Here we investigate the use of pH-responsive, endosomolytic polymer nanoparticles that were originally developed for RNA delivery as vaccine delivery vehicles for enhancing cellular and humoral immune responses. Micellar nanoparticles were assembled from amphiphilic diblock copolymers composed of an ampholytic core-forming block and a re-designed polycationic corona block doped with thiol-reactive pyridyl disulfide groups to enable dual-delivery of antigens and immunostimulatory CpG oligodeoxynucleotide (CpG ODN) adjuvants. Polymers assembled into 23 nm particles with simultaneous packaging of CpG ODN and a thiolated protein antigen, ovalbumin (ova). Conjugation of ova to nanoparticles significantly enhanced antigen cross-presentation in vitro relative to free ova or an unconjugated, physical mixture of the parent compounds. Subcutaneous vaccination of mice with ova-nanoparticle conjugates elicited a significantly higher CD8+ T cell response (0.5% IFN-ɣ+ of CD8+) compared to mice vaccinated with free ova or a physical mixture of the two components. Significantly, immunization with ova-nanoparticle conjugates electrostatically complexed with CpG ODN (dual-delivery) enhanced CD8+ T cell responses (3.4% IFN-ɣ+ of CD8+) 7-, 18-, and 8-fold relative to immunization with conjugates, ova administered with free CpG, or a formulation containing free ova and CpG complexed to micelles, respectively. Similarly, dual-delivery carriers significantly increased CD4+IFN-ɣ+ (Th1) responses, and elicited a balanced IgG1/IgG2c antibody response. Intradermal administration further augmented cellular immune responses, with dual-delivery carriers inducing ~7% antigen-specific CD8+ T cells. This work demonstrates the ability of pH-responsive, endosomolytic nanoparticles to actively promote antigen cross-presentation and

  20. Prostate Stem Cell Antigen DNA Vaccination Breaks Tolerance to Self-antigen and Inhibits Prostate Cancer Growth

    PubMed Central

    Ahmad, Sarfraz; Casey, Garrett; Sweeney, Paul; Tangney, Mark; O'Sullivan, Gerald C

    2009-01-01

    Prostate stem cell antigen (PSCA) is a cell surface antigen expressed in normal human prostate and over expressed in prostate cancer. Elevated levels of PSCA protein in prostate cancer correlate with increased tumor stage/grade, with androgen independence and have higher expression in bone metastases. In this study, the PSCA gene was isolated from the transgenic adenocarcinoma mouse prostate cell line (TRAMPC1), and a vaccine plasmid construct was generated. This plasmid PSCA (pmPSCA) was delivered by intramuscular electroporation (EP) and induced effective antitumor immune responses against subcutaneous TRAMPC1 tumors in male C57 BL/6 mice. The pmPSCA vaccination inhibited tumor growth, resulting in cure or prolongation in survival. Similarly, the vaccine inhibited metastases in PSCA expressing B16 F10 tumors. There was activation of Th-1 type immunity against PSCA, indicating the breaking of tolerance to a self-antigen. This immunity was tumor specific and was transferable by adoptive transfer of splenocytes. The mice remained healthy and there was no evidence of collateral autoimmune responses in normal tissues. EP-assisted delivery of the pmPSCA evoked strong specific responses and could, in neoadjuvant or adjuvant settings, provide a safe and effective immune control of prostate cancer, given that there is significant homology between human and mouse PSCA. PMID:19337234

  1. Viral vector-based influenza vaccines

    PubMed Central

    de Vries, Rory D.; Rimmelzwaan, Guus F.

    2016-01-01

    ABSTRACT Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors. PMID:27455345

  2. Plasmodium immunomics.

    PubMed

    Doolan, Denise L

    2011-01-01

    The Plasmodium parasite, the causative agent of malaria, is an excellent model for immunomic-based approaches to vaccine development. The Plasmodium parasite has a complex life cycle with multiple stages and stage-specific expression of ∼5300 putative proteins. No malaria vaccine has yet been licensed. Many believe that an effective vaccine will need to target several antigens and multiple stages, and will require the generation of both antibody and cellular immune responses. Vaccine efforts to date have been stage-specific and based on only a very limited number of proteins representing <0.5% of the genome. The recent availability of comprehensive genomic, proteomic and transcriptomic datasets from human and selected non-human primate and rodent malarias provide a foundation to exploit for vaccine development. This information can be mined to identify promising vaccine candidate antigens, by proteome-wide screening of antibody and T cell reactivity using specimens from individuals exposed to malaria and technology platforms such as protein arrays, high throughput protein production and epitope prediction algorithms. Such antigens could be incorporated into a rational vaccine development process that targets specific stages of the Plasmodium parasite life cycle with immune responses implicated in parasite elimination and control. Immunomic approaches which enable the selection of the best possible targets by prioritising antigens according to clinically relevant criteria may overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued malaria vaccine developers for the past 25 years. Herein, current progress and perspectives regarding Plasmodium immunomics are reviewed. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  3. Design and synthesis of multifunctional gold nanoparticles bearing tumor-associated glycopeptide antigens as potential cancer vaccines.

    PubMed

    Brinãs, Raymond P; Sundgren, Andreas; Sahoo, Padmini; Morey, Susan; Rittenhouse-Olson, Kate; Wilding, Greg E; Deng, Wei; Barchi, Joseph J

    2012-08-15

    The development of vaccines against specific types of cancers will offer new modalities for therapeutic intervention. Here, we describe the synthesis of a novel vaccine construction prepared from spherical gold nanoparticles of 3-5 nm core diameters. The particles were coated with both the tumor-associated glycopeptides antigens containing the cell-surface mucin MUC4 with Thomsen Friedenreich (TF) antigen attached at different sites and a 28-residue peptide from the complement derived protein C3d to act as a B-cell activating "molecular adjuvant". The synthesis entailed solid-phase glycopeptide synthesis, design of appropriate linkers, and attachment chemistry of the various molecules to the particles. Attachment to the gold surface was mediated by a novel thiol-containing 33 atom linker which was further modified to be included as a third "spacer" component in the synthesis of several three-component vaccine platforms. Groups of mice were vaccinated either with one of the nanoplatform constructs or with control particles without antigen coating. Evaluation of sera from the immunized animals in enzyme immunoassays (EIA) against each glycopeptide antigen showed a small but statistically significant immune response with production of both IgM and IgG isotypes. Vaccines with one carbohydrate antigen (B, C, and E) gave more robust responses than the one with two contiguous disaccharides (D), and vaccine E with a TF antigen attached to threonine at the 10th position of the peptide was selected for IgG over IgM suggesting isotype switching. The data suggested that this platform may be a viable delivery system for tumor-associated glycopeptide antigens.

  4. A novel multi-antigen virally vectored vaccine against Mycobacterium avium subspecies paratuberculosis.

    PubMed

    Bull, Tim J; Gilbert, Sarah C; Sridhar, Saranya; Linedale, Richard; Dierkes, Nicola; Sidi-Boumedine, Karim; Hermon-Taylor, John

    2007-11-28

    Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5) and Modified Vaccinia Ankara (MVA) delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium subspecies paratuberculosis are needed. The present vaccine proved to be highly

  5. Progress and prospects for L2-based human papillomavirus vaccines

    PubMed Central

    Jiang, Rosie T; Schellenbacher, Christina; Chackerian, Bryce; Roden, Richard B.S.

    2016-01-01

    Summary Human papillomavirus (HPV) is a worldwide public health problem, particularly in resource-limited countries. Fifteen high-risk genital HPV types are sexually transmitted and cause 5% of all cancers worldwide, primarily cervical, anogenital and oropharyngeal carcinomas. Skin HPV types are generally associated with benign disease, but a subset is linked to non-melanoma skin cancer. Licensed HPV vaccines based on virus-like particles (VLPs) derived from L1 major capsid antigen of key high risk HPVs are effective at preventing these infections but do not cover cutaneous types and are not therapeutic. Vaccines targeting L2 minor capsid antigen, some using capsid display, adjuvant and fusions with early HPV antigens or Toll-like receptor agonists, are in development to fill these gaps. Progress and challenges with L2-based vaccines are summarized. PMID:26901354

  6. A Modular Vaccine Development Platform Based on Sortase-Mediated Site-Specific Tagging of Antigens onto Virus-Like Particles

    PubMed Central

    Tang, Shubing; Xuan, Baoqin; Ye, Xiaohua; Huang, Zhong; Qian, Zhikang

    2016-01-01

    Virus-like particles (VLPs) can be used as powerful nanoscale weapons to fight against virus infection. In addition to direct use as vaccines, VLPs have been extensively exploited as platforms on which to display foreign antigens for prophylactic vaccination and immunotherapeutic treatment. Unfortunately, fabrication of new chimeric VLP vaccines in a versatile, site-specific and highly efficient manner is beyond the capability of traditional VLP vaccine design approaches, genetic insertion and chemical conjugation. In this study, we described a greatly improved VLP display strategy by chemoenzymatic site-specific tailoring antigens on VLPs surface with high efficiency. Through the transpeptidation mediated by sortase A, one protein and two epitopes containing N-terminal oligoglycine were conjugated to the LPET motif on the surface of hepatitis B virus core protein (HBc) VLPs with high density. All of the new chimeric VLPs induced strong specific IgG responses. Furthermore, the chimeric VLPs with sortase A tagged enterovirus 71 (EV71) SP70 epitope could elicit effective antibodies against EV71 lethal challenging as well as the genetic insertion chimeric VLPs. The sortase A mediated chemoenzymatic site-specific tailoring of the HBc VLP approach shows great potential in new VLP vaccine design for its simplicity, site specificity, high efficiency, and versatility. PMID:27170066

  7. Formulation of the bivalent prostate cancer vaccine with surgifoam elicits antigen-specific effector T cells in PSA-transgenic mice.

    PubMed

    Karan, Dev

    2017-10-13

    We previously developed and characterized an adenoviral-based prostate cancer vaccine for simultaneous targeting of prostate-specific antigen (PSA) and prostate stem cell antigen (PSCA). We also demonstrated that immunization of mice with the bivalent vaccine (Ad 5 -PSA+PSCA) inhibited the growth of established prostate tumors. However, there are multiple challenges hindering the success of immunological therapies in the clinic. One of the prime concerns has been to overcome the immunological tolerance and maintenance of long-term effector T cells. In this study, we further characterized the use of the bivalent vaccine (Ad 5 -PSA+PSCA) in a transgenic mouse model expressing human PSA in the mouse prostate. We demonstrated the expression of PSA analyzed at the mRNA level (by RT-PCR) and protein level (by immunohistochemistry) in the prostate lobes harvested from the PSA-transgenic (PSA-Tg) mice. We established that the administration of the bivalent vaccine in surgifoam to the PSA-Tg mice induces strong PSA-specific effector CD8 + T cells as measured by IFN-γ secretion and in vitro cytotoxic T-cell assay. Furthermore, the use of surgifoam with Ad 5 -PSA+PSCA vaccine allows multiple boosting vaccinations with a significant increase in antigen-specific CD8 + T cells. These observations suggest that the formulation of the bivalent prostate cancer vaccine (Ad 5 -PSA+PSCA) with surgifoam bypasses the neutralizing antibody response, thus allowing multiple boosting. This formulation is also helpful for inducing an antigen-specific immune response in the presence of self-antigen, and maintains long-term effector CD8 + T cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Novel Antigens for enterotoxigenic Escherichia coli (ETEC) Vaccines

    PubMed Central

    Fleckenstein, James M.; Sheikh, Alaullah; Qadri, Firdausi

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) are the most common bacterial pathogens-causing diarrhea in developing countries where they cause hundreds of thousands of deaths, mostly in children. These organisms are leading cause of diarrheal illness in travelers to endemic countries. ETEC pathogenesis, and consequently vaccine approaches, have largely focused on plasmid-encoded enterotoxins or fimbrial colonization factors. To date these approaches have not yielded a broadly protective vaccine. However, recent studies suggest that ETEC pathogenesis is more complex than previously appreciated and involves additional plasmid and chromosomally-encoded virulence molecules that can be targeted in vaccines. Here, we review recent novel antigen discovery efforts, potential contribution of these proteins to the molecular pathogenesis of ETEC and protective immunity, and the potential implications for development of next generation vaccines for important pathogens. These proteins may help to improve the effectiveness of future vaccines by making simpler and possibly broadly protective because of their conserved nature. PMID:24702311

  9. Rational development of a protective P. vivax vaccine evaluated with transgenic rodent parasite challenge models

    PubMed Central

    Salman, Ahmed M.; Montoya-Díaz, Eduardo; West, Heather; Lall, Amar; Atcheson, Erwan; Lopez-Camacho, Cesar; Ramesar, Jai; Bauza, Karolis; Collins, Katharine A.; Brod, Florian; Reis, Fernando; Pappas, Leontios; González-Cerón, Lilia; Janse, Chris J.; Hill, Adrian V. S.; Khan, Shahid M.; Reyes-Sandoval, Arturo

    2017-01-01

    Development of a protective and broadly-acting vaccine against the most widely distributed human malaria parasite, Plasmodium vivax, will be a major step towards malaria elimination. However, a P. vivax vaccine has remained elusive by the scarcity of pre-clinical models to test protective efficacy and support further clinical trials. In this study, we report the development of a highly protective CSP-based P. vivax vaccine, a virus-like particle (VLP) known as Rv21, able to provide 100% sterile protection against a stringent sporozoite challenge in rodent models to malaria, where IgG2a antibodies were associated with protection in absence of detectable PvCSP-specific T cell responses. Additionally, we generated two novel transgenic rodent P. berghei parasite lines, where the P. berghei csp gene coding sequence has been replaced with either full-length P. vivax VK210 or the allelic VK247 csp that additionally express GFP-Luciferase. Efficacy of Rv21 surpassed viral-vectored vaccination using ChAd63 and MVA. We show for the first time that a chimeric VK210/247 antigen can elicit high level cross-protection against parasites expressing either CSP allele, which provide accessible and affordable models suitable to support the development of P. vivax vaccines candidates. Rv21 is progressing to GMP production and has entered a path towards clinical evaluation. PMID:28417968

  10. M2e-Based Universal Influenza A Vaccines

    PubMed Central

    Deng, Lei; Cho, Ki Joon; Fiers, Walter; Saelens, Xavier

    2015-01-01

    The successful isolation of a human influenza virus in 1933 was soon followed by the first attempts to develop an influenza vaccine. Nowadays, vaccination is still the most effective method to prevent human influenza disease. However, licensed influenza vaccines offer protection against antigenically matching viruses, and the composition of these vaccines needs to be updated nearly every year. Vaccines that target conserved epitopes of influenza viruses would in principle not require such updating and would probably have a considerable positive impact on global human health in case of a pandemic outbreak. The extracellular domain of Matrix 2 (M2e) protein is an evolutionarily conserved region in influenza A viruses and a promising epitope for designing a universal influenza vaccine. Here we review the seminal and recent studies that focused on M2e as a vaccine antigen. We address the mechanism of action and the clinical development of M2e-vaccines. Finally, we try to foresee how M2e-based vaccines could be implemented clinically in the future. PMID:26344949

  11. A Lactococcus lactis BFE920 feed vaccine expressing a fusion protein composed of the OmpA and FlgD antigens from Edwardsiella tarda was significantly better at protecting olive flounder (Paralichthys olivaceus) from edwardsiellosis than single antigen vaccines.

    PubMed

    Beck, Bo Ram; Lee, Soon Ho; Kim, Daniel; Park, Ji Hye; Lee, Hyun Kyung; Kwon, San-Sung; Lee, Kwan Hee; Lee, Jae Il; Song, Seong Kyu

    2017-09-01

    Edwardsiellosis is a major fish disease that causes a significant economic damage in the aquaculture industry. Here, we assessed vaccine efficacy after feeding oral vaccines to olive flounder (Paralichthys olivaceus), either L. lactis BFE920 expressing Edwardsiella tarda outer membrane protein A (OmpA), flagellar hook protein D (FlgD), or a fusion antigen of the two. Feed vaccination was done twice with a one-week interval. Fish were fed regular feed adsorbed with the vaccines. Feed vaccination was given over the course of one week to maximize the interaction between the feed vaccines and the fish intestine. Flounder fed the vaccine containing the fusion antigen had significantly elevated levels T cell genes (CD4-1, CD4-2, and CD8α), type 1 helper T cell (Th1) subset indicator genes (T-bet and IFN-γ), and antigen-specific antibodies compared to the groups fed the single antigen-expressing vaccines. Furthermore, the superiority of the fusion vaccine was also observed in survival rates when fish were challenged with E. tarda: OmpA-FlgD-expressing vaccine (82.5% survival); FlgD-vaccine (55.0%); OmpA-vaccine (50%); WT L. lactis BFE920 (37.5%); Ctrl (10%). In addition, vaccine-fed fish exhibited increased weight gain (∼20%) and a decreased feed conversion ratio (∼20%) during the four week vaccination period. Flounder fed the FlgD-expressing vaccine, either the single or the fusion form, had significantly increased expression of TLR5M, IL-1β, and IL-12p40, suggesting that the FlgD may be a ligand of olive flounder TLR5M receptor or closely related to the TLR5M pathway. In conclusion, the present study demonstrated that olive flounder fed L. lactis BFE920 expressing a fusion antigen composed of E. tarda OmpA and FlgD showed a strong protective effect against edwardsiellosis indicating this may be developed as an E. tarda feed vaccine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Leaf-Encapsulated Vaccines: Agroinfiltration and Transient Expression of the Antigen Staphylococcal Endotoxin B in Radish Leaves

    PubMed Central

    Liu, Pei-Feng; Wang, Yanhan; Ulrich, Robert G.; Simmons, Christopher W.; VanderGheynst, Jean S.; Gallo, Richard L.

    2018-01-01

    Transgene introgression is a major concern associated with transgenic plant-based vaccines. Agroinfiltration can be used to selectively transform nonreproductive organs and avoid introgression. Here, we introduce a new vaccine modality in which Staphylococcal enterotoxin B (SEB) genes are agroinfiltrated into radishes (Raphanw sativus L.), resulting in transient expression and accumulation of SEB in planta. This approach can simultaneously express multiple antigens in a single leaf. Furthermore, the potential of high-throughput vaccine production was demonstrated by simultaneously agroinfiltrating multiple radish leaves using a multichannel pipette. The expression of SEB was detectable in two leaf cell types (epidermal and guard cells) in agroinfiltrated leaves. ICR mice intranasally immunized with homogenized leaves agroinfiltrated with SEB elicited detectable antibody to SEB and displayed protection against SEB-induced interferon-gamma (IFN-γ) production. The concept of encapsulating antigens in leaves rather than purifying them for immunization may facilitate rapid vaccine production during an epidemic disease. PMID:29577048

  13. Antigenic Evolution of Vaccine-Derived Polioviruses: Changes in Individual Epitopes and Relative Stability of the Overall Immunological Properties

    PubMed Central

    Yakovenko, Maria L.; Cherkasova, Elena A.; Rezapkin, Gennady V.; Ivanova, Olga E.; Ivanov, Alexander P.; Eremeeva, Tatyana P.; Baykova, Olga Y.; Chumakov, Konstantin M.; Agol, Vadim I.

    2006-01-01

    The Sabin oral poliovirus vaccine (OPV) readily undergoes changes in antigenic sites upon replication in humans. Here, a set of antigenically altered descendants of the three OPV serotypes (76 isolates) was characterized to determine the driving forces behind these changes and their biological implications. The amino acid residues of OPV derivatives that lie within or close to the known antigenic sites exhibited a marked tendency to be replaced by residues characteristic of homotypic wild polioviruses, and these changes may occur very early in OPV evolution. The specific amino acid alterations nicely correlated with serotype-specific changes in the reactivity of certain individual antigenic sites, as revealed by the recently devised monoclonal antibody-based enzyme-linked immunosorbent assay. In comparison to the original vaccine, small changes, if any, in the neutralizing capacity of human or rabbit sera were observed in highly diverged vaccine polioviruses of three serotypes, in spite of strong alterations of certain epitopes. We propose that the common antigenic alterations in evolving OPV strains largely reflect attempts to eliminate fitness-decreasing mutations acquired either during the original selection of the vaccine or already present in the parental strains. Variability of individual epitopes does not appear to be primarily caused by, or lead to, a significant immune evasion, enhancing only slightly, if at all, the capacity of OPV derivatives to overcome immunity in human populations. This study reveals some important patterns of poliovirus evolution and has obvious implications for the rational design of live viral vaccines. PMID:16501074

  14. Antigenic cartography of H9N2 virus and its impact on the vaccine efficacy in chickens

    USDA-ARS?s Scientific Manuscript database

    The H9 subtype of avian influenza virus (AIV) is wide-spread in Asia and the Middle East. The efficacy of vaccines is enhanced by the antigenic match of the hemagglutinin protein (HA) between the vaccine and the field strain. To determine how antigenic variations affect the vaccine efficacy, speci...

  15. Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines.

    PubMed

    Zhang, Lei; Zeng, Zhanzhuang; Hu, Chaohua; Bellis, Susan L; Yang, Wendi; Su, Yintao; Zhang, Xinyan; Wu, Yunkun

    2016-01-01

    Conventional oral vaccines with simple architecture face barriers with regard to stimulating effective immunity. Here we describe oral vaccines with an intelligent phase-transitional shielding layer, poly[(methyl methacrylate)-co-(methyl acrylate)-co-(methacrylic acid)]-poly(D,L-lactide-co-glycolide) (PMMMA-PLGA), which can protect antigens in the gastro-intestinal tract and achieve targeted vaccination in the large intestine. With the surface immunogenic protein (SIP) from group B Streptococcus (GBS) entrapped as the antigen, oral administration with PMMMA-PLGA (PTRBL)/Trx-SIP nanoparticles stimulated robust immunity in tilapia, an animal with a relatively simple immune system. The vaccine succeeded in protecting against Streptococcus agalactiae, a pathogen of worldwide importance that threatens human health and is transmitted in water with infected fish. After oral vaccination with PTRBL/Trx-SIP, tilapia produced enhanced levels of SIP specific antibodies and displayed durability of immune protection. 100% of the vaccinated tilapia were protected from GBS infection, whereas the control groups without vaccines or vaccinated with Trx-SIP only exhibited respective infection rates of 100% or >60% within the initial 5 months after primary vaccination. Experiments in vivo demonstrated that the recombinant antigen Trx-SIP labeled with FITC was localized in colon, spleen and kidney, which are critical sites for mounting an immune response. Our results revealed that, rather than the size of the nanoparticles, it is more likely that the negative charge repulsion produced by ionization of the carboxyl groups in PMMMA shielded the nanoparticles from uptake by small intestinal epithelial cells. This system resolves challenges arising from gastrointestinal damage to antigens, and more importantly, offers a new approach applicable for oral vaccination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Genetic diversity of three surface protein genes in Plasmodium malariae from three Asian countries.

    PubMed

    Srisutham, Suttipat; Saralamba, Naowarat; Sriprawat, Kanlaya; Mayxay, Mayfong; Smithuis, Frank; Nosten, Francois; Pukrittayakamee, Sasithon; Day, Nicholas P J; Dondorp, Arjen M; Imwong, Mallika

    2018-01-11

    Genetic diversity of the three important antigenic proteins, namely thrombospondin-related anonymous protein (TRAP), apical membrane antigen 1 (AMA1), and 6-cysteine protein (P48/45), all of which are found in various developmental stages of Plasmodium parasites is crucial for targeted vaccine development. While studies related to the genetic diversity of these proteins are available for Plasmodium falciparum and Plasmodium vivax, barely enough information exists regarding Plasmodium malariae. The present study aims to demonstrate the genetic variations existing among these three genes in P. malariae by analysing their diversity at nucleotide and protein levels. Three surface protein genes were isolated from 45 samples collected in Thailand (N = 33), Myanmar (N = 8), and Lao PDR (N = 4), using conventional polymerase chain reaction (PCR) assay. Then, the PCR products were sequenced and analysed using BioEdit, MEGA6, and DnaSP programs. The average pairwise nucleotide diversities (π) of P. malariae trap, ama1, and p48/45 were 0.00169, 0.00413, and 0.00029, respectively. The haplotype diversities (Hd) of P. malariae trap, ama1, and p48/45 were 0.919, 0.946, and 0.130, respectively. Most of the nucleotide substitutions were non-synonymous, which indicated that the genetic variations of these genes were maintained by positive diversifying selection, thus, suggesting their role as a potential target of protective immune response. Amino acid substitutions of P. malariae TRAP, AMA1, and P48/45 could be categorized to 17, 20, and 2 unique amino-acid variants, respectively. For further vaccine development, carboxyl terminal of P48/45 would be a good candidate according to conserved amino acid at low genetic diversity (π = 0.2-0.3). High mutational diversity was observed in P. malariae trap and ama1 as compared to p48/45 in P. malariae samples isolated from Thailand, Myanmar, and Lao PDR. Taken together, these results suggest that P48/45 might be a good vaccine

  17. Differential miRNA Expression in the Liver of Balb/c Mice Protected by Vaccination during Crisis of Plasmodium chabaudi Blood-Stage Malaria

    PubMed Central

    Dkhil, Mohamed A.; Al-Quraishy, Saleh A.; Abdel-Baki, Abdel-Azeem S.; Delic, Denis; Wunderlich, Frank

    2017-01-01

    MicroRNAs are increasingly recognized as epigenetic regulators for outcome of diverse infectious diseases and vaccination efficacy, but little information referring to this exists for malaria. This study investigates possible effects of both protective vaccination and P. chabaudi malaria on the miRNome of the liver as an effector against blood-stage malaria using miRNA microarrays and quantitative PCR. Plasmodium chabaudi blood-stage malaria takes a lethal outcome in female Balb/c mice, but a self-healing course after immunization with a non-infectious blood-stage vaccine. The liver robustly expresses 71 miRNA species at varying levels, among which 65 miRNA species respond to malaria evidenced as steadily increasing or decreasing expressions reaching highest or lowest levels toward the end of the crisis phase on day 11 p.i. in lethal malaria. Protective vaccination does not affect constitutive miRNA expression, but leads to significant (p < 0.05) changes in the expression of 41 miRNA species, however evidenced only during crisis. In vaccination-induced self-healing infections, 18 miRNA-species are up- and 14 miRNA-species are down-regulated by more than 50% during crisis in relation to non-vaccinated mice. Vaccination-induced self-healing and survival of otherwise lethal infections of P. chabaudi activate epigenetic miRNA-regulated remodeling processes in the liver manifesting themselves during crisis. Especially, liver regeneration is accelerated as suggested by upregulation of let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, let-7f-5p, let-7g-5p, let-7i-5p, miR-26a, miR-122-5p, miR30a, miR27a, and mir-29a, whereas the up-regulated expression of miR-142-3p by more than 100% is compatible with the view of enhanced hepatic erythropoiesis, possibly at expense of megakaryopoiesis, during crisis of P. chabaudi blood-stage malaria. PMID:28123381

  18. Bicistronic DNA vaccines simultaneously encoding HIV, HSV and HPV antigens promote CD8⁺ T cell responses and protective immunity.

    PubMed

    Santana, Vinicius C; Diniz, Mariana O; Cariri, Francisco A M O; Ventura, Armando M; Cunha-Neto, Edécio; Almeida, Rafael R; Campos, Marco A; Lima, Graciela K; Ferreira, Luís C S

    2013-01-01

    Millions of people worldwide are currently infected with human papillomavirus (HPV), herpes simplex virus (HSV) or human immunodeficiency virus (HIV). For this enormous contingent of people, the search for preventive and therapeutic immunological approaches represents a hope for the eradication of latent infection and/or virus-associated cancer. To date, attempts to develop vaccines against these viruses have been mainly based on a monovalent concept, in which one or more antigens of a virus are incorporated into a vaccine formulation. In the present report, we designed and tested an immunization strategy based on DNA vaccines that simultaneously encode antigens for HIV, HSV and HPV. With this purpose in mind, we tested two bicistronic DNA vaccines (pIRES I and pIRES II) that encode the HPV-16 oncoprotein E7 and the HIV protein p24 both genetically fused to the HSV-1 gD envelope protein. Mice i.m. immunized with the DNA vaccines mounted antigen-specific CD8⁺ T cell responses, including in vivo cytotoxic responses, against the three antigens. Under experimental conditions, the vaccines conferred protective immunity against challenges with a vaccinia virus expressing the HIV-derived protein Gag, an HSV-1 virus strain and implantation of tumor cells expressing the HPV-16 oncoproteins. Altogether, our results show that the concept of a trivalent HIV, HSV, and HPV vaccine capable to induce CD8⁺ T cell-dependent responses is feasible and may aid in the development of preventive and/or therapeutic approaches for the control of diseases associated with these viruses.

  19. Characterization of O-antigen delivered by Generalized Modules for Membrane Antigens (GMMA) vaccine candidates against nontyphoidal Salmonella.

    PubMed

    De Benedetto, G; Alfini, R; Cescutti, P; Caboni, M; Lanzilao, L; Necchi, F; Saul, A; MacLennan, C A; Rondini, S; Micoli, F

    2017-01-11

    Invasive nontyphoidal Salmonella disease (iNTS) is a leading cause of death and morbidity in Africa. The most common pathogens are Salmonella enterica serovars Typhimurium and Enteritidis. The O-antigen portion of their lipopolysaccharide is a target of protective immunity and vaccines targeting O-antigen are currently in development. Here we investigate the use of Generalized Modules for Membrane Antigens (GMMA) as delivery system for S. Typhimurium and S. Enteritidis O-antigen. Gram-negative bacteria naturally shed outer membrane in a blebbing process. By deletion of the tolR gene, the level of shedding was greatly enhanced. Further genetic modifications were introduced into the GMMA-producing strains in order to reduce reactogenicity, by detoxifying the lipid A moiety of lipopolysaccharide. We found that genetic mutations can impact on expression of O-antigen chains. All S. Enteritidis GMMA characterized had an O-antigen to protein w/w ratio higher than 0.6, while the ratio was 0.7 for S. Typhimurium ΔtolR GMMA, but decreased to less than 0.1 when further mutations for lipid A detoxification were introduced. Changes were also observed in O-antigen chain length and level and/or position of O-acetylation. When tested in mice, the GMMA induced high levels of anti-O-antigen-specific IgG functional antibodies, despite variation in density and O-antigen structural modifications. In conclusion, simplicity of manufacturing process and low costs of production, coupled with encouraging immunogenicity data, make GMMA an attractive strategy to further investigate for the development of a vaccine against iNTS. Copyright © 2016. Published by Elsevier Ltd.

  20. Capsule null locus meningococci: typing of antigens used in an investigational multicomponent meningococcus serogroup B vaccine.

    PubMed

    Claus, Heike; Jördens, Markus S; Kriz, Pavla; Musilek, Martin; Jarva, Hanna; Pawlik, Marie-Christin; Meri, Seppo; Vogel, Ulrich

    2012-01-05

    The investigational multicomponent meningococcus serogroup B vaccine (4CMenB) targets the antigenetically variable population of serogroup B meningococci. Forty-one strains of capsule null locus (cnl) meningococci, which are frequent among healthy carriers, were selected from nine sequence types (ST), which belong to four clonal complexes (cc), and three countries. They were antigen sequence typed and analyzed for antigen expression to predict whether these strains harbor the genes and express the four vaccine antigens of 4CMenB as measured by the meningococcal antigen typing system (MATS). The PorA variant used in the vaccine was not found. The nadA gene was absent in all but one strain, which did not express the antigen in vitro. Only strains of clonal complex ST-198 harbored a factor H binding protein (FHBP) allele of the cross-reactive variant 1 family which is included in the vaccine. All these strains expressed the antigen. Five variants of the Neisserial heparin binding antigen (NHBA) gene were identified. Expression of NHBA was observed in all strains with highest levels in ST-198 cc and ST-845. The data suggest a potential impact of 4CMenB immunization at least on cnl meningococci of the ST-198 cc and ST-845. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Impact on Malaria Parasite Multiplication Rates in Infected Volunteers of the Protein-in-Adjuvant Vaccine AMA1-C1/Alhydrogel+CPG 7909

    PubMed Central

    Duncan, Christopher J. A.; Sheehy, Susanne H.; Ewer, Katie J.; Douglas, Alexander D.; Collins, Katharine A.; Halstead, Fenella D.; Elias, Sean C.; Lillie, Patrick J.; Rausch, Kelly; Aebig, Joan; Miura, Kazutoyo; Edwards, Nick J.; Poulton, Ian D.; Hunt-Cooke, Angela; Porter, David W.; Thompson, Fiona M.; Rowland, Ros; Draper, Simon J.; Gilbert, Sarah C.; Fay, Michael P.; Long, Carole A.; Zhu, Daming; Wu, Yimin; Martin, Laura B.; Anderson, Charles F.; Lawrie, Alison M.; Hill, Adrian V. S.; Ellis, Ruth D.

    2011-01-01

    Background Inhibition of parasite growth is a major objective of blood-stage malaria vaccines. The in vitro assay of parasite growth inhibitory activity (GIA) is widely used as a surrogate marker for malaria vaccine efficacy in the down-selection of candidate blood-stage vaccines. Here we report the first study to examine the relationship between in vivo Plasmodium falciparum growth rates and in vitro GIA in humans experimentally infected with blood-stage malaria. Methods In this phase I/IIa open-label clinical trial five healthy malaria-naive volunteers were immunised with AMA1/C1-Alhydrogel+CPG 7909, and together with three unvaccinated controls were challenged by intravenous inoculation of P. falciparum infected erythrocytes. Results A significant correlation was observed between parasite multiplication rate in 48 hours (PMR) and both vaccine-induced growth-inhibitory activity (Pearson r = −0.93 [95% CI: −1.0, −0.27] P = 0.02) and AMA1 antibody titres in the vaccine group (Pearson r = −0.93 [95% CI: −0.99, −0.25] P = 0.02). However immunisation failed to reduce overall mean PMR in the vaccine group in comparison to the controls (vaccinee 16 fold [95% CI: 12, 22], control 17 fold [CI: 0, 65] P = 0.70). Therefore no impact on pre-patent period was observed (vaccine group median 8.5 days [range 7.5–9], control group median 9 days [range 7–9]). Conclusions Despite the first observation in human experimental malaria infection of a significant association between vaccine-induced in vitro growth inhibitory activity and in vivo parasite multiplication rate, this did not translate into any observable clinically relevant vaccine effect in this small group of volunteers. Trial Registration ClinicalTrials.gov [NCT00984763] PMID:21799809

  2. Convergent ethical issues in HIV/AIDS, tuberculosis and malaria vaccine trials in Africa: Report from the WHO/UNAIDS African AIDS Vaccine Programme's Ethics, Law and Human Rights Collaborating Centre consultation, 10-11 February 2009, Durban, South Africa

    PubMed Central

    2010-01-01

    Background Africa continues to bear a disproportionate share of the global HIV/AIDS, tuberculosis (TB) and malaria burden. The development and distribution of safe, effective and affordable vaccines is critical to reduce these epidemics. However, conducting HIV/AIDS, TB, and/or malaria vaccine trials simultaneously in developing countries, or in populations affected by all three diseases, is likely to result in numerous ethical challenges. Methods In order to explore convergent ethical issues in HIV/AIDS, TB and malaria vaccine trials in Africa, the Ethics, Law and Human Rights Collaborating Centre of the WHO/UNAIDS African AIDS Vaccine Programme hosted a consultation on the Convergent Ethical Issues in HIV/AIDS, TB and Malaria Vaccine Trials in Africa in Durban, South Africa on the 10-11 February 2009. Results Key cross cutting ethical issues were prioritized during the consultation as community engagement; ancillary care obligations; care and treatment; informed consent; and resource sharing. Conclusion The consultation revealed that while there have been few attempts to find convergence on ethical issues between HIV/AIDS, TB and malaria vaccine trial fields to date, there is much common ground and scope for convergence work between stakeholders in the three fields. PMID:20211030

  3. Convergent ethical issues in HIV/AIDS, tuberculosis and malaria vaccine trials in Africa: Report from the WHO/UNAIDS African AIDS Vaccine Programme's Ethics, Law and Human Rights Collaborating Centre consultation, 10-11 February 2009, Durban, South Africa.

    PubMed

    Mamotte, Nicole; Wassenaar, Douglas; Koen, Jennifer; Essack, Zaynab

    2010-03-09

    Africa continues to bear a disproportionate share of the global HIV/AIDS, tuberculosis (TB) and malaria burden. The development and distribution of safe, effective and affordable vaccines is critical to reduce these epidemics. However, conducting HIV/AIDS, TB, and/or malaria vaccine trials simultaneously in developing countries, or in populations affected by all three diseases, is likely to result in numerous ethical challenges. In order to explore convergent ethical issues in HIV/AIDS, TB and malaria vaccine trials in Africa, the Ethics, Law and Human Rights Collaborating Centre of the WHO/UNAIDS African AIDS Vaccine Programme hosted a consultation on the Convergent Ethical Issues in HIV/AIDS, TB and Malaria Vaccine Trials in Africa in Durban, South Africa on the 10-11 February 2009. Key cross cutting ethical issues were prioritized during the consultation as community engagement; ancillary care obligations; care and treatment; informed consent; and resource sharing. The consultation revealed that while there have been few attempts to find convergence on ethical issues between HIV/AIDS, TB and malaria vaccine trial fields to date, there is much common ground and scope for convergence work between stakeholders in the three fields.

  4. Country-wide assessment of the genetic polymorphism in Plasmodium falciparum and Plasmodium vivax antigens detected with rapid diagnostic tests for malaria

    PubMed Central

    Mariette, Natacha; Barnadas, Céline; Bouchier, Christiane; Tichit, Magali; Ménard, Didier

    2008-01-01

    Background Rapid diagnostic tests (RDTs) are becoming increasingly indispensable in malaria management, as a means of increasing the accuracy of diagnosis. The WHO has issued recommendations, but the selection of the most suitable RDT remains difficult for users in endemic countries. The genetic variability of the antigens detected with RDTs has been little studied, but may affect the sensitivity of RDTs. This factor has been studied by comparisons between countries at continental level, but little information is available concerning antigen variability within a given country. Methods A country-wide assessment of polymorphism of the PfHRP2, PfHRP3, pLDH and aldolase antigens was carried out in 260 Plasmodium falciparum and 127 Plasmodium vivax isolates, by sequencing the genes encoding these antigens in parasites originating from the various epidemiological strata for malaria in Madagascar. Results Higher levels of polymorphism were observed for the pfhrp2 and pfhrp3 genes than for the P. falciparum and P. vivax aldolase and pldh genes. Pfhrp2 sequence analysis predicted that 9% of Malagasy isolates would not be detected at parasite densities ≤ 250 parasites/μl (ranging from 6% in the north to 14% in the south), although RDTs based on PfHRP2 detection are now recommended in Madagascar. Conclusion These findings highlight the importance of training of health workers and the end users of RDTs in the provision of information about the possibility of false-negative results for patients with clinical symptoms of malaria, particularly in the south of Madagascar. PMID:18957099

  5. Antigen-specific immature dendritic cell vaccine ameliorates anti-dsDNA antibody-induced renal damage in a mouse model.

    PubMed

    Xia, Yumin; Jiang, Shan; Weng, Shenhong; Lv, Xiaochun; Cheng, Hong; Fang, Chunhong

    2011-12-01

    Dendritic cells (DCs) can inhibit immune response by clonal anergy when immature. Recent studies have shown that immature DCs (iDCs) may serve as a live cell vaccine after specific antigen pulse based on its potential of blocking antibody production. In this study, we aimed to investigate the effects of nuclear antigen-pulsed iDCs in the treatment of lupus-like renal damages induced by anti-dsDNA antibodies. iDCs were generated from haemopoietic stem cells in bone marrow and then pulsed in vitro with nuclear antigen. The iDC vaccine and corresponding controls were injected into mice with lupus-like renal damages. The evaluation of disease was monitored by biochemical parameters and histological scores. Anti-dsDNA antibody isotypes and T-lymphocyte-produced cytokines were analysed for elucidating therapeutic mechanisms. RESULTS; The mice treated with antigen-pulsed iDCs had a sustained remission of renal damage compared with those injected with non-pulsed iDCs or other controls, including decreased anti-dsDNA antibody level, less proteinuria, lower blood urea nitrogen and serum creatinine values, and improved histological evaluation. Analysis on isotypes of anti-dsDNA antibody showed that iDC vaccine preferentially inhibited the production of IgG3, IgG2b and IgG2a. Furthermore, administration of antigen-treated iDCs to mice resulted in significantly reduced IL-2, IL-4 and IL-12 and IFN-γ produced by T-memory cells. Conversely, the vaccination of antigen-pulsed mature DCs led to increased anti-dsDNA antibody production and an aggravation of lupus-like disease in the model. CONCLUSIONS; These results suggested the high potency of iDC vaccine in preventing lupus-like renal injuries induced by pathogenic autoantibodies.

  6. Expression, Purification and Characterization of GMZ2'.10C, a Complex Disulphide-Bonded Fusion Protein Vaccine Candidate against the Asexual and Sexual Life-Stages of the Malaria-Causing Plasmodium falciparum Parasite.

    PubMed

    Mistarz, Ulrik H; Singh, Susheel K; Nguyen, Tam T T N; Roeffen, Will; Yang, Fen; Lissau, Casper; Madsen, Søren M; Vrang, Astrid; Tiendrebeogo, Régis W; Kana, Ikhlaq H; Sauerwein, Robert W; Theisen, Michael; Rand, Kasper D

    2017-09-01

    Production and characterization of a chimeric fusion protein (GMZ2'.10C) which combines epitopes of key malaria parasite antigens: glutamate-rich protein (GLURP), merozoite surface protein 3 (MSP3), and the highly disulphide bonded Pfs48/45 (10C). GMZ2'.10C is a potential candidate for a multi-stage malaria vaccine that targets both transmission and asexual life-cycle stages of the parasite. GMZ2'.10C was produced in Lactococcus lactis and purified using either an immunoaffinity purification (IP) or a conventional purification (CP) method. Protein purity and stability was analysed by RP-HPLC, SEC-HPLC, 2-site ELISA, gel-electrophoresis and Western blotting. Structural characterization (mass analysis, peptide mapping and cysteine connectivity mapping) was performed by LC-MS/MS. CP-GMZ2'.10C resulted in similar purity, yield, structure and stability as compared to IP-GMZ2'.10C. CP-GMZ2'.10C and IP-GMZ2'.10C both elicited a high titer of transmission blocking (TB) antibodies in rodents. The intricate disulphide-bond connectivity of C-terminus Pfs48/45 was analysed by tandem mass spectrometry and was established for GMZ2'.10C and two reference fusion proteins encompassing similar parts of Pfs48/45. GMZ2'.10C, combining GMZ2' and correctly-folded Pfs48/45 can be produced by the Lactoccus lactis P170 based expression system in purity and quality for pharmaceutical development and elicit high level of TB antibodies. The cysteine connectivity for the 10C region of Pfs48/45 was revealed experimentally, providing an important guideline for employing the Pfs48/45 antigen in vaccine design.

  7. Randomized, controlled trial of the long term safety, immunogenicity and efficacy of RTS,S/AS02(D) malaria vaccine in infants living in a malaria-endemic region.

    PubMed

    Abdulla, Salim; Salim, Nahya; Machera, Francisca; Kamata, Richard; Juma, Omar; Shomari, Mwanajaa; Kubhoja, Sulende; Mohammed, Ali; Mwangoka, Grace; Aebi, Thomas; Mshinda, Hassan; Schellenberg, David; Carter, Terrell; Villafana, Tonya; Dubois, Marie-Claude; Leach, Amanda; Lievens, Marc; Vekemans, Johan; Cohen, Joe; Ballou, W Ripley; Tanner, Marcel

    2013-01-08

    The RTS,S/AS malaria candidate vaccine is being developed with the intent to be delivered, if approved, through the Expanded Programme on Immunization (EPI) of the World Health Organization. Safety, immunogenicity and efficacy of the RTS,S/AS02(D) vaccine candidate when integrated into a standard EPI schedule for infants have been reported over a nine-month surveillance period. This paper describes results following 20 months of follow up. This Phase IIb, single-centre, randomized controlled trial enrolled 340 infants in Tanzania to receive three doses of RTS,S/AS02(D) or hepatitis B vaccine at 8, 12, and 16 weeks of age. All infants also received DTPw/Hib (diphtheria and tetanus toxoids, whole-cell pertussis vaccine, conjugated Haemophilus influenzae type b vaccine) at the same timepoints. The study was double-blinded to month 9 and single-blinded from months 9 to 20. From month 0 to 20, at least one SAE was reported in 57/170 infants who received RTS,S/AS02(D) (33.5%; 95% confidence interval [CI]: 26.5, 41.2) and 62/170 infants who received hepatitis B vaccine (36.5%; 95% CI: 29.2, 44.2). The SAE profile was similar in both vaccine groups; none were considered to be related to vaccination. At month 20, 18 months after completion of vaccination, 71.8% of recipients of RTS,S/AS02(D) and 3.8% of recipients of hepatitis B vaccine had seropositive titres for anti-CS antibodies; seroprotective levels of anti-HBs antibodies remained in 100% of recipients of RTS,S/AS02(D) and 97.7% recipients of hepatitis B vaccine. Anti-HBs antibody GMTs were higher in the RTS,S/AS02(D) group at all post-vaccination time points compared to control. According to protocol population, vaccine efficacy against multiple episodes of malaria disease was 50.7% (95% CI: -6.5 to 77.1, p = 0.072) and 26.7% (95% CI: -33.1 to 59.6, p = 0.307) over 12 and 18 months post vaccination, respectively. In the Intention to Treat population, over the 20-month follow up, vaccine efficacy against

  8. A DNA Vaccine That Targets Hemagglutinin to Antigen-Presenting Cells Protects Mice against H7 Influenza

    PubMed Central

    Andersen, Tor Kristian; Zhou, Fan; Cox, Rebecca; Bogen, Bjarne

    2017-01-01

    ABSTRACT Zoonotic influenza H7 viral infections have a case fatality rate of about 40%. Currently, no or limited human to human spread has occurred, but we may be facing a severe pandemic threat if the virus acquires the ability to transmit between humans. Novel vaccines that can be rapidly produced for global distribution are urgently needed, and DNA vaccines may be the only type of vaccine that allows for the speed necessary to quench an emerging pandemic. Here, we constructed DNA vaccines encoding the hemagglutinin (HA) from influenza A/chicken/Italy/13474/99 (H7N1). In order to increase the efficacy of DNA vaccination, HA was targeted to either major histocompatibility complex class II molecules or chemokine receptors 1, 3, and 5 (CCR1/3/5) that are expressed on antigen-presenting cells (APC). A single DNA vaccination with APC-targeted HA significantly increased antibody levels in sera compared to nontargeted control vaccines. The antibodies were confirmed neutralizing in an H7 pseudotype-based neutralization assay. Furthermore, the APC-targeted vaccines increased the levels of antigen-specific cytotoxic T cells, and a single DNA vaccination could confer protection against a lethal challenge with influenza A/turkey/Italy/3889/1999 (H7N1) in mice. In conclusion, we have developed a vaccine that rapidly could contribute protection against a pandemic threat from avian influenza. IMPORTANCE Highly pathogenic avian influenza H7 constitute a pandemic threat that can cause severe illness and death in infected individuals. Vaccination is the main method of prophylaxis against influenza, but current vaccine strategies fall short in a pandemic situation due to a prolonged production time and insufficient production capabilities. In contrast, a DNA vaccine can be rapidly produced and deployed to prevent the potential escalation of a highly pathogenic influenza pandemic. We here demonstrate that a single DNA delivery of hemagglutinin from an H7 influenza could mediate full

  9. Isolation and Characterization of Vaccine Candidate Genes Including CSP and MSP1 in Plasmodium yoelii.

    PubMed

    Kim, Seon-Hee; Bae, Young-An; Seoh, Ju-Young; Yang, Hyun-Jong

    2017-06-01

    Malaria is an infectious disease affecting humans, which is transmitted by the bite of Anopheles mosquitoes harboring sporozoites of parasitic protozoans belonging to the genus Plasmodium . Despite past achievements to control the protozoan disease, malaria still remains a significant health threat up to now. In this study, we cloned and characterized the full-unit Plasmodium yoelii genes encoding merozoite surface protein 1 (MSP1), circumsporozoite protein (CSP), and Duffy-binding protein (DBP), each of which can be applied for investigations to obtain potent protective vaccines in the rodent malaria model, due to their specific expression patterns during the parasite life cycle. Recombinant fragments corresponding to the middle and C-terminal regions of PyMSP1 and PyCSP, respectively, displayed strong reactivity against P. yoelii -infected mice sera. Specific native antigens invoking strong humoral immune response during the primary and secondary infections of P. yoelii were also abundantly detected in experimental ICR mice. The low or negligible parasitemia observed in the secondary infected mice was likely to result from the neutralizing action of the protective antibodies. Identification of these antigenic proteins might provide the necessary information and means to characterize additional vaccine candidate antigens, selected solely on their ability to produce the protective antibodies.

  10. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis

    PubMed Central

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  11. Apoptosis and dysfunction of blood dendritic cells in patients with falciparum and vivax malaria

    PubMed Central

    Woodberry, Tonia; Kienzle, Vivian; McPhun, Virginia; Minigo, Gabriela; Lampah, Daniel A.; Kenangalem, Enny; Engwerda, Christian; López, J. Alejandro; Anstey, Nicholas M.

    2013-01-01

    Malaria causes significant morbidity worldwide and a vaccine is urgently required. Plasmodium infection causes considerable immune dysregulation, and elicitation of vaccine immunity remains challenging. Given the central role of dendritic cells (DCs) in initiating immunity, understanding their biology during malaria will improve vaccination outcomes. Circulating DCs are particularly important, as they shape immune responses in vivo and reflect the functional status of other subpopulations. We performed cross-sectional and longitudinal assessments of the frequency, phenotype, and function of circulating DC in 67 Papuan adults during acute uncomplicated P. falciparum, P. vivax, and convalescent P. falciparum infections. We demonstrate that malaria patients display a significant reduction in circulating DC numbers and the concurrent accumulation of immature cells. Such alteration is associated with marked levels of spontaneous apoptosis and impairment in the ability of DC to mature, capture, and present antigens to T cells. Interestingly, sustained levels of plasma IL-10 were observed in patients with acute infection and were implicated in the induction of DC apoptosis. DC apoptosis was reversed upon IL-10 blockade, and DC function recovered when IL-10 levels returned to baseline by convalescence. Our data provide key information on the mechanisms behind DC suppression during malaria and will assist in developing strategies to better harness DC’s immunotherapeutic potential. PMID:23835848

  12. Use of a Dual-Antigen Rapid Diagnostic Test to Screen Children for Severe Plasmodium falciparum Malaria in a High-Transmission, Resource-Limited Setting.

    PubMed

    Boyce, Ross; Reyes, Raquel; Matte, Michael; Ntaro, Moses; Mulogo, Edgar; Siedner, Mark J

    2017-10-16

    In rural areas, many patients with malaria seek care at peripheral health facilities or community case management programs. While this strategy is effective for the management of uncomplicated malaria, severe malaria necessitates prompt detection and referral to facilities with adequate resources. In this prospective, observational cohort study, we assessed the accuracy of a dual-band (histidine-rich protein-2/pan-lactate dehydrogenase [HRP2/pLDH]) rapid diagnostic test (RDT) to differentiate uncomplicated from severe malaria. We included children aged <12 years who presented to a rural clinic in western Uganda with a positive HRP2 or HRP2/pLDH RDT. We estimated the test characteristics of a dual-antigen (HRP2+/pLDH+) band positive RDT compared to World Health Organization-defined clinical and laboratory criteria to detect severe malaria. A total of 2678 children underwent testing for malaria with an RDT, and 83 (9.0%) satisfied criteria for severe malaria. The sensitivity and specificity of a HRP2+/pLDH+ result for severe malaria was 97.6% (95% confidence interval [CI], 90.8%-99.6%) and 75.6% (95% CI, 73.8%-77.4%), respectively. An HRP2+/pLDH+ result was significantly more sensitive (97.6% vs 68.7%, P < .001) for the detection of severe malaria compared to algorithms that incorporate screening for danger signs. A positive dual-antigen (HRP2/pLDH) RDT has higher sensitivity than the use of clinical manifestations to detect severe malaria, making it a promising tool in the triage of children with malaria in low-resource settings. Additional work is needed to operationalize diagnostic and treatment algorithms that include dual-antigen RDTs to avoid over referral. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  13. Recombinant protective antigen 102 (rPA102): profile of a second-generation anthrax vaccine.

    PubMed

    Keitel, Wendy A

    2006-08-01

    Recent terrorist attacks involving the use of Bacillus anthracis spores have stimulated interest in the development of new vaccines for anthrax prevention. Studies of the pathogenesis of anthrax and of the immune responses following infection and immunization underscore the pivotal role that antibodies to the protective antigen play in protection. The most promising vaccine candidates contain purified recombinant protective antigen. Clinical trials of one of these, recombinant protective antigen (rPA)102, are underway. Initial results suggest that rPA102 is well tolerated and immunogenic. Additional trials are necessary to identify optimal formulations and immunization regimens for pre- and postexposure prophylaxis. Future licensure of these and other candidate vaccines will depend on their safety and immunogenicity profiles in humans, and their ability to confer protection in animal models of inhalational anthrax.

  14. Patterns of protective associations differ for antibodies to P. falciparum-infected erythrocytes and merozoites in immunity against malaria in children.

    PubMed

    Chan, Jo-Anne; Stanisic, Danielle I; Duffy, Michael F; Robinson, Leanne J; Lin, Enmoore; Kazura, James W; King, Christopher L; Siba, Peter M; Fowkes, Freya Ji; Mueller, Ivo; Beeson, James G

    2017-12-01

    Acquired antibodies play an important role in immunity to P. falciparum malaria and are typically directed towards surface antigens expressed by merozoites and infected erythrocytes (IEs). The importance of specific IE surface antigens as immune targets remains unclear. We evaluated antibodies and protective associations in two cohorts of children in Papua New Guinea. We used genetically-modified P. falciparum to evaluate the importance of PfEMP1 and a P. falciparum isolate with a virulent phenotype. Our findings suggested that PfEMP1 was the dominant target of antibodies to the IE surface, including functional antibodies that promoted opsonic phagocytosis by monocytes. Antibodies were associated with increasing age and concurrent parasitemia, and were higher among children exposed to a higher force-of-infection as determined using molecular detection. Antibodies to IE surface antigens were consistently associated with reduced risk of malaria in both younger and older children. However, protective associations for antibodies to merozoite surface antigens were only observed in older children. This suggests that antibodies to IE surface antigens, particularly PfEMP1, play an earlier role in acquired immunity to malaria, whereas greater exposure is required for protective antibodies to merozoite antigens. These findings have implications for vaccine design and serosurveillance of malaria transmission and immunity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Population genetic structure and natural selection of Plasmodium falciparum apical membrane antigen-1 in Myanmar isolates.

    PubMed

    Kang, Jung-Mi; Lee, Jinyoung; Moe, Mya; Jun, Hojong; Lê, Hương Giang; Kim, Tae Im; Thái, Thị Lam; Sohn, Woon-Mok; Myint, Moe Kyaw; Lin, Khin; Shin, Ho-Joon; Kim, Tong-Soo; Na, Byoung-Kuk

    2018-02-07

    Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is one of leading blood stage malaria vaccine candidates. However, genetic variation and antigenic diversity identified in global PfAMA-1 are major hurdles in the development of an effective vaccine based on this antigen. In this study, genetic structure and the effect of natural selection of PfAMA-1 among Myanmar P. falciparum isolates were analysed. Blood samples were collected from 58 Myanmar patients with falciparum malaria. Full-length PfAMA-1 gene was amplified by polymerase chain reaction and cloned into a TA cloning vector. PfAMA-1 sequence of each isolate was sequenced. Polymorphic characteristics and effect of natural selection were analysed with using DNASTAR, MEGA4, and DnaSP programs. Polymorphic nature and natural selection in 459 global PfAMA-1 were also analysed. Thirty-seven different haplotypes of PfAMA-1 were identified in 58 Myanmar P. falciparum isolates. Most amino acid changes identified in Myanmar PfAMA-1 were found in domains I and III. Overall patterns of amino acid changes in Myanmar PfAMA-1 were similar to those in global PfAMA-1. However, frequencies of amino acid changes differed by country. Novel amino acid changes in Myanmar PfAMA-1 were also identified. Evidences for natural selection and recombination event were observed in global PfAMA-1. Among 51 commonly identified amino acid changes in global PfAMA-1 sequences, 43 were found in predicted RBC-binding sites, B-cell epitopes, or IUR regions. Myanmar PfAMA-1 showed similar patterns of nucleotide diversity and amino acid polymorphisms compared to those of global PfAMA-1. Balancing natural selection and intragenic recombination across PfAMA-1 are likely to play major roles in generating genetic diversity in global PfAMA-1. Most common amino acid changes in global PfAMA-1 were located in predicted B-cell epitopes where high levels of nucleotide diversity and balancing natural selection were found. These results highlight the

  16. Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection.

    PubMed

    Tipper, Donald J; Szomolanyi-Tsuda, Eva

    2016-01-01

    Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP) vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs). YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolded antigen and internal yeast proteins into a common aggregate, preventing selective yeast protein removal. For U65-green fluorescent protein (GFP) or U65-Apolipoprotein A1 (ApoA1) subcutaneous vaccines, maximal IgG responses in mice required 10% glucan exposure. IgG responses to yeast proteins were 5-fold lower. Proteolytic mannoprotein removal produced YCPs with only 6% glucan exposure, insufficiently porous for selective removal of even native yeast proteins. Vaccine efficacy was reduced 10-fold. Current YCP formulations, therefore, are not suitable for human use but have considerable potential for use in feed animal vaccines. Significantly, a YCP vaccine expressing a GFP fusion to VP1, the murine polyoma virus major capsid protein, after either oral or subcutaneous administration, protected mice against an intraperitoneal polyoma virus challenge, reducing viral DNA levels in spleen and liver by >98%.

  17. Optimization of incubation conditions of Plasmodium falciparum antibody multiplex assays to measure IgG, IgG1-4, IgM and IgE using standard and customized reference pools for sero-epidemiological and vaccine studies.

    PubMed

    Ubillos, Itziar; Jiménez, Alfons; Vidal, Marta; Bowyer, Paul W; Gaur, Deepak; Dutta, Sheetij; Gamain, Benoit; Coppel, Ross; Chauhan, Virander; Lanar, David; Chitnis, Chetan; Angov, Evelina; Beeson, James; Cavanagh, David; Campo, Joseph J; Aguilar, Ruth; Dobaño, Carlota

    2018-06-01

    The quantitative suspension array technology (qSAT) is a useful platform for malaria immune marker discovery. However, a major challenge for large sero-epidemiological and malaria vaccine studies is the comparability across laboratories, which requires the access to standardized control reagents for assay optimization, to monitor performance and improve reproducibility. Here, the Plasmodium falciparum antibody reactivities of the newly available WHO reference reagent for anti-malaria human plasma (10/198) and of additional customized positive controls were examined with seven in-house qSAT multiplex assays measuring IgG, IgG 1-4 subclasses, IgM and IgE against a panel of 40 antigens. The different positive controls were tested at different incubation times and temperatures (4 °C overnight, 37 °C 2 h, room temperature 1 h) to select the optimal conditions. Overall, the WHO reference reagent had low IgG2, IgG4, IgM and IgE, and also low anti-CSP antibody levels, thus this reagent was enriched with plasmas from RTS,S-vaccinated volunteers to be used as standard for CSP-based vaccine studies. For the IgM assay, another customized plasma pool prepared with samples from malaria primo-infected adults with adequate IgM levels proved to be more adequate as a positive control. The range and magnitude of IgG and IgG 1-4 responses were highest when the WHO reference reagent was incubated with antigen-coupled beads at 4 °C overnight. IgG levels measured in the negative control did not vary between incubations at 37 °C 2 h and 4 °C overnight, indicating no difference in unspecific binding. With this study, the immunogenicity profile of the WHO reference reagent, including seven immunoglobulin isotypes and subclasses, and more P. falciparum antigens, also those included in the leading RTS,S malaria vaccine, was better characterized. Overall, incubation of samples at 4 °C overnight rendered the best performance for antibody measurements against the antigens tested

  18. Improvement of the antigenicity of antirabies vaccine by pooling checked by post-challenge vaccination of guinea-pigs.

    PubMed

    VEERARAGHAVAN, N

    1959-01-01

    The author describes some studies carried out at the Pasteur Institute of Southern India, Coonoor, with the object of developing an antirabies vaccine of uniform potency.It was found that by pooling batches of vaccine from several infected sheep brains a vaccine was produced which was superior in antigenicity (as determined by potency tests in mice) to the NIH (United States National Institutes of Health) Reference Vaccine 155-D as well as to most of the individual batches of vaccine tested. Furthermore, the pooled vaccine conferred a significant degree of protection on guinea-pigs challenged with virulent strains of street virus, even when not administered until an hour after infection.A brief outline is given of the method used for pooling the vaccine.

  19. Improvement of the antigenicity of antirabies vaccine by pooling checked by post-challenge vaccination of guinea-pigs

    PubMed Central

    Veeraraghavan, N.

    1959-01-01

    The author describes some studies carried out at the Pasteur Institute of Southern India, Coonoor, with the object of developing an antirabies vaccine of uniform potency. It was found that by pooling batches of vaccine from several infected sheep brains a vaccine was produced which was superior in antigenicity (as determined by potency tests in mice) to the NIH (United States National Institutes of Health) Reference Vaccine 155-D as well as to most of the individual batches of vaccine tested. Furthermore, the pooled vaccine conferred a significant degree of protection on guinea-pigs challenged with virulent strains of street virus, even when not administered until an hour after infection. A brief outline is given of the method used for pooling the vaccine. PMID:13638794

  20. DNA vaccines targeting the encoded antigens to dendritic cells induce potent antitumor immunity in mice.

    PubMed

    Cao, Jun; Jin, Yiqi; Li, Wei; Zhang, Bin; He, Yang; Liu, Hongqiang; Xia, Ning; Wei, Huafeng; Yan, Jian

    2013-08-14

    Although DNA vaccine holds a great potential for cancer immunotherapy, effective long-lasting antitumoral immunity sufficient to induce durable responses in cancer patients remains to be achieved. Considering the pivotal role of dendritic cells (DC) in the antigen processing and presentation, we prepared DC-targeting DNA vaccines by fusing tumor-associated antigen HER2/neu ectodomain to single chain antibody fragment (scFv) from NLDC-145 antibody specific for DC-restricted surface molecule DEC-205 (scFvNLDC-145), and explored its antitumoral efficacy and underlying mechanisms in mouse breast cancer models. In vivo targeting assay demonstrated that scFvNLDC-145 specifically delivered DNA vaccine-encoded antigen to DC. Compared with untargeted HER2/neu DNA vaccines, vaccination with scFvNLDC-145-HER2/neu markedly promoted the HER2/neu-specific cellular and humoral immune responses with long-lasting immune memory, resulting in effective protection against challenge of HER2/neu-positive D2F2/E2 breast tumor while ineffective in parental HER2/neu-negative D2F2 breast tumor. More importantly, in combination with temporary depletion of regulatory T cells (Treg) by low-dose cyclophosphamide, vaccination with scFvNLDC-145-HER2/neu induced the regression of established D2F2/E2 breast tumor and significantly retarded the development of spontaneous mammary carcinomas in transgenic BALB-neuT mice. Our findings demonstrate that DC-targeted DNA vaccines for in vivo direct delivery of tumor antigens to DC could induce potent antigen-specific cellular and humoral immune responses and, if additional combination with systemic Treg depletion, was able to elicit an impressively therapeutic antitumoral activity, providing a rationale for further development of this approach for cancer treatment.

  1. Autodisplay: Development of an Efficacious System for Surface Display of Antigenic Determinants in Salmonella Vaccine Strains

    PubMed Central

    Kramer, Uwe; Rizos, Konstantin; Apfel, Heiko; Autenrieth, Ingo B.; Lattemann, Claus T.

    2003-01-01

    To optimize antigen delivery by Salmonella vaccine strains, a system for surface display of antigenic determinants was established by using the autotransporter secretion pathway of gram-negative bacteria. A modular system for surface display allowed effective targeting of heterologous antigens or fragments thereof to the bacterial surface by the autotransporter domain of AIDA-I, the Escherichia coli adhesin involved in diffuse adherence. A major histocompatibility complex class II-restricted epitope, comprising amino acids 74 to 86 of the Yersinia enterocolitica heat shock protein Hsp60 (Hsp6074-86), was fused to the AIDA-I autotransporter domain, and the resulting fusion protein was expressed at high levels on the cell surface of E. coli and Salmonella enterica serovar Typhimurium. Colonization studies in mice vaccinated with Salmonella strains expressing AIDA-I fusion proteins demonstrated high genetic stability of the generated vaccine strain in vivo. Furthermore, a pronounced T-cell response against Yersinia Hsp6074-86 was induced in mice vaccinated with a Salmonella vaccine strain expressing the Hsp6074-86-AIDA-I fusion protein. This was shown by monitoring Yersinia Hsp60-stimulated IFN-γ secretion and proliferation of splenic T cells isolated from vaccinated mice. These results demonstrate that the surface display of antigenic determinants by the autotransporter pathway deserves special attention regarding the application in live attenuated Salmonella vaccine strains. PMID:12654812

  2. Autodisplay: development of an efficacious system for surface display of antigenic determinants in Salmonella vaccine strains.

    PubMed

    Kramer, Uwe; Rizos, Konstantin; Apfel, Heiko; Autenrieth, Ingo B; Lattemann, Claus T

    2003-04-01

    To optimize antigen delivery by Salmonella vaccine strains, a system for surface display of antigenic determinants was established by using the autotransporter secretion pathway of gram-negative bacteria. A modular system for surface display allowed effective targeting of heterologous antigens or fragments thereof to the bacterial surface by the autotransporter domain of AIDA-I, the Escherichia coli adhesin involved in diffuse adherence. A major histocompatibility complex class II-restricted epitope, comprising amino acids 74 to 86 of the Yersinia enterocolitica heat shock protein Hsp60 (Hsp60(74-86)), was fused to the AIDA-I autotransporter domain, and the resulting fusion protein was expressed at high levels on the cell surface of E. coli and Salmonella enterica serovar Typhimurium. Colonization studies in mice vaccinated with Salmonella strains expressing AIDA-I fusion proteins demonstrated high genetic stability of the generated vaccine strain in vivo. Furthermore, a pronounced T-cell response against Yersinia Hsp60(74-86) was induced in mice vaccinated with a Salmonella vaccine strain expressing the Hsp60(74-86)-AIDA-I fusion protein. This was shown by monitoring Yersinia Hsp60-stimulated IFN-gamma secretion and proliferation of splenic T cells isolated from vaccinated mice. These results demonstrate that the surface display of antigenic determinants by the autotransporter pathway deserves special attention regarding the application in live attenuated Salmonella vaccine strains.

  3. Neutralizing antibody and functional mapping of Bacillus anthracis protective antigen-The first step toward a rationally designed anthrax vaccine.

    PubMed

    McComb, Ryan C; Martchenko, Mikhail

    2016-01-02

    Anthrax is defined by the Centers for Disease Control and Prevention as a Category A pathogen for its potential use as a bioweapon. Current prevention treatments include Anthrax Vaccine Adsorbed (AVA). AVA is an undefined formulation of Bacillus anthracis culture supernatant adsorbed to aluminum hydroxide. It has an onerous vaccination schedule, is slow and cumbersome to produce and is slightly reactogenic. Next-generation vaccines are focused on producing recombinant forms of anthrax toxin in a well-defined formulation but these vaccines have been shown to lose potency as they are stored. In addition, studies have shown that a proportion of the antibody response against these vaccines is focused on non-functional, non-neutralizing regions of the anthrax toxin while some essential functional regions are shielded from eliciting an antibody response. Rational vaccinology is a developing field that focuses on designing vaccine antigens based on structural information provided by neutralizing antibody epitope mapping, crystal structure analysis, and functional mapping through amino acid mutations. This information provides an opportunity to design antigens that target only functionally important and conserved regions of a pathogen in order to make a more optimal vaccine product. This review provides an overview of the literature related to functional and neutralizing antibody epitope mapping of the Protective Antigen (PA) component of anthrax toxin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Mucosal Vaccine Development Based on Liposome Technology

    PubMed Central

    Norling, Karin; Bally, Marta; Höök, Fredrik

    2016-01-01

    Immune protection against infectious diseases is most effective if located at the portal of entry of the pathogen. Hence, there is an increasing demand for vaccine formulations that can induce strong protective immunity following oral, respiratory, or genital tract administration. At present, only few mucosal vaccines are found on the market, but recent technological advancements and a better understanding of the principles that govern priming of mucosal immune responses have contributed to a more optimistic view on the future of mucosal vaccines. Compared to live attenuated vaccines, subcomponent vaccines, most often protein-based, are considered safer, more stable, and less complicated to manufacture, but they require the addition of nontoxic and clinically safe adjuvants to be effective. In addition, another limiting factor is the large antigen dose that usually is required for mucosal vaccines. Therefore, the combination of mucosal adjuvants with the recent progress in nanoparticle technology provides an attractive solution to these problems. In particular, the liposome technology is ideal for combining protein antigen and adjuvant into an effective mucosal vaccine. Here, we describe and discuss recent progress in nanoparticle formulations using various types of liposomes that convey strong promise for the successful development of the next generation of mucosal vaccines. PMID:28127567

  5. The establishment of a WHO Reference Reagent for anti-malaria (Plasmodium falciparum) human serum.

    PubMed

    Bryan, Donna; Silva, Nilupa; Rigsby, Peter; Dougall, Thomas; Corran, Patrick; Bowyer, Paul W; Ho, Mei Mei

    2017-08-05

    At a World Health Organization (WHO) sponsored meeting it was concluded that there is an urgent need for a reference preparation that contains antibodies against malaria antigens in order to support serology studies and vaccine development. It was proposed that this reference would take the form of a lyophilized serum or plasma pool from a malaria-endemic area. In response, an immunoassay standard, comprising defibrinated human plasma has been prepared and evaluated in a collaborative study. A pool of human plasma from a malaria endemic region was collected from 140 single plasma donations selected for reactivity to Plasmodium falciparum apical membrane antigen-1 (AMA-1) and merozoite surface proteins (MSP-1 19 , MSP-1 42 , MSP-2 and MSP-3). This pool was defibrinated, filled and freeze dried into a single batch of ampoules to yield a stable source of naturally occurring antibodies to P. falciparum. The preparation was evaluated by an enzyme-linked immunosorbent assay (ELISA) in a collaborative study with sixteen participants from twelve different countries. This anti-malaria human serum preparation (NIBSC Code: 10/198) was adopted by the WHO Expert Committee on Biological Standardization (ECBS) in October 2014, as the first WHO reference reagent for anti-malaria (Plasmodium falciparum) human serum with an assigned arbitrary unitage of 100 units (U) per ampoule. Analysis of the reference reagent in a collaborative study has demonstrated the benefit of this preparation for the reduction in inter- and intra-laboratory variability in ELISA. Whilst locally sourced pools are regularly use for harmonization both within and between a few laboratories, the presence of a WHO-endorsed reference reagent should enable optimal harmonization of malaria serological assays either by direct use of the reference reagent or calibration of local standards against this WHO reference. The intended uses of this reference reagent, a multivalent preparation, are (1) to allow cross

  6. Comparative Assessment of Transmission-Blocking Vaccine Candidates against Plasmodium falciparum

    PubMed Central

    Kapulu, M. C.; Da, D. F.; Miura, K.; Li, Y; Blagborough, A. M.; Churcher, T. S.; Nikolaeva, D.; Williams, A. R.; Goodman, A. L.; Sangare, I.; Turner, A. V.; Cottingham, M. G.; Nicosia, A.; Straschil, U.; Tsuboi, T.; Gilbert, S. C.; Long, Carole A.; Sinden, R. E.; Draper, S. J.; Hill, A. V. S.; Cohuet, A.; Biswas, S.

    2015-01-01

    Malaria transmission-blocking vaccines (TBVs) target the development of Plasmodium parasites within the mosquito, with the aim of preventing malaria transmission from one infected individual to another. Different vaccine platforms, mainly protein-in-adjuvant formulations delivering the leading candidate antigens, have been developed independently and have reported varied transmission-blocking activities (TBA). Here, recombinant chimpanzee adenovirus 63, ChAd63, and modified vaccinia virus Ankara, MVA, expressing AgAPN1, Pfs230-C, Pfs25, and Pfs48/45 were generated. Antibody responses primed individually against all antigens by ChAd63 immunization in BALB/c mice were boosted by the administration of MVA expressing the same antigen. These antibodies exhibited a hierarchy of inhibitory activity against the NF54 laboratory strain of P. falciparum in Anopheles stephensi mosquitoes using the standard membrane feeding assay (SMFA), with anti-Pfs230-C and anti-Pfs25 antibodies giving complete blockade. The observed rank order of inhibition was replicated against P. falciparum African field isolates in A. gambiae in direct membrane feeding assays (DMFA). TBA achieved was IgG concentration dependent. This study provides the first head-to-head comparative analysis of leading antigens using two different parasite sources in two different vector species, and can be used to guide selection of TBVs for future clinical development using the viral-vectored delivery platform. PMID:26063320

  7. Memory T cells and vaccines.

    PubMed

    Esser, Mark T; Marchese, Rocio D; Kierstead, Lisa S; Tussey, Lynda G; Wang, Fubao; Chirmule, Narendra; Washabaugh, Michael W

    2003-01-17

    T lymphocytes play a central role in the generation of a protective immune response in many microbial infections. After immunization, dendritic cells take up microbial antigens and traffic to draining lymph nodes where they present processed antigens to naïve T cells. These naïve T cells are stimulated to proliferate and differentiate into effector and memory T cells. Activated, effector and memory T cells provide B cell help in the lymph nodes and traffic to sites of infection where they secrete anti-microbial cytokines and kill infected cells. At least two types of memory cells have been defined in humans based on their functional and migratory properties. T central-memory (T(CM)) cells are found predominantly in lymphoid organs and can not be immediately activated, whereas T effector-memory (T(EM)) cells are found predominantly in peripheral tissue and sites of inflammation and exhibit rapid effector function. Most currently licensed vaccines induce antibody responses capable of mediating long-term protection against lytic viruses such as influenza and small pox. In contrast, vaccines against chronic pathogens that require cell-mediated immune responses to control, such as malaria, Mycobacterium tuberculosis (TB), human immunodeficiency virus (HIV) and hepatitis C virus (HCV), are currently not available or are ineffective. Understanding the mechanisms by which long-lived cellular immune responses are generated following vaccination should facilitate the development of safe and effective vaccines against these emerging diseases. Here, we review the current literature with respect to memory T cells and their implications to vaccine development.

  8. Creation of first malaria vaccine raises troubling questions about "intellectual racism". Interview by Kirsteen MacLeod.

    PubMed Central

    Patarroyo, M

    1995-01-01

    Some of the problems caused by malaria, which places a huge roadblock in front of economic progress in the Third World, may be solved by a new vaccine created by Dr. Manuel Patarroyo, a Columbian physician and researcher. "Imagine how things would be if Canadians had malaria," he says. "Episodes last 10 days, then there are 10 days of recovering. This leaves only 10 days each month in which to do some productive work. Then imagine killing the population of Toronto each year, and you can see the huge toll in terms of the number of yearly deaths globally from malaria." His discovery also raises the issue of "intellectual racism" because of criticism of Patarroyo's methods by Western scientists. Patarroyo, meanwhile, turned down a $60-million offer for his vaccine, and instead donated the patent to the World Health Organization. Images p1320-a PMID:7497394

  9. Comparison of vaccine efficacy for different antigen delivery systems for infectious pancreatic necrosis virus vaccines in Atlantic salmon (Salmo salar L.) in a cohabitation challenge model.

    PubMed

    Munang'andu, Hetron M; Fredriksen, Børge N; Mutoloki, Stephen; Brudeseth, Bjørn; Kuo, Tsun-Yung; Marjara, Inderjit S; Dalmo, Roy A; Evensen, Øystein

    2012-06-08

    Two strains of IPNV made by reverse genetics on the Norwegian Sp strain NVI-015 (GenBank AY379740) backbone encoding the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs were used to prepare inactivated whole virus (IWV), nanoparticle vaccines with whole virus, Escherichia coli subunit encoding truncated VP2-TA and VP2-PT, VP2-TA and VP2-PT fusion antigens with putative translocating domains of Pseudomonas aeruginosa exotoxin, and plasmid DNA encoding segment A of the TA strain. Post challenge survival percentages (PCSP) showed that IWV vaccines conferred highest protection (PCSP=42-53) while nanoparticle, sub-unit recombinant and DNA vaccines fell short of the IWV vaccines in Atlantic salmon (Salmo salar L.) postsmolts challenged with the highly virulent Sp strain NVI-015 (TA strain) of IPNV after 560 degree days post vaccination. Antibody levels induced by these vaccines did not show antigenic differences between the virulent and avirulent motifs for vaccines made with the same antigen dose and delivery system after 8 weeks post vaccination. Our findings show that fish vaccinated with less potent vaccines comprising of nanoparticle, DNA and recombinant vaccines got infected much earlier and yielded to higher infection rates than fish vaccinated with IWV vaccines that were highly potent. Ability of the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs to limit establishment of infection showed equal protection for vaccines made of the same antigen dose and delivery systems. Prevention of tissue damage linked to viral infection was eminent in the more potent vaccines than the less protective ones. Hence, there still remains the challenge of developing highly efficacious vaccines with the ability to eliminate the post challenge carrier state in IPNV vaccinology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis.

    PubMed

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-11-27

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Randomized, controlled trial of the long term safety, immunogenicity and efficacy of RTS,S/AS02D malaria vaccine in infants living in a malaria-endemic region

    PubMed Central

    2013-01-01

    Background The RTS,S/AS malaria candidate vaccine is being developed with the intent to be delivered, if approved, through the Expanded Programme on Immunization (EPI) of the World Health Organization. Safety, immunogenicity and efficacy of the RTS,S/AS02D vaccine candidate when integrated into a standard EPI schedule for infants have been reported over a nine-month surveillance period. This paper describes results following 20 months of follow up. Methods This Phase IIb, single-centre, randomized controlled trial enrolled 340 infants in Tanzania to receive three doses of RTS,S/AS02D or hepatitis B vaccine at 8, 12, and 16 weeks of age. All infants also received DTPw/Hib (diphtheria and tetanus toxoids, whole-cell pertussis vaccine, conjugated Haemophilus influenzae type b vaccine) at the same timepoints. The study was double-blinded to month 9 and single-blinded from months 9 to 20. Results From month 0 to 20, at least one SAE was reported in 57/170 infants who received RTS,S/AS02D (33.5%; 95% confidence interval [CI]: 26.5, 41.2) and 62/170 infants who received hepatitis B vaccine (36.5%; 95% CI: 29.2, 44.2). The SAE profile was similar in both vaccine groups; none were considered to be related to vaccination. At month 20, 18 months after completion of vaccination, 71.8% of recipients of RTS,S/AS02D and 3.8% of recipients of hepatitis B vaccine had seropositive titres for anti-CS antibodies; seroprotective levels of anti-HBs antibodies remained in 100% of recipients of RTS,S/AS02D and 97.7% recipients of hepatitis B vaccine. Anti-HBs antibody GMTs were higher in the RTS,S/AS02D group at all post-vaccination time points compared to control. According to protocol population, vaccine efficacy against multiple episodes of malaria disease was 50.7% (95% CI: -6.5 to 77.1, p = 0.072) and 26.7% (95% CI: -33.1 to 59.6, p = 0.307) over 12 and 18 months post vaccination, respectively. In the Intention to Treat population, over the 20-month follow up, vaccine

  12. Prediction of Brugia malayi antigenic peptides: candidates for synthetic vaccine design against lymphatic filariasis.

    PubMed

    Gomase, Virendra S; Chitlange, Nikhilkumar R; Changbhale, Smruti S; Kale, Karbhari V

    2013-08-01

    Brugia malayi is a threadlike nematode cause's swelling of lymphatic organs, condition well known as lymphatic filariasis; till date no invention made to effectively address lymphatic filariasis. In this analysis we a have predicted suitable antigenic peptides from Brugia malayi antigen protein for peptide vaccine design against lymphatic filariasis based on cross protection phenomenon as, an ample immune response can be generated with a single protein subunit. We found MHC class II binding peptides of Brugia malayi antigen protein are important determinant against the diseased condition. The analysis shows Brugia malayi antigen protein having 505 amino acids, which shows 497 nonamers. In this assay, we have predicted MHC-I binding peptides for 8mer_H2_Db (optimal score- 15.966), 9mer_H2_Db (optimal score- 15.595), 10mer_H2_Db (optimal score- 19.405), 11mer_H2_Dballeles (optimal score- 23.801). We also predicted the SVM based MHCII-IAb nonamers, 51-FQQIDPLDA, 442-FAAIACLVH, 206-YLNPFGHQF, 167-WYVIMAACY, 367-YAMIVIRLL, 434- LVITTAANF, 176-LDSYCLWKP, 435-VITTAANFA, 364-WPGYAMIVI (optimal score- 13.963); MHCII-IAd nonamers, 52-QQIDPLDAE, 171-MAACYLDSY, 239-QWRSVILCN, 168-YVIMAACYL, 3-QYLSVHSLS, 322-EILLHAKVV, 417- LGIIASFVS, 396-KAIFLAHFG, 167-WYVIMAACY, 269-LALHCINVI, 93-FINKAAPKQ, 259-NCIIVLKAF, 79- QGVLLIIPR, 22-TILQRSQAI, 63-RGFVYGNVS, 109-NISSLAFET,(optimal score- 16.748); and MHCII-IAg7 nonamers 171-MAACYLDSY, 73-KIVNGAQGV, 259-NCIIVLKAF, 209-PFGHQFSFE, 102-SCDTLLKNI, 25-QRSQAIRIV, 444- AIACLVHLF, 88-SLVNGFINK, 252-FPRHQLLNC, 471-RFVLANDNE, 52-QQIDPLDAE, 469-HRRFVLAND, 457- SNRHYFLAD, 362-KSWPGYAMI, 476-NDNEGEDFE, 370-IVIRLLQAL (optimal score- 19.847) which represents potential binders from Brugia malayi antigen protein. The method integrates prediction of MHC class I binding proteasomal C-terminal cleavage peptides and Eighteen potential antigenic peptides at average propensity 1.063 having highest local hydrophilicity. Thus a small antigen fragment can induce

  13. Histo-blood group antigens as receptors for rotavirus, new understanding on rotavirus epidemiology and vaccine strategy

    PubMed Central

    Jiang, Xi; Liu, Yang; Tan, Ming

    2017-01-01

    The success of the two rotavirus (RV) vaccines (Rotarix and RotaTeq) in many countries endorses a live attenuated vaccine approach against RVs. However, the lower efficacies of both vaccines in many low- and middle-income countries indicate a need to improve the current RV vaccines. The recent discovery that RVs recognize histo-blood group antigens (HBGAs) as potential receptors has significantly advanced our understanding of RV diversity, evolution and epidemiology, providing important new insights into the performances of current RV vaccines in different populations and emphasizing a P-type-based vaccine approach. New understanding of RV diversity and evolution also raises a fundamental question about the ‘Jennerian' approach, which needs to be addressed for future development of live attenuated RV vaccines. Alternative approaches to develop safer and more cost-effective subunit vaccines against RVs are also discussed. PMID:28400594

  14. Development of behaviour change communication strategy for a vaccination-linked malaria control tool in southern Tanzania.

    PubMed

    Mushi, Adiel K; Schellenberg, Joanna; Mrisho, Mwifadhi; Manzi, Fatuma; Mbuya, Conrad; Mponda, Haji; Mshinda, Hassan; Tanner, Marcel; Alonso, Pedro; Pool, Robert; Schellenberg, David

    2008-09-29

    Intermittent preventive treatment of malaria in infants (IPTi) using sulphadoxine-pyrimethamine and linked to the expanded programme on immunization (EPI) is a promising strategy for malaria control in young children. As evidence grows on the efficacy of IPTi as public health strategy, information is needed so that this novel control tool can be put into practice promptly, once a policy recommendation is made to implement it. This paper describes the development of a behaviour change communication strategy to support implementation of IPTi by the routine health services in southern Tanzania, in the context of a five-year research programme evaluating the community effectiveness of IPTi. Mixed methods including a rapid qualitative assessment and quantitative health facility survey were used to investigate communities' and providers' knowledge and practices relating to malaria, EPI, sulphadoxine-pyrimethamine and existing health posters. Results were applied to develop an appropriate behaviour change communication strategy for IPTi involving personal communication between mothers and health staff, supported by a brand name and two posters. Malaria in young children was considered to be a nuisance because it causes sleepless nights. Vaccination services were well accepted and their use was considered the mother's responsibility. Babies were generally taken for vaccination despite complaints about fevers and swellings after the injections. Sulphadoxine-pyrimethamine was widely used for malaria treatment and intermittent preventive treatment of malaria in pregnancy, despite widespread rumours of adverse reactions based on hearsay and newspaper reports. Almost all health providers said that they or their spouse were ready to take SP in pregnancy (96%, 223/242). A brand name, key messages and images were developed and pre-tested as behaviour change communication materials. The posters contained public health messages, which explained the intervention itself, how and when

  15. Dendritic cell based vaccines: progress in immunotherapy studies for prostate cancer.

    PubMed

    Ragde, Haakon; Cavanagh, William A; Tjoa, Benjamin A

    2004-12-01

    No effective treatment is currently available for metastatic prostate cancer. Dendritic cell (DC) based cancer vaccine research has emerged from the laboratories to human clinical trials. We describe progress in the development of DC based prostate cancer vaccine. The literature was reviewed for major contributions to a growing number of studies that demonstrate the potential of DC based immunotherapeutics for prostate cancer. Background topics relating to DC based immunotherapy theory and practice are also addressed. DCs have been recognized as the most efficient antigen presenting cells that have the capacity to initiate naive T cell response in vitro and in vivo. During their differentiation and maturation pathways, dendritic cells can efficiently capture, process and present antigens for T cell activation. These characteristics make DC an attractive choice as the cellular adjuvant for cancer vaccines. Advances in DC generation, loading, and maturation methodologies have made it possible to generate clinical grade vaccines for various human trials. More than 100 DC vaccine trials, including 7 studies of patients with advanced prostate cancer have been reported to date. These vaccines were generally well tolerated with no significant adverse toxicity reported. Clinical responders have been identified in these studies. The new prospects opened by DC based vaccines for prostate cancer are fascinating. When compared to conventional treatments, DC vaccinations have few side effects. Improvements in patient selection, vaccine delivery strategies, immune monitoring and vaccine manufacturing will be crucial in moving DC based prostate cancer vaccines closer to the clinics.

  16. Evaluation of vaccinal effectiveness of preparations containing membrane antigens of Leishmania (L.) amazonensis in experimental cutaneous leishmaniasis model.

    PubMed

    Ribeiro, João G; Ferreira, Amália S; Macedo, Sharon R A; Rossi, Norton R D L P; da Silva, Mayara C P; Guerra, Rosane N M; de Barros, Neuza B; Nicolete, Roberto

    2017-06-01

    American tegumentary leishmaniasis (ATL) is considered a neglected disease, for which an effective vaccine or an efficient diagnosis is not yet available and whose chemotherapeutic arsenal is threatened by the emergence of resistance by etiological agents such as Leishmania amazonensis. ATL is endemic in poor countries and has a high incidence in Brazil. Vaccines developed from native parasite fractions have led to the identification of defined antigenic subunits and the development of vaccine adjuvant technology. The purpose of the present study was to develop and compare preparations based on membrane antigens from L. amazonensis, as a biotechnological prototype for the immunoprophylaxis of the disease in a murine experimental model. For this purpose, batches of biodegradable polymeric micro/nanoparticles were produced, characterized and compared with other parasite's antigens in solution. All preparations containing membrane antigens presented low toxicity on murine macrophages. The in vivo evaluation of immunization efficacy was performed against a challenge with L. amazonensis, along with an evaluation of the immune response profile generated in BALB/C mice. The animals were followed for sample processing and quantification of serum-specific cytokines, nitrites and antibodies. The sera of animals immunized with the non-encapsulated antigen formulations showed higher intensities of nitrites and total IgGs. This approach evidenced the importance of the biological studies involving the immune response of the host against the parasite being interconnected and related to the subfractionation of its proteins in the search for more effective vaccine candidates. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens

    PubMed Central

    Watson, Douglas S.; Endsley, Aaron N.; Huang, Leaf

    2012-01-01

    Liposomes (phospholipid bilayer vesicles) are versatile and robust delivery systems for induction of antibody and T lymphocyte responses to associated subunit antigens. In the last 15 years, liposome vaccine technology has matured and now several vaccines containing liposome-based adjuvants have been approved for human use or have reached late stages of clinical evaluation. Given the intensifying interest in liposome-based vaccines, it is important to understand precisely how liposomes interact with the immune system and stimulate immunity. It has become clear that the physicochemical properties of liposomal vaccines – method of antigen attachment, lipid composition, bilayer fluidity, particle charge, and other properties – exert dramatic effects on the resulting immune response. Here, we present a comprehensive review of the physicochemical properties of liposomal vaccines and how they influence immune responses. A discussion of novel and emerging immunomodulators that are suitable for inclusion in liposomal vaccines is also presented. Through a comprehensive analysis of the body of liposomal vaccine literature, we enumerate a series of principles that can guide the rational design of liposomal vaccines to elicit immune responses of a desired magnitude and quality. We also identify major unanswered questions in the field, pointing the direction for future study. PMID:22306376

  18. Subviral Particle as Vaccine and Vaccine Platform

    PubMed Central

    Tan, Ming; Jiang, Xi

    2014-01-01

    Recombinant subvirual particles retain similar antigenic features of their authentic viral capsids and thus have been applied as nonreplicating subunit vaccines against viral infection and illness. Additionally, the self-assembled, polyvalent subviral particles are excellent platforms to display foreign antigens for immune enhancement for vaccine development. These subviral particle-based vaccines are noninfectious and thus safer than the conventional live attenuated and inactivated vaccines. While several VLP vaccines are available in the markets, numerous others, including dual vaccines against more than one pathogen, are under clinical or preclinical development. This article provides an update of these efforts. PMID:24662314

  19. A comparative study of blood smear, QBC and antigen detection for diagnosis of malaria.

    PubMed

    Parija, S C; Dhodapkar, Rahul; Elangovan, Subashini; Chaya, D R

    2009-01-01

    Rapid diagnosis is prerequisite for effective treatment and reducing mortality and morbidity of malaria. This study was taken up to compare the efficacy of various methods available, i.e., thick and thin smear, quantitative buffy coat (QBC), plasmodium lactate dehydrogenase and aldolase in blood of patient. A total of 411 samples were collected from patients presenting with classic symptoms of malaria. For traditional microscopy; thick and thin smears were prepared and stained with Leishman's stain, taking thick smear as gold standard, thin smear had a sensitivity and specificity of 54.8% and 100%, respectively. QBC and antigen detection was done using commercially available kits; out of 411 samples, QBC and Malariagen were positive in 66 and 62 cases, with a sensitivity of 78% and 75%, respectively. Leishman's thick smear, although cost effective, is difficult to interpret for inexperienced microscopists; so if facilities are available, QBC should be used for routine diagnosis. In places where facilities are not available, rapid, simple and easy to interpret antigen detection test can be used despite low sensitivity.

  20. Human experimental challenge with enterotoxigenic Escherichia coli elicits immune responses to canonical and novel antigens relevant to vaccine development.

    PubMed

    Chakraborty, Subhra; Randall, Arlo; Vickers, Tim J; Molina, Doug; Harro, Clayton D; DeNearing, Barbara; Brubaker, Jessica; Sack, David A; Bourgeois, A Louis; Felgner, Philip L; Liang, Xiaowu; Mani, Sachin; Wenzel, Heather; Townsend, R Reid; Gilmore, Petra E; Darsley, Michael J; Rasko, David A; Fleckenstein, James M

    2018-05-24

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal illness in the developing world. ETEC vaccinology has been challenged by genetic diversity and heterogeneity of canonical antigens. Examination of the antigenic breadth of immune responses associated with protective immunity could afford new avenues for vaccine development. Antibody lymphocyte supernatants (ALS) and sera from 20 naïve human volunteers challenged with ETEC strain H10407 and from 10 volunteers re-challenged 4-6 weeks later with the same strain (9 of whom were completely protected on re-challenge) were tested against ETEC proteome microarrays containing 957 antigens. ETEC challenge stimulated robust serum and mucosal (ALS) responses to canonical vaccine antigens (CFA/I, and the B subunit of LT) as well as a small number of antigens not presently targeted in ETEC vaccines. These included pathovar-specific secreted proteins (EtpA, EatA) as well as highly conserved E. coli antigens including YghJ, flagellin (FliC), and pertactin-like autotransporter proteins, all of which have previously afforded protection against ETEC infection in preclinical studies. Collectively, studies reported here suggest that immune responses following ETEC infection involve traditional vaccine targets as well as a select number of more recently identified protein antigens that could offer additional avenues for vaccine development for these pathogens.