Science.gov

Sample records for antihydrogen formation dynamics

  1. Antihydrogen Formation using Cold Plasmas

    SciTech Connect

    Madsen, N.; Bowe, P.D.; Hangst, J.S.; Amoretti, M.; Carraro, C.; Macri, M.; Testera, G.; Variola, A.; Amsler, C.; Johnson, I.; Pruys, H.; Regenfus, C.; Bonomi, G.; Bouchta, A.; Doser, M.; Kellerbauer, A.; Landua, R.; Cesar, C.L.; Charlton, M.; Joergensen, L.V.

    2004-10-20

    Antihydrogen, the antimatter counterpart of the hydrogen atom, can be formed by mixing cold samples of antiprotons and positrons. In 2002 the ATHENA collaboration succeeded in the first production of cold antihydrogen. By observing and imaging the annihilation products of the neutral, non-confined, antihydrogen atoms annihilating on the walls of the trap we can observe the production in quasi-real-time and study the dynamics of the formation mechanism. The formation mechanism strongly influences the final state of the formed antihydrogen atoms, important for future spectroscopic comparison with hydrogen. This paper briefly summarizes the current understanding of the antihydrogen formation in ATHENA.

  2. Spatial distribution of cold antihydrogen formation.

    PubMed

    Madsen, N; Amoretti, M; Amsler, C; Bonomi, G; Bowe, P D; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Kellerbauer, A; Lagomarsino, V; Landua, R; Lodi-Rizzini, E; Macri, M; Mitchard, D; Montagna, P; Pruys, H; Regenfus, C; Rotondi, A; Testera, G; Variola, A; Venturelli, L; van der Werf, D P; Yamazaki, Y; Zurlo, N

    2005-01-28

    Antihydrogen is formed when antiprotons are mixed with cold positrons in a nested Penning trap. We present experimental evidence, obtained using our antihydrogen annihilation detector, that the spatial distribution of the emerging antihydrogen atoms is independent of the positron temperature and axially enhanced. This indicates that antihydrogen is formed before the antiprotons are in thermal equilibrium with the positron plasma. This result has important implications for the trapping and spectroscopy of antihydrogen. PMID:15698264

  3. Search for laser-induced formation of antihydrogen atoms.

    PubMed

    Amoretti, M; Amsler, C; Bonomi, G; Bowe, P D; Canali, C; Carraro, C; Cesar, C L; Charlton, M; Ejsing, A M; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Kellerbauer, A; Lagomarsino, V; Lodi Rizzini, E; Macrì, M; Madsen, N; Manuzio, G; Mitchard, D; Montagna, P; Posada, L G C; Pruys, H; Regenfus, C; Rotondi, A; Telle, H H; Testera, G; Van der Werf, D P; Variola, A; Venturelli, L; Yamazaki, Y; Zurlo, N

    2006-11-24

    Antihydrogen can be synthesized by mixing antiprotons and positrons in a Penning trap environment. Here an experiment to stimulate the formation of antihydrogen in the n = 11 quantum state by the introduction of light from a CO2 continuous wave laser is described. An overall upper limit of 0.8% with 90% C.L. on the laser-induced enhancement of the recombination has been found. This result strongly suggests that radiative recombination contributes negligibly to the antihydrogen formed in the experimental conditions used by the ATHENA Collaboration. PMID:17155742

  4. Antihydrogen formation from antiprotons in a pure positron plasma

    SciTech Connect

    Bass, Eric M.; Dubin, Daniel H. E.

    2009-01-15

    This paper investigates the evolution in binding energy of antihydrogen atoms formed from stationary antiprotons located within a strongly magnetized positron plasma. Three-body recombination and a collisional cascade to deeper binding, limited by a kinetic bottleneck at a binding energy of 4T, dominate the initial antihydrogen formation process. A classical Monte-Carlo simulation is used to determine the collisional transition rate between atomic binding energies, using the drift approximation for initial conditions that allow it, and full dynamics for initial conditions resulting in chaotic motion. These transition rates are employed in determining mean energy-loss rates for an ensemble of atoms, as well as in a numerical solution of the master equation to find the rate at which atoms are formed over a range of binding energies. The highly excited atoms formed by this process separate into guiding-center drift atoms and chaotic atoms. The phase-space distributions of the atoms are investigated, along with their implications for magnetic confinement and radiative energy loss. Estimates of radiative energy loss indicate that radiation is unimportant for guiding-center atoms, but increases rapidly near the chaotic regime, taking over as the dominant energy-loss process for parameters typical of recent experiments. Furthermore, the fraction of low-magnetic field seekers is considerably larger than suggested by estimates of the magnetic moment based on guiding-center dynamics, due to effects associated with chaos.

  5. Resonant antihydrogen formation in antiproton–positronium collisions

    NASA Astrophysics Data System (ADS)

    Lazauskas, R.; Hervieux, P.-A.; Dufour, M.; Valdes, M.

    2016-05-01

    We study the influence of narrow resonances on antihydrogen formation cross sections via the three-body reaction \\bar{{{p}}}+{{Ps}}*\\to {\\bar{{{H}}}}*+{{{e}}}-. The latter is of interest for the gravitational behavior of antihydrogen at rest experiment that will be performed at CERN in the near future. The complex scaling method is employed to compute the positions and widths of these resonances, whereas the Kohn-variational principle is used for the determination of the scattering cross sections. A very good agreement is found with available theoretical results. The impact of these resonances on the cross section is analyzed.

  6. Calculation of antihydrogen formation via antiproton scattering with excited positronium

    NASA Astrophysics Data System (ADS)

    Rawlins, C. M.; Kadyrov, A. S.; Stelbovics, A. T.; Bray, I.; Charlton, M.

    2016-01-01

    The two-center convergent close-coupling method is used to calculate antihydrogen (H ¯) formation via positronium (Ps) scattering on antiprotons (p ¯) at near threshold energies. For excited Ps of energy ɛ , the 1 /ɛ behavior of the H ¯ formation cross sections is valid strictly only at the respective threshold, as is the 1 /√{ɛ } behavior for Ps in the ground state. Simple equations are given for the H ¯(n ≤4 ) formation cross sections from Ps(n ≤3 ) from zero to around 0.1 eV above threshold. Some of the implications of using p ¯-Ps collisions to form antihydrogen in beams, and held in traps, are discussed.

  7. The role of antihydrogen formation in the radial transport of antiprotons in positron plasmas

    NASA Astrophysics Data System (ADS)

    Jonsell, S.; Charlton, M.; van der Werf, D. P.

    2016-07-01

    Simulations have been performed of the radial transport of antiprotons in positron plasmas under ambient conditions typical of those used in antihydrogen formation experiments. The parameter range explored includes several positron densities and temperatures, as well as two different magnetic fields (1 and 3 T). Computations were also performed in which the antihydrogen formation process was artificially suppressed in order to isolate its role from other collisional sources of transport. The results show that, at the lowest positron plasma temperatures, repeated cycles of antihydrogen formation and destruction are the dominant source of radial (cross magnetic field) transport, and that the phenomenon is an example of anomalous diffusion.

  8. Simulation of the formation of antihydrogen in a nested Penning trap: effect of positron density

    NASA Astrophysics Data System (ADS)

    Jonsell, S.; van der Werf, D. P.; Charlton, M.; Robicheaux, F.

    2009-11-01

    Detailed simulations of antihydrogen formation have been performed under the conditions of the ATHENA experiment, using several densities of the positron plasma in the range ne = 5 × 1013 m-3 to 1015 m-3. The simulations include only collisional effects, typically resulting in the formation of weakly bound antihydrogen via the three-body process, e^+ + e^+ + \\overlinep \\rightarrow \\overlineH + e^+ . (Radiative processes, which are much slower than collisional effects, are neglected.) The properties of these weakly bound anti-atoms are affected not only by further collisions in the plasma but also by the inherent electric fields. The role of field ionization in influencing the distribution of binding energies of the antihydrogen is clarified and the mechanism for this process in the strong B-field nested Penning trap used in the experiment is elucidated. The fate of antihydrogen is explained and the properties of the population detected after having reached the wall of the Penning trap electrodes, as well as those field ionized, are recorded. We find that the yield of detected antihydrogen varies with positron density roughly as n1.7e, rather than the n2e expected from the underlying formation process. As ne is increased, antihydrogen formation is sufficiently rapid that epithermal effects begin to play an important role. In general, the simulated timescales for antihydrogen formation are much shorter than those found from the experiment.

  9. Antihydrogen formation in collisions of positronium with antiprotons

    NASA Technical Reports Server (NTRS)

    Humberston, J. W.

    1990-01-01

    Antihydrogen, consisting of a positron orbiting around an antiproton, is the simplest few body system consisting entirely of antimatter and as such is of considerable importance in providing additional tests of the validity of charge conjugation invariance. In addition, the nature of the gravitational interaction between matter and antimatter might more readily be investigated for an electrically neutral system than one which is charged. Before such studies can be undertaken the antihydrogen must, of course, be produced by attachment of a positron to an antipositron. Several production mechanisms have been proposed, the two most favored of which are radiative capture (spontaneous or stimulated) and charge exchange in positronium-antiproton collisions. The cross section for radiative capture is very much less than that for charge exchange, so that it might be thought that the latter process is greatly to be preferred. Various calculations of the cross section for the charge exchange process are briefly reviewed.

  10. Trapping and Probing Antihydrogen

    SciTech Connect

    Wurtele, Jonathan

    2013-03-27

    Precision spectroscopy of antihydrogen is a promising path to sensitive tests of CPT symmetry. The most direct route to achieve this goal is to create and probe antihydrogen in a magnetic minimum trap. Antihydrogen has been synthesized and trapped for 1000s at CERN by the ALPHA Collaboration. Some of the challenges associated with achieving these milestones will be discussed, including mixing cryogenic positron and antiproton plasmas to synthesize antihydrogen with kinetic energy less than the trap potential of .5K. Recent experiments in which hyperfine transitions were resonantly induced with microwaves will be presented. The opportunity for gravitational measurements in traps based on detailed studies of antihydrogen dynamics will be described. The talk will conclude with a discussion future antihydrogen research that will use a new experimental apparatus, ALPHA-I.

  11. Antihydrogen (\\overline{H}) and muonic antihydrogen (\\overline{H}_{\\mu }) formation in low energy three-charge-particle collisions

    NASA Astrophysics Data System (ADS)

    Sultanov, Renat A.; Guster, D.

    2013-11-01

    A few-body formalism is applied for computation of two different three-charge-particle systems. The first system is a collision of a slow antiproton, \\overline{p}, with a positronium atom: Ps=(e+e-)—a bound state of an electron and a positron. The second problem is a collision of \\overline{p} with a muonic muonium atom, i.e. true muonium—a bound state of two muons one positive and one negative: Psμ = (μ+μ-). The total cross section of the following two reactions: \\overlinep+(e^+e^-) \\rightarrow \\overline{H} + e^- and \\overlinep+(\\mu ^+\\mu ^-) \\rightarrow \\overline{H}_{\\mu } + \\mu ^-, where \\overline{H}=(\\overlinepe^+) is antihydrogen and \\overline{H}_{\\mu }=(\\overlinep\\mu ^+) is a muonic antihydrogen atom, i.e. a bound state of \\overline{p} and μ+, are computed in the framework of a set of coupled two-component Faddeev-Hahn-type (FH-type) equations. Unlike the original Faddeev approach the FH-type equations are formulated in terms of only two but relevant components: Ψ1 and Ψ2, of the system's three-body wave function Ψ, where Ψ = Ψ1 + Ψ2. In order to solve the FH-type equations Ψ1 is expanded in terms of the input channel target eigenfunctions, i.e. in this work in terms of, for example, the (μ+μ-) atom eigenfunctions. At the same time Ψ2 is expanded in terms of the output channel two-body wave functions, that is in terms of \\overline{H}_{\\mu } atom eigenfunctions. Additionally, a convenient total angular momentum projection is performed. Results for better known low energy μ- transfer reactions from one hydrogen isotope to another hydrogen isotope in the cycle of muon catalyzed fusion (μCF) are also computed and presented.

  12. Antihydrogen Physics

    NASA Astrophysics Data System (ADS)

    Madsen, Niels

    Antihydrogen, the bound state of an antiproton and a positron, is now routinely made and trapped and the era of antihydrogen physics has started. This development owes much to physics of trapped charged particles. With a focus on this aspect, we discuss the various techniques used for making and trapping antihydrogen as well as some of the more peculiar issues that arise from the combined traps that must hold both charged and neutral species.

  13. Trapped antihydrogen.

    PubMed

    Andresen, G B; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; el Nasr, S Seif; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2010-12-01

    Antimatter was first predicted in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature's fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 10(14) for the frequency of the 1s-to-2s transition), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational behaviour of antimatter. However, so far experiments have produced antihydrogen that is not confined, precluding detailed study of its structure. Here we demonstrate trapping of antihydrogen atoms. From the interaction of about 10(7) antiprotons and 7 × 10(8) positrons, we observed 38 annihilation events consistent with the controlled release of trapped antihydrogen from our magnetic trap; the measured background is 1.4 ± 1.4 events. This result opens the door to precision measurements on anti-atoms, which can soon be subjected to the same techniques as developed for hydrogen. PMID:21085118

  14. Antihydrogen Trapped in the ALPHA Experiment

    SciTech Connect

    2011-02-25

    In 2010 the ALPHA collaboration succeeded in trapping antihydrogen atoms for the first time.[i]  Stored antihydrogen promises to be a unique tool for making high precision measurements of the structure of this first anti-atom. Achieving this milestone presented several substantial experimental challenges and this talk will describe how they were overcome.   The unique design features of the ALPHA apparatus will be explained.[ii]  These allow a high intensity positron source and an antiproton imaging detector similar to the one used in the ATHENA[iii] experiment to be combined with an innovative magnet design of the anti-atom trap. This seeks to minimise the perturbations to trapped charged particles which may cause particle loss and heating[iv].   The diagnostic techniques used to measure the diameter, number, density, and temperatures of both plasmas will be presented as will the methods developed to actively compress and cool of both plasma species to sizes and temperatures [v],[vi], [vii] where trapping attempts with a reasonable chance of success can be tried.   The results of the successful trapping experiments will be outlined as well as some subsequent experiments to improve the trapping rate and storage time. [i] 'Trapped antihydrogen' G.B. Andresen et al., Nature 468, 673 (2010) [ii]'A Magnetic Trap for Antihydrogen Confinement' W. Bertsche et al., Nucl. Instr. Meth. Phys. Res. A566, 746 (2006) [iii] Production and detection of cold antihydrogen atoms M.Amoretti et al., Nature 419, 456 (2002). [iv]' Antihydrogen formation dynamics in a multipolar neutral anti-atom trap' G.B. Andresen et al., Phys. Lett. B 685, 141 (2010) [v]' Evaporative Cooling of Antiprotons to Cryogenic Temperatures',                                   G.B. Andresen et al. Phys. Rev. Lett 105, 013003 (2010) [vi]'Compression of Antiproton Clouds for Antihydrogen Trapping' G. B. Andresen et al. Phys. Rev. Lett 100, 203401 (2008) [vii]  'Autoresonant

  15. Antihydrogen Trapped in the ALPHA Experiment

    ScienceCinema

    None

    2011-04-25

    In 2010 the ALPHA collaboration succeeded in trapping antihydrogen atoms for the first time.[i]  Stored antihydrogen promises to be a unique tool for making high precision measurements of the structure of this first anti-atom. Achieving this milestone presented several substantial experimental challenges and this talk will describe how they were overcome.   The unique design features of the ALPHA apparatus will be explained.[ii]  These allow a high intensity positron source and an antiproton imaging detector similar to the one used in the ATHENA[iii] experiment to be combined with an innovative magnet design of the anti-atom trap. This seeks to minimise the perturbations to trapped charged particles which may cause particle loss and heating[iv].   The diagnostic techniques used to measure the diameter, number, density, and temperatures of both plasmas will be presented as will the methods developed to actively compress and cool of both plasma species to sizes and temperatures [v],[vi], [vii] where trapping attempts with a reasonable chance of success can be tried.   The results of the successful trapping experiments will be outlined as well as some subsequent experiments to improve the trapping rate and storage time. [i] 'Trapped antihydrogen' G.B. Andresen et al., Nature 468, 673 (2010) [ii]'A Magnetic Trap for Antihydrogen Confinement' W. Bertsche et al., Nucl. Instr. Meth. Phys. Res. A566, 746 (2006) [iii] Production and detection of cold antihydrogen atoms M.Amoretti et al., Nature 419, 456 (2002). [iv]' Antihydrogen formation dynamics in a multipolar neutral anti-atom trap' G.B. Andresen et al., Phys. Lett. B 685, 141 (2010) [v]' Evaporative Cooling of Antiprotons to Cryogenic Temperatures',                                   G.B. Andresen et al. Phys. Rev. Lett 105, 013003 (2010) [vi]'Compression of Antiproton Clouds for Antihydrogen Trapping' G. B. Andresen et al. Phys. Rev. Lett 100, 203401 (2008) [vii]  'Autoresonant

  16. Physics with antihydrogen

    NASA Astrophysics Data System (ADS)

    Bertsche, W. A.; Butler, E.; Charlton, M.; Madsen, N.

    2014-12-01

    Performing measurements of the properties of antihydrogen, the bound state of an antiproton and a positron, and comparing the results with those for ordinary hydrogen, has long been seen as a route to test some of the fundamental principles of physics. There has been much experimental progress in this direction in recent years, and antihydrogen is now routinely created and trapped and a range of exciting measurements probing the foundations of modern physics are planned or underway. In this contribution we review the techniques developed to facilitate the capture and manipulation of positrons and antiprotons, along with procedures to bring them together to create antihydrogen. Once formed, the antihydrogen has been detected by its destruction via annihilation or field ionization, and aspects of the methodologies involved are summarized. Magnetic minimum neutral atom traps have been employed to allow some of the antihydrogen created to be held for considerable periods. We describe such devices, and their implementation, along with the cusp magnetic trap used to produce the first evidence for a low-energy beam of antihydrogen. The experiments performed to date on antihydrogen are discussed, including the first observation of a resonant quantum transition and the analyses that have yielded a limit on the electrical neutrality of the anti-atom and placed crude bounds on its gravitational behaviour. Our review concludes with an outlook, including the new ELENA extension to the antiproton decelerator facility at CERN, together with summaries of how we envisage the major threads of antihydrogen physics will progress in the coming years.

  17. Physics with antihydrogen

    NASA Astrophysics Data System (ADS)

    Bertsche, W. A.; Butler, E.; Charlton, M.; Madsen, N.

    2015-12-01

    Performing measurements of the properties of antihydrogen, the bound state of an antiproton and a positron, and comparing the results with those for ordinary hydrogen, has long been seen as a route to test some of the fundamental principles of physics. There has been much experimental progress in this direction in recent years, and antihydrogen is now routinely created and trapped and a range of exciting measurements probing the foundations of modern physics are planned or underway. In this contribution we review the techniques developed to facilitate the capture and manipulation of positrons and antiprotons, along with procedures to bring them together to create antihydrogen. Once formed, the antihydrogen has been detected by its destruction via annihilation or field ionization, and aspects of the methodologies involved are summarized. Magnetic minimum neutral atom traps have been employed to allow some of the antihydrogen created to be held for considerable periods. We describe such devices, and their implementation, along with the cusp magnetic trap used to produce the first evidence for a low-energy beam of antihydrogen. The experiments performed to date on antihydrogen are discussed, including the first observation of a resonant quantum transition and the analyses that have yielded a limit on the electrical neutrality of the anti-atom and placed crude bounds on its gravitational behaviour. Our review concludes with an outlook, including the new ELENA extension to the antiproton decelerator facility at CERN, together with summaries of how we envisage the major threads of antihydrogen physics will progress in the coming years.

  18. Antihydrogen in a bottle

    NASA Astrophysics Data System (ADS)

    Charlton, Michael; Eriksson, Stefan; Aled Isaac, C.; Madsen, Niels; van der Werf, Dirk Peter

    2013-03-01

    We describe recent experiments at CERN in which antihydrogen, an atom made entirely of antimatter, has been held in a magnetic minimum neutral atom trap and subjected to microwave radiation to induce a resonant quantum transition in the anti-atom. We discuss how this, the first experiment to observe an interaction between an antihydrogen atom and a photon, was achieved. We provide some background to antimatter physics and cover aspects of the current motivation for our experiments.

  19. First antihydrogen production within a combined Penning-Ioffe trap

    NASA Astrophysics Data System (ADS)

    Le Sage, David Anthony

    The long-term goal of the ATRAP collaboration is to perform precision laser spectroscopy on antihydrogen, the simplest atom made entirely of antimatter. Comparing this to the hydrogen spectrum would be a direct test of CPT invariance. Antihydrogen has been produced by ATRAP both during the positron cooling of antiprotons and by a laser-controlled charge-exchange process. Antihydrogen spectroscopy will first require confining the atoms produced in a Penning ion trap within the magnetic confining field of a superimposed Ioffe trap. A new experimental zone was established at the CERN Antiproton Decelerator, and a combined Penning-Ioffe trap was constructed for the trapping and spectroscopy of antihydrogen. Significant advances were made in the methods of accumulating the constituent particles necessary for antihydrogen formation, including a factor of 400 improvement of the positron loading rate using buffer-gas accumulation, the demonstration of a new electron loading method via the photoelectric effect using UV laser pulses, and efficient antiproton trapping using magnetic fields that were much lower than previously demonstrated, as required to maximize antihydrogen trapping depths. The loss of particles from the Penning trap caused by the radial magnetic field of a quadrupole-Ioffe trap was measured, and found to be suitably low for antihydrogen production. Following this, antihydrogen production in a combined Penning-Ioffe trap was demonstrated for the first time. A new method of antihydrogen production via positron-cooling of antiprotons was utilized that prolonged the interaction time of the positrons and antiprotons, while minimizing the mixing-energy of the antiprotons. Larger amounts of antihydrogen were produced in the presence of the Ioffe field than without it, assuaging reasonable fears that the magnetic confining field would restrict antihydrogen formation. Searches for antihydrogen confined in the magnetic trap yielded null results, likely due to the

  20. Antihydrogen level population evolution: impact of positron plasma length

    NASA Astrophysics Data System (ADS)

    Radics, B.; Yamazaki, Y.

    2016-03-01

    Antihydrogen is produced by mixing an antiproton and a positron plasma in a cryogenic electromagnetic trap. The dominant antihydrogen formation mechanism is three-body recombination, while the subsequent level population evolution is governed by various processes, mainly collisional (de)excitation, ionisation and radiative decay. In this work the impact of various positron plasma lengths on the level population evolution is investigated. The main interest is the ground-state antihydrogen atom yield. It is found that the ground state level population shows different power-law behaviors at short or longer positron plasma lengths.

  1. Mesoporous materials for antihydrogen production.

    PubMed

    Consolati, Giovanni; Ferragut, Rafael; Galarneau, Anne; Di Renzo, Francesco; Quasso, Fiorenza

    2013-05-01

    Antimatter is barely known by the chemist community and this article has the vocation to explain how antimatter, in particular antihydrogen, can be obtained, as well as to show how mesoporous materials could be used as a further improvement for the production of antimatter at very low temperatures (below 1 K). The first experiments with mesoporous materials highlighted in this review show very promising and exciting results. Mesoporous materials such as mesoporous silicon, mesoporous material films, pellets of MCM-41 and silica aerogel show remarkable features for antihydrogen formation. Yet, the characteristics for the best future mesoporous materials (e.g. pore sizes, pore connectivity, shape, surface chemistry) remain to be clearly identified. For now among the best candidates are pellets of MCM-41 and aerogel with pore sizes between 10 and 30 nm, possessing hydrophobic patches on their surface to avoid ice formation at low temperature. From a fundamental standpoint, antimatter experiments could help to shed light on open issues, such as the apparent asymmetry between matter and antimatter in our universe and the gravitational behaviour of antimatter. To this purpose, basic studies on antimatter are necessary and a convenient production of antimatter is required. It is exactly where mesoporous materials could be very useful. PMID:23250616

  2. Advances in antihydrogen physics.

    PubMed

    Charlton, Mike; Van der Werf, Dirk Peter

    2015-01-01

    The creation of cold antihydrogen atoms by the controlled combination of positrons and antiprotons has opened up a new window on fundamental physics. More recently, techniques have been developed that allow some antihydrogen atoms to be created at low enough kinetic energies that they can be held inside magnetic minimum neutral atom traps. With confinement times of many minutes possible, it has become feasible to perform experiments to probe the properties of the antiatom for the first time. We review the experimental progress in this area, outline some of the motivation for studying basic aspects of antimatter physics and provide an outlook of where we might expect this field to go in the coming years. PMID:25942774

  3. Observation of relativistic antihydrogen atoms

    SciTech Connect

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

  4. ANTIHYDROGEN PRODUCTION AND PRECISION SPECTROSCOPY WITH ATHENA/AD-1

    SciTech Connect

    M. HOLZSCHEITER; C. AMSLER; ET AL

    2000-11-01

    CPT invariance is a fundamental property of quantum field theories in flat space-time. Principal consequences include the predictions that particles and their antiparticles have equal masses and lifetimes, and equal and opposite electric charges and magnetic moments. It also follows that the fine structure, hyperfine structure, and Lamb shifts of matter and antimatter bound systems should be identical. It is proposed to generate new stringent tests of CPT using precision spectroscopy on antihydrogen atoms. An experiment to produce antihydrogen at rest has been approved for running at the Antiproton Decelerator (AD) at CERN. We describe the fundamental features of this experiment and the experimental approach to the first phase of the program, the formation and identification of low energy antihydrogen.

  5. Antimatter Matters: Progress in Cold Antihydrogen Research

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yasunori

    2012-11-01

    The purpose of cold antihydrogen research is briefly reviewed together with the latest developments of manipulating antihydrogen atoms. Two major progresses last year were the trapping of antihydrogen atoms in a magnetic bottle and synthesis of antihydrogen atoms in a cusp trap, where a spin-polarized antihydrogen beam can be extracted as an intensified beam. The magnetic bottle consists of an octupole coil and a pair of mirror coils, which improved the magnetic field uniformity near the axis, and so the stability of trapping antiprotons and positrons. Eventually, antihydrogen atoms were trapped for more than 1000s, which is ready to be testified with high precision laser spectroscopy. The cusp trap consists of a superconducting anti-Helmholtz coil and a stack of multiple ring electrodes. This success opens a new path to make a stringent test of the CPT symmetry via high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atoms.

  6. Muonic Anti-hydrogen Formation in Low-energy Three-body Reactions. Slow bar{p}+(μ^{+}μ^{-})_{1s}} collision

    NASA Astrophysics Data System (ADS)

    Sultanov, Renat A.; Guster, Dennis

    2013-08-01

    A few-body type computation is performed for a three-charge-particle collision with participation of a slow antiproton and a muonic muonium atom (true muonium), i.e. a bound state of two muons in its ground state. The total cross section of the following reaction , where muonic anti-hydrogen is a bound state of an antiproton and positive muon, is computed in the framework of a set of coupled two-component Faddeev-Hahn-type equation. A better known negative muon transfer low energy three-body reaction: is also computed as a test system. Here, t+ is triton and d+ is deuterium.

  7. Cold Antihydrogen at ATHENA: Experimental Observation and Beyond

    NASA Astrophysics Data System (ADS)

    Cesar, C. L.; Amoretti, M.; Bonomi, G.; Bowe, P. D.; Canali, C.; Carraro, C.; Charlton, M.; Doser, M.; Fontana, A.; Fujiwara, M. C.; Funakoshi, R.; Genova, P.; Hangst, J. S.; Hayano, R. S.; Johnson, I.; Jørgensen, L. V.; Kellerbauer, A.; Lagomarsino, V.; Landua, R.; Lodi Rizzini, E.; Macri, M.; Madsen, N.; Mitchard, D. R. J.; Montagna, P.; Pruys, H.; Regenfus, C.; Rotondi, A.; Testera, G.; Variola, A.; Venturelli, L.; van der Werf, D. P.; Yamazaki, Y.; Athena Collaboration

    2005-05-01

    Antihydrogen atoms may become the easiest and most precise way to probe deeply into tests of violation of the CPT (charge conjugation, parity, time reversal) symmetry and the Weak Equivalence Principle (WEP). We review the first production of cold antihydrogen atoms within the ATHENA/AD-1 experiment at CERN, its motivations and studies henceforth. The ATHENA success was followed almost immediately by the ATRAP group. From the initial claim of production of tens of thousand of these exotic species — by the mixing of cold and trapped positrons and antiprotons — we have evolved to better understand and control the system. The joint production for 2002 and 2003 has been re-evaluated to about one million antiatoms. We have performed cooling efficiency studies of antiprotons within the positron cloud; developed ways to excite and heat the positron cloud, and probe its number, density and temperature in situ; developed antiproton and antihydrogen imaging tomography. We have also been able to gather information on the velocity of the formed antiatoms. A large uncertainty and lack of control remains over the formation process — as revealed by its measured temperature dependence — and the quantum number distribution of the population. We discuss various aspects of our findings below as well as future prospects for physics tests with antihydrogen.

  8. Driven production of cold antihydrogen and the first measured distribution of antihydrogen states.

    PubMed

    Gabrielse, G; Bowden, N S; Oxley, P; Speck, A; Storry, C H; Tan, J N; Wessels, M; Grzonka, D; Oelert, W; Schepers, G; Sefzick, T; Walz, J; Pittner, H; Hänsch, T W; Hessels, E A

    2002-12-01

    Cold antihydrogen is produced when antiprotons are repeatedly driven into collisions with cold positrons within a nested Penning trap. Efficient antihydrogen production takes place during many cycles of positron cooling of antiprotons. A first measurement of a distribution of antihydrogen states is made using a preionizing electric field between separated production and detection regions. Surviving antihydrogen is stripped in an ionization well that captures and stores the freed antiproton for background-free detection. PMID:12485006

  9. Progress in Laser Cooling of Antihydrogen

    NASA Astrophysics Data System (ADS)

    Hamley, C.; Gabrielse, G.; George, M.; Glowacz, B.; Grzonka, D.; Hessels, E.; Jones, N.; Lee, S. A.; Marable, K.; Marshall, M.; Meisenhelder, C.; Morrison, T.; Oelert, W.; Rasor, C.; Ronald, S. R.; Sefzick, T.; Skinner, T.; Storry, C.; Tardiff, E.; Weel, M.; Yost, D.; Zielinski, M.; Atrap Collaboration

    2016-05-01

    Precision spectroscopy of antihydrogen promises to be one of the most stringent tests to date of CPT symmetry. Multiple groups at CERN's Antiproton Decelerator facility are endeavoring to perform precision spectroscopy on the 1S-2S two photon transition in antihydrogen for comparison to hydrogen precision measurements. For trapped antihydrogen the necessary overlapped Penning and Ioffe-Pritchard traps have a large bias and gradient contributing to significant spread due to Zeeman shifts as the antihydrogen orbits in the magnetic trap. The ATRAP collaboration is working on laser cooling of antihydrogen on the 121 nm Lyman alpha line (1S-2P) in order to reduce this spread for more precise 1S-2S spectroscopy. Here we report on the ATRAP collaboration's progress in laser cooling of antihydrogen.

  10. Antihydrogen Production, Trapping, and Antimatter Plasmas

    SciTech Connect

    Fajans, Joel

    2009-09-16

    Since 2002, experiments at CERN have been producing slow, but untrapped, antihydrogen. The ultimate goal of these experiments is to test CPT and the gravitational interactions of matter and antimatter. Most schemes to perform CPT and gravity tests require trapped antihydrogen, but trapping antihydrogen is much more difficult than merely synthesizing it. The principle problems that must be solved before we can trap are how to cool the antiprotons, and how to keep them cold during the synthesis process. While we have already learned how to cool antiprotons by ten orders of magnitude, we must cool them by four more orders of magnitude, a scale set by the relative size of the potentials of the antimatter plasmas from which the antiatoms are synthesized compared to the antihydrogen trap well depth. In this talk, I will discuss antihydrogen synthesis and some of the techniques we are developing to control the energy of the resultant antihydrogen.

  11. First Attempts at Antihydrogen Trapping in ALPHA

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Jenkins, M. J.; Joergensen, L. V.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Povilus, A.; Wurtele, J. S.; Cesar, C. L.; Lambo, R.; Silveira, D. M.; Fujiwara, M. C.

    2008-08-08

    The ALPHA apparatus is designed to produce and trap antihydrogen atoms. The device comprises a multifunction Penning trap and a superconducting, neutral atom trap having a minimum-B configuration. The atom trap features an octupole magnet for transverse confinement and solenoidal mirror coils for longitudinal confinement. The magnetic trap employs a fast shutdown system to maximize the probability of detecting the annihilation of released antihydrogen. In this article we describe the first attempts to observe antihydrogen trapping.

  12. Numerical simulations of hyperfine transitions of antihydrogen

    NASA Astrophysics Data System (ADS)

    Kolbinger, B.; Capon, A.; Diermaier, M.; Lehner, S.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Widmann, E.

    2015-08-01

    One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration's goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.

  13. Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping

    SciTech Connect

    Robicheaux, Francis

    2013-03-29

    Ever since Dirac predicted the existence of antimatter in 1928, it has excited our collective imagination. Seventy-four years later, two collaborations at CERN, ATHENA and ATRAP, created the first slow antihydrogen. This was a stunning achievement, but the most important antimatter experiments require trapped, not just slow, antihydrogen. The velocity, magnetic moment, and internal energy and state of the antihydrogen depend strongly on how it is formed. To trap antihydrogen, physicists face two broad challenges: (1) Understanding the behavior of the positron and antiprotons plasmas from which the antihydrogen is synthesized; and (2) Understanding the atomic processes by which positrons and antiprotons recombine. Recombination lies on the boundary between atomic and plasma physics, and cannot be studied properly without employing tools from both fields. The proposed collaborative research campaign will address both of these challenges. The collaboration members have unique experience in the relevant fields of experimental and theoretical non-neutral plasma physics, numerical modeling, nonlinear dynamics and atomic physics. This expertise is not found elsewhere amongst antihydrogen researchers. The collaboration members have strong ties already, and seek to formalize them with this proposal. Three of the four PIs are members of the ALPHA collaboration, an international collaboration formed by most of the principal members of the ATHENA collaboration.

  14. Reactive collisions of atomic antihydrogen with the H2 and H2+ molecules

    NASA Astrophysics Data System (ADS)

    Cohen, James S.

    2006-09-01

    The fermion molecular dynamics (FMD) method is used to determine the protonium (Pn) formation and total destruction cross sections for collisions of antihydrogen (\\bar{H}) with the H2 molecule and the H2+ molecular ion at collision energies above 0.1 au in the centre-of-mass system. The cross sections and initial quantum numbers are compared with the analogous cross sections for \\bar{H}+H, \\barp+H, \\barp+H_2 and \\barp+H_2^+ previously calculated. Like the \\barp projectile, the protonium-formation cross sections for the \\bar{H} projectile are much larger and extend to higher energies with the molecular targets than with the atomic target. The possibility is considered that a relatively long-lived state of the \\bar{H}H molecule may be formed in rearrangement scattering of \\bar{H}+H_2 at low energies.

  15. Reactive collisions of atomic antihydrogen with H, He+ and He

    NASA Astrophysics Data System (ADS)

    Cohen, James S.

    2006-03-01

    The fermion molecular dynamics (FMD) method is used to determine the rearrangement and destruction cross sections for collisions of antihydrogen (\\bar{H}) with H, He+ and He at collision energies above 0.1 au. The results for the H and He+ targets satisfactorily merge with previous calculations done for lower collision energies. Despite the absence of a critical distance, the destruction cross section for collisions of \\bar{H} with He, previously uncalculated, is found to be comparable with the destruction cross sections for \\bar{H} collisions with H and He+. All three cross sections are shown to be given quite reasonably by simple classical orbiting formulae at energies that are very low but still high enough for L > 0 partial waves to be dominant. The cross sections for formation of the antiprotonic atoms (Pn or \\barpHe ) and their initial quantum numbers with the \\bar{H} projectile are found to be significantly different from the analogous cross sections for \\barp projectiles.

  16. The ASACUSA CUSP: an antihydrogen experiment

    NASA Astrophysics Data System (ADS)

    Kuroda, N.; Ulmer, S.; Murtagh, D. J.; Van Gorp, S.; Nagata, Y.; Diermaier, M.; Federmann, S.; Leali, M.; Malbrunot, C.; Mascagna, V.; Massiczek, O.; Michishio, K.; Mizutani, T.; Mohri, A.; Nagahama, H.; Ohtsuka, M.; Radics, B.; Sakurai, S.; Sauerzopf, C.; Suzuki, K.; Tajima, M.; Torii, H. A.; Venturelli, L.; Wünschek, B.; Zmeskal, J.; Zurlo, N.; Higaki, H.; Kanai, Y.; Rizzini, E. Lodi; Nagashima, Y.; Matsuda, Y.; Widmann, E.; Yamazaki, Y.

    2015-11-01

    In order to test CPT symmetry between antihydrogen and its counterpart hydrogen, the ASACUSA collaboration plans to perform high precision microwave spectroscopy of ground-state hyperfine splitting of antihydrogen atom in-flight. We have developed an apparatus ("cusp trap") which consists of a superconducting anti-Helmholtz coil and multiple ring electrodes. For the preparation of slow antiprotons and positrons, Penning-Malmberg type traps were utilized. The spectrometer line was positioned downstream of the cusp trap. At the end of the beamline, an antihydrogen beam detector was located, which comprises an inorganic Bismuth Germanium Oxide (BGO) single-crystal scintillator housed in a vacuum duct and surrounding plastic scintillators. A significant fraction of antihydrogen atoms flowing out the cusp trap were detected.

  17. Gravitational quantum states of Antihydrogen

    SciTech Connect

    Voronin, A. Yu.; Froelich, P.; Nesvizhevsky, V. V.

    2011-03-15

    We present a theoretical study of the motion of the antihydrogen atom (H) in the gravitational field of Earth above a material surface. We predict that the H atom, falling in the gravitational field of Earth above a material surface, would settle into long-lived quantum states. We point out a method of measuring the difference in the energy of H in such states. The method allows for spectroscopy of gravitational levels based on atom-interferometric principles. We analyze the general feasibility of performing experiments of this kind. We point out that such experiments provide a method of measuring the gravitational force (Mg) acting on H and that they might be of interest in the context of testing the weak equivalence principle for antimatter.

  18. Experimental and computational study of the injection of antiprotons into a positron plasma for antihydrogen production

    SciTech Connect

    Amole, C.; Capra, A.; Menary, S.; Ashkezari, M. D.; Hayden, M. E.; Baquero-Ruiz, M.; Little, A.; So, C.; Zhmoginov, A.; Bertsche, W.; Butler, E.; Cesar, C. L.; Silveira, D. M.; Charlton, M.; Deller, A.; Eriksson, S.; Isaac, C. A.; Madsen, N.; Napoli, S. C.; Shields, C. R.; Collaboration: ALPHA Collaboration; and others

    2013-04-15

    One of the goals of synthesizing and trapping antihydrogen is to study the validity of charge-parity-time symmetry through precision spectroscopy on the anti-atoms, but the trapping yield achieved in recent experiments must be significantly improved before this can be realized. Antihydrogen atoms are commonly produced by mixing antiprotons and positrons stored in a nested Penning-Malmberg trap, which was achieved in ALPHA by an autoresonant excitation of the antiprotons, injecting them into the positron plasma. In this work, a hybrid numerical model is developed to simulate antiproton and positron dynamics during the mixing process. The simulation is benchmarked against other numerical and analytic models, as well as experimental measurements. The autoresonant injection scheme and an alternative scheme are compared numerically over a range of plasma parameters which can be reached in current and upcoming antihydrogen experiments, and the latter scheme is seen to offer significant improvement in trapping yield as the number of available antiprotons increases.

  19. Dynamics of interfacial pattern formation

    NASA Technical Reports Server (NTRS)

    Ben-Jacob, E.; Goldenfeld, N.; Langer, J. S.; Schon, G.

    1983-01-01

    A phenomenological model of dendritic solidification incorporating interfacial kinetics, crystalline anisotropy, and a local approximation for the dynamics of the thermal diffusion field is proposed. The preliminary results are in qualitative agreement with natural dendrite-like pattern formation.

  20. Compression of Antiproton Clouds for Antihydrogen Trapping

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Jenkins, M. J.; Joergensen, L. V.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Povilus, A.; Wurtele, J. S.; Cesar, C. L.; Lambo, R.; Silveira, D. M.; Fujiwara, M. C.; Gill, D. R.

    2008-05-23

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

  1. Resonant quantum transitions in trapped antihydrogen atoms.

    PubMed

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-03-22

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves. PMID:22398451

  2. Dynamics of Earth orbiting formations

    NASA Technical Reports Server (NTRS)

    Ploen, Scott R.; Scharf, Daniel P.; Hadaegh, Fred Y.; Acikmese, Ahmed B.

    2004-01-01

    In this paper the equations of motion of a formation consisting of n spacecraft in Earth orbit are derived via Lagrange's equations. The equations of motion of the formation are developed with respect to both (1) a bound Keplerian reference orbit, and (2) a specific spacecraft in the formation. The major orbital perturbations acting on a formation in low Earth orbit are also included in the analysis. In contrast to the traditional approach based on the balance of linear momentum, the use of Lagrange's equations leads to a high-level matrix derivation of the formation equations of motion. The matrix form of the nonlinear motion equations is then linearized about a bound Keplerian reference orbit. Next, it is demonstrated that under the assumption of a circular reference orbit, the linearized equations of motion reduce to the well-known Hill-Clohessy-Wiltshire equations. The resulting linear and nonlinear dynamic equations lead to maximal physical insight into the structure of formation dynamics, and are ideally suited for use in the design and validation of formation guidance and control laws.

  3. Production and detection of cold antihydrogen atoms.

    PubMed

    Amoretti, M; Amsler, C; Bonomi, G; Bouchta, A; Bowe, P; Carraro, C; Cesar, C L; Charlton, M; Collier, M J T; Doser, M; Filippini, V; Fine, K S; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Holzscheiter, M H; Jørgensen, L V; Lagomarsino, V; Landua, R; Lindelöf, D; Lodi Rizzini, E; Macrì, M; Madsen, N; Manuzio, G; Marchesotti, M; Montagna, P; Pruys, H; Regenfus, C; Riedler, P; Rochet, J; Rotondi, A; Rouleau, G; Testera, G; Variola, A; Watson, T L; van der Werf, D P

    2002-10-01

    A theoretical underpinning of the standard model of fundamental particles and interactions is CPT invariance, which requires that the laws of physics be invariant under the combined discrete operations of charge conjugation, parity and time reversal. Antimatter, the existence of which was predicted by Dirac, can be used to test the CPT theorem-experimental investigations involving comparisons of particles with antiparticles are numerous. Cold atoms and anti-atoms, such as hydrogen and antihydrogen, could form the basis of a new precise test, as CPT invariance implies that they must have the same spectrum. Observations of antihydrogen in small quantities and at high energies have been reported at the European Organization for Nuclear Research (CERN) and at Fermilab, but these experiments were not suited to precision comparison measurements. Here we demonstrate the production of antihydrogen atoms at very low energy by mixing trapped antiprotons and positrons in a cryogenic environment. The neutral anti-atoms have been detected directly when they escape the trap and annihilate, producing a characteristic signature in an imaging particle detector. PMID:12368849

  4. Towards a precise measurement of the antihydrogen ground state hyperfine splitting in a beam: the case of in-flight radiative decays

    NASA Astrophysics Data System (ADS)

    Lundmark, R.; Malbrunot, C.; Nagata, Y.; Radics, B.; Sauerzopf, C.; Widmann, E.

    2015-09-01

    The ASACUSA antihydrogen setup at the CERN Antiproton Decelerator (AD) consists of an antihydrogen source (cusp magnet coupled to a positron source and an antiproton catching magnet) followed by a spectrometer beamline. After production in the cusp, the antihydrogen atoms decay while they escape the trap leading to changes in their effective magnetic moment which in turn affect their trajectories in the beamline. Those sequential decays in the presence of a varying magnetic field strength from their production point in the cusp to their detection at the end of the spectrometer line can in principle greatly affect the prospects for a precision measurement of the antihydrogen hyperfine splitting given the so-far relatively low number of available anti-atoms. The impact of the antihydrogen decay in this context has for the first time been simulated. The implementation of atomic radiative decay has been done in Geant4 to extend the particle tracking capabilities originally embedded in Geant4 to excited atoms, and to allow studies of the effect of dynamic atomic properties on trajectories. This new tool thus allows the study of particle-matter interaction via the Geant4 toolkit while properly taking into account the atomic nature of the object under study. The implementation as well as impacts on the experimental sensitivity for antihydrogen spectroscopy are discussed in this paper.

  5. Synthesis of Cold Antihydrogen in a Cusp Trap

    SciTech Connect

    Enomoto, Y.; Nagata, Y.; Kanai, Y.; Mohri, A.; Kuroda, N.; Kim, C. H.; Torii, H. A.; Fujii, K.; Ohtsuka, M.; Tanaka, K.; Matsuda, Y.; Michishio, K.; Nagashima, Y.; Higaki, H.; Corradini, M.; Leali, M.; Lodi-Rizzini, E.; Mascagna, V.; Venturelli, L.; Zurlo, N.

    2010-12-10

    We report here the first successful synthesis of cold antihydrogen atoms employing a cusp trap, which consists of a superconducting anti-Helmholtz coil and a stack of multiple ring electrodes. This success opens a new path to make a stringent test of the CPT symmetry via high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atoms.

  6. Reactive collisions of atomic antihydrogen with H, He^+, He, H2^+, and H2

    NASA Astrophysics Data System (ADS)

    Cohen, James S.

    2006-05-01

    The fermion molecular dynamics (FMD) method has been used to determine the rearrangement and destruction cross sections for collisions of antihydrogen (H) with H, He^+, He, H2^+, and H2 at collision energies above 0.1 au. The results for the H and He^+ targets satisfactorily merge with previous calculations done for lower collision energies. There are no previous calculations for the other targets. Despite the absence of a critical distance, the destruction cross section for collisions of H with He is found to be comparable with the destruction cross sections for H collisions with H and He^+, for which there are critical distances. The three atomic cross sections are shown to be given quite reasonably by simple classical orbiting formulas at energies that are very low but still high enough for L>0 partial waves to be dominant. The cross sections for formation of the antiprotonic atoms (Pn or pHe) and their initial quantum numbers are found to be significantly different from the analogous cross sections for p projectiles. The cross sections for the molecular targets are significantly larger.

  7. De-Excitation of High-Rydberg Antihydrogen in a Strongly Magnetized Pure Positron Plasma

    NASA Astrophysics Data System (ADS)

    Bass, E. M.

    2005-10-01

    The rate at which highly excited atoms relax to deeper binding is found with classical theories and simulations. This rate relates to antihydrogen formation experiments where such atoms are formed in pure-positron, Penning trap plasmas.ootnotetextG.Gabrielse, N.S. Bowden, P. Oxley, et al., Phys. Rev. Lett. 89, 213401 (2002); M. Amoretti, C. Amsler, G. Bonomi, et al., Nature (London) 419, 456 (2002). The analysis concerns atoms that have passed the kinetic bottleneck at binding energy ɛ 4kT.ootnotetextM.E. Glinsky and T.M. O'Neil, Phys. Fluids B 3, 1279 (1991). Energy loss caused by collisions between atoms and plasma positrons is calculated in two ways: For close collisions, a molecular dynamics simulation gives the energy loss; for large-impact parameter collisions, theoretical expressions based on Fokker-Planck theory are employed.ootnotetextEric M. Bass and Daniel H.E. Dubin, Phys. Plasmas 11, 1240 (2004). For a finite magnetic field, the energy loss rate scales as 1/ɛ, just as for infinite field,^2 but with a larger coefficient. A statistical description of energy loss by radiation and Stark mixing will also be discussed.

  8. The Dynamics of Latifundia Formation

    PubMed Central

    Chaves, Luis Fernando

    2013-01-01

    Land tenure inequity is a major social problem in developing nations worldwide. In societies, where land is a commodity, inequities in land tenure are associated with gaps in income distribution, poverty and biodiversity loss. A common pattern of land tenure inequities through the history of civilization has been the formation of latifundia [Zhuāngyuán in chinese], i.e., a pattern where land ownership is concentrated by a small fraction of the whole population. Here, we use simple Markov chain models to study the dynamics of latifundia formation in a heterogeneous landscape where land can transition between forest, agriculture and recovering land. We systematically study the likelihood of latifundia formation under the assumption of pre-capitalist trade, where trade is based on the average utility of land parcels belonging to each individual landowner during a discrete time step. By restricting land trade to that under recovery, we found the likelihood of latifundia formation to increase with the size of the system, i.e., the amount of land and individuals in the society. We found that an increase of the transition rate for land use changes, i.e., how quickly land use changes, promotes more equitable patterns of land ownership. Disease introduction in the system, which reduced land profitability for infected individual landowners, promoted the formation of latifundia, with an increased likelihood for latifundia formation when there were heterogeneities in the susceptibility to infection. Finally, our model suggests that land ownership reforms need to guarantee an equitative distribution of land among individuals in a society to avoid the formation of latifundia. PMID:24376597

  9. The dynamics of latifundia formation.

    PubMed

    Chaves, Luis Fernando

    2013-01-01

    Land tenure inequity is a major social problem in developing nations worldwide. In societies, where land is a commodity, inequities in land tenure are associated with gaps in income distribution, poverty and biodiversity loss. A common pattern of land tenure inequities through the history of civilization has been the formation of latifundia [Zhuāngyuán in chinese], i.e., a pattern where land ownership is concentrated by a small fraction of the whole population. Here, we use simple Markov chain models to study the dynamics of latifundia formation in a heterogeneous landscape where land can transition between forest, agriculture and recovering land. We systematically study the likelihood of latifundia formation under the assumption of pre-capitalist trade, where trade is based on the average utility of land parcels belonging to each individual landowner during a discrete time step. By restricting land trade to that under recovery, we found the likelihood of latifundia formation to increase with the size of the system, i.e., the amount of land and individuals in the society. We found that an increase of the transition rate for land use changes, i.e., how quickly land use changes, promotes more equitable patterns of land ownership. Disease introduction in the system, which reduced land profitability for infected individual landowners, promoted the formation of latifundia, with an increased likelihood for latifundia formation when there were heterogeneities in the susceptibility to infection. Finally, our model suggests that land ownership reforms need to guarantee an equitative distribution of land among individuals in a society to avoid the formation of latifundia. PMID:24376597

  10. Trapped antihydrogen in its ground state.

    PubMed

    Gabrielse, G; Kalra, R; Kolthammer, W S; McConnell, R; Richerme, P; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D W; George, M C; Hessels, E A; Storry, C H; Weel, M; Müllers, A; Walz, J

    2012-03-16

    Antihydrogen atoms (H¯) are confined in an Ioffe trap for 15-1000 s-long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons (p¯) and positrons (e(+)) interact, 5±1 simultaneously confined ground-state atoms are produced and observed on average, substantially more than previously reported. Increases in the number of simultaneously trapped H¯ are critical if laser cooling of trapped H¯ is to be demonstrated and spectroscopic studies at interesting levels of precision are to be carried out. PMID:22540471

  11. First laser-controlled antihydrogen production.

    PubMed

    Storry, C H; Speck, A; Le Sage, D; Guise, N; Gabrielse, G; Grzonka, D; Oelert, W; Schepers, G; Sefzick, T; Pittner, H; Herrmann, M; Walz, J; Hänsch, T W; Comeau, D; Hessels, E A

    2004-12-31

    Lasers are used for the first time to control the production of antihydrogen (H ). Sequential, resonant charge exchange collisions are involved in a method that is very different than the only other method used so far-producing slow H during positron cooling of antiprotons in a nested Penning trap. Two attractive features are that the laser frequencies determine the H binding energy, and that the production of extremely cold H should be possible in principle-likely close to what is needed for confinement in a trap, as needed for precise laser spectroscopy. PMID:15697977

  12. Tests of CPT, Lorentz invariance and the WEP with antihydrogen

    SciTech Connect

    Holzscheiter, M.H.; ATHENA Collaboration

    1999-03-01

    Antihydrogen atoms, produced near rest, trapped in a magnetic well, and cooled to the lowest possible temperature (kinetic energy) could provide an extremely powerful tool for the search of violations of CPT and Lorentz invariance. Equally well, such a system could be used for searches of violations of the Weak Equivalence Principle (WEP) at high precision. The author describes his plans to form a significant number of cold, trapped antihydrogen atoms for comparative precision spectroscopy of hydrogen and antihydrogen and comment on possible first experiments.

  13. Positron plasma diagnostics and temperature control for antihydrogen production.

    PubMed

    Amoretti, M; Amsler, C; Bonomi, G; Bouchta, A; Bowe, P D; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Filippini, V; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Lagomarsino, V; Landua, R; Lindelöf, D; Rizzini, E Lodi; Macrí, M; Madsen, N; Manuzio, G; Montagna, P; Pruys, H; Regenfus, C; Rotondi, A; Testera, G; Variola, A; van der Werf, D P

    2003-08-01

    Production of antihydrogen atoms by mixing antiprotons with a cold, confined, positron plasma depends critically on parameters such as the plasma density and temperature. We discuss nondestructive measurements, based on a novel, real-time analysis of excited, low-order plasma modes, that provide comprehensive characterization of the positron plasma in the ATHENA antihydrogen apparatus. The plasma length, radius, density, and total particle number are obtained. Measurement and control of plasma temperature variations, and the application to antihydrogen production experiments are discussed. PMID:12906600

  14. The effect of an anti-hydrogen bond on Fermi resonance: A Raman spectroscopic study of the Fermi doublet ν1-ν12 of liquid pyridine

    NASA Astrophysics Data System (ADS)

    Li, Dong-Fei; Gao, Shu-Qin; Sun, Cheng-Lin; Li, Zuo-Wei

    2012-08-01

    The effects of an anti-hydrogen bond on the ν1-ν12 Fermi resonance (FR) of pyridine are experimentally investigated by using Raman scattering spectroscopy. Three systems, pyridine/water, pyridine/formamide, and pyridine/carbon tetrachloride, provide varying degrees of strength for the diluent-pyridine anti-hydrogen bond complex. Water forms a stronger anti-hydrogen bond with pyridine than with formamide, and in the case of adding non-polar solvent carbon tetrachloride, which is neither a hydrogen bond donor nor an acceptor and incapable of forming a hydrogen bond with pyridine, the intermolecular distance of pyridine will increase and the interaction of pyridine molecules will reduce. The dilution studies are performed on the three systems. Comparing with the values of the Fermi coupling coefficient W of the ring breathing mode ν1 and triangle mode ν12 of pyridine at different volume concentrations, which are calculated according to the Bertran equations, in three systems, we find that the solution with the strongest anti-hydrogen bond, water, shows the fastest change in the ν1-ν12 Fermi coupling coefficient W with the volume concentration varying, followed by the formamide and carbon tetrachloride solutions. These results suggest that the stronger anti-hydrogen bond-forming effect will cause a greater reduction in the strength of the ν1-ν12 FR of pyridine. According to the mechanism of the formation of an anti-hydrogen bond in the complexes and the FR theory, a qualitative explanation for the anti-hydrogen bond effect in reducing the strength of the ν1-ν12 FR of pyridine is given.

  15. Modeling of Dynamic FRC Formation

    NASA Astrophysics Data System (ADS)

    Mok, Yung; Barnes, Dan; Dettrick, Sean

    2010-11-01

    We have developed a 2-D resistive MHD code, Lamy Ridge, to simulate the entire FRC formation process in Tri Alpha's C2 device, including initial formation, translation, merging and settling into equilibrium. Two FRC's can be created simultaneously, and then translated toward each other so that they merge into a single FRC. The code couples the external circuits around the formation tubes to the partially ionized plasma inside. Plasma and neutral gas are treated as two fluids. Dynamic and energetic equations, which take into account ionization and charge exchange, are solved in a time advance manner. The geometric shape of the vessel is specified by a set of inputs that defines the boundaries, which are handled by a cut-cell algorithm in the code. Multiple external circuits and field coils can be easily added, removed or relocated through individual inputs. The design of the code is modular and flexible so that it can be applied to future devices. The results of the code are in reasonable agreement with experimental measurements on the C2 device.

  16. A source of antihydrogen for in-flight hyperfine spectroscopy

    PubMed Central

    Kuroda, N.; Ulmer, S.; Murtagh, D. J.; Van Gorp, S.; Nagata, Y.; Diermaier, M.; Federmann, S.; Leali, M.; Malbrunot, C.; Mascagna, V.; Massiczek, O.; Michishio, K.; Mizutani, T.; Mohri, A.; Nagahama, H.; Ohtsuka, M.; Radics, B.; Sakurai, S.; Sauerzopf, C.; Suzuki, K.; Tajima, M.; Torii, H. A.; Venturelli, L.; Wu¨nschek, B.; Zmeskal, J.; Zurlo, N.; Higaki, H.; Kanai, Y.; Lodi Rizzini, E.; Nagashima, Y.; Matsuda, Y.; Widmann, E.; Yamazaki, Y.

    2014-01-01

    Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart—hydrogen—is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference would point to CPT violation and thus to new physics. Here we report the development of an antihydrogen source using a cusp trap for in-flight spectroscopy. A total of 80 antihydrogen atoms are unambiguously detected 2.7 m downstream of the production region, where perturbing residual magnetic fields are small. This is a major step towards precision spectroscopy of the ground-state hyperfine splitting of antihydrogen using Rabi-like beam spectroscopy. PMID:24448273

  17. Quantum ballistic experiment on antihydrogen fall

    NASA Astrophysics Data System (ADS)

    Voronin, A. Yu; Nesvizhevsky, V. V.; Dufour, G.; Reynaud, S.

    2016-03-01

    We propose an approach to measuring gravitational mass of antihydrogen (\\bar{{{H}}}) based on interferometry of time distribution of free-fall events of antiatoms. Our method consists of preparing a coherent superposition of quantum states of \\bar{{{H}}} localized near a material surface in the gravitational field of the Earth, and then observing the time distribution of annihilation events after the free-fall of the initially prepared superposition from a given height to a detector plate. We show that the time distribution of interest is mapped to a precisely predictable velocity distribution of the initial wave packet. This approach is combined with production of a coherent superposition of gravitational states by inducing a resonant transition using an oscillating gradient magnetic field. We show that the relative accuracy of measuring the \\bar{{{H}}} atom gravitational mass can be achieved with this approach is 10-4, with 103 antiatoms settled in lowest gravitational states.

  18. Artificially Structured Boundary For Antihydrogen Studies

    SciTech Connect

    Ordonez, C. A.

    2011-06-01

    It may be possible to confine antiprotons using an artificially structured boundary, as part of a process for synthesizing antihydrogen. An artificially structured boundary is defined at present as one that produces a spatially periodic static field, such that the spatial period and range of the field is much smaller than the dimensions of a cloud, plasma or beam of charged particles that is confined by the boundary. A modified Kingdon trap could employ an artificially structured boundary at the location of inner electrodes. The artificially structured boundary would produce a multipole magnetic field that keeps confined particles from reaching the inner electrodes. The magnetic field would be sufficiently short in range to affect the particle trajectories only in close proximity to the inner electrodes. The conditions for producing such a magnetic field have been assessed. The results indicate that the magnetic field must be an octupole or higher order field.

  19. Aperture-based antihydrogen gravity experiment: Parallel plate geometry

    SciTech Connect

    Rocha, J. R.; Hedlof, R. M.; Ordonez, C. A.

    2013-10-15

    An analytical model and a Monte Carlo simulation are presented of an experiment that could be used to determine the direction of the acceleration of antihydrogen due to gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations. The configuration consists of two circular, parallel plates that have an axis of symmetry directed away from the center of the earth. The plates are separated by a small vertical distance, and include one or more pairs of circular barriers that protrude from the upper and lower plates, thereby forming an aperture between the plates. Antihydrogen annihilations that occur just beyond each barrier, within a “shadow” region, are asymmetric on the upper plate relative to the lower plate. The probability for such annihilations is determined for a point, line and spheroidal source of antihydrogen. The production of 100,000 antiatoms is predicted to be necessary for the aperture-based experiment to indicate the direction of free fall acceleration of antimatter, provided that antihydrogen is produced within a sufficiently small antiproton plasma at a temperature of 4 K.

  20. Relativistic antihydrogen production by pair production with positron capture

    NASA Astrophysics Data System (ADS)

    Şengül, M. Y.; Güçlü, M. C.

    2012-04-01

    Antihydrogen atoms may rarely be produced by the collision of antiprotons with ions. At relativistic velocities, the antiproton may pass around the Coulomb field of the nucleus and the electron-positron pairs can be produced electromagnetically. After this pair production, not so often, positron can be captured by the antiproton and as a result, antihydrogen atoms may be produced. In this work, we have calculated the antihydrogen production cross section in the framework of perturbation theory, by applying Monte-Carlo integration techniques. In order to compute the lowest-order Feynman diagrams amplitudes, we used Darwin wave functions for the bound states of the positrons and Sommerfeld-Maue wave functions for the continuum states of the electrons.

  1. Antimatter plasmas in a multipole trap for antihydrogen.

    PubMed

    Andresen, G; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Chartier, M; Deutsch, A; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Gomberoff, K; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Telle, H H; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2007-01-12

    We have demonstrated storage of plasmas of the charged constituents of the antihydrogen atom, antiprotons and positrons, in a Penning trap surrounded by a minimum-B magnetic trap designed for holding neutral antiatoms. The neutral trap comprises a superconducting octupole and two superconducting, solenoidal mirror coils. We have measured the storage lifetimes of antiproton and positron plasmas in the combined Penning-neutral trap, and compared these to lifetimes without the neutral trap fields. The magnetic well depth was 0.6 T, deep enough to trap ground state antihydrogen atoms of up to about 0.4 K in temperature. We have demonstrated that both particle species can be stored for times long enough to permit antihydrogen production and trapping studies. PMID:17358606

  2. Dynamics of rock varnish formation

    SciTech Connect

    Raymond, R. Jr.; Reneau, S.L.; Guthrie, G.D. Jr.; Bish, D.L.; Harrington, C.D.

    1991-01-01

    Our studies of rock varnish from the southwestern United States suggest that the Mn-phase in rock varnish has neither the chemistry nor the crystal structure of birnessite. Rather, the Mn-rich phase is non-crystalline and contains Ba, Ca, Fe, Al, and P. Unknowns concerning the formation of this non-crystalline Mn phase must be resolved before researchers are able to define chemical parameters of rock varnish formation based upon conditions of formation of the Mn phase. 6 refs., 9 figs.

  3. Quantum reflection of antihydrogen in the GBAR experiment

    NASA Astrophysics Data System (ADS)

    Dufour, Gabriel; Guérout, Romain; Lambrecht, Astrid; Nesvizhevsky, Valery; Reynaud, Serge; Voronin, Alexei

    2014-05-01

    In the GBAR experiment, cold antihydrogen atoms will be left to fall on an annihilation plate with the aim of measuring the gravitational acceleration of antimatter. Here, we study the quantum reflection of these antiatoms due to the Casimir-Polder potential above the plate. We give realistic estimates of the potential and quantum reflection amplitudes, taking into account the specificities of antihydrogen and the optical properties of the plate. We find that quantum reflection is enhanced for weaker potentials, for example above thin slabs, graphene and nanoporous media.

  4. Positron plasma control techniques for the production of cold antihydrogen

    SciTech Connect

    Funakoshi, R.; Hayano, R. S.; Amoretti, M.; Macri, M.; Testera, G.; Variola, A.; Bonomi, G.; Bowe, P. D.; Hangst, J. S.; Madsen, N.; Canali, C.; Carraro, C.; Lagomarsino, V.; Manuzio, G.; Cesar, C. L.; Charlton, M.; Joergensen, L. V.; Mitchard, D.; Werf, D. P. van der; Doser, M.

    2007-07-15

    An observation of a clear dependence of antihydrogen production on positron plasma shapes is reported. For this purpose a plasma control method has been developed combining the plasma rotating-wall technique with a mode diagnostic system. With the help of real-time and nondestructive observations, the rotating-wall parameters have been optimized. The positron plasma can be manipulated into a wide range of shapes (aspect ratio 6.5{<=}{alpha} < or approx. 80) and densities (1.5x10{sup 8}{<=}n < or approx. 7x10{sup 9} cm{sup -3}) within a short duration (25 s) compatible with the ATHENA antihydrogen production cycle.

  5. Formation dynamics in geostationary ring

    NASA Astrophysics Data System (ADS)

    Spiridonova, Sofya

    2016-08-01

    A relative motion model for a satellite formation composed of two Earth-orbiting spacecraft located in the geostationary ring is developed taking into account major gravitational and non-gravitational forces. A previously existing model featuring perturbation due to J_2 is enhanced by the perturbations due to solar radiation pressure arising from unequal area-to-mass ratios, as well as the secular and long-periodic gravitational perturbations due to the Sun and the Moon. The extended relative motion model is validated using several typical formation geometries against a reference generated by numerical integration of the absolute orbits of the two spacecraft. The results of this work can find application in future on-orbit servicing and formation flying missions in near-geostationary orbit.

  6. Formation dynamics in geostationary ring

    NASA Astrophysics Data System (ADS)

    Spiridonova, Sofya

    2016-05-01

    A relative motion model for a satellite formation composed of two Earth-orbiting spacecraft located in the geostationary ring is developed taking into account major gravitational and non-gravitational forces. A previously existing model featuring perturbation due to J_2 is enhanced by the perturbations due to solar radiation pressure arising from unequal area-to-mass ratios, as well as the secular and long-periodic gravitational perturbations due to the Sun and the Moon. The extended relative motion model is validated using several typical formation geometries against a reference generated by numerical integration of the absolute orbits of the two spacecraft. The results of this work can find application in future on-orbit servicing and formation flying missions in near-geostationary orbit.

  7. The dynamics of city formation*

    PubMed Central

    Henderson, J. Vernon; Venables, Anthony J.

    2013-01-01

    This paper examines city formation in a country whose urban population is growing steadily over time, with new cities required to accommodate this growth. In contrast to most of the literature there is immobility of housing and urban infrastructure, and investment in these assets is taken on the basis of forward-looking behavior. In the presence of these fixed assets cities form sequentially, without the population swings in existing cities that arise in current models, but with swings in house rents. Equilibrium city size, absent government, may be larger or smaller than is efficient, depending on how urban externalities vary with population. Efficient formation of cities with internalization of externalities involves local government intervention and borrowing to finance development. The paper explores the institutions required for successful local government intervention. PMID:25089087

  8. An experimental limit on the charge of antihydrogen

    PubMed Central

    Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C.Ø.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Tharp, T. D.; Thompson, R. I.; van der Werf, D. P.; Vendeiro, Z.; Wurtele, J. S.; Zhmoginov, A. I.; Charman, A. E.

    2014-01-01

    The properties of antihydrogen are expected to be identical to those of hydrogen, and any differences would constitute a profound challenge to the fundamental theories of physics. The most commonly discussed antiatom-based tests of these theories are searches for antihydrogen-hydrogen spectral differences (tests of CPT (charge-parity-time) invariance) or gravitational differences (tests of the weak equivalence principle). Here we, the ALPHA Collaboration, report a different and somewhat unusual test of CPT and of quantum anomaly cancellation. A retrospective analysis of the influence of electric fields on antihydrogen atoms released from the ALPHA trap finds a mean axial deflection of 4.1±3.4 mm for an average axial electric field of 0.51 V mm−1. Combined with extensive numerical modelling, this measurement leads to a bound on the charge Qe of antihydrogen of Q=(−1.3±1.1±0.4) × 10−8. Here, e is the unit charge, and the errors are from statistics and systematic effects. PMID:24892800

  9. Dynamics of sheet nacre formation in bivalves.

    PubMed

    Rousseau, Marthe; Meibom, Anders; Gèze, Marc; Bourrat, Xavier; Angellier, Martine; Lopez, Evelyne

    2009-03-01

    Formation of nacre (mother-of-pearl) is a biomineralization process of fundamental scientific as well as industrial importance. However, the dynamics of the formation process is still not understood. Here, we use scanning electron microscopy and high spatial resolution ion microprobe depth-profiling to image the full three-dimensional distribution of organic materials around individual tablets in the top-most layer of forming nacre in bivalves. Nacre formation proceeds by lateral, symmetric growth of individual tablets mediated by a growth-ring rich in organics, in which aragonite crystallizes from amorphous precursors. The pivotal role in nacre formation played by the growth-ring structure documented in this study adds further complexity to a highly dynamical biomineralization process. PMID:19121399

  10. Dynamic models of lateritic bauxite formation

    NASA Astrophysics Data System (ADS)

    Zhukov, V. V.; Bogatyrev, B. A.

    2012-09-01

    2D dynamic models of bauxite formation in the weathering mantle covering denudation areas drained by river systems are discussed. The role of relief-forming factors (tectonic uplift, river erosion and denudation of drainage divides), the interrelation of hydrogeological and lithologic structure of the bauxitebearing weathering mantle, and the dynamics of zoning formation above and below groundwater level are described in the models. Creative and destructive epochs of lateritic bauxite formation differing in tectonic regime are distinguished. During the creative epochs, lateritic weathering develops against a background of decreasing denudation and an increase in areas of bauxite formation. The destructive epochs are characterized by intense denudation, cutting down the areas of lateritic bauxite formation and eventually leading to the complete removal of the weathering mantle. Different morphogenetic types and varieties of bauxite-bearing weathering mantles develop during creative and destructive epochs. The morphology of the weathering mantle sections at the deposits of Cenozoic lateritic bauxite in the present-day tropical zone of the Earth corresponds to the destructive epoch, which is characterized by declining areas of lateritic bauxite formation and will end with complete denudation of lateritic bauxite.

  11. Antiproton Confinement in a Penning-Ioffe Trap for Antihydrogen

    SciTech Connect

    Gabrielse, G.; Larochelle, P.; Le Sage, D.; Levitt, B.; Kolthammer, W. S.; Kuljanishvili, I.; McConnell, R.; Wrubel, J.; Esser, F. M.; Glueckler, H.; Hansen, G.; Schillings, J.; Schmitt, M.; Soltner, H.; Grzonka, D.; Martin, S.; Oelert, W.; Sefzick, T.; Zhang, Z.; Comeau, D.

    2007-03-16

    Antiprotons (p) remain confined in a Penning trap, in sufficient numbers to form antihydrogen (H) atoms via charge exchange, when the radial field of a quadrupole Ioffe trap is added. This first demonstration with p suggests that quadrupole Ioffe traps can be superimposed upon p and e{sup +} traps to attempt the capture of H atoms as they form, contrary to conclusions of previous analyses.

  12. Antihydrogen Production within a Penning-Ioffe Trap

    SciTech Connect

    Gabrielse, G.; Larochelle, P.; Le Sage, D.; Levitt, B.; Kolthammer, W. S.; McConnell, R.; Richerme, P.; Wrubel, J.; Speck, A.; George, M. C.; Grzonka, D.; Oelert, W.; Sefzick, T.; Zhang, Z.; Carew, A.; Comeau, D.; Hessels, E. A.; Storry, C. H.; Weel, M.; Walz, J.

    2008-03-21

    Slow antihydrogen (H) is produced within a Penning trap that is located within a quadrupole Ioffe trap, the latter intended to ultimately confine extremely cold, ground-state H atoms. Observed H atoms in this configuration resolve a debate about whether positrons and antiprotons can be brought together to form atoms within the divergent magnetic fields of a quadrupole Ioffe trap. The number of detected H atoms actually increases when a 400 mK Ioffe trap is turned on.

  13. Emulsion detectors for the antihydrogen detection in AEgIS

    NASA Astrophysics Data System (ADS)

    Pistillo, C.; Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Belov, A.; Bonomi, G.; Bräunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Chlouba, K.; Cialdi, S.; Comparat, D.; Consolati, G.; Demetrio, A.; Derking, H.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Ferragut, R.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Gninenko, S.; Haider, S.; Hogan, S.; Holmestad, H.; Huse, T.; Jordan, E. J.; Kawada, J.; Kellerbauer, A.; Kimura, M.; Krasnický, D.; Lagomarsino, V.; Lehner, S.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Nebbia, G.; Nédélec, P.; Oberthaler, M.; Pacifico, N.; Penasa, L.; Petráček, V.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Riccardi, C.; Røhne, O.; Rosenberger, S.; Rotondi, A.; Sandaker, H.; Santoro, R.; Scampoli, P.; Simon, M.; Špaček, M.; Storey, J.; Strojek, I. M.; Subieta, M.; Testera, G.; Widmann, E.; Yzombard, P.; Zavatarelli, S.; Zmeskal, J.

    2015-08-01

    The AEgIS experiment at CERN aims to perform the first direct measurement of gravitational interaction between matter and antimatter by measuring the deviation of a cold antihydrogen beam in the Earth gravitational field. The design of the experiment has been recently updated to include emulsion films as position sensitive detector. The submicrometric position accuracy of emulsions leads indeed to a significant improvement of the experimental sensitivity. We present results of preliminary tests and discuss perspectives for the final measurement.

  14. Measuring the gravitational free-fall of antihydrogen

    NASA Astrophysics Data System (ADS)

    Storey, J.; Aghion, S.; Ahlén, O.; Amsler, C.; Ariga, A.; Ariga, T.; Belov, A. S.; Bonomi, G.; Bräunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Canali, C.; Caravita, R.; Castelli, F.; Cerchiari, G.; Cialdi, S.; Comparat, D.; Consolati, G.; Derking, J. H.; Domizio, S. Di; Noto, L. Di; Doser, M.; Dudarev, A.; Ereditato, A.; Ferragut, R.; Fontana, A.; Genova, P.; Giammarchi, M.; Gligorova, A.; Gninenko, S. N.; Haider, S.; Hogan, S. D.; Huse, T.; Jordan, E.; Jørgensen, L. V.; Kaltenbacher, T.; Kawada, J.; Kellerbauer, A.; Kimura, M.; Knecht, A.; Krasnický, D.; Lagomarsino, V.; Lehner, S.; Malbrunot, C.; Mariazzi, S.; Matveev, V. A.; Merkt, F.; Moia, F.; Nebbia, G.; Nédélec, P.; Oberthaler, M. K.; Pacifico, N.; Petráček, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Regenfus, C.; Riccardi, C.; Røhne, O.; Rotondi, A.; Sandaker, H.; Scampoli, P.; Subieta Vasquez, M. A.; Špaček, M.; Testera, G.; Trezzi, D.; Vaccarone, R.; Widmann, E.; Zavatarelli, S.; Zmeskal, J.

    2014-05-01

    Antihydrogen holds the promise to test, for the first time, the universality of free-fall with a system composed entirely of antiparticles. The AEgIS experiment at CERN's antiproton decelerator aims to measure the gravitational interaction between matter and antimatter by measuring the deflection of a beam of antihydrogen in the Earths gravitational field ( overline {{g}}). The principle of the experiment is as follows: cold antihydrogen atoms are synthesized in a Penning-Malberg trap and are Stark accelerated towards a moiré deflectometer, the classical counterpart of an atom interferometer, and annihilate on a position sensitive detector. Crucial to the success of the experiment is the spatial precision of the position sensitive detector. We propose a novel free-fall detector based on a hybrid of two technologies: emulsion detectors, which have an intrinsic spatial resolution of 50 nm but no temporal information, and a silicon strip / scintillating fiber tracker to provide timing and positional information. In 2012 we tested emulsion films in vacuum with antiprotons from CERN's antiproton decelerator. The annihilation vertices could be observed directly on the emulsion surface using the microscope facility available at the University of Bern. The annihilation vertices were successfully reconstructed with a resolution of 1-2 μmon the impact parameter. If such a precision can be realized in the final detector, Monte Carlo simulations suggest of order 500 antihydrogen annihilations will be sufficient to determine overline {{g}}with a 1 % accuracy. This paper presents current research towards the development of this technology for use in the AEgIS apparatus and prospects for the realization of the final detector.

  15. Antiproton confinement in a Penning-Ioffe trap for antihydrogen.

    PubMed

    Gabrielse, G; Larochelle, P; Le Sage, D; Levitt, B; Kolthammer, W S; Kuljanishvili, I; McConnell, R; Wrubel, J; Esser, F M; Glückler, H; Grzonka, D; Hansen, G; Martin, S; Oelert, W; Schillings, J; Schmitt, M; Sefzick, T; Soltner, H; Zhang, Z; Comeau, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Speck, A; Nillius, F; Walz, J; Hänsch, T W

    2007-03-16

    Antiprotons (p[over]) remain confined in a Penning trap, in sufficient numbers to form antihydrogen (H[over ) atoms via charge exchange, when the radial field of a quadrupole Ioffe trap is added. This first demonstration with p[over] suggests that quadrupole Ioffe traps can be superimposed upon p[over] and e(+) traps to attempt the capture of H[over] atoms as they form, contrary to conclusions of previous analyses. PMID:17501048

  16. The Dynamics of Group Formation Among Leeches

    PubMed Central

    Bisson, Giacomo; Bianconi, Ginestra; Torre, Vincent

    2012-01-01

    Leeches exploring a new environment continuously meet each other and merge in temporary groups. After 2–3 h, leeches become attracted to each other eventually forming a large and stable group. When their number is reduced, leeches remain solitary, behaving independently. Group formation is facilitated by body injection of serotonin (5-HT) and the level of endogenous 5-HT is elevated in leeches forming a large group. In contrast, intravenous injection of 5-HT antagonists prevented injected leeches from joining a large group of conspecifics. When sensilla near the head were ablated or the supraesophageal ganglion disconnected, leeches remained solitary, but explored the environment swimming and crawling. These results suggest that group formation is initiated by a release of 5-HT triggered by sensilla stimulation and its dynamics can be explained by the establishment of a reinforcement dynamics, as observed during human group formation. As 5-HT affects social interactions also in humans, group formation in leeches and humans share a similar dynamics and hormonal control. PMID:22629247

  17. Trapping of antiprotons -- a first step on the way to antihydrogen

    SciTech Connect

    Holzscheiter, M.H.

    1993-07-01

    A first step towards producing and effectively utilizing antihydrogen atoms consists of trapping antiprotons. The immediate next step must then be to control, i.e. trap the produced antihydrogen. The current state of the art in trapping antiprotons and positrons is reviewed, and the challenges in trapping the resulting neutral particles are discussed.

  18. Formation, Dynamics, and Impact of Plasmaspheric Plumes

    NASA Astrophysics Data System (ADS)

    Goldstein, Jerry; Borovsky, Joseph; Foster, John; Carpenter, Donald

    2007-06-01

    Workshop on Plasmaspheric Drainage Plumes, Taos, New Mexico, 9-13 October 2006 Plasmaspheric plumes result from erosion of the plasmasphere. The Institute of Geophysics and Planetary Physics (IGPP) Workshop on Plasmaspheric Drainage Plumes was convened in Taos, N. M., on 9-13 October 2006 to examine outstanding questions about the formation and dynamics of plumes, and the impact of plumes on the near-Earth space environment (geospace). A second workshop on plasmaspheric drainage plumes is planned for late 2007.

  19. TIME-VARYING DYNAMICAL STAR FORMATION RATE

    SciTech Connect

    Lee, Eve J.; Chang, Philip; Murray, Norman

    2015-02-10

    We present numerical evidence of dynamic star formation in which the accreted stellar mass grows superlinearly with time, roughly as t {sup 2}. We perform simulations of star formation in self-gravitating hydrodynamic and magnetohydrodynamic turbulence that is continuously driven. By turning the self-gravity of the gas in the simulations on or off, we demonstrate that self-gravity is the dominant physical effect setting the mass accretion rate at early times before feedback effects take over, contrary to theories of turbulence-regulated star formation. We find that gravitational collapse steepens the density profile around stars, generating the power-law tail on what is otherwise a lognormal density probability distribution function. Furthermore, we find turbulent velocity profiles to flatten inside collapsing regions, altering the size-line width relation. This local flattening reflects enhancements of turbulent velocity on small scales, as verified by changes to the velocity power spectra. Our results indicate that gas self-gravity dynamically alters both density and velocity structures in clouds, giving rise to a time-varying star formation rate. We find that a substantial fraction of the gas that forms stars arrives via low-density flows, as opposed to accreting through high-density filaments.

  20. Dynamics of gradient formation by intracellular shuttling

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-01

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  1. Dynamics of gradient formation by intracellular shuttling

    SciTech Connect

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  2. Evaporative cooling of antiprotons for the production of trappable antihydrogen

    SciTech Connect

    Silveira, D. M.; Cesar, C. L.; Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Ashkezari, M. D.; Hayden, M. E.; Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Povilus, A.; So, C.; Wurtele, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Madsen, N.; Werf, D. P. van der; Friesen, T.; Hydomako, R.; and others

    2013-03-19

    We describe the implementation of evaporative cooling of charged particles in the ALPHA apparatus. Forced evaporation has been applied to cold samples of antiprotons held in Malmberg-Penning traps. Temperatures on the order of 10 K were obtained, while retaining a significant fraction of the initial number of particles. We have developed a model for the evaporation process based on simple rate equations and applied it succesfully to the experimental data. We have also observed radial re-distribution of the clouds following evaporation, explained by simple conservation laws. We discuss the relevance of this technique for the recent demonstration of magnetic trapping of antihydrogen.

  3. New interpretations of measured antihydrogen velocities and field ionization spectra.

    PubMed

    Pohl, T; Sadeghpour, H R; Gabrielse, G

    2006-10-01

    We present extensive Monte Carlo simulations, showing that cold antihydrogen (H) atoms are produced when antiprotons (p) are gently heated in the side wells of a nested Penning trap. The observed H with high energies, that had seemed to indicate otherwise, are instead explained by a surprisingly effective charge-exchange mechanism. We shed light on the previously measured field-ionization spectrum, and reproduce both the characteristic low-field power law as well as the enhanced H production at higher fields. The latter feature is shown to arise from H toms too deeply bound to be described as guiding center atoms, atoms with internally chaotic motion. PMID:17155247

  4. Antihydrogen production within a Penning-Ioffe trap.

    PubMed

    Gabrielse, G; Larochelle, P; Le Sage, D; Levitt, B; Kolthammer, W S; McConnell, R; Richerme, P; Wrubel, J; Speck, A; George, M C; Grzonka, D; Oelert, W; Sefzick, T; Zhang, Z; Carew, A; Comeau, D; Hessels, E A; Storry, C H; Weel, M; Walz, J

    2008-03-21

    Slow antihydrogen (H) is produced within a Penning trap that is located within a quadrupole Ioffe trap, the latter intended to ultimately confine extremely cold, ground-state H[over ] atoms. Observed H[over ] atoms in this configuration resolve a debate about whether positrons and antiprotons can be brought together to form atoms within the divergent magnetic fields of a quadrupole Ioffe trap. The number of detected H atoms actually increases when a 400 mK Ioffe trap is turned on. PMID:18517780

  5. First measurement of the velocity of slow antihydrogen atoms.

    PubMed

    Gabrielse, G; Speck, A; Storry, C H; LeSage, D; Guise, N; Grzonka, D; Oelert, W; Schepers, G; Sefzick, T; Pittner, H; Walz, J; Hänsch, T W; Comeau, D; Hessels, E A

    2004-08-13

    The speed of antihydrogen atoms is deduced from the fraction that passes through an oscillating electric field without ionizing. The weakly bound atoms used for this first demonstration travel about 20 times more rapidly than the average thermal speed of the antiprotons from which they form, if these are in thermal equilibrium with their 4.2 K container. The method should be applicable to much more deeply bound states, which may well be moving more slowly, and should aid the quest to lower the speed of the atoms as required if they are to be trapped for precise spectroscopy. PMID:15324235

  6. Pore Scale Dynamics of Microemulsion Formation.

    PubMed

    Unsal, Evren; Broens, Marc; Armstrong, Ryan T

    2016-07-19

    Experiments in various porous media have shown that multiple parameters come into play when an oleic phase is displaced by an aqueous solution of surfactant. In general, the displacement efficiency is improved when the fluids become quasi-miscible. Understanding the phase behavior oil/water/surfactant systems is important because microemulsion has the ability to generate ultralow interfacial tension (<10(-2) mN m(-1)) that is required for miscibility to occur. Many studies focus on microemulsion formation and the resulting properties under equilibrium conditions. However, the majority of applications where microemulsion is present also involve flow, which has received relatively less attention. It is commonly assumed that the characteristics of an oil/water/surfactant system under flowing conditions are identical to the one under equilibrium conditions. Here, we show that this is not necessarily the case. We studied the equilibrium phase behavior of a model system consisting of n-decane and an aqueous solution of olefin sulfonate surfactant, which has practical applications for enhanced oil recovery. The salt content of the aqueous solution was varied to provide a range of different microemulsion compositions and oil-water interfacial tensions. We then performed microfluidic flow experiments to study the dynamic in situ formation of microemulsion by coinjecting bulk fluids of n-decane and surfactant solution into a T-junction capillary geometry. A solvatochromatic fluorescent dye was used to obtain spatially resolved compositional information. In this way, we visualized the microemulsion formation and the flow of it along with the excess phases. A complex interaction between the flow patterns and the microemulsion properties was observed. The formation of microemulsion influenced the flow regimes, and the flow regimes affected the characteristics of the microemulsion formation. In particular, at low flow rates, slug flow was observed, which had profound

  7. Velocity space scattering coefficients with applications in antihydrogen recombination studies

    PubMed

    Chang; Ordonez

    2000-12-01

    An approach for calculating velocity space friction and diffusion coefficients with Maxwellian field particles is developed based on a kernel function derived in a previous paper [Y. Chang and C. A. Ordonez, Phys. Plasmas 6, 2947 (1999)]. The original fivefold integral expressions for the coefficients are reduced to onefold integrals, which can be used for any value of the Coulomb logarithm. The onefold integrals can be further reduced to standard analytical expressions by using a weak coupling approximation. The integral expression for the friction coefficient is used to predict a time scale that describes the rate at which a reflecting antiproton beam slows down within a positron plasma, while both species are simultaneously confined by a nested Penning trap. The time scale is used to consider the possibility of achieving antihydrogen recombination within the trap. The friction and diffusion coefficients are then used to derive an expression for calculating the energy transfer rate between antiprotons and positrons. The expression is employed to illustrate achieving antihydrogen recombination while taking into account positron heating by the antiprotons. The effect of the presence of an electric field on recombination is discussed. PMID:11138156

  8. Dynamics of metal/ceramic interface formation.

    SciTech Connect

    McCarty, Kevin F.

    2003-12-01

    We summarize the work of the Laboratory Directed Research and Development (LDRD) project 'Dynamics of Metal/Ceramic Interface Formation.' Low-energy electron microscopy (LEEM) was used to monitor in real time how the metal/ceramic interface between the alloy NiAl and its oxide formed. The interfaces were synthesized by exposing the clean alloy to oxygen at either low or high temperature. During low-temperature exposure, an initially amorphous oxide formed. With annealing, this oxide crystallizes into one type of alumina that has two orientational domains. While the oxide is relatively uniform, it contained pinholes, which coarsened with annealing. In marked contrast, high-temperature exposure directly produced rod-shaped islands of crystalline oxide. These rods were all aligned along the substrate's [001] direction and could be many microns in length. Real-time observations showed that the rods can both grow and shrink by addition and subtraction, respectively, at their ends.

  9. Group formation stabilizes predator-prey dynamics.

    PubMed

    Fryxell, John M; Mosser, Anna; Sinclair, Anthony R E; Packer, Craig

    2007-10-25

    Theoretical ecology is largely founded on the principle of mass action, in which uncoordinated populations of predators and prey move in a random and well-mixed fashion across a featureless landscape. The conceptual core of this body of theory is the functional response, predicting the rate of prey consumption by individual predators as a function of predator and/or prey densities. This assumption is seriously violated in many ecosystems in which predators and/or prey form social groups. Here we develop a new set of group-dependent functional responses to consider the ecological implications of sociality and apply the model to the Serengeti ecosystem. All of the prey species typically captured by Serengeti lions (Panthera leo) are gregarious, exhibiting nonlinear relationships between prey-group density and population density. The observed patterns of group formation profoundly reduce food intake rates below the levels expected under random mixing, having as strong an impact on intake rates as the seasonal migratory behaviour of the herbivores. A dynamical system model parameterized for the Serengeti ecosystem (using wildebeest (Connochaetes taurinus) as a well-studied example) shows that grouping strongly stabilizes interactions between lions and wildebeest. Our results suggest that social groups rather than individuals are the basic building blocks around which predator-prey interactions should be modelled and that group formation may provide the underlying stability of many ecosystems. PMID:17960242

  10. Two-species mixing in a nested Penning trap for antihydrogen trapping

    SciTech Connect

    Ordonez, C. A.; Weathers, D. L.

    2008-08-15

    There exists an international quest to trap neutral antimatter in the form of antihydrogen for scientific study. One method that is being developed for trapping antihydrogen employs a nested Penning trap. Such a trap serves to mix positrons and antiprotons so as to produce low energy antihydrogen atoms. Mixing is achieved when the confinement volumes of the two species overlap one another. In the work presented here, a theoretical understanding of the mixing process is developed by analyzing a mixing scheme that was recently reported [G. Gabrielse et al., Phys. Rev. Lett. 100, 113001 (2008)]. The results indicate that positron space charge or collisions among antiprotons may substantially reduce the fraction of antiprotons that have an energy suitable for antihydrogen trapping.

  11. Effect of positron space charge on operation of an antihydrogen trap.

    PubMed

    Ordonez, C A

    2007-07-01

    Experimental conditions have recently been reported [G. Andresen, Phys. Rev. Lett. 98, 023402 (2007)] that are relevant to the prospect of trapping antihydrogen atoms. An analysis of the experimental conditions indicates that positron space charge can have an important effect. The fraction of antiprotons that have an energy suitable for antihydrogen trapping can be reduced by drifts caused by the presence of positron space charge. PMID:17677605

  12. Spontaneous formation of organic helical architectures through dynamic covalent chemistry.

    PubMed

    Li, Wenfang; Dong, Zeyuan; Zhu, Junyan; Luo, Quan; Liu, Junqiu

    2014-12-01

    The spontaneous formation of organic helical structures, accompanied with an amplification of chirality, by dynamic covalent bonds between achiral and chiral building blocks is reported. PMID:25325888

  13. Measuring the Free Fall of Antihydrogen with Emulsion Detectors

    NASA Astrophysics Data System (ADS)

    Pistillo, C.

    2014-06-01

    The AEgIS experiment at CERN is designed to perform the first direct measurement of gravitational interaction between antimatter and matter by detecting the fall of a horizontally accelerated cold antihydrogen beam in the Earth's gravitational field. The spatial resolution of the position sensitive detector is a key issue for the success of the experiment. For this reason, the employment of emulsion film detectors is being considered and an intense R&D is being conducted to define the use of this technology in the AEgIS apparatus. We present the results of test beams conducted in 2012, when emulsion film detectors were directly exposed to a ˜ 100 keV antiproton beam and annihilation vertices successfully reconstructed with a few micrometers resolution. The prospects for the realization of the final detector are also presented.

  14. Dynamics of Lane Formation in Driven Binary Complex Plasmas

    SciTech Connect

    Suetterlin, K. R.; Ivlev, A. V.; Raeth, C.; Thomas, H. M.; Rubin-Zuzic, M.; Morfill, G. E.; Wysocki, A.; Loewen, H.; Goedheer, W. J.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.

    2009-02-27

    The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane-formation process is in good agreement with computer simulations of a binary Yukawa model with Langevin dynamics. The laning is quantified in terms of the anisotropic scaling index, leading to a universal order parameter for driven systems.

  15. Description and first application of a new technique to measure the gravitational mass of antihydrogen

    PubMed Central

    Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olin, A.; Pusa, P.; Rasmussen, C. Ø; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A. I.; Charman, A. E.

    2013-01-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen >75 at a statistical significance level of 5%; worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regime. PMID:23653197

  16. Description and first application of a new technique to measure the gravitational mass of antihydrogen.

    PubMed

    Charman, A E; Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Cesar, C L; Charlton, M; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S; Zhmoginov, A I

    2013-01-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen >75 at a statistical significance level of 5%; worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regime. PMID:23653197

  17. Description and first application of a new technique to measure the gravitational mass of antihydrogen

    NASA Astrophysics Data System (ADS)

    Alpha Collaboration; Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A. I.; Charman, A. E.

    2013-04-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen >75 at a statistical significance level of 5% worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regime.

  18. Experimental limit on the ratio of the gravitational mass to the inertial mass of antihydrogen

    NASA Astrophysics Data System (ADS)

    Fajans, Joel; Wurtele, Jonathan; Charman, Andrew; Zhmoginov, Andrey

    2012-10-01

    Physicists have long wondered if the gravitational interactions between matter and antimatter might be different from those between matter and itself. While there are many indirect indications that no such differences exist, i.e., that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. By searching for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap, we have determined that we can reject ratios of the gravitational mass to the inertial mass of antihydrogen greater than about 100 at a statistical significance level of 5%. A similar search places somewhat lower limits on a negative gravitational mass, i.e., on antigravity.

  19. An experimental test of the weak equivalence principle for antihydrogen at the future FLAIR facility

    NASA Astrophysics Data System (ADS)

    Blaum, Klaus; Raizen, Mark G.; Quint, Wolfgang

    2014-05-01

    We present new experimental ideas to investigate the gravitational interaction of antihydrogen. The experiment can first be performed in an off-line mirror measurement on hydrogen atoms, as a testing ground for our methods, before the implementation with antihydrogen atoms. A beam of hydrogen atoms is formed by launching a cold beam of protons through a cloud of trapped electrons in a nested Penning trap arrangement. In the next step, the atoms are stopped in a series of pulsed electromagnetic coils — so-called atomic coilgun. The stopped atoms are confined in a magnetic quadrupole trap and cooled by single-photon laser cooling. We intend to employ the method of Raman interferometry to study the gravitational interaction of atomic hydrogen — and later on antihydrogen at the FLAIR facility — with high sensitivity.

  20. Temporally controlled modulation of antihydrogen production and the temperature scaling of antiproton-positron recombination.

    PubMed

    Fujiwara, M C; Amoretti, M; Amsler, C; Bonomi, G; Bouchta, A; Bowe, P D; Canali, C; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Fontana, A; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Kellerbauer, A; Lagomarsino, V; Landua, R; Lodi-Rizzini, E; Macri, M; Madsen, N; Manuzio, G; Mitchard, D; Montagna, P; Pruys, H; Regenfus, C; Rotondi, A; Testera, G; Variola, A; Venturelli, L; van der Werf, D P; Yamazaki, Y; Zurlo, N

    2008-08-01

    We demonstrate temporally controlled modulation of cold antihydrogen production by periodic RF heating of a positron plasma during antiproton-positron mixing in a Penning trap. Our observations have established a pulsed source of atomic antimatter, with a rise time of about 1 s, and a pulse length ranging from 3 to 100 s. Time-sensitive antihydrogen detection and positron plasma diagnostics, both capabilities of the ATHENA apparatus, allowed detailed studies of the pulsing behavior, which in turn gave information on the dependence of the antihydrogen production process on the positron temperature T. Our data are consistent with power law scaling T (-1.1+/-0.5) for the production rate in the high temperature regime from approximately 100 meV up to 1.5 eV. This is not in accord with the behavior accepted for conventional three-body recombination. PMID:18764390

  1. New techniques for trapping antiprotons, positrons, and antihydrogen atoms

    SciTech Connect

    Yamazaki, Y.

    2005-10-26

    A large number of antiprotons have been accumulated, cooled, compressed, and extracted for the first time. This was accomplished combining the AD(Antiproton Decelerator), the RFQD (Radio Frequency Quadrupole Decelerator) and an MRT (Multi-Ring Trap) installed in a 2.5T solenoid. Some 1.2 x 106 antiprotons were stably stored per one AD shot, which was {approx}50 times better in the accumulation efficiency than conventional methods with thick degrader foils. The trapped antiprotons were then cooled by a preloaded electron plasma({approx} 108/cm3), radially compressed by a rotating electric field, and then extracted from the MRT as mono-energetic DC beams of 10-500eV. A similar system with much higher electron density({approx} 1011/cm3) has enabled a new positron accumulation, the efficiency of which is 360e+/s/mCi, some {approx}30 times better than previous UHV compatible schemes. With these ingredients, a cusp trap is under development, which could synthesize and at the same time trap spin-polarized antihydrogen atoms in their ground states.

  2. Antihydrogen Relaxation from High-n to Ground State.

    NASA Astrophysics Data System (ADS)

    Bass, E. M.; Dubin, D. H. E.

    2006-10-01

    We explore the rate at which magnetized, high-n Rydberg pairs formed in antihydrogen experiments relax to deep binding. While the theoretical three-body recombination rate scales favorably with low temperature (νTBRnb^3 (n v b^2 ) T-9/2), pairs form with binding energies ɛ near the (low) thermal level. Such atoms have classical drift orbits with negligible radiation. Collisions propel a cascade to deeper binding, but theory and simulation show an atom is unlikely to reach a radiating regime before it escapes the trap. However, simulations show that the energy-loss rate does not decrease as rapidly with increasing ɛ as previously expected. We also discuss the mean magnetic moment of guiding-center atoms, and energy loss from adiation at deep binding, based on the classical Larmour formula and a presumption of stochastic orbits. G. Gabrielse, N.S. Bowden, P. Oxley, et al., Phys. Rev. Lett. 89, 213401 (2002) M. Amoretti, C. Amsler, G. Bonomi, et al., Nature (London) 419, 456 (2002). ME. Glinsky and T.M. O'Neil, Phys. Fluids B 3, 1279 (1991). R. Robicheaux and J.D. Hanson, Phys. Rev. A 69, 010701 (2004). E.M. Bass and D.H.E. Dubin, Phys. Plasmas 11, 1240 (2004).

  3. An improved limit on the charge of antihydrogen from stochastic acceleration.

    PubMed

    Ahmadi, M; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Charman, A E; Eriksson, S; Evans, L T; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; So, C; Tharp, T D; Thompson, R I; van der Werf, D P; Wurtele, J S; Zhmoginov, A I

    2016-01-21

    Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10(-21)e for a diverse range of species including H2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement. PMID:26791725

  4. An improved limit on the charge of antihydrogen from stochastic acceleration

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Charman, A. E.; Eriksson, S.; Evans, L. T.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; So, C.; Tharp, T. D.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A. I.

    2016-01-01

    Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms- of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10-21e for a diverse range of species including H2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement.

  5. Resonance states in the hydrogen-antihydrogen system from a nonadiabatic treatment

    NASA Astrophysics Data System (ADS)

    Stegeby, Henrik; Piszczatowski, Konrad

    2016-01-01

    The quantum-mechanical four-body problem for the hydrogen-antihydrogen system has been solved by means of the variational implementation of the coupled-arrangement channel method. Wave functions have been formed using the Gaussian expansion method (GEM) in Jacobi coordinates; they explicitly include components corresponding to the rearrangement from hydrogen and antihydrogen (H + \\bar{{{H}}}) into protonium and positronium (Pn + Ps). We analyze the solutions belonging to the discretized spectrum of the four-body eigenvalue problem, searching for resonance states at energies just below the H-\\bar{{{H}}} dissociation energy threshold by means of the stabilization method and complex scaling.

  6. Dynamics of Perceived Parenting and Identity Formation in Late Adolescence

    ERIC Educational Resources Information Center

    Beyers, Wim; Goossens, Luc

    2008-01-01

    Identity formation is a dynamic process of person-context interactions, and part of this context are parents, even in late adolescence. Several theories on parent-adolescent relationships share the idea that parents influence the process of identity formation. However, up to now, empirical evidence, particularly longitudinal evidence for this link…

  7. SOLITONS: Dynamics of strong coupling formation between laser solitons

    NASA Astrophysics Data System (ADS)

    Rosanov, Nikolai N.; Fedorov, S. V.; Shatsev, A. N.

    2005-03-01

    The dynamics of the strong coupling formation between two solitons with the unit topological charge is studied in detail for a wide-aperture class A laser. The sequence of bifurcations of the vector field of energy fluxes in the transverse plane was demonstrated during the formation of a soliton complex.

  8. Planetary Formation and Dynamics in Binary Systems

    NASA Astrophysics Data System (ADS)

    Xie, J. W.

    2013-01-01

    As of today, over 500 exoplanets have been detected since the first exoplanet was discovered around a solar-like star in 1995. The planets in binaries could be common as stars are usually born in binary or multiple star systems. Although current observations show that the planet host rate in multiple star systems is around 17%, this fraction should be considered as a lower limit because of noticeable selection effects against binaries in planet searches. Most of the current known planet-bearing binary systems are S-types, meaning the companion star acts as a distant satellite, typically orbiting the inner star-planet system over 100 AU away. Nevertheless, there are four systems with a smaller separation of 20 AU, including the Gamma Cephei, GJ 86, HD 41004, and HD 196885. In addition to the planets in circumprimary (S-type) orbits discussed above, planets in circumbinary (P-type) orbits have been found in only two systems. In this thesis, we mainly study the planet formation in the S-type binary systems. In chapter 1, we first summarize current observational facts of exoplanets both in single-star and binary systems, then review the theoretical models of planet formation, with special attention to the application in binary systems. Perturbative effects from stellar companions render the planet formation process in binary systems even more complex than that in single-star systems. The perturbations from a binary companion can excite planetesimal orbits, and increase their mutual impact velocities to the values that might exceed their escape velocity or even the critical velocity for the onset of eroding collisions. The intermediate stage of the formation process---from planetesimals to planetary embryos---is thus the most problematic. In the following chapters, we investigate whether and how the planet formation goes through such a problematic stage. In chapter 2, we study the effects of gas dissipation on the planetesimals' mutual accretion. We find that in a

  9. Quasi-satellite dynamics in formation flight

    NASA Astrophysics Data System (ADS)

    Mikkola, Seppo; Prioroc, Claudiu-Lucian

    2016-04-01

    The quasi-satellite phenomenon makes two celestial bodies to fly near each other (Mikkola et al.) and that effect can be used also to make artificial satellites move in tandem. We consider formation flight of two or three satellites in low eccentricity near Earth orbits. With the help of weak ion thrusters, it is possible to accomplish tandem flight. With ion thrusters, it is also possible to mimic many kinds of mutual force laws between the satellites. We found that both a constant repulsive force or an attractive force that decreases with the distance are able to preserve the formation in which the eccentricities cause the actual relative motion and the weak thrusters keep the mean longitude difference small. Initial values are important for the formation flight but very exact adjustment of orbital elements is not important. Simplicity is one of our goals in this study and this result is achieved at least in the way that, when constant force thrusters are used, the satellites only need to detect the directions of the other ones to fly in tandem. A repulsive acceleration of the order of 10-6 times the Earth attraction, is enough to effectively eliminate the disruptive effects of all the perturbations at least for a time-scale of years.

  10. Formation of Prominences and Dynamics Before Eruption

    NASA Astrophysics Data System (ADS)

    Luna, Manuel

    2016-07-01

    Solar prominences have fascinated to astronomers since the first scientific observations of eclipses. Prominences are spectacular manifestations of both quiescent and eruptive solar activity. These are cool and dense structures suspended in the very hot solar corona. The continuous improvements in spatial and temporal resolution from both ground- and space-based instruments have revealed a rich structure and dynamics of prominences. Despite over one century of observations, the magnetic structure of a solar prominence, the origin of its mass, and their dynamics remain vigorously debated issues with profound implications for space weather. In this talk I will address the question of the origin of the cool mass of prominences by reviewing past and recent advances in theoretical modelling.

  11. Influence of dynamic conditions on biofilm formation by staphylococci.

    PubMed

    Stepanović, S; Vuković, D; Jezek, P; Pavlović, M; Svabic-Vlahović, M

    2001-07-01

    The modified microtiter plate test was used to investigate biofilm formation by staphylococci under both static and dynamic conditions. The quantity of biofilm produced under static conditions was used as a reference. Dynamic conditions, which were achieved by incubating microtiter plates on a horizontal shaker with and without the presence of glass beads in wells, either reduced biofilm formation or left it unchanged. Dynamic conditions particularly affected the capacity of certain species to produce biofilm: these species included the causative agents of infections associated with a foreign body (Staphylococcus epidermidis, Staphylococcus aureus). On the basis of these results, dynamic conditions should be included as a parameter for evaluating biofilm formation by staphylococci in vitro. PMID:11561809

  12. Hamiltonian Dynamics of Protein Filament Formation

    NASA Astrophysics Data System (ADS)

    Michaels, Thomas C. T.; Cohen, Samuel I. A.; Vendruscolo, Michele; Dobson, Christopher M.; Knowles, Tuomas P. J.

    2016-01-01

    We establish the Hamiltonian structure of the rate equations describing the formation of protein filaments. We then show that this formalism provides a unified view of the behavior of a range of biological self-assembling systems as diverse as actin, prions, and amyloidogenic polypeptides. We further demonstrate that the time-translation symmetry of the resulting Hamiltonian leads to previously unsuggested conservation laws that connect the number and mass concentrations of fibrils and allow linear growth phenomena to be equated with autocatalytic growth processes. We finally show how these results reveal simple rate laws that provide the basis for interpreting experimental data in terms of specific mechanisms controlling the proliferation of fibrils.

  13. Hamiltonian Dynamics of Protein Filament Formation.

    PubMed

    Michaels, Thomas C T; Cohen, Samuel I A; Vendruscolo, Michele; Dobson, Christopher M; Knowles, Tuomas P J

    2016-01-22

    We establish the Hamiltonian structure of the rate equations describing the formation of protein filaments. We then show that this formalism provides a unified view of the behavior of a range of biological self-assembling systems as diverse as actin, prions, and amyloidogenic polypeptides. We further demonstrate that the time-translation symmetry of the resulting Hamiltonian leads to previously unsuggested conservation laws that connect the number and mass concentrations of fibrils and allow linear growth phenomena to be equated with autocatalytic growth processes. We finally show how these results reveal simple rate laws that provide the basis for interpreting experimental data in terms of specific mechanisms controlling the proliferation of fibrils. PMID:26849615

  14. AEgIS experiment: Towards antihydrogen beam production for antimatter gravity measurements

    NASA Astrophysics Data System (ADS)

    Mariazzi, Sebastiano; Aghion, Stefano; Amsler, Claude; Ariga, Akitaka; Ariga, Tomoko; Belov, Alexandre S.; Bonomi, Germano; Bräunig, Philippe; Brusa, Roberto S.; Bremer, Johan; Cabaret, Louis; Canali, Carlo; Caravita, Ruggero; Castelli, Fabrizio; Cerchiari, Giovanni; Cialdi, Simone; Comparat, Daniel; Consolati, Giovanni; Dassa, Luca; Hendrik Derking, Jan; Di Domizio, Sergio; Di Noto, Lea; Doser, Michael; Dudarev, Alexey; Ereditato, Antonio; Ferragut, Rafael; Fontana, Andrea; Genova, Pablo; Giammarchi, Marco; Gligorova, Angela; Gninenko, Sergei N.; Hogan, Stephen D.; Haider, Stefan; Jordan, Elena; Jørgensen, Lars V.; Kaltenbacher, Thomas; Kawada, Jiro; Kellerbauer, Alban; Kimura, Mitsuhiro; Knecht, Andreas; Krasnický, Daniel; Lagomarsino, Vittorio; Lehner, Sebastian; Malbrunot, Chloe; Matveev, Viktor A.; Merkt, Frederic; Moia, Fabio; Nebbia, Giancarlo; Nédélec, Patrick; Oberthaler, Markus K.; Pacifico, Nicola; Petráček, Vojtech; Pistillo, Ciro; Prelz, Francesco; Prevedelli, Marco; Regenfus, Christian; Riccardi, Cristina; Røhne, Ole; Rotondi, Alberto; Sandaker, Heidi; Scampoli, Paola; Storey, James; Subieta Vasquez, Martin A.; Špaček, Michal; Testera, Gemma; Vaccarone, Renzo; Villa, Fabio; Widmann, Eberhard; Zavatarelli, Sandra; Zmeskal, Johann

    2014-03-01

    AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an experiment that aims to perform the first direct measurement of the gravitational acceleration g of antihydrogen in the Earth's field. A cold antihydrogen beam will be produced by charge exchange reaction between cold antiprotons and positronium excited in Rydberg states. Rydberg positronium (with quantum number n between 20 and 30) will be produced by a two steps laser excitation. The antihydrogen beam, after being accelerated by Stark effect, will fly through the gratings of a moiré deflectometer. The deflection of the horizontal beam due to its free fall will be measured by a position sensitive detector. It is estimated that the detection of about 103 antihydrogen atoms is required to determine the gravitational acceleration with a precision of 1%. In this report an overview of the AEgIS experiment is presented and its current status is described. Details on the production of slow positronium and its excitation with lasers are discussed. Contribution to the Topical Issue "Electron and Positron Induced Processes", edited by Michael Brunger, Radu Campeanu, Masamitsu Hoshino, Oddur Ingólfsson, Paulo Limão-Vieira, Nigel Mason, Yasuyuki Nagashima and Hajime Tanuma.

  15. Towards measuring the ground state hyperfine splitting of antihydrogen - a progress report

    NASA Astrophysics Data System (ADS)

    Sauerzopf, C.; Capon, A. A.; Diermaier, M.; Dupré, P.; Higashi, Y.; Kaga, C.; Kolbinger, B.; Leali, M.; Lehner, S.; Rizzini, E. Lodi; Malbrunot, C.; Mascagna, V.; Massiczek, O.; Murtagh, D. J.; Nagata, Y.; Radics, B.; Simon, M. C.; Suzuki, K.; Tajima, M.; Ulmer, S.; Vamosi, S.; Gorp, S. van; Zmeskal, J.; Breuker, H.; Higaki, H.; Kanai, Y.; Kuroda, N.; Matsuda, Y.; Venturelli, L.; Widmann, E.; Yamazaki, Y.

    2016-12-01

    We report the successful commissioning and testing of a dedicated field-ioniser chamber for measuring principal quantum number distributions in antihydrogen as part of the ASACUSA hyperfine spectroscopy apparatus. The new chamber is combined with a beam normalisation detector that consists of plastic scintillators and a retractable passivated implanted planar silicon (PIPS) detector.

  16. Production of relativistic antihydrogen atoms by pair production with positron capture

    SciTech Connect

    Munger, C.T.; Brodsky, S.J. ); Schmidt, I. )

    1994-04-01

    A beam of relativistic antihydrogen atoms, the bound state ([ital [bar p]e][sup +]), can be created by circulating the beam of an antiproton storage ring through an internal gas target. An antiproton that passes through the Coulomb field of a nucleus of charge [ital Z] will create [ital e][sup +][ital e[minus

  17. Formation and Dynamics of Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    2016-05-01

    The discovery of more than a dozen transiting circumbinary planets provides new constraints on the planet formation and migration processes in circumbinary disks and also raises a number of puzzles. I will discuss several recent works related to circumbinary planets and disks. (1) New long-duration hydro simulations of circumbinary disks (R.Miranda, D.Lai and D.Munoz 2016). The simulations reveal that the inner circumbinary disk may develop appreciable eccentricity and precesseses coherently -- these features are bound to have a strong impact on planet-disk interaction. (2) The disruption of planetary orbits through evection resonances with an external companion (W.Xu and D.Lai 2016a). This may help explain the lack of transiting planets around very compact stellar binaries (D.Munoz and D.Lai 2015). (3) The stability of mean-motion resonance capture as planets migrate inwards in a circumbinary disk. This relates to the pile-up of planets near the stability limit as observed in the sample of transiting circumbinary planets (W.Xu and D.Lai 2016b).

  18. Gas dynamic simulations of galaxy formation

    NASA Technical Reports Server (NTRS)

    Evrard, August E.

    1993-01-01

    Results are presented from a simulation modeling the formation of a group of galaxies in a 'standard' cold, dark matter universe with delta = 1, h sub 0 = 50 km/(s(Mpc)), baryon fraction omega sub b = 0.1 and spectrum normalization sigma sub 8 = 0.6 (bias parameter b = 1.7). Initial conditions are generated within a periodic box with comoving length 16 Mpc in a manner constrained to produce a small cluster of total mass approximately 10 exp 14 solar mass. Two sets of 643 particles are used to model the dark matter and baryon fluids. Each gas particle represents 1.08 x 10 exp -8 solar mass, implying an L* galaxy is resolved by approximately 1000 particles. The system is evolved self-consistently in three dimensions using the combined N-body/hydrodynamic scheme P3MSPH up to a final redshift z = 1. Evolving to the present is prohibited by the fact that the mean density in the simulated volume is above critical and the entire volume would be going nonlinear beyond this point, We are currently analyzing another run with somewhat poorer mass resolution which was evolved to the present.

  19. On the Optimal Dynamic Camber Formation in Insect Flight

    NASA Astrophysics Data System (ADS)

    Ren, Yan; Dong, Haibo

    2012-11-01

    It is widely thought that wing flexibility and wing deformation could significantly affect aerodynamic force productions over completely rigid wings in insect flights. However, there is a lack of quantitative discussion of dynamic formation of wing camber and its effect on wing's aerodynamic performance. In this work, a deformable wing is used to model the wing camber and its dynamic formation. A Direct Numerical Simulation (DNS) based computational optimization frame has been developed to obtain the optimal dynamic camber formation of dragonfly in takeoff and cruising flight. Comparative study is then performed between the optimized flexible wing and real dragonfly wing. Results have shown the maximum camber happens around 30% (downstroke) and 80% (upstroke) of one wing beat. Force production and unsteady flows of the flexible wing are also discussed.

  20. Dynamical formation of stable irregular transients in discontinuous map systems

    NASA Astrophysics Data System (ADS)

    Zou, Hailin; Guan, Shuguang; Lai, C.-H.

    2009-10-01

    Stable chaos refers to the long irregular transients, with a negative largest Lyapunov exponent, which is usually observed in certain high-dimensional dynamical systems. The mechanism underlying this phenomenon has not been well studied so far. In this paper, we investigate the dynamical formation of stable irregular transients in coupled discontinuous map systems. Interestingly, it is found that the transient dynamics has a hidden pattern in the phase space: it repeatedly approaches a basin boundary and then jumps from the boundary to a remote region in the phase space. This pattern can be clearly visualized by measuring the distance sequences between the trajectory and the basin boundary. The dynamical formation of stable chaos originates from the intersection points of the discontinuous boundaries and their images. We carry out numerical experiments to verify this mechanism.

  1. Zooplankton patch dynamics: daily gap formation over abrupt topography

    NASA Astrophysics Data System (ADS)

    Genin, Amatzia; Greene, Charles; Haury, Loren; Wiebe, Peter; Gal, Gideon; Kaartvedt, Stein; Meir, Eli; Fey, Connie; Dawson, Jim

    1994-05-01

    Net tow and acoustic surveys of zooplankton distributions were made over and around Sixtymile Bank (110 km southwest of San Diego, California). Gaps devoid of vertically migrating zooplankton were formed every evening above the summit of the bank. Interactions between the migrating animals, their predators, physical advection and the local topography appear to determine the gap formation and dynamics. Gaps were transported downstream during the night and appeared to disintegrate slowly through vertical swimming behavior, current shear and mixing processes. Patch dynamics following gap formation, mediated by both ocean currents and animal behavior, should augment the spatial heterogeneity of zooplankton and affect marine food webs in areas where abrupt topography features are common.

  2. Dynamic tubulation of mitochondria drives mitochondrial network formation

    PubMed Central

    Wang, Chong; Du, Wanqing; Su, Qian Peter; Zhu, Mingli; Feng, Peiyuan; Li, Ying; Zhou, Yichen; Mi, Na; Zhu, Yueyao; Jiang, Dong; Zhang, Senyan; Zhang, Zerui; Sun, Yujie; Yu, Li

    2015-01-01

    Mitochondria form networks. Formation of mitochondrial networks is important for maintaining mitochondrial DNA integrity and interchanging mitochondrial material, whereas disruption of the mitochondrial network affects mitochondrial functions. According to the current view, mitochondrial networks are formed by fusion of individual mitochondria. Here, we report a new mechanism for formation of mitochondrial networks through KIF5B-mediated dynamic tubulation of mitochondria. We found that KIF5B pulls thin, highly dynamic tubules out of mitochondria. Fusion of these dynamic tubules, which is mediated by mitofusins, gives rise to the mitochondrial network. We further demonstrated that dynamic tubulation and fusion is sufficient for mitochondrial network formation, by reconstituting mitochondrial networks in vitro using purified fusion-competent mitochondria, recombinant KIF5B, and polymerized microtubules. Interestingly, KIF5B only controls network formation in the peripheral zone of the cell, indicating that the mitochondrial network is divided into subzones, which may be constructed by different mechanisms. Our data not only uncover an essential mechanism for mitochondrial network formation, but also reveal that different parts of the mitochondrial network are formed by different mechanisms. PMID:26206315

  3. Chain formation and chain dynamics in a dilute magnetorheological fluid.

    PubMed

    Hagenbüchle, M; Liu, J

    1997-10-20

    Magnetorheological fluids are suspensions of magnetizable particles that reversibly change from liquid to solid when subjected to a magnetic field. A field-induced structure of dipolar chains is responsible for these changes. Our work aimed at understanding chain dynamics and the kinetics of chain formation by using dynamic light scattering. Chain length is determined by measurement of the diffusion coefficient. Chain-length growth shows a Smoluchowski behavior. PMID:18264283

  4. Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

    SciTech Connect

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; Beyerlein, Irene J.

    2015-01-23

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation and dynamics in these systems.

  5. Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

    DOE PAGESBeta

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; Beyerlein, Irene J.

    2015-01-23

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation andmore » dynamics in these systems.« less

  6. Dynamic Phases, Pinning, and Pattern Formation for Driven Dislocation Assemblies

    PubMed Central

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; Beyerlein, Irene J.

    2015-01-01

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation and dynamics in these systems. PMID:25613839

  7. Dynamic Phases, Pinning, and Pattern Formation for Driven Dislocation Assemblies

    NASA Astrophysics Data System (ADS)

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; Beyerlein, Irene J.

    2015-01-01

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation and dynamics in these systems.

  8. Brownian dynamics simulation of fission yeast mitotic spindle formation

    NASA Astrophysics Data System (ADS)

    Edelmaier, Christopher

    2014-03-01

    The mitotic spindle segregates chromosomes during mitosis. The dynamics that establish bipolar spindle formation are not well understood. We have developed a computational model of fission-yeast mitotic spindle formation using Brownian dynamics and kinetic Monte Carlo methods. Our model includes rigid, dynamic microtubules, a spherical nuclear envelope, spindle pole bodies anchored in the nuclear envelope, and crosslinkers and crosslinking motor proteins. Crosslinkers and crosslinking motor proteins attach and detach in a grand canonical ensemble, and exert forces and torques on the attached microtubules. We have modeled increased affinity for crosslinking motor attachment to antiparallel microtubule pairs, and stabilization of microtubules in the interpolar bundle. We study parameters controlling the stability of the interpolar bundle and assembly of a bipolar spindle from initially adjacent spindle-pole bodies.

  9. Relative dynamics and motion control of nanosatellite formation flying

    NASA Astrophysics Data System (ADS)

    Pimnoo, Ammarin; Hiraki, Koju

    2016-04-01

    Orbit selection is a necessary factor in nanosatellite formation mission design/meanwhile, to keep the formation, it is necessary to consume fuel. Therefore, the best orbit design for nanosatellite formation flying should be one that requires the minimum fuel consumption. The purpose of this paper is to analyse orbit selection with respect to the minimum fuel consumption, to provide a convenient way to estimate the fuel consumption for keeping nanosatellite formation flying and to present a simplified method of formation control. The formation structure is disturbed by J2 gravitational perturbation and other perturbing accelerations such as atmospheric drag. First, Gauss' Variation Equations (GVE) are used to estimate the essential ΔV due to the J2 perturbation and atmospheric drag. The essential ΔV presents information on which orbit is good with respect to the minimum fuel consumption. Then, the linear equations which account for J2 gravitational perturbation of Schweighart-Sedwick are presented and used to estimate the fuel consumption to maintain the formation structure. Finally, the relative dynamics motion is presented as well as a simplified motion control of formation structure by using GVE.

  10. Extended MPEG Video Format for Efficient Dynamic Voltage Scaling

    NASA Astrophysics Data System (ADS)

    Bang, Kwanhu; Bang, Sung-Yong; Chung, Eui-Young

    We present an extended MPEG video format for efficient Dynamic Voltage Scaling (DVS). DVS technique has been widely researched, but the execution time variation of a periodic task (i. e. MPEG decoding) is still a challenge to be tackled. Unlike previous works, we focus on the data (video stream) rather than the execution code to overcome such limitation. The proposed video format provides the decoding costs of frames to help the precise prediction of their execution times at client machines. The experimental results show that the extended format only increases the data size less than 1% by adding about 10bits representing the decoding cost of each frame. Also, a DVS technique adjusted for the proposed format achieves 90% of efficiency compared to the oracle case, while keeping the run time overhead of the technique negligible.

  11. Dynamical effects during compaction band formation affecting their spatial periodicity

    NASA Astrophysics Data System (ADS)

    Cecinato, Francesco; Gajo, Alessandro

    2014-10-01

    Compaction bands (CBs) are responsible for significant anisotropy alterations of permeability in geological materials; hence, understanding their formation conditions appears of key importance to all applications involving fluid extraction/injection from/into the ground. While most of the available models to understand CB formation are focused on interpreting the onset of a single CB, little effort has been so far dedicated to understand the documented periodicity of CBs. In this paper, the role of dynamical effects in inducing the post onset evolution of CBs is analyzed by means of a dedicated model for porous media with compressible constituents, with reference to a horizontal layer of sandy, water-saturated material. Elastic waves are generated as a first CB occurs due to sudden, localized volumetric collapse. If the waves are reflected at the interface with a softer material or with a previously formed CB, they produce significant local effective stress concentrations, which can promote the formation of further CBs in a cascade fashion, according to a regular geometric pattern. The spatial distribution of dynamically generated CBs, as well as the extent of the phenomenon, depends on the geometry of the domain and on the material's permeability. Sensitivity analysis is also performed to assess the key properties that promote dynamical CB in situ formation, identifying as the most influential conditions large stratum stiffness (increasing with depth) and the presence of softer layers. In contrast, the presence of less permeable and/or stiffer layers is not believed to play a major role in the proposed mechanism.

  12. Closure of supporting cell scar formations requires dynamic actin mechanisms.

    PubMed

    Hordichok, Andrew J; Steyger, Peter S

    2007-10-01

    In many vertebrate inner ear sensory epithelia, dying sensory hair cells are extruded, and the apices of surrounding supporting cells converge to re-seal the epithelial barrier between the electrochemically-distinct endolymph and perilymph. These cellular mechanisms remain poorly understood. Dynamic microtubular mechanisms have been proposed for hair cell extrusion; while contractile actomyosin-based mechanisms are required for cellular extrusion and closure in epithelial monolayers. The hypothesis that cytoskeletal mechanisms are required for hair cell extrusion and supporting cell scar formation was tested using bullfrog saccules incubated with gentamicin (6h), and allowed to recover (18h). Explants were then fixed, labeled for actin and cytokeratins, and viewed with confocal microscopy. To block dynamic cytoskeletal processes, disruption agents for microtubules (colchicine, paclitaxel) myosin (Y-27632, ML-9) or actin (cytochalasin D, latrunculin A) were added during treatment and recovery. Microtubule disruption agents had no effect on hair cell extrusion or supporting cell scar formation. Myosin disruption agents appeared to slow down scar formation but not hair cell extrusion. Actin disruption agents blocked scar formation, and largely prevented hair cell extrusion. These data suggest that actin-based cytoskeletal processes are required for hair cell extrusion and supporting cell scar formation in bullfrog saccules. PMID:17716843

  13. Perspective: network-guided pattern formation of neural dynamics.

    PubMed

    Hütt, Marc-Thorsten; Kaiser, Marcus; Hilgetag, Claus C

    2014-10-01

    The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain's network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs or hierarchical network organization) are derived from these deviations. An alternative strategy could be to study deviations of network architectures from regular graphs (rings and lattices) and consider the implications of such deviations for self-organized dynamic patterns on the network. Following this strategy, we draw on the theory of spatio-temporal pattern formation and propose a novel perspective for analysing dynamics on networks, by evaluating how the self-organized dynamics are confined by network architecture to a small set of permissible collective states. In particular, we discuss the role of prominent topological features of brain connectivity, such as hubs, modules and hierarchy, in shaping activity patterns. We illustrate the notion of network-guided pattern formation with numerical simulations and outline how it can facilitate the understanding of neural dynamics. PMID:25180302

  14. Trion formation dynamics in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Singh, Akshay; Moody, Galan; Tran, Kha; Scott, Marie E.; Overbeck, Vincent; Berghäuser, Gunnar; Schaibley, John; Seifert, Edward J.; Pleskot, Dennis; Gabor, Nathaniel M.; Yan, Jiaqiang; Mandrus, David G.; Richter, Marten; Malic, Ermin; Xu, Xiaodong; Li, Xiaoqin

    2016-01-01

    We report charged exciton (trion) formation dynamics in doped monolayer transition metal dichalcogenides, specifically molybdenum diselenide (MoS e2 ), using resonant two-color pump-probe spectroscopy. When resonantly pumping the exciton transition, trions are generated on a picosecond time scale through exciton-electron interaction. As the pump energy is tuned from the high energy to low energy side of the inhomogeneously broadened exciton resonance, the trion formation time increases by ˜ 50 % . This feature can be explained by the existence of both localized and delocalized excitons in a disordered potential and suggests the existence of an exciton mobility edge in transition metal dichalcogenides.

  15. Trion formation dynamics in monolayer transition metal dichalcogenides

    DOE PAGESBeta

    Singh, Akashay; Moody, Galan; Schaibley, John R.; Yan, Jiaqiang; Mandrus, David G.; Xu, Xiaodong; Li, Xiaoqun; Tran, Kha; Scott, Marie E.; Overbeck, Vincent; et al

    2016-01-05

    Here, we report charged exciton (trion) formation dynamics in doped monolayer transition metal dichalcogenides, specifically molybdenum diselenide (MoSe2), using resonant two-color pump-probe spectroscopy. When resonantly pumping the exciton transition, trions are generated on a picosecond time scale through exciton-electron interaction. As the pump energy is tuned from the high energy to low energy side of the inhomogeneously broadened exciton resonance, the trion formation time increases by ~50%. This feature can be explained by the existence of both localized and delocalized excitons in a disordered potential and suggests the existence of an exciton mobility edge in transition metal dichalcogenides.

  16. Dynamics of multi-tethered pyramidal satellite formation

    NASA Astrophysics Data System (ADS)

    Alary, D.; Andreev, K.; Boyko, P.; Ivanova, E.; Pritykin, D.; Sidorenko, V.; Tourneur, C.; Yarotsky, D.

    2015-12-01

    This paper is devoted to the dynamics of a multi-tethered pyramidal satellite formation rotating about its axis of symmetry in the nominal mode. Whereas the combination of rotation and gravity-gradient forces is insufficient to maintain the mutual positions of satellites, they are assumed to be equipped with low-thrust rocket engines. We propose a control strategy that allows the stabilization of the nominal spin state and demonstrate the system's proper operation by numerically simulating its controlled motion. The discussed multi-tethered formations could be employed, for example, to provide co-location of several satellites at a slot in geostationary orbit.

  17. Narrowband solid state vuv coherent source for laser cooling of antihydrogen

    NASA Astrophysics Data System (ADS)

    Michan, J. Mario; Polovy, Gene; Madison, Kirk W.; Fujiwara, Makoto C.; Momose, Takamasa

    2015-11-01

    We describe the design and performance of a solid-state pulsed source of narrowband (< 100 MHz) Lyman- α radiation designed for the purpose of laser cooling magnetically trapped antihydrogen. Our source utilizes an injection seeded Ti:Sapphire amplifier cavity to generate intense radiation at 729.4 nm, which is then sent through a frequency doubling stage and a frequency tripling stage to generate 121.56 nm light. Although the pulse energy at 121.56 nm is currently limited to 12 nJ with a repetition rate of 10 Hz, we expect to obtain greater than 0.1 μJ per pulse at 10 Hz by further optimizing the alignment of the pulse amplifier and the efficiency of the frequency tripling stage. Such a power will be sufficient for cooling a trapped antihydrogen atom from 500 mK to 20mK.

  18. A sensitive detection method for high resolution spectroscopy of trapped antihydrogen, hydrogen and other trapped species

    NASA Astrophysics Data System (ADS)

    Lenz Cesar, Claudio

    2016-04-01

    A method for detection of the weak 1s-2s laser excitation of a few trapped antihydrogen atoms is described. It involves the typical antihydrogen trapping environment that combines a magnetic trap for the atoms as well as a Penning trap for its constituent particles. By photoionization of the excited state the photoion can be kept in a weak Penning trap and at a suitable time be ejected towards a charged particle detector such as a microchannel plate or a channel electron multiplier. Since it does not rely on annihilation, the method is also suitable for trapped hydrogen and may find application with other species when a weak transition to a metastable state is intended and only a few trapped atoms or molecules are available.

  19. Pattern formation via intermittence from microscopic deterministic dynamics

    NASA Astrophysics Data System (ADS)

    Hernández, Marco; Escaff, Daniel; Finger, Ricardo

    2012-05-01

    We propose a one-dimensional lattice model, inspired by population dynamics interaction. The model combines a variable coupling range with the Allee effect. The system is capable of exhibiting pattern formation that is similar to what occurs in similar continuous models for population dynamics. However, the formation features are quite different; in this case the pattern emerges from a disorder state via intermittence. We analytically estimated the selected wavelength of the formed pattern and numerically studied fluctuations around the mean wavelength. We also comment on the relationship between intermittence and the edge of chaos as well as sensitivity to initial conditions. Next, we present an analytical prediction of the influence of the world size on the intermittent regime which is in good agreement with the numerical observations. Moreover, the last calculation provided us an alternative way to compute the pattern wavelength. Finally, we discuss the continuous limit of our lattice model.

  20. Formation and dynamical history of the beta Pictoris system

    NASA Astrophysics Data System (ADS)

    Wyatt, M.

    2014-09-01

    The structure of the beta Pic disk holds many clues to its formation and dynamical history. In particular there is strong evidence for sculpting by the beta Pic-b planet. For example, a warp in the disk at 80au is thought to be driven by the secular perturbations of that planet, and scattering of comets by beta Pic-b is thought to be the origin of the Falling Evaporating Bodies. A clump in the disk coincident with the warp, also at ~80au, provides clues to the outer planetary system which for now is poorly constrained. One possible origin for the clump is in trapping of comets into resonance with an outer planet currently at ~60au, with an alternative scenario being a giant impact between planetary embryos. This talk will consider the various disk structures and what they tell us about the formation and dynamical history of the beta Pictoris system.

  1. Dynamics of fragment formation in the nuclear spinodal region

    SciTech Connect

    Baldo, M.; Burgio, G.F.; Rapisarda, A. )

    1995-01-01

    The Vlasov-Nordheim equation is solved numerically on a lattice for nuclear matter in two dimensions. We discuss the reliability of the model at normal density and then study the response of the system to small perturbations. We find deterministic chaos inside the spinodal zone where fragment formation occurs. We discuss in detail the dynamical features of this phenomenon in order to clarify the mechanisms leading to nuclear disassembly in heavy-ion collisions.

  2. Collisional and dynamical processes in moon and planet formation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The collisional and dynamical processes in moon and planet formation are discussed. A hydrodynamic code of collision calculations, the orbital element changes due to gravitational scattering, a validation of the mass shifting algorithm, a theory of rotations, and the origin of asteroids are studied. A numerical model of planet growth is discussed and a methodology to evaluate the rate at which megaregolith increases its depth as a function of total accumulate number of impacts on an initially smooth, coherent surface is described.

  3. O the Dynamics of the Formation of Multiple Tropical Disturbances

    NASA Astrophysics Data System (ADS)

    Nieto, Ferreira Rosana

    A nonlinear shallow water model on the sphere is used to study the early stages of tropical cyclone genesis, namely, the formation of tropical disturbances. Two particular cases in which one or more tropical disturbances are produced are studied: the ITCZ breakdown and the formation of disturbances that lead to twin tropical cyclones. The ITCZ breakdown is seen to be a plausible mechanism for the formation of tropical disturbances. This mechanism also offers an explanation for the observations of easterly waves outside the Atlantic basin. In the Eastern Pacific, in particular, the time and space clustering of tropical cyclone genesis lend support to the hypothesis that the ITCZ breakdown plays a role in their formation. Tropical cyclone twins are observed exclusively in the Indian Ocean and in the West Pacific near the dateline. They are believed to form in association with super cloud clusters that straddle the equator in those regions. Shallow water model results presented herein corroborate this hypothesis. The existence of preferred regions for their formation is proposed to be associated with the life cycle and movement of their parent super cloud clusters. The shallow water model proved to be a useful simple tool for investigating barotropic dynamical aspects of the formation of tropical cyclone disturbances.

  4. Dynamic Transcriptional Response of Escherichia coli to Inclusion Body Formation

    PubMed Central

    Baig, Faraz; Fernando, Lawrence P.; Salazar, Mary Alice; Powell, Rhonda R.; Bruce, Terri F.; Harcum, Sarah W.

    2014-01-01

    Escherichia coli is used intensively for recombinant protein production, but one key challenge with recombinant E. coli is the tendency of recombinant proteins to misfold and aggregate into insoluble inclusion bodies (IBs). IBs contain high concentrations of inactive recombinant protein that require recovery steps to salvage a functional recombinant protein. Currently, no universally effective method exists to prevent IB formation in recombinant E. coli. In this study, DNA microarrays were used to compare the E. coli gene expression response dynamics to soluble and insoluble recombinant protein production. As expected and previously reported, the classical heat-shock genes had increased expression due to IB formation, including protein folding chaperones and proteases. Gene expression levels for protein synthesis-related and energy-synthesis pathways were also increased. Many transmembrane transporter and corresponding catabolic pathways genes had decreased expression for substrates not present in the culture medium. Additionally, putative genes represented over one-third of the genes identified to have significant expression changes due to IB formation, indicating many important cellular responses to IB formation still need to be characterized. Interestingly, cells grown in 3% ethanol had significantly reduced gene expression responses due to IB formation. Taken together, these results indicate that IB formation is complex, stimulates the heat-shock response, increases protein and energy synthesis needs, and streamlines transport and catabolic processes, while ethanol diminished all of these responses. PMID:24338599

  5. An experimental study of dynamics of drop formation

    SciTech Connect

    Zhang, X.; Basaran, O.A.

    1995-06-01

    A liquid being ejected from a nozzle emanates from it as discrete, uniformly sized drops when the flow rate is sufficiently low. In this paper, an experimental study is presented of the dynamics of a viscous liquid drop that is being formed directly at the tip of a vertical tube into ambient air. The evolution in time of the drop shape and volume is monitored with a time resolution of 1/12 to 1 ms. Following the detachment of the previous drop, the profile of the new growing drop at first changes from spherical to pear-shaped. As time advances, the throat of the pear-shaped drop takes on the appearance of a liquid thread that connects the bottom portion of the drop that is about to detach to the rest of the liquid that is pendant from the tube. The focus here is on probing the effects of physical and geometric parameters on the universal features of drop formation, paying special attention to the development, extension, and breakup of the liquid thread and the satellite drops that are formed subsequent to its breakup. The role of surfactants in modifying the dynamics of drop formation is also studied. The effects of finite inertial, capillary, viscous, and gravitational forces are all accounted for to classify drastically different formation dynamics and to elucidate the fate of satellite drops following thread rupture.

  6. X-pinch dynamics: Neck formation and implosion

    SciTech Connect

    Oreshkin, V. I.; Chaikovsky, S. A.; Artyomov, A. P.; Labetskaya, N. A.; Fedunin, A. V.; Rousskikh, A. G.; Zhigalin, A. S.

    2014-10-15

    We propose a model that describes the neck formation and implosion in an X-pinch. The process is simulated to go in two stages. The first stage is neck formation. This stage begins with an electrical explosion of the wires forming the X-pinch, and at the end of the stage, a micropinch (neck) is formed in the region where the wires are crossed. The second stage is neck implosion. The implosion is accompanied by outflow of matter from the neck region, resulting in the formation of a “hot spot”. Analytical estimates obtained in the study under consideration indicate that these stages are approximately equal in duration. Having analyzed the neck implosion dynamics, we have verified a scaling which makes it possible to explain the observed dependences of the time of occurrence of an x-ray pulse on the X-pinch current and mass.

  7. Temperature-independent carrier formation dynamics in bulk heterojunction

    NASA Astrophysics Data System (ADS)

    Yonezawa, Kouhei; Yasuda, Takeshi; Moritomo, Yutaka

    2015-11-01

    We investigated the effects of temperature on the carrier formation dynamics in a small-molecular blend film, 2,5-di-(2-ethylhexyl)-3,6-bis-(5‧‧-n-hexy-[2,2‧,5‧,2‧‧]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrolo-1,4-dione (SMDPPEH)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM). We spectroscopically determined the absolute numbers of donor (n\\text{D*}) and acceptor (n\\text{A*}) excitons per absorbed photon as functions of the delay time (t), in addition to the relative number of donor carries (n\\text{D+}). We found that the carrier formation dynamics is independent of temperature at 300 and 80 K: the carrier formation time (τrise = 0.4 ps) is much faster than the decay time (τdecay ≈ 2.5 ps) of donor excitons. The temperature independence strongly suggests that only excitons created near the donor-acceptor interface contribute to the carrier formation.

  8. Progress Toward a Format Standard for Flight Dynamics Models

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2006-01-01

    In the beginning, there was FORTRAN, and it was... not so good. But it was universal, and all flight simulator equations of motion were coded with it. Then came ACSL, C, Ada, C++, C#, Java, FORTRAN-90, Matlab/Simulink, and a number of other programming languages. Since the halcyon punch card days of 1968, models of aircraft flight dynamics have proliferated in training devices, desktop engineering and development computers, and control design textbooks. With the rise of industry teaming and increased reliance on simulation for procurement decisions, aircraft and missile simulation models are created, updated, and exchanged with increasing frequency. However, there is no real lingua franca to facilitate the exchange of models from one simulation user to another. The current state-of-the-art is such that several staff-months if not staff-years are required to 'rehost' each release of a flight dynamics model from one simulation environment to another one. If a standard data package or exchange format were to be universally adopted, the cost and time of sharing and updating aerodynamics, control laws, mass and inertia, and other flight dynamic components of the equations of motion of an aircraft or spacecraft simulation could be drastically reduced. A 2002 paper estimated over $ 6 million in savings could be realized for one military aircraft type alone. This paper describes the efforts of the American Institute of Aeronautics and Astronautics (AIAA) to develop a standard flight dynamic model exchange standard based on XML and HDF-5 data formats.

  9. Dynamics and pattern formation in a cancer network with diffusion

    NASA Astrophysics Data System (ADS)

    Zheng, Qianqian; Shen, Jianwei

    2015-10-01

    Diffusion is ubiquitous inside cells, and it is capable of inducing spontaneous pattern formation in reaction-diffusion systems on a spatially homogeneous domain. In this paper, we investigate the dynamics of a diffusive cancer network regulated by microRNA and obtain the condition that the network undergoes a Hopf bifurcation and a Turing pattern bifurcation. In addition, we also develop the amplitude equation of the network model by using Taylor series expansion, multi-scaling and further expansion in powers of a small parameter. As a result of these analyses, we obtain the explicit condition on how the dynamics of the diffusive cancer network evolve. These results reveal that this system has rich dynamics, such as spotted stripe and hexagon patterns. The bifurcation diagram helps us understand the biological mechanism in the cancer network. Finally, numerical simulations confirm our analytical results.

  10. The Dynamics of Coalition Formation on Complex Networks

    NASA Astrophysics Data System (ADS)

    Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.

    2015-08-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects.

  11. A natural experiment of social network formation and dynamics

    PubMed Central

    Phan, Tuan Q.; Airoldi, Edoardo M.

    2015-01-01

    Social networks affect many aspects of life, including the spread of diseases, the diffusion of information, the workers' productivity, and consumers' behavior. Little is known, however, about how these networks form and change. Estimating causal effects and mechanisms that drive social network formation and dynamics is challenging because of the complexity of engineering social relations in a controlled environment, endogeneity between network structure and individual characteristics, and the lack of time-resolved data about individuals' behavior. We leverage data from a sample of 1.5 million college students on Facebook, who wrote more than 630 million messages and 590 million posts over 4 years, to design a long-term natural experiment of friendship formation and social dynamics in the aftermath of a natural disaster. The analysis shows that affected individuals are more likely to strengthen interactions, while maintaining the same number of friends as unaffected individuals. Our findings suggest that the formation of social relationships may serve as a coping mechanism to deal with high-stress situations and build resilience in communities. PMID:25964337

  12. The Dynamics of Coalition Formation on Complex Networks

    PubMed Central

    Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.

    2015-01-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects. PMID:26303622

  13. A natural experiment of social network formation and dynamics.

    PubMed

    Phan, Tuan Q; Airoldi, Edoardo M

    2015-05-26

    Social networks affect many aspects of life, including the spread of diseases, the diffusion of information, the workers' productivity, and consumers' behavior. Little is known, however, about how these networks form and change. Estimating causal effects and mechanisms that drive social network formation and dynamics is challenging because of the complexity of engineering social relations in a controlled environment, endogeneity between network structure and individual characteristics, and the lack of time-resolved data about individuals' behavior. We leverage data from a sample of 1.5 million college students on Facebook, who wrote more than 630 million messages and 590 million posts over 4 years, to design a long-term natural experiment of friendship formation and social dynamics in the aftermath of a natural disaster. The analysis shows that affected individuals are more likely to strengthen interactions, while maintaining the same number of friends as unaffected individuals. Our findings suggest that the formation of social relationships may serve as a coping mechanism to deal with high-stress situations and build resilience in communities. PMID:25964337

  14. The Dynamics of Coalition Formation on Complex Networks.

    PubMed

    Auer, S; Heitzig, J; Kornek, U; Schöll, E; Kurths, J

    2015-01-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation ("coalitions") on an acquaintance network. We include both the network's influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects. PMID:26303622

  15. On the high inclination KBOs common dynamical formation

    NASA Astrophysics Data System (ADS)

    De Oliveira Brasil, Pedro Ivo I.; Gomes, Rodney S.; Nesvorny, David

    2014-11-01

    The Kuiper belt is a dynamically intriguing region. Different "classes" of objects can be defined, according to their orbital properties. These are: the classic belt (with the subclasses of cold & hot objects), resonant objects, scattered disk and extended scattered disk. In this work, we seek to investigate possible common origins, during the orbital conformation of the giant planets, for the formation of classes of objects with moderate or high inclination. Interesting results were obtained for the hot objects of the Kuiper belt and the objects belonging to the extended scattered disk. The general mechanism found for the formation of these objects can be summarized as: (i) scattering phase due to the interaction with the giant planets, during the LHB; (ii) capture into mean motion resonances (MMR) with Neptune; (iii) capture into Kozai resonance/mode; (iv) escape FROM both resonances into a mode known as "hibernation mode", in which the object has low eccentricity and high inclination; (v) fossilization in an orbit outside the resonant semi-major axis due to residual migration of Neptune. The results show good consistency between known objects with the model of dynamical formation.

  16. Cloud-particle galactic gas dynamics and star formation

    NASA Technical Reports Server (NTRS)

    Roberts, W. W., Jr.

    1983-01-01

    Galactic gas dynamics, spiral structure, and star formation are discussed in relation to N-body computational studies based on a cloud-particle model of the interstellar medium. On the small scale, the interstellar medium is seen as cloud-dominated and supernova-perturbed. It is noted that the cloud-particle model simulates cloud-cloud collisions, the formation of stellar associations, and supernova explosions as dominant local processes. On the large scale, in response to a spiral galactic gravitational field, global density waves and galactic shocks develop having large-scale characteristics similar to those found in continuum gas dynamical studies. Both the system of gas clouds and the system of young stellar associations forming from the clouds figure in the global spiral structure. However, with the attributes of neither assuming a continuum of gas (as in continuum gas dynamical studies) or requiring a prescribed equation of state (such as the isothermal condition), the cloud-particle picture retains much of the detail lost in earlier work. By detail is meant the small-scale features and structures so important in understanding the local, turbulent state of the interstellar medium as well as the degree of raggedness often seen to be superposed on the global spiral structure.

  17. Brownian dynamics simulation of sickle hemoglobin bundle formation

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Gunton, James; Chakrabarti, Amit

    2010-03-01

    The physical properties of biopolymer fibers, such as their stability and degree of aggregation, are implicated in many diseases, including sickle cell anemia. The natural chirality of protofilaments plays a crucial role in the formation of sickle hemoglobin fiber which leads to the permanent blockage of microvessels. We use Brownian dynamics to investigate the kinetics of fiber aggregation. The geometrical helical structure and chirality of the filaments are modeled by anisotropic patch-like interactions. We present the kinetics of fiber formation and study the possibility of a finite critical fiber bundle size. We compare our results with various experimental and theoretical results. This work is supported by grants from the NSF and the G. Harold and Leila Y. Mathers Foundation.

  18. Dynamics of the Formation of Carbon Nanotube Serpentines

    NASA Astrophysics Data System (ADS)

    Machado, L. D.; Legoas, S. B.; Soares, J. S.; Shadmi, N.; Jorio, A.; Joselevich, E.; Galvão, D. S.

    2013-03-01

    Recently, Geblinger et al. [Nat. Nanotechnol. 3, 195 (2008)NNAABX1748-3387] reported the experimental realization of carbon nanotube S-like shaped nanostructures, the so-called carbon nanotube serpentines. We report here results from multimillion fully atomistic molecular dynamics simulations of their formation. We consider one-μm-long carbon nanotubes placed on stepped substrates with and without a catalyst nanoparticle on the top free end of the tube. A force is applied to the upper part of the tube during a short period of time and turned off; then the system is set free to evolve in time. Our results show that these conditions are sufficient to form robust serpentines and validates the general features of the “falling spaghetti model” proposed to explain their formation.

  19. Dynamics of the formation of carbon nanotube serpentines.

    PubMed

    Machado, L D; Legoas, S B; Soares, J S; Shadmi, N; Jorio, A; Joselevich, E; Galvão, D S

    2013-03-01

    Recently, Geblinger et al. [Nat. Nanotechnol. 3, 195 (2008)] reported the experimental realization of carbon nanotube S-like shaped nanostructures, the so-called carbon nanotube serpentines. We report here results from multimillion fully atomistic molecular dynamics simulations of their formation. We consider one-μm-long carbon nanotubes placed on stepped substrates with and without a catalyst nanoparticle on the top free end of the tube. A force is applied to the upper part of the tube during a short period of time and turned off; then the system is set free to evolve in time. Our results show that these conditions are sufficient to form robust serpentines and validates the general features of the "falling spaghetti model" proposed to explain their formation. PMID:23521270

  20. Nonlinear dynamic theory for photorefractive phase hologram formation

    NASA Technical Reports Server (NTRS)

    Kim, D. M.; Shah, R. R.; Rabson, T. A.; Tittle, F. K.

    1976-01-01

    A nonlinear dynamic theory is developed for the formation of photorefractive volume phase holograms. A feedback mechanism existing between the photogenerated field and free-electron density, treated explicitly, yields the growth and saturation of the space-charge field in a time scale characterized by the coupling strength between them. The expression for the field reduces in the short-time limit to previous theories and approaches in the long-time limit the internal or photovoltaic field. Additionally, the phase of the space charge field is shown to be time-dependent.

  1. Dynamic models for ridge belt formation on Venus

    NASA Technical Reports Server (NTRS)

    Simons, Mark; Solomon, Sean C.; Hager, Bradford H.

    1991-01-01

    The hypothesis is tested that the lithospheric shortening expressed by the ridge belts is the result of convective downwelling beneath the lowland planitia. Dynamical models are developed for the interaction of mantle convection with the crust and the models are compared to the characteristics of the ridge belts in Lavinia Planitia. The models support the hypothesis that convective stresses can produce the broad topographic depression of lowlands on Venus and can lead to the formation of ridge belts on either side of the topographic low.

  2. Trust dynamics in multi-agent coalition formation

    NASA Astrophysics Data System (ADS)

    Mikulski, Dariusz G.; Lewis, Frank L.; Gu, Edward Y.; Hudas, Greg R.

    2011-05-01

    We present a rigorous treatment of coalition formation based on trust interactions in multi-agent systems. Current literature on trust in multi-agent systems primarily deals with trust models and protocols of interaction in noncooperative scenarios. Here, we use cooperative game theory as the underlying mathematical framework to study the trust dynamics between agents as a result of their trust synergy and trust liability in cooperative coalitions. We rigorously justify the behaviors of agents for different classes of games, and discuss ways to exploit the formal properties of these games for specific applications, such as unmanned cooperative control.

  3. Mechanical compaction directly modulates the dynamics of bile canaliculi formation.

    PubMed

    Wang, Yan; Toh, Yi-Chin; Li, Qiushi; Nugraha, Bramasta; Zheng, Baixue; Lu, Thong Beng; Gao, Yi; Ng, Mary Mah Lee; Yu, Hanry

    2013-02-01

    Homeostatic pressure-driven compaction is a ubiquitous mechanical force in multicellular organisms and is proposed to be important in the maintenance of multicellular tissue integrity and function. Previous cell-free biochemical models have demonstrated that there are cross-talks between compaction forces and tissue structural functions, such as cell-cell adhesion. However, its involvement in physiological tissue function has yet to be directly demonstrated. Here, we use the bile canaliculus (BC) as a physiological example of a multicellular functional structure in the liver, and employ a novel 3D microfluidic hepatocyte culture system to provide an unprecedented opportunity to experimentally modulate the compaction states of primary hepatocyte aggregates in a 3D physiological-mimicking environment. Mechanical compaction alters the physical attributes of the hepatocyte aggregates, including cell shape, cell packing density and cell-cell contact area, but does not impair the hepatocytes' remodeling and functional capabilities. Characterization of structural and functional polarity shows that BC formation in compact hepatocyte aggregates is accelerated to as early as 12 hours post-seeding; whereas non-compact control requires 48 hours for functional BC formation. Further dynamic immunofluorescence imaging and gene expression profiling reveal that compaction accelerated BC formation is accompanied by changes in actin cytoskeleton remodeling dynamics and transcriptional levels of hepatic nuclear factor 4α and Annexin A2. Our report not only provides a novel strategy of modeling BC formation for in vitro hepatology research, but also shows a first instance that homeostatic pressure-driven compaction force is directly coupled to the higher-order multicellular functions. PMID:23233209

  4. Explaining formation of Astronomical Jets using Dynamic Universe Model

    NASA Astrophysics Data System (ADS)

    Naga Parameswara Gupta, Satyavarapu

    2016-07-01

    Astronomical jets are observed from the centres of many Galaxies including our own Milkyway. The formation of such jet is explained using SITA simulations of Dynamic Universe Model. For this purpose the path traced by a test neutron is calculated and depicted using a set up of one densemass of the mass equivalent to mass of Galaxy center, 90 stars with similar masses of stars near Galaxy center, mass equivalents of 23 Globular Cluster groups, 16 Milkyway parts, Andromeda and Triangulum Galaxies at appropriate distances. Five different kinds of theoretical simulations gave positive results The path travelled by this test neutron was found to be an astronomical jet emerging from Galaxy center. This is another result from Dynamic Universe Model. It solves new problems like a. Variable Mass Rocket Trajectory Problem b. Explaining Very long baseline interferometry (VLBI) observations c. Astronomical jets observed from Milkyway Center d. Prediction of Blue shifted Galaxies e. Explaining Pioneer Anomaly f. Prediction of New Horizons satellite trajectory etc. Dynamic Universe Model never reduces to General relativity on any condition. It uses a different type of mathematics based on Newtonian physics. This mathematics used here is simple and straightforward. As there are no differential equations present in Dynamic Universe Model, the set of equations give single solution in x y z Cartesian coordinates for every point mass for every time step

  5. Dynamic Membrane Formation in Anaerobic Dynamic Membrane Bioreactors: Role of Extracellular Polymeric Substances

    PubMed Central

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2015-01-01

    Dynamic membrane (DM) formation in dynamic membrane bioreactors plays an important role in achieving efficient solid-liquid separation. In order to study the contribution of extracellular polymeric substances (EPS) to DM formation in anaerobic dynamic membrane bioreactor (AnDMBR) processes, EPS extraction from and re-addition to bulk sludge were carried out in short-term filtration tests. DM formation behaviors could be well simulated by cake filtration model, and sludge with EPS re-addition showed the highest resistance coefficient, followed by sludge after EPS extraction. The DM layers exhibited a higher resistance and a lower porosity for the sludge sample after EPS extraction and for the sludge with EPS re-addition. Particle size of sludge flocs decreased after EPS extraction, and changed little with EPS re-addition, which was confirmed by interaction energy analysis. Further investigations by confocal laser scanning microscopy (CLSM) analysis and batch tests suggested that the removal of in-situ EPS stimulated release of soluble EPS, and re-added EPS were present as soluble EPS rather than bound EPS, which thus improved the formation of DM. The present work revealed the role of EPS in anaerobic DM formation, and could facilitate the operation of AnDMBR processes. PMID:26436551

  6. Dynamic Membrane Formation in Anaerobic Dynamic Membrane Bioreactors: Role of Extracellular Polymeric Substances.

    PubMed

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2015-01-01

    Dynamic membrane (DM) formation in dynamic membrane bioreactors plays an important role in achieving efficient solid-liquid separation. In order to study the contribution of extracellular polymeric substances (EPS) to DM formation in anaerobic dynamic membrane bioreactor (AnDMBR) processes, EPS extraction from and re-addition to bulk sludge were carried out in short-term filtration tests. DM formation behaviors could be well simulated by cake filtration model, and sludge with EPS re-addition showed the highest resistance coefficient, followed by sludge after EPS extraction. The DM layers exhibited a higher resistance and a lower porosity for the sludge sample after EPS extraction and for the sludge with EPS re-addition. Particle size of sludge flocs decreased after EPS extraction, and changed little with EPS re-addition, which was confirmed by interaction energy analysis. Further investigations by confocal laser scanning microscopy (CLSM) analysis and batch tests suggested that the removal of in-situ EPS stimulated release of soluble EPS, and re-added EPS were present as soluble EPS rather than bound EPS, which thus improved the formation of DM. The present work revealed the role of EPS in anaerobic DM formation, and could facilitate the operation of AnDMBR processes. PMID:26436551

  7. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets

    NASA Astrophysics Data System (ADS)

    Das, Siddhartha; Kumar, Aloke

    2014-11-01

    It has been recently reported that in presence of low Reynolds number (Re << 1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this work, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such ``viscous liquid'' state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions. Overall our manuscript provides a biophysical basis for understanding the evolution of biofilm streamers in creeping flows.

  8. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets

    PubMed Central

    Das, Siddhartha; Kumar, Aloke

    2014-01-01

    It has been recently reported that in presence of low Reynolds number (Re ≪ 1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this work, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such “viscous liquid” state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions. Overall our manuscript provides a biophysical basis for understanding the evolution of biofilm streamers in creeping flows. PMID:25410423

  9. Dynamics of laser induced metal nanoparticle and pattern formation

    SciTech Connect

    Peláez, R. J. Kuhn, T.; Rodríguez, C. E.; Afonso, C. N.

    2015-02-09

    Discontinuous metal films are converted into either almost round, isolated, and randomly distributed nanoparticles (NPs) or fringed patterns of alternate non transformed film and NPs by exposure to single pulses (20 ns pulse duration and 193 nm wavelength) of homogeneous or modulated laser beam intensity. The dynamics of NPs and pattern formation is studied by measuring in real time the transmission and reflectivity of the sample upon homogeneous beam exposure and the intensity of the diffraction orders 0 and 1 in transmission configuration upon modulated beam exposure. The results show that laser irradiation induces melting of the metal either completely or at regions around intensity maxima sites for homogeneous and modulated beam exposure, respectively, within ≤10 ns. The aggregation and/or coalescence of the initially irregular metal nanostructures is triggered upon melting and continues after solidification (estimated to occur at ≤80 ns) for more than 1 μs. The present results demonstrate that real time transmission rather than reflectivity measurements is a valuable and easy-to-use tool for following the dynamics of NPs and pattern formation. They provide insights on the heat-driven processes occurring both in liquid and solid phases and allow controlling in-situ the process through the fluence. They also evidence that there is negligible lateral heat release in discontinuous films upon laser irradiation.

  10. Dynamic meandering in response to upstream perturbations and floodplain formation

    NASA Astrophysics Data System (ADS)

    Schuurman, F.; Shimizu, Y.; Iwasaki, T.; Kleinhans, M. G.

    2016-01-01

    River meandering results from spatially alternating bank erosion and bar growth. Recent flume experiments and theory suggest that a continuous inflow perturbation is a requirement for sustained meandering. Furthermore, flume experiments suggest that bar-floodplain conversion is an additional requirement. Here, we tested the effects of continuous inflow perturbation and bar-floodplain conversion on meander migration using three numerical morphodynamic models: a 1D-model, and two 2D-models with one of them using adaptive moving grid. We focused on the interaction between bars and bends that leads to meander initiation, and the effect of different methods to model bank erosion and floodplain accretion processes on meander migration. The results showed that inflow perturbations have large effects on meander dynamics of high-sinuosity channels, with strong excitation when the inflow is periodically perturbed. In contrast, inflow perturbations have rather small effect in low-sinuosity channels. Steady alternate bars alone are insufficient to cause high-sinuosity meandering. For high-sinuosity meandering, bar-floodplain conversion is required that prevents chute-cutoffs and enhances flow asymmetry, whilst meandering with chute-cutoffs requires merely weak floodplain formation, and braiding occurs without floodplain formation. Thus, this study demonstrated that both dynamic upstream inflow perturbation and bar-floodplain conversion are required for sustained high-sinuosity meandering.

  11. Nanovoid Formation and Dynamics in He+-Implanted Nanocrystalline Silicon

    NASA Astrophysics Data System (ADS)

    Lorenzi, Bruno; Frabboni, Stefano; Gazzadi, Gian Carlo; Tonini, Rita; Ottaviani, Giampiero; Narducci, Dario

    2014-10-01

    Helium implantation in single crystal silicon is known to lead, after a proper thermal treatment, to the formation of voids with diameters ranging between 10 nm and 30 nm. Formation of voids is governed by the coalescence of vacancies created by implantation, initially trapping helium atoms. At high temperatures (), helium leaves the nanobubbles and outdiffuses, while the now empty voids grow in size and eventually change their shape to form tetrakaidecahedra (Wulff construction). In this communication, we report how He+ implantation in heavily boron-doped nanocrystalline silicon shows a completely different dynamics. Annealing at leads to the formation of large voids, located around grain boundaries, along with a large number of nanovoids with an average diameter of 2-4 nm and an estimated density of distributed throughout the grains. Annealing at higher temperature (up to ) also induces a decrease of the void size with a change in their density, finally accounting to . The high temperature annealing also causes vacancy evaporation down to a depth of 80-100 nm from the outer surface. The possibility of obtaining a stable, uniform distribution of nanometer-sized voids is of major relevance as a novel tool for phonon and electron engineering in thermoelectric materials.

  12. Star Formation and Dynamics in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Mapelli, Michela; Gualandris, Alessia

    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ˜ 0.04 pc, while the S-stars, i.e. the ˜ 30 stars closest to the SMBH ( lesssim 0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.

  13. Raindrop impact on sand: dynamic and crater formation

    NASA Astrophysics Data System (ADS)

    Zhao, Song-Chuan; de Jong, Rianne; van der Meer, Devaraj

    2015-03-01

    Droplet impact on a granular bed is very common in nature, industry, and agriculture and extends from raindrops falling on earth to wet granulation in the production process of many pharmaceuticals. In contrast to more traditionally studied impact phenomena, such as a droplet impact on solid substrate and solid object impact on fluid-like substrate, raindrop impact on sand induces more complicated interactions. First, both the intruder and the target deform during impact; second, the liquid composing the droplet may penetrate into the substrate during the impact and may, in the end, completely merge with the grains. These complex interactions between the droplet intruder and the granular target create the very diverse crater morphologies that has been described in the literature. An appealing and natural question is how the craters are formed. To gain insight in the mechanism of crater formation, we resolve the dynamics with high-speed laser profilometry and study the dependence of the dynamics on impact speed and packing fraction of the granular substrate. Finally, we establish a dynamical model to explain the various crater morphologies.

  14. The dynamics of radiation formation in a FEL

    SciTech Connect

    Ognivenko, V.

    1995-12-31

    The dynamics of stimulated radiation formation from spontaneous emission of the relativistic electrons moving in a magnetic helical undulator is investigated theoretically. The total radiation field of the electron beam has been calculated by summating the spontaneous undulator radiation fields of its individual electrons. The nonlinear dynamics of pointed electrons motion in the total radiation field and the self-amplification of this radiation are considered for the finite length of the electron beam. We analyzed the linear and nonlinear regimes for the one dimensional model. In the linear regime, the longitudinal displacements of electrons relative to their equilibrium trajectories in the undulator have been obtained anallyticatly as functions of entry time, the beam length and axial position of electrons in the undulator. The dependence of the efficiency on the beam length is established. We determined the mechanisms of axial beam bunching in the case of the intense electron beam, where the average distance between electrons in the beam reference frame is smaller than the undulator radiation wavelength, and in the limit case of ultra-short wavelength radiation, where the number of particles over the wavelength is not very large. The one-dimensional numerical simulation of nonlinear dynamics of the beam electron motion in the undulator magnetic field and the total radiation field is carried out for the finite beam length. The expression obtained by the analytical methods well agrees with the numerical simulation.

  15. PSEUDOBULGE FORMATION AS A DYNAMICAL RATHER THAN A SECULAR PROCESS

    SciTech Connect

    Guedes, Javiera; Mayer, Lucio; Carollo, Marcella; Madau, Piero

    2013-07-20

    We investigate the formation and evolution of the pseudobulge in 'Eris', a high-resolution N-body + smoothed particle hydrodynamic cosmological simulation that successfully reproduces a Milky-Way-like massive late-type spiral in an cold dark matter universe. At the present epoch, Eris has a virial mass M{sub vir} {approx_equal} 8 Multiplication-Sign 10{sup 11} M{sub Sun }, a photometric stellar mass M{sub *} = 3.2 Multiplication-Sign 10{sup 10} M{sub Sun }, a bulge-to-total ratio B/T = 0.26, and a weak nuclear bar. We find that the bulk of the pseudobulge forms quickly at high redshift via a combination of non-axisymmetric disk instabilities and tidal interactions or mergers, both occurring on dynamical timescales, not through slow secular processes at lower redshift. Its subsequent evolution is not strictly secular either, and is closely intertwined with the evolution of the stellar bar. In fact, the structure that we recognize as a pseudobulge today evolved from a stellar bar that formed at high redshift due to tidal interactions with satellites, was destroyed by minor mergers at z {approx} 3, re-formed shortly after, and weakened again following a steady gas inflow at z {approx}< 1. The gradual dissolution of the bar ensued at z {approx} 1 and continues until the present without increasing the stellar velocity dispersion in the inner regions. In this scenario, the pseudobulge is not a separate component from the inner disk in terms of formation path; rather, it is the first step in the inside-out formation of the baryonic disk, in agreement with the fact that pseudobulges of massive spiral galaxies typically have a dominant old stellar population. If our simulations do indeed reproduce the formation mechanisms of massive spirals, then the progenitors of late-type galaxies should have strong bars and small photometric pseudobulges at high redshift.

  16. The ingredients of cold antihydrogen: Simultaneous confinement of antiprotons and positrons at 4 K

    NASA Astrophysics Data System (ADS)

    Gabrielse, G.; Hall, D. S.; Roach, T.; Yesley, P.; Khabbaz, A.; Estrada, J.; Heimann, C.; Kalinowsky, H.

    1999-05-01

    Low energy antiprotons and cold positrons are stored together and observed to interact for the first time. The particles and the nested Penning trap that confines them are cooled to 4.2 K, within a vacuum better than 5x10-17 Torr. The simultaneous confinement clearly demonstrates the potential of a nested Penning trap for the production of cold antihydrogen. Contaminant ions play a deleterious role, and we observe a surprising coupling between the positron and antiproton accumulation mechanisms. © 1999

  17. Electron-cooled accumulation of 4 × 109 positrons for production and storage of antihydrogen atoms

    NASA Astrophysics Data System (ADS)

    Fitzakerley, D. W.; George, M. C.; Hessels, E. A.; Skinner, T. D. G.; Storry, C. H.; Weel, M.; Gabrielse, G.; Hamley, C. D.; Jones, N.; Marable, K.; Tardiff, E.; Grzonka, D.; Oelert, W.; Zielinski, M.; ATRAP Collaboration

    2016-03-01

    Four billion positrons (e+) are accumulated in a Penning-Ioffe trap apparatus at 1.2 K and <6 × 10-17 Torr. This is the largest number of positrons ever held in a Penning trap. The e+ are cooled by collisions with trapped electrons (e-) in this first demonstration of using e- for efficient loading of e+ into a Penning trap. The combined low temperature and vacuum pressure provide an environment suitable for antihydrogen (\\bar{{{H}}}) production, and long antimatter storage times, sufficient for high-precision tests of antimatter gravity and of CPT.

  18. Percolation and Burgers' dynamics in a model of capillary formation

    NASA Astrophysics Data System (ADS)

    Coniglio, A.; de Candia, A.; di Talia, S.; Gamba, A.

    2004-05-01

    Capillary networks are essential in vertebrates to supply tissues with nutrients. Experiments of in vitro capillary formation show that cells randomly spread on a gel matrix autonomously organize to form vascular networks. Cells form disconnected networks at low densities and connected ones above a critical density. Above the critical density the network is characterized by a typical mesh size ˜200 μm , which is approximately constant on a wide range of density values. In this paper we present a full characterization of a recently proposed model which reproduces the main features of the biological system, focusing on its dynamical properties, on the fractal properties of patterns, and on the percolative phase transition. We discuss the relevance of the model in relation with some experiments in living beings and proposed diagnostic methods based on the measurement of the fractal dimension of vascular networks.

  19. Formation and Dynamics of Antiferromagnetic Correlations in Tunable Optical Lattices.

    PubMed

    Greif, Daniel; Jotzu, Gregor; Messer, Michael; Desbuquois, Rémi; Esslinger, Tilman

    2015-12-31

    We report on the observation of antiferromagnetic correlations of ultracold fermions in a variety of optical lattice geometries that are well described by the Hubbard model, including dimers, 1D chains, ladders, isolated and coupled honeycomb planes, as well as square and cubic lattices. The dependence of the strength of spin correlations on the specific geometry is experimentally studied by measuring the correlations along different lattice tunneling links, where a redistribution of correlations between the different lattice links is observed. By measuring the correlations in a crossover between distinct geometries, we demonstrate an effective reduction of the dimensionality for our atom numbers and temperatures. We also investigate the formation and redistribution time of spin correlations by dynamically changing the lattice geometry and studying the time evolution of the system. Time scales ranging from a sudden quench of the lattice geometry to an adiabatic evolution are probed. PMID:26764974

  20. Dynamical Simulations of Terrestrial Planet Formation During Giant Planet Migration

    NASA Astrophysics Data System (ADS)

    Mandell, A. M.; Raymond, S. N.; Sigurdsson, S.

    2005-12-01

    We present preliminary results of dynamical simulations of young planetary systems undergoing migration of a Jovian-type planet through the terrestrial region. We find that a significant fraction (10-40%) of the initial planetary embryos remain after giant planet migration, and subsequent evolution of the system results in the formation of terrestrial planets in various configurations, often including a planet in the Habitable Zone. In simulations with gas drag, 3-6 Earth mass planets are formed interior to the migrating Jovian planet, swept inward through moving resonances, and eccentricities are damped for all planets. Systematic variations are seen between simulations with and without gas drag. The presence of a second, non-migrating giant planet reduces the water content and mass of the planets formed throughout the system. This research was supported in part by the Penn State Astrobiology Research Center and the Goddard Center for Astrobiology.

  1. Current Sheet Formation and Reconnection Dynamics in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Edmondson, Justin K.; Antiochos, S. K.; DeVore, C.; Zurbuchen, T. H.

    2009-05-01

    Current sheet formation is a necessary consequence of the evolution of the multi-polar magnetic field topologies that are ubiquitous throughout the solar corona. We present a very high-resolution study of 3D MHD current sheet formation and the resulting reconnection dynamics in an environment appropriate for the corona. The initial field consists of a translationally invariant, potential field with a null-point topology (i.e., 4-flux systems) and a low-beta plasma. A finite-extent, 3D Syrovatskii-type current sheet forms as a result of stressing of this system by a uniform, incompressible flow applied at the line-tied photospheric boundary. The system is assumed to be ideal, except for the presence of numerical resistivity. The fully 3-D evolution is calculated with very high resolution (9x and 10x refinement across the full extent of the current sheet) using the Adaptively Refined MHD Solver (ARMS). The initial evolution of this computationally-intensive simulation results in a current sheet with a nearly 30-to-1 aspect ratio, a significant fraction of the system characteristic length, that unexpectedly appears to be stable. In addition, up to this point in the evolution any magnetic reconnection that we observe is of the slow Sweet-Parker type. We expect, however, that as we continue stressing the field, the current sheet will become unstable and develop explosive dynamics. We discuss the implications of our results on coronal structure and activity, such as heating and eruptions. This work has been supported, in part, by the NASA HTP and SR&T programs.

  2. DYNAMICAL FORMATION OF MILLISECOND PULSARS IN GLOBULAR CLUSTERS

    SciTech Connect

    Hui, C. Y.; Cheng, K. S.; Taam, Ronald E.

    2010-05-10

    The cumulative luminosity distribution functions (CLFs) of radio millisecond pulsars (MSPs) in globular clusters (GCs) and in the Galactic field at a frequency of 1.4 GHz have been examined. Assuming a functional form, N {proportional_to} L{sup q} where N is the number of MSPs and L is the luminosity at 1.4 GHz, it is found that the CLFs significantly differ with a steeper slope, q = -0.83 {+-} 0.05, in GCs than in the Galactic field (q = -0.48 {+-} 0.04), suggesting a different formation or evolutionary history of MSPs in these two regions of the Galaxy. To probe the production mechanism of MSPs in clusters, a search of the possible relationships between the MSP population and cluster properties was carried out. The results of an investigation of nine GCs indicate positive correlations between the MSP population and the stellar encounter rate and metallicity. This provides additional evidence suggesting that stellar dynamical interactions are important in the formation of the MSP population in GCs.

  3. Boundary Layer Dynamical Structure During Secondary Eyewall Formation

    NASA Astrophysics Data System (ADS)

    Abarca, S. F.; Montgomery, M. T.; McWilliams, J. C.

    2014-12-01

    Secondary eyewall formation (SEF) is widely recognized as an important research problem in the dynamics of mature tropical cyclones. It has been shown that the development of the wind maxima in SEF occurs within the boundary layer and that it follows a chain of events initiated by a substantial radial expansion of the tangential wind field. In this context, there is not yet a consensus on the phenomenon's essential physics. It has been proposed that the boundary-layer dynamics of a maturing hurricane vortex is an important controlling element in SEF. However, recent literature also argues that hurricane boundary layers and the related coupling with the interior flow can be described through an Ekman-like balance and that shock-like structures are relevant in the swirling boundary layer of the inner core of mature storms. We analyze the radial and vertical structure of the specific forces and accelerations in in the boundary layer in a mature hurricane that includes a canonical eyewall replacement cycle. The case occurred in a mesoscale, convection-permitting numerical simulation of a tropical cyclone, integrated from an initial weak mesoscale vortex in an idealized quiescent environment. The simulation has been studied extensively in the literature. We find that momentum advection is almost everywhere important (some of it is associated with asymmetric eddies). We discuss the implication of our findings on the proposed importance of Ekman-like balance dynamics during SEF. Finally, our analysis does not support the recently proposed idea that the radial advection of radial momentum, and shock-like structures, are closely related to the supergradient wind phenomena observed during SEF.

  4. Morphology and dynamics of explosive vents through cohesive rock formations

    NASA Astrophysics Data System (ADS)

    Galland, Olivier; Gisler, Galen R.; Haug, Øystein T.

    2015-04-01

    Shallow explosive volcanic processes, such as kimberlite volcanism, phreatomagmatic and phreatic activity, produce volcanic vents exhibiting a wide variety of morphologies, including vertical pipes and V-shaped vents. In this study we report on experimental and numerical models designed to capture a range of vent morphologies in an eruptive system (Galland et al., 2014). Using dimensional analysis, we identified key governing dimensionless parameters, in particular the gravitational stress-to-fluid pressure ratio (Π2=P/rho.g.h), and the fluid pressure-to-host rock strength ratio (Π3=P/C). We used combined experimental and numerical models to test the effects of these parameters. The experiments were used to test the effect of Π2 on vent morphology and dynamics. A phase diagram demonstrates a separation between two distinct morphologies, with vertical structures occurring at high values of Π2, and diagonal ones at low values of Π2. The numerical simulations were used to test the effect of Π3 on vent morphology and dynamics. In the numerical models we see three distinct morphologies: vertical pipes are produced at high values of Π3, diagonal pipes at low values of Π3, while horizontal sills are produced for intermediate values of Π3. Our results show that vertical pipes form by plasticity-dominated yielding for high-energy systems (high Π2 and Π3), whereas diagonal and horizontal vents dominantly form by fracturing for lower-energy systems (low Π2 and Π3). Although our models are 2-dimensionnal, they suggest that circular pipes result from plastic yielding of the host rock in a high-energy regime, whereas V-shaped volcanic vents result from fracturing of the host rock in lower-energy systems. Galland, O., Gisler, G.R., Haug, Ø.T., 2014. Morphology and dynamics of explosive vents through cohesive rock formations. J. Geophys. Res. 119, 10.1002/2014JB011050.

  5. A new application of emulsions to measure the gravitational force on antihydrogen

    NASA Astrophysics Data System (ADS)

    Amsler, C.; Ariga, A.; Ariga, T.; Braccini, S.; Canali, C.; Ereditato, A.; Kawada, J.; Kimura, M.; Kreslo, I.; Pistillo, C.; Scampoli, P.; Storey, J. W.

    2013-02-01

    We propose to build and operate a detector based on the emulsion film technology for the measurement of the gravitational acceleration on antimatter, to be performed by the AEgIS experiment (AD6) at CERN. The goal of AEgIS is to test the weak equivalence principle with a precision of 1% on the gravitational acceleration g by measuring the vertical position of the annihilation vertex of antihydrogen atoms after their free fall while moving horizontally in a vacuum pipe. With the emulsion technology developed at the University of Bern we propose to improve the performance of AEgIS by exploiting the superior position resolution of emulsion films over other particle detectors. The idea is to use a new type of emulsion films, especially developed for applications in vacuum, to yield a spatial resolution of the order of one micron in the measurement of the sag of the antihydrogen atoms in the gravitational field. This is an order of magnitude better than what was planned in the original AEgIS proposal.

  6. Producing the positive antihydrogen ion {\\bar{{\\rm{H}}}}^{+} via radiative attachment

    NASA Astrophysics Data System (ADS)

    Keating, C. M.; Pak, K. Y.; Straton, Jack C.

    2016-04-01

    We provide an estimate of the cross section for the radiative attachment of a second positron into the (1 {{{s}}}2 {}1{{{S}}}e) state of the {\\bar{{{H}}}}+ ion that uses a 200-term two-positron wave function composed of explicitly correlated exponentials. This is done by analytically integrating the six-dimensional, three body photoionization integrals that enter into this result (and those utilizing, the alternative, Hylleraas wave functions) and applying the principle of detailed balance. Finally, we obtain the rate coefficient {α }{RA} for attaching a second positron to antihydrogen as a function of temperature via a numerical integral that is a Maxwell-Boltzmann distribution of the product of positron velocity and cross section. Our motivation in studying the production of {\\bar{{{H}}}}+ lies in its potential use as an intermediate stage in the cooling of antihydrogen to ultra-cold (sub-mK) temperatures for spectroscopic studies and probing the gravitational interaction of the anti-atom. Estimates of the reaction rates are given for positron temperatures T e in the range from 50 K to 5 K.

  7. Biological Dynamics Markup Language (BDML): an open format for representing quantitative biological dynamics data

    PubMed Central

    Kyoda, Koji; Tohsato, Yukako; Ho, Kenneth H. L.; Onami, Shuichi

    2015-01-01

    Motivation: Recent progress in live-cell imaging and modeling techniques has resulted in generation of a large amount of quantitative data (from experimental measurements and computer simulations) on spatiotemporal dynamics of biological objects such as molecules, cells and organisms. Although many research groups have independently dedicated their efforts to developing software tools for visualizing and analyzing these data, these tools are often not compatible with each other because of different data formats. Results: We developed an open unified format, Biological Dynamics Markup Language (BDML; current version: 0.2), which provides a basic framework for representing quantitative biological dynamics data for objects ranging from molecules to cells to organisms. BDML is based on Extensible Markup Language (XML). Its advantages are machine and human readability and extensibility. BDML will improve the efficiency of development and evaluation of software tools for data visualization and analysis. Availability and implementation: A specification and a schema file for BDML are freely available online at http://ssbd.qbic.riken.jp/bdml/. Contact: sonami@riken.jp Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:25414366

  8. Platelet receptors and signaling in the dynamics of thrombus formation

    PubMed Central

    Rivera, José; Lozano, María Luisa; Navarro-Núñez, Leyre; Vicente, Vicente

    2009-01-01

    Hemostasis and pathological thrombus formation are dynamic processes that require a co-ordinated series of events involving platelet membrane receptors, bidirectional intracellular signals, and release of platelet proteins and inflammatory substances. This review aims to summarize current knowledge in the key steps in the dynamics of thrombus formation, with special emphasis on the crucial participation of platelet receptors and signaling in this process. Initial tethering and firm adhesion of platelets to the exposed subendothelium is mediated by glycoprotein (GP) Ib/IX/V complex and collagen receptors, GP VI and α2β1 integrin, in the platelet surface, and by VWF and fibrillar collagen in the vascular site. Interactions between these elements are largely influenced by flow and trigger signaling events that reinforce adhesion and promote platelet activation. Thereafter, soluble agonists, ADP, thrombin, TxA2, produced/released at the site of vascular injury act in autocrine and paracrine mode to amplify platelet activation and to recruit circulating platelets to the developing thrombus. Specific interactions of these agonists with their G-protein coupled receptors generate inside-out signaling leading to conformational activation of integrins, in particular αIIbβ3, increasing their ligand affinity. Binding of αIIbβ3 to its ligands, mainly fibrinogen, supports processes such as clot retraction and platelet aggregation. Stabilization of thrombi is supported by the late wave of signaling events promoted by close contact between aggregated platelets. The best known contact-dependent signaling is outside-in signaling through αIb β3, but new ones are being clarified such as those mediated by interaction of Eph receptors with ephrins, or by Sema 4D and Gas-6 binding to their receptors. Finally, newly identified mechanisms appear to control thrombus growth, including back-shifting of activated integrins and actuation of compensatory molecules such as ESAM or PECAM-1

  9. Formation and dynamics of hazardous convective weather events in Ukraine

    NASA Astrophysics Data System (ADS)

    Balabukh, Vera; Malytska, Liudmyla; Bazalieieva, Iuliana

    2013-04-01

    Atmospheric circulation change observed from the middle of the 70s of the twentieth century in the Northern Hemisphere resulted in changes of weather events formation conditions in different regions. The degree of influence of various factors on the formation of weather events also has changed. This eventually led to an increase in number and intensity of weather events and their variations in time and space. Destructions and damages associated with these events have increased recently and the biggest damages are mainly results of complex convective weather events: showers, hail, squall. Therefore, one of the main tasks of climatology is to study the mechanisms of change repeatability and intensity of these events. The paper considers the conditions of formation of hazardous convective weather phenomena (strong showers, hail, squalls, tornadoes) in Ukraine and their spatial and temporal variability during 1981 - 2010. Research of convection processes was based on daily radiosonde data for the warm season (May-September 1981 - 2010s), reanalysis ERA-Interim ECMWF data for 1989 - 2010 years , daily observations at 187 meteorological stations in Ukraine, as well as observations of the natural phenomena in other regions (different from the meteorological stations). Indices of atmospheric instability, the magnitude of the Convective Available Potential Energy (CAPE), the moisture, the height of the condensation and equilibrium level was used to quantify the intensity of convection. The criteria for the intensity of convection for Ukrainian territory were refined on the basis of these data. Features of the development of convection for various hazardous convective weather events were investigated and identified the necessary conditions for the occurrence of showers, hail, tornadoes and squall in Ukraine. Spatio-temporal variability of convection intensity in Ukraine, its regional characteristics and dynamics for the past 30 year was analyzed. Significant tendency to an

  10. Cellulose microfibril formation within a coarse grained molecular dynamics

    NASA Astrophysics Data System (ADS)

    Nili, Abdolmadjid; Shklyaev, Oleg; Crespi, Vincent; Zhao, Zhen; Zhong, Linghao; CLSF Collaboration

    2014-03-01

    Cellulose in biomass is mostly in the form of crystalline microfibrils composed of 18 to 36 parallel chains of polymerized glucose monomers. A single chain is produced by cellular machinery (CesA) located on the preliminary cell wall membrane. Information about the nucleation stage can address important questions about intermediate region between cell wall and the fully formed crystalline microfibrils. Very little is known about the transition from isolated chains to protofibrils up to a full microfibril, in contrast to a large body of studies on both CesA and the final crystalline microfibril. In addition to major experimental challenges in studying this transient regime, the length and time scales of microfibril nucleation are inaccessible to atomistic molecular dynamics. We have developed a novel coarse grained model for cellulose microfibrils which accounts for anisotropic interchain interactions. The model allows us to study nucleation, kinetics, and growth of cellulose chains/protofibrils/microfibrils. This work is supported by the US Department of Energy, Office of Basic Energy Sciences as part of The Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center.

  11. Formation and Dynamical Evolution of the Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Bottke, William F.

    2015-08-01

    Asteroids are critical to our desire to unravel the origin of the Solar System because they supply unique, relatively pristine snapshots of the environment in which the Earth formed and evolved. This is due to the fact that, although the asteroids and Earth have followed very different evolutionary pathways, they all formed from the same set of physical processes and share a common ancestry. The asteroid belt presents a particular challenge to understanding terrestrial planet formation because of its small mass. Models of the protoplanetary disk suggest the region between 2-3 AU should contain roughly 3 Earth masses, while less than 0.001 of an Earth mass is actually found there.A long-standing explanation for the asteroid belt's small mass is that it is due to the gravitational influence of Jupiter and Saturn. Some have suggested protoplanets grew there before they were dynamically removed from the asteroid belt by resonances with the gas giants. This left the asteroid belt dynamically excited (which is observed) and heavily depleted in mass. More recently, however, detailed models have shown that this process produces an asteroid belt that is inconsistent with observations.Two recent models propose new ways to match asteroid belt constraints. The first, the so-called ‘Grand Tack’ scenario, uses the results of hydrodynamic simulations to show that Jupiter (and Saturn) migrated both inward and outward across the asteroid belt while interacting with the protoplanetary gas disk. The Grand Tack not only reproduces the mass and mixture of spectral types in the asteroid belt, but it also truncates the planetesimal disk from which the terrestrial planets form, potentially explaining why Mars is less massive than Earth. In a second scenario, planetesimals that form directly from cm- to meter-sized objects, known as “pebbles”, are rapidly converted to 100 to 1000 km asteroid-like object that subsequently grow by accreting even more pebbles. Pebble accretion models

  12. Dynamics of drop formation in an electric field

    SciTech Connect

    Notz, P.K.; Basaran, O.A.

    1999-05-01

    The effect of an electric field on the formation of a drop of an inviscid, perfectly conducting liquid from a capillary which protrudes from the top plate of a parallel-plate capacitor into a surrounding dynamically inactive, insulating gas is studied computationally. This free boundary problem which is comprised of the surface Bernoulli equation for the transient drop shape and the Laplace equation for the velocity potential inside the drop and the electrostatic potential outside the drop is solved by a method of lines incorporating the finite element method for spatial discretization. The finite element algorithm employed relies on judicious use of remeshing and element addition to a two-region adaptive mesh to accommodate large domain deformations, and allows the computations to proceed until the thickness of the neck connecting an about to form drop to the rest of the liquid in the capillary is less than 0.1% of the capillary radius. The accuracy of the computations is demonstrated by showing that in the absence of an electric field predictions made with the new algorithm are in excellent agreement with boundary integral calculations and experimental measurements on water drops. Computational predictions of the primary drop volume and drop length at breakup are reported over a wide range of values of the ratios of electrical gravitational, and inertial forces to surface tension force. When the magnitude of the step change in field strength is small, the results of the new transient calculations accord well with those of an earlier stability analysis and thereby provide yet another testament to the accuracy of the new algorithm.

  13. Formation of chondrites in a thick dynamic regolith

    NASA Astrophysics Data System (ADS)

    Huang, S.; Sears, D. W. G.; Benoit, P. H.

    1994-07-01

    H was proposed that chondrules formed as the products of energetic impacts in a very thick dynamic dust layer of an accreting asteroid-sized object and that the various chondrule groups, and thus chondrite classes, formed by variations in the number and intensity of impacts. We here argue that in such a dust layer there was probably a steady flow of volatiles and that on occasion conditions may have resembled those of a fluidized bed in which density and size sorting produced the metal-silicate fractionation and chondrule size distributions observed among the chondrites. The existence of a temporary atmosphere is suggested by the elemental and isotopic abundance patterns observed in chondrules. The atmosphere may have been permanent, but was probably transient, consisting of water and other volatiles from the parent body most probably produced during accretion and chondrule formation. It seems unlikely that such an atmosphere would be cosmic in composition and there are experimental reasons for suspecting that the H/O ratio was many orders of magnitude below cosmic and the P(Na) was much higher than expected for gases of cosmic composition. The requirements for minimal fluidization are determined by equating the upward drag force of the escaping volatiles and the downward gravitational force on the particles. We calculate that most asteroids smaller than few hundred kilometers should be capable of producing a sufficiently high flow rate of volatiles to produce fluidization. The extent of presumed fluidization seems to decrease with present volatile contents of the classes, consistent with the loss of volatiles during fluidization from parents of generally similar original composition.

  14. Cooling by Spontaneous Decay of Highly Excited Antihydrogen Atoms in Magnetic Traps

    SciTech Connect

    Pohl, T.; Sadeghpour, H. R.; Nagata, Y.; Yamazaki, Y.

    2006-11-24

    An efficient cooling mechanism of magnetically trapped, highly excited antihydrogen (H) atoms is presented. This cooling, in addition to the expected evaporative cooling, results in trapping of a large number of H atoms in the ground state. It is found that the final fraction of trapped atoms is insensitive to the initial distribution of H magnetic quantum numbers. Expressions are derived for the cooling efficiency, demonstrating that magnetic quadrupole (cusp) traps provide stronger cooling than higher order magnetic multipoles. The final temperature of H confined in a cusp trap is shown to depend as {approx}2.2T{sub n{sub 0}}n{sub 0}{sup -2/3} on the initial Rydberg level n{sub 0} and temperature T{sub n{sub 0}}.

  15. Theoretical motivation for gravitation experiments on ultra-low energy antiprotons and antihydrogen

    SciTech Connect

    Nieto, M.M.

    1995-12-31

    It is known that the generally accepted theories of gravity and quantum mechanics are fundamentally incompatible. Thus, when one tries to combine these theories, one must beware of physical pitfalls. Modern theories of quantum gravity are trying to overcome these problems. Any ideas must confront the present agreement with general relativity, but yet be free to wonder about not understood phenomena, such as the dark matter problem. This all has led some {open_quotes}intrepid{close_quotes} theorists to consider a new gravitational regime, that of antimatter. Even more {open_quotes}daring{close_quotes} experimentalists are attempting, or considering attempting, the measurement of the gravitational force on antimatter, including low-energy antiprotons and, perhaps most enticing, antihydrogen.

  16. Lorentz and C P T tests with hydrogen, antihydrogen, and related systems

    NASA Astrophysics Data System (ADS)

    Kostelecký, V. Alan; Vargas, Arnaldo J.

    2015-09-01

    The potential of precision spectroscopy as a tool in systematic searches for effects of Lorentz and C P T violation is investigated. Systems considered include hydrogen, antihydrogen, deuterium, positronium, and hydrogen molecules and molecular ions. Perturbative shifts in energy levels and key transition frequencies are derived, allowing for Lorentz-violating operators of arbitrary mass dimensions. Observable effects are deduced from various direct measurements, sidereal and annual variations, comparisons among species, and gravitational responses. We use existing data to place new and improved constraints on nonrelativistic coefficients for Lorentz and C P T violation, and we provide estimates for the future attainable reach in direct spectroscopy of the various systems or tests with hydrogen and deuterium masers. The results reveal prospective sensitivities to many coefficients unmeasured to date, along with potential improvements of a billionfold or more over certain existing results.

  17. Pipkin Award Talk: Rydberg Charge Exchange: A Method for Producing Rydberg Positronium and Antihydrogen Atoms

    NASA Astrophysics Data System (ADS)

    Hessels, E. A.

    2003-05-01

    Antihydrogen production via two-stage charge exchange(E.A.Hessels, D.M. Homan and M.J. Cavagnero, Phys. Rev. A. 57), (1998) 1668. may provide extremely cold antimatter atoms that can be trapped for spectroscopic studies. Positrons(J. Estrada, T. Roach, J.N. Tan, P. Yesley, and G. Gabrielse, Phys. Rev. Lett. 84), (2000) 859. and antiprotons(G. Gabrielse, N. S. Bowden, P. Oxley, A. Speck, C. H. Storry, J. N. Tan, M. Wessels, D. Grozonka, W. Oelert, G. Schepers, T. Sefzick, J. Walz, H. Pittner, T. W. Hansch, E. A. Hessels, Phys. Lett. B 548), (2002) 140-145., both cooled to 4 K and loaded into adjacent wells of a Penning trap, provide the basic components. Laser-excited Rydberg cesium atoms are passed through the cloud of trapped positrons and charge exchange with the positrons to form Rydberg states of positronium. These positronium atoms have been observed and are studied by ionizing them and counting the resulting positrons. State analysis of the positronium is obtained by varying the electric field used to ionize the atoms. Large numbers of positronium atoms are produced and their binding energies are found to be similar to that of the incoming Rydberg cesium atoms. A second charge exchange is proposed, in which the neutral positronium travels a short distance to an adjacent antiproton cloud. The result of this second charge exchange would be antihydrogen atoms. The apparatus to test this second charge exchange has already been constructed and preliminary studies have already been made.

  18. GVE-Based Dynamics and Control for Formation Flying Spacecraft

    NASA Technical Reports Server (NTRS)

    Breger, Louis; How, Jonathan P.

    2004-01-01

    Formation flying is an enabling technology for many future space missions. This paper presents extensions to the equations of relative motion expressed in Keplerian orbital elements, including new initialization techniques for general formation configurations. A new linear time-varying form of the equations of relative motion is developed from Gauss Variational Equations and used in a model predictive controller. The linearizing assumptions for these equations are shown to be consistent with typical formation flying scenarios. Several linear, convex initialization techniques are presented, as well as a general, decentralized method for coordinating a tetrahedral formation using differential orbital elements. Control methods are validated using a commercial numerical propagator.

  19. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    NASA Astrophysics Data System (ADS)

    Muranaka, T.; Debu, P.; Dupré, P.; Liszkay, L.; Mansoulie, B.; Pérez, P.; Rey, J. M.; Ruiz, N.; Sacquin, Y.; Crivelli, P.; Gendotti, U.; Rubbia, A.

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·1011 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  20. Rotational Brownian Dynamics simulations of clathrin cage formation

    SciTech Connect

    Ilie, Ioana M.; Briels, Wim J.; Otter, Wouter K. den

    2014-08-14

    The self-assembly of nearly rigid proteins into ordered aggregates is well suited for modeling by the patchy particle approach. Patchy particles are traditionally simulated using Monte Carlo methods, to study the phase diagram, while Brownian Dynamics simulations would reveal insights into the assembly dynamics. However, Brownian Dynamics of rotating anisotropic particles gives rise to a number of complications not encountered in translational Brownian Dynamics. We thoroughly test the Rotational Brownian Dynamics scheme proposed by Naess and Elsgaeter [Macromol. Theory Simul. 13, 419 (2004); Naess and Elsgaeter Macromol. Theory Simul. 14, 300 (2005)], confirming its validity. We then apply the algorithm to simulate a patchy particle model of clathrin, a three-legged protein involved in vesicle production from lipid membranes during endocytosis. Using this algorithm we recover time scales for cage assembly comparable to those from experiments. We also briefly discuss the undulatory dynamics of the polyhedral cage.

  1. Oman metamorphic sole formation reveals early subduction dynamics

    NASA Astrophysics Data System (ADS)

    Soret, Mathieu; Agard, Philippe; Dubacq, Benoît; Plunder, Alexis; Ildefonse, Benoît; Yamato, Philippe; Prigent, Cécile

    2016-04-01

    Metamorphic soles correspond to m to ~500m thick tectonic slices welded beneath most of the large-scale ophiolites. They typically show a steep inverted metamorphic structure where the pressure and temperature conditions of crystallization increase upward (from 500±100°C at 0.5±0.2 GPa to 800±100°C at 1.0±0.2 GPa), with isograds subparallel to the contact with the overlying ophiolitic peridotite. The proportion of mafic rocks in metamorphic soles also increases from the bottom (meta-sediments rich) to the top (approaching the ophiolite peridotites). These soles are interpreted as the result of heat transfer from the incipient mantle wedge toward the nascent slab (associated with large-scale fluid transfer and possible shear heating) during the first My of intra-oceanic subduction (as indicated by radiometric ages). Metamorphic soles provide therefore major constraints on early subduction dynamics (i.e., thermal structure, fluid migration and rheology along the nascent slab interface). We present a detailed structural and petrological study of the metamorphic sole from 4 major cross-sections along the Oman ophiolite. We show precise pressure-temperature estimates obtained by pseudosection modelling and EBSD measurements performed on both the garnet-bearing and garnet-free high-grade sole. Results allow quantification of the micro-scale deformation and highlight differences in pressure-temperature-deformation conditions between the 4 different locations, showing that the inverted metamorphic gradient through the sole is not continuous in all locations. Based on these new constraints, we suggest a new tectonic-petrological model for the formation of metamorphic soles below ophiolites. This model involves the stacking of several homogeneous slivers of oceanic crust leading to the present-day structure of the sole. In this view, these thrusts are the result of rheological contrasts between the sole and the peridotite as the plate interface progressively cools down

  2. Note on Hamiltonian format of Lotka-Volterra dynamics

    NASA Astrophysics Data System (ADS)

    Kerner, E. H.

    1990-12-01

    It is pointed out that the Hamiltonian form of Lotka-Volterra dynamics, recently observed by Nutku, was worked out many years ago; also that Volterra's many-spicies dynamics had been Hamiltonized, including a novel path to its statistical mechanics.

  3. Research on framework for formation control of multiple underwater robots in a dynamic environment

    NASA Astrophysics Data System (ADS)

    Meng, Xian-Song; Xu, Hong-Gen; Zhang, Ming-Jun

    2004-12-01

    In this paper a practical framework is proposed to keep formation control of multiple underwater robots in a dynamic environment. The approach is a viable solution to solve formation problem. The approach allows online planning of the formation paths using a Dijkstra’s search algorithm based on the current sensor data. The formation is allowed to be dynamically changed in order to avoid obstacles in the environment. A controller is designed to keep the robots in their planned trajectories. It is shown that the approach is effective and feasible by the simulation of computer.

  4. Dynamic dimer formation between superionic fluorines in PbF2

    NASA Astrophysics Data System (ADS)

    Nakamura, Nobutaka; Tsumuraya, Kazuo

    2013-03-01

    Recently Tsumuraya et al .(J. Phys. Soc. Jpn. 81,055603(2012).) have elucidated the formation of the dynamic dimers in the superionic conductor α-CuI with the first principles molecular dynamics (MD) method. They, for the first time in research, confirmed the dimer formation through the analyses the origin of the correlation peaks of the partial pair distribution functions and the partial angle distribution functions. The present study elucidates the dynamic structure of the superionc fluorines in PbF2 crystal with the MD method through identifying the origins of the correlation peaks. The fluorines form the dynamic 32 f-8 c and 4 b-8 c dimers.

  5. Dynamics of plasma flow formation in a pulsed accelerator operating at a constant pressure

    NASA Astrophysics Data System (ADS)

    Baimbetov, F. B.; Zhukeshov, A. M.; Amrenova, A. U.

    2007-01-01

    Features in the dynamics of plasma flow formation at a constant pressure in a pulsed coaxial accelerator have been studied. The temperature and density of electrons in a plasma bunch have been determined using a probe technique.

  6. Dynamic behavior of a social model for opinion formation.

    PubMed

    Bordogna, Clelia M; Albano, Ezequiel V

    2007-12-01

    The dynamic behavior of a social group influenced by both a strong leader and the mass media, which is modeled according to the social impact theory, is studied under two situations: (i) The strong leader changes his/her state of opinion periodically while the mass media are not considered. In this case, the leader is capable of driving the group between a dynamically ordered state with a weak leader-group coupling (high-frequency regime) and a dynamically disordered state where the group follows the opinion of the leader (low-frequency regime). (ii) The mass-media change periodically their message and have to compete with a strong leader that keeps his/her state of opinion unchanged. In this case, the mass media require an amplitude threshold in order to overcome the influence of the leader and drive the system into a dynamically disordered state. The dynamic behavior characteristic of the studied social opinion model shares many features of physical systems that are relevant in the fields of statistical mechanics and condensed matter. PMID:18233832

  7. Dynamic behavior of a social model for opinion formation

    NASA Astrophysics Data System (ADS)

    Bordogna, Clelia M.; Albano, Ezequiel V.

    2007-12-01

    The dynamic behavior of a social group influenced by both a strong leader and the mass media, which is modeled according to the social impact theory, is studied under two situations: (i) The strong leader changes his/her state of opinion periodically while the mass media are not considered. In this case, the leader is capable of driving the group between a dynamically ordered state with a weak leader-group coupling (high-frequency regime) and a dynamically disordered state where the group follows the opinion of the leader (low-frequency regime). (ii) The mass-media change periodically their message and have to compete with a strong leader that keeps his/her state of opinion unchanged. In this case, the mass media require an amplitude threshold in order to overcome the influence of the leader and drive the system into a dynamically disordered state. The dynamic behavior characteristic of the studied social opinion model shares many features of physical systems that are relevant in the fields of statistical mechanics and condensed matter.

  8. Diffusive Dynamics of Contact Formation in Disordered Polypeptides

    NASA Astrophysics Data System (ADS)

    Zerze, Gül H.; Mittal, Jeetain; Best, Robert B.

    2016-02-01

    Experiments measuring contact formation between probes in disordered chains provide information on the fundamental time scales relevant to protein folding. However, their interpretation usually relies on one-dimensional (1D) diffusion models, as do many experiments probing a single distance. Here, we use all-atom molecular simulations to capture both the time scales of contact formation, as well as the scaling with peptide length for tryptophan triplet quenching experiments, revealing the sensitivity of the experimental quenching times to the configurational space explored by the chain. We find a remarkable consistency between the results of the full calculation and from Szabo-Schulten-Schulten theory applied to a 1D diffusion model, supporting the validity of such models. The significant reduction in diffusion coefficient at the small probe separations which most influence quenching rate, suggests that contact formation and Förster resonance energy transfer correlation experiments provide complementary information on diffusivity.

  9. Diffusive Dynamics of Contact Formation in Disordered Polypeptides.

    PubMed

    Zerze, Gül H; Mittal, Jeetain; Best, Robert B

    2016-02-12

    Experiments measuring contact formation between probes in disordered chains provide information on the fundamental time scales relevant to protein folding. However, their interpretation usually relies on one-dimensional (1D) diffusion models, as do many experiments probing a single distance. Here, we use all-atom molecular simulations to capture both the time scales of contact formation, as well as the scaling with peptide length for tryptophan triplet quenching experiments, revealing the sensitivity of the experimental quenching times to the configurational space explored by the chain. We find a remarkable consistency between the results of the full calculation and from Szabo-Schulten-Schulten theory applied to a 1D diffusion model, supporting the validity of such models. The significant reduction in diffusion coefficient at the small probe separations which most influence quenching rate, suggests that contact formation and Förster resonance energy transfer correlation experiments provide complementary information on diffusivity. PMID:26919016

  10. Dynamics of Drag Free Formations in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ploen, Scott R.; Scharf, Daniel P.; Hadaegh, Fred. Y.; Acikmese, A. Behcet

    2004-01-01

    In this paper the translational equations of motion of a formation of n spacecraft in Earth orbit, n(sub f) of which are drag-free spacecraft, are derived in a coordinate-free manner using the balance of linear momentum and direct tensor notation. A drag-free spacecraft consists of a spacecraft bus and a proof mass shielded from external disturbances in an internal cavity. By controlling the spacecraft so that the proof mass remains centered in the cavity, the spacecraft follows a purely gravitational orbit. The results described in this paper provide a first step toward coupling drag-free control technology with formation flying in order to mitigate the effect of differential aerodynamic drag on formation flying missions (e.g., Earth imaging applications) in low Earth orbit.

  11. Dynamics and gravitational wave signature of collapsar formation.

    PubMed

    Ott, C D; Reisswig, C; Schnetter, E; O'Connor, E; Sperhake, U; Löffler, F; Diener, P; Abdikamalov, E; Hawke, I; Burrows, A

    2011-04-22

    We perform 3+1 general relativistic simulations of rotating core collapse in the context of the collapsar model for long gamma-ray bursts. We employ a realistic progenitor, rotation based on results of stellar evolution calculations, and a simplified equation of state. Our simulations track self-consistently collapse, bounce, the postbounce phase, black hole formation, and the subsequent early hyperaccretion phase. We extract gravitational waves from the spacetime curvature and identify a unique gravitational wave signature associated with the early phase of collapsar formation. PMID:21599351

  12. Core Formation Under Dynamic Conditions: Physical Processes and Geochemical Signatures

    NASA Technical Reports Server (NTRS)

    Rushmer, T.; Gaetani, G.; Jones, J. H.; Sparks, J.

    2001-01-01

    We have experimentally investigated liquid metal segregation from a solid silicate matrix under conditions of applied stress. Liquid moves in fractures and formation of fayalitic olivine from orthopyroxene by migrating Fe-Ni-S-O liquids is observed. Additional information is contained in the original extended abstract.

  13. Dynamic channeling of electromagnetic radiation by extended plasma formations

    NASA Astrophysics Data System (ADS)

    Kolpakov, V. I.; Norinskii, L. V.; Rogov, V. S.

    1991-05-01

    An experimental study was conducted to investigate the feasibility of using axisymmetric extended plasma formations (EPFs) as guide lines for the transmission of electromagnetic radiation. The EPF was formed as a result of optical breakdown in air via radiation from an Nd:glass laser. The results obtained demonstrate the channeling of microwave radiation in an EPF with a blurred boundary.

  14. MODELING OF PARTICLE FORMATION AND DYNAMICS IN A FLAME INCINERATOR

    EPA Science Inventory

    A model has been developed to predict the formation and growth of metallic particles in a flame incinerator system. Flow fields and temperature profiles in a cylindrical laminar jet flame have been used to determine the position and physical conditions of the species along the fl...

  15. Dynamical Formation of the GW150914 Binary Black Hole

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Haster, Carl-Johan; Chatterjee, Sourav; Kalogera, Vicky; Rasio, Frederic A.

    2016-06-01

    We explore the possibility that GW150914, the binary black hole (BBH) merger recently detected by Advanced LIGO, was formed by gravitational interactions in the core of a dense star cluster. Using models of globular clusters (GCs) with detailed N-body dynamics and stellar evolution, we show that a typical cluster with a mass of 3× {10}5{M}ȯ to 6× {10}5{M}ȯ is optimal for forming GW150914-like BBHs that will merge in the local universe. We identify the most likely dynamical processes for forming GW150914 in such a cluster, and we show that the detection of GW150914 is consistent with the masses and merger rates expected for BBHs from GCs. Our results show that dynamical processes provide a significant and well-understood pathway for forming BBH mergers in the local universe. Understanding the contribution of dynamics to the BBH merger problem is a critical step in unlocking the full potential of gravitational-wave astronomy.

  16. Generic modes of consensus formation in stochastic language dynamics

    NASA Astrophysics Data System (ADS)

    Blythe, R A

    2009-02-01

    We introduce a class of stochastic models for the dynamics of two linguistic variants that are competing to become the single, shared convention within an unstructured community of speakers. Different instances of the model are distinguished by the way agents handle variability in the language (i.e., multiple forms for the same meaning). The class of models includes as special cases two previously studied models of language dynamics, the Naming Game, in which agents tend to standardize on variants that they have encountered most frequently, and the Utterance Selection Model, in which agents tend to preserve variability by uniform sampling of a pool of utterances. We reduce the full complexities of the dynamics to a single-coordinate stochastic model which allows the probability and time taken for speakers to reach consensus on a single variant to be calculated for large communities. This analysis suggests that in the broad class of models considered, consensus is formed in one of three generic ways, according to whether agents tend to eliminate, accentuate or sample neutrally the variability in the language. These different regimes are observed in simulations of the full dynamics, and for which the simplified model in some cases makes good quantitative predictions. We use these results, along with comparisons with related models, to conjecture the likely behaviour of more general models, and further make use of empirical data to argue that in reality, biases away from neutral sampling behaviour are likely to be small.

  17. Flexible Virtual Structure Consideration in Dynamic Modeling of Mobile Robots Formation

    NASA Astrophysics Data System (ADS)

    El Kamel, A. Essghaier; Beji, L.; Lerbet, J.; Abichou, A.

    2009-03-01

    In cooperative mobile robotics, we look for formation keeping and maintenance of a geometric configuration during movement. As a solution to these problems, the concept of a virtual structure is considered. Based on this idea, we have developed an efficient flexible virtual structure, describing the dynamic model of n vehicles in formation and where the whole formation is kept dependant. Notes that, for 2D and 3D space navigation, only a rigid virtual structure was proposed in the literature. Further, the problem was limited to a kinematic behavior of the structure. Hence, the flexible virtual structure in dynamic modeling of mobile robots formation presented in this paper, gives more capabilities to the formation to avoid obstacles in hostile environment while keeping formation and avoiding inter-agent collision.

  18. Opinion formation and the collective dynamics of risk perception.

    PubMed

    Moussaïd, Mehdi

    2013-01-01

    The formation of collective opinion is a complex phenomenon that results from the combined effects of mass media exposure and social influence between individuals. The present work introduces a model of opinion formation specifically designed to address risk judgments, such as attitudes towards climate change, terrorist threats, or children vaccination. The model assumes that people collect risk information from the media environment and exchange them locally with other individuals. Even though individuals are initially exposed to the same sample of information, the model predicts the emergence of opinion polarization and clustering. In particular, numerical simulations highlight two crucial factors that determine the collective outcome: the propensity of individuals to search for independent information, and the strength of social influence. This work provides a quantitative framework to anticipate and manage how the public responds to a given risk, and could help understanding the systemic amplification of fears and worries, or the underestimation of real dangers. PMID:24386398

  19. Dynamics of filament formation in a Kerr medium

    SciTech Connect

    Centurion, Martin; Pu Ye; Tsang, Mankei; Psaltis, Demetri

    2005-06-15

    We have studied the large-scale beam breakup and filamentation of femtosecond pulses in a Kerr medium. We have experimentally monitored the formation of stable light filaments, conical emission, and interactions between filaments. Three major stages lead to the formation of stable light filaments: First the beam breaks up into a pattern of connected lines (constellation), then filaments form on the constellations, and finally the filaments release a fraction of their energy through conical emission. We observed a phase transition to a faster filamentation rate at the onset of conical emission. We attribute this to the interaction of conical emissions with the constellation which creates additional filaments. Numerical simulations show good agreement with the experimental results.

  20. Opinion Formation and the Collective Dynamics of Risk Perception

    PubMed Central

    Moussaïd, Mehdi

    2013-01-01

    The formation of collective opinion is a complex phenomenon that results from the combined effects of mass media exposure and social influence between individuals. The present work introduces a model of opinion formation specifically designed to address risk judgments, such as attitudes towards climate change, terrorist threats, or children vaccination. The model assumes that people collect risk information from the media environment and exchange them locally with other individuals. Even though individuals are initially exposed to the same sample of information, the model predicts the emergence of opinion polarization and clustering. In particular, numerical simulations highlight two crucial factors that determine the collective outcome: the propensity of individuals to search for independent information, and the strength of social influence. This work provides a quantitative framework to anticipate and manage how the public responds to a given risk, and could help understanding the systemic amplification of fears and worries, or the underestimation of real dangers. PMID:24386398

  1. Gas Dynamics and the Formation of Galaxies and Quasars

    NASA Technical Reports Server (NTRS)

    Loeb, Abraham

    1998-01-01

    This performance report lists papers that were written during 19978/98. These papers focus on structure formation in the universe at high redshifts, and accomplish various aspects of the research goals of this grant. Some of the papers included in this report are: 1) The First Stars and Quasars; 2) Direct Measurement of Cosmological Parameters from the Cosmic Deceleration of Extragalactic Objects; and 3) The Expected Rate of Gamma-Ray Burst Afterglows In Supernova Searches.

  2. The dynamics of continental extension and divergent margin formation

    SciTech Connect

    Sawyer, D.S. )

    1990-05-01

    Continental breakup is a highly variable process. Differences occur in the relative timing and extent of volcanism, uplift, and graben formation as well as in the mode and amount of continental extension before breakup. The authors propose a model that reconciles this variability with the previously recognized tendency for breakup to occur along preexisting weak trends. Continental lithosphere is viewed as a composite material composed of two strong layers, one in the upper mantle and one in the middle crust. Finite element simulation indicates that extensional failure at weaknesses in the mantle causes concentrated extension in the mantle and diffuse extension in the crust. This leads to early melt segregation and volcanism, margin uplift during the late stages of the extension process, and relatively narrow symmetrical extended margins. In contrast, failure at weaknesses in the crustal strong zone causes focused extension in the crust and diffuse extension in the mantle. This produces initial graben formation, cooling in the lower crust and upper mantle, and broad asymmetrical extended margins. Volcanism only occurs late in the process. Failure at laterally offset weaknesses within both strong layers, perhaps the most common case, leads to a deformation pattern dominated by simple shear. Thus, differences in the prerift configuration of the continental lithosphere can control the overall style of continental breakup. They find that certain features of the evolution of the US Atlantic margin, particularly the formation of the hinge zone and the distribution and timing of extension may be better explained using these models.

  3. Dynamics of Aerial Tower Formation in Bacillus subtilis Biofilms

    NASA Astrophysics Data System (ADS)

    Sinha, Naveen; Seminara, Agnese; Wilking, James; Brenner, Michael; Weitz, Dave

    2012-02-01

    Biofilms are highly-organized colonies of bacteria that form on surfaces. These colonies form sophisticated structures which make them robust and difficult to remove from environments such as catheters, where they pose serious infection problems. Previous work has shown that sub-mm sized aerial towers form on the surface of Bacillus subtilis colony biofilms. Spore-formation is located preferentially at the tops of these towers, known as fruiting bodies, which aid in the dispersal and propagation of the colony to new sites. The formation of towers is strongly affected by the quorum-sensing molecule surfactin and the cannibalism pathway of the bacteria. In the present work, we use confocal fluorescence microscopy to study the development of individual fruiting bodies, allowing us to visualize the time-dependent spatial distribution of matrix-forming and sporulating bacteria within the towers. With this information, we investigate the physical mechanisms, such as surface tension and polymer concentration gradients, that drive the formation of these structures.

  4. Static and Dynamic Aspects of Black Silicon Formation

    NASA Astrophysics Data System (ADS)

    Abi Saab, David; Basset, Philippe; Pierotti, Matthew J.; Trawick, Matthew L.; Angelescu, Dan E.

    2014-12-01

    We present a combination of experimental data and modeling that explains some of the important characteristics of black silicon (BSi) developed in cryogenic reactive ion etching (RIE) processes, including static properties (dependence of resulting topography on process parameters) and dynamic aspects (evolution of topography with process time). We generate a phase diagram predicting the RIE parameter combinations giving rise to different BSi geometries and show that the topographic details of BSi explain the metamaterial characteristics that are responsible for its low reflectivity. In particular, the unique combination of needle and hole features of various heights and depths, which is captured by our model and confirmed by focused ion beam nanotomography, creates a uniquely smooth transition in refractive index. The model also correctly describes dynamical characteristics, such as the dependence of aspect ratio on process time, and the prediction of new etching fronts appearing at topographical saddle points during the incipient stages of BSi development—a phenomenon reported here for the first time.

  5. Affleck-Dine dynamics, Q-ball formation, and thermalization

    SciTech Connect

    Tsumagari, Mitsuo I.

    2009-10-15

    We present both analytically and numerically a consistent analysis of the dynamics from the Affleck-Dine (AD) mechanism to the subsequent semiclassical evolution in both gravity-mediated and gauge-mediated models. We obtain analytically the elliptic motions in the AD dynamics as the analogy of the well-known Kepler-problem, and by solving the equations of motion on a lattice, we find that the semiclassical evolution goes through three distinct stages as a nonequilibrium process of reheating the Universe: prethermalization, bubble collisions and thermalization. We report that the second stage of our case lasts rather long compared to the second stage of the reheating case, and the thermalization process is unique due to the presence of 'thermal Q-balls'.

  6. Dynamics of black hole formation: Evidence for nonextensivity

    SciTech Connect

    Oliveira, H.P. de; Soares, I. Damiao

    2005-06-15

    We study the dynamics of a bounded collapsing configuration emitting gravitational waves, whose exterior spacetime is described by the Robinson-Trautman metric. In this process mass is lost due to gravitational wave emission until the Schwarzschild black hole is formed. By performing a careful computation of the distribution of the mass fraction extracted by gravitational radiation, we have shown that it satisfies the distribution law of Tsallis nonextensive statistics, and this result is independent of the initial data considered.

  7. Dynamically-induced structures formation in congested magma

    NASA Astrophysics Data System (ADS)

    Petford, N.

    2008-12-01

    Crystal fabrics preserved in igneous rocks offer a glimpse into the magma emplacement process. Detailed field mapping, in combination with AMS studies, seem to provide the best available data for unravelling intrusion architecture on the decimetre scale. However, a full and proper understanding of the fluid dynamics of congested fluid-particle mixtures during shear remains elusive. This is a shame as without recourse to such fundamental understanding, the interpretation of structural field data in the context of magma flow remains problematic. One way to gain insight into the process is to treat flowing magma as a dynamic material with a rheology similar to sheared, congested slurries. The fancy that dense magma equates to a high temperature slurry is an attractive one, and opens up a way to examine the emplacement process that does not rely exclusively on equilibrium thermodynamics as a final explanation of commonly observed igneous structures. Instead, using examples from mafic rocks where cooling has been rapid, the idea is put forward that in high Peclet number suspensions (where particle diffusion is negligible), shearing and non- Newtonian behaviour imparts a rich diversity of structures including layering, grading and flow segregation. Key to understanding the rheology, hence flow dynamics of congested magma, is the particle microstructure, a still poorly known essence of suspension flows. Where magma transport is continental in scale and long lived (e.g. Large Igneous Provinces), rotation of the earth may in theory endow a small but potentially measurable imprint on the preserved flow fabric.

  8. Formation and nonlinear dynamics of the squeezed state of a helical electron beam with additional deceleration

    NASA Astrophysics Data System (ADS)

    Egorov, E. N.; Koronovskii, A. A.; Kurkin, S. A.; Hramov, A. E.

    2013-11-01

    Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.

  9. Slow-to-fast transition of hydrogen bond dynamics in acetamide hydration shell formation.

    PubMed

    D'Amico, Francesco; Rossi, Barbara; Camisasca, Gaia; Bencivenga, Filippo; Gessini, Alessandro; Principi, Emiliano; Cucini, Riccardo; Masciovecchio, Claudio

    2015-04-28

    The formation of a hydration shell in acetamide aqueous solution has been investigated by means of UV Raman spectroscopy. The experimental results reveal the existence of two distinct regimes of water dynamics. At high acetamide concentration water molecules show a structural and dynamical behavior consistent with the so-called iceberg model. Upon increasing the amount of water we observe the formation of a hydration shell marked by fastening of hydrogen-bond dynamics. Such a behavior may help to shed light on the scientific debate on how water rearranges around the hydrophobic portions of solute molecules (iceberg vs. non-iceberg models). PMID:25824617

  10. Formation and nonlinear dynamics of the squeezed state of a helical electron beam with additional deceleration

    SciTech Connect

    Egorov, E. N. Koronovskii, A. A.; Kurkin, S. A.; Hramov, A. E.

    2013-11-15

    Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.

  11. Construction and Operational Experience with a Superconducting Octupole Used to Trap Antihydrogen

    SciTech Connect

    Wanderer P.; Escallier, J.; Marone, A.; Parker, B.

    2011-09-06

    A superconducting octupole magnet has seen extensive service as part of the ALPHA experiment at CERN. ALPHA has trapped antihydrogen, a crucial step towards performing precision measurements of anti-atoms. The octupole was made at the Direct Wind facility by the Superconducting Magnet Division at Brookhaven National Laboratory. The magnet was wound with a six-around-one NbTi cable about 1 mm in diameter. It is about 300 mm long, with a radius of 25 mm and a peak field at the conductor of 4.04 T. Specific features of the magnet, including a minimal amount of material in the coil and coil ends with low multipole content, were advantageous to its use in ALPHA. The magnet was operated for six months a year for five years. During this time it underwent about 900 thermal cycles (between 4K and 100K). A novel operational feature is that during the course of data-taking the magnet was repeatedly shut off from its 950 A operating current. The magnet quenches during the shutoff, with a decay constant of 9 ms. Over the course of the five years, the magnet was deliberately quenched many thousands of times. It still performs well.

  12. Dynamics of polymer film formation during spin coating

    NASA Astrophysics Data System (ADS)

    Mouhamad, Y.; Mokarian-Tabari, P.; Clarke, N.; Jones, R. A. L.; Geoghegan, M.

    2014-09-01

    Standard models explaining the spin coating of polymer solutions generally fail to describe the early stages of film formation, when hydrodynamic forces control the solution behavior. Using in situ light scattering alongside theoretical and semi-empirical models, it is shown that inertial forces (which initially cause a vertical gradient in the radial solvent velocity within the film) play a significant role in the rate of thinning of the solution. The development of thickness as a function of time of a solute-free liquid (toluene) and a blend of polystyrene and poly(methyl methacrylate) cast from toluene were fitted to different models as a function of toluene partial pressure. In the case of the formation of the polymer blend film, a concentration-dependent (Huggins) viscosity formula was used to account for changes in viscosity during spin coating. A semi-empirical model is introduced, which permits calculation of the solvent evaporation rate and the temporal evolution of the solute volume fraction and solution viscosity.

  13. Dynamics of polymer film formation during spin coating

    SciTech Connect

    Mouhamad, Y.; Clarke, N.; Jones, R. A. L.; Geoghegan, M.; Mokarian-Tabari, P.

    2014-09-28

    Standard models explaining the spin coating of polymer solutions generally fail to describe the early stages of film formation, when hydrodynamic forces control the solution behavior. Using in situ light scattering alongside theoretical and semi-empirical models, it is shown that inertial forces (which initially cause a vertical gradient in the radial solvent velocity within the film) play a significant role in the rate of thinning of the solution. The development of thickness as a function of time of a solute-free liquid (toluene) and a blend of polystyrene and poly(methyl methacrylate) cast from toluene were fitted to different models as a function of toluene partial pressure. In the case of the formation of the polymer blend film, a concentration-dependent (Huggins) viscosity formula was used to account for changes in viscosity during spin coating. A semi-empirical model is introduced, which permits calculation of the solvent evaporation rate and the temporal evolution of the solute volume fraction and solution viscosity.

  14. Static and dynamic aspects of black silicon formation.

    PubMed

    Abi Saab, David; Basset, Philippe; Pierotti, Matthew J; Trawick, Matthew L; Angelescu, Dan E

    2014-12-31

    We present a combination of experimental data and modeling that explains some of the important characteristics of black silicon (BSi) developed in cryogenic reactive ion etching (RIE) processes, including static properties (dependence of resulting topography on process parameters) and dynamic aspects (evolution of topography with process time). We generate a phase diagram predicting the RIE parameter combinations giving rise to different BSi geometries and show that the topographic details of BSi explain the metamaterial characteristics that are responsible for its low reflectivity. In particular, the unique combination of needle and hole features of various heights and depths, which is captured by our model and confirmed by focused ion beam nanotomography, creates a uniquely smooth transition in refractive index. The model also correctly describes dynamical characteristics, such as the dependence of aspect ratio on process time, and the prediction of new etching fronts appearing at topographical saddle points during the incipient stages of BSi development--a phenomenon reported here for the first time. PMID:25615352

  15. Dilute wet granular particles: Nonequilibrium dynamics and structure formation

    NASA Astrophysics Data System (ADS)

    Ulrich, Stephan; Aspelmeier, Timo; Zippelius, Annette; Roeller, Klaus; Fingerle, Axel; Herminghaus, Stephan

    2009-09-01

    We investigate a gas of wet granular particles covered by a thin liquid film. The dynamic evolution is governed by two-particle interactions, which are mainly due to interfacial forces in contrast to dry granular gases. When two wet grains collide, a capillary bridge is formed and stays intact up to a certain distance of withdrawal when the bridge ruptures, dissipating a fixed amount of energy. A freely cooling system is shown to undergo a nonequilibrium dynamic phase transition from a state with mainly single particles and fast cooling to a state with growing aggregates such that bridge rupture becomes a rare event and cooling is slow. In the early stage of cluster growth, aggregation is a self-similar process with a fractal dimension of the aggregates approximately equal to Df≈2 . At later times, a percolating cluster is observed which ultimately absorbs all the particles. The final cluster is compact on large length scales, but fractal with Df≈2 on small length scales.

  16. Nonequilibrium electron dynamics: Formation of the quasiparticle peak

    NASA Astrophysics Data System (ADS)

    Sayyad, Sharareh; Eckstein, Martin

    We characterize how the narrow quasiparticle band of the one-band Hubbard model forms out of a bad metallic state in a time-dependent metal-insulator transition, using nonequilibrium slave-rotor dynamical mean field theory. Our results exhibit a nontrivial electronic timescale which is much longer than the width of the quasiparticle peak itself. To study this timescale, we perform a fast ramp from the insulating phase into the metallic region of the phase diagram, resulting in a highly excited state, and study the equilibration of the system with a weakly coupled phononic bath. The slow relaxation behavior is explained by surveilling the interplay between spinon and rotor degrees of freedom. Since the system is initially prepared in an insulating phase, the quasi-particle peak emerges when spinons catch up the metal-insulator crossover region, which is reached earlier by the rotor. At this point, spinon and rotor become weakly coupled, and the resulting very slow equilibration of the spinon is a bottleneck for the dynamics. After the birth of the quasiparticle peak, its height enhances by the construction of the low-energy spectrum of the rotor, which then lacks behind the relaxation of the spinon.

  17. Excess centrosomes perturb dynamic endothelial cell repolarization during blood vessel formation

    PubMed Central

    Kushner, Erich J.; Ferro, Luke S.; Yu, Zhixian; Bautch, Victoria L.

    2016-01-01

    Blood vessel formation requires dynamic movements of endothelial cells (ECs) within sprouts. The cytoskeleton regulates migratory polarity, and centrosomes organize the microtubule cytoskeleton. However, it is not well understood how excess centrosomes, commonly found in tumor stromal cells, affect microtubule dynamics and interphase cell polarity. Here we find that ECs dynamically repolarize during sprouting angiogenesis, and excess centrosomes block repolarization and reduce migration and sprouting. ECs with excess centrosomes initially had more centrosome-derived microtubules but, paradoxically, fewer steady-state microtubules. ECs with excess centrosomes had elevated Rac1 activity, and repolarization was rescued by blockade of Rac1 or actomyosin blockers, consistent with Rac1 activity promoting cortical retrograde actin flow and actomyosin contractility, which precludes cortical microtubule engagement necessary for dynamic repolarization. Thus normal centrosome numbers are required for dynamic repolarization and migration of sprouting ECs that contribute to blood vessel formation. PMID:27099371

  18. Morphology and dynamics of explosive vents through cohesive rock formations

    NASA Astrophysics Data System (ADS)

    Galland, O.; Gisler, G. R.; Haug, Ø. T.

    2014-06-01

    Shallow explosive volcanic processes, such as kimberlite volcanism and phreatomagmatic and phreatic activity, produce volcanic vents exhibiting a wide variety of morphologies, including vertical pipes and V-shaped vents. In this study we report on experimental and numerical models designed to capture a range of vent morphologies in an eruptive system. Using dimensional analysis, we identified key governing dimensionless parameters, in particular the gravitational stress-to-fluid pressure ratio (Π2 = P/ρgh) and the fluid pressure-to-host rock strength ratio (Π3 = P/C). We used combined experimental and numerical models to test the effects of these parameters. The experiments were used to test the effect of Π2 on vent morphology and dynamics. A phase diagram demonstrates a separation between two distinct morphologies, with vertical structures occurring at high values of Π2 and diagonal ones at low values of Π2. The numerical simulations were used to test the effect of Π3 on vent morphology and dynamics. In the numerical models we see three distinct morphologies: vertical pipes are produced at high values of Π3, diagonal pipes at low values of Π3, and horizontal sills at intermediate values of Π3. Our results show that vertical pipes form by plasticity-dominated yielding in high-energy systems (high Π2 and Π3), whereas diagonal and horizontal vents dominantly form by fracturing in lower energy systems (low Π2 and Π3). Although our models are two-dimensional, they suggest that circular pipes result from plastic yielding of the host rock in a high-energy regime, whereas V-shaped volcanic vents result from fracturing of the host rock in lower energy systems.

  19. Traction force dynamics predict gap formation in activated endothelium.

    PubMed

    Valent, Erik T; van Nieuw Amerongen, Geerten P; van Hinsbergh, Victor W M; Hordijk, Peter L

    2016-09-10

    In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneous distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. PMID:27498166

  20. The dynamics of secretion during sea urchin embryonic skeleton formation

    SciTech Connect

    Wilt, Fred H.

    2008-05-01

    Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes.

  1. Multiple star formation and the dynamical evolution of B335

    NASA Technical Reports Server (NTRS)

    Langer, W. D.; Frerking, M. A.; Wilson, R. W.

    1986-01-01

    The detection of a second high-velocity bipolar flow in the dark cloud B335 located in the diffuse envelope to the east of the core is reported. This flow has the same orientation as the first one. The visual extinction in the region between the redshifted and blueshifted lobes is less than or about 1 mag and is not coincident with a condensation. The flow is not associated with any known infrared source in the IRAS catalog. The new flow is about three times older than the first, and its energetics are somewhat smaller. The flows are aligned not only with each other but also with the long axis of the structure of B335 as outlined by CO maps, suggesting that magnetic fields have a role in guiding the flow. From the presence of multiple flows and the structure of the envelope, it is concluded that B335 is at the end of its starbearing life, rather than a young cloud beginning star formation, as previously supposed.

  2. Local-heterogeneous responses and transient dynamics of cage breaking and formation in colloidal fluids

    NASA Astrophysics Data System (ADS)

    Nag, Preetom; Teramoto, Hiroshi; Li, Chun-Biu; Terdik, Joseph Z.; Scherer, Norbert F.; Komatsuzaki, Tamiki

    2014-09-01

    Quantifying the interactions in dense colloidal fluids requires a properly designed order parameter. We present a modified bond-orientational order parameter, bar{ψ }6, to avoid problems of the original definition of bond-orientational order parameter. The original bond-orientational order parameter can change discontinuously in time but our modified order parameter is free from the discontinuity and, thus, it is a suitable measure to quantify the dynamics of the bond-orientational ordering of the local surroundings. Here we analyze bar{ψ }6 in a dense driven monodisperse quasi-two-dimensional colloidal fluids where a single particle is optically trapped at the center. The perturbation by the trapped and driven particle alters the structure and dynamics of the neighboring particles. This perturbation disturbs the flow and causes spatial and temporal distortion of the bond-orientational configuration surrounding each particle. We investigate spatio-temporal behavior of bar{ψ }6 by a Wavelet transform that provides a time-frequency representation of the time series of bar{ψ }6. It is found that particles that have high power in frequencies corresponding to the inverse of the timescale of perturbation undergo distortions of their packing configurations that result in cage breaking and formation dynamics. To gain insight into the dynamic structure of cage breaking and formation of bond-orientational ordering, we compare the cage breaking and formation dynamics with the underlying dynamical structure identified by Lagrangian Coherent Structures (LCSs) estimated from the finite-time Lyapunov exponent (FTLE) field. The LCSs are moving separatrices that effectively divide the flow into distinct regions with different dynamical behavior. It is shown that the spatial distribution of the FTLE field and the power of particles in the wavelet transform have positive correlation, implying that LCSs provide a dynamic structure that dominates the dynamics of cage breaking and

  3. The dynamics of protein body formation in developing wheat grain.

    PubMed

    Moore, Katie L; Tosi, Paola; Palmer, Richard; Hawkesford, Malcolm J; Grovenor, Chris R M; Shewry, Peter R

    2016-09-01

    Wheat is a major source of protein in the diets of humans and livestock but we know little about the mechanisms that determine the patterns of protein synthesis in the developing endosperm. We have used a combination of enrichment with (15) N glutamine and NanoSIMS imaging to establish that the substrate required for protein synthesis is transported radially from its point of entrance in the endosperm cavity across the starchy endosperm tissues, before becoming concentrated in the cells immediately below the aleurone layer. This transport occurs continuously during grain development but may be slower in the later stages. Although older starchy endosperm cells tend to contain larger protein deposits formed by the fusion of small protein bodies, small highly enriched protein bodies may also be present in the same cells. This shows a continuous process of protein body initiation, in both older and younger starchy endosperm cells and in all regions of the tissue. Immunolabeling with specific antibodies shows that the patterns of enrichment are not related to the contents of gluten proteins in the protein bodies. In addition to providing new information on the dynamics of protein deposition, the study demonstrates the wider utility of NanoSIMS and isotope labelling for studying complex developmental processes in plant tissues. PMID:26898533

  4. Dynamics versus structure: breaking the density degeneracy in star formation

    NASA Astrophysics Data System (ADS)

    Parker, Richard J.

    2014-12-01

    The initial density of individual star-forming regions (and by extension the birth environment of planetary systems) is difficult to constrain due to the `density degeneracy problem': an initially dense region expands faster than a more quiescent region due to two-body relaxation and so two regions with the same observed present-day density may have had very different initial densities. We constrain the initial densities of seven nearby star-forming regions by folding in information on their spatial structure from the {Q}-parameter and comparing the structure and present-day density to the results of N-body simulations. This in turn places strong constraints on the possible effects of dynamical interactions and radiation fields from massive stars on multiple systems and protoplanetary discs. We apply our method to constrain the initial binary population in each of these seven regions and show that the populations in only three - the Orion Nebula Cluster, ρ Oph, and Corona Australis - are consistent with having evolved from the Kroupa universal initial period distribution and a binary fraction of unity.

  5. The fluid dynamics of xenocryst formation in mafic enclaves

    NASA Astrophysics Data System (ADS)

    Jarvis, Paul; Blundy, Jon; Cashman, Katharine; Huppert, Herbert; Mader, Heidy

    2014-05-01

    Mafic enclaves produced by the mingling of felsic and mafic magmas commonly contain xenocrysts; crystals akin to those in the felsic host. These crystals are interpreted as having crossed the interface between the two magmas at some stage during the rock evolution. An understanding of the physical conditions that allow this exchange would give insight into the state of the system at the time of assimilation, providing information about the magmatic history of the rock. Using both numerical models and analogue experiments, the low Reynolds number gravitational settling of spheres on to fluid-fluid interfaces is studied as an analogue to this problem. Theoretical treatment suggests that whether or not a particle sinks or floats at an interface depends on four dimensionless parameters; Bond number, the viscosity ratio, a modified density ratio and the contact angle. Spheres are allowed to settle onto an interface for different values of the dimensionless groups and the behavioural regime boundaries are determined. Experimentally this consists of dropping spheres of varying radii and density onto an interface between two density stratified fluids (silicon oil and polyethylene glycol solution), both of which are lighter than the sphere. The spheres are sputter coated in gold to ensure a constant surface interaction. The numerical models are used to validate these results and apply them in geologic settings. Early results suggest that the presence of even a small interfacial tension between the two magmas is sufficient to inhibit the passage of crystals across interfaces in magmatic systems. An interesting feature of note in mafic enclaves is that the xenocrysts often occur in clusters. This can be compared with observations from the analogue experiments where 6mm nylon spheres were dropped onto the fluid interface. Although the spheres are light and small enough to individually be supported by the interface, the successive addition of spheres leads to the formation of

  6. Dynamic Star Formation in the Massive DR21 Filament

    SciTech Connect

    Schneider, N.; Csengeri, T.; Bontemps, S.; Motte, F.; Simon, R.; Hennebelle, P.; Federrath, C.; Klessen, R.; /ZAH, Heidelberg /KIPAC, Menlo Park

    2010-08-25

    The formation of massive stars is a highly complex process in which it is unclear whether the star-forming gas is in global gravitational collapse or an equilibrium state supported by turbulence and/or magnetic fields. By studying one of the most massive and dense star-forming regions in the Galaxy at a distance of less than 3 kpc, i.e. the filament containing the well-known sources DR21 and DR21(OH), we attempt to obtain observational evidence to help us to discriminate between these two views. We use molecular line data from our {sup 13}CO 1 {yields} 0, CS 2 {yields} 1, and N{sub 2}H{sup +} 1 {yields} 0 survey of the Cygnus X region obtained with the FCRAO and CO, CS, HCO{sup +}, N{sub 2}H{sup +}, and H{sub 2}CO data obtained with the IRAM 30m telescope. We observe a complex velocity field and velocity dispersion in the DR21 filament in which regions of the highest column-density, i.e., dense cores, have a lower velocity dispersion than the surrounding gas and velocity gradients that are not (only) due to rotation. Infall signatures in optically thick line profiles of HCO{sup +} and {sup 12}CO are observed along and across the whole DR21 filament. By modelling the observed spectra, we obtain a typical infall speed of {approx}0.6 km s{sup -1} and mass accretion rates of the order of a few 10{sup -3} M{sub {circle_dot}} yr{sup -1} for the two main clumps constituting the filament. These massive clumps (4900 and 3300 M{sub {circle_dot}} at densities of around 10{sup 5} cm{sup -3} within 1 pc diameter) are both gravitationally contracting. The more massive of the clumps, DR21(OH), is connected to a sub-filament, apparently 'falling' onto the clump. This filament runs parallel to the magnetic field. Conclusions. All observed kinematic features in the DR21 filament (velocity field, velocity dispersion, and infall), its filamentary morphology, and the existence of (a) sub-filament(s) can be explained if the DR21 filament was formed by the convergence of flows on large

  7. Traveling waves and dynamical formation of autonomous pacemakers in a bistable medium with periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Shepelev, Igor A.; Vadivasova, Tatiana E.; Postnov, Dmitry E.

    2015-03-01

    The problem of spatiotemporal pattern formation in the wall of arterial vesselsmay be reduced to 1D or 2D models of nonlinear active medium. We address this problem using the discrete array of non-oscillating (bistable) active units. We show how the specific choice of initial conditions in a 1D model with periodic boundary conditions triggers the self-sustained behaviour. We reveal the core of observed effects being the dynamical formation of localized (few-element size) autonomous pacemakers.

  8. Dynamical resonant electron capture in atom surface collisions: H- formation in H-Al(111) collisions

    NASA Astrophysics Data System (ADS)

    Borisov, A. G.; Teillet-Billy, D.; Gauyacq, J. P.

    1992-05-01

    The formation of H- ion by grazing-angle collisions of hydrogen on an Al(111) surface is investigated with the newly developed coupled angular mode method. The capture process involves a dynamical resonant process induced by the collision velocity. All the resonance properties of the H- level in front of an Al(111) surface are determined: position, width, and angular distribution of ejected electrons. The results are shown to account for the recent observations on H- formation by Wyputta, Zimny, and Winter.

  9. Polymer dynamics of DOC networks and gel formation in seawater

    NASA Astrophysics Data System (ADS)

    Verdugo, Pedro; Santschi, Peter H.

    2010-08-01

    The ocean plays a major role in global biogeochemical carbon cycling; it holds an important reservoir of reduced organic carbon, mostly in the form of dissolved organic carbon (DOC), and processes about one-half of the total primary production of the planet. Dissolved molecules present between living and assimilable size extremes (˜1000 nm -1 nm), constitute the most abundant form of remnant biochemicals in the ocean, outweighing the total living biomass by a factor of roughly 200. Because DOC is the fundamental substrate for marine microorganisms, and is primarily composed by small refractory biopolymers, this prompted the idea that the ocean might function as a huge repository of recalcitrant carbon. The missing link that elucidates this paradox and explains how the rich and vast stock of DOC becomes available to bacteria was the discovery that DOC throughout the water column remains in reversible assembly/dispersion equilibrium forming porous microscopic gels (Chin et al., Nature 391, 568-572, 1998). This abiotic DOC-POM shunt yields a microgel pool containing ˜70 gigatons of carbon forming discrete patches of high nutrient concentration that can be readily colonized by microorganisms. The presence of this huge gel mass in seawater extending far into the dark ocean has ramifications that might well scale nonlinearly through the microbial loop to the World Ocean and global climate system and it is fundamentally changing how oceanographers think about processes linking the microbial loop and biological pump to the rest of the biosphere and the geosphere. Even if a small fraction of DOC remains self-assembled, marine scientists will have to revise the rationale of established aquatic paradigms ranging from trace metal chelation, size-reactivity relationships, the microbial loop, the biological pump, colloid pumping, and humification. A ubiquitous, reversible DOC assembly/dispersion process implies a dynamic "patchiness" spanning from the molecular to the micron

  10. Understanding Visual Map Formation through Vortex Dynamics of Spin Hamiltonian Models

    NASA Astrophysics Data System (ADS)

    Cho, Myoung Won; Kim, Seunghwan

    2004-01-01

    The pattern formation in orientation and ocular dominance columns is one of the most investigated problems in the brain. From a known cortical structure, we build spinlike Hamiltonian models with long-range interactions of the Mexican hat type. These Hamiltonian models allow a coherent interpretation of the diverse phenomena in the visual map formation with the help of relaxation dynamics of spin systems. In particular, we explain various phenomena of self-organization in orientation and ocular dominance map formation including the pinwheel annihilation and its dependency on the columnar wave vector and boundary conditions.

  11. Characterization of dynamic droplet impaction and deposit formation on leaf surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elucidation of droplet dynamic impaction and deposition formation on leaf surfaces would assist to optimize application strategies, improve biological control efficiency, and minimize pesticide waste. A custom-designed system consisting of two high-speed digital cameras and a uniform-size droplet ge...

  12. Dynamics of vortex structure formation during the evolution of modulation instability of dark solitons

    SciTech Connect

    Mironov, V. A.; Smirnov, A. I. Smirnov, L. A.

    2011-01-15

    The nonlinear stage of modulation instability of dark solitons is studied analytically and numerically. We propose an asymptotic description of the dynamics of these solitons in terms of their local velocity and the curvature of the lines at which solitons are concentrated. The features of the destruction of dark solitons (in particular, the formation of vortex structures from them) are analyzed.

  13. Phase 1 user instruction manual. A geological formation - drill string dynamic interaction finite element program (GEODYN)

    SciTech Connect

    Tinianow, M.A.; Rotelli, R.L. Jr.; Baird, J.A.

    1984-06-01

    User instructions for the GEODYN Interactive Finite Element Computer Program are presented. The program is capable of performing the analysis of the three-dimensional transient dynamic response of a Polycrystalline Diamond Compact Bit - Bit Sub arising from the intermittent contact of the bit with the downhole rock formations. The program accommodates non-linear, time dependent, loading and boundary conditions.

  14. Geological formation - drill string dynamic interaction finite-element program (GEODYN). Phase 1. Theoretical description

    SciTech Connect

    Baird, J.A.; Apostal, M.C.; Rotelli, R.L. Jr.; Tinianow, M.A.; Wormley, D.N.

    1984-06-01

    The Theoretical Description for the GEODYN interactive finite-element computer program is presented. The program is capable of performing the analysis of the three-dimensional transient dynamic response of a Polycrystalline Diamond Compact Bit-Bit Sub arising from the intermittent contact of the bit with the downhole rock formations. The program accommodates nonlinear, time-dependent, loading and boundary conditions.

  15. Morphology-Induced Collective Behaviors: Dynamic Pattern Formation in Water-Floating Elements

    PubMed Central

    Nakajima, Kohei; Ngouabeu, Aubery Marchel Tientcheu; Miyashita, Shuhei; Göldi, Maurice; Füchslin, Rudolf Marcel; Pfeifer, Rolf

    2012-01-01

    Complex systems involving many interacting elements often organize into patterns. Two types of pattern formation can be distinguished, static and dynamic. Static pattern formation means that the resulting structure constitutes a thermodynamic equilibrium whose pattern formation can be understood in terms of the minimization of free energy, while dynamic pattern formation indicates that the system is permanently dissipating energy and not in equilibrium. In this paper, we report experimental results showing that the morphology of elements plays a significant role in dynamic pattern formation. We prepared three different shapes of elements (circles, squares, and triangles) floating in a water-filled container, in which each of the shapes has two types: active elements that were capable of self-agitation with vibration motors, and passive elements that were mere floating tiles. The system was purely decentralized: that is, elements interacted locally, and subsequently elicited global patterns in a process called self-organized segregation. We showed that, according to the morphology of the selected elements, a different type of segregation occurs. Also, we quantitatively characterized both the local interaction regime and the resulting global behavior for each type of segregation by means of information theoretic quantities, and showed the difference for each case in detail, while offering speculation on the mechanism causing this phenomenon. PMID:22715370

  16. Asymptotic behavior of dynamical variables and naked singularity formation in spherically symmetric gravitational collapse

    SciTech Connect

    Kawakami, Hayato; Mitsuda, Eiji; Nambu, Yasusada; Tomimatsu, Akira

    2009-07-15

    In considering the gravitational collapse of matter, it is an important problem to clarify what kind of conditions leads to the formation of naked singularity. For this purpose, we apply the 1+3 orthonormal frame formalism introduced by Uggla et al. to the spherically symmetric gravitational collapse of a perfect fluid. This formalism allows us to construct an autonomous system of evolution and constraint equations for scale-invariant dynamical variables normalized by the volume expansion rate of the timelike orthonormal frame vector. We investigate the asymptotic evolution of such dynamical variables towards the formation of a central singularity and present a conjecture that the steep spatial gradient for the normalized density function is a characteristic of the naked singularity formation.

  17. Simultaneous Measurement of Amyloid Fibril Formation by Dynamic Light Scattering and Fluorescence Reveals Complex Aggregation Kinetics

    PubMed Central

    Streets, Aaron M.; Sourigues, Yannick; Kopito, Ron R.; Melki, Ronald; Quake, Stephen R.

    2013-01-01

    An apparatus that combines dynamic light scattering and Thioflavin T fluorescence detection is used to simultaneously probe fibril formation in polyglutamine peptides, the aggregating subunit associated with Huntington's disease, in vitro. Huntington's disease is a neurodegenerative disorder in a class of human pathologies that includes Alzheimer's and Parkinson's disease. These pathologies are all related by the propensity of their associated protein or polypeptide to form insoluble, β-sheet rich, amyloid fibrils. Despite the wide range of amino acid sequence in the aggregation prone polypeptides associated with these diseases, the resulting amyloids display strikingly similar physical structure, an observation which suggests a physical basis for amyloid fibril formation. Thioflavin T fluorescence reports β-sheet fibril content while dynamic light scattering measures particle size distributions. The combined techniques allow elucidation of complex aggregation kinetics and are used to reveal multiple stages of amyloid fibril formation. PMID:23349924

  18. Pattern formation and dynamics of plasma filaments in dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Callegari, T.; Bernecker, B.; Boeuf, J. P.

    2014-10-01

    Dielectric barrier discharges (DBDs) operating in a transient glow discharge regime offer a large variety of self-organized filamentary static or dynamical structures and constitute an excellent physical system for the study of nonlinear dynamics and pattern formation. The plasma filaments of DBDs can exhibit particle-like behavior, with motion, generation, annihilation, and scattering as well as collective effects leading to self-organized structures (hexagons, stripes, concentric rings, spirals, etc) that are typical of reaction-diffusion systems. The purpose of this paper is to analyze the detailed physics of pattern formation in DBDs on the basis of numerical fluid simulations and experiments in order to provide a deeper understanding of the nonlinear mechanisms responsible for the self-organization and dynamics of filaments.

  19. The Impact of Polymer Dynamics on Photoinduced Carrier Formation in Films of Semiconducting Polymers.

    PubMed

    Ogata, Yudai; Kawaguchi, Daisuke; Tanaka, Keiji

    2015-12-01

    A better understanding of the carrier formation process in photosemiconducting polymers is crucial to design and construct highly functionalized thin film organic photodevices. Almost all studies published focus on the effect of structure on the photoinduced carrier formation process. Here, we study the dynamics of polymer chain impacts on the carrier formation process for a series of poly(3-alkylthiophene)s (P3ATs) with different alkyl side-chain lengths. The formation of polarons (P) from polaron pairs (PP) was accelerated at a temperature at which the twisting motion of thiophene rings occurs. Among all P3ATs employed, in P3AT with hexyl groups, or poly(3-hexylthiophene) (P3HT), it was easiest to twist the thiophene rings and generate P from PP. The activation energy for P formation was proportional to that of thiophene ring motion. This makes it clear that chain dynamics, in addition to the crystalline structure, is a controlling factor for the carrier formation process in photosemiconducting polymers. PMID:26574654

  20. A Preliminary Formation Flying Orbit Dynamics Analysis for Leonardo-BRDF

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.

    2001-01-01

    Leonardo-BRDF is a NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the orbit dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal two-burn initialization scheme is presented with the required delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated delta-V's are calculated to maintain the formation in the presence of perturbations.

  1. Molecular dynamics simulation of ion focusing and crowdion formation in self-ion-irradiated Fe

    NASA Astrophysics Data System (ADS)

    Chen, Di; Shao, Lin

    2012-02-01

    We have used molecular dynamics (MD) simulation to investigate damage and defect development in a <1 0 0> Fe substrate upon 2 keV Fe ion bombardment. The damage cascade formation is accompanied by atomic shifting over a limited distance along the direction of one atomic row, which leads to formation of crowdions aligned with <1 1 1> direction. At the end of structural relaxation and defect recombination, crowdions lead to formation of dumbbell defects - a type of vacancy-interstitial complexes having one vacancy between a pair of slightly displaced interstitials. The dumbbell defects are initially oriented along <1 1 1> direction. After a typical period of 0.2 ps, some dumbbell defects rotate towards <1 1 0> direction. Crowdion and dumbbell defect formation influence the time dependent damage buildups.

  2. Observation of the Formation of the Dynamic Clusters in Concentrated Lysozyme Protein Solutions

    SciTech Connect

    Chen, Wei-Ren; Liu, Yun; Porcar, L.; Falus, Peter; Baglioni, Piero; Hong, Kunlun; Fratini, Emiliano

    2010-01-01

    Neutron spin echo (NSE) and small angle neutron scattering (SANS) are used to investigate the structure and short-time dynamics of lysozyme protein solutions with the presence of the equilibrium clusters. The Q dependent collective diffusion coefficient indicates there are no significant inter-monomeric-protein dynamics at high Q. Upon increasing the concentration, the self diffusion coefficient at short-time limit is seen to decrease much faster than that of the hard-sphere and charge stabilized colloidal suspensions, further supporting the formation of clusters under the probed experimental conditions. These clusters are further argued to have finite life time instead of conglomerating permanently. Moreover, evidenced by the average hydrodynamic radius, at relatively low concentration, there are very few dynamical clusters, while at higher concentrations, the diffusion behavior at short-time limit is dominated by the dynamic clusters.

  3. Dynamical Formation of Black Hole Binaries in Globular Clusters and the Origins of GW150914

    NASA Astrophysics Data System (ADS)

    Rasio, Frederic A.; Chatterjee, Sourav; Rodriguez, Carl L.

    2016-06-01

    We show that GW150914, the binary black hole merger detected last year by LIGO, could easily have been formed dynamically through interactions in the dense core of an old globular cluster. Using models of globular clusters with detailed N-body dynamics and stellar evolution, we show that a typical cluster can very naturally form a binary black hole with "heavy" components that will merge at low redshift, like GW150914. We describe in some detail the dynamical interaction processes that could form such a system. Finally, we also show that theoretical predictions for this dynamical formation channel are in general far more robust than those from "population synthesis" studies for isolated massive binaries in the field.

  4. Neural dynamics of social tie formation in economic decision-making.

    PubMed

    Bault, Nadège; Pelloux, Benjamin; Fahrenfort, Johannes J; Ridderinkhof, K Richard; van Winden, Frans

    2015-06-01

    The disposition for prosocial conduct, which contributes to cooperation as arising during social interaction, requires cortical network dynamics responsive to the development of social ties, or care about the interests of specific interaction partners. Here, we formulate a dynamic computational model that accurately predicted how tie formation, driven by the interaction history, influences decisions to contribute in a public good game. We used model-driven functional MRI to test the hypothesis that brain regions key to social interactions keep track of dynamics in tie strength. Activation in the medial prefrontal cortex (mPFC) and posterior cingulate cortex tracked the individual's public good contributions. Activation in the bilateral posterior superior temporal sulcus (pSTS), and temporo-parietal junction was modulated parametrically by the dynamically developing social tie-as estimated by our model-supporting a role of these regions in social tie formation. Activity in these two regions further reflected inter-individual differences in tie persistence and sensitivity to behavior of the interaction partner. Functional connectivity between pSTS and mPFC activations indicated that the representation of social ties is integrated in the decision process. These data reveal the brain mechanisms underlying the integration of interaction dynamics into a social tie representation which in turn influenced the individual's prosocial decisions. PMID:25338630

  5. Neural dynamics of social tie formation in economic decision-making

    PubMed Central

    Pelloux, Benjamin; Fahrenfort, Johannes J.; Ridderinkhof, K. Richard; van Winden, Frans

    2015-01-01

    The disposition for prosocial conduct, which contributes to cooperation as arising during social interaction, requires cortical network dynamics responsive to the development of social ties, or care about the interests of specific interaction partners. Here, we formulate a dynamic computational model that accurately predicted how tie formation, driven by the interaction history, influences decisions to contribute in a public good game. We used model-driven functional MRI to test the hypothesis that brain regions key to social interactions keep track of dynamics in tie strength. Activation in the medial prefrontal cortex (mPFC) and posterior cingulate cortex tracked the individual’s public good contributions. Activation in the bilateral posterior superior temporal sulcus (pSTS), and temporo-parietal junction was modulated parametrically by the dynamically developing social tie—as estimated by our model—supporting a role of these regions in social tie formation. Activity in these two regions further reflected inter-individual differences in tie persistence and sensitivity to behavior of the interaction partner. Functional connectivity between pSTS and mPFC activations indicated that the representation of social ties is integrated in the decision process. These data reveal the brain mechanisms underlying the integration of interaction dynamics into a social tie representation which in turn influenced the individual’s prosocial decisions. PMID:25338630

  6. Gas dynamic effects on formation of carbon dimers in laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Al-Shboul, K. F.; Harilal, S. S.; Hassanein, A.

    2011-09-01

    We investigated the effect of helium and nitrogen pressures on the dynamics of molecular species formation during laser ablation of carbon. For producing plasmas, planar carbon targets were irradiated with 1064 nm, 6 ns pulses from an Nd:yttrium aluminum garnet laser. The emission from excited C2 and CN molecules was studied using space resolved optical time-of-flight emission spectroscopy and spectrally resolved fast imaging. The intensity oscillations in C2 and CN monochromatic fast imaging and their emission space-time contours suggest that recombination is the major mechanism of C2 formation within the laser ablation carbon plumes in the presence of ambient gas.

  7. The More the Tubular: Dynamic Bundling of Actin Filaments for Membrane Tube Formation

    PubMed Central

    Weichsel, Julian; Geissler, Phillip L.

    2016-01-01

    Tubular protrusions are a common feature of living cells, arising from polymerization of stiff protein filaments against a comparably soft membrane. Although this process involves many accessory proteins in cells, in vitro experiments indicate that similar tube-like structures can emerge without them, through spontaneous bundling of filaments mediated by the membrane. Using theory and simulation of physical models, we have elaborated how nonequilibrium fluctuations in growth kinetics and membrane shape can yield such protrusions. Enabled by a new grand canonical Monte Carlo method for membrane simulation, our work reveals a cascade of dynamical transitions from individually polymerizing filaments to highly cooperatively growing bundles as a dynamical bottleneck to tube formation. Filament network organization as well as adhesion points to the membrane, which bias filament bending and constrain membrane height fluctuations, screen the effective attractive interactions between filaments, significantly delaying bundling and tube formation. PMID:27384915

  8. The More the Tubular: Dynamic Bundling of Actin Filaments for Membrane Tube Formation.

    PubMed

    Weichsel, Julian; Geissler, Phillip L

    2016-07-01

    Tubular protrusions are a common feature of living cells, arising from polymerization of stiff protein filaments against a comparably soft membrane. Although this process involves many accessory proteins in cells, in vitro experiments indicate that similar tube-like structures can emerge without them, through spontaneous bundling of filaments mediated by the membrane. Using theory and simulation of physical models, we have elaborated how nonequilibrium fluctuations in growth kinetics and membrane shape can yield such protrusions. Enabled by a new grand canonical Monte Carlo method for membrane simulation, our work reveals a cascade of dynamical transitions from individually polymerizing filaments to highly cooperatively growing bundles as a dynamical bottleneck to tube formation. Filament network organization as well as adhesion points to the membrane, which bias filament bending and constrain membrane height fluctuations, screen the effective attractive interactions between filaments, significantly delaying bundling and tube formation. PMID:27384915

  9. He cluster dynamics in W in the presence of cluster induced formation of He traps

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.; Smirnov, R. D.

    2016-02-01

    The theoretical model describing spatiotemporal dynamics of He clusters in tungsten, which takes into account He trap generation associated with the growth of He clusters, is presented. Application of this model to the formation of the layer of nano-bubbles underneath of the surface of thick He irradiated sample, before surface morphology starts to change, gives very good agreement with currently available experimental data. The role of thermophoresis in a long-term evolution of nano-bubble containing structures is discussed.

  10. Formation and phase transitions of methane hydrates under dynamic loadings: Compression rate dependent kinetics

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Yin; Yoo, Choong-Shik

    2012-03-01

    We describe high-pressure kinetic studies of the formation and phase transitions of methane hydrates (MH) under dynamic loading conditions, using a dynamic-diamond anvil cell (d-DAC) coupled with time-resolved confocal micro-Raman spectroscopy and high-speed microphotography. The time-resolved spectra and dynamic pressure responses exhibit profound compression-rate dependences associated with both the formation and the solid-solid phase transitions of MH-I to II and MH-II to III. Under dynamic loading conditions, MH forms only from super-compressed water and liquid methane in a narrow pressure range between 0.9 and 1.6 GPa at the one-dimensional (1D) growth rate of 42 μm/s. MH-I to II phase transition occurs at the onset of water solidification 0.9 GPa, following a diffusion controlled mechanism. We estimated the activation volume to be -109 ± 29 Å3, primarily associated with relatively slow methane diffusion which follows the rapid interfacial reconstruction, or martensitic displacements of atomic positions and hydrogen bonds, of 51262 water cages in MH-I to 4351263 cages in MH-II. MH-II to III transition, on the other hand, occurs over a broad pressure range between 1.5 and 2.2 GPa, following a reconstructive mechanism from super-compressed MH-II clathrates to a broken ice-filled viscoelastic solid of MH-III. It is found that the profound dynamic effects observed in the MH formation and phase transitions are primarily governed by the stability of water and ice phases at the relevant pressures.

  11. Formation and phase transitions of methane hydrates under dynamic loadings: compression rate dependent kinetics.

    PubMed

    Chen, Jing-Yin; Yoo, Choong-Shik

    2012-03-21

    We describe high-pressure kinetic studies of the formation and phase transitions of methane hydrates (MH) under dynamic loading conditions, using a dynamic-diamond anvil cell (d-DAC) coupled with time-resolved confocal micro-Raman spectroscopy and high-speed microphotography. The time-resolved spectra and dynamic pressure responses exhibit profound compression-rate dependences associated with both the formation and the solid-solid phase transitions of MH-I to II and MH-II to III. Under dynamic loading conditions, MH forms only from super-compressed water and liquid methane in a narrow pressure range between 0.9 and 1.6 GPa at the one-dimensional (1D) growth rate of 42 μm/s. MH-I to II phase transition occurs at the onset of water solidification 0.9 GPa, following a diffusion controlled mechanism. We estimated the activation volume to be -109±29 Å(3), primarily associated with relatively slow methane diffusion which follows the rapid interfacial reconstruction, or martensitic displacements of atomic positions and hydrogen bonds, of 5(12)6(2) water cages in MH-I to 4(3)5(12)6(3) cages in MH-II. MH-II to III transition, on the other hand, occurs over a broad pressure range between 1.5 and 2.2 GPa, following a reconstructive mechanism from super-compressed MH-II clathrates to a broken ice-filled viscoelastic solid of MH-III. It is found that the profound dynamic effects observed in the MH formation and phase transitions are primarily governed by the stability of water and ice phases at the relevant pressures. PMID:22443783

  12. On the dynamics of Liesegang-type pattern formation in a gaseous system

    NASA Astrophysics Data System (ADS)

    Ramírez-Álvarez, Elizeth; Montoya, Fernando; Buhse, Thomas; Rios-Herrera, Wady; Torres-Guzmán, José; Rivera, Marco; Martínez-Mekler, Gustavo; Müller, Markus F.

    2016-03-01

    Liesegang pattern formations are widely spread in nature. In spite of a comparably simple experimental setup under laboratory conditions, a variety of spatio-temporal structures may arise. Presumably because of easier control of the experimental conditions, Liesegang pattern formation was mainly studied in gel systems during more than a century. Here we consider pattern formation in a gas phase, where beautiful but highly complex reaction-diffusion-convection dynamics are uncovered by means of a specific laser technique. A quantitative analysis reveals that two different, apparently independent processes, both highly correlated and synchronized across the extension of the reaction cloud, act on different time scales. Each of them imprints a different structure of salt precipitation at the tube walls.

  13. On the dynamics of Liesegang-type pattern formation in a gaseous system.

    PubMed

    Ramírez-Álvarez, Elizeth; Montoya, Fernando; Buhse, Thomas; Rios-Herrera, Wady; Torres-Guzmán, José; Rivera, Marco; Martínez-Mekler, Gustavo; Müller, Markus F

    2016-01-01

    Liesegang pattern formations are widely spread in nature. In spite of a comparably simple experimental setup under laboratory conditions, a variety of spatio-temporal structures may arise. Presumably because of easier control of the experimental conditions, Liesegang pattern formation was mainly studied in gel systems during more than a century. Here we consider pattern formation in a gas phase, where beautiful but highly complex reaction-diffusion-convection dynamics are uncovered by means of a specific laser technique. A quantitative analysis reveals that two different, apparently independent processes, both highly correlated and synchronized across the extension of the reaction cloud, act on different time scales. Each of them imprints a different structure of salt precipitation at the tube walls. PMID:27025405

  14. A Simple Dynamical Model for Filament Formation in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Litvinenko, Y.

    2005-12-01

    Filament formation in the solar corona is considered in the case of a slowly evolving force-free magnetic field. The strong-field approximation is used, which takes into account the magnetohydrodynamic equations of motion, induction, and compressibility. Methods for solving the relevant equations are presented and applied to filament modeling. A three-dimensional calculation is presented, which uses linear force-free magnetic fields. The boundary conditions are chosen to resemble the qualitative linkage model for the formation of filaments, suggested by Martens and Zwaan (2001). Consistent with this model, dense formations, reminiscent of filament pillars, are shown to appear in the corona above the region of converging and canceling magnetic bipoles. The results demonstrate the principal role of magnetic field in the dynamical processes of dense plasma accumulation and support in filaments. The model can be useful for clarifying the role of flux emergence in coronal mass ejection initiation.

  15. Exploring a dynamical path for C2H- and NCO- formation in dark molecular clouds

    NASA Astrophysics Data System (ADS)

    Iskandarov, Ibrokhim; Gianturco, Francesco Antonio; Carelli, Fabio; Yurtsever, Ersin; Wester, Roland

    2016-02-01

    This paper deals with the possible formation of two molecular anions often considered likely components in the physical environments of the interstellar medium (ISM): C2H- and NCO-. They are both discussed here by computationally following the radiative association (RA) mechanism starting from C2-, H, N- and O as partners. The corresponding RA total cross sections produced by the calculations are in turn employed to generate the overall association rates over the relevant range of temperatures. The latter are found to be in line with other molecular ions formed by RA but not large enough to uniquivocally suggest this path as the main route to the anions formation in the ISM. Other possible paths of formation are also analysed and discussed. The presence of resonant structures during the association dynamics for both systems is found by the calculations and their consequences are discussed in some detail in the present study.

  16. On the dynamics of Liesegang-type pattern formation in a gaseous system

    PubMed Central

    Ramírez-Álvarez, Elizeth; Montoya, Fernando; Buhse, Thomas; Rios-Herrera, Wady; Torres-Guzmán, José; Rivera, Marco; Martínez-Mekler, Gustavo; Müller, Markus F.

    2016-01-01

    Liesegang pattern formations are widely spread in nature. In spite of a comparably simple experimental setup under laboratory conditions, a variety of spatio-temporal structures may arise. Presumably because of easier control of the experimental conditions, Liesegang pattern formation was mainly studied in gel systems during more than a century. Here we consider pattern formation in a gas phase, where beautiful but highly complex reaction-diffusion-convection dynamics are uncovered by means of a specific laser technique. A quantitative analysis reveals that two different, apparently independent processes, both highly correlated and synchronized across the extension of the reaction cloud, act on different time scales. Each of them imprints a different structure of salt precipitation at the tube walls. PMID:27025405

  17. THE TRIPLE EVOLUTION DYNAMICAL INSTABILITY: STELLAR COLLISIONS IN THE FIELD AND THE FORMATION OF EXOTIC BINARIES

    SciTech Connect

    Perets, Hagai B.; Kratter, Kaitlin M.

    2012-12-01

    Physical collisions and close approaches between stars play an important role in the formation of exotic stellar systems. Standard theories suggest that collisions are rare, occurring only via random encounters between stars in dense clusters. We present a different formation pathway, the triple evolution dynamical instability (TEDI), in which mass loss in an evolving triple star system causes orbital instability. The subsequent chaotic orbital evolution of the stars triggers close encounters, collisions, exchanges between the stellar components, and the dynamical formation of eccentric compact binaries (including Sirius-like binaries). We demonstrate that the rate of stellar collisions due to the TEDI is approximately 10{sup -4} yr{sup -1} per Milky Way Galaxy, which is nearly 30 times higher than the total collision rate due to random encounters in the Galactic globular clusters. Moreover, we find that the dominant type of stellar collision is qualitatively different; most collisions involve asymptotic giant branch stars, rather than main sequence or slightly evolved stars, which dominate collisions in globular clusters. The TEDI mechanism should lead us to revise our understanding of collisions and the formation of compact, eccentric binaries in the field.

  18. Size-Dependent Exciton Formation Dynamics in Colloidal Silicon Quantum Dots.

    PubMed

    Bergren, Matthew R; Palomaki, Peter K B; Neale, Nathan R; Furtak, Thomas E; Beard, Matthew C

    2016-02-23

    We report size-dependent exciton formation dynamics within colloidal silicon quantum dots (Si QDs) using time-resolved terahertz (THz) spectroscopy measurements. THz photoconductivity measurements are used to distinguish the initially created hot carriers from excitons that form at later times. At early pump/probe delays, the exciton formation dynamics are revealed by the temporal evolution of the THz transmission. We find an increase in the exciton formation time, from ∼500 to ∼900 fs, as the Si QD diameter is reduced from 7.3 to 3.4 nm and all sizes exhibit slower hot-carrier relaxation times compared to bulk Si. In addition, we determine the THz absorption cross section at early delay times is proportional to the carrier mobility while at later delays is proportional to the exciton polarizability, αX. We extract a size-dependent αX and find an ∼r(4) dependence, consistent with previous reports for quantum-confined excitons in CdSe, InAs, and PbSe QDs. The observed slowing in exciton formation time for smaller Si QDs is attributed to decreased electron-phonon coupling due to increased quantum confinement. These results experimentally verify the modification of hot-carrier relaxation rates by quantum confinement in Si QDs, which likely plays a significant role in the high carrier multiplication efficiency observed in these nanomaterials. PMID:26811876

  19. Modeling of anaerobic formate kinetics in mixed biofilm culture using dynamic membrane mass spectrometric measurement.

    PubMed

    Dornseiffer, P; Meyer, B; Heinzle, E

    1995-02-01

    The dynamics of the anaerobic conversion of formate in a microbial mixed culture taken from an anaerobic fluidized bed reactor was studied using a new stirred micro reactor equipped with a membrane mass spectrometer. The microreactor with a toroidally shaped bottom and pitched blade turbine and a cylindrical flow guide was thermostated and additionally equipped with a pH electrode and pH control. During fed-batch experiments using formate, the dissolved gases (methane, hydrogen, and carbon dioxide), as well as the acid consumption rates for pH control were monitored continuously. Initially and at the end of each experiment, organic acids were analyzed using ion chromatography (IC). It was found that about 50% of the formate was converted to methane via hydrogen and carbon dioxide, 40% gave methane either directly or via acetate. This was calculated from experiments using H(13)CO(3) (-) pulses and measurement of (12)CH(4) and (13)CH(4) production rates. About 10% of the formate was converted to lactate, acetate, and propionate, thereby increasing the measured CO(2)/CH(4) production ratio. The nondissociated formic acid was shown to be rate determining. From the relatively high K(s) value of 2.5 mmol m(-3), it was concluded that formate cannot play an important role in electron transfer. During dynamic feeding of formate, hydrogen concentration always increased to a maximum before decreasing again. This peak was found to be very discriminative during modeling. From the various models set up, only those with two-stage degradation and double Monod kinetics, both for CO(2) and hydrogen, were able to describe the experimental data adequately. Additional discrimination was possible with the IC measurement of organic acids. (c) 1995 John Wiley & Sons, Inc. PMID:18623141

  20. The role of galaxy formation in the structure and dynamics of dark matter halos

    NASA Astrophysics Data System (ADS)

    Tonini, Chiara

    2009-02-01

    The structure and dynamics of dark matter halos, as predicted by the hierarchical clustering scenario, are at odds with the properties inferred from the observations at galactic scales. My Thesis addresses this problem by taking an evolutionary approach. I analysed in detail the many and different observational evidences of a discrepancy the predicted halo equilibrium state and the one inferred from the measurable properties of disk galaxies, as well as of the scaling relations existing between the angular momentum, geometry and mass distribution of the luminous and dark components, and realized that they all seem to point towards the same conclusion: the baryons hosted inside the halo, by collapsing and assembling to form the galaxy, perturb the halo equilibrium structure and made it evolve into new configurations. From the theoretical point of view, the behaviour of dark matter halos as collisionless systems of particles makes their equilibrium structure and mass distribution extremely sensitive to perturbations of their inner dynamics. The galaxy formation occurring inside the halos is a tremendous event, and the dynamical coupling between the baryons and the dark matter during the protogalaxy collapse represents a perturbation of the halo dynamical structure large enough to trigger a halo evolution, according to the relative mass and angular momentum of the two components. My conclusion is that the structure and dynamics of dark matter halos, as well as the origin of the connection between the halo and galaxy properties, are to be understood in in terms of a joint evolution of the baryonic and dark components, originating at the epoch of the collapse and formation of the galaxy.

  1. Resolving the HONO formation mechanism in the ionosphere via ab initio molecular dynamic simulations.

    PubMed

    He, Rongxing; Li, Lei; Zhong, Jie; Zhu, Chongqin; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-04-26

    Solar emission produces copious nitrosonium ions (NO(+)) in the D layer of the ionosphere, 60 to 90 km above the Earth's surface. NO(+) is believed to transfer its charge to water clusters in that region, leading to the formation of gaseous nitrous acid (HONO) and protonated water cluster. The dynamics of this reaction at the ionospheric temperature (200-220 K) and the associated mechanistic details are largely unknown. Using ab initio molecular dynamics (AIMD) simulations and transition-state search, key structures of the water hydrates-tetrahydrate NO(+)(H2O)4 and pentahydrate NO(+)(H2O)5-are identified and shown to be responsible for HONO formation in the ionosphere. The critical tetrahydrate NO(+)(H2O)4 exhibits a chain-like structure through which all of the lowest-energy isomers must go. However, most lowest-energy isomers of pentahydrate NO(+)(H2O)5 can be converted to the HONO-containing product, encountering very low barriers, via a chain-like or a three-armed, star-like structure. Although these structures are not the global minima, at 220 K, most lowest-energy NO(+)(H2O)4 and NO(+)(H2O)5 isomers tend to channel through these highly populated isomers toward HONO formation. PMID:27071120

  2. Cloud fluid models of gas dynamics and star formation in galaxies

    NASA Technical Reports Server (NTRS)

    Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.

    1987-01-01

    The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.

  3. Dynamical Formation Signatures of Black Hole Binaries in the First Detected Mergers by LIGO

    NASA Astrophysics Data System (ADS)

    O’Leary, Ryan M.; Meiron, Yohai; Kocsis, Bence

    2016-06-01

    The dynamical formation of stellar-mass black hole–black hole binaries has long been a promising source of gravitational waves for the Laser Interferometer Gravitational-Wave Observatory (LIGO). Mass segregation, gravitational focusing, and multibody dynamical interactions naturally increase the interaction rate between the most massive black holes in dense stellar systems, eventually leading them to merge. We find that dynamical interactions, particularly three-body binary formation, enhance the merger rate of black hole binaries with total mass M tot roughly as \\propto {M}{{tot}}β , with β ≳ 4. We find that this relation holds mostly independently of the initial mass function, but the exact value depends on the degree of mass segregation. The detection rate of such massive black hole binaries is only further enhanced by LIGO’s greater sensitivity to massive black hole binaries with M tot ≲ 80 {M}ȯ . We find that for power-law BH mass functions dN/dM ∝ M ‑α with α ≤ 2, LIGO is most likely to detect black hole binaries with a mass twice that of the maximum initial black hole mass and a mass ratio near one. Repeated mergers of black holes inside the cluster result in about ∼5% of mergers being observed between two and three times the maximum initial black hole mass. Using these relations, one may be able to invert the observed distribution to the initial mass function with multiple detections of merging black hole binaries.

  4. Energy approach to rivalry dynamics, soliton stability, and pattern formation in neuronal networks

    NASA Astrophysics Data System (ADS)

    Loxley, P. N.; Robinson, P. A.

    2007-10-01

    Hopfield’s Lyapunov function is used to view the stability and topology of equilibria in neuronal networks for visual rivalry and pattern formation. For two neural populations with reciprocal inhibition and slow adaptation, the dynamics of neural activity is found to include a pair of limit cycles: one for oscillations between states where one population has high activity and the other has low activity, as in rivalry, and one for oscillations between states where both populations have the same activity. Hopfield’s Lyapunov function is used to find the dynamical mechanism for oscillations and the basin of attraction of each limit cycle. For a spatially continuous population with lateral inhibition, stable equilibria are found for local regions of high activity (solitons) and for bound states of two or more solitons. Bound states become stable when moving two solitons together minimizes the Lyapunov function, a result of decreasing activity in regions between peaks of high activity when the firing rate is described by a sigmoid function. Lowering the barrier to soliton formation leads to a pattern-forming instability, and a nonlinear solution to the dynamical equations is found to be given by a soliton lattice, which is completely characterized by the soliton width and the spacing between neighboring solitons. Fluctuations due to noise create lattice vacancies analogous to point defects in crystals, leading to activity which is spatially inhomogeneous.

  5. The formation of vault-tubes: a dynamic interaction between vaults and vault PARP.

    PubMed

    van Zon, Arend; Mossink, Marieke H; Schoester, Martijn; Houtsmuller, Adriaan B; Scheffer, George L; Scheper, Rik J; Sonneveld, Pieter; Wiemer, Erik A C

    2003-11-01

    Vaults are barrel-shaped cytoplasmic ribonucleoprotein particles that are composed of a major vault protein (MVP), two minor vault proteins [telomerase-associated protein 1 (TEP1), vault poly(ADP-ribose) polymerase (VPARP)] and small untranslated RNA molecules. Not all expressed TEP1 and VPARP in cells is bound to vaults. TEP1 is known to associate with the telomerase complex, whereas VPARP is also present in the nuclear matrix and in cytoplasmic clusters (VPARP-rods). We examined the subcellular localization and the dynamics of the vault complex in a non-small cell lung cancer cell line expressing MVP tagged with green fluorescent protein. Using quantitative fluorescence recovery after photobleaching (FRAP) it was shown that vaults move temperature independently by diffusion. However, incubation at room temperature (21 degrees C) resulted in the formation of distinct tube-like structures in the cytoplasm. Raising the temperature could reverse this process. When the vault-tubes were formed, there were fewer or no VPARP-rods present in the cytoplasm, suggesting an incorporation of the VPARP into the vault-tubes. MVP molecules have to interact with each other via their coiled-coil domain in order to form vault-tubes. Furthermore, the stability of microtubules influenced the efficiency of vault-tube formation at 21 degrees C. The dynamics and structure of the tubes were examined using confocal microscopy. Our data indicate a direct and dynamic relationship between vaults and VPARP, providing further clues to unravel the function of vaults. PMID:13130096

  6. Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluids

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Sharma, Vivek

    Liquid transfer and drop formation processes underlying jetting, spraying, coating, and printing - inkjet, screen, roller-coating, gravure, nanoimprint hot embossing, 3D - often involve formation of unstable columnar necks. Capillary-driven thinning of such necks and their pinchoff dynamics are determined by a complex interplay of inertial, viscous and capillary stresses for simple, Newtonian fluids. Micro-structural changes in response to extensional flow field that arises within the thinning neck give rise to additional viscoelastic stresses in complex, non- Newtonian fluids. Using FLOW-3D, we simulate flows realized in prototypical geometries (dripping and liquid bridge stretched between two parallel plates) used for studying pinch-off dynamics and influence of microstructure and viscoelasticity. In contrast with often-used 1D or 2D models, FLOW-3D allows a robust evaluation of the magnitude of the underlying stresses and extensional flow field (both uniformity and magnitude). We find that the simulated radius evolution profiles match the pinch-off dynamics that are experimentally-observed and theoretically-predicted for model Newtonian fluids and complex fluids.

  7. Dynamical stability of imaged planetary systems in formation: Application to HL Tau

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Triaud, Amaury H. M. J.; Menou, Kristen; Rein, Hanno

    2015-08-01

    A recent ALMA image revealed several concentric gaps in the protoplanetary disk surrounding the young star HL Tau. We consider the hypothesis that these gaps are carved by planets, and present a general framework for understanding the dynamical stability of such systems over typical disk lifetimes, providing estimates for the maximum planetary masses.We argue that the locations of resonances should be significantly shifted in massive disks like HL Tau, and that theoretical uncertainties in the exact offset, together with observational errors, imply a large uncertainty in the dynamical state and stability in such disks. This may present an important barrier to using systems like HL Tau as a proxy for the initial conditions following planet formation. An important observational avenue to breaking this degeneracy is to search for eccentric gaps, which could implicate resonantly interacting planets. Unfortunately, a massive disk would also induce swift pericenter precession that would smear out any such eccentric features of planetary origin. This motivates pushing toward more typical, less massive disks.For a nominal non-resonant model of the HL Tau system with five planets, we find a maximum mass for the outer three bodies of approximately 2 Neptune masses. In a resonant configuration, these planets can reach at least the mass of Saturn. The inner two planets' masses are unconstrained by dynamical stability arguments. We will consider the implications for the HL Tau system, and discuss the exciting future of the planetary formation studies in the ALMA era.

  8. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation.

    PubMed

    Borovok, Natalia; Nesher, Elimelech; Levin, Yishai; Reichenstein, Michal; Pinhasov, Albert; Michaelevski, Izhak

    2016-02-01

    trafficking, enhancement of metabolic activity, and Wnt signaling pathway during the steep phase of memory formation; and (3) cytoskeleton organization proteins. Taken together, this study clearly demonstrates dynamic assembly and disassembly of protein-protein interaction networks depending on the stage of memory formation engrams. PMID:26598641

  9. Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera.

    PubMed

    García-Mata, R; Bebök, Z; Sorscher, E J; Sztul, E S

    1999-09-20

    Formation of a novel structure, the aggresome, has been proposed to represent a general cellular response to the presence of misfolded proteins (Johnston, J.A., C.L. Ward, and R.R. Kopito. 1998. J. Cell Biol. 143:1883-1898; Wigley, W.C., R.P. Fabunmi, M.G. Lee, C.R. Marino, S. Muallem, G.N. DeMartino, and P.J. Thomas. 1999. J. Cell Biol. 145:481-490). To test the generality of this finding and characterize aspects of aggresome composition and its formation, we investigated the effects of overexpressing a cytosolic protein chimera (GFP-250) in cells. Overexpression of GFP-250 caused formation of aggresomes and was paralleled by the redistribution of the intermediate filament protein vimentin as well as by the recruitment of the proteasome, and the Hsp70 and the chaperonin systems of chaperones. Interestingly, GFP-250 within the aggresome appeared not to be ubiquitinated. In vivo time-lapse analysis of aggresome dynamics showed that small aggregates form within the periphery of the cell and travel on microtubules to the MTOC region where they remain as distinct but closely apposed particulate structures. Overexpression of p50/dynamitin, which causes the dissociation of the dynactin complex, significantly inhibited the formation of aggresomes, suggesting that the minus-end-directed motor activities of cytoplasmic dynein are required for aggresome formation. Perinuclear aggresomes interfered with correct Golgi localization and disrupted the normal astral distribution of microtubules. However, ER-to-Golgi protein transport occurred normally in aggresome containing cells. Our results suggest that aggresomes can be formed by soluble, nonubiquitinated proteins as well as by integral transmembrane ubiquitinated ones, supporting the hypothesis that aggresome formation might be a general cellular response to the presence of misfolded proteins. PMID:10491388

  10. Characterization and Dynamics of Aggresome Formation by a Cytosolic Gfp-Chimera✪

    PubMed Central

    García-Mata, Rafael; Bebök, Zsuzsa; Sorscher, Eric J.; Sztul, Elizabeth S.

    1999-01-01

    Formation of a novel structure, the aggresome, has been proposed to represent a general cellular response to the presence of misfolded proteins (Johnston, J.A., C.L. Ward, and R.R. Kopito. 1998. J. Cell Biol. 143:1883–1898; Wigley, W.C., R.P. Fabunmi, M.G. Lee, C.R. Marino, S. Muallem, G.N. DeMartino, and P.J. Thomas. 1999. J. Cell Biol. 145:481–490). To test the generality of this finding and characterize aspects of aggresome composition and its formation, we investigated the effects of overexpressing a cytosolic protein chimera (GFP-250) in cells. Overexpression of GFP-250 caused formation of aggresomes and was paralleled by the redistribution of the intermediate filament protein vimentin as well as by the recruitment of the proteasome, and the Hsp70 and the chaperonin systems of chaperones. Interestingly, GFP-250 within the aggresome appeared not to be ubiquitinated. In vivo time-lapse analysis of aggresome dynamics showed that small aggregates form within the periphery of the cell and travel on microtubules to the MTOC region where they remain as distinct but closely apposed particulate structures. Overexpression of p50/dynamitin, which causes the dissociation of the dynactin complex, significantly inhibited the formation of aggresomes, suggesting that the minus-end–directed motor activities of cytoplasmic dynein are required for aggresome formation. Perinuclear aggresomes interfered with correct Golgi localization and disrupted the normal astral distribution of microtubules. However, ER-to-Golgi protein transport occurred normally in aggresome containing cells. Our results suggest that aggresomes can be formed by soluble, nonubiquitinated proteins as well as by integral transmembrane ubiquitinated ones, supporting the hypothesis that aggresome formation might be a general cellular response to the presence of misfolded proteins. PMID:10491388

  11. IUTAM Symposium on Vortex Dynamics: Formation, Structure and Function, 10-14 March 2013, Fukuoka, Japan

    NASA Astrophysics Data System (ADS)

    Fukumoto, Yasuhide

    2014-06-01

    This special issue of Fluid Dynamics Research contains the first of a two-part publication of the papers presented at the IUTAM Symposium on Vortex Dynamics: Formation, Structure and Function, held at the Centennial Hall, Kyushu University School of Medicine, Fukuoka, Japan, during the week of 10-14 March 2013. Vortices are ubiquitous structures in fluid mechanics spanning the range of scales from nanofluidics and microfluidics to geophysical and astrophysical flows. Vortices are the key to understanding many different phenomena. As a result, the subject of vortex dynamics continues to evolve and to constantly find new applications in biology, biotechnology, industrial and environmental problems. Vortices can be created by the separation of a flow from the surface of a body or at a density interface, and evolve into coherent structures. Once formed, a vortex acquires a function, depending on its individual structure. In this way, for example, insects gain lift and fish gain thrust. Surprisingly, despite the long history of vortex dynamics, only recently has knowledge about formation, structure and function of vortices been combined to yield new perspectives in the subject, thereby helping to solve outstanding problems brought about by modern advances in computer technology and improved experimental techniques. This symposium is a continuation, five years on, of the IUTAM Symposium '50 Years of Vortex Dynamics', Lyngby, Denmark that took place between 12-16 October 2008, organized by the late Professor Hassan Aref. Originally, Professor Aref was a member of the International Scientific Committee of this symposium and offered his enthusiasm and great expertise, to support its organization. To our shock, he suddenly passed away on 9 September 2011. Furthermore, Professor Slava Meleshko, a leading scientist of fluid and solid mechanics and an intimate friend of Professor Aref, was expected to make an eminent contribution to the symposium. Soon after this sad loss

  12. Formation Dynamics of Oral Oil Coatings and Their Effect on Subsequent Sweetness Perception of Liquid Stimuli.

    PubMed

    Camacho, Sara; van Eck, Arianne; van de Velde, Fred; Stieger, Markus

    2015-09-16

    Knowledge of the formation of oral coatings and their influence on subsequent taste perception is necessary to understand possible taste-masking effects by oil coatings. This study investigated (a) the dynamics of the formation of oral oil coatings formed by o/w emulsions and (b) the effect of oral oil coatings on subsequent sweetness perception of sucrose solutions. In vivo fluorescence was used to quantitate the oil fraction deposited on the tongue after oral processing of oil-in-water emulsions for different times. A trained panel evaluated sweetness perception of sucrose solutions after orally processing the emulsions. The oil fraction reached its maximum value within the first 3 s of oral processing. The oil fraction did not significantly affect subsequent sweetness perception of sucrose solutions. It is suggested that the oil droplets deposited on the tongue did not form a hydrophobic barrier that is sufficient to reduce the accessibility of sucrose to taste buds. PMID:26301742

  13. Hydrogen Recombination and Dimer Formation on Graphite from Ab Initio Molecular Dynamics Simulations.

    PubMed

    Casolo, S; Tantardini, G F; Martinazzo, R

    2016-07-14

    We studied Eley-Rideal molecular hydrogen formation on graphite using ab initio molecular dynamics, in the energy range relevant for the chemistry of the interstellar medium and for terrestrial experiments employing cold plasma (0.02-1 eV). We found substantial projectile steering effects that prevent dimer formation at low energies, thereby ruling out any catalytic synthetic pathways that form hydrogen molecules. Ortho and para dimers do form efficiently thanks to preferential sticking, but only at energies that are too high to be relevant for the chemistry of the interstellar medium. Computed reaction cross sections and ro-vibrational product populations are in good agreement with available experimental data and capable of generating adsorbate configurations similar to those observed with scanning tunneling microscopy techniques. PMID:26905385

  14. Spacecraft Formation Control: Managing Line-of-Sight Drift Based on the Dynamics of Relative Motion

    NASA Technical Reports Server (NTRS)

    Luquette, Richard J.; Sammer. Robert M.

    2008-01-01

    In a quest to improve space-based observational capability, an increasing number of investigators are proposing missions with precision formation flying architectures. Typical missions include the Micro- Arcsecond X-ray Imaging Mission (MAXIM), Stellar Imager (SI), and the New Worlds Observer (NWO). Missions designed to explore targets in deep-space generally require holding a formation configuration fixed in inertial space during science observation. Analysis in this paper is specifically aimed at the NWO architecture, characterizing the natural drift of the line-of-sight and the separation range for two spacecraft operating in the vicinity of the Earth/Moon-Sun L(sub 2) libration point. Analysis employs a linear form of the relative dynamics associated with an n-body gravity field. The study is designed to identify favorable observation directions, characterized by minimal line-of-sight drift, along the mission timeline.

  15. Ultrafast thermal dynamics of nano-ripples formation via laser double pulses excitation

    NASA Astrophysics Data System (ADS)

    Du, Guangqing; Wu, Yanmin; Uddin, Noor; Yang, Qing; Chen, Feng; Lu, Yu; Bian, Hao; Hou, Xun

    2016-09-01

    The ultrafast thermal dynamics of nano-ripples formation on gold film via ultrafast laser double pulses excitation is theoretically investigated by numerical simulations. The non-equilibrium thermal modulations with respect to the electron and phonon energy transfers within gold film is proposed for predicting the nano-ripples formation. It is revealed that the nano-ripples contrast on gold film surface can be well controlled via tuning the pulse energy ratio, pulse separation and pulse exchange of ultrafast laser double-pulse. It is attributed to the tunable energy transfer routes between the electron thermal diffusion and the electron-phonon coupling via tuning double pulses parameters. The study provides theoretical basis for producing high-contrast ripples for a wide range application in the fields such as high-absorptive solar cells, surface friction devices and super-hydrophobic surface.

  16. Molecular dynamics simulations of bubble formation and cavitation in liquid metals.

    SciTech Connect

    Insepov, Z.; Hassanein, A.; Bazhirov, T. T.; Norman, G. E.; Stegailov, V. V.; Mathematics and Computer Science; Inst. for High Energy Densities of Joint Inst. for High Temperatures of RAS

    2007-11-01

    Thermodynamics and kinetics of nano-scale bubble formation in liquid metals such as Li and Pb were studied by molecular dynamics (MD) simulations at pressures typical for magnetic and inertial fusion. Two different approaches to bubble formation were developed. In one method, radial densities, pressures, surface tensions, and work functions of the cavities in supercooled liquid lithium were calculated and compared with the surface tension experimental data. The critical radius of a stable cavity in liquid lithium was found for the first time. In the second method, the cavities were created in the highly stretched region of the liquid phase diagram; and then the stability boundary and the cavitation rates were calculated in liquid lead. The pressure dependences of cavitation frequencies were obtained over the temperature range 700-2700 K in liquid Pb. The results of MD calculations for cavitation rate were compared with estimates of classical nucleation theory (CNT).

  17. Predictive modeling of multicellular structure formation by using Cellular Particle Dynamics simulations

    NASA Astrophysics Data System (ADS)

    McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan

    2014-03-01

    Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  18. Molecular Dynamics Simulations of Solvation and Kink Site Formation at the {001} Barite-Water Interface.

    SciTech Connect

    Stack, Andrew G

    2009-09-01

    Solvation and kink site formation on step edges are known to be controlling parameters in crystal growth and dissolution. However, links from classical crystal growth models to specific reactions at the mineral-water interface have remained elusive. Molecular dynamics is used here to examine the water structure on barium surface sites and kink site formation enthalpies for material adsorbed to and removed from the step parallel to the [120] direction on the {001} barite-water interface. The bariums at the interface are shown to be coordinatively unsaturated with respect to water, and it is suggested that this is due to a steric hindrance from the nature of the interface. Kink site detachment energies that include hydration energies are endothermic for barium and exothermic for sulfate. The implications and problems of using these parameters in a crystal growth model are discussed.

  19. Ring closure in dioxin formation process: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Farajian, Amir A.; Mikami, Masuhiro; Ordejón, Pablo; Tanabe, Kazutoshi

    2001-10-01

    The four possible mechanisms of ring closure in dioxin formation from chlorophenols are studied using ab initio molecular dynamics, within generalized gradient approximation. Free energy barriers, derived as the potential of mean constraint force, directly lead to a static approximation for the transition rates. We show, however, that the static approximation overestimates the actual rates by 33%-345%, depending on the intermediate/temperature. Comparing our results with the available experimental data, we conclude that, contrary to what is widely assumed, the pathways starting from two chlorophenols are not among the most dominant pathways in the formation of highly toxic dioxins, at least in the gas phase. This signifies the role of catalysts and/or other precursors.

  20. Kinetics of formation of bile salt micelles from coarse-grained Langevin dynamics simulations.

    PubMed

    Vila Verde, Ana; Frenkel, Daan

    2016-06-21

    We examine the mechanism of formation of micelles of dihydroxy bile salts using a coarse-grained, implicit solvent model and Langevin dynamics simulations. We find that bile salt micelles primarily form via addition and removal of monomers, similarly to surfactants with typical head-tail molecular structures, and not via a two-stage mechanism - involving formation of oligomers and their subsequent aggregation to form larger micelles - originally proposed for bile salts. The free energy barrier to removal of single bile monomers from micelles is ≈2kBT, much less than what has been observed for head-tail surfactants. Such a low barrier may be biologically relevant: it allows for rapid release of bile monomers into the intestine, possibly enabling the coverage of fat droplets by bile salt monomers and subsequent release of micelles containing fats and bile salts - a mechanism that is not possible for ionic head-tail surfactants of similar critical micellar concentrations. PMID:27199094

  1. Integration of Libration Point Orbit Dynamics into a Universal 3-D Autonomous Formation Flying Algorithm

    NASA Technical Reports Server (NTRS)

    Folta, David; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The autonomous formation flying control algorithm developed by the Goddard Space Flight Center (GSFC) for the New Millennium Program (NMP) Earth Observing-1 (EO-1) mission is investigated for applicability to libration point orbit formations. In the EO-1 formation-flying algorithm, control is accomplished via linearization about a reference transfer orbit with a state transition matrix (STM) computed from state inputs. The effect of libration point orbit dynamics on this algorithm architecture is explored via computation of STMs using the flight proven code, a monodromy matrix developed from a N-body model of a libration orbit, and a standard STM developed from the gravitational and coriolis effects as measured at the libration point. A comparison of formation flying Delta-Vs calculated from these methods is made to a standard linear quadratic regulator (LQR) method. The universal 3-D approach is optimal in the sense that it can be accommodated as an open-loop or closed-loop control using only state information.

  2. Formation of metal nano-particles on and in polymer films investigated by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Rozas, Roberto; Kraska, Thomas

    2007-04-01

    The formation of platinum nano-particles on a polyethylene substrate is investigated by molecular dynamics simulation. As initial configuration, a polymer film is put in contact with a supersaturated platinum vapour. Argon is added in the vapour phase as carrier gas that transfers heat from the vapour phase to the polymer surface. The simulations provide a deep insight into cluster formation at the atomic level. The presence of the polymer affects cluster growth significantly. Surface growth and agglomeration are limited by the polymer matrix. The influence of supersaturation on the cluster size distribution is also different to the particle formation in the gas phase. In addition, the structure of the polymer substrate is modified during the embedding of platinum. These effects are analysed and compared to experimental investigations of the formation of metal-polymer composites. The resulting distribution of metal clusters on the surface and inside the polymer is in general agreement with available experimental results of similar polymer-metal systems.

  3. A Simple Dynamical Model for Filament Formation in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Litvinenko, Yuri E.; Wheatland, M. S.

    2005-09-01

    Filament formation in the solar atmosphere is considered. In the limit of sub-Alfvénic but supersonic motion, plasma flow in the solar corona is driven via the induction equation by a slow evolution of force-free magnetic fields. Methods for solving the relevant magnetohydrodynamic equations are presented and applied to filament modeling in two and three dimensions. An illustrative two-dimensional example is given, which is based on a potential magnetic field with a dip. The example describes the formation of a normal filament between two bipolar regions on the Sun. Next a detailed three-dimensional calculation is presented, which uses linear force-free magnetic fields. The boundary conditions are chosen to resemble the qualitative ``head-to-tail'' linkage model for the formation of filaments, suggested by Martens & Zwaan. Consistent with this model, dense formations, reminiscent of filament pillars, are shown to appear in the corona above the region of converging and canceling magnetic bipoles. The numerical results are consistent with the principal role of magnetic field in the dynamical processes of dense plasma accumulation and support in filaments, advocated by Martens & Zwaan.

  4. Gas Dynamics in Dwarf-Spheroidal Galaxies: Explaining Carina's Star Formation History

    NASA Astrophysics Data System (ADS)

    Lariviere, P.; Noriega-Crespo, A.

    1993-12-01

    Computer models of gas dynamics are used to explain the complex star- formation history of the Carina dwarf-spheroidal galaxy, which comprises a small old ( ~ 15 Gyr) population and a much larger intermediate-age ( ~ 7 Gyr) population. The model indicates that the first generation of stars quickly photoionized the gas throughout the galaxy, preventing further star formation. Supernova explosions then set the gas in motion away from the center of the galaxy, with much of it accumulating in a dense shell behind the ensuing shock front. The presence of both significant amounts of dark matter in Carina and an inward-directed pressure from the material in the galactic halo prove to crucial in retaining the shell of gas, which oscillates near the boundary of the galaxy on the order of billions of years before cooling sufficiently to recollapse and set off a second wave of star formation. While only Carina's parameters have been explored with this model, the mechanism can be extended to the other dwarf spheroidals, which display similarly complex star-formation histories.

  5. A numerical study on the dynamics of droplet formation in a microfluidic double T-junction

    PubMed Central

    Dang, Trung-Dung; Byon, Chan; Joo, Sang Woo

    2015-01-01

    In this study, droplet formations in microfluidic double T-junctions (MFDTD) are investigated based on a two-dimensional numerical model with volume of fluid method. Parametric ranges for generating alternating droplet formation (ADF) are identified. A physical background responsible for the ADF is suggested by analyzing the dynamical stability of flow system. Since the phase discrepancy between dispersed flows is mainly caused by non-symmetrical breaking of merging droplet, merging regime becomes the alternating regime at appropriate conditions. In addition, the effects of channel geometries on droplet formation are studied in terms of relative channel width. The predicted results show that the ADF region is shifted toward lower capillary numbers when channel width ratio is less than unity. The alternating droplet size increases with the increase of channel width ratio. When this ratio reaches unity, alternating droplets can be formed at very high water fraction (wf = 0.8). The droplet formation in MFDTD depends significantly on the viscosity ratio, and the droplet size in ADF decreases with the increase of the viscosity ratio. The understanding of underlying physics of the ADF phenomenon is useful for many applications, including nanoparticle synthesis with different concentrations, hydrogel bead generation, and cell transplantation in biomedical therapy. PMID:25825622

  6. Grow with the Flow: A Dynamic Tale of Blood Clot Formation

    NASA Astrophysics Data System (ADS)

    Leiderman, Karin; Fogelson, Aaron

    2008-11-01

    The body heals injured blood vessels and prevents bleeding by clotting the blood. Clots are primarily made of blood-borne cells and a fibrous material that is assembled at the site of injury in flowing blood. Clot composition and structure change with local chemistry and fluid dynamics, which in turn alter the flow. To better understand this fluid-structure coupling, we have created a mathematical model to simulate the formation of a blood clot in a dynamic fluid environment. The growing clot is represented as a mixed porous medium whose permeability is dependent on the coagulation chemistry within it. The flow field resulting from a clot with specific calculated permeability and size can then be recovered by solving the Navier-Stokes equations with an added friction term. We report on how this complex fluid-structure interaction affects the limiting factor(s) of blood clot growth.

  7. Dynamics of positronium formation in positron-hydrogen collisions embedded in weakly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Nayek, Sujay; Ghoshal, Arijit

    2012-11-01

    Dynamics of positronium (Ps) formation in an arbitrary s-state from an arbitrary s-state of the hydrogen atom in weakly coupled plasma has been investigated within the framework of a distorted-wave theory. The interactions among the charged particles in the plasma have been represented by Debye-Huckel potentials. Using simple variational hydrogenic wave functions and arbitrary order derivatives of the general three-denominator Lewis integral partial-wave scattering amplitudes have been obtained in closed forms. These distorted-wave scattering amplitudes have been used to make a detailed study on differential and total cross sections. It has been found that screening of the interaction potentials has significant effect on the scattering dynamics. Some notable features of cross sections have also been revealed.

  8. Pattern formation from consistent dynamical closures of uniaxial nematic liquid crystals.

    PubMed

    Híjar, Humberto; de Hoyos, Diego Marquina; Santamaría-Holek, Iván

    2012-03-21

    Pattern formation in uniaxial polymeric liquid crystals is studied for different dynamic closure approximations. Using the principles of mesoscopic non-equilibrium thermodynamics in a mean-field approach, we derive a Fokker-Planck equation for the single-particle non-homogeneous distribution function of particle orientations and the evolution equations for the second and fourth order orientational tensor parameters. Afterwards, two dynamic closure approximations are discussed, one of them considering the relaxation of the fourth order orientational parameter and leading to a novel expression for the free-energy like function in terms of the scalar order parameter. Considering the evolution equation of the density of the system and values of the interaction parameter for which isotropic and nematic phases coexist, our analysis predicts that patterns and traveling waves can be produced in lyotropic uniaxial nematics even in the absence of external driving. PMID:22443750

  9. Dynamics of Hollow Atom Formation in Intense X-Ray Pulses Probed by Partial Covariance Mapping

    NASA Astrophysics Data System (ADS)

    Frasinski, L. J.; Zhaunerchyk, V.; Mucke, M.; Squibb, R. J.; Siano, M.; Eland, J. H. D.; Linusson, P.; v. d. Meulen, P.; Salén, P.; Thomas, R. D.; Larsson, M.; Foucar, L.; Ullrich, J.; Motomura, K.; Mondal, S.; Ueda, K.; Osipov, T.; Fang, L.; Murphy, B. F.; Berrah, N.; Bostedt, C.; Bozek, J. D.; Schorb, S.; Messerschmidt, M.; Glownia, J. M.; Cryan, J. P.; Coffee, R. N.; Takahashi, O.; Wada, S.; Piancastelli, M. N.; Richter, R.; Prince, K. C.; Feifel, R.

    2013-08-01

    When exposed to ultraintense x-radiation sources such as free electron lasers (FELs) the innermost electronic shell can efficiently be emptied, creating a transient hollow atom or molecule. Understanding the femtosecond dynamics of such systems is fundamental to achieving atomic resolution in flash diffraction imaging of noncrystallized complex biological samples. We demonstrate the capacity of a correlation method called “partial covariance mapping” to probe the electron dynamics of neon atoms exposed to intense 8 fs pulses of 1062 eV photons. A complete picture of ionization processes competing in hollow atom formation and decay is visualized with unprecedented ease and the map reveals hitherto unobserved nonlinear sequences of photoionization and Auger events. The technique is particularly well suited to the high counting rate inherent in FEL experiments.

  10. Dynamical picture for the formation and decay of the exotic XYZ mesons.

    PubMed

    Brodsky, Stanley J; Hwang, Dae Sung; Lebed, Richard F

    2014-09-12

    We present a new dynamical picture that identifies the formation of the exotic c[over ¯]c-containing states XYZ with the confinement-induced hadronization of a rapidly separating pair of a compact diquark and antidiquark. This picture combines the advantages of diquark-based models, which can accommodate much of the known XYZ spectrum, with the experimental fact that such states are both relatively narrow and are produced promptly. It also naturally explains the preference of some of the exotic states to decay to ψ(2S), rather than J/ψ, in terms of a simple wave-function overlap effect. PMID:25259968

  11. Spike Train Dynamics Underlying Pattern Formation in Integrate-and-Fire Oscillator Networks

    NASA Astrophysics Data System (ADS)

    Bressloff, P. C.; Coombes, S.

    1998-09-01

    A dynamical mechanism underlying pattern formation in a spatially extended network of integrate-and-fire oscillators with synaptic interactions is identified. It is shown how in the strong coupling regime the network undergoes a discrete Turing-Hopf bifurcation of the firing times from a synchronous state to a state with periodic or quasiperiodic variations of the interspike intervals on closed orbits. The separation of these orbits in phase space results in a spatially periodic pattern of mean firing rate across the network that is modulated by deterministic fluctuations of the instantaneous firing rate.

  12. Plume dynamics and cluster formation in laser-ablated copper plasma in a magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, R. K.

    2011-04-01

    Laser-ablated copper plasma plume expanding in a nonuniform magnetic field and ambient gas is investigated to understand plume dynamics using optical emission spectroscopy and fast imaging of the plume. A peculiar oscillatory behavior of the plume observed in magnetic field is discussed. The appearance and enhancement of Cu{sub 2} (A-X) band in ambient gas and in the presence of magnetic field is reported. The presence of magnetic field favors the formation of copper clusters in the expanding plumes.

  13. Formation of Defects in Displacement Cascades in Molybdenum: Simulation of Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Kuksin, A. Yu.; Yanilkin, A. V.

    2016-03-01

    In this work, the process of the formation of defects and their clusters in collision cascades has been investigated in molybdenum by the molecular dynamics method. We have obtained results on the number of arising defects, the fraction of defects in clusters, and cluster-size distribution. Their dependence on the energy of primary knocked-on atom and temperature of the material has been studied. A comparison with calculations using the SRIM program and NRT model has been made. The effect of annealing defects after the development of cascades on the number of arising defects has been examined.

  14. Dynamics of seed magnetic island formation due to geometrically coupled perturbations

    SciTech Connect

    Hegna, C.C.; Callen, J.D.; LaHaye, R.J.

    1998-06-01

    Seed magnetic island formation due to a dynamically growing external source in toroidal confinement devices is modeled as an initial value forced reconnection problem. For an external source whose amplitude grows on a time scale quickly compared to the Sweet-Parker time of resistive magnetohydrodynamics, the induced reconnection is characterized by a current sheet and a reconnected flux amplitude which lags in time the source amplitude. This suggests that neoclassical tearing modes, whose excitation requires a seed magnetic island, are more difficult to cause in high Lundquist number plasmas.

  15. CHARACTERIZING THE BROWN DWARF FORMATION CHANNELS FROM THE INITIAL MASS FUNCTION AND BINARY-STAR DYNAMICS

    SciTech Connect

    Thies, Ingo; Pflamm-Altenburg, Jan; Kroupa, Pavel; Marks, Michael

    2015-02-10

    The stellar initial mass function (IMF) is a key property of stellar populations. There is growing evidence that the classical star-formation mechanism by the direct cloud fragmentation process has difficulties reproducing the observed abundance and binary properties of brown dwarfs and very-low-mass stars. In particular, recent analytical derivations of the stellar IMF exhibit a deficit of brown dwarfs compared to observational data. Here we derive the residual mass function of brown dwarfs as an empirical measure of the brown dwarf deficiency in recent star-formation models with respect to observations and show that it is compatible with the substellar part of the Thies-Kroupa IMF and the mass function obtained by numerical simulations. We conclude that the existing models may be further improved by including a substellar correction term that accounts for additional formation channels like disk or filament fragmentation. The term ''peripheral fragmentation'' is introduced here for such additional formation channels. In addition, we present an updated analytical model of stellar and substellar binarity. The resulting binary fraction and the dynamically evolved companion mass-ratio distribution are in good agreement with observational data on stellar and very-low-mass binaries in the Galactic field, in clusters, and in dynamically unprocessed groups of stars if all stars form as binaries with stellar companions. Cautionary notes are given on the proper analysis of mass functions and the companion mass-ratio distribution and the interpretation of the results. The existence of accretion disks around young brown dwarfs does not imply that these form just like stars in direct fragmentation.

  16. Formation of nanoclusters under radiation pressure in solution: A Brownian dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Jose, Prasanth P.; Bagchi, Biman

    2002-02-01

    When radiation is scattered by a medium, a part of its momentum is transferred to the target particles. This is purely a mechanical force which comes into effect when radiation is not coherently interacting. This force is known in literature as radiation pressure. Recent experimental studies have demonstrated the feasibility of using radiation pressure of a laser beam as a tool for cluster formation in solution. In this paper we describe the Brownian dynamics simulation of solute molecules under the perturbation induced by laser radiation. Here the force field generated by a laser beam in the fundamental mode is modeled as that of a two-dimensional harmonic oscillator. The radial distribution function of the perturbed system gives indication of high inhomogeneities in the solute distribution. An explicit analysis of the nature of these clusters is carried out by calculating the density-density correlation functions in the plane perpendicular to beam direction g(rxy); and along the direction of beam g(z), they give an average picture of shell structure formation in the different directions. The relaxation time of the first shell structure calculated from the van Hove correlation function is found to be relatively large in the perturbed solution. This is the signature of formation of stable nanoclusters in the presence of the radiation field. Our study on the dynamics of solute molecules during the cluster formation and dissolution gives the duration of collective relaxation, far away from the equilibrium to an equilibrium distribution. This relaxation time is found to be large for a perturbed solution.

  17. The structure, dynamics, and star formation rate of the Orion nebula cluster

    SciTech Connect

    Da Rio, Nicola; Tan, Jonathan C.; Jaehnig, Karl

    2014-11-01

    The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues to the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing the latest censuses of its stellar content and membership estimates over a large wavelength range. We determine the center of mass of the ONC and study the radial dependence of angular substructure. The core appears rounder and smoother than the outskirts, which is consistent with a higher degree of dynamical processing. At larger distances, the departure from circular symmetry is mostly driven by the elongation of the system, with very little additional substructure, indicating a somewhat evolved spatial morphology or an expanding halo. We determine the mass density profile of the cluster, which is well fitted by a power law that is slightly steeper than a singular isothermal sphere. Together with the interstellar medium density, which is estimated from average stellar extinction, the mass content of the ONC is insufficient by a factor ∼1.8 to reproduce the observed velocity dispersion from virialized motions, in agreement with previous assessments that the ONC is moderately supervirial. This may indicate recent gas dispersal. Based on the latest estimates for the age spread in the system and our density profiles, we find that at the half-mass radius, 90% of the stellar population formed within ∼5-8 free-fall times (t {sub ff}). This implies a star formation efficiency per t {sub ff} of ε{sub ff} ∼ 0.04-0.07 (i.e., relatively slow and inefficient star formation rates during star cluster formation).

  18. Aperiodic dynamics in a deterministic adaptive network model of attitude formation in social groups

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan A.; Grindrod, Peter

    2014-07-01

    Adaptive network models, in which node states and network topology coevolve, arise naturally in models of social dynamics that incorporate homophily and social influence. Homophily relates the similarity between pairs of nodes' states to their network coupling strength, whilst social influence causes coupled nodes' states to convergence. In this paper we propose a deterministic adaptive network model of attitude formation in social groups that includes these effects, and in which the attitudinal dynamics are represented by an activato-inhibitor process. We illustrate that consensus, corresponding to all nodes adopting the same attitudinal state and being fully connected, may destabilise via Turing instability, giving rise to aperiodic dynamics with sensitive dependence on initial conditions. These aperiodic dynamics correspond to the formation and dissolution of sub-groups that adopt contrasting attitudes. We discuss our findings in the context of cultural polarisation phenomena. Social influence. This reflects the fact that people tend to modify their behaviour and attitudes in response to the opinions of others [22-26]. We model social influence via diffusion: agents adjust their state according to a weighted sum (dictated by the evolving network) of the differences between their state and the states of their neighbours. Homophily. This relates the similarity of individuals' states to their frequency and strength of interaction [27]. Thus in our model, homophily drives the evolution of the weighted ‘social' network. A precise formulation of our model is given in Section 2. Social influence and homophily underpin models of social dynamics [21], which cover a wide range of sociological phenomena, including the diffusion of innovations [28-32], complex contagions [33-36], collective action [37-39], opinion dynamics [19,20,40,10,11,13,15,41,16], the emergence of social norms [42-44], group stability [45], social differentiation [46] and, of particular relevance

  19. Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta

    NASA Astrophysics Data System (ADS)

    Cahoon, Donald R.; White, David A.; Lynch, James C.

    2011-08-01

    Crevasse splay environments provide a mesocosm for evaluating wetland formation and maintenance processes on a decadal time scale. Site elevation, water levels, vertical accretion, elevation change, shallow subsidence, and plant biomass were measured at five habitats along an elevation gradient to evaluate wetland formation and development in Brant Pass Splay; an active crevasse splay of the Balize delta of the Mississippi River. The processes of vertical development (vertical accretion, elevation change, and shallow subsidence) were measured with the surface elevation table-marker horizon method. There were three distinct stages to the accrual of elevation capital and wetland formation in the splay: sediment infilling, vegetative colonization, and development of a mature wetland community. Accretion, elevation gain, and shallow subsidence all decreased by an order of magnitude from the open water (lowest elevation) to the forest (highest elevation) habitats. Vegetative colonization occurred within the first growing season following emergence of the mud surface. An explosively high rate of below-ground production quickly stabilized the loosely consolidated sub-aerial sediments. After emergent vegetation colonization, vertical development slowed and maintenance of marsh elevation was driven both by sediment trapping by the vegetation and accumulation of plant organic matter in the soil. Continued vertical development and survival of the marsh then depended on the health and productivity of the plant community. The process of delta wetland formation is both complex and nonlinear. Determining the dynamics of wetland formation will help in understanding the processes driving the past building of the delta and in developing models for restoring degraded wetlands in the Mississippi River delta and other deltas around the world.

  20. Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta

    USGS Publications Warehouse

    Cahoon, Donald R.; White, David A.; Lynch, James C.

    2011-01-01

    Crevasse splay environments provide a mesocosm for evaluating wetland formation and maintenance processes on a decadal time scale. Site elevation, water levels, vertical accretion, elevation change, shallow subsidence, and plant biomass were measured at five habitats along an elevation gradient to evaluate wetland formation and development in Brant Pass Splay; an active crevasse splay of the Balize delta of the Mississippi River. The processes of vertical development (vertical accretion, elevation change, and shallow subsidence) were measured with the surface elevation table–marker horizon method. There were three distinct stages to the accrual of elevation capital and wetland formation in the splay: sediment infilling, vegetative colonization, and development of a mature wetland community. Accretion, elevation gain, and shallow subsidence all decreased by an order of magnitude from the open water (lowest elevation) to the forest (highest elevation) habitats. Vegetative colonization occurred within the first growing season following emergence of the mud surface. An explosively high rate of below-ground production quickly stabilized the loosely consolidated sub-aerial sediments. After emergent vegetation colonization, vertical development slowed and maintenance of marsh elevation was driven both by sediment trapping by the vegetation and accumulation of plant organic matter in the soil. Continued vertical development and survival of the marsh then depended on the health and productivity of the plant community. The process of delta wetland formation is both complex and nonlinear. Determining the dynamics of wetland formation will help in understanding the processes driving the past building of the delta and in developing models for restoring degraded wetlands in the Mississippi River delta and other deltas around the world.

  1. Effects of the curvature of a lava channel on flow dynamics and crust formation

    NASA Astrophysics Data System (ADS)

    Valerio, Antonella; Tallarico, Andrea; Dragoni, Michele

    2011-11-01

    Bends in lava channels are often observed in volcanic fields. The curvature of a channel affects flow dynamics and surface morphology and may be a trigger for the formation of lava tube. We propose a model to describe the effects of curvature on velocity, shear stress and the formation of crust at the flow surface. Lava is described as a Newtonian, homogeneous, isotropic and incompressible fluid. The steady-state solution of the Navier-Stokes equation is found for a unidirectional flow, in cylindrical coordinates. The flow levees are described as arcs of concentric circumferences, with their centres in the origin of the coordinate system. Under the assumption that the gravity force has no radial component, in the bend the fluid moves parallel to the levees. The velocity is assumed to depend on the radial coordinate only. As an effect of curvature, velocity and shear stress are asymmetric with respect to the centre of the channel. The maximum of surface velocity is shifted toward the internal levee, and the shear stress has larger values close to the internal levee. This effect is greater for wider channels. Heat radiation and convection into the atmosphere are considered as the main cooling mechanisms and the temperature distribution along the channel is calculated. Crust formation at the flow surface is considered under the assumption that solid lava is a plastic body. The amount of crust coverage is mainly controlled by the channel width: narrow channels have a greater coverage than wide channels for a given radius of curvature. The effect of a bend is to favour the crust growth toward the internal levee, while the crust coverage toward the external levee decreases. The presence of a bend in a lava channel may favour the formation of a lava tube. The analytical solution will serve as a benchmark for numerical models. Understanding the mechanism of formation of lava tubes is crucial to the simulation of actual lava flows and to evaluation of the associated hazard.

  2. Dynamics of identity in the academic field and implications to science students' identity formation

    NASA Astrophysics Data System (ADS)

    Rezende, Flavia

    2011-03-01

    Aydeniz and Hodge investigated how college professors negotiate their responsibilities as teachers and as researchers and the rationales behind their pedagogical approaches. Their findings illustrate how difficult it can be to keep the balance between these two responsibilities in a university that does not support professor's enactment of teaching goals. Thinking identity as a dynamics in self and institutional boundary, Albrecht and Fortney in their forum contribution, expand the analysis of Professor G's professional identity and conclude that in his case, institutional boundary is impermeable as it values research scientist more than teacher identity. In this forum contribution I emphasize the role of institutional culture in the identitarian process, interpreting the identity and identity formation of a science college teacher within the dynamics of the academic field. I expand the discussion to the other side of the problem, bringing excerpts of an interview with a Physics student from a Brazilian university as an illustration of how the academic habitus can impact the formation of a student's identity.

  3. Formation of the widest binary stars from dynamical unfolding of triple systems

    NASA Astrophysics Data System (ADS)

    Reipurth, Bo; Mikkola, Seppo

    2012-12-01

    The formation of very wide binary systems, such as the α Centauri system with Proxima (also known as α Centauri C) separated from α Centauri (which itself is a close binary A/B) by 15,000 astronomical units (1 AU is the distance from Earth to the Sun), challenges current theories of star formation, because their separation can exceed the typical size of a collapsing cloud core. Various hypotheses have been proposed to overcome this problem, including the suggestion that ultrawide binaries result from the dissolution of a star cluster--when a cluster star gravitationally captures another, distant, cluster star. Recent observations have shown that very wide binaries are frequently members of triple systems and that close binaries often have a distant third companion. Here we report N-body simulations of the dynamical evolution of newborn triple systems still embedded in their nascent cloud cores that match observations of very wide systems. We find that although the triple systems are born very compact--and therefore initially are more protected against disruption by passing stars--they can develop extreme hierarchical architectures on timescales of millions of years as one component is dynamically scattered into a very distant orbit. The energy of ejection comes from shrinking the orbits of the other two stars, often making them look from a distance like a single star. Such loosely bound triple systems will therefore appear to be very wide binaries.

  4. Formation and Development of the Dynamic Stall Vortex on a Wing with Leading Edge Tubercles

    NASA Astrophysics Data System (ADS)

    Hrynuk, John; Bohl, Douglas

    2015-11-01

    Humpback whales are unique in that their flippers have leading edge ``bumps'' or tubercles. Past work on airfoils inspired by whale flippers has centered on the static aerodynamic characteristics of these airfoils. The current study uses Molecular Tagging Velocimetry (MTV) to investigate the effects of tubercles on dynamically pitching NACA 0012 airfoils. A baseline (i.e. straight leading edge) wing and one modified with leading edge tubercles are investigated. Tracking of the Dynamic Stall Vortex (DSV) is performed to quantitatively compare the DSV formation location, path, and convective velocity for tubercled and baseline wings. The results show that there is a spanwise variation in the initial formation location and motion of the DSV on the modified wing. Once formed, the DSV aligns into a more uniform spanwise structure. As the pitching motion progresses, the DSV on the modified wing convects away from the airfoil surface later and slower than is observed for the baseline airfoil. The results indicate that the tubercles may delay stall when compared to the baseline airfoil. This work was supported by NSF Grant # 0845882.

  5. Formation of the widest binary stars from dynamical unfolding of triple systems.

    PubMed

    Reipurth, Bo; Mikkola, Seppo

    2012-12-13

    The formation of very wide binary systems, such as the α Centauri system with Proxima (also known as α Centauri C) separated from α Centauri (which itself is a close binary A/B) by 15,000 astronomical units (1 AU is the distance from Earth to the Sun), challenges current theories of star formation, because their separation can exceed the typical size of a collapsing cloud core. Various hypotheses have been proposed to overcome this problem, including the suggestion that ultrawide binaries result from the dissolution of a star cluster--when a cluster star gravitationally captures another, distant, cluster star. Recent observations have shown that very wide binaries are frequently members of triple systems and that close binaries often have a distant third companion. Here we report N-body simulations of the dynamical evolution of newborn triple systems still embedded in their nascent cloud cores that match observations of very wide systems. We find that although the triple systems are born very compact--and therefore initially are more protected against disruption by passing stars--they can develop extreme hierarchical architectures on timescales of millions of years as one component is dynamically scattered into a very distant orbit. The energy of ejection comes from shrinking the orbits of the other two stars, often making them look from a distance like a single star. Such loosely bound triple systems will therefore appear to be very wide binaries. PMID:23222523

  6. Mechanisms and dynamics of the external transport barrier formation in non-linear plasma edge simulations

    NASA Astrophysics Data System (ADS)

    Chôné, L.; Beyer, P.; Sarazin, Y.; Fuhr, G.; Bourdelle, C.; Benkadda, S.

    2015-07-01

    L-H transition features are reproduced using three-dimensional first-principles plasma edge turbulence simulations. A transport barrier is observed to form spontaneously above a threshold of the input power. The physical mechanism relies on the coupling between the equilibrium pressure gradient and the poloidal flow, through both the radial force balance and the neoclassical friction. Accounting for the actual radial profile and time evolution of the latter is key to the barrier formation. It is found that neoclassical friction acts as an energy source for the flow, which largely overcomes the sink due to the turbulent Reynolds stress during the whole barrier lifetime. Importantly, experimentally reported dynamical features are recovered during the formation and lifetime of the barrier. This includes dithering of the radial electric field, which is reminiscent of experimentally observed limit-cycle oscillations and quasi-periodic relaxation oscillations showing similarities with type-III ELMs. These rich dynamics emerge from interplay between turbulence, turbulence-driven flows and the equilibrium flow governed by force balance.

  7. Ultrafast electronic and vibrational dynamics in brominated aluminum corroles: Energy relaxation and triplet formation.

    PubMed

    Stensitzki, T; Yang, Y; Berg, A; Mahammed, A; Gross, Z; Heyne, K

    2016-07-01

    We combined femtosecond (fs) VIS pump-IR probe spectroscopy with fs VIS pump-supercontinuum probe spectroscopy to characterize the photoreaction of the hexacoordinated Al(tpfc-Br8)(py)2 in a comprehensive way. Upon fs excitation at ∼400 nm in the Soret band, the excitation energy relaxes with a time constant of (250 ± 80) fs to the S2 and S1 electronic excited states. This is evident from the rise time of the stimulated emission signal in the visible spectral range. On the same time scale, narrowing of broad infrared signals in the C=C stretching region around 1500 cm(-1) is observed. Energy redistribution processes are visible in the vibrational and electronic dynamics with time constants between ∼2 ps and ∼20 ps. Triplet formation is detected with a time constant of (95 ± 3) ps. This is tracked by the complete loss of stimulated emission. Electronic transition of the emerging triplet absorption band overlaps considerably with the singlet excited state absorption. In contrast, two well separated vibrational marker bands for triplet formation were identified at 1477 cm(-1) and at 1508 cm(-1). These marker bands allow a precise identification of triplet dynamics in corrole systems. PMID:27226980

  8. Ultrafast electronic and vibrational dynamics in brominated aluminum corroles: Energy relaxation and triplet formation

    PubMed Central

    Stensitzki, T.; Yang, Y.; Berg, A.; Mahammed, A.; Gross, Z.; Heyne, K.

    2016-01-01

    We combined femtosecond (fs) VIS pump–IR probe spectroscopy with fs VIS pump–supercontinuum probe spectroscopy to characterize the photoreaction of the hexacoordinated Al(tpfc-Br8)(py)2 in a comprehensive way. Upon fs excitation at ∼400 nm in the Soret band, the excitation energy relaxes with a time constant of (250 ± 80) fs to the S2 and S1 electronic excited states. This is evident from the rise time of the stimulated emission signal in the visible spectral range. On the same time scale, narrowing of broad infrared signals in the C=C stretching region around 1500 cm−1 is observed. Energy redistribution processes are visible in the vibrational and electronic dynamics with time constants between ∼2 ps and ∼20 ps. Triplet formation is detected with a time constant of (95 ± 3) ps. This is tracked by the complete loss of stimulated emission. Electronic transition of the emerging triplet absorption band overlaps considerably with the singlet excited state absorption. In contrast, two well separated vibrational marker bands for triplet formation were identified at 1477 cm−1 and at 1508 cm−1. These marker bands allow a precise identification of triplet dynamics in corrole systems. PMID:27226980

  9. The DYNAFLUX / DYNACOLD Network: Dynamics, Fluxes, Stability, Succession and Landscape Formation in Cold Environments

    NASA Astrophysics Data System (ADS)

    Beylich, A. A.; Molau, U.

    2012-04-01

    Within Europe there is a wide array of high-latitude and high-altitude landscapes, covering a significant proportion of the total land area. These cold climate landscapes represent a variety of stages of deglaciation history and landscape formation. We find landscapes at different levels of postglacial stabilization providing the unique possibility to study the interactions between geo-, bio-, social and socio-economic systems at the land surface. The DYNAFLUX / DYNACOLD Network (2004 - ) bridges across geo-, bio-, social and socio-economic sciences in order to investigate the complex dynamics of stabilization, succession and landscape formation during and after ice retreat and under human impact. DYNAFLUX / DYNACOLD provides a multidisciplinary forum where research groups come together. The integrated approach provides - in addition to newly generated disciplinary knowledge - the qualitative and quantitative linkages of findings from geo-, bio- and socio-work groups to develop a systems-based holistic level-of-understanding about the dynamics of environmental fluxes in high-latitude and high-altitude geo-ecosystems and landscapes. This knowledge can be used to assess the risks and potentials of the future development with reference to land use intensity / changes and climatic dynamics. DYNAFLUX / DYNACOLD is since 2004 linking and integrating a number of networks and programmes and creates an umbrella programme and a forum for sharing knowledge. The focus of the Network is relevant for different end users, including risk and vulnerability assessment, sustainable land use, land management and conservation. Also questions with regards to Global Change are addressed (hazards, permafrost degradation, loss of biodiversity, etc.).

  10. Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation.

    PubMed

    Norris, Scott A; Samela, Juha; Bukonte, Laura; Backman, Marie; Djurabekova, Flyura; Nordlund, Kai; Madi, Charbel S; Brenner, Michael P; Aziz, Michael J

    2011-01-01

    Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here we predict the mechanism governing the transition from pattern formation to flatness using only parameter-free molecular dynamics simulations of single-ion impacts as input into a multiscale analysis, obtaining good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion: the mechanism dominating both stability and instability is the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. We discuss the potential implications for the formation of a mysterious nanoscale topography, leading to surface degradation, of tungsten plasma-facing fusion reactor walls. Consideration of impact-induced redistribution processes may lead to a new design criterion for stability under irradiation. PMID:21505432

  11. Droplet formation and growth inside a polymer network: A molecular dynamics simulation study.

    PubMed

    Jung, Jiyun; Jang, Eunseon; Shoaib, Mahbubul Alam; Jo, Kyubong; Kim, Jun Soo

    2016-04-01

    We present a molecular dynamics simulation study that focuses on the formation and growth of nanoscale droplets inside polymer networks. Droplet formation and growth are investigated by the liquid-vapor phase separation of a dilute Lennard-Jones (LJ) fluid inside regularly crosslinked, polymer networks with varying mesh sizes. In a polymer network with small mesh sizes, droplet formation can be suppressed, the extent of which is dependent on the attraction strength between the LJ particles. When droplets form in a polymer network with intermediate mesh sizes, subsequent growth is significantly slower when compared with that in bulk without a polymer network. Interestingly, droplet growth beyond the initial nucleation stage occurs by different mechanisms depending on the mesh size: droplets grow mainly by diffusion and coalescence inside polymer networks with large mesh sizes (as observed in bulk), whereas Ostwald ripening becomes a more dominant mechanism for droplet growth for small mesh sizes. The analysis of droplet trajectories clearly reveals the obstruction effect of the polymer network on the movement of growing droplets, which leads to Ostwald ripening of droplets. This study suggests how polymer networks can be used to control the growth of nanoscale droplets. PMID:27059575

  12. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    PubMed

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  13. Molecular dynamics and Monte Carlo hybrid simulation for fuzzy tungsten nanostructure formation

    NASA Astrophysics Data System (ADS)

    Ito, A. M.; Takayama, A.; Oda, Y.; Tamura, T.; Kobayashi, R.; Hattori, T.; Ogata, S.; Ohno, N.; Kajita, S.; Yajima, M.; Noiri, Y.; Yoshimoto, Y.; Saito, S.; Takamura, S.; Murashima, T.; Miyamoto, M.; Nakamura, H.

    2015-07-01

    For the purposes of long-term use of tungsten divertor walls, the formation process of the fuzzy tungsten nanostructure induced by exposure to the helium plasma was studied. In the present paper, the fuzzy nanostructure's formation has been successfully reproduced by the new hybrid simulation method in which the deformation of the tungsten material due to pressure of the helium bubbles was simulated by the molecular dynamics and the diffusion of the helium atoms was simulated by the random walk based on the Monte Carlo method. By the simulation results, the surface height of the fuzzy nanostructure increased only when helium retention was under the steady state. It was proven that the growth of the fuzzy nanostructure was brought about by bursting of the helium bubbles. Moreover, we suggest the following key formation mechanisms of the fuzzy nanostructure: (1) lifting in which the surface lifted up by the helium bubble changes into a convexity, (2) bursting by which the region of the helium bubble changes into a concavity, and (3) the difference of the probability of helium retention by which the helium bubbles tend to appear under the concavity. Consequently, the convex-concave surface structure was enhanced and grew to create the fuzzy nanostructure.

  14. Droplet formation and growth inside a polymer network: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Jung, Jiyun; Jang, Eunseon; Shoaib, Mahbubul Alam; Jo, Kyubong; Kim, Jun Soo

    2016-04-01

    We present a molecular dynamics simulation study that focuses on the formation and growth of nanoscale droplets inside polymer networks. Droplet formation and growth are investigated by the liquid-vapor phase separation of a dilute Lennard-Jones (LJ) fluid inside regularly crosslinked, polymer networks with varying mesh sizes. In a polymer network with small mesh sizes, droplet formation can be suppressed, the extent of which is dependent on the attraction strength between the LJ particles. When droplets form in a polymer network with intermediate mesh sizes, subsequent growth is significantly slower when compared with that in bulk without a polymer network. Interestingly, droplet growth beyond the initial nucleation stage occurs by different mechanisms depending on the mesh size: droplets grow mainly by diffusion and coalescence inside polymer networks with large mesh sizes (as observed in bulk), whereas Ostwald ripening becomes a more dominant mechanism for droplet growth for small mesh sizes. The analysis of droplet trajectories clearly reveals the obstruction effect of the polymer network on the movement of growing droplets, which leads to Ostwald ripening of droplets. This study suggests how polymer networks can be used to control the growth of nanoscale droplets.

  15. A genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem

    NASA Astrophysics Data System (ADS)

    Moradgholi, Mostafa; Paydar, Mohammad Mahdi; Mahdavi, Iraj; Jouzdani, Javid

    2016-05-01

    Nowadays, with the increasing pressure of the competitive business environment and demand for diverse products, manufacturers are force to seek for solutions that reduce production costs and rise product quality. Cellular manufacturing system (CMS), as a means to this end, has been a point of attraction to both researchers and practitioners. Limitations of cell formation problem (CFP), as one of important topics in CMS, have led to the introduction of virtual CMS (VCMS). This research addresses a bi-objective dynamic virtual cell formation problem (DVCFP) with the objective of finding the optimal formation of cells, considering the material handling costs, fixed machine installation costs and variable production costs of machines and workforce. Furthermore, we consider different skills on different machines in workforce assignment in a multi-period planning horizon. The bi-objective model is transformed to a single-objective fuzzy goal programming model and to show its performance; numerical examples are solved using the LINGO software. In addition, genetic algorithm (GA) is customized to tackle large-scale instances of the problems to show the performance of the solution method.

  16. New Worlds Observer Formation Control Design Based on the Dynamics of Relative Motion

    NASA Technical Reports Server (NTRS)

    Luquette, Richard J.

    2008-01-01

    The New Worlds Observer (NWO) mission is designed for the direct detection and characterization of extrasolar planets. The NWO mission concept employs a two spacecraft leader-follower formation on a trajectory around the Earth/Moon-Sun L(sub 2) Libration Point. The leader spacecraft is baselined as a 4 meter optical telescope. The follower, Starshade spacecraft, is designed to suppress light from a central body star permitting direct detection of a surrounding exoplanetary system. The current design requires a nominal leader-follower separation range of 72 Megameters. NWO poses many challenges including formation control. NWO cycles between three principal control modes during the nominal mission timeline: science (fine pointing), realignment and transition. This paper examines formation control strategies in the context of dynamics of relative motion for two spacecraft operating in the vicinity of the Earth/Moon-Sun L(sub 2)libration point. The paper presents an overview of the equations of relative motion followed by a discussion of each of the control modes. Discussion and analysis characterize control strategies for each of the mission control modes, including requirements, implementation challenges and project fuel budgets.

  17. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    DOE PAGESBeta

    Wang, Yanggang; Mei, Donghai; Glezakou, Vassiliki Alexandra; Li, Jun; Rousseau, Roger J.

    2015-03-04

    Ab initio Molecular Dynamics simulations and static Density Functional Theory calculations have been performed to investigate the reaction mechanism of CO oxidation on Au/CeO2 catalyst. It is found that under reaction condition CO adsorption significantly labializes the surface atoms of the Au cluster and leads to the formation of isolated Au+-CO species that resides on the support in the vicinity of the Au particle. In this context, we identified a dynamic single-atom catalytic mechanism at the interfacial area for CO oxidation on Au/CeO2 catalyst, which is a lower energy pathway than that of CO oxidation at the interface with themore » metal particle. This results from the ability of the single atom site to strongly couple with the redox properties of the support in a synergistic manner thereby lowering the barrier for redox reactions. We find that the single Au+ ion, which only exists under reaction conditions, breaks away from the Au cluster to catalyze CO oxidation and returns to the Au cluster after the catalytic cycle is completed. Generally, our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in a catalytic process.« less

  18. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    SciTech Connect

    Wang, Yanggang; Mei, Donghai; Glezakou, Vassiliki Alexandra; Li, Jun; Rousseau, Roger J.

    2015-03-04

    Ab initio Molecular Dynamics simulations and static Density Functional Theory calculations have been performed to investigate the reaction mechanism of CO oxidation on Au/CeO2 catalyst. It is found that under reaction condition CO adsorption significantly labializes the surface atoms of the Au cluster and leads to the formation of isolated Au+-CO species that resides on the support in the vicinity of the Au particle. In this context, we identified a dynamic single-atom catalytic mechanism at the interfacial area for CO oxidation on Au/CeO2 catalyst, which is a lower energy pathway than that of CO oxidation at the interface with the metal particle. This results from the ability of the single atom site to strongly couple with the redox properties of the support in a synergistic manner thereby lowering the barrier for redox reactions. We find that the single Au+ ion, which only exists under reaction conditions, breaks away from the Au cluster to catalyze CO oxidation and returns to the Au cluster after the catalytic cycle is completed. Generally, our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in a catalytic process.

  19. Mosaic-pattern vegetation formation and dynamics driven by the water-wind crisscross erosion

    NASA Astrophysics Data System (ADS)

    Wu, Gao-Lin; Wang, Dong; Liu, Yu; Hao, Hong-Min; Fang, Nu-Fang; Shi, Zhi-Hua

    2016-07-01

    Theoretical explanations for vegetation pattern dynamic emphasized on banded pattern-forming systems on the dynamics of the spot pattern. In this context, we explore the patch pattern forming and development in the desertification land. We hypothesized that spatial heterogeneity of microtopography and soil properties with different patch sizes would determine vegetation pattern dynamics theory. The spatial heterogeneity of microtopography and soil properties with different patch sizes were studied. Differences between the inside and outside of the canopy of soil carbon content and soil total nitrogen content were significantly increasing with patches sizes. Sampling location across vegetation patch was the main factor controlling soil properties. Soil nutrient content and saturated hydraulic conductivity were the largest, while bulk density and the coarse sand content were the lowest at the sampling location of half-way between taproot and downslope edge of the canopy. The height of the mound relative to the adjacent soil interspace between shrubs increased as patches diameter increased at the upslope of the taproot. Hydrological and aeolian processes resulted in spatial distributions of soil moisture, nutrition properties, which lead to patch migrated to downslope rather than upslope. A conceptual model was integrated hydrological and nutrient facilitation and competition effects among the plant-soil in mosaic-pattern patch formation and succession process.

  20. The dynamical masses, densities, and star formation scaling relations of Lyα galaxies

    SciTech Connect

    Rhoads, James E.; Malhotra, Sangeeta; Richardson, Mark L. A.; McLinden, Emily M.; Finkelstein, Steven L.; Fynbo, Johan P. U.; Tilvi, Vithal S.

    2014-01-01

    We present the first dynamical mass measurements for Lyα galaxies at high redshift, based on velocity dispersion measurements from rest-frame optical emission lines and size measurements from Hubble Space Telescope imaging, for nine galaxies drawn from four surveys. We use these measurements to study Lyα galaxies in the context of galaxy scaling relations. The resulting dynamical masses range from 10{sup 9} to 10{sup 10} M {sub ☉}. We also fit stellar population models to our sample and use them to place the Lyα sample on a stellar mass versus line width relation. The Lyα galaxies generally follow the same scaling relation as star-forming galaxies at lower redshift, although, lower stellar mass fits are also acceptable in ∼1/3 of the Lyα galaxies. Using the dynamical masses as an upper limit on gas mass, we show that Lyα galaxies have unusually active star formation for their gas mass surface density. This behavior is consistent with what is observed in starburst galaxies, despite the typically smaller masses and sizes of the Lyα galaxy population. Finally, we examine the mass densities of these galaxies and show that their future evolution likely requires dissipational ('wet') merging. In short, we find that Lyα galaxies are low-mass cousins of larger starbursts.

  1. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    SciTech Connect

    Wang, Yanggang; Mei, Donghai; Glezakou, Vassiliki Alexandra; Li, Jun; Rousseau, Roger J.

    2015-03-04

    Ab initio Molecular Dynamics simulations and static Density Functional Theory calculations have been performed to investigate the reaction mechanism of CO oxidation on Au/CeO2 catalyst. It is found that under reaction condition CO adsorption significantly labializes the surface atoms of the Au cluster and leads to the formation of isolated Au+-CO species that resides on the support in the vicinity of the Au particle. In this context, we identified a dynamic single-atom catalytic mechanism at the interfacial area for CO oxidation on Au/CeO2 catalyst, which is a lower energy pathway than that of CO oxidation at the interface with the metal particle. This results from the ability of the single atom site to strongly couple with the redox properties of the support in a synergistic manner thereby lowering the barrier for redox reactions. We find that the single Au+ ion, which only exists under reaction conditions, breaks away from the Au cluster to catalyze CO oxidation and returns to the Au cluster after the catalytic cycle is completed. Generally, our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in a catalytic process.

  2. Study of silicon crystal surface formation based on molecular dynamics simulation results

    NASA Astrophysics Data System (ADS)

    Barinovs, G.; Sabanskis, A.; Muiznieks, A.

    2014-04-01

    The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.

  3. DYNAMICS AND ECCENTRICITY FORMATION OF PLANETS IN OGLE-06-109L SYSTEM

    SciTech Connect

    Wang Su; Zhao Gang; Zhou Jilin

    2009-11-20

    Recent observation of the microlensing technique reveals two giant planets at 2.3 AU and 4.6 AU around the star OGLE-06-109L. The eccentricity of the outer planet (e{sub c} ) is estimated to be 0.11{sup +0.17}{sub -0.04}, comparable to that of Saturn (0.01-0.09). The similarities between the OGLE-06-109L system and the solar system indicate that they may have passed through similar histories during their formation stage. In this paper, we investigate the dynamics and formation of the orbital architecture in the OGLE-06-109L system. For the present two planets with their nominal locations, the secular motions are stable as long as their eccentricities (e{sub b} , e{sub c} ) fulfill e {sup 2} {sub b} + e {sup 2} {sub c} <= 0.3{sup 2}. Earth-size bodies might be formed and are stable in the habitable zone (0.25-0.36 AU) of the system. Three possible scenarios may be accounted for the formation of e{sub b} and e{sub c} : (1) convergent migration of two planets and the 3:1 mean motion resonance (MMR) trapping; (2) planetary scattering; and (3) divergent migration and the 3:1 MMR crossing. As we showed that the probability for the two giant planets in 3:1 MMR is low (approx3%), scenario (1) is less likely. According to models (2) and (3), the final eccentricity of inner planet (e{sub b} ) may oscillate between [0-0.06], comparable to that of Jupiter (0.03-0.06). An inspection of e{sub b} , e{sub c} 's secular motion may be helpful to understand which model is really responsible for the eccentricity formation.

  4. Molecular Dynamics Simulations of Amyloid β-Peptide (1-42): Tetramer Formation and Membrane Interactions.

    PubMed

    Brown, Anne M; Bevan, David R

    2016-09-01

    The aggregation cascade and peptide-membrane interactions of the amyloid β-peptide (Aβ) have been implicated as toxic events in the development and progression of Alzheimer's disease. Aβ42 forms oligomers and ultimately plaques, and it has been hypothesized that these oligomeric species are the main toxic species contributing to neuronal cell death. To better understand oligomerization events and subsequent oligomer-membrane interactions of Aβ42, we performed atomistic molecular-dynamics (MD) simulations to characterize both interpeptide interactions and perturbation of model membranes by the peptides. MD simulations were utilized to first show the formation of a tetramer unit by four separate Aβ42 peptides. Aβ42 tetramers adopted an oblate ellipsoid shape and showed a significant increase in β-strand formation in the final tetramer unit relative to the monomers, indicative of on-pathway events for fibril formation. The Aβ42 tetramer unit that formed in the initial simulations was used in subsequent MD simulations in the presence of a pure POPC or cholesterol-rich raft model membrane. Tetramer-membrane simulations resulted in elongation of the tetramer in the presence of both model membranes, with tetramer-raft interactions giving rise to the rearrangement of key hydrophobic regions in the tetramer and the formation of a more rod-like structure indicative of a fibril-seeding aggregate. Membrane perturbation by the tetramer was manifested in the form of more ordered, rigid membranes, with the pure POPC being affected to a greater extent than the raft membrane. These results provide critical atomistic insight into the aggregation pathway of Aβ42 and a putative toxic mechanism in the pathogenesis of Alzheimer's disease. PMID:27602722

  5. Dynamical Properties of z ~ 2 Star-forming Galaxies and a Universal Star Formation Relation

    NASA Astrophysics Data System (ADS)

    Bouché, N.; Cresci, G.; Davies, R.; Eisenhauer, F.; Förster Schreiber, N. M.; Genzel, R.; Gillessen, S.; Lehnert, M.; Lutz, D.; Nesvadba, N.; Shapiro, K. L.; Sternberg, A.; Tacconi, L. J.; Verma, A.; Cimatti, A.; Daddi, E.; Renzini, A.; Erb, D. K.; Shapley, A.; Steidel, C. C.

    2007-12-01

    We present the first comparison of the dynamical properties of different samples of z~1.4-3.4 star-forming galaxies from spatially resolved imaging spectroscopy from SINFONI/VLT integral field spectroscopy and IRAM CO millimeter interferometry. Our samples include 16 rest-frame UV-selected, 16 rest-frame optically selected, and 13 submillimeter galaxies (SMGs). We find that rest-frame UV and optically bright (K<20) z~2 star forming galaxies are dynamically similar, and follow the same velocity-size relation as disk galaxies at z~0. In the theoretical framework of rotating disks forming from dissipative collapse in dark matter halos, the two samples require a spin parameter <λ> ranging from 0.06 to 0.2. In contrast, bright SMGs (S850μm>=5 mJy) have larger velocity widths and are much more compact. Hence, SMGs have lower angular momenta and higher matter densities than either the UV or optically selected populations. This indicates that dissipative major mergers may dominate the SMGs population, resulting in early spheroids, and that a significant fraction of the UV/optically bright galaxies have evolved less violently, either in a series of minor mergers, or in rapid dissipative collapse from the halo, given that either process may leads to the formation of early disks. These early disks may later evolve into spheroids via disk instabilities or mergers. Because of their small sizes and large densities, SMGs lie at the high surface density end of a universal (out to z=2.5) ``Schmidt-Kennicutt'' relation between gas surface density and star formation rate surface density. The best-fit relation suggests that the star formation rate per unit area scales as the surface gas density to a power of ~1.7, and that the star formation efficiency increases by a factor of 4 between non-starbursts and strong starbursts. Based on observations at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile, under programs GTO 073.B-9018, 074.A-9011

  6. Stochastic formation of magnetic vortex structures in asymmetric disks triggered by chaotic dynamics

    DOE PAGESBeta

    Im, Mi-Young; Lee, Ki-Suk; Vogel, Andreas; Hong, Jung-Il; Meier, Guido; Fischer, Peter

    2014-12-17

    The non-trivial spin configuration in a magnetic vortex is a prototype for fundamental studies of nanoscale spin behaviour with potential applications in magnetic information technologies. Arrays of magnetic vortices interfacing with perpendicular thin films have recently been proposed as enabler for skyrmionic structures at room temperature, which has opened exciting perspectives on practical applications of skyrmions. An important milestone for achieving not only such skyrmion materials but also general applications of magnetic vortices is a reliable control of vortex structures. However, controlling magnetic processes is hampered by stochastic behaviour, which is associated with thermal fluctuations in general. Here we showmore » that the dynamics in the initial stages of vortex formation on an ultrafast timescale plays a dominating role for the stochastic behaviour observed at steady state. Our results show that the intrinsic stochastic nature of vortex creation can be controlled by adjusting the interdisk distance in asymmetric disk arrays.« less

  7. Signatures of bond formation and bond scission dynamics in dissociative electron attachment to methane.

    PubMed

    Douguet, N; Slaughter, D S; Adaniya, H; Belkacem, A; Orel, A E; Rescigno, T N

    2015-10-14

    We present a combined experimental and theoretical investigation of the dynamics and angular dependence of dissociative electron attachment to methane. We show that a triply degenerate (T2) Feshbach resonance is responsible for the broad 10 eV dissociation peak in methane. This resonance alone is shown to correlate asymptotically to the various dissociation channels observed experimentally. The molecular-frame entrance amplitude for electron attachment is calculated for each component of the threefold degenerate resonance. By investigating the topology of the anion potential energy surfaces, we deduce the main pathways to two- and three-body breakup channels involving both bond scission and bond formation. The computed fragment angular distributions reproduce the main trends of the experimental measurements. PMID:26371546

  8. Stochastic formation of magnetic vortex structures in asymmetric disks triggered by chaotic dynamics

    SciTech Connect

    Im, Mi-Young; Lee, Ki-Suk; Vogel, Andreas; Hong, Jung-Il; Meier, Guido; Fischer, Peter

    2014-12-17

    The non-trivial spin configuration in a magnetic vortex is a prototype for fundamental studies of nanoscale spin behaviour with potential applications in magnetic information technologies. Arrays of magnetic vortices interfacing with perpendicular thin films have recently been proposed as enabler for skyrmionic structures at room temperature, which has opened exciting perspectives on practical applications of skyrmions. An important milestone for achieving not only such skyrmion materials but also general applications of magnetic vortices is a reliable control of vortex structures. However, controlling magnetic processes is hampered by stochastic behaviour, which is associated with thermal fluctuations in general. Here we show that the dynamics in the initial stages of vortex formation on an ultrafast timescale plays a dominating role for the stochastic behaviour observed at steady state. Our results show that the intrinsic stochastic nature of vortex creation can be controlled by adjusting the interdisk distance in asymmetric disk arrays.

  9. Individual differences versus social dynamics in the formation of animal dominance hierarchies

    PubMed Central

    Chase, Ivan D.; Tovey, Craig; Spangler-Martin, Debra; Manfredonia, Michael

    2002-01-01

    Linear hierarchies, the classical pecking-order structures, are formed readily in both nature and the laboratory in a great range of species including humans. However, the probability of getting linear structures by chance alone is quite low. In this paper we investigate the two hypotheses that are proposed most often to explain linear hierarchies: they are predetermined by differences in the attributes of animals, or they are produced by the dynamics of social interaction, i.e., they are self-organizing. We evaluate these hypotheses using cichlid fish as model animals, and although differences in attributes play a significant part, we find that social interaction is necessary for high proportions of groups with linear hierarchies. Our results suggest that dominance hierarchy formation is a much richer and more complex phenomenon than previously thought, and we explore the implications of these results for evolutionary biology, the social sciences, and the use of animal models in understanding human social organization. PMID:11960030

  10. Strain dynamics during La2O3/Lu2O3 superlattice and alloy formation

    NASA Astrophysics Data System (ADS)

    Proessdorf, André; Niehle, Michael; Grosse, Frank; Rodenbach, Peter; Hanke, Michael; Trampert, Achim

    2016-06-01

    The dynamics of strain relaxation and intermixing during molecular beam epitaxy of La2O3 and Lu2O3 superlattices and alloys consisting of both binaries on Si(111) have been studied by real-time in situ grazing incidence x-ray diffraction and high resolution transmission electron microscopy. The presence of both hexagonal and cubic polymorphs of La2O3 influences the epitaxial formation within the superlattice. The process of strain relaxation is closely related to the presence of a (La,Lu)2O3 alloy adopting a cubic symmetry. It is formed by interdiffusion of La and Lu atoms reducing internal lattice mismatch within the superlattice. An interface thickness dominated by interdiffusion regions of about 3 monolayers is determined by high-angle annular dark field scanning transmission electron microscopy.

  11. Studies of the effects of electron cloud formation on beam dynamics at CesrTA

    SciTech Connect

    Crittenden, J. A.; Calvey, J. R.; Dugan, G.; Livezey, J. A.; Kreinick, D.L.; Palmer, M. A.; Rubin, D. L.; Harkay, K.; Holtzapple, R. L.; Ohmi, K.; Furman, M. A.; Penn, G.; Venturini, M.; Pivi, M. T. F.; Wang, L.

    2009-05-01

    The Cornell Electron Storage Ring Test Accelerator (CesrTA) has commenced operation as a linear collider damping ring test bed following its conversion from an e{sup +}e{sup -}-collider in 2008. A core component of the research program is the measurement of effects of synchrotron-radiation-induced electron cloud formation on beam dynamics. We have studied the interaction of the beam with the cloud with measurements of coherent tune shifts and emittance growth in various bunch train configurations, bunch currents, beam energies, and bunch lengths, for both e{sup +} and e{sup -} beams. This paper compares a subset of these measurements to modeling results from the two-dimensional cloud simulation packages ECLOUD and POSINST. These codes each model most of the tune shift measurements with remarkable accuracy, while some comparisons merit further investigation.

  12. Observation of bubble formation in water during microwave irradiation by dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Asakuma, Yusuke; Munenaga, Takuya; Nakata, Ryosuke

    2015-10-01

    A microwave reactor was designed for in situ observation of nano- and micro-bubbles, and size profiles during and after irradiation were measured with respect to irradiation power and time. Bubble formation in water during irradiation was observed even at temperatures below the boiling point of water. The maximum size strongly depended on radiation power and time, even at a given temperature. Nano-particles in the dispersion medium were found to play an important role in achieving more stable nucleation of bubbles around particles, and stable size distributions were obtained from clear autocorrelation by a dynamic light scattering system. Moreover, a combination of microwave induction heating and the addition of nano-particles to the dispersion medium can prevent heterogeneous nucleation of bubbles on the cell wall. Quantitative nano-bubble size profiles obtained by in situ observation provide useful information regarding microwave-based industrial processes for nano-particle production.

  13. Synaptic Scaling Enables Dynamically Distinct Short- and Long-Term Memory Formation

    PubMed Central

    Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Tsodyks, Misha; Wörgötter, Florentin

    2013-01-01

    Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling – a slow process usually associated with the maintenance of activity homeostasis – combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes. PMID:24204240

  14. Formation and dynamics of "waterproof" photoluminescent complexes of rare earth ions in crowded environment.

    PubMed

    Ignatova, Tetyana; Blades, Michael; Duque, Juan G; Doorn, Stephen K; Biaggio, Ivan; Rotkin, Slava V

    2014-12-28

    Understanding behavior of rare-earth ions (REI) in crowded environments is crucial for several nano- and bio-technological applications. Evolution of REI photoluminescence (PL) in small compartments inside a silica hydrogel, mimic to a soft matter bio-environment, has been studied and explained within a solvation model. The model uncovered the origin of high PL efficiency to be the formation of REI complexes, surrounded by bile salt (DOC) molecules. Comparative study of these REI-DOC complexes in bulk water solution and those enclosed inside the hydrogel revealed a strong correlation between an up to 5×-longer lifetime of REIs and appearance of the DOC ordered phase, further confirmed by dynamics of REI solvation shells, REI diffusion experiments and morphological characterization of microstructure of the hydrogel. PMID:25379879

  15. Role of temperature in the formation and growth of gold monoatomic chains: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Cortes-Huerto, R.; Sondon, T.; Saúl, A.

    2013-12-01

    The effect of temperature on the formation and growth of monoatomic chains is investigated by extensive molecular dynamics simulations using a semiempirical potential based on the second-moment approximation to the tight-binding Hamiltonian. Gold nanowires, with an aspect ratio of ˜13 and a cross section of ˜1 nm2, are stretched at a rate of 3 m /s in the range of temperatures 5-600 K with 50 initial configurations per temperature. A detailed study on the probability to form monoatomic chains (MACs) is presented. Two domains are apparent in our simulations: one at T <100 K, where MACs develop from crystalline disorder at the constriction, and the other at T >100 K, where MACs form as a consequence of plastic deformation of the nanowire. Our results show that the average length of the formed MACs maximizes at T =150 K, which is supported by simple energy arguments.

  16. Sub-Doppler infrared spectroscopy and formation dynamics of triacetylene in a slit supersonic expansion

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hsuan; Agarwal, Jay; Allen, Wesley D.; Nesbitt, David J.

    2016-02-01

    Infrared spectroscopy and formation dynamics of triacetylene are investigated in a slit jet supersonic discharge and probed with sub-Doppler resolution (≈60 MHz) on the fundamental antisymmetric CH stretch mode (ν5). The triacetylene is generated in the throat of the discharge by sequential attack of ethynyl radical with acetyelene and diacetylene: (i) HCCH → HCC + H, (ii) HCC + HCCH → HCCCCH + H, (iii) HCC + HCCCCH → HCCCCCCH + H, cooled rapidly in the slit expansion to 15 K, and probed by near shot-noise-limited absorption sensitivity with a tunable difference-frequency infrared laser. The combination of jet cooled temperatures (Trot = 15 K) and low spectral congestion permits (i) analysis of rotationally avoided crossings in the ν5 band ascribed to Coriolis interactions, as well as (ii) first detection of ν5 Π-Π hot band progressions built on the ν12 sym CC bend and definitively assigned via state-of-the-art ab initio vibration-rotation interaction parameters (αi), which make for interesting comparison with recent spectroscopic studies of Doney et al. [J. Mol. Spectrosc. 316, 54 (2015)]. The combined data provide direct evidence for significantly non-equilibrium populations in the CC bending manifold, dynamically consistent with a strongly bent radical intermediate and transition states for forming triacetylene product. The presence of intense triacetylene signals under cold, low density slit jet conditions provides support for (i) barrierless addition of HCC with HCCCCH and (ii) a high quantum yield for HCCCCCCH formation. Complete basis set calculations for energetics [CCSD(T)-f12/VnZ-f12, n = 2,3] and frequencies [CCSD(T)-f12/VdZ-f12] are presented for both radical intermediate and transition state species, predicting collision stabilization in the slit jet expansion to be competitive with unimolecular decomposition with increasing polyyne chain length.

  17. Evaluation of the Terrestrial Ecosystem Formation and Diversity in a Modified Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Shao, P.; Song, X.

    2010-12-01

    Terrestrial ecosystem formation and diversity have great impact on the stability and frangibility of ecosystem. It is important that Dynamic Global Vegetation Models (DGVMs) can capture these essential properties so that they can correctly simulate the succession and transition of terrestrial ecosystem in company with the global climate change. Previous studies have shown that DGVMs can roughly reproduce the spatial distributions of different vegetation types as well as the dependence of the vegetation distribution on climate conditions, however, the capability of DGVMs to reproduce the global vegetation distribution and ecosystem formation has not been fully evaluated. This study is based on our modified DGVM coupled with the Community Land Model (CLM-DGVM). The modified CLM-DGVM can simulate 12 plant functional types (PFTs) besides the bare soil. It allows two or more PFTs coexisting in a grid cell, in contrast to the DGVMs which tend to generate the ecosystem with single dominant plant functional type and hence lose the functional diversity of ecosystem. Our results show that the density distributions of fractional coverage (DDFC) of three vegetation categories (e.g., forest, grassland, and shrubland) and PFTs are different with the observation. In particular, the model overestimates the DDFC over regions with tree coverage larger than 70%, but underestimates the DDFC over regions with tree coverage less than 40%. Furthermore, the functional diversity of PFTs in each gridcell is generally lower than that in the observation. Sensitivity tests show that substantial changes in the terrestrial ecosystem usually occur within the areas where two or more PFTs coexist with comparable fractions, i.e., and the functional diversity is high. These results imply that current CLM-DGVM may not be able to appropriately produce the averaged amplitude and spatial pattern of the transition in global ecosystem. Therefore, we suggest that extensive studies are required to improve

  18. Metamorphic sole formation, emplacement and blueschist overprint: early obduction dynamics witnessed by W. Turkey ophiolites

    NASA Astrophysics Data System (ADS)

    Plunder, Alexis; Agard, Philippe; Chopin, Christian; Soret, Mathieu; Okay, Aral; Whitechurch, Hubert

    2016-04-01

    Western Turkey, with a >200 km long-belt of unmetamorphosed ophiolite overlying continental lithosphere is one or even the largest obducted ophiolite on Earth and therefore a key example to study obduction and early subduction dynamics. All Western Turkish ophiolite fragments are considered as part of the same Neotethyan branch resulting of a long-lived continental subduction (or underthrusting). Synchronous (ca. ~ 93 Ma) metamorphic sole formation and preservation at the base of most of the Turkish ophiolite fragments support this single event and place a strong constraint on the age of subduction initiation. Metamorphic soles are indeed generally considered to have formed during the early and hot subduction zone at 25 ± 10 km depths and welded to the overriding oceanic lithosphere. In Western Turkey however (as for most places worldwide) a systematic study of the pressure-temperature conditions with modern thermobarometric tools is generally lacking, and fundamental mechanisms of formation or accretion to the upper plate are poorly (if at all) constrained. We herein reappraise Western Turkish metamorphic soles focusing on the following points and issues: (i) detailed structures of metamorphic sole and other subduction derived units, petrological evolution and refined pressure-temperature conditions; peak pressure-temperature conditions of metamorphic sole were estimated using garnet, clinopyroxene, amphibole and plagioclase as the peak paragenesis at 10.5 ± 2 kbar and 800 ± 50°C based on pseudosections using the Theriak/Domino package (ii) the rather unique (and enigmatic) blueschist facies overprint found in places was investigated in terms of structural position and pressure-temperature conditions. Conditions of overprint were estimated around 12 kbar and 425 °C from the presence of glaucophane, lawsonite, jadeite and garnet overgrowing the amphibolite-facies assemblage. This field-based study provides clues to mechanisms of metamorphic sole underplating

  19. Dynamics of Asp23-Lys28 salt-bridge formation in Abeta10-35 monomers.

    PubMed

    Tarus, Bogdan; Straub, John E; Thirumalai, D

    2006-12-20

    In the amyloid fibrils formed from long fragments of the amyloid beta-protein (Abeta-protein), the monomers are arranged in parallel and lie perpendicular to the fibril axis. The structure of the monomers satisfies the amyloid self-organization principle; namely, the low free energy state of the monomer maximizes the number of intra- and interpeptide contacts and salt bridges. The formation of the intramolecular salt bridge between Asp(D)23 and Lys(K)28 ensures that unpaired charges are not buried in the low-dielectric interior. We have investigated, using all-atom molecular dynamics simulations in explicit water, whether the D23-K28 interaction forms spontaneously in the isolated Abeta10-35 monomer. To validate the simulation protocol, we show, using five independent trajectories spanning a total of 100 ns, that the pKa values of the titratable groups are in good agreement with experimental measurements. The computed free energy disconnectvity graph shows that broadly the ensemble of compact random coil conformations can be clustered into four basins that are separated by free energy barriers ranging from 0.3 to 2.7 kcal/mol. There is significant residual structure in the conformation of the peptide in each of the basins. Due to the desolvation penalty, the structural motif with a stable turn involving the residues VGSN and a preformed D23-K28 contact is a minor component of the simulated structures. The extent of solvation of the peptides in the four basins varies greatly, which underscores the dynamical fluctuations in the monomer. Our results suggest that the early event in the oligomerization process must be the expulsion of discrete water molecules that facilitates the formation of interpeptide-interaction-driven stable structures with an intramolecular D23-K28 salt bridge and an intact VGSN turn. PMID:17165769

  20. Sub-Doppler infrared spectroscopy and formation dynamics of triacetylene in a slit supersonic expansion.

    PubMed

    Chang, Chih-Hsuan; Agarwal, Jay; Allen, Wesley D; Nesbitt, David J

    2016-02-21

    Infrared spectroscopy and formation dynamics of triacetylene are investigated in a slit jet supersonic discharge and probed with sub-Doppler resolution (≈60 MHz) on the fundamental antisymmetric CH stretch mode (ν5). The triacetylene is generated in the throat of the discharge by sequential attack of ethynyl radical with acetyelene and diacetylene: (i) HCCH → HCC + H, (ii) HCC + HCCH → HCCCCH + H, (iii) HCC + HCCCCH → HCCCCCCH + H, cooled rapidly in the slit expansion to 15 K, and probed by near shot-noise-limited absorption sensitivity with a tunable difference-frequency infrared laser. The combination of jet cooled temperatures (Trot = 15 K) and low spectral congestion permits (i) analysis of rotationally avoided crossings in the ν5 band ascribed to Coriolis interactions, as well as (ii) first detection of ν5 Π-Π hot band progressions built on the ν12 sym CC bend and definitively assigned via state-of-the-art ab initio vibration-rotation interaction parameters (αi), which make for interesting comparison with recent spectroscopic studies of Doney et al. [J. Mol. Spectrosc. 316, 54 (2015)]. The combined data provide direct evidence for significantly non-equilibrium populations in the CC bending manifold, dynamically consistent with a strongly bent radical intermediate and transition states for forming triacetylene product. The presence of intense triacetylene signals under cold, low density slit jet conditions provides support for (i) barrierless addition of HCC with HCCCCH and (ii) a high quantum yield for HCCCCCCH formation. Complete basis set calculations for energetics [CCSD(T)-f12/VnZ-f12, n = 2,3] and frequencies [CCSD(T)-f12/VdZ-f12] are presented for both radical intermediate and transition state species, predicting collision stabilization in the slit jet expansion to be competitive with unimolecular decomposition with increasing polyyne chain length. PMID:26896980

  1. Multicolor Photometry of the Merging Galaxy Cluster A2319: Dynamics and Star Formation Properties

    NASA Astrophysics Data System (ADS)

    Yan, Peng-Fei; Yuan, Qi-Rong; Zhang, Li; Zhou, Xu

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622^{+91}_{-70} km s-1, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ~10' northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ~ 20 mag. A u-band (~3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h BATC = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have shorter SFR time scales, older stellar ages, and

  2. Multicolor photometry of the merging galaxy cluster A2319: Dynamics and star formation properties

    SciTech Connect

    Yan, Peng-Fei; Yuan, Qi-Rong; Zhang, Li; Zhou, Xu E-mail: yuanqirong@njnu.edu.cn

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622{sub −70}{sup +91} km s{sup –1}, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ∼10' northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ∼ 20 mag. A u-band (∼3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h {sub BATC} = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have shorter SFR time

  3. Dynamics, Fluxes, Stability, Succession and Landscape Formation in Cold Environments: The DYNAFLUX / DYNACOLD Network

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.

    2015-04-01

    Within Europe there is a wide array of high-latitude and high-altitude landscapes, covering a significant proportion of the total land area. These defined cold climate landscapes represent a variety of stages of deglaciation history and landscape formation. We find landscapes at different levels of postglacial stabilization, providing the unique opportunity to study the interactions between geo-, bio-, social and socio-economic systems at the land surface. The DYNAFLUX / DYNACOLD Network (2004 - ) bridges across the geo-, bio-, social and socio-economic sciences in order to investigate the complex dynamics of stabilization, succession and landscape formation during and after ice retreat and under human impact. The Network provides a multidisciplinary forum where research groups come together. It is linking and integrating a number of networks and programs and creates an umbrella program and a forum for sharing knowledge. The focus of this network is relevant for different end users, including risk and vulnerability assessment, sustainable land use, land management and conservation. Also questions closely related to Global Change like, e.g., hazards, permafrost degradation, loss of biodiversity are addressed.

  4. Coupled Attitude and Orbit Dynamics and Control in Formation Flying Systems

    NASA Technical Reports Server (NTRS)

    Xu, Yun-Jun; Fitz-Coy, Norman; Mason, Paul

    2003-01-01

    Formation flying systems can range from global constellations offering extended service coverage to clusters of highly coordinated vehicles that perform distributed sensing. Recently, the use of groups of micro-satellites in the areas of near Earth explorations, deep space explorations, and military applications has received considerable attention by researchers and practitioners. To date, most proposed control strategies are based on linear models (e.g., Hill-Clohessy-Wiltshire equations) or nonlinear models that are restricted to circular reference orbits. Also, all models in the literature are uncoupled between relative position and relative attitude. In this paper, a generalized dynamic model is proposed. The reference orbit is not restricted to the circular case. In this formulation, the leader or follower satellite can be in either a circular or an elliptic orbit. In addition to maintaining a specified relative position, the satellites are also required to maintain specified relative attitudes. Thus the model presented couples vehicle attitude and orbit requirements. Orbit perturbations are also included. In particular, the J(sub 2) effects are accounted in the model. Finally, a sliding mode controller is developed and used to control the relative attitude of the formation and the simulation results are presented.

  5. Dynamic Light Scattering Analysis of the Effect of Phosphorylated Osteopontin Peptides on Mineral Formation

    NASA Astrophysics Data System (ADS)

    Mozaffari, Maryam; Goiko, Maria; de Bruyn, John; Goldberg, Harvey

    2015-03-01

    Biomineralization is the process by which living organisms synthesize minerals. Osteopontin (OPN), a mineral-associated protein, has been shown to be a potent inhibitor of mineral formation, a process that is dependent on phosphorylation. To gain a better understanding of the mechanism of inhibition, dynamic light scattering (DLS) was used to monitor the initial stages of nucleation, providing information about the size and relative concentration of the growing crystals as a function of time. DLS was used to investigate the effect of phosphorylated (P3, pOPAR) and non-phosphorylated (P0, OPAR) OPN peptides on the formation and growth of hydroxyapatite (HA) crystals from supersaturated solutions of calcium and phosphate ions. The non-phosphorylated P0 had a limited effect on HA nucleation and growth, while its thrice-phosphorylated isoform, P3, was a potent inhibitor of HA nucleation. The aspartic acid-rich OPAR was found to moderately inhibit nucleation but not growth, while its singly-phosphorylated isoform, pOPAR, inhibited HA nucleation more effectively, with some effect on HA crystal growth. The order of the inhibitory potential of these peptides was pOPAR>OPAR>P3>P0. This work confirms that highly acidic and phosphorylated peptides can inhibit the nucleation of HA more effectively.

  6. Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs.

    PubMed

    Soulika, Marina; Kaushik, Anna-Lila; Mathieu, Benjamin; Lourenço, Raquel; Komisarczuk, Anna Z; Romano, Sebastian Alejo; Jouary, Adrien; Lardennois, Alicia; Tissot, Nicolas; Okada, Shinji; Abe, Keiko; Becker, Thomas S; Kapsimali, Marika

    2016-06-01

    Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly. PMID:27122167

  7. The role of reconsolidation and the dynamic process of long-term memory formation and storage.

    PubMed

    Alberini, Cristina M

    2011-01-01

    It is becoming increasingly clear that the processes of memory formation and storage are exquisitely dynamic. Elucidating the nature and temporal evolution of the biological changes that accompany encoding, storage, and retrieval is key to understand memory formation. For explicit or medial temporal lobe-dependent memories that form after a discrete event and are stored for a long time, the physical changes underlying the encoding and processing of the information (memory trace or engram) remain in a fragile state for some time. However, over time, the new memory becomes increasingly resistant to disruption until it is consolidated. Retrieval or reactivation of an apparently consolidated memory can render the memory labile again, and reconsolidation is the process that occurs to mediate its restabilization. Reconsolidation also evolves with the age of the memory: Young memories are sensitive to post-reactivation disruption, but older memories are more resistant. Why does a memory become labile again if it is retrieved or reactivated? Here I suggest that the main function of reconsolidation is to contribute to the lingering consolidation process and mediate memory strengthening. I also discuss the literature and results regarding the influence of the passage of time on the reconsolidation of memory. These points have important implications for the use of reconsolidation in therapeutic settings. PMID:21436877

  8. Strain-Mediated Interfacial Dynamics during Au-PbS Core-Shell Nanostructure Formation.

    PubMed

    Niu, Kai-Yang; Liu, Miao; Persson, Kristin A; Han, Yu; Zheng, Haimei

    2016-06-28

    An understanding of the hierarchical nanostructure formation is of significant importance for the design of advanced functional materials. Here, we report the in situ study of lead sulfide (PbS) growth on gold (Au) nanorod seeds using liquid cell transmission electron microscopy (TEM). By tracking the formation dynamics of Au-PbS core-shell nanoparticles, we found the preferential heterogeneous nucleation of PbS on the ends of a Au nanorod prior to the development of a complete PdS shell. During PbS shell growth, drastic sulfidation of Au nanorod was observed, leading to large volume shrinkage (up to 50%) of the initial Au nanorod seed. We also captured intriguing wavy interfacial behavior, which can be explained by our DFT calculation results that the local strain gradient at the core-shell interface facilitates the mass transport and mediates reversible phase transitions of Au ↔ Au2S during the PbS shell growth. PMID:27214625

  9. The DYNAFLUX / DYNACOLD Network: Dynamics, Fluxes, Stability, Succession and Landscape Formation in Cold Climate Environments

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.

    2016-04-01

    There is a wide range of high-latitude and high-altitude cold climate landscapes in Europe, covering a significant proportion of the total land surface area. This spectrum of defined cold climate landscapes represents a variety of stages of deglaciation history and landscape formation. We can find landscapes at different levels of postglacial stabilization which is providing the opportunity to study the interactions between geo-, bio-, social and socio-economic systems at the land surface. The DYNAFLUX / DYNACOLD Network (2004-) bridges across the geo-, bio-, social and socio-economic sciences in order to analyze the complex dynamics of stabilization, succession and landscape formation during and after ice retreat and under ongoing human influences. The network provides a multidisciplinary forum where researchers come together. In addition, it is linking a number of networks, working groups and programs and creates an umbrella network and a forum for sharing knowledge. The scientific focus of this network is also relevant for different end users, including risk and vulnerability assessment, sustainable land use, land management and conservation. In addition, key questions related to Global Change like, e.g., hazards, permafrost degradation and loss of biodiversity are discussed.

  10. Chemical dynamics of triacetylene formation and implications to the synthesis of polyynes in Titan's atmosphere

    PubMed Central

    Gu, X.; Kim, Y. S.; Kaiser, R. I.; Mebel, A. M.; Liang, M. C.; Yung, Y. L.

    2009-01-01

    For the last four decades, the role of polyynes such as diacetylene (HCCCCH) and triacetylene (HCCCCCCH) in the chemical evolution of the atmosphere of Saturn's moon Titan has been a subject of vigorous research. These polyacetylenes are thought to serve as an UV radiation shield in planetary environments; thus, acting as prebiotic ozone, and are considered as important constituents of the visible haze layers on Titan. However, the underlying chemical processes that initiate the formation and control the growth of polyynes have been the least understood to date. Here, we present a combined experimental, theoretical, and modeling study on the synthesis of the polyyne triacetylene (HCCCCCCH) via the bimolecular gas phase reaction of the ethynyl radical (CCH) with diacetylene (HCCCCH). This elementary reaction is rapid, has no entrance barrier, and yields the triacetylene molecule via indirect scattering dynamics through complex formation in a single collision event. Photochemical models of Titan's atmosphere imply that triacetylene may serve as a building block to synthesize even more complex polyynes such as tetraacetylene (HCCCCCCCCH). PMID:19805262

  11. Studying the Dynamics of Non-stationary Jet Streams Formation in the Northern Hemisphere Troposphere

    NASA Astrophysics Data System (ADS)

    Emtsev, Sergey; Krasouski, Aliaksandr; Svetashev, Alexander; Turishev, Leonid; Barodka, Siarhei

    2015-04-01

    In the present study, we investigate dynamics of non-stationary jets formation in troposphere by means of mesoscale simulations in the Weather Research & Forecasting (WRF) modeling system, analyzing jet streams that affected the territory of Belarus over the time period of 2010-2012. For that purpose, we perform modeling on domains with 5 km, 3 km and 1 km grid steps and 35 vertical coordinate levels with an upper boundary of 10 hPa. We focus our attention to identification of basic regularities in formation, movements and transformations of jet streams, as well as to analysis of their characteristic features, geographical position and underlying atmospheric processes and their classification. On the basis of these regularities, we define basic meteorological parameters that can be used to directly or indirectly (as well as qualitatively and quantitatively) identify the presence of jet streams in the specific region of troposphere, and also to determine their localization, stage of development and other characteristics. Furthermore, we estimate energetic parameters of the identified jet streams and their impact on synoptic situation in the surrounding region. Analyzing meteorological fields obtained from satellite observations, we elaborate a methodology of operational detection and localization of non-stationary jet streams from satellite data. Validation of WRF modeling results with these data proves that mesoscale simulations with WRF are able to provide quite successful forecasts of non-stationary tropospheric jet streams occurrence and also determination of their localization and main characteristics up to 3 days in advance.

  12. UAV formation control design with obstacle avoidance in dynamic three-dimensional environment.

    PubMed

    Chang, Kai; Xia, Yuanqing; Huang, Kaoli

    2016-01-01

    This paper considers the artificial potential field method combined with rotational vectors for a general problem of multi-unmanned aerial vehicle (UAV) systems tracking a moving target in dynamic three-dimensional environment. An attractive potential field is generated between the leader and the target. It drives the leader to track the target based on the relative position of them. The other UAVs in the formation are controlled to follow the leader by the attractive control force. The repulsive force affects among the UAVs to avoid collisions and distribute the UAVs evenly on the spherical surface whose center is the leader-UAV. Specific orders or positions of the UAVs are not required. The trajectories of avoidance obstacle can be obtained through two kinds of potential field with rotation vectors. Every UAV can choose the optimal trajectory to avoid the obstacle and reconfigure the formation after passing the obstacle. Simulations study on UAV are presented to demonstrate the effectiveness of proposed method. PMID:27478741

  13. Dynamics of dendritic spines in the mouse auditory cortex during memory formation and memory recall.

    PubMed

    Moczulska, Kaja Ewa; Tinter-Thiede, Juliane; Peter, Manuel; Ushakova, Lyubov; Wernle, Tanja; Bathellier, Brice; Rumpel, Simon

    2013-11-01

    Long-lasting changes in synaptic connections induced by relevant experiences are believed to represent the physical correlate of memories. Here, we combined chronic in vivo two-photon imaging of dendritic spines with auditory-cued classical conditioning to test if the formation of a fear memory is associated with structural changes of synapses in the mouse auditory cortex. We find that paired conditioning and unpaired conditioning induce a transient increase in spine formation or spine elimination, respectively. A fraction of spines formed during paired conditioning persists and leaves a long-lasting trace in the network. Memory recall triggered by the reexposure of mice to the sound cue did not lead to changes in spine dynamics. Our findings provide a synaptic mechanism for plasticity in sound responses of auditory cortex neurons induced by auditory-cued fear conditioning; they also show that retrieval of an auditory fear memory does not lead to a recapitulation of structural plasticity in the auditory cortex as observed during initial memory consolidation. PMID:24151334

  14. The poleward edge of the mid-latitude trough - Its formation, orientation and dynamics

    NASA Astrophysics Data System (ADS)

    Rodger, A. S.; Brace, L. H.; Hoegy, W. R.; Winningham, J. D.

    1986-08-01

    Data from the Advanced Ionospheric Sounder (AIS) deployed at Halley, Antarctica (76-deg S, 27-deg W; L = 4.2) and the Dynamics Explorer-2 spacecraft (DE-2) are used to investigate several aspects of the formation processes and dynamics of the poleward edge of the midlatitude electron density trough. These include a study of the flux and energy of charged particles precipitating into the F-region as a function of Magnetic Local Time. It is found that local energetic electron precipitation is a major source of ionization of the poleward edge in the evening sector, but only after magnetic midnight transport processes become more important. Occasionally a significant increase in the flux of conjugate photoelectrons is colocated with the poleward edge of the trough in the morning sector. The combination of AIS and DE-2 data has allowed identification of significant longitudinal structure on the poleward edge of the trough that may be the result of substorm activity. It is found that the orientation of the poleward edge of the trough and the locus of the plasmapause predicted from the 'tear-drop' model vary in rather a similar manner with local time, though no close physical link between the two features is inferred from this coincidence.

  15. The poleward edge of the mid-latitude trough - Its formation, orientation and dynamics

    NASA Technical Reports Server (NTRS)

    Rodger, A. S.; Brace, L. H.; Hoegy, W. R.; Winningham, J. D.

    1986-01-01

    Data from the Advanced Ionospheric Sounder (AIS) deployed at Halley, Antarctica (76-deg S, 27-deg W; L = 4.2) and the Dynamics Explorer-2 spacecraft (DE-2) are used to investigate several aspects of the formation processes and dynamics of the poleward edge of the midlatitude electron density trough. These include a study of the flux and energy of charged particles precipitating into the F-region as a function of Magnetic Local Time. It is found that local energetic electron precipitation is a major source of ionization of the poleward edge in the evening sector, but only after magnetic midnight transport processes become more important. Occasionally a significant increase in the flux of conjugate photoelectrons is colocated with the poleward edge of the trough in the morning sector. The combination of AIS and DE-2 data has allowed identification of significant longitudinal structure on the poleward edge of the trough that may be the result of substorm activity. It is found that the orientation of the poleward edge of the trough and the locus of the plasmapause predicted from the 'tear-drop' model vary in rather a similar manner with local time, though no close physical link between the two features is inferred from this coincidence.

  16. A triphasic constrained mixture model of engineered tissue formation under in vitro dynamic mechanical conditioning.

    PubMed

    Soares, Joao S; Sacks, Michael S

    2016-04-01

    While it has become axiomatic that mechanical signals promote in vitro engineered tissue formation, the underlying mechanisms remain largely unknown. Moreover, efforts to date to determine parameters for optimal extracellular matrix (ECM) development have been largely empirical. In the present work, we propose a two-pronged approach involving novel theoretical developments coupled with key experimental data to develop better mechanistic understanding of growth and development of dense connective tissue under mechanical stimuli. To describe cellular proliferation and ECM synthesis that occur at rates of days to weeks, we employ mixture theory to model the construct constituents as a nutrient-cell-ECM triphasic system, their transport, and their biochemical reactions. Dynamic conditioning protocols with frequencies around 1 Hz are described with multi-scale methods to couple the dissimilar time scales. Enhancement of nutrient transport due to pore fluid advection is upscaled into the growth model, and the spatially dependent ECM distribution describes the evolving poroelastic characteristics of the scaffold-engineered tissue construct. Simulation results compared favorably to the existing experimental data, and most importantly, distinguish between static and dynamic conditioning regimes. The theoretical framework for mechanically conditioned tissue engineering (TE) permits not only the formulation of novel and better-informed mechanistic hypothesis describing the phenomena underlying TE growth and development, but also the exploration/optimization of conditioning protocols in a rational manner. PMID:26055347

  17. Dynamic model based on voltage transfer curve for pattern formation in dielectric barrier glow discharge

    SciTech Connect

    Li, Ben; He, Feng; Ouyang, Jiting; Duan, Xiaoxi

    2015-12-15

    Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling, the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result.

  18. Dynamic structure and cluster formation in confined nanofluids under the action of an external force field

    NASA Astrophysics Data System (ADS)

    Ben-Abdallah, Philippe

    2006-10-01

    The dynamic structure and the formation of clusters in nanoparticle colloidal solutions (nanofluids) confined between two parallel walls and submitted to the action of an external force field is studied by extensive Brownian-dynamics simulations. The self-correlation of individual particles and the time correlation between distinct particles are analyzed by calculating the density-density time correlation (van Hove) function. It is shown that the self-diffusion is reduced by the external force field while the lifetime of collective modes of nanoparticles (i.e., natural phonons) is significantly enhanced by this force. We demonstrate that this result is related to disorder-order transitions in the nanoparticle spatial distribution under perturbation. Interestingly, we highlight that the interaction forces mediated by the walls act like repulsive interparticle forces. They tend to increase the structural disorder and to lower the lifetime of collective modes. Our results suggest that the heat transport properties of nanofluids could be actively controlled in nanometer-size systems.

  19. Protein complex formation and intranuclear dynamics of NAC1 in cancer cells.

    PubMed

    Nakayama, Naomi; Kato, Hiroaki; Sakashita, Gyosuke; Nariai, Yuko; Nakayama, Kentaro; Kyo, Satoru; Urano, Takeshi

    2016-09-15

    Nucleus accumbens-associated protein 1 (NAC1) is a cancer-related transcription regulator protein that is also involved in the pluripotency and differentiation of embryonic stem cells. NAC1 is overexpressed in various carcinomas including ovarian, cervical, breast, and pancreatic carcinomas. NAC1 knock-down was previously shown to result in the apoptosis of ovarian cancer cell lines and to rescue their sensitivity to chemotherapy, suggesting that NAC1 may be a potential therapeutic target, but protein complex formation and the dynamics of intranuclear NAC1 in cancer cells remain poorly understood. In this study, analysis of HeLa cell lysates by fast protein liquid chromatography (FPLC) on a sizing column showed that the NAC1 peak corresponded to an apparent molecular mass of 300-500 kDa, which is larger than the estimated molecular mass (58 kDa) of the protein. Furthermore, live cell photobleaching analyses with green fluorescent protein (GFP)-fused NAC1 proteins revealed the intranuclear dynamics of NAC1. Collectively our results demonstrate that NAC1 forms a protein complex to function as a transcriptional regulator in cancer cells. PMID:27424155

  20. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation

    PubMed Central

    Rocha-Perugini, Vera; Sánchez-Madrid, Francisco; Martínez del Hoyo, Gloria

    2016-01-01

    Tetraspanin-enriched microdomains (TEMs) are specialized membrane platforms driven by protein–protein interactions that integrate membrane receptors and adhesion molecules. Tetraspanins participate in antigen recognition and presentation by antigen-­presenting cells (APCs) through the organization of pattern-recognition receptors (PRRs) and their downstream-induced signaling, as well as the regulation of MHC-II–peptide trafficking. T lymphocyte activation is triggered upon specific recognition of antigens present on the APC surface during immunological synapse (IS) formation. This dynamic process is characterized by a defined spatial organization involving the compartmentalization of receptors and adhesion molecules in specialized membrane domains that are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins contribute to the spatial organization and maturation of the IS by controlling receptor clustering and local accumulation of adhesion receptors and integrins, their downstream signaling, and linkage to the actin cytoskeleton. This review offers a perspective on the important role of TEMs in the regulation of antigen recognition and presentation and in the dynamics of IS architectural organization. PMID:26793193

  1. Travelling lipid domains in a dynamic model for protein-induced pattern formation in biomembranes

    NASA Astrophysics Data System (ADS)

    John, Karin; Bär, Markus

    2005-06-01

    Cell membranes are composed of a mixture of lipids. Many biological processes require the formation of spatial domains in the lipid distribution of the plasma membrane. We have developed a mathematical model that describes the dynamic spatial distribution of acidic lipids in response to the presence of GMC proteins and regulating enzymes. The model encompasses diffusion of lipids and GMC proteins, electrostatic attraction between acidic lipids and GMC proteins as well as the kinetics of membrane attachment/detachment of GMC proteins. If the lipid-protein interaction is strong enough, phase separation occurs in the membrane as a result of free energy minimization and protein/lipid domains are formed. The picture is changed if a constant activity of enzymes is included into the model. We chose the myristoyl-electrostatic switch as a regulatory module. It consists of a protein kinase C that phosphorylates and removes the GMC proteins from the membrane and a phosphatase that dephosphorylates the proteins and enables them to rebind to the membrane. For sufficiently high enzymatic activity, the phase separation is replaced by travelling domains of acidic lipids and proteins. The latter active process is typical for nonequilibrium systems. It allows for a faster restructuring and polarization of the membrane since it acts on a larger length scale than the passive phase separation. The travelling domains can be pinned by spatial gradients in the activity; thus the membrane is able to detect spatial clues and can adapt its polarity dynamically to changes in the environment.

  2. Self-propelled worm-like filaments: spontaneous spiral formation, structure, and dynamics.

    PubMed

    Isele-Holder, Rolf E; Elgeti, Jens; Gompper, Gerhard

    2015-09-28

    Worm-like filaments that are propelled homogeneously along their tangent vector are studied by Brownian dynamics simulations. Systems in two dimensions are investigated, corresponding to filaments adsorbed to interfaces or surfaces. A large parameter space covering weak and strong propulsion, as well as flexible and stiff filaments is explored. For strongly propelled and flexible filaments, the free-swimming filaments spontaneously form stable spirals. The propulsion force has a strong impact on dynamic properties, such as the rotational and translational mean square displacement and the rate of conformational sampling. In particular, when the active self-propulsion dominates thermal diffusion, but is too weak for spiral formation, the rotational diffusion coefficient has an activity-induced contribution given by v(c)/ξ(P), where v(c) is the contour velocity and ξ(P) the persistence length. In contrast, structural properties are hardly affected by the activity of the system, as long as no spirals form. The model mimics common features of biological systems, such as microtubules and actin filaments on motility assays or slender bacteria, and artificially designed microswimmers. PMID:26256415

  3. Quantum molecular dynamics simulation of the formation of warm dense SiH4

    NASA Astrophysics Data System (ADS)

    Dai, Jiayu; Sun, Huayang; Yuan, Jianmin; Kang, Dongdong; Zhao, Zengxiu

    2013-10-01

    The ionic and electronic structures of warm dense silane (SiH4) for four densities of 1.795, 2.260, 3.382 and 3.844 g/cm3 are studied using quantum molecular dynamics at the temperatures (T) from 1000 K to 3 eV. All the structures melt above 1000 K. The melted states from 1000 K to 4000 K are best characterized as polymeric, and they will convert to dense plasma states at 1 eV. At the polymeric state region, the two low density cases of 1.795, 2.260 g/cm3 dissociate and transform to polymeric state via chain states from the initial structures, which is different from those of the higher densities. The present characters can help us to understand how the warm dense matter forms. A rise in conductivity is found when T < 1000 K, indicating the nonmetal-to-metal transition. The conductivity decreased slightly when the temperature becomes higher. The formation of warm dense plasma can be characterized as the procedure: firstly, melting from solid phases; secondly, forming polymeric states with large clusters; finally, forming warm dense plasma with dynamic clusters.

  4. Stability of synchronized dynamics and pattern formation in coupled systems: Review of some recent results

    NASA Astrophysics Data System (ADS)

    Chen, Yonghong; Rangarajan, Govindan; Ding, Mingzhou

    2006-12-01

    In arbitrarily coupled dynamical systems (maps or ordinary differential equations), the stability of synchronized states (including equilibrium point, periodic orbit or chaotic attractor) and the formation of patterns from loss of stability of the synchronized states are two problems of current research interest. These two problems are often treated separately in the literature. Here, we present a unified framework in which we show that the eigenvalues of the coupling matrix determine the stability of the synchronized state, while the eigenvectors correspond to patterns emerging from desynchronization. Based on this simple framework three results are derived: First, general approaches are developed that yield constraints directly on the coupling strengths which ensure the stability of synchronized dynamics. Second, when the synchronized state becomes unstable spatial patterns can be selectively realized by varying the coupling strengths. Distinct temporal evolution of the spatial pattern can be obtained depending on the bifurcating synchronized state. Third, given a desired spatiotemporal pattern, one is able to design coupling schemes which give rise to that pattern as the coupled system evolves. Systems with specific coupling schemes are used as examples to illustrate the general methods.

  5. Infalling clouds on to supermassive black hole binaries - I. Formation of discs, accretion and gas dynamics

    NASA Astrophysics Data System (ADS)

    Goicovic, F. G.; Cuadra, J.; Sesana, A.; Stasyszyn, F.; Amaro-Seoane, P.; Tanaka, T. L.

    2016-01-01

    There is compelling evidence that most - if not all - galaxies harbour a supermassive black hole (SMBH) at their nucleus; hence binaries of these massive objects are an inevitable product of the hierarchical evolution of structures in the Universe, and represent an important but thus-far elusive phase of galaxy evolution. Gas accretion via a circumbinary disc is thought to be important for the dynamical evolution of SMBH binaries, as well as in producing luminous emission that can be used to infer their properties. One plausible source of the gaseous fuel is clumps of gas formed due to turbulence and gravitational instabilities in the interstellar medium, that later fall towards and interact with the binary. In this context, we model numerically the evolution of turbulent clouds in near-radial infall on to equal-mass SMBH binaries, using a modified version of the SPH (smoothed particle hydrodynamics) code GADGET-3. We present a total of 12 simulations that explore different possible pericentre distances and relative inclinations, and show that the formation of circumbinary discs and discs around each SMBH (`mini-discs') depend on those parameters. We also study the dynamics of the formed discs, and the variability of the feeding rate on to the SMBHs in the different configurations.

  6. Dynamic model based on voltage transfer curve for pattern formation in dielectric barrier glow discharge

    NASA Astrophysics Data System (ADS)

    Li, Ben; He, Feng; Duan, Xiaoxi; Ouyang, Jiting

    2015-12-01

    Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling, the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result.

  7. Plasma formation and dynamics in conical wire arrays in the Llampudken pulsed power generator

    SciTech Connect

    Muñoz, C. Gonzalo E-mail: fveloso@fis.puc.cl; Valenzuela, Vicente E-mail: fveloso@fis.puc.cl; Veloso, Felipe E-mail: fveloso@fis.puc.cl; Favre, Mario E-mail: fveloso@fis.puc.cl; Wyndham, Edmund E-mail: fveloso@fis.puc.cl

    2014-12-15

    Plasma formation and dynamics from conical wire array is experimentally studied. Ablation from the wires is observed, forming plasma accumulation at the array axis and subsequently a jet outflow been expelled toward the top of the array. The arrays are composed by 16 equally spaced 25μ diameter tungsten wires. Their dimensions are 20mm height, with base diameters of 8mm and 16mm top diameter. The array loads are design to be overmassed, hence no complete ablation of the wires is observed during the current rise. The experiments have been carried out in the Llampudken. pulsed power generator (∼350kA in ∼350ns). Plasma dynamics is studied in both side-on and end-on directions. Laser probing (shadowgraphy) is achieved using a frequency doubled Nd:YAG laser (532nm, 12ps FWHM) captured by CCD cameras. Pinhole XUV imaging is captured using gated microchannel plate cameras with time resolution ∼5ns. Results on the jet velocity and the degree of collimation indicating the plausibility on the use of these jets as comparable to the study astrophysically produced jets are presented and discussed.

  8. Molecular dynamics studies of aqueous silica nanoparticle dispersions: salt effects on the double layer formation

    NASA Astrophysics Data System (ADS)

    de Lara, Lucas S.; Rigo, Vagner A.; Michelon, Mateus F.; Metin, Cigdem O.; Nguyen, Quoc P.; Miranda, Caetano R.

    2015-08-01

    The ion distribution around hydroxylated silica nanoparticles (NP-H) dispersed in brine was investigated by fully atomistic molecular dynamics. The NP-H dispersions in aqueous electrolyte media are simulated in solutions of varying salinity (NaCl, CaCl2, and MgCl2), salt concentration (0.06  ×  10-3 to 3.00  ×  10-3 mole fraction {χ\\text{s}} ), and temperature (300 and 350 K) at 1 atm. The NP-H models reproduce the observed experimental concentration of silanol and geminal surface sites, which are responsible for local charge variations on the nanoparticles’ surface. Interestingly, under certain salt concentration conditions, the formation of an electrical double layer (DL) around the overall neutral NP-H occurs. The resulting DLs are attenuated with increasing temperature for all evaluated salts. With increasing salt concentration, a sign inversion of the effective charge at the first ion layer is observed, which modifies the electrostatic environment around the nanoparticle. The minimum salt concentration that leads to a DL formation at 300 K is 1.05  ×  10-3, 0.37  ×  10-3, and 0.06  ×  10-3 {χ\\text{s}} for NaCl, CaCl2, and MgCl2, respectively. The width of the DL decreases sequentially in ionic strength from NaCl to CaCl2 to MgCl2, which is similar to that found for highly charged surfaces. These results are in line with our previous experimental data for negative charged NP-H. All together, these observations suggest an interplay mechanism between the formation and narrowing of electric double layers on the stability of NP dispersions in both neutral and negatively charged NP-H.

  9. Molecular dynamics studies of aqueous silica nanoparticle dispersions: salt effects on the double layer formation.

    PubMed

    de Lara, Lucas S; Rigo, Vagner A; Michelon, Mateus F; Metin, Cigdem O; Nguyen, Quoc P; Miranda, Caetano R

    2015-08-19

    The ion distribution around hydroxylated silica nanoparticles (NP-H) dispersed in brine was investigated by fully atomistic molecular dynamics. The NP-H dispersions in aqueous electrolyte media are simulated in solutions of varying salinity (NaCl, CaCl2, and MgCl2), salt concentration (0.06  ×  10(-3) to 3.00  ×  10(-3) mole fraction [Formula: see text]), and temperature (300 and 350 K) at 1 atm. The NP-H models reproduce the observed experimental concentration of silanol and geminal surface sites, which are responsible for local charge variations on the nanoparticles' surface. Interestingly, under certain salt concentration conditions, the formation of an electrical double layer (DL) around the overall neutral NP-H occurs. The resulting DLs are attenuated with increasing temperature for all evaluated salts. With increasing salt concentration, a sign inversion of the effective charge at the first ion layer is observed, which modifies the electrostatic environment around the nanoparticle. The minimum salt concentration that leads to a DL formation at 300 K is 1.05  ×  10(-3), 0.37  ×  10(-3), and 0.06  ×  10(-3) χs for NaCl, CaCl2, and MgCl2, respectively. The width of the DL decreases sequentially in ionic strength from NaCl to CaCl2 to MgCl2, which is similar to that found for highly charged surfaces. These results are in line with our previous experimental data for negative charged NP-H. All together, these observations suggest an interplay mechanism between the formation and narrowing of electric double layers on the stability of NP dispersions in both neutral and negatively charged NP-H. PMID:26194994

  10. Dynamical Stability of Imaged Planetary Systems in Formation: Application to HL Tau

    NASA Astrophysics Data System (ADS)

    Tamayo, D.; Triaud, A. H. M. J.; Menou, K.; Rein, H.

    2015-06-01

    A recent Atacama Large Millimeter/Submillimeter Array image revealed several concentric gaps in the protoplanetary disk surrounding the young star HL Tau. We consider the hypothesis that these gaps are carved by planets, and present a general framework for understanding the dynamical stability of such systems over typical disk lifetimes, providing estimates for the maximum planetary masses. We collect these easily evaluated constraints into a workflow that can help guide the design and interpretation of new observational campaigns and numerical simulations of gap opening in such systems. We argue that the locations of resonances should be significantly shifted in massive disks like HL Tau, and that theoretical uncertainties in the exact offset, together with observational errors, imply a large uncertainty in the dynamical state and stability in such disks. This presents an important barrier to using systems like HL Tau as a proxy for the initial conditions following planet formation. An important observational avenue to breaking this degeneracy is to search for eccentric gaps, which could implicate resonantly interacting planets. Unfortunately, massive disks like HL Tau should induce swift pericenter precession that would smear out any such eccentric features of planetary origin. This motivates pushing toward more typical, less massive disks. For a nominal non-resonant model of the HL Tau system with five planets, we find a maximum mass for the outer three bodies of approximately 2 Neptune masses. In a resonant configuration, these planets can reach at least the mass of Saturn. The inner two planets’ masses are unconstrained by dynamical stability arguments.

  11. Magnetic multipole induced zero-rotation frequency bounce-resonant loss in a Penning-Malmberg trap used for antihydrogen trapping

    SciTech Connect

    Andresen, G. B.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Joergensen, L. V.; Kerrigan, S. J.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Keller, J.; Povilus, A.; Wurtele, J. S.; Cesar, C. L.; Lambo, R.; Fujiwara, M. C.; Gill, D. R.; Kurchaninov, L.

    2009-10-15

    In many antihydrogen trapping schemes, antiprotons held in a short-well Penning-Malmberg trap are released into a longer well. This process necessarily causes the bounce-averaged rotation frequency {omega}{sub r} of the antiprotons around the trap axis to pass through zero. In the presence of a transverse magnetic multipole, experiments and simulations show that many antiprotons (over 30% in some cases) can be lost to a hitherto unidentified bounce-resonant process when {omega}{sub r} is close to zero.

  12. Effect of colliding plasmas dynamics, evolution, and stagnation on carbon molecular formation

    NASA Astrophysics Data System (ADS)

    Al-Shboul, Khaled F.

    The major theme of this dissertation is to investigate the dynamics of expanding laser ablation plumes generated in vacuum as well as in the presence of an ambient gas with a special emphasis on the fascinating field of colliding laser plasmas. In order to understand the physical nature of the mechanisms taking place during laser produced plasmas (LPP) evolution like recombination, collisional excitation, and plasma-laser interaction, time-space resolved studies offered the most logical approach. The thesis is divided into eight chapters and a brief description of each chapter is given below. Chapter 1 provides a brief introduction of LPP, its properties, and applications. The chapter also discusses the fundamental theories describing laser-materials interaction and provides a literature survey on colliding plasma. In Chapter 2, the description of experimental methods used for the present work is given. Details of the experimental set up used for the visible emission spectroscopy and optical time of flight, studies are also discussed. Chapter 3 gives a numerical model for estimating basic laser-mater interaction and plasma parameters such as surface temperature, ablation rate, laser absorption by the generated plasma and its temperature and density. Chapter 4 contains a study on the ambient gas effects on nanosecond laser-produced graphite plasma molecular dynamics formation. The results showed weak C 2 emission zone limited to very close distance to the target surface in vacuum conditions. In contrast, C2 formation in the plasma plume was profoundly enhanced in the presence of ambient gas pressure where C 2 intensity oscillations were observed in both axial and radial directions with increasing ambient gas pressure. By studying these oscillations it was concluded that recombination is the major mechanism for C2 formation. In chapter 5, spatio-temporal mappings of ionic, neutral, and molecular species were generated under varied ambient gas pressures conditions for

  13. Dynamics and drivers for dense shelf water formation, migration and cascading

    NASA Astrophysics Data System (ADS)

    Bonaldo, Davide; Benetazzo, Alvise; Barbariol, Francesco; Bergamasco, Andrea; Boldrin, Alfredo; Marcello Falcieri, Francesco; Langone, Leonardo; Sclavo, Mauro; Trincardi, Fabio; Carniel, Sandro

    2015-04-01

    Dense Shelf Waters formation and their descent towards the deep ocean are generally accepted as one of the main factors driving large-scale thermohaline and biogeochemical fluxes from the continental shelf. With reference to a particularly intense event occurred in winter 2012 in the northern Adriatic Sea (namely Gulf of Venice), an epicontinental basin of the Mediterranean Sea, a set of high-resolution (1 km horizontal discretization) numerical experiments carried out by means of the COAWST (Coupled Ocean, Atmosphere Waves and Sediment Transport) modelling system allowed to explore the dynamics underlying such phenomena. The role of external factors (freshwater input, tides, and continental margin topography) was investigated as well as the mutual interactions involving atmosphere, waves and ocean circulation. The so-called North Adriatic Dense Water (NAdDW) forms in the Gulf of Venice as a consequence of the cooling and salinization of the sub-basin induced by cold air jets blowing from northeast across the Eastern Alps and Balkans. Partially recirculating in a double-gyre structure, newly formed water masses progressively leave the formation region flowing southeastwards leant on the Italian shelf. Along its path, significant fractions of NAdDW are intercepted by mid-Adriatic pits and by the continental shelf break off the Apulian coast. Whilst riverine freshwater input is crucial in preconditioning the NAdDW formation basin and controlling the intrusion of saltier waters from the south, atmosphere-wave-ocean dynamics drive the generation proper by governing air-sea heat and momentum exchanges and ocean circulation, with substantial effects on the modes of buoyancy extraction and on the extent of the water masses involved in this process. The trajectory of the dense stream leaving the northernmost basin tends to a geostrophic equilibrium determined by water mass momentum and density, which in turn reflect the interplay of the factors acting on the generation

  14. Comparative Dynamics of Retrograde Actin Flow and Focal Adhesions: Formation of Nascent Adhesions Triggers Transition from Fast to Slow Flow

    PubMed Central

    Alexandrova, Antonina Y.; Arnold, Katya; Schaub, Sébastien; Vasiliev, Jury M.; Meister, Jean-Jacques; Bershadsky, Alexander D.; Verkhovsky, Alexander B.

    2008-01-01

    Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone of fast flow), and the lamellum (zone of slow flow located between the lamellipodium and the cell body). Cell migration involves expansion of both the lamellipodium and the lamellum, as well as formation of new FAs, but it is largely unknown how the position of the boundary between the two flow zones is defined, and how FAs and actin flow mutually influence each other. We investigated dynamic relationship between focal adhesions and the boundary between the two flow zones in spreading cells. Nascent FAs first appeared in the lamellipodium. Within seconds after the formation of new FAs, the rate of actin flow decreased locally, and the lamellipodium/lamellum boundary advanced towards the new FAs. Blocking fast actin flow with cytochalasin D resulted in rapid dissolution of nascent FAs. In the absence of FAs (spreading on poly-L-lysine-coated surfaces) retrograde flow was uniform and the velocity transition was not observed. We conclude that formation of FAs depends on actin dynamics, and in its turn, affects the dynamics of actin flow by triggering transition from fast to slow flow. Extension of the cell edge thus proceeds through a cycle of lamellipodium protrusion, formation of new FAs, advance of the lamellum, and protrusion of the lamellipodium from the new base. PMID:18800171

  15. Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow.

    PubMed

    Alexandrova, Antonina Y; Arnold, Katya; Schaub, Sébastien; Vasiliev, Jury M; Meister, Jean-Jacques; Bershadsky, Alexander D; Verkhovsky, Alexander B

    2008-01-01

    Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone of fast flow), and the lamellum (zone of slow flow located between the lamellipodium and the cell body). Cell migration involves expansion of both the lamellipodium and the lamellum, as well as formation of new FAs, but it is largely unknown how the position of the boundary between the two flow zones is defined, and how FAs and actin flow mutually influence each other. We investigated dynamic relationship between focal adhesions and the boundary between the two flow zones in spreading cells. Nascent FAs first appeared in the lamellipodium. Within seconds after the formation of new FAs, the rate of actin flow decreased locally, and the lamellipodium/lamellum boundary advanced towards the new FAs. Blocking fast actin flow with cytochalasin D resulted in rapid dissolution of nascent FAs. In the absence of FAs (spreading on poly-L-lysine-coated surfaces) retrograde flow was uniform and the velocity transition was not observed. We conclude that formation of FAs depends on actin dynamics, and in its turn, affects the dynamics of actin flow by triggering transition from fast to slow flow. Extension of the cell edge thus proceeds through a cycle of lamellipodium protrusion, formation of new FAs, advance of the lamellum, and protrusion of the lamellipodium from the new base. PMID:18800171

  16. REGULATION OF STAR FORMATION RATES IN MULTIPHASE GALACTIC DISKS: A THERMAL/DYNAMICAL EQUILIBRIUM MODEL

    SciTech Connect

    Ostriker, Eve C.; McKee, Christopher F.; Leroy, Adam K. E-mail: cmckee@astro.berkeley.ed

    2010-10-01

    We develop a model for the regulation of galactic star formation rates {Sigma}{sub SFR} in disk galaxies, in which interstellar medium (ISM) heating by stellar UV plays a key role. By requiring that thermal and (vertical) dynamical equilibrium are simultaneously satisfied within the diffuse gas, and that stars form at a rate proportional to the mass of the self-gravitating component, we obtain a prediction for {Sigma}{sub SFR} as a function of the total gaseous surface density {Sigma} and the midplane density of stars+dark matter {rho}{sub sd}. The physical basis of this relationship is that the thermal pressure in the diffuse ISM, which is proportional to the UV heating rate and therefore to {Sigma}{sub SFR}, must adjust until it matches the midplane pressure value set by the vertical gravitational field. Our model applies to regions where {Sigma} {approx}< 100 M{sub sun} pc{sup -2}. In low-{Sigma}{sub SFR} (outer-galaxy) regions where diffuse gas dominates, the theory predicts that {Sigma}{sub SFR{proportional_to}{Sigma}{radical}}({rho}{sub sd}). The decrease of thermal equilibrium pressure when {Sigma}{sub SFR} is low implies, consistent with observations, that star formation can extend (with declining efficiency) to large radii in galaxies, rather than having a sharp cutoff at a fixed value of {Sigma}. The main parameters entering our model are the ratio of thermal pressure to total pressure in the diffuse ISM, the fraction of diffuse gas that is in the warm phase, and the star formation timescale in self-gravitating clouds; all of these are (at least in principle) direct observables. At low surface density, our model depends on the ratio of the mean midplane FUV intensity (or thermal pressure in the diffuse gas) to the star formation rate, which we set based on solar-neighborhood values. We compare our results to recent observations, showing good agreement overall for azimuthally averaged data in a set of spiral galaxies. For the large flocculent spiral

  17. Impacts of thermokarst formation on soil carbon dynamics on the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Abbott, B. W.; Jones, J. B.; Harms, T.

    2010-12-01

    Permafrost in the arctic contains more than twice as much carbon as currently exists in the atmosphere. As temperature increases, this soil carbon pool will become more vulnerable to release through two major pathways: gradual deepening of the active layer, or through catastrophic subsidence (thermokarst). We investigated the impacts of three modes of thermokarst formation on the gaseous and hydrologic flux of soil carbon on the North Slope of Alaska. The goals of our study were (a) to investigate the effects of thermokarst formation on soil moisture, temperature, and nutrient cycling, and (b) to compare gaseous and hydrologic carbon release between gradually thawed permafrost and permafrost disrupted by thermokarst formation. Eleven thermokarst sites were selected for study near the Toolik Field Station and the Kelly River Ranger Station, both on the North Slope of Alaska. During the summers of 2009 and 2010 we measured physical soil parameters (temperature, volumetric soil water content, depth of thaw, and elemental composition) to understand their role as potential drivers of carbon and nutrient export from soils affected by thermokarst formation. Due to disruption of insulating vegetation, average soil temperature at 10 cm increased from 6.33° C outside the features to 9.88° C within the features. Volumetric soil moisture content was impacted differentially depending on location within the thermokarst, with increased drainage at the margin of collapses and increased moisture near channels and depressions within features. Respiration increased 10-200 % depending on ground cover type and soil moisture and temperature conditions. The sites with highest respiration had elevated temperature and soil moisture (relative to the undisturbed tundra), suggesting that respiration was enhanced by increased water availability. We also observed increased hydrologic export of NH4, potentially due to increased decomposition, release from thawing permafrost, and movement of

  18. IUTAM Symposium on Vortex Dynamics: Formation, Structure and Function, 10-14 March 2013, Fukuoka, Japan

    NASA Astrophysics Data System (ADS)

    Fukumoto, Yasuhide

    2014-06-01

    This special issue of Fluid Dynamics Research contains the first of a two-part publication of the papers presented at the IUTAM Symposium on Vortex Dynamics: Formation, Structure and Function, held at the Centennial Hall, Kyushu University School of Medicine, Fukuoka, Japan, during the week of 10-14 March 2013. Vortices are ubiquitous structures in fluid mechanics spanning the range of scales from nanofluidics and microfluidics to geophysical and astrophysical flows. Vortices are the key to understanding many different phenomena. As a result, the subject of vortex dynamics continues to evolve and to constantly find new applications in biology, biotechnology, industrial and environmental problems. Vortices can be created by the separation of a flow from the surface of a body or at a density interface, and evolve into coherent structures. Once formed, a vortex acquires a function, depending on its individual structure. In this way, for example, insects gain lift and fish gain thrust. Surprisingly, despite the long history of vortex dynamics, only recently has knowledge about formation, structure and function of vortices been combined to yield new perspectives in the subject, thereby helping to solve outstanding problems brought about by modern advances in computer technology and improved experimental techniques. This symposium is a continuation, five years on, of the IUTAM Symposium '50 Years of Vortex Dynamics', Lyngby, Denmark that took place between 12-16 October 2008, organized by the late Professor Hassan Aref. Originally, Professor Aref was a member of the International Scientific Committee of this symposium and offered his enthusiasm and great expertise, to support its organization. To our shock, he suddenly passed away on 9 September 2011. Furthermore, Professor Slava Meleshko, a leading scientist of fluid and solid mechanics and an intimate friend of Professor Aref, was expected to make an eminent contribution to the symposium. Soon after this sad loss

  19. Dynamics mechanism on fault basin formation in the Lower Yangtze region

    NASA Astrophysics Data System (ADS)

    Xu, X.; Wang, W.; Xu, C.

    2013-12-01

    It is one of the critical issues of the rift basin to study the specific dynamical mechanism of the basin formulation in the Lower Yangtze Region. There still exist controversies on the genetical mechanism, although some previous studies have revealed various formulation models, such as rift basin model related to the Pacific subduction, continental rift basin model, transtensional basin model related to the dextral slip of TanLu fault, simple shear inherited thin skin basin model, basin mode related to extension and detachment of basement, pull-apart basin model related to Mekenzie(1978) pure shear. Among these various tectonic models, the dynamics of formation of fault basin in the Lower Yangtze block is not yet fully understood. Our purpose is to explain comprehensively the formation of the fault basin by an integrated approach, drawing conclusions from our geological field investigation, seismic interpretation and literatures and using the numerical modeling. By contributing a two-dimensional finite element model of the Lower Yangtze block and its environs in the Paleogene, we are able to estimate the surface velocity, stress field and strain rate field of model. The results reveal that there is the nearly southwestward movement of the northeast part of block in an equilibrium of the nearly NEE-SWW trending displacement field with the reference velocity of 100 mm/a, and crustal plastic flow from north to south in internal model, dragging the upper crust to produce nearly N-S striking tension. Displacement and deformation, associated with current seismologic correlation analysis, can be extended to the depth of at least 30KM. Consequently, The deformation of the Lower Yangtze block and its environs is not influenced by the dextral movement of Tan-Lu fault, but the regional extension and strain in the Subei-Southern South Yellow Sea area which has the extensional stress filed in the upper crust. The observations of modeling and evidence from our data and the

  20. Dynamic coupling of pattern formation and morphogenesis in the developing vertebrate retina.

    PubMed

    Picker, Alexander; Cavodeassi, Florencia; Machate, Anja; Bernauer, Sabine; Hans, Stefan; Abe, Gembu; Kawakami, Koichi; Wilson, Stephen W; Brand, Michael

    2009-10-01

    During embryonic development, pattern formation must be tightly synchronized with tissue morphogenesis to coordinate the establishment of the spatial identities of cells with their movements. In the vertebrate retina, patterning along the dorsal-ventral and nasal-temporal (anterior-posterior) axes is required for correct spatial representation in the retinotectal map. However, it is unknown how specification of axial cell positions in the retina occurs during the complex process of early eye morphogenesis. Studying zebrafish embryos, we show that morphogenetic tissue rearrangements during eye evagination result in progenitor cells in the nasal half of the retina primordium being brought into proximity to the sources of three fibroblast growth factors, Fgf8/3/24, outside the eye. Triple-mutant analysis shows that this combined Fgf signal fully controls nasal retina identity by regulating the nasal transcription factor Foxg1. Surprisingly, nasal-temporal axis specification occurs very early along the dorsal-ventral axis of the evaginating eye. By in vivo imaging GFP-tagged retinal progenitor cells, we find that subsequent eye morphogenesis requires gradual tissue compaction in the nasal half and directed cell movements into the temporal half of the retina. Balancing these processes drives the progressive alignment of the nasal-temporal retina axis with the anterior-posterior body axis and is controlled by a feed-forward effect of Fgf signaling on Foxg1-mediated cell cohesion. Thus, the mechanistic coupling and dynamic synchronization of tissue patterning with morphogenetic cell behavior through Fgf signaling leads to the graded allocation of cell positional identity in the eye, underlying retinotectal map formation. PMID:19823566

  1. Dynamic Processes of Altered Layer Formation in Cu-Pt Alloys Under Ion Bombardment

    NASA Astrophysics Data System (ADS)

    Li, Chunfei; Asahata, Tatsuya; Shimizu, Ryuichi

    Three different experimental approaches have been developed to study the dynamic process of subsurface altered layer formation in a Cu-Pt alloy under Ar+ ion bombardment: (1) sputter neutral mass spectrometry by multiphoton ionization (MPI-SNMS) for the study of preferential sputtering caused by the collision cascade process in the very initial stage of sputtering; (2) ion scattering spectroscopy (ISS)-Auger electron spectroscopy (AES) sequential measurements for investigating radiation-enhanced Gibbsian segregation in the transient stage of sputtering; (3) an approach based on ISS monitoring by prompt switching of the ion bombardment with (He++Ar+) ions to that with He+ ions, for revealing the cooling effect in radiation-enhanced diffusion in the final steady state of sputtering. For this we have developed a specific coevaporating device for depositing Cu and Pt simultaneously on a substrate at constant deposition rate. The coevaporating device was attached to both of the specimen chambers of the Auger microprobe, JAMP-3, and of the MPI-SNMS apparatus. The results have clearly revealed: (i) ion bombardment causes a preferential sputtering of Cu atoms in the very initial stage of sputtering, (ii) followed by gradual formation of an altered layer as ion sputtering proceeds in the transient stage, and (iii) finally the alloy system approaches a steady state where the composition profile is controlled by cascade mixing, radiation-enhanced Gibbsian segregation and radiation-enhanced diffusion to satisfy the mass balance law. In the steady state the approach (3) has, first, revealed that the cooling effect does exist in radiation-enhanced diffusion.

  2. Rotational and hinge dynamics of discoidal high density lipoproteins probed by interchain disulfide bond formation

    PubMed Central

    Li, Ling; Li, Songlin; Jones, Martin K.; Segrest, Jere P.

    2013-01-01

    To develop a detailed double belt model for discoidal HDL, we previously scored inter-helical salt bridges between all possible registries of two stacked antiparallel amphipathic helical rings of apolipoprotein (apo) A-I. The top score was the antiparallel apposition of helix 5 with 5 followed closely by appositions of helix 5 with 4 and helix 5 with 6. The rationale for the current study is that, for each of the optimal scores, a pair of identical residues can be identified in juxtaposition directly on the contact edge between the two antiparallel helical belts of apoA-I. Further, these residues are always in the ‘9th position’ in one of the eighteen 11-mer repeats that make up the lipid-associating domain of apoA-I. To illustrate our terminology, 129j (LL5/5) refers to the juxtaposition of the Ca atoms of G129 (in a ‘9th position’) in the pairwise helix 5 domains. We reasoned that if identical residues in the double belt juxtapositions were mutated to a cysteine and kept under reducing conditions during disc formation, we would have a precise method for determining registration in discoidal HDL by formation of a disulfide-linked apoA-I homodimer. Using this approach, we conclude that 129j (LL5/5) is the major rotamer orientation for double belt HDL and propose that the small ubiquitous gap between the pairwise helix 5 portions of the double belt in larger HDL discoidal particles is significantly dynamic to hinge off the disc edge under certain conditions, e.g., in smaller particles or perhaps following binding of the enzyme LCAT. PMID:22063273

  3. Dynamic Coupling of Pattern Formation and Morphogenesis in the Developing Vertebrate Retina

    PubMed Central

    Picker, Alexander; Cavodeassi, Florencia; Machate, Anja; Bernauer, Sabine; Hans, Stefan; Abe, Gembu; Kawakami, Koichi; Wilson, Stephen W.; Brand, Michael

    2009-01-01

    During embryonic development, pattern formation must be tightly synchronized with tissue morphogenesis to coordinate the establishment of the spatial identities of cells with their movements. In the vertebrate retina, patterning along the dorsal-ventral and nasal-temporal (anterior-posterior) axes is required for correct spatial representation in the retinotectal map. However, it is unknown how specification of axial cell positions in the retina occurs during the complex process of early eye morphogenesis. Studying zebrafish embryos, we show that morphogenetic tissue rearrangements during eye evagination result in progenitor cells in the nasal half of the retina primordium being brought into proximity to the sources of three fibroblast growth factors, Fgf8/3/24, outside the eye. Triple-mutant analysis shows that this combined Fgf signal fully controls nasal retina identity by regulating the nasal transcription factor Foxg1. Surprisingly, nasal-temporal axis specification occurs very early along the dorsal-ventral axis of the evaginating eye. By in vivo imaging GFP-tagged retinal progenitor cells, we find that subsequent eye morphogenesis requires gradual tissue compaction in the nasal half and directed cell movements into the temporal half of the retina. Balancing these processes drives the progressive alignment of the nasal-temporal retina axis with the anterior-posterior body axis and is controlled by a feed-forward effect of Fgf signaling on Foxg1-mediated cell cohesion. Thus, the mechanistic coupling and dynamic synchronization of tissue patterning with morphogenetic cell behavior through Fgf signaling leads to the graded allocation of cell positional identity in the eye, underlying retinotectal map formation. PMID:19823566

  4. Molecular dynamics of wetting layer formation and forced water invasion in angular nanopores with mixed wettability

    SciTech Connect

    Sedghi, Mohammad Piri, Mohammad; Goual, Lamia

    2014-11-21

    The depletion of conventional hydrocarbon reservoirs has prompted the oil and gas industry to search for unconventional resources such as shale gas/oil reservoirs. In shale rocks, considerable amounts of hydrocarbon reside in nanoscale pore spaces. As a result, understanding the multiphase flow of wetting and non-wetting phases in nanopores is important to improve oil and gas recovery from these formations. This study was designed to investigate the threshold capillary pressure of oil and water displacements in a capillary dominated regime inside nanoscale pores using nonequilibrium molecular dynamics (NEMD) simulations. The pores have the same cross-sectional area and volume but different cross-sectional shapes. Oil and water particles were represented with a coarse grained model and the NEMD simulations were conducted by assigning external pressure on an impermeable piston. Threshold capillary pressures were determined for the drainage process (water replaced by oil) in different pores. The molecular dynamics results are in close agreements with calculations using the Mayer-Stowe-Princen (MS-P) method which has been developed on the premise of energy balance in thermodynamic equilibrium. After the drainage simulations, a change in wall particles’ wettability from water-wet to oil-wet was implemented based on the final configuration of oil and water inside the pore. Waterflooding simulations were then carried out at the threshold capillary pressure. The results show that the oil layer formed between water in the corner and in the center of the pore is not stable and collapses as the simulation continues. This is in line with the predictions from the MS-P method.

  5. Decreased Pseudomonas aeruginosa biofilm formation on nanomodified endotracheal tubes: a dynamic lung model

    PubMed Central

    Machado, Mary C; Webster, Thomas J

    2016-01-01

    Ventilator-associated pneumonia (VAP) is a serious complication of mechanical ventilation that has been shown to be associated with increased mortality rates and medical costs in the pediatric intensive care unit. Currently, there is no cost-effective solution to the problems posed by VAP. Endotracheal tubes (ETTs) that are resistant to bacterial colonization and that inhibit biofilm formation could provide a novel solution to the problems posed by VAP. The objective of this in vitro study was to evaluate differences in the growth of Pseudomonas aeruginosa on unmodified polyvinyl chloride (PVC) ETTs and on ETTs etched with a fungal lipase, Rhizopus arrhizus, to create nanoscale surface features. These differences were evaluated using an in vitro model of the pediatric airway to simulate a ventilated patient in the pediatric intensive care unit. Each experiment was run for 24 hours and was supported by computational models of the ETT. Dynamic conditions within the ETT had an impact on the location of bacterial growth within the tube. These conditions also quantitatively affected bacterial growth especially within the areas of tube curvature. Most importantly, experiments in the in vitro model revealed a 2.7 log reduction in the number (colony forming units/mL) of P. aeruginosa on the nanoroughened ETTs compared to the untreated PVC ETTs after 24 hours. This reduction in total colony forming units/mL along the x-axis of the tube was similar to previous studies completed for Staphylococcus aureus. Thus, this dynamic study showed that lipase etching can create surface features of nanoscale roughness on PVC ETTs that decrease bacterial attachment of P. aeruginosa without the use of antibiotics and may provide clinicians with an effective and inexpensive tool to combat VAP. PMID:27563242

  6. Initial conditions of formation of starburst clusters: constraints from stellar dynamics

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran; Kroupa, Pavel

    2015-08-01

    Recent high resolution observations of dense regions of molecular clouds and massive gaseous clumps with instruments like Herschel and ALMA have revealed intricate and filamentary overdensity structures in them. Such progenitors of massive starburst clusters are in contrast with smooth, centrally-pronounced profiles of the latter. In this work, we intend to constrain massive, substructured stellar distributions that would evolve to cluster-like profiles at very young ages (~Myr), as seen in starburst clusters. Taking the well observed NGC3603 Young Cluster (NYC) as an example, we compute the infall and final merger of filament-like compact (0.1-0.3 pc) subclusters, totalling 10000 M_sun, from a range of spatial scales and modes of sub-clustering, using direct N-body calculations. These calculations infer an allowable span of approx. 2.5 pc from which the subclusters can fall in a gas potential and merge to form a single centrally-dense structure in near dynamical equilibrium, within the young age of NYC (1-2 Myr). However, these merged clusters are too compact and centrally overdense compared to typical young clusters. Our N-body calculations, beginning from such compact initial conditions, show that even stellar wind and supernova mass loss, dynamical heating from retaining black holes, external tidal field and heating due to tight O-star binaries together cannot expand these clusters to their observed sizes, even in 100 Myr. Hence an explosive gas dispersal phase seems essential for forming starburst and other young clusters observed in the Milky Way and in the Local Group which can expand the clusters to their observed sizes and concentrations; including that for NYC with approx. 30% clump star formation efficiency. However, some observed massive but highly extended (>10 pc) , >10 Myr old clusters better fit a slow (several Myr timescale) gas dispersal from parsec-scale initial profiles, which can be the future of embedded systems like W3 Main.

  7. Vortex formation in coalescence of droplets with a reservoir using molecular dynamics simulations.

    PubMed

    Taherian, Fereshte; Marcon, Valentina; Bonaccurso, Elmar; van der Vegt, Nico F A

    2016-10-01

    The flow patterns generated by the coalescence of aqueous ethanol droplets with a water reservoir are investigated using molecular dynamics simulations. The influence of surface tension gradient, which leads to the spreading of the droplet along the liquid-vapor interface of the reservoir, is studied by changing the ethanol concentration of the droplet. The internal circulation (vortex strength) of the droplet and the reservoir are analyzed separately. Simulation results reveal the formation of swirling flows within the droplet at early times when the radius of the coalescence neck due to the capillary forces increases rapidly with time. The vortex strength is found to be higher at lower concentrations of ethanol (higher liquid-vapor surface tension of the droplet), where the driving force for the contact line movement (capillary force) is stronger. The circulation diminishes by moving the center of mass of the droplet toward the reservoir. The lower surface tension of the droplet compared to the reservoir leads to surface tension gradient driven flow, which transports the droplet molecules along the liquid-vapor interface of the reservoir. Such a flow motion results in the generation of convective flows in the underlying water, which forms swirling flows within the reservoir. Therefore, the vortex strength of the reservoir is higher at higher ethanol concentrations of the droplet. The reservoir circulation decays to zero as soon as the ethanol concentration becomes homogeneous along the interface of the pool. The time evolution of circulation within the droplet and the reservoir are correlated with the center of mass motion of the droplet toward the surface, the time variation of the precursor film radius and the dynamic surface tension of the reservoir. PMID:27388133

  8. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation

    NASA Astrophysics Data System (ADS)

    Michaels, Thomas C. T.; Lazell, Hamish W.; Arosio, Paolo; Knowles, Tuomas P. J.

    2015-08-01

    The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial to progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.

  9. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation

    SciTech Connect

    Michaels, Thomas C. T. Lazell, Hamish W.; Arosio, Paolo; Knowles, Tuomas P. J.

    2015-08-07

    The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial to progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.

  10. Molecular dynamics of wetting layer formation and forced water invasion in angular nanopores with mixed wettability.

    PubMed

    Sedghi, Mohammad; Piri, Mohammad; Goual, Lamia

    2014-11-21

    The depletion of conventional hydrocarbon reservoirs has prompted the oil and gas industry to search for unconventional resources such as shale gas/oil reservoirs. In shale rocks, considerable amounts of hydrocarbon reside in nanoscale pore spaces. As a result, understanding the multiphase flow of wetting and non-wetting phases in nanopores is important to improve oil and gas recovery from these formations. This study was designed to investigate the threshold capillary pressure of oil and water displacements in a capillary dominated regime inside nanoscale pores using nonequilibrium molecular dynamics (NEMD) simulations. The pores have the same cross-sectional area and volume but different cross-sectional shapes. Oil and water particles were represented with a coarse grained model and the NEMD simulations were conducted by assigning external pressure on an impermeable piston. Threshold capillary pressures were determined for the drainage process (water replaced by oil) in different pores. The molecular dynamics results are in close agreements with calculations using the Mayer-Stowe-Princen (MS-P) method which has been developed on the premise of energy balance in thermodynamic equilibrium. After the drainage simulations, a change in wall particles' wettability from water-wet to oil-wet was implemented based on the final configuration of oil and water inside the pore. Waterflooding simulations were then carried out at the threshold capillary pressure. The results show that the oil layer formed between water in the corner and in the center of the pore is not stable and collapses as the simulation continues. This is in line with the predictions from the MS-P method. PMID:25416901

  11. Decreased Pseudomonas aeruginosa biofilm formation on nanomodified endotracheal tubes: a dynamic lung model.

    PubMed

    Machado, Mary C; Webster, Thomas J

    2016-01-01

    Ventilator-associated pneumonia (VAP) is a serious complication of mechanical ventilation that has been shown to be associated with increased mortality rates and medical costs in the pediatric intensive care unit. Currently, there is no cost-effective solution to the problems posed by VAP. Endotracheal tubes (ETTs) that are resistant to bacterial colonization and that inhibit biofilm formation could provide a novel solution to the problems posed by VAP. The objective of this in vitro study was to evaluate differences in the growth of Pseudomonas aeruginosa on unmodified polyvinyl chloride (PVC) ETTs and on ETTs etched with a fungal lipase, Rhizopus arrhizus, to create nanoscale surface features. These differences were evaluated using an in vitro model of the pediatric airway to simulate a ventilated patient in the pediatric intensive care unit. Each experiment was run for 24 hours and was supported by computational models of the ETT. Dynamic conditions within the ETT had an impact on the location of bacterial growth within the tube. These conditions also quantitatively affected bacterial growth especially within the areas of tube curvature. Most importantly, experiments in the in vitro model revealed a 2.7 log reduction in the number (colony forming units/mL) of P. aeruginosa on the nanoroughened ETTs compared to the untreated PVC ETTs after 24 hours. This reduction in total colony forming units/mL along the x-axis of the tube was similar to previous studies completed for Staphylococcus aureus. Thus, this dynamic study showed that lipase etching can create surface features of nanoscale roughness on PVC ETTs that decrease bacterial attachment of P. aeruginosa without the use of antibiotics and may provide clinicians with an effective and inexpensive tool to combat VAP. PMID:27563242

  12. Computational issues in chemo-dynamical modelling of the formation and evolution of galaxies

    NASA Astrophysics Data System (ADS)

    Revaz, Yves; Arnaudon, Alexis; Nichols, Matthew; Bonvin, Vivien; Jablonka, Pascale

    2016-04-01

    Chemo-dynamical N-body simulations are an essential tool for understanding the formation and evolution of galaxies. As the number of observationally determined stellar abundances continues to climb, these simulations are able to provide new constraints on the early star formaton history and chemical evolution inside both the Milky Way and Local Group dwarf galaxies. Here, we aim to reproduce the low α-element scatter observed in metal-poor stars. We first demonstrate that as stellar particles inside simulations drop below a mass threshold, increases in the resolution produce an unacceptably large scatter as one particle is no longer a good approximation of an entire stellar population. This threshold occurs at around 103M⊙, a mass limit easily reached in current (and future) simulations. By simulating the Sextans and Fornax dwarf spheroidal galaxies we show that this increase in scatter at high resolutions arises from stochastic supernovae explosions. In order to reduce this scatter down to the observed value, we show the necessity of introducing a metal mixing scheme into particle-based simulations. The impact of the method used to inject the metals into the surrounding gas is also discussed. We finally summarise the best approach for accurately reproducing the scatter in simulations of both Local Group dwarf galaxies and in the Milky Way.

  13. Dynamical pattern formation in a low-concentration magnetorheological fluid under two orthogonal sinusoidal fields

    NASA Astrophysics Data System (ADS)

    Yépez, L. D.; Carrillo, J. L.; Donado, F.; Sausedo-Solorio, J. M.; Miranda-Romagnoli, P.

    2016-06-01

    The dynamical pattern formation of clusters of magnetic particles in a low-concentration magnetorheological fluid, under the influence of a superposition of two perpendicular sinusoidal fields, is studied experimentally. By varying the frequency and phase shift of the perpendicular fields, this configuration enables us to experimentally analyze a wide range of field configurations, including the case of a pure rotating field and the case of an oscillating unidirectional field. The fields are applied parallel to the horizontal plane where the fluid lies or in the vertical plane. For fields applied in the horizontal plane, we observed that, when the ratio of the frequencies increases, the average cluster size exhibits a kind of periodic resonances. When the phase shift between the fields is varied, the average chain length reaches maximal values for the cases of the rotating field and the unidirectional case. We analyze and discuss these results in terms of a weighted average of the time-dependent Mason number. In the case of a rotating field on the vertical plane, we also observe that the competition between the magnetic and the viscous forces determines the average cluster size. We show that this configuration generates a series of physically meaningful self-organization of clusters and transport phenomena.

  14. Molecular dynamics study of crater formation by core-shell structured cluster impact

    NASA Astrophysics Data System (ADS)

    Aoki, Takaaki; Seki, Toshio; Matsuo, Jiro

    2012-07-01

    Crater formation processes by the impacts of large clusters with binary atomic species were studied using molecular dynamics (MD) simulations. Argon and xenon atoms are artificially organized in core-shell cluster structures with various component ratios and irradiated on a Si(1 0 0) target surface. When the cluster has Xe1000 core covered with 1000 Ar atoms, and impacts at a total of 20 keV, the core Xe cluster penetrates into the deep area, and a crater with a conical shape is left on the target. On the other hand, in the case of a cluster with the opposite structure, Ar1000 core covered with 1000 Xe atoms, the cluster stops at a shallow area of the target. The incident cluster atoms are mixed and tend to spread in a lateral direction, which results in a square shaped crater with a shallower hole and wider opening. The MD simulations suggest that large cluster impacts cause different irradiation effects by changing the structure, even if the component ratio is the same.

  15. Formation of clusters in stable and unstable nuclei explored by antisymmetrized molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kimura, Masaaki

    2014-09-01

    Clustering is one of the elementary degrees-of-freedom of nuclear excitation together with the single-particle and collective mean-field excitations. Owing to the theoretical and experimental developments in the decades, the concept of the nuclear clustering itself is rapidly expanding. In particular, increasing computational power provided an opportunity to extend our knowledge on nuclear clustering. The antisymmetrized molecular dynamics (AMD) is one of the theoretical models which boosted the study of nuclear clustering combined with high performance computing. In this presentation, we discuss frontier issues of nuclear cluster physics, mainly focusing on the latest results obtained by AMD studies. Particular attentions will be paid on the following topics. (1) Evolution of clusters in N =Z nuclei. By increasing the excitation energy, a variety of clusters appears. Such examples will be demonstrated in the case of 24Mg, 28Si and 32S. The isoscalar monopole excitation function will be focused as an experimental signature of clustering. (2) Formation of covalent clusters in neutron-rich nuclei. Excess neutrons develop a novel type of clusters with covalent neutrons. Theoretical exploration of covalent states will be discussed.

  16. A preliminary investigation of dislocation cell structure formation in metals using continuum dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Xia, S. X.; El-Azab, A.

    2015-08-01

    A continuum dislocation dynamics model capable of capturing the cellular arrangements of dislocations in deformed crystals is presented. A small strain formulation of the model is given, followed by sample results of stress-strain behaviour, dislocation density evolution, dislocation cell pattern, lattice rotation, and geometrically necessary dislocation density and strain energy density distributions. An important finding of the current work is that dislocations form patterns under all circumstances due to their long range interactions. It is found, however, that the famous cell structure pattern forms when cross slip is activated. It is also found that cells are 3D sub-regions surrounded by dislocations walls in all directions, and they form, disappear, and reappear as a result of the motion of cell walls and formation of new walls by cross slip. It is further found that the average cell size is connected with the applied resolved shear stress according to the similitude principle observed in related experiments. The importance of these results is briefly discussed in the context of recrystallization.

  17. In vivo dynamics of chromatin-associated complex formation in mammalian nucleotide excision repair

    PubMed Central

    Moné, Martijn J.; Bernas, Tytus; Dinant, Christoffel; Goedvree, Feliks A.; Manders, Erik M. M.; Volker, Marcel; Houtsmuller, Adriaan B.; Hoeijmakers, Jan H. J.; Vermeulen, Wim; van Driel, Roel

    2004-01-01

    Chromatin is the substrate for many processes in the cell nucleus, including transcription, replication, and various DNA repair systems, all of which require the formation of multiprotein machineries on the chromatin fiber. We have analyzed the kinetics of in vivo assembly of the protein complex that is responsible for nucleotide excision repair (NER) in mammalian cells. Assembly is initiated by UV irradiation of a small area of the cell nucleus, after which the accumulation of GFP-tagged NER proteins in the DNA-damaged area is measured, reflecting the establishment of the dual-incision complex. The dynamic behavior of two NER proteins, ERCC1-XPF and TFIIH, was studied in detail. Results show that the repair complex is assembled with a rate of ≈30 complexes per second and is not diffusion limited. Furthermore, we provide in vivo evidence that not only binding of TFIIH, but also its helicase activity, is required for the recruitment of ERCC1-XPF. These studies give quantitative insight into the de novo assembly of a chromatin-associated protein complex in living cells. PMID:15520397

  18. Localization and dynamics of amylose-lipophilic molecules inclusion complex formation in starch granules.

    PubMed

    Manca, Marianna; Woortman, Albert J J; Mura, Andrea; Loos, Katja; Loi, Maria Antonietta

    2015-03-28

    Inclusion complex formation between lipophilic dye molecules and amylose polymers in starch granules is investigated using laser spectroscopy and microscopy. By combining confocal laser scanning microscopy (CLSM) with spatial resolved photoluminescence (PL) spectroscopy, we are able to discriminate the presence of amylose in the peripheral region of regular and waxy granules from potato and corn starch, associating a clear optical fingerprint with the interaction between starch granules and lipophilic dye molecules. We show in particular that in the case of regular starch the polar head of the lipophilic dye molecules remains outside the amylose helix experiencing a water-based environment. The measurements performed on samples that have been extensively washed provide a strong proof of the specific interaction between lipid dye molecules and amylose chains in regular starch. These measurements also confirm the tendency of longer amylopectin chains, located in the hilum of waxy starch granules, to form inclusion complexes with ligands. Through real-time recording of CLSM micrographs, within a time frame of tens of seconds, we measured the dynamics of occurrence of the inclusion process between lipids and amylose located at the periphery of starch granules. PMID:25715960

  19. Dynamic formation of zeolite synthesized from fly ash by alkaline hydrothermal conversion.

    PubMed

    Zhang, ZhiJian; Li, Jiangli; Li, Hongyi; Wang, Hang; Zhu, Jun; He, Qiang

    2013-11-01

    This study was designed to characterize the dynamic formation of zeolite synthesized from fly ash (ZFA) and to identify the zeolitization mechanisms during a 160-h-long hydrothermal alkaline conversion at 95°C by using fly ash (FA) samples collected from four typical thermoelectric power plants in China, with the purpose of improving ZFA quality. The process of synthesizing ZFA can be fundamentally divided into five stages: induction stage (0-0.5 h), accelerating dissolution stage (0.5-12 h), nucleation and/or crystallization stage (12-24 h), crystal growth stage (24-72 h) and crystal transformation stage (72-160 h). The crystal growth stage determined the quality of zeolite crystallization, coupled with functions of re-assembling the silicon-aluminium tetrahedral network and developing submicro- and/or nanometer microstructure. A 48-h-long hydrothermal conversion generated ZFAs that had a greater specific surface area (26.0-89.4 times) and cation exchange capacity (29.6-71.0 times) than FA, which successfully sequestrated 41-95% of ammonium and 75-98% of phosphate from swine manure. However, over-reaction resulted in more stable hydroxysodalite and/or sodalite, surface agglomeration and cracking, and energy wasting. This work suggests that the reuse of recycled synthesis materials should occur during the fourth step (24-72 h). PMID:24025368

  20. Dynamical behavior of the soliton formation and propagation in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Das, G. C.; Sarma, J.; Gao, Yi-Tian; Uberoi, C.

    2000-06-01

    Despite many theoretical studies on soliton formation and its propagation in plasmas, no study with multicomponent magnetized plasma has derived the special nonlinear wave equation, called the Zakharov-Kuznetsov equation [V. E. Zakharov and E. A. Kuznetsov, Sov. Phys. JETP 39, 285 (1974)]. Thus, the main emphasis has been given to employing the hyperbolic-type method for finding the soliton features in relation to laboratory and space plasma environments. Where this method has been unsuccessful, an alternate method has been developed to yield the soliton propagation. The features of the nonlinear plasma-acoustic waves, which depend on the plasma composition, affect the coexistence of compressive and rarefactive solitary waves. Later, allowing for the higher order nonlinearity in the dynamics, one is led to further different solitary waves along with double layers. The main aim of the present study is to use a new formalism for finding the soliton propagation from the nonlinear wave equation with strong, as well as weak, nonlinearity. The coexistence of different nonlinear acoustic modes due to the interaction of multiple charges in plasma is shown. Moreover, the theoretical observations revealed many other soliton-like structures, which could be similar to the dip and hump solitons observed by the Freja Scientific Satellite and the collapsed solitons expected in the propagation of solar flares, as well as in the interplanetary space plasmas.

  1. Dynamics of DNA-protein complex formation in rat liver during induction by phenobarbital and triphenyldioxane.

    PubMed

    Pustylnyak, V O; Zacharova, L Yu; Gulyaeva, L F; Lyakhovich, V V; Slynko, N M

    2004-10-01

    CYP2B gene expression in liver of rats treated with phenobarbital and triphenyldioxane at early stage of induction (40 min-18 h) was studied using electrophoretic mobility shift assay (EMSA) and RT-PCR. During first 6 h after induction, differences in the dynamics of formation of DNA-protein complexes were shown for each inducer. Later (18 h after induction), the intensity pattern of these complexes became the same for both phenobarbital and triphenyldioxane treated animals. This suggests the existence of specific signaling for each inducer only in early stages of CYP2B activation. Increase in nuclear protein (possible transcription factor) binding to Barbie-box regulatory sequence of CYP2B genes was accompanied by their increased expression. Thus, we have demonstrated for the first time that early stages of induction (40 min and 3 h after administration of phenobarbital and triphenyldioxane, respectively) are accompanied by activation of nuclear proteins that can bind to Barbie-box element of CYP2B. Although various chemical inducers cause distinct activation of such binding, this process involves activation of gene transcription. PMID:15527410

  2. Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening.

    PubMed

    Shen, Zhijian; Zhao, Zhe; Peng, Hong; Nygren, Mats

    2002-05-16

    Ceramics based on Si(3)N(4) have been comprehensively studied and are widely used in structural applications. The development of an interlocking microstructure of elongated grains is vital to ensure that this family of ceramics have good damage tolerance. Until now this has been accomplished by heating the appropriate powder compacts to temperatures above 1,700 degrees C for extended periods. This procedure involves a necessary step of controlling the size and population of seeds added ex situ or formed in situ to ensure selective grain growth. Here we report the very fast (within minutes) in situ formation of a tough interlocking microstructure in Si(3)N(4)-based ceramics. The microstructures are obtained by a dynamic ripening mechanism, an anisotropic Ostwald ripening process that results from the rapid heating rate. The resulting microstructures are uniform and reproducible in terms of grain size distribution and mechanical properties, and are easily tailored by manipulating the kinetics. This process is very efficient and opens up new possibilities to optimize mechanical properties and cost-effectively manufacture ceramics. PMID:12015597

  3. Dynamical thermalization and vortex formation in stirred two-dimensional Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Wright, T. M.; Ballagh, R. J.; Bradley, A. S.; Blakie, P. B.; Gardiner, C. W.

    2008-12-01

    We present a quantum-mechanical treatment of the mechanical stirring of Bose-Einstein condensates using classical field techniques. In our approach the condensate and excited modes are described using a Hamiltonian classical field method in which the atom number and (rotating frame) energy are strictly conserved. We simulate a T=0 quasi-two-dimensional condensate perturbed by a rotating anisotropic trapping potential. Vacuum fluctuations in the initial state provide an irreducible mechanism for breaking the initial symmetries of the condensate and seeding the subsequent dynamical instability. Highly turbulent motion develops and we quantify the emergence of a rotating thermal component that provides the dissipation necessary for the nucleation and motional damping of vortices in the condensate. Vortex lattice formation is not observed, rather the vortices assemble into a spatially disordered vortex liquid state. We discuss methods we have developed to identify the condensate in the presence of an irregular distribution of vortices, determine the thermodynamic parameters of the thermal component, and extract damping rates from the classical field trajectories.

  4. Towards New Insights in the Sterol/Amphotericin Nanochannels Formation: A Molecular Dynamic Simulation Study.

    PubMed

    Boukari, Khaoula; Balme, Sébastien; Janot, Jean-Marc; Picaud, Fabien

    2016-06-01

    Amphotericin B (AmB) is a well-known polyene which self-organizes into membrane cell in order to cause the cell death. Its specific action towards fungal cell is not fully understood but was proved to become from sterol composition. The mechanism was shown experimentally to require the formation of stable sterol/polyene couples which could then organize in a nanochannel. This would allow the leakage of ions responsible for the death of fungal cells, only. In this present study, we investigate the arrangement of AmB/sterols in biological membrane using molecular dynamic simulations in order to understand the role of the sterol structure on the antifungal action of the polyene. We show in particular that the nanochannels tend to close up when cell was composed with cholesterol (animal cell) due to strong interaction between amphotericin and sterol. On the other side, with ergosterol (fungal cell) the largest interactions between amphotericin and lipid membrane lead to the appearance of large hole that could favor the important leakage of ions and thus, the fungal cell death. This work appears as a good complement in the extensive studies linked to the understanding of the antifungal molecules in membrane cells. PMID:26700625

  5. Molecular dynamics of haloalkane corral formation and surface halogenation at Si(111)-7×7

    NASA Astrophysics Data System (ADS)

    Dobrin, S.; Harikumar, K. R.; Jones, R. V.; McNab, I. R.; Polanyi, J. C.; Waqar, Z.; Yang, J. (S. Y.)

    2006-10-01

    Long-chain organic molecules, 1-halododecane, RX (X =Cl,Br), adsorbed on Si(111)-7×7 were shown to form stable dimeric corrals; type I around corner holes and type II around corner adatoms S. Dobrin et al. [Surf. Sci. Lett. 600, L43 (2006)]. Here we examine the molecular dynamics of corral formation, in which mobile physisorbed adsorbates spontaneously convert to immobile. At high coverage the mechanism gives evidence of involving collisions between mobile vertical monomers, giving types I and II immobile horizontal dimers, vD+vD→h2 (I, II). At low coverage mobile vertical monomers collide with immobile horizontal ones to form largely type-II corrals, vD+h →h2 (II). Thermal reaction of corrals with X =Br brominates the surface by two distinct molecular pathways, thought to have more general applicability: "daughter-mediated" reaction of vertical vA with a low activation energy (here Ea˜5kcalmol-1) and "parent-mediated" reaction of horizontal h or h2 with high activation energy (here Ea=29kcalmol-1).

  6. Dynamics of fast pattern formation in porous silicon by laser interference

    SciTech Connect

    Peláez, Ramón J.; Kuhn, Timo; Afonso, Carmen N.; Vega, Fidel

    2014-10-20

    Patterns are fabricated on 290 nm thick nanostructured porous silicon layers by phase-mask laser interference using single pulses of an excimer laser (193 nm, 20 ns pulse duration). The dynamics of pattern formation is studied by measuring in real time the intensity of the diffraction orders 0 and 1 at 633 nm. The results show that a transient pattern is formed upon melting at intensity maxima sites within a time <30 ns leading to a permanent pattern in a time <100 ns upon solidification at these sites. This fast process is compared to the longer one (>1 μs) upon melting induced by homogeneous beam exposure and related to the different scenario for releasing the heat from hot regions. The diffraction efficiency of the pattern is finally controlled by a combination of laser fluence and initial thickness of the nanostructured porous silicon layer and the present results open perspectives on heat release management upon laser exposure as well as have potential for alternative routes for switching applications.

  7. Laser-induced UV photodissociation of 2-bromo-2-nitropropane: dynamics of OH and Br formation.

    PubMed

    Saha, Ankur; Kawade, Monali; Upadhyaya, Hari P; Kumar, Awadhesh; Naik, Prakash D

    2011-01-28

    Photoexcitation of 2-bromo-2-nitropropane (BNP) at 248 and 193 nm generates OH, Br, and NO(2) among other products. The OH fragment is detected by laser-induced fluorescence spectroscopy, and its translational and internal state distributions (vibration, rotation, spin-orbit, and Λ-doubling components) are probed. At both 248 and 193 nm, the OH fragment is produced translationally hot with the energy of 10.8 and 17.2 kcal∕mol, respectively. It is produced vibrationally cold (v" = 0) at 248 nm, and excited (v" = 1) at 193 nm with a vibrational temperature of 1870 ± 150 K. It is also generated with rotational excitation, rotational populations of OH(v" = 0) being characterized by a temperature of 550 ± 50 and 925 ± 100 K at 248 and 193 nm excitation of BNP, respectively. The spin-orbit components of OH(X(2)Π) are not in equilibrium on excitation at 193 nm, but the Λ-doublets are almost in equilibrium, implying no preference for its π lobe with respect to the plane of rotation. The NO(2) product is produced electronically excited, as detected by measuring UV-visible fluorescence, at 193 nm and mostly in the ground electronic state at 248 nm. The Br product is detected employing resonance-enhanced multiphoton ionization with time-of-flight mass spectrometer for better understanding of the dynamics of dissociation. The forward convolution analysis of the experimental data has provided translational energy distributions and anisotropy parameters for both Br((2)P(3∕2)) and Br∗((2)P(1∕2)). The average translational energies for the Br and Br∗ channels are 5.0 ± 1.0 and 6.0 ± 1.5 kcal∕mol. No recoil anisotropies were observed for these products. Most plausible mechanisms of OH and Br formation are discussed based on both the experimental and the theoretical results. Results suggest that the electronically excited BNP molecules at 248 and 234 nm relax to the ground state, and subsequently dissociate to produce OH and Br through different channels. The

  8. A test of star formation laws in disk galaxies. II. Dependence on dynamical properties

    SciTech Connect

    Suwannajak, Chutipong; Tan, Jonathan C.; Leroy, Adam K.

    2014-05-20

    We use the observed radial profiles of the mass surface densities of total, Σ {sub g}, and molecular, Σ{sub H2}, gas, rotation velocity, and star formation rate (SFR) surface density, Σ{sub sfr}, of the molecular-rich (Σ{sub H2} ≥ Σ{sub HI}/2) regions of 16 nearby disk galaxies to test several star formation (SF) laws: a 'Kennicutt-Schmidt (K-S)' law, Σ{sub sfr}=A{sub g}Σ{sub g,2}{sup 1.5}; a 'Constant Molecular' law, Σ{sub sfr} = A {sub H2}Σ{sub H2,2}; the turbulence-regulated laws of Krumholz and McKee (KM05) and Krumholz, McKee, and Tumlinson (KMT09); a 'Gas-Ω' law, Σ{sub sfr}=B{sub Ω}Σ{sub g}Ω; and a shear-driven 'giant molecular cloud (GMC) Collision' law, Σ{sub sfr} = B {sub CC}Σ {sub g}Ω(1-0.7β), where β ≡ d ln v {sub circ}/d ln r. If allowed one free normalization parameter for each galaxy, these laws predict the SFR with rms errors of factors of 1.4-1.8. If a single normalization parameter is used by each law for the entire galaxy sample, then rms errors range from factors of 1.5-2.1. Although the Constant Molecular law gives the smallest rms errors, the improvement over the KMT, K-S, and GMC Collision laws is not especially significant, particularly given the different observational inputs that the laws utilize and the scope of included physics, which ranges from empirical relations to detailed treatment of interstellar medium processes. We next search for systematic variation of SF law parameters with local and global galactic dynamical properties of disk shear rate (related to β), rotation speed, and presence of a bar. We demonstrate with high significance that higher shear rates enhance SF efficiency per local orbital time. Such a trend is expected if GMC collisions play an important role in SF, while an opposite trend would be expected if the development of disk gravitational instabilities is the controlling physics.

  9. THE LAST STAGES OF TERRESTRIAL PLANET FORMATION: DYNAMICAL FRICTION AND THE LATE VENEER

    SciTech Connect

    Schlichting, Hilke E.; Warren, Paul H.; Yin Qingzhu

    2012-06-10

    The final stage of terrestrial planet formation consists of the clean-up of residual planetesimals after the giant impact phase. Dynamically, a residual planetesimal population is needed to damp the high eccentricities and inclinations of the terrestrial planets to circular and coplanar orbits after the giant impact stage. Geochemically, highly siderophile element (HSE) abundance patterns inferred for the terrestrial planets and the Moon suggest that a total of about 0.01 M{sub Circled-Plus} of chondritic material was delivered as 'late veneer' by planetesimals to the terrestrial planets after the end of giant impacts. Here, we combine these two independent lines of evidence for a leftover population of planetesimals and show that: (1) a residual population of small planetesimals containing 0.01 M{sub Circled-Plus} is able to damp the high eccentricities and inclinations of the terrestrial planets after giant impacts to their observed values. (2) At the same time, this planetesimal population can account for the observed relative amounts of late veneer added to the Earth, Moon, and Mars provided that the majority of the accreted late veneer was delivered by small planetesimals with radii {approx}< 10 m. These small planetesimal sizes are required to ensure efficient damping of the planetesimal's velocity dispersion by mutual collisions, which in turn ensures sufficiently low relative velocities between the terrestrial planets and the planetesimals such that the planets' accretion cross sections are significantly enhanced by gravitational focusing above their geometric values. Specifically, we find that, in the limit that the relative velocity between the terrestrial planets and the planetesimals is significantly less than the terrestrial planets' escape velocities, gravitational focusing yields a mass accretion ratio of Earth/Mars {approx}({rho}{sub Circled-Plus }/{rho}{sub mars})(R{sub Circled-Plus }/R{sub mars}){sup 4} {approx} 17, which agrees well with the mass

  10. Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris

    PubMed Central

    GRUBER, ANDREAS; STROBL, STEFAN; VEIT, BARBARA; OBERHUBER, WALTER

    2011-01-01

    Summary We determined the temporal dynamics of cambial activity and xylem cell differentiation of Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m asl, Tyrol, Austria), where radial growth is strongly limited by drought in spring. Repeated micro-sampling of the developing tree ring of mature trees was carried out during 2 contrasting years at two study plots that differ in soil water availability (xeric and dry-mesic site). In 2007, when air temperature at the beginning of the growing season in April exceeded the long-term mean by 6.4 °C, cambial cell division started in early April at both study plots. A delayed onset of cambial activity of c. 2 wk was found in 2008, when average climate conditions prevailed in spring, indicating that resumption of cambial cell division after winter dormancy is temperature-controlled. Cambial cell division consistently ended about the end of June/early July in both study years. Radial enlargement of tracheids started almost 3 wk earlier in 2007 compared with 2008 at both study plots. At the xeric site, the maximum rate of tracheid production in 2007 and 2008 was reached in early and mid-May, respectively, and c. 2 wk later, at the dry-mesic site. Since in both study years, more favorable growing conditions (i.e., an increase in soil water content) were recorded during summer, we suggest a strong sink competition for carbohydrates to mycorrhizal root and shoot growth. Wood formation stopped c. 4 wk earlier at the xeric compared with the dry-mesic site in both years, indicating a strong influence of drought stress on cell differentiation. This is supported by radial widths of earlywood cells, which were found to be significantly narrower at the xeric than at the dry-mesic site (P < 0.05). Repeated cellular analyses during the two growing seasons revealed that, although spatial variability in the dynamics and duration of cell differentiation processes in Pinus sylvestris exposed to drought is strongly

  11. Adaptive Speckle Imaging Interferometry: a new technique for the analysis of microstructure dynamics, drying processes and coating formation.

    PubMed

    Brunel, L; Brun, A; Snabre, P; Cipelletti, L

    2007-11-12

    We describe an extension of multi-speckle diffusing wave spectroscopy adapted to follow the non-stationary microscopic dynamics in drying films and coatings in a very reactive way and with a high dynamic range. We call this technique "Adaptive Speckle Imaging Interferometry". We introduce an efficient tool, the inter-image distance, to evaluate the speckle dynamics, and the concept of "speckle rate" (SR, in Hz) to quantify this dynamics. The adaptive algorithm plots a simple kinetics, the time evolution of the SR, providing a non-invasive characterization of drying phenomena. A new commercial instrument, called HORUS(R), based on ASII and specialized in the analysis of film formation and drying processes is presented. PMID:19550809

  12. Dark-ages Reionization and Galaxy formation simulation - I. The dynamical lives of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Poole, Gregory B.; Angel, Paul W.; Mutch, Simon J.; Power, Chris; Duffy, Alan R.; Geil, Paul M.; Mesinger, Andrei; Wyithe, Stuart B.

    2016-07-01

    We present the Dark-ages Reionization and Galaxy formation Observables from Numerical Simulations (DRAGONS) programme and Tiamat, the collisionless N-body simulation programme upon which DRAGONS is built. The primary trait distinguishing Tiamat from other large simulation programme is its density of outputs at high redshift (100 from z = 35 to z = 5; roughly one every 10 Myr) enabling the construction of very accurate merger trees at an epoch when galaxy formation is rapid and mergers extremely frequent. We find that the friends-of-friends halo mass function agrees well with the prediction of Watson et al. at high masses, but deviates at low masses, perhaps due to our use of a different halo finder or perhaps indicating a break from `universal' behaviour. We then analyse the dynamical evolution of galaxies during the Epoch of Reionization finding that only a small fraction (˜20 per cent) of galactic haloes are relaxed. We illustrate this using standard relaxation metrics to establish two dynamical recovery time-scales: (i) haloes need ˜1.5 dynamical times following formation, and (ii) ˜2 dynamical times following a major (3:1) or minor (10:1) merger to be relaxed. This is remarkably consistent across a wide mass range. Lastly, we use a phase-space halo finder to illustrate that major mergers drive long-lived massive phase-space structures which take many dynamical times to dissipate. This can yield significant differences in the inferred mass build-up of galactic haloes and we suggest that care must be taken to ensure a physically meaningful match between the galaxy formation physics of semi-analytic models and the halo finders supplying their input.

  13. PLANET FORMATION IN BINARIES: DYNAMICS OF PLANETESIMALS PERTURBED BY THE ECCENTRIC PROTOPLANETARY DISK AND THE SECONDARY

    SciTech Connect

    Silsbee, Kedron; Rafikov, Roman R.

    2015-01-10

    Detections of planets in eccentric, close (separations of ∼20 AU) binary systems such as α Cen or γ Cep provide an important test of planet formation theories. Gravitational perturbations from the companion are expected to excite high planetesimal eccentricities, resulting in destruction rather than growth of objects with sizes of up to several hundred kilometers in collisions of similar-sized bodies. It was recently suggested that the gravity of a massive axisymmetric gaseous disk in which planetesimals are embedded drives rapid precession of their orbits, suppressing eccentricity excitation. However, disks in binaries are themselves expected to be eccentric, leading to additional planetesimal excitation. Here we develop a secular theory of eccentricity evolution for planetesimals perturbed by the gravity of an elliptical protoplanetary disk (neglecting gas drag) and the companion. For the first time, we derive an expression for the disturbing function due to an eccentric disk, which can be used for a variety of other astrophysical problems. We obtain explicit analytical solutions for planetesimal eccentricity evolution neglecting gas drag and delineate four different regimes of dynamical excitation. We show that in systems with massive (≳ 10{sup –2} M {sub ☉}) disks, planetesimal eccentricity is usually determined by the gravity of the eccentric disk alone, and is comparable to the disk eccentricity. As a result, the latter imposes a lower limit on collisional velocities of solids, making their growth problematic. In the absence of gas drag, this fragmentation barrier can be alleviated if the gaseous disk rapidly precesses or if its own self-gravity is efficient at lowering disk eccentricity.

  14. Dynamics of formation of K-hole fractions of sulfur projectiles inside a carbon foil

    SciTech Connect

    Braziewicz, J.; Majewska, U.; Slabkowska, K.; Polasik, M.; Fijal, I.; Jaskola, M.; Korman, A.; Czarnacki, W.; Chojnacki, S.; Kretschmer, W.

    2004-06-01

    The K{alpha} and K{beta} satellite and hypersatellite x-ray lines emitted by highly ionized sulfur projectiles passing with energies from 65 MeV up to 122 MeV through carbon foils of thickness of 15-210 {mu}g cm{sup -2} have been recorded using a Si(Li) detector. The additional hypersatellite Ky{sup h} peak proves that for such high energies of the sulfur ions very high subshells (4p and 5p) could be occupied. In order to study the dynamics of formation of K-shell vacancy fractions of sulfur projectiles passing through a carbon foil the dependence of sulfur K x-ray production cross sections on foil thickness has been examined separately for each recorded line using the three component model. For each projectile energy the values of K-shell hole production cross sections and K-shell electron capture cross sections (both common for all recorded x-ray lines in the case of each projectile energy) have been fitted, as well as the specific values (for each recorded x-ray line) of K-shell hole filling cross sections, which are directly connected with average lifetimes of appropriate states of sulfur ions. The obtained ''experimental'' values of K-shell vacancy production cross sections are much higher than the theoretical predictions. This suggests that apart from the ionization process the excitation from K shell into higher shells is responsible for a production of K-shell vacancies, which has been confirmed by recent classical trajectory Monte Carlo calculations.

  15. Formation and near-field dynamics of a wing tip vortex

    NASA Astrophysics Data System (ADS)

    Zuhal, Lavi Rizki

    2001-12-01

    The search for a more efficient method to destroy aircraft trailing vortices requires a good understanding of the early development of the vortices. For that purpose, an experimental investigation has been conducted to study the formation and near-field dynamics of a wing tip vortex. Two versions of the Digital Particle Image Velocimetry (DPIV) technique were used in the studies. Planar DPIV was used to obtain velocity fields adjacent to the wing surface. Stereoscopic DPIV, which allows instantaneous measurements of all three components of velocity within a planar slice, was used to measure velocity fields behind the wing. The trailing vortex was produced by a rectangular half-wing model with an NACA 0012 profile. All measurements were made at Reynolds number, based on chord length, of 9040. The present study has found that the wing sheds multiple vortices. A structure that closely resembles a wing tip vortex is first observed on the suction side of the wing near the tip at the mid-chord section of the wing. At the trailing edge of the wing, a smaller vortex with an opposite sense of rotation is observed next to the tip vortex. In addition to the two vortices, two vortex layers with opposite sense of rotation, one on the pressure side and one on the suction side, are apparent at the trailing edge. Farther downstream, most of the vorticity in the vortex layer, with the same sense of rotation as the tip vortex, rolls up into the wing tip vortex. The vortices, with opposite sense of rotation, break up into smaller vortices which orbit around the tip vortex. At least one relatively strong satellite vortex appears in some of the instantaneous fields. The studies found that the interaction of the tip vortex and satellite vortices give rise to the unsteady motion of the wing tip vortex. In addition, the studies also examined the effects of the boundary layer and the tip geometry to the strength and motion of the trailing vortex.

  16. Thermodynamics and Kinetics of Na+/K+-Formate Ion Pairs Association in Polarizable Water: A Molecular Dynamics Study

    SciTech Connect

    Nguyen, Phuong T.; Nguyen, Van T.; Annapureddy, Harsha V.; Dang, Liem X.; Do, Duong D.

    2012-12-03

    To elevate our understanding of ion specific activity in biological systems, the potential of mean force approach was utilized to study solvent effects on interactions between two alkali cations (Na+ and K+) with a formate anion in water. A very complex free energy landscape was observed, much more so than alkali-halide ion pairs. Furthermore, stronger binding between the Na+-formate pair was found in comparison to the K+-formate pair in water, a finding that agrees with experimental and theoretical studies of these systems. The kinetics of ion-pair interconversions were studied using transition rate theory, along with a variety of theoretical approaches such as the Kramers and Grote Hynes theories. These rate results were used to predict solvent effects on dynamical features of contact ion-pair association, in which faster dynamics were found for K+-formate pairs than for Na+-formate pairs. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle.

  17. Spatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum Caldicellulosiruptor obsidiansis

    SciTech Connect

    Wang, Zhiwu; Lee, Sueng-Hwan; Elkins, James G; Morrell-Falvey, Jennifer L

    2011-01-01

    Cellulose degradation is one of the major bottlenecks of a consolidated bioprocess that employs cellulolytic bacterial cells as catalysts to produce biofuels from cellulosic biomass. In this study, we investigated the spatial and temporal dynamics of cellulose degradation by Caldicellulosiruptor obsidiansis, which does not produce cellulosomes, and Clostridium thermocellum, which does produce cellulosomes. Results showed that the degradation of either regenerated or natural cellulose was synchronized with biofilm formation, a process characterized by the formation and fusion of numerous crater-like depressions on the cellulose surface. In addition, the dynamics of biofilm formation were similar in both bacteria, regardless of cellulosome production. Only the areas of cellulose surface colonized by microbes were significantly degraded, highlighting the essential role of the cellulolytic biofilm in cellulose utilization. After initial attachment, the microbial biofilm structure remained thin, uniform and dense throughout the experiment. A cellular automaton model, constructed under the assumption that the attached cells divide and produce daughter cells that contribute to the hydrolysis of the adjacent cellulose, can largely simulate the observed process of biofilm formation and cellulose degradation. This study presents a model, based on direct observation, correlating cellulolytic biofilm formation with cellulose degradation.

  18. fSpatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum

    PubMed Central

    2011-01-01

    Cellulose degradation is one of the major bottlenecks of a consolidated bioprocess that employs cellulolytic bacterial cells as catalysts to produce biofuels from cellulosic biomass. In this study, we investigated the spatial and temporal dynamics of cellulose degradation by Caldicellulosiruptfor obsidiansis, which does not produce cellulosomes, and Clostridium thermocellum, which does produce cellulosomes. Results showed that the degradation of either regenerated or natural cellulose was synchronized with biofilm formation, a process characterized by the formation and fusion of numerous crater-like depressions on the cellulose surface. In addition, the dynamics of biofilm formation were similar in both bacteria, regardless of cellulosome production. Only the areas of cellulose surface colonized by microbes were significantly degraded, highlighting the essential role of the cellulolytic biofilm in cellulose utilization. After initial attachment, the microbial biofilm structure remained thin, uniform and dense throughout the experiment. A cellular automaton model, constructed under the assumption that the attached cells divide and produce daughter cells that contribute to the hydrolysis of the adjacent cellulose, can largely simulate the observed process of biofilm formation and cellulose degradation. This study presents a model, based on direct observation, correlating cellulolytic biofilm formation with cellulose degradation. PMID:21982458

  19. Dynamical state and star formation properties of the merging galaxy cluster Abell 3921

    NASA Astrophysics Data System (ADS)

    Ferrari, C.; Benoist, C.; Maurogordato, S.; Cappi, A.; Slezak, E.

    2005-01-01

    We present the analysis and results of a new VRI photometric and spectroscopic survey of the central ˜1.8×1.2 Mpc2 region of the galaxy cluster A3921 (z=0.094). We detect the presence of two dominant clumps of galaxies with a mass ratio of ˜5: a main cluster centred on the Brightest Cluster Galaxy (BCG) (A3921-A), and an NW sub-cluster (A3921-B) hosting the second brightest cluster galaxy. The distorted morphology of the two sub-clusters suggests that they are interacting, while the velocity distribution of 104 confirmed cluster members does not reveal strong signatures of merging. By applying a two-body dynamical formalism to the two sub-clusters of A3921, and by comparing our optical results to the X-ray analysis of A3921 based on XMM observations (Belsole et al. \\cite{Belsole04}), we conclude that A3921-B is probably tangentially traversing the main cluster along the SW/NE direction. The two sub-clusters are observed in the central phase of their merging process (±0.3 Gyr), with a collision axis nearly perpendicular to the line of sight. Based on the spectral features of the galaxies belonging to A3921 we estimate the star formation properties of the confirmed cluster members. Substantial fractions of both emission-line (˜13%) and post-star-forming objects (so called k+a's, ˜16%) are detected, comparable to those measured at intermediate redshifts. Our analysis reveals a lack of bright post-star-forming objects in A3921 with respect to higher redshift clusters, while the fraction of k+a's increases towards fainter magnitudes (MR_AB>-20). Similar results were obtained in the Coma cluster by Poggianti et al. (\\cite{Poggianti04}), but at still fainter magnitudes, suggesting that the maximum mass of actively star-forming galaxies increases with redshift (``downsizing effect''). The spatial and velocity distributions of k+a galaxies do not show significant differences to those of the passive population, and to the whole cluster. Most of these objects show

  20. Formations of Bacteria-like Textures by dynamic reactions in Meteorite and Syntheses

    NASA Astrophysics Data System (ADS)

    Miura, Y.

    2009-05-01

    fixings on iron plates at author's laboratory [4]. 5. Summary 1) Spherule- chained texture with Fe, Ni and Cl has been obtained at the fusion crust of the Kuga iron meteorite found in Japan. 2) As the Kuga iron meteorite is different with the Martian meteorite ALH84001 with composition and formation steps, bacteria-like texture of the Kuga meteorite is first significant example to form fossil-like texture by dynamic reaction of materials in the Solar System. Acknowledgements Author thanks to Dr. T. Kato, Yamaguchi University, for interpretation on bacteria-like texture. References: [1] Miura Y.(2008) 5th AOGS (Asia- Oceania Geosciences Society) Annual Meet. (Busan, Korea), CD#PS07- ST31-A22. [2] Miura Y.(2008). Meteoritics & Planetary Science (USA), 43-7, #5203. [3] McKay D.S. et al. (1996): Science, 273, 924-930. [4]Miura Y. (2009): 6th AGOS (submitted )

  1. Spontaneous formation of intermediate phases and dynamics of interfacial tension in water-nonionic surfactant-octane systems

    SciTech Connect

    Svitova, T.F.; Smirnova, Yu.P.; Pisarev, S.A.

    1994-05-01

    The kinetics of the spontaneous formation of intermediate phases in aqueous solutions of ethoxylated iso-nonylphenols (iso-C{sub 9}PhEO{sub n}, where n = 5-10)-octane systems was studied at 25{degree}C. The maximum rate of the formation of intermediate phases at this temperature was observed when the number of ethoxy-groups n was 6. The dynamic interfacial tension at the boundary between the aqueous solutions of the surfactants and octane were measured using drop volume and spinning drop methods. The rate of the interfacials tension decrease was maximum and the equilibrium interfacial tension was minimum also at n = 6. A correlation between the dynamics of interfacial processes and the equilibrium phase state of the water-nonionic surfactant-hydrocarbon systems was found for the first time.

  2. Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey

    NASA Astrophysics Data System (ADS)

    Wang, Jinfeng; Shi, Junping; Wei, Junjie

    The dynamics of a reaction-diffusion predator-prey system with strong Allee effect in the prey population is considered. Nonexistence of nonconstant positive steady state solutions are shown to identify the ranges of parameters of spatial pattern formation. Bifurcations of spatially homogeneous and nonhomogeneous periodic solutions as well as nonconstant steady state solutions are studied. These results show that the impact of the Allee effect essentially increases the system spatiotemporal complexity.

  3. Star formation across cosmic time and its influence on galactic dynamics

    NASA Astrophysics Data System (ADS)

    Freundlich, Jonathan

    2015-12-01

    Observations show that ten billion years ago, galaxies formed their stars at rates up to twenty times higher than now. As stars are formed from cold molecular gas, a high star formation rate means a significant gas supply, and galaxies near the peak epoch of star formation are indeed much more gas-rich than nearby galaxies. Is the decline of the star formation rate mostly driven by the diminishing cold gas reservoir, or are the star formation processes also qualitatively different earlier in the history of the Universe? Ten billion years ago, young galaxies were clumpy and prone to violent gravitational instabilities, which may have contributed to their high star formation rate. Stars indeed form within giant, gravitationally-bound molecular clouds. But the earliest phases of star formation are still poorly understood. Some scenarii suggest the importance of interstellar filamentary structures as a first step towards core and star formation. How would their filamentary geometry affect pre-stellar cores? Feedback mechanisms related to stellar evolution also play an important role in regulating star formation, for example through powerful stellar winds and supernovae explosions which expel some of the gas and can even disturb the dark matter distribution in which each galaxy is assumed to be embedded. This PhD work focuses on three perspectives: (i) star formation near the peak epoch of star formation as seen from observations at sub-galactic scales; (ii) the formation of pre-stellar cores within the filamentary structures of the interstellar medium; and (iii) the effect of feedback processes resulting from star formation and evolution on the dark matter distribution.

  4. MASSIVE GALAXIES AT HIGH z: ASSEMBLY PATTERNS, STRUCTURE, AND DYNAMICS IN THE FAST PHASE OF GALAXY FORMATION

    SciTech Connect

    Onorbe, J.; Dominguez-Tenreiro, R.; Knebe, A.; Martinez-Serrano, F. J.; Serna, A.

    2011-05-10

    Relaxed, massive galactic objects have been identified at redshifts z = 4, 5, and 6 in hydrodynamical simulations run in a large cosmological volume. This allowed us to analyze the assembly patterns of the high-mass end of the galaxy distribution at these high z's, by focusing on their structural and dynamical properties. Our simulations indicate that massive objects at high redshift already follow certain scaling relations. These relations define virial planes at the halo scale, whereas at the galactic scale they define intrinsic dynamical planes that are, however, tilted relative to the virial plane. Therefore, we predict that massive galaxies must lie on fundamental planes from their formation. We briefly discuss the physical origin of the tilt in terms of the physical processes underlying massive galaxy formation at high z, in the context of a two-phase galaxy formation scenario. Specifically, we have found that it lies on the different behavior of the gravitationally heated gas as compared with cold gas previously involved in caustic formation and the mass dependence of the energy available to heat the gas.

  5. Characterization of the Electric Double Layer Formation Dynamics of a Metal/Ionic Liquid/Metal Structure.

    PubMed

    Schmidt, Elliot; Shi, Sha; Ruden, P Paul; Frisbie, C Daniel

    2016-06-15

    Although ionic liquids (ILs) have been used extensively in recent years as a high-capacitance "dielectric" in electric double layer transistors, the dynamics of the double layer formation have remained relatively unexplored. Better understanding of the dynamics and relaxation processes involved in electric double layer formation will guide device optimization, particularly with regard to switching speed. In this paper, we explore the dynamical characteristics of an IL in a metal/ionic liquid/metal (M/IL/M) capacitor. In particular, we examine a Au/IL/Au structure where the IL is 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. The experiments consist of frequency-dependent impedance measurements and time-dependent current vs voltage measurements for applied linear voltage ramps and abrupt voltage steps. The parameters of an equivalent circuit model are determined by fits to the impedance vs frequency data and subsequently verified by calculating the current vs voltage characteristics for the applied potential profiles. The data analysis indicates that the dynamics of the structure are characterized by a wide distribution of relaxation times spanning the range of less than microseconds to longer than seconds. Possible causes for these time scales are discussed. PMID:27213215

  6. The Higher Learning and High Technology: Dynamics of Higher Education Policy Formation.

    ERIC Educational Resources Information Center

    Slaughter, Sheila

    An examination of national higher education policy formation focuses on the shift in relationships of the central actors in the policy formation process. It is argued that whereas the federal government, together with the scientific community and foundations, previously had the dominant voice, the corporate community, in partnership with leaders…

  7. Learning to read as the formation of a dynamic system: evidence for dynamic stability in phonological recoding

    PubMed Central

    Fletcher-Flinn, Claire M.

    2014-01-01

    Two aspects of dynamic systems approaches that are pertinent to developmental models of reading are the emergence of a system with self-organizing characteristics, and its evolution over time to a stable state that is not easily modified or perturbed. The effects of dynamic stability may be seen in the differences obtained in the processing of print by beginner readers taught by different approaches to reading (phonics and text-centered), and more long-term effects on adults, consistent with these differences. However, there is little direct evidence collected over time for the same participants. In this study, lexicalized (implicit) phonological processing, and explicit phonological and letter-sound skills are further examined in a precocious reader whose early development at 3 and 5 years has been extensively described (Cognition, 2000, 2004). At ages 10 and 14 years, comparisons were made with these earlier reports and skilled adult readers, using the same tasks for evidence of changes in reading processes. The results showed that along with an increase of reading accuracy and speed, her pattern of lexicalized phonological responses for reading did not change over time. Neither did her pattern of explicit phonological and letter-sound skills, aspects of which were inferior to her lexicalized phonological processing, and word reading. These results suggest dynamic stability of the word reading system. The early emergence of this system with minimal explicit skill development calls into question developmental reading theories that require such skills for learning to read. Currently, only the Knowledge Sources theory of reading acquisition can account for such findings. Consideration of these aspects of dynamic systems raise theoretical issues that could result in a paradigm shift with regard to best practice and intervention. PMID:25071635

  8. A Nonverbal Phoneme Deletion Task Administered in a Dynamic Assessment Format

    ERIC Educational Resources Information Center

    Gillam, Sandra Laing; Fargo, Jamison; Foley, Beth; Olszewski, Abbie

    2011-01-01

    Purpose: The purpose of the project was to design a nonverbal dynamic assessment of phoneme deletion that may prove useful with individuals who demonstrate complex communication needs (CCN) and are unable to communicate using natural speech or who present with moderate-severe speech impairments. Method: A nonverbal dynamic assessment of phoneme…

  9. Regulation of Star Formation Rates in Multiphase Galactic Disks: Numerical Tests of the Thermal/Dynamical Equilibrium Model

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Kim, Woong-Tae; Ostriker, Eve C.

    2011-12-01

    We use vertically resolved numerical hydrodynamic simulations to study star formation and the interstellar medium (ISM) in galactic disks. We focus on outer-disk regions where diffuse H I dominates, with gas surface densities Σ = 3-20 M⊙ pc-2 and star-plus-dark matter volume densities ρsd = 0.003-0.5 M⊙ pc-3. Star formation occurs in very dense, self-gravitating clouds that form by mergers of smaller cold cloudlets. Turbulence, driven by momentum feedback from supernova events, destroys bound clouds and puffs up the disk vertically. Time-dependent radiative heating (FUV from recent star formation) offsets gas cooling. We use our simulations to test a new theory for self-regulated star formation. Consistent with this theory, the disks evolve to a state of vertical dynamical equilibrium and thermal equilibrium with both warm and cold phases. The range of star formation surface densities and midplane thermal pressures is ΣSFR ∼ 10-4 to 10-2 M⊙ kpc-2 yr-1 and P th/k B ∼ 102 to 104 cm-3 K. In agreement with observations, turbulent velocity dispersions are ~7 km s-1 and the ratio of the total (effective) to thermal pressure is Ptot/Pth ∼ 4-5, across this whole range (provided shielding is similar to the solar neighborhood). We show that ΣSFR is not well correlated with Σ alone, but rather with Σ ρsd1/2, because the vertical gravity from stars and dark matter dominates in outer disks. We also find that ΣSFR has a strong, nearly linear correlation with Ptot, which itself is within ~13% of the dynamical equilibrium estimate Ptot, DE. The quantitative relationships we find between &SigmaSFR and the turbulent and thermal pressures show that star formation is highly efficient for energy and momentum production, in contrast to the low efficiency of mass consumption. Star formation rates adjust until the ISM's energy and momentum losses are replenished by feedback within a dynamical time.

  10. ON THE FORMATION LOCATION OF URANUS AND NEPTUNE AS CONSTRAINED BY DYNAMICAL AND CHEMICAL MODELS OF COMETS

    SciTech Connect

    Kavelaars, J. J.; Mousis, Olivier; Petit, Jean-Marc; Weaver, Harold A.

    2011-06-20

    The D/H enrichment observed in Saturn's satellite Enceladus is remarkably similar to the values observed in the nearly-isotropic comets. Given the predicted strong variation of D/H with heliocentric distance in the solar nebula, this observation links the primordial source region of the nearly-isotropic comets with the formation location of Enceladus. That is, comets from the nearly-isotropic class were most likely fed into their current reservoir, the Oort cloud, from a source region near the formation location of Enceladus. Dynamical simulations of the formation of the Oort cloud indicate that Uranus and Neptune are, primarily, responsible for the delivery of material into the Oort cloud. In addition, Enceladus formed from material that condensed from the solar nebula near the location at which Saturn captured its gas envelope, most likely at or near Saturn's current location in the solar system. The coupling of these lines of evidence appears to require that Uranus and Neptune were, during the epoch of the formation of the Oort cloud, much closer to the current location of Saturn than they are currently. Such a configuration is consistent with the Nice model of the evolution of the outer solar system. Further measurements of the D/H enrichment in comets, particularly in ecliptic comets, will provide an excellent discriminator among various models of the formation of the outer solar system.

  11. Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides

    NASA Astrophysics Data System (ADS)

    Nguyen, Hung D.; Hall, Carol K.

    2004-11-01

    Assembly of normally soluble proteins into amyloid fibrils is a cause or associated symptom of numerous human disorders, including Alzheimer's and the prion diseases. We report molecular-level simulation of spontaneous fibril formation. Systems containing 12-96 model polyalanine peptides form fibrils at temperatures greater than a critical temperature that decreases with peptide concentration and exceeds the peptide's folding temperature, consistent with experimental findings. Formation of small amorphous aggregates precedes ordered nucleus formation and subsequent rapid fibril growth through addition of -sheets laterally and monomeric peptides at fibril ends. The fibril's structure is similar to that observed experimentally. amyloid | protein aggregation

  12. Dynamics of strong-field laser-induced microplasma formation in noble gases

    NASA Astrophysics Data System (ADS)

    Romanov, D. A.; Compton, R.; Filin, A.; Levis, R. J.

    2010-03-01

    The ultrafast dynamics of microplasmas generated by femtosecond laser pulses in noble gases has been investigated using four-wave mixing (FWM). The time dependence of the FWM signal is observed to reach higher intensity levels faster for Xe, with progressively lower scattering intensity and longer time dynamics for the noble gas series Xe, Kr, Ar, Ne, and He. The temporal dynamics is interpreted in terms of a tunnel ionization and impact cooling mechanism. A formalism to interpret the observed phenomena is presented here with comparison to the measured laser intensity and gas pressure trends.

  13. Dynamics of iron-acceptor-pair formation in co-doped silicon

    SciTech Connect

    Bartel, T.; Gibaja, F.; Graf, O.; Gross, D.; Kaes, M.; Heuer, M.; Kirscht, F.; Möller, C.; Lauer, K.

    2013-11-11

    The pairing dynamics of interstitial iron and dopants in silicon co-doped with phosphorous and several acceptor types are presented. The classical picture of iron-acceptor pairing dynamics is expanded to include the thermalization of iron between different dopants. The thermalization is quantitatively described using Boltzmann statistics and different iron-acceptor binding energies. The proper understanding of the pairing dynamics of iron in co-doped silicon will provide additional information on the electronic properties of iron-acceptor pairs and may become an analytical method to quantify and differentiate acceptors in co-doped silicon.

  14. Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Musgrave, M. E.

    1996-01-01

    Ultrastructural changes of pollen cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana were studied. The pollen cytoplasm develops a complicated ultrastructure and changes dramatically during these stages. Lipid droplets increase after generative cell formation and their organization and distribution change with the developmental stage. Starch grains in amyloplasts increase in number and size during generative and sperm cell formation and decrease at pollen maturity. The shape and membrane system of mitochondria change only slightly. Dictyosomes become very prominent, and numerous associated vesicles are observed during and after sperm cell formation. Endoplasmic reticulum appears extensively as stacks during sperm cell formation. Free and polyribosomes are abundant in the cytoplasm at all developmental stages although they appear denser at certain stages and in some areas. In mature pollen, all organelles are randomly distributed throughout the vegetative cytoplasm and numerous small particles appear. Organization and distribution of storage substances and appearance of these small particles during generative and sperm cell formation and pollen maturation are discussed.

  15. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    PubMed Central

    Wang, Yang-Gang; Mei, Donghai; Glezakou, Vassiliki-Alexandra; Li, Jun; Rousseau, Roger

    2015-01-01

    Catalysis by gold supported on reducible oxides has been extensively studied, yet issues such as the nature of the catalytic site and the role of the reducible support remain fiercely debated topics. Here we present ab initio molecular dynamics simulations of an unprecedented dynamic single-atom catalytic mechanism for the oxidation of carbon monoxide by ceria-supported gold clusters. The reported dynamic single-atom catalytic mechanism results from the ability of the gold cation to strongly couple with the redox properties of the ceria in a synergistic manner, thereby lowering the energy of redox reactions. The gold cation can break away from the gold nanoparticle to catalyse carbon monoxide oxidation, adjacent to the metal/oxide interface and subsequently reintegrate back into the nanoparticle after the reaction is completed. Our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in catalysis. PMID:25735407

  16. Dynamic Tunnel Usability Study: Format Recommendations for Synthetic Vision System Primary Flight Displays

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.

    2006-01-01

    A usability study evaluating dynamic tunnel concepts has been completed under the Aviation Safety and Security Program, Synthetic Vision Systems Project. The usability study was conducted in the Visual Imaging Simulator for Transport Aircraft Systems (VISTAS) III simulator in the form of questionnaires and pilot-in-the-loop simulation sessions. Twelve commercial pilots participated in the study to determine their preferences via paired comparisons and subjective rankings regarding the color, line thickness and sensitivity of the dynamic tunnel. The results of the study showed that color was not significant in pilot preference paired comparisons or in pilot rankings. Line thickness was significant for both pilot preference paired comparisons and in pilot rankings. The preferred line/halo thickness combination was a line width of 3 pixels and a halo of 4 pixels. Finally, pilots were asked their preference for the current dynamic tunnel compared to a less sensitive dynamic tunnel. The current dynamic tunnel constantly gives feedback to the pilot with regard to path error while the less sensitive tunnel only changes as the path error approaches the edges of the tunnel. The tunnel sensitivity comparison results were not statistically significant.

  17. Living on the Edge: Contrasted Wood-Formation Dynamics in Fagus sylvatica and Pinus sylvestris under Mediterranean Conditions

    PubMed Central

    Martinez del Castillo, Edurne; Longares, Luis A.; Gričar, Jožica; Prislan, Peter; Gil-Pelegrín, Eustaquio; Čufar, Katarina; de Luis, Martin

    2016-01-01

    Wood formation in European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.) was intra-annually monitored to examine plastic responses of the xylem phenology according to altitude in one of the southernmost areas of their distribution range, i.e., in the Moncayo Natural Park, Spain. The monitoring was done from 2011 to 2013 at 1180 and 1580 m a.s.l., corresponding to the lower and upper limits of European beech forest in this region. Microcores containing phloem, cambium and xylem were collected biweekly from twenty-four trees from the beginning of March to the end of November to assess the different phases of wood formation. The samples were prepared for light microscopy to observe the following phenological phases: onset and end of cell production, onset and end of secondary wall formation in xylem cells and onset of cell maturation. The temporal dynamics of wood formation widely differed among years, altitudes and tree species. For Fagus sylvatica, the onset of cambial activity varied between the first week of May and the third week of June. Cambial activity then slowed down and stopped in summer, resulting in a length of growing season of 48–75 days. In contrast, the growing season for P. sylvestris started earlier and cambium remained active in autumn, leading to a period of activity varying from 139-170 days. The intra-annual wood-formation pattern is site and species-specific. Comparison with other studies shows a clear latitudinal trend in the duration of wood formation, positive for Fagus sylvatica and negative for P. sylvestris. PMID:27047534

  18. A Nonlinear, Six-Degree of Freedom Precision Formation Control Algorithm, Based on Restricted Three Body Dynamics

    NASA Technical Reports Server (NTRS)

    Bauer, Frank (Technical Monitor); Luquette, Richard J.; Sanner, Robert M.

    2003-01-01

    Precision Formation Flying is an enabling technology for a variety of proposed space-based observatories, including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), the associated MAXIM pathfinder mission, and the Stellar Imager. An essential element of the technology is the control algorithm. This paper discusses the development of a nonlinear, six-degree of freedom (6DOF) control algorithm for maintaining the relative position and attitude of a spacecraft within a formation. The translation dynamics are based on the equations of motion for the restricted three body problem. The control law guarantees the tracking error convergences to zero, based on a Lyapunov analysis. The simulation, modelled after the MAXIM Pathfinder mission, maintains the relative position and attitude of a Follower spacecraft with respect to a Leader spacecraft, stationed near the L2 libration point in the Sun-Earth system.

  19. Dynamic Neural Network-Based Pulsed Plasma Thruster (PPT) Fault Detection and Isolation for Formation Flying of Satellites

    NASA Astrophysics Data System (ADS)

    Valdes, A.; Khorasani, K.

    The main objective of this paper is to develop a dynamic neural network-based fault detection and isolation (FDI) scheme for the Pulsed Plasma Thrusters (PPTs) that are used in the Attitude Control Subsystem (ACS) of satellites that are tasked to perform a formation flying mission. By using data collected from the relative attitudes of the formation flying satellites our proposed "High Level" FDI scheme can detect the pair of thrusters which is faulty, however fault isolation cannot be accomplished. Based on the "High Level" FDI scheme and the DNN-based "Low Level" FDI scheme developed earlier by the authors, an "Integrated" DNN-based FDI scheme is then proposed. To demonstrate the FDI capabilities of the proposed schemes various fault scenarios are simulated.

  20. Effects of boron-nitride substrates on Stone-Wales defect formation in graphene: An ab initio molecular dynamics study

    SciTech Connect

    Jin, K.; Xiao, H. Y.; Zhang, Y.; Weber, W. J.

    2014-05-19

    Ab initio molecular dynamics simulations are performed to investigate the effects of a boron nitride (BN) substrate on Stone-Wales (SW) defect formation and recovery in graphene. It is found that SW defects can be created by an off-plane recoil atom that interacts with the BN substrate. A mechanism with complete bond breakage for formation of SW defects in suspended graphene is also revealed for recoils at large displacement angles. In addition, further irradiation can result in recovery of the SW defects through a bond rotation mechanism in both graphene and graphene/BN, and the substrate has little effect on the recovery process. This study indicates that the BN substrate enhances the irradiation resistance of graphene.

  1. Homogeneous hydride formation path in α-Zr: Molecular dynamics simulations with the charge-optimized many-body potential

    DOE PAGESBeta

    Zhang, Yongfeng; Bai, Xian-Ming; Yu, Jianguo; Tonks, Michael R.; Noordhoek, Mark J.; Phillpot, Simon R.

    2016-06-01

    A formation path for homogeneous γ hydride formation in hcp α-Zr, from solid solution to the ζ and then the γ hydride, was demonstrated using molecular static calculations and molecular dynamic simulations with the charge-optimized many-body (COMB) potential. Hydrogen has limited solubility in α-Zr. Once the solubility limit is exceeded, the stability of solid solution gives way to that of coherent hydride phases such as the ζ hydride by planar precipitation of hydrogen. At finite temperatures, the ζ hydride goes through a partial hcp-fcc transformation via 1/3 <1¯100> slip on the basal plane, and transforms into a mixture of γmore » hydride and α-Zr. In the ζ hydride, slip on the basal plane is favored thermodynamically with negligible barrier, and is therefore feasible at finite temperatures without mechanical loading. The transformation process involves slips of three equivalent shear partials, in contrast to that proposed in the literature where only a single shear partial was involved. The adoption of multiple slip partials minimizes the macroscopic shape change of embedded hydride clusters and the shear strain accumulation in the matrix, and thus reduces the overall barrier needed for homogeneous γ hydride formation. In conclusion, this formation path requires finite temperatures for hydrogen diffusion without mechanical loading. Therefore, it should be effective at the cladding operating conditions.« less

  2. Protective V127 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations.

    PubMed

    Zhou, Shuangyan; Shi, Danfeng; Liu, Xuewei; Liu, Huanxiang; Yao, Xiaojun

    2016-01-01

    Recent studies uncovered a novel protective prion protein variant: V127 variant, which was reported intrinsically resistant to prion conversion and propagation. However, the structural basis of its protective effect is still unknown. To uncover the origin of the protective role of V127 variant, molecular dynamics simulations were performed to explore the influence of G127V mutation on two key processes of prion propagation: dimerization and fibril formation. The simulation results indicate V127 variant is unfavorable to form dimer by reducing the main-chain H-bond interactions. The simulations of formed fibrils consisting of β1 strand prove V127 variant will make the formed fibril become unstable and disorder. The weaker interaction energies between layers and reduced H-bonds number for V127 variant reveal this mutation is unfavorable to the formation of stable fibril. Consequently, we find V127 variant is not only unfavorable to the formation of dimer but also unfavorable to the formation of stable core and fibril, which can explain the mechanism on the protective role of V127 variant from the molecular level. Our findings can deepen the understanding of prion disease and may guide the design of peptide mimetics or small molecule to mimic the protective effect of V127 variant. PMID:26906032

  3. Protective V127 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations

    PubMed Central

    Zhou, Shuangyan; Shi, Danfeng; Liu, Xuewei; Liu, Huanxiang; Yao, Xiaojun

    2016-01-01

    Recent studies uncovered a novel protective prion protein variant: V127 variant, which was reported intrinsically resistant to prion conversion and propagation. However, the structural basis of its protective effect is still unknown. To uncover the origin of the protective role of V127 variant, molecular dynamics simulations were performed to explore the influence of G127V mutation on two key processes of prion propagation: dimerization and fibril formation. The simulation results indicate V127 variant is unfavorable to form dimer by reducing the main-chain H-bond interactions. The simulations of formed fibrils consisting of β1 strand prove V127 variant will make the formed fibril become unstable and disorder. The weaker interaction energies between layers and reduced H-bonds number for V127 variant reveal this mutation is unfavorable to the formation of stable fibril. Consequently, we find V127 variant is not only unfavorable to the formation of dimer but also unfavorable to the formation of stable core and fibril, which can explain the mechanism on the protective role of V127 variant from the molecular level. Our findings can deepen the understanding of prion disease and may guide the design of peptide mimetics or small molecule to mimic the protective effect of V127 variant. PMID:26906032

  4. High Performance Simulations of Accretion Disk Dynamics and Jet Formations Around Kerr Black Holes

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Mizuno, Yosuke; Watson, Michael

    2007-01-01

    We investigate jet formation in black-hole systems using 3-D General Relativistic Particle-In-Cell (GRPIC) and 3-D GRMHD simulations. GRPIC simulations, which allow charge separations in a collisionless plasma, do not need to invoke the frozen condition as in GRMHD simulations. 3-D GRPIC simulations show that jets are launched from Kerr black holes as in 3-D GRMHD simulations, but jet formation in the two cases may not be identical. Comparative study of black hole systems with GRPIC and GRMHD simulations with the inclusion of radiate transfer will further clarify the mechanisms that drive the evolution of disk-jet systems.

  5. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    SciTech Connect

    Algwari, Q. Th.; O'Connell, D.

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  6. Structural and dynamical heterogeneities in PVA films induced by evaporation during the formation process

    NASA Astrophysics Data System (ADS)

    Ghoshal, Sushanta; Denner, Paul; Stapf, Siegfried; Mattea, Carlos

    2011-10-01

    Microscopic dynamical studies were performed on poly(vinyl alcohol) in aqueous solution by means of NMR microimaging and relaxation techniques. The study indicates a spatial heterogeneity in the molecular dynamics, observed at different heights during evaporation of the solvent. In the advanced stage of the drying process, the microscopic arrangement of the polymer chains during their solidification is influenced by this dynamic heterogeneity and determines the final structure of the film. X-ray diffractometry of the film in its final state confirmed the structural heterogeneity identified by the NMR. This suggests that crystallization of the polymer from the evaporated solution is enhanced on the side of the film where evaporation takes place.

  7. The Directional Observation of Highly Dynamic Membrane Tubule Formation Induced by Engulfed Liposomes

    PubMed Central

    Zhang, Xiaoming; Dai, Luru; Wang, Anhe; Wölk, Christian; Dobner, Bodo; Brezesinski, Gerald; Tang, Yunqing; Wang, Xianyou; Li, Junbai

    2015-01-01

    Highly dynamic tubular structures in cells are responsible for exchanges between organelles. Compared with bacterial invasion, the most affordable and least toxic lipids were found in this study to be gentle and safe exogenous stimuli for the triggering of membrane tubules. A specific lipid system was internalized by NIH3T3 cells. Following cellular uptake, the constructed liposomes traveled towards the nucleus in aggregations and were gradually distributed into moving vesicles and tubules in the cytosol. The triggered tubules proceeded, retreated or fluctuated along the cytoskeleton and were highly dynamic, moving quickly (up to several microns per second), and breaking and fusing frequently. These elongated tubules could also fuse with one another, giving rise to polygonal membrane networks. These lipid systems, with the novel property of accelerating intracellular transport, provide a new paradigm for investigating cellular dynamics. PMID:26548331

  8. 3D time-lapse analysis of Rab11/FIP5 complex: spatiotemporal dynamics during apical lumen formation.

    PubMed

    Mangan, Anthony; Prekeris, Rytis

    2015-01-01

    Fluorescent imaging of fixed cells grown in two-dimensional (2D) cultures is one of the most widely used techniques for observing protein localization and distribution within cells. Although this technique can also be applied to polarized epithelial cells that form three-dimensional (3D) cysts when grown in a Matrigel matrix suspension, there are still significant limitations in imaging cells fixed at a particular point in time. Here, we describe the use of 3D time-lapse imaging of live cells to observe the dynamics of apical membrane initiation site (AMIS) formation and lumen expansion in polarized epithelial cells. PMID:25800842

  9. Dynamical phase transitions and pattern formation induced by a pulse pumping of excitons to a system near a thermodynamic instability

    NASA Astrophysics Data System (ADS)

    Brazovskii, Serguei; Kirova, Natasha

    2016-08-01

    We suggest a phenomenological theory of dynamical phase transitions and the subsequent spaciotemporal evolution induced by a short optical pulse in a system which is already prone to a thermodynamic instability. We address the case of pumping to excitons whose density contributes additively to the thermodynamic order parameter like for charge-transfer excitons in electronic charge-ordering transitions. To describe both thermodynamic and dynamical effects on equal footing, we adopt for the phase transition a view of the "excitonic insulator" (EI) and suggest a formation of the macroscopic quantum state for the pumped excitons. The double nature of the ensemble of excitons leads to an intricate time evolution: the dynamical transition between number-preserved and phase-locked regimes, macroscopic quantum oscillations from interference between the Bose condensate of excitons, and the ground state of the EI. Modeling for an extended sample shows also stratification in domains of low and high densities which evolve through local dynamical phase transitions and a sequence of domain merges.

  10. Complex solitary wave dynamics, pattern formation and chaos in the gain-loss nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Anderson, Justin Q.; Ryan, Rachel A.; Wu, Mingzhong; Carr, Lincoln D.

    2014-02-01

    A numerical exploration of a gain-loss nonlinear Schrödinger equation was carried out utilizing over 180 000 core hours to conduct more than 10 000 unique simulations in an effort to characterize the model's six dimensional parameter space. The study treated the problem in full generality, spanning a minimum of eight orders of magnitude for each of three linear and nonlinear gain terms and five orders of magnitude for higher order nonlinearities. The gain-loss nonlinear Schrödinger equation is of interest as a model for spin wave envelopes in magnetic thin film active feedback rings and analogous driven damped nonlinear physical systems. Bright soliton trains were spontaneously driven out of equilibrium and behaviors stable for tens of thousands of round trip times were numerically identified. Nine distinct complex dynamical behaviors with lifetimes on the order of ms were isolated as part of six identified solution classes. Numerically located dynamical behaviors include: (i) low dimensional chaotic modulations of bright soliton trains; (ii) spatially symmetric/asymmetric interactions of solitary wave peaks; (iii) dynamical pattern formation and recurrence; (iv) steady state solutions; and (v) intermittency. Simulations exhibiting chaotically modulating bright soliton trains were found to qualitatively match previous experimental observations. Ten new dynamical behaviors, eight demonstrating long lifetimes, are predicted to be observable in future experiments.

  11. Vague-to-crisp dynamics of percept formation modeled as operant (selectionist) process.

    PubMed

    Ilin, Roman; Zhang, Jun; Perlovsky, Leonid; Kozma, Robert

    2014-02-01

    We model the vague-to-crisp dynamics of forming percepts in the brain by combining two methodologies: dynamic logic (DL) and operant learning process. Forming percepts upon the presentation of visual inputs is likened to model selection based on sampled evidence. Our framework utilizes the DL in selecting the correct "percept" among competing ones, but uses an intrinsic reward mechanism to allow stochastic online update in lieu of performing the optimization step of the DL framework. We discuss the connection of our framework with cognitive processing and the intentional neurodynamic cycle. PMID:24465287

  12. Dynamics of formation of the resonance rotations of natural celestial bodies

    SciTech Connect

    Khentov, A.A.

    1982-07-01

    The rule for formation of the observed commensurabilities of the 1:1 and 3:2 types between the rotational and orbitial motions of certain bodies of the Solar System in the course of evolution is validated. An interpretation of the rotation of Venus is proposed.

  13. The Dynamics of Professional Identity Formation: Graduates' Transitions from Higher Education to Working Life

    ERIC Educational Resources Information Center

    Nyström, Sofia

    2009-01-01

    This paper explores the development of professional identity as a relationship between professional and personal aspects of life. The focus is on student and novice professional psychologists' and political scientists' processes of professional identity formation in their transition from higher education to working life. Drawing on Wenger's theory…

  14. The Dynamics of Visual Experience, an EEG Study of Subjective Pattern Formation

    PubMed Central

    Elliott, Mark A.; Twomey, Deirdre; Glennon, Mark

    2012-01-01

    Background Since the origin of psychological science a number of studies have reported visual pattern formation in the absence of either physiological stimulation or direct visual-spatial references. Subjective patterns range from simple phosphenes to complex patterns but are highly specific and reported reliably across studies. Methodology/Principal Findings Using independent-component analysis (ICA) we report a reduction in amplitude variance consistent with subjective-pattern formation in ventral posterior areas of the electroencephalogram (EEG). The EEG exhibits significantly increased power at delta/theta and gamma-frequencies (point and circle patterns) or a series of high-frequency harmonics of a delta oscillation (spiral patterns). Conclusions/Significance Subjective-pattern formation may be described in a way entirely consistent with identical pattern formation in fluids or granular flows. In this manner, we propose subjective-pattern structure to be represented within a spatio-temporal lattice of harmonic oscillations which bind topographically organized visual-neuronal assemblies by virtue of low frequency modulation. PMID:22292053

  15. Investigating the Dynamics of Formative Assessment: Relationships between Teacher Knowledge, Assessment Practice and Learning

    ERIC Educational Resources Information Center

    Herman, Joan; Osmundson, Ellen; Dai, Yunyun; Ringstaff, Cathy; Timms, Michael

    2015-01-01

    This exploratory study of elementary school science examines questions central to policy, practice and research on formative assessment: What is the quality of teachers' content-pedagogical and assessment knowledge? What is the relationship between teacher knowledge and assessment practice? What is the relationship between teacher knowledge,…

  16. Hybrid methods in planetesimal dynamics: formation of protoplanetary systems and the mill condition

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, Pau; Glaschke, Patrick; Spurzem, Rainer

    2014-12-01

    The formation and evolution of protoplanetary discs remains a challenge from both a theoretical and numerical standpoint. In this work, we first perform a series of tests of our new hybrid algorithm presented in Glaschke, Amaro-Seoane and Spurzem (henceforth Paper I) that combines the advantages of high accuracy of direct-summation N-body methods with a statistical description for the planetesimal disc based on Fokker-Planck techniques. We then address the formation of planets, with a focus on the formation of protoplanets out of planetesimals. We find that the evolution of the system is driven by encounters as well as direct collisions and requires a careful modelling of the evolution of the velocity dispersion and the size distribution over a large range of sizes. The simulations show no termination of the protoplanetary accretion due to gap formation, since the distribution of the planetesimals is only subjected to small fluctuations. We also show that these features are weakly correlated with the positions of the protoplanets. The exploration of different impact strengths indicates that fragmentation mainly controls the overall mass-loss, which is less pronounced during the early runaway growth. We prove that the fragmentation in combination with the effective removal of collisional fragments by gas drag sets an universal upper limit of the protoplanetary mass as a function of the distance to the host star, which we refer to as the mill condition.

  17. Kinetics of linear rouleaux formation studied by visual monitoring of red cell dynamic organization.

    PubMed

    Barshtein, G; Wajnblum, D; Yedgar, S

    2000-05-01

    Red blood cells (RBCs) in the presence of plasma proteins or other macromolecules may form aggregates, normally in rouleaux formations, which are dispersed with increasing blood flow. Experimental observations have suggested that the spontaneous aggregation process involves the formation of linear rouleaux (FLR) followed by formation of branched rouleaux networks. Theoretical models for the spontaneous rouleaux formation were formulated, taking into consideration that FLR may involve both "polymerization," i.e., interaction between two single RBCs (e + e) and the addition of a single RBC to the end of an existing rouleau (e + r), as well as "condensation" between two rouleaux by end-to-end addition (r + r). The present study was undertaken to experimentally examine the theoretical models and their assumptions, by visual monitoring of the spontaneous FLR (from singly dispersed RBC) in plasma, in a narrow gap flow chamber. The results validate the theoretical model, showing that FLR involves both polymerization and condensation, and that the kinetic constants for the above three types of intercellular interactions are the same, i.e., k(ee) = k(er) = k(rr) = k, and for all tested hematocrits (0.625-6%) k < 0.13 +/- 0.03 s(-1). PMID:10777743

  18. PLANET FORMATION IN STELLAR BINARIES. I. PLANETESIMAL DYNAMICS IN MASSIVE PROTOPLANETARY DISKS

    SciTech Connect

    Rafikov, Roman R.; Silsbee, Kedron

    2015-01-10

    About 20% of exoplanets discovered by radial velocity surveys reside in stellar binaries. To clarify their origin one has to understand the dynamics of planetesimals in protoplanetary disks within binaries. The standard description, accounting for only gas drag and gravity of the companion star, has been challenged recently, as the gravity of the protoplanetary disk was shown to play a crucial role in planetesimal dynamics. An added complication is the tendency of protoplanetary disks in binaries to become eccentric, giving rise to additional excitation of planetesimal eccentricity. Here, for the first time, we analytically explore the secular dynamics of planetesimals in binaries such as α Cen and γ Cep under the combined action of (1) gravity of the eccentric protoplanetary disk, (2) perturbations due to the (coplanar) eccentric companion, and (3) gas drag. We derive explicit solutions for the behavior of planetesimal eccentricity e {sub p} in non-precessing disks (and in precessing disks in certain limits). We obtain the analytical form of the distribution of the relative velocities of planetesimals, which is a key input for understanding their collisional evolution. Disk gravity strongly influences relative velocities and tends to push the sizes of planetesimals colliding with comparable objects at the highest speed to small values, ∼1 km. We also find that planetesimals in eccentric protoplanetary disks apsidally aligned with the binary orbit collide at lower relative velocities than in misaligned disks. Our results highlight the decisive role that disk gravity plays in planetesimal dynamics in binaries.

  19. Dynamics of formation of Ru, Os, Ir and Au metal nanocrystals on doped graphitic surfaces.

    PubMed

    Pitto-Barry, Anaïs; Sadler, Peter J; Barry, Nicolas P E

    2016-03-11

    The fabrication of precious metal (ruthenium, osmium, gold, and iridium) nanocrystals from single atoms has been studied in real-time. The dynamics of the first stage of the metal nanocrystallisation on a doped (B,S)-graphitic surface are identified, captured, and reported. PMID:26698913

  20. Three-dimensional imaging system for analyses of dynamic droplet impaction and deposition formation on leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A system was developed to assess the dynamic processes of droplet impact, rebound and retention on leaf surfaces with three-dimensional (3-D) images. The system components consisted of a uniform-size droplet generator, two high speed digital video cameras, a constant speed track, a leaf holder, and ...

  1. Modeling Networks and Dynamics in Complex Systems: from Nano-Composites to Opinion Formation

    NASA Astrophysics Data System (ADS)

    Shi, Feng

    Complex networks are ubiquitous in systems of physical, biological, social or technological origin. Components in those systems range from as large as cities in power grids, to as small as molecules in metabolic networks. Since the dawn of network science, significant attention has focused on the implications of dynamics in establishing network structure and the impact of structural properties on dynamics on those networks. The first part of the thesis follows this direction, studying the network formed by conductive nanorods in nano-materials, and focuses on the electrical response of the composite to the structure change of the network. New scaling laws for the shear-induced anisotropic percolation are introduced and a robust exponential tail of the current distribution across the network is identified. These results are relevant especially to "active" composite materials where materials are exposed to mechanical loading and strain deformations. However, in many real-world networks the evolution of the network topology is tied to the states of the vertices and vice versa. Networks that exhibit such a feedback are called adaptive or coevolutionary networks. The second part of the thesis examines two closely related variants of a simple, abstract model for coevolution of a network and the opinions of its members. As a representative model for adaptive networks, it displays the feature of self-organization of the system into a stable configuration due to the interplay between the network topology and the dynamics on the network. This simple model yields interesting dynamics and the slight change in the rewiring strategy results in qualitatively different behaviors of the system. In conclusion, the dissertation aims to develop new network models and tools which enable insights into the structure and dynamics of various systems, and seeks to advance network algorithms which provide approaches to coherently articulated questions in real-world complex systems such as

  2. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Han, Wei; Ma, Wen; Schulten, Klaus

    2015-12-01

    Parkinson's disease, originating from the intrinsically disordered peptide α-synuclein, is a common neurodegenerative disorder that affects more than 5% of the population above age 85. It remains unclear how α-synuclein monomers undergo conformational changes leading to aggregation and formation of fibrils characteristic for the disease. In the present study, we perform molecular dynamics simulations (over 180 μs in aggregated time) using a hybrid-resolution model, Proteins with Atomic details in Coarse-grained Environment (PACE), to characterize in atomic detail structural ensembles of wild type and mutant monomeric α-synuclein in aqueous solution. The simulations reproduce structural properties of α-synuclein characterized in experiments, such as secondary structure content, long-range contacts, chemical shifts, and 3J(HNHCα)-coupling constants. Most notably, the simulations reveal that a short fragment encompassing region 38-53, adjacent to the non-amyloid-β component region, exhibits a high probability of forming a β-hairpin; this fragment, when isolated from the remainder of α-synuclein, fluctuates frequently into its β-hairpin conformation. Two disease-prone mutations, namely, A30P and A53T, significantly accelerate the formation of a β-hairpin in the stated fragment. We conclude that the formation of a β-hairpin in region 38-53 is a key event during α-synuclein aggregation. We predict further that the G47V mutation impedes the formation of a turn in the β-hairpin and slows down β-hairpin formation, thereby retarding α-synuclein aggregation.

  3. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation

    SciTech Connect

    Yu, Hang; Ma, Wen; Han, Wei; Schulten, Klaus

    2015-12-28

    Parkinson’s disease, originating from the intrinsically disordered peptide α-synuclein, is a common neurodegenerative disorder that affects more than 5% of the population above age 85. It remains unclear how α-synuclein monomers undergo conformational changes leading to aggregation and formation of fibrils characteristic for the disease. In the present study, we perform molecular dynamics simulations (over 180 μs in aggregated time) using a hybrid-resolution model, Proteins with Atomic details in Coarse-grained Environment (PACE), to characterize in atomic detail structural ensembles of wild type and mutant monomeric α-synuclein in aqueous solution. The simulations reproduce structural properties of α-synuclein characterized in experiments, such as secondary structure content, long-range contacts, chemical shifts, and {sup 3}J(H{sub N}H{sub C{sub α}})-coupling constants. Most notably, the simulations reveal that a short fragment encompassing region 38-53, adjacent to the non-amyloid-β component region, exhibits a high probability of forming a β-hairpin; this fragment, when isolated from the remainder of α-synuclein, fluctuates frequently into its β-hairpin conformation. Two disease-prone mutations, namely, A30P and A53T, significantly accelerate the formation of a β-hairpin in the stated fragment. We conclude that the formation of a β-hairpin in region 38-53 is a key event during α-synuclein aggregation. We predict further that the G47V mutation impedes the formation of a turn in the β-hairpin and slows down β-hairpin formation, thereby retarding α-synuclein aggregation.

  4. Spontaneous Formation of Oligomers and Fibrils in Large-Scale Molecular Dynamics Simulations of A-beta Peptides

    NASA Astrophysics Data System (ADS)

    Hall, Carol

    2013-03-01

    Protein aggregation is associated with serious and eventually-fatal neurodegenerative diseases including Alzheimer's and Parkinson's. While atomic resolution molecular dynamics simulations have been useful in this regard, they are limited to examination of either oligomer formation by a small number of peptides or analysis of the stability of a moderate number of peptides placed in trial or known experimental structures. We describe large scale intermediate-resolution molecular dynamics simulations of the spontaneous formation of fibrils by systems containing large numbers (48) of peptides including A-beta (16-22), and A-beta (17-42) peptides. We trace out the aggregation process from an initial configuration of random coils to proto-filaments with cross- β structures and demonstrate how kinetics dictates the structural details of the fully formed fibril. Fibrillization kinetics depends strongly on the temperature. Nucleation and templated growth via monomer addition occur at and near a transition temperature above which fibrils are unlikely to form. Oligomeric merging and structural rearrangement are observed at lower temperatures. In collaboration with Mookyung Cheon, Iksoo Chang, Pusan University; and David Latshaw, North Carolina State University.

  5. Formation Dynamics of CH3NH3PbI3 Perovskite Following Two-Step Layer Deposition.

    PubMed

    Patel, Jay B; Milot, Rebecca L; Wright, Adam D; Herz, Laura M; Johnston, Michael B

    2016-01-01

    Hybrid metal-halide perovskites have emerged as a leading class of semiconductors for optoelectronic devices because of their desirable material properties and versatile fabrication methods. However, little is known about the chemical transformations that occur in the initial stages of perovskite crystal formation. Here we follow the real-time formation dynamics of MAPbI3 from a bilayer of lead iodide (PbI2) and methylammonium iodide (MAI) deposited through a two-step thermal evaporation process. By lowering the substrate temperature during deposition, we are able to initially inhibit intermixing of the two layers. We subsequently use infrared and visible light transmission, X-ray diffraction, and photoluminescence lifetime measurements to reveal the room-temperature transformations that occur in vacuum and ambient air, as MAI diffuses into the PbI2 lattice to form MAPbI3. In vacuum, the transformation to MAPbI3 is incomplete as unreacted MAI is retained in the film. However, exposure to moist air allows for conversion of the unreacted MAI to MAPbI3, demonstrating that moisture is essential in making MAI more mobile and thus aiding perovskite crystallization. These dynamic processes are reflected in the observed charge-carrier lifetimes, which strongly fluctuate during periods of large ion migration but steadily increase with improving crystallinity. PMID:26667323

  6. Hormone-Mediated Pattern Formation in Seedling of Plants: a Competitive Growth Dynamics Model

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Satoshi; Mimura, Masayasu; Ohya, Tomoyuki; Oikawa, Noriko; Okabe, Hirotaka; Kai, Shoichi

    2001-10-01

    An ecologically relevant pattern formation process mediated by hormonal interactions among growing seedlings is modeled based on the experimental observations on the effects of indole acetic acid, which can act as an inhibitor and activator of root growth depending on its concentration. In the absence of any lateral root with constant hormone-sensitivity, the edge effect phenomenon is obtained depending on the secretion rate of hormone from the main root. Introduction of growth-stage-dependent hormone-sensitivity drastically amplifies the initial randomness, resulting in spatially irregular macroscopic patterns. When the lateral root growth is introduced, periodic patterns are obtained whose periodicity depends on the length of lateral roots. The growth-stage-dependent hormone-sensitivity and the lateral root growth are crucial for macroscopic periodic-pattern formation.

  7. Dynamics of autophagosome formation: a pulse and a sequence of waves.

    PubMed

    Ktistakis, Nicholas T; Karanasios, Eleftherios; Manifava, Maria

    2014-10-01

    Autophagosomes form in eukaryotic cells in response to starvation or to other stress conditions brought about by the unwanted presence in the cytosol of pathogens, damaged organelles or aggregated protein assemblies. The uniqueness of autophagosomes is that they form de novo and that they are the only double-membraned vesicles known in cells, having arisen from flat membrane sheets which have expanded and self-closed. The various steps describing their formation as well as most of the protein and lipid components involved have been identified. Furthermore, the hierarchical relationships among the components are well documented, and the mechanistic rationale for some of these hierarchies has been revealed. In the present review, we try to provide a current view of the process of autophagosome formation in mammalian cells, emphasizing along the way gaps in our knowledge that need additional work. PMID:25233420

  8. Structure and dynamics of poly(T) single-strand DNA: implications toward CPD formation.

    PubMed

    Johnson, Andrew T; Wiest, Olaf

    2007-12-27

    The formation of cyclobutane pyrimidine dimers between adjacent thymines by UV radiation is thought to be the first event in a cascade leading to skin cancer. Recent studies showed that thymine dimers are fully formed within 1 ps of UV irradiation, suggesting that the conformation at the moment of excitation is the determining factor in whether a given base pair dimerizes. MD simulations on the 50 ns time scale are used to study the populations of reactive conformers that exist at any given time in T18 single-strand DNA. Trajectory analysis shows that only a small percentage of the conformations fulfill distance and dihedral requirements for thymine dimerization, in line with the experimentally observed quantum yield of 3%. Plots of the pairwise interactions in the structures predict hot spots of DNA damage where dimerization in the ssT18 is predicted to be most favored. The importance of hairpin formation by intra-strand base pairing for distinguishing reactive and unreactive base pairs is discussed in detail. The data presented thus explain the structural origin of the results from the ultrafast studies of thymine dimer formation. PMID:18052367

  9. High-resolution biophysical analysis of the dynamics of nucleosome formation.

    PubMed

    Hatakeyama, Akiko; Hartmann, Brigitte; Travers, Andrew; Nogues, Claude; Buckle, Malcolm

    2016-01-01

    We describe a biophysical approach that enables changes in the structure of DNA to be followed during nucleosome formation in in vitro reconstitution with either the canonical "Widom" sequence or a judiciously mutated sequence. The rapid non-perturbing photochemical analysis presented here provides 'snapshots' of the DNA configuration at any given moment in time during nucleosome formation under a very broad range of reaction conditions. Changes in DNA photochemical reactivity upon protein binding are interpreted as being mainly induced by alterations in individual base pair roll angles. The results strengthen the importance of the role of an initial (H3/H4)2 histone tetramer-DNA interaction and highlight the modulation of this early event by the DNA sequence. (H3/H4)2 binding precedes and dictates subsequent H2A/H2B-DNA interactions, which are less affected by the DNA sequence, leading to the final octameric nucleosome. Overall, our results provide a novel, exciting way to investigate those biophysical properties of DNA that constitute a crucial component in nucleosome formation and stabilization. PMID:27263658

  10. Quantifying the Incoming Jet Past Heart Valve Prostheses Using Vortex Formation Dynamics

    NASA Astrophysics Data System (ADS)

    Pierrakos, Olga

    2005-11-01

    Heart valve (HV) replacement prostheses are associated with hemodynamic compromises compared to their native counterparts. Traditionally, HV performance and hemodynamics have been quantified using effective orifice size and pressure gradients. However, quality and direction of flow are also important aspects of HV function and relate to HV design, implantation technique, and orientation. The flow past any HV is governed by the generation of shear layers followed by the formation and shedding of organized flow structures in the form of vortex rings (VR). For the first time, vortex formation (VF) in the LV is quantified. Vortex energy measurements allow for calculation of the critical formation number (FN), which is the time at which the VR reaches its maximum strength. Inefficiencies in HV function result in critical FN decrease. This study uses the concept of FN to compare mitral HV prostheses in an in-vitro model (a silicone LV model housed in a piston-driven heart simulator) using Time-resolved Digital Particle Image Velocimetry. Two HVs were studied: a porcine HV and bileaflet MHV, which was tested in an anatomic and non-anatomic orientation. The results suggest that HV orientation and design affect the critical FN. We propose that the critical FN, which is contingent on the HV design, orientation, and physical flow characteristics, serve as a parameter to quantify the incoming jet and the efficiency of the HV.

  11. High-resolution biophysical analysis of the dynamics of nucleosome formation

    PubMed Central

    Hatakeyama, Akiko; Hartmann, Brigitte; Travers, Andrew; Nogues, Claude; Buckle, Malcolm

    2016-01-01

    We describe a biophysical approach that enables changes in the structure of DNA to be followed during nucleosome formation in in vitro reconstitution with either the canonical “Widom” sequence or a judiciously mutated sequence. The rapid non-perturbing photochemical analysis presented here provides ‘snapshots’ of the DNA configuration at any given moment in time during nucleosome formation under a very broad range of reaction conditions. Changes in DNA photochemical reactivity upon protein binding are interpreted as being mainly induced by alterations in individual base pair roll angles. The results strengthen the importance of the role of an initial (H3/H4)2 histone tetramer-DNA interaction and highlight the modulation of this early event by the DNA sequence. (H3/H4)2 binding precedes and dictates subsequent H2A/H2B-DNA interactions, which are less affected by the DNA sequence, leading to the final octameric nucleosome. Overall, our results provide a novel, exciting way to investigate those biophysical properties of DNA that constitute a crucial component in nucleosome formation and stabilization. PMID:27263658

  12. Dynamics of Faceted Nanoparticles Formation in a Crystalline Matrix During Ion Implantation Processing.

    PubMed

    Li, Kun-Dar

    2016-02-01

    The faceted nanoparticle synthesized by ion implantation, such as Zn, Cu or Ag nanoparticles, is one of the promising materials for the next generation of optical devices. To understand and better control the manufacturing processes of ion implantation, a theoretical model is applied to investigate the formation and evolution of faceted nanoparticles under various experimental conditions of implantation processing. In this study, the mechanisms of the anisotropic interfacial energy and kinetics with different ion distributions are taken into consideration to demonstrate the role of the crystallographic symmetry, ion energy and temperature on the faceted nanoparticles formation in a crystalline matrix. As presented in the numerical results, the morphological shape of the nanoparticles is mainly affected by the crystallographic symmetry, while the distribution of the precipitates is principally determined by the ion energy. For the condition of high-temperature implantation, a high mobility of ions causes the characteristic length of nanostructures to increase and creates a coarsening morphology of nanoparticles. It is attributed to a longer diffusion distance during the nucleation and growth processes. This model can be widely used for the predictions of the nanostructures formation with various ion implantation processes. PMID:27433726

  13. Human group formation in online guilds and offline gangs driven by a common team dynamic

    NASA Astrophysics Data System (ADS)

    Johnson, Neil F.; Xu, Chen; Zhao, Zhenyuan; Ducheneaut, Nicolas; Yee, Nicholas; Tita, George; Hui, Pak Ming

    2009-06-01

    Quantifying human group dynamics represents a unique challenge. Unlike animals and other biological systems, humans form groups in both real (offline) and virtual (online) spaces—from potentially dangerous street gangs populated mostly by disaffected male youths to the massive global guilds in online role-playing games for which membership currently exceeds tens of millions of people from all possible backgrounds, age groups, and genders. We have compiled and analyzed data for these two seemingly unrelated offline and online human activities and have uncovered an unexpected quantitative link between them. Although their overall dynamics differ visibly, we find that a common team-based model can accurately reproduce the quantitative features of each simply by adjusting the average tolerance level and attribute range for each population. By contrast, we find no evidence to support a version of the model based on like-seeking-like (i.e., kinship or “homophily”).

  14. Dynamic effective properties of heterogeneous geological formations with spherical inclusions under periodic time variations

    NASA Astrophysics Data System (ADS)

    Rabinovich, A.; Dagan, G.; Miloh, T.

    2013-04-01

    In unsteady groundwater flow (or similar processes of heat/electrical conduction), the heterogeneous medium structure is characterized by two random properties, the conductivity K and the specific storativity S. The average head field ⟨H ⟩and the associated effective properties Kef, Sef are determined for a layer with a periodic head drop between boundaries, such that H is periodic in time, and a medium made up of a matrix with a dilute concentration of spherical inclusions. In the common quasi-steady approximation, Kef is equal to the classical steady solution while Sef = SA, the arithmetic mean. We derive expressions for the frequency dependent Kef, Sef, which are generally complex, i.e., dynamic. The main result is the delineation of the ranges of the parameters: dimensionless frequency (ω) and contrasts of conductivity (κ) and storativity (s) between the matrix and the inclusions, for which dynamic effects are significant.

  15. Formation and dynamics of supported phospholipid membranes on a periodic nanotextured substrate

    SciTech Connect

    Werner, James H; Montano, Gabriel M; Shreve, Andrew P

    2008-01-01

    We have studied and modeled the morphology and dynamics of planar lipid bilayer assemblies supported on a textured silicon substrate that contains nano-structured features perpendicular to the plane of observation. Using a combination of characterization methods, including atomic force microscopy and quantitative fluorescence microscopy, we have discovered the bilayer assemblies are conformal to the underlying nanostructured substrate. As far as the dynamics are concnerned, the lipids freely diffuse in and out of the plane of observation while supported by the nanotextured material. In a microscopic sense, diffusion is isotropic along the patterned substrate. Macroscopically, when observed over length scales exceeding the dimensions of the nano-structured features, the diffusion appears anisotropic. The observed macroscopic anisotropy is well simulated using models of diffusion on the nanostructured surface that assume the lipids diffuse homogeneously and isotropically on the supporting nanotextured substrate.

  16. Monitoring intra-annual dynamics of wood formation with microcores and dendrometers in Picea abies at two different altitudes.

    PubMed

    Cocozza, Claudia; Palombo, Caterina; Tognetti, Roberto; La Porta, Nicola; Anichini, Monica; Giovannelli, Alessio; Emiliani, Giovanni

    2016-07-01

    Seasonal analyses of cambial cell production and day-by-day stem radial increment can help to elucidate how climate modulates wood formation in conifers. Intra-annual dynamics of wood formation were determined with microcores and dendrometers and related to climatic signals in Norway spruce (Picea abies (L.) Karst.). The seasonal dynamics of these processes were observed at two sites of different altitude, Savignano (650 m a.s.l.) and Lavazè (1800 m a.s.l.) in the Italian Alps. Seasonal dynamics of cambial activity were found to be site specific, indicating that the phenology of cambial cell production is highly variable and plastic with altitude. There was a site-specific trend in the number of cells in the wall thickening phase, with the maximum cell production in early July (DOY 186) at Savignano and in mid-July (DOY 200) at Lavazè. The formation of mature cells showed similar trends at the two sites, although different numbers of cells and timing of cell differentiation were visible in the model shapes; at the end of ring formation in 2010, the number of cells was four times higher at Savignano (106.5 cells) than at Lavazè (26.5 cells). At low altitudes, microcores and dendrometers described the radial growth patterns comparably, though the dendrometer function underlined the higher upper asymptote of maximum growth in comparison with the cell production function. In contrast, at high altitude, these functions exhibited different trends. The best model was obtained by fitting functions of the Gompertz model to the experimental data. By combining radial growth and cambial activity indices we defined a model system able to synchronize these processes. Processes of adaptation of the pattern of xylogenesis occurred, enabling P. abies to occupy sites with contrasting climatic conditions. The use of daily climatic variables in combination with plant functional traits obtained by sensors and/or destructive sampling could provide a suitable tool to better

  17. Dynamical formation and scattering of hierarchical triples: cross-sections, Kozai-Lidov oscillations, and collisions

    NASA Astrophysics Data System (ADS)

    Antognini, Joseph M. O.; Thompson, Todd A.

    2016-03-01

    Dynamical scattering of binaries and triple systems of stars, planets, and compact objects may produce highly inclined triple systems subject to Kozai-Lidov (KL) oscillations, potentially leading to collisions, mergers, Type Ia supernovae, and other phenomena. We present the results of more than 400 million gravitational scattering experiments of binary-binary, triple-single, and triple-binary scattering. We compute the cross-sections for all possible outcomes and explore their dependences on incoming velocity, mass, semimajor axis, and eccentricity, including analytic fits and discussion of the velocity dependence. For the production of new triple systems by scattering we find that compact triples are preferred, with ratios of outer to inner semimajor axes of ˜few-100, flat or quasi-thermal eccentricity distributions, and flat distributions in cosine of the mutual inclination. Dynamically formed triples are thus subject to strong KL oscillations, the `eccentric Kozai mechanism', and non-secular effects. For single and binary flyby encounters with triple systems, we compute the cumulative cross-section for changes to the mutual inclination, eccentricity, and semimajor axis ratio. We apply these results to scattering events in the field, open clusters, and globular clusters, and explore the implications for Type Ia supernovae via collisions and mergers, stellar collisions, and the lifetime and dynamical isolation of triple systems undergoing KL oscillations. An appendix provides an analysis of the velocity dependence of the collision cross-section in binary-single scattering.

  18. Dynamical stability of imaged planetary systems in formation: Application to HL Tau

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Triaud, Amaury H. M. J.; Menou, Kristen; Rein, Hanno

    2015-05-01

    A recent ALMA image revealed several concentric gaps in the protoplanetary disk surrounding the young star HL Tau. We consider the hypothesis that these gaps are carved by planets, and present a general framework for understanding the dynamical stability of such systems over typical disk lifetimes, providing estimates for the maximum planetary masses. We argue that the locations of resonances should be significantly shifted in disks as massive as estimated for HL Tau, and that theoretical uncertainties in the exact offset, together with observational errors, imply a large uncertainty in the dynamical state and stability in such disks. An important observational avenue to breaking this degeneracy is to search for eccentric gaps, which could implicate resonantly interacting planets. Unfortunately, massive disks should also induce swift pericenter precession that would smear out any such eccentric features of planetary origin. This motivates pushing toward more typical, less massive disks. For a nominal non-resonant model of the HL Tau system with five planets, we find a maximum mass for the outer three bodies of approximately 2 Neptune masses. In a resonant configuration, these planets can reach at least the mass of Saturn. The inner two planets' masses are unconstrained by dynamical stability arguments.

  19. Dynamics of formation of low-angle tilt boundaries in metals and alloys at high loading rates

    NASA Astrophysics Data System (ADS)

    Gutkin, M. Yu.; Rzhavtsev, E. A.

    2015-12-01

    A computer model has been developed in which the process of formation of low-angle tilt boundaries and fragmentation of initial subgrains during shock loading of metals and alloys is clearly demonstrated by the of two-dimensional discrete dislocation-disclination dynamics method. The formation and evolution of such grains proceeds under the action of an external stress and the stress field of grain boundary disclinations distributed on the subgrain boundaries. With the D16 aluminum alloy as an example, three cases of fragmented structures formed in accordance with the initial configuration of the disclination ensemble have been considered for a dipole, quadrupole, and arbitrary octupole of wedge disclinations. It has been shown that, in all these cases, the formation of a stable fragmented structure requires a stress of ~0.5 GPa and time of 10 ns. The main results of computer simulation (the finite form of a fragmented structure, typical level of applied stress, and small fragmentation time) agree well with known experimental results on shock compression of the D16 aluminum alloy.

  20. The mechanism of the initial step of germanosilicate formation in solution: a first-principles molecular dynamics study.

    PubMed

    Trinh, Thuat T; Rozanska, Xavier; Delbecq, Françoise; Tuel, Alain; Sautet, Philippe

    2016-06-01

    The condensation reactions between Ge(OH)4 and Si(OH)4 units in solution are studied to understand the mechanism and stable species during the initial steps of the formation process of Ge containing zeolites under basic conditions. The free energy of formation of (OH)3Ge-O-Ge-(OH)2O(-), (OH)3Si-O-Si-(OH)2O(-), (OH)3Ge-O-Si-(OH)2O(-) and (OH)3Si-O-Ge-(OH)2O(-) dimers is calculated with ab initio molecular dynamics and thermodynamic integration, including an explicit description of the water solvent molecules. Calculations show that the attack of the conjugated base (Ge(OH)3O(-) and Si(OH)3O(-)) proceeds with a smaller barrier at the Ge center. In addition, the formation of the pure germanate dimer is more favorable than that of the germano-silicate structure. These results explain the experimental observation of Ge-Ge and Si-Ge dimer species in solutions, with a few Si-Si ones. PMID:27172391