Science.gov

Sample records for antimalarial resistance network

  1. World Antimalarial Resistance Network (WARN) II: in vitro antimalarial drug susceptibility.

    PubMed

    Bacon, David J; Jambou, Ronan; Fandeur, Thierry; Le Bras, Jacques; Wongsrichanalai, Chansuda; Fukuda, Mark M; Ringwald, Pascal; Sibley, Carol Hopkins; Kyle, Dennis E

    2007-01-01

    Intrinsic resistance of Plasmodium falciparum is clearly a major determinant of the clinical failure of antimalarial drugs. However, complex interactions between the host, the parasite and the drug obscure the ability to define parasite drug resistance in vivo. The in vitro antimalarial drug susceptibility assay determines ex-vivo growth of parasite in the presence of serial drug concentrations and, thus, eliminates host effects, such as drug metabolism and immunity. Although the sensitivity of the parasite to various antimalarials provided by such a test provides an important indicator of intrinsic parasite susceptibility, there are fundamental methodological issues that undermine comparison of in vitro susceptibility both between laboratories and within a single laboratory over time. A network of laboratories is proposed that will agree on the basic parameters of the in vitro test and associated measures of quality control. The aim of the network would be to establish baseline values of sensitivity to commonly used antimalarial agents from key regions of the world, and create a global database, linked to clinical, molecular and pharmacology databases, to support active surveillance to monitor temporal trends in parasite susceptibility. Such a network would facilitate the rapid detection of strains with novel antimalarial resistance profiles and investigate suitable alternative treatments with retained efficacy. PMID:17822533

  2. Antimalarial Drug Resistance: Literature Review and Activities and Findings of the ICEMR Network.

    PubMed

    Cui, Liwang; Mharakurwa, Sungano; Ndiaye, Daouda; Rathod, Pradipsinh K; Rosenthal, Philip J

    2015-09-01

    Antimalarial drugs are key tools for the control and elimination of malaria. Recent decreases in the global malaria burden are likely due, in part, to the deployment of artemisinin-based combination therapies. Therefore, the emergence and potential spread of artemisinin-resistant parasites in southeast Asia and changes in sensitivities to artemisinin partner drugs have raised concerns. In recognition of this urgent threat, the International Centers of Excellence for Malaria Research (ICEMRs) are closely monitoring antimalarial drug efficacy and studying the mechanisms underlying drug resistance. At multiple sentinel sites of the global ICEMR network, research activities include clinical studies to track the efficacies of antimalarial drugs, ex vivo/in vitro assays to measure drug susceptibilities of parasite isolates, and characterization of resistance-mediating parasite polymorphisms. Taken together, these efforts offer an increasingly comprehensive assessment of the efficacies of antimalarial therapies, and enable us to predict the emergence of drug resistance and to guide local antimalarial drug policies. Here we briefly review worldwide antimalarial drug resistance concerns, summarize research activities of the ICEMRs related to drug resistance, and assess the global impacts of the ICEMR programs. PMID:26259943

  3. Antimalarial Drug Resistance: Literature Review and Activities and Findings of the ICEMR Network

    PubMed Central

    Cui, Liwang; Mharakurwa, Sungano; Ndiaye, Daouda; Rathod, Pradipsinh K.; Rosenthal, Philip J.

    2015-01-01

    Antimalarial drugs are key tools for the control and elimination of malaria. Recent decreases in the global malaria burden are likely due, in part, to the deployment of artemisinin-based combination therapies. Therefore, the emergence and potential spread of artemisinin-resistant parasites in southeast Asia and changes in sensitivities to artemisinin partner drugs have raised concerns. In recognition of this urgent threat, the International Centers of Excellence for Malaria Research (ICEMRs) are closely monitoring antimalarial drug efficacy and studying the mechanisms underlying drug resistance. At multiple sentinel sites of the global ICEMR network, research activities include clinical studies to track the efficacies of antimalarial drugs, ex vivo/in vitro assays to measure drug susceptibilities of parasite isolates, and characterization of resistance-mediating parasite polymorphisms. Taken together, these efforts offer an increasingly comprehensive assessment of the efficacies of antimalarial therapies, and enable us to predict the emergence of drug resistance and to guide local antimalarial drug policies. Here we briefly review worldwide antimalarial drug resistance concerns, summarize research activities of the ICEMRs related to drug resistance, and assess the global impacts of the ICEMR programs. PMID:26259943

  4. Antimalarial drug resistance: An overview.

    PubMed

    Antony, Hiasindh Ashmi; Parija, Subhash Chandra

    2016-01-01

    Malaria is a major public health burden throughout the world. Resistance to the antimalarial drugs has increased the mortality and morbidity rate that is achieved so far through the malaria control program. Monitoring the drug resistance to the available antimalarial drugs helps to implement effective drug policy, through the in vivo efficacy studies, in vitro drug susceptibility tests and detection of molecular markers. It is important to understand the mechanism of the antimalarial drugs, as it is one of the key factors in the emergence and spread of drug resistance. This review summarizes the commonly used antimalarial drugs, their mechanism of action and the genetic markers validated so far for the detection of drug-resistant parasites. PMID:26998432

  5. Antimalarial drug resistance: An overview

    PubMed Central

    Antony, Hiasindh Ashmi; Parija, Subhash Chandra

    2016-01-01

    Malaria is a major public health burden throughout the world. Resistance to the antimalarial drugs has increased the mortality and morbidity rate that is achieved so far through the malaria control program. Monitoring the drug resistance to the available antimalarial drugs helps to implement effective drug policy, through the in vivo efficacy studies, in vitro drug susceptibility tests and detection of molecular markers. It is important to understand the mechanism of the antimalarial drugs, as it is one of the key factors in the emergence and spread of drug resistance. This review summarizes the commonly used antimalarial drugs, their mechanism of action and the genetic markers validated so far for the detection of drug-resistant parasites. PMID:26998432

  6. [Resistance to the antimalarial drugs].

    PubMed

    Venanzi, E; López-Vélez, R

    2016-09-01

    Malaria is one of the most widespread infectious diseases around the world with 214 million cases and 438,000 deaths in 2015. In the early twentieth century it was described for the first time the resistance to quinine and, since then, drug resistance to antimalarial drugs has spread up to represent a global challenge in the fight and control of malaria. Understanding the mechanisms, geography and monitoring tools that we can act against resistance to antimalarial drugs is critical to prevent its expansion. PMID:27608319

  7. Mind the gaps - the epidemiology of poor-quality anti-malarials in the malarious world - analysis of the WorldWide Antimalarial Resistance Network database

    PubMed Central

    2014-01-01

    Background Poor quality medicines threaten the lives of millions of patients and are alarmingly common in many parts of the world. Nevertheless, the global extent of the problem remains unknown. Accurate estimates of the epidemiology of poor quality medicines are sparse and are influenced by sampling methodology and diverse chemical analysis techniques. In order to understand the existing data, the Antimalarial Quality Scientific Group at WWARN built a comprehensive, open-access, global database and linked Antimalarial Quality Surveyor, an online visualization tool. Analysis of the database is described here, the limitations of the studies and data reported, and their public health implications discussed. Methods The database collates customized summaries of 251 published anti-malarial quality reports in English, French and Spanish by time and location since 1946. It also includes information on assays to determine quality, sampling and medicine regulation. Results No publicly available reports for 60.6% (63) of the 104 malaria-endemic countries were found. Out of 9,348 anti-malarials sampled, 30.1% (2,813) failed chemical/packaging quality tests with 39.3% classified as falsified, 2.3% as substandard and 58.3% as poor quality without evidence available to categorize them as either substandard or falsified. Only 32.3% of the reports explicitly described their definitions of medicine quality and just 9.1% (855) of the samples collected in 4.6% (six) surveys were conducted using random sampling techniques. Packaging analysis was only described in 21.5% of publications and up to twenty wrong active ingredients were found in falsified anti-malarials. Conclusions There are severe neglected problems with anti-malarial quality but there are important caveats to accurately estimate the prevalence and distribution of poor quality anti-malarials. The lack of reports in many malaria-endemic areas, inadequate sampling techniques and inadequate chemical analytical methods and

  8. Fighting fire with fire: mass antimalarial drug administrations in an era of antimalarial resistance.

    PubMed

    von Seidlein, Lorenz; Dondorp, Arjen

    2015-06-01

    The emergence and spread of antimalarial resistance has been a major liability for malaria control. The spread of chloroquine-resistant Plasmodium falciparum strains had catastrophic consequences for people in malaria-endemic regions, particularly in sub-Saharan Africa. The recent emergence of artemisinin-resistant P. falciparum strains is of highest concern. Current efforts to contain artemisinin resistance have yet to show success. In the absence of more promising plans, it has been suggested to eliminate falciparum malaria from foci of artemisinin resistance using a multipronged approach, including mass drug administrations. The use of mass drug administrations is controversial as it increases drug pressure. Based on current knowledge it is difficult to conceptualize how targeted malaria elimination could contribute to artemisinin resistance, provided a full treatment course is ensured. PMID:25831482

  9. Resistance to antimalarial drugs: molecular, pharmacological and clinical considerations

    PubMed Central

    Travassos, Mark A.; Laufer, Miriam K.

    2009-01-01

    One of the greatest obstacles to the control of malaria has been the spread of resistance to drugs used on a large scale. This review provides an update of the current understanding of the molecular basis for antimalarial drug resistance. Parasite intrinsic resistance is just one component that determines the in vivo efficacy of a drug. Human immune responses and pharmacological properties play important roles in determining the clinical outcome of treatment. The emergence and spread of resistance also results from an interplay of these factors. Current efforts to characterize and deter resistance to new combination therapy are also discussed. PMID:19918214

  10. Quality of Antimalarials at the Epicenter of Antimalarial Drug Resistance: Results from an Overt and Mystery Client Survey in Cambodia

    PubMed Central

    Yeung, Shunmay; Lawford, Harriet L. S.; Tabernero, Patricia; Nguon, Chea; van Wyk, Albert; Malik, Naiela; DeSousa, Mikhael; Rada, Ouk; Boravann, Mam; Dwivedi, Prabha; Hostetler, Dana M.; Swamidoss, Isabel; Green, Michael D.; Fernandez, Facundo M.; Kaur, Harparkash

    2015-01-01

    Widespread availability of monotherapies and falsified antimalarials is thought to have contributed to the historical development of multidrug-resistant malaria in Cambodia. This study aimed to document the quality of artemisinin-containing antimalarials (ACAs) and to compare two methods of collecting antimalarials from drug outlets: through open surveyors and mystery clients (MCs). Few oral artemisinin-based monotherapies and no suspected falsified medicines were found. All 291 samples contained the stated active pharmaceutical ingredient (API) of which 69% were considered good quality by chemical analysis. Overall, medicine quality did not differ by collection method, although open surveyors were less likely to obtain oral artemisinin-based monotherapies than MCs. The results are an encouraging indication of the positive impact of the country's efforts to tackle falsified antimalarials and artemisinin-based monotherapies. However, poor-quality medicines remain an ongoing challenge that demands sustained political will and investment of human and financial resources. PMID:25897063

  11. Quality of antimalarials at the epicenter of antimalarial drug resistance: results from an overt and mystery client survey in Cambodia.

    PubMed

    Yeung, Shunmay; Lawford, Harriet L S; Tabernero, Patricia; Nguon, Chea; van Wyk, Albert; Malik, Naiela; DeSousa, Mikhael; Rada, Ouk; Boravann, Mam; Dwivedi, Prabha; Hostetler, Dana M; Swamidoss, Isabel; Green, Michael D; Fernandez, Facundo M; Kaur, Harparkash

    2015-06-01

    Widespread availability of monotherapies and falsified antimalarials is thought to have contributed to the historical development of multidrug-resistant malaria in Cambodia. This study aimed to document the quality of artemisinin-containing antimalarials (ACAs) and to compare two methods of collecting antimalarials from drug outlets: through open surveyors and mystery clients (MCs). Few oral artemisinin-based monotherapies and no suspected falsified medicines were found. All 291 samples contained the stated active pharmaceutical ingredient (API) of which 69% were considered good quality by chemical analysis. Overall, medicine quality did not differ by collection method, although open surveyors were less likely to obtain oral artemisinin-based monotherapies than MCs. The results are an encouraging indication of the positive impact of the country's efforts to tackle falsified antimalarials and artemisinin-based monotherapies. However, poor-quality medicines remain an ongoing challenge that demands sustained political will and investment of human and financial resources. PMID:25897063

  12. Targeting Plasmodium falciparum Hsp90: Towards Reversing Antimalarial Resistance

    PubMed Central

    Shahinas, Dea; Folefoc, Asongna; Pillai, Dylan R.

    2013-01-01

    Malaria continues to exact a great human toll in tropical settings. Antimalarial resistance is rife and the parasite inexorably develops mechanisms to outwit our best drugs, including the now first-line choice, artesunate. Novel strategies to circumvent resistance are needed. Here we detail drug development focusing on heat shock protein 90 and its central role as a chaperone. A growing body of evidence supports the role for Hsp90 inhibitors as adjunctive drugs able to restore susceptibility to traditionally efficacious compounds like chloroquine. PMID:25436880

  13. Superinfection and the evolution of resistance to antimalarial drugs

    PubMed Central

    Klein, Eili Y.; Smith, David L.; Laxminarayan, Ramanan; Levin, Simon

    2012-01-01

    A major issue in the control of malaria is the evolution of drug resistance. Ecological theory has demonstrated that pathogen superinfection and the resulting within-host competition influences the evolution of specific traits. Individuals infected with Plasmodium falciparum are consistently infected by multiple parasites; however, while this probably alters the dynamics of resistance evolution, there are few robust mathematical models examining this issue. We developed a general theory for modelling the evolution of resistance with host superinfection and examine: (i) the effect of transmission intensity on the rate of resistance evolution; (ii) the importance of different biological costs of resistance; and (iii) the best measure of the frequency of resistance. We find that within-host competition retards the ability and slows the rate at which drug-resistant parasites invade, particularly as the transmission rate increases. We also find that biological costs of resistance that reduce transmission are less important than reductions in the duration of drug-resistant infections. Lastly, we find that random sampling of the population for resistant parasites is likely to significantly underestimate the frequency of resistance. Considering superinfection in mathematical models of antimalarial drug resistance may thus be important for generating accurate predictions of interventions to contain resistance. PMID:22787024

  14. Drug resistance genomics of the antimalarial drug artemisinin.

    PubMed

    Winzeler, Elizabeth A; Manary, Micah J

    2014-01-01

    Across the globe, over 200 million annual malaria infections result in up to 660,000 deaths, 77% of which occur in children under the age of five years. Although prevention is important, malaria deaths are typically prevented by using antimalarial drugs that eliminate symptoms and clear parasites from the blood. Artemisinins are one of the few remaining compound classes that can be used to cure multidrug-resistant Plasmodium falciparum infections. Unfortunately, clinical trials from Southeast Asia are showing that artemisinin-based treatments are beginning to lose their effectiveness, adding renewed urgency to the search for the genetic determinants of parasite resistance to this important drug class. We review the genetic and genomic approaches that have led to an improved understanding of artemisinin resistance, including the identification of resistance-conferring mutations in the P. falciparum kelch13 gene. PMID:25470531

  15. Cross-Resistance and Collateral Susceptibility to Antifolic Antimalarial Compounds1

    PubMed Central

    Smith, Carl C.; Genther, Clara S.

    1972-01-01

    Series of strains of Streptococcus faecium ATCC 8043, Lactobacillus casei ATCC 7469, and Pediococcus cerevisiae ATCC 8081 with increasing resistance to the active antifolate antimalarial drugs chlorguanide triazine (CGT), pyrimethamine (PM), and trimethoprim (TMP) were isolated. These mutant strains, stable for at least 3 to 5 years, were examined for cross-resistance and collateral susceptibility to the above compounds and to methotrexate (MTX). Generally, they exhibited cross-resistance to all four compounds, but resistance of a strain to one compound did not predict accurately its resistance to another drug. Unexpectedly, L. casei resistant to CGT exhibited collateral susceptibility to MTX, TMP, and PM varying from 5- to 20-fold. P. cerevisiae developed resistance to CGT readily but maintained its susceptibility to PM and TMP after prolonged exposure to these compounds. Resistance to these antimalarial antifolates was accompanied by only low-grade cross-resistance to MTX, a representative antileukemic antifolate agent. PMID:4208273

  16. Identification and deconvolution of cross-resistance signals from antimalarial compounds using multidrug-resistant Plasmodium falciparum strains.

    PubMed

    Chugh, Monika; Scheurer, Christian; Sax, Sibylle; Bilsland, Elizabeth; van Schalkwyk, Donelly A; Wicht, Kathryn J; Hofmann, Natalie; Sharma, Anil; Bashyam, Sridevi; Singh, Shivendra; Oliver, Stephen G; Egan, Timothy J; Malhotra, Pawan; Sutherland, Colin J; Beck, Hans-Peter; Wittlin, Sergio; Spangenberg, Thomas; Ding, Xavier C

    2015-02-01

    Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic characterization of a panel of sensitive and multidrug-resistant P. falciparum strains that can be used to optimally identify and deconvolute the cross-resistance signals from an extended panel of investigational antimalarials. As a case study, the effectiveness of the selected panel of strains was demonstrated using the 1,2,4-oxadiazole series, a newly identified antimalarial series of compounds with in vitro activity against P. falciparum at nanomolar concentrations. This series of compounds was to be found inactive against several multidrug-resistant strains, and the deconvolution of this signal implicated pfcrt, the genetic determinant of chloroquine resistance. Targeted mode-of-action studies further suggested that this new chemical series might act as falcipain 2 inhibitors, substantiating the suggestion that these compounds have a site of action similar to that of chloroquine but a distinct mode of action. New antimalarials must overcome existing resistance and, ideally, prevent its de novo appearance. The panel of strains reported here, which includes recently collected as well as standard laboratory-adapted field isolates, is able to efficiently detect and precisely characterize cross-resistance and, as such, can contribute to the faster development of new, effective antimalarial drugs. PMID:25487796

  17. Identification and Deconvolution of Cross-Resistance Signals from Antimalarial Compounds Using Multidrug-Resistant Plasmodium falciparum Strains

    PubMed Central

    Chugh, Monika; Scheurer, Christian; Sax, Sibylle; Bilsland, Elizabeth; van Schalkwyk, Donelly A.; Wicht, Kathryn J.; Hofmann, Natalie; Sharma, Anil; Bashyam, Sridevi; Singh, Shivendra; Oliver, Stephen G.; Egan, Timothy J.; Malhotra, Pawan; Sutherland, Colin J.; Beck, Hans-Peter; Wittlin, Sergio; Spangenberg, Thomas

    2014-01-01

    Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic characterization of a panel of sensitive and multidrug-resistant P. falciparum strains that can be used to optimally identify and deconvolute the cross-resistance signals from an extended panel of investigational antimalarials. As a case study, the effectiveness of the selected panel of strains was demonstrated using the 1,2,4-oxadiazole series, a newly identified antimalarial series of compounds with in vitro activity against P. falciparum at nanomolar concentrations. This series of compounds was to be found inactive against several multidrug-resistant strains, and the deconvolution of this signal implicated pfcrt, the genetic determinant of chloroquine resistance. Targeted mode-of-action studies further suggested that this new chemical series might act as falcipain 2 inhibitors, substantiating the suggestion that these compounds have a site of action similar to that of chloroquine but a distinct mode of action. New antimalarials must overcome existing resistance and, ideally, prevent its de novo appearance. The panel of strains reported here, which includes recently collected as well as standard laboratory-adapted field isolates, is able to efficiently detect and precisely characterize cross-resistance and, as such, can contribute to the faster development of new, effective antimalarial drugs. PMID:25487796

  18. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    PubMed Central

    2010-01-01

    Background Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. Results Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicted life cycle stage specific metabolism with the help of a flux balance approach that integrates gene expression data. Predicted metabolite exchanges between parasite and host were found to be in good accordance with experimental findings when the parasite's metabolic network was embedded into that of its host (erythrocyte). Knock-out simulations identified 307 indispensable metabolic reactions within the parasite. 35 out of 57 experimentally demonstrated essential enzymes were recovered and another 16 enzymes, if additionally the assumption was made that nutrient uptake from the host cell is limited and all reactions catalyzed by the inhibited enzyme are blocked. This predicted set of putative drug targets, shown to be enriched with true targets by a factor of at least 2.75, was further analyzed with respect to homology to human enzymes, functional similarity to therapeutic targets in other organisms and their predicted potency for prophylaxis and disease treatment. Conclusions The results suggest that the set of essential enzymes predicted by our flux balance approach represents a promising starting point for further drug development. PMID:20807400

  19. Molecular surveillance of antimalarial drug resistance related genes in Plasmodium falciparum isolates from Eritrea.

    PubMed

    Menegon, Michela; Nurahmed, Abduselam M; Talha, Albadawi A; Nour, Bakri Y M; Severini, Carlo

    2016-05-01

    The introduction of artemisinin-based combination therapy has led to extraordinary results in malaria control, however the recent emergence of partial resistance to artemisinin therapy in Southeast Asia jeopardizes these successes. This study aimed at investigating resistance to the antimalarial drugs by evaluating the polymorphisms in the PfK13, Pfcrt and Pfmdr1 genes in Plasmodium falciparum isolates obtained from patients in Eritrea. PMID:26875763

  20. Antimalarial drug resistance: a review of the biology and strategies to delay emergence and spread

    PubMed Central

    Klein, E.Y.

    2013-01-01

    The emergence of resistance to former first-line antimalarial drugs has been an unmitigated disaster. In recent years, artemisinin class drugs have become standard and they are considered an essential tool for helping to eradicate the disease. However, their ability to reduce morbidity and mortality and to slow transmission requires the maintenance of effectiveness. Recently, an artemisinin delayed-clearance phenotype was described. This is believed to be the precursor to resistance and threatens local elimination and global eradication plans. Understanding how resistance emerges and spreads is important for developing strategies to contain its spread. Resistance is the result of two processes: (i) drug selection of resistant parasites; and (ii) the spread of resistance. In this review, we examine the factors that lead to both drug selection and the spread of resistance. We then examine strategies for controlling the spread of resistance, pointing out the complexities and deficiencies in predicting how resistance will spread. PMID:23394809

  1. To kill or not to kill, that is the question: cytocidal antimalarial drug resistance

    PubMed Central

    Roepe, Paul D.

    2014-01-01

    Elucidating mechanisms of antimalarial drug resistance accelerates development of improved diagnostics and the design of new, effective malaria therapy. Recently, several studies have emphasized that chloroquine (CQ) resistance (CQR) can be quantified in two very distinct ways, depending on whether sensitivity to the growth inhibitory effects or parasite – kill effects of the drug are being measured. It is now clear that these cytostatic and cytocidal CQR phenotypes are not equivalent, and recent genetic, cell biological, and biophysical evidence suggests how the molecular mechanisms may overlap. These conclusions have important implications for elucidating other drug resistance phenomena and emphasize new concepts that are essential for the development of new drug therapy. PMID:24530127

  2. Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes.

    PubMed

    Goodman, Christopher D; Siregar, Josephine E; Mollard, Vanessa; Vega-Rodríguez, Joel; Syafruddin, Din; Matsuoka, Hiroyuki; Matsuzaki, Motomichi; Toyama, Tomoko; Sturm, Angelika; Cozijnsen, Anton; Jacobs-Lorena, Marcelo; Kita, Kiyoshi; Marzuki, Sangkot; McFadden, Geoffrey I

    2016-04-15

    Drug resistance compromises control of malaria. Here, we show that resistance to a commonly used antimalarial medication, atovaquone, is apparently unable to spread. Atovaquone pressure selects parasites with mutations in cytochrome b, a respiratory protein with low but essential activity in the mammalian blood phase of the parasite life cycle. Resistance mutations rescue parasites from the drug but later prove lethal in the mosquito phase, where parasites require full respiration. Unable to respire efficiently, resistant parasites fail to complete mosquito development, arresting their life cycle. Because cytochrome b is encoded by the maternally inherited parasite mitochondrion, even outcrossing with wild-type strains cannot facilitate spread of resistance. Lack of transmission suggests that resistance will be unable to spread in the field, greatly enhancing the utility of atovaquone in malaria control. PMID:27081071

  3. Resistance of Plasmodium falciparum to antimalarial drugs in Equatorial Guinea.

    PubMed

    Roche, J; Benito, A; Ayecaba, S; Amela, C; Molina, R; Alvar, J

    1993-10-01

    One hundred and sixty-six children from Equatorial Guinea, all under 10 years of age and with acute uncomplicated falciparum malaria, were randomly allocated to four groups and treated with one of the following regimens: chloroquine or amodiaquine (25 mg base/kg body weight over 3 days), quinine (8 mg/kg every 8 h for 3 or 5 days), and sulphadoxine-pyrimethamine (25-1.25 mg/kg, in one dose). The parasite clearance rates up to day 14 were 28% with chloroquine, 74% with amodiaquine, and 95% with quinine or sulphadoxine-pyrimethamine. The times required to clear asexual blood forms of Plasmodium falciparum in sensitive cases were 64, 70, 73 and 65 h, respectively. Although quinine and sulphadoxine-pyrimethamine are equally effective, quinine is recommended for treatment of multidrug-resistant malaria in paediatric patients, essentially because of the risk of serious reactions to sulpha drugs. Health providers are, however, encouraged to keep supplies of sulphadoxine-pyrimethamine as an option and to refer patients quickly, if required. PMID:8311568

  4. Evaluation of Antimalarial Resistance Marker Polymorphism in Returned Migrant Workers in China

    PubMed Central

    Feng, Jun; Li, Jun; Yan, He; Feng, Xinyu

    2014-01-01

    Imported malaria has been a great challenge for public health in China due to decreased locally transmitted cases and frequent exchange worldwide. Plasmodium falciparum has been mainly responsible for the increasing impact. Currently, artesunate plus amodiaquine, one of the artemisinin combination therapies recommended by the World Health Organization, has been mainly used against uncomplicated P. falciparum malaria in China. However, drug resistance marker polymorphism in returning migrant workers has not been demonstrated. Here, we have evaluated the prevalence of pfmdr1 and pfcrt polymorphisms, as well as the K13 propeller gene, a molecular marker of artemisinin resistance, in migrant workers returned from Ghana to Shanglin County, Guangxi Province, China, in 2013. A total of 118 blood samples were randomly selected and used for the assay. Mutations of the pfmdr1 gene that covered codons 86, 184, 1034, and 1246 were found in 11 isolates. Mutations at codon N86Y (9.7%) were more frequent than at others, and Y86Y184S1034D1246 was the most prevalent (63.6%) of the four haplotypes. Mutations of the pfcrt gene that covered codons 74, 75, and 76 were observed in 17 isolates, and M74N75T76 was common (70.6%) in three haplotypes. Eight different genotypes of the K13 propeller were first observed in 10 samples in China, 2 synonymous mutations (V487V and A627A) and 6 nonsynonymous mutations. C580Y was the most prevalent (2.7%) in all the samples. The data presented might be helpful for enrichment of molecular surveillance of antimalarial resistance and will be useful for developing and updating antimalarial guidance in China. PMID:25348538

  5. Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance

    PubMed Central

    Warhurst, David C.; Craig, John C.

    2016-01-01

    Antimalarial chloroquine (CQ) prevents haematin detoxication when CQ-base concentrates in the acidic digestive vacuole through protonation of its p-aminopyridine (pAP) basic aromatic nitrogen and sidechain diethyl-N. CQ export through the variant vacuolar membrane export channel, PFCRT, causes CQ-resistance in Plasmodium falciparum but 3-methyl CQ (sontochin SC), des-ethyl amodiaquine (DAQ) and bis 4-aminoquinoline piperaquine (PQ) are still active. This is determined by changes in drug accumulation ratios in parasite lipid (LAR) and in vacuolar water (VAR). Higher LAR may facilitate drug binding to and blocking PFCRT and also aid haematin in lipid to bind drug. LAR for CQ is only 8.3; VAR is 143,482. More hydrophobic SC has LAR 143; VAR remains 68,523. Similarly DAQ with a phenol substituent has LAR of 40.8, with VAR 89,366. In PQ, basicity of each pAP is reduced by distal piperazine N, allowing very high LAR of 973,492, retaining VAR of 104,378. In another bis quinoline, dichlorquinazine (DCQ), also active but clinically unsatisfactory, each pAP retains basicity, being insulated by a 2-carbon chain from a proximal nitrogen of the single linking piperazine. While LAR of 15,488 is still high, the lowest estimate of VAR approaches 4.9 million. DCQ may be expected to be very highly lysosomotropic and therefore potentially hepatotoxic. In 11 pAP antimalarials a quadratic relationship between logLAR and logResistance Index (RI) was confirmed, while log (LAR/VAR) vs logRI for 12 was linear. Both might be used to predict the utility of structural modifications. PMID:27483471

  6. Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance.

    PubMed

    Warhurst, David C; Craig, John C; Raheem, K Saki

    2016-01-01

    Antimalarial chloroquine (CQ) prevents haematin detoxication when CQ-base concentrates in the acidic digestive vacuole through protonation of its p-aminopyridine (pAP) basic aromatic nitrogen and sidechain diethyl-N. CQ export through the variant vacuolar membrane export channel, PFCRT, causes CQ-resistance in Plasmodium falciparum but 3-methyl CQ (sontochin SC), des-ethyl amodiaquine (DAQ) and bis 4-aminoquinoline piperaquine (PQ) are still active. This is determined by changes in drug accumulation ratios in parasite lipid (LAR) and in vacuolar water (VAR). Higher LAR may facilitate drug binding to and blocking PFCRT and also aid haematin in lipid to bind drug. LAR for CQ is only 8.3; VAR is 143,482. More hydrophobic SC has LAR 143; VAR remains 68,523. Similarly DAQ with a phenol substituent has LAR of 40.8, with VAR 89,366. In PQ, basicity of each pAP is reduced by distal piperazine N, allowing very high LAR of 973,492, retaining VAR of 104,378. In another bis quinoline, dichlorquinazine (DCQ), also active but clinically unsatisfactory, each pAP retains basicity, being insulated by a 2-carbon chain from a proximal nitrogen of the single linking piperazine. While LAR of 15,488 is still high, the lowest estimate of VAR approaches 4.9 million. DCQ may be expected to be very highly lysosomotropic and therefore potentially hepatotoxic. In 11 pAP antimalarials a quadratic relationship between logLAR and logResistance Index (RI) was confirmed, while log (LAR/VAR) vs logRI for 12 was linear. Both might be used to predict the utility of structural modifications. PMID:27483471

  7. Are transporter genes other than the chloroquine resistance locus (pfcrt) and multidrug resistance gene (pfmdr) associated with antimalarial drug resistance?

    PubMed

    Anderson, Timothy J C; Nair, Shalini; Qin, Huang; Singlam, Sittaporn; Brockman, Alan; Paiphun, Lucy; Nosten, François

    2005-06-01

    Mu et al. (Mu, J., M. T. Ferdig, X. Feng, D. A. Joy, J. Duan, T. Furuya, G. Subramanian, L. Aravind, R. A. Cooper, J. C. Wootton, M. Xiong, and X. Z. Su, Mol. Microbiol. 49:977-989, 2003) recently reported exciting associations between nine new candidate transporter genes and in vitro resistance to chloroquine (CQ) and quinine (QN), with six of these loci showing association with CQ or QN in a southeast Asian population sample. We replicated and extended this work by examining polymorphisms in these genes and in vitro resistance to eight drugs in parasites collected from the Thailand-Burma border. To minimize problems of multiple testing, we used a two-phase study design, while to minimize problems caused by population structure, we analyzed parasite isolates collected from a single clinic. We first examined associations between genotype and drug response in 108 unique single-clone parasite isolates. We found strong associations between single nucleotide polymorphisms in pfmdr and mefloquine (MFQ), artesunate (AS), and lumefantrine (LUM) response. We also observed associations between an ABC transporter (G7) and response to QN and AS and between another ABC transporter (G49) and response to dihydro-artemisinin (DHA). We reexamined significant associations in an independent sample of 199 unique single-clone infections from the same location. The significant associations with pfmdr-1042 detected in the first survey remained. However, with the exception of the G7-artesunate association, all other associations observed with the nine new candidate transporters disappeared. We also examined linkage disequilibrium (LD) between markers and phenotypic correlations between drug responses. We found minimal LD between genes. Furthermore, we found no correlation between chloroquine and quinine responses, although we did find expected strong correlations between MFQ, QN, AS, DHA, and LUM. To conclude, we found no evidence for an association between 8/9 candidate genes and

  8. Discovery of a selective, safe and novel anti-malarial compound with activity against chloroquine resistant strain of Plasmodium falciparum

    PubMed Central

    Agarwal, Ankita; Paliwal, Sarvesh; Mishra, Ruchi; Sharma, Swapnil; Kumar Dwivedi, Anil; Tripathi, Renu; Gunjan, Sarika

    2015-01-01

    In recent years the DNA minor groove has attracted much attention for the development of anti-malarial agents. In view of this we have attempted to discover novel DNA minor groove binders through in-silico and in-vitro workflow. A rigorously validated pharmacophore model comprising of two positive ionizable (PI), one hydrophobic (HY) and one ring aromatic (RA) features was used to mine NCI chemical compound database. This led to retrieval of many hits which were screened on the basis of estimated activity, fit value and Lipinski’s violation. Finally two compounds NSC639017 and NSC371488 were evaluated for their in-vitro anti-malarial activities against Plasmodium falciparum 3D7 (CQ sensitive) and K1 (CQ resistant) strains by SYBR green-I based fluorescence assay. The results revealed that out of two, NSC639017 posses excellent anti-malarial activity particularly against chloroquine resistant strain and moreover NSC639017 also appeared to be safe (CC50 126.04 μg/ml) and selective during cytotoxicity evaluation. PMID:26346444

  9. DETECTION OF PUTATIVE ANTIMALARIAL-RESISTANT PLASMODIUM VIVAX IN ANOPHELES VECTORS AT THAILAND-CAMBODIA AND THAILAND-MYANMAR BORDERS.

    PubMed

    Rattaprasert, Pongruj; Chaksangchaichot, Panee; Wihokhoen, Benchawan; Suparach, Nutjaree; Sorosjinda-Nunthawarasilp, Prapa

    2016-03-01

    Monitoring of multidrug-resistant (MDR)falciparum and vivax malaria has recently been included in the Global Plan for Artemisinin Resistance Containment (GPARC) of the Greater Mekong Sub-region, particularly at the Thailand-Cambodia and Thailand-Myanmar borders. In parallel to GPARC, monitoring MDR malaria parasites in anopheline vectors is an ideal augment to entomological surveillance. Employing Plasmodium- and species-specific nested PCR techniques, only P. vivax was detected in 3/109 salivary gland DNA extracts of anopheline vectors collected during a rainy season between 24-26 August 2009 and 22-24 September 2009 and a dry season between 29-31 December 2009 and 16-18 January 2010. Indoor and out- door resting mosquitoes were collected in Thong Pha Phum District, Kanchanaburi Province (border of Thailand-Myanmar) and Bo Rai District, Trat Province (border of Thailand-Cambodia): one sample from Anopheles dirus at the Thailand-Cambodia border and two samples from An. aconitus from Thailand-Myanmar border isolate. Nucleotide sequencing of dihydrofolate reductase gene revealed the presence in all three samples of four mutations known to cause high resistance to antifolate pyrimethamine, but no mutations were found in multidrug resistance transporter 1 gene that are associated with (falciparum) resistance to quinoline antimalarials. Such findings indicate the potential usefulness of this approach in monitoring the prevalence of drug-resistant malaria parasites in geographically regions prone to the development of drug resistance and where screening of human population at risk poses logistical and ethical problems. Keywords: Anopheles spp, Plasmodium vivax, antimalarial resistance, Greater Mekong Sub-region, nested PCR, vector surveillance PMID:27244954

  10. High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations.

    PubMed

    Mott, Bryan T; Eastman, Richard T; Guha, Rajarshi; Sherlach, Katy S; Siriwardana, Amila; Shinn, Paul; McKnight, Crystal; Michael, Sam; Lacerda-Queiroz, Norinne; Patel, Paresma R; Khine, Pwint; Sun, Hongmao; Kasbekar, Monica; Aghdam, Nima; Fontaine, Shaun D; Liu, Dongbo; Mierzwa, Tim; Mathews-Griner, Lesley A; Ferrer, Marc; Renslo, Adam R; Inglese, James; Yuan, Jing; Roepe, Paul D; Su, Xin-Zhuan; Thomas, Craig J

    2015-01-01

    Drug resistance in Plasmodium parasites is a constant threat. Novel therapeutics, especially new drug combinations, must be identified at a faster rate. In response to the urgent need for new antimalarial drug combinations we screened a large collection of approved and investigational drugs, tested 13,910 drug pairs, and identified many promising antimalarial drug combinations. The activity of known antimalarial drug regimens was confirmed and a myriad of new classes of positively interacting drug pairings were discovered. Network and clustering analyses reinforced established mechanistic relationships for known drug combinations and identified several novel mechanistic hypotheses. From eleven screens comprising >4,600 combinations per parasite strain (including duplicates) we further investigated interactions between approved antimalarials, calcium homeostasis modulators, and inhibitors of phosphatidylinositide 3-kinases (PI3K) and the mammalian target of rapamycin (mTOR). These studies highlight important targets and pathways and provide promising leads for clinically actionable antimalarial therapy. PMID:26403635

  11. High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations

    PubMed Central

    Mott, Bryan T.; Eastman, Richard T.; Guha, Rajarshi; Sherlach, Katy S.; Siriwardana, Amila; Shinn, Paul; McKnight, Crystal; Michael, Sam; Lacerda-Queiroz, Norinne; Patel, Paresma R.; Khine, Pwint; Sun, Hongmao; Kasbekar, Monica; Aghdam, Nima; Fontaine, Shaun D.; Liu, Dongbo; Mierzwa, Tim; Mathews-Griner, Lesley A.; Ferrer, Marc; Renslo, Adam R.; Inglese, James; Yuan, Jing; Roepe, Paul D.; Su, Xin-zhuan; Thomas, Craig J.

    2015-01-01

    Drug resistance in Plasmodium parasites is a constant threat. Novel therapeutics, especially new drug combinations, must be identified at a faster rate. In response to the urgent need for new antimalarial drug combinations we screened a large collection of approved and investigational drugs, tested 13,910 drug pairs, and identified many promising antimalarial drug combinations. The activity of known antimalarial drug regimens was confirmed and a myriad of new classes of positively interacting drug pairings were discovered. Network and clustering analyses reinforced established mechanistic relationships for known drug combinations and identified several novel mechanistic hypotheses. From eleven screens comprising >4,600 combinations per parasite strain (including duplicates) we further investigated interactions between approved antimalarials, calcium homeostasis modulators, and inhibitors of phosphatidylinositide 3-kinases (PI3K) and the mammalian target of rapamycin (mTOR). These studies highlight important targets and pathways and provide promising leads for clinically actionable antimalarial therapy. PMID:26403635

  12. Mutations in the P-type cation-transporter ATPase 4, PfATP4, mediate resistance to both aminopyrazole and spiroindolone antimalarials.

    PubMed

    Flannery, Erika L; McNamara, Case W; Kim, Sang Wan; Kato, Tomoyo Sakata; Li, Fengwu; Teng, Christine H; Gagaring, Kerstin; Manary, Micah J; Barboa, Rachel; Meister, Stephan; Kuhen, Kelli; Vinetz, Joseph M; Chatterjee, Arnab K; Winzeler, Elizabeth A

    2015-02-20

    Aminopyrazoles are a new class of antimalarial compounds identified in a cellular antiparasitic screen with potent activity against Plasmodium falciparum asexual and sexual stage parasites. To investigate their unknown mechanism of action and thus identify their target, we cultured parasites in the presence of a representative member of the aminopyrazole series, GNF-Pf4492, to select for resistance. Whole genome sequencing of three resistant lines showed that each had acquired independent mutations in a P-type cation-transporter ATPase, PfATP4 (PF3D7_1211900), a protein implicated as the novel Plasmodium spp. target of another, structurally unrelated, class of antimalarials called the spiroindolones and characterized as an important sodium transporter of the cell. Similarly to the spiroindolones, GNF-Pf4492 blocks parasite transmission to mosquitoes and disrupts intracellular sodium homeostasis. Our data demonstrate that PfATP4 plays a critical role in cellular processes, can be inhibited by two distinct antimalarial pharmacophores, and supports the recent observations that PfATP4 is a critical antimalarial target. PMID:25322084

  13. Assessment of Markers of Antimalarial Drug Resistance in Plasmodium falciparum Isolates from Pregnant Women in Lagos, Nigeria

    PubMed Central

    Agomo, Chimere Obiora; Oyibo, Wellington Aghoghovwia; Sutherland, Colin; Hallet, Rachael; Oguike, Mary

    2016-01-01

    Background The use of antimalarial drugs for prevention and treatment is a major strategy in the prevention of malaria in pregnancy. Although sulphadoxine-pyrimethamine (SP) is currently recommended for intermittent preventive treatment of malaria during pregnancy in Nigeria, previously used drugs for prophylaxis such as chloroquine (CQ) and pyrimethamine are accessible as they are purchased over the counter. This study describes the markers of absence or presence of resistance to quinoline (Pfcrt and Pfmdr 1) and type 1 antifolate antimalarial medicines (Pfdhfr). Methods Plasmodium falciparum-positive dried blood spots from pregnant women attending antenatal clinics for the first time during current pregnancy were investigated for the presence of mutations at codons 72–76 of Plasmodium falciparum chloroquine resistance transporter (Pfcrt) gene by real time polymerase chain reaction (PCR) using haplotype-specific probes. PCR followed by sequence analysis was used to identify mutations at codons 86, 184, 1034, 1042 and 1246 of P. falciparum multi-drug resistance-1 (Pfmdr1) gene; and codons 16, 50, 51, 59, 108, 140 and 164 of Pfdhfr gene. Results Two haplotypes of Pfcrt (n = 54) were observed: CVMNK 13(24.2%) and CVIET 41 (75.9%) of the samples. The SVMNT haplotype was absent in this population. The Pfmdr1 (n = 28) haplotypes were NYSND 15(53.6%), YYSND 5(17.9%), NFSND 6(21.4%) and YFSND 2(7.1%). The Pfdhfr (n = 15) were ACNCSVI 4(26.7%), and ACICNSVI 1(6.7%) and ACIRNVI 10 (66.7%). The rate of occurrence of Pfcrt 76T, Pfdhfr108N, Pfmdr186Yand184F were 75.9%, 73.3%, 25% and 28.1% respectively. The Pfmdr1 86Y was associated with low parasitaemia (median = 71 parasites/μl, P = 0.024) while Pfcrt 76T was associated with young maternal age (mean 24.1 ± 4.5 years; P = 0.006). The median parasitaemia were similar (P>0.05) in wild and mutant strains of Pfcrt 76, Pfmdr1 184 and Pfdhfr 108. There was no association between gravidity or gestational age of the women and

  14. Temporal trends in prevalence of Plasmodium falciparum drug resistance alleles over two decades of changing antimalarial policy in coastal Kenya.

    PubMed

    Okombo, John; Kamau, Alice W; Marsh, Kevin; Sutherland, Colin J; Ochola-Oyier, Lynette Isabella

    2014-12-01

    Molecular surveillance of drug resistance markers through time provides crucial information on genomic adaptations, especially in parasite populations exposed to changing drug pressures. To assess temporal trends of established genotypes associated with tolerance to clinically important antimalarials used in Kenya over the last two decades, we sequenced a region of the pfcrt locus encompassing codons 72-76 of the Plasmodium falciparum chloroquine resistance transporter, full-length pfmdr1 - encoding multi-drug resistance protein, P-glycoprotein homolog (Pgh1) and pfdhfr encoding dihydrofolate reductase, in 485 archived Plasmodium falciparum positive blood samples collected in coastal Kenya at four different time points between 1995 and 2013. Microsatellite loci were also analyzed to compare the genetic backgrounds of parasite populations circulating before and after the withdrawal of chloroquine and sulfadoxine/pyrimethamine. Our results reveal a significant increase in the prevalence of the pfcrt K76 wild-type allele between 1995 and 2013 from 38% to 81.7% (p < 0.0001). In contrast, we noted a significant decline in wild-type pfdhfr S108 allele (p < 0.0001) culminating in complete absence of this allele in 2013. We also observed a significant increase in the prevalence of the wild-type pfmdr1 N86/Y184/D1246 haplotype from 14.6% in 1995 to 66.0% in 2013 (p < 0.0001) and a corresponding decline of the mutant pfmdr1 86Y/184Y/1246Y allele from 36.4% to 0% in 19 years (p < 0.0001). We also show extensive genetic heterogeneity among the chloroquine-sensitive parasites before and after the withdrawal of the drug in contrast to a selective sweep around the triple mutant pfdhfr allele, leading to a mono-allelic population at this locus. These findings highlight the importance of continual surveillance and characterization of parasite genotypes as indicators of the therapeutic efficacy of antimalarials, particularly in the context of changes in malaria treatment

  15. In Vitro and Molecular Surveillance for Antimalarial Drug Resistance in Plasmodium falciparum Parasites in Western Kenya Reveals Sustained Artemisinin Sensitivity and Increased Chloroquine Sensitivity

    PubMed Central

    Komino, Franklin; Okoth, Sheila Akinyi; Goldman, Ira; Onyona, Philip; Wiegand, Ryan E.; Juma, Elizabeth; Shi, Ya Ping; Barnwell, John W.; Udhayakumar, Venkatachalam; Kariuki, Simon

    2015-01-01

    Malaria control is hindered by the evolution and spread of resistance to antimalarials, necessitating multiple changes to drug policies over time. A comprehensive antimalarial drug resistance surveillance program is vital for detecting the potential emergence of resistance to antimalarials, including current artemisinin-based combination therapies. An antimalarial drug resistance surveillance study involving 203 Plasmodium falciparum malaria-positive children was conducted in western Kenya between 2010 and 2013. Specimens from enrolled children were analyzed in vitro for sensitivity to chloroquine (CQ), amodiaquine (AQ), mefloquine (MQ), lumefantrine, and artemisinin derivatives (artesunate and dihydroartemisinin) and for drug resistance allele polymorphisms in P. falciparum crt (Pfcrt), Pfmdr-1, and the K13 propeller domain (K13). We observed a significant increase in the proportion of samples with the Pfcrt wild-type (CVMNK) genotype, from 61.2% in 2010 to 93.0% in 2013 (P < 0.0001), and higher proportions of parasites with elevated sensitivity to CQ in vitro. The majority of isolates harbored the wild-type N allele in Pfmdr-1 codon 86 (93.5%), with only 7 (3.50%) samples with the N86Y mutant allele (the mutant nucleotide is underlined). Likewise, most isolates harbored the wild-type Pfmdr-1 D1246 allele (79.8%), with only 12 (6.38%) specimens with the D1246Y mutant allele and 26 (13.8%) with mixed alleles. All the samples had a single copy of the Pfmdr-1 gene (mean of 0.907 ± 0.141 copies). None of the sequenced parasites had mutations in K13. Our results suggest that artemisinin is likely to remain highly efficacious and that CQ sensitivity appears to be on the rise in western Kenya. PMID:26392510

  16. In Vitro and Molecular Surveillance for Antimalarial Drug Resistance in Plasmodium falciparum Parasites in Western Kenya Reveals Sustained Artemisinin Sensitivity and Increased Chloroquine Sensitivity.

    PubMed

    Lucchi, Naomi W; Komino, Franklin; Okoth, Sheila Akinyi; Goldman, Ira; Onyona, Philip; Wiegand, Ryan E; Juma, Elizabeth; Shi, Ya Ping; Barnwell, John W; Udhayakumar, Venkatachalam; Kariuki, Simon

    2015-12-01

    Malaria control is hindered by the evolution and spread of resistance to antimalarials, necessitating multiple changes to drug policies over time. A comprehensive antimalarial drug resistance surveillance program is vital for detecting the potential emergence of resistance to antimalarials, including current artemisinin-based combination therapies. An antimalarial drug resistance surveillance study involving 203 Plasmodium falciparum malaria-positive children was conducted in western Kenya between 2010 and 2013. Specimens from enrolled children were analyzed in vitro for sensitivity to chloroquine (CQ), amodiaquine (AQ), mefloquine (MQ), lumefantrine, and artemisinin derivatives (artesunate and dihydroartemisinin) and for drug resistance allele polymorphisms in P. falciparum crt (Pfcrt), Pfmdr-1, and the K13 propeller domain (K13). We observed a significant increase in the proportion of samples with the Pfcrt wild-type (CVMNK) genotype, from 61.2% in 2010 to 93.0% in 2013 (P < 0.0001), and higher proportions of parasites with elevated sensitivity to CQ in vitro. The majority of isolates harbored the wild-type N allele in Pfmdr-1 codon 86 (93.5%), with only 7 (3.50%) samples with the N86Y mutant allele (the mutant nucleotide is underlined). Likewise, most isolates harbored the wild-type Pfmdr-1 D1246 allele (79.8%), with only 12 (6.38%) specimens with the D1246Y mutant allele and 26 (13.8%) with mixed alleles. All the samples had a single copy of the Pfmdr-1 gene (mean of 0.907 ± 0.141 copies). None of the sequenced parasites had mutations in K13. Our results suggest that artemisinin is likely to remain highly efficacious and that CQ sensitivity appears to be on the rise in western Kenya. PMID:26392510

  17. Prevalence of In Vitro Resistance to Eleven Standard or New Antimalarial Drugs among Plasmodium falciparum Isolates from Pointe-Noire, Republic of the Congo

    PubMed Central

    Pradines, Bruno; Hovette, Philippe; Fusai, Thierry; Atanda, Henri Léonard; Baret, Eric; Cheval, Philippe; Mosnier, Joel; Callec, Alain; Cren, Julien; Amalvict, Rémy; Gardair, Jean Pierre; Rogier, Christophe

    2006-01-01

    We determined the level of in vitro resistance of Plasmodium falciparum parasites to standard antimalarial drugs, such as chloroquine, quinine, amodiaquine, halofantrine, mefloquine, cycloguanil, and pyrimethamine, and to new compounds, such as dihydroartemisinin, doxycycline, atovaquone, and lumefantrine. The in vitro resistance to chloroquine reached 75.5%. Twenty-eight percent of the isolates were intermediate or had reduced susceptibility to quinine. Seventy-six percent and 96% of the tested isolates showed in vitro resistance or intermediate susceptibilities to cycloguanil and pyrimethamine, respectively. Only 2% of the parasites demonstrated in vitro resistance to monodesethylamodiaquine. No resistance was shown with halofantrine, lumefantrine, dihydroartemisinin, or atovaquone. Halofantrine, mefloquine, and lumefantrine demonstrated high correlation. No cross-resistance was identified between responses to monodesethyl-amodiaquine, dihydroartemisinin, atovaquone, and cycloguanil. Since the level of chloroquine resistance in vitro exceed an unacceptable upper limit, high rates of in vitro resistance to pyrimethamine and cycloguanil and diminution of the susceptibility to quinine, antimalarial drugs used in combination, such as amodiaquine, artemisinin derivatives, mefloquine, lumefantrine, or atovaquone, seem to be appropriate alternatives for the first line of treatment of acute, uncomplicated P. falciparum malaria. PMID:16825356

  18. How can we identify parasite genes that underlie antimalarial drug resistance?

    PubMed Central

    Anderson, Tim; Nkhoma, Standwell; Ecker, Andrea; Fidock, David

    2011-01-01

    This article outlines genome-scale approaches that can be used to identify mutations in malaria (Plasmodium) parasites that underlie drug resistance and contribute to treatment failure. These approaches include genetic mapping by linkage or genome-wide association studies, drug selection and characterization of resistant mutants, and the identification of genome regions under strong recent selection. While these genomic approaches can identify candidate resistance loci, genetic manipulation is needed to demonstrate causality. We therefore also describe the growing arsenal of available transfection approaches for direct incrimination of mutations suspected to play a role in resistance. Our intention is both to review past progress and highlight promising approaches for future investigations. PMID:21174623

  19. New orally active diphenylmethyl-based ester analogues of dihydroartemisinin: Synthesis and antimalarial assessment against multidrug-resistant Plasmodium yoelii nigeriensis in mice.

    PubMed

    Chaudhary, Sandeep; Naikade, Niraj K; Tiwari, Mohit K; Yadav, Lalit; Shyamlal, Bharti Rajesh K; Puri, Sunil K

    2016-03-15

    A new series of ester analogues of artemisinin 8a-f, incorporating diphenylmethyl as pharmacologically privileged substructure, and 8g-j have been prepared and evaluated for their antimalarial activity against multidrug-resistant (MDR) Plasmodium yoelii nigeriensis in Swiss mice via oral route. These diphenylmethyl-based ester analogues 8a-f were found to be 2-4 folds more active than the antimalarial drugs β-arteether 4 and artesunic acid 5. Ester 8a, the most active compound of the series, provided complete protection to the infected mice at 24 mg/kg × 4 days as well as 12 mg/kg × 4 days, respectively. In this model β-arteether provided 100% and 20% protection at 48 mg/kg × 4 days and 24 mg/kg × 4 days, respectively. PMID:26898813

  20. Computing motion using resistive networks

    NASA Technical Reports Server (NTRS)

    Koch, Christof; Luo, Jin; Mead, Carver; Hutchinson, James

    1988-01-01

    Recent developments in the theory of early vision are described which lead from the formulation of the motion problem as an ill-posed one to its solution by minimizing certain 'cost' functions. These cost or energy functions can be mapped onto simple analog and digital resistive networks. It is shown how the optical flow can be computed by injecting currents into resistive networks and recording the resulting stationary voltage distribution at each node. These networks can be implemented in cMOS VLSI circuits and represent plausible candidates for biological vision systems.

  1. Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: An integrated computational approach

    NASA Astrophysics Data System (ADS)

    Nagasundaram, N.; George Priya Doss, C.; Chakraborty, Chiranjib; Karthick, V.; Thirumal Kumar, D.; Balaji, V.; Siva, R.; Lu, Aiping; Ge, Zhang; Zhu, Hailong

    2016-07-01

    Artemisinin resistance in Plasmodium falciparum threatens global efforts in the elimination or eradication of malaria. Several studies have associated mutations in the PfATP6 gene in conjunction with artemisinin resistance, but the underlying molecular mechanism of the resistance remains unexplored. Associated mutations act as a biomarker to measure the artemisinin efficacy. In the proposed work, we have analyzed the binding affinity and efficacy between PfATP6 and artemisinin in the presence of L263D, L263E and L263K mutations. Furthermore, we performed virtual screening to identify potential compounds to inhibit the PfATP6 mutant proteins. In this study, we observed that artemisinin binding affinity with PfATP6 gets affected by L263D, L263E and L263K mutations. This in silico elucidation of artemisinin resistance enhanced the identification of novel compounds (CID: 10595058 and 10625452) which showed good binding affinity and efficacy with L263D, L263E and L263K mutant proteins in molecular docking and molecular dynamics simulations studies. Owing to the high propensity of the parasite to drug resistance the need for new antimalarial drugs will persist until the malarial parasites are eventually eradicated. The two compounds identified in this study can be tested in in vitro and in vivo experiments as possible candidates for the designing of new potential antimalarial drugs.

  2. Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: An integrated computational approach

    PubMed Central

    N., Nagasundaram; C., George Priya Doss; Chakraborty, Chiranjib; V., Karthick; D., Thirumal Kumar; V., Balaji; R., Siva; Lu, Aiping; Ge, Zhang; Zhu, Hailong

    2016-01-01

    Artemisinin resistance in Plasmodium falciparum threatens global efforts in the elimination or eradication of malaria. Several studies have associated mutations in the PfATP6 gene in conjunction with artemisinin resistance, but the underlying molecular mechanism of the resistance remains unexplored. Associated mutations act as a biomarker to measure the artemisinin efficacy. In the proposed work, we have analyzed the binding affinity and efficacy between PfATP6 and artemisinin in the presence of L263D, L263E and L263K mutations. Furthermore, we performed virtual screening to identify potential compounds to inhibit the PfATP6 mutant proteins. In this study, we observed that artemisinin binding affinity with PfATP6 gets affected by L263D, L263E and L263K mutations. This in silico elucidation of artemisinin resistance enhanced the identification of novel compounds (CID: 10595058 and 10625452) which showed good binding affinity and efficacy with L263D, L263E and L263K mutant proteins in molecular docking and molecular dynamics simulations studies. Owing to the high propensity of the parasite to drug resistance the need for new antimalarial drugs will persist until the malarial parasites are eventually eradicated. The two compounds identified in this study can be tested in in vitro and in vivo experiments as possible candidates for the designing of new potential antimalarial drugs. PMID:27471101

  3. Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: An integrated computational approach.

    PubMed

    N, Nagasundaram; C, George Priya Doss; Chakraborty, Chiranjib; V, Karthick; D, Thirumal Kumar; V, Balaji; R, Siva; Lu, Aiping; Ge, Zhang; Zhu, Hailong

    2016-01-01

    Artemisinin resistance in Plasmodium falciparum threatens global efforts in the elimination or eradication of malaria. Several studies have associated mutations in the PfATP6 gene in conjunction with artemisinin resistance, but the underlying molecular mechanism of the resistance remains unexplored. Associated mutations act as a biomarker to measure the artemisinin efficacy. In the proposed work, we have analyzed the binding affinity and efficacy between PfATP6 and artemisinin in the presence of L263D, L263E and L263K mutations. Furthermore, we performed virtual screening to identify potential compounds to inhibit the PfATP6 mutant proteins. In this study, we observed that artemisinin binding affinity with PfATP6 gets affected by L263D, L263E and L263K mutations. This in silico elucidation of artemisinin resistance enhanced the identification of novel compounds (CID: 10595058 and 10625452) which showed good binding affinity and efficacy with L263D, L263E and L263K mutant proteins in molecular docking and molecular dynamics simulations studies. Owing to the high propensity of the parasite to drug resistance the need for new antimalarial drugs will persist until the malarial parasites are eventually eradicated. The two compounds identified in this study can be tested in in vitro and in vivo experiments as possible candidates for the designing of new potential antimalarial drugs. PMID:27471101

  4. Plasmodium falciparum susceptibility to anti-malarial drugs in Dakar, Senegal, in 2010: an ex vivo and drug resistance molecular markers study

    PubMed Central

    2013-01-01

    Background In 2006, the Senegalese National Malaria Control Programme recommended artemisinin-based combination therapy (ACT) as the first-line treatment for uncomplicated malaria. Since the introduction of ACT, there have been very few reports on the level of resistance of P. falciparum to anti-malarial drugs. To determine whether parasite susceptibility has been affected by the new anti-malarial policies, an ex vivo susceptibility and drug resistance molecular marker study was conducted on local isolates obtained from the Centre de santé Elizabeth Diouf (Médina, Dakar, Senegal). Methods The prevalence of genetic polymorphisms in genes associated with anti-malarial drug resistance, i.e., pfcrt, pfdhfr, pfdhps and pfmdr1, were evaluated for a panel of 165 isolates collected from patients recruited from 17 August 2010 to 6 January 2011. The malaria isolates were assessed for susceptibility to chloroquine (CQ); quinine (QN); monodesethylamodiaquine (MDAQ), the active metabolite of amodiaquine; mefloquine (MQ); lumefantrine (LMF); dihydroartemisinin (DHA), the active metabolite of artemisinin derivatives; and doxycycline (DOX) using the Plasmodium lactate dehydrogenase (pLDH) ELISA. Results The prevalence of the in vitro resistant isolates, or isolates with reduced susceptibility, was 62.1% for MQ, 24.2% for CQ, 10.3% for DOX, 11.8% MDAQ, 9.7% for QN, 2.9% for LMF and 0% for DHA. The Pfcrt 76T mutation was identified in 43.6% of the samples. The pfmdr1 86Y, 184F and 1246Y mutations were found in 16.2%, 50.0% and 1.6% of the samples, respectively. The pfdhfr 108N, 51I and 59R mutations were identified in 81.9%, 77.4% and 79.4% of the samples, respectively. The double mutant (108N and 51I) was detected in 75.5% of the isolates, and the triple mutant (108N, 51I and 59R) was detected in 73.6% of the isolates. The pfdhps 437G, 436A and 613S mutations were found in 54.4%, 38.6% and 1.2% of the samples, respectively. There was only one double mutant, 437G and 540E, and one

  5. Artemisinin-based antimalarial research: application of biotechnology to the production of artemisinin, its mode of action, and the mechanism of resistance of Plasmodium parasites.

    PubMed

    Muangphrom, Paskorn; Seki, Hikaru; Fukushima, Ery Odette; Muranaka, Toshiya

    2016-07-01

    Malaria is a worldwide disease caused by Plasmodium parasites. A sesquiterpene endoperoxide artemisinin isolated from Artemisia annua was discovered and has been accepted for its use in artemisinin-based combinatorial therapies, as the most effective current antimalarial treatment. However, the quantity of this compound produced from the A. annua plant is very low, and the availability of artemisinin is insufficient to treat all infected patients. In addition, the emergence of artemisinin-resistant Plasmodium has been reported recently. Several techniques have been applied to enhance artemisinin availability, and studies related to its mode of action and the mechanism of resistance of malaria-causing parasites are ongoing. In this review, we summarize the application of modern technologies to improve the production of artemisinin, including our ongoing research on artemisinin biosynthetic genes in other Artemisia species. The current understanding of the mode of action of artemisinin as well as the mechanism of resistance against this compound in Plasmodium parasites is also presented. Finally, the current situation of malaria infection and the future direction of antimalarial drug development are discussed. PMID:27250562

  6. A fractal-like resistive network

    NASA Astrophysics Data System (ADS)

    Saggese, A.; De Luca, R.

    2014-11-01

    The equivalent resistance of a fractal-like network is calculated by means of approaches similar to those employed in defining the equivalent resistance of an infinite ladder. Starting from an elementary triangular circuit, a fractal-like network, named after Saggese, is developed. The equivalent resistance of finite approximations of this network is measured, and the didactical implications of the model are highlighted.

  7. Recent developments in naturally derived antimalarials: cryptolepine analogues.

    PubMed

    Wright, Colin W

    2007-06-01

    Increasing resistance of Plasmodium falciparum to commonly used antimalarial drugs has made the need for new agents increasingly urgent. In this paper, the potential of cryptolepine, an alkaloid from the West African shrub Cryptolepis sanguinolenta, as a lead towards new antimalarial agents is discussed. Several cryptolepine analogues have been synthesized that have promising in-vitro and in-vivo antimalarial activity. Studies on the antimalarial modes of action of these analogues indicate that they may have different or additional modes of action to the parent compound. Elucidation of the mode of action may facilitate the development of more potent antimalarial cryptolepine analogues. PMID:17637183

  8. A population genetic model for the initial spread of partially resistant malaria parasites under anti-malarial combination therapy and weak intrahost competition.

    PubMed

    Kim, Yuseob; Escalante, Ananias A; Schneider, Kristan A

    2014-01-01

    To develop public-health policies that extend the lifespan of affordable anti-malarial drugs as effective treatment options, it is necessary to understand the evolutionary processes leading to the origin and spread of mutations conferring drug resistance in malarial parasites. We built a population-genetic model for the emergence of resistance under combination drug therapy. Reproductive cycles of parasites are specified by their absolute fitness determined by clinical parameters, thus coupling the evolutionary-genetic with population-dynamic processes. Initial mutations confer only partial drug-resistance. Therefore, mutant parasites rarely survive combination therapy and within-host competition is very weak among parasites. The model focuses on the early phase of such unsuccessful recurrent mutations. This ends in the rare event of mutants enriching in an infected individual from which the successful spread of resistance over the entire population is initiated. By computer simulations, the waiting time until the establishment of resistant parasites is analysed. Resistance spreads quickly following the first appearance of a host infected predominantly by mutant parasites. This occurs either through a rare transmission of a resistant parasite to an uninfected host or through a rare failure of drugs in removing "transient" mutant alleles. The emergence of resistance is delayed with lower mutation rate, earlier treatment, higher metabolic cost of resistance, longer duration of high drug dose, and higher drug efficacy causing a stronger reduction in the sensitive and resistant parasites' fitnesses. Overall, contrary to other studies' proposition, the current model based on absolute fitness suggests that aggressive drug treatment delays the emergence of drug resistance. PMID:25007207

  9. Quinoline-based antimalarial hybrid compounds.

    PubMed

    Vandekerckhove, Stéphanie; D'hooghe, Matthias

    2015-08-15

    Quinoline-containing compounds, such as quinine and chloroquine, have a long-standing history as potent antimalarial agents. However, the increasing resistance of the Plasmodium parasite against these drugs and the lack of licensed malaria vaccines have forced chemists to develop synthetic strategies toward novel biologically active molecules. A strategy that has attracted considerable attention in current medicinal chemistry is based on the conjugation of two biologically active molecules into one hybrid compound. Since quinolines are considered to be privileged antimalarial building blocks, the synthesis of quinoline-containing antimalarial hybrids has been elaborated extensively in recent years. This review provides a literature overview of antimalarial hybrid molecules containing a quinoline core, covering publications between 2009 and 2014. PMID:25593097

  10. Crystal structures of multidrug-resistant HIV-1 protease in complex with two potent anti-malarial compounds

    SciTech Connect

    Yedidi, Ravikiran S.; Liu, Zhigang; Wang, Yong; Brunzelle, Joseph S.; Kovari, Iulia A.; Woster, Patrick M.; Kovari, Ladislau C.; Gupta, Deepak

    2012-06-19

    Two potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed. Crystallographic analysis revealed that the MDR protease exhibits a typical wide-open conformation of the flaps (Gly48 to Gly52) causing an overall expansion in the active site cavity, which, in turn caused unstable binding of the inhibitors. Due to the expansion of the active site cavity, both compounds showed loss of direct contacts with the MDR protease compared to the docking models of NL4-3. Multiple water molecules showed a rich network of hydrogen bonds contributing to the stability of the ligand binding in the distorted binding pockets of the MDR protease in both crystal structures. Docking analysis of 1 and 2 showed a decrease in the binding affinity for both compounds against MDR supporting our structure-function studies. Thus, compounds 1 and 2 show promising inhibitory activity against HIV-1 protease variants and hence are good candidates for further development to enhance their potency against NL4-3 as well as MDR HIV-1 protease variants.

  11. Synthesis and Antimalarial Activities of Cyclen 4-Aminoquinoline Analogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an attempt to augment the efficacy of 7-chloro 4-aminoquinoline analogs and also to overcome resistance to anti-malarial agents we synthesized three cyclen analogs of chloroquine (4,6,7). Compound 4 displays the most potent in vitro and in vivo antimalarial activities. It displays an IC50 of 7.5 ...

  12. Evolving spiking networks with variable resistive memories.

    PubMed

    Howard, Gerard; Bull, Larry; de Lacy Costello, Ben; Gale, Ella; Adamatzky, Andrew

    2014-01-01

    Neuromorphic computing is a brainlike information processing paradigm that requires adaptive learning mechanisms. A spiking neuro-evolutionary system is used for this purpose; plastic resistive memories are implemented as synapses in spiking neural networks. The evolutionary design process exploits parameter self-adaptation and allows the topology and synaptic weights to be evolved for each network in an autonomous manner. Variable resistive memories are the focus of this research; each synapse has its own conductance profile which modifies the plastic behaviour of the device and may be altered during evolution. These variable resistive networks are evaluated on a noisy robotic dynamic-reward scenario against two static resistive memories and a system containing standard connections only. The results indicate that the extra behavioural degrees of freedom available to the networks incorporating variable resistive memories enable them to outperform the comparative synapse types. PMID:23614774

  13. A combined within-host and between-hosts modelling framework for the evolution of resistance to antimalarial drugs.

    PubMed

    Legros, Mathieu; Bonhoeffer, Sebastian

    2016-04-01

    The spread of drug resistance represents a significant challenge to many disease control efforts. The evolution of resistance is a complex process influenced by transmission dynamics between hosts as well as infection dynamics within these hosts. This study aims to investigate how these two processes combine to impact the evolution of resistance in malaria parasites. We introduce a stochastic modelling framework combining an epidemiological model of Plasmodium transmission and an explicit within-human infection model for two competing strains. Immunity, treatment and resistance costs are included in the within-host model. We show that the spread of resistance is generally less likely in areas of intense transmission, and therefore of increased competition between strains, an effect exacerbated when costs of resistance are higher. We also illustrate how treatment influences the spread of resistance, with a trade-off between slowing resistance and curbing disease incidence. We show that treatment coverage has a stronger impact on disease prevalence, whereas treatment efficacy primarily affects resistance spread, suggesting that coverage should constitute the primary focus of control efforts. Finally, we illustrate the importance of feedbacks between modelling scales. Overall, our results underline the importance of concomitantly modelling the evolution of resistance within and between hosts. PMID:27075004

  14. A combined within-host and between-hosts modelling framework for the evolution of resistance to antimalarial drugs

    PubMed Central

    2016-01-01

    The spread of drug resistance represents a significant challenge to many disease control efforts. The evolution of resistance is a complex process influenced by transmission dynamics between hosts as well as infection dynamics within these hosts. This study aims to investigate how these two processes combine to impact the evolution of resistance in malaria parasites. We introduce a stochastic modelling framework combining an epidemiological model of Plasmodium transmission and an explicit within-human infection model for two competing strains. Immunity, treatment and resistance costs are included in the within-host model. We show that the spread of resistance is generally less likely in areas of intense transmission, and therefore of increased competition between strains, an effect exacerbated when costs of resistance are higher. We also illustrate how treatment influences the spread of resistance, with a trade-off between slowing resistance and curbing disease incidence. We show that treatment coverage has a stronger impact on disease prevalence, whereas treatment efficacy primarily affects resistance spread, suggesting that coverage should constitute the primary focus of control efforts. Finally, we illustrate the importance of feedbacks between modelling scales. Overall, our results underline the importance of concomitantly modelling the evolution of resistance within and between hosts. PMID:27075004

  15. Structural modifications of quinoline-based antimalarial agents: Recent developments

    PubMed Central

    Bawa, Sandhya; Kumar, Suresh; Drabu, Sushma; Kumar, Rajiv

    2010-01-01

    Antimalarial drugs constitute a major part of antiprotozoal drugs and have been in practice for a long time. Antimalarial agents generally belong to the class of quinoline which acts by interfering with heme metabolism. The recent increase in development of chloroquine-resistant strains of Plasmodium falciparum and failure of vaccination program against malaria have fuelled the drug discovery program against this old and widespread disease. Quinoline and its related derivative comprise a class of heterocycles, which has been exploited immensely than any other nucleus for the development of potent antimalarial agents. Various chemical modifications of quinoline have been attempted to achieve analogs with potent antimalarial properties against sensitive as well as resistant strains of Plasmodium sp., together with minimal potential undesirable side effects. This review outlines essentially some of the recent chemical modifications undertaken for the development of potent antimalarial agents based on quinoline. PMID:21814435

  16. UV-triggered Affinity Capture Identifies Interactions between the Plasmodium falciparum Multidrug Resistance Protein 1 (PfMDR1) and Antimalarial Agents in Live Parasitized Cells*

    PubMed Central

    Brunner, Ralf; Ng, Caroline L.; Aissaoui, Hamed; Akabas, Myles H.; Boss, Christoph; Brun, Reto; Callaghan, Paul S.; Corminboeuf, Olivier; Fidock, David A.; Frame, Ithiel J.; Heidmann, Bibia; Le Bihan, Amélie; Jenö, Paul; Mattheis, Corinna; Moes, Suzette; Müller, Ingrid B.; Paguio, Michelle; Roepe, Paul D.; Siegrist, Romain; Voss, Till; Welford, Richard W. D.; Wittlin, Sergio; Binkert, Christoph

    2013-01-01

    A representative of a new class of potent antimalarials with an unknown mode of action was recently described. To identify the molecular target of this class of antimalarials, we employed a photo-reactive affinity capture method to find parasite proteins specifically interacting with the capture compound in living parasitized cells. The capture reagent retained the antimalarial properties of the parent molecule (ACT-213615) and accumulated within parasites. We identified several proteins interacting with the capture compound and established a functional interaction between ACT-213615 and PfMDR1. We surmise that PfMDR1 may play a role in the antimalarial activity of the piperazine-containing compound ACT-213615. PMID:23754276

  17. Inductors and Inductance-Resistance Networks.

    ERIC Educational Resources Information Center

    Kirwin, Gerald J.

    This programed booklet presents ideas related to inductors and inductance--resistance networks. It is designed for the engineering student who is familiar with differential equations and electrical networks. A variety of cases are considered with the idea of developing in the student a broad acquaintance with the inductor response. The booklet is…

  18. Ex Vivo Activity of Endoperoxide Antimalarials, Including Artemisone and Arterolane, against Multidrug-Resistant Plasmodium falciparum Isolates from Cambodia

    PubMed Central

    Chaorattanakawee, Suwanna; Lon, Chanthap; Saunders, David L.; Rutvisuttinunt, Wiriya; Yingyuen, Kritsanai; Bathurst, Ian; Ding, Xavier C.; Tyner, Stuart D.

    2014-01-01

    Novel synthetic endoperoxides are being evaluated as new components of artemisinin combination therapies (ACTs) to treat artemisinin-resistant Plasmodium falciparum malaria. We conducted blinded ex vivo activity testing of fully synthetic (OZ78 and OZ277) and semisynthetic (artemisone, artemiside, artesunate, and dihydroartemisinin) endoperoxides in the histidine-rich protein 2 enzyme-linked immunosorbent assay against 200 P. falciparum isolates from areas of artemisinin-resistant malaria in western and northern Cambodia in 2009 and 2010. The order of potency and geometric mean (GM) 50% inhibitory concentrations (IC50s) were as follows: artemisone (2.40 nM) > artesunate (8.49 nM) > dihydroartemisinin (11.26 nM) > artemiside (15.28 nM) > OZ277 (31.25 nM) > OZ78 (755.27 nM). Ex vivo activities of test endoperoxides positively correlated with dihydroartemisinin and artesunate. The isolates were over 2-fold less susceptible to dihydroartemisinin than the artemisinin-sensitive P. falciparum W2 clone and showed sensitivity comparable to those with test endoperoxides and artesunate, with isolate/W2 IC50 susceptibility ratios of <2.0. All isolates had P. falciparum chloroquine resistance transporter mutations, with negative correlations in sensitivity to endoperoxides and chloroquine. The activities of endoperoxides (artesunate, dihydroartemisinin, OZ277, and artemisone) significantly correlated with that of the ACT partner drug, mefloquine. Isolates had mutations associated with clinical resistance to mefloquine, with 35% prevalence of P. falciparum multidrug resistance gene 1 (pfmdr1) amplification and 84.5% occurrence of the pfmdr1 Y184F mutation. GM IC50s for mefloquine, lumefantrine, and endoperoxides (artesunate, dihydroartemisinin, OZ277, OZ78, and artemisone) correlated with pfmdr1 copy number. Given that current ACTs are failing potentially from reduced sensitivity to artemisinins and partner drugs, newly identified mutations associated with artemisinin resistance

  19. The Tragedy Caused by Fake Antimalarial Drugs

    PubMed Central

    Ambroise-Thomas, Pierre

    2012-01-01

    Counterfeit antimalarials (mainly artemisinin derivatives) is a crucial health problem in developing countries, particularly in Africa. The illegal production, sale and distribution of fake drugs is a huge market evaluated to several billion of dollars and represents more than 50% of the pharmaceutical market in several African countries. Fake drugs have led to a very great number of deaths from untreated malaria or fatality provoked by toxic ingredients. These fake medicines increase the risk of artemisinin resistance developed by the use of sub therapeutic dosages of antimalarials. Tackling this criminal traffic is the objective of an international program created by WHO and involves the international police and custom organizations like INTERPOL. Several very important and encouraging results have been obtained, but the problem will be completely solved if genuine antimalarials, free-of-charge, are handed-over to populations in sub Sahara African countries. PMID:22708042

  20. Evaluation of aminohydantoins as a novel class of antimalarial agents.

    PubMed

    Meyers, Marvin J; Tortorella, Micky D; Xu, Jing; Qin, Limei; He, Zhengxiang; Lang, Xingfen; Zeng, Wentian; Xu, Wanwan; Qin, Li; Prinsen, Michael J; Sverdrup, Francis M; Eickhoff, Christopher S; Griggs, David W; Oliva, Jonathan; Ruminski, Peter G; Jacobsen, E Jon; Campbell, Mary A; Wood, David C; Goldberg, Daniel E; Liu, Xiaorong; Lu, Yongzhi; Lu, Xin; Tu, Zhengchao; Lu, Xiaoyun; Ding, Ke; Chen, Xiaoping

    2014-01-01

    Given the threat of drug resistance, there is an acute need for new classes of antimalarial agents that act via a unique mechanism of action relative to currently used drugs. We have identified a set of druglike compounds within the Tres Cantos Anti-Malarial Set (TCAMS) which likely act via inhibition of a Plasmodium aspartic protease. Structure-activity relationship analysis and optimization of these aminohydantoins demonstrate that these compounds are potent nanomolar inhibitors of the Plasmodium aspartic proteases PM-II and PM-IV and likely one or more other Plasmodium aspartic proteases. Incorporation of a bulky group, such as a cyclohexyl group, on the aminohydantion N-3 position gives enhanced antimalarial potency while reducing inhibition of human aspartic proteases such as BACE. We have identified compound 8p (CWHM-117) as a promising lead for optimization as an antimalarial drug with a low molecular weight, modest lipophilicity, oral bioavailability, and in vivo antimalarial activity in mice. PMID:24900778

  1. Tyrosine kinase inhibitors: New class of antimalarials on the horizon?

    PubMed

    Pathak, Vrushali; Colah, Roshan; Ghosh, Kanjaksha

    2015-08-01

    Development of the antimalarial drug resistant strains has currently become a major public health challenge. There is an urgent need to develop new antimalarial drugs. Tyrosine kinase inhibitors (TKIs) are receiving increasing attention as anticancer therapy. It has revolutionarised the management of CML to say the least. TKIs are also increasingly being implicated in complicated but vital life cycle of malaria parasite. Hence we tested two commonly used but different classes of TKIs (imatinib and sorafenib) in-vitro for their antimalarial activity and possible synergistic activity with existing antimalarial drug. Antimalarial activity was tested with the help of modified WHO microtest technique in-vitro for five different Plasmodium falciparum laboratory strains (3D7, Dd2, 7G8, MRC2, PKL9). Imatinib and sorafenib showed a promising antimalarial activity with all the strains. These compounds caused dose dependent inhibition of parasite maturation. The isobologram analysis of the interactions of these TKIs with standard antimalarial drug, artesunate revealed distinct patterns of synergism, additivity and antagonism at different ratios. Imatinib showed worthwhile synergism with artesunate indicating imatinib and other tyrosine kinase inhibitors may have significant antimalarial activity and can be used in combination therapy. PMID:26142327

  2. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid

    PubMed Central

    Ro, Dae-Kyun; Ouellet, Mario; Paradise, Eric M; Burd, Helcio; Eng, Diana; Paddon, Chris J; Newman, Jack D; Keasling, Jay D

    2008-01-01

    Background Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required. Results Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 μg mL-1 in shake-flask cultures and 1 g L-1 in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by

  3. Selection of antimalarial drug resistance after intermittent preventive treatment of infants and children (IPTi/c) in Senegal.

    PubMed

    Ndiaye, Magatte; Tine, Roger; Faye, Babacar; Ndiaye, Jean L; Diouf, Ibrahima; Lo, Aminata C; Sylla, Khadime; Dieng, Yemou; Hallett, Rachel; Alifrangis, Michael; Gaye, Oumar

    2013-01-01

    Senegal has since 2003 used sulphadoxine-pyrimethamine (SP) for Intermittent Preventive Treatment (IPT) of malaria in risk groups. However, the large-scale IPT strategy may result in increasing drug resistance. Our study investigated the possible impact of SP-IPT given to infants and children on the prevalence of SP-resistant haplotypes in the Plasmodium falciparum genes Pfdhfr and Pfdhps, comparing sites with and without IPTi/c. P. falciparum positives samples (n=352) were collected from children under 5years of age during two cross-sectional surveys in 2010 and 2011 in three health districts (two on IPTi/c and one without IPTi/c intervention) located in the southern part of Senegal. The prevalence of SP-resistance-related haplotypes in Pfdhfr and Pfdhps was determined by nested PCR followed by sequence-specific oligonucleotide probe (SSOP)-ELISA. The prevalence of the Pfdhfr double mutant haplotypes (CNRN and CICN) was stable between years at<10% in the control group (P=0.69), while it rose significantly in the IPTi/c group from 2% in 2010 to 20% in 2011 (P=0.008). The prevalence of the Pfdhfr triple mutant haplotype (CIRN) increased in both groups, but only significantly in the IPTi/c group from 41% to 65% in 2011 (P=0.005). Conversely, the Pfdhps 437G mutation decreased in both groups from 44.6% to 28.6% (P=0.07) and from 66.7% to 47.5% (P=0.02) between 2010 and 2011 in the control and the IPTi/c groups, respectively. Combined with Pfdhfr, there was a weak trend for decreasing prevalence of quadruple mutants (triple Pfdhfr+Pfdhps 437G) in both groups (P=0.15 and P=0.34). During the two cross-sectional surveys, some significant changes were observed in the SP-resistance-related genes. However, since these changes were observed in the two groups, the IPTi/c strategy does only seem to have limited impact on resistance development and other factors as well. However, continuous monitoring will be needed, due to the up-scaling of the IPTi/c strategy in Senegal

  4. Postiive tone resists based on network deploymerization of molecular resists

    NASA Astrophysics Data System (ADS)

    Lawson, Richard A.; Cheng, Jing; Cheshmehkani, Ameneh; Tolbert, Laren M.; Henderson, Clifford L.

    2013-03-01

    Conventional chemically amplified resists have several issues that can potentially limit their capability for sub-40 nm imaging. One of the major issues at this size scale is that the mechanical strength of positive tone CARs limits the amount of stress they can withstand during development, rinse, and drying, thus leading to problems with pattern collapse due to the high capillary forces generated during drying. This problem is exasperated by the fact that linear polymers show dramatically reduced modulus at sub-50 nm features sizes. To improve on this problem, we have made a positive tone resist based on network depolymerization of molecular resists. The resist thermally cross-links after being spin cast into thin film form through reactions between vinyl ether groups and carboxylic acid groups. By cross-linking the resist to form a dense three dimensional polymer network, the mechanical strength of the resist is greatly improved compared to linear polymers. The network is depolymerized using an acid catalyzed reaction to create development contrast that allows for patterning of the resist via development in either aqueous base or organic solvent. One drawback of the current resist design is that the free carboxylic acids on the resist molecule appear to react in solution at room temperature with both the vinyl ether groups on adjacent molecules and with any added base quencher. These reactions cause reduced effectiveness of the base quencher and produce a noticeable resist shelf life problem. Despite these limitations, the material was used to compare the effect of development in aqueous base versus organic solvent. The resist formulated in this work showed a DUV sensitivity of 7 mJ/cm2 and a contrast of 5.2 for development in either solvent or aqueous base. Under 100 keV e-beam imaging, the material showed 40 nm resolution for both development types. In standard 0.26 N TMAH, the dose-to-size was 84 μC/cm2 with 3σ LER of 14.2 nm. Using methyl isobutyl ketone

  5. In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids.

    PubMed

    Viira, Birgit; Gendron, Thibault; Lanfranchi, Don Antoine; Cojean, Sandrine; Horvath, Dragos; Marcou, Gilles; Varnek, Alexandre; Maes, Louis; Maran, Uko; Loiseau, Philippe M; Davioud-Charvet, Elisabeth

    2016-01-01

    Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs) represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery. PMID:27367660

  6. Antimalarial dyes revisited: xanthenes, azines, oxazines, and thiazines.

    PubMed Central

    Vennerstrom, J L; Makler, M T; Angerhofer, C K; Williams, J A

    1995-01-01

    In 1891 Guttmann and Ehrlich (P. Guttmann and P. Ehrlich, Berlin Klin. Wochenschr. 28:953-956, 1891) were the first to report the antimalarial properties of a synthetic, rather than a natural, material when they described the clinical cure of two patients after oral administration of a thiazine dye, methylene blue. Since that time, sporadic reports of the antimalarial properties of several xanthene and azine dyes related to methylene blue have been noted. We report here the results from a reexamination of the antimalarial properties of methylene blue. Janus green B, and three rhodamine dyes and disclose new antimalarial data for 16 commercially available structural analogs of these dyes. The 50% inhibitory concentrations for the chloroquine-susceptible D6 clone and SN isolate and the chloroquine-resistant W2 clone of Plasmodium falciparum were determined by the recently described parasite lactate dehydrogenase enzyme assay. No cross-resistance to chloroquine was observed for any of the dyes. For the 21 dyes tested, no correlation was observed between antimalarial activity and cytotoxicity against KB cells. No correlation between log P (where P is the octanol/water partition coefficient) or relative catalyst efficiency for glucose oxidation and antimalarial activity or cytotoxicity was observed for the dyes as a whole or for the thiazine dyes. The thiazine dyes were the most uniformly potent structural class tested, and among the dyes in this class, methylene blue was notable for both its high antimalarial potency and selectivity. PMID:8593000

  7. Capacitors and Resistance-Capacitance Networks.

    ERIC Educational Resources Information Center

    Balabanian, Norman; Root, Augustin A.

    This programed textbook was developed under a contract with the United States Office of Education as Number 5 in a series of materials for use in an electrical engineering sequence. It is divided into three parts--(1) capacitors, (2) voltage-current relationships, and (3) simple resistance-capacitance networks. (DH)

  8. Synthesis and Potent Antimalarial Activity of Kalihinol B

    PubMed Central

    2016-01-01

    Of the 50+ kalihinane diterpenoids reported to date, only five had been tested for antimalarial activity, in spite of the fact that kalihinol A is the most potent among the members of the larger family of antimalarial isocyanoterpenes. We have validated a strategy designed to access many of the kalihinanes with a 12-step enantioselective synthesis of kalihinol B, the tetrahydrofuran isomer of kalihinol A (a tetrahydropyran). Kalihinol B shows similarly high potency against chloroquine-resistant Plasmodium falciparum. PMID:25815413

  9. Emerging targets for antimalarial drugs.

    PubMed

    Padmanaban, Govinarajan; Rangarajan, Pundi N

    2001-08-01

    The absence of an effective vaccine against malaria and the ability of the parasite to develop resistance to known antimalarial drugs makes it mandatory to unravel newer drug targets with a view to developing newer pharmacophores. While conventional targets such as the purine, pyrimidine and folate pathways are still being investigated in the light of newer knowledge, a new opportunity has emerged from an understanding of certain unique features of the parasite biology. These include the food vacuole, haemoglobin catabolism, haeme biosynthesis, apicoplasts and their metabolism as well as macromolecular transactions, import of host proteins, parasite induced alterations in the red cell surface and transport phenomena. This review seeks to emphasise the new and emerging targets, while giving a brief account of the targets that have already been exploited. PMID:12540258

  10. [Historical overview of antimalarials used in Venezuela].

    PubMed

    Zerpa de Artiles, N

    1993-06-01

    A historical review of antimalarials used in Venezuela is presented from the time when the bark of quina was used until the massive distribution of quinine and metoquine by the Dirección de Malariología y Saneamiento Ambiental. The utility of chloroquine and primaquine against sensible parasite isolates and of sulfadoxine-pyrimethamine and quinine, currently used against P. falciparum resistant strains, is thoroughly discussed. The author suggests use of artemisimine and its derivatives as a very promising antimalarial drug. She also stresses the possibility of the application of new antimalaria vaccine against P. falciparum blood states, presently assayed in the country as an additional tool in malaria control programs. PMID:11640680

  11. From hybrid compounds to targeted drug delivery in antimalarial therapy.

    PubMed

    Oliveira, Rudi; Miranda, Daniela; Magalhães, Joana; Capela, Rita; Perry, Maria J; O'Neill, Paul M; Moreira, Rui; Lopes, Francisca

    2015-08-15

    The discovery of new drugs to treat malaria is a continuous effort for medicinal chemists due to the emergence and spread of resistant strains of Plasmodium falciparum to nearly all used antimalarials. The rapid adaptation of the malaria parasite remains a major limitation to disease control. Development of hybrid antimalarial agents has been actively pursued as a promising strategy to overcome the emergence of resistant parasite strains. This review presents the journey that started with simple combinations of two active moieties into one chemical entity and progressed into a delivery/targeted system based on major antimalarial classes of drugs. The rationale for providing different mechanisms of action against a single or additional targets involved in the multiple stages of the parasite's life-cycle is highlighted. Finally, a perspective for this polypharmacologic approach is presented. PMID:25913864

  12. Pricing, distribution, and use of antimalarial drugs.

    PubMed

    Foster, S D

    1991-01-01

    Prices of new antimalarial drugs are targeted at the "travellers' market" in developed countries, which makes them unaffordable in malaria-endemic countries where the per capita annual drug expenditures are US$ 5 or less. Antimalarials are distributed through a variety of channels in both public and private sectors, the official malaria control programmes accounting for 25-30% of chloroquine distribution. The unofficial drug sellers in markets, streets, and village shops account for as much as half of antimalarials distributed in many developing countries. Use of antimalarials through the health services is often poor; drug shortages are common and overprescription and overuse of injections are significant problems. Anxiety over drug costs may prevent patients from getting the necessary treatment for malaria, especially because of the seasonal appearance of this disease when people's cash reserves are very low. The high costs may lead them to unofficial sources, which will sell a single tablet instead of a complete course of treatment, and subsequently to increased, often irrational demand for more drugs and more injections. Increasingly people are resorting to self-medication for malaria, which may cause delays in seeking proper treatment in cases of failure, especially in areas where chloroquine resistance has increased rapidly. Self-medication is now widespread, and measures to restrict the illicit sale of drugs have been unsuccessful. The "unofficial" channels thus represent an unacknowledged extension of the health services in many countries; suggestions are advanced to encourage better self-medication by increasing the knowledge base among the population at large (mothers, schoolchildren, market sellers, and shopkeepers), with an emphasis on correct dosing and on the importance of seeking further treatment without delay, if necessary. PMID:1893512

  13. Antimalarial drug policy in India: Past, present & future

    PubMed Central

    Anvikar, Anupkumar R.; Arora, Usha; Sonal, G.S.; Mishra, Neelima; Shahi, Bharatendu; Savargaonkar, Deepali; Kumar, Navin; Shah, Naman K.; Valecha, Neena

    2014-01-01

    The use of antimalarial drugs in India has evolved since the introduction of quinine in the 17th century. Since the formal establishment of a malaria control programme in 1953, shortly after independence, treatments provided by the public sector ranged from chloroquine, the mainstay drug for many decades, to the newer, recently introduced artemisinin based combination therapy. The complexity of considerations in antimalarial treatment led to the formulation of a National Antimalarial Drug Policy to guide procurement as well as communicate best practices to both public and private healthcare providers. Challenges addressed in the policy include the use of presumptive treatment, the introduction of alternate treatments for drug-resistant malaria, the duration of primaquine therapy to prevent relapses of vivax malaria, the treatment of malaria in pregnancy, and the choice of drugs for chemoprophylaxis. While data on antimalarial drug resistance and both public and private sector treatment practices have been recently reviewed, the policy process of setting national standards has not. In this perspective on antimalarial drug policy, this review highlights its relevant history, analyzes the current policy, and examines future directions. PMID:24718394

  14. Antimalarial natural products: a review

    PubMed Central

    Mojab, Faraz

    2012-01-01

    Objective: Malaria is an infectious disease commonplace in tropical countries. For many years, major antimalarial drugs consisted of natural products, but since 1930s these drugs have been largely replaced with a series of synthetic drugs. This article tries to briefly indicate that some plants which previously were used to treat malaria, as a result of deficiencies of synthetic drugs, have revived into useful products once more. It also attempts to describe some tests which can be used to evaluate plant extracts for antimalarial activity. Materials and Methods: By referring to some recent literatures, data were collected about plants used for the treatment of malaria, evaluation of plant extracts for antimalarial activity, modes of action of natural antimalarial agents, and recent research on antimalarial plants in Iran and other countries. Results and Conclusion: There is an urgent need for the development of new treatments for malaria. Many countries have a vast precedence in the use of medicinal plants and the required knowledge spans many centuries. Although malaria is controlled in Iran, some researchers tend to study malaria and related subjects. In vitro biological tests for the detection of antimalarial activities in plant extracts are currently available. It is vital that the efficacy and safety of traditional medicines be validated and their active constituents be identified in order to establish reliable quality control measures. PMID:25050231

  15. Artemisinin Antimalarials: Preserving the “Magic Bullet”

    PubMed Central

    Maude, Richard J; Woodrow, Charles J; White, Lisa J

    2010-01-01

    The artemisinins are the most effective antimalarial drugs known. They possess a remarkably wide therapeutic index. These agents have been used in traditional Chinese herbal medicine for more than 2,000 years but were not subjected to scientific scrutiny until the 1970s. The first formal clinical trials of the artemisinins, and the development of methods for their industrial scale production, followed rapidly. A decade later, Chinese scientists shared their findings with the rest of the world; since then, a significant body of international trial evidence has confirmed these drugs to be far superior to any available alternatives. In particular, they have the ability to rapidly kill a broad range of asexual parasite stages at safe concentrations that are consistently achievable via standard dosing regimens. As their half-life is very short, there was also thought to be a low risk of resistance. These discoveries coincided with the appearance and spread of resistance to all the other major classes of antimalarials. As a result, the artemisinins now form an essential element of recommended first-line antimalarial treatment regimens worldwide. To minimize the risk of artemisinin resistance, they are recommended to be used to treat uncomplicated malaria in combination with other antimalarials as artemisinin combination therapies (ACTs). Their rollout has resulted in documented reductions in malaria prevalence in a number of African and Asian countries. Unfortunately, there are already worrisome early signs of artemisinin resistance appearing in western Cambodia. If this resistance were to spread, it would be disastrous for malaria control efforts worldwide. The enormous challenge for the international community is how to avert this catastrophe and preserve the effectiveness of this antimalarial “magic bullet”. Drug Dev Res 71: 12–19, 2010. © 2009 Wiley-Liss, Inc. PMID:21399699

  16. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

    PubMed Central

    Mukherjee, Avinaba; Sadhukhan, Gobinda Chandra

    2016-01-01

    Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug resistance. PMID

  17. ANTIMALARIAL DRUG QUALITY IN AFRICA

    PubMed Central

    Amin, AA; Kokwaro, GO

    2009-01-01

    Background and objective There are several reports of sub-standard and counterfeit antimalarial drugs circulating in the markets of developing countries; we aimed to review the literature for the African continent. Methods A search was conducted in PubMED in English using the medical subject headings (MeSH) terms: “Antimalarials/analysis”[MeSH] OR “Antimalarials/standards”[MeSH] AND “Africa”[MeSH]” to include articles published up to and including 26/02/07. Data were augmented with reports on the quality of antimalarial drugs in Africa obtained from colleagues in the World Health Organization. We summarised the data under the following themes: content and dissolution; relative bioavalability of antimalarial products; antimalarial stability and shelf life; general tests on pharmaceutical dosage forms; and the presence of degradation or unidentifiable impurities in formulations. Results and discussion The search yielded 21 relevant peer-reviewed articles and three reports on the quality of antimalarial drugs in Africa. The literature was varied in the quality and breadth of data presented, with most bioavailability studies poorly designed and executed. The review highlights the common finding in drug quality studies that 1) most antimalarial products pass the basic tests for pharmaceutical dosage forms, such as the uniformity of weight for tablets 2) most antimalarial drugs pass the content test 3) in vitro product dissolution is the main problem area where most drugs fail to meet required pharmacopoeial specifications, especially with regard to sulfadoxine-pyrimethamine products. In addition, there are worryingly high quality failure rates for artemisinin monotherapies such as dihydroartemisin (DHA); for instance all five DHA sampled products in one study in Nairobi, Kenya, were reported to have failed the requisite tests. Conclusions There is an urgent need to strengthen pharmaceutical management systems such as post-marketing surveillance and the

  18. In vitro antimalarial activity of novel semisynthetic nocathiacin I antibiotics.

    PubMed

    Sharma, Indu; Sullivan, Margery; McCutchan, Thomas F

    2015-01-01

    Presently, the arsenal of antimalarial drugs is limited and needs to be replenished. We evaluated the potential antimalarial activity of two water-soluble derivatives of nocathiacin (BMS461996 and BMS411886) against the asexual blood stages of Plasmodium falciparum. Nocathiacins are a thiazolyl peptide group of antibiotics, are structurally related to thiostrepton, have potent activity against a wide spectrum of multidrug-resistant Gram-positive bacteria, and inhibit protein synthesis. The in vitro growth inhibition assay was done using three laboratory strains of P. falciparum displaying various levels of chloroquine (CQ) susceptibility. Our results indicate that BMS461996 has potent antimalarial activity and inhibits parasite growth with mean 50% inhibitory concentrations (IC50s) of 51.55 nM for P. falciparum 3D7 (CQ susceptible), 85.67 nM for P. falciparum Dd2 (accelerated resistance to multiple drugs [ARMD]), and 99.44 nM for P. falciparum K1 (resistant to CQ, pyrimethamine, and sulfadoxine). Similar results at approximately 7-fold higher IC50s were obtained with BMS411886 than with BMS461996. We also tested the effect of BMS491996 on gametocytes; our results show that at a 20-fold excess of the mean IC50, gametocytes were deformed with a pyknotic nucleus and growth of stage I to IV gametocytes was arrested. This preliminary study shows a significant potential for nocathiacin analogues to be developed as antimalarial drug candidates and to warrant further investigation. PMID:25779576

  19. Bipolar resistive switching behaviors of ITO nanowire networks

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Gong, Zhina; Wang, Shuai; Wang, Jiangteng; Zhang, Ye; Yun, Feng

    2016-02-01

    We have fabricated indium tin oxide (ITO) nanowire (NW) networks on aluminum electrodes using electron beam evaporation. The Ag/ITO-NW networks/Al capacitor exhibits bipolar resistive switching behavior. The resistive switching characteristics of ITO-NW networks are related to the morphology of NWs. The x-ray photoelectron spectroscopy was used to obtain the chemical nature from the NWs surface, investigating the oxygen vacancy state. A stable switching voltages and a clear memory window were observed in needle-shaped NWs. The ITO-NW networks can be used as a new two-dimensional metal oxide material for the fabrication of high-density memory devices.

  20. Antimalarial Activity of Cupredoxins

    PubMed Central

    Cruz-Gallardo, Isabel; Díaz-Moreno, Irene; Díaz-Quintana, Antonio; Donaire, Antonio; Velázquez-Campoy, Adrián; Curd, Rachel D.; Rangachari, Kaveri; Birdsall, Berry; Ramos, Andres; Holder, Anthony A.; De la Rosa, Miguel A.

    2013-01-01

    The discovery of effective new antimalarial agents is urgently needed. One of the most frequently studied molecules anchored to the parasite surface is the merozoite surface protein-1 (MSP1). At red blood cell invasion MSP1 is proteolytically processed, and the 19-kDa C-terminal fragment (MSP119) remains on the surface and is taken into the red blood cell, where it is transferred to the food vacuole and persists until the end of the intracellular cycle. Because a number of specific antibodies inhibit erythrocyte invasion and parasite growth, MSP119 is therefore a promising target against malaria. Given the structural homology of cupredoxins with the Fab domain of monoclonal antibodies, an approach combining NMR and isothermal titration calorimetry (ITC) measurements with docking calculations based on BiGGER is employed on MSP119-cupredoxin complexes. Among the cupredoxins tested, rusticyanin forms a well defined complex with MSP119 at a site that overlaps with the surface recognized by the inhibitory antibodies. The addition of holo-rusticyanin to infected cells results in parasitemia inhibition, but negligible effects on parasite growth can be observed for apo-rusticyanin and other proteins of the cupredoxin family. These findings point to rusticyanin as an excellent therapeutic tool for malaria treatment and provide valuable information for drug design. PMID:23749994

  1. Potent Plasmodium falciparum gametocytocidal activity of diaminonaphthoquinones, lead antimalarial chemotypes identified in an antimalarial compound screen.

    PubMed

    Tanaka, Takeshi Q; Guiguemde, W Armand; Barnett, David S; Maron, Maxim I; Min, Jaeki; Connelly, Michele C; Suryadevara, Praveen Kumar; Guy, R Kiplin; Williamson, Kim C

    2015-03-01

    Forty percent of the world's population is threatened by malaria, which is caused by Plasmodium parasites and results in an estimated 200 million clinical cases and 650,000 deaths each year. Drug resistance has been reported for all commonly used antimalarials and has prompted screens to identify new drug candidates. However, many of these new candidates have not been evaluated against the parasite stage responsible for transmission, gametocytes. If Plasmodium falciparum gametocytes are not eliminated, patients continue to spread malaria for weeks after asexual parasite clearance. Asymptomatic individuals can also harbor gametocyte burdens sufficient for transmission, and a safe, effective gametocytocidal agent could also be used in community-wide malaria control programs. Here, we identify 15 small molecules with nanomolar activity against late-stage gametocytes. Fourteen are diaminonaphthoquinones (DANQs), and one is a 2-imino-benzo[d]imidazole (IBI). One of the DANQs identified, SJ000030570, is a lead antimalarial candidate. In contrast, 94% of the 650 compounds tested are inactive against late-stage gametocytes. Consistent with the ineffectiveness of most approved antimalarials against gametocytes, of the 19 novel compounds with activity against known anti-asexual-stage targets, only 3 had any strong effect on gametocyte viability. These data demonstrate the distinct biology of the transmission stages and emphasize the importance of screening for gametocytocidal activity. The potent gametocytocidal activity of DANQ and IBI coupled with their efficacy against asexual parasites provides leads for the development of antimalarials with the potential to prevent both the symptoms and the spread of malaria. PMID:25512421

  2. Potent Plasmodium falciparum Gametocytocidal Activity of Diaminonaphthoquinones, Lead Antimalarial Chemotypes Identified in an Antimalarial Compound Screen

    PubMed Central

    Tanaka, Takeshi Q; Guiguemde, W. Armand; Barnett, David S.; Maron, Maxim I.; Min, Jaeki; Connelly, Michele C.; Suryadevara, Praveen Kumar; Guy, R. Kiplin

    2014-01-01

    Forty percent of the world's population is threatened by malaria, which is caused by Plasmodium parasites and results in an estimated 200 million clinical cases and 650,000 deaths each year. Drug resistance has been reported for all commonly used antimalarials and has prompted screens to identify new drug candidates. However, many of these new candidates have not been evaluated against the parasite stage responsible for transmission, gametocytes. If Plasmodium falciparum gametocytes are not eliminated, patients continue to spread malaria for weeks after asexual parasite clearance. Asymptomatic individuals can also harbor gametocyte burdens sufficient for transmission, and a safe, effective gametocytocidal agent could also be used in community-wide malaria control programs. Here, we identify 15 small molecules with nanomolar activity against late-stage gametocytes. Fourteen are diaminonaphthoquinones (DANQs), and one is a 2-imino-benzo[d]imidazole (IBI). One of the DANQs identified, SJ000030570, is a lead antimalarial candidate. In contrast, 94% of the 650 compounds tested are inactive against late-stage gametocytes. Consistent with the ineffectiveness of most approved antimalarials against gametocytes, of the 19 novel compounds with activity against known anti-asexual-stage targets, only 3 had any strong effect on gametocyte viability. These data demonstrate the distinct biology of the transmission stages and emphasize the importance of screening for gametocytocidal activity. The potent gametocytocidal activity of DANQ and IBI coupled with their efficacy against asexual parasites provides leads for the development of antimalarials with the potential to prevent both the symptoms and the spread of malaria. PMID:25512421

  3. Metabolism and Resistance of Fusarium spp. to the Manzamine Alkaloids via a Putative Retro Pictet-Spengler Reaction and Utility of the Rational Design of Antimalarial and Antifungal Agents

    PubMed Central

    Farr, Lorelei Lucas; Gholipour, Abbas; Wedge, David E.; Hamann, Mark T.

    2014-01-01

    As a part of our continuing investigation of the manzamine alkaloids we studied the in vitro activity of the β-carboline containing manzamine alkaloids against Fusarium solani, Fusarium oxysporium, and Fusarium proliferatum by employing several bioassay techniques including one-dimensional direct bioautography, dilution, and plate susceptibility, and microtiter broth assays. In addition, we also studied the metabolism of the manzamine alkaloids by Fusarium spp. in order to facilitate the redesign of the compounds to prevent resistance of Fusarium spp. through metabolism. The present research reveals that the manzamine alkaloids are inactive against Fusarium spp. and the fungi transform manzamines via hydrolysis, reduction, and a retro Pictet-Spengler reaction. This is the first report to demonstrate an enzymatically retro Pictet-Spengler reaction. The results of this study reveal the utility of the rational design of metabolically stable antifungal agents from this class and the development of manzamine alkaloids as antimalarial drugs through the utilization of Fusarium’s metabolic products to reconstruct the molecule. PMID:24553735

  4. Economic prospects for a new antimalarial drug.

    PubMed

    Foster, S

    1994-06-01

    The market for antimalarial drugs consists of the 2.8 billion (2.8 x 10(9) people living in malaria endemic areas and about 20-30 million people, mainly Europeans and North Americans, who travel or live in malarious areas, and the wealthy elite of malarious developing countries. Some of the largest markets include China, India, and Indonesia with a total of 1.9 billion people exposed; Latin America, with 119 million; and sub-Saharan Africa with 400 million. An estimated 200 million clinical cases occur each year, with around 2 million deaths annually, primarily in African children. Antimalarial drugs are distributed through several different networks and are purchased by governments and private individuals. At present the world market is dominated by chloroquine by virtue of its safety, wide availability and low price. Approximately 20% of the total production of chloroquine was distributed through national control programmes and 80% through other channels; chloroquine is probably the second or third most widely consumed drug in the world. The global market for antimalarial drugs is likely to be of the order of US$100-120 million, with chloroquine making up about US$64-80 m, sulfadoxine/pyrimethamine about US$20 m, and other drugs making up US$10-20 m. Chloroquine is rapidly losing its effectiveness against the malaria parasite, and a safe, effective, cheap replacement is urgently needed. Another product which was found to be safe and effective against malaria, with a price per treatment held at or near the present price of chloroquine, could quickly replace chloroquine as the first-line treatment against malaria.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8053030

  5. QSAR and pharmacophore modeling of natural and synthetic antimalarial prodiginines.

    PubMed

    Singh, Baljinder; Vishwakarma, Ram A; Bharate, Sandip B

    2013-09-01

    Prodiginines are a family of linear and cyclic oligopyrrole red-pigmented compounds possessing antibacterial, anticancer and immunosuppressive activities and are produced by actinomycetes and other eubacteria. Recently, prodiginines have been reported to possess potent in vitro as well as in vivo antimalarial activity against chloroquine sensitive D6 and multi-drug resistant Dd2 strains of Plasmodium falciparum. In the present paper, a QSAR and pharmacophore modeling for a series of natural and synthetic prodiginines was performed to find out structural features which are crucial for antimalarial activity against these D6 and Dd2 Plasmodium strains. The study indicated that inertia moment 2 length, Kier Chi6 (path) index, kappa 3 index and Wiener topological index plays important role in antimalarial activity against D6 strain whereas descriptors inertia moment 2 length, ADME H-bond donors, VAMP polarization XX component and VAMP quadpole XZ component play important role in antimalarial activity against Dd2 strain. Furthermore, a five-point pharmacophore (ADHRR) model with one H-bond acceptor (A), one H-bond donor (D), one hydrophobic group (H) and two aromatic rings (R) as pharmacophore features was developed for D6 strain by PHASE module of Schrodinger suite. Similarly a six-point pharmacophore AADDRR was developed for Dd2 strain activity. All developed QSAR models showed good correlation coefficient (r² > 0.7), higher F value (F >20) and excellent predictive power (Q² > 0.6). Developed models will be highly useful for predicting antimalarial activity of new compounds and could help in designing better molecules with enhanced antimalarial activity. Furthermore, calculated ADME properties indicated drug-likeness of prodiginines. PMID:24010933

  6. Antimalarial activity of HIV-1 protease inhibitor in chromone series.

    PubMed

    Lerdsirisuk, Pradith; Maicheen, Chirattikan; Ungwitayatorn, Jiraporn

    2014-12-01

    Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent. PMID:25462990

  7. Screening of Thai medicinal plant extracts and their active constituents for in vitro antimalarial activity.

    PubMed

    Ichino, C; Soonthornchareonnon, N; Chuakul, W; Kiyohara, H; Ishiyama, A; Sekiguchi, H; Namatame, M; Otoguro, K; Omura, S; Yamada, H

    2006-04-01

    To discover antimalarial substances from plants cultivated in Thailand 80%-EtOH extracts from selected plants were screened for in vitro antimalarial activity against the drug resistant K1 strain of Plasmodium falciparum. In total, 86 Thai medicinal plant samples representing 48 species from 35 genera in 16 families were screened and two species (Polyalthia viridis and Goniothalamus marcanii) were found to show notable antimalarial activity (IC50: 10.0 and 6.3 microg/mL). Marcanine A and 16-hydroxycleroda-3,13(14)Z-dien-15,16-olide were identified as the respective major active constituents in P. viridis and G. marcanii, respectively. PMID:16557615

  8. Crystal and molecular structure of the antimalarial agent enpiroline.

    PubMed

    Karle, J M; Karle, I L

    1989-07-01

    To identify common spatial and structural features of amino alcohol antimalarial agents with the eventual goal of designing more effective drugs and a better understanding of the mechanism of action of this class of antimalarial agents, the three-dimensional crystal and molecular structure of enpiroline, a new antimalarial agent active against chloroquine-resistant Plasmodium falciparum, was determined by X-ray crystallography and compared with the crystal structures of the cinchona alkaloids and of the new antimalarial agent WR 194,965. The aromatic rings of the phenyl-pyridine ring system of enpiroline are twisted from each other by approximately 18 degrees. The intramolecular aliphatic N-O distance in enpiroline was 2.80 A (1 A = 0.1 nm), which is close to the N-O distance found in the antimalarial cinchona alkaloids. Enpiroline contains both an intramolecular hydrogen bond between the aliphatic nitrogen and oxygen atoms and an intermolecular hydrogen bond between the aliphatic nitrogen and oxygen atoms of two neighboring molecules. One enantiomer of enpiroline superimposed best with quinine, and the other enantiomer of enpiroline superimposed best with quinidine, suggesting that both enantiomers of enpiroline possess antimalarial activity. Since a common feature of the crystal structures of the amino alcohol antimalarial agents is the formation of intermolecular hydrogen bonds, the common spatial direction of hydrogen bond formation indicates the potential ability of these antimalarial agents to bind to a common receptor site. The crystallographic parameters were as follows: C19H18F6N5O; Mr = 404.3; symmetry of unit cell, monoclinic; space group, P2(1)/a; parameters of unit cell---a = 9.454 +/- 0.004 A, b = 18.908 +/- 0.008 A, c = 10.300 +/- 0.004 A, and beta = 96.55 +/- 0.03 degrees: V (volume of unit cell) = 1829.2 A3; Z (number of molecules per unit cell) = 4; Dchi (calculated density) = 1.46 g cm-3; source of radiation, CuK alpha (lambda = 1.54178 A); mu

  9. Anatomy of the bacitracin resistance network in Bacillus subtilis.

    PubMed

    Radeck, Jara; Gebhard, Susanne; Orchard, Peter Shevlin; Kirchner, Marion; Bauer, Stephanie; Mascher, Thorsten; Fritz, Georg

    2016-05-01

    Protection against antimicrobial peptides (AMPs) often involves the parallel production of multiple, well-characterized resistance determinants. So far, little is known about how these resistance modules interact and how they jointly protect the cell. Here, we studied the interdependence between different layers of the envelope stress response of Bacillus subtilis when challenged with the lipid II cycle-inhibiting AMP bacitracin. The underlying regulatory network orchestrates the production of the ABC transporter BceAB, the UPP phosphatase BcrC and the phage-shock proteins LiaIH. Our systems-level analysis reveals a clear hierarchy, allowing us to discriminate between primary (BceAB) and secondary (BcrC and LiaIH) layers of bacitracin resistance. Deleting the primary layer provokes an enhanced induction of the secondary layer to partially compensate for this loss. This study reveals a direct role of LiaIH in bacitracin resistance, provides novel insights into the feedback regulation of the Lia system, and demonstrates a pivotal role of BcrC in maintaining cell wall homeostasis. The compensatory regulation within the bacitracin network can also explain how gene expression noise propagates between resistance layers. We suggest that this active redundancy in the bacitracin resistance network of B. subtilis is a general principle to be found in many bacterial antibiotic resistance networks. PMID:26815905

  10. Calculating effective resistances on underlying networks of association schemes

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Sufiani, R.; Jafarizadeh, S.

    2008-07-01

    Recently, in the work of Jafarizadeh et al. [J. Phys, A: Math. Theor. 40, 4949 (2007); e-print arXiv:0705.2480], calculation of effective resistances on distance-regular networks was investigated, where in the first paper, the calculation was based on stratification and Stieltjes functions associated with the network, whereas in the latter one a recursive formula for effective resistances was given based on the Christoffel-Darboux identity. In this paper, evaluation of effective resistances on more general networks that are underlying networks of association schemes is considered, where by using the algebraic combinatoric structures of association schemes such as stratification and Bose-Mesner algebras, an explicit formula for effective resistances on these networks is given in terms of the parameters of the corresponding association schemes. Moreover, we show that for particular underlying networks of association schemes with diameter d such that the adjacency matrix A possesses d +1 distinct eigenvalues, all of the other adjacency matrices Ai, i ≠0, 1 can be written as polynomials of A, i.e., Ai=Pi(A), where Pi is not necessarily of degree i. Then, we use this property for these particular networks and assume that all of the conductances except for one of them, say, c ≡c1=1, are zero to give a procedure for evfor a galuating effective resistances on these networks. The preference of this procedure is that one can evaluate effective resistances by using the structure of their Bose-Mesner algebra without any need to know the spectrum of the adjacency matrices.

  11. Resistance and Security Index of Networks: Structural Information Perspective of Network Security

    NASA Astrophysics Data System (ADS)

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-06-01

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks.

  12. Resistance and Security Index of Networks: Structural Information Perspective of Network Security

    PubMed Central

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-01-01

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks. PMID:27255783

  13. Resistance and Security Index of Networks: Structural Information Perspective of Network Security.

    PubMed

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-01-01

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks. PMID:27255783

  14. Resistive synaptic interconnects for electronic neural networks

    NASA Technical Reports Server (NTRS)

    Lamb, J. L.; Thakoor, A. P.; Moopenn, A.; Khanna, S. K.

    1987-01-01

    The use of the alpha-Ge(1-x):Al(x) and alpha-Ge(1-x):Cu(x) alloys and Pt/Al2O3 cermet thin films as resistive interconnects for binary synaptic memory arrays is evaluated. The fabrication of the 10-20 microns long, 10 microns wide, and 0.1 micron thick interconnects from the alloys and cermet is described. The current-voltage and switching characteristics of the as-deposited films and the patterned test structure are studied. The resistivity, uniformity, stability, and compatibility of the interconnects are examined. It is observed that alpha-Ge(1-x):Cu(x) alloys have a wide resistivity range and low temperature coefficients of resistance; however, their long-term stability is limited due to their low crystallization temperature. It is detected that the alpha-Ge(1-x):Al(x) alloys have higher crystallization temperatures and their resistivity is not greatly affected by large changes in metal content. The Pt/Al2O3 samples display excellent stability, easy fabrication, and control of resistivity with metal content.

  15. Modulation of PF10_0355 (MSPDBL2) Alters Plasmodium falciparum Response to Antimalarial Drugs

    PubMed Central

    Van Tyne, Daria; Uboldi, Alessandro D.; Healer, Julie; Cowman, Alan F.

    2013-01-01

    Malaria's ability to rapidly adapt to new drugs has allowed it to remain one of the most devastating infectious diseases of humans. Understanding and tracking the genetic basis of these adaptations are critical to the success of treatment and intervention strategies. The novel antimalarial resistance locus PF10_0355 (Pfmspdbl2) was previously associated with the parasite response to halofantrine, and functional validation confirmed that overexpression of this gene lowered parasite sensitivity to both halofantrine and the structurally related antimalarials mefloquine and lumefantrine, predominantly through copy number variation. Here we further characterize the role of Pfmspdbl2 in mediating the antimalarial drug response of Plasmodium falciparum. Knockout of Pfmspdbl2 increased parasite sensitivity to halofantrine, mefloquine, and lumefantrine but not to unrelated antimalarials, further suggesting that this gene mediates the parasite response to a specific class of antimalarial drugs. A single nucleotide polymorphism encoding a C591S mutation within Pfmspdbl2 had the strongest association with halofantrine sensitivity and showed a high derived allele frequency among Senegalese parasites. Transgenic parasites expressing the ancestral Pfmspdbl2 allele were more sensitive to halofantrine and structurally related antimalarials than were parasites expressing the derived allele, revealing an allele-specific effect on drug sensitivity in the absence of copy number effects. Finally, growth competition experiments showed that under drug pressure, parasites expressing the derived allele of Pfmspdbl2 outcompeted parasites expressing the ancestral allele within a few generations. Together, these experiments demonstrate that modulation of Pfmspdbl2 affects malaria parasite responses to antimalarial drugs. PMID:23587962

  16. Modulation of PF10_0355 (MSPDBL2) alters Plasmodium falciparum response to antimalarial drugs.

    PubMed

    Van Tyne, Daria; Uboldi, Alessandro D; Healer, Julie; Cowman, Alan F; Wirth, Dyann F

    2013-07-01

    Malaria's ability to rapidly adapt to new drugs has allowed it to remain one of the most devastating infectious diseases of humans. Understanding and tracking the genetic basis of these adaptations are critical to the success of treatment and intervention strategies. The novel antimalarial resistance locus PF10_0355 (Pfmspdbl2) was previously associated with the parasite response to halofantrine, and functional validation confirmed that overexpression of this gene lowered parasite sensitivity to both halofantrine and the structurally related antimalarials mefloquine and lumefantrine, predominantly through copy number variation. Here we further characterize the role of Pfmspdbl2 in mediating the antimalarial drug response of Plasmodium falciparum. Knockout of Pfmspdbl2 increased parasite sensitivity to halofantrine, mefloquine, and lumefantrine but not to unrelated antimalarials, further suggesting that this gene mediates the parasite response to a specific class of antimalarial drugs. A single nucleotide polymorphism encoding a C591S mutation within Pfmspdbl2 had the strongest association with halofantrine sensitivity and showed a high derived allele frequency among Senegalese parasites. Transgenic parasites expressing the ancestral Pfmspdbl2 allele were more sensitive to halofantrine and structurally related antimalarials than were parasites expressing the derived allele, revealing an allele-specific effect on drug sensitivity in the absence of copy number effects. Finally, growth competition experiments showed that under drug pressure, parasites expressing the derived allele of Pfmspdbl2 outcompeted parasites expressing the ancestral allele within a few generations. Together, these experiments demonstrate that modulation of Pfmspdbl2 affects malaria parasite responses to antimalarial drugs. PMID:23587962

  17. Miniaturized Cultivation of Microbiota for Antimalarial Drug Discovery.

    PubMed

    Waterman, Carrie; Calcul, Laurent; Beau, Jeremy; Ma, Wai Sheung; Lebar, Matthew D; von Salm, Jacqueline L; Harter, Charles; Mutka, Tina; Morton, Lindsay C; Maignan, Patrick; Barisic, Betty; van Olphen, Alberto; Kyle, Dennis E; Vrijmoed, Lilian; Pang, Ka-Lai; Pearce, Cedric J; Baker, Bill J

    2016-01-01

    The ongoing search for effective antiplasmodial agents remains essential in the fight against malaria worldwide. Emerging parasitic drug resistance places an urgent need to explore chemotherapies with novel structures and mechanisms of action. Natural products have historically provided effective antimalarial drug scaffolds. In an effort to search nature's chemical potential for antiplasmodial agents, unconventionally sourced organisms coupled with innovative cultivation techniques were utilized. Approximately 60,000 niche microbes from various habitats (slow-growing terrestrial fungi, Antarctic microbes, and mangrove endophytes) were cultivated on a small-scale, extracted, and used in high-throughput screening to determine antimalarial activity. About 1% of crude extracts were considered active and 6% partially active (≥ 67% inhibition at 5 and 50 μg/mL, respectively). Active extracts (685) were cultivated on a large-scale, fractionated, and screened for both antimalarial activity and cytotoxicity. High interest fractions (397) with an IC50 < 1.11 μg/mL were identified and subjected to chromatographic separation for compound characterization and dereplication. Identifying active compounds with nanomolar antimalarial activity coupled with a selectivity index tenfold higher was accomplished with two of the 52 compounds isolated. This microscale, high-throughput screening project for antiplasmodial agents is discussed in the context of current natural product drug discovery efforts. PMID:25545963

  18. Nanoscale glucan polymer network causes pathogen resistance

    PubMed Central

    Eggert, Dennis; Naumann, Marcel; Reimer, Rudolph; Voigt, Christian A.

    2014-01-01

    Successful defence of plants against colonisation by fungal pathogens depends on the ability to prevent initial penetration of the plant cell wall. Here we report that the pathogen-induced (1,3)-β-glucan cell wall polymer callose, which is deposited at sites of attempted penetration, directly interacts with the most prominent cell wall polymer, the (1,4)-β-glucan cellulose, to form a three-dimensional network at sites of attempted fungal penetration. Localisation microscopy, a super-resolution microscopy technique based on the precise localisation of single fluorescent molecules, facilitated discrimination between single polymer fibrils in this network. Overexpression of the pathogen-induced callose synthase PMR4 in the model plant Arabidopsis thaliana not only enlarged focal callose deposition and polymer network formation but also resulted in the exposition of a callose layer on the surface of the pre-existing cellulosic cell wall facing the invading pathogen. The importance of this previously unknown polymeric defence network is to prevent cell wall hydrolysis and penetration by the fungus. We anticipate our study to promote nanoscale analysis of plant-microbe interactions with a special focus on polymer rearrangements in and at the cell wall. Moreover, the general applicability of localisation microscopy in visualising polymers beyond plant research will help elucidate their biological function in complex networks. PMID:24561766

  19. Active case detection, treatment of falciparum malaria with combined chloroquine and sulphadoxine/pyrimethamine and vivax malaria with chloroquine and molecular markers of anti-malarial resistance in the Republic of Vanuatu

    PubMed Central

    2010-01-01

    Background Chloroquine-resistant Plasmodium falciparum was first described in the Republic of Vanuatu in the early 1980s. In 1991, the Vanuatu Ministry of Health instituted new treatment guidelines for uncomplicated P. falciparum infection consisting of chloroquine/sulphadoxine-pyrimethamine combination therapy. Chloroquine remains the recommended treatment for Plasmodium vivax. Methods In 2005, cross-sectional blood surveys at 45 sites on Malo Island were conducted and 4,060 adults and children screened for malaria. Of those screened, 203 volunteer study subjects without malaria at the time of screening were followed for 13 weeks to observe peak seasonal incidence of infection. Another 54 subjects with malaria were followed over a 28-day period to determine efficacy of anti-malarial therapy; chloroquine alone for P. vivax and chloroquine/sulphadoxine-pyrimethamine for P. falciparum infections. Results The overall prevalence of parasitaemia by mass blood screening was 6%, equally divided between P. falciparum and P. vivax. Twenty percent and 23% of participants with patent P. vivax and P. falciparum parasitaemia, respectively, were febrile at the time of screening. In the incidence study cohort, after 2,303 person-weeks of follow-up, the incidence density of malaria was 1.3 cases per person-year with P. vivax predominating. Among individuals participating in the clinical trial, the 28-day chloroquine P. vivax cure rate was 100%. The 28-day chloroquine/sulphadoxine-pyrimethamine P. falciparum cure rate was 97%. The single treatment failure, confirmed by merozoite surface protein-2 genotyping, was classified as a day 28 late parasitological treatment failure. All P. falciparum isolates carried the Thr-76 pfcrt mutant allele and the double Asn-108 + Arg-59 dhfr mutant alleles. Dhps mutant alleles were not detected in the study sample. Conclusion Peak seasonal malaria prevalence on Malo Island reached hypoendemic levels during the study observation period. The only in

  20. Modified quaternary ammonium salts as potential antimalarial agents.

    PubMed

    Basilico, Nicoletta; Migotto, Mara; Ilboudo, Denise Patoinewende; Taramelli, Donatella; Stradi, Riccardo; Pini, Elena

    2015-08-01

    A series of new quaternary ammonium salts containing a polyconjugated moiety has been synthesized and characterized; their biological activity as potential antimalarial agents was investigated, as well. All compounds were screened against chloroquine resistant W-2 (CQ-R) and chloroquine sensitive, D-10 (CQ-S) strains of Plasmodium falciparum showing IC50 in the submicromolar range and low toxicity against human endothelial cells. PMID:26081764

  1. Efficacy of antimalarial treatment in Guinea: in vivo study of two artemisinin combination therapies in Dabola and molecular markers of resistance to sulphadoxine-pyrimethamine in N'Zérékoré

    PubMed Central

    Bonnet, Maryline; Roper, Cally; Félix, Martine; Coulibaly, Léonie; Kankolongo, Gabriel Mufuta; Guthmann, Jean Paul

    2007-01-01

    Background In the last five years, countries have been faced with changing their malaria treatment policy to an artemisinin-based combination therapy (ACT), many with no national data on which to base their decision. This is particularly true for a number of West African countries, including Guinea, where these studies were performed. Two studies were conducted in 2004/2005 in programmes supported by Medecins Sans Frontieres, when chloroquine was still national policy, but artesunate (AS)/sulphadoxine-pyrimethamine (SP) had been used in refugee camps for two years. Methods In Dabola (central Guinea), 220 children aged 6–59 months with falciparum malaria were randomized to receive either AS/amodiaquine (AQ) or AS/SP. In vivo efficacy was assessed following the 2003 World Health Organization guidelines. In a refugee camp in Laine (south of Guinea), where an in vivo study was not feasible due to the unstable context, a molecular genotyping study in 160 patients assessed the prevalence of mutations in the dihydrofolate reductase (dhfr) (codons 108, 51, 59) and dihydropteroate synthase (dhps) (codons 436, 437, 540) genes of Plasmodium falciparum, which have been associated with resistance to pyrimethamine and sulphadoxine, respectively. Results In Dabola, after 28 days of follow-up, Polymerase Chain Reaction (PCR)-adjusted failure rates were 1.0% (95%CI 0–5.3) for AS/AQ and 1.0% (95%CI 0–5.5) for AS/SP. In the refugee camp in Laine, the molecular genotyping study found three dhfr mutations in 85.6% (95%CI 79.2–90.7) patients and quintuple dhfr/dhps mutations in 9.6% (95%CI 5.2–15.9). Conclusion Both AS/AQ and AS/SP are highly efficacious in Dabola, whereas there is molecular evidence of established SP resistance in Laine. This supports the choice of the national programme of Guinea to adopt AS/AQ as first line antimalarial treatment. The results highlight the difficulties faced by control programmes, which have gone through the upheaval of implementing ACTs

  2. Trioxaferroquines as new hybrid antimalarial drugs.

    PubMed

    Bellot, François; Coslédan, Frédéric; Vendier, Laure; Brocard, Jacques; Meunier, Bernard; Robert, Anne

    2010-05-27

    The synthesis, characterization, and antimalarial evaluation of a new series of potential antimalarial molecules, named trioxaferroquines, are reported. Trioxaferroquines are hybrid antimalarial drugs containing a 1,2,4-trioxane covalently linked to ferroquine (Fq), a synthetic ferrocenylquinoline derivative currently under clinical development. The aim was to combine, within a single structure, an iron(II) species, a 1,2,4-trioxane, as in artemisinin, and a substituted quinoline, as in chloroquine. PMID:20443628

  3. Resistive Network Optimal Power Flow: Uniqueness and Algorithms

    SciTech Connect

    Tan, CW; Cai, DWH; Lou, X

    2015-01-01

    The optimal power flow (OPF) problem minimizes the power loss in an electrical network by optimizing the voltage and power delivered at the network buses, and is a nonconvex problem that is generally hard to solve. By leveraging a recent development on the zero duality gap of OPF, we propose a second-order cone programming convex relaxation of the resistive network OPF, and study the uniqueness of the optimal solution using differential topology, especially the Poincare-Hopf Index Theorem. We characterize the global uniqueness for different network topologies, e.g., line, radial, and mesh networks. This serves as a starting point to design distributed local algorithms with global behaviors that have low complexity, are computationally fast, and can run under synchronous and asynchronous settings in practical power grids.

  4. Hit-to-Lead Studies for the Antimalarial Tetrahydroisoquinolone Carboxanilides.

    PubMed

    Floyd, David M; Stein, Philip; Wang, Zheng; Liu, Jian; Castro, Steve; Clark, Julie A; Connelly, Michele; Zhu, Fangyi; Holbrook, Gloria; Matheny, Amy; Sigal, Martina S; Min, Jaeki; Dhinakaran, Rajkumar; Krishnan, Senthil; Bashyum, Sridevi; Knapp, Spencer; Guy, R Kiplin

    2016-09-01

    Phenotypic whole-cell screening in erythrocytic cocultures of Plasmodium falciparum identified a series of dihydroisoquinolones that possessed potent antimalarial activity against multiple resistant strains of P. falciparum in vitro and show no cytotoxicity to mammalian cells. Systematic structure-activity studies revealed relationships between potency and modifications at N-2, C-3, and C-4. Careful structure-property relationship studies, coupled with studies of metabolism, addressed the poor aqueous solubility and metabolic vulnerability, as well as potential toxicological effects, inherent in the more potent primary screening hits such as 10b. Analogues 13h and 13i, with structural modifications at each site, were shown to possess excellent antimalarial activity in vivo. The (+)-(3S,4S) enantiomer of 13i and similar analogues were identified as the more potent. On the basis of these studies, we have selected (+)-13i for further study as a preclinical candidate. PMID:27505686

  5. 4-aminoquinoline based molecular hybrids as antimalarials: an overview.

    PubMed

    Manohar, Sunny; Tripathi, Mohit; Rawat, Diwan S

    2014-01-01

    In recent times, the novel concept of generating hybrid molecules by pharmacophoric hybridisation approach is fast becoming an alternative to other existing strategies of drug development. These hybrids also known as 'dual drugs' or 'double drugs' are especially found to be effective in overcoming drug resistance problems. Towards this end, a lot of effort has been put for generating 4-aminoquinoline based hybrid molecules as next generation antimalarial drugs effective in malarial chemotherapy. This short review deals about the recent advances carried in the field of 4-aminoquinoline based molecular hybrids as potential antimalarial agents. It also presents a brief and simplified story on the development of 4-aminoquinolines as a mainstay in malarial research programmes. PMID:25116580

  6. Selective anti-malarial minor groove binders.

    PubMed

    Scott, Fraser J; Khalaf, Abedawn I; Duffy, Sandra; Avery, Vicky M; Suckling, Colin J

    2016-07-15

    A set of 31 DNA minor groove binders (MGBs) with diverse structural features relating to both physical chemical properties and DNA binding sequence preference has been evaluated as potential drugs to treat Plasmodium falciparum infections using a chloroquine sensitive strain (3D7) and a chloroquine resistant strain (Dd2) in comparison with human embryonic kidney (HEK) cells as an indicator of mammalian cell toxicity. MGBs with an alkene link between the two N-terminal building blocks were demonstrated to be most active with IC50 values in the range 30-500nM and therapeutic ratios in the range 10->500. Many active compounds contained a C-alkylthiazole building block. Active compounds with logD7.4 values of approximately 3 or 7 were identified. Importantly the MGBs tested were essentially equally effective against both chloroquine sensitive and resistant strains. The results show that suitably designed MGBs have the potential for development into clinical candidates for antimalarial drugs effective against resistant strains of Plasmodia. PMID:27212070

  7. Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase.

    PubMed

    Sonoiki, Ebere; Palencia, Andres; Guo, Denghui; Ahyong, Vida; Dong, Chen; Li, Xianfeng; Hernandez, Vincent S; Zhang, Yong-Kang; Choi, Wai; Gut, Jiri; Legac, Jennifer; Cooper, Roland; Alley, M R K; Freund, Yvonne R; DeRisi, Joseph; Cusack, Stephen; Rosenthal, Philip J

    2016-08-01

    There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [(14)C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS. PMID:27270277

  8. Antimalarial Activity of Small-Molecule Benzothiazole Hydrazones.

    PubMed

    Sarkar, Souvik; Siddiqui, Asim A; Saha, Shubhra J; De, Rudranil; Mazumder, Somnath; Banerjee, Chinmoy; Iqbal, Mohd S; Nag, Shiladitya; Adhikari, Susanta; Bandyopadhyay, Uday

    2016-07-01

    We synthesized a new series of conjugated hydrazones that were found to be active against malaria parasite in vitro, as well as in vivo in a murine model. These hydrazones concentration-dependently chelated free iron and offered antimalarial activity. Upon screening of the synthesized hydrazones, compound 5f was found to be the most active iron chelator, as well as antiplasmodial. Compound 5f also interacted with free heme (KD [equilibrium dissociation constant] = 1.17 ± 0.8 μM), an iron-containing tetrapyrrole released after hemoglobin digestion by the parasite, and inhibited heme polymerization by parasite lysate. Structure-activity relationship studies indicated that a nitrogen- and sulfur-substituted five-membered aromatic ring present within the benzothiazole hydrazones might be responsible for their antimalarial activity. The dose-dependent antimalarial and heme polymerization inhibitory activities of the lead compound 5f were further validated by following [(3)H]hypoxanthine incorporation and hemozoin formation in parasite, respectively. It is worth mentioning that compound 5f exhibited antiplasmodial activity in vitro against a chloroquine/pyrimethamine-resistant strain of Plasmodium falciparum (K1). We also evaluated in vivo antimalarial activity of compound 5f in a murine model where a lethal multiple-drug-resistant strain of Plasmodium yoelii was used to infect Swiss albino mice. Compound 5f significantly suppressed the growth of parasite, and the infected mice experienced longer life spans upon treatment with this compound. During in vitro and in vivo toxicity assays, compound 5f showed minimal alteration in biochemical and hematological parameters compared to control. In conclusion, we identified a new class of hydrazone with therapeutic potential against malaria. PMID:27139466

  9. Inclusion of gametocyte parameters in anti-malarial drug efficacy studies: filling a neglected gap needed for malaria elimination.

    PubMed

    Abdul-Ghani, Rashad; Basco, Leonardo K; Beier, John C; Mahdy, Mohammed A K

    2015-01-01

    Standard anti-malarial drug efficacy and drug resistance assessments neglect the gametocyte parameters in their protocols. With the spread of drug resistance and the absence of clinically proven vaccines, the use of gametocytocidal drugs or drug combinations with transmission-blocking activity is a high priority for malaria control and elimination. However, the limited repertoire of gametocytocidal drugs and induction of gametocytogenesis after treatment with certain anti-malarial drugs necessitate both regular monitoring of gametocytocidal activities of anti-malarial drugs in clinical use and the effectiveness of candidate gametocytocidal agents. Therefore, updating current protocols of anti-malarial drug efficacy is needed to reflect the effects of anti-malarial drugs or drug combinations on gametocyte carriage and gametocyte density along with asexual parasite density. Developing protocols of anti-malarial drug efficacy that include gametocyte parameters related to both microscopic and submicroscopic gametocytaemias is important if drugs or drug combinations are to be strategically used in transmission-blocking interventions in the context of malaria elimination. The present piece of opinion highlights the challenges in gametocyte detection and follow-up and discuss the need for including the gametocyte parameter in anti-malarial efficacy studies. PMID:26481312

  10. Conductivity in percolation networks with broad distributions of resistances

    NASA Astrophysics Data System (ADS)

    Machta, J.; Guyer, R. A.; Moore, S. M.

    1986-04-01

    Diluted resistor networks with a broad distribution of resistances are studied near the percolation threshold. A hierarchical model of the backbone of the percolation cluster is employed. Resistor networks are considered where the resistors, R, are chosen from a distribution having a power-law tail such that Prob\\{R>X\\}~X-α as X-->∞, 0<α<1. Such distributions arise naturally in con- tinuum percolation systems. The hierarchical model is studied numerically and using a renormalization-group transformation for the distribution of resistances. The conclusion is that the conductivity exponent t is the greater of to and (d-2)ν+1/α where to is the universal value of the conductivity exponent and ν is the correlation-length exponent. This result is in agreement with Straley's earlier predictions [J. Phys. C 15, 2333 (1982); 15, 2343 (1982)].

  11. Temporal and spatial stability in translation invariant linear resistive networks.

    PubMed

    Solak, M K

    1997-01-01

    Simple algebraic methods are proposed to evaluate the temporal and spatial stability of translation invariant linear resistive networks. Temporal stability is discussed for a finite number of nodes n. The proposed method evaluates stability of a Toeplitz pencil A(n)(a)+muB(n)(b) in terms of parameters a(i ) and b(i). In many cases a simple method allows one to verify positive definition of B(n)(b) in terms of b(i) only. PMID:18255673

  12. Lopinavir Resistance Classification with Imbalanced Data Using Probabilistic Neural Networks.

    PubMed

    Raposo, Letícia M; Arruda, Mônica B; de Brindeiro, Rodrigo M; Nobre, Flavio F

    2016-03-01

    Resistance to antiretroviral drugs has been a major obstacle for long-lasting treatment of HIV-infected patients. The development of models to predict drug resistance is recognized as useful for helping the decision of the best therapy for each HIV+ individual. The aim of this study was to develop classifiers for predicting resistance to the HIV protease inhibitor lopinavir using a probabilistic neural network (PNN). The data were provided by the Molecular Virology Laboratory of the Health Sciences Center, Federal University of Rio de Janeiro (CCS-UFRJ/Brazil). Using bootstrap and stepwise techniques, ten features were selected by logistic regression (LR) to be used as inputs to the network. Bootstrap and cross-validation were used to define the smoothing parameter of the PNN networks. Four balanced models were designed and evaluated using a separate test set. The accuracies of the classifiers with the test set ranged from 0.89 to 0.94, and the area under the receiver operating characteristic (ROC) curve (AUC) ranged from 0.96 to 0.97. The sensitivity ranged from 0.94 to 1.00, and the specificity was between 0.88 and 0.92. Four classifiers showed performances very close to three existing expert-based interpretation systems, the HIVdb, the Rega and the ANRS algorithms, and to a k-Nearest Neighbor. PMID:26733278

  13. Nickel-cadmium Battery Cell Reversal from Resistive Network Effects

    NASA Technical Reports Server (NTRS)

    Zimmerman, A. H.

    1985-01-01

    During the individual cell short-down procedures often used for storing or reconditioning nickel-cadmium (Ni-Cd) batteries, it is possible for significant reversal of the lowest capacity cells to occur. The reversal is caused by the finite resistance of the common current-carrying leads in the resistive network that is generally used during short-down. A model is developed to evaluate the extent of such a reversal in any specific battery, and the model is verified by means of data from the short-down of a f-cell, 3.5-Ah battery. Computer simulations of short-down on a variety of battery configurations indicate the desirability of controlling capacity imbalances arising from cell configuration and battery management, limiting variability in the short-down resistors, minimizing lead resistances, and optimizing lead configurations.

  14. Indolyl-3-ethanone-α-thioethers: A promising new class of non-toxic antimalarial agents.

    PubMed

    Svogie, Archibald L; Isaacs, Michelle; Hoppe, Heinrich C; Khanye, Setshaba D; Veale, Clinton G L

    2016-05-23

    The success of chemotherapeutics in easing the burden of malaria is under continuous threat from ever-evolving parasite resistance, including resistance to artemisinin combination therapies. Therefore, the discovery of new classes of antimalarials which inhibit new biological targets is imperative to controlling malaria. Accordingly, we report here the discovery of indolyl-3-ethanone-α-thioethers, a new class of antimalarial compounds with encouraging activity. Synthesis of a focused library of compounds revealed important insight into the SAR of this class of compounds, including critical information regarding the position and chemical nature of substituents on both the thiophenol and indole rings. This investigation ultimately led to the discovery of two hit compounds (16 and 27) which exhibited nano molar in vitro antimalarial activity coupled to no observable toxicity against a HeLa cell line. PMID:26974377

  15. Flux flow pinning and resistive behavior in superconducting networks

    SciTech Connect

    Teitel, S.

    1990-10-01

    We have studied the behavior of superconducting networks in terms of XY and Coulomb gas models. The dynamics of frustrated Josephson junction arrays has been simulated, with a view toward understanding the effects of vortex correlations on flux flow resistance. Randomness has been introduced, and its effects on the superconducting transition, and vortex mobility, have been studied. A three dimensional network has been simulated to study the effects of vortex line entanglement in high temperature superconductors. Preliminary calculations are in progress. The two dimensional classical Coulomb gas where charges map onto vortices in the superconducting network, has been simulated. The melting transitions of ordered charge (vortex) lattices have been studied, and we find clear evidence that these transitions do not have the critical behavior expected from standard symmetry analysis.

  16. Brain tumour cells interconnect to a functional and resistant network.

    PubMed

    Osswald, Matthias; Jung, Erik; Sahm, Felix; Solecki, Gergely; Venkataramani, Varun; Blaes, Jonas; Weil, Sophie; Horstmann, Heinz; Wiestler, Benedikt; Syed, Mustafa; Huang, Lulu; Ratliff, Miriam; Karimian Jazi, Kianush; Kurz, Felix T; Schmenger, Torsten; Lemke, Dieter; Gömmel, Miriam; Pauli, Martin; Liao, Yunxiang; Häring, Peter; Pusch, Stefan; Herl, Verena; Steinhäuser, Christian; Krunic, Damir; Jarahian, Mostafa; Miletic, Hrvoje; Berghoff, Anna S; Griesbeck, Oliver; Kalamakis, Georgios; Garaschuk, Olga; Preusser, Matthias; Weiss, Samuel; Liu, Haikun; Heiland, Sabine; Platten, Michael; Huber, Peter E; Kuner, Thomas; von Deimling, Andreas; Wick, Wolfgang; Winkler, Frank

    2015-12-01

    Astrocytic brain tumours, including glioblastomas, are incurable neoplasms characterized by diffusely infiltrative growth. Here we show that many tumour cells in astrocytomas extend ultra-long membrane protrusions, and use these distinct tumour microtubes as routes for brain invasion, proliferation, and to interconnect over long distances. The resulting network allows multicellular communication through microtube-associated gap junctions. When damage to the network occurred, tumour microtubes were used for repair. Moreover, the microtube-connected astrocytoma cells, but not those remaining unconnected throughout tumour progression, were protected from cell death inflicted by radiotherapy. The neuronal growth-associated protein 43 was important for microtube formation and function, and drove microtube-dependent tumour cell invasion, proliferation, interconnection, and radioresistance. Oligodendroglial brain tumours were deficient in this mechanism. In summary, astrocytomas can develop functional multicellular network structures. Disconnection of astrocytoma cells by targeting their tumour microtubes emerges as a new principle to reduce the treatment resistance of this disease. PMID:26536111

  17. Potential antimalarials from African natural products: A reviw

    PubMed Central

    Lawal, Bashir; Shittu, Oluwatosin Kudirat; Kabiru, Adamu Yusuf; Jigam, Ali Audu; Umar, Maimuna Bello; Berinyuy, Eustace Bonghan; Alozieuwa, Blessing Uchenna

    2015-01-01

    Malaria remains an overwhelming infectious disease with significant health challenges in African and other endemic countries globally. Resistance to antimalarial drugs has become one of the most momentous challenges to human health, and thus has necessitated the hunt for new and effective drugs. Consequently, few decades have witnessed a surfeit of research geared to validate the effectiveness of commonly used traditionally medicines against malaria fever. The present review work focuses on documenting natural products from African whose activity has been reported in vivo or in vitro against malaria parasite. Literature was collected using electronic search of published articles (Google Scholar, PubMed, Medline, Sciencedirect, and Science domain) that report on antiplasmodial activity of natural products from differernts Africa region. A total of 652 plant taxa from 146 families, 134 isolated antimalarial compounds from 39 plants species, 2 herbal formulations and 4 insect/products were found to be reported in literature from 1996 to 2015. Plants species from family Asteraceae (11.04%), Fababceae (8.128%), Euphorbiaceae (5.52%), Rubiaceas (5.52%), and Apocyanaceae (5.214%), have received more scientific validation than others. African natural products possess remarkable healing properties as revealed in the various citations as promising antimalarial agents. Some of these natural products from Africa demonstrate high, promising or low activities against Plasmodium parasite. This study also shows that natural products from Africa have a huge amount of novel antimalarial compounds that could serve as a leads for the development of new and effective antiplasmodial drugs. However, in a view of bridging the gap in knowledge, clinical validation of these natural products are of paramount importance. PMID:26649238

  18. Targeting protein kinases in the malaria parasite: update of an antimalarial drug target.

    PubMed

    Zhang, Veronica M; Chavchich, Marina; Waters, Norman C

    2012-01-01

    Millions of deaths each year are attributed to malaria worldwide. Transmitted through the bite of an Anopheles mosquito, infection and subsequent death from the Plasmodium species, most notably P. falciparum, can readily spread through a susceptible population. A malaria vaccine does not exist and resistance to virtually every antimalarial drug predicts that mortality and morbidity associated with this disease will increase. With only a few antimalarial drugs currently in the pipeline, new therapeutic options and novel chemotypes are desperately needed. Hit-to-Lead diversity may successfully provide novel inhibitory scaffolds when essential enzymes are targeted, for example, the plasmodial protein kinases. Throughout the entire life cycle of the malaria parasite, protein kinases are essential for growth and development. Ongoing efforts continue to characterize these kinases, while simultaneously pursuing them as antimalarial drug targets. A collection of structural data, inhibitory profiles and target validation has set the foundation and support for targeting the malarial kinome. Pursuing protein kinases as cancer drug targets has generated a wealth of information on the inhibitory strategies that can be useful for antimalarial drug discovery. In this review, progress on selected protein kinases is described. As the search for novel antimalarials continues, an understanding of the phosphor-regulatory pathways will not only validate protein kinase targets, but also will identify novel chemotypes to thwart malaria drug resistance. PMID:22242850

  19. Evaluation of spiropiperidine hydantoins as a novel class of antimalarial agents.

    PubMed

    Meyers, Marvin J; Anderson, Elizabeth J; McNitt, Sarah A; Krenning, Thomas M; Singh, Megh; Xu, Jing; Zeng, Wentian; Qin, Limei; Xu, Wanwan; Zhao, Siting; Qin, Li; Eickhoff, Christopher S; Oliva, Jonathan; Campbell, Mary A; Arnett, Stacy D; Prinsen, Michael J; Griggs, David W; Ruminski, Peter G; Goldberg, Daniel E; Ding, Ke; Liu, Xiaorong; Tu, Zhengchao; Tortorella, Micky D; Sverdrup, Francis M; Chen, Xiaoping

    2015-08-15

    Given the rise of parasite resistance to all currently used antimalarial drugs, the identification of novel chemotypes with unique mechanisms of action is of paramount importance. Since Plasmodium expresses a number of aspartic proteases necessary for its survival, we have mined antimalarial datasets for drug-like aspartic protease inhibitors. This effort led to the identification of spiropiperidine hydantoins, bearing similarity to known inhibitors of the human aspartic protease β-secretase (BACE), as new leads for antimalarial drug discovery. Spiropiperidine hydantoins have a dynamic structure-activity relationship profile with positions identified as being tolerant of a variety of substitution patterns as well as a key piperidine N-benzyl phenol pharmacophore. Lead compounds 4e (CWHM-123) and 12k (CWHM-505) are potent antimalarials with IC50 values against Plasmodium falciparum 3D7 of 0.310 μM and 0.099 μM, respectively, and the former features equivalent potency on the chloroquine-resistant Dd2 strain. Remarkably, these compounds do not inhibit human aspartic proteases BACE, cathepsins D and E, or Plasmodium plasmepsins II and IV despite their similarity to known BACE inhibitors. Although the current leads suffer from poor metabolic stability, they do fit into a drug-like chemical property space and provide a new class of potent antimalarial agents for further study. PMID:25797165

  20. N-Cinnamoylation of Antimalarial Classics: Effects of Using Acyl Groups Other than Cinnamoyl toward Dual-Stage Antimalarials.

    PubMed

    Gomes, Ana; Machado, Marta; Lobo, Lis; Nogueira, Fátima; Prudêncio, Miguel; Teixeira, Cátia; Gomes, Paula

    2015-08-01

    In a follow-up study to our reports of N-cinnamoylated chloroquine and quinacrine analogues as promising dual-stage antimalarial leads with high in vitro potency against both blood-stage Plasmodium falciparum and liver-stage Plasmodium berghei, we decided to investigate the effect of replacing the cinnamoyl moiety with other acyl groups. Thus, a series of N-acylated analogues were synthesized, and their activities against blood- and liver-stage Plasmodium spp. were assessed along with their in vitro cytotoxicities. Although the new N-acylated analogues were found to be somewhat less active and more cytotoxic than their N-cinnamoylated counterparts, they equally displayed nanomolar activities in vitro against blood-stage drug-sensitive and drug-resistant P. falciparum, and significant in vitro liver-stage activity against P. berghei. Therefore, it is demonstrated that simple N-acylated surrogates of classical antimalarial drugs are promising dual-stage antimalarial leads. PMID:26038181

  1. Natural products as starting points for future anti-malarial therapies: going back to our roots?

    PubMed Central

    2011-01-01

    Background The discovery and development of new anti-malarials are at a crossroads. Fixed dose artemisinin combination therapy is now being used to treat a hundred million children each year, with a cost as low as 30 cents per child, with cure rates of over 95%. However, as with all anti-infective strategies, this triumph brings with it the seeds of its own downfall, the emergence of resistance. It takes ten years to develop a new medicine. New classes of medicines to combat malaria, as a result of infection by Plasmodium falciparum and Plasmodium vivax are urgently needed. Results Natural product scaffolds have been the basis of the majority of current anti-malarial medicines. Molecules such as quinine, lapachol and artemisinin were originally isolated from herbal medicinal products. After improvement with medicinal chemistry and formulation technologies, and combination with other active ingredients, they now make up the current armamentarium of medicines. In recent years advances in screening technologies have allowed testing of millions of compounds from pharmaceutical diversity for anti-malarial activity in cellular assays. These initiatives have resulted in thousands of new sub-micromolar active compounds – starting points for new drug discovery programmes. Against this backdrop, the paucity of potent natural products identified has been disappointing. Now is a good time to reflect on the current approach to screening herbal medicinal products and suggest revisions. Nearly sixty years ago, the Chinese doctor Chen Guofu, suggested natural products should be approached by dao-xing-ni-shi or ‘acting in the reversed order’, starting with observational clinical studies. Natural products based on herbal remedies are in use in the community, and have the potential unique advantage that clinical observational data exist, or can be generated. The first step should be the confirmation and definition of the clinical activity of herbal medicinal products already

  2. Quantifying the pharmacology of antimalarial drug combination therapy.

    PubMed

    Hastings, Ian M; Hodel, Eva Maria; Kay, Katherine

    2016-01-01

    Most current antimalarial drugs are combinations of an artemisinin plus a 'partner' drug from another class, and are known as artemisinin-based combination therapies (ACTs). They are the frontline drugs in treating human malaria infections. They also have a public-health role as an essential component of recent, comprehensive scale-ups of malaria interventions and containment efforts conceived as part of longer term malaria elimination efforts. Recent reports that resistance has arisen to artemisinins has caused considerable concern. We investigate the likely impact of artemisinin resistance by quantifying the contribution artemisinins make to the overall therapeutic capacity of ACTs. We achieve this using a simple, easily understood, algebraic approach and by more sophisticated pharmacokinetic/pharmacodynamic analyses of drug action; the two approaches gave consistent results. Surprisingly, the artemisinin component typically makes a negligible contribution (≪0.0001%) to the therapeutic capacity of the most widely used ACTs and only starts to make a significant contribution to therapeutic outcome once resistance has started to evolve to the partner drugs. The main threat to antimalarial drug effectiveness and control comes from resistance evolving to the partner drugs. We therefore argue that public health policies be re-focussed to maximise the likely long-term effectiveness of the partner drugs. PMID:27604175

  3. Evolution from double to triple-antimalarial drug combinations.

    PubMed

    Shanks, G Dennis; Edstein, Michael D; Jacobus, David

    2015-03-01

    Drug combinations are used to treat multiple-drug resistant malaria parasites and to attempt to further delay the evolution of drug resistance. Most current antimalarial combinations are binary but it is likely that new triple drug combinations will be required in the future. A review of previous triple combinations of antimalarial drugs was done to focus attention on past problems and possible future combinations. The advantages of such triple drug combinations include greater efficacy against multiple-drug resistant strains, synergistic action between the different medications and simplification of the regimen so that it could be administered under direct observation and possibly as single-dose therapy. The disadvantages of poly-pharmacy include increased cost of medication, difficulty preparing robust regulatory packages and problems constructing combined formulations due to drug-drug interactions. Given the arrival of artemisinin tolerance/resistance in Southeast Asia, it is likely that new drugs introduced for malaria treatment will be in triple drug combinations. PMID:25549631

  4. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement.

    PubMed

    Shen, Shuo; Liu, Shu-Zhi; Zhang, Yu-Shi; Du, Mao-Bo; Liang, Ai-Hua; Song, Li-Hua; Ye, Zu-Guang

    2015-01-01

    Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem-ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data obtained in this study showed that the application of ethosomal technology to antimalarial cataplasm could improve the transdermal delivery of drug, enhance the efficacy, and facilitate practical application in clinic. PMID:26170661

  5. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement

    PubMed Central

    Shen, Shuo; Liu, Shu-Zhi; Zhang, Yu-Shi; Du, Mao-Bo; Liang, Ai-Hua; Song, Li-Hua; Ye, Zu-Guang

    2015-01-01

    Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem–ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data obtained in this study showed that the application of ethosomal technology to antimalarial cataplasm could improve the transdermal delivery of drug, enhance the efficacy, and facilitate practical application in clinic. PMID:26170661

  6. Selection of a trioxaquine as an antimalarial drug candidate

    PubMed Central

    Coslédan, Frédéric; Fraisse, Laurent; Pellet, Alain; Guillou, François; Mordmüller, Benjamin; Kremsner, Peter G.; Moreno, Alicia; Mazier, Dominique; Maffrand, Jean-Pierre; Meunier, Bernard

    2008-01-01

    Trioxaquines are antimalarial agents based on hybrid structures with a dual mode of action. One of these molecules, PA1103/SAR116242, is highly active in vitro on several sensitive and resistant strains of Plasmodium falciparum at nanomolar concentrations (e.g., IC50 value = 10 nM with FcM29, a chloroquine-resistant strain) and also on multidrug-resistant strains obtained from fresh patient isolates in Gabon. This molecule is very efficient by oral route with a complete cure of mice infected with chloroquine-sensitive or chloroquine-resistant strains of Plasmodia at 26–32 mg/kg. This compound is also highly effective in humanized mice infected with P. falciparum. Combined with a good drug profile (preliminary absorption, metabolism, and safety parameters), these data were favorable for the selection of this particular trioxaquine for development as drug candidate among 120 other active hybrid molecules. PMID:18987321

  7. Antimalarial activity of some Colombian medicinal plants.

    PubMed

    Garavito, G; Rincón, J; Arteaga, L; Hata, Y; Bourdy, G; Gimenez, A; Pinzón, R; Deharo, E

    2006-10-11

    Antimalarial activity of 10 vegetal extracts (9 ethanolic extracts and 1 crude alkaloid extract), obtained from eight species traditionally used in Colombia to treat malaria symptoms, was evaluated in culture using Plasmodium falciparum chloroquine resistant (FcB2) strain and in vivo on rodent malaria Plasmodium berghei. The activity on ferriprotoporphyrin biomineralization inhibition test (FBIT) was also assessed. Against Plasmodium falciparum, eight extracts displayed good activity Abuta grandifolia (Mart.) Sandwith (Menispermaceae) leaves, Acacia farnesiana (L.) Willd. (Mimosaceae) leaves, Acnistus arborescens (L.) Schltdl. (Solanaceae) aerial part, Croton leptostachyus Kunth (Euphorbiaceae) aerial part, Piper cumanense Kunth (Piperaceae) fruits and leaves, Piper holtonii C. DC. (Piperaceae) aerial part and Xylopia aromatica (Lam.) Mart. (Annonaceae) bark with IC(50) values ranging from <1 to 2.1 microg/ml, while in the in vivo model only Abuta grandifolia alkaloid crude extract exhibits activity, inhibiting 66% of the parasite growth at 250 mg/kg/day. In the FBIT model, five extracts were active (Abuta grandifolia, Croton leptostachyus, Piper cumanense fruit and leaves and Xylopia aromatica). PMID:16713157

  8. Hemozoin and antimalarial drug discovery

    PubMed Central

    Fong, Kim Y; Wright, David W

    2014-01-01

    Recent initiatives to develop more effective and affordable drugs, controlling mosquitoes and development of a preventative vaccine have been launched with the goal of completely eradicating malaria. To this end, Novartis (Surrey, UK) and GlaxoSmithKline (Middlesex, UK) screened their chemical libraries of approximately two million small molecules for antimalarial properties, which resulted in a set of over 20,000 ‘highly druggable’ initial hits. Efforts in academia are centered on specific pathway targets. One such high-throughput screening effort has been focused on hemozoin formation, a unique heme detoxification pathway found in the malaria parasite. This review discusses the current approaches and limitations of high-throughput screening discovery of hemozoin inhibitors. In the future, new methods must be developed to validate the mechanism of action of these hit compounds within the parasite. PMID:23919553

  9. Potentiation of antimalarial activity of arteether in combination with Vetiver root extract.

    PubMed

    Dhawan, Sangeeta; Gunjan, Sarika; Pal, Anirban; Tripathi, Renu

    2016-05-01

    In malaria, development of resistance towards artemisinin derivatives has urged the need for new drugs or new drug combinations to tackle the drug resistant malaria. We studied the fresh root extract of Vetiver zizanioides (Linn.) Nash (VET) with a CDRI-CIMAP antimalarial α/β arteether (ART) together for their antimalarial potential. Our results showed additive to synergistic antimalarial activity of VET and ART with sum fractional inhibitory concentrations Σ FICs 1.02 ± 0.24 and 1.12 ± 0.32 for chloroquine sensitive (CQS) and chloroquine resistant (CQR) strain of Plasmodium falciparum (William H. Welch), respectively. Further, these combinations were explored against multidrug resistant rodent malaria parasite i.e. P. yoelii nigeriensis. Analysis of in vivo interaction of ART and VET showed that 10 mg/kg x 5 days of ART with 1000 mg/kg of VET x 5 days cured 100% mice infected with MDR parasite, while the same dose of ART could produce only up to 30% cure and VET fraction was not curative at all. Synergism/additiveness, found between VET and ART is reported for the first time. The curative dose of ART in the combination was reduced to its one fourth, and thus limits the side effects, if any. Although antimalarial potential of ART was enhanced by VET, action mechanism of later needs to be elucidated in detail. PMID:27319050

  10. Traditionally-used antimalarials from the Meliaceae.

    PubMed

    Omar, S; Zhang, J; MacKinnon, S; Leaman, D; Durst, T; Philogene, B J R; Arnason, J T; Sanchez-Vindas, P E; Poveda, L; Tamez, P A; Pezzuto, J M

    2003-01-01

    A quantitative ethnobotanical approach to antimalarial drug discovery led to the identification of Lansium domesticum Corr. Ser. (Meliaceae) as an important antimalarial used by Kenyah Dyak healers in Indonesian Borneo. Triterpenoid lansiolides with antimalarial activity were isolated from the bark and shown to have activity in both in vitro bioassays with Plasmodium falciparum, and in mice infected with P. berghei. A survey of African and tropical American Meliaceae led to further development of the limonoid gedunin from the traditionally used medicinal plants, tropical cedar, Cedrela odorata L., and neem, Azadirachta indica A. Juss. Gedunin has significant in vitro activity but initially showed poor in vivo activity. In vivo activity was improved by (1) incorporation into an easy to absorb suspension, (2) preparation of a more stable compound, 7-methoxygedunin; and (3) synergism with dillapiol, a cytochrome P450 3A4 inhibitor. The results show the potential for both antimalarial drug and phytomedicine development from traditionally used plants. PMID:12570769

  11. Identification of Novel Phenyl Butenonyl C-Glycosides with Ureidyl and Sulfonamidyl Moieties as Antimalarial Agents

    PubMed Central

    2014-01-01

    A new series of C-linked phenyl butenonyl glycosides bearing ureidyl(thioureidyl) and sulfonamidyl moieties in the phenyl rings were designed, synthesized, and evaluated for their in vitro antimalarial activities against Plasmodium falciparum 3D7 (CQ sensitive) and K1 (CQ resistant) strains. Among all the compounds screened the C-linked phenyl butenonyl glycosides bearing sulfonamidyl moiety (5a) and ureidyl moiety in the phenyl ring (7d and 8c) showed promising antimalarial activities against both 3D7 and K1 strains with IC50 values in micromolar range and low cytotoxicity offering new HITS for further exploration. PMID:25147607

  12. Synthesis and antimalarial activities of some furoxan sulfones and related furazans.

    PubMed

    Galli, Ubaldina; Lazzarato, Loretta; Bertinaria, Massimo; Sorba, Giovanni; Gasco, Alberto; Parapini, Silvia; Taramelli, Donatella

    2005-12-01

    Furoxan derivatives bearing a sulfone moiety at position 3 or 4 were synthesized and tested for their antimalarial action on the chloroquine-sensitive D10 and the chloroquine-resistant W2 strains of Plasmodium falciparum. The furazan analogues were considered for comparison. The most active compounds were the products in which the -SO2R groups are at the 3-position of the furoxan system. These latter substances displayed an antimalarial activity in the microM range, possibly related in part to their ability to release NO. PMID:15979766

  13. Investigation of some medicinal plants traditionally used for treatment of malaria in Kenya as potential sources of antimalarial drugs.

    PubMed

    Muthaura, C N; Keriko, J M; Derese, S; Yenesew, A; Rukunga, G M

    2011-03-01

    Malaria is a major public health problem in many tropical and subtropical countries and the burden of this disease is getting worse, mainly due to the increasing resistance of Plasmodium falciparum against the widely available antimalarial drugs. There is an urgent need for discovery of new antimalarial agents. Herbal medicines for the treatment of various diseases including malaria are an important part of the cultural diversity and traditions of which Kenya's biodiversity has been an integral part. Two major antimalarial drugs widely used today came originally from indigenous medical systems, that is quinine and artemisinin, from Peruvian and Chinese ancestral treatments, respectively. Thus ethnopharmacology is a very important resource in which new therapies may be discovered. The present review is an analysis of ethnopharmacological publications on antimalarial therapies from some Kenyan medicinal plants. PMID:21095187

  14. Antimalarial activity of fractions of aqueous extract of Acacia nilotica root

    PubMed Central

    Alli, Lukman Adewale; Adesokan, Abdulfatai Ayoade; Salawu, Adeola Oluwakanyinsola

    2016-01-01

    Background: The problem of resistance of malarial parasites to available antimalarial drugs makes the development of new drugs imperative, with natural plant products providing an alternative source for discovering new drugs. Aim: To evaluate the antimalarial activity of eluted fractions of Acacia nilotica root extract and determine the phytochemicals responsible for its antimalarial activity. Materials and Methods: The extract was eluted successively in gradients of solvent mixture (hexane, ethyl acetate, and methanol) in multiples of 100 ml, and each fraction was collected separately. Eluates that showed similar thin layer chromatographic profiles and Rf values were combined to produce 4 main fractions (F-1, F-2, F-3, and F-4), which were tested separately for antimalarial activity using the curative test. Changes in body weight, temperature, and packed cell volume (PCV) were also recorded. Results: Fraction F-1 of A. nilotica at 50 and 100 mg/kg b/w produced significant and dose-dependent reduction in parasite count in Plasmodium berghei infected mice compared to the control, and also significantly increased the survival time of the mice compared to the control group. This fraction also ameliorated the malaria-induced anemia by improving PCV in treated mice. Conclusion: Antimalarial activity of extract of A. nilotica root is probably localized in the F-1 fraction of the extract, which was found to be rich in alkaloids and phenolics. Further study will provide information on the chemical properties of the active metabolites in this fraction. PMID:27104040

  15. Assessment of the efficacy of antimalarial drugs recommended by the National Malaria Control Programme in Madagascar: Up-dated baseline data from randomized and multi-site clinical trials

    PubMed Central

    Ménard, Didier; Ratsimbasoa, Arsène; Randrianarivelojosia, Milijaona; Rabarijaona, Léon-Paul; Raharimalala, Lucie; Domarle, Olivier; Randrianasolo, Laurence; Randriamanantena, Arthur; Jahevitra, Martial; Andriantsoanirina, Valérie; Rason, Marie-Ange; Raherinjafy, Rogelin; Rakotomalala, Emma; Tuseo, Luciano; Raveloson, Andrianirina

    2008-01-01

    Background In order to improve the monitoring of the antimalarial drug resistance in Madagascar, a new national network based on eight sentinel sites was set up. In 2006/2007, a multi-site randomized clinical trial was designed to assess the therapeutic efficacy of chloroquine (CQ), sulphadoxine-pyrimethamine (SP), amodiaquine (AQ) and artesunate plus amodiaquine combination (ASAQ), the antimalarial therapies recommended by the National Malaria Control Programme (NMCP). Methods Children between six months and 15 years of age, with uncomplicated falciparum malaria, were enrolled. Primary endpoints were the day-14 and day-28 risks of parasitological failure, either unadjusted or adjusted by genotyping. Risks of clinical and parasitological treatment failure after adjustment by genotyping were estimated using Kaplan-Meier survival analysis. Secondary outcomes included fever clearance, parasite clearance, change in haemoglobin levels between Day 0 and the last day of follow-up, and the incidence of adverse events. Results A total of 1,347 of 1,434 patients (93.9%) completed treatment and follow-up to day 28. All treatment regimens, except for the chloroquine (CQ) treatment group, resulted in clinical cure rates above 97.6% by day-14 and 96.7% by day-28 (adjusted by genotyping). Parasite and fever clearance was more rapid with artesunate plus amodiaquine, but the extent of haematological recovery on day-28 did not differ significantly between the four groups. No severe side-effects were observed during the follow-up period. Conclusion These findings (i) constitute an up-dated baseline data on the efficacy of antimalarial drugs recommended by the NMCP, (ii) show that antimalarial drug resistance remains low in Madagascar, except for CQ, compared to the bordering countries in the Indian Ocean region such as the Comoros Archipelago and (iii) support the current policy of ASAQ as the first-line treatment in uncomplicated falciparum malaria. PMID:18394169

  16. Stage specific activity of synthetic antimalarial endoperoxides, N-89 and N-251, against Plasmodium falciparum.

    PubMed

    Morita, Masayuki; Koyama, Takahiko; Sanai, Hitomi; Sato, Akira; Hiramoto, Akiko; Masuyama, Araki; Nojima, Masatomo; Wataya, Yusuke; Kim, Hye-Sook

    2015-02-01

    We have reported that two endoperoxides, N-89 and N-251, synthesized in 2001, possess potent antimalarial activities. Aiming at their eventual use for curing malaria in humans, we have been investigating various aspects of their antimalarial actions. Here we show that N-89 and N-251 inhibit the growth of Plasmodium falciparum within human erythrocytes in vitro at its lifecycle stage 'trophozoite' specifically. It is known that artemisinin compounds, which are currently used for curing malaria, have other stage-specificities. Therefore, it is likely that the antimalarial mechanism of N-89 and N-251 differs from those of artemisinin compounds. As malaria parasites resistant to artemisinin-based combination therapy are currently emerging in some tropical regions, N-89 and N-251 are candidates for overcoming these new problems. PMID:25449979

  17. Anticancer Effect of AntiMalarial Artemisinin Compounds

    PubMed Central

    Das, AK

    2015-01-01

    The anti-malarial drug artemisinin has shown anticancer activity in vitro and animal experiments, but experience in human cancer is scarce. However, the ability of artemisinins to kill cancer cells through a variety of molecular mechanisms has been explored. A PubMed search of about 127 papers on anti-cancer effects of antimalarials has revealed that this class of drug, including other antimalarials, have several biological characteristics that include anticancer properties. Experimental evidences suggest that artemisinin compounds may be a therapeutic alternative in highly aggressive cancers with rapid dissemination, without developing drug resistance. They also exhibit synergism with other anticancer drugs with no increased toxicity toward normal cells. It has been found that semisynthetic artemisinin derivatives have much higher antitumor activity than their monomeric counterparts via mechanisms like apoptosis, arrest of cell cycle at G0/G1, and oxidative stress. The exact mechanism of activation and molecular basis of these anticancer effects are not fully elucidated. Artemisinins seem to regulate key factors such as nuclear factor-kappa B, survivin, NOXA, hypoxia-inducible factor-1α, and BMI-1, involving multiple pathways that may affect drug response, drug interactions, drug resistance, and associated parameters upon normal cells. Newer synthetic artemisinins have been developed showing substantial antineoplastic activity, but there is still limited information regarding the mode of action of these synthetic compounds. In view of the emerging data, specific interactions with established chemotherapy need to be further investigated in different cancer cells and their phenotypes and validated further using different semisynthetic and synthetic artemisinin derivatives. PMID:25861527

  18. Antimalarial activity of anthothecol derived from Khaya anthotheca (Meliaceae).

    PubMed

    Lee, Sung-Eun; Kim, Mi-Ran; Kim, Jeong-Han; Takeoka, Gary R; Kim, Tae-Wan; Park, Byeoung-Soo

    2008-06-01

    Antimalarial activity of anthothecol, a limonoid of Khaya anthotheca (Meliaceae) against Plasmodium falciparum was tested using a [(3)H]-hypoxanthine and 48h culture assay in vitro. Anthotechol showed potent antimalarial activity against malaria parasites with IC(50) values of 1.4 and 0.17microM using two different assays. Also, gedunin had antimalarial activity with IC(50) values of 3.1 and 0.14microM. However, the citrus limonoids, limonin and obacunone did not show any antimalarial activity. The antimalarial activities were compared with the three currently used antimalarial medicines quinine, chloroquinine and artemisinin. PMID:17913482

  19. In vitro and in vivo assessment of the anti-malarial activity of Caesalpinia pluviosa

    PubMed Central

    2011-01-01

    Background To overcome the problem of increasing drug resistance, traditional medicines are an important source for potential new anti-malarials. Caesalpinia pluviosa, commonly named "sibipiruna", originates from Brazil and possess multiple therapeutic properties, including anti-malarial activity. Methods Crude extract (CE) was obtained from stem bark by purification using different solvents, resulting in seven fractions. An MTT assay was performed to evaluate cytotoxicity in MCF-7 cells. The CE and its fractions were tested in vitro against chloroquine-sensitive (3D7) and -resistant (S20) strains of Plasmodium falciparum and in vivo in Plasmodium chabaudi-infected mice. In vitro interaction with artesunate and the active C. pluviosa fractions was assessed, and mass spectrometry analyses were conducted. Results At non-toxic concentrations, the 100% ethanolic (F4) and 50% methanolic (F5) fractions possessed significant anti-malarial activity against both 3D7 and S20 strains. Drug interaction assays with artesunate showed a synergistic interaction with the F4. Four days of treatment with this fraction significantly inhibited parasitaemia in mice in a dose-dependent manner. Mass spectrometry analyses revealed the presence of an ion corresponding to m/z 303.0450, suggesting the presence of quercetin. However, a second set of analyses, with a quercetin standard, showed distinct ions of m/z 137 and 153. Conclusions The findings show that the F4 fraction of C. pluviosa exhibits anti-malarial activity in vitro at non-toxic concentrations, which was potentiated in the presence of artesunate. Moreover, this anti-malarial activity was also sustained in vivo after treatment of infected mice. Finally, mass spectrometry analyses suggest that a new compound, most likely an isomer of quercetin, is responsible for the anti-malarial activity of the F4. PMID:21535894

  20. An electronic network for the surveillance of antimicrobial resistance in bacterial nosocomial isolates in Greece. The Greek Network for the Surveillance of Antimicrobial Resistance.

    PubMed Central

    Vatopoulos, A. C.; Kalapothaki, V.; Legakis, N. J.

    1999-01-01

    The present article reports an evaluation of the national electronic network for the continuous monitoring of antimicrobial resistance in Greece. The network employs a common electronic code and data format and uses WHONET software. Our four years' experience with the network confirms its practicality. A total of 22 hospitals in Greece are currently using the software, of which 19 participate in the network. Analysis of the information obtained has greatly helped in identifying the main factors responsible for the emergence of antimicrobial resistance in the participating hospitals. The data collected have also helped to identify priorities for further investigation of the genetic and molecular mechanisms responsible for the emergence of resistance and facilitated development of hospital-based empirical therapy of infections. In conclusion, the implementation of national networks for the surveillance of antimicrobial resistance should be regarded as a priority. PMID:10444883

  1. Tuning the stator resistance of induction motors using artificial neural network

    SciTech Connect

    Cabrera, L.A.; Elbuluk, M.E.; Husain, I.

    1997-09-01

    Tuning the stator resistance of induction motors is very important, especially when it is used to implement direct torque control (DTC) in which the stator resistance is a main parameter. In this paper, an artificial network (ANN) is used to accomplish tuning of the stator resistance of an induction motor. The parallel recursive prediction error and backpropagation training algorithms were used in training the neural network for the simulation and experimental results, respectively. The neural network used to tune the stator resistance was trained on-line, making the DTC strategy more robust and accurate. Simulation results are presented for three different neural-network configurations showing the efficiency of the tuning process. Experimental results were obtained for the one of the three neural-network configuration. Both simulation and experimental results showed that the ANN have tuned the stator resistance in the controller to track actual resistance of the machine.

  2. Potent antimalarial activity of the alkaloid nitidine, isolated from a Kenyan herbal remedy.

    PubMed Central

    Gakunju, D M; Mberu, E K; Dossaji, S F; Gray, A I; Waigh, R D; Waterman, P G; Watkins, W M

    1995-01-01

    Bioassay-guided fractionation of extracts of Toddalia asiatica, a plant used by the Pokot tribe of Kenya to treat fevers, has yielded the alkaloid nitidine as the major antimalarial component. Fractions containing nitidine have in vitro 50% inhibitory concentrations against Plasmodium falciparum in the range of 9 to 108 ng/ml for a range of chloroquine-susceptible and -resistant strains. The results show a lack of cross-resistance between chloroquine and nitidine. PMID:8592987

  3. Modelling the time course of antimalarial parasite killing: a tour of animal and human models, translation and challenges

    PubMed Central

    Patel, Kashyap; Simpson, Julie A; Batty, Kevin T; Zaloumis, Sophie; Kirkpatrick, Carl M

    2015-01-01

    Malaria remains a global public health concern and current treatment options are suboptimal in some clinical settings. For effective chemotherapy, antimalarial drug concentrations must be sufficient to remove completely all of the parasites in the infected host. Optimized dosing therefore requires a detailed understanding of the time course of antimalarial response, whilst simultaneously considering the parasite life cycle and host immune elimination. Recently, the World Health Organization (WHO) has recommended the development of mathematical models for understanding better antimalarial drug resistance and management. Other international groups have also suggested that mechanistic pharmacokinetic (PK) and pharmacodynamic (PD) models can support the rationalization of antimalarial dosing strategies. At present, artemisinin-based combination therapy (ACT) is recommended as first line treatment of falciparum malaria for all patient groups. This review summarizes the PK–PD characterization of artemisinin derivatives and other partner drugs from both preclinical studies and human clinical trials. We outline the continuous and discrete time models that have been proposed to describe antimalarial activity on specific stages of the parasite life cycle. The translation of PK–PD predictions from animals to humans is considered, because preclinical studies can provide rich data for detailed mechanism-based modelling. While similar sampling techniques are limited in clinical studies, PK–PD models can be used to optimize the design of experiments to improve estimation of the parameters of interest. Ultimately, we propose that fully developed mechanistic models can simulate and rationalize ACT or other treatment strategies in antimalarial chemotherapy. PMID:24251882

  4. Antimalarial activity of Malaysian Plectranthus amboinicus against Plasmodium berghei

    PubMed Central

    Ramli, Norazsida; Ahamed, Pakeer Oothuman Syed; Elhady, Hassan Mohamed; Taher, Muhammad

    2014-01-01

    Context: Malaria is a mosquito-borne disease caused by parasitic protozoa from the genus of Plasmodium. The protozoans have developed resistance against many of current drugs. It is urgent to find an alternative source of new antimalarial agent. In the effort to discover new antimalarial agents, this research has been conducted on Plectranthus amboinicus. Aims: This study was conducted to evaluate the toxicity and antiplasmodial properties of P. amboinicus. Materials and Methods: Acute oral toxicity dose at 5000 mg/kg was conducted to evaluate the safety of this extract. Twenty mice were divided into control and experimental group. All the mice were observed for signs of toxicity, mortality, weight changes and histopathological changes. Antimalarial activity of different extract doses of 50, 200, 400 and 1000 mg/kg were tested in vivo against Plasmodium berghei infections in mice (five mice for each group) during early, established and residual infections. Results: The acute oral toxicity test revealed that no mortality or evidence of adverse effects was seen in the treated mice. The extract significantly reduced the parasitemia by the 50 (P = 0.000), 200 (P = 0.000) and 400 mg/kg doses (P = 0.000) in the in vivo prophylactic assay. The percentage chemo-suppression was calculated as 83.33% for 50 mg/kg dose, 75.62% for 200 mg/kg dose and 90.74% for 400 mg/kg dose. Body weight of all treated groups; T1, T2, T3 and T4 also showed enhancement after 7 days posttreatment. Statistically no reduction of parasitemia calculated for curative and suppressive test. Conclusion: Thus, this extract may give a promising agent to be used as a prophylactic agent of P. berghei infection. PMID:25276063

  5. The Redox Cycler Plasmodione Is a Fast-Acting Antimalarial Lead Compound with Pronounced Activity against Sexual and Early Asexual Blood-Stage Parasites.

    PubMed

    Ehrhardt, Katharina; Deregnaucourt, Christiane; Goetz, Alice-Anne; Tzanova, Tzvetomira; Gallo, Valentina; Arese, Paolo; Pradines, Bruno; Adjalley, Sophie H; Bagrel, Denyse; Blandin, Stephanie; Lanzer, Michael; Davioud-Charvet, Elisabeth

    2016-09-01

    Previously, we presented the chemical design of a promising series of antimalarial agents, 3-[substituted-benzyl]-menadiones, with potent in vitro and in vivo activities. Ongoing studies on the mode of action of antimalarial 3-[substituted-benzyl]-menadiones revealed that these agents disturb the redox balance of the parasitized erythrocyte by acting as redox cyclers-a strategy that is broadly recognized for the development of new antimalarial agents. Here we report a detailed parasitological characterization of the in vitro activity profile of the lead compound 3-[4-(trifluoromethyl)benzyl]-menadione 1c (henceforth called plasmodione) against intraerythrocytic stages of the human malaria parasite Plasmodium falciparum We show that plasmodione acts rapidly against asexual blood stages, thereby disrupting the clinically relevant intraerythrocytic life cycle of the parasite, and furthermore has potent activity against early gametocytes. The lead's antiplasmodial activity was unaffected by the most common mechanisms of resistance to clinically used antimalarials. Moreover, plasmodione has a low potential to induce drug resistance and a high killing speed, as observed by culturing parasites under continuous drug pressure. Drug interactions with licensed antimalarial drugs were also established using the fixed-ratio isobologram method. Initial toxicological profiling suggests that plasmodione is a safe agent for possible human use. Our studies identify plasmodione as a promising antimalarial lead compound and strongly support the future development of redox-active benzylmenadiones as antimalarial agents. PMID:27297478

  6. Fixed Dose Combination of Arterolane and Piperaquine: A Newer Prospect in Antimalarial Therapy

    PubMed Central

    Patil, CY; Katare, SS; Baig, MS; Doifode, SM

    2014-01-01

    Malaria has been very prevalent vector-borne disease in India and until date bears enormous implications on health care services of the country. Over the period of time, the development of resistance to traditional antimalarials like chloroquine has been posed as major deterrent in efforts of malaria control. As the drug resistance is today universally prevalent, especially in Plasmodium falciparum species, major burden of malarial control resides with the new artemisinin drug class. However, arterolane is one of the first fully synthetic non-artemisinin antimalarial compound with rapid schizontocidal activity, hence offering an alternative to artemisinin drugs in malaria control. Piperaquine is a synthetic bisquinoline (4-amioquinoline Antimalarial) with slow and longer schizontocidal activity. Therefore their combination has been shown to provide rapid parasitemic clearance and quick relief of most malaria-related symptoms along with prevention of recrudescences. This combination was approved by Drugs Controller General of India in 2011 for treatment of uncomplicated P. falciparum malaria. The article is aimed at to review this newer prospect in antimalarial therapy for which comprehensive database search was done in Google, Google Scholar, PubMed using the terms “Malaria,” “Arterolane,” “OZ277,” “Piperaquine,” and “Artemisinin combination therapy.” A total of 323 articles were screened and 28 articles were considered for this review along with the World Health Organization and National malarial program guidelines. PMID:25221689

  7. Development of antimalarial drugs and their application in China: a historical review

    PubMed Central

    2014-01-01

    This historical review covers antimalarials developed in China, which include artemisinin, artemether, artesunate, and dihydroartemisinin, as well as other synthetic drugs such as piperaquine, pyronaridine, benflumetol (lumefantrine), and naphthoquine. The curative effects of these antimalarials in the treatment of falciparum malaria, including chloroquine-resistant strain, are especially discussed. Following the World Health Organization (WHO) recommended artemisinin-based combination therapy (ACT), different combinations of artemisinin, or its derivative, along with another antimalarial drug were orally used to treat Plasmodium falciparum infections. The recrudescence rates were low, gametocyte carriers lessened, and the curative rate increased remarkably. The combination therapy effectively deferred the emergence of drug resistance in the parasite. The regulation “The guidelines and regimens for the use of antimalarial drugs in China” was issued to guide rational application and standardize malaria treatment in the country. As the recommended first-line drug to treat falciparum malaria in the world, ACT was adopted in the regulation. In response to the global initiative of malaria eradication proposed by the UN Millennium Development Goals (MDGs), the Chinese government has set a target to eliminate malaria by 2020. PMID:24650735

  8. Fixed dose combination of arterolane and piperaquine: a newer prospect in antimalarial therapy.

    PubMed

    Patil, Cy; Katare, Ss; Baig, Ms; Doifode, Sm

    2014-07-01

    Malaria has been very prevalent vector-borne disease in India and until date bears enormous implications on health care services of the country. Over the period of time, the development of resistance to traditional antimalarials like chloroquine has been posed as major deterrent in efforts of malaria control. As the drug resistance is today universally prevalent, especially in Plasmodium falciparum species, major burden of malarial control resides with the new artemisinin drug class. However, arterolane is one of the first fully synthetic non-artemisinin antimalarial compound with rapid schizontocidal activity, hence offering an alternative to artemisinin drugs in malaria control. Piperaquine is a synthetic bisquinoline (4-amioquinoline Antimalarial) with slow and longer schizontocidal activity. Therefore their combination has been shown to provide rapid parasitemic clearance and quick relief of most malaria-related symptoms along with prevention of recrudescences. This combination was approved by Drugs Controller General of India in 2011 for treatment of uncomplicated P. falciparum malaria. The article is aimed at to review this newer prospect in antimalarial therapy for which comprehensive database search was done in Google, Google Scholar, PubMed using the terms "Malaria," "Arterolane," "OZ277," "Piperaquine," and "Artemisinin combination therapy." A total of 323 articles were screened and 28 articles were considered for this review along with the World Health Organization and National malarial program guidelines. PMID:25221689

  9. Antimicrobial resistance surveillance in the AFHSC-GEIS network.

    PubMed

    Meyer, William G; Pavlin, Julie A; Hospenthal, Duane; Murray, Clinton K; Jerke, Kurt; Hawksworth, Anthony; Metzgar, David; Myers, Todd; Walsh, Douglas; Wu, Max; Ergas, Rosa; Chukwuma, Uzo; Tobias, Steven; Klena, John; Nakhla, Isabelle; Talaat, Maha; Maves, Ryan; Ellis, Michael; Wortmann, Glenn; Blazes, David L; Lindler, Luther

    2011-01-01

    International infectious disease surveillance has been conducted by the United States (U.S.) Department of Defense (DoD) for many years and has been consolidated within the Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) since 1998. This includes activities that monitor the presence of antimicrobial resistance among pathogens. AFHSC-GEIS partners work within DoD military treatment facilities and collaborate with host-nation civilian and military clinics, hospitals and university systems. The goals of these activities are to foster military force health protection and medical diplomacy. Surveillance activities include both community-acquired and health care-associated infections and have promoted the development of surveillance networks, centers of excellence and referral laboratories. Information technology applications have been utilized increasingly to aid in DoD-wide global surveillance for diseases significant to force health protection and global public health. This section documents the accomplishments and activities of the network through AFHSC-GEIS partners in 2009. PMID:21388568

  10. Antimalarial activity of tropical Meliaceae extracts and gedunin derivatives.

    PubMed

    MacKinnon, S; Durst, T; Arnason, J T; Angerhofer, C; Pezzuto, J; Sanchez-Vindas, P E; Poveda, L J; Gbeassor, M

    1997-04-01

    Extracts of 22 species of Meliaceae were examined for antimalarial activity using in vitro tests with two clones of Plasmodium falciparum, one sensitive to chloroquine (W2) and one chloroquine-resistant (D6). Twelve extracts were found to have activity, including extracts of Cedrela odorata wood and Azadirachta indica leaves, which contained the limonoid gedunin. These extracts were more effective against the W2 clone than the D6 clone, suggesting there is no cross-resistance to chloroquine. Gedunin was extracted in quantity, and nine derivatives prepared for a structure-activity study, which revealed essential functionalities for activity. The study also included four other limonoids derived from related Meliaceae. Only gedunin had better activity than chloroquine against the W2 clone. This active principle could be used to standardize a popular crude drug based on traditional use of A. indica in West Africa. PMID:9134742

  11. Coartemether (artemether and lumefantrine): an oral antimalarial drug.

    PubMed

    Wernsdorfer, Walther H

    2004-04-01

    Coartemether (Riamet, Coartem, Novartis), a tablet formulation of artemether and lumefantrine, is a well-tolerated, fast-acting and effective blood schizontocidal drug that serves primarily in the treatment of uncomplicated falciparum malaria that is resistant to other antimalarials. Initial clinical-parasitological response relies mainly on the artemether component, while lumefantrine effects radical cure. The absorption of lumefantrine is poor during the fasting state, the normal condition in acutely ill malaria patients, but with return to normal diet it becomes adequate. This highlights the need for an appropriate adjustment of the dose regimen. In the area where Plasmodium falciparum shows the highest degree of multidrug resistance worldwide, the best results (99% cure) were obtained with a six-dose regimen given over 5 days. Extensive cardiological investigations have demonstrated the high cardiac safety of coartemether. PMID:15482185

  12. Antimalarial and Antiproliferative Cassane Diterpenes of Caesalpinia sappan.

    PubMed

    Ma, Guoxu; Wu, Haifeng; Chen, Deli; Zhu, Nailiang; Zhu, Yindi; Sun, Zhonghao; Li, Pengfei; Yang, Junshan; Yuan, Jingquan; Xu, Xudong

    2015-10-23

    Bioassay-guided fractionation of a methanol extract of the seeds of Caesalpinia sappan led to the isolation of 12 new cassane-type diterpenes, caesalsappanins A-L (1-12). Their structures were elucidated on the basis of NMR and HRESIMS analysis, and the absolute configuration of compound 1 was determined by single-crystal X-ray crystallography. All isolated compounds were tested against a chloroquine-resistant Plasmodium falciparum strain for antiplasmodial activities and against a small panel of human cancer cell lines for antiproliferative activities. Compounds 7 and 8 displayed antimalarial activity against the chloroquine-resistant K1 strain of P. falciparum with IC50 values of 0.78 and 0.52 μM and selectivity indices of 17.6 and 16.4, respectively. Compound 10 showed antiproliferative activity against the KB cancer cell line with an IC50 value of 7.4 μM. PMID:26398312

  13. Antimalarial activity in Xylocarpus granatum (Koen).

    PubMed

    Lakshmi, Vijai; Srivastava, Shishir; Mishra, Sunil Kumar; Srivastava, Mahendra Nath; Srivastava, Kumkum; Puri, Sunil Kumar

    2012-01-01

    The antimalarial activity of Xylocarpus granatum fruits and their active constituents gedunin and xyloccensin-I were investigated using an in vitro model in this study. The chloroform fraction of X. granatum fruits was found to show promising antimalarial activity using an in vitro model of Plasmodium falciparum. On purification of the active fraction, four pure compounds were isolated and characterised, namely gedunin, photogedunin, xyloccensin-I and palmitic acid. Out of these only gedunin and xyloccensin-I were found to show activity equivalent to the parent active fraction in vitro model. PMID:21787243

  14. Access to artesunate-amodiaquine, quinine and other anti-malarials: policy and markets in Burundi

    PubMed Central

    2011-01-01

    Background Malaria is the leading cause of morbidity and mortality in post-conflict Burundi. To counter the increasing challenge of anti-malarial drug resistance and improve highly effective treatment Burundi adopted artesunate-amodiaquine (AS-AQ) as first-line treatment for uncomplicated Plasmodium falciparum malaria and oral quinine as second-line treatment in its national treatment policy in 2003. Uptake of this policy in the public, private and non-governmental (NGO) retail market sectors of Burundi is relatively unknown. This study was conducted to evaluate access to national policy recommended anti-malarials. Methods Adapting a standardized methodology developed by Health Action International/World Health Organization (HAI/WHO), a cross-sectional survey of 70 (24 public, 36 private, and 10 NGO) medicine outlets was conducted in three regions of Burundi, representing different levels of transmission of malaria. The availability on day of the survey, the median prices, and affordability (in terms of number of days' wages to purchase treatment) of AS-AQ, quinine and other anti-malarials were calculated. Results Anti-malarials were stocked in all outlets surveyed. AS-AQ was available in 87.5%, 33.3%, and 90% of public, private, and NGO retail outlets, respectively. Quinine was the most common anti-malarial found in all outlet types. Non-policy recommended anti-malarials were mainly found in the private outlets (38.9%) compared to public (4.2%) and NGO (0%) outlets. The median price of a course of AS-AQ was US$0.16 (200 Burundi Francs, FBu) for the public and NGO markets, and 3.5-fold higher in the private sector (US$0.56 or 700 FBu). Quinine tablets were similarly priced in the public (US$1.53 or 1,892.50 FBu), private and NGO sectors (both US$1.61 or 2,000 FBu). Non-policy anti-malarials were priced 50-fold higher than the price of AS-AQ in the public sector. A course of AS-AQ was affordable at 0.4 of a day's wage in the public and NGO sectors, whereas, it was

  15. New antimalarials with a triterpenic scaffold from Momordica balsamina.

    PubMed

    Ramalhete, Cátia; Lopes, Dinora; Mulhovo, Silva; Molnár, Joseph; Rosário, Virgílio E; Ferreira, Maria-José U

    2010-07-15

    Bioassay-guided fractionation of the methanol extract of Momordica balsamina led to the isolation of three new cucurbitane-type triterpenoids, balsaminols C-E (1-3). Their structures were elucidated on the basis of spectroscopic methods including 2D NMR experiments (COSY, HMQC, HMBC and NOESY). Balsaminols C-E, together with ten cucurbitacins isolated from the same plant (4-13), were evaluated for their antimalarial activity against the Plasmodium falciparum chloroquine-sensitive strain 3D7 and the chloroquine-resistant clone Dd2. Most of the compounds displayed antimalarial activity. Compounds 9 and 12 revealed the highest antiplasmodial effects against both strains (IC50 values: 4.6, and 7.4 microM, 3D7, respectively; 4.0, and 8.2 microM, Dd2, respectively). Structure-activity relationships are discussed. Furthermore, the preliminary toxicity toward human cells of compounds 1-5 and 9 was investigated in breast cancer cell line (MCF-7). Compounds were inactive or showed weak toxicity (IC50 values>19.0). PMID:20541427

  16. Searching for new antimalarial therapeutics amongst known drugs.

    PubMed

    Weisman, Jennifer L; Liou, Ally P; Shelat, Anang A; Cohen, Fred E; Guy, R Kiplin; DeRisi, Joseph L

    2006-06-01

    The need to discover and develop new antimalarial therapeutics is overwhelming. The annual mortality attributed to malaria, currently approximately 2.5 million, is increasing due primarily to widespread resistance to currently used drugs. One strategy to identify new treatment alternatives for malaria is to examine libraries of diverse compounds for the possible identification of novel scaffolds. Beginning with libraries of drug or drug-like compounds is an ideal starting point because, in the case of approved drugs, substantial pharmacokinetic and toxicologic data should be available for each compound series. We have employed a high-throughput screen of the MicroSource Spectrum and Killer Collections, a library of known drugs, bioactive compounds, and natural products. Our screening assay identifies compounds that inhibit growth of Plasmodium falciparum cultured in human erythrocytes. We have identified 36 novel inhibitors of P. falciparum, of which 19 are therapeutics, and five of these drugs exhibit effective 50% inhibitory concentrations within similar ranges to therapeutic serum concentrations for their recently indicated uses: propafenone, thioridazine, chlorprothixene, perhexiline, and azlocillin. The findings we report here indicate that this is an effective strategy to identify novel scaffolds and therefore aid in antimalarial drug discovery efforts. PMID:16882315

  17. Searching for New Antimalarial Therapeutics amongst Known Drugs

    PubMed Central

    Weisman, Jennifer L.; Liou, Ally P.; Shelat, Anang A.; Cohen, Fred E.; Guy, R. Kiplin; DeRisi, Joseph L.

    2006-01-01

    The need to discover and develop new antimalarial therapeutics is severe. The annual mortality attributed to malaria, currently approximately 2.5 million, is increasing due primarily to widespread resistance to currently used drugs. One strategy to identify new treatment alternatives for malaria is to examine libraries of diverse compounds for the possible identification of novel scaffolds. Beginning with libraries of drug or drug-like compounds is an ideal starting point because, in the case of approved drugs, substantial pharmacokinetic and toxicologic data should be available for each compound series. We have employed a high throughput screen of the MicroSource Spectrum and Killer collections, a library of known drugs, bioactive compounds, and natural products. Our screening assay identifies compounds that inhibit growth of Plasmodium falciparum cultured in human erythrocytes. We have identified 36 novel inhibitors of P. falciparum, of which 19 are therapeutics, and five of these drugs exhibit effective 50% inhibitory concentrations within similar ranges to therapeutic serum concentrations for their currently indicated uses: propafenone, thioridazine, chlorprothixene, perhexiline and azlocillin. The findings we report here indicate that this is an effective strategy to identify novel scaffolds and therefore aid in antimalarial drug discovery efforts. PMID:16882315

  18. Antimalarials and the fight against malaria in Brazil

    PubMed Central

    Carmargo, Luiz MA; de Oliveira, Saulo; Basano, Sergio; Garcia, Célia RS

    2009-01-01

    Malaria, known as the “fevers,” has been treated for over three thousand years in China with extracts of plants of the genus Artemisia (including Artemisia annua, A. opiacea, and A. lancea) from which the active compound is artemisin, a sesquiterpene that is highly effective in the treatment of the disease, especially against young forms of the parasite. South American Indians in the seventeenth century already used an extract of the bark of chinchona tree, commonly named “Jesuits’ powder.” Its active compound was isolated in 1820 and its use spread all over the world being used as a prophylactic drug during the construction of the Madeira–Mamoré railroad in the beginning of the twentieth century. During the 1920s to the 1940s, new antimalarial drugs were synthesized to increase the arsenal against this parasite. However, the parasite has presented systematic resistence to conventional antimalarial drugs, driving researchers to find new strategies to treat the disease. In the present review we discuss how Brazil treats Plasmodium-infected patients. PMID:19753125

  19. Antimalarials and the fight against malaria in Brazil.

    PubMed

    Carmargo, Luiz Ma; de Oliveira, Saulo; Basano, Sergio; Garcia, Célia Rs

    2009-08-01

    Malaria, known as the "fevers," has been treated for over three thousand years in China with extracts of plants of the genus Artemisia (including Artemisia annua, A. opiacea, and A. lancea) from which the active compound is artemisin, a sesquiterpene that is highly effective in the treatment of the disease, especially against young forms of the parasite. South American Indians in the seventeenth century already used an extract of the bark of chinchona tree, commonly named "Jesuits' powder." Its active compound was isolated in 1820 and its use spread all over the world being used as a prophylactic drug during the construction of the Madeira-Mamoré railroad in the beginning of the twentieth century. During the 1920s to the 1940s, new antimalarial drugs were synthesized to increase the arsenal against this parasite. However, the parasite has presented systematic resistence to conventional antimalarial drugs, driving researchers to find new strategies to treat the disease. In the present review we discuss how Brazil treats Plasmodium-infected patients. PMID:19753125

  20. Poor quality vital anti-malarials in Africa - an urgent neglected public health priority

    PubMed Central

    2011-01-01

    Background Plasmodium falciparum malaria remains a major public health problem. A vital component of malaria control rests on the availability of good quality artemisinin-derivative based combination therapy (ACT) at the correct dose. However, there are increasing reports of poor quality anti-malarials in Africa. Methods Seven collections of artemisinin derivative monotherapies, ACT and halofantrine anti-malarials of suspicious quality were collected in 2002/10 in eleven African countries and in Asia en route to Africa. Packaging, chemical composition (high performance liquid chromatography, direct ionization mass spectrometry, X-ray diffractometry, stable isotope analysis) and botanical investigations were performed. Results Counterfeit artesunate containing chloroquine, counterfeit dihydroartemisinin (DHA) containing paracetamol (acetaminophen), counterfeit DHA-piperaquine containing sildenafil, counterfeit artemether-lumefantrine containing pyrimethamine, counterfeit halofantrine containing artemisinin, and substandard/counterfeit or degraded artesunate and artesunate+amodiaquine in eight countries are described. Pollen analysis was consistent with manufacture of counterfeits in eastern Asia. These data do not allow estimation of the frequency of poor quality anti-malarials in Africa. Conclusions Criminals are producing diverse harmful anti-malarial counterfeits with important public health consequences. The presence of artesunate monotherapy, substandard and/or degraded and counterfeit medicines containing sub-therapeutic amounts of unexpected anti-malarials will engender drug resistance. With the threatening spread of artemisinin resistance to Africa, much greater investment is required to ensure the quality of ACTs and removal of artemisinin monotherapies. The International Health Regulations may need to be invoked to counter these serious public health problems. PMID:22152094

  1. A Chemical Proteomics Approach for the Search of Pharmacological Targets of the Antimalarial Clinical Candidate Albitiazolium in Plasmodium falciparum Using Photocrosslinking and Click Chemistry

    PubMed Central

    Penarete-Vargas, Diana Marcela; Boisson, Anaïs; Urbach, Serge; Chantelauze, Hervé; Peyrottes, Suzanne; Fraisse, Laurent; Vial, Henri J.

    2014-01-01

    Plasmodium falciparum is responsible for severe malaria which is one of the most prevalent and deadly infectious diseases in the world. The antimalarial therapeutic arsenal is hampered by the onset of resistance to all known pharmacological classes of compounds, so new drugs with novel mechanisms of action are critically needed. Albitiazolium is a clinical antimalarial candidate from a series of choline analogs designed to inhibit plasmodial phospholipid metabolism. Here we developed an original chemical proteomic approach to identify parasite proteins targeted by albitiazolium during their native interaction in living parasites. We designed a bifunctional albitiazolium-derived compound (photoactivable and clickable) to covalently crosslink drug–interacting parasite proteins in situ followed by their isolation via click chemistry reactions. Mass spectrometry analysis of drug–interacting proteins and subsequent clustering on gene ontology terms revealed parasite proteins involved in lipid metabolic activities and, interestingly, also in lipid binding, transport, and vesicular transport functions. In accordance with this, the albitiazolium-derivative was localized in the endoplasmic reticulum and trans-Golgi network of P. falciparum. Importantly, during competitive assays with albitiazolium, the binding of choline/ethanolamine phosphotransferase (the enzyme involved in the last step of phosphatidylcholine synthesis) was substantially displaced, thus confirming the efficiency of this strategy for searching albitiazolium targets. PMID:25470252

  2. A chemical proteomics approach for the search of pharmacological targets of the antimalarial clinical candidate albitiazolium in Plasmodium falciparum using photocrosslinking and click chemistry.

    PubMed

    Penarete-Vargas, Diana Marcela; Boisson, Anaïs; Urbach, Serge; Chantelauze, Hervé; Peyrottes, Suzanne; Fraisse, Laurent; Vial, Henri J

    2014-01-01

    Plasmodium falciparum is responsible for severe malaria which is one of the most prevalent and deadly infectious diseases in the world. The antimalarial therapeutic arsenal is hampered by the onset of resistance to all known pharmacological classes of compounds, so new drugs with novel mechanisms of action are critically needed. Albitiazolium is a clinical antimalarial candidate from a series of choline analogs designed to inhibit plasmodial phospholipid metabolism. Here we developed an original chemical proteomic approach to identify parasite proteins targeted by albitiazolium during their native interaction in living parasites. We designed a bifunctional albitiazolium-derived compound (photoactivable and clickable) to covalently crosslink drug-interacting parasite proteins in situ followed by their isolation via click chemistry reactions. Mass spectrometry analysis of drug-interacting proteins and subsequent clustering on gene ontology terms revealed parasite proteins involved in lipid metabolic activities and, interestingly, also in lipid binding, transport, and vesicular transport functions. In accordance with this, the albitiazolium-derivative was localized in the endoplasmic reticulum and trans-Golgi network of P. falciparum. Importantly, during competitive assays with albitiazolium, the binding of choline/ethanolamine phosphotransferase (the enzyme involved in the last step of phosphatidylcholine synthesis) was substantially displaced, thus confirming the efficiency of this strategy for searching albitiazolium targets. PMID:25470252

  3. Hydroxyethylamine Based Phthalimides as New Class of Plasmepsin Hits: Design, Synthesis and Antimalarial Evaluation.

    PubMed

    Singh, Anil K; Rathore, Sumit; Tang, Yan; Goldfarb, Nathan E; Dunn, Ben M; Rajendran, Vinoth; Ghosh, Prahlad C; Singh, Neelu; Latha, N; Singh, Brajendra K; Rawat, Manmeet; Rathi, Brijesh

    2015-01-01

    A novel class of phthalimides functionalized with privileged scaffolds was designed, synthesized and evaluated as potential inhibitors of plasmepsin 2 (Ki: 0.99 ± 0.1 μM for 6u) and plasmepsin 4 (Ki: 3.3 ± 0.3 μM for 6t), enzymes found in the digestive vacuole of the plasmodium parasite and considered as crucial drug targets. Three compounds were identified as potential candidates for further development. The listed compounds were also assayed for their antimalarial efficacy against chloroquine (CQ) sensitive strain (3D7) of Plasmodium falciparum. Assay of twenty seven hydroxyethylamine derivatives revealed four (5e, 6j, 6o and 6s) as strongly active, which were further evaluated against CQ resistant strain (7GB) of P. falciparum. Compound 5e possessing the piperidinopiperidine moiety exhibited promising antimalarial activity with an IC50 of 1.16 ± 0.04 μM. Further, compounds 5e, 6j, 6o and 6s exhibited low cytotoxic effect on MCF-7 cell line. Compound 6s possessing C2 symmetry was identified as the least cytotoxic with significant antimalarial activity (IC50: 1.30 ± 0.03 μM). The combined presence of hydroxyethylamine and cyclic amines (piperazines and piperidines) was observed as crucial for the activity. The current studies suggest that hydroxyethylamine based molecules act as potent antimalarial agent and may be helpful in drug development. PMID:26502278

  4. Hydroxyethylamine Based Phthalimides as New Class of Plasmepsin Hits: Design, Synthesis and Antimalarial Evaluation

    PubMed Central

    Singh, Anil K.; Rathore, Sumit; Tang, Yan; Goldfarb, Nathan E.; Dunn, Ben M.; Rajendran, Vinoth; Ghosh, Prahlad C.; Singh, Neelu; Latha, N.; Singh, Brajendra K.; Rawat, Manmeet; Rathi, Brijesh

    2015-01-01

    A novel class of phthalimides functionalized with privileged scaffolds was designed, synthesized and evaluated as potential inhibitors of plasmepsin 2 (Ki: 0.99 ± 0.1 μM for 6u) and plasmepsin 4 (Ki: 3.3 ± 0.3 μM for 6t), enzymes found in the digestive vacuole of the plasmodium parasite and considered as crucial drug targets. Three compounds were identified as potential candidates for further development. The listed compounds were also assayed for their antimalarial efficacy against chloroquine (CQ) sensitive strain (3D7) of Plasmodium falciparum. Assay of twenty seven hydroxyethylamine derivatives revealed four (5e, 6j, 6o and 6s) as strongly active, which were further evaluated against CQ resistant strain (7GB) of P. falciparum. Compound 5e possessing the piperidinopiperidine moiety exhibited promising antimalarial activity with an IC50 of 1.16 ± 0.04 μM. Further, compounds 5e, 6j, 6o and 6s exhibited low cytotoxic effect on MCF-7 cell line. Compound 6s possessing C2 symmetry was identified as the least cytotoxic with significant antimalarial activity (IC50: 1.30 ± 0.03 μM). The combined presence of hydroxyethylamine and cyclic amines (piperazines and piperidines) was observed as crucial for the activity. The current studies suggest that hydroxyethylamine based molecules act as potent antimalarial agent and may be helpful in drug development. PMID:26502278

  5. Probing the antimalarial mechanism of artemisinin and OZ277 (arterolane) with nonperoxidic isosteres and nitroxyl radicals.

    PubMed

    Fügi, Matthias A; Wittlin, Sergio; Dong, Yuxiang; Vennerstrom, Jonathan L

    2010-03-01

    Peroxidic antimalarials such as the semisynthetic artemisinins are critically important in the treatment of drug-resistant malaria. Nevertheless, their peroxide bond-dependent mode of action is still not well understood. Using combination experiments with cultured Plasmodium falciparum cells, we investigated the interactions of the nitroxide radical spin trap, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), and four of its analogs with artemisinin and the ozonide drug development candidate OZ277. The antagonism observed for combinations of artemisinin or OZ277 with the TEMPO analogs supports the hypothesis that the formation of carbon-centered radicals is critical for the activity of these two antimalarial peroxides. The TEMPO analogs showed a trend toward greater antagonism with artemisinin than they did with OZ277, an observation that can be explained by the greater tendency of artemisinin-derived carbon-centered radicals to undergo internal self-quenching reactions, resulting in a lower proportion of radicals available for subsequent chemical reactions such as the alkylation of heme and parasite proteins. In a further mechanistic experiment, we tested both artemisinin and OZ277 in combination with their nonperoxidic analogs. The latter had no effect on the antimalarial activities of the former. These data indicate that the antimalarial properties of peroxides do not derive from reversible interactions with parasite targets. PMID:20028825

  6. Synthesis, Antimalarial, Antileishmanial, Antimicrobial, Cytotoxicity and Methemoglobin (MetHb) Formation Activities of New 8-Quinolinamines

    PubMed Central

    Kaur, Kirandeep; Jain, Meenakshi; Khan, Shabana I.; Jacob, Melissa R.; Tekwani, Babu L.; Jain, Rahul

    2014-01-01

    We report the synthesis, in vitro antiprotozoal (against Plasmodium and Leishmania), antimicrobial, cytotoxicity (Vero and MetHb-producing properties) and in vivo antimalarial activities of two series of 8-quinolinamines. N1-{4-[2-(tert-Butyl)-6-methoxy-8-quinolylamino]pentyl}-(2S/2R)-2-aminosubstitutedamides (21–33) and N1-[4-(4-ethyl-6-methoxy-5-pentyloxy-8-quinolylamino)pentyl]-(2S/2R)-2-aminosubstitutedamides (51–63) were synthesized in six steps from 6-methoxy-8-nitroquinoline and 4-methoxy-2-nitro-5-pentyloxyaniline, respectively. Several analogs displayed promising antimalarial activity in vitro against P. falciparum D6 (chloroquine-sensitive) and W2 (chloroquine-resistant) clones with high selectivity indices vs. mammalian cells. The most promising analogs (21–24) also displayed potent antimalarial activity in vivo in a P. berghei-infected mouse model. Most interestingly, many analogs exhibited promising in vitro antileishmanial activity against L. donovani promastigotes, and antimicrobial activities against a panel of pathogenic bacteria and fungi. Several analogs, notably 21–24, 26–32 and 60, showed less MetHb formation compared to primaquine indicating the potential of these compounds in 8-quinolinamine-based antimalarial drug development. PMID:17084633

  7. In Silico Exploration for New Antimalarials: Arylsulfonyloxy Acetimidamides as Prospective Agents.

    PubMed

    Verma, Saroj; Debnath, Utsab; Agarwal, Pooja; Srivastava, Kumkum; Prabhakar, Yenamandra S

    2015-08-24

    A strategy is described to identify new antimalarial agents to overcome the drug resistance and/or failure issues through in silico screening of multiple biological targets. As a part of this, three enzymes namely CTPS, CK, and GST were selected, from among 56 drug targets of P. falciparum, and used them in virtual screening of ZINC database entries which led to the design and synthesis of arylsulfonyloxy acetimidamides as their consensus inhibitors. From these, two compounds showed good activity against sensitive (3D7; IC50, 1.10 and 1.45 μM) and resistant (K1; IC50, 2.10 and 2.13 μM) strains of the parasite, and they were further investigated through docking and molecular dynamics simulations. The findings of this study collectively paved the way for arylsulfonyloxy acetimidamides as a new class of antimalarial agents. PMID:26237069

  8. Exploring the 3-piperidin-4-yl-1H-indole scaffold as a novel antimalarial chemotype.

    PubMed

    Santos, Sofia A; Lukens, Amanda K; Coelho, Lis; Nogueira, Fátima; Wirth, Dyann F; Mazitschek, Ralph; Moreira, Rui; Paulo, Alexandra

    2015-09-18

    A series of 3-piperidin-4-yl-1H-indoles with building block diversity was synthesized based on a hit derived from an HTS whole-cell screen against Plasmodium falciparum. Thirty-eight compounds were obtained following a three-step synthetic approach and evaluated for anti-parasitic activity. The SAR shows that 3-piperidin-4-yl-1H-indole is intolerant to most N-piperidinyl modifications. Nevertheless, we were able to identify a new compound (10d) with lead-like properties (MW = 305; cLogP = 2.42), showing antimalarial activity against drug-resistant and sensitive strains (EC50 values ∼ 3 μM), selectivity for malaria parasite and no cross-resistance with chloroquine, thus representing a potential new chemotype for further optimization towards novel and affordable antimalarial drugs. PMID:26295174

  9. Identification and Optimization of an Aminoalcohol-Carbazole Series with Antimalarial Properties

    PubMed Central

    2013-01-01

    Recent observations on the emergence of artemisinin resistant parasites have highlighted the need for new antimalarial treatments. An HTS campaign led to the identification of the 1-(1-aminopropan-2-ol)carbazole analogues as potent hits against Plasmodium falciparum K1 strain. The SAR study and optimization of early ADME and physicochemical properties direct us to the selection of a late lead compound that shows good efficacy when orally administrated in the in vivo P. berghei mouse model. PMID:24900603

  10. D-Glucose-Derived 1,2,4-Trioxepanes: Synthesis, Conformational Study, and Antimalarial Activity.

    PubMed

    Sonawane, D P; Corbett, Y; Dhavale, D D; Taramelli, D; Trombini, C; Quintavalla, A; Lombardo, M

    2015-08-21

    New enantiomerically pure 1,2,4-trioxepanes 10a,b/11a,b were synthesized from D-glucose. Their conformational behavior was studied by low-temperature NMR and substantiated by DFT calculations. On evaluation of in vitro antimalarial activity, the adamantyl derivative 11b showed IC50 values in the low micromolar range, particularly against the W2 chloroquine-resistant Plasmodium falciparum strain (IC50 = 0.15 ± 0.12 μM). PMID:26237035

  11. Resistance of Single Ag Nanowire Junctions and Their Role in the Conductivity of Nanowire Networks.

    PubMed

    Bellew, Allen T; Manning, Hugh G; Gomes da Rocha, Claudia; Ferreira, Mauro S; Boland, John J

    2015-11-24

    Networks of silver nanowires appear set to replace expensive indium tin oxide as the transparent conducting electrode material in next generation devices. The success of this approach depends on optimizing the material conductivity, which until now has largely focused on minimizing the junction resistance between wires. However, there have been no detailed reports on what the junction resistance is, nor is there a known benchmark for the minimum attainable sheet resistance of an optimized network. In this paper, we present junction resistance measurements of individual silver nanowire junctions, producing for the first time a distribution of junction resistance values and conclusively demonstrating that the junction contribution to the overall resistance can be reduced beyond that of the wires through standard processing techniques. We find that this distribution shows the presence of a small percentage (6%) of high-resistance junctions, and we show how these may impact the performance of network-based materials. Finally, through combining experiment with a rigorous model, we demonstrate the important role played by the network skeleton and the specific connectivity of the network in determining network performance. PMID:26448205

  12. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica.

    PubMed

    Chinchilla, Misael; Valerio, Idalia; Sánchez, Ronald; Mora, Víctor; Bagnarello, Vanessa; Martínez, Laura; Gonzalez, Antonieta; Vanegas, Juan Carlos; Apestegui, Alvaro

    2012-06-01

    Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biol6gica Alberto Manuel Brenes (REBAMB), were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae); Xanthosoma undipes (Araceae); Iriartea deltoidea (Arecaceae); Neurolaena lobata (Asteraceae); Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae); Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae); Hampea appendiculata (Malvaceae); Ruagea glabra, Guarea glabra (Meliaceae); Psidium guajava (Myrtaceae); Bocconia frutescens (Papaveraceae); Piper friedrichsthalii (Piperaceae); Clematis dioica (Ranunculaceae); Prunus annularis (Rosaceae); Siparuna thecaphora (Siparunaceae); Solanum arboreum, Witheringia solanacea (Solanaceae); Ticodendrum incognitum (Ticodendraceae); Heliocarpus appendiculatus (Tiliaceae) and Myriocarpa longipes (Urticaceae). We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9 microg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  13. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum

    PubMed Central

    Vaidya, Akhil B.; Morrisey, Joanne M.; Zhang, Zhongsheng; Das, Sudipta; Daly, Thomas M.; Otto, Thomas D.; Spillman, Natalie J.; Wyvratt, Matthew; Siegl, Peter; Marfurt, Jutta; Wirjanata, Grennady; Sebayang, Boni F.; Price, Ric N.; Chatterjee, Arnab; Nagle, Advait; Stasiak, Marcin; Charman, Susan A.; Angulo-Barturen, Iñigo; Ferrer, Santiago; Belén Jiménez-Díaz, María; Martínez, María Santos; Gamo, Francisco Javier; Avery, Vicky M.; Ruecker, Andrea; Delves, Michael; Kirk, Kiaran; Berriman, Matthew; Kortagere, Sandhya; Burrows, Jeremy; Fan, Erkang; Bergman, Lawrence W.

    2014-01-01

    The quest for new antimalarial drugs, especially those with novel modes of action, is essential in the face of emerging drug-resistant parasites. Here we describe a new chemical class of molecules, pyrazoleamides, with potent activity against human malaria parasites and showing remarkably rapid parasite clearance in an in vivo model. Investigations involving pyrazoleamide-resistant parasites, whole-genome sequencing and gene transfers reveal that mutations in two proteins, a calcium-dependent protein kinase (PfCDPK5) and a P-type cation-ATPase (PfATP4), are necessary to impart full resistance to these compounds. A pyrazoleamide compound causes a rapid disruption of Na+ regulation in blood-stage Plasmodium falciparum parasites. Similar effect on Na+ homeostasis was recently reported for spiroindolones, which are antimalarials of a chemical class quite distinct from pyrazoleamides. Our results reveal that disruption of Na+ homeostasis in malaria parasites is a promising mode of antimalarial action mediated by at least two distinct chemical classes. PMID:25422853

  14. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum.

    PubMed

    Vaidya, Akhil B; Morrisey, Joanne M; Zhang, Zhongsheng; Das, Sudipta; Daly, Thomas M; Otto, Thomas D; Spillman, Natalie J; Wyvratt, Matthew; Siegl, Peter; Marfurt, Jutta; Wirjanata, Grennady; Sebayang, Boni F; Price, Ric N; Chatterjee, Arnab; Nagle, Advait; Stasiak, Marcin; Charman, Susan A; Angulo-Barturen, Iñigo; Ferrer, Santiago; Belén Jiménez-Díaz, María; Martínez, María Santos; Gamo, Francisco Javier; Avery, Vicky M; Ruecker, Andrea; Delves, Michael; Kirk, Kiaran; Berriman, Matthew; Kortagere, Sandhya; Burrows, Jeremy; Fan, Erkang; Bergman, Lawrence W

    2014-01-01

    The quest for new antimalarial drugs, especially those with novel modes of action, is essential in the face of emerging drug-resistant parasites. Here we describe a new chemical class of molecules, pyrazoleamides, with potent activity against human malaria parasites and showing remarkably rapid parasite clearance in an in vivo model. Investigations involving pyrazoleamide-resistant parasites, whole-genome sequencing and gene transfers reveal that mutations in two proteins, a calcium-dependent protein kinase (PfCDPK5) and a P-type cation-ATPase (PfATP4), are necessary to impart full resistance to these compounds. A pyrazoleamide compound causes a rapid disruption of Na(+) regulation in blood-stage Plasmodium falciparum parasites. Similar effect on Na(+) homeostasis was recently reported for spiroindolones, which are antimalarials of a chemical class quite distinct from pyrazoleamides. Our results reveal that disruption of Na(+) homeostasis in malaria parasites is a promising mode of antimalarial action mediated by at least two distinct chemical classes. PMID:25422853

  15. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen

    PubMed Central

    Plouffe, David; Brinker, Achim; McNamara, Case; Henson, Kerstin; Kato, Nobutaka; Kuhen, Kelli; Nagle, Advait; Adrián, Francisco; Matzen, Jason T.; Anderson, Paul; Nam, Tae-gyu; Gray, Nathanael S.; Chatterjee, Arnab; Janes, Jeff; Yan, S. Frank; Trager, Richard; Caldwell, Jeremy S.; Schultz, Peter G.; Zhou, Yingyao; Winzeler, Elizabeth A.

    2008-01-01

    The growing resistance to current first-line antimalarial drugs represents a major health challenge. To facilitate the discovery of new antimalarials, we have implemented an efficient and robust high-throughput cell-based screen (1,536-well format) based on proliferation of Plasmodium falciparum (Pf) in erythrocytes. From a screen of ≈1.7 million compounds, we identified a diverse collection of ≈6,000 small molecules comprised of >530 distinct scaffolds, all of which show potent antimalarial activity (<1.25 μM). Most known antimalarials were identified in this screen, thus validating our approach. In addition, we identified many novel chemical scaffolds, which likely act through both known and novel pathways. We further show that in some cases the mechanism of action of these antimalarials can be determined by in silico compound activity profiling. This method uses large datasets from unrelated cellular and biochemical screens and the guilt-by-association principle to predict which cellular pathway and/or protein target is being inhibited by select compounds. In addition, the screening method has the potential to provide the malaria community with many new starting points for the development of biological probes and drugs with novel antiparasitic activities. PMID:18579783

  16. A retrospective analysis of the change in anti-malarial treatment policy: Peru

    PubMed Central

    Williams, Holly Ann; Vincent-Mark, Arlene; Herrera, Yenni; Chang, O Jaime

    2009-01-01

    Background National malaria control programmes must deal with the complex process of changing national malaria treatment guidelines, often without guidance on the process of change. Selecting a replacement drug is only one issue in this process. There is a paucity of literature describing successful malaria treatment policy changes to help guide control programs through this process. Objectives To understand the wider context in which national malaria treatment guidelines were formulated in a specific country (Peru). Methods Using qualitative methods (individual and focus group interviews, stakeholder analysis and a review of documents), a retrospective analysis of the process of change in Peru's anti-malarial treatment policy from the early 1990's to 2003 was completed. Results The decision to change Peru's policies resulted from increasing levels of anti-malarial drug resistance, as well as complaints from providers that the drugs were no longer working. The context of the change occurred in a time in which Peru was changing national governments, which created extreme challenges in moving the change process forward. Peru utilized a number of key strategies successfully to ensure that policy change would occur. This included a) having the process directed by a group who shared a common interest in malaria and who had long-established social and professional networks among themselves, b) engaging in collaborative teamwork among nationals and between nationals and international collaborators, c) respect for and inclusion of district-level staff in all phases of the process, d) reliance on high levels of technical and scientific knowledge, e) use of standardized protocols to collect data, and f) transparency. Conclusion Although not perfectly or fully implemented by 2003, the change in malaria treatment policy in Peru occurred very quickly, as compared to other countries. They identified a problem, collected the data necessary to justify the change, utilized

  17. Youth, Social Networking, and Resistance: A Case Study on a Multidimensional Approach to Resistance

    ERIC Educational Resources Information Center

    Scozzaro, David

    2011-01-01

    This exploratory case study focused on youth and resistance that was aided by the use of technology. The combination of resistance and technology expanded a multidimensional framework and leads to new insight into transformative resistance. This study examined the framework of transformative resistance based on Solorzano and Delgado Bernal's…

  18. Antimalarials in dermatology: mechanism of action, indications, and side effects.

    PubMed

    Rodriguez-Caruncho, C; Bielsa Marsol, I

    2014-04-01

    Antimalarial drugs have been in common use in dermatology since the 1950s. Their mechanism of action is complex, and it is now known that they act through various pathways. We review the indications for antimalarials in dermatology, their adverse effects, and some less well-known effects, such as their antithrombotic and hypolipidemic action. The most recent recommendations concerning ophthalmological screening in patients on antimalarials are also reviewed. PMID:24656224

  19. Plasmodium falciparum: multifaceted resistance to artemisinins.

    PubMed

    Paloque, Lucie; Ramadani, Arba P; Mercereau-Puijalon, Odile; Augereau, Jean-Michel; Benoit-Vical, Françoise

    2016-01-01

    Plasmodium falciparum resistance to artemisinins, the most potent and fastest acting anti-malarials, threatens malaria elimination strategies. Artemisinin resistance is due to mutation of the PfK13 propeller domain and involves an unconventional mechanism based on a quiescence state leading to parasite recrudescence as soon as drug pressure is removed. The enhanced P. falciparum quiescence capacity of artemisinin-resistant parasites results from an increased ability to manage oxidative damage and an altered cell cycle gene regulation within a complex network involving the unfolded protein response, the PI3K/PI3P/AKT pathway, the PfPK4/eIF2α cascade and yet unidentified transcription factor(s), with minimal energetic requirements and fatty acid metabolism maintained in the mitochondrion and apicoplast. The detailed study of these mechanisms offers a way forward for identifying future intervention targets to fend off established artemisinin resistance. PMID:26955948

  20. Phenotypic Screens in Antimalarial Drug Discovery.

    PubMed

    Hovlid, Marisa L; Winzeler, Elizabeth A

    2016-09-01

    Phenotypic high-throughput screens are a valuable tool for identifying new chemical compounds with antimalarial activity. Traditionally, these screens have focused solely on the symptomatic asexual blood stage of the parasite life cycle; however, to discover new medicines for malaria treatment and prevention, robust screening technologies against other parasite life-cycle stages are required. This review highlights recent advances and progress toward phenotypic screening methodologies over the past several years, with a focus on exoerythrocytic stage screens. PMID:27247245

  1. In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum.

    PubMed

    Bagavan, Asokan; Rahuman, Abdul Abdul; Kaushik, Naveen Kumar; Sahal, Dinkar

    2011-01-01

    Malaria is a major global public health problem, and the alarming spread of drug resistance and limited number of effective drugs now available underline how important it is to discover new antimalarial compounds. In the present study, ten plants were extracted with ethyl acetate and methanol and tested for their antimalarial activity against chloroquine (CQ)-sensitive (3D7) and CQ-resistant (Dd2 and INDO) strains of Plasmodium falciparum in culture using the fluorescence-based SYBR Green assay. Plant extracts showed moderate to good antiparasitic effects. Promising antiplasmodial activity was found in the extracts from two plants, Phyllanthus emblica leaf 50% inhibitory concentration (IC₅₀) 3D7: 7.25 μg/mL (ethyl acetate extract), 3.125 μg/mL (methanol extract), and Syzygium aromaticum flower bud, IC₅₀ 3D7:13 μg/mL, (ethyl acetate extract) and 6.25 μg/mL (methanol extract). Moderate activity (30-75 μg/mL) was found in the ethyl acetate and methanol extracts of Abrus precatorius (seed) and Gloriosa superba (leaf); leaf ethyl acetate extracts of Annona squamosa and flower of Musa paradisiaca. The above mentioned plant extracts were also found to be active against CQ-resistant strains (Dd2 and INDO). Cytotoxicity study with P. emblica leaf and S. aromaticum flower bud, extracts showed good therapeutic indices. These results demonstrate that leaf ethyl acetate and methanol extracts of P. emblica and flower bud extract of S. aromaticum may serve as antimalarial agents even in their crude form. The isolation of compounds from P. emblica and S. aromaticum seems to be of special interest for further antimalarial studies. PMID:20809417

  2. Screening for antimalarial maculopathy in rheumatology clinics.

    PubMed Central

    Fleck, B W; Bell, A L; Mitchell, J D; Thomson, B J; Hurst, N P; Nuki, G

    1985-01-01

    Ophthalmoscopy and three tests of visual function were undertaken in 39 patients with rheumatoid arthritis receiving treatment with antimalarial drugs and in a control group of 16 patients with rheumatoid arthritis who were not receiving such treatment. Visual contrast sensitivity, macular threshold to red light, and central visual fields to red targets were not significantly different in treated patients and controls. There were no abnormalities in visual acuity, but 11 of 76 eyes of treated patients showed minor macular abnormalities on ophthalmoscopy that were not seen in control patients, suggesting that ophthalmoscopy may be the most sensitive measure of early drug toxicity. Five rheumatologists were able to identify 52 of 65 minor changes detected by an ophthalmologist. These studies, and a critical review of published reports, suggest that in clinical practice antimalarial drugs can be administered safely to patients with rheumatoid arthritis without the need for repetitive routine examination by an ophthalmologist or the use of complicated physiological tests. Recording of visual acuity in each eye and ophthalmoscopy by the prescribing doctor may be all that are required to detect early antimalarial maculopathy. PMID:3929938

  3. Antimalarial plants of northeast India: An overview

    PubMed Central

    Shankar, Rama; Deb, Sourabh; Sharma, B K

    2012-01-01

    The need for an alternative drug for malaria initiated intensive efforts for developing new antimalarials from indigenous plants. The information from different tribal communities of northeast India along with research papers, including books, journals and documents of different universities and institutes of northeast India was collected for information on botanical therapies and plant species used for malaria. Sixty-eight plant species belonging to 33 families are used by the people of northeast India for the treatment of malaria. Six plant species, namely, Alstonia scholaris, Coptis teeta, Crotolaria occulta, Ocimum sanctum, Polygala persicariaefolia, Vitex peduncularis, have been reported by more than one worker from different parts of northeast India. The species reported to be used for the treatment of malaria were either found around the vicinity of their habitation or in the forest area of northeast India. The most frequently used plant parts were leaves (33%), roots (31%), and bark and whole plant (12%). The present study has compiled and enlisted the antimalarial plants of northeast India, which would help future workers to find out the suitable antimalarial plants by thorough study. PMID:22529674

  4. Design of nonlinear resistive networks with prescribed input-output behavior.

    NASA Technical Reports Server (NTRS)

    Peikari, B.

    1973-01-01

    This paper considers the problem of designing nonlinear multiport resistive networks for prescribed driving point and transfer characteristics. It is shown that, if the topology of the desired network is given, then the i-v characteristics of the nonlinear elements can be obtained iteratively. This is achieved by implementation of a newly developed steepest descent criterion.

  5. Neural Network-Based Resistance Spot Welding Control and Quality Prediction

    SciTech Connect

    Allen, J.D., Jr.; Ivezic, N.D.; Zacharia, T.

    1999-07-10

    This paper describes the development and evaluation of neural network-based systems for industrial resistance spot welding process control and weld quality assessment. The developed systems utilize recurrent neural networks for process control and both recurrent networks and static networks for quality prediction. The first section describes a system capable of both welding process control and real-time weld quality assessment, The second describes the development and evaluation of a static neural network-based weld quality assessment system that relied on experimental design to limit the influence of environmental variability. Relevant data analysis methods are also discussed. The weld classifier resulting from the analysis successfldly balances predictive power and simplicity of interpretation. The results presented for both systems demonstrate clearly that neural networks can be employed to address two significant problems common to the resistance spot welding industry, control of the process itself, and non-destructive determination of resulting weld quality.

  6. The counterfeit anti-malarial is a crime against humanity: a systematic review of the scientific evidence

    PubMed Central

    2014-01-01

    Background The counterfeiting of anti-malarials represents a form of attack on global public health in which fake and substandard anti-malarials serve as de facto weapons of mass destruction, particularly in resource-constrained endemic settings, where malaria causes nearly 660,000 preventable deaths and threatens millions of lives annually. It has been estimated that fake anti-malarials contribute to nearly 450,000 preventable deaths every year. This crime against humanity is often underestimated or ignored. This study attempts to describe and characterize the direct and indirect effects of counterfeit anti-malarials on public health, clinical care and socio-economic conditions. Methods A search was performed using key databases, WHO documents, and English language search engines. Of 262 potential articles that were identified using a fixed set of criteria, a convenience sample of 105 appropriate articles was selected for this review. Results Artemisinin-based combination therapy (ACT) is an important tool in the fight against malaria, but a sizable number of patients are unable to afford to this first-line treatment. Consequently, patients tend to procure cheaper anti-malarials, which may be fake or substandard. Forensic palynology reveals that counterfeits originate in Asia. Fragile drug regulations, ineffective law-enforcement agencies and corruption further burden ailing healthcare facilities. Substandard/fake anti-malarials can cause (a) economic sabotage; (b) therapeutic failure; (c) increased risk of the emergence and spread of resistant strains of Plasmodium falciparum and Plasmodium vivax; (d) an undermining of trust/confidence in healthcare stakeholders/systems; and, (e) serious side effects or death. Conclusion Combating counterfeit anti-malarials is a complex task due to limited resources and poor techniques for the detection and identification of fake anti-malarials. This situation calls for sustainable, global, scientific research and policy change

  7. Factors determining anti-malarial drug use in a peri-urban population from malaria holoendemic region of western kenya

    PubMed Central

    2010-01-01

    Background Interventions to reverse trends in malaria-related morbidity and mortality in Kenya focus on preventive strategies and drug efficacy. However, the pattern of use of anti-malarials in malaria-endemic populations, such as in western Kenya, is still poorly understood. It is critical to understand the patterns of anti-malarial drug use to ascertain that the currently applied new combination therapy to malaria treatment, will achieve sustained cure rates and protection against parasite resistance. Therefore, this cross-sectional study was designed to determine the patterns of use of anti-malarial drugs in households (n = 397) in peri-urban location of Manyatta-B sub-location in Kisumu in western Kenya. Methods Household factors, associated with the pattern of anti-malarials use, were evaluated. Using clusters, questionnaire was administered to a particular household member who had the most recent malaria episode (within <2 weeks) and used an anti-malarial for cure. Mothers/caretakers provided information for children aged <13 years. Results Stratification of the type of anti-malarial drugs taken revealed that 37.0% used sulphadoxine/pyrimethamine (SP), 32.0% artemisinin-based combined therapy (ACT), 11.1% anti-pyretics, 7.3% chloroquine (CQ), 7.1% quinine, 2.5% amodiaquine (AQ), while 3.0% used others which were perceived as anti-malarials (cough syrups and antibiotics). In a regression model, it was demonstrated that age (P = 0.050), household size (P = 0.047), household head (P = 0.049), household source of income (P = 0.015), monthly income (P = 0.020), duration of use (P = 0.029), dosage of drugs taken (P = 0.036), and source of drugs (P = 0.005) significantly influenced anti-malarial drug use. Overall, 38.8% of respondents used drugs as recommended by the Ministry of Health. Conclusion This study demonstrates that consumers require access to correct and comprehensible information associated with use of drugs, including self-prescription. There is

  8. Antimalarial activities of medicinal plants and herbal formulations used in Thai traditional medicine.

    PubMed

    Thiengsusuk, Artitaya; Chaijaroenkul, Wanna; Na-Bangchang, Kesara

    2013-04-01

    Malaria is one of the world's leading killer infectious diseases with high incidence and morbidity. The problem of multidrug-resistant Plasmodium falciparum has been aggravating particularly in Southeast Asia. Therefore, development of new potential antimalarial drugs is urgently required. The present study aimed to investigate antimalarial activities of a total of 27 medicinal plants and 5 herbal formulations used in Thai traditional medicine against chloroquine-resistant (K1) and chloroquine-sensitive (3D7) P. falciparum clones. Antimalarial activity of the ethanolic extracts of all plants/herbal formulations against K1 and 3D7 P. falciparum clones was assessed using SYBR Green I-based assay. All plants were initially screened at the concentration of 50 μg/ml to select the candidate plants that inhibited malaria growth by ≥50%. Each candidate plant was further assessed for the IC50 value (concentration that inhibits malaria growth by 50%) to select the potential plants. Selectivity index (SI) of each extract was determined from the IC50 ratio obtained from human renal epithelial cell and K1 or 3D7 P. falciparum clone. The ethanolic extracts from 19 medicinal plants/herbal formulation exhibited promising activity against both K1 and 3D7 clones of P. falciparum with survival of less than 50% at the concentration of 50 μg/ml. Among these, the extracts from the eight medicinal plants (Plumbago indica Linn., Garcinia mangostana Linn., Dracaena loureiri Gagnep., Dioscorea membranacea Pierre., Artemisia annua Linn., Piper chaba Hunt., Myristica fragrans Houtt., Kaempferia galanga Linn.) and two herbal formulations (Benjakul Formulation 1 and Pra-Sa-Prao-Yhai Formulation) showed potent antimalarial activity with median range IC50 values of less than 10 μg/ml against K1 or 3D7 P. falciparum clone or both. All except G. mangostana Linn. and A. annua Linn. showed high selective antimalarial activity against both clones with SI>10. Further studies on antimalarial

  9. Development of a New Generation of 4-Aminoquinoline Antimalarial Compounds Using Predictive Pharmacokinetic and Toxicology Models

    PubMed Central

    Ray, Sunetra; Madrid, Peter B.; Catz, Paul; LeValley, Susanna E.; Furniss, Michael J.; Rausch, Linda L.; Guy, R. Kiplin; DeRisi, Joseph L.; Iyer, Lalitha V.; Green, Carol E.; Mirsalis, Jon C.

    2010-01-01

    Among the known antimalarial drugs, chloroquine (CQ) and other 4-aminoquinolines have shown high potency and good bioavailability, yet complications associated with drug resistance necessitate the discovery of effective new antimalarial agents. ADMETa prediction studies were employed to evaluate a library of new molecules based on the 4-aminoquinolone-related structure of CQ. Extensive in vitro screening and in vivo pharmacokinetic studies in mice helped to identify two lead molecules, 18 and 4, with promising in vitro therapeutic efficacy, improved ADMET properties, low risk for drug-drug interactions, and desirable pharmacokinetic profiles. Both 18 and 4 are highly potent antimalarial compounds, with IC50 values = 5.6 nM and 17.3 nM, respectively, against the W2 (CQ-resistant) strain of Plasmodium falciparum (IC50 for CQ = 382 nM). When tested in mice, these compounds were found to have biological half-lives and plasma exposure values similar to or higher than those of CQ; they are therefore desirable candidates to pursue in future clinical trials. PMID:20361799

  10. Molecular modelling based target identification for endo-peroxides class of antimalarials.

    PubMed

    Gupta, Amit K; Saxena, Anil K

    2015-01-01

    The emerging cases of artemisinin and endoperoxide drug resistance are becoming a challenge to antimalarial drug discovery and therapy. The exact mode of action of this class of antimalarials is still unknown which presents a bottleneck for the understanding of drug resistance as well as designing new lead molecules of this class. To address this issue, the molecular docking and scoring studies of a homogeneous and structurally diverse dataset of artemisinin derived trioxanes have been performed on each of the two plausible targets of this class viz. heme and PfATP6. Since the crystal structure of PfATP6 is unknown, its homology model was built utilizing the human SERCA1 protein crystallized structure as a template. The binding energies of the heme binding site of the docked artemisinin derivatives showed very good correlation with the antimalarial activity (r(2) = 0.69), whereas the same study with the binding site of pfATP6 showed a very poor correlation (r(2) = 0.12), suggesting heme to be the possible target of artemisinin derived endoperoxides. PMID:25543685

  11. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    PubMed Central

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa. PMID:27194047

  12. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa.

    PubMed

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa. PMID:27194047

  13. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

  14. Impact of prepackaging antimalarial drugs on cost to patients and compliance with treatment.

    PubMed Central

    Yeboah-Antwi, K.; Gyapong, J. O.; Asare, I. K.; Barnish, G.; Evans, D. B.; Adjei, S.

    2001-01-01

    OBJECTIVE: To examine the extent to which district health teams could reduce the burden of malaria, a continuing major cause of mortality and morbidity, in a situation where severe resource constraints existed and integrated care was provided. METHODS: Antimalarial drugs were prepackaged into unit doses in an attempt to improve compliance with full courses of chemotherapy. FINDINGS: Compliance improved by approximately 20% in both adults and children. There were 50% reductions in cost to patients, waiting time at dispensaries and drug wastage at facilities. The intervention, which tended to improve both case and drug management at facilities, was well accepted by health staff and did not involve them in additional working time. CONCLUSION: The prepackaging of antimalarials at the district level offers the prospect of improved compliance and a reduction in the spread of resistance. PMID:11417034

  15. In vitro and in vivo characterization of the antimalarial lead compound SSJ-183 in Plasmodium models

    PubMed Central

    Schleiferböck, Sarah; Scheurer, Christian; Ihara, Masataka; Itoh, Isamu; Bathurst, Ian; Burrows, Jeremy N; Fantauzzi, Pascal; Lotharius, Julie; Charman, Susan A; Morizzi, Julia; Shackleford, David M; White, Karen L; Brun, Reto; Wittlin, Sergio

    2013-01-01

    The objective of this work was to characterize the in vitro (Plasmodium falciparum) and in vivo (Plasmodium berghei) activity profile of the recently discovered lead compound SSJ-183. The molecule showed in vitro a fast and strong inhibitory effect on growth of all P. falciparum blood stages, with a tendency to a more pronounced stage-specific action on ring forms at low concentrations. Furthermore, the compound appeared to be equally efficacious on drug-resistant and drug-sensitive parasite strains. In vivo, SSJ-183 showed a rapid onset of action, comparable to that seen for the antimalarial drug artesunate. SSJ-183 exhibited a half-life of about 10 hours and no significant differences in absorption or exposure between noninfected and infected mice. SSJ-183 appears to be a promising new lead compound with an attractive antimalarial profile. PMID:24255594

  16. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants.

    PubMed

    de Andrade-Neto, Valter F; Pohlit, Adrian M; Pinto, Ana Cristina S; Silva, Ellen Cristina C; Nogueira, Karla L; Melo, Márcia R S; Henrique, Marycleuma C; Amorim, Rodrigo C N; Silva, Luis Francisco R; Costa, Mônica R F; Nunomura, Rita C S; Nunomura, Sergio M; Alecrim, Wilson D; Alecrim, M das Graças C; Chaves, F Célio M; Vieira, Pedro Paulo R

    2007-06-01

    In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae), the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae), respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae), all presented significant in vitro inhibition (more active than quinine and chloroquine) of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived. PMID:17568942

  17. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    PubMed Central

    Baragaña, Beatriz; Hallyburton, Irene; Lee, Marcus C. S.; Norcross, Neil R.; Grimaldi, Raffaella; Otto, Thomas D.; Proto, William R.; Blagborough, Andrew M.; Meister, Stephan; Wirjanata, Grennady; Ruecker, Andrea; Upton, Leanna M.; Abraham, Tara S.; Almeida, Mariana J.; Pradhan, Anupam; Porzelle, Achim; Martínez, María Santos; Bolscher, Judith M.; Woodland, Andrew; Norval, Suzanne; Zuccotto, Fabio; Thomas, John; Simeons, Frederick; Stojanovski, Laste; Osuna-Cabello, Maria; Brock, Paddy M.; Churcher, Tom S.; Sala, Katarzyna A.; Zakutansky, Sara E.; Jiménez-Díaz, María Belén; Sanz, Laura Maria; Riley, Jennifer; Basak, Rajshekhar; Campbell, Michael; Avery, Vicky M.; Sauerwein, Robert W; Dechering, Koen J.; Noviyanti, Rintis; Campo, Brice; Frearson, Julie A.; Angulo-Barturen, Iñigo; Ferrer-Bazaga, Santiago; Gamo, Francisco Javier; Wyatt, Paul G.; Leroy, Didier; Siegl, Peter; Delves, Michael J.; Kyle, Dennis E.; Wittlin, Sergio; Marfurt, Jutta; Price, Ric N.; Sinden, Robert E.; Winzeler, Elizabeth; Charman, Susan A.; Bebrevska, Lidiya; Gray, David W.; Campbell, Simon; Fairlamb, Alan H.; Willis, Paul; Rayner, Julian C.; Fidock, David A.; Read, Kevin D.; Gilbert, Ian H.

    2015-01-01

    Summary There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. We describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the parasite, with good pharmacokinetic properties, and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along mRNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery. PMID:26085270

  18. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets

    PubMed Central

    2014-01-01

    Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes are found in P. falciparum, of which serine proteases are of particular interest due to their involvement in parasite-specific processes of egress and invasion. In P. falciparum, a number of serine proteases belonging to chymotrypsin, subtilisin, and rhomboid clans are found. This review focuses on the potential of P. falciparum serine proteases as antimalarial drug targets. PMID:24799897

  19. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    NASA Astrophysics Data System (ADS)

    Baragaña, Beatriz; Hallyburton, Irene; Lee, Marcus C. S.; Norcross, Neil R.; Grimaldi, Raffaella; Otto, Thomas D.; Proto, William R.; Blagborough, Andrew M.; Meister, Stephan; Wirjanata, Grennady; Ruecker, Andrea; Upton, Leanna M.; Abraham, Tara S.; Almeida, Mariana J.; Pradhan, Anupam; Porzelle, Achim; Martínez, María Santos; Bolscher, Judith M.; Woodland, Andrew; Norval, Suzanne; Zuccotto, Fabio; Thomas, John; Simeons, Frederick; Stojanovski, Laste; Osuna-Cabello, Maria; Brock, Paddy M.; Churcher, Tom S.; Sala, Katarzyna A.; Zakutansky, Sara E.; Jiménez-Díaz, María Belén; Sanz, Laura Maria; Riley, Jennifer; Basak, Rajshekhar; Campbell, Michael; Avery, Vicky M.; Sauerwein, Robert W.; Dechering, Koen J.; Noviyanti, Rintis; Campo, Brice; Frearson, Julie A.; Angulo-Barturen, Iñigo; Ferrer-Bazaga, Santiago; Gamo, Francisco Javier; Wyatt, Paul G.; Leroy, Didier; Siegl, Peter; Delves, Michael J.; Kyle, Dennis E.; Wittlin, Sergio; Marfurt, Jutta; Price, Ric N.; Sinden, Robert E.; Winzeler, Elizabeth A.; Charman, Susan A.; Bebrevska, Lidiya; Gray, David W.; Campbell, Simon; Fairlamb, Alan H.; Willis, Paul A.; Rayner, Julian C.; Fidock, David A.; Read, Kevin D.; Gilbert, Ian H.

    2015-06-01

    There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.

  20. Durability of Kinase-Directed Therapies--A Network Perspective on Response and Resistance.

    PubMed

    Murray, Brion W; Miller, Nichol

    2015-09-01

    Protein kinase-directed cancer therapies yield impressive initial clinical responses, but the benefits are typically transient. Enhancing the durability of clinical response is dependent upon patient selection, using drugs with more effective pharmacology, anticipating mechanisms of drug resistance, and applying concerted drug combinations. Achieving these tenets requires an understanding of the targeted kinase's role in signaling networks, how the network responds to drug perturbation, and patient-to-patient network variations. Protein kinases create sophisticated, malleable signaling networks with fidelity coded into the processes that regulate their presence and function. Robust and reliable signaling is facilitated through network processes (e.g., feedback regulation, and compensatory signaling). The routine use of kinase-directed therapies and advancements in both genomic analysis and tumor cell biology are illuminating the complexity of tumor network biology and its capacity to respond to perturbations. Drug efficacy is attenuated by alterations of the drug target (e.g., steric interference, compensatory activity, and conformational changes), compensatory signaling (bypass mechanisms and phenotype switching), and engagement of other oncogenic capabilities (polygenic disease). Factors influencing anticancer drug response and resistance are examined to define the behavior of kinases in network signaling, mechanisms of drug resistance, drug combinations necessary for durable clinical responses, and strategies to identify mechanisms of drug resistance. PMID:26264276

  1. Flow network QSAR for the prediction of physicochemical properties by mapping an electrical resistance network onto a chemical reaction poset.

    PubMed

    Ivanciuc, Ovidiu; Ivanciuc, Teodora; Klein, Douglas J

    2013-06-01

    Usual quantitative structure-activity relationship (QSAR) models are computed from unstructured input data, by using a vector of molecular descriptors for each chemical in the dataset. Another alternative is to consider the structural relationships between the chemical structures, such as molecular similarity, presence of certain substructures, or chemical transformations between compounds. We defined a class of network-QSAR models based on molecular networks induced by a sequence of substitution reactions on a chemical structure that generates a partially ordered set (or poset) oriented graph that may be used to predict various molecular properties with quantitative superstructure-activity relationships (QSSAR). The network-QSAR interpolation models defined on poset graphs, namely average poset, cluster expansion, and spline poset, were tested with success for the prediction of several physicochemical properties for diverse chemicals. We introduce the flow network QSAR, a new poset regression model in which the dataset of chemicals, represented as a reaction poset, is transformed into an oriented network of electrical resistances in which the current flow results in a potential at each node. The molecular property considered in the QSSAR model is represented as the electrical potential, and the value of this potential at a particular node is determined by the electrical resistances assigned to each edge and by a system of batteries. Each node with a known value for the molecular property is attached to a battery that sets the potential on that node to the value of the respective molecular property, and no external battery is attached to nodes from the prediction set, representing chemicals for which the values of the molecular property are not known or are intended to be predicted. The flow network QSAR algorithm determines the values of the molecular property for the prediction set of molecules by applying Ohm's law and Kirchhoff's current law to the poset

  2. Bilayer Effects of Antimalarial Compounds.

    PubMed

    Ramsey, Nicole B; Andersen, Olaf S

    2015-01-01

    Because of the perpetual development of resistance to current therapies for malaria, the Medicines for Malaria Venture developed the Malaria Box to facilitate the drug development process. We tested the 80 most potent compounds from the box for bilayer-mediated effects on membrane protein conformational changes (a measure of likely toxicity) in a gramicidin-based stopped flow fluorescence assay. Among the Malaria Box compounds tested, four compounds altered membrane properties (p< 0.05); MMV007384 stood out as a potent bilayer-perturbing compound that is toxic in many cell-based assays, suggesting that testing for membrane perturbation could help identify toxic compounds. In any case, MMV007384 should be approached with caution, if at all. PMID:26551613

  3. Bilayer Effects of Antimalarial Compounds

    PubMed Central

    Ramsey, Nicole B.; Andersen, Olaf S.

    2015-01-01

    Because of the perpetual development of resistance to current therapies for malaria, the Medicines for Malaria Venture developed the Malaria Box to facilitate the drug development process. We tested the 80 most potent compounds from the box for bilayer-mediated effects on membrane protein conformational changes (a measure of likely toxicity) in a gramicidin-based stopped flow fluorescence assay. Among the Malaria Box compounds tested, four compounds altered membrane properties (p< 0.05); MMV007384 stood out as a potent bilayer-perturbing compound that is toxic in many cell-based assays, suggesting that testing for membrane perturbation could help identify toxic compounds. In any case, MMV007384 should be approached with caution, if at all. PMID:26551613

  4. Molecular markers associated with resistance to commonly used antimalarial drugs among Plasmodium falciparum isolates from a malaria-endemic area in Taiz governorate-Yemen during the transmission season.

    PubMed

    Alareqi, Lina M Q; Mahdy, Mohammed A K; Lau, Yee-Ling; Fong, Mun-Yik; Abdul-Ghani, Rashad; Mahmud, Rohela

    2016-10-01

    Since 2005, artesunate (AS) plus sulfadoxine/pyrimethamine (SP) combination has been adopted as the first-line treatment for uncomplicated malaria in Yemen in response to the high level of Plasmodium falciparum resistance to chloroquine (CQ). Therefore, the aim of the present study was to determine the frequency distribution of molecular markers associated with resistance to CQ and AS plus SP combination among P. falciparum isolates from a malaria-endemic area in Taiz governorate, Yemen. Fifty P. falciparum isolates were collected during a cross-sectional study in Mawza district, Taiz, in the period from October 2013 to April 2014. The isolates were investigated for drug resistance-associated molecular markers in five genes, including P. falciparum CQ resistance transporter (pfcrt) 76T and P. falciparum multidrug resistance 1 (pfmdr1) 86Y as markers of resistance to CQ, mutations in the Kelch 13 (K13) propeller domain for resistance to AS, and P. falciparum dihydrofolate reductase (pfdhfr) and P. falciparum dihydropteroate synthase (pfdhps) genes for resistance to SP. Nested polymerase chain reaction was used to amplify target genes in DNA extracts of the isolates followed by restriction fragment length polymorphism for detecting 76T and 86Y mutations in pfcrt and pfmdr1, respectively, and by DNA sequencing for detecting mutations in K13, pfdhfr and pfdhps. All the investigated isolates from Mawza district were harboring the pfcrt 76T mutant and the pfmdr1 N86 wild-type alleles. The pfdhfr 51I/108N double mutant allele was found in 2.2% (1/45) of the isolates; however, no mutations were detected at codons 436, 437, 540, 581 and 613 of pfdhps. All P. falciparum isolates that were successfully sequenced (n=47) showed the K13 Y493, R539, I543 and C580 wild-type alleles. In conclusion, the pfcrt 76T mutant allele is fixed in the study area about six years after the official withdrawal of CQ, possibly indicating its over-the-counter availability and continued use as a

  5. Evaluation of the ex vivo antimalarial activity of organotin (IV) ethylphenyldithiocarbamate on erythrocytes infected with Plasmodium berghei NK 65.

    PubMed

    Awang, Normah; Jumat, Hafizah; Ishak, Shafariatul Akmar; Kamaludin, Nurul Farahana

    2014-06-01

    Malaria is the most destructive and dangerous parasitic disease. The commonness of this disease is getting worse mainly due to the increasing resistance of Plasmodium falciparum against antimalarial drugs. Therefore, the search for new antimalarial drug is urgently needed. This study was carried out to evaluate the effects of dibutyltin (IV) ethylphenyldithiocarbamate (DBEP), diphenyltin (IV) ethylphenyldithiocarbamate (DPEP) and triphenyltin (IV) ethylphenyldithiocarbamate (TPEP) compounds as antimalarial agents. These compounds were evaluated against erythrocytes infected with Plasmodium berghei NK65 via ex vivo. Organotin (IV) ethylphenyldithiocarbamate, [R(n)Sn(C9H10NS2)(4-n)] with R = C4H9 and C6H5 for n = 2; R = C6H5 for n = 3 is chemically synthesised for its potential activities. pLDH assay was employed for determination of the concentration that inhibited 50% of the Plasmodium's activity (IC50) after 24 h treatment at concentration range of 10-0.0000001 mg mL(-1). Plasmodium berghei NK65 was cultured in vitro to determine the different morphology of trophozoite and schizont. Only DPEP and TPEP compounds have antimalarial activity towards P. berghei NK65 at IC50 0.094±0.011 and 0.892±0.088 mg mL(-1), respectively. The IC50 of DPEP and TPEP were lowest at 30% parasitemia with IC50 0.001±0.00009 and 0.0009±0.0001 mg mL(-1), respectively. In vitro culture showed that TPEP was effective towards P. berghei NK65 in trophozoite and schizont morphology with IC50 0.0001±0.00005 and 0.00009±0.00003 μg mL(-1), respectively. In conclusion, DPEP and TPEP have antimalarial effect on erythrocytes infected with P. berghei NK65 and have potential as antimalarial and schizonticidal agents. PMID:26035957

  6. Inhibition of cytochrome bc1 as a strategy for single-dose, multi-stage antimalarial therapy.

    PubMed

    Stickles, Allison M; Ting, Li-Min; Morrisey, Joanne M; Li, Yuexin; Mather, Michael W; Meermeier, Erin; Pershing, April M; Forquer, Isaac P; Miley, Galen P; Pou, Sovitj; Winter, Rolf W; Hinrichs, David J; Kelly, Jane X; Kim, Kami; Vaidya, Akhil B; Riscoe, Michael K; Nilsen, Aaron

    2015-06-01

    Single-dose therapies for malaria have been proposed as a way to reduce the cost and increase the effectiveness of antimalarial treatment. However, no compound to date has shown single-dose activity against both the blood-stage Plasmodium parasites that cause disease and the liver-stage parasites that initiate malaria infection. Here, we describe a subset of cytochrome bc1 (cyt bc1) inhibitors, including the novel 4(1H)-quinolone ELQ-400, with single-dose activity against liver, blood, and transmission-stage parasites in mouse models of malaria. Although cyt bc1 inhibitors are generally classified as slow-onset antimalarials, we found that a single dose of ELQ-400 rapidly induced stasis in blood-stage parasites, which was associated with a rapid reduction in parasitemia in vivo. ELQ-400 also exhibited a low propensity for drug resistance and was active against atovaquone-resistant P. falciparum strains with point mutations in cyt bc1. Ultimately, ELQ-400 shows that cyt bc1 inhibitors can function as single-dose, blood-stage antimalarials and is the first compound to provide combined treatment, prophylaxis, and transmission blocking activity for malaria after a single oral administration. This remarkable multi-stage efficacy suggests that metabolic therapies, including cyt bc1 inhibitors, may be valuable additions to the collection of single-dose antimalarials in current development. PMID:25918204

  7. Inhibition of Cytochrome bc1 as a Strategy for Single-Dose, Multi-Stage Antimalarial Therapy

    PubMed Central

    Stickles, Allison M.; Ting, Li-Min; Morrisey, Joanne M.; Li, Yuexin; Mather, Michael W.; Meermeier, Erin; Pershing, April M.; Forquer, Isaac P.; Miley, Galen P.; Pou, Sovitj; Winter, Rolf W.; Hinrichs, David J.; Kelly, Jane X.; Kim, Kami; Vaidya, Akhil B.; Riscoe, Michael K.; Nilsen, Aaron

    2015-01-01

    Single-dose therapies for malaria have been proposed as a way to reduce the cost and increase the effectiveness of antimalarial treatment. However, no compound to date has shown single-dose activity against both the blood-stage Plasmodium parasites that cause disease and the liver-stage parasites that initiate malaria infection. Here, we describe a subset of cytochrome bc1 (cyt bc1) inhibitors, including the novel 4(1H)-quinolone ELQ-400, with single-dose activity against liver, blood, and transmission-stage parasites in mouse models of malaria. Although cyt bc1 inhibitors are generally classified as slow-onset antimalarials, we found that a single dose of ELQ-400 rapidly induced stasis in blood-stage parasites, which was associated with a rapid reduction in parasitemia in vivo. ELQ-400 also exhibited a low propensity for drug resistance and was active against atovaquone-resistant P. falciparum strains with point mutations in cyt bc1. Ultimately, ELQ-400 shows that cyt bc1 inhibitors can function as single-dose, blood-stage antimalarials and is the first compound to provide combined treatment, prophylaxis, and transmission blocking activity for malaria after a single oral administration. This remarkable multi-stage efficacy suggests that metabolic therapies, including cyt bc1 inhibitors, may be valuable additions to the collection of single-dose antimalarials in current development. PMID:25918204

  8. Plasmodium falciparum Thioredoxin Reductase (PfTrxR) and Its Role as a Target for New Antimalarial Discovery.

    PubMed

    McCarty, Sara E; Schellenberger, Amanda; Goodwin, Douglas C; Fuanta, Ngolui Rene; Tekwani, Babu L; Calderón, Angela I

    2015-01-01

    The growing resistance to current antimalarial drugs is a major concern for global public health. The pressing need for new antimalarials has led to an increase in research focused on the Plasmodium parasites that cause human malaria. Thioredoxin reductase (TrxR), an enzyme needed to maintain redox equilibrium in Plasmodium species, is a promising target for new antimalarials. This review paper provides an overview of the structure and function of TrxR, discusses similarities and differences between the thioredoxin reductases (TrxRs) of different Plasmodium species and the human forms of the enzyme, gives an overview of modeling Plasmodium infections in animals, and suggests the role of Trx functions in antimalarial drug resistance. TrxR of Plasmodium falciparum is a central focus of this paper since it is the only Plasmodium TrxR that has been crystallized and P. falciparum is the species that causes most malaria cases. It is anticipated that the information summarized here will give insight and stimulate new directions in which research might be most beneficial. PMID:26111176

  9. Antimalarial Activity of Anthothecol Derived from Khaya anthotheca (Meliaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antimalarial activity of anthothecol, a limonoid of Khaya anthotheca (Meliaceae) against Plasmodium falciparum was tested using a [3H]-hypoxanthine and 48 h culture assay in vitro. Anthothecol showed potent antimalarial activity against malarial parasites with IC50 values of 1.4 and 0.17 uM using t...

  10. Recursion-transform method for computing resistance of the complex resistor network with three arbitrary boundaries

    NASA Astrophysics Data System (ADS)

    Tan, Zhi-Zhong

    2015-05-01

    We develop a general recursion-transform (R-T) method for a two-dimensional resistor network with a zero resistor boundary. As applications of the R-T method, we consider a significant example to illuminate the usefulness for calculating resistance of a rectangular m ×n resistor network with a null resistor and three arbitrary boundaries, a problem never solved before, since Green's function techniques and Laplacian matrix approaches are invalid in this case. Looking for the exact calculation of the resistance of a binary resistor network is important but difficult in the case of an arbitrary boundary since the boundary is like a wall or trap which affects the behavior of finite network. In this paper we obtain several general formulas of resistance between any two nodes in a nonregular m ×n resistor network in both finite and infinite cases. In particular, 12 special cases are given by reducing one of the general formulas to understand its applications and meanings, and an integral identity is found when we compare the equivalent resistance of two different structures of the same problem in a resistor network.

  11. Recursion-transform method for computing resistance of the complex resistor network with three arbitrary boundaries.

    PubMed

    Tan, Zhi-Zhong

    2015-05-01

    We develop a general recursion-transform (R-T) method for a two-dimensional resistor network with a zero resistor boundary. As applications of the R-T method, we consider a significant example to illuminate the usefulness for calculating resistance of a rectangular m×n resistor network with a null resistor and three arbitrary boundaries, a problem never solved before, since Green's function techniques and Laplacian matrix approaches are invalid in this case. Looking for the exact calculation of the resistance of a binary resistor network is important but difficult in the case of an arbitrary boundary since the boundary is like a wall or trap which affects the behavior of finite network. In this paper we obtain several general formulas of resistance between any two nodes in a nonregular m×n resistor network in both finite and infinite cases. In particular, 12 special cases are given by reducing one of the general formulas to understand its applications and meanings, and an integral identity is found when we compare the equivalent resistance of two different structures of the same problem in a resistor network. PMID:26066134

  12. Treatment of Murine Cerebral Malaria by Artemisone in Combination with Conventional Antimalarial Drugs: Antiplasmodial Effects and Immune Responses

    PubMed Central

    Guiguemde, W. Armand; Hunt, Nicholas H.; Guo, Jintao; Marciano, Annael; Haynes, Richard K.; Clark, Julie; Guy, R. Kiplin

    2014-01-01

    The decreasing effectiveness of antimalarial therapy due to drug resistance necessitates constant efforts to develop new drugs. Artemisinin derivatives are the most recent drugs that have been introduced and are considered the first line of treatment, but there are already indications of Plasmodium falciparum resistance to artemisinins. Consequently, drug combinations are recommended for prevention of the induction of resistance. The research here demonstrates the effects of novel combinations of the new artemisinin derivative, artemisone, a recently described 10-alkylamino artemisinin derivative with improved antimalarial activity and reduced neurotoxicity. We here investigate its ability to kill P. falciparum in a high-throughput in vitro assay and to protect mice against lethal cerebral malaria caused by Plasmodium berghei ANKA when used alone or in combination with established antimalarial drugs. Artemisone effects against P. falciparum in vitro were synergistic with halofantrine and mefloquine, and additive with 25 other drugs, including chloroquine and doxycycline. The concentrations of artemisone combinations that were toxic against THP-1 cells in vitro were much higher than their effective antimalarial concentration. Artemisone, mefloquine, chloroquine, or piperaquine given individually mostly protected mice against cerebral malaria caused by P. berghei ANKA but did not prevent parasite recrudescence. Combinations of artemisone with any of the other three drugs did completely cure most mice of malaria. The combination of artemisone and chloroquine decreased the ratio of proinflammatory (gamma interferon, tumor necrosis factor) to anti-inflammatory (interleukin 10 [IL-10], IL-4) cytokines in the plasma of P. berghei-infected mice. Thus, artemisone in combinations with other antimalarial drugs might have a dual action, both killing parasites and limiting the potentially deleterious host inflammatory response. PMID:24913162

  13. Anticancer Properties of Distinct Antimalarial Drug Classes

    PubMed Central

    Hooft van Huijsduijnen, Rob; Guy, R. Kiplin; Chibale, Kelly; Haynes, Richard K.; Peitz, Ingmar; Kelter, Gerhard; Phillips, Margaret A.; Vennerstrom, Jonathan L.; Yuthavong, Yongyuth; Wells, Timothy N. C.

    2013-01-01

    We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings. PMID:24391728

  14. Antimalarial properties of imipramine and amitriptyline

    SciTech Connect

    Dutta, P.; Siegel, L.; Pinto, J.; Meshnick, S.

    1986-03-01

    This laboratory has previously demonstrated that imipramine (IM) and amitriptyline (AM), inhibit the conversion of riboflavin to its coenzymic derivatives. Several other laboratories have shown that dietary riboflavin deficiency is protective against malarial infection. In the present investigation, the authors determined whether IM and AM exert antimalarial effects similar to that of riboflavin deficiency, as they have hypothesized. In addition, they evaluated whether these drugs, like other antimalarial agents, increase the hemolytic response to ferriprotoporphyrin IX (FP). The growth of P. falciparum (FCR3) in the absence or presence of these drugs (80 ..mu..M) was measured by incubating parasitized erythrocytes for 48 h in RPMI 1640 medium. Parasitemia was determined by counting erythrocyte smears and monitoring (/sup 3/H)hypoxanthine uptake. With no drug, parasitemia was 20.3 +/- 5.3%, whereas in the presence of IM and AM, parasitemia was reduced to 7.3 +/- 0.8% and 13.6 +/- 2.8%, respectively. The uptake of (/sup 3/H)hypoxanthine was reduced to 47 +/- 3.6% and 54 +/- 2.9% of control by IM and AM, respectively. Assays of hemolysis were conducted by incubating 0.5% RBC suspension in NaCl-Tris buffer for 3 h at 37/sup 0/C with variable concentrations of drugs and/or FP (1-7 ..mu..M). Both drugs at 10 to 100 ..mu..M significantly enhanced hemolysis induced by FP. No hemolysis by these drugs was detected in the absence of FP. It is concluded that the tricyclic antidepressants, IM and AM, possess substantial antimalarial properties, thereby supporting the hypothesis that drugs which interfere with riboflavin metabolism should also provide protection against malaria.

  15. Targeting Plasmodium Metabolism to Improve Antimalarial Drug Design.

    PubMed

    Avitia-Domínguez, Claudia; Sierra-Campos, Erick; Betancourt-Conde, Irene; Aguirre-Raudry, Miriam; Vázquez-Raygoza, Alejandra; Luevano-De la Cruz, Artemisa; Favela-Candia, Alejandro; Sarabia-Sanchez, Marie; Ríos-Soto, Lluvia; Méndez-Hernández, Edna; Cisneros-Martínez, Jorge; Palacio-Gastélum, Marcelo Gómez; Valdez-Solana, Mónica; Hernández-Rivera, Jessica; De Lira-Sánchez, Jaime; Campos-Almazán, Mara; Téllez-Valencia, Alfredo

    2016-01-01

    Malaria is one of the main infectious diseases in tropical developing countries and represents high morbidity and mortality rates nowadays. The principal etiological agent P. falciparum is transmitted through the bite of the female Anopheles mosquito. The issue has escalated due to the emergence of resistant strains to most of the antimalarials used for the treatment including Chloroquine, Sulfadoxine-Pyrimethamine, and recently Artemisinin derivatives, which has led to diminished effectiveness and by consequence increased the severity of epidemic outbreaks. Due to the lack of effective compounds to treat these drug-resistant strains, the discovery or development of novel anti-malaria drugs is important. In this context, one strategy has been to find inhibitors of enzymes, which play an important role for parasite survival. Today, promising results have been obtained in this regard, involving the entire P. falciparum metabolism. These inhibitors could serve as leads in the search of a new chemotherapy against malaria. This review focuses on the achievements in recent years with regard to inhibition of enzymes used as targets for drug design against malaria. PMID:26983887

  16. Access to Artemisinin-Combination Therapy (ACT) and other Anti-Malarials: National Policy and Markets in Sierra Leone

    PubMed Central

    Amuasi, John H.; Diap, Graciela; Nguah, Samuel Blay; Karikari, Patrick; Boakye, Isaac; Jambai, Amara; Lahai, Wani Kumba; Louie, Karly S.; Kiechel, Jean-Rene

    2012-01-01

    Malaria remains the leading burden of disease in post-conflict Sierra Leone. To overcome the challenge of anti-malarial drug resistance and improve effective treatment, Sierra Leone adopted artemisinin-combination therapy artesunate-amodiaquine (AS+AQ) as first-line treatment for uncomplicated P. falciparum malaria. Other national policy anti-malarials include artemether-lumefantrine (AL) as an alternative to AS+AQ, quinine and artemether for treatment of complicated malaria; and sulphadoxine-pyrimethamine (SP) for intermittent preventive treatment (IPTp). This study was conducted to evaluate access to national policy recommended anti-malarials. A cross-sectional survey of 127 medicine outlets (public, private and NGO) was conducted in urban and rural areas. The availability on the day of the survey, median prices, and affordability policy and available non-policy anti-malarials were calculated. Anti-malarials were stocked in 79% of all outlets surveyed. AS+AQ was widely available in public medicine outlets; AL was only available in the private and NGO sectors. Quinine was available in nearly two-thirds of public and NGO outlets and over one-third of private outlets. SP was widely available in all outlets. Non-policy anti-malarials were predominantly available in the private outlets. AS+AQ in the public sector was widely offered for free. Among the anti-malarials sold at a cost, the same median price of a course of AS+AQ (US$1.56), quinine tablets (US$0.63), were found in both the public and private sectors. Quinine injection had a median cost of US$0.31 in the public sector and US$0.47 in the private sector, while SP had a median cost of US$0.31 in the public sector compared to US$ 0.63 in the private sector. Non-policy anti-malarials were more affordable than first-line AS+AQ in all sectors. A course of AS+AQ was affordable at nearly two days’ worth of wages in both the public and private sectors. PMID:23133522

  17. Temperature Errors in Linearizing Resistance Networks for Thermistors

    NASA Astrophysics Data System (ADS)

    White, D. R.

    2015-12-01

    It is well known that a single negative-temperature-coefficient thermistor can be linearized over a narrow temperature range by connecting a single resistor in parallel with the thermistor. With the linearizing resistor properly chosen for the operating temperature, the residual errors are proportional to the cube of the temperature range and have a peak value of about 0.2° C for a 30° C range. A greater range of temperatures can be covered or greater linearity be achieved by cascading thermistor-resistor combinations. This paper investigates the limits of the linearity performance of such networks by using interpolation to model their behavior. A simple formula is derived for estimating the residual non-linearity as a function of the number of thermistors, the temperature range covered by the network, and the constant characterizing the exponential temperature dependence of the thermistors. Numerical simulations are used to demonstrate the validity of the formula. Guidelines are also given for circuit topologies for realizing the networks, for optimizing the design of the networks, and for calculating the sensitivities to relative errors in the component values.

  18. The Role of Nursing Homes in the Spread of Antimicrobial Resistance Over the Healthcare Network.

    PubMed

    van den Dool, Carline; Haenen, Anja; Leenstra, Tjalling; Wallinga, Jacco

    2016-07-01

    OBJECTIVE Recerntly, the role of the healthcare network, defined as a set of hospitals linked by patient transfers, has been increasingly considered in the control of antimicrobial resistance. Here, we investigate the potential impact of nursing homes on the spread of antimicrobial-resistant pathogens across the healthcare network and its importance for control strategies. METHODS Based on patient transfer data, we designed a network model representing the Dutch healthcare system of hospitals and nursing homes. We simulated the spread of an antimicrobial-resistant pathogen across the healthcare network, and we modeled transmission within institutions using a stochastic susceptible-infected-susceptible (SIS) epidemic model. Transmission between institutions followed transfers. We identified the contribution of nursing homes to the dispersal of the pathogen by comparing simulations of the network with and without nursing homes. RESULTS Our results strongly suggest that nursing homes in the Netherlands have the potential to drive and sustain epidemics across the healthcare network. Even when the daily probability of transmission in nursing homes is much lower than in hospitals, transmission of resistance can be more effective because of the much longer length of stay of patients in nursing homes. CONCLUSIONS If an antimicrobial-resistant pathogen emerges that spreads easily within nursing homes, control efforts aimed at hospitals may no longer be effective in preventing nationwide outbreaks. It is important to consider nursing homes in planning regional and national infection control and in implementing surveillance systems that monitor the spread of antimicrobial resistance. Infect Control Hosp Epidemiol 2016;37:761-767. PMID:27052880

  19. CRIMALDDI: a prioritized research agenda to expedite the discovery of new anti-malarial drugs

    PubMed Central

    2013-01-01

    The CRIMALDDI Consortium has been a three-year project funded by the EU Framework Seven Programme. It aimed to develop a prioritized set of recommendations to speed up anti-malarial drug discovery research and contribute to the setting of the global research agenda. It has attempted to align thinking on the high priority issues and then to develop action plans and strategies to address these issues. Through a series of facilitated and interactive workshops, it has concluded that these priorities can be grouped under five key themes: attacking artemisinin resistance; creating and sharing community resources; delivering enabling technologies; exploiting high throughput screening hits quickly; and, identifying novel targets. Recommendations have been prioritized into one of four levels: quick wins; removing key roadblocks to future progress; speeding-up drug discovery; and, nice to have (but not essential). Use of this prioritization allows efforts and resources to be focused on the lines of work that will contribute most to expediting anti-malarial drug discovery. Estimates of the time and finances required to implement the recommendations have also been made, along with indications of when recommendations within each theme will make an impact. All of this has been collected into an indicative roadmap that, it is hoped, will guide decisions about the direction and focus of European anti-malarial drug discovery research and contribute to the setting of the global research agenda. PMID:24191947

  20. Bile acid-based 1,2,4-trioxanes: synthesis and antimalarial assessment.

    PubMed

    Singh, Chandan; Hassam, Mohammad; Verma, Ved Prakash; Singh, Ajit Shanker; Naikade, Niraj Krishna; Puri, Sunil K; Maulik, Prakas R; Kant, Ruchir

    2012-12-13

    A new series of bile acid-based trioxanes 23a-d, 24a-d, 25a-d, 26a, 26b, and 26d have been synthesized and assessed for their antimalarial activity against multidrug-resistant Plasmodium yoelii in Swiss mice by oral route. The antimalarial activity of these trioxanes showed a strong dependence on the side-chain length; shortening side-chain length lead to increase in activity. The antimalarial activity also showed even stronger dependence on the stereochemistry at C3 and C6 (C21 in Figure 5) of the trioxane moiety. Of the two diastereomers isolated of each of the trioxanes, more polar one was significantly more active than the less polar one. The more polar diastereomer of the trioxanes 26a, 26b, and 26d, were the most active compounds of the series. All these three trioxanes provided 100% protection at 24 mg/kg×4 days. In this model β-arteether provided 100% and 20% protection at 48 mg/kg×4 days and 24 mg/kg×4 days, respectively. PMID:23163291

  1. Synthesis and biological screening of some pyridine derivatives as anti-malarial agents.

    PubMed

    Bekhit, Adnan A; Hymete, Ariaya; Damtew, Ashenafi; Mohamed, Abdel Maaboud I; Bekhit, Alaa El-Din A

    2012-02-01

    Two series of pyridine derivatives were synthesised and evaluated for their in vivo anti-malarial activity against Plasmodium berghei. The anti-malarial activity was determined in vivo by applying 4-day standard suppressive test using chloroquine (CQ)-sensitive P. berghei ANKA strain-infected mice. Compounds 2a, 2g and 2h showed inhibition of the parasite multiplication by 90, 91 and 80%, respectively, at a dose level of 50 µmol/kg. Moreover, The most active compounds (2a, 2g and 2h) were tested in vitro against CQ-resistant Plasmodium falciparum RKL9 strains where compound 2g showed promising activity with IC(50) = 0.0402 µM. The compounds were non-toxic at 300 and 100 mg/kg through the oral and parenteral routes, respectively. The docking pose of the most active compounds (2a, 2g and 2h) in the active site of dihydrofolate reductase enzyme revealed several hydrogen and hydrophobic interactions that contribute to the observed anti-malarial activities. PMID:21612373

  2. Metabolic Dysregulation Induced in Plasmodium falciparum by Dihydroartemisinin and Other Front-Line Antimalarial Drugs.

    PubMed

    Cobbold, Simon A; Chua, Hwa H; Nijagal, Brunda; Creek, Darren J; Ralph, Stuart A; McConville, Malcolm J

    2016-01-15

    Detailed information on the mode of action of antimalarial drugs can be used to improve existing drugs, identify new drug targets, and understand the basis of drug resistance. In this study we describe the use of a time-resolved, mass spectrometry (MS)-based metabolite profiling approach to map the metabolic perturbations induced by a panel of clinical antimalarial drugs and inhibitors on Plasmodium falciparum asexual blood stages. Drug-induced changes in metabolite levels in P. falciparum-infected erythrocytes were monitored over time using gas chromatography-MS and liquid chromatography-MS and changes in specific metabolic fluxes confirmed by nonstationary [(13)C]-glucose labeling. Dihydroartemisinin (DHA) was found to disrupt hemoglobin catabolism within 1 hour of exposure, resulting in a transient decrease in hemoglobin-derived peptides. Unexpectedly, it also disrupted pyrimidine biosynthesis, resulting in increased [(13)C]-glucose flux toward malate production, potentially explaining the susceptibility of P. falciparum to DHA during early blood-stage development. Unique metabolic signatures were also found for atovaquone, chloroquine, proguanil, cycloguanil and methylene blue. We also show that this approach can be used to identify the mode of action of novel antimalarials, such as the compound Torin 2, which inhibits hemoglobin catabolism. PMID:26150544

  3. Interface-modified random circuit breaker network model applicable to both bipolar and unipolar resistance switching

    NASA Astrophysics Data System (ADS)

    Lee, S. B.; Lee, J. S.; Chang, S. H.; Yoo, H. K.; Kang, B. S.; Kahng, B.; Lee, M.-J.; Kim, C. J.; Noh, T. W.

    2011-01-01

    We observed reversible-type changes between bipolar (BRS) and unipolar resistance switching (URS) in one Pt/SrTiOx/Pt capacitor. To explain both BRS and URS in a unified scheme, we introduce the "interface-modified random circuit breaker network model," in which the bulk medium is represented by a percolating network of circuit breakers. To consider interface effects in BRS, we introduce circuit breakers to investigate resistance states near the interface. This percolation model explains the reversible-type changes in terms of connectivity changes in the circuit breakers and provides insights into many experimental observations of BRS which are under debate by earlier theoretical models.

  4. Identifying antimalarial compounds targeting dihydrofolate reductase-thymidylate synthase (DHFR-TS) by chemogenomic profiling.

    PubMed

    Aroonsri, Aiyada; Akinola, Olugbenga; Posayapisit, Navaporn; Songsungthong, Warangkhana; Uthaipibull, Chairat; Kamchonwongpaisan, Sumalee; Gbotosho, Grace O; Yuthavong, Yongyuth; Shaw, Philip J

    2016-07-01

    The mode of action of many antimalarial drugs is unknown. Chemogenomic profiling is a powerful method to address this issue. This experimental approach entails disruption of gene function and phenotypic screening for changes in sensitivity to bioactive compounds. Here, we describe the application of reverse genetics for chemogenomic profiling in Plasmodium. Plasmodium falciparum parasites harbouring a transgenic insertion of the glmS ribozyme downstream of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene were used for chemogenomic profiling of antimalarial compounds to identify those which target DHFR-TS. DHFR-TS expression can be attenuated by exposing parasites to glucosamine. Parasites with attenuated DHFR-TS expression were significantly more sensitive to antifolate drugs known to target DHFR-TS. In contrast, no change in sensitivity to other antimalarial drugs with different modes of action was observed. Chemogenomic profiling was performed using the Medicines for Malaria Venture (Switzerland) Malaria Box compound library, and two compounds were identified as novel DHFR-TS inhibitors. We also tested the glmS ribozyme in Plasmodium berghei, a rodent malaria parasite. The expression of reporter genes with downstream glmS ribozyme could be attenuated in transgenic parasites comparable with that obtained in P. falciparum. The chemogenomic profiling method was applied in a P. berghei line expressing a pyrimethamine-resistant Toxoplasma gondii DHFR-TS reporter gene under glmS ribozyme control. Parasites with attenuated expression of this gene were significantly sensitised to antifolates targeting DHFR-TS, but not other drugs with different modes of action. In conclusion, these data show that the glmS ribozyme reverse genetic tool can be applied for identifying primary targets of antimalarial compounds in human and rodent malaria parasites. PMID:27150044

  5. Antimalarial and cytotoxic properties of Chukrasia tabularis A. Juss and Turraea vogelii Hook F. Ex. Benth.

    PubMed

    Ogbole, Omonike O; Saka, Yusuf A; Fasinu, Pius S; Fadare, Adenike A; Ajaiyeoba, Edith O

    2016-04-01

    Malaria, caused by plasmodium parasite, is at the moment the highest cause of morbidity and mortality in the tropics. Recently, there is increasing efforts to develop more potent antimalarials from plant sources that will have little or no adverse effects. This study is aimed at investigating the in vivo mice antimalarial and in vitro antiplasmodial effects of two Meliaceae plants commonly used in Nigerian ethnomedicine as part of recipe for treating malaria infection: Chukrasia tabularis and Turraea vogelii. Hot water decoction and methanol extract of both plants were evaluated for their antimalarial activity in vivo using the mice model assay and in vitro using the parasite lactate dehydrogenase (pLDH) assay. The extracts were also assessed for toxicity with brine shrimp lethality assay and in mammalian cell lines using the neural red assay. The in vivo mice model antimalarial study showed that the methanol extract of the stem bark of C. tabularis exhibited the highest % chemosuppression (83.65 ± 0.66) at the highest dosage administered (800 mg/kg) when compared with chloroquine diphosphate, the standard reference drug which had a % suppression of 90.36 ± 0.04 (p < 0.05). The in vitro antiplasmodial study indicated that the aqueous extract of the stem bark of C. tabularis displayed good activity against Plasmodium falciparum chloroquine-sensitive (D6) strain (IC50 of 10.739 μg/mL) and chloroquine-resistant (W2) strain. Chloroquine and artemisinin had <0.163 and <0.0264, respectively. PMID:26911147

  6. In vitro antimalarial activity of different extracts of Eremostachys macrophylla Montbr. & Auch.

    PubMed Central

    Asnaashari, Solmaz; Heshmati Afshar, Fariba; Ebrahimi, Atefeh; Bamdad Moghadam, Sedigheh; Delazar, Abbas

    2015-01-01

    Introduction:The risk of drug resistance and the use of medicinal plants in malaria prevention and treatment have led to the search for new antimalarial compounds with natural origin. Methods:In the current study, six extracts with different polarity from aerial parts and rhizomes of Eremostachys macrophylla Montbr. & Auch., were screened for their antimalarial properties by cell-free β-hematin formation assay. Results: Dichloromethane (DCM) extracts of both parts of plant showed significant antimalarial activities with IC50 values of 0.797 ± 0.016 mg/mL in aerial parts and 0.324 ± 0.039 mg/mL in rhizomes compared to positive control (Chloroquine, IC50 = 0.014 ± 0.003 mg/mL, IC90 = 0.163 ± 0.004 mg/mL). Bioactivity-guided fractionation of the most potent part (DCM extract of rhizomes) by vacuum liquid chromatography (VLC) afforded seven fractions. Sixty percent ethyl acetate/n-hexane fraction showed considerable antimalarial activity with IC50 value of 0.047 ± 0.0003 mg/mL. Conclusion: From 6 extracts with different polarity of E. macrophylla,s aerial parts and rhizomes, the DCM extract of both parts were the most active extract in this assay. The preliminary phytochemical study on the VLC fractions of the most potent part persuades us to focus on purifying the active components of these extracts and to conduct further investigation towards in vivo evaluation. PMID:26457251

  7. Chitosan-based nanocarriers for antimalarials

    NASA Astrophysics Data System (ADS)

    Dreve, Simina; Kacso, Iren; Popa, Adriana; Raita, Oana; Bende, A.; Borodi, Gh.; Bratu, I.

    2012-02-01

    The objective of this research was to synthesize and characterize chitosan-based liquid and solid materials with unique absorptive and mechanical properties as carriers for quinine - one of the most used antimalarial drug. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare solid release systems as sponges is presented. The preparation by double emulsification of CTS hydrogels carrying quinine as anti-malarial drug is reported. The concentration of quinine in the CTS hydrogel was 0.08 mmol. Chitosan - drug loaded hydrogel was used to generate solid sponges by freeze-drying at -610°C and 0.09 atm. Structural investigations of the solid formulations were done by Fourier-transformed infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-VIS), spectrofluorimetry, differential scanning calorimetry (DSC) and X-ray diffractometry. The results indicated that the drug molecule is forming temporary chelates in CTS hydrogels and sponges. Electron paramagnetic resonance (EPR) demonstrates the presence of free radicals in a wide range and the antioxidant activity for chitosan - drug supramolecular cross-linked assemblies.

  8. Neural network estimate of seismic velocities and resistivity of rocks from electromagnetic and seismic sounding data

    NASA Astrophysics Data System (ADS)

    Spichak, V. V.; Goidina, A. G.

    2016-05-01

    The neural network estimates of seismic P- and S-wave velocities from electrical resistivity of the rocks and, vice versa, resistivity estimates from seismic velocities are presented. It is shown that, depending on the ratio between the volumes of the known data and the data to be reconstructed, the accuracy of the estimates of the P- and S-wave velocities ranges within 1-4 and 4-6%, respectively. The logarithmic resistivity is estimated from seismic P- and S-velocities as accurately as up to 15-17%. In all cases, the biggest errors are obtained when the estimates are based on correlated data.

  9. The analysis of HIV/AIDS drug-resistant on networks

    NASA Astrophysics Data System (ADS)

    Liu, Maoxing

    2014-01-01

    In this paper, we present an Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDS) drug-resistant model using an ordinary differential equation (ODE) model on scale-free networks. We derive the threshold for the epidemic to be zero in infinite scale-free network. We also prove the stability of disease-free equilibrium (DFE) and persistence of HIV/AIDS infection. The effects of two immunization schemes, including proportional scheme and targeted vaccination, are studied and compared. We find that targeted strategy compare favorably to a proportional condom using has prominent effect to control HIV/AIDS spread on scale-free networks.

  10. Comparative chemical genomics reveal that the spiroindolone antimalarial KAE609 (Cipargamin) is a P-type ATPase inhibitor.

    PubMed

    Goldgof, Gregory M; Durrant, Jacob D; Ottilie, Sabine; Vigil, Edgar; Allen, Kenneth E; Gunawan, Felicia; Kostylev, Maxim; Henderson, Kiersten A; Yang, Jennifer; Schenken, Jake; LaMonte, Gregory M; Manary, Micah J; Murao, Ayako; Nachon, Marie; Stanhope, Rebecca; Prescott, Maximo; McNamara, Case W; Slayman, Carolyn W; Amaro, Rommie E; Suzuki, Yo; Winzeler, Elizabeth A

    2016-01-01

    The spiroindolones, a new class of antimalarial medicines discovered in a cellular screen, are rendered less active by mutations in a parasite P-type ATPase, PfATP4. We show here that S. cerevisiae also acquires mutations in a gene encoding a P-type ATPase (ScPMA1) after exposure to spiroindolones and that these mutations are sufficient for resistance. KAE609 resistance mutations in ScPMA1 do not confer resistance to unrelated antimicrobials, but do confer cross sensitivity to the alkyl-lysophospholipid edelfosine, which is known to displace ScPma1p from the plasma membrane. Using an in vitro cell-free assay, we demonstrate that KAE609 directly inhibits ScPma1p ATPase activity. KAE609 also increases cytoplasmic hydrogen ion concentrations in yeast cells. Computer docking into a ScPma1p homology model identifies a binding mode that supports genetic resistance determinants and in vitro experimental structure-activity relationships in both P. falciparum and S. cerevisiae. This model also suggests a shared binding site with the dihydroisoquinolones antimalarials. Our data support a model in which KAE609 exerts its antimalarial activity by directly interfering with P-type ATPase activity. PMID:27291296

  11. Comparative chemical genomics reveal that the spiroindolone antimalarial KAE609 (Cipargamin) is a P-type ATPase inhibitor

    PubMed Central

    Goldgof, Gregory M.; Durrant, Jacob D.; Ottilie, Sabine; Vigil, Edgar; Allen, Kenneth E.; Gunawan, Felicia; Kostylev, Maxim; Henderson, Kiersten A.; Yang, Jennifer; Schenken, Jake; LaMonte, Gregory M.; Manary, Micah J.; Murao, Ayako; Nachon, Marie; Stanhope, Rebecca; Prescott, Maximo; McNamara, Case W.; Slayman, Carolyn W.; Amaro, Rommie E.; Suzuki, Yo; Winzeler, Elizabeth A.

    2016-01-01

    The spiroindolones, a new class of antimalarial medicines discovered in a cellular screen, are rendered less active by mutations in a parasite P-type ATPase, PfATP4. We show here that S. cerevisiae also acquires mutations in a gene encoding a P-type ATPase (ScPMA1) after exposure to spiroindolones and that these mutations are sufficient for resistance. KAE609 resistance mutations in ScPMA1 do not confer resistance to unrelated antimicrobials, but do confer cross sensitivity to the alkyl-lysophospholipid edelfosine, which is known to displace ScPma1p from the plasma membrane. Using an in vitro cell-free assay, we demonstrate that KAE609 directly inhibits ScPma1p ATPase activity. KAE609 also increases cytoplasmic hydrogen ion concentrations in yeast cells. Computer docking into a ScPma1p homology model identifies a binding mode that supports genetic resistance determinants and in vitro experimental structure-activity relationships in both P. falciparum and S. cerevisiae. This model also suggests a shared binding site with the dihydroisoquinolones antimalarials. Our data support a model in which KAE609 exerts its antimalarial activity by directly interfering with P-type ATPase activity. PMID:27291296

  12. A first new antimalarial pregnane glycoside from Gongronema napalense

    PubMed Central

    Libman, Amey; Zhang, Hongjie; Ma, Cuiying; Southavong, Bounhong; Sydara, Kongmany; Bouamanivong, Somsanith; Tan, Ghee T.; Fong, Harry H. S.; Soejarto, D. Doel

    2010-01-01

    As a part of the UIC-based ICBG project in Laos, plants were collected based on ethnomedical interviews and evaluated for antimalarial activity. A CHCl3 extract from the vine of Gongronema napalense (Wall.) Decne. (Asclepiadaceae) showed promising anti-malarial activity while exhibiting low levels of cytotoxicity and was thus followed up with further fractionation and biological evaluation. Bioassay-guided fractionation led to the isolation of a new steroidal glycoside, gongroneside A, which showed antimalarial activity in vitro with an IC50 value of 1.60 and 1.39 μM against the Plasmodium falciparum D6 and W2 clones, respectively. PMID:23653676

  13. Topological robustness analysis of protein interaction networks reveals key targets for overcoming chemotherapy resistance in glioma

    NASA Astrophysics Data System (ADS)

    Azevedo, Hátylas; Moreira-Filho, Carlos Alberto

    2015-11-01

    Biological networks display high robustness against random failures but are vulnerable to targeted attacks on central nodes. Thus, network topology analysis represents a powerful tool for investigating network susceptibility against targeted node removal. Here, we built protein interaction networks associated with chemoresistance to temozolomide, an alkylating agent used in glioma therapy, and analyzed their modular structure and robustness against intentional attack. These networks showed functional modules related to DNA repair, immunity, apoptosis, cell stress, proliferation and migration. Subsequently, network vulnerability was assessed by means of centrality-based attacks based on the removal of node fractions in descending orders of degree, betweenness, or the product of degree and betweenness. This analysis revealed that removing nodes with high degree and high betweenness was more effective in altering networks’ robustness parameters, suggesting that their corresponding proteins may be particularly relevant to target temozolomide resistance. In silico data was used for validation and confirmed that central nodes are more relevant for altering proliferation rates in temozolomide-resistant glioma cell lines and for predicting survival in glioma patients. Altogether, these results demonstrate how the analysis of network vulnerability to topological attack facilitates target prioritization for overcoming cancer chemoresistance.

  14. Topological robustness analysis of protein interaction networks reveals key targets for overcoming chemotherapy resistance in glioma

    PubMed Central

    Azevedo, Hátylas; Moreira-Filho, Carlos Alberto

    2015-01-01

    Biological networks display high robustness against random failures but are vulnerable to targeted attacks on central nodes. Thus, network topology analysis represents a powerful tool for investigating network susceptibility against targeted node removal. Here, we built protein interaction networks associated with chemoresistance to temozolomide, an alkylating agent used in glioma therapy, and analyzed their modular structure and robustness against intentional attack. These networks showed functional modules related to DNA repair, immunity, apoptosis, cell stress, proliferation and migration. Subsequently, network vulnerability was assessed by means of centrality-based attacks based on the removal of node fractions in descending orders of degree, betweenness, or the product of degree and betweenness. This analysis revealed that removing nodes with high degree and high betweenness was more effective in altering networks’ robustness parameters, suggesting that their corresponding proteins may be particularly relevant to target temozolomide resistance. In silico data was used for validation and confirmed that central nodes are more relevant for altering proliferation rates in temozolomide-resistant glioma cell lines and for predicting survival in glioma patients. Altogether, these results demonstrate how the analysis of network vulnerability to topological attack facilitates target prioritization for overcoming cancer chemoresistance. PMID:26582089

  15. Plasmodium falciparum sulfadoxine resistance is geographically and genetically clustered within the DR Congo

    PubMed Central

    Taylor, Steve M.; Antonia, Alejandro L.; Parobek, Christian M.; Juliano, Jonathan J.; Janko, Mark; Emch, Michael; Alam, Md Tauqeer; Udhayakumar, Venkatachalam; Tshefu, Antoinette K.; Meshnick, Steven R.

    2013-01-01

    Understanding the spatial clustering of Plasmodium falciparum populations can assist efforts to contain drug-resistant parasites and maintain the efficacy of future drugs. We sequenced single nucleotide polymorphisms (SNPs) in the dihydropteroate synthase gene (dhps) associated with sulfadoxine resistance and 5 microsatellite loci flanking dhps in order to investigate the genetic backgrounds, genetic relatedness, and geographic clustering of falciparum parasites in the Democratic Republic of the Congo (DRC). Resistant haplotypes were clustered into subpopulations: one in the northeast DRC, and the other in the balance of the DRC. Network and clonal lineage analyses of the flanking microsatellites indicate that geographically-distinct mutant dhps haplotypes derive from separate lineages. The DRC is therefore a watershed for haplotypes associated with sulfadoxine resistance. Given the importance of central Africa as a corridor for the spread of antimalarial resistance, the identification of the mechanisms of this transit can inform future policies to contain drug-resistant parasite strains. PMID:23372922

  16. Design, synthesis and antimalarial screening of some hybrid 4-aminoquinoline-triazine derivatives against pf-DHFR-TS.

    PubMed

    Sahu, Supriya; Ghosh, Surajit Kumar; Kalita, Junmoni; Dutta, Mayurakhi; Bhat, Hans Raj

    2016-04-01

    Existing antifolate antimalarial drugs have shown resistance due to the mutations at some amino acid positions of Plasmodium falciparum DHFR-TS. In the present study, to overcome this resistance, a new series of hybrid 4-aminoquinoline-triazine derivatives were designed and docked into the active site of Pf-DHFR-TS (PDB i.d. 1J3K) using validated CDOCKER protocol. Binding energy was calculated by applying CHARMm forcefield. Binding energy and the pattern of interaction of the docked compounds were analysed. Fifteen compounds were selected for synthesis based on their binding energy values and docking poses. Synthesized compounds were characterised by FTIR, (1)H NMR, (13)C NMR, mass spectroscopy and were screened for antimalarial activity against 3D7 strain of Plasmodium falciparum. PMID:26821296

  17. Sensitivity of Plasmodium falciparum to Antimalarial Drugs in Hainan Island, China

    PubMed Central

    Wang, Shan-Qing; Wang, Guang-Ze; Li, Yu-Chun; Meng, Feng; Lin, Shi-Gan; Zhu, Zhen-Hu; Sun, Ding-Wei; He, Chang-Hua; Hu, Xi-Min; Du, Jian-Wei

    2015-01-01

    Pyronaridine and artesunate have been shown to be effective in falciparum malaria treatment. However, pyronaridine is rarely used in Hainan Island clinically, and artesunate is not widely used as a therapeutic agent. Instead, conventional antimalarial drugs, chloroquine and piperaquine, are used, explaining the emergence of chloroquine-resistant Plasmodium falciparum. In this article, we investigated the sensitivity of P. falciparum to antimalarial drugs used in Hainan Island for rational drug therapy. We performed in vivo (28 days) and in vitro tests to determine the sensitivity of P. falciparum to antimalarial drugs. Total 46 patients with falciparum malaria were treated with dihydroartemisinin/piperaquine phosphate (DUO-COTECXIN) and followed up for 28 day. The cure rate was 97.8%. The mean fever clearance time (22.5±10.6 hr) and the mean parasite clearance time (27.3±12.2 hr) showed no statistical significance with different genders, ages, temperatures, or parasite density (P>0.05). The resistance rates of chloroquine, piperaquine, pyronarididine, and artesunate detected in vitro were 71.9%, 40.6%, 12.5%, and 0%, respectively (P<0.0001). The resistance intensities decreased as follows: chloroquine>piperaquine>pyronarididine>artesunate. The inhibitory dose 50 (IC50) was 3.77×10-6 mol/L, 2.09×10-6 mol/L, 0.09×10-6 mol/L, and 0.05×10-6 mol/L, and the mean concentrations for complete inhibition (CIMC) of schizont formation were 5.60×10-6 mol/L, 9.26×10-6 mol/L, 0.55×10-6 mol/L, and 0.07×10-6 mol/L, respectively. Dihydroartemisinin showed a strong therapeutic effect against falciparum malaria with a low toxicity. PMID:25748707

  18. An embolus in the right atrium caught in the Chiari network and resistant to thrombolysis.

    PubMed

    Zuzana, Motovska; Petr, Widimsky; Dana, Bilkova; Martin, Penicka; Hana, Linkova; Dana, Kautznerova; Miroslav, Kolesar; Ludmila, Koldová; Jan, Kvasnicka

    2010-01-01

    This case report describes a patient with thromboemboli trapped in the Chiari network within the right side of the heart and resistant to thrombolysis. The right atrial masses were completely removed under cardiopulmonary bypass. Histological evaluation confirmed a mixed thromboemboli, with thrombus structures showing signs of organisation and surrounded by a fibrous capsule. The plasma level of the plasminogen activator inhibitor type-1 (PAI-1) was 50% higher than the normal upper limit. In this presented case, the Chiari network displayed a protective function but the expansion and organisation of the thromboembolus found there made it resistant to lytic treatment. Another important factor that could have influenced the resistance to thrombolysis was the high level of PAI-1. PMID:22791494

  19. Pharmacokinetic and Pharmacodynamic Considerations in Antimalarial Dose Optimization

    PubMed Central

    2013-01-01

    Antimalarial drugs have usually been first deployed in areas of malaria endemicity at doses which were too low, particularly for high-risk groups such as young children and pregnant women. This may accelerate the emergence and spread of resistance, thereby shortening the useful life of the drug, but it is an inevitable consequence of the current imprecise method of dose finding. An alternative approach to dose finding is suggested in which phase 2 studies concentrate initially on pharmacokinetic-pharmacodynamic (PK-PD) characterization and in vivo calibration of in vitro susceptibility information. PD assessment is facilitated in malaria because serial parasite densities are readily assessed by microscopy, and at low densities by quantitative PCR, so that initial therapeutic responses can be quantitated accurately. If the in vivo MIC could be characterized early in phase 2 studies, it would provide a sound basis for the choice of dose in all target populations in subsequent combination treatments. Population PK assessments in phase 2b and phase 3 studies which characterize PK differences between different age groups, clinical disease states, and human populations can then be combined with the PK-PD observations to provide a sound evidence base for dose recommendations in different target groups. PMID:24002099

  20. Artemisinin anti-malarial drugs in China

    PubMed Central

    Guo, Zongru

    2016-01-01

    Discovered by Youyou Tu, one of the 2015 Nobel Prize winners in Physiology or Medicine, together with many other Chinese scientists, artemisinin, artemether and artesunate, as well as other artemisinins, have brought the global anti-malarial treatment to a new era, saving millions of lives all around the world for the past 40 years. The discoveries of artemisinins were carried out beginning from the 1970s, a special period in China, by hundreds of scientists all together under the “whole nation” system. This article focusing on medicinal chemistry research, briefly introduced the discovery and invention course of the scientists according to the published papers, and highlighted their academic contribution and achievements. PMID:27006895

  1. Artemisinin anti-malarial drugs in China.

    PubMed

    Guo, Zongru

    2016-03-01

    Discovered by Youyou Tu, one of the 2015 Nobel Prize winners in Physiology or Medicine, together with many other Chinese scientists, artemisinin, artemether and artesunate, as well as other artemisinins, have brought the global anti-malarial treatment to a new era, saving millions of lives all around the world for the past 40 years. The discoveries of artemisinins were carried out beginning from the 1970s, a special period in China, by hundreds of scientists all together under the "whole nation" system. This article focusing on medicinal chemistry research, briefly introduced the discovery and invention course of the scientists according to the published papers, and highlighted their academic contribution and achievements. PMID:27006895

  2. Relating permeability and electrical resistivity in fractures using random resistor network models

    NASA Astrophysics Data System (ADS)

    Kirkby, Alison; Heinson, Graham; Krieger, Lars

    2016-03-01

    We use random resistor network models to explore the relationship between electrical resistivity and permeability in a fracture filled with an electrically conductive fluid. Fluid flow and current are controlled by both the distribution and the volume of pore space. Therefore, the aperture distribution of fractures must be accurately modeled in order to realistically represent their hydraulic and electrical properties. We have constructed fracture surface pairs based on characteristics measured on rock samples. We use these to construct resistor networks with variable hydraulic and electrical resistance in order to investigate the changes in both properties as a fault is opened. At small apertures, electrical conductivity and permeability increase moderately with aperture until the fault reaches its percolation threshold. Above this point, the permeability increases by 4 orders of magnitude over a change in mean aperture of less than 0.1 mm, while the resistivity decreases by up to a factor of 10 over this aperture change. Because permeability increases at a greater rate than matrix to fracture resistivity ratio, the percolation threshold can also be defined in terms of the matrix to fracture resistivity ratio, M. The value of M at the percolation threshold, MPT, varies with the ratio of rock to fluid resistivity, the fault spacing, and the fault offset. However, MPT is almost always less than 10. Greater M values are associated with fractures above their percolation threshold. Therefore, if such M values are observed over fluid-filled fractures, it is likely that they are open for fluid flow.

  3. Identification and Characterization of a Bacitracin Resistance Network in Enterococcus faecalis

    PubMed Central

    Fang, Chong; Shaaly, Aishath; Leslie, David J.; Weimar, Marion R.; Kalamorz, Falk; Carne, Alan; Cook, Gregory M.

    2014-01-01

    Resistance of Enterococcus faecalis against antimicrobial peptides, both of host origin and produced by other bacteria of the gut microflora, is likely to be an important factor in the bacterium's success as an intestinal commensal. The aim of this study was to identify proteins with a role in resistance against the model antimicrobial peptide bacitracin. Proteome analysis of bacitracin-treated and untreated cells showed that bacitracin stress induced the expression of cell wall-biosynthetic proteins and caused metabolic rearrangements. Among the proteins with increased production, an ATP-binding cassette (ABC) transporter with similarity to known peptide antibiotic resistance systems was identified and shown to mediate resistance against bacitracin. Expression of the transporter was dependent on a two-component regulatory system and a second ABC transporter, which were identified by genome analysis. Both resistance and the regulatory pathway could be functionally transferred to Bacillus subtilis, proving the function and sufficiency of these components for bacitracin resistance. Our data therefore show that the two ABC transporters and the two-component system form a resistance network against antimicrobial peptides in E. faecalis, where one transporter acts as the sensor that activates the TCS to induce production of the second transporter, which mediates the actual resistance. PMID:24342648

  4. Anti-malarial property of steroidal alkaloid conessine isolated from the bark of Holarrhena antidysenterica

    PubMed Central

    2013-01-01

    Background In the face of chronic and emerging resistance of parasites to currently available drugs and constant need for new anti-malarials, natural plant products have been the bastion of anti-malarials for thousands of years. Moreover natural plant products and their derivatives have traditionally been a common source of drugs, and represent more than 30% of the current pharmaceutical market. The present study shows evaluation of anti-malarial effects of compound conessine isolated from plant Holarrhena antidysenterica frequently used against malaria in the Garhwal region of north-west Himalaya. Methods In vitro anti-plasmodial activity of compound was assessed using schizont maturation and parasite lactate dehydrogenase (pLDH) assay. Cytotoxic activities of the examined compound were determined on L-6 cells of rat skeletal muscle myoblast. The four-day test for anti-malarial activity against a chloroquine-sensitive Plasmodium berghei NK65 strain in BALB/c mice was used for monitoring in vivo activity of compound. In liver and kidney function test, the activity of alkaline phosphatase (ALP) was examined by p-NPP method, bilirubin by Jendrassik and Grof method. The urea percentage was determined by modified Berthelot method and creatinine by alkaline picrate method in serum of mice using ENZOPAK/CHEMPAK reagent kits. Results Compound conessine showed in vitro anti-plasmodial activity with its IC50 value 1.9 μg/ml and 1.3 μg/ml using schizont maturation and pLDH assay respectively. The compound showed cytotoxity IC50= 14 μg/ml against L6 cells of rat skeletal muscle myoblast. The isolated compound from plant H. antidysenterica significantly reduced parasitaemia (at 10 mg/kg exhibited 88.95% parasite inhibition) in P. berghei-infected mice. Due to slightly toxic nature (cytotoxicity = 14), biochemical analysis (liver and kidney function test) of the serum from mice after administration of conessine were also observed. Conclusion The present investigation

  5. Timing of induced resistance in a clonal plant network.

    PubMed

    Gómez, Sara; van Dijk, William; Stuefer, Josef F

    2010-05-01

    After local herbivory, plants can activate defense traits both at the damaged site and in undamaged plant parts such as in connected ramets of clonal plants. Since defense induction has costs, a mismatch in time and space between defense activation and herbivore feeding might result in negative consequences for plant fitness. A short time lag between attack and defense activation is important to ensure efficient protection of the plant. Additionally, the duration of induced defense production once the attack has stopped is also relevant in assessing the cost-benefit balance of inducible defenses, which will depend on the absence or presence of subsequent attacks. In this study we quantified the timing of induced responses in ramet networks of the stoloniferous herb Trifolium repens after local damage by Mamestra brassicae larvae. We studied the activation time of systemic defense induction in undamaged ramets and the decay time of the response after local attack. Undamaged ramets became defense-induced 38-51 h after the initial attack. Defense induction was measured as a reduction in leaf palatability. Defense induction lasted at least 28 days, and there was strong genotypic variation in the duration of this response. Ramets formed after the initial attack were also defense-induced, implying that induced defense can extend to new ramet generations, thereby contributing to protection of plant tissue that is both very vulnerable to herbivores and most valuable in terms of future plant growth and fitness. PMID:20522188

  6. Basigin is a druggable target for host-oriented antimalarial interventions.

    PubMed

    Zenonos, Zenon A; Dummler, Sara K; Müller-Sienerth, Nicole; Chen, Jianzhu; Preiser, Peter R; Rayner, Julian C; Wright, Gavin J

    2015-07-27

    Plasmodium falciparum is the parasite responsible for the most lethal form of malaria, an infectious disease that causes a large proportion of childhood deaths and poses a significant barrier to socioeconomic development in many countries. Although antimalarial drugs exist, the repeated emergence and spread of drug-resistant parasites limit their useful lifespan. An alternative strategy that could limit the evolution of drug-resistant parasites is to target host factors that are essential and universally required for parasite growth. Host-targeted therapeutics have been successfully applied in other infectious diseases but have never been attempted for malaria. Here, we report the development of a recombinant chimeric antibody (Ab-1) against basigin, an erythrocyte receptor necessary for parasite invasion as a putative antimalarial therapeutic. Ab-1 inhibited the PfRH5-basigin interaction and potently blocked erythrocyte invasion by all parasite strains tested. Importantly, Ab-1 rapidly cleared an established P. falciparum blood-stage infection with no overt toxicity in an in vivo infection model. Collectively, our data demonstrate that antibodies or other therapeutics targeting host basigin could be an effective treatment for patients infected with multi-drug resistant P. falciparum. PMID:26195724

  7. Current issues for anti-malarial drugs to control P. falciparum malaria.

    PubMed

    Schellenberg, D; Abdulla, S; Roper, C

    2006-03-01

    Successful malaria control depends heavily on efficacious anti-malarial drugs for the treatment of malaria. Artesunate-containing Combination Treatments (ACT) are increasingly recommended as first line malaria treatment in endemic countries, but implementation of this recommendation is limited by the small number of available and affordable co-formulated anti-malarial drugs. In recent years Intermittent Preventive Treatment has been recommended for malaria control in pregnancy and has been shown to be of potential public health importance in the prevention of malaria and anaemia in children. The use of drugs for malaria treatment or prevention is associated with the development of resistance and recent advances in molecular biology facilitate the evaluation of the impact on drug resistance of new drug-based strategies. This review concentrates on the challenges surrounding the use of ACT, the current understanding of IPT in infants and the use of molecular approaches to enhance our understanding of the effects of interventions on the spread of drug resistance. PMID:16515515

  8. The search for natural bioactive compounds through a multidisciplinary approach in Bolivia. Part II. Antimalarial activity of some plants used by Mosetene indians.

    PubMed

    Muñoz, V; Sauvain, M; Bourdy, G; Callapa, J; Rojas, I; Vargas, L; Tae, A; Deharo, E

    2000-02-01

    Forty-six different species collected in the Mosetene ethnia, dwelling in the Andean Piedmont of Bolivia, were screened for antimalarial properties. Thirty-three extracts were screened for antimalarial activity in vitro on Plasmodium falciparum chloroquine resistant strain (Indo), and forty-seven extracts were evaluated in vivo on the rodent malaria P. vinckei petteri 279BY. Only two plants are specifically used in combination by the Mosetene against malaria attack (Hymenachne donacifolia and Tesseria integrifolia), but they did not display any activity in vivo at 1000 mg/kg. The in vivo most active extracts were Swietenia macrophylla bark, Trema micrantha bark and Triplaris americana bark, not all of them were used for antimalarial purposes by the Mosetene. The following extracts were moderately active: Jacaratia digitata inner bark and Momordica charantia aerial part (both traditionally used as febrifuge), Kalanchoe pinnate aerial part (used in inflammatory processes), Lunania parviflora twigs and leaves, Phyllanthus acuminatus (used as piscicide), Tynanthus schumannianus fruit (used against diarrhoea), Triumfetta semitrilobata (used as febrifuge, to alleviate kidney and gynecological pain) and finally Solanum mammosum fruit (used against scabies). We present here the results of this screening, emphazing on the in vivo antimalarial activity of the selected plants. The antimalarial in vivo activity of the selected species, in relation with their traditional Mosetene use is then discussed. PMID:10687870

  9. Numerical design and optimization of hydraulic resistance and wall shear stress inside pressure-driven microfluidic networks.

    PubMed

    Damiri, Hazem Salim; Bardaweel, Hamzeh Khalid

    2015-11-01

    Microfluidic networks represent the milestone of microfluidic devices. Recent advancements in microfluidic technologies mandate complex designs where both hydraulic resistance and pressure drop across the microfluidic network are minimized, while wall shear stress is precisely mapped throughout the network. In this work, a combination of theoretical and modeling techniques is used to construct a microfluidic network that operates under minimum hydraulic resistance and minimum pressure drop while constraining wall shear stress throughout the network. The results show that in order to minimize the hydraulic resistance and pressure drop throughout the network while maintaining constant wall shear stress throughout the network, geometric and shape conditions related to the compactness and aspect ratio of the parent and daughter branches must be followed. Also, results suggest that while a "local" minimum hydraulic resistance can be achieved for a geometry with an arbitrary aspect ratio, a "global" minimum hydraulic resistance occurs only when the aspect ratio of that geometry is set to unity. Thus, it is concluded that square and equilateral triangular cross-sectional area microfluidic networks have the least resistance compared to all rectangular and isosceles triangular cross-sectional microfluidic networks, respectively. Precise control over wall shear stress through the bifurcations of the microfluidic network is demonstrated in this work. Three multi-generation microfluidic network designs are considered. In these three designs, wall shear stress in the microfluidic network is successfully kept constant, increased in the daughter-branch direction, or decreased in the daughter-branch direction, respectively. For the multi-generation microfluidic network with constant wall shear stress, the design guidelines presented in this work result in identical profiles of wall shear stresses not only within a single generation but also through all the generations of the

  10. Comparison of methods to determine point-to-point resistance in nearly rectangular networks with application to a ‘hammock’ network

    PubMed Central

    Essam, John W.; Izmailyan, Nikolay Sh.; Kenna, Ralph; Tan, Zhi-Zhong

    2015-01-01

    Considerable progress has recently been made in the development of techniques to exactly determine two-point resistances in networks of various topologies. In particular, two types of method have emerged. One is based on potentials and the evaluation of eigenvalues and eigenvectors of the Laplacian matrix associated with the network or its minors. The second method is based on a recurrence relation associated with the distribution of currents in the network. Here, these methods are compared and used to determine the resistance distances between any two nodes of a network with topology of a hammock. PMID:26064635

  11. Identifying a biomarker network for corticosteroid resistance in asthma from bronchoalveolar lavage samples.

    PubMed

    Vargas, José Eduardo; Porto, Bárbara Nery; Puga, Renato; Stein, Renato Tetelbom; Pitrez, Paulo Márcio

    2016-07-01

    Corticosteroid resistance (CR) is a major barrier to the effective treatment of severe asthma. Hence, a better understanding of the molecular mechanisms involved in this condition is a priority. Network analysis is an emerging strategy to explore this complex heterogeneous disorder at system level to identify a small own network for CR in asthma. Gene expression profile of GSE7368 from bronchoalveolar lavage (BAL) of CR in subjects with asthma was downloaded from the gene expression omnibus (GEO) database and compared to BAL of corticosteroid-sensitive (CS) patients. DEGs were identified by the Limma package in R language. In addition, DEGs were mapped to STRING to acquire protein-protein interaction (PPI) pairs. Topological properties of PPI network were calculated by Centiscape, ClusterOne and BINGO. Subsequently, text-mining tools were applied to design one own cell signalling for CR in asthma. Thirty-five PPI networks were obtained; including a major network consisted of 370 nodes, connected by 777 edges. After topological analysis, a minor PPI network composed by 48 nodes was indentified, which is composed by most relevant nodes of major PPI network. In this subnetwork, several receptors (EGFR, EGR1, ESR2, PGR), transcription factors (MYC, JAK), cytokines (IL8, IL6, IL1B), one chemokine (CXCL1), one kinase (SRC) and one cyclooxygenase (PTGS2) were described to be associated with inflammatory environment and steroid resistance in asthma. We suggest a biomarker network composed by 48 nodes that could be potentially explored with diagnostic or therapeutic use. PMID:27188427

  12. Fracture network characterisation of a landslide by electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Szalai, S.; Szokoli, K.; Novák, A.; Tóth, Á.; Metwaly, M.; Prácser, E.

    2014-06-01

    In contrary to most of the landslide studies which concentrate to the sliding surface in this paper the fracture system of a loess landslide is investigated. The continuity and geometry, orientation and dip of the major fractures are crucial parameters for assessing rock stability and landslide evolution. Rain infiltrating moreover easily into the rock mass through fractures providing lubrication for the material to slide, and increases the self-mass of the material increasing the slumping rate. Fracture maps enable beside of the characterisation of the fractured area the delineation of the endangered area of slow-moving landslides in due time and getting information about its inner structure. For constructing such maps Electrical Resistivity Tomography (ERT) measurements have been carried out using different geoelectric configurations. In spite of the high density of the fractures and their changing physical parameters in function of their water content - which make the interpretation rather difficult - a number of fractures have been detected and more or less well localised. On the basis of the present research the application of the Schlumberger and the Pole-Dipole arrays is recommended to fulfil the aim of the study. The optimised Stummer array is at the same time the only array which presents conductive anomalies (supposedly water filled fractures), as well, and indicates that fractures elongate deep downwards. Because these features seem to be realistic based on field observations or theoretical considerations the Stummer array may be a very good tool for completing e.g. P-Dp measurements. The study area could have been divided by all arrays into differently fractured zones, which assists a lot in understanding the landslide structure and evolution. It was shown, moreover, that in the still passive area there are thick fractures, too, verifying its dangerousness, as well. The ERT results enabled localising the rupture surfaces of future slumps which proved to

  13. Atorvastatin Is a Promising Partner for Antimalarial Drugs in Treatment of Plasmodium falciparum Malaria▿

    PubMed Central

    Parquet, Véronique; Briolant, Sébastien; Torrentino-Madamet, Marylin; Henry, Maud; Almeras, Lionel; Amalvict, Rémy; Baret, Eric; Fusaï, Thierry; Rogier, Christophe; Pradines, Bruno

    2009-01-01

    Atorvastatin (AVA) is a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. AVA exposure resulted in the reduced in vitro growth of 22 Plasmodium falciparum strains, with the 50% inhibitory concentrations (IC50s) ranging from 2.5 μM to 10.8 μM. A significant positive correlation was found between the strains’ responses to AVA and mefloquine (r = 0.553; P = 0.008). We found no correlation between the responses to AVA and to chloroquine, quinine, monodesethylamodiaquine, lumefantrine, dihydroartemisinin, atovaquone, or doxycycline. These data could suggest that the mechanism of AVA uptake and/or the mode of action of AVA is different from those for other antimalarial drugs. The IC50s for AVA were unrelated to the occurrence of mutations in the transport protein genes involved in quinoline antimalarial drug resistance, such as the P. falciparum crt, mdr1, mrp, and nhe-1 genes. Therefore, AVA can be ruled out as a substrate for the transport proteins (CRT, Pgh1, and MRP) and is not subject to the pH modification induced by the P. falciparum NHE-1 protein. The absence of in vitro cross-resistance between AVA and chloroquine, quinine, mefloquine, monodesethylamodiaquine, lumefantrine, dihydroartemisinin, atovaquone, and doxycycline argues that these antimalarial drugs could potentially be paired with AVA as a treatment for malaria. In conclusion, the present observations suggest that AVA is a good candidate for further studies on the use of statins in association with drugs known to have activities against the malaria parasite. PMID:19307369

  14. New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo.

    PubMed

    Soares, Roberta Reis; da Silva, José Marcio Fernandes; Carlos, Bianca Cecheto; da Fonseca, Camila Campos; de Souza, Laila Salomé Araújo; Lopes, Fernanda Valério; de Paula Dias, Rafael Mafra; Moreira, Paulo Otávio Lourenço; Abramo, Clarice; Viana, Gustavo Henrique Ribeiro; de Pila Varotti, Fernando; da Silva, Adilson David; Scopel, Kézia Katiani Gorza

    2015-06-01

    Malaria continues to be an important public health problem in the world. Nowadays, the widespread parasite resistance to many drugs used in antimalarial therapy has made the effective treatment of cases and control of the disease a constant challenge. Therefore, the discovery of new molecules with good antimalarial activity and tolerance to human use can be really important in the further treatment of the disease. In this study we have investigated the antiplasmodial activity of 10 synthetic compounds derived from quinoline, five of them combined to sulfonamide and five to the hydrazine or hydrazide group. The compounds were evaluated according to their cytotoxicity against HepG2 and HeLa cell lines, their antimalarial activity against CQ-sensitive and CQ-resistant Plasmodium falciparum strains and, finally, their schizonticide blood action in mice infected with Plasmodium berghei NK65. The compounds exhibited no cytotoxic action in HepG2 and HeLa cell lines when tested up to a concentration of 100 μg/mL. In addition, the hydrazine or hydrazide derivative compounds were less cytotoxic against cell lines and more active against CQ-sensitive and CQ-resistant P. falciparum strains, showing high SI (>1000 when SI was calculated using the CC50 from the 3D7 strain as reference). When tested in vivo, the hydrazine derivative 1f compound showed activity against the development of blood parasites similar to that observed with CQ, the reference drug. Interestingly, the 1f compound demonstrated the best LipE value (4.84) among all those tested in vivo. Considering the in vitro and in vivo activities of the compounds studied here and the LipE values, we believe the 1f compound to be the most promising molecule for further studies in antimalarial chemotherapy. PMID:25920564

  15. Four-terminal resistances in mesoscopic networks of metallic wires: Weak localisation and correlations

    NASA Astrophysics Data System (ADS)

    Texier, Christophe; Montambaux, Gilles

    2016-01-01

    We consider the electronic transport in multi-terminal mesoscopic networks of weakly disordered metallic wires. After a brief description of the classical transport, we analyse the weak localisation (WL) correction to the four-terminal resistances, which involves an integration of the Cooperon over the wires with proper weights. We provide an interpretation of these weights in terms of classical transport properties. We illustrate the formalism on examples and show that weak localisation to four-terminal conductances may become large in some situations. In a second part, we study the correlations of four-terminal resistances and show that integration of Diffuson and Cooperon inside the network involves the same weights as the WL. The formulae are applied to multiconnected wire geometries.

  16. Reprint of: Four-terminal resistances in mesoscopic networks of metallic wires: Weak localisation and correlations

    NASA Astrophysics Data System (ADS)

    Texier, Christophe; Montambaux, Gilles

    2016-08-01

    We consider the electronic transport in multi-terminal mesoscopic networks of weakly disordered metallic wires. After a brief description of the classical transport, we analyse the weak localisation (WL) correction to the four-terminal resistances, which involves an integration of the Cooperon over the wires with proper weights. We provide an interpretation of these weights in terms of classical transport properties. We illustrate the formalism on examples and show that weak localisation to four-terminal conductances may become large in some situations. In a second part, we study the correlations of four-terminal resistances and show that integration of Diffuson and Cooperon inside the network involves the same weights as the WL. The formulae are applied to multiconnected wire geometries.

  17. Building capacity for the assessment of HIV drug resistance: experiences from the PharmAccess African Studies to Evaluate Resistance network.

    PubMed

    Hamers, Raph L; Straatsma, Elske; Kityo, Cissy; Wallis, Carole L; Stevens, Wendy S; Sigaloff, Kim C E; Siwale, Margaret; Conradie, Francesca; Botes, Mariette E; Mandaliya, Kishor; Wellington, Maureen; Osibogun, Akin; van Vugt, Michèle; Rinke de Wit, Tobias F

    2012-05-01

    The PharmAccess African Studies to Evaluate Resistance (PASER) network was established as a collaborative partnership of clinical sites, laboratories, and research groups in 6 African countries; its purpose is to build research and laboratory capacity in support of a coordinated effort to assess population-level acquired and transmitted human immunodeficiency virus type-1 drug resistance (HIVDR), thus contributing to the goals of the World Health Organization Global HIV Drug Resistance Network. PASER disseminates information to medical professionals and policy makers and conducts observational research related to HIVDR. The sustainability of the network is challenged by funding limitations, constraints in human resources, a vulnerable general health infrastructure, and high cost and complexity of molecular diagnostic testing. This report highlights experiences and challenges in the PASER network from 2006 to 2010. PMID:22544185

  18. Semi-interpenetrating polymer network for tougher and more microcracking resistant high temperature polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    This invention is a semi-interpenetrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. An improved high temperature matrix resin is provided which is capable of performing at 316 C in air for several hundreds of hours. This resin has significantly improved toughness and microcracking resistance, excellent processability and mechanical performance, and cost effectiveness.

  19. In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense

    PubMed Central

    2010-01-01

    Background There is an urgent need to identify new anti-malarial drug targets for both prophylaxis and chemotherapy, due to the increasing problem of drug resistance to malaria parasites. In the present study, the aim was to discover novel, effective plant-based extracts for the activity against malaria. Methods Ten plants found in Iran were selected by ethnobotanical survey of medicinal plants. The crude ethanolic extracts were tested for in vitro anti-plasmodial activity against two strains of Plasmodium falciparum: K1 (chloroquine-resistant strain) and CY27 (chloroquine-sensitive strain), using the parasite lactate dehydrogenase (pLDH) assay. The anti-plasmodial activity of the extracts was also assessed in the 4-day suppressive anti-malarial assay in mice inoculated with Plasmodium berghei (ANKA strain). Crude ethanolic extracts showed good anti-plasmodial activity were further fractionated by partitioning in water and dichloromethane. Results Of 10 plant species assayed, three species: Boerhavia elegans (Choisy), Solanum surattense (Burm.f.) and Prosopis juliflora (Sw.) showed promising anti-plasmodial activity in vitro (IC50 ≤ 50 μg/ml) and in vivo with no toxicity. The dichloromethane fraction of three extracts revealed stronger anti-plasmodial activity than the total extracts. Conclusion Anti-plasmodial activities of extracts of B. elegans and S. surattense are reported for the first time. PMID:20462416

  20. Validating a Firefly Luciferase-Based High-Throughput Screening Assay for Antimalarial Drug Discovery

    PubMed Central

    Che, Pulin; Cui, Long; Kutsch, Olaf; Cui, Liwang

    2012-01-01

    Abstract The emergence and spread of multidrug-resistant Plasmodium falciparum and recent detection of potential artemisinin-resistant strains in Southeast Asia highlight the importance of developing novel antimalarial therapies. Using a previously generated stable transgenic P. falciparum line with high-level firefly luciferase expression, we report the adaptation, miniaturization, optimization, and validation of a high-throughput screening assay in 384-well plates. Assay conditions, including the percentage of parasitemia and hematocrit, were optimized. Parameters of assay robustness, including Z′-value, coefficient variation (CV), and signal-to-background (S/B) ratio, were determined. The LOPAC1280 small-compound library was used to validate this assay. Our results demonstrated that this assay is robust and reliable, with an average Z′-value of >0.7 and CV of <10%. Moreover, this assay showed a very low background, with the S/B ratio up to 71. Further, identified hits were selected and confirmed using a SYBR Green I-based confirmatory assay. It is evident that this assay is suitable for large-scale screening of chemical libraries for antimalarial drug discovery. PMID:22050430

  1. Reemergence of chloroquine (CQ) analogs as multi-targeting antimalarial agents: a review.

    PubMed

    Mushtaque, Md; Shahjahan

    2015-01-27

    Amongst several communicable diseases (CDs), malaria is one of the deadliest parasitic disease all over the world, particularly in African and Asian countries. To curb this menace, numbers of antimalarial agents are being sold as over the counter (OTC) drugs. Chloroquine (CQ) is one of them and is one of the oldest, cheapest, and easily available synthetic agents used to curb malaria. Unfortunately, after the reports of CQ-resistance against different strains of malarial parasite strains worldwide, scientist are continuously modifying the core structure of CQ to get an efficient drug. Interestingly, several new drugs have been emerged in due course having unique and enhanced properties (like dual stage inhibitors, resistance reversing ability etc.) and are ready to enter into the clinical trial. In this course, some new agents have also been discovered which are; though inactive against CQS strain, highly active against CQR strains. The present article describes the role of modification of the core structure of CQ and its effects on the biological activities. Moreover, the attempt has also been made to predict the future prospects of such drugs to reemerge as antimalarial agents. PMID:25461328

  2. Biological activities of nitidine, a potential anti-malarial lead compound

    PubMed Central

    2012-01-01

    Background Nitidine is thought to be the main active ingredient in several traditional anti-malarial remedies used in different parts of the world. The widespread use of these therapies stresses the importance of studying this molecule in the context of malaria control. However, little is known about its potential as an anti-plasmodial drug, as well as its mechanism of action. Methods In this study, the anti-malarial potential of nitidine was evaluated in vitro on CQ-sensitive and -resistant strains. The nitidine's selectivity index compared with cancerous and non-cancerous cell lines was then determined. In vivo assays were then performed, using the four-day Peter's test methodology. To gain information about nitidine's possible mode of action, its moment of action on the parasite cell cycle was studied, and its localization inside the parasite was determined using confocal microscopy. The in vitro abilities of nitidine to bind haem and to inhibit β-haematin formation were also demonstrated. Results Nitidine showed similar in vitro activity in CQ-sensitive and resistant strains, and also a satisfying selectivity index (> 10) when compared with a non-cancerous cells line. Its in vivo activity was moderate; however, no sign of acute toxicity was observed during treatment. Nitidine's moment of action on the parasite cycle showed that it could not interfere with DNA replication; this was consistent with the observation that nitidine did not localize in the nucleus, but rather in the cytoplasm of the parasite. Nitidine was able to form a 1-1 complex with haem in vitro and also inhibited β-haematin formation with the same potency as chloroquine. Conclusion Nitidine can be considered a potential anti-malarial lead compound. Its ability to complex haem and inhibit β-haematin formation suggests a mechanism of action similar to that of chloroquine. The anti-malarial activity of nitidine could therefore be improved by structural modification of this molecule to increase

  3. In vitro antimalarial activity and chloroquine potentiating action of two bisbenzylisoquinoline enantiomer alkaloids isolated from Strychnopsis thouarsii and Spirospermum penduliflorum.

    PubMed

    Ratsimamanga-Urverg, S; Rasoanaivo, P; Ramiaramanana, L; Milijaona, R; Rafatro, H; Verdier, F; Rakoto-Ratsimamanga, A; Le Bras, J

    1992-12-01

    The bisbenzylisoquinolines 7-O-demethyltetrandrine and limacine, respectively, isolated from Strychnopsis thouarsii Baill. and Spirospermum penduliflorum Thou. were evaluated for their intrinsic antimalarial activity in vitro and chloroquine potentiating action against the chloroquine-resistant Plasmodium falciparum FCM 29 originating from Cameroon. They both showed significant antiplasmodial potency in vitro with very similar IC50 values of respectively, 740 nM and 789 nM (IC50 = 214 nM for chloroquine used as standard drug), which demonstrated that the stereochemistry of the C-1 and C-1' configuration likely plays a role in the chloroquine potentiating effect of these drugs. If confirmed in vivo, these results may account for the traditional use of the two plants as antimalarials and adjuvant to chloroquine in Madagascan folklore remedies. PMID:1484894

  4. Costs and benefits of induced resistance in a clonal plant network.

    PubMed

    Gómez, Sara; Latzel, Vít; Verhulst, Yolanda M; Stuefer, Josef F

    2007-10-01

    Plant defense theory suggests that inducible resistance has evolved to reduce the costs of constitutive defense expression. To assess the functional and potentially adaptive value of induced resistance it is necessary to quantify the costs and benefits associated with this plastic response. The ecological and evolutionary viability of induced defenses ultimately depends on the long-term balance between advantageous and disadvantageous consequences of defense induction. Stoloniferous plants can use their inter-ramet connections to share resources and signals and to systemically activate defense expression after local herbivory. This network-specific early-warning system may confer clonal plants with potentially high benefits. However, systemic defense induction can also be costly if local herbivory is not followed by a subsequent attack on connected ramets. We found significant costs and benefits of systemic induced resistance by comparing growth and performance of induced and control plants of the stoloniferous herb Trifolium repens in the presence and absence of herbivores. PMID:17609982

  5. Network Analysis Reveals Sex- and Antibiotic Resistance-Associated Antivirulence Targets in Clinical Uropathogens

    PubMed Central

    2015-01-01

    Increasing antibiotic resistance among uropathogenic Escherichia coli (UPEC) is driving interest in therapeutic targeting of nonconserved virulence factor (VF) genes. The ability to formulate efficacious combinations of antivirulence agents requires an improved understanding of how UPEC deploy these genes. To identify clinically relevant VF combinations, we applied contemporary network analysis and biclustering algorithms to VF profiles from a large, previously characterized inpatient clinical cohort. These mathematical approaches identified four stereotypical VF combinations with distinctive relationships to antibiotic resistance and patient sex that are independent of traditional phylogenetic grouping. Targeting resistance- or sex-associated VFs based upon these contemporary mathematical approaches may facilitate individualized anti-infective therapies and identify synergistic VF combinations in bacterial pathogens. PMID:26985454

  6. Ophthalmologic safety profile of antimalarial drugs.

    PubMed

    Rynes, R I; Bernstein, H N

    1993-02-01

    The ophthalmologic safety of antimalarial drugs is well established, but absolute safety cannot be assured. Three types of side effects may develop. Corneal deposits and neuromuscular-associated blurred vision are always reversible and therefore benign. Visual loss has occurred in patients with retinopathy. Retinopathy may be divided into true retinopathy and premaculopathy. It is true retinopathy that may be associated with visual loss, while premaculopathy consists of subtle visual field and funduscopic abnormalities. These premaculopathic changes are generally completely reversible with drug discontinuation and have not been shown to progress. Hydroxychloroquine appears safer than chloroquine when currently accepted equivalent doses are used. Fewer than 20 patients with true retinopathy caused by hydroxychloroquine have been reported; more patients have developed true retinopathy when taking chloroquine. The safety profile is most dependent on low daily dose and regular ophthalmologic monitoring. The optimal strategy of ophthalmologic testing has not yet been determined, but visual acuity, funduscopic examination and visual field examination should be monitored. Self-administered ophthalmologic testing with Amsler grids may contribute additional safety but is not a replacement for physician testing. PMID:8485566

  7. Antibiotic Treatment Expands the Resistance Reservoir and Ecological Network of the Phage Metagenome

    PubMed Central

    Modi, Sheetal R.; Lee, Henry H.; Spina, Catherine S.; Collins, James J.

    2013-01-01

    The mammalian gut ecosystem has significant influence on host physiology1–4, but the mechanisms that sustain this complex environment in the face of different stresses remain obscure. Perturbations to this ecosystem, such as through antibiotic treatment or diet, are currently interpreted at the level of bacterial phylogeny5–7. Less is known about the contributions of the abundant population of phage to this ecological network. Here, we explore the phageome as a potential genetic reservoir for bacterial adaptation by sequencing murine fecal phage populations following antibiotic perturbation. We show that antibiotic treatment leads to the enrichment of phage-encoded genes that confer resistance via disparate mechanisms to the administered drug as well as genes that confer resistance to antibiotics unrelated to the administered drug, and we demonstrate experimentally that phage from treated mice afford aerobically cultured naïve microbiota increased resistance. Systems-wide analyses uncover post-treatment phage-encoded processes related to host colonization and growth adaptation, indicating that the phageome broadly enriches for functionally beneficial genes under stress-related conditions. We also show that antibiotic treatment expands the interactions between phage and bacterial species, leading to a more highly connected phage-bacterial network for gene exchange. Our work implicates the phageome in the emergence of multidrug resistance and indicates that the adaptive capacity of the phageome may represent a community-based mechanism for protecting the gut microflora, preserving its functional robustness during antibiotic stress. PMID:23748443

  8. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome.

    PubMed

    Modi, Sheetal R; Lee, Henry H; Spina, Catherine S; Collins, James J

    2013-07-11

    The mammalian gut ecosystem has considerable influence on host physiology, but the mechanisms that sustain this complex environment in the face of different stresses remain obscure. Perturbations to the gut ecosystem, such as through antibiotic treatment or diet, are at present interpreted at the level of bacterial phylogeny. Less is known about the contributions of the abundant population of phages to this ecological network. Here we explore the phageome as a potential genetic reservoir for bacterial adaptation by sequencing murine faecal phage populations following antibiotic perturbation. We show that antibiotic treatment leads to the enrichment of phage-encoded genes that confer resistance via disparate mechanisms to the administered drug, as well as genes that confer resistance to antibiotics unrelated to the administered drug, and we demonstrate experimentally that phages from treated mice provide aerobically cultured naive microbiota with increased resistance. Systems-wide analyses uncovered post-treatment phage-encoded processes related to host colonization and growth adaptation, indicating that the phageome becomes broadly enriched for functionally beneficial genes under stress-related conditions. We also show that antibiotic treatment expands the interactions between phage and bacterial species, leading to a more highly connected phage-bacterial network for gene exchange. Our work implicates the phageome in the emergence of multidrug resistance, and indicates that the adaptive capacity of the phageome may represent a community-based mechanism for protecting the gut microflora, preserving its functional robustness during antibiotic stress. PMID:23748443

  9. In vitro studies on the sensitivity pattern of Plasmodium falciparum to anti-malarial drugs and local herbal extracts

    PubMed Central

    2014-01-01

    Background The resistance of human malaria parasites to anti-malarial compounds has become considerable concern, particularly in view of the shortage of novel classes of anti-malarial drugs. One way to prevent resistance is by using new compounds that are not based on existing synthetic antimicrobial agents. Results Sensitivity of 100 Plasmodium falciparum isolates to chloroquine, quinine, amodiaquine, mefloquine, sulphadoxine/pyrimethamine, artemisinin, Momordica charantia (‘Ejirin’) Diospyros monbuttensis (‘Egun eja’) and Morinda lucida (‘Oruwo’) was determined using the in vitro microtest (Mark III) technique to determine the IC50 of the drugs. All the isolates tested were sensitive to quinine, mefloquine and artesunate. Fifty-one percent of the isolates were resistant to chloroquine, 13% to amodiaquine and 5% to sulphadoxine/pyrimethamine. Highest resistance to chloroquine (68.9%) was recorded among isolates from Yewa zone while highest resistance to amodiaquine (30%) was observed in Ijebu zone. Highest resistance to sulphadoxine/pyrimethamine was recorded in Yewa and Egba zones, respectively. A positive correlation was observed between the responses to artemisinin and mefloquine (P<0.05), artemisinin and quinine (P<0.05) and quinine and mefloquine (P<0.05). A negative correlation was observed between the responses to chloroquine and mefloquine (P>0.05). Highest anti-plasmodial activity was obtained with the ethanolic extract of D. monbuttensis (IC50 = 3.2nM) while the lowest was obtained from M. lucida (IC50 =25nM). Conclusions Natural products isolated from plants used in traditional medicine, which have potent anti-plasmodial action in vitro, represent potential sources of new anti-malarial drugs. PMID:24555525

  10. Synthesis, Antimalarial Activity, and Intracellular Targets of MEFAS, a New Hybrid Compound Derived from Mefloquine and Artesunate▿

    PubMed Central

    de Pilla Varotti, Fernando; Botelho, Ana Cristina C.; Andrade, Anderson Assunção; de Paula, Renata C.; Fagundes, Elaine M. S.; Valverde, Alessandra; Mayer, Lúcia M. U.; Mendonça, Jorge Souza; de Souza, Marcus V. N.; Boechat, Núbia; Krettli, Antoniana Ursine

    2008-01-01

    A new synthetic antimalarial drug, a salt derived from two antimalarial molecules, mefloquine (MQ) and artesunate (AS), here named MEFAS, has been tested for its pharmacological activity. Combinations of AS plus MQ hydrochloride are currently being used in areas with drug-resistant Plasmodium falciparum parasites; although AS clears parasitemia in shorter time periods than any other antimalarial drug, it does not cure infected patients; in addition, MQ causes side effects and is rather expensive, important problems considering that malaria affects mostly populations in poor countries. Here, we show that MEFAS is more effective than the combination of AS and MQ, tested in parallel at different mass proportions, against P. falciparum (chloroquine-resistant clone W2 and chloroquine-sensitive clone 3D7) in vitro and in mice infected with Plasmodium berghei, promoting cure of this infection. MEFAS tested against HepG2 hepatoma cells exhibited lower toxicity than the antimalarials AS and MQ alone or combined. Possible targets of MEFAS have been studied by confocal microscopy using fluorescent probes (Fluo-4 AM and BCECF-AM) in P. falciparum synchronous culture of W2-infected red blood cells. Dynamic images show that MEFAS exhibited intracellular action increasing cytoplasmic Ca2+ at 1.0 ng/ml. This effect was also observed in the presence of tapsigargin, an inhibitor of SERCA, suggesting an intracellular target distinct from the endoplasmic reticulum. Trophozoites loaded with BCECF-AM, when treated with MEFAS, were still able to mobilize protons from the digestive vacuole (DV), altering the pH gradient. However, in the presence of bafilomycin A1, an inhibitor of the H+ pump from acidic compartments of eukaryotic cells, MEFAS had no action on the DV. In conclusion, the endoplasmic reticulum and DV are intracellular targets for MEFAS in Plasmodium sp., suggesting two modes of action of this new salt. Our data support MEFAS as a candidate for treating human malaria. PMID

  11. In vivo antiplasmodial potentials of the combinations of four nigerian antimalarial plants.

    PubMed

    Adebajo, Adeleke Clement; Odediran, Samuel Akintunde; Aliyu, Fatimah Abosede; Nwafor, Paul Alozie; Nwoko, Ndifreke Thomas; Umana, Usenobong Samuel

    2014-01-01

    Various combinations of Nauclea latifolia root, Artocarpus altilis stem bark, Murraya koenigii leaf and Enantia chlorantha stem bark used in African ethnomedicine as decoctions for malaria and fevers, and combinations with standard drugs, were investigated for antiplasmodial activities using Plasmodium berghei berghei-infected mice. The respective prophylactic and curative ED50 values of 189.4 and 174.5 mg/kg for N. latifolia and chemosuppressive ED50 value of 227.2 mg/kg for A. altilis showed that they were the best antimalarial herbal drugs. A 1.6-fold increase of the survival time given by the negative control was elicited by M. koenigii, thereby confirming its curative activity. Pyrimethamine with an ED50 of 0.5 ± 0.1 mg/kg for the prophylactic, and chloroquine with ED50 = 2.2 ± 0.1 and 2.2 ± 0.0 mg/kg for the chemosuppressive and curative tests, respectively, were significantly (p < 0.05) more active. Co-administrations of N. latifolia with the standard drugs significantly reduced their prophylactic, chemosuppressive and curative actions, possibly increasing the parasites' resistance. Binary combinations of N. latifolia or M. koenigii with any of the other plants significantly increased the prophylactic and suppressive activities of their individual plants, respectively. Also, E. chlorantha with A. altilis or N. latifolia enhanced their respective prophylactic or curative activities, making these combinations most beneficial against malaria infections. Combinations of three and four extracts gave varied activities. Hence, the results justified the combinations of ethnomedicinal plants in antimalarial herbal remedies and showed the importance of the three in vivo models in establishing antimalarial activity. PMID:25162955

  12. Antimalarial efficacy of Albizia lebbeck (Leguminosae) against Plasmodium falciparum in vitro & P. berghei in vivo

    PubMed Central

    Kalia, Shagun; Walter, Neha Sylvia; Bagai, Upma

    2015-01-01

    Background & objectives: Albizia lebbeck Benth. (Leguminosae) has long been used in Indian traditional medicine. The current study was designed to test antimalarial activity of ethanolic bark extract of A. lebbeck (EBEAL). Methods: EBEAL was prepared by soxhlet extraction and subjected to phytochemical analysis. The extract was evaluated for its in vitro antimalarial activity against Plasmodium falciparum chloroquine (CQ) sensitive (MRC2) and CQ resistant (RKL9) strains. Cytotoxicity (CC50) of extract against HeLa cells was evaluated. Median lethal dose (LD50) was determined to assess safety of EBEAL in BALB/c mice. Schizonticidal (100-1000 mg/kg) and preventive (100-750 mg/kg) activities of EBEAL were evaluated against P. berghei. Curative activity (100-750 mg/kg) of extract was also evaluated. Results: Phytochemical screening revealed presence of alkaloids, flavonoids, phenols, saponins, terpenes and phytosterols. The extract exhibited IC50 of 8.2 μg/ml (MRC2) and 5.1 μg/ml (RKL9). CC50 of extract on HeLa cell line was calculated to be >1000 μg/ml. EBEAL showed selectivity indices (SI) of >121.9 and >196.07 against MRC2 and RKL9 strains of P. falciparum, respectively. LD50 of EBEAL was observed to be >5 g/kg. Dose-dependent chemosuppression was observed with significant (P<0.001) schizonticidal activity at 1000 mg/kg with ED50 >100 mg/kg. Significant (P<0.001) curative and repository activities were exhibited by 750 mg/kg concentration of extract on D7. Interpretation & conclusions: The present investigation reports antiplasmodial efficacy of EBEAL in vitro against P. falciparum as evident by high SI values. ED50 of <100 mg/kg against P. berghei categorizes EBEAL as active antimalarial. Further studies need to be done to exploit its antiplasmodial activity further. PMID:26905234

  13. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes.

    PubMed

    Li, Bing; Yang, Ying; Ma, Liping; Ju, Feng; Guo, Feng; Tiedje, James M; Zhang, Tong

    2015-11-01

    A metagenomic approach and network analysis was used to investigate the wide-spectrum profiles of antibiotic resistance genes (ARGs) and their co-occurrence patterns in 50 samples from 10 typical environments. In total, 260 ARG subtypes belonging to 18 ARG types were detected with an abundance range of 5.4 × 10(-6)-2.2 × 10(-1) copy of ARG per copy of 16S-rRNA gene. The trend of the total ARG abundances in environments matched well with the levels of anthropogenic impacts on these environments. From the less impacted environments to the seriously impacted environments, the total ARG abundances increased up to three orders of magnitude, that is, from 3.2 × 10(-3) to 3.1 × 10(0) copy of ARG per copy of 16S-rRNA gene. The abundant ARGs were associated with aminoglycoside, bacitracin, β-lactam, chloramphenicol, macrolide-lincosamide-streptogramin, quinolone, sulphonamide and tetracycline, in agreement with the antibiotics extensively used in human medicine or veterinary medicine/promoters. The widespread occurrences and abundance variation trend of vancomycin resistance genes in different environments might imply the spread of vancomycin resistance genes because of the selective pressure resulting from vancomycin use. The simultaneous enrichment of 12 ARG types in adult chicken faeces suggests the coselection of multiple ARGs in this production system. Non-metric multidimensional scaling analysis revealed that samples belonging to the same environment generally possessed similar ARG compositions. Based on the co-occurrence pattern revealed by network analysis, tetM and aminoglycoside resistance protein, the hubs of the ARG network, are proposed to be indicators to quantitatively estimate the abundance of 23 other co-occurring ARG subtypes by power functions. PMID:25918831

  14. Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks

    NASA Astrophysics Data System (ADS)

    Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li

    2016-06-01

    Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.

  15. Decreased Resting-State Connectivity between Neurocognitive Networks in Treatment Resistant Depression

    PubMed Central

    de Kwaasteniet, Bart P.; Rive, Maria M.; Ruhé, Henricus G.; Schene, Aart H.; Veltman, Dick J.; Fellinger, Lisanne; van Wingen, Guido A.; Denys, Damiaan

    2015-01-01

    Approximately one-third of patients with major depressive disorder (MDD) do not achieve remission after various treatment options and develop treatment resistant depression (TRD). So far, little is known about the pathophysiology of TRD. Studies in MDD patients showed aberrant functional connectivity (FC) of three “core” neurocognitive networks: the salience network (SN), cognitive control network (CCN), and default mode network (DMN). We used a cross-sectional design and performed resting-state FC MRI to assess connectivity of the SN, CCN, and both anterior and posterior DMN in 17 severe TRD, 18 non-TRD, and 18 healthy control (HC) subjects. Relative to both non-TRD and HC subjects, TRD patients showed decreased FC between the dorsolateral prefrontal cortex and angular gyrus, which suggests reduced FC between the CCN and DMN, and reduced FC between the medial prefrontal cortex and precuneus/cuneus, which suggests reduced FC between the anterior and posterior DMN. No significant differences in SN FC were observed. Our results suggest that TRD is characterized by a disturbance in neurocognitive networks relative to non-TRD and HC. PMID:25784881

  16. Reaction of antimalarial endoperoxides with specific parasite proteins.

    PubMed Central

    Asawamahasakda, W; Ittarat, I; Pu, Y M; Ziffer, H; Meshnick, S R

    1994-01-01

    The endoperoxides are a new class of antimalarial agents, of which artemisinin (qinghaosu) is the prototype. We have previously shown that artemisinin is capable of alkylating proteins in model reactions. In the present study, we showed that when Plasmodium falciparum-infected erythrocytes are treated with a radiolabeled antimalarial endoperoxide, either arteether, dihydroartemisinin, or Ro 42-1611 (arteflene), the radioactivity is largely coverted into a form which can be extracted with sodium dodecyl sulfate (SDS). Autoradiograms of SDS-polyacrylamide gels showed that six malarial proteins are radioactively labeled by the three endoperoxides. This labeling occurs at physiological concentrations of drug and is not stage nor strain specific. The labeled proteins were not the most abundant proteins seen on Coomassie-stained gels. No proteins were labeled when uninfected erythrocytes were treated with these drugs, nor when infected erythrocytes were treated with the inactive analog deoxyarteether. Thus, the antimalarial endoperoxides appear to react with specific malarial proteins. Images PMID:7986020

  17. Design, synthesis and antimalarial evaluation of novel thiazole derivatives.

    PubMed

    Bueno, José María; Carda, Miguel; Crespo, Benigno; Cuñat, Ana Carmen; de Cozar, Cristina; León, María Luisa; Marco, J Alberto; Roda, Nuria; Sanz-Cervera, Juan F

    2016-08-15

    As part of our medicinal chemistry program's ongoing search for compounds with antimalarial activity, we prepared a series of thiazole analogs and conducted a SAR study analyzing their in vitro activities against the chloroquine-sensitive Plasmodium falciparum 3D7 strain. The results indicate that modifications of the N-aryl amide group linked to the thiazole ring are the most significant in terms of in vitro antimalarial activity, leading to compounds with high antimalarial potency and low cytotoxicity in HepG2 cell lines. Furthermore, the observed SAR implies that non-bulky, electron-withdrawing groups are preferred at ortho position on the phenyl ring, whereas small atoms such as H or F are preferred at para position. Finally, replacement of the phenyl ring by a pyridine affords a compound with similar potency, but with potentially better physicochemical properties which could constitute a new line of research for further studies. PMID:27432764

  18. Tracking Down Antibiotic-Resistant Pseudomonas aeruginosa Isolates in a Wastewater Network

    PubMed Central

    Slekovec, Céline; Plantin, Julie; Cholley, Pascal; Thouverez, Michelle; Talon, Daniel; Bertrand, Xavier; Hocquet, Didier

    2012-01-01

    The Pseudomonas aeruginosa-containing wastewater released by hospitals is treated by wastewater treatment plants (WWTPs), generating sludge, which is used as a fertilizer, and effluent, which is discharged into rivers. We evaluated the risk of dissemination of antibiotic-resistant P. aeruginosa (AR-PA) from the hospital to the environment via the wastewater network. Over a 10-week period, we sampled weekly 11 points (hospital and urban wastewater, untreated and treated water, sludge) of the wastewater network and the river upstream and downstream of the WWTP of a city in eastern France. We quantified the P. aeruginosa load by colony counting. We determined the susceptibility to 16 antibiotics of 225 isolates, which we sorted into three categories (wild-type, antibiotic-resistant and multidrug-resistant). Extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) were identified by gene sequencing. All non-wild-type isolates (n = 56) and a similar number of wild-type isolates (n = 54) were genotyped by pulsed-field gel electrophoresis and multilocus sequence typing. Almost all the samples (105/110, 95.5%) contained P. aeruginosa, with high loads in hospital wastewater and sludge (≥3×106 CFU/l or/kg). Most of the multidrug-resistant isolates belonged to ST235, CC111 and ST395. They were found in hospital wastewater and some produced ESBLs such as PER-1 and MBLs such as IMP-29. The WWTP greatly reduced P. aeruginosa counts in effluent, but the P. aeruginosa load in the river was nonetheless higher downstream than upstream from the WWTP. We conclude that the antibiotic-resistant P. aeruginosa released by hospitals is found in the water downstream from the WWTP and in sludge, constituting a potential risk of environmental contamination. PMID:23284623

  19. Chemical genomic profiling for antimalarial therapies, response signatures and molecular targets

    PubMed Central

    Yuan, Jing; Cheng, Ken Chih-Chien; Johnson, Ronald L.; Huang, Ruili; Pattaradilokrat, Sittiporn; Liu, Anna; Guha, Rajarshi; Fidock, David; Inglese, James; Wellems, Thomas E.; Austin, Christopher P.; Su, Xin-zhuan

    2012-01-01

    Malaria remains a devastating disease largely because of widespread drug resistance. New drugs and a better understanding of the mechanisms of drug action and resistance are essential for fulfilling the promise of eradicating malaria. Using high-throughput chemical screening and genome-wide association analysis, we identified 32 highly active compounds and genetic loci and genes associated with differential chemical phenotypes (DCPs), defined as ≥5-fold differences in half-maximum inhibitor concentration (IC50) between parasite lines. Chromosomal loci associated with 49 DCPs were confirmed by linkage analysis and tests of genetically modified parasites, including three genes that were linked to 96% of the DCPs. Drugs whose responses mapped to wild type or mutant pfcrt alleles were tested in combination in vitro and in vivo, yielding promising new leads for antimalarial treatments. PMID:21817045

  20. Ecotoxicological evaluation of the antimalarial drug chloroquine.

    PubMed

    Zurita, Jorge L; Jos, Angeles; del Peso, Ana; Salguero, Manuel; López-Artíguez, Miguel; Repetto, Guillermo

    2005-10-15

    There is limited information available about the potential environmental effects of chloroquine (CQ), a widely used antimalarial agent and a promising inexpensive drug in the management of HIV disease. The acute effects of CQ were studied using four ecotoxicological model systems. The most sensitive bioindicator was the immobilization of the cladoceran Daphnia magna, with an EC50 of 12 microM CQ at 72 h and a non-observed adverse effect level of 2.5 microM CQ, followed very closely by the decrease of the uptake of neutral red and the reduction of the lysosomal function in the fish cell line PLHC-1 derived from the top minnow Poeciliopsis lucida, probably due to the selective accumulation of the drug into the lysosomes. There was significant cellular stress as indicated by the increases on metallothionein and glucose-6P dehydrogenase levels after 24 h of exposure and succinate dehydrogenase activity mainly after 48 h. No changes were observed for ethoxyresorufin-O-deethylase (EROD) activity. The least sensitive model was the inhibition of bioluminescence in the bacterium Vibrio fischeri. An increase of more than five-fold in the toxicity from 24 to 72 h of exposure was observed for the inhibition of the growth in the alga Chlorella vulgaris and the content of total protein and MTS tetrazolium salt metabolization in PLHC-1 cells. At the morphological level, the most evident alterations in PLHC-1 cultures were hydropic degeneration from 25 microM CQ after 24h of exposure and the presence of many cells with pyknotic nuclei, condensed cytoplasm and apoptosis with concentrations higher than 50 microM CQ after 48 h of exposure. In conclusion, CQ should be classified as harmful to aquatic organisms. PMID:16153718

  1. In Vitro Susceptibility of Plasmodium vivax to Antimalarials in Colombia

    PubMed Central

    Fernández, Diana; Segura, César; Arboleda, Margarita; Garavito, Giovanny; Blair, Silvia

    2014-01-01

    The in vitro susceptibilities of 30 isolates of Plasmodium vivax to a number of antimalarials (chloroquine [CQ], mefloquine, amodiaquine, quinine, and artesunate [AS]) were evaluated. The isolates came from the region of Urabá in Colombia, in which malaria is endemic, and were evaluated by the schizont maturation test. The 50% inhibitory concentration (IC50) was 0.6 nM (95% confidence interval [CI], 0.3 to 1.0 nM) for artesunate, 8.5 nM (95% CI, 5.6 to 13.0 nM) for amodiaquine, 23.3 nM (95% CI, 12.4 to 44.1 nM) for chloroquine, 55.6 nM (95% CI, 36.8 to 84.1 nM) for mefloquine, and 115.3 nM (95% CI, 57.7 to 230.5 nM) for quinine. The isolates were classified according to whether the initial parasites were mature or immature trophozoites (Tfz). It was found that the IC50s for chloroquine and artesunate were significantly different in the two aforementioned groups (P < 0.001). The IC50s of CQ and AS were higher in the isolates from mature Tfz (CQ, 39.3 nM versus 17 nM; AS, 1.4 nM versus 0.3 nM), and 10% of the isolates showed lower susceptibilities to one of the antimalarial drugs, 13.3% to two antimalarial drugs, and 3.3% to more than three antimalarial drugs. It should be highlighted that despite the extensive use of chloroquine in Colombia, P. vivax continues to be susceptible to antimalarials. This is the first report, to our knowledge, showing in vitro susceptibilities of P. vivax isolates to antimalarials in Colombia. PMID:25114141

  2. Functional network alterations and their structural substrate in drug-resistant epilepsy

    PubMed Central

    Caciagli, Lorenzo; Bernhardt, Boris C.; Hong, Seok-Jun; Bernasconi, Andrea; Bernasconi, Neda

    2014-01-01

    The advent of MRI has revolutionized the evaluation and management of drug-resistant epilepsy by allowing the detection of the lesion associated with the region that gives rise to seizures. Recent evidence indicates marked chronic alterations in the functional organization of lesional tissue and large-scale cortico-subcortical networks. In this review, we focus on recent methodological developments in functional MRI (fMRI) analysis techniques and their application to the two most common drug-resistant focal epilepsies, i.e., temporal lobe epilepsy related to mesial temporal sclerosis and extra-temporal lobe epilepsy related to focal cortical dysplasia. We put particular emphasis on methodological developments in the analysis of task-free or “resting-state” fMRI to probe the integrity of intrinsic networks on a regional, inter-regional, and connectome-wide level. In temporal lobe epilepsy, these techniques have revealed disrupted connectivity of the ipsilateral mesiotemporal lobe, together with contralateral compensatory reorganization and striking reconfigurations of large-scale networks. In cortical dysplasia, initial observations indicate functional alterations in lesional, peri-lesional, and remote neocortical regions. While future research is needed to critically evaluate the reliability, sensitivity, and specificity, fMRI mapping promises to lend distinct biomarkers for diagnosis, presurgical planning, and outcome prediction. PMID:25565942

  3. Synthesis of new arylaminoquinoxalines and their antimalarial activity in mice.

    PubMed

    Rangisetty, J B; Gupta, C N; Prasad, A L; Srinivas, P; Sridhar, N; Parimoo, P; Veeranjaneyulu, A

    2001-10-01

    2-Arylaminoquinoxalines were prepared by the condensation of 2-chloroquinoxaline with the appropriate Mannich bases in the presence of HCl. To synthesize the Mannich bases, 4-acetamidophenol was reacted with formaldehyde and dialkylamine to yield 3-[(dialkylamino) methyl]-4-hydroxyacetanilide, followed by hydrolysis. Antimalarial activities of the new arylaminoquinoxalines were evaluated against the rodent malaria parasite Plasmodium yoelii at a dose of 75 mg kg(-1). Three compounds synthesized (2-[3-[(diethylamino) methyl]-4-hydroxyanilino]-quinoxaline dihydrochloride (2b), 2-[3-[(pyrrolidinyl) methyl]-4-hydroxyanilino]-quinoxaline dihydrochloride (2f), and 2-[3-[(piperidinyl) methyl]-4-hydroxyanilino]-quinoxaline dihydrochloride (2g)) showed moderate antimalarial activity. PMID:11697550

  4. Antimalarial Drug Discovery: From Quinine to the Dream of Eradication

    PubMed Central

    2013-01-01

    The search for antimalarial remedies predates modern medicine and the concept of small molecule chemotherapy, yet has played a central role in the development of both. This history is reviewed in the context of the current renaissance in antimalarial drug discovery, which is seeing modern drug discovery approaches applied to the problem for the first time. Great strides have been made in the past decade, but further innovations from the drug discovery community will be required if the ultimate dream of eradication is to be achieved. PMID:24790706

  5. Antimalarial activity of extracts of Malaysian medicinal plants.

    PubMed

    Najib Nik A Rahman, N; Furuta, T; Kojima, S; Takane, K; Ali Mohd, M

    1999-03-01

    In vitro and in vivo studies revealed that Malaysian medicinal plants, Piper sarmentosum, Andrographis paniculata and Tinospora crispa produced considerable antimalarial effects. Chloroform extract in vitro did show better effect than the methanol extract. The chloroform extract showed complete parasite growth inhibition as low as 0.05 mg/ml drug dose within 24 h incubation period (Andrographis paniculata) as compared to methanol extract of drug dose of 2.5 mg/ml but under incubation time of 48 h of the same plant spesies. In vivo activity of Andrographis paniculata also demonstrated higher antimalarial effect than other two plant species. PMID:10363840

  6. Heme as trigger and target for trioxane-containing antimalarial drugs.

    PubMed

    Meunier, Bernard; Robert, Anne

    2010-11-16

    Heme is not only just the binding site responsible for oxygen transport by hemoglobin, but it is also the prosthetic group of many different heme-containing enzymes, such as cytochromes P450, peroxidases, catalase, and several proteins involved in electron transfer. Heme plays a key role in the mechanism of action of many different antimalarial drugs. In degrading the host's hemoglobin, the malaria parasite Plasmodium and several other heme-eating parasites are faced with this redox-active metal complex. Heme is able to induce the toxic reductive cascade of molecular oxygen, which leads to the production of destructive hydroxyl radicals. Plasmodium detoxifies heme by converting it into a redox-inactive iron(III) polymer called hemozoin. Artemisinin, a natural drug containing a biologically important 1,2,4-trioxane structure, is now the first-line treatment for multidrug-resistant malaria. The peroxide moiety in artemisinin reacts in the presence of the flat, achiral iron(II)-heme; the mechanism does not reflect the classical "key and lock" paradigm for drugs. Instead, the reductive activation of the peroxide function generates a short-lived alkoxy radical, which quickly rearranges to a C-centered primary radical. This radical alkylates heme via an intramolecular process to produce covalent heme-drug adducts. The accumulation of non-polymerizable redox-active heme derivatives, a consequence of heme alkylation, is thought to be toxic for the parasite. The alkylation of heme by artemisinin has been demonstrated in malaria-infected mice, indicating that heme is acting as the trigger and target of artemisinin. The alkylation of heme by artemisinin is not limited to this natural compound: the mechanism is invoked for a large number of antimalarial semisynthetic derivatives. Synthetic trioxanes or trioxolanes also alkylate heme, and their alkylation ability correlates well with their antimalarial efficacy. In addition, several reports have demonstrated the cytotoxicity of

  7. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1) for antimalarial drug development.

    PubMed

    Deniskin, Roman; Frame, I J; Sosa, Yvett; Akabas, Myles H

    2016-04-01

    Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs). Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1). Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1) homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([(3)H]adenosine) and pyrimidines ([(3)H]uridine), whereas wild type (fui1Δ) yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 μM), compared to guanosine (14.9 μM) and adenosine (142 μM). For pyrimidines, thymidine had an IC50 of 183 μM (vs. cytidine and uridine; mM range). IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR) had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 μM IC50, a 1000-fold less sensitive than human ENT1 (hENT1). The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs) with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel antimalarial

  8. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1) for antimalarial drug development

    PubMed Central

    Deniskin, Roman; Frame, I.J.; Sosa, Yvett; Akabas, Myles H.

    2015-01-01

    Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs). Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1). Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1) homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([3H]adenosine) and pyrimidines ([3H]uridine), whereas wild type (fui1Δ) yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 μM), compared to guanosine (14.9 μM) and adenosine (142 μM). For pyrimidines, thymidine had an IC50 of 183 μM (vs. cytidine and uridine; mM range). IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR) had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 μM IC50, a 1000-fold less sensitive than human ENT1 (hENT1). The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs) with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel antimalarial drugs

  9. Natural polyhydroxyalkanoate-gold nanocomposite based biosensor for detection of antimalarial drug artemisinin.

    PubMed

    Phukon, Pinkee; Radhapyari, Keisham; Konwar, Bolin Kumar; Khan, Raju

    2014-04-01

    The worrisome trend of antimalarial resistance has already highlighted the importance of artemisinin as a potent antimalarial agent. The current investigation aimed at fabricating a biosensor based on natural polymer polyhydroxyalkanoate-gold nanoparticle composite mounting on an indium-tin oxide glass plate for the analysis of artemisinin. The biosensor was fabricated using an adsorbing horse-radish peroxidase enzyme on the electrode surface for which cyclic voltammetry was used to monitor the electro-catalytic reduction of artemisinin under diffusion controlled conditions. Electrochemical interfacial properties and immobilization of enzyme onto a polyhydroxyalkanoate-gold nanoparticle film were evaluated, and confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The differential pulse voltammetric peak current for artemisinin was increased linearly (concentration range of 0.01-0.08μg mL(-1)) with sensitivity of 0.26μAμg mL(-1). The greater sensitivity of the fabricated biosensor to artemisinin (optimum limits of detection were 0.0035μg mL(-1) and 0.0036μg mL(-1) in bulk and spiked human serum, respectively) could be of much aid in medical diagnosis. PMID:24582254

  10. Using genetic methods to define the targets of compounds with antimalarial activity

    PubMed Central

    Flannery, Erika L.; Fidock, David A.; Winzeler, Elizabeth A.

    2013-01-01

    Although phenotypic cellular screening has been used to drive antimalarial drug discovery in recent years, in some cases target-based drug discovery remains more attractive. This is especially true when appropriate high-throughput cellular assays are lacking, as is the case for drug discovery efforts that aim to provide a replacement for primaquine (4-N-(6-methoxyquinolin-8-yl)pentane-1,4-diamine), the only drug that can block Plasmodium transmission to Anopheles mosquitoes and eliminate liver-stage hypnozoites. At present, however, there are no known chemically validated parasite protein targets that are important in all Plasmodium parasite developmental stages and that can be used in traditional biochemical compound screens. We propose that a plethora of novel, chemically validated, cross-stage antimalarial targets still remain to be discovered from the ~5,500 proteins encoded by the Plasmodium genomes. Here we discuss how in vitro evolution of drug-resistant strains of Plasmodium falciparum and subsequent whole-genome analysis can be used to find the targets of some of the many compounds discovered in whole-cell phenotypic screens. PMID:23927658

  11. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach.

    PubMed

    Wright, Megan H; Clough, Barbara; Rackham, Mark D; Rangachari, Kaveri; Brannigan, James A; Grainger, Munira; Moss, David K; Bottrill, Andrew R; Heal, William P; Broncel, Malgorzata; Serwa, Remigiusz A; Brady, Declan; Mann, David J; Leatherbarrow, Robin J; Tewari, Rita; Wilkinson, Anthony J; Holder, Anthony A; Tate, Edward W

    2014-02-01

    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase. PMID:24451586

  12. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    NASA Astrophysics Data System (ADS)

    Wright, Megan H.; Clough, Barbara; Rackham, Mark D.; Rangachari, Kaveri; Brannigan, James A.; Grainger, Munira; Moss, David K.; Bottrill, Andrew R.; Heal, William P.; Broncel, Malgorzata; Serwa, Remigiusz A.; Brady, Declan; Mann, David J.; Leatherbarrow, Robin J.; Tewari, Rita; Wilkinson, Anthony J.; Holder, Anthony A.; Tate, Edward W.

    2014-02-01

    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.

  13. Toxicity and side-effects of antimalarials in Africa: a critical review

    PubMed Central

    Salako, L. A.

    1984-01-01

    Notwithstanding the presence of resistance to chloroquine in some parts of Africa, this drug is still the most widely used antimalarial in the continent. One adverse reaction of chloroquine that has an important bearing on its use is pruritus. The risk of increasing the incidence of ocular toxicity through prolonged use of chloroquine for prophylaxis must be borne in mind by physicians. Another antimalarial that is likely to be used in increasing amounts in Africa is pyrimethamine—sulfadoxine. With prolonged use of this combination for prophylaxis, the adverse reactions usually associated with the long-acting sulfonamides are possible. Genetic abnormalities may also play a part in the incidence and severity of adverse reactions to certain drugs, e.g., primaquine and quinine. Most of the common adverse reactions are mild and have little or no influence on the acceptability and utilization of the drugs, with the exception of chloroquine-induced pruritus. Studies to define the precise epidemiology and pathophysiology of this reaction are urgently needed. PMID:6335683

  14. An Alternative Paradigm for the Role of Antimalarial Plants in Africa

    PubMed Central

    Maranz, Steven

    2012-01-01

    Most investigations into the antimalarial activity of African plants are centered on finding an indigenous equivalent to artemisinin, the compound from which current frontline antimalarial drugs are synthesized. As a consequence, the standard practice in ethnopharmacological research is to use in vitro assays to identify compounds that inhibit parasites at nanomolar concentrations. This approach fails to take into consideration the high probability of acquisition of resistance to parasiticidal compounds since parasite populations are placed under direct selection for genetic that confers a survival advantage. Bearing in mind Africa's long exposure to malaria and extensive ethnobotanical experimentation with both therapies and diet, it is more likely that compounds not readily overcome by Plasmodium parasites would have been retained in the pharmacopeia and cuisine. Such compounds are characterized by acting primarily on the host rather than directly targeting the parasite and thus cannot be adequately explored in vitro. If Africa's long history with malaria has in fact produced effective plant therapies, their scientific elucidation will require a major emphasis on in vivo investigation. PMID:22593717

  15. Antimalarial activity of axidjiferosides, new β-galactosylceramides from the African sponge Axinyssa djiferi.

    PubMed

    Farokhi, Fereshteh; Grellier, Philippe; Clément, Monique; Roussakis, Christos; Loiseau, Philippe M; Genin-Seward, Emilie; Kornprobst, Jean-Michel; Barnathan, Gilles; Wielgosz-Collin, Gaëtane

    2013-04-01

    The marine sponge, Axinyssa djiferi, collected on mangrove tree roots in Senegal, was investigated for glycolipids. A mixture containing new glycosphingolipids, named axidjiferoside-A, -B and -C, accounted for 0.07% of sponge biomass (dry weight) and for 2.16% of total lipids. It showed a significant antimalarial activity, with a 50% inhibitory concentration (IC50) of 0.53 ± 0.2 μM against a chloroquine-resistant strain of Plasmodium falciparum. They were identified as homologous β-galactopyranosylceramides composed of 2-amino-(6E)-octadec-6-en-1,3,4-triol, and the major one, axidjiferoside-A (around 60%), contained 2-hydroxytetracosanoic acid. Cytotoxicity was studied in vitro on human cancer cell lines (multiple myeloma, colorectal adenocarcinoma, glioblastoma and two lung cancer NSCLC-N6 and A549). Results of this investigation showed that axidjiferosides are of interest, because they proved a good antiplasmodial activity, with only a low cytotoxicity against various human cell lines and no significant antitrypanosomal and antileishmanial activity. Thus, it seems that galactosylceramides with a β anomeric configuration may be suitable in searching for new antimalarial drugs. PMID:23595058

  16. Antimalarial Activity of Axidjiferosides, New β-Galactosylceramides from the African Sponge Axinyssa djiferi

    PubMed Central

    Farokhi, Fereshteh; Grellier, Philippe; Clément, Monique; Roussakis, Christos; Loiseau, Philippe M.; Genin-Seward, Emilie; Kornprobst, Jean-Michel; Barnathan, Gilles; Wielgosz-Collin, Gaëtane

    2013-01-01

    The marine sponge, Axinyssa djiferi, collected on mangrove tree roots in Senegal, was investigated for glycolipids. A mixture containing new glycosphingolipids, named axidjiferoside-A, -B and -C, accounted for 0.07% of sponge biomass (dry weight) and for 2.16% of total lipids. It showed a significant antimalarial activity, with a 50% inhibitory concentration (IC50) of 0.53 ± 0.2 μM against a chloroquine-resistant strain of Plasmodium falciparum. They were identified as homologous β-galactopyranosylceramides composed of 2-amino-(6E)-octadec-6-en-1,3,4-triol, and the major one, axidjiferoside-A (around 60%), contained 2-hydroxytetracosanoic acid. Cytotoxicity was studied in vitro on human cancer cell lines (multiple myeloma, colorectal adenocarcinoma, glioblastoma and two lung cancer NSCLC-N6 and A549). Results of this investigation showed that axidjiferosides are of interest, because they proved a good antiplasmodial activity, with only a low cytotoxicity against various human cell lines and no significant antitrypanosomal and antileishmanial activity. Thus, it seems that galactosylceramides with a β anomeric configuration may be suitable in searching for new antimalarial drugs. PMID:23595058

  17. Synthesis, in vitro and in silico antimalarial activity of 7-chloroquinoline and 4H-chromene conjugates.

    PubMed

    Parthiban, A; Muthukumaran, J; Manhas, Ashan; Srivastava, Kumkum; Krishna, R; Rao, H Surya Prakash

    2015-10-15

    A new series of chloroquinoline-4H-chromene conjugates incorporating piperizine or azipane tethers were synthesized and their anti-malarial activity were evaluated against two Plasmodium falciparum strains namely 3D7 chloroquine sensitive (CQS) and K1 chloroquine resistant (CQR). Chloroquine was used as the standard and also reference for comparison. The conjugates exhibit intense UV absorption with λmax located at 342 nm (log ε=4.0), 254 nm (log ε=4.2), 223 nm (log ε=4.4) which can be used to spectrometrically track the molecules even in trace amounts. Among all the synthetic compounds, two molecules namely 6-nitro and N-piperazine groups incorporated 7d and 6-chloro and N-azapane incorporated 15b chloroquinoline-4H-chromene conjugates showed significant anti-malarial activity against two strains (3D7 and K1) of P. falciparum. These values are lesser than the values of standard antimalarial compound. Molecular docking results suggested that these two compounds showing strong binding affinity with P. falciparum lactate dehydrogenase (PfLDH) and also they occupy the co-factor position which indicated that they could be the potent inhibitors for dreadful disease malaria and specifically attack the glycolytic pathway in parasite for energy production. PMID:26338359

  18. Synthesis and Structure-Activity Relationships of Tambjamines and B-Ring Functionalized Prodiginines as Potent Antimalarials.

    PubMed

    Kancharla, Papireddy; Kelly, Jane Xu; Reynolds, Kevin A

    2015-09-24

    Synthesis and antimalarial activity of 94 novel bipyrrole tambjamines (TAs) and a library of B-ring functionalized tripyrrole prodiginines (PGs) against a panel of Plasmodium falciparum strains are described. The activity and structure-activity relationships demonstrate that the ring-C of PGs can be replaced by an alkylamine, providing for TAs with retained/enhanced potency. Furthermore, ring-B of PGs/TAs can be substituted with short alkyl substitutions at either 4-position (replacement of OMe) or 3- and 4-positions without impacting potency. Eight representative TAs and two PGs have been evaluated for antimalarial activity against multidrug-resistant P. yoelii in mice in the dose range of 5-100 mg/kg × 4 days by oral administration. The KAR425 TA offered greater efficacy than previously observed for any PG, providing 100% protection to malaria-infected mice until day 28 at doses of 25 and 50 mg/kg × 4 days, and was also curative in this model in a single oral dose (80 mg/kg). This study presents the first account of antimalarial activity in tambjamines. PMID:26305125

  19. Multifunctional membranes for solvent resistant nanofiltration and pervaporation applications based on segmented polymer networks.

    PubMed

    Li, Xianfeng; Basko, Malgorzata; Du Prez, S Filip; Vankelecom, Ivo F J

    2008-12-25

    Hydrophilic bis(acrylate)-terminated poly(ethylene oxide) was used as macromolecular cross-linker of different hydrophobic polyacrylates for the synthesis of amphiphilic segmented polymer networks (SPNs). Multifunctional composite membranes with thin SPN toplayers were prepared by in situ polymerization. As the support consisted of hydrolyzed polyacrylonitrile, the high chemical resistance of the composite membrane allowed applications of the SPN-based membranes in solvent-resistant nanofiltration (SRNF) and pervaporation (PV). The membranes show very high retention on Rose Bengal (RB) in different solvents, especially in strong swelling solvents such as tetrahydrofuran (THF) and dimethylformamide (DMF). The membranes were also tested in pervaporation for dehydration of ethanol and isopropanol (IPA). The selectivity of the membranes greatly depends on the composition or the ratio of the hydrophilic and hydrophobic phases of the SPN. PMID:19055387

  20. Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance.

    PubMed

    Lee, Sunjae; Zhang, Cheng; Kilicarslan, Murat; Piening, Brian D; Bjornson, Elias; Hallström, Björn M; Groen, Albert K; Ferrannini, Ele; Laakso, Markku; Snyder, Michael; Blüher, Matthias; Uhlen, Mathias; Nielsen, Jens; Smith, Ulf; Serlie, Mireille J; Boren, Jan; Mardinoglu, Adil

    2016-07-12

    To investigate the biological processes that are altered in obese subjects, we generated cell-specific integrated networks (INs) by merging genome-scale metabolic, transcriptional regulatory and protein-protein interaction networks. We performed genome-wide transcriptomics analysis to determine the global gene expression changes in the liver and three adipose tissues from obese subjects undergoing bariatric surgery and integrated these data into the cell-specific INs. We found dysregulations in mannose metabolism in obese subjects and validated our predictions by detecting mannose levels in the plasma of the lean and obese subjects. We observed significant correlations between plasma mannose levels, BMI, and insulin resistance (IR). We also measured plasma mannose levels of the subjects in two additional different cohorts and observed that an increased plasma mannose level was associated with IR and insulin secretion. We finally identified mannose as one of the best plasma metabolites in explaining the variance in obesity-independent IR. PMID:27345421

  1. Virtual resistive network and conductivity reconstruction with Faradayʼs law

    NASA Astrophysics Data System (ADS)

    Lee, Min Gi; Ko, Min-Su; Kim, Yong-Jung

    2014-12-01

    A network-based conductivity reconstruction method is introduced using the third Maxwell equation, or Faraday's law, for a static case. The usual choice in electrical impedance tomography is the divergence-free equation for the electrical current density. However, if the electrical current density is given, the curl-free equation for the electrical field gives a direct relation between the current and the conductivity and this relation is used in this paper. Mimetic discretization is applied to the equation, which gives the virtual resistive network system. Properties of the numerical schemes introduced are investigated and their advantages over other conductivity reconstruction methods are discussed. Numerically simulated results, with an analysis of noise propagation, are presented.

  2. Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance

    NASA Astrophysics Data System (ADS)

    Thomas, Alex; Rahmanian, Sorena; Bordbar, Aarash; Palsson, Bernhard Ø.; Jamshidi, Neema

    2014-01-01

    Recently there has not been a systematic, objective assessment of the metabolic capabilities of the human platelet. A manually curated, functionally tested, and validated biochemical reaction network of platelet metabolism, iAT-PLT-636, was reconstructed using 33 proteomic datasets and 354 literature references. The network contains enzymes mapping to 403 diseases and 231 FDA approved drugs, alluding to an expansive scope of biochemical transformations that may affect or be affected by disease processes in multiple organ systems. The effect of aspirin (ASA) resistance on platelet metabolism was evaluated using constraint-based modeling, which revealed a redirection of glycolytic, fatty acid, and nucleotide metabolism reaction fluxes in order to accommodate eicosanoid synthesis and reactive oxygen species stress. These results were confirmed with independent proteomic data. The construction and availability of iAT-PLT-636 should stimulate further data-driven, systems analysis of platelet metabolism towards the understanding of pathophysiological conditions including, but not strictly limited to, coagulopathies.

  3. Modeling of Abrasion Resistance Performance of Persian Handmade Wool Carpets Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Gupta, Shravan Kumar; Goswami, Kamal Kanti

    2015-10-01

    This paper presents the application of Artificial Neural Network (ANN) modeling for the prediction of abrasion resistance of Persian handmade wool carpets. Four carpet constructional parameters, namely knot density, pile height, number of ply in pile yarn and pile yarn twist have been used as input parameters for ANN model. The prediction performance was judged in terms of statistical parameters like correlation coefficient ( R) and Mean Absolute Percentage Error ( MAPE). Though the training performance of ANN was very good, the generalization ability was not up to the mark. This implies that large number of training data should be used for the adequate training of ANN models.

  4. Antimalarial properties of SAABMAL®: an ethnomedicinal polyherbal formulation for the treatment of uncomplicated malaria infection in the tropics

    PubMed Central

    Obidike, I.C.; Amodu, B.; Emeje, M.O.

    2015-01-01

    Background & objectives: Malaria is a serious problem in the countries of the developing world. As the malaria parasite has become resistant to most of the antimalaria drugs available currently, there is a need to search for newer drugs. This study reports the pharmaceutical quality and in vivo antimalarial activities of a polyherbal formulation (SAABMAL®) used as malarial remedy in Nigeria. Methods: The antiplasmodial activity of SAABMAL® was determined by using the 4-day suppressive test in Plasmodium berghei-infected mice. The formulation was tried on three different experimental animal models for in vivo antimalarial activities, which are prophylactic, suppressive and curative in mice. Chloroquine and pyrimethamine were used as standard drugs for comparison. Results: The suppressive study showed that, SAABMAL® (200 and 400 mg/kg/bw) significantly (P<0.01) produced a suppression (29.39 - 100%) of parasitaemia in a dose-dependent manner, while the curative study showed that SAABMAL® at 400 mg significantly (P<0.01) reduced (95.80%) parasitaemia compared with controls. The mean survival time of SAABMAL®-treated groups (100 and 200 mg/kg) was higher than that of the chloroquine-treated group. Histopathologically, no changes were found in the spleen of both untreated and treated groups. SAABMAL® capsules were of good mechanical properties with low weight variation and high degree of content mass uniformity. Interpretation & conclusions: The results obtained in this study showed the efficacy of SAABMAL®, a herbal antimalarial formulation against chloroquine sensitive malaria and its potential use in the treatment of uncomplicated malaria infection. Further studies need to be done in humans to test its efficacy and safety for its potential use as an antimalarial drug. PMID:25900958

  5. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato

    PubMed Central

    Martínez-Medina, Ainhoa; Fernández, Iván; Sánchez-Guzmán, María J.; Jung, Sabine C.; Pascual, Jose A.; Pozo, María J.

    2013-01-01

    Root colonization by selected Trichoderma isolates can activate in the plant a systemic defense response that is effective against a broad-spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defense signaling network that leads to the induction of systemic resistance triggered by beneficial organisms [induced systemic resistance (ISR)]. Among them, jasmonic acid (JA) and ethylene (ET) signaling pathways are generally essential for ISR. However, Trichoderma ISR (TISR) is believed to involve a wider variety of signaling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defense-related hormones JA, ET, salicylic acid (SA), and abscisic acid (ABA), and the peptide prosystemin (PS) evidenced the requirement of intact JA, SA, and ABA signaling pathways for a functional TISR. Expression analysis of several hormone-related marker genes point to the role of priming for enhanced JA-dependent defense responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development. PMID:23805146

  6. Resistance to HF jamming interference in mobile radio networks by an adaptive, distributed reconfiguration technique

    NASA Astrophysics Data System (ADS)

    Baker, D. J.; Wieselthier, J. E.; Ephremides, A.; McGregor, D. N.

    1984-08-01

    In radio communication, interference (and in particular jamming) represents an important limitation to the rate and range of information transfer. In a radio network environment, a combination of relaying and other classes of interference-combatting methods, such as spread spectrum signaling, may achieve highly robust resistance to jamming. Since the presence of relays is an inherent characteristic of a network, it is possible to use some nodes as relays when previously existing direct links are disabled as a result of jamming. The purpose of this report is to show how a distributed algorithm can enable an HF radio network to reconfigure itself to combat various jamming threats. We present models for the communication range that is achievable through the use of HF groundwave signals under both benign and stressed conditions and for cases of narrowband and wideband signaling. The models are used in our simulations. These simulations show that the choice of best frequency for communication in an HF network should not depend solely on communication range in a benign environment.

  7. Policy options for deploying anti-malarial drugs in endemic countries: a population genetics approach

    PubMed Central

    2012-01-01

    Background Anti-malarial drugs are constantly exposed to the threat of evolving drug resistance so good stewardship of existing therapy is an essential component of public health policy. However, the widespread availability of numerous different drugs through informal providers could undermine official drug deployment policies. A policy of multiple first-line therapy (MFT) is compared with the conventional policy of sequential drug deployment, i.e., where one drug is used until resistance evolves and then replaced by the next drug in the sequence. Methods Population genetic models of drug resistance are used to make the comparison; this methodology explicitly tracks the genetics of drug resistance (including, importantly, recombination in the sexual stage, intrahost dynamics, and direction of linkage disequilibrium). Results A policy of MFT outlasts sequential application providing drug usages are low to moderate, and appears not to drive widespread multi-drug resistance. Inadequate dosing is an even more potent driver of drug resistance than the MFT/sequential policy decision. Conclusions The provision of MFT as a deliberate policy can be encouraged provided overall treatment rates are low or moderate (less than around half of malaria infections are treated) and the ad hoc provision of MFT through the private sector may be tolerated. This must be fully supported by education to ensure people take adequate doses of each of the drugs. PMID:23244624

  8. Detecting Counterfeit Antimalarial Tablets by Near-Infrared Spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Counterfeit antimalarial drugs are found in many developing countries, but it is challenging to differentiate between genuine and fakes due to their increasing sophistication. Near-infrared spectroscopy (NIRS) is a powerful tool in pharmaceutical forensics, and we tested this technique for discrim...

  9. Antimalarial Activity of the Myxobacterial Macrolide Chlorotonil A

    PubMed Central

    Gebru, Tamirat; Kalesse, Markus; Jansen, Rolf; Gerth, Klaus; Müller, Rolf; Mordmüller, Benjamin

    2014-01-01

    Myxobacteria are Gram-negative soil-dwelling bacteria belonging to the phylum Proteobacteria. They are a rich source of promising compounds for clinical application, such as epothilones for cancer therapy and several new antibiotics. In the course of a bioactivity screening program of secondary metabolites produced by Sorangium cellulosum strains, the macrolide chlorotonil A was found to exhibit promising antimalarial activity. Subsequently, we evaluated chlorotonil A against Plasmodium falciparum laboratory strains and clinical isolates from Gabon. Chlorotonil A was highly active, with a 50% inhibitory concentration between 4 and 32 nM; additionally, no correlations between the activities of chlorotonil A and artesunate (rho, 0.208) or chloroquine (rho, −0.046) were observed. Per os treatment of Plasmodium berghei-infected mice with four doses of as little as 36 mg of chlorotonil A per kg of body weight led to the suppression of parasitemia with no obvious signs of toxicity. Chlorotonil A acts against all stages of intraerythrocytic parasite development, including ring-stage parasites and stage IV to V gametocytes, and it requires only a very short exposure to the parasite to exert its antimalarial action. Conclusively, chlorotonil A has an exceptional and unprecedented profile of action and represents an urgently required novel antimalarial chemical scaffold. Therefore, we propose it as a lead structure for further development as an antimalarial chemotherapeutic. PMID:25114138

  10. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs.

    PubMed

    Spillman, Natalie Jane; Kirk, Kiaran

    2015-12-01

    The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na(+) concentration and the plasma membrane P-type cation translocating ATPase 'PfATP4' has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's 'Malaria Box'. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na(+). Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin) has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field. PMID:26401486

  11. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs

    PubMed Central

    Spillman, Natalie Jane; Kirk, Kiaran

    2015-01-01

    The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na+ concentration and the plasma membrane P-type cation translocating ATPase ‘PfATP4’ has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's ‘Malaria Box’. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na+. Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin) has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field. PMID:26401486

  12. Bone marrow derived myeloid cells orchestrate antiangiogenic resistance in glioblastoma through coordinated molecular networks.

    PubMed

    Achyut, B R; Shankar, Adarsh; Iskander, A S M; Ara, Roxan; Angara, Kartik; Zeng, Peng; Knight, Robert A; Scicli, Alfonso G; Arbab, Ali S

    2015-12-28

    Glioblastoma (GBM) is a hypervascular and malignant form of brain tumors. Anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in clinical and preclinical studies, which resulted into marked hypoxia and recruited bone marrow derived cells (BMDCs) to the tumor microenvironment (TME). In vivo animal models to track BMDCs and investigate molecular mechanisms in AAT resistance are rare. We exploited recently established chimeric mouse to develop orthotopic U251 tumor, which uses as low as 5 × 10(6) GFP+ BM cells in athymic nude mice and engrafted >70% GFP+ cells within 14 days. Our unpublished data and published studies have indicated the involvement of immunosuppressive myeloid cells in therapeutic resistance in glioma. Similarly, in the present study, vatalanib significantly increased CD68+ myeloid cells, and CD133+, CD34+ and Tie2+ endothelial cell signatures. Therefore, we tested inhibition of CSF1R+ myeloid cells using GW2580 that reduced tumor growth by decreasing myeloid (Gr1+ CD11b+ and F4/80+) and angiogenic (CD202b+ and VEGFR2+) cell signatures in TME. CSF1R blockade significantly decreased inflammatory, proangiogenic and immunosuppressive molecular signatures compared to vehicle, vatalanib or combination. TCK1 or CXCL7, a potent chemoattractant and activator of neutrophils, was observed as most significantly decreased cytokine in CSF1R blockade. ERK MAPK pathway was involved in cytokine network regulation. In conclusion, present study confirmed the contribution of myeloid cells in GBM development and therapeutic resistance using chimeric mouse model. We identified novel molecular networks including CXCL7 chemokine as a promising target for future studies. Nonetheless, survival studies are required to assess the beneficial effect of CSF1R blockade. PMID:26404753

  13. Synthesis, Docking, In Vitro and In Vivo Antimalarial Activity of Hybrid 4-aminoquinoline-1,3,5-triazine Derivatives Against Wild and Mutant Malaria Parasites.

    PubMed

    Bhat, Hans Raj; Singh, Udaya Pratap; Gahtori, Prashant; Ghosh, Surajit Kumar; Gogoi, Kabita; Prakash, Anil; Singh, Ramendra K

    2015-09-01

    A new series of hybrid 4-aminoquinoline-1,3,5-triazine derivatives was synthesized by a four-step reaction. Target compounds were screened for in vitro antimalarial activity against chloroquine-sensitive (3D-7) and chloroquine-resistant (RKL-2) strains of Plasmodium falciparum. Compounds exhibited, by and large, good antimalarial activity against the resistant strain, while two of them, that is 8g and 8a, displayed higher activity against both the strains of P. falciparum. Additionally, docking study was performed on both wild (1J3I.pdb) and quadruple mutant (N51I, C59R, S108 N, I164L, 3QG2.pdb) type pf-DHFR-TS to highlight the structural features of hybrid molecules. PMID:25487527

  14. Integrated network model provides new insights into castration-resistant prostate cancer

    PubMed Central

    Hu, Yanling; Gu, Yinmin; Wang, Huimin; Huang, Yuanjie; Zou, Yi Ming

    2015-01-01

    Castration-resistant prostate cancer (CRPC) is the main challenge for prostate cancer treatment. Recent studies have indicated that extending the treatments to simultaneously targeting different pathways could provide better approaches. To better understand the regulatory functions of different pathways, a system-wide study of CRPC regulation is necessary. For this purpose, we constructed a comprehensive CRPC regulatory network by integrating multiple pathways such as the MEK/ERK and the PI3K/AKT pathways. We studied the feedback loops of this network and found that AKT was involved in all detected negative feedback loops. We translated the network into a predictive Boolean model and analyzed the stable states and the control effects of genes using novel methods. We found that the stable states naturally divide into two obvious groups characterizing PC3 and DU145 cells respectively. Stable state analysis further revealed that several critical genes, such as PTEN, AKT, RAF, and CDKN2A, had distinct expression behaviors in different clusters. Our model predicted the control effects of many genes. We used several public datasets as well as FHL2 overexpression to verify our finding. The results of this study can help in identifying potential therapeutic targets, especially simultaneous targets of multiple pathways, for CRPC. PMID:26603105

  15. A Genetic Network Associated With Stress Resistance, Longevity, and Cancer in Humans.

    PubMed

    Levine, Morgan E; Crimmins, Eileen M

    2016-06-01

    Human longevity and diseases are likely influenced by multiple interacting genes within a few biologically conserved pathways. Using long-lived smokers as a phenotype (n = 90)-a group whose survival may signify innate resilience-we conducted a genome-wide association study comparing them to smokers at ages 52-69 (n = 730). These results were used to conduct a functional interaction network and pathway analysis, to identify single nucleotide polymorphisms that collectively related to smokers' longevity. We identified a set of 215 single nucleotide polymorphisms (all of which had p <5×10(-3) in the genome-wide association study) that were located within genes making-up a functional interaction network. These single nucleotide polymorphisms were then used to create a weighted polygenic risk score that, using an independent validation sample of nonsmokers (N = 6,447), was found to be significantly associated with a 22% increase in the likelihood of being aged 90-99 (n = 253) and an over threefold increase in the likelihood of being a centenarian (n = 4), compared with being at ages 52-79 (n = 4,900). Additionally, the polygenic risk score was also associated with an 11% reduction in cancer prevalence over up to 18 years (odds ratio: 0.89, p = .011). Overall, using a unique phenotype and incorporating prior knowledge of biological networks, this study identified a set of single nucleotide polymorphisms that together appear to be important for human aging, stress resistance, cancer, and longevity. PMID:26355015

  16. Stability analysis of a model gene network links aging, stress resistance, and negligible senescence.

    PubMed

    Kogan, Valeria; Molodtsov, Ivan; Menshikov, Leonid I; Shmookler Reis, Robert J; Fedichev, Peter

    2015-01-01

    Several animal species are considered to exhibit what is called negligible senescence, i.e. they do not show signs of functional decline or any increase of mortality with age. Recent studies in naked mole rat and long-lived sea urchins showed that these species do not alter their gene-expression profiles with age as much as other organisms do. This is consistent with exceptional endurance of naked mole rat tissues to various genotoxic stresses. We conjectured, therefore, that the lifelong transcriptional stability of an organism may be a key determinant of longevity. We analyzed the stability of a simple genetic-network model and found that under most common circumstances, such a gene network is inherently unstable. Over a time it undergoes an exponential accumulation of gene-regulation deviations leading to death. However, should the repair systems be sufficiently effective, the gene network can stabilize so that gene damage remains constrained along with mortality of the organism. We investigate the relationship between stress-resistance and aging and suggest that the unstable regime may provide a mathematical basis for the Gompertz "law" of aging in many species. At the same time, this model accounts for the apparently age-independent mortality observed in some exceptionally long-lived animals. PMID:26316217

  17. Stability analysis of a model gene network links aging, stress resistance, and negligible senescence

    PubMed Central

    Kogan, Valeria; Molodtsov, Ivan; Menshikov, Leonid I.; Reis, Robert J. Shmookler; Fedichev, Peter

    2015-01-01

    Several animal species are considered to exhibit what is called negligible senescence, i.e. they do not show signs of functional decline or any increase of mortality with age. Recent studies in naked mole rat and long-lived sea urchins showed that these species do not alter their gene-expression profiles with age as much as other organisms do. This is consistent with exceptional endurance of naked mole rat tissues to various genotoxic stresses. We conjectured, therefore, that the lifelong transcriptional stability of an organism may be a key determinant of longevity. We analyzed the stability of a simple genetic-network model and found that under most common circumstances, such a gene network is inherently unstable. Over a time it undergoes an exponential accumulation of gene-regulation deviations leading to death. However, should the repair systems be sufficiently effective, the gene network can stabilize so that gene damage remains constrained along with mortality of the organism. We investigate the relationship between stress-resistance and aging and suggest that the unstable regime may provide a mathematical basis for the Gompertz “law” of aging in many species. At the same time, this model accounts for the apparently age-independent mortality observed in some exceptionally long-lived animals. PMID:26316217

  18. Brief Report: HIV Drug Resistance in Adults Failing Early Antiretroviral Treatment: Results From the HIV Prevention Trials Network 052 Trial.

    PubMed

    Fogel, Jessica M; Hudelson, Sarah E; Ou, San-San; Hart, Stephen; Wallis, Carole; Morgado, Mariza G; Saravanan, Shanmugam; Tripathy, Srikanth; Hovind, Laura; Piwowar-Manning, Estelle; Sabin, Devin; McCauley, Marybeth; Gamble, Theresa; Zhang, Xinyi C; Eron, Joseph J; Gallant, Joel E; Kumwenda, Johnstone; Makhema, Joseph; Kumarasamy, Nagalingeswaran; Chariyalertsak, Suwat; Hakim, James; Badal-Faesen, Sharlaa; Akelo, Victor; Hosseinipour, Mina C; Santos, Breno R; Godbole, Sheela V; Pilotto, Jose H; Grinsztejn, Beatriz; Panchia, Ravindre; Mayer, Kenneth H; Chen, Ying Q; Cohen, Myron S; Eshleman, Susan H

    2016-07-01

    Early initiation of antiretroviral treatment (ART) reduces HIV transmission and has health benefits. HIV drug resistance can limit treatment options and compromise use of ART for HIV prevention. We evaluated drug resistance in 85 participants in the HIV Prevention Trials Network 052 trial who started ART at CD4 counts of 350-550 cells per cubic millimeter and failed ART by May 2011; 8.2% had baseline resistance and 35.3% had resistance at ART failure. High baseline viral load and less education were associated with emergence of resistance at ART failure. Resistance at ART failure was observed in 7 of 8 (87.5%) participants who started ART at lower CD4 cell counts. PMID:26859828

  19. Antimalarial activity of prodrugs of N-branched acyclic nucleoside phosphonate inhibitors of 6-oxopurine phosphoribosyltransferases.

    PubMed

    Hocková, Dana; Janeba, Zlatko; Naesens, Lieve; Edstein, Michael D; Chavchich, Marina; Keough, Dianne T; Guddat, Luke W

    2015-09-01

    Acyclic nucleoside phosphonates (ANPs) that contain a 6-oxopurine base are good inhibitors of the human and Plasmodium falciparum 6-oxopurine phosphoribosyltransferases (PRTs), key enzymes of the purine salvage pathway. Chemical modifications, based on the crystal structures of several inhibitors in complex with the human PRTase, led to the design of a new class of inhibitors--the aza-ANPs. Because of the negative charges of the phosphonic acid moiety, their ability to cross cell membranes is, however, limited. Thus, phosphoramidate prodrugs of the aza-ANPs were prepared to improve permeability. These prodrugs arrest parasitemia with IC50 values in the micromolar range against Plasmodium falciparum-infected erythrocyte cultures (both chloroquine-sensitive and chloroquine-resistant Pf strains). The prodrugs exhibit low cytotoxicity in several human cell lines. Thus, they fulfill two essential criteria to qualify them as promising antimalarial drug leads. PMID:26275679

  20. Antimalarial benzoheterocyclic 4-aminoquinolines: Structure-activity relationship, in vivo evaluation, mechanistic and bioactivation studies.

    PubMed

    Ongarora, Dennis S B; Strydom, Natasha; Wicht, Kathryn; Njoroge, Mathew; Wiesner, Lubbe; Egan, Timothy J; Wittlin, Sergio; Jurva, Ulrik; Masimirembwa, Collen M; Chibale, Kelly

    2015-09-01

    A novel class of benzoheterocyclic analogues of amodiaquine designed to avoid toxic reactive metabolite formation was synthesized and evaluated for antiplasmodial activity against K1 (multidrug resistant) and NF54 (sensitive) strains of the malaria parasite Plasmodium falciparum. Structure-activity relationship studies led to the identification of highly promising analogues, the most potent of which had IC50s in the nanomolar range against both strains. The compounds further demonstrated good in vitro microsomal metabolic stability while those subjected to in vivo pharmacokinetic studies had desirable pharmacokinetic profiles. In vivo antimalarial efficacy in Plasmodium berghei infected mice was evaluated for four compounds, all of which showed good activity following oral administration. In particular, compound 19 completely cured treated mice at a low multiple dose of 4×10mg/kg. Mechanistic and bioactivation studies suggest hemozoin formation inhibition and a low likelihood of forming quinone-imine reactive metabolites, respectively. PMID:26264839

  1. The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia

    PubMed Central

    Ashton, Thomas M.; Fokas, Emmanouil; Kunz-Schughart, Leoni A.; Folkes, Lisa K.; Anbalagan, Selvakumar; Huether, Melanie; Kelly, Catherine J.; Pirovano, Giacomo; Buffa, Francesca M.; Hammond, Ester M.; Stratford, Michael; Muschel, Ruth J.; Higgins, Geoff S.; McKenna, William Gillies

    2016-01-01

    Tumour hypoxia renders cancer cells resistant to cancer therapy, resulting in markedly worse clinical outcomes. To find clinical candidate compounds that reduce hypoxia in tumours, we conduct a high-throughput screen for oxygen consumption rate (OCR) reduction and identify a number of drugs with this property. For this study we focus on the anti-malarial, atovaquone. Atovaquone rapidly decreases the OCR by more than 80% in a wide range of cancer cell lines at pharmacological concentrations. In addition, atovaquone eradicates hypoxia in FaDu, HCT116 and H1299 spheroids. Similarly, it reduces hypoxia in FaDu and HCT116 xenografts in nude mice, and causes a significant tumour growth delay when combined with radiation. Atovaquone is a ubiquinone analogue, and decreases the OCR by inhibiting mitochondrial complex III. We are now undertaking clinical studies to assess whether atovaquone reduces tumour hypoxia in patients, thereby increasing the efficacy of radiotherapy. PMID:27453292

  2. The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia.

    PubMed

    Ashton, Thomas M; Fokas, Emmanouil; Kunz-Schughart, Leoni A; Folkes, Lisa K; Anbalagan, Selvakumar; Huether, Melanie; Kelly, Catherine J; Pirovano, Giacomo; Buffa, Francesca M; Hammond, Ester M; Stratford, Michael; Muschel, Ruth J; Higgins, Geoff S; McKenna, William Gillies

    2016-01-01

    Tumour hypoxia renders cancer cells resistant to cancer therapy, resulting in markedly worse clinical outcomes. To find clinical candidate compounds that reduce hypoxia in tumours, we conduct a high-throughput screen for oxygen consumption rate (OCR) reduction and identify a number of drugs with this property. For this study we focus on the anti-malarial, atovaquone. Atovaquone rapidly decreases the OCR by more than 80% in a wide range of cancer cell lines at pharmacological concentrations. In addition, atovaquone eradicates hypoxia in FaDu, HCT116 and H1299 spheroids. Similarly, it reduces hypoxia in FaDu and HCT116 xenografts in nude mice, and causes a significant tumour growth delay when combined with radiation. Atovaquone is a ubiquinone analogue, and decreases the OCR by inhibiting mitochondrial complex III. We are now undertaking clinical studies to assess whether atovaquone reduces tumour hypoxia in patients, thereby increasing the efficacy of radiotherapy. PMID:27453292

  3. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.

    PubMed

    Marrero-Ponce, Yovani; Iyarreta-Veitía, Maité; Montero-Torres, Alina; Romero-Zaldivar, Carlos; Brandt, Carlos A; Avila, Priscilla E; Kirchgatter, Karin; Machado, Yanetsy

    2005-01-01

    Malaria has been one of the most significant public health problems for centuries. It affects many tropical and subtropical regions of the world. The increasing resistance of Plasmodium spp. to existing therapies has heightened alarms about malaria in the international health community. Nowadays, there is a pressing need for identifying and developing new drug-based antimalarial therapies. In an effort to overcome this problem, the main purpose of this study is to develop simple linear discriminant-based quantitative structure-activity relationship (QSAR) models for the classification and prediction of antimalarial activity using some of the TOMOCOMD-CARDD (TOpological MOlecular COMputer Design-Computer Aided "Rational" Drug Design) fingerprints, so as to enable computational screening from virtual combinatorial datasets. In this sense, a database of 1562 organic chemicals having great structural variability, 597 of them antimalarial agents and 965 compounds having other clinical uses, was analyzed and presented as a helpful tool, not only for theoretical chemists but also for other researchers in this area. This series of compounds was processed by a k-means cluster analysis in order to design training and predicting sets. Afterward, two linear classification functions were derived in order to discriminate between antimalarial and nonantimalarial compounds. The models (including nonstochastic and stochastic indices) correctly classify more than 93% of the compound set, in both training and external prediction datasets. They showed high Matthews' correlation coefficients, 0.889 and 0.866 for the training set and 0.855 and 0.857 for the test one. The models' predictivity was also assessed and validated by the random removal of 10% of the compounds to form a new test set, for which predictions were made using the models. The overall means of the correct classification for this process (leave group 10% full-out cross validation) using the equations with nonstochastic

  4. Structural Basis for Binding and Selectivity of Antimalarial and Anticancer Ethylenediamine Inhibitors to Protein Farnesyltransferase

    SciTech Connect

    Hast, Michael A.; Fletcher, Steven; Cummings, Christopher G.; Pusateri, Erin E.; Blaskovich, Michelle A.; Rivas, Kasey; Gelb, Michael H.; Voorhis, Wesley C.Van; Sebti, Said M.; Hamilton, Andrew D.; Beese, Lorena S. ); ); ); )

    2009-03-20

    Protein farnesyltransferase (FTase) catalyzes an essential posttranslational lipid modification of more than 60 proteins involved in intracellular signal transduction networks. FTase inhibitors have emerged as a significant target for development of anticancer therapeutics and, more recently, for the treatment of parasitic diseases caused by protozoan pathogens, including malaria (Plasmodium falciparum). We present the X-ray crystallographic structures of complexes of mammalian FTase with five inhibitors based on an ethylenediamine scaffold, two of which exhibit over 1000-fold selective inhibition of P. falciparum FTase. These structures reveal the dominant determinants in both the inhibitor and enzyme that control binding and selectivity. Comparison to a homology model constructed for the P. falciparum FTase suggests opportunities for further improving selectivity of a new generation of antimalarial inhibitors.

  5. Ligand based validated comparative chemometric modeling and pharmacophore mapping of aurone derivatives as antimalarial agents.

    PubMed

    Adhikari, Nilanjan; Halder, Amit Kumar; Mondal, Chanchal; Jha, Tarun

    2013-09-01

    Chloroquine resistance is nowadays a great problem. Aurone derivatives are effective against chloroquine resistant parasite. Ligand based validated comparative chemometric modeling through 2D-QSAR and kNN-MFA 3DQSAR studies as well as common feature 3D pharmacophore mapping were done on thirtyfive aurone derivatives having antimalarial activity. Statistically significant 2D-QSAR models were generated on unsplitted as well as splitted dataset by MLR and PLS technique. The MLR model of the unsplitted method was validated by two-deep cross validation and 10 fold cross validation for determining the predictive ability. The PLS technique of the unsplitted method was done to compare the significance of these methods. In the splitted method, model was developed on the training set by Y-based ranking method by using the same descriptors and was validated on fifty pairs of the test and the training sets by k-MCA technique. These models generated by using the same descriptors were well validated irrespective of MLR as well as PLS analysis of unsplitted as well as splitted methods and are showing similar results. Therefore, these descriptors and model generated were reliable and robust. The kNN-MFA 3D-QSAR models were generated by three variable selection methods: genetic algorithm, simulated annealing and stepwise regression. The kNN-MFA 3D-QSAR results support the 2D QSAR data and in turn validate the earlier observed SAR results. Common feature 3D-pharmacophore generation was performed on these compounds to validate both 2D and 3D-QSAR studies as well as the earlier observed SAR data. The work highlights the required structural features for the higher antimalarial activity. PMID:24010937

  6. Anti-malarial activity and HS-SPME-GC-MS chemical profiling of Plinia cerrocampanensis leaf essential oil

    PubMed Central

    2014-01-01

    Background Plinia cerrocampanensis is an endemic plant of Panama. The leaf essential oil of this plant has shown antibacterial activity. However, anti-malarial activity and chemical profiling by HS-SPME-GC-MS of this essential oil have not been reported before. Methods Anti-malarial activity of the essential oil (EO) was evaluated in vitro against chloroquine-sensitive HB3 and chloroquine-resistant W2 strains of Plasmodium falciparum. Synergistic effect of chloroquine and the EO on parasite growth was evaluated by calculating the combination index. A methodology involving headspace solid phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) was developed to investigate the composition of Plinia cerrocampanensis EO. Results Plinia cerrocampanensis EO showed a high anti-malarial activity and a synergistic interaction with chloroquine. The Plinia cerrocampanensis EO inhibited P. falciparum growth in vitro at an IC50 of 7.3 μg/mL. Chloroquine together with the EO decreased the IC50 of chloroquine from 0.1 μg/mL to 0.05 μg/mL, and of the EO from 7.3 μg/mL to 1.1 μg/mL. The measured combination index was 0.58, which clearly indicates that the EO acts synergistically with chloroquine. Since the EO maintained its inhibitory activity on the chloroquine-sensitive strain of the parasite, it could be acting by a different mechanism of action than chloroquine. The best HS-SPME-GC-MS analytical conditions were obtained when the temperature of extraction was 49°C, incubation time 14 min, and the time of extraction 10 min. This method allowed for the identification of 53 volatile constituents in the EO, including new compounds not reported earlier. Conclusions The anti-malarial activity exhibited by the Plinia cerrocampanensis EO may lend support for its possible use as an alternative for anti-malarial therapy. PMID:24410874

  7. Southern African Treatment Resistance Network (SATuRN) RegaDB HIV drug resistance and clinical management database: supporting patient management, surveillance and research in southern Africa.

    PubMed

    Manasa, Justen; Lessells, Richard; Rossouw, Theresa; Naidu, Kevindra; Van Vuuren, Cloete; Goedhals, Dominique; van Zyl, Gert; Bester, Armand; Skingsley, Andrew; Stott, Katharine; Danaviah, Siva; Chetty, Terusha; Singh, Lavanya; Moodley, Pravi; Iwuji, Collins; McGrath, Nuala; Seebregts, Christopher J; de Oliveira, Tulio

    2014-01-01

    Substantial amounts of data have been generated from patient management and academic exercises designed to better understand the human immunodeficiency virus (HIV) epidemic and design interventions to control it. A number of specialized databases have been designed to manage huge data sets from HIV cohort, vaccine, host genomic and drug resistance studies. Besides databases from cohort studies, most of the online databases contain limited curated data and are thus sequence repositories. HIV drug resistance has been shown to have a great potential to derail the progress made thus far through antiretroviral therapy. Thus, a lot of resources have been invested in generating drug resistance data for patient management and surveillance purposes. Unfortunately, most of the data currently available relate to subtype B even though >60% of the epidemic is caused by HIV-1 subtype C. A consortium of clinicians, scientists, public health experts and policy markers working in southern Africa came together and formed a network, the Southern African Treatment and Resistance Network (SATuRN), with the aim of increasing curated HIV-1 subtype C and tuberculosis drug resistance data. This article describes the HIV-1 data curation process using the SATuRN Rega database. The data curation is a manual and time-consuming process done by clinical, laboratory and data curation specialists. Access to the highly curated data sets is through applications that are reviewed by the SATuRN executive committee. Examples of research outputs from the analysis of the curated data include trends in the level of transmitted drug resistance in South Africa, analysis of the levels of acquired resistance among patients failing therapy and factors associated with the absence of genotypic evidence of drug resistance among patients failing therapy. All these studies have been important for informing first- and second-line therapy. This database is a free password-protected open source database available on

  8. Analysis of position error by time constant in read-out resistive network for gamma-ray imaging detection system

    NASA Astrophysics Data System (ADS)

    Jeon, Su-Jin; Park, Chang-In; Son, Byung-Hee; Jung, Mi; Jang, Teak-Jin; Lee, Chun-Sik; Choi, Young-Wan

    2016-03-01

    Position-sensitive photomultiplier tubes (PSPMTs) in array are used as gamma ray position detector. Each PMT converts the light of wide spectrum range (100 nm ~ 2500 nm) to electrical signal with amplification. Because detection system size is determined by the number of output channels in the PSPMTs, resistive network has been used for reducing the number of output channels. The photo-generated current is distributed to the four output current pulses according to a ratio by resistance values of resistive network. The detected positions are estimated by the peak value of the distributed current pulses. However, due to parasitic capacitance of PSPMTs in parallel with resistor in the resistive network, the time constants should be considered. When the duration of current pulse is not long enough, peak value of distributed pulses is reduced and detected position error is increased. In this paper, we analyzed the detected position error in the resistive network and variation of time constant according to the input position of the PSPMTs.

  9. In-silico studies on DegP protein of Plasmodium falciparum in search of anti-malarials.

    PubMed

    Sharma, Drista; Soni, Rani; Patel, Sachin; Joshi, Deepti; Bhatt, Tarun Kumar

    2016-09-01

    Despite encouraging progress over the past decade, malaria caused by the Plasmodium parasite continues to pose an enormous disease burden and is one of the major global health problems. The extreme challenge in malaria management is the resistance of parasites to traditional monochemotherapies like chloroquine and sulfadoxine-pyrimethamine. No vaccine is yet in sight, and the foregoing effective drugs are also losing ground against the disease due to the resistivity of parasites. New antimalarials with novel mechanisms of action are needed to circumvent existing or emerging drug resistance. DegP protein, secretory in nature has been shown to be involved in regulation of thermo-oxidative stress generated during asexual life cycle of Plasmodium, probably required for survival of parasite in host. Considering the significance of protein, in this study, we have generated a three-dimensional structure of PfDegP followed by validation of the modeled structure using several tools like RAMPAGE, ERRAT, and others. We also performed an in-silico screening of small molecule database against PfDegP using Glide. Furthermore, molecular dynamics simulation of protein and protein-ligand complex was carried out using GROMACS. This study substantiated potential drug-like molecules and provides the scope for development of novel antimalarial drugs. PMID:27491850

  10. Discovery of carbohybrid-based 2-aminopyrimidine analogues as a new class of rapid-acting antimalarial agents using image-based cytological profiling assay.

    PubMed

    Lee, Sukjun; Lim, Donghyun; Lee, Eunyoung; Lee, Nakyung; Lee, Hong-Gun; Cechetto, Jonathan; Liuzzi, Michel; Freitas-Junior, Lucio H; Song, Jin Sook; Bae, Myung Ae; Oh, Sangmi; Ayong, Lawrence; Park, Seung Bum

    2014-09-11

    New antimalarial agents that exhibit multistage activities against drug-resistant strains of malaria parasites represent good starting points for developing next-generation antimalarial therapies. To facilitate the progression of such agents into the development phase, we developed an image-based parasitological screening method for defining drug effects on different asexual life cycle stages of Plasmodium falciparum. High-throughput screening of a newly assembled diversity-oriented synthetic library using this approach led to the identification of carbohybrid-based 2-aminopyrimidine compounds with fast-acting growth inhibitory activities against three laboratory strains of multidrug-resistant P. falciparum. Our structure-activity relationship study led to the identification of two derivatives (8aA and 11aA) as the most promising antimalarial candidates (mean EC50 of 0.130 and 0.096 μM against all three P. falciparum strains, selectivity indices >600, microsomal stabilities >80%, and mouse malaria ED50 values of 0.32 and 0.12 mg/kg/day, respectively), targeting all major blood stages of multidrug-resistant P. falciparum parasites. PMID:25137549

  11. SICR rumor spreading model in complex networks: Counterattack and self-resistance

    NASA Astrophysics Data System (ADS)

    Zan, Yongli; Wu, Jianliang; Li, Ping; Yu, Qinglin

    2014-07-01

    Rumor is an important form of social interaction. However, spreading of harmful rumors could have a significant negative impact on the well-being of the society. In this paper, considering the counterattack mechanism of the rumor spreading, we introduce two new models: Susceptible-Infective-Counterattack-Refractory (SICR) model and adjusted-SICR model. We then derive mean-field equations to describe their dynamics in homogeneous networks and conduct the steady-state analysis. We also introduce the self-resistance parameter τ, and study the influence of this parameter on rumor spreading. Numerical simulations are performed to compare the SICR model with the SIR model and the adjusted-SICR model, respectively, and we investigate the spreading peak of the rumor and the final size of the rumor with various parameters. Simulation results are congruent exactly with the theoretical analysis. The experiment reveals some interesting patterns of rumor spreading involved with counterattack force.

  12. Ruthenium(II) arene complexes with chelating chloroquine analogue ligands: Synthesis, characterization and in vitro antimalarial activity†

    PubMed Central

    Glans, Lotta; Ehnbom, Andreas; de Kock, Carmen; Martínez, Alberto; Estrada, Jesús; Smith, Peter J.; Haukka, Matti; Sánchez-Delgado, Roberto A.; Nordlander, Ebbe

    2012-01-01

    Three new ruthenium complexes with bidentate chloroquine analogue ligands, [Ru(η6-cym)(L1)Cl]Cl (1, cym = p-cymene, L1 = N-(2-((pyridin-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine), [Ru(η6-cym)(L2)Cl]Cl (2, L2 = N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) and [Ru(η6-cym)(L3)Cl] (3, L3 = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine) have been synthesized and characterized. In addition, the X-ray crystal structure of 2 is reported. The antimalarial activity of complexes 1–3 and ligands L1, L2 and L3, as well as the compound N-(2-(bis((pyridin-2-yl)methyl)amino)ethyl)-7-chloroquinolin-4-amine (L4), against chloroquine sensitive and chloroquine resistant Plasmodium falciparum malaria strains was evaluated. While 1 and 2 are less active than the corresponding ligands, 3 exhibits high antimalarial activity. The chloroquine analogue L2 also shows good activity against both the choloroquine sensitive and the chloroquine resistant strains. Heme aggregation inhibition activity (HAIA) at an aqueous buffer/n-octanol interface (HAIR50) and lipophilicity (D, as measured by water/n-octanol distribution coefficients) have been measured for all ligands and metal complexes. A direct correlation between the D and HAIR50 properties cannot be made because of the relative structural diversity of the complexes, but it may be noted that these properties are enhanced upon complexation of the inactive ligand L3 to ruthenium, to give a metal complex (3) with promising antimalarial activity. PMID:22249579

  13. Discovering New Transmission-Blocking Antimalarial Compounds: Challenges and Opportunities.

    PubMed

    Birkholtz, Lyn-Marie; Coetzer, Theresa L; Mancama, Dalu; Leroy, Didier; Alano, Pietro

    2016-09-01

    The ability to target human-mosquito parasite transmission challenges global malaria elimination. However, it is not obvious what a transmission-blocking drug will look like; should it target only parasite transmission stages; be combined with a partner drug killing the pathogenic asexual stages; or kill both the sexual and asexual blood stages, preferably displaying polypharmacology? The development of transmission-blocking antimalarials requires objective analyses of the current strategies. Here, pertinent issues and questions regarding the target candidate profile of a transmission-blocking compound, and its role in malaria elimination strategies, are highlighted and novel perspectives proposed. The essential role of a test cascade that integrates screening and validation strategies to identify next-generation transmission-blocking antimalarials is emphasised. PMID:27209388

  14. Isolation of antileishmanial, antimalarial and antimicrobial metabolites from Jatropha multifida

    PubMed Central

    Falodun, Abiodun; Imieje, Vincent; Erharuyi, Osayewenre; Joy, Ahomafor; Langer, Peter; Jacob, Melissa; Khan, Shabanna; Abaldry, Mohammed; Hamann, Mark

    2014-01-01

    Objective To investigate the antileishmanial, antimicrobial and antimalarial activities of the pure metabolites from Jatropha multifida used in African ethnomedicine. Methods The methanolic stem bark extract of Jatropha multifida used in Nigerian folk medicine as remedy against bacterial infections was subjected to column chromatography and HPLC analyses to obtain three known metabolites, microcyclic lathyrane diterpenoids (1-3). Structures were confirmed by comparison of 1D and 2D spectral data with literature. Results The three compounds exhibited inhibition of antileishmanial, antimalarial and antimicrobial actions against the tested organisms with compouds 2 and 3 active against Cryptococcus neoformans at IC50 of 8.2 and 8.7 µg/mL, respectively. Conclusions The research lends support to the ethnomedicinal use of the plant in combating microbial infections, leishmaniasis and malarial infections. PMID:25182722

  15. Isolation and antimalarial activity of alkaloids from Pseudoxandra cuspidata.

    PubMed

    Roumy, Vincent; Fabre, Nicolas; Souard, Florence; Massou, Stéphane; Bourdy, Geneviève; Maurel, Séverine; Valentin, Alexis; Moulis, Claude

    2006-08-01

    A novel and very unusual azaanthracene alkaloid, 1-aza-7,8,9,10-tetramethoxy-4-methyl-2-oxo-1,2-dihydroanthracene ( 1) and a new diastereoisomer of the bis-benzylisoquinoline alkaloid rodiasine, 1 S,1' R-rodiasine ( 2), as well as the alkaloids O-methylpunjabine ( 3) and O-methylmoschatoline ( 4) have been isolated from Pseudoxandra cuspidata bark, used in French Guiana as an antimalarial. Their structures were elucidated by spectroscopic analyses, especially 2D-NMR techniques (ADEQUATE and NOESY). We found that the antimalarial activity of this bark was mostly due to bis-benzylisoquinoline 1 S,1' R-rodiasine ( 2) (IC (50)= 1 microM) also displaying a low cytotoxicity. PMID:16902855

  16. Imidazolopiperazines: Lead Optimization of the Second-Generation Antimalarial Agents

    PubMed Central

    2012-01-01

    On the basis of the initial success of optimization of a novel series of imidazolopiperazines, a second generation of compounds involving changes in the core piperazine ring was synthesized to improve antimalarial properties. These changes were carried out to further improve the potency and metabolic stability of the compounds by leveraging the outcome of a set of in vitro metabolic identification studies. The optimized 8,8-dimethyl imidazolopiperazine analogues exhibited improved potency, in vitro metabolic stability profile and, as a result, enhanced oral exposure in vivo in mice. The optimized compounds were found to be more efficacious than the current antimalarials in a malaria mouse model. They exhibit moderate oral exposure in rat pharmacokinetic studies to achieve sufficient multiples of the oral exposure at the efficacious dose in toxicology studies. PMID:22524250

  17. Arylmethyl substituted derivatives of Fosmidomycin: synthesis and antimalarial activity.

    PubMed

    Schlüter, Katrin; Walter, Rolf D; Bergmann, Bärbel; Kurz, Thomas

    2006-12-01

    The phosphonohydroxamic acid Fosmidomycin is a drug candidate for the treatment of Malaria, currently in phase II trials in combination with Clindamycin. In order to obtain compounds of higher lipophilicity, we recently synthesized alpha-phenyl substituted Fosmidomycin derivatives which display high antimalarial activity. We now report the synthesis and in vitro antimalarial activity of arylmethyl substituted bis(pivaloyloxymethyl) ester prodrugs of Fosmidomycin and its acetyl analogue FR900098. The 3,4-dichlorobenzyl substituted derivative of Fosmidomycin proved to be about twice as active as the respective Fosmidomycin prodrug, however, less active than the corresponding FR900098 prodrug. Electron donating substituents as well as voluminous substituents led to a significant reduction of activity. PMID:17055117

  18. Discovery and optimisation studies of antimalarial phenotypic hits

    PubMed Central

    Mital, Alka; Murugesan, Dinakaran; Kaiser, Marcel; Yeates, Clive; Gilbert, Ian H.

    2015-01-01

    There is an urgent need for the development of new antimalarial compounds. As a result of a phenotypic screen, several compounds with potent activity against the parasite Plasmodium falciparum were identified. Characterization of these compounds is discussed, along with approaches to optimise the physicochemical properties. The in vitro antimalarial activity of these compounds against P. falciparum K1 had EC50 values in the range of 0.09–29 μM, and generally good selectivity (typically >100-fold) compared to a mammalian cell line (L6). One example showed no significant activity against a rodent model of malaria, and more work is needed to optimise these compounds. PMID:26408453

  19. An associative capacitive network based on nanoscale complementary resistive switches for memory-intensive computing

    NASA Astrophysics Data System (ADS)

    Kavehei, Omid; Linn, Eike; Nielen, Lutz; Tappertzhofen, Stefan; Skafidas, Efstratios; Valov, Ilia; Waser, Rainer

    2013-05-01

    We report on the implementation of an Associative Capacitive Network (ACN) based on the nondestructive capacitive readout of two Complementary Resistive Switches (2-CRSs). ACNs are capable of performing a fully parallel search for Hamming distances (i.e. similarity) between input and stored templates. Unlike conventional associative memories where charge retention is a key function and hence, they require frequent refresh cycles, in ACNs, information is retained in a nonvolatile resistive state and normal tasks are carried out through capacitive coupling between input and output nodes. Each device consists of two CRS cells and no selective element is needed, therefore, CMOS circuitry is only required in the periphery, for addressing and read-out. Highly parallel processing, nonvolatility, wide interconnectivity and low-energy consumption are significant advantages of ACNs over conventional and emerging associative memories. These characteristics make ACNs one of the promising candidates for applications in memory-intensive and cognitive computing, switches and routers as binary and ternary Content Addressable Memories (CAMs) and intelligent data processing.

  20. Coexpression network analysis of the genes regulated by two types of resistance responses to powdery mildew in wheat.

    PubMed

    Zhang, Juncheng; Zheng, Hongyuan; Li, Yiwen; Li, Hongjie; Liu, Xin; Qin, Huanju; Dong, Lingli; Wang, Daowen

    2016-01-01

    Powdery mildew disease caused by Blumeria graminis f. sp. tritici (Bgt) inflicts severe economic losses in wheat crops. A systematic understanding of the molecular mechanisms involved in wheat resistance to Bgt is essential for effectively controlling the disease. Here, using the diploid wheat Triticum urartu as a host, the genes regulated by immune (IM) and hypersensitive reaction (HR) resistance responses to Bgt were investigated through transcriptome sequencing. Four gene coexpression networks (GCNs) were developed using transcriptomic data generated for 20 T. urartu accessions showing IM, HR or susceptible responses. The powdery mildew resistance regulated (PMRR) genes whose expression was significantly correlated with Bgt resistance were identified, and they tended to be hubs and enriched in six major modules. A wide occurrence of negative regulation of PMRR genes was observed. Three new candidate immune receptor genes (TRIUR3_13045, TRIUR3_01037 and TRIUR3_06195) positively associated with Bgt resistance were discovered. Finally, the involvement of TRIUR3_01037 in Bgt resistance was tentatively verified through cosegregation analysis in a F2 population and functional expression assay in Bgt susceptible leaf cells. This research provides insights into the global network properties of PMRR genes. Potential molecular differences between IM and HR resistance responses to Bgt are discussed. PMID:27033636

  1. Coexpression network analysis of the genes regulated by two types of resistance responses to powdery mildew in wheat

    PubMed Central

    Zhang, Juncheng; Zheng, Hongyuan; Li, Yiwen; Li, Hongjie; Liu, Xin; Qin, Huanju; Dong, Lingli; Wang, Daowen

    2016-01-01

    Powdery mildew disease caused by Blumeria graminis f. sp. tritici (Bgt) inflicts severe economic losses in wheat crops. A systematic understanding of the molecular mechanisms involved in wheat resistance to Bgt is essential for effectively controlling the disease. Here, using the diploid wheat Triticum urartu as a host, the genes regulated by immune (IM) and hypersensitive reaction (HR) resistance responses to Bgt were investigated through transcriptome sequencing. Four gene coexpression networks (GCNs) were developed using transcriptomic data generated for 20 T. urartu accessions showing IM, HR or susceptible responses. The powdery mildew resistance regulated (PMRR) genes whose expression was significantly correlated with Bgt resistance were identified, and they tended to be hubs and enriched in six major modules. A wide occurrence of negative regulation of PMRR genes was observed. Three new candidate immune receptor genes (TRIUR3_13045, TRIUR3_01037 and TRIUR3_06195) positively associated with Bgt resistance were discovered. Finally, the involvement of TRIUR3_01037 in Bgt resistance was tentatively verified through cosegregation analysis in a F2 population and functional expression assay in Bgt susceptible leaf cells. This research provides insights into the global network properties of PMRR genes. Potential molecular differences between IM and HR resistance responses to Bgt are discussed. PMID:27033636

  2. The Clinically Tested Gardos Channel Inhibitor Senicapoc Exhibits Antimalarial Activity

    PubMed Central

    Tubman, Venée N.; Mejia, Pedro; Shmukler, Boris E.; Bei, Amy K.; Alper, Seth L.; Mitchell, James R.

    2015-01-01

    Senicapoc, a Gardos channel inhibitor, prevented erythrocyte dehydration in clinical trials of patients with sickle cell disease. We tested the hypothesis that senicapoc-induced blockade of the Gardos channel inhibits Plasmodium growth. Senicapoc inhibited in vitro growth of human and primate plasmodia during the clinical blood stage. Senicapoc treatment suppressed P. yoelii parasitemia in vivo in C57BL/6 mice. The reassuring safety and biochemical profile of senicapoc encourage its use in antimalarial development. PMID:26459896

  3. Rational Design of Proteasome Inhibitors as Antimalarial Drugs.

    PubMed

    Le Chapelain, Camille; Groll, Michael

    2016-05-23

    One life, two strategies: Crucial structural differences between the human and the Plasmodium falciparum proteasomes were recently identified. A combination of cryo-EM and functional characterization enabled the design of a selective antimalarial proteasome inhibitor that shows low toxicity in the host. When used with artemisinin, this ligand offers a new approach for the efficient treatment of malaria at all stages of the parasite lifecycle. PMID:27079849

  4. Antimicrobial peptides: a new class of antimalarial drugs?

    PubMed Central

    Vale, Nuno; Aguiar, Luísa; Gomes, Paula

    2014-01-01

    A range of antimicrobial peptides (AMP) exhibit activity on malaria parasites, Plasmodium spp., in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity, and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs. PMID:25566072

  5. Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from Cyclea barbata.

    PubMed

    Lin, L Z; Shieh, H L; Angerhofer, C K; Pezzuto, J M; Cordell, G A; Xue, L; Johnson, M E; Ruangrungsi, N

    1993-01-01

    An alkaloid extract derived from the roots of Cyclea barbata demonstrated cytotoxic and antimalarial activities, and five bisbenzylisoquinoline alkaloids, (+)-tetrandrine [1], (-)-limacine [2], (+)-thalrugosine [3], (+)-homoaromoline [4], and (-)-cycleapeltine [5], were isolated as the active principles. The complete and unambiguous assignments of the 1H- and 13C-nmr data of these substances were made by 1D and 2D nmr techniques (COSY, phase-sensitive ROESY, HETCOR, and FLOCK). PMID:8450318

  6. Biodiversity of Amoebae and Amoeba-Resisting Bacteria in a Hospital Water Network

    PubMed Central

    Thomas, Vincent; Herrera-Rimann, Katia; Blanc, Dominique S.; Greub, Gilbert

    2006-01-01

    Free-living amoebae (FLA) are ubiquitous organisms that have been isolated from various domestic water systems, such as cooling towers and hospital water networks. In addition to their own pathogenicity, FLA can also act as Trojan horses and be naturally infected with amoeba-resisting bacteria (ARB) that may be involved in human infections, such as pneumonia. We investigated the biodiversity of bacteria and their amoebal hosts in a hospital water network. Using amoebal enrichment on nonnutrient agar, we isolated 15 protist strains from 200 (7.5%) samples. One thermotolerant Hartmannella vermiformis isolate harbored both Legionella pneumophila and Bradyrhizobium japonicum. By using amoebal coculture with axenic Acanthamoeba castellanii as the cellular background, we recovered at least one ARB from 45.5% of the samples. Four new ARB isolates were recovered by culture, and one of these isolates was widely present in the water network. Alphaproteobacteria (such as Rhodoplanes, Methylobacterium, Bradyrhizobium, Afipia, and Bosea) were recovered from 30.5% of the samples, mycobacteria (Mycobacterium gordonae, Mycobacterium kansasii, and Mycobacterium xenopi) were recovered from 20.5% of the samples, and Gammaproteobacteria (Legionella) were recovered from 5.5% of the samples. No Chlamydia or Chlamydia-like organisms were recovered by amoebal coculture or detected by PCR. The observed strong association between the presence of amoebae and the presence of Legionella (P < 0.001) and mycobacteria (P = 0.009) further suggests that FLA are a reservoir for these ARB and underlines the importance of considering amoebae when water control measures are designed. PMID:16597941

  7. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes

    PubMed Central

    Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2016-01-01

    8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents. PMID:27103894

  8. History, Dynamics, and Public Health Importance of Malaria Parasite Resistance

    PubMed Central

    Talisuna, Ambrose O.; Bloland, Peter; D’Alessandro, Umberto

    2004-01-01

    Despite considerable efforts, malaria is still one of the most devastating infectious diseases in the tropics. The rapid spread of antimalarial drug resistance currently compounds this grim picture. In this paper, we review the history of antimalarial drug resistance and the methods for monitoring it and assess the current magnitude and burden of parasite resistance to two commonly used drugs: chloroquine and sulfadoxine-pyrimethamine. Furthermore, we review the factors involved in the emergence and spread of drug resistance and highlight its public health importance. Finally, we discuss ways of dealing with such a problem by using combination therapy and suggest some of the research themes needing urgent answers. PMID:14726463

  9. Global network analysis of drug tolerance, mode of action and virulence in methicillin-resistant S. aureus

    PubMed Central

    2011-01-01

    Background Staphylococcus aureus is a major human pathogen and strains resistant to existing treatments continue to emerge. Development of novel treatments is therefore important. Antimicrobial peptides represent a source of potential novel antibiotics to combat resistant bacteria such as Methicillin-Resistant Staphylococcus aureus (MRSA). A promising antimicrobial peptide is ranalexin, which has potent activity against Gram-positive bacteria, and particularly S. aureus. Understanding mode of action is a key component of drug discovery and network biology approaches enable a global, integrated view of microbial physiology, including mechanisms of antibiotic killing. We developed a systems-wide functional association network approach to integrate proteome and transcriptome profiles, enabling study of drug resistance and mode of action. Results The functional association network was constructed by Bayesian logistic regression, providing a framework for identification of antimicrobial peptide (ranalexin) response modules from S. aureus MRSA-252 transcriptome and proteome profiling. These signatures of ranalexin treatment revealed multiple killing mechanisms, including cell wall activity. Cell wall effects were supported by gene disruption and osmotic fragility experiments. Furthermore, twenty-two novel virulence factors were inferred, while the VraRS two-component system and PhoU-mediated persister formation were implicated in MRSA tolerance to cationic antimicrobial peptides. Conclusions This work demonstrates a powerful integrative approach to study drug resistance and mode of action. Our findings are informative to the development of novel therapeutic strategies against Staphylococcus aureus and particularly MRSA. PMID:21569391

  10. Plasmodium vivax and Plasmodium falciparum ex vivo susceptibility to anti-malarials and gene characterization in Rondônia, West Amazon, Brazil

    PubMed Central

    2014-01-01

    Background Chloroquine (CQ), a cost effective antimalarial drug with a relatively good safety profile and therapeutic index, is no longer used by itself to treat patients with Plasmodium falciparum due to CQ-resistant strains. P. vivax, representing over 90% of malaria cases in Brazil, despite reported resistance, is treated with CQ as well as with primaquine to block malaria transmission and avoid late P. vivax malaria relapses. Resistance to CQ and other antimalarial drugs influences malaria control, thus monitoring resistance phenotype by parasite genotyping is helpful in endemic areas. Methods A total of 47 P. vivax and nine P. falciparum fresh isolates were genetically characterized and tested for CQ, mefloquine (MQ) and artesunate (ART) susceptibility in vitro. The genes mdr1 and pfcrt, likely related to CQ resistance, were analyzed in all isolates. Drug susceptibility was determined using short-term parasite cultures of ring stages for 48 to 72 hour and thick blood smears counts. Each parasite isolate was tested with the antimalarials to measure the geometric mean of 50% inhibitory concentration. Results The low numbers of P. falciparum isolates reflect the species prevalence in Brazil; most displayed low sensitivity to CQ (IC50 70 nM). However, CQ resistance was rare among P. vivax isolates (IC50 of 32 nM). The majority of P. vivax and P. falciparum isolates were sensitive to ART and MQ. One hundred percent of P. falciparum isolates carried non-synonymous mutations in the pfmdr1 gene in codons 184, 1042 and 1246, 84% in codons 1034 and none in codon 86, a well-known resistance mutation. For the pfcrt gene, mutations were observed in codons 72 and 76 in all P. falciparum isolates. One P. falciparum isolate from Angola, Africa, showing sensitivity to the antimalarials, presented no mutations. In P. vivax, mutations of pvmdr1 and the multidrug resistance gene 1 marker at codon F976 were absent. Conclusion All P. falciparum Brazilian isolates showed

  11. Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction.

    PubMed

    Zhao, Hang; Bai, Jinbo

    2015-05-13

    The constructions of internal conductive network are dependent on microstructures of conductive fillers, determining various electrical performances of composites. Here, we present the advanced graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone (GCHs/PDMS) composites with high piezo-resistive performance. GCH particles were synthesized by the catalyst chemical vapor deposition approach. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. Due to the exfoliated GNP and aligned CNTs coupling structure, the flexible composite shows an ultralow percolation threshold (0.64 vol %) and high piezo-resistive sensitivity (gauge factor ∼ 10(3) and pressure sensitivity ∼ 0.6 kPa(-1)). Slight motions of finger can be detected and distinguished accurately using the composite film as a typical wearable sensor. These results indicate that designing the internal conductive network could be a reasonable strategy to improve the piezo-resistive performance of composites. PMID:25898271

  12. Surveillance of Carbapenem-Resistant Klebsiella pneumoniae: Tracking Molecular Epidemiology and Outcomes through a Regional Network

    PubMed Central

    Perez, Federico; Rudin, Susan D.; Cober, Eric; Hanrahan, Jennifer; Ziegler, Julie; Webber, Raymond; Fox, Jacqueline; Mason, Pamela; Richter, Sandra S.; Cline, Marianne; Hall, Geraldine S.; Kaye, Keith S.; Jacobs, Michael R.; Kalayjian, Robert C.; Salata, Robert A.; Segre, Julia A.; Conlan, Sean; Evans, Scott; Fowler, Vance G.

    2014-01-01

    Carbapenem resistance in Gram-negative bacteria is on the rise in the United States. A regional network was established to study microbiological and genetic determinants of clinical outcomes in hospitalized patients with carbapenem-resistant (CR) Klebsiella pneumoniae in a prospective, multicenter, observational study. To this end, predefined clinical characteristics and outcomes were recorded and K. pneumoniae isolates were analyzed for strain typing and resistance mechanism determination. In a 14-month period, 251 patients were included. While most of the patients were admitted from long-term care settings, 28% of them were admitted from home. Hospitalizations were prolonged and complicated. Nonsusceptibility to colistin and tigecycline occurred in isolates from 7 and 45% of the patients, respectively. Most of the CR K. pneumoniae isolates belonged to repetitive extragenic palindromic PCR (rep-PCR) types A and B (both sequence type 258) and carried either blaKPC-2 (48%) or blaKPC-3 (51%). One isolate tested positive for blaNDM-1, a sentinel discovery in this region. Important differences between strain types were noted; rep-PCR type B strains were associated with blaKPC-3 (odds ratio [OR], 294; 95% confidence interval [CI], 58 to 2,552; P < 0.001), gentamicin nonsusceptibility (OR, 24; 95% CI, 8.39 to 79.38; P < 0.001), amikacin susceptibility (OR, 11.0; 95% CI, 3.21 to 42.42; P < 0.001), tigecycline nonsusceptibility (OR, 5.34; 95% CI, 1.30 to 36.41; P = 0.018), a shorter length of stay (OR, 0.98; 95% CI, 0.95 to 1.00; P = 0.043), and admission from a skilled-nursing facility (OR, 3.09; 95% CI, 1.26 to 8.08; P = 0.013). Our analysis shows that (i) CR K. pneumoniae is seen primarily in the elderly long-term care population and that (ii) regional monitoring of CR K. pneumoniae reveals insights into molecular characteristics. This work highlights the crucial role of ongoing surveillance of carbapenem resistance determinants. PMID:24798270

  13. Bistacrine derivatives as new potent antimalarials.

    PubMed

    Schmidt, Ines; Pradel, Gabriele; Sologub, Ludmilla; Golzmann, Alexandra; Ngwa, Che J; Kucharski, Anna; Schirmeister, Tanja; Holzgrabe, Ulrike

    2016-08-15

    Linking two tacrine molecules results in a tremendous increase of activity against Plasmodia in comparison to the monomer. This finding prompted the synthesis of a library of monomeric and dimeric tacrine derivatives in order to derive structure-activity relationships. The most active compounds towards chloroquine sensitive Plasmodium strain 3D7 and chloroquine resistant strain Dd2 show IC50 values in the nanomolar range of concentration, low cytotoxicity and target the cysteine protease falcipain-2, which is essential for parasite growth. PMID:27316542

  14. Identification of novel class of falcipain-2 inhibitors as potential antimalarial agents.

    PubMed

    Chakka, Sai Kumar; Kalamuddin, Mohammad; Sundararaman, Srividhya; Wei, Lianhu; Mundra, Sourabh; Mahesh, Radhakrishnan; Malhotra, Pawan; Mohmmed, Asif; Kotra, Lakshmi P

    2015-05-01

    Falcipain-2 is a papain family cysteine protease and an emerging antimalarial drug target. A pseudo-tripeptide scaffold I was designed using in silico screening tools and the three dimensional structures of falcipain-2, falcipain-3, and papain. This scaffold was investigated at four positions, T1, T2, T3, and T3', with various targeted substitutions to understand the structure-activity relationships. Inhibitor synthesis was accomplished by first obtaining the appropriate dipeptide precursors with common structural components. The pyrrolidine moiety introduced interesting rotamers in a number of synthesized molecules, which was confirmed using high-temperature (1)H NMR spectroscopy. Among the synthesized compounds, 61, 62, and 66 inhibited falcipain-2 activity with inhibition constants (Ki) of 1.8 ± 1.1, 0.2 ± 0.1 and 7.0 ± 2.3 μM, respectively. A group of molecules with a pyrrolidine moiety at the T2 position (68, 70, 71, 72, and 73) also potently inhibited falcipain-2 activity (Ki=0.4 ± 0.1, 2.5 ± 0.5, 3.3 ± 1.1, 7.5 ± 1.9, and 4.6 ± 0.7 μM, respectively). Overall, compound 74 exhibited potent anti-parasitic activity (IC₅₀=0.9 ± 0.1 μM), corresponding with its inhibitory activity against falcipain-2, with a Ki of 1.1 ± 0.1 μM. Compounds 62 and 67 inhibited the growth of the drug resistant parasite Dd2 with better efficacy, and compound 74 exhibited a 7- to 12-fold higher potency against Dd2 and MCamp isolates, than the laboratory strain (3D7). These data suggest that this novel series of compounds should be further investigated as potential antimalarial agents. PMID:25840796

  15. In Vivo Antimalarial Activity of Annona muricata Leaf Extract in Mice Infected with Plasmodium berghei

    PubMed Central

    Somsak, Voravuth; Polwiang, Natsuda; Chachiyo, Sukanya

    2016-01-01

    Malaria is one of the most important infectious diseases in the world. The choice for the treatment is highly limited due to drug resistance. Hence, finding the new compounds to treat malaria is urgently needed. The present study was attempted to evaluate the antimalarial activity of the Annona muricata aqueous leaf extract in Plasmodium berghei infected mice. Aqueous leaf extract of A. muricata was prepared and tested for acute toxicity in mice. For efficacy test in vivo, standard 4-day suppressive test was carried out. ICR mice were inoculated with 107 parasitized erythrocytes of P. berghei ANKA by intraperitoneal injection. The extracts (100, 500, and 1000 mg/kg) were then given orally by gavage once a day for 4 consecutive days. Parasitemia, percentage of inhibition, and packed cell volume were subsequently calculated. Chloroquine (10 mg/kg) was given to infected mice as positive control while untreated control was given only distilled water. It was found that A. muricata aqueous leaf extract at doses of 100, 500, and 1000 mg/kg resulted in dose dependent parasitemia inhibition of 38.03%, 75.25%, and 85.61%, respectively. Survival time was prolonged in infected mice treated with the extract. Moreover, no mortality to mice was observed with this extract up to a dose of 4000 mg/kg. In conclusion, the A. muricata aqueous leaf extract exerted significant antimalarial activity with no toxicity and prolonged survival time. Therefore, this extract might contain potential lead molecule for the development of a new drug for malaria treatment. PMID:27092277

  16. Understanding the biology of the Plasmodium falciparum apicoplast; an excellent target for antimalarial drug development.

    PubMed

    Chakraborty, Arnish

    2016-08-01

    Malaria is a life-threatening tropical disease, caused by the intracellular parasite Plasmodium falciparum. The World Health Organization counts malaria as one of the top ten causes of worldwide death. The unavailability of a successful malaria vaccine and the ever-increasing instances of drug resistance in the malaria parasite demand the discovery of new targets within P. falciparum for the development of next generation antimalarials. Fortunately, all apicomplexan parasites, including P. falciparum harbor a relict, non-photosynthetic plastid known as the apicoplast. The apicoplast is a semi-autonomous organelle within P. falciparum containing a 35kb circular genome. Despite a genome of its own, majority of the apicoplast proteins are encoded by the parasite nucleus and imported into the apicoplast. The organelle has been shown to be essential to P. falciparum survival and the loss the apicoplast manifests as a 'delayed death' response in the parasite. The apicoplast has evolved out of cyanobacteria in a complex, two step endosymbiotic event. As a result the architecture and the gene expression machinery of the apicoplast is quite bacteria-like and is susceptible to a wide range of antibiotics such as fosmidomycin, tetracycline, azithromycin, clindamycin and triclosan. The biosynthetic pathways for isoprenoids, fatty acids and heme operate within the malaria apicoplast, making the organelle an excellent target for drug development. The review focuses on the evolution, biology and the essentiality of the apicoplast within the malaria parasite and discusses some of the recent achievements towards the design and discovery of apicoplast targeted antimalarial compounds. PMID:27381078

  17. In Vivo Antimalarial Activity of Annona muricata Leaf Extract in Mice Infected with Plasmodium berghei.

    PubMed

    Somsak, Voravuth; Polwiang, Natsuda; Chachiyo, Sukanya

    2016-01-01

    Malaria is one of the most important infectious diseases in the world. The choice for the treatment is highly limited due to drug resistance. Hence, finding the new compounds to treat malaria is urgently needed. The present study was attempted to evaluate the antimalarial activity of the Annona muricata aqueous leaf extract in Plasmodium berghei infected mice. Aqueous leaf extract of A. muricata was prepared and tested for acute toxicity in mice. For efficacy test in vivo, standard 4-day suppressive test was carried out. ICR mice were inoculated with 10(7) parasitized erythrocytes of P. berghei ANKA by intraperitoneal injection. The extracts (100, 500, and 1000 mg/kg) were then given orally by gavage once a day for 4 consecutive days. Parasitemia, percentage of inhibition, and packed cell volume were subsequently calculated. Chloroquine (10 mg/kg) was given to infected mice as positive control while untreated control was given only distilled water. It was found that A. muricata aqueous leaf extract at doses of 100, 500, and 1000 mg/kg resulted in dose dependent parasitemia inhibition of 38.03%, 75.25%, and 85.61%, respectively. Survival time was prolonged in infected mice treated with the extract. Moreover, no mortality to mice was observed with this extract up to a dose of 4000 mg/kg. In conclusion, the A. muricata aqueous leaf extract exerted significant antimalarial activity with no toxicity and prolonged survival time. Therefore, this extract might contain potential lead molecule for the development of a new drug for malaria treatment. PMID:27092277

  18. Plasmodium dihydroorotate dehydrogenase: a promising target for novel anti-malarial chemotherapy

    PubMed Central

    Phillips, Margaret A.; Rathod, Pradipsinh K.

    2010-01-01

    Malaria remains a globally prevalent infectious disease that leads to significant morbidity and mortality. While there are a number of drugs approved for its treatment, drug resistance has compromised most of them, making the development of new drugs for the treatment and prevention of malaria essential. The completion of the Plasmodium falciparum genome and a growing understanding of parasite biology are fueling the search for novel drug targets. Despite this, few targets have been chemically validated in vivo. The pyrimidine biosynthetic pathway illustrates one of the best examples of successful identification of anti-malarial drug targets. This review focuses on recent studies to exploit the fourth enzyme in the de novo pyrimidine biosynthetic pathway of P. falciparum, dihydroorotate dehydrogenase (PfDHODH), as a new target for drug discovery. Several chemical scaffolds have been identified by high throughput screening as potent inhibitors of PfDHODH and these show strong selectivity for the malarial enzyme over that from the human host. Potent activity against parasites in whole cell models with good correlation between activity on the enzyme and the parasite have also been observed for a number of the identified series. Lead optimization of a triazolopyrimidine-based series has identified an analog with prolonged plasma exposure, that is orally bioavailable, and which shows good efficacy against the in vivo mouse model of the disease. These data provide strong evidence that PfDHODH is a validated target for the identification of new antimalarial chemotherapy. The challenge remains to identify compounds with the necessary combination of potency and metabolic stability to allow identification of a clinical candidate. PMID:20334617

  19. Antimalarial activity of a combination of 5-fluoroorotate and uridine in mice.

    PubMed Central

    Gómez, Z M; Rathod, P K

    1990-01-01

    Malarial parasites, in contrast to mammalian cells, utilize orotic acid more efficiently than uracil or uridine. Recently, chloroquine-susceptible and chloroquine-resistant clones of Plasmodium falciparum were shown to be inhibited by 5-fluoroorotate, with a 50% inhibitory concentration of 6 nM in vitro. Mammalian cells were far less sensitive to 5-fluoroorotate, particularly in the presence of uridine. In this report, the antimalarial activity of 5-fluoroorotate was tested in vivo. Initially, levels of 5-fluoroorotate in plasma were determined in Swiss mice injected intraperitoneally with radioactive 5-fluoroorotate. On the basis of the pharmacokinetics profile, mice infected with Plasmodium yoelii were treated with 5-fluoroorotate at a dose of 0.2 or 5 mg/kg (body weight) every 4 h for 3 days. At the nontoxic dose of 0.2 mg/kg, the reduction in parasitemia was followed by a temporary resurgence of parasitemia. This second wave of parasitemia cleared without additional 5-fluoroorotate treatment. To radically eliminate P. yoelii from mice and avoid the second wave of parasitemia, a higher dose of 5 mg of 5-fluoroorotate per kg had to be used. In the absence of uridine, repeated doses of 5 mg/kg were toxic to mice, as judged by weight loss, diarrhea, decreased numbers of leukocytes, and increased mortality. However, in the presence of uridine, repeated doses of 5 mg/kg could be used for antimalarial chemotherapy without obvious toxicity. Mice cured with 5-fluoroorotate and uridine were immune to subsequent challenge with a potentially lethal inoculum of P. yoelii. PMID:2386369

  20. Evaluation of bioluminescence-based assays of anti-malarial drug activity

    PubMed Central

    2013-01-01

    Background Transgenic Plasmodium falciparum expressing luciferase offers an attractive bioluminescence-based assay platform for the investigation of the pharmacological properties of anti-malarial drugs. Here a side-by-side comparison of bioluminescence and fluorescence-based assays, utilizing a luciferase reporter cassette that confers a strong temporal pattern of luciferase expression during the S-phase of intraerythrocytic development, is reported. Methods Key assay parameters for a range of commercially available luminogenic substrates are determined and compared to those measured using a Malaria Sybr Green I fluorescence assay. In addition, the short-term temporal effects of anti-malarial compounds are evaluated using both bioluminescent and fluorescent assay platforms. Results The Z’, % coefficient of variation and 50% inhibition concentrations are essentially the same for bioluminescent and fluorescent assays in transgenic parasites generated in both chloroquine-sensitive and -resistant genetic backgrounds. Bioluminescent assays, irrespective of the luminogenic agent employed, do, however, offer significantly enhanced signal-to-noise ratios. Moreover, the bioluminescent assay is more dynamic in terms of determining temporal effects immediately following drug perturbation. Conclusion This study suggests that opportunities for bioluminescence-based assays lie not in the measurement of 50% inhibition concentrations, where the cheaper fluorescence assay performs excellently and is not restricted by the need to genetically modify the parasite clone under investigation. Instead, assays that use the dynamic response of the luciferase reporter for semi-automated screening of additional pharmacological properties, such as relative rate-of-kill and lethal dose estimation, are a more attractive development opportunity. PMID:23394077

  1. Phytochemical screening and in vivo antimalarial activity of extracts from three medicinal plants used in malaria treatment in Nigeria.

    PubMed

    Bankole, A E; Adekunle, A A; Sowemimo, A A; Umebese, C E; Abiodun, O; Gbotosho, G O

    2016-01-01

    The use of plant to meet health-care needs has greatly increased worldwide in the recent times. The search for new plant-derived bioactive agents that can be explored for the treatment of drug-resistant malaria infection is urgently needed. Thus, we evaluated the antimalarial activity of three medicinal plants used in Nigerian folklore for the treatment of malaria infection. A modified Peter's 4-day suppressive test was used to evaluate the antimalarial activity of the plant extracts in a mouse model of chloroquine-resistant Plasmodium berghei ANKA strain. Animals were treated with 250, 500, or 800 mg/kg of aqueous extract. It was observed that of all the three plants studied, Markhamia tomentosa showed the highest chemosuppression of parasites of 73 % followed by Polyalthia longifolia (53 %) at day 4. All the doses tested were well tolerated. Percentage suppression of parasite growth on day 4 post-infection ranged from 1 to 73 % in mice infected with P. berghei and treated with extracts when compared with chloroquine diphosphate, the standard reference drug which had a chemosuppression of 90 %. The percentage survival of mice that received extract ranged from 0 to 60 % (increased as the dose increases to 800 mg/kg). Phytochemical analysis revealed the presence of tannins, saponins, and phenolic compounds in all the three plants tested. PMID:26391173

  2. Plasmodium IspD (2-C-Methyl-D-erythritol 4-Phosphate Cytidyltransferase), an Essential and Druggable Antimalarial Target

    PubMed Central

    Imlay, Leah S.; Armstrong, Christopher M.; Masters, Mary Clare; Li, Ting; Price, Kathryn E.; Edwards, Rachel L.; Mann, Katherine M.; Li, Lucy X.; Stallings, Christina L.; Berry, Neil G.; O’Neill, Paul M.; Odom, Audrey R.

    2015-01-01

    As resistance to current therapies spreads, novel antimalarials are urgently needed. In this work, we examine the potential for therapeutic intervention via the targeting of Plasmodium IspD (2-C-methyl-D-erythritol 4-phosphate cytidyltransferase), the second dedicated enzyme of the essential methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis. Enzymes of this pathway represent promising therapeutic targets because the pathway is not present in humans. The Malaria Box compound, MMV008138, inhibits Plasmodium falciparum growth, and PfIspD has been proposed as a candidate intracellular target. We find that PfIspD is the sole intracellular target of MMV008138 and characterize the mode of inhibition and target-based resistance, providing chemical validation of this target. Additionally, we find that the Pf ISPD genetic locus is refractory to disruption in malaria parasites, providing independent genetic validation for efforts targeting this enzyme. This work provides compelling support for IspD as a druggable target for the development of additional, much-needed antimalarial agents. PMID:26783558

  3. Triaminopyrimidine is a fast-killing and long-acting antimalarial clinical candidate

    PubMed Central

    Hameed P., Shahul; Solapure, Suresh; Patil, Vikas; Henrich, Philipp P.; Magistrado, Pamela A.; Bharath, Sowmya; Murugan, Kannan; Viswanath, Pavithra; Puttur, Jayashree; Srivastava, Abhishek; Bellale, Eknath; Panduga, Vijender; Shanbag, Gajanan; Awasthy, Disha; Landge, Sudhir; Morayya, Sapna; Koushik, Krishna; Saralaya, Ramanatha; Raichurkar, Anandkumar; Rautela, Nikhil; Roy Choudhury, Nilanjana; Ambady, Anisha; Nandishaiah, Radha; Reddy, Jitendar; Prabhakar, K. R.; Menasinakai, Sreenivasaiah; Rudrapatna, Suresh; Chatterji, Monalisa; Jiménez-Díaz, María Belén; Martínez, María Santos; Sanz, Laura María; Coburn-Flynn, Olivia; Fidock, David A.; Lukens, Amanda K.; Wirth, Dyann F.; Bandodkar, Balachandra; Mukherjee, Kakoli; McLaughlin, Robert E.; Waterson, David; Rosenbrier-Ribeiro, Lyn; Hickling, Kevin; Balasubramanian, V.; Warner, Peter; Hosagrahara, Vinayak; Dudley, Adam; Iyer, Pravin S.; Narayanan, Shridhar; Kavanagh, Stefan; Sambandamurthy, Vasan K.

    2015-01-01

    The widespread emergence of Plasmodium falciparum (Pf) strains resistant to frontline agents has fuelled the search for fast-acting agents with novel mechanism of action. Here, we report the discovery and optimization of novel antimalarial compounds, the triaminopyrimidines (TAPs), which emerged from a phenotypic screen against the blood stages of Pf. The clinical candidate (compound 12) is efficacious in a mouse model of Pf malaria with an ED99 <30 mg kg−1 and displays good in vivo safety margins in guinea pigs and rats. With a predicted half-life of 36 h in humans, a single dose of 260 mg might be sufficient to maintain therapeutic blood concentration for 4–5 days. Whole-genome sequencing of resistant mutants implicates the vacuolar ATP synthase as a genetic determinant of resistance to TAPs. Our studies highlight the potential of TAPs for single-dose treatment of Pf malaria in combination with other agents in clinical development. PMID:25823686

  4. Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1

    PubMed Central

    Capper, Michael J.; O’Neill, Paul M.; Fisher, Nicholas; Strange, Richard W.; Moss, Darren; Ward, Stephen A.; Berry, Neil G.; Lawrenson, Alexandre S.; Hasnain, S. Samar; Biagini, Giancarlo A.; Antonyuk, Svetlana V.

    2015-01-01

    Cytochrome bc1 is a proven drug target in the prevention and treatment of malaria. The rise in drug-resistant strains of Plasmodium falciparum, the organism responsible for malaria, has generated a global effort in designing new classes of drugs. Much of the design/redesign work on overcoming this resistance has been focused on compounds that are presumed to bind the Qo site (one of two potential binding sites within cytochrome bc1) using the known crystal structure of this large membrane-bound macromolecular complex via in silico modeling. Cocrystallization of the cytochrome bc1 complex with the 4(1H)-pyridone class of inhibitors, GSK932121 and GW844520, that have been shown to be potent antimalarial agents in vivo, revealed that these inhibitors do not bind at the Qo site but bind at the Qi site. The discovery that these compounds bind at the Qi site may provide a molecular explanation for the cardiotoxicity and eventual failure of GSK932121 in phase-1 clinical trial and highlight the need for direct experimental observation of a compound bound to a target site before chemical optimization and development for clinical trials. The binding of the 4(1H)-pyridone class of inhibitors to Qi also explains the ability of this class to overcome parasite Qo-based atovaquone resistance and provides critical structural information for future design of new selective compounds with improved safety profiles. PMID:25564664

  5. Design of Small Impact-Resistant RTGs for Global Network of Unmanned Mars Landers

    SciTech Connect

    Schock, Alfred

    1991-06-26

    Ongoing studies by the National Aeronautics and Space Administration (NASA) for the robotic exploration of Mars contemplate a network of at least twenty small and relatively inexpensive landers distributed over both low and high latitudes of the Martian globe. They are intended to explore the structural, mineralogical, and chemical characteristics of the Martian soil, search for possible subsurface trapped ice, and collect long-term seismological and meteorological data over a period of ten years. They can also serve as precursors for later unmanned and manned Mars missions.; The collected data will be transmitted periodically, either directly to Earth or indirectly via an orbiting relay. The choice of transmission will determine the required power, which is currently expected to be between 2 and 12 watts(e) per lander. This could be supplied either by solar arrays or by Radioisotope Thermoelectric Generators (RTGs). Solar-powered landers could only be used for low Martian latitudes, but RTG-powered landers can be used for both low and high latitudes. Moreover, RTGs are less affected by Martian sandstorms and can be modified to resist high-G-load impacts. High impact resistance is a critical goal. It is desired by the mission designers, to minimize the mass and complexity of the system needed to decelerate the landers to a survivable impact velocity.; To support the NASA system studies, the U.S. Department of Energy's Office of Special Applications (DOE/OSA) asked Fairchild to perform RTG design studies for this mission. The key problem in designing these RTGs is how to enable the generators to tolerate substantially higher G-loads than those encountered on previous RTG missions.; The Fairchild studies resulted in designs of compact RTGs based on flight-proven and safety-qualified heat source components, with a number of novel features designed to provide the desired high impact tolerance. The present paper describes those designs and their rationale, and a

  6. Identification of β-hematin inhibitors in a high-throughput screening effort reveals scaffolds with in vitro antimalarial activity

    PubMed Central

    Sandlin, Rebecca D.; Fong, Kim Y.; Wicht, Kathryn J.; Carrell, Holly M.; Egan, Timothy J.; Wright, David W.

    2014-01-01

    The emergence of drug resistant strains of Plasmodium spp. creates a critical need for the development of novel antimalarials. Formation of hemozoin, a crystalline heme detoxification process vital to parasite survival serves as an important drug target. The quinoline antimalarials including chloroquine and amodiaquine owe their antimalarial activity to inhibition of hemozoin formation. Though in vivo formation of hemozoin occurs within the presence of neutral lipids, the lipophilic detergent NP-40 was previously shown to serve as a surrogate in the β-hematin (synthetic hemozoin) formation process. Consequently, an NP-40 mediated β-hematin formation assay was developed for use in high-throughput screening. Here, the assay was utilized to screen 144,330 compounds for the identification of inhibitors of crystallization, resulting in 530 hits. To establish the effectiveness of these target-based β-hematin inhibitors against Plasmodiumfalciparum, each hit was further tested in cultures of parasitized red blood cells. This effort revealed that 171 of the β-hematin inhibitors are also active against the parasite. Dose–response data identified 73 of these β-hematin inhibitors have IC50 values ⩽5 μM, including 25 compounds with nanomolar activity against P. falciparum. A scaffold-based analysis of this data identified 14 primary scaffolds that represent 46% of the 530 total hits. Representative compounds from each of the classes were further assessed for hemozoin inhibitory activity in P. falciparum infected human erythrocytes. Each of the hit compounds tested were found to be positive inhibitors, while a negative control did not perturb this biological pathway in culture. PMID:25516843

  7. Percolation network in resistive switching devices with the structure of silver/amorphous silicon/p-type silicon

    SciTech Connect

    Liu, Yanhong; Gao, Ping; Bi, Kaifeng; Peng, Wei; Jiang, Xuening; Xu, Hongxia

    2014-01-27

    Conducting pathway of percolation network was identified in resistive switching devices (RSDs) with the structure of silver/amorphous silicon/p-type silicon (Ag/a-Si/p-Si) based on its gradual RESET-process and the stochastic complex impedance spectroscopy characteristics (CIS). The formation of the percolation network is attributed to amounts of nanocrystalline Si particles as well as defect sites embedded in a-Si layer, in which the defect sites supply positions for Ag ions to nucleate and grow. The similar percolation network has been only observed in Ag-Ge-Se based RSD before. This report provides a better understanding for electric properties of RSD based on the percolation network.

  8. In vivo antimalarial activity of extracts of Tanzanian medicinal plants used for the treatment of malaria

    PubMed Central

    Nondo, Ramadhani S.O.; Erasto, Paul; Moshi, Mainen J.; Zacharia, Abdallah; Masimba, Pax J.; Kidukuli, Abdul W.

    2016-01-01

    Plants used in traditional medicine have been the source of a number of currently used antimalarial medicines and continue to be a promising resource for the discovery of new classes of antimalarial compounds. The aim of this study was to evaluate in vivo antimalarial activity of four plants; Erythrina schliebenii Harms, Holarrhena pubescens Buch-Ham, Phyllanthus nummulariifolius Poir, and Caesalpinia bonducella (L.) Flem used for treatment of malaria in Tanzania. In vivo antimalarial activity was assessed using the 4-day suppressive antimalarial assay. Mice were infected by injection via tail vein with 2 × 107 erythrocytes infected with Plasmodium berghei ANKA. Extracts were administered orally, once daily, for a total of four daily doses from the day of infection. Chloroquine (10 mg/kg/day) and solvent (5 mL/kg/day) were used as positive and negative controls, respectively. The extracts of C. bonducella, E. schliebenii, H. pubescens, and P. nummulariifolius exhibited dose-dependent suppression of parasite growth in vivo in mice, with the highest suppression being by C. bonducella extract. While each of the plant extracts has potential to yield useful antimalarial compounds, the dichloromethane root extract of C. bonducella seems to be the most promising for isolation of active antimalarial compound(s). In vivo antimalarial activity presented in this study supports traditional uses of C. bonducella roots, E. schliebenii stem barks, H. pubescens roots, and P. nummulariifolius for treatment of malaria. PMID:27144154

  9. In vivo antimalarial activity of extracts of Tanzanian medicinal plants used for the treatment of malaria.

    PubMed

    Nondo, Ramadhani S O; Erasto, Paul; Moshi, Mainen J; Zacharia, Abdallah; Masimba, Pax J; Kidukuli, Abdul W

    2016-01-01

    Plants used in traditional medicine have been the source of a number of currently used antimalarial medicines and continue to be a promising resource for the discovery of new classes of antimalarial compounds. The aim of this study was to evaluate in vivo antimalarial activity of four plants; Erythrina schliebenii Harms, Holarrhena pubescens Buch-Ham, Phyllanthus nummulariifolius Poir, and Caesalpinia bonducella (L.) Flem used for treatment of malaria in Tanzania. In vivo antimalarial activity was assessed using the 4-day suppressive antimalarial assay. Mice were infected by injection via tail vein with 2 × 10(7) erythrocytes infected with Plasmodium berghei ANKA. Extracts were administered orally, once daily, for a total of four daily doses from the day of infection. Chloroquine (10 mg/kg/day) and solvent (5 mL/kg/day) were used as positive and negative controls, respectively. The extracts of C. bonducella, E. schliebenii, H. pubescens, and P. nummulariifolius exhibited dose-dependent suppression of parasite growth in vivo in mice, with the highest suppression being by C. bonducella extract. While each of the plant extracts has potential to yield useful antimalarial compounds, the dichloromethane root extract of C. bonducella seems to be the most promising for isolation of active antimalarial compound(s). In vivo antimalarial activity presented in this study supports traditional uses of C. bonducella roots, E. schliebenii stem barks, H. pubescens roots, and P. nummulariifolius for treatment of malaria. PMID:27144154

  10. Estimated under-five deaths associated with poor-quality antimalarials in sub-Saharan Africa.

    PubMed

    Renschler, John P; Walters, Kelsey M; Newton, Paul N; Laxminarayan, Ramanan

    2015-06-01

    Many antimalarials sold in sub-Saharan Africa are poor-quality (falsified, substandard, or degraded), and the burden of disease caused by this problem is inadequately quantified. In this article, we estimate the number of under-five deaths caused by ineffective treatment of malaria associated with consumption of poor-quality antimalarials in 39 sub-Saharan countries. Using Latin hypercube sampling our estimates were calculated as the product of the number of private sector antimalarials consumed by malaria-positive children in 2013; the proportion of private sector antimalarials consumed that were of poor-quality; and the case fatality rate (CFR) of under-five malaria-positive children who did not receive appropriate treatment. An estimated 122,350 (interquartile range [IQR]: 91,577-154,736) under-five malaria deaths were associated with consumption of poor-quality antimalarials, representing 3.75% (IQR: 2.81-4.75%) of all under-five deaths in our sample of 39 countries. There is considerable uncertainty surrounding our results because of gaps in data on case fatality rates and prevalence of poor-quality antimalarials. Our analysis highlights the need for further investigation into the distribution of poor-quality antimalarials and the need for stronger surveillance and regulatory efforts to prevent the sale of poor-quality antimalarials. PMID:25897068

  11. Novel in vivo active anti-malarials based on a hydroxy-ethyl-amine scaffold.

    PubMed

    Ciana, Claire-Lise; Siegrist, Romain; Aissaoui, Hamed; Marx, Léo; Racine, Sophie; Meyer, Solange; Binkert, Christoph; de Kanter, Ruben; Fischli, Christoph; Wittlin, Sergio; Boss, Christoph

    2013-02-01

    A novel series of anti-malarials, based on a hydroxy-ethyl-amine scaffold, initially identified as peptidomimetic protease inhibitors is described. Combination of the hydroxy-ethyl-amine anti-malarial phramacophore with the known Mannich base pharmacophore of amodiaquine (57) resulted in promising in vivo active novel derivatives. PMID:23260352

  12. Synthesis and antimalarial activity of chain substituted pivaloyloxymethyl ester analogues of Fosmidomycin and FR900098.

    PubMed

    Kurz, Thomas; Schlüter, Katrin; Kaula, Uwe; Bergmann, Bärbel; Walter, Rolf D; Geffken, Detlef

    2006-08-01

    Fosmidomycin is a promising antimalarial drug candidate with a unique chemical structure and a novel mode of action. Chain substituted pivaloyloxymethyl ester derivatives of Fosmidomycin and its acetyl analogue FR900098 have been synthesized and their in vitro antimalarial activity versus the Chloroquine sensitive strain 3D7 of Plasmodium falciparum has been determined. PMID:16679022

  13. Estimated Under-Five Deaths Associated with Poor-Quality Antimalarials in Sub-Saharan Africa

    PubMed Central

    Renschler, John P.; Walters, Kelsey M.; Newton, Paul N.; Laxminarayan, Ramanan

    2015-01-01

    Many antimalarials sold in sub-Saharan Africa are poor-quality (falsified, substandard, or degraded), and the burden of disease caused by this problem is inadequately quantified. In this article, we estimate the number of under-five deaths caused by ineffective treatment of malaria associated with consumption of poor-quality antimalarials in 39 sub-Saharan countries. Using Latin hypercube sampling our estimates were calculated as the product of the number of private sector antimalarials consumed by malaria-positive children in 2013; the proportion of private sector antimalarials consumed that were of poor-quality; and the case fatality rate (CFR) of under-five malaria-positive children who did not receive appropriate treatment. An estimated 122,350 (interquartile range [IQR]: 91,577–154,736) under-five malaria deaths were associated with consumption of poor-quality antimalarials, representing 3.75% (IQR: 2.81–4.75%) of all under-five deaths in our sample of 39 countries. There is considerable uncertainty surrounding our results because of gaps in data on case fatality rates and prevalence of poor-quality antimalarials. Our analysis highlights the need for further investigation into the distribution of poor-quality antimalarials and the need for stronger surveillance and regulatory efforts to prevent the sale of poor-quality antimalarials. PMID:25897068

  14. CBL controls a tyrosine kinase network involving AXL, SYK and LYN in nilotinib-resistant chronic myeloid leukaemia.

    PubMed

    Gioia, Romain; Trégoat, Claire; Dumas, Pierre-Yves; Lagarde, Valérie; Prouzet-Mauléon, Valérie; Desplat, Vanessa; Sirvent, Audrey; Praloran, Vincent; Lippert, Eric; Villacreces, Arnaud; Leconet, Wilhem; Robert, Bruno; Vigon, Isabelle; Roche, Serge; Mahon, François-Xavier; Pasquet, Jean-Max

    2015-09-01

    A tyrosine kinase network composed of the TAM receptor AXL and the cytoplasmic kinases LYN and SYK is involved in nilotinib-resistance of chronic myeloid leukaemia (CML) cells. Here, we show that the E3-ubiquitin ligase CBL down-regulation occurring during prolonged drug treatment plays a critical role in this process. Depletion of CBL in K562 cells increases AXL and LYN protein levels, promoting cell resistance to nilotinib. Conversely, forced expression of CBL in nilotinib-resistant K562 cells (K562-rn) dramatically reduces AXL and LYN expression and resensitizes K562-rn cells to nilotinib. A similar mechanism was found to operate in primary CML CD34(+) cells. Mechanistically, the E3-ligase CBL counteracts AXL/SYK signalling, promoting LYN transcription by controlling AXL protein stability. Surprisingly, the role of AXL in resistance was independent of its ligand GAS6 binding and its TK activity, in accordance with a scaffold activity for this receptor being involved in this cellular process. Collectively, our results demonstrate a pivotal role for CBL in the control of a tyrosine kinase network mediating resistance to nilotinib treatment in CML cells. PMID:25965880

  15. Members only: induced systemic resistance to herbivory in a clonal plant network.

    PubMed

    Gómez, Sara; Stuefer, Josef F

    2006-03-01

    The stoloniferous herb Trifolium repens was used to study the expression of induced systemic resistance (ISR) to the generalist caterpillar Spodoptera exigua in interconnected ramets of clonal fragments. The ISR was assessed as caterpillar preference in dual choice tests between control and systemically induced plants. The ISR was detected in young ramets, after inducing older sibling ramets on the same stolon by a controlled herbivore attack. However, older ramets did not receive a defense induction signal from younger ramets unless the predominant phloem flow was reversed by means of basal shading. This provides evidence for the notion that in T. repens the clone-internal expression of ISR is coupled to phloem transport and follows source-sink gradients. The inducibility of the genotypes was not linked to their constitutive ability to produce cyanide, implying the absence of a trade-off between these two defense traits. To our knowledge, this is the first study that explores ISR to herbivory in the context of physiological integration in potentially extensive clonal plant networks. PMID:16333642

  16. Hepatocellular carcinoma: targeting of oncogenic signaling networks in TRAIL resistant cancer cells.

    PubMed

    Fayyaz, Sundas; Yaylim, Ilhan; Turan, Saime; Kanwal, Sobia; Farooqi, Ammad Ahmad

    2014-10-01

    Apoptotic response in hepatocellular carcinoma (HCC) cells is impaired because of interconnectivity of proteins into complexes and signaling networks that are highly divergent in time and space. TNF-related apoptosis-inducing ligand (TRAIL) has emerged as an attractive anticancer agent reported to selectively induce apoptosis in cancer cells. Although diametrically opposed roles of TRAIL are reported both as an inducer of apoptosis and regulator of metastasis, overwhelmingly accumulating experimental evidence highlighting apoptosis inducing activity of TRAIL is directing TRAIL into clinical trials. Insights from TRAIL mediated signaling in HCC research are catalyzing new lines of study that should not only explain molecular mechanisms of disease but also highlight emerging paradigms in restoration of TRAIL mediated apoptosis in resistant cancer cells. It is becoming progressively more understandable that phytochemicals derived from edible plants have shown potential in modelling their interactions with their target proteins. Rapidly accumulating in vitro and in-vivo evidence indicates that phytonutrients have anticancer activity in rodent models of hepatocellular carcinoma. In this review we bring to limelight how phytonutrients restore apoptosis in hepatocellular carcinoma cells by rebalancing pro-apoptotic and anti-apoptotic proteins. Evidence has started to emerge, that reveals how phytonutrients target pharmacologically intractable proteins to suppress cancer. Target-based small-molecule discovery has entered into the mainstream research in the pharmaceutical industry and a better comprehension of the genetics of patients will be essential for identification of responders and non-responders. PMID:25037270

  17. Nanotribology Results Show that DNA Forms a Mechanically Resistant 2D Network in Metaphase Chromatin Plates

    PubMed Central

    Gállego, Isaac; Oncins, Gerard; Sisquella, Xavier; Fernàndez-Busquets, Xavier; Daban, Joan-Ramon

    2010-01-01

    In a previous study, we found that metaphase chromosomes are formed by thin plates, and here we have applied atomic force microscopy (AFM) and friction force measurements at the nanoscale (nanotribology) to analyze the properties of these planar structures in aqueous media at room temperature. Our results show that high concentrations of NaCl and EDTA and extensive digestion with protease and nuclease enzymes cause plate denaturation. Nanotribology studies show that native plates under structuring conditions (5 mM Mg2+) have a relatively high friction coefficient (μ ≈ 0.3), which is markedly reduced when high concentrations of NaCl or EDTA are added (μ ≈ 0.1). This lubricant effect can be interpreted considering the electrostatic repulsion between DNA phosphate groups and the AFM tip. Protease digestion increases the friction coefficient (μ ≈ 0.5), but the highest friction is observed when DNA is cleaved by micrococcal nuclease (μ ≈ 0.9), indicating that DNA is the main structural element of plates. Whereas nuclease-digested plates are irreversibly damaged after the friction measurement, native plates can absorb kinetic energy from the AFM tip without suffering any damage. These results suggest that plates are formed by a flexible and mechanically resistant two-dimensional network which allows the safe storage of DNA during mitosis. PMID:21156137

  18. Antimalarial mass drug administration: ethical considerations.

    PubMed

    Cheah, Phaik Yeong; White, Nicholas J

    2016-07-01

    Falciparum malaria is a major cause of death and illness in tropical countries, particularly in childhood. In endemic countries, a significant proportion of the community is infected with malaria asymptomatically. One promising way to eliminate malaria is to give the entire population malaria treatment. This is called mass drug administration (MDA) and it raises a number of ethical issues, as possible long-term benefits are uncertain. The effectiveness of MDA is critically dependent on level of participation, so the promised benefits to the community can be annulled by non-participation of a small number of individuals. These potential benefits range a wide spectrum, from the permanent elimination of malaria (success) to a transient reduction in the prevalence of infection and the incidence of illness (failure). The drawbacks of MDA are: inconvenience, potential toxicity, loss of confidence in the elimination campaign, possible drug resistance (though highly unlikely), and the potential for a rebound of malaria illness (if immunity is lost and malaria is reintroduced later). Other ethical issues are related to balancing individual and public health interests, and potentially limiting individual autonomy by making MDA compulsory. PMID:27481834

  19. Chemical Determinants of antimalarial activity of reversed siderophores.

    PubMed Central

    Tsafack, A; Libman, J; Shanzer, A; Cabantchik, Z I

    1996-01-01

    Reversed siderophores (RSFs) are artificial hydroxamate-based iron chelators designed after the natural siderophore ferrichrome. The modular molecular design of RSF derivatives allowed the synthesis of various congeners with controlled iron-binding capacities and partition coefficients. These two physicochemical properties were assessed by a novel fluorescent method and were found to be the major determinants of RSF permeation across erythrocyte membranes and scavenging of compartmentalized iron. The partition coefficient apparently conferred upon RSFs two major features: (i) the ability to rapidly access iron pools of in vitro-grown Plasmodium falciparum at all developmental stages and to mobilize intracellular iron and transfer it to the medium and (ii) the ability to suppress parasite growth at all developmental stages. These features of RSFs were assessed by quantitative determination of the structure-activity relationships of the biological activities and partition coefficients spanning a wide range of values. The most effective RSF containing the aromatic group of phenylalanine (RSFm2phe) showed 50% inhibitory concentration of 0.60 +/- 0.03 nmol/ml in a 48-h test and a 2-h onset of inhibition of ring development at 5 nmol/ml. The lipophilic compound RSFm2phe and the lipophilic and esterase-cleavable compound RSFm2pee inhibited parasite growth at all developmental stages whether inhibition was assessed in a continuous mode or after discontinuing drug administration. The antimalarial effects of RSFm2phe and cleavable RSFm2pee were potentiated in the presence of desferrioxamine (DFO) at concentrations at which DFO alone had no effect on parasite growth. These studies provide experimental evidence indicating that the effective and persistent antimalarial actions of RSFs are associated with drug access to infected cells and scavenging of iron from intracellular parasites. Moreover, the optimal antimalarial actions of RSFs are apparently also determined by improved

  20. Mono- and bis-thiazolium salts have potent antimalarial activity.

    PubMed

    Hamzé, Abdallah; Rubi, Eric; Arnal, Pascal; Boisbrun, Michel; Carcel, Carole; Salom-Roig, Xavier; Maynadier, Marjorie; Wein, Sharon; Vial, Henri; Calas, Michèle

    2005-05-19

    Three new series comprising 24 novel cationic choline analogues and consisting of mono- or bis (N or C-5-duplicated) thiazolium salts have been synthesized. Bis-thiazolium salts showed potent antimalarial activity (much superior to monothiazoliums). Among them, bis-thiazolium salts 12 and 13 exhibited IC(50) values of 2.25 nM and 0.65 nM, respectively, against P. falciparum in vitro. These compounds also demonstrated good in vivo activity (ED(50)

  1. Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from Stephania erecta.

    PubMed

    Likhitwitayawuid, K; Angerhofer, C K; Cordell, G A; Pezzuto, J M; Ruangrungsi, N

    1993-01-01

    (+)-2-N-Methyltelobine [1], a new alkaloid, together with twelve known bisbenzylisoquinolines, was isolated from the tubers of Stephania erecta. The structure determination and the complete 1H- and unambiguous 13C-nmr assignments of 1 were obtained through extensive use of several 1D and 2D nmr techniques. All alkaloids inhibited the growth of cultured Plasmodium falciparum strains D-6 and W-2 and displayed nonselective cytotoxicity with a battery of cultured mammalian cells. These data were used for the calculation of selectivity indices. Relative to known antimalarial agents, these bisbenzylisoquinoline alkaloids do not appear to be promising clinical candidates at the present time. PMID:8450319

  2. A SYBR Green 1-based in vitro test of susceptibility of Ghanaian Plasmodium falciparum clinical isolates to a panel of anti-malarial drugs

    PubMed Central

    2013-01-01

    Background Based on report of declining efficacy of chloroquine, Ghana shifted to the use of artemisinin-based combination therapy (ACT) in 2005 as the first-line anti-malarial drug. Since then, there has not been any major evaluation of the efficacy of anti-malarial drugs in Ghana in vitro. The sensitivity of Ghanaian Plasmodium falciparum isolates to anti-malarial drugs was, therefore, assessed and the data compared with that obtained prior to the change in the malaria treatment policy. Methods A SYBR Green 1 fluorescent-based in vitro drug sensitivity assay was used to assess the susceptibility of clinical isolates of P. falciparum to a panel of 12 anti-malarial drugs in three distinct eco-epidemiological zones in Ghana. The isolates were obtained from children visiting health facilities in sentinel sites located in Hohoe, Navrongo and Cape Coast municipalities. The concentration of anti-malarial drug inhibiting parasite growth by 50% (IC50) for each drug was estimated using the online program, ICEstimator. Results Pooled results from all the sentinel sites indicated geometric mean IC50 values of 1.60, 3.80, 4.00, 4.56, 5.20, 6.11, 10.12, 28.32, 31.56, 93.60, 107.20, and 8952.50 nM for atovaquone, artesunate, dihydroartemisin, artemether, lumefantrine, amodiaquine, mefloquine, piperaquine, chloroquine, tafenoquine, quinine, and doxycycline, respectively. With reference to the literature threshold value indicative of resistance, the parasites showed resistance to all the test drugs except the artemisinin derivatives, atovaquone and to a lesser extent, lumefantrine. There was nearly a two-fold decrease in the IC50 value determined for chloroquine in this study compared to that determined in 2004 (57.56 nM). This observation is important, since it suggests a significant improvement in the efficacy of chloroquine, probably as a direct consequence of reduced drug pressure after cessation of its use. Compared to that measured prior to the change in treatment policy

  3. The re-organization of functional brain networks in pharmaco-resistant epileptic patients who respond to VNS.

    PubMed

    Fraschini, Matteo; Demuru, Matteo; Puligheddu, Monica; Floridia, Simona; Polizzi, Lorenzo; Maleci, Alberto; Bortolato, Marco; Hillebrand, Arjan; Marrosu, Francesco

    2014-09-19

    Vagal nerve stimulation (VNS) is a therapeutic add-on treatment for patients with pharmaco-resistant epilepsy. The mechanism of action is still largely unknown. Previous studies have shown that brain network topology during the inter-ictal period in epileptic patients deviates from normal configuration. In the present paper, we investigate the relationship between clinical improvement induced by VNS and alterations in brain network topology. We hypothesize that, as a consequence of the VNS add-on treatment, functional brain network architecture shifts back toward a more efficient configuration in patients responding to VNS. Electroencephalographic (EEG) recordings from ten patients affected by pharmaco-resistant epilepsy were analyzed in the classical EEG frequency bands. The phase lag index (PLI) was used to estimate functional connectivity between EEG channels and the minimum spanning tree (MST) was computed in order to characterize VNS-induced alterations in network topology in a bias-free way. Our results revealed a clear network re-organization, in terms of MST modification, toward a more integrated architecture in patients responding to the VNS. In particular, the results show a significant interaction effect between benefit from VNS (responders/non-responders) and condition (pre/post VNS implantation) in the theta band. This finding suggests that the positive effect induced by VNS add-on treatment in epileptic patients is related to a clear network re-organization and that this network modification can reveal the long debated mechanism of action of VNS. Therefore, MST analysis could be useful in evaluating and monitoring the efficacy of VNS add-on treatment potentially in both epilepsy and psychiatric diseases. PMID:25123446

  4. Cysteamine, the Molecule Used To Treat Cystinosis, Potentiates the Antimalarial Efficacy of Artemisinin▿

    PubMed Central

    Min-Oo, Gundula; Fortin, Anny; Poulin, Jean-François; Gros, Philippe

    2010-01-01

    Malaria continues to be a major threat to global health. Artemisinin combination therapy (ACT) is the recommended treatment for clinical malaria; however, recent reports of parasite resistance to artemisinin in certain areas where malaria is endemic have stressed the need for developing more efficacious ACT. We report that cysteamine (Cys), the aminothiol used to treat nephropathic cystinosis in humans, strongly potentiates the efficacy of artemisinin against the Plasmodium parasite in vivo. Using a mouse model of infection with Plasmodium chabaudi AS, we observe that Cys dosing used to treat cystinosis in humans can strongly potentiate (by 3- to 4-fold) the antimalarial properties of the artemisinin derivatives artesunate and dihydroartemisinin. Addition of Cys to suboptimal doses of artemisinin delays the appearance of blood parasitemia, strongly reduces the extent of parasite replication, and significantly improves survival in a model of lethal P. chabaudi infection. Cys, the natural product of the enzyme pantetheinase, has a history of safe use for the clinical management of cystinosis. Our findings suggest that Cys could be included in novel ACTs to improve efficacy against Plasmodium parasite replication, including artemisinin-resistant isolates. Future work will include clinical evaluation of novel Cys-containing ACTs and elucidation of the mechanism underlying the potentiation effect of Cys. PMID:20479197

  5. Chemogenomic profiling of Plasmodium falciparum as a tool to aid antimalarial drug discovery

    PubMed Central

    Pradhan, Anupam; Siwo, Geoffrey H.; Singh, Naresh; Martens, Brian; Balu, Bharath; Button-Simons, Katrina A.; Tan, Asako; Zhang, Min; Udenze, Kenneth O.; Jiang, Rays H.Y.; Ferdig, Michael T.; Adams, John H.; Kyle, Dennis E.

    2015-01-01

    The spread of Plasmodium falciparum multidrug resistance highlights the urgency to discover new targets and chemical scaffolds. Unfortunately, lack of experimentally validated functional information about most P. falciparum genes remains a strategic hurdle. Chemogenomic profiling is an established tool for classification of drugs with similar mechanisms of action by comparing drug fitness profiles in a collection of mutants. Inferences of drug mechanisms of action and targets can be obtained by associations between shifts in drug fitness and specific genetic changes in the mutants. In this screen, P. falciparum, piggyBac single insertion mutants were profiled for altered responses to antimalarial drugs and metabolic inhibitors to create chemogenomic profiles. Drugs targeting the same pathway shared similar response profiles and multiple pairwise correlations of the chemogenomic profiles revealed novel insights into drugs’ mechanisms of action. A mutant of the artemisinin resistance candidate gene - “K13-propeller” gene (PF3D7_1343700) exhibited increased susceptibility to artemisinin drugs and identified a cluster of 7 mutants based on similar enhanced responses to the drugs tested. Our approach of chemogenomic profiling reveals artemisinin functional activity, linked by the unexpected drug-gene relationships of these mutants, to signal transduction and cell cycle regulation pathways. PMID:26541648

  6. Quantitative assessment of antimalarial activities from Malaysian Plasmodium falciparum isolates by modified in vitro microtechnique.

    PubMed Central

    Hoon, A H; Lam, C K; Wah, M J

    1995-01-01

    Malaysian, TGR (Thailand), and Gambian (West African) Plasmodium falciparum isolates were cultured in vitro by the candle jar method and were characterized for their susceptibilities to present antimalarial drugs by the modified in vitro microtechnique. Results showed that 93 and 47% of the Malaysian isolates were resistant at 50% inhibitory concentrations of 0.1415 to 0.7737 and 0.1025 to 0.1975 microM, respectively, while the rest were susceptible to choloroquine and cycloguanil at 0.0376 and 0.0306 to 0.0954 microM, respectively. All isolates were susceptible to mefloquine, quinine, and pyrimethamine at 0.0026 to 0.0172, 0.0062 to 0.0854, and 0.0149 to 0.0663 microM, respectively. In contrast, the Gambian isolate was susceptible to multiple drugs at 0.0024 to 0.0282 microM; TGR was resistant to chloroquine at 0.8147 microM but was susceptible to mefloquine, quinine, cycloguanil, and pyrimethamine at 0.0024, 0.0096, 0.0143, and 0.0495 microM, respectively. PMID:7793863

  7. In vivo Antimalarial Activity of α-Mangostin and the New Xanthone δ-Mangostin.

    PubMed

    Upegui, Yulieth; Robledo, Sara M; Gil Romero, Juan Fernando; Quiñones, Winston; Archbold, Rosendo; Torres, Fernando; Escobar, Gustavo; Nariño, Bibiana; Echeverri, Fernando

    2015-08-01

    Based on the previously reported in vitro antiplasmodial activity of several xanthones from Garcinia mangostana, two xanthones, α-mangostin and a new compound, δ-mangostin, were isolated from mangosteen husk, and the in vitro antiplasmodial and cytotoxic effects were determined. α-Mangostin was more active against the resistant Plasmodium falciparum chloroquine-resistant (FCR3) strain (IC50  = 0.2 ± 0.01 μM) than δ-mangostin (IC50  = 121.2 ± 1.0 μM). Furthermore, the therapeutic response according to the administration route was evaluated in a Plasmodium berghei malarial murine model. The greatest therapeutic response was obtained with intraperitoneal administration; these xanthones reduced parasitemia by approximately 80% with a daily dose of 100 mg/kg administered twice a day for 7 days of treatment. Neither compound was effective by oral administration. Noticeable toxicological effects were not observed. In addition to the antimalarial effect of these xanthones isolated from G. mangostana husk, the availability of larger amounts of husk raw material to purify the bioactive xanthones is advantageous, permitting additional preclinical assays or chemical transformations to enhance the biological activity of these substances. PMID:25943035

  8. Development and Optimization of a Novel 384-Well Anti-Malarial Imaging Assay Validated for High-Throughput Screening

    PubMed Central

    Duffy, Sandra; Avery, Vicky M.

    2012-01-01

    With the increasing occurrence of drug resistance in the malaria parasite, Plasmodium falciparum, there is a great need for new and novel anti-malarial drugs. We have developed a 384-well, high-throughput imaging assay for the detection of new anti-malarial compounds, which was initially validated by screening a marine natural product library, and subsequently used to screen more than 3 million data points from a variety of compound sources. Founded on another fluorescence-based P. falciparum growth inhibition assay, the DNA-intercalating dye 4′,6-diamidino-2-phenylindole, was used to monitor changes in parasite number. Fluorescent images were acquired on the PerkinElmer Opera High Throughput confocal imaging system and analyzed with a spot detection algorithm using the Acapella data processing software. Further optimization of this assay sought to increase throughput, assay stability, and compatibility with our high-throughput screening equipment platforms. The assay typically yielded Z'-factor values of 0.5–0.6, with signal-to-noise ratios of 12. PMID:22232455

  9. Chemical study and antimalarial, antioxidant, and anticancer activities of Melaleuca armillaris (Sol Ex Gateau) Sm essential oil.

    PubMed

    Chabir, Naziha; Romdhane, Mehrez; Valentin, Alexis; Moukarzel, Béatrice; Marzoug, Hajer Naceur Ben; Brahim, Nadia Ben; Mars, Mohamed; Bouajila, Jalloul

    2011-11-01

    This study investigated the chemical composition (by using gas chromatography/flame ionization detection and gas chromatography/mass spectrometry, an antioxidant [1,1-diphenyl-2-picrylhydrazyl] [DPPH] radical-scavenging assay, and a 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonate [ABTS] radical cation-scavenging assay) and the antimalarial and cytotoxic activities of essential oil extracted from leaves of Melaleuca armillaris. Thirty-two components representing more than 98% of the total composition of the essential oil were identified. The main components were 1,8-cineole (85.8%), camphene (5.05%), and α-pinene (1.95%). The antioxidant activity by ABTS assay showed a mean (± standard deviation) 50% inhibitory concentration (IC(50)) value of 247.3 ± 3.9 mg/L, and the DPPH assay yielded an IC(50) value of 2183.6 ± 44.3 mg/L. The antimalarial study indicated that the essential oil had mild activity against the chloroquine-resistant Plasmodium falciparum FcB1 strain (IC(50), 27 ± 2 mg/L). The cytotoxic activity of this essential oil was tested against MCF7 human breast cancer cells and was found to be high (IC(50), 12 ± 1 mg/L). PMID:21476932

  10. The potential of anti-malarial compounds derived from African medicinal plants, part I: a pharmacological evaluation of alkaloids and terpenoids

    PubMed Central

    2013-01-01

    Traditional medicine caters for about 80% of the health care needs of many rural populations around the world, especially in developing countries. In addition, plant-derived compounds have played key roles in drug discovery. Malaria is currently a public health concern in many countries in the world due to factors such as chemotherapy faced by resistance, poor hygienic conditions, poorly managed vector control programmes and no approved vaccines. In this review, an attempt has been made to assess the value of African medicinal plants for drug discovery by discussing the anti-malarial virtue of the derived phytochemicals that have been tested by in vitro and in vivo assays. This survey was focused on pure compounds derived from African flora which have exhibited anti-malarial properties with activities ranging from “very active” to “weakly active”. However, only the compounds which showed anti-malarial activities from “very active” to “moderately active” are discussed in this review. The activity of 278 compounds, mainly alkaloids, terpenoids, flavonoids, coumarines, phenolics, polyacetylenes, xanthones, quinones, steroids, and lignans have been discussed. The first part of this review series covers the activity of 171 compounds belonging to the alkaloid and terpenoid classes. Data available in the literature indicated that African flora hold an enormous potential for the development of phytomedicines for malaria. PMID:24330395

  11. Comparison of the Exposure Time Dependence of the Activities of Synthetic Ozonide Antimalarials and Dihydroartemisinin against K13 Wild-Type and Mutant Plasmodium falciparum Strains.

    PubMed

    Yang, Tuo; Xie, Stanley C; Cao, Pengxing; Giannangelo, Carlo; McCaw, James; Creek, Darren J; Charman, Susan A; Klonis, Nectarios; Tilley, Leann

    2016-08-01

    Fully synthetic endoperoxide antimalarials, namely, OZ277 (RBx11160; also known as arterolane) and OZ439 (artefenomel), have been approved for marketing or are currently in clinical development. We undertook an analysis of the kinetics of the in vitro responses of Plasmodium falciparum to the new ozonide antimalarials. For these studies we used a K13 mutant (artemisinin resistant) isolate from a region in Cambodia and a genetically matched (artemisinin sensitive) K13 revertant. We used a pulsed-exposure assay format to interrogate the time dependence of the response. Because the ozonides have physicochemical properties different from those of the artemisinins, assay optimization was required to ensure that the drugs were completely removed following the pulsed exposure. Like that of artemisinins, ozonide activity requires active hemoglobin degradation. Short pulses of the ozonides were less effective than short pulses of dihydroartemisinin; however, when early-ring-stage parasites were exposed to drugs for periods relevant to their in vivo exposure, the ozonide antimalarials were markedly more effective. PMID:27161632

  12. Comparison of the Exposure Time Dependence of the Activities of Synthetic Ozonide Antimalarials and Dihydroartemisinin against K13 Wild-Type and Mutant Plasmodium falciparum Strains

    PubMed Central

    Yang, Tuo; Xie, Stanley C.; Cao, Pengxing; Giannangelo, Carlo; McCaw, James; Creek, Darren J.; Charman, Susan A.; Klonis, Nectarios

    2016-01-01

    Fully synthetic endoperoxide antimalarials, namely, OZ277 (RBx11160; also known as arterolane) and OZ439 (artefenomel), have been approved for marketing or are currently in clinical development. We undertook an analysis of the kinetics of the in vitro responses of Plasmodium falciparum to the new ozonide antimalarials. For these studies we used a K13 mutant (artemisinin resistant) isolate from a region in Cambodia and a genetically matched (artemisinin sensitive) K13 revertant. We used a pulsed-exposure assay format to interrogate the time dependence of the response. Because the ozonides have physicochemical properties different from those of the artemisinins, assay optimization was required to ensure that the drugs were completely removed following the pulsed exposure. Like that of artemisinins, ozonide activity requires active hemoglobin degradation. Short pulses of the ozonides were less effective than short pulses of dihydroartemisinin; however, when early-ring-stage parasites were exposed to drugs for periods relevant to their in vivo exposure, the ozonide antimalarials were markedly more effective. PMID:27161632

  13. Patterns of drug resistance among newly diagnosed HIV-1 infected patients in Greece during the last decade: the crucial role of transmission networks

    PubMed Central

    Paraskevis, Dimitrios; Zavitsanou, Assimina; Magiorkinis, Emmanouil; Gargalianos, Panagiotis; Xylomenos, Georgios; Lazanas, Marios; Chini, Maria; Skoutelis, Athanasios; Papastamopoulos, Vasileios; Antoniadou, Anastasia; Papadopoulos, Antonios; Psichogiou, Mina; Daikos, Georgios; Vassilakis, Alexis; Chrysos, Georgios; Paparizos, Vasilis; Kourkounti, Sofia; Sambatakou, Helen; Kordossis, Theodoros; Koratzanis, Georgios; Panagopoulos, Periklis; Maltezos, Evangelos; Drimis, Stylianos; Hatzakis, Angelos

    2014-01-01

    Introduction The prevalence of drug resistance is approximately 10% in Europe and North America among newly infected patients. We aim to investigate the temporal patterns of resistance among drug naive HIV-infected individuals in Greece and also to determine transmission networking among those with resistant strains. Materials and Methods Protease (PR) and partial reverse transcriptase (RT) sequences were determined from 2499 newly diagnosed HIV-1 patients, in Greece, during 2003–2013. Genotypic drug resistance was estimated using the HIVdb: Genotypic Resistance Interpretation Algorithm. We identified transmission clusters of resistant strains on the basis of a large collection of HIV-1 sequences from 4024 seropositives in Greece. Phylodynamic analysis was performed using a Bayesian method. Results We estimated drug resistance levels among naïve patients on the basis of all resistance mutations in PR and partial RT. The overall prevalence of resistance was 19.6% (490/2499). Resistance to NNRTIs was the most common (397/2499, 15.9%) followed by PIs (116/2499, 4.6%) and NRTIs (79/2499, 3.2%). We found a significant trend for decreasing resistance to NRTIs over time (6.7%–1.6%). There was no time trend for the overall PI and NNRTI resistance. The most frequently observed major resistant sites in PR were V82 (2.0%) and L90 (1.8%). In RT, we found E138 (58.6%), K103 (13.1%), V179 (8.4%) and T215 (7.1%), M41 (4.7%) associated with resistance to NNRTIs and NRTIs, respectively. The prevalence of K103N and E138Q were significantly increased during 2003–2013. Crucially, we found that both K103N, E138Q are associated with transmission networking within men having sex with men (MSM) and intravenous drug user (IDU) local networks. The K103N network included seropositives across Greece, while the latter only from the recent IDU outbreak in Athens metropolitan area (1). Phylodynamic analyses revealed that the exponential growth for K103N network started in 2009 (Figure 1

  14. Computational Analysis of HIV-1 Resistance Based on Gene Expression Profiles and the Virus-Host Interaction Network

    PubMed Central

    Huang, Tao; Xu, Zhongping; Chen, Lei; Cai, Yu-Dong; Kong, Xiangyin

    2011-01-01

    A very small proportion of people remain negative for HIV infection after repeated HIV-1 viral exposure, which is called HIV-1 resistance. Understanding the mechanism of HIV-1 resistance is important for the development of HIV-1 vaccines and Acquired Immune Deficiency Syndrome (AIDS) therapies. In this study, we analyzed the gene expression profiles of CD4+ T cells from HIV-1-resistant individuals and HIV-susceptible individuals. One hundred eighty-five discriminative HIV-1 resistance genes were identified using the Minimum Redundancy-Maximum Relevance (mRMR) and Incremental Feature Selection (IFS) methods. The virus protein target enrichment analysis of the 185 HIV-1 resistance genes suggested that the HIV-1 protein nef might play an important role in HIV-1 infection. Moreover, we identified 29 infection information exchanger genes from the 185 HIV-1 resistance genes based on a virus-host interaction network analysis. The infection information exchanger genes are located on the shortest paths between virus-targeted proteins and are important for the coordination of virus infection. These proteins may be useful targets for AIDS prevention or therapy, as intervention in these pathways could disrupt communication with virus-targeted proteins and HIV-1 infection. PMID:21394196

  15. Two-point resistance of an m × n resistor network with an arbitrary boundary and its application in RLC network

    NASA Astrophysics Data System (ADS)

    Zhi-Zhong, Tan

    2016-05-01

    A rectangular m × n resistor network with an arbitrary boundary is investigated, and a general resistance formula between two nodes on an arbitrary axis is derived by the Recursion-Transform (RT) method, a problem that has never been resolved before, for the Green’s function technique and the Laplacian matrix approach are inapplicable to it. To have the exact solution of resistance is important but it is difficult to obtain under the condition of arbitrary boundary. Our result is directly expressed in a single summation and mainly composed of characteristic roots, which contain both finite and infinite cases. Further, the current distribution is given explicitly as a byproduct of the method. Our framework can be effectively applied to RLC networks. As an application to the LC network, we find that our formulation leads to the occurrence of resonances at h 1 = 1 ‑ cos ϕ i ‑ sin ϕ i cot n ϕ i . This somewhat curious result suggests the possibility of practical applications of our formulae to resonant circuits. Project supported by the Prophase Preparatory Project of Natural Science Foundation of Nantong University, China (Grant No. 15ZY16).

  16. The Activities of Current Antimalarial Drugs on the Life Cycle Stages of Plasmodium: A Comparative Study with Human and Rodent Parasites

    PubMed Central

    Delves, Michael; Plouffe, David; Scheurer, Christian; Meister, Stephan; Wittlin, Sergio; Winzeler, Elizabeth A.; Sinden, Robert E.; Leroy, Didier

    2012-01-01

    Background Malaria remains a disease of devastating global impact, killing more than 800,000 people every year—the vast majority being children under the age of 5. While effective therapies are available, if malaria is to be eradicated a broader range of small molecule therapeutics that are able to target the liver and the transmissible sexual stages are required. These new medicines are needed both to meet the challenge of malaria eradication and to circumvent resistance. Methods and Findings Little is known about the wider stage-specific activities of current antimalarials that were primarily designed to alleviate symptoms of malaria in the blood stage. To overcome this critical gap, we developed assays to measure activity of antimalarials against all life stages of malaria parasites, using a diverse set of human and nonhuman parasite species, including male gamete production (exflagellation) in Plasmodium falciparum, ookinete development in P. berghei, oocyst development in P. berghei and P. falciparum, and the liver stage of P. yoelii. We then compared 50 current and experimental antimalarials in these assays. We show that endoperoxides such as OZ439, a stable synthetic molecule currently in clinical phase IIa trials, are strong inhibitors of gametocyte maturation/gamete formation and impact sporogony; lumefantrine impairs development in the vector; and NPC-1161B, a new 8-aminoquinoline, inhibits sporogony. Conclusions These data enable objective comparisons of the strengths and weaknesses of each chemical class at targeting each stage of the lifecycle. Noting that the activities of many compounds lie within achievable blood concentrations, these results offer an invaluable guide to decisions regarding which drugs to combine in the next-generation of antimalarial drugs. This study might reveal the potential of life-cycle–wide analyses of drugs for other pathogens with complex life cycles. Please see later in the article for the Editors' Summary PMID

  17. Fake anti-malarials: start with the facts.

    PubMed

    Kaur, Harparkash; Clarke, Siȃn; Lalani, Mirza; Phanouvong, Souly; Guérin, Philippe; McLoughlin, Andrew; Wilson, Benjamin K; Deats, Michael; Plançon, Aline; Hopkins, Heidi; Miranda, Debora; Schellenberg, David

    2016-01-01

    This meeting report presents the key findings and discussion points of a 1-day meeting entitled 'Fake anti-malarials: start with the facts' held on 28th May 2015, in Geneva, Switzerland, to disseminate the findings of the artemisinin combination therapy consortium's drug quality programme. The teams purchased over 10,000 samples, using representative sampling approaches, from six malaria endemic countries: Equatorial Guinea (Bioko Island), Cambodia, Ghana, Nigeria, Rwanda and Tanzania. Laboratory analyses of these samples showed that falsified anti-malarials (<8 %) were found in just two of the countries, whilst substandard artemisinin-based combinations were present in all six countries and, artemisinin-based monotherapy tablets are still available in some places despite the fact that the WHO has urged regulatory authorities in malaria-endemic countries to take measures to halt the production and marketing of these oral monotherapies since 2007. This report summarizes the presentations that reviewed the public health impact of falsified and substandard drugs, sampling strategies, techniques for drug quality analysis, approaches to strengthen health systems capacity for the surveillance of drug quality, and the ensuing discussion points from the dissemination meeting. PMID:26873700

  18. Atypical Antipsychotic Augmentation for Treatment-Resistant Depression: A Systematic Review and Network Meta-Analysis

    PubMed Central

    Zhou, Xinyu; Keitner, Gabor I; Qin, Bin; Ravindran, Arun V; Bauer, Michael; Del Giovane, Cinzia; Zhao, Jingping; Liu, Yiyun; Fang, Yiru; Zhang, Yuqing

    2015-01-01

    Background: Previous meta-analyses of atypical antipsychotics for depression were limited by few trials with direct comparisons between two treatments. We performed a network meta-analysis, which integrates direct and indirect evidence from randomized controlled trials (RCTs), to investigate the comparative efficacy and tolerability of adjunctive atypical antipsychotics for treatment-resistant depression (TRD). Methods: Systematic searches resulted in 18 RCTs (total n = 4422) of seven different types and different dosages of atypical antipsychotics and a placebo that were included in the review. Results: All standard-dose atypical antipsychotics were significantly more efficacious than placebo in the efficacy (standardized mean differences [SMDs] ranged from -0.27 to -0.43). There were no significant differences between these drugs. Low-dose atypical antipsychotics were not significantly more efficacious than the placebo. In terms of tolerability, all standard-dose atypical antipsychotics, apart from risperidone, had significantly more side-effect discontinuations than placebo (odds ratios [ORs] ranged from 2.72 to 6.40). In terms of acceptability, only quetiapine (mean 250–350mg daily) had significantly more all-cause discontinuation than placebo (OR = 1.89). In terms of quality of life/functioning, standard-dose risperidone and standard-dose aripiprazole were more beneficial than placebo (SMD = -0.38; SMD = -0.26, respectively), and standard-dose risperidone was superior to quetiapine (mean 250–350mg daily). Conclusions: All standard-dose atypical antipsychotics for the adjunctive treatment of TRD are efficacious in reducing depressive symptoms. Risperidone and aripiprazole also showed benefits in improving the quality of life of patients. Atypical antipsychotics should be prescribed with caution due to abundant evidence of side effects. PMID:26012350

  19. Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations.

    PubMed

    Gokmen, Tayfun; Vlasov, Yurii

    2016-01-01

    In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30, 000 × compared to state-of-the-art microprocessors while providing power efficiency of 84, 000 GigaOps∕s∕W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration, and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things) sensors. PMID:27493624

  20. Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations

    PubMed Central

    Gokmen, Tayfun; Vlasov, Yurii

    2016-01-01

    In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30, 000 × compared to state-of-the-art microprocessors while providing power efficiency of 84, 000 GigaOps∕s∕W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration, and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things) sensors. PMID:27493624

  1. Malaria drug resistance: new observations and developments

    PubMed Central

    Sá, Juliana M.; Chong, Jason L.; Wellems, Thomas E.

    2012-01-01

    Drug-resistant micro-organisms became widespread in the 20th Century, often with devastating consequences, in response to widespread use of natural and synthetic drugs against infectious diseases. Antimalarial resistance provides one of the earliest examples, following the introduction of new medicines that filled important needs for prophylaxis and treatment around the globe. In the present chapter, we offer a brief synopsis of major antimalarial developments from two natural remedies, the qinghaosu and cinchona bark infusions, and of synthetic drugs inspired by the active components of these remedies. We review some contributions that early efficacy studies of antimalarial treatment brought to clinical pharmacology, including convincing documentation of atebrine-resistant malaria in the 1940s, prior to the launching of what soon became first-choice antimalarials, chloroquine and amodiaquine. Finally, we discuss some new observations on the molecular genetics of drug resistance, including delayed parasite clearances that have been increasingly observed in response to artemisinin derivatives in regions of South-East Asia. PMID:22023447

  2. Assessment of urinary excretion of antimalarial drugs in large-scale chemotherapeutic eradication projects.

    PubMed

    BRUCE-CHWATT, L J

    1959-01-01

    Assessment of the urinary excretion of an antimalarial drug is a useful means of checking the amount of drug administered and the regularity of intake. The author describes the various methods available for the qualitative and quantitative estimation of antimalarial drugs in urine and discusses their relative merits, with special reference to their suitability for use in the field. He points out the difficulties involved in estimating the urinary excretion of antimalarials in large-scale chemotherapeutic eradication projects and stress the importance of simplifying testing techniques as far as possible. PMID:13805135

  3. Network analysis of S. aureus response to ramoplanin reveals modules for virulence factors and resistance mechanisms and characteristic novel genes.

    PubMed

    Subramanian, Devika; Natarajan, Jeyakumar

    2015-12-10

    Staphylococcus aureus is a major human pathogen and ramoplanin is an antimicrobial attributed for effective treatment. The goal of this study was to examine the transcriptomic profiles of ramoplanin sensitive and resistant S. aureus to identify putative modules responsible for virulence and resistance-mechanisms and its characteristic novel genes. The dysregulated genes were used to reconstruct protein functional association networks for virulence-factors and resistance-mechanisms individually. Strong link between metabolic-pathways and development of virulence/resistance is suggested. We identified 15 putative modules of virulence factors. Six hypothetical genes were annotated with novel virulence activity among which SACOL0281 was discovered to be an essential virulence factor EsaD. The roles of MazEF toxin-antitoxin system, SACOL0202/SACOL0201 two-component system and that of amino-sugar and nucleotide-sugar metabolism in virulence are also suggested. In addition, 14 putative modules of resistance mechanisms including modules of ribosomal protein-coding genes and metabolic pathways such as biotin-synthesis, TCA-cycle, riboflavin-biosynthesis, peptidoglycan-biosynthesis etc. are also indicated. PMID:26255091

  4. Effect of tetrahedral amorphous carbon coating on the resistivity and wear of single-walled carbon nanotube network

    NASA Astrophysics Data System (ADS)

    Iyer, Ajai; Kaskela, Antti; Novikov, Serguei; Etula, Jarkko; Liu, Xuwen; Kauppinen, Esko I.; Koskinen, Jari

    2016-05-01

    Single walled carbon nanotube networks (SWCNTNs) were coated by tetrahedral amorphous carbon (ta-C) to improve the mechanical wear properties of the composite film. The ta-C deposition was performed by using pulsed filtered cathodic vacuum arc method resulting in the generation of C+ ions in the energy range of 40-60 eV which coalesce to form a ta-C film. The primary disadvantage of this process is a significant increase in the electrical resistance of the SWCNTN post coating. The increase in the SWCNTN resistance is attributed primarily to the intrinsic stress of the ta-C coating which affects the inter-bundle junction resistance between the SWCNTN bundles. E-beam evaporated carbon was deposited on the SWCNTNs prior to the ta-C deposition in order to protect the SWCNTN from the intrinsic stress of the ta-C film. The causes of changes in electrical resistance and the effect of evaporated carbon thickness on the changes in electrical resistance and mechanical wear properties have been studied.

  5. Genetic network profiles associated with established resistance to ionizing radiation in acute promyelocytic leukemia cells and their extracellular vesicles.

    PubMed

    Monzen, Satoru; Chiba, Mitsuru; Hosokawa, Yoichiro

    2016-02-01

    Radiation-resistant acute promyelocytic leukemia (APL) cells present challenges to treatment, and the acquisition of resistance to ionizing radiation (IR) is a matter of clinical concern. However, little information is available on the behavior of radio-resistant APL in terms of gene expression profiles and intercellular communication. In this study, cDNA microarray and RT-PCR were used to analyze the intracellular genetic network and extracellular vesicles (EVs), respectively, in the established radio-resistant HL60 (Res-HL60) cell line. Significant changes in the expression of 7,309 known mRNAs were observed in Res-HL60 relative to control. In addition, 7 mRNAs were determined as targets because significant changes in the expression were observed using Ingenuity analysis software, confirming the quantitative RT-PCR. However, EVs from Res-HL60 cells did not include these target molecules. These results suggest that radio-resistant APL is regulated by the expression and suppression of specific molecules, and these molecules are not transferred between cells by EVs. PMID:26718911

  6. Tuberculosis in Australia: bacteriologically confirmed cases and drug resistance, 2000: report of the Australian Mycobacterium Laboratory Reference Network.

    PubMed

    Lumb, Richard; Bastian, Ivan; Dawson, David; Gilpin, Chris; Havekort, Frank; Howard, Peter; Sievers, Aina

    2002-01-01

    The Australian Mycobacterium Reference Laboratory Network collected and analysed laboratory data on new diagnoses of disease caused by Mycobacterium tuberculosis complex in the year 2000. A total of 765 cases were identified, representing an annual reporting rate of 4.0 cases of laboratory-confirmed tuberculosis (TB) per 100,000 population. Pulmonary disease was diagnosed in 64.9 per cent of cases with a male:female ratio of 1.5:1. Smears were positive for 209/365 (57.3%) of sputum isolates and 39/117 (33.3%) bronchoscopy isolates. Sputum from males was more likely to be smear-positive (63.3%) than from females (47.5%). Isolates from lymph node accounted for 136 (17.7%) of all cases; only 28.7 per cent were smear-positive. Eighty-four (11.0%) isolates, comprising 82 M. tuberculosis and 2 M. bovis strains, demonstrated in vitro resistance to at least one of the standard anti-TB medications. Resistance to at least isoniazid and rifampicin (defined as multidrug-resistant TB) was observed for only 8 (1.0%) strains, a rate similar to previous years. Almost all (96.3%) of patients with drug resistant strains were classified as having initial resistance. The country of birth was known for 76 (92.7%) of 82 patients with a drug resistant strain of M. tuberculosis; 6 were Australian-born and 70 (92.1%) had migrated from a total of 17 countries. Of these 70 migrants with drug-resistant disease, 68.6 per cent had migrated from one of the following countries: Vietnam (n=15), China (n=11), Philippines (n=11), India (n=6), and Indonesia (n=5). PMID:12206373

  7. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network.

    PubMed

    Lázár, Viktória; Nagy, István; Spohn, Réka; Csörgő, Bálint; Györkei, Ádám; Nyerges, Ákos; Horváth, Balázs; Vörös, Andrea; Busa-Fekete, Róbert; Hrtyan, Mónika; Bogos, Balázs; Méhi, Orsolya; Fekete, Gergely; Szappanos, Balázs; Kégl, Balázs; Papp, Balázs; Pál, Csaba

    2014-01-01

    Understanding how evolution of antimicrobial resistance increases resistance to other drugs is a challenge of profound importance. By combining experimental evolution and genome sequencing of 63 laboratory-evolved lines, we charted a map of cross-resistance interactions between antibiotics in Escherichia coli, and explored the driving evolutionary principles. Here, we show that (1) convergent molecular evolution is prevalent across antibiotic treatments, (2) resistance conferring mutations simultaneously enhance sensitivity to many other drugs and (3) 27% of the accumulated mutations generate proteins with compromised activities, suggesting that antibiotic adaptation can partly be achieved without gain of novel function. By using knowledge on antibiotic properties, we examined the determinants of cross-resistance and identified chemogenomic profile similarity between antibiotics as the strongest predictor. In contrast, cross-resistance between two antibiotics is independent of whether they show synergistic effects in combination. These results have important implications on the development of novel antimicrobial strategies. PMID:25000950

  8. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network

    PubMed Central

    Lázár, Viktória; Nagy, István; Spohn, Réka; Csörgő, Bálint; Györkei, Ádám; Nyerges, Ákos; Horváth, Balázs; Vörös, Andrea; Busa-Fekete, Róbert; Hrtyan, Mónika; Bogos, Balázs; Méhi, Orsolya; Fekete, Gergely; Szappanos, Balázs; Kégl, Balázs; Papp, Balázs; Pál, Csaba

    2014-01-01

    Understanding how evolution of antimicrobial resistance increases resistance to other drugs is a challenge of profound importance. By combining experimental evolution and genome sequencing of 63 laboratory-evolved lines, we charted a map of cross-resistance interactions between antibiotics in Escherichia coli, and explored the driving evolutionary principles. Here, we show that (1) convergent molecular evolution is prevalent across antibiotic treatments, (2) resistance conferring mutations simultaneously enhance sensitivity to many other drugs and (3) 27% of the accumulated mutations generate proteins with compromised activities, suggesting that antibiotic adaptation can partly be achieved without gain of novel function. By using knowledge on antibiotic properties, we examined the determinants of cross-resistance and identified chemogenomic profile similarity between antibiotics as the strongest predictor. In contrast, cross-resistance between two antibiotics is independent of whether they show synergistic effects in combination. These results have important implications on the development of novel antimicrobial strategies. PMID:25000950

  9. Repositioning: the fast track to new anti-malarial medicines?

    PubMed Central

    2014-01-01

    Background Repositioning of existing drugs has been suggested as a fast track for developing new anti-malarial agents. The compound libraries of GlaxoSmithKline (GSK), Pfizer and AstraZeneca (AZ) comprising drugs that have undergone clinical studies in other therapeutic areas, but not achieved approval, and a set of US Food and Drug Administration (FDA)-approved drugs and other bio-actives were tested against Plasmodium falciparum blood stages. Methods Molecules were tested initially against erythrocytic co-cultures of P. falciparum to measure proliferation inhibition using one of the following methods: SYBR®I dye DNA staining assay (3D7, K1 or NF54 strains); [3H] hypoxanthine radioisotope incorporation assay (3D7 and 3D7A strain); or 4’,6-diamidino-2-phenylindole (DAPI) DNA imaging assay (3D7 and Dd2 strains). After review of the available clinical pharmacokinetic and safety data, selected compounds with low μM activity and a suitable clinical profile were tested in vivo either in a Plasmodium berghei four-day test or in the P. falciparum Pf3D70087/N9 huSCID ‘humanized’ mouse model. Results Of the compounds included in the GSK and Pfizer sets, 3.8% (9/238) had relevant in vitro anti-malarial activity while 6/100 compounds from the AZ candidate drug library were active. In comparison, around 0.6% (24/3,800) of the FDA-approved drugs and other bio-actives were active. After evaluation of available clinical data, four investigational drugs, active in vitro were tested in the P. falciparum humanized mouse model: UK-112,214 (PAF-H1 inhibitor), CEP-701 (protein kinase inhibitor), CEP-1347 (protein kinase inhibitor), and PSC-833 (p-glycoprotein inhibitor). Only UK-112,214 showed significant efficacy against P. falciparum in vivo, although at high doses (ED90 131.3 mg/kg [95% CI 112.3, 156.7]), and parasitaemia was still present 96 hours after treatment commencement. Of the six actives from the AZ library, two compounds (AZ-1 and AZ-3) were marginally

  10. Importance of network density of nanotube: Effect on nitrogen dioxide gas sensing by solid state resistive sensor

    NASA Astrophysics Data System (ADS)

    Mishra, Prabhash; Grachyova, D. V.; Moskalenko, A. S.; Shcherbak, M. A.; Pavelyev, V. S.

    2016-04-01

    Dispersion of single-walled carbon nanotubes (SWCNTs) is an established fact, however, its effect on toxic gas sensing for the development of solid state resistive sensor was not well reported. In this report, the dispersion quality of SWCNTs has been investigated and improved, and this well-dispersed SWCNTs network was used for sensor fabrication to monitor nitrogen dioxide gas. Ultraviolet (UV)-visible spectroscopic studies shows the strength of SWNTs dispersion and scanning electron microscopy (SEM) imaging provides the morphological properties of the sensor device. In this gas sensor device, two sets of resistive type sensors were fabricated that consisting of a pair of interdigitated electrodes (IDEs) using dielectrophoresis technique with different SWCNTs network density. With low-density SWCNTs networks, this fabricated sensor exhibits a high response for nitrogen dioxide sensing. The sensing of nitrogen dioxide is mainly due to charge transfer from absorbed molecules to sidewalls of nanotube and tube-tube screening acting a major role for the transport properties of charge carriers.

  11. Combinatorial pathway engineering for optimized production of the anti-malarial FR900098.

    PubMed

    Freestone, Todd S; Zhao, Huimin

    2016-02-01

    As resistance to current anti-malarial therapeutics spreads, new compounds to treat malaria are increasingly needed. One promising compound is FR900098, a naturally occurring phosphonate. Due to limitations in both chemical synthesis and biosynthetic methods for FR900098 production, this potential therapeutic has yet to see widespread implementation. Here we applied a combinatorial pathway engineering strategy to improve the production of FR900098 in Escherichia coli by modulating each of the pathway's nine genes with four promoters of different strengths. Due to the large size of the library and the low screening throughput, it was necessary to develop a novel screening strategy that significantly reduced the sample size needed to find an optimal strain. This was done by using biased libraries that localize searching around top hits and home in on high-producing strains. By incorporating this strategy, a significantly improved strain was found after screening less than 3% of the entire library. When coupled with culturing optimization, a strain was found to produce 96 mg/L, a 16-fold improvement over the original strain. We believe the enriched library method developed here can be used on other large pathways that may be difficult to engineer by combinatorial methods due to low screening throughput. PMID:26245694

  12. In vitro antimalarial activity of six Aspidosperma species from the state of Minas Gerais (Brazil).

    PubMed

    Dolabela, Maria Fâni; Oliveira, Salma G; Peres, José M; Nascimento, José M S; Póvoa, Marinete M; Oliveira, Alaide B

    2012-12-01

    Ethnomedicinal informations point to some Aspidosperma species (Apocynaceae) as antimalarial plants in Brazil and have motivated the evaluation of six species which were collected in the state of Minas Gerais: A. cylindrocarpon Müll. Arg., A. parvifolium A. DC., A. olivaceum Müll. Arg., A. ramiflorum Müll. Arg., A. spruceanum Benth. ex Müll. Arg. and A. tomentosum Mart.. A total of 23 extracts of different plant parts in different solvents were assayed in vitro against chloroquine-resistant (W2) and chloroquine-sensitive (3D7) strains of Plasmodium falciparum. All the extracts were shown to be active with IC50 values in the range of 5.0 ± 0 2.8 µg/mL to 65.0 ± 4.2 µg/mL. TLC profile of the extracts revealed the presence of alkaloids in the six species assayed. These results seem to confirm the popular use of Aspidosperma species to treat human malaria in Brazil and seem point to alkaloids as the putative active compounds of the assayed species. PMID:23207699

  13. Antimalarial and Structural Studies of Pyridine-Containing Inhibitors of 1-Deoxyxylulose-5-phosphate Reductoisomerase

    PubMed Central

    2012-01-01

    1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) in the nonmevalonate isoprene biosynthesis pathway is a target for developing antimalarial drugs. Fosmidomycin, a potent DXR inhibitor, showed safety as well as efficacy against Plasmodium falciparum malaria in clinical trials. On the basis of our previous quantitative structure–activity relationship (QSAR) and crystallographic studies, several novel pyridine-containing fosmidomycin derivatives were designed, synthesized, and found to be highly potent inhibitors of P. falciparum DXR (PfDXR) having Ki values of 1.9–13 nM, with the best one being ∼11× more active than fosmidomycin. These compounds also potently block the proliferation of multidrug resistant P. falciparum with EC50 values as low as 170 nM. A 2.3 Å crystal structure of PfDXR in complex with one of the inhibitors is reported, showing that the flexible loop of the protein undergoes conformational changes upon ligand binding and a hydrogen bond and favorable hydrophobic interactions between the pyridine group and the PfDXR account for the enhanced activity. PMID:23795240

  14. Thiaplakortones A-D: antimalarial thiazine alkaloids from the Australian marine sponge Plakortis lita.

    PubMed

    Davis, Rohan A; Duffy, Sandra; Fletcher, Sabine; Avery, Vicky M; Quinn, Ronald J

    2013-10-01

    A high-throughput screening campaign using a prefractionated natural product library and an in vitro antimalarial assay identified active fractions derived from the Australian marine sponge Plakortis lita . Bioassay-guided fractionation of the CH2Cl2/CH3OH extract from P. lita resulted in the purification of four novel thiazine-derived alkaloids, thiaplakortones A-D (1-4). The chemical structures of 1-4 were determined following analysis of 1D/2D NMR and MS data. Comparison of the chiro-optical data for 3 and 4 with literature values of related N-methyltryptophan natural products was used to determine the absolute configuration for both thiaplakortones C and D as 11S. Compounds 1-4 displayed significant growth inhibition against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum (IC50 values <651 nM) and only moderate cytotoxicity against HEK293 cells (IC50 values >3.9 μM). Thiaplakortone A (1) was the most active natural product, with IC50 values of 51 and 6.6 nM against 3D7 and Dd2 lines, respectively. PMID:24032556

  15. Altering Antimalarial Drug Regimens May Dramatically Enhance and Restore Drug Effectiveness.

    PubMed

    Kay, Katherine; Hodel, Eva Maria; Hastings, Ian M

    2015-10-01

    There is considerable concern that malaria parasites are starting to evolve resistance to the current generation of antimalarial drugs, the artemisinin-based combination therapies (ACTs). We use pharmacological modeling to investigate changes in ACT effectiveness likely to occur if current regimens are extended from 3 to 5 days or, alternatively, given twice daily over 3 days. We show that the pharmacology of artemisinins allows both regimen changes to substantially increase the artemisinin killing rate. Malaria patients rarely contain more than 10(12) parasites, while the standard dosing regimens allow approximately 1 in 10(10) parasites to survive artemisinin treatment. Parasite survival falls dramatically, to around 1 in 10(17) parasites if the dose is extended or split; theoretically, this increase in drug killing appears to be more than sufficient to restore failing ACT efficacy. One of the most widely used dosing regimens, artemether-lumefantrine, already successfully employs a twice-daily dosing regimen, and we argue that twice-daily dosing should be incorporated into all ACT regimen design considerations as a simple and effective way of ensuring the continued long-term effectiveness of ACTs. PMID:26239993

  16. Altering Antimalarial Drug Regimens May Dramatically Enhance and Restore Drug Effectiveness

    PubMed Central

    Hodel, Eva Maria; Hastings, Ian M.

    2015-01-01

    There is considerable concern that malaria parasites are starting to evolve resistance to the current generation of antimalarial drugs, the artemisinin-based combination therapies (ACTs). We use pharmacological modeling to investigate changes in ACT effectiveness likely to occur if current regimens are extended from 3 to 5 days or, alternatively, given twice daily over 3 days. We show that the pharmacology of artemisinins allows both regimen changes to substantially increase the artemisinin killing rate. Malaria patients rarely contain more than 1012 parasites, while the standard dosing regimens allow approximately 1 in 1010 parasites to survive artemisinin treatment. Parasite survival falls dramatically, to around 1 in 1017 parasites if the dose is extended or split; theoretically, this increase in drug killing appears to be more than sufficient to restore failing ACT efficacy. One of the most widely used dosing regimens, artemether-lumefantrine, already successfully employs a twice-daily dosing regimen, and we argue that twice-daily dosing should be incorporated into all ACT regimen design considerations as a simple and effective way of ensuring the continued long-term effectiveness of ACTs. PMID:26239993

  17. Straightforward conversion of decoquinate into inexpensive tractable new derivatives with significant antimalarial activities.

    PubMed

    Beteck, Richard M; Coertzen, Dina; Smit, Frans J; Birkholtz, Lyn-Marie; Haynes, Richard K; N'Da, David D

    2016-07-01

    As part of a programme aimed at identifying rational new triple drug combinations for treatment of malaria, tuberculosis and toxoplasmosis, we have selected quinolones as one component, given that selected examples exhibit exceptionally good activities against the causative pathogens of the foregoing diseases. The quinolone decoquinate (DQ), an old and inexpensive coccidiostat, displays anti-malarial activity in vitro against Plasmodium falciparum (Pf). However, because of its exceedingly poor solubility in water or organic solvents, development of DQ as a drug is problematical. We have therefore converted DQ in straightforward fashion into tractable new derivatives that display good activities in vitro against chloroquine-sensitive NF54 and multidrug-resistant K1 and W2 Pf, and relatively low toxicities against human fibroblast cells. The most active compound, the N-acetyl derivative 30, is 5-fold more active than DQ against NF54 and K1 and equipotent with DQ against W2. It possesses an activity profile against all strains comparable with that of the artemisinin derivative artesunate. Overall, this compound and the other accessible and active derivatives serve as an attractive template for development of new and economic lead quinolones. PMID:27210430

  18. Screening Mangrove Endophytic Fungi for Antimalarial Natural Products

    PubMed Central

    Calcul, Laurent; Waterman, Carrie; Ma, Wai Sheung; Lebar, Matthew D.; Harter, Charles; Mutka, Tina; Morton, Lindsay; Maignan, Patrick; Van Olphen, Alberto; Kyle, Dennis E.; Vrijmoed, Lilian; Pang, Ka-Lai; Pearce, Cedric; Baker, Bill J.

    2013-01-01

    We conducted a screening campaign to investigate fungi as a source for new antimalarial compounds. A subset of our fungal collection comprising Chinese mangrove endophytes provided over 5000 lipophilic extracts. We developed an accelerated discovery program based on small-scale cultivation for crude extract screening and a high-throughput malaria assay. Criteria for hits were developed and high priority hits were subjected to scale-up cultivation. Extracts from large scale cultivation were fractionated and these fractions subjected to both in vitro malaria and cytotoxicity screening. Criteria for advancing fractions to purification were developed, including the introduction of a selectivity index and by dereplication of known metabolites. From the Chinese mangrove endophytes, four new compounds (14–16, 18) were isolated including a new dimeric tetrahydroxanthone, dicerandrol D (14), which was found to display the most favorable bioactivity profile. PMID:24351903

  19. Antimalarial benzylisoquinoline alkaloid from the rainforest tree Doryphora sassafras.

    PubMed

    Buchanan, Malcolm S; Davis, Rohan A; Duffy, Sandra; Avery, Vicky M; Quinn, Ronald J

    2009-08-01

    Mass-directed isolation of the CH(2)Cl(2)/MeOH extract of Doryphora sassafras resulted in the purification of a new benzylisoquinoline alkaloid, 1-(4-hydroxybenzyl)-6,7-methylenedioxy-2-methylisoquinolinium trifluoroacetate (1), and the known aporphine alkaloid (S)-isocorydine (2). The structures of 1 and 2 were determined by 1D and 2D NMR and MS data analyses. The compounds were isolated during a drug discovery program aimed at identifying new antimalarial leads from a prefractionated natural product library. When tested against two different strains of the parasite Plasmodium falciparum (3D7 and Dd2), 1 displayed IC(50) values of 3.0 and 4.4 microM, respectively. Compound 1 was tested for cytotoxicity toward a human embryonic kidney cell line (HEK293) and displayed no activity at 120 microM. PMID:19637893

  20. The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei.

    PubMed

    Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa; Gamarro, Francisco; Pérez-Victoria, José M

    2015-10-01

    The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca(2+), and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. PMID:26195527

  1. Trisubstituted Pyrimidines as Efficacious and Fast-Acting Antimalarials.

    PubMed

    Norcross, Neil R; Baragaña, Beatriz; Wilson, Caroline; Hallyburton, Irene; Osuna-Cabello, Maria; Norval, Suzanne; Riley, Jennifer; Stojanovski, Laste; Simeons, Frederick R C; Porzelle, Achim; Grimaldi, Raffaella; Wittlin, Sergio; Duffy, Sandra; Avery, Vicky M; Meister, Stephan; Sanz, Laura; Jiménez-Díaz, Belén; Angulo-Barturen, Iñigo; Ferrer, Santiago; Martínez, María Santos; Gamo, Francisco Javier; Frearson, Julie A; Gray, David W; Fairlamb, Alan H; Winzeler, Elizabeth A; Waterson, David; Campbell, Simon F; Willis, Paul; Read, Kevin D; Gilbert, Ian H

    2016-07-14

    In this paper we describe the optimization of a phenotypic hit against Plasmodium falciparum, based on a trisubstituted pyrimidine scaffold. This led to compounds with good pharmacokinetics and oral activity in a P. berghei mouse model of malaria. The most promising compound (13) showed a reduction in parasitemia of 96% when dosed at 30 mg/kg orally once a day for 4 days in the P. berghei mouse model of malaria. It also demonstrated a rapid rate of clearance of the erythrocytic stage of P. falciparum in the SCID mouse model with an ED90 of 11.7 mg/kg when dosed orally. Unfortunately, the compound is a potent inhibitor of cytochrome P450 enzymes, probably due to a 4-pyridyl substituent. Nevertheless, this is a lead molecule with a potentially useful antimalarial profile, which could either be further optimized or be used for target hunting. PMID:27314305

  2. Trisubstituted Pyrimidines as Efficacious and Fast-Acting Antimalarials

    PubMed Central

    2016-01-01

    In this paper we describe the optimization of a phenotypic hit against Plasmodium falciparum, based on a trisubstituted pyrimidine scaffold. This led to compounds with good pharmacokinetics and oral activity in a P. berghei mouse model of malaria. The most promising compound (13) showed a reduction in parasitemia of 96% when dosed at 30 mg/kg orally once a day for 4 days in the P. berghei mouse model of malaria. It also demonstrated a rapid rate of clearance of the erythrocytic stage of P. falciparum in the SCID mouse model with an ED90 of 11.7 mg/kg when dosed orally. Unfortunately, the compound is a potent inhibitor of cytochrome P450 enzymes, probably due to a 4-pyridyl substituent. Nevertheless, this is a lead molecule with a potentially useful antimalarial profile, which could either be further optimized or be used for target hunting. PMID:27314305

  3. The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei

    PubMed Central

    Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa

    2015-01-01

    The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca2+, and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. PMID:26195527

  4. Deciphering the late biosynthetic steps of antimalarial compound FR-900098.

    PubMed

    Johannes, Tyler W; DeSieno, Matthew A; Griffin, Benjamin M; Thomas, Paul M; Kelleher, Neil L; Metcalf, William W; Zhao, Huimin

    2010-01-29

    FR-900098 is a potent chemotherapeutic agent for the treatment of malaria. Here we report the heterologous production of this compound in Escherichia coli by reconstructing the entire biosynthetic pathway using a three-plasmid system. Based on this system, whole-cell feeding assays in combination with in vitro enzymatic activity assays reveal an unusual functional role of nucleotide conjugation and lead to the complete elucidation of the previously unassigned late biosynthetic steps. These studies also suggest a biosynthetic route to a second phosphonate antibiotic, FR-33289. A thorough understanding of the FR-900098 biosynthetic pathway now opens possibilities for metabolic engineering in E. coli to increase production of the antimalarial antibiotic and combinatorial biosynthesis to generate novel derivatives of FR-900098. PMID:20142041

  5. Ex vivo susceptibility of Plasmodium falciparum isolates from Dakar, Senegal, to seven standard anti-malarial drugs

    PubMed Central

    2011-01-01

    Background As a result of widespread chloroquine and sulphadoxine-pyrimethamine resistance, artemisinin-based combination therapy (ACT) (which includes artemether-lumefantrine and artesunate-amodiaquine) has been recommended as a first-line anti-malarial regimen in Senegal since 2006. Since then, there have been very few reports on the ex vivo susceptibility of Plasmodium falciparum to anti-malarial drugs. To examine whether parasite susceptibility has been affected by the widespread use of ACT, the ex vivo susceptibility of local isolates was assessed at the military hospital of Dakar. Methods The ex vivo susceptibility of 93 P. falciparum isolates from Dakar was successfully determined using the Plasmodium lactate dehydrogenase (pLDH) ELISA for the following drugs: chloroquine (CQ), quinine (QN), mefloquine (MQ), monodesethylamodiaquine (MDAQ), lumefantrine (LMF), dihydroartemisinin (DHA) and doxycycline (DOX). Results After transformation of the isolate IC50 in ratio of IC50 according to the susceptibility of the 3D7 reference strain (isolate IC50/3D7 IC50), the prevalence of the in vitro resistant isolates with reduced susceptibility was 50% for MQ, 22% for CQ, 12% for DOX, 6% for both QN and MDAQ and 1% for the drugs LMF and DHA. The highest significant positive correlations were shown between responses to CQ and MDAQ (r = 0.569; P < 0.0001), LMF and QN (r = 0.511; P < 0.0001), LMF and DHA (r = 0.428; P = 0.0001), LMF and MQ (r = 0.413; P = 0.0002), QN and DHA (r = 0.402; P = 0.0003) and QN and MQ (r = 0.421; P = 0.0001). Conclusions The introduction of ACT in 2002 has not induced a decrease in P. falciparum susceptibility to the drugs DHA, MDAQ and LMF, which are common ACT components. However, the prevalence of P. falciparum isolates with reduced susceptibility has increased for both MQ and DOX. Taken together, these data suggest that intensive surveillance of the P. falciparum in vitro susceptibility to anti-malarial drugs in Senegal is required. PMID

  6. Antimalarial activity of ruthenium(II) and osmium(II) arene complexes with mono- and bidentate chloroquine analogue ligands.

    PubMed

    Ekengard, Erik; Glans, Lotta; Cassells, Irwin; Fogeron, Thibault; Govender, Preshendren; Stringer, Tameryn; Chellan, Prinessa; Lisensky, George C; Hersh, William H; Doverbratt, Isa; Lidin, Sven; de Kock, Carmen; Smith, Peter J; Smith, Gregory S; Nordlander, Ebbe

    2015-11-28

    Eight new ruthenium and five new osmium p-cymene half-sandwich complexes have been synthesized, characterized and evaluated for antimalarial activity. All complexes contain ligands that are based on a 4-chloroquinoline framework related to the antimalarial drug chloroquine. Ligands HL(1-8) are salicylaldimine derivatives, where HL(1) = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine, and HL(2-8) contain non-hydrogen substituents in the 3-position of the salicylaldimine ring, viz. F, Cl, Br, I, NO2, OMe and (t)Bu for HL(2-8), respectively. Ligand HL(9) is also a salicylaldimine-containing ligand with substitutions in both 3- and 5-positions of the salicylaldimine moiety, i.e. N-(2-((2-hydroxy-3,5-di-tert-butylphenyl)methyl-imino)ethyl)-7-chloroquinolin-4-amine, while HL(10) is N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) The half sandwich metal complexes that have been investigated are [Ru(η(6)-cym)(L(1-8))Cl] (Ru-1-Ru-8, cym = p-cymene), [Os(η(6)-cym)(L(1-3,5,7))Cl] (Os-1-Os-3, Os-5, and Os-7), [M(η(6)-cym)(HL(9))Cl2] (M = Ru, Ru-HL(9); M = Os, Os-HL(9)) and [M(η(6)-cym)(L(10))Cl]Cl (M = Ru, Ru-10; M = Os, Os-10). In complexes Ru-1-Ru-8 and Ru-10, Os-1-Os-3, Os-5 and Os-7 and Os-10, the ligands were found to coordinate as bidentate N,O- and N,N-chelates, while in complexes Ru-HL(9) and Os-HL(9), monodentate coordination of the ligands through the quinoline nitrogen was established. The antimalarial activity of the new ligands and complexes was evaluated against chloroquine sensitive (NF54 and D10) and chloroquine resistant (Dd2) Plasmodium falciparum malaria parasite strains. Coordination of ruthenium and osmium arene moieties to the ligands resulted in lower antiplasmodial activities relative to the free ligands, but the resistance index is better for the ruthenium complexes compared to chloroquine. Overall, osmium complexes appeared to be less active than the corresponding ruthenium complexes. PMID:26491831

  7. A Developability-Focused Optimization Approach Allows Identification of in Vivo Fast-Acting Antimalarials: N-[3-[(Benzimidazol-2-yl)amino]propyl]amides.

    PubMed

    Keurulainen, Leena; Vahermo, Mikko; Puente-Felipe, Margarita; Sandoval-Izquierdo, Elena; Crespo-Fernández, Benigno; Guijarro-López, Laura; Huertas-Valentín, Leticia; de las Heras-Dueña, Laura; Leino, Teppo O; Siiskonen, Antti; Ballell-Pages, Lluís; Sanz, Laura M; Castañeda-Casado, Pablo; Jiménez-Díaz, M Belén; Martínez-Martínez, María S; Viera, Sara; Kiuru, Paula; Calderón, Félix; Yli-Kauhaluoma, Jari

    2015-06-11

    Malaria continues to be a major global health problem, being particularly devastating in the African population under the age of five. Artemisinin-based combination therapies (ACTs) are the first-line treatment recommended by the WHO to treat Plasmodium falciparum malaria, but clinical resistance against them has already been reported. As a consequence, novel chemotypes are urgently needed. Herein we report a novel, in vivo active, fast-acting antimalarial chemotype based on a benzimidazole core. This discovery is the result of a medicinal chemistry plan focused on improving the developability profile of an antichlamydial chemical class previously reported by our group. PMID:25906200

  8. Effect of length of chopped pristine and intercalated graphite fibers on the resistivity of fiber networks

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Stahl, Mark

    1988-01-01

    Samples of Amoco P-100 fibers were chopped to lengths of 3.14, 2.53, 1.90, 1.27, 0.66 mm, or milled for 2 hours. The two-point resistivity of compacts of these fibers were measured as a function of pressure from 34 kPa to 143 MPa. Samples of each fiber length were intercalated with bromine at room temperature and similarly measured. The low pressure resistivity of the compacts decreased with increasing fiber length. Intercalation lowered the resistivity of each of the chopped length compacts, but raised the resistivity of the milled fiber compacts. Bulk resistivity of all samples decreased with increasing pressure at similar rates. Even though fiber volumes were as low as 5 percent, all measurements exhibited measurable resistivity. A greater change with pressure in the resistance was observed for shorter fibers than for longer, probably an indication of tighter fiber packing. Intercalation appeared to have no effect on the fiber to fiber contact resistance.

  9. Discovery of Novel Liver-Stage Antimalarials through Quantum Similarity

    PubMed Central

    Sullivan, David J.; Liu, Yi; Mott, Bryan T.; Kaludov, Nikola; Martinov, Martin N.

    2015-01-01

    Without quantum theory any understanding of molecular interactions is incomplete. In principal, chemistry, and even biology, can be fully derived from non-relativistic quantum mechanics. In practice, conventional quantum chemical calculations are computationally too intensive and time consuming to be useful for drug discovery on more than a limited basis. A previously described, original, quantum-based computational process for drug discovery and design bridges this gap between theory and practice, and allows the application of quantum methods to large-scale in silico identification of active compounds. Here, we show the results of this quantum-similarity approach applied to the discovery of novel liver-stage antimalarials. Testing of only five of the model-predicted compounds in vitro and in vivo hepatic stage drug inhibition assays with P. berghei identified four novel chemical structures representing three separate quantum classes of liver-stage antimalarials. All four compounds inhibited liver-stage Plasmodium as a single oral dose in the quantitative PCR mouse liver-stage sporozoites-challenge model. One of the newly identified compounds, cethromycin [ABT-773], a macrolide-quinoline hybrid, is a drug with an extensive (over 5,000 people) safety profile warranting its exploitation as a new weapon for the current effort of malaria eradication. The results of our molecular modeling exceed current state-of-the-art computational methods. Drug discovery through quantum similarity is data-driven, agnostic to any particular target or disease process that can evaluate multiple phenotypic, target-specific, or co-crystal structural data. This allows the incorporation of additional pharmacological requirements, as well as rapid exploration of novel chemical spaces for therapeutic applications. PMID:25951139

  10. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given...

  11. Community management of anti-malarials in Africa and iatrogenic risk.

    PubMed

    Orostegui, Lupé; Balu, Laurent; Chevret, Laurent; Habes, Dalila; Pussard, Eric

    2011-06-01

    Distribution of anti-malarials at the community level is one of the interventions recommended to reduce mortality from febrile illnesses. Inappropriate treatment of fever with anti-malarials may result in missed diagnosis and delays in appropriate treatments including consideration of other illnesses than malaria. We report the case of an 8-year-old black girl receiving prophylaxis with sulfadoxine-pyrimethamine from the caretaker of the community during her holidays in Ivory Coast. A persistent fever suspected to be due to malaria was treated inappropriately with atovaquone-proguanil and then with sulfadoxine-pyrimethamine again. Cumulative toxicity of anti-malarials leads to irreversible hepatic damages requiring hepatic transplantation. Community caretakers must be aware of the potential side effects and the contraindications of anti-malarials. Early identification of drug-induced toxicity and immediate discontinuation of the drug are the more effective tools to limit the progression of tissue damage. PMID:20807830

  12. Spread of drug-resistant Streptococcus pneumoniae in Asian countries: Asian Network for Surveillance of Resistant Pathogens (ANSORP) Study.

    PubMed

    Song, J H; Lee, N Y; Ichiyama, S; Yoshida, R; Hirakata, Y; Fu, W; Chongthaleong, A; Aswapokee, N; Chiu, C H; Lalitha, M K; Thomas, K; Perera, J; Yee, T T; Jamal, F; Warsa, U C; Vinh, B X; Jacobs, M R; Appelbaum, P C; Pai, C H

    1999-06-01

    Antimicrobial susceptibility of 996 isolates of Streptococcus pneumoniae from clinical specimens was investigated in 11 Asian countries from September 1996 to June 1997. Korea had the greatest frequency of nonsusceptible strains to penicillin with 79.7%, followed by Japan (65.3%), Vietnam (60.8%), Thailand (57.9%), Sri Lanka (41.2%), Taiwan (38.7%), Singapore (23.1%), Indonesia (21.0%), China (9.8%), Malaysia (9.0%), and India (3.8%). Serotypes 23F and 19F were the most common. Pulsed-field gel electrophoresis (PFGE) of 154 isolates from Asian countries showed several major PFGE patterns. The serotype 23F Spanish clone shared the same PFGE pattern with strains from Korea, Japan, Singapore, Taiwan, Thailand, and Malaysia. Fingerprinting analysis of pbp1a, pbp2x, and pbp2b genes of 12 strains from six countries also showed identical fingerprints of penicillin-binding protein genes in most strains. These data suggest the possible introduction and spread of international epidemic clones into Asian countries and the increasing problems of pneumococcal drug resistance in Asian countries for the first time. PMID:10451154

  13. New Insight into the Mechanism of Accumulation and Intraerythrocytic Compartmentation of Albitiazolium, a New Type of Antimalarial

    PubMed Central

    Tran Van Ba, Christophe; Maynadier, Marjorie; Bordat, Yann; Perez, Julie; Peyrottes, Suzanne; Fraisse, Laurent

    2014-01-01

    Bis-thiazolium salts constitute a new class of antihematozoan drugs that inhibit parasite phosphatidylcholine biosynthesis. They specifically accumulate in Plasmodium- and Babesia-infected red blood cells (IRBC). Here, we provide new insight into the choline analogue albitiazolium, which is currently being clinically tested against severe malaria. Concentration-dependent accumulation in P. falciparum-infected erythrocytes reached steady state after 90 to 120 min and was massive throughout the blood cycle, with cellular accumulation ratios of up to 1,000. This could not occur through a lysosomotropic effect, and the extent did not depend on the food vacuole pH, which was the case for the weak base chloroquine. Analysis of albitiazolium accumulation in P. falciparum IRBC revealed a high-affinity component that was restricted to mature stages and suppressed by pepstatin A treatment, and thus likely related to drug accumulation in the parasite food vacuole. Albitiazolium also accumulated in a second high-capacity component present throughout the blood cycle that was likely not related to the food vacuole and also observed with Babesia divergens-infected erythrocytes. Accumulation was strictly glucose dependent, drastically inhibited by H+/K+ and Na+ ionophores upon collapse of ionic gradients, and appeared to be energized by the proton-motive force across the erythrocyte plasma membrane, indicating the importance of transport steps for this permanently charged new type of antimalarial agent. This specific, massive, and irreversible accumulation allows albitiazolium to restrict its toxicity to hematozoa-infected erythrocytes. The intraparasitic compartmentation of albitiazolium corroborates a dual mechanism of action, which could make this new type of antimalarial agent resistant to parasite resistance. PMID:25001307

  14. Facile oxidation of leucomethylene blue and dihydroflavins by artemisinins: relationship with flavoenzyme function and antimalarial mechanism of action.

    PubMed

    Haynes, Richard K; Chan, Wing-Chi; Wong, Ho-Ning; Li, Ka-Yan; Wu, Wai-Keung; Fan, Kit-Man; Sung, Herman H Y; Williams, Ian D; Prosperi, Davide; Melato, Sergio; Coghi, Paolo; Monti, Diego

    2010-08-01

    enhanced by artemisinins, especially under aerobic conditions. Recombinant human GR is not affected. Artemisinins thus may act as antimalarial drugs by perturbing the redox balance within the malaria parasite, both by oxidising FADH(2) in parasite GR or other parasite flavoenzymes, and by initiating autoxidation of the dihydroflavin by oxygen with generation of ROS. Reduction of the artemisinin is proposed to occur via hydride transfer from LMB or the dihydroflavin to O1 of the peroxide. This hitherto unrecorded reactivity profile conforms with known structure-activity relationships of artemisinins, is consistent with their known ability to generate ROS in vivo, and explains the synergism between artemisinins and redox-active antimalarial drugs such as MB and doxorubicin. As the artemisinins appear to be relatively inert towards human GR, a putative model that accounts for the selective potency of artemisinins towards the malaria parasite also becomes apparent. Decisively, ferrous iron or carbon-centered free radicals cannot be involved, and the reactivity described herein reconciles disparate observations that are incompatible with the ferrous iron-carbon radical hypothesis for antimalarial mechanism of action. Finally, the urgent enquiry into the emerging resistance of the malaria parasite to artemisinins may now in one part address the possibilities either of structural changes taking place in parasite flavoenzymes that render the flavin cofactor less accessible to artemisinins or of an enhancement in the ability to use intra-erythrocytic human disulfide reductases required for maintenance of parasite redox balance. PMID:20629071

  15. Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy.

    PubMed Central

    Meshnick, S R; Taylor, T E; Kamchonwongpaisan, S

    1996-01-01

    Artemisinin and its derivatives are endoperoxide-containing compounds which represent a promising new class of antimalarial drugs. In the presence of intraparasitic iron, these drugs are converted into free radicals and other electrophilic intermediates which then alkylate specific malaria target proteins. Combinations of available derivatives and other antimalarial agents show promise both as first-line agents and in the treatment of severe disease. PMID:8801435

  16. Utilizing Continuous Resistivity Profiling for Assessment and Characterization of Canal Seepage in El Paso's Lower Valley Irrigation Network System

    NASA Astrophysics Data System (ADS)

    Brown, W. A.; Sheng, Z.

    2009-12-01

    Annually, billions of gallons of water are lost through seepage along sections of the irrigation network. To conserve water, El Paso County Water Improvement District has been assessing seepage losses and investigating measures for reducing such losses. Resistivity techniques were used to identify areas of high seepage and provide information on locations along canals that need to be structurally modified in an effort to curb water lost through seepage. Several half mile sections were selected along canals with varying seepage rates to conduct electric resistivity surveys in order generate soil profiles during the non-irrigation and irrigation seasons. Two different multiple channel resistivity meters (The“OhmMapper and the Super Sting R8”) were used, which both allow a vertical resistivity profile to be collected using a single current transmission. The results presented are preliminary and we believe that upon completion findings will serve multiple purposes. Firstly, a better understanding of seepage patterns, seepage rate and its spatial variation can be obtained. Secondly, our findings could be used to produce geological profiles associated with seepage areas which will enable the irrigation district to develop guidelines for improving delivery efficiency, especially during drought. And thirdly, our results will be transferable to other areas of the state and will have a positive impact on the environment and the overall quality of life.

  17. Challenges of drug-resistant malaria

    PubMed Central

    Sinha, Shweta; Medhi, Bikash; Sehgal, Rakesh

    2014-01-01

    Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia–Thailand border threatened all the previous success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel studies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria. PMID:25402734

  18. Challenges of drug-resistant malaria.

    PubMed

    Sinha, Shweta; Medhi, Bikash; Sehgal, Rakesh

    2014-01-01

    Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia-Thailand border threatened all the previous success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel studies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria. PMID:25402734

  19. Interpenetrating polymer network approach to tougher and more microcracking resistant high temperature polymers. I - LaRC-RP40

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Morgan, Cassandra D.

    1988-01-01

    Interpenetrating polymer networks in the form of the LaRC-RP40 resin, prepared by the in situ polymerization of a thermosetting imide prepolymer and thermoplastic monomer reactants, are presently used to obtain toughness and microcracking resistance in a high-temperature polymer. Attention is presently given to the processing, physical, and mechanical properties, as well as the thermooxidative stability, of both the neat resin and the resin as a graphite fiber-reinforced matrix. Microcracking after thermal cycling was also tested. LaRC-RP40 exhibits significant resin fracture toughness improvements over the PMR-15 high-temperature matrix resin.

  20. ICI 56,780 Optimization: Structure-Activity Relationship Studies of 7-(2-Phenoxyethoxy)-4(1H)-quinolones with Antimalarial Activity.

    PubMed

    Maignan, Jordany R; Lichorowic, Cynthia L; Giarrusso, James; Blake, Lynn D; Casandra, Debora; Mutka, Tina S; LaCrue, Alexis N; Burrows, Jeremy N; Willis, Paul A; Kyle, Dennis E; Manetsch, Roman

    2016-07-28

    Though malaria mortality rates are down 48% globally since 2000, reported occurrences of resistance against current therapeutics threaten to reverse that progress. Recently, antimalarials that were once considered unsuitable therapeutic agents have been revisited to improve physicochemical properties and efficacy required for selection as a drug candidate. One such compound is 4(1H)-quinolone ICI 56,780, which is known to be a causal prophylactic that also displays blood schizonticidal activity against P. berghei. Rapid induction of parasite resistance, however, stalled its further development. We have completed a full structure-activity relationship study on 4(1H)-quinolones, focusing on the reduction of cross-resistance with atovaquone for activity against the clinical isolates W2 and TM90-C2B, as well as the improvement of microsomal stability. These studies revealed several frontrunner compounds with superb in vivo antimalarial activity. The best compounds were found to be curative with all mice surviving a Plasmodium berghei infection after 30 days. PMID:27291102

  1. Evaluation of anti-malarial drugs’ use in Fitche Hospital, North Shoa, Oromia Region, Ethiopia

    PubMed Central

    Getachew, Rosa; Amelo, Wote; Bobasa, Eshetu Mulisa

    2016-01-01

    Objective: Retrospective evaluation of anti-malarial drugs’ use in Fitche Hospital, North Shoa, Oromia Region, Ethiopia. Methods: Retrospective cross-sectional study design was conducted using selected patients cards of 1-year (January 2012–January 2013 G.C) with anti-malarial agents from January 18 to 30, 2013. The sample size was calculated by using Joint Commission on the Accreditation of Health care Organization criteria and sampling was done by using a systematic random sampling technique. Results: One hundred and twenty-five patient cards with anti-malarial drugs were reviewed of which 32.8%, 21.6%, 15.2% belongs to age range of 20–29, 10–19, and 30–39, respectively. Chloroquine prescription accounts for 50.4% from total anti-malarial drugs. 71.2% and 78.4% of patients received antibiotics and analgesics, respectively, with anti-malarial drugs. 77.6% of drugs were prescribed by generic name while the brand name was 22.39%. Conclusions: The study done in Fitche Hospital revealed that the use of anti-malarial agent was not in complete agreement with the current guideline of Ethiopia despite good practice. PMID:26957867

  2. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus.

    PubMed

    Wu, Jian; Zhao, Qing; Yang, Qingyong; Liu, Han; Li, Qingyuan; Yi, Xinqi; Cheng, Yan; Guo, Liang; Fan, Chuchuan; Zhou, Yongming

    2016-01-01

    Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most devastating diseases in many important crops including Brassica napus worldwide. Quantitative resistance is the only source for genetic improvement of Sclerotinia-resistance in B. napus, but the molecular basis for such a resistance is largely unknown. Here, we performed dynamic transcriptomic analyses to understand the differential defense response to S. sclerotiorum in a resistant line (R-line) and a susceptible line (S-line) of B. napus at 24, 48 and 96 h post-inoculation. Both the numbers of and fold changes in differentially expressed genes in the R-line were larger than those in the S-line. We identified 9001 relative differentially expressed genes in the R-line compared with the S-line. The differences between susceptibility and resistance were associated with the magnitude of expression changes in a set of genes involved in pathogen recognition, MAPK signaling cascade, WRKY transcription regulation, jasmonic acid/ethylene signaling pathways, and biosynthesis of defense-related protein and indolic glucosinolate. The results were supported by quantitation of defense-related enzyme activity and glucosinolate contents. Our results provide insights into the complex molecular mechanism of the defense response to S. sclerotiorum in B. napus and for development of effective strategies in Sclerotinia-resistance breeding. PMID:26743436

  3. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus

    PubMed Central

    Wu, Jian; Zhao, Qing; Yang, Qingyong; Liu, Han; Li, Qingyuan; Yi, Xinqi; Cheng, Yan; Guo, Liang; Fan, Chuchuan; Zhou, Yongming

    2016-01-01

    Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most devastating diseases in many important crops including Brassica napus worldwide. Quantitative resistance is the only source for genetic improvement of Sclerotinia-resistance in B. napus, but the molecular basis for such a resistance is largely unknown. Here, we performed dynamic transcriptomic analyses to understand the differential defense response to S. sclerotiorum in a resistant line (R-line) and a susceptible line (S-line) of B. napus at 24, 48 and 96 h post-inoculation. Both the numbers of and fold changes in differentially expressed genes in the R-line were larger than those in the S-line. We identified 9001 relative differentially expressed genes in the R-line compared with the S-line. The differences between susceptibility and resistance were associated with the magnitude of expression changes in a set of genes involved in pathogen recognition, MAPK signaling cascade, WRKY transcription regulation, jasmonic acid/ethylene signaling pathways, and biosynthesis of defense-related protein and indolic glucosinolate. The results were supported by quantitation of defense-related enzyme activity and glucosinolate contents. Our results provide insights into the complex molecular mechanism of the defense response to S. sclerotiorum in B. napus and for development of effective strategies in Sclerotinia-resistance breeding. PMID:26743436

  4. Production of the antimalarial drug precursor artemisinic acid in engineered yeast.

    PubMed

    Ro, Dae-Kyun; Paradise, Eric M; Ouellet, Mario; Fisher, Karl J; Newman, Karyn L; Ndungu, John M; Ho, Kimberly A; Eachus, Rachel A; Ham, Timothy S; Kirby, James; Chang, Michelle C Y; Withers, Sydnor T; Shiba, Yoichiro; Sarpong, Richmond; Keasling, Jay D

    2006-04-13

    Malaria is a global health problem that threatens 300-500 million people and kills more than one million people annually. Disease control is hampered by the occurrence of multi-drug-resistant strains of the malaria parasite Plasmodium falciparum. Synthetic antimalarial drugs and malarial vaccines are currently being developed, but their efficacy against malaria awaits rigorous clinical testing. Artemisinin, a sesquiterpene lactone endoperoxide extracted from Artemisia annua L (family Asteraceae; commonly known as sweet wormwood), is highly effective against multi-drug-resistant Plasmodium spp., but is in short supply and unaffordable to most malaria sufferers. Although total synthesis of artemisinin is difficult and costly, the semi-synthesis of artemisinin or any derivative from microbially sourced artemisinic acid, its immediate precursor, could be a cost-effective, environmentally friendly, high-quality and reliable source of artemisinin. Here we report the engineering of Saccharomyces cerevisiae to produce high titres (up to 100 mg l(-1)) of artemisinic acid using an engineered mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AV1) from A. annua that performs a three-step oxidation of amorpha-4,11-diene to artemisinic acid. The synthesized artemisinic acid is transported out and retained on the outside of the engineered yeast, meaning that a simple and inexpensive purification process can be used to obtain the desired product. Although the engineered yeast is already capable of producing artemisinic acid at a significantly higher specific productivity than A. annua, yield optimization and industrial scale-up will be required to raise artemisinic acid production to a level high enough to reduce artemisinin combination therapies to significantly below their current prices. PMID:16612385

  5. Tuberculosis in Australia: bacteriologically confirmed cases and drug resistance, 2007. A report of the Australian Mycobacterium Reference Laboratory Network.

    PubMed

    Lumb, Richard; Bastion, Ivan; Carter, Robyn; Jelfs, Peter; Keehner, Terillee; Sievers, Aina

    2009-09-01

    The Australian Mycobacterium Reference Laboratory Network collects and analyses laboratory data on new cases of disease caused by the Mycobacterium tuberculosis complex. In 2007, a total of 872 cases were identified by bacteriology; an annual reporting rate of 4.1 cases per 100,000 population. Isolates were identified as M. tuberculosis (n=867), M. africanum (n=4) and M. bovis (n=1). Fifteen children aged under 10 years had bacteriologically-confirmed tuberculosis. Results of in vitro drug susceptibility testing were available for 871 of 872 isolates for isoniazid (H), rifampicin (R), ethambutol (E), and pyrazinamide (Z). A total of 98 (11.3%) isolates of M. tuberculosis were resistant to at least one of these anti-tuberculosis agents. Resistance to at least H and R (defined as multi-drug resistance, MDR) was detected in 24 (2.8%) isolates, all from overseas-born patients; 17 were from the respiratory tract (sputum n=16, endotracheal aspirate n=1). Thirteen patients with MDR-TB were from the Papua New Guinea-Torres Strait Islands zone. Of the 98 M. tuberculosis isolates resistant to at least one of the standard drugs, 54 (55.1%) were from new cases, 9 (9.2%) from previously treated cases, and no information was available on the remaining 35 cases. Seven were Australian-born, 90 were overseas- born, and the country of birth of 1 was unknown. Of the 90 overseas-born persons with drug resistant disease, 66 (73.3%) were from 5 countries: India (n=16); Papua New Guinea (n=15); the Philippines (n=12); Vietnam (n=12); and China (n=11). No XDR-TB was detected in 2007. PMID:20043600

  6. Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network.

    PubMed

    Monsieurs, Pieter; Moors, Hugo; Van Houdt, Rob; Janssen, Paul J; Janssen, Ann; Coninx, Ilse; Mergeay, Max; Leys, Natalie

    2011-12-01

    The soil bacterium Cupriavidus metallidurans CH34 contains a high number of heavy metal resistance genes making it an interesting model organism to study microbial responses to heavy metals. In this study the transcriptional response of strain CH34 was measured when challenged to sub-lethal concentrations of various essential or toxic metals. Based on the global transcriptional responses for each challenge and the overlap in upregulated genes between different metal responses, the sixteen metals were clustered in three groups. In addition, the transcriptional response of already known metal resistance genes was assessed, and new metal response gene clusters were identified. The majority of the studied metal response loci showed similar expression profiles when cells were exposed to different metals, suggesting complex interplay at transcriptional level between the different metal responses. The pronounced redundancy of these metal resistant regions-as illustrated by the large number of paralogous genes-combined with the phylogenetic distribution of these metal response regions within either evolutionary related or other metal resistant bacteria, provides important insights on the recent evolutionary forces shaping this naturally soil-dwelling bacterium into a highly metal-resistant strain well adapted to harsh and anthropogenic environments. PMID:21706166

  7. Microwave characterization of slotline on high resistivity silicon for antenna feed network

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Taub, Susan R.; Lee, Richard Q.; Young, Paul G.

    1993-01-01

    Conventional silicon wafers have low resistivity and consequently unacceptably high value of dielectric attenuation constant. Microwave circuits for phased array antenna systems fabricated on these wafers therefore have low efficiency. By choosing a silicon substrate with sufficiently high resistivity it is possible to make the dielectric attenuation constant of the interconnecting microwave transmission lines approach those of GaAs or InP. In order for this to be possible, the transmission lines must be characterized. In this presentation, the effective dielectric constant (epsilon sub eff) and attenuation constant (alpha) of a slotline on high resistivity (5000 to 10 000 ohm-cm) silicon wafer will be discussed. The epsilon sub eff and alpha are determined from the measured resonant frequencies and the corresponding insertion loss of a slotline ring resonator. The results for slotline will be compared with microstrip line and coplanar waveguide.

  8. Estimation of regional resistivity structure beneath the Kyushu, southwestern Japan, as inferred from the Network-MT survey

    NASA Astrophysics Data System (ADS)

    Hata, M.; Oshiman, N.; Yoshimura, R.; Tanaka, Y.; Uyeshima, M.; Ichiki, M.

    2008-12-01

    Network-MT observations, which use telephone line networks as long baseline telluric measurements (Uyeshima, 1990), were carried out in the Kyushu district, southwestern Japan, from 1993 to 1998. The Kyushu district is the typical high angle subduction zone in Japan, which the Philippine sea plate subducts beneath the Eurasian plate, and some active volcanoes (for example, the Aso volcano, the Kirishima volcano group and Sakurajima volcano) are located along the volcanic front. We reanalyzed these data sets to determine regional scale deep electrical conductivity structure. In this reanalysis, we tried to choose triangular elements of the Network-MT again in order to obtain independency of each triangular element, and calculated magnetotelluric responses for each triangular element showing more suitable spatial distribution in survey area. Furthermore, comparing the geology and tectonics, we estimated electrical tendency to by the phase tensors analysis (Caldwell et al., 2004). As a preparatory step for imaging three-dimensional modeling, we carried out several tow dimensional inversion analyses to the Network-MT impedance responses across the characteristic geology, tectonics and volcanoes. In these two-dimensional inversions, we used the REBOCC code (Siripunvaraporn and Egbert, 1999), and reconsidered the horizontal and vertical smoothing factors while considering the intervals of the observation sites along each model profile. Then we obtained the final resistivity model of each profile which was judged expressing well the information of the MT responses. As a preliminary result, one of the resistivity models, whose profile goes along around the Kirishima volcano group, we obtained a remarkable conductor beneath the Kirishima volcano which shows a good agreement with the previous result of ULF MT survey (Ichiki et al., 2000). Further, we found that the bottom of this conductor extends to the subducting Philippine Sea Plate. However, at the present stage, we

  9. Solid-state reprogrammable analog resistive devices for electronic neural networks

    NASA Technical Reports Server (NTRS)

    Ramesham, R.; Thakoor, S.; Daud, T.; Thakoor, A. P.

    1990-01-01

    The fabrication and performance of WO3-based, solid-state, three-terminal device configurations as programmable analog memory elements are reported. These transistorlike device structures exhibit good resistance progammability with a remarkable resolution of a few percent of the resistive strength over a four orders of magnitude dynamic range. The most critical component of these devices is an insulating layer between the active WO3 and the cation donor layer. The progamming characteristics and operation mechanisms of the device are described, and probable reaction mechanisms critical to the device stability are discussed.

  10. Examination of the cytotoxic and embryotoxic potential and underlying mechanisms of next-generation synthetic trioxolane and tetraoxane antimalarials.

    PubMed

    Copple, Ian M; Mercer, Amy E; Firman, James; Donegan, Gail; Herpers, Bram; Wong, Michael Hl; Chadwick, James; Bringela, Andreia D; Cristiano, Maria L S; van de Water, Bob; Ward, Stephen A; O'Neill, Paul M; Park, B Kevin

    2012-01-01

    Semisynthetic artemisinin-based therapies are the first-line treatment for P. falciparum malaria, but next-generation synthetic drug candidates are urgently required to improve availability and respond to the emergence of artemisinin-resistant parasites. Artemisinins are embryotoxic in animal models and induce apoptosis in sensitive mammalian cells. Understanding the cytotoxic propensities of antimalarial drug candidates is crucial to their successful development and utilization. Here, we demonstrate that, similarly to the model artemisinin artesunate (ARS), a synthetic tetraoxane drug candidate (RKA182) and a trioxolane equivalent (FBEG100) induce embryotoxicity and depletion of primitive erythroblasts in a rodent model. We also show that RKA182, FBEG100 and ARS are cytotoxic toward a panel of established and primary human cell lines, with caspase-dependent apoptosis and caspase-independent necrosis underlying the induction of cell death. Although the toxic effects of RKA182 and FBEG100 proceed more rapidly and are relatively less cell-selective than that of ARS, all three compounds are shown to be dependent upon heme, iron and oxidative stress for their ability to induce cell death. However, in contrast to previously studied artemisinins, the toxicity of RKA182 and FBEG100 is shown to be independent of general chemical decomposition. Although tetraoxanes and trioxolanes have shown promise as next-generation antimalarials, the data described here indicate that adverse effects associated with artemisinins, including embryotoxicity, cannot be ruled out with these novel compounds, and a full understanding of their toxicological actions will be central to the continuing design and development of safe and effective drug candidates which could prove important in the fight against malaria. PMID:22669474

  11. The Impact of Text Message Reminders on Adherence to Antimalarial Treatment in Northern Ghana: A Randomized Trial

    PubMed Central

    Raifman, Julia R. G.; Lanthorn, Heather E.; Rokicki, Slawa; Fink, Günther

    2014-01-01

    Background Low rates of adherence to artemisinin-based combination therapy (ACT) regimens increase the risk of treatment failure and may lead to drug resistance, threatening the sustainability of current anti-malarial efforts. We assessed the impact of text message reminders on adherence to ACT regimens. Methods Health workers at hospitals, clinics, pharmacies, and other stationary ACT distributors in Tamale, Ghana provided flyers advertising free mobile health information to individuals receiving malaria treatment. The messaging system automatically randomized self-enrolled individuals to the control group or the treatment group with equal probability; those in the treatment group were further randomly assigned to receive a simple text message reminder or the simple reminder plus an additional statement about adherence in 12-hour intervals. The main outcome was self-reported adherence based on follow-up interviews occurring three days after treatment initiation. We estimated the impact of the messages on treatment completion using logistic regression. Results 1140 individuals enrolled in both the study and the text reminder system. Among individuals in the control group, 61.5% took the full course of treatment. The simple text message reminders increased the odds of adherence (adjusted OR 1.45, 95% CI [1.03 to 2.04], p-value 0.028). Receiving an additional message did not result in a significant change in adherence (adjusted OR 0.77, 95% CI [0.50 to 1.20], p-value 0.252). Conclusion The results of this study suggest that a simple text message reminder can increase adherence to antimalarial treatment and that additional information included in messages does not have a significant impact on completion of ACT treatment. Further research is needed to develop the most effective text message content and frequency. Trial Registration ClinicalTrials.gov NCT01722734 PMID:25350546

  12. A Click Chemistry‐Based Proteomic Approach Reveals that 1,2,4‐Trioxolane and Artemisinin Antimalarials Share a Common Protein Alkylation Profile

    PubMed Central

    Ismail, Hanafy M.; Barton, Victoria E.; Panchana, Matthew; Charoensutthivarakul, Sitthivut; Biagini, Giancarlo A.; Ward, Stephen A.

    2016-01-01

    Abstract In spite of the recent increase in endoperoxide antimalarials under development, it remains unclear if all these chemotypes share a common mechanism of action. This is important since it will influence cross‐resistance risks between the different classes. Here we investigate this proposition using novel clickable 1,2,4‐trioxolane activity based protein‐profiling probes (ABPPs). ABPPs with potent antimalarial activity were able to alkylate protein target(s) within the asexual erythrocytic stage of Plasmodium falciparum (3D7). Importantly, comparison of the alkylation fingerprint with that generated from an artemisinin ABPP equivalent confirms a highly conserved alkylation profile, with both endoperoxide classes targeting proteins in the glycolytic, hemoglobin degradation, antioxidant defence, protein synthesis and protein stress pathways, essential biological processes for plasmodial survival. The alkylation signatures of the two chemotypes show significant overlap (ca. 90 %) both qualitatively and semi‐quantitatively, suggesting a common mechanism of action that raises concerns about potential cross‐resistance liabilities. PMID:27397940

  13. A Click Chemistry‐Based Proteomic Approach Reveals that 1,2,4‐Trioxolane and Artemisinin Antimalarials Share a Common Protein Alkylation Profile

    PubMed Central

    Ismail, Hanafy M.; Barton, Victoria E.; Panchana, Matthew; Charoensutthivarakul, Sitthivut; Biagini, Giancarlo A.; Ward, Stephen A.

    2016-01-01

    Abstract In spite of the recent increase in endoperoxide antimalarials under development, it remains unclear if all these chemotypes share a common mechanism of action. This is important since it will influence cross‐resistance risks between the different classes. Here we investigate this proposition using novel clickable 1,2,4‐trioxolane activity based protein‐profiling probes (ABPPs). ABPPs with potent antimalarial activity were able to alkylate protein target(s) within the asexual erythrocytic stage of Plasmodium falciparum (3D7). Importantly, comparison of the alkylation fingerprint with that generated from an artemisinin ABPP equivalent confirms a highly conserved alkylation profile, with both endoperoxide classes targeting proteins in the glycolytic, hemoglobin degradation, antioxidant defence, protein synthesis and protein stress pathways, essential biological processes for plasmodial survival. The alkylation signatures of the two chemotypes show significant overlap (ca. 90 %) both qualitatively and semi‐quantitatively, suggesting a common mechanism of action that raises concerns about potential cross‐resistance liabilities. PMID:27089538

  14. Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks

    SciTech Connect

    Rathmall, Aaron; Nguyen, Minh; Wiley, Benjamin J

    2012-01-01

    Nanowires of copper can be coated from liquids to create flexible, transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these nanowire films is that copper is prone to oxidation. It was hypothesized that the resistance to oxidation could be improved by coating copper nanowires with nickel. This work demonstrates a method for synthesizing copper nanowires with nickel shells as well as the properties of cupronickel nanowires in transparent conducting films. Time- and temperature-dependent sheet resistance measurements indicate that the sheet resistance of copper and silver nanowire films will double after 3 and 36 months at room temperature, respectively. In contrast, the sheet resistance of cupronickel nanowires containing 20 mol % nickel will double in about 400 years. Coating copper nanowires to a ratio of 2:1 Cu:Ni gave them a neutral gray color, making them more suitable for use in displays and electrochromic windows. These properties, and the fact that copper and nickel are 1000 times more abundant than indium or silver, make cupronickel nanowires a promising alternative for the sustainable, efficient production of transparent conductors.

  15. A network-based approach for resistance transmission in bacterial populations.

    PubMed

    Gehring, Ronette; Schumm, Phillip; Youssef, Mina; Scoglio, Caterina

    2010-01-01

    Horizontal transfer of mobile genetic elements (conjugation) is an important mechanism whereby resistance is spread through bacterial populations. The aim of our work is to develop a mathematical model that quantitatively describes this process, and to use this model to optimize antimicrobial dosage regimens to minimize resistance development. The bacterial population is conceptualized as a compartmental mathematical model to describe changes in susceptible, resistant, and transconjugant bacteria over time. This model is combined with a compartmental pharmacokinetic model to explore the effect of different plasma drug concentration profiles. An agent-based simulation tool is used to account for resistance transfer occurring when two bacteria are adjacent or in close proximity. In addition, a non-linear programming optimal control problem is introduced to minimize bacterial populations as well as the drug dose. Simulation and optimization results suggest that the rapid death of susceptible individuals in the population is pivotal in minimizing the number of transconjugants in a population. This supports the use of potent antimicrobials that rapidly kill susceptible individuals and development of dosage regimens that maintain effective antimicrobial drug concentrations for as long as needed to kill off the susceptible population. Suggestions are made for experiments to test the hypotheses generated by these simulations. PMID:19747924

  16. Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks.

    PubMed

    Rathmell, Aaron R; Nguyen, Minh; Chi, Miaofang; Wiley, Benjamin J

    2012-06-13

    Nanowires of copper can be coated from liquids to create flexible, transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these nanowire films is that copper is prone to oxidation. It was hypothesized that the resistance to oxidation could be improved by coating copper nanowires with nickel. This work demonstrates a method for synthesizing copper nanowires with nickel shells as well as the properties of cupronickel nanowires in transparent conducting films. Time- and temperature-dependent sheet resistance measurements indicate that the sheet resistance of copper and silver nanowire films will double after 3 and 36 months at room temperature, respectively. In contrast, the sheet resistance of cupronickel nanowires containing 20 mol % nickel will double in about 400 years. Coating copper nanowires to a ratio of 2:1 Cu:Ni gave them a neutral gray color, making them more suitable for use in displays and electrochromic windows. These properties, and the fact that copper and nickel are 1000 times more abundant than indium or silver, make cupronickel nanowires a promising alternative for the sustainable, efficient production of transparent conductors. PMID:22642652

  17. Correlation of HIV protease structure with Indinavir resistance: a data mining and neural networks approach

    NASA Astrophysics Data System (ADS)

    Draghici, Sorin; Cumberland, Lonnie T., Jr.; Kovari, Ladislau C.

    2000-04-01

    This paper presents some results of data mining HIV genotypic and structural data. Our aim is to try to relate structural features of HIV enzymes essential to its reproductive abilities to the drug resistance phenomenon. This paper concentrates on the HIV protease enzyme and Indinavir which is one of the FDA approved protease inhibitors. Our starting point was the current list of HIV mutations related to drug resistance. We used the fact that some molecular structures determined through high resolution X-ray crystallography were available for the protease-Indinavir complex. Starting with these structures and the known mutations, we modelled the mutant proteases and studied the pattern of atomic contacts between the protease and the drug. After suitable pre- processing, these patterns have been used as the input of our data mining process. We have used both supervised and unsupervised learning techniques with the aim of understanding the relationship between structural features at a molecular level and resistance to Indinavir. The supervised learning was aimed at predicting IC90 values for arbitrary mutants. The SOFM was aimed at identifying those structural features that are important for drug resistance and discovering a classifier based on such features. We have used validation and cross validation to test the generalization abilities of the learning paradigm we have designed. The straightforward supervised learning was able to learn very successfully but validation results are less than satisfactory. This is due to the insufficient number of patterns in the training set which in turn is due to the scarcity of the available data. The data mining using SOFM was very successful. We have managed to distinguish between resistant and non-resistant mutants using structural features. We have been able to divide all reported HIV mutants into several categories based on their 3- dimensional molecular structures and the pattern of contacts between the mutant protease and

  18. Networks.

    ERIC Educational Resources Information Center

    Maughan, George R.; Petitto, Karen R.; McLaughlin, Don

    2001-01-01

    Describes the connectivity features and options of modern campus communication and information system networks, including signal transmission (wire-based and wireless), signal switching, convergence of networks, and network assessment variables, to enable campus leaders to make sound future-oriented decisions. (EV)

  19. Drug-Resistant Malaria: The Era of ACT

    PubMed Central

    Lin, Jessica T.; Juliano, Jonathan J.

    2010-01-01

    As drug-resistant falciparum malaria has continued to evolve and spread worldwide, artemisinin-based combination therapies (ACT) have become the centerpiece of global malaria control over the past decade. This review discusses how advances in antimalarial drug resistance monitoring and rational use of the array of ACTs now available can maximize the impact of this highly efficacious therapy, even as resistance to artemisinins is emerging in Southeast Asia. PMID:21308525

  20. Screening of Different Extracts from Artemisia Species for Their Potential Antimalarial Activity

    PubMed Central

    Mojarrab, Mahdi; Naderi, Rozhin; Heshmati Afshar, Fariba

    2015-01-01

    The formation of hemozoin (malaria pigment) has been proposed as an ideal drug target for antimalarial screening programs. In this study, we used an improved, cost-effective and high-throughput spectrophotometric assay to screen plant extracts for finding novel antimalarial plant sources. Fifteen extracts with different polarity from three Iranian Artemisia species, A. ciniformis, A. biennis and A. turanica, were assessed for their antimalarial activity by in-vitro β-hematin formation assay. The most potent effect was observed in dichloromethane (DCM) extract of A. ciniformis with IC50 and IC90 values of 0.92 ± 0.01 and 1.29 ± 0.02 mg/mL, respectively. Ethyl acetate (EtOAC) extracts of A. biennis and A. turanica also showed significant antimalarial activities with IC50 values of 1.11 ± 0.02 and 1.35 ± 0.08 mg/mL and IC90 values of 1.22 ± 0.04 and 2.81 ± 0.21 mg/mL, respectively. Based on these results, it is possible to conclude that the components with strong antimalarial activity have been concentrated in the medium-polar extracts. PMID:25901169

  1. Use and quality of antimalarial drugs in the private sector in Viet Nam.

    PubMed

    Cong, L D; Yen, P T; Nhu, T V; Binh, L N

    1998-01-01

    This study examines the use and quality of antimalarial drugs in the growing private sector of Viet Nam. The practices of drug vendors (called alternative treatment providers (ATPs)) as well as their stocks and the quality of drugs sold by them, and the local production and distribution of antimalarials were investigated. Antimalarials were sold by the vast majority of ATPs, almost all the common antimalarials being available for sale. The practices and indications for sale, however, varied. Underdosing for malaria was frequent in all three provinces studied, and lack of knowledge of the appropriate regimen for cure was common among the drug-sellers. Samples of antimalarials were collected from ATP outlets in the three provinces, and the drugs were assessed for their contents and expiry date by the Institute of Drug Quality Control in Hanoi. Of the 218 samples of drugs examined by the Institute, over 96% met the quality requirements. However, a 10% sample of these drugs were independently assessed by WHO and revealed a different picture: 70% of them failed to meet the standard specifications required. There is therefore an urgent need to improve the capability and monitoring procedures of bodies involved in assessing and regulating drugs in Viet Nam. PMID:9763723

  2. Development of Diaminoquinazoline Histone Lysine Methyltransferase Inhibitors as Potent Blood-stage Anti-Malarial Compounds

    PubMed Central

    Caron, Joachim; Blundell, Scott; Liu, Feng; Chen, Xin; Srimongkolpithak, Nitipol; Jin, Jian; Charman, Susan A.; Scherf, Artur; Fuchter, Matthew J.

    2014-01-01

    Modulating epigenetic mechanisms in malarial parasites is an emerging avenue for the discovery of novel antimalarial drugs. Previously we demonstrated the potent in vitro and in vivo antimalarial activity of BIX01294 (1), a known human G9a inhibitor, together with its dose-dependent effects on histone methylation in the malarial parasite. This work describes our initial medicinal chemistry efforts to optimize the diaminoquinazoline chemotype for antimalarial activity. A variety of analogues were designed by substituting the 2 and 4 positions of the quinazoline core and these molecules were tested against Plasmodium falciparum (3D7 strain). Several analogues with IC50 values as low as 18.5 nM and with low mammalian cell toxicity (HepG2) were identified. Certain pharmacophoric features required for the antimalarial activity were found to be analogous to the previously published SAR of these analogues for G9a inhibition, thereby suggesting potential similarities between the malarial and the human HKMT targets of this chemotype. Physiochemical, in vitro activity, and in vitro metabolism studies were also performed for a select set of potent analogues to evaluate their potential as anti-malarial leads. PMID:25044750

  3. A Novel Crosstalk Suppression Method of the 2-D Networked Resistive Sensor Array

    PubMed Central

    Wu, Jianfeng; Wang, Lei; Li, Jianqing; Song, Aiguo

    2014-01-01

    The 2-D resistive sensor array in the row–column fashion suffered from the crosstalk problem for parasitic parallel paths. Firstly, we proposed an Improved Isolated Drive Feedback Circuit with Compensation (IIDFCC) based on the voltage feedback method to suppress the crosstalk. In this method, a compensated resistor was specially used to reduce the crosstalk caused by the column multiplexer resistors and the adjacent row elements. Then, a mathematical equivalent resistance expression of the element being tested (EBT) of this circuit was analytically derived and verified by the circuit simulations. The simulation results show that the measurement method can greatly reduce the influence on the EBT caused by parasitic parallel paths for the multiplexers' channel resistor and the adjacent elements. PMID:25046011

  4. Correlation of Resistance with Fractal Structure for Different Single-walled Carbon Nanotube Networks

    NASA Astrophysics Data System (ADS)

    Liu, Bingbing; Sundqvist, Bertil; Olsson, Eva; Zhu, Xiao-Mei; Zou, Guangtian

    2001-03-01

    The temperature dependence of resistance and magnetoresistance for bulk samples of single-walled nanotubes treated in different ways have been studied systematically and compared with that of pristine nanotubes synthesized with Ce/Ni as catalyst. The resistance of samples pressurized under a hydrostatic pressure of 1.5 GPa shows a 2D Variable range hopping behavior, similar to that for as-grown samples and for samples partly purified by treatment in nitric acid for a short time. A pressed sample composed of small pieces of as-grown mats follows a 3D VRH, similar to that for samples treated in nitric acid for a long time. The correlation between the conduction dimension and the nanotube morphology is well explained by a fractal structure model. The results indicate that 2D VRH is a characteristic transport behavior for nanotubes.

  5. Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network.

    PubMed

    Côté, Clémence D; Rasmussen, Brittany A; Duca, Frank A; Zadeh-Tahmasebi, Melika; Baur, Joseph A; Daljeet, Mira; Breen, Danna M; Filippi, Beatrice M; Lam, Tony K T

    2015-05-01

    Resveratrol improves insulin sensitivity and lowers hepatic glucose production (HGP) in rat models of obesity and diabetes, but the underlying mechanisms for these antidiabetic effects remain elusive. One process that is considered a key feature of resveratrol action is the activation of the nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase sirtuin 1 (SIRT1) in various tissues. However, the low bioavailability of resveratrol raises questions about whether the antidiabetic effects of oral resveratrol can act directly on these tissues. We show here that acute intraduodenal infusion of resveratrol reversed a 3 d high fat diet (HFD)-induced reduction in duodenal-mucosal Sirt1 protein levels while also enhancing insulin sensitivity and lowering HGP. Further, we found that duodenum-specific knockdown of Sirt1 expression for 14 d was sufficient to induce hepatic insulin resistance in rats fed normal chow. We also found that the glucoregulatory role of duodenally acting resveratrol required activation of Sirt1 and AMP-activated protein kinase (Ampk) in this tissue to initiate a gut-brain-liver neuronal axis that improved hypothalamic insulin sensitivity and in turn, reduced HGP. In addition to the effects of duodenally acting resveratrol in an acute 3 d HFD-fed model of insulin resistance, we also found that short-term infusion of resveratrol into the duodenum lowered HGP in two other rat models of insulin resistance--a 28 d HFD-induced model of obesity and a nicotinamide (NA)-streptozotocin (STZ)-HFD-induced model of mild type 2 diabetes. Together, these studies highlight the therapeutic relevance of targeting duodenal SIRT1 to reverse insulin resistance and improve glucose homeostasis in obesity and diabetes. PMID:25849131

  6. Resistance to Aerobic Exercise Training Causes Metabolic Dysfunction and Reveals Novel Exercise-Regulated Signaling Networks

    PubMed Central

    Lessard, Sarah J.; Rivas, Donato A.; Alves-Wagner, Ana B.; Hirshman, Michael F.; Gallagher, Iain J.; Constantin-Teodosiu, Dumitru; Atkins, Ryan; Greenhaff, Paul L.; Qi, Nathan R.; Gustafsson, Thomas; Fielding, Roger A.; Timmons, James A.; Britton, Steven L.; Koch, Lauren G.; Goodyear, Laurie J.

    2013-01-01

    Low aerobic exercise capacity is a risk factor for diabetes and a strong predictor of mortality, yet some individuals are “exercise-resistant” and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease risk, we used selective breeding for 15 generations to develop rat models of low and high aerobic response to training. Before exercise training, rats selected as low and high responders had similar exercise capacities. However, after 8 weeks of treadmill training, low responders failed to improve their exercise capacity, whereas high responders improved by 54%. Remarkably, low responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise-resistant phenotype segregates with disease risk. Low responders had impaired exercise-induced angiogenesis in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low responders. Low responders had increased stress/inflammatory signaling and altered transforming growth factor-β signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system, we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease. PMID:23610057

  7. Novel Type II Fatty Acid Biosynthesis (FAS II) Inhibitors as Multistage Antimalarial Agents

    PubMed Central

    Schrader, Florian C.; Glinca, Serghei; Sattler, Julia M.; Dahse, Hans-Martin; Afanador, Gustavo A.; Prigge, Sean T.; Lanzer, Michael; Mueller, Ann-Kristin; Klebe, Gerhard; Schlitzer, Martin

    2013-01-01

    Malaria is a potentially fatal disease caused by Plasmodium parasites and poses a major medical risk in large parts of the world. The development of new, affordable antimalarial drugs is of vital importance as there are increasing reports of resistance to the currently available therapeutics. In addition, most of the current drugs used for chemoprophylaxis merely act on parasites already replicating in the blood. At this point, a patient might already be suffering from the symptoms associated with the disease and could additionally be infectious to an Anopheles mosquito. These insects act as a vector, subsequently spreading the disease to other humans. In order to cure not only malaria but prevent transmission as well, a drug must target both the blood- and pre-erythrocytic liver stages of the parasite. P. falciparum (Pf) enoyl acyl carrier protein (ACP) reductase (ENR) is a key enzyme of plasmodial type II fatty acid biosynthesis (FAS II). It has been shown to be essential for liver-stage development of Plasmodium berghei and is therefore qualified as a target for true causal chemoprophylaxis. Using virtual screening based on two crystal structures of PfENR, we identified a structurally novel class of FAS inhibitors. Subsequent chemical optimization yielded two compounds that are effective against multiple stages of the malaria parasite. These two most promising derivatives were found to inhibit blood-stage parasite growth with IC50 values of 1.7 and 3.0 µm and lead to a more prominent developmental attenuation of liver-stage parasites than the gold-standard drug, primaquine. PMID:23341167

  8. Chloroquine resistance of Plasmodium falciparum is associated with severity of disease in Nigerian children.

    PubMed

    Olumese, P E; Amodu, O K; Björkman, A; Adeyemo, A A; Gbadegesin, R A; Walker, O

    2002-01-01

    Chloroquine resistance of Plasmodium falciparum in vitro was significantly higher in isolates from patients with severe malaria than those with uncomplicated disease. This association may be due to either progression of uncomplicated to severe disease following chloroquine failure or increased virulence of chloroquine-resistant parasites. The implication of this for antimalarial treatment policy is discussed. PMID:12497979

  9. Cross-Study Comparison Reveals Common Genomic, Network, and Functional Signatures of Desiccation Resistance in Drosophila melanogaster

    PubMed Central

    Telonis-Scott, Marina; Sgrò, Carla M.; Hoffmann, Ary A.; Griffin, Philippa C.

    2016-01-01

    Repeated attempts to map the genomic basis of complex traits often yield different outcomes because of the influence of genetic background, gene-by-environment interactions, and/or statistical limitations. However, where repeatability is low at the level of individual genes, overlap often occurs in gene ontology categories, genetic pathways, and interaction networks. Here we report on the genomic overlap for natural desiccation resistance from a Pool-genome-wide association study experiment and a selection experiment in flies collected from the same region in southeastern Australia in different years. We identified over 600 single nucleotide polymorphisms associated with desiccation resistance in flies derived from almost 1,000 wild-caught genotypes, a similar number of loci to that observed in our previous genomic study of selected lines, demonstrating the genetic complexity of this ecologically important trait. By harnessing the power of cross-study comparison, we narrowed the candidates from almost 400 genes in each study to a core set of 45 genes, enriched for stimulus, stress, and defense responses. In addition to gene-level overlap, there was higher order congruence at the network and functional levels, suggesting genetic redundancy in key stress sensing, stress response, immunity, signaling, and gene expression pathways. We also identified variants linked to different molecular aspects of desiccation physiology previously verified from functional experiments. Our approach provides insight into the genomic basis of a complex and ecologically important trait and predicts candidate genetic pathways to explore in multiple genetic backgrounds and related species within a functional framework. PMID:26733490

  10. Cross-Study Comparison Reveals Common Genomic, Network, and Functional Signatures of Desiccation Resistance in Drosophila melanogaster.

    PubMed

    Telonis-Scott, Marina; Sgrò, Carla M; Hoffmann, Ary A; Griffin, Philippa C

    2016-04-01

    Repeated attempts to map the genomic basis of complex traits often yield different outcomes because of the influence of genetic background, gene-by-environment interactions, and/or statistical limitations. However, where repeatability is low at the level of individual genes, overlap often occurs in gene ontology categories, genetic pathways, and interaction networks. Here we report on the genomic overlap for natural desiccation resistance from a Pool-genome-wide association study experiment and a selection experiment in flies collected from the same region in southeastern Australia in different years. We identified over 600 single nucleotide polymorphisms associated with desiccation resistance in flies derived from almost 1,000 wild-caught genotypes, a similar number of loci to that observed in our previous genomic study of selected lines, demonstrating the genetic complexity of this ecologically important trait. By harnessing the power of cross-study comparison, we narrowed the candidates from almost 400 genes in each study to a core set of 45 genes, enriched for stimulus, stress, and defense responses. In addition to gene-level overlap, there was higher order congruence at the network and functional levels, suggesting genetic redundancy in key stress sensing, stress response, immunity, signaling, and gene expression pathways. We also identified variants linked to different molecular aspects of desiccation physiology previously verified from functional experiments. Our approach provides insight into the genomic basis of a complex and ecologically important trait and predicts candidate genetic pathways to explore in multiple genetic backgrounds and related species within a functional framework. PMID:26733490

  11. Interactions between artemisinins and other antimalarial drugs in relation to the cofactor model--a unifying proposal for drug action.

    PubMed

    Haynes, Richard K; Cheu, Kwan-Wing; Chan, Ho-Wai; Wong, Ho-Ning; Li, Ka-Yan; Tang, Maggie Mei-Ki; Chen, Min-Jiao; Guo, Zu-Feng; Guo, Zhi-Hong; Sinniah, Kumar; Witte, Amanda B; Coghi, Paolo; Monti, Diego

    2012-12-01

    exert antimalarial activities by enhancing heme-Fe(III) and thence free Fe(III) concentrations in the cytosol. The iron species enter into redox cycles through reduction of Fe(III) to Fe(II) largely mediated by reduced flavin cofactors and likely also by NAD(P)H-Fre. Generation of ROS through oxidation of Fe(II) by oxygen will also result. The cytotoxicities of artemisinins are thereby reinforced by the iron. Other aspects of drug action are emphasized. In the cytosol or DV, association by π complex formation between pairs of lipophilic drugs must adversely influence the pharmacokinetics of each drug. This explains the antagonism between PPQ and MFQ, for example. The basis for the antimalarial activity of RF mirrors that of MB, wherein it participates in redox cycling that involves flavoenzymes or Fre, resulting in attrition of NAD(P)H. The generation of ROS by artemisinins and ensuing Fenton chemistry accommodate the ability of artemisinins to induce membrane damage and to affect the parasite SERCA PfATP6 Ca(2+) transporter. Thus, the effect exerted by artemisinins is more likely a downstream event involving ROS that will also be modulated by mutations in PfATP6. Such mutations attenuate, but cannot abrogate, antimalarial activities of artemisinins. Overall, parasite resistance to artemisinins arises through enhancement of antioxidant defense mechanisms. PMID:23112085

  12. Astragaloside IV improves lipid metabolism in obese mice by alleviation of leptin resistance and regulation of thermogenic network.

    PubMed

    Wu, Hui; Gao, Yan; Shi, Hai-Lian; Qin, Li-Yue; Huang, Fei; Lan, Yun-Yi; Zhang, Bei-Bei; Hu, Zhi-Bi; Wu, Xiao-Jun

    2016-01-01

    Obesity is a worldwide threat to public health in modern society, which may result from leptin resistance and disorder of thermogenesis. The present study investigated whether astragaloside IV (ASI) could prevent obesity in high-fat diet (HFD)-fed and db/db mice. In HFD-fed mice, ASI prevented body weight gain, lowered serum triglyceride and total cholesterol levels, mitigated liver lipid accumulation, reduced fat tissues and decreased the enlargement of adipose cells. In metabolic chambers, ASI lessened appetite of the mice, decreased their respiratory exchange ratio and elevated VCO2 and VO2 without altering circadian motor activity. Moreover, ASI modulated thermogenesis associated gene expressions in liver and brawn fat tissues, as well as leptin resistance evidenced by altered expressions of leptin, leptin receptor (ObR) or appetite associated genes. In SH-SY5Y cells, ASI enhanced leptin signaling transduction. However, in db/db mice, ASI did not change body weight gain and appetite associated genes. But it decreased serum triglyceride and total cholesterol levels as well as liver triglyceride. Meanwhile, it significantly modulated gene expressions of PPARα, PGC1-α, UCP2, ACC, SCD1, LPL, AP2, CD36 and SREBP-1c. Collectively, our study suggested that ASI could efficiently improve lipid metabolism in obese mice probably through enhancing leptin sensitivity and modulating thermogenic network. PMID:27444146

  13. Astragaloside IV improves lipid metabolism in obese mice by alleviation of leptin resistance and regulation of thermogenic network

    PubMed Central

    Wu, Hui; Gao, Yan; Shi, Hai-Lian; Qin, Li-Yue; Huang, Fei; Lan, Yun-Yi; Zhang, Bei-Bei; Hu, Zhi-Bi; Wu, Xiao-Jun

    2016-01-01

    Obesity is a worldwide threat to public health in modern society, which may result from leptin resistance and disorder of thermogenesis. The present study investigated whether astragaloside IV (ASI) could prevent obesity in high-fat diet (HFD)-fed and db/db mice. In HFD-fed mice, ASI prevented body weight gain, lowered serum triglyceride and total cholesterol levels, mitigated liver lipid accumulation, reduced fat tissues and decreased the enlargement of adipose cells. In metabolic chambers, ASI lessened appetite of the mice, decreased their respiratory exchange ratio and elevated VCO2 and VO2 without altering circadian motor activity. Moreover, ASI modulated thermogenesis associated gene expressions in liver and brawn fat tissues, as well as leptin resistance evidenced by altered expressions of leptin, leptin receptor (ObR) or appetite associated genes. In SH-SY5Y cells, ASI enhanced leptin signaling transduction. However, in db/db mice, ASI did not change body weight gain and appetite associated genes. But it decreased serum triglyceride and total cholesterol levels as well as liver triglyceride. Meanwhile, it significantly modulated gene expressions of PPARα, PGC1-α, UCP2, ACC, SCD1, LPL, AP2, CD36 and SREBP-1c. Collectively, our study suggested that ASI could efficiently improve lipid metabolism in obese mice probably through enhancing leptin sensitivity and modulating thermogenic network. PMID:27444146

  14. Fabrication of Oxidation-Resistant Metal Wire Network-Based Transparent Electrodes by a Spray-Roll Coating Process.

    PubMed

    Kiruthika, S; Gupta, Ritu; Anand, Aman; Kumar, Ankush; Kulkarni, G U

    2015-12-16

    Roll and spray coating methods have been employed for the fabrication of highly oxidation resistant transparent and conducting electrodes (TCEs) by a simple solution process using crackle lithography technique. We have spray-coated a crackle paint-based precursor to produce highly interconnected crackle network on PET roll mounted on a roll coater with web speed of 0.6 m/min. Ag TCE with a transmittance of 78% and sheet resistance of ∼20 Ω/□ was derived by spraying Ag precursor ink over the crackle template followed by lift-off and annealing under ambient conditions. The Ag wire mesh was stable toward bending and sonication tests but prone to oxidation in air. When electrolessly coated with Pd, its robustness toward harsh oxidation conditions was enhanced. A low-cost transparent electrode has also been realized by using only small amounts of Ag as seed layer and growing Cu wire mesh by electroless method. Thus, made Ag/Cu meshes are found to be highly stable for more than a year even under ambient atmosphere. PMID:26580415

  15. Potential antimalarial candidates from African plants: and in vitro approach using Plasmodium falciparum.

    PubMed

    Khalid, S A; Farouk, A; Geary, T G; Jensen, J B

    1986-02-01

    Twenty-one compounds isolated from nine medicinal plants used in traditional medicine in the Sudan and other African countries were examined in vitro for antimalarial activity against Plasmodium falciparum, the major human malaria parasite. Compounds tested include alkaloids, lignans, triterpenes, coumarins, limonoids and flavonoids. Most were relatively inactive; one limonoid, gedunin, had an IC50 value of about 1 microM after 48 h exposure (0.3 microM after 96 h), roughly equivalent to quinine. In this protocol, the flavonoid quercetin purified from Diosma pilosa was found to have the same activity as a commercially obtained preparation. Simple radiometric assays for antimalarial activity can thus be used to rapidly screen purified plant material or secondary plant metabolites. The high potency and efficacy of quinine and the Chinese herbal antimalarial quinghaosu (artemisinine) illustrate the merit of this approach. PMID:3520157

  16. Capillary electrophoresis methods for the analysis of antimalarials. Part I. Chiral separation methods.

    PubMed

    Amin, N'cho Christophe; Blanchin, Marie-Dominique; Aké, Michèle; Fabre, Huguette

    2012-11-16

    This paper presents an overview on the current status of enantiomeric and diastereomeric separations of chiral antimalarials and derivatives by capillary electrophoresis (CE). The wide variety of chiral selectors which have been employed to resolve successfully antimalarial enantiomers: oligosaccharides (cyclodextrins, oligomaltodextrins), neutral (amylose, dextrin and dextran) and charged (chondroitin sulfate, heparin, dextran sulfate) polysaccharides and proteins are reviewed. Cyclodextrins were the most employed. Chiral additives added to the background electrolyte often facilitated separations of quinine/quinidine and cinchonine/cinchonidine diastereomers. However, in a few cases, using micellar electrokinetic capillary chromatography or non aqueous CE, resolution of diastereomers could be achieved without additives. Quantitative applications of CE to the quality control of antimalarial drugs and their analysis in biological and food matrices are presented. PMID:23063793

  17. Insights into the Role of Heme in the Mechanism of Action of Antimalarials

    PubMed Central

    Combrinck, Jill M.; Mabotha, Tebogo E.; Ncokazi, Kanyile K.; Ambele, Melvin A.; Taylor, Dale; Smith, Peter J.; Hoppe, Heinrich C.; Egan, Timothy J.

    2012-01-01

    Using cell fractionation and measurement of Fe(III)heme-pyridine, the antimalarial chloroquine (CQ) has been shown to cause a dose-dependent decrease in hemozoin and concomitant increase in toxic “free” heme in cultured Plasmodium falciparum that is directly correlated with parasite survival. Transmission electron microscopy techniques have further shown that heme is redistributed from the parasite digestive vacuole to the cytoplasm and that CQ disrupts hemozoin crystal growth, resulting in mosaic boundaries in the crystals formed in the parasite. Extension of the cell fractionation study to other drugs has shown that artesunate, amodiaquine, lumefantrine, mefloquine and quinine, all clinically important antimalarials, also inhibit hemozoin formation in the parasite cell, while the antifolate pyrimethamine and its combination with sulfadoxine do not. This study finally provides direct evidence in support of the hemozoin inhibition hypothesis for the mechanism of action of CQ and shows that other quinoline and related antimalarials inhibit cellular hemozoin formation. PMID:23043646

  18. rRNA mutants in the yeast peptidyltransferase center reveal allosteric information networks and mechanisms of drug resistance

    PubMed Central

    Rakauskaitė, Rasa; Dinman, Jonathan D.

    2008-01-01

    To ensure accurate and rapid protein synthesis, nearby and distantly located functional regions of the ribosome must dynamically communicate and coordinate with one another through a series of information exchange networks. The ribosome is ∼2/3 rRNA and information should pass mostly through this medium. Here, two viable mutants located in the peptidyltransferase center (PTC) of yeast ribosomes were created using a yeast genetic system that enables stable production of ribosomes containing only mutant rRNAs. The specific mutants were C2820U (Escherichia coli C2452) and Ψ2922C (E. coli U2554). Biochemical and genetic analyses of these mutants suggest that they may trap the PTC in the ‘open’ or aa-tRNA bound conformation, decreasing peptidyl-tRNA binding. We suggest that these structural changes are manifested at the biological level by affecting large ribosomal subunit biogenesis, ribosomal subunit joining during initiation, susceptibility/resistance to peptidyltransferase inhibitors, and the ability of ribosomes to properly decode termination codons. These studies also add to our understanding of how information is transmitted both locally and over long distances through allosteric networks of rRNA–rRNA and rRNA–protein interactions. PMID:18203742

  19. Formulation of nanotized curcumin and demonstration of its antimalarial efficacy

    PubMed Central

    Ghosh, Aparajita; Banerjee, Tanushree; Bhandary, Suman; Surolia, Avadhesha

    2014-01-01

    Aim The present study was conducted to overcome the disadvantages associated with the poor water solubility and low bioavailability of curcumin by synthesizing nanotized curcumin and demonstrating its efficacy in treating malaria. Materials and methods Nanotized curcumin was prepared by a modified emulsion-diffusion-evaporation method and was characterized by means of transmission electron microscopy, atomic force microscopy, dynamic light scattering, Zetasizer, Fourier transform infrared spectroscopy, and differential thermal analysis. The novelty of the prepared nanoformulation lies in the fact that it was devoid of any polymeric matrices used in conventional carriers. The antimalarial efficacy of the prepared nanotized curcumin was then checked both in vitro and in vivo. Results The nanopreparation was found to be non-toxic and had a particle size distribution of 20–50 nm along with improved aqueous dispersibility and an entrapment efficiency of 45%. Nanotized curcumin (half maximal inhibitory concentration [IC50]: 0.5 μM) was also found to be ten-fold more effective for growth inhibition of Plasmodium falciparum in vitro as compared to its native counterpart (IC50: 5 μM). Oral bioavailability of nanotized curcumin was found to be superior to that of its native counterpart. Moreover, when Plasmodium berghei-infected mice were orally treated with nanotized curcumin, it prolonged their survival by more than 2 months with complete clearance of parasites in comparison to the untreated animals, which survived for 8 days only. Conclusion Nanotized curcumin holds a considerable promise in therapeutics as demonstrated here for treating malaria as a test system. PMID:25484584

  20. Antimalarial Activity of the Anticancer Histone Deacetylase Inhibitor SB939

    PubMed Central

    Sumanadasa, Subathdrage D. M.; Goodman, Christopher D.; Lucke, Andrew J.; Skinner-Adams, Tina; Sahama, Ishani; Haque, Ashraful; Do, Tram Anh; McFadden, Geoffrey I.; Fairlie, David P.

    2012-01-01

    Histone deacetylase (HDAC) enzymes posttranslationally modify lysines on histone and nonhistone proteins and play crucial roles in epigenetic regulation and other important cellular processes. HDAC inhibitors (e.g., suberoylanilide hydroxamic acid [SAHA; also known as vorinostat]) are used clinically to treat some cancers and are under investigation for use against many other diseases. Development of new HDAC inhibitors for noncancer indications has the potential to be accelerated by piggybacking onto cancer studies, as several HDAC inhibitors have undergone or are undergoing clinical trials. One such compound, SB939, is a new orally active hydroxamate-based HDAC inhibitor with an improved pharmacokinetic profile compared to that of SAHA. In this study, the in vitro and in vivo antiplasmodial activities of SB939 were investigated. SB939 was found to be a potent inhibitor of the growth of Plasmodium falciparum asexual-stage parasites in vitro (50% inhibitory concentration [IC50], 100 to 200 nM), causing hyperacetylation of parasite histone and nonhistone proteins. In combination with the aspartic protease inhibitor lopinavir, SB939 displayed additive activity. SB939 also potently inhibited the in vitro growth of exoerythrocytic-stage Plasmodium parasites in liver cells (IC50, ∼150 nM), suggesting that inhibitor targeting to multiple malaria parasite life cycle stages may be possible. In an experimental in vivo murine model of cerebral malaria, orally administered SB939 significantly inhibited P. berghei ANKA parasite growth, preventing development of cerebral malaria-like symptoms. These results identify SB939 as a potent new antimalarial HDAC inhibitor and underscore the potential of investigating next-generation anticancer HDAC inhibitors as prospective new drug leads for treatment of malaria. PMID:22508312

  1. Gene Network Analysis of Metallo Beta Lactamase Family Proteins Indicates the Role of Gene Partners in Antibiotic Resistance and Reveals Important Drug Targets.

    PubMed

    Parimelzaghan, Anitha; Anbarasu, Anand; Ramaiah, Sudha

    2016-06-01

    Metallo Beta (β) Lactamases (MBL) are metal dependent bacterial enzymes that hydrolyze the β-lactam antibiotics. In recent years, MBL have received considerable attention because it inactivates most of the β-lactam antibiotics. Increase in dissemination of MBL encoding antibiotic resistance genes in pathogenic bacteria often results in unsuccessful treatments. Gene interaction network of MBL provides a complete understanding on the molecular basis of MBL mediated antibiotic resistance. In our present study, we have constructed the MBL network of 37 proteins with 751 functional partners from pathogenic bacterial sp