Science.gov

Sample records for antimicrobial peptide genes

  1. Antimicrobial peptides

    PubMed Central

    2014-01-01

    With increasing antibiotics resistance, there is an urgent need for novel infection therapeutics. Since antimicrobial peptides provide opportunities for this, identification and optimization of such peptides have attracted much interest during recent years. Here, a brief overview of antimicrobial peptides is provided, with focus placed on how selected hydrophobic modifications of antimicrobial peptides can be employed to combat also more demanding pathogens, including multi-resistant strains, without conferring unacceptable toxicity. PMID:24758244

  2. Antimicrobial Peptides in Reptiles

    PubMed Central

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  3. Antimicrobial peptide genes in Bacillus strains from plant environments.

    PubMed

    Mora, Isabel; Cabrefiga, Jordi; Montesinos, Emilio

    2011-12-01

    The presence of the antimicrobial peptide (AMP) biosynthetic genes srfAA (surfactin), bacA (bacylisin), fenD (fengycin), bmyB (bacyllomicin), spaS (subtilin), and ituC (iturin) was examined in 184 isolates of Bacillus spp. obtained from plant environments (aerial, rhizosphere, soil) in the Mediterranean land area of Spain. Most strains had between two and four AMP genes whereas strains with five genes were seldom detected and none of the strains had six genes. The most frequent AMP gene markers were srfAA, bacA, bmyB, and fenD, and the most frequent genotypes srfAA-bacA-bmyB and srfAAbacA- bmyB-fenD. The dominance of these particular genes in Bacillus strains associated with plants reinforces the competitive role of surfactin, bacyllomicin, fengycin, and bacilysin in the fitness of strains in natural environments. The use of these AMP gene markers may assist in the selection of putative biological control agents of plant pathogens. PMID:22569759

  4. Antimicrobial Peptides from Fish

    PubMed Central

    Masso-Silva, Jorge A.; Diamond, Gill

    2014-01-01

    Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture. PMID:24594555

  5. Antimicrobial peptides.

    PubMed

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  6. Cloning, expression, and purification of a new antimicrobial peptide gene from Musca domestica larva.

    PubMed

    Pei, Zhihua; Sun, Xiaoning; Tang, Yan; Wang, Kai; Gao, Yunhang; Ma, Hongxia

    2014-10-01

    Musca domestica (Diptera: Muscidae), the housefly, exhibits unique immune defences and can produce antimicrobial peptides upon stimulation with bacteria. Based on the cDNA library constructed using the suppression subtractive hybridization (SSH) method, a 198-bp antimicrobial peptide gene, which we named MDAP-2, was amplified by rapid amplification of cDNA ends (RACE) from M. domestica larvae stimulated with Salmonella pullorum (Enterobacteriaceae: Salmonella). In the present study, the full-length MDAP-2 gene was cloned and inserted into a His-tagged Escherichia coli prokaryotic expression system to enable production of the recombinant peptide. The recombinant MDAP-2 peptide was purified using Ni-NTA HisTrap FF crude column chromatography. The bacteriostatic activity of the recombinant purified MDAP-2 protein was assessed. The results indicated that MDAP-2 had in vitro antibacterial activity against all of the tested Gram- bacteria from clinical isolates, including E. coli (Enterobacteriaceae: Escherichia), one strain of S. pullorum (Enterobacteriaceae: Salmonella), and one strain of Pasteurella multocida. DNA sequencing and BLAST analysis showed that the MDAP-2 antimicrobial peptide gene was not homologous to any other antimicrobial peptide genes in GenBank. The antibacterial mechanisms of the newly discovered MDAP-2 peptide warrant further study. PMID:25020259

  7. Airway Epithelial Cells are the Site of Expression of a Mammalian Antimicrobial Peptide Gene

    NASA Astrophysics Data System (ADS)

    Diamond, Gill; Jones, Douglas E.; Bevins, Charles L.

    1993-05-01

    We previously reported the isolation and characterization of a broad-spectrum antimicrobial peptide from the bovine tracheal mucosa, which we called tracheal antimicrobial peptide (TAP). We now show the TAP gene is expressed throughout the adult conducting airway, from nasal to bronchiolar tissue, but not in tissues other than airway mucosa, as determined by Northern blot analysis. In situ hybridization of airway sections localizes TAP mRNA to columnar cells of the pseudostratified epithelium. We report the structural organization of the TAP gene and show that TAP is a member of a large family of related sequences with high nucleotide identity in the 5'exon. The data support the hypothesis that antimicrobial peptides contribute to host defense of the respiratory tract.

  8. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  9. Antimicrobial peptides in 2014.

    PubMed

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  10. Synthetic antimicrobial peptide design.

    PubMed

    Powell, W A; Catranis, C M; Maynard, C A

    1995-01-01

    To guide the design of potential plant pathogen-resistance genes, synthetic variants of naturally occurring antimicrobial gene products were evaluated. Five 20-amino acid (ESF1, ESF4, ESF5, ESF6, ESF13), one 18-amino acid (ESF12), and one 17-amino acid (ESF17) amphipathic peptide sequences were designed, synthesized, and tested with in vitro bioassays. Positive charges on the hydrophilic side of the peptide were shown to be essential for antifungal activity, yet the number of positive charges could be varied with little or no change in activity. The size could be reduced to 18 amino acids, but at 17 amino acids a significant reduction in activity was observed. ESF1, 5, 6, and 12 peptides were inhibitory to the germination of conidia from Cryphonectria parasitica, Fusarium oxysporum f. sp. lycopersici, and Septoria musiva but did not inhibit the germination of pollen from Castanea mollissima and Salix lucida. ESF12 also had no effect on the germination of Malus sylvestris and Lycopersicon esculentum pollen, but inhibited the growth of the bacteria Agrobacterium tumefaciens, Erwinia amylovora, and Pseudomonas syringae. The minimal inhibitory concentrations of the active ESF peptides were similar to those of the naturally occurring control peptides, magainin II and cecropin B. The significant differential in sensitivity between the microbes and plant cells indicated that the active ESF peptides are potentially useful models for designing plant pathogen-resistance genes. PMID:7579625

  11. Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression

    PubMed Central

    Sperandio, Brice; Regnault, Béatrice; Guo, Jianhua; Zhang, Zhi; Stanley, Samuel L.; Sansonetti, Philippe J.; Pédron, Thierry

    2008-01-01

    Antimicrobial factors are efficient defense components of the innate immunity, playing a crucial role in the intestinal homeostasis and protection against pathogens. In this study, we report that upon infection of polarized human intestinal cells in vitro, virulent Shigella flexneri suppress transcription of several genes encoding antimicrobial cationic peptides, particularly the human β-defensin hBD-3, which we show to be especially active against S. flexneri. This is an example of targeted survival strategy. We also identify the MxiE bacterial regulator, which controls a regulon encompassing a set of virulence plasmid-encoded effectors injected into host cells and regulating innate signaling, as being responsible for this dedicated regulatory process. In vivo, in a model of human intestinal xenotransplant, we confirm at the transcriptional and translational level, the presence of a dedicated MxiE-dependent system allowing S. flexneri to suppress expression of antimicrobial cationic peptides and promoting its deeper progression toward intestinal crypts. We demonstrate that this system is also able to down-regulate additional innate immunity genes, such as the chemokine CCL20 gene, leading to compromised recruitment of dendritic cells to the lamina propria of infected tissues. Thus, S. flexneri has developed a dedicated strategy to weaken the innate immunity to manage its survival and colonization ability in the intestine. PMID:18426984

  12. Rapid evolution of antimicrobial peptide genes in an insect host-social parasite system.

    PubMed

    Erler, Silvio; Lhomme, Patrick; Rasmont, Pierre; Lattorff, H Michael G

    2014-04-01

    Selection, as a major driver for evolution in host-parasite interactions, may act on two levels; the virulence of the pathogen, and the hosts' defence system. Effectors of the host defence system might evolve faster than other genes e.g. those involved in adaptation to changes in life history or environmental fluctuations. Host-parasite interactions at the level of hosts and their specific social parasites, present a special setting for evolutionarily driven selection, as both share the same environmental conditions and pathogen pressures. Here, we study the evolution of antimicrobial peptide (AMP) genes, in six host bumblebee and their socially parasitic cuckoo bumblebee species. The selected AMP genes evolved much faster than non-immune genes, but only defensin-1 showed significant differences between host and social parasite. Nucleotide diversity and codon-by-codon analyses confirmed that purifying selection is the main selective force acting on bumblebee defence genes. PMID:24530902

  13. abf-1 and abf-2, ASABF-type antimicrobial peptide genes in Caenorhabditis elegans.

    PubMed Central

    Kato, Yusuke; Aizawa, Tomoyasu; Hoshino, Hirokazu; Kawano, Keiichi; Nitta, Katsutoshi; Zhang, Hong

    2002-01-01

    Two genes encoding the ASABF (Ascaris suum antibacterial factor)-type antimicrobial peptide, abf-1 and abf-2, were identified in Caenorhabditis elegans. Recombinant ABF-2 exhibited potent microbicidal activity against Gram-positive and Gram-negative bacteria, and yeasts. The tissue-specific distribution estimated by immunofluorescence staining and transgenic analysis of a gfp fusion gene (where GFP corresponds to green fluorescent protein) suggested that ABF-2 contributes to surface defence in the pharynx. abf-1 contains a single intron at a conserved position, suggesting that asabf and abf originated from a common ancestor. Both transcripts for abf-1 and abf-2 were detected as two distinct forms, i.e. spliced leader (SL)1-trans-spliced with a long 5'-untranslated region (UTR) and SL-less with a short 5'-UTR. A polycistronic precursor RNA encoding ABF-1 and ABF-2 was detected, suggesting that these genes form an operon. An 'opportunistic operon' model for regulation of abf genes, including the generation of short SL-less transcripts, is proposed. In conclusion, C. elegans should have an immune defence system due to the antimicrobial peptides. C. elegans can be a novel model for innate immunity. Furthermore, the combination of biochemical identification in Ascaris suum and homologue hunting in C. elegans should be a powerful method of finding rapidly evolved proteins, such as some immune-related molecules in C. elegans. PMID:11772394

  14. Detection of genes encoding antimicrobial peptides in Mexican strains of Trichoplusia ni (Hubner) exposed to Bacillus thuringiensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The systemic immune response of Trichoplusia ni after Bacillus thuringiensis (Bt) exposure was evaluated by comparing the expression of genes encoding antimicrobial peptides (AMP) in Bt-susceptible and -resistant T. ni strains that were either exposed or not to XenTari® (Bt-XT). AMP genes were dete...

  15. Expression of essential genes for biosynthesis of antimicrobial peptides of Bacillus is modulated by inactivated cells of target microorganisms.

    PubMed

    Leães, Fernanda Leal; Velho, Renata Voltolini; Caldas, Danielle Gregório Gomes; Ritter, Ana Carolina; Tsai, Siu Mui; Brandelli, Adriano

    2016-01-01

    Certain Bacillus strains are important producers of antimicrobial peptides with great potential for biological control. Antimicrobial peptide production by Bacillus amyloliquefaciens P11 was investigated in the presence of heat-inactivated cells of bacteria and fungi. B. amyloliquefaciens P11 exhibited higher antimicrobial activity in the presence of inactivated cells of Staphylococcus aureus and Aspergillus parasiticus compared to other conditions tested. Expression of essential genes related to biosynthesis of the antimicrobial peptides surfactin (sfp), iturin A (lpa-14 and ituD), subtilosin A (sboA) and fengycin (fenA) was investigated by quantitative real-time PCR (qRT-PCR). The genes lpa-14 and ituD were highly expressed in the presence of S. aureus (inactivated cells), indicating induction of iturin A production by B. amyloliquefaciens P11. The other inducing condition (inactivated cells of A. parasiticus) suppressed expression of lpa-14, but increased expression of ituD. A twofold increase in fenA expression was observed for both conditions, while strong suppression of sboA expression was observed in the presence of inactivated cells of S. aureus. An increase in antimicrobial activity was observed, indicating that synthesis of antimicrobial peptides may be induced by target microorganisms. PMID:26577655

  16. Multidimensional signatures in antimicrobial peptides

    PubMed Central

    Yount, Nannette Y.; Yeaman, Michael R.

    2004-01-01

    Conventional analyses distinguish between antimicrobial peptides by differences in amino acid sequence. Yet structural paradigms common to broader classes of these molecules have not been established. The current analyses examined the potential conservation of structural themes in antimicrobial peptides from evolutionarily diverse organisms. Using proteomics, an antimicrobial peptide signature was discovered to integrate stereospecific sequence patterns and a hallmark three-dimensional motif. This striking multidimensional signature is conserved among disulfide-containing antimicrobial peptides spanning biological kingdoms, and it transcends motifs previously limited to defined peptide subclasses. Experimental data validating this model enabled the identification of previously unrecognized antimicrobial activity in peptides of known identity. The multidimensional signature model provides a unifying structural theme in broad classes of antimicrobial peptides, will facilitate discovery of antimicrobial peptides as yet unknown, and offers insights into the evolution of molecular determinants in these and related host defense effector molecules. PMID:15118082

  17. Molecular Characterization of Antimicrobial Peptide Genes of the Carpenter Ant Camponotus floridanus

    PubMed Central

    Ratzka, Carolin; Förster, Frank; Liang, Chunguang; Kupper, Maria; Dandekar, Thomas; Feldhaar, Heike; Gross, Roy

    2012-01-01

    The production of antimicrobial peptides (AMPs) is a major defense mechanism against pathogen infestation and of particular importance for insects relying exclusively on an innate immune system. Here, we report on the characterization of three AMPs from the carpenter ant Camponotus floridanus. Due to sequence similarities and amino acid composition these peptides can be classified into the cysteine-rich (e.g. defensin) and glycine-rich (e.g. hymenoptaecin) AMP groups, respectively. The gene and cDNA sequences of these AMPs were established and their expression was shown to be induced by microbial challenge. We characterized two different defensin genes. The defensin-2 gene has a single intron, whereas the defensin-1 gene has two introns. The deduced amino acid sequence of the C. floridanus defensins is very similar to other known ant defensins with the exception of a short C-terminal extension of defensin-1. The hymenoptaecin gene has a single intron and a very peculiar domain structure. The corresponding precursor protein consists of a signal- and a pro-sequence followed by a hymenoptaecin-like domain and six directly repeated hymenoptaecin domains. Each of the hymenoptaecin domains is flanked by an EAEP-spacer sequence and a RR-site known to be a proteolytic processing site. Thus, proteolytic processing of the multipeptide precursor may generate several mature AMPs leading to an amplification of the immune response. Bioinformatical analyses revealed the presence of hymenoptaecin genes with similar multipeptide precursor structure in genomes of other ant species suggesting an evolutionary conserved important role of this gene in ant immunity. PMID:22912782

  18. Stearylated antimicrobial peptide [D]-K6L9 with cell penetrating property for efficient gene transfer.

    PubMed

    Zhang, Wei; Song, Jingjing; Liang, Ranran; Zheng, Xin; Chen, Jianbo; Li, Guolin; Zhang, Bangzhi; Wang, Kairong; Yan, Xiang; Wang, Rui

    2013-08-01

    Stearyl-cell penetrating peptides (CPPs) have been proved to be efficient nonviral gene vectors. Due to the similarities between antimicrobial peptides and CPPs, we constructed a novel type of gene vectors by introducing stearyl moiety to the N-terminus of antimicrobial peptide [D]-K6L9. In this study, stearyl-[D]-K6L9 delivered plasmids into cells by clathrin- and caveolin-mediated endocytosis. Gratifyingly, stearyl-[D]-K6L9 exhibited high transfection efficiency and almost reached the level of Lipofectamine 2000. Taken together, the combination of the stearyl moiety with [D]-K6L9 provides a novel framework for the development of excellent nonviral gene vectors. PMID:23727033

  19. Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. I...

  20. Antimicrobial Peptides from Plants.

    PubMed

    Tam, James P; Wang, Shujing; Wong, Ka H; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  1. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  2. The effect of peptidoglycan enriched diets on antimicrobial peptide gene expression in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Casadei, Elisa; Bird, Steve; Vecino, Jose L González; Wadsworth, Simon; Secombes, Christopher J

    2013-02-01

    The aim of this study was to investigate the effect of feeding rainbow trout (Oncorhynchus mykiss) peptidoglycan (PG) enriched diets on antimicrobial peptide (AMP) gene expression. Fish were divided into 5 groups and fed diets containing 0, 5, 10, 50 and 100 mg PG/Kg, and sampled 1, 7 and 14 days later. The expression of eight AMP genes (four defensins, two cathelicidins and two liver expressed AMPs) was determined in skin, gill, gut and liver, tissues important for first lines of defence or production of acute phase proteins. Up-regulation of many AMPs was found after feeding the PG enriched diets, with sequential expression seen over the time course studied, where defensins were typically expressed early and cathelicidins and LEAPs later on. A number of clear differences in AMP responsiveness between the tissues examined were also apparent. Of the four PG concentrations used, 5 mg PG/Kg did not always elicit AMP gene induction or to the same degree as seen with the other diets. The three higher dose groups generally showed similar trends although differences in fold change were more pronounced in the 50 and 100 mg PG/Kg groups. Curiously several AMPs were down-regulated after 14 days of feeding in gills, gut and liver. Nevertheless, overall the PG enriched diets had a positive effect on AMP expression. Further investigations now need to be undertaken to confirm whether this higher AMP gene expression correlates with protection against common bacterial diseases and if PG enriched diets have value as a means to temporarily boost the piscine immune system. PMID:23220715

  3. Involvement of Relish gene from Macrobrachium rosenbergii in the expression of anti-microbial peptides.

    PubMed

    Shi, Yan-Ru; Jin, Min; Ma, Fu-Tong; Huang, Ying; Huang, Xin; Feng, Jin-Ling; Zhao, Ling-Ling; Chen, Yi-Hong; Ren, Qian

    2015-10-01

    Relish is an NF-kB transcription factor involved in immune-deficiency (IMD) signal pathway. In this study, a Relish gene (MrRelish) was identified from Macrobrachium rosenbergii. The full length of MrRelish comprises 5072 bp, including a 3510 bp open reading frame encoding a 1169 bp amino acid protein. MrRelish contains a Rel homology domain (RHD), a nucleus localization signal, an IκB-like domain (6 ankyrin repeats), and a death domain. Phylogenetic analysis showed that MrRelish and other Relish from crustaceans belong to one group. MrRelish was expressed in all detected tissues, with the highest expression level in hemocytes and intestines. MrRelish was also upregulated in hepatopancreas at 6 h after Vibrio anguillarum challenge. The over-expression of MrRelish could induce the expression of antimicrobial peptides (AMPs), such as Drosophila Metchnikowin (Mtk), Attacin (Atta), Drosomycin (Drs), and Cecropin (CecA) and shrimp Penaeidin (Pen4). The RNAi of MrRelish in gills showed that the expression of crustin (cru) 2, Cru5, Cru8, lysozyme (Lyso) 1, and Lyso2 was inhibited. However, the expression of anti-lipopolysaccharide factor (ALF) 1 and ALF3 did not change when MrRelish was knocked down. These results indicate that MrRelish may play an important role in innate immune defense against V. anguillarum in M. rosenbergii. PMID:26026243

  4. Salmonella enterica Serovar Enteritidis Antimicrobial Peptide Resistance Genes Aid in Defense against Chicken Innate Immunity, Fecal Shedding, and Egg Deposition

    PubMed Central

    McKelvey, Jessica A.; Yang, Ming; Jiang, Yanhua

    2014-01-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major etiologic agent of nontyphoid salmonellosis in the United States. S. Enteritidis persistently and silently colonizes the intestinal and reproductive tract of laying hens, resulting in contaminated poultry products. The consumption of contaminated poultry products has been identified as a significant risk factor for human salmonellosis. To understand the mechanisms S. Enteritidis utilizes to colonize and persist in laying hens, we used selective capture of transcribed sequences to identify genes overexpressed in the HD11 chicken macrophage cell line and in primary chicken oviduct epithelial cells. From the 15 genes found to be overexpressed in both cell types, we characterized the antimicrobial peptide resistance (AMPR) genes, virK and ybjX, in vitro and in vivo. In vitro, AMPR genes were required for natural morphology, motility, secretion, defense against detergents such as EDTA and bile salts, and resistance to antimicrobial peptides polymyxin B and avian β-defensins. From this, we inferred the AMPR genes play a role in outer membrane stability and/or modulation. In the intestinal tract, AMPR genes were involved in early intestinal colonization and fecal shedding. In the reproductive tract, virK was required in early colonization whereas a deletion of ybjX caused prolonged ovary colonization and egg deposition. Data from the present study indicate that AMPR genes are differentially utilized in various host environments, which may ultimately assist S. Enteritidis in persistent and silent colonization of chickens. PMID:25267840

  5. Expression of antimicrobial peptide genes in Bombyx mori gut modulated by oral bacterial infection and development.

    PubMed

    Wu, Shan; Zhang, Xiaofeng; He, Yongqiang; Shuai, Jiangbing; Chen, Xiaomei; Ling, Erjun

    2010-11-01

    Although Bombyx mori systematic immunity is extensively studied, little is known about the silkworm's intestine-specific responses to bacterial infection. Antimicrobial peptides (AMPs) gene expression analysis of B. mori intestinal tissue to oral infection with the Gram-positive (Staphylococcus aureus) and -negative (Escherichia coli) bacteria revealed that there is specificity in the interaction between host immune responses and parasite types. Neither Att1 nor Leb could be stimulated by S. aureus and E. coli. However, CecA1, Glo1, Glo2, Glo3, Glo4 and Lys, could only be trigged by S. aureus. On the contrary, E. coli stimulation caused the decrease in the expression of CecA1, Glo3 and Glo4 in some time points. Interestingly, there is regional specificity in the silkworm local gut immunity. During the immune response, the increase in Def, Hem and LLP3 was only detected in the foregut and midgut. For CecB1, CecD, LLP2 and Mor, after orally administered with E. coli, the up-regulation was only limited in the midgut and hindgut. CecE was the only AMP that positively responses to the both bacteria in all the testing situations. With development, the expression levels of the AMPs were also changed dramatically. That is, at spinning and prepupa stages, a large increase in the expression of CecA1, CecB1, CecD, CecE, Glo1, Glo2, Glo3, Glo4, Leb, Def, Hem, Mor and Lys was detected in the gut. Unexpectedly, in addition to the IMD pathway genes, the Toll and JAK/STAT pathway genes in the silkworm gut can also be activated by microbial oral infection. But in the developmental course, corresponding to the increase in expression of AMPs at spinning and prepupa stages, only the Toll pathway genes in the gut exhibit the similar increasing trend. Our results imply that the immune responses in the silkworm gut are synergistically regulated by the Toll, JAK/STAT and IMD pathways. However, as the time for approaching pupation, the Toll pathway may play a role in the AMPs expression

  6. Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity.

    PubMed

    Peng, Li-Hua; Huang, Yan-Fen; Zhang, Chen-Zhen; Niu, Jie; Chen, Ying; Chu, Yang; Jiang, Zhi-Hong; Gao, Jian-Qing; Mao, Zheng-Wei

    2016-10-01

    Gold nanoparticles (AuNPs) have emerged as attractive non-viral gene vectors. However their application in regenerative medicine is still limited partially due to a lack of an intrinsic capacity to transfect difficult-to-transfect cells such as primary cells or stem cells. In current study, we report the synthesis of antimicrobial peptide conjugated cationic AuNPs (AuNPs@PEP) as highly efficient carriers for gene delivery to stem cells with antibacterial ability. The AuNPs@PEP integrate the advantages of cationic AuNPs and antibacterial peptides: the presence of cationic AuNPs can effectively condense DNA and the antimicrobial peptides are essential for the cellular & nucleus entry enhancement to achieve high transfection efficiency and antibacterial ability. As a result, antimicrobial peptides conjugated AuNPs significantly promoted the gene transfection efficiency in rat mesenchymal stem cells than pristine AuNPs, with a similar extent to those expressed by TAT (a well-known cell-penetrating peptide) modified AuNPs. More interestingly, the combinational system has better antibacterial ability than free antimicrobial peptides in vitro and in vivo, possibly due to the high density of peptides on the surface of AuNPs. Finally we present the concept-proving results that AuPs@PEP can be used as a carrier for in vivo gene activation in tissue regeneration, suggesting its potential as a multifunctional system with both gene delivery and antibacterial abilities in clinic. PMID:27376562

  7. Novel Formulations for Antimicrobial Peptides

    PubMed Central

    Carmona-Ribeiro, Ana Maria; Carrasco, Letícia Dias de Melo

    2014-01-01

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy. PMID:25302615

  8. Antimicrobial peptides: premises and promises.

    PubMed

    Reddy, K V R; Yedery, R D; Aranha, C

    2004-12-01

    Antimicrobial peptides (AMPs) are an important component of the natural defences of most living organisms against invading pathogens. These are relatively small (< 10kDa), cationic and amphipathic peptides of variable length, sequence and structure. During the past two decades several AMPs have been isolated from a wide variety of animals, both vertebrates and invertebrates, and plants as well as from bacteria and fungi. Most of these peptides are obtained from different sources like macrophages, neutrophils, epithelial cells, haemocytes, fat body, reproductive tract, etc. These peptides exhibit broad-spectrum activity against a wide range of microorganisms including Gram-positive and Gram-negative bacteria, protozoa, yeast, fungi and viruses. A few peptides have also been found to be cytotoxic to sperm and tumour cells. AMPs are classified based on the three dimensional structural studies carried out with the help of NMR. The peptides are broadly classified into five major groups namely (a) peptides that form alpha-helical structures, (b) peptides rich in cysteine residues, (c) peptides that form beta-sheet, (d) peptides rich in regular amino acids namely histatin, arginine and proline and (e) peptides composed of rare and modified amino acids. Most of these peptides are believed to act by disrupting the plasma membrane leading to the lysis of the cell. AMPs have been found to be excellent candidates for developing novel antimicrobial agents and a few of these peptides show antimicrobial activity against pathogens causing sexually transmitted infection (STI), including HIV/HSV. Peptides, namely magainin and nisin have been shown to demonstrate contraceptive properties in vitro and in vivo. A few peptides have already entered clinical trials for the treatment of impetigo, diabetic foot ulcers and gastric helicobacter infections. In this review, we discuss the source, structures and mode of action with special reference to therapeutic considerations of various AMPs

  9. Two roles for the Drosophila IKK complex in the activation of Relish and the induction of antimicrobial peptide genes

    PubMed Central

    Ertürk-Hasdemir, Deniz; Broemer, Meike; Leulier, François; Lane, William S.; Paquette, Nicholas; Hwang, Daye; Kim, Chan-Hee; Stöven, Svenja; Meier, Pascal; Silverman, Neal

    2009-01-01

    The Drosophila NF-κB transcription factor Relish is an essential regulator of antimicrobial peptide gene induction after Gram-negative bacterial infection. Relish is a bipartite NF-κB precursor protein, with an N-terminal Rel homology domain and a C-terminal IκB-like domain, similar to mammalian p100 and p105. Unlike these mammalian homologs, Relish is endoproteolytically cleaved after infection, allowing the N-terminal NF-κB module to translocate to the nucleus. Signal-dependent activation of Relish, including cleavage, requires both the Drosophila IκB kinase (IKK) and death-related ced-3/Nedd2-like protein (DREDD), the Drosophila caspase-8 like protease. In this report, we show that the IKK complex controls Relish by direct phosphorylation on serines 528 and 529. Surprisingly, these phosphorylation sites are not required for Relish cleavage, nuclear translocation, or DNA binding. Instead they are critical for recruitment of RNA polymerase II and antimicrobial peptide gene induction, whereas IKK functions noncatalytically to support Dredd-mediated cleavage of Relish. PMID:19497884

  10. Peptides and Peptidomimetics for Antimicrobial Drug Design

    PubMed Central

    Mojsoska, Biljana; Jenssen, Håvard

    2015-01-01

    The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics. PMID:26184232

  11. Genomic Organization, Molecular Diversification, and Evolution of Antimicrobial Peptide Myticin-C Genes in the Mussel (Mytilus galloprovincialis)

    PubMed Central

    Vera, Manuel; Martínez, Paulino; Poisa-Beiro, Laura; Figueras, Antonio; Novoa, Beatriz

    2011-01-01

    Myticin-C is a highly variable antimicrobial peptide associated to immune response in Mediterranean mussel (Mytilus galloprovincialis). In this study, we tried to ascertain the genetic organization and the mechanisms underlying myticin-C variation and evolution of this gene family. We took advantage of the large intron size variation to find out the number of myticin-C genes. Using fragment analysis a maximum of four alleles was detected per individual at both introns in a large mussel sample suggesting a minimum of two myticin-C genes. The transmission pattern of size variants in two full-sib families was also used to ascertain the number of myticin-C genes underlying the variability observed. Results in both families were in accordance with two myticin-C genes organized in tandem. A more detailed analysis of myticin-C variation was carried out by sequencing a large sample of complementary (cDNA) and genomic DNA (gDNA) in 10 individuals. Two basic sequences were detected at most individuals and several sequences were constituted by combination of two different basic sequences, strongly suggesting somatic recombination or gene conversion. Slight within-basic sequence variation detected in all individuals was attributed to somatic mutation. Such mutations were more frequently at the C-terminal domain and mostly determined non-synonymous substitutions. The mature peptide domain showed the highest variation both in the whole cDNA and in the basic-sequence samples, which is in accordance with the pathogen recognition function associated to this domain. Although most tests suggested neutrality for myticin-C variation, evidence indicated positive selection in the mature peptide and C-terminal region. Three main highly supported clusters were observed when reconstructing phylogeny on basic sequences, meiotic recombination playing a relevant role on myticin-C evolution. This study demonstrates that mechanisms to generate molecular variation similar to that observed in

  12. A relationship between antimicrobial peptide gene expression and capacity of a selected shrimp line to survive a Vibrio infection.

    PubMed

    de Lorgeril, Julien; Gueguen, Yannick; Goarant, Cyrille; Goyard, Emmanuel; Mugnier, Chantal; Fievet, Julie; Piquemal, David; Bachère, Evelyne

    2008-07-01

    Understanding of antimicrobial defence mechanisms of penaeid shrimp should help in the design of efficient strategies for the management and disease control in aquaculture. In this study, we have specifically analysed the expression in circulating hemocytes of antimicrobial peptides (AMPs) encoding genes, such as PEN2 and PEN3, ALF, crustin, lysozyme and a putative cysteine-rich peptide. We evidenced a relationship between the level of expression of some AMPs and the successful response of the shrimp, Litopenaeus stylirostris, to circumvent a pathogenic Vibrio penaeicida infection. Additionally, significant differences in some AMP transcript amounts are evidenced between control, non-selected shrimp line and the third generation breeding of shrimp selected for their survival to natural V. penaeicida infections. On the basis of these results, it will now be of great interest to determine if these AMPs are directly involved in the resistance of shrimp to infection or if they only reflect other acquired defence mechanisms which can confer a resistance. PMID:18486974

  13. Collagen-like antimicrobial peptides.

    PubMed

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  14. Effects of linear cationic x-helical antimicrobial peptides on immune-relevant genes in trout macrophages.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is increasing evidence of the potential role of antimicrobial peptides in the regulation of immune responses in mammalian species. However, the effects of these peptides in fish have yet to be investigated. In this study, we examined the transcriptional expression profile of representative i...

  15. Gene encoded antimicrobial peptides, a template for the design of novel anti-mycobacterial drugs.

    PubMed

    Carroll, James; Field, Des; O'Connor, Paula M; Cotter, Paul D; Coffey, Aidan; Hill, Colin; Ross, R Paul; O'Mahony, Jim

    2010-01-01

    Nisin A is the most widely characterized lantibiotic investigated to date. It represents one of the many antimicrobial peptides which have been the focus of much interest as potential therapeutic agents. This has resulted in the search for novel lantibiotics and more commonly, the engineering of novel variants from existing peptides with a view to increasing their activity, stability and solubility.The aim of this study was to compare the activities of nisin A and novel bioengineered hinge derivatives, nisin S, nisin T and nisin V. The microtitre alamar blue assay (MABA) was employed to identify the enhanced activity of these novel variants against M. tuberculosis (H37Ra), M. kansasii (CIT11/06), M. avium subsp. hominissuis (CIT05/03) and M. avium subsp. paratuberculosis (MAP) (ATCC 19698). All variants displayed greater anti-mycobacterial activity than nisin A. Nisin S was the most potent variant against M. tuberculosis, M. kansasii and M. avium subsp. hominissuis, retarding growth by a maximum of 29% when compared with nisin A. Sub-species variations of inhibition were also observed with nisin S reducing growth of Mycobacterium avium subsp. hominissuis by 28% and Mycobacterium avium subsp. paratuberculosis by 19% and nisin T contrastingly reducing growth of MAP by 27% and MAC by 16%.Nisin S, nisin T and nisin V are potent novel anti-mycobacterial compounds, which have the capacity to be further modified, potentially generating compounds with additional beneficial characteristics. This is the first report to demonstrate an enhancement of efficacy by any bioengineered bacteriocin against mycobacteria. PMID:21468208

  16. How antimicrobial peptides disrupt lipid bilayers?

    NASA Astrophysics Data System (ADS)

    Sengupta, Durba

    2011-03-01

    The molecular basis for the activity of cyclic and linear antimicrobial peptides is analysed. We performed multi-scale molecular dynamics simulations and biophysical measurements to probe the interaction of antimicrobial peptides with model membranes. Two linear antimicrobial peptides, magainin and melittin and a cyclic one, BPC194 have been studied. We test different models to determine the generic and specific forces that lead to bilayer disruption. We probe whether interfacial stress or local membrane perturbation is more likely to lead to the porated state. We further analyse the reasons that determine specificity and increase of activity in antimicrobial peptides. The results provide detailed insight in the mode of action of antimicrobial peptides.

  17. Antimicrobial Peptides from Marine Proteobacteria

    PubMed Central

    Desriac, Florie; Jégou, Camille; Balnois, Eric; Brillet, Benjamin; Le Chevalier, Patrick; Fleury, Yannick

    2013-01-01

    After years of inadequate use and the emergence of multidrug resistant (MDR) strains, the efficiency of “classical” antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs), synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs), obtained through the linkage of (unusual) amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs. PMID:24084784

  18. Antimicrobial activity of mosquito cecropin peptides against Francisella.

    PubMed

    Kaushal, Akanksha; Gupta, Kajal; Shah, Ruhee; van Hoek, Monique L

    2016-10-01

    Francisella tularensis is the cause of the zoonotic disease tularemia. In Sweden and Scandinavia, epidemiological studies have implicated mosquitoes as a vector. Prior research has demonstrated the presence of Francisella DNA in infected mosquitoes but has not shown definitive transmission of tularemia from a mosquito to a mammalian host. We hypothesized that antimicrobial peptides, an important component of the innate immune system of higher organisms, may play a role in mosquito host-defense to Francisella. We established that Francisella sp. are susceptible to two cecropin antimicrobial peptides derived from the mosquito Aedes albopictus as well as Culex pipiens. We also demonstrated induced expression of Aedes albopictus antimicrobial peptide genes by Francisella infection C6/36 mosquito cell line. We demonstrate that mosquito antimicrobial peptides act against Francisella by disrupting the cellular membrane of the bacteria. Thus, it is possible that antimicrobial peptides may play a role in the inability of mosquitoes to establish an effective natural transmission of tularemia. PMID:27235883

  19. Predicting functional regulatory SNPs in the human antimicrobial peptide genes DEFB1 and CAMP in tuberculosis and HIV/AIDS.

    PubMed

    Flores Saiffe Farías, Adolfo; Jaime Herrera López, Enrique; Moreno Vázquez, Cristopher Jorge; Li, Wentian; Prado Montes de Oca, Ernesto

    2015-12-01

    Single nucleotide polymorphisms (SNPs) in transcription factor binding sites (TFBSs) within gene promoter region or enhancers can modify the transcription rate of genes related to complex diseases. These SNPs can be called regulatory SNPs (rSNPs). Data compiled from recent projects, such as the 1000 Genomes Project and ENCODE, has revealed essential information used to perform in silico prediction of the molecular and biological repercussions of SNPs within TFBS. However, most of these studies are very limited, as they only analyze SNPs in coding regions or when applied to promoters, and do not integrate essential biological data like TFBSs, expression profiles, pathway analysis, homotypic redundancy (number of TFBSs for the same TF in a region), chromatin accessibility and others, which could lead to a more accurate prediction. Our aim was to integrate different data in a biologically coherent method to analyze the proximal promoter regions of two antimicrobial peptide genes, DEFB1 and CAMP, that are associated with tuberculosis (TB) and HIV/AIDS. We predicted SNPs within the promoter regions that are more likely to interact with transcription factors (TFs). We also assessed the impact of homotypic redundancy using a novel approach called the homotypic redundancy weight factor (HWF). Our results identified 10 SNPs, which putatively modify the binding affinity of 24 TFs previously identified as related to TB and HIV/AIDS expression profiles (e.g. KLF5, CEBPA and NFKB1 for TB; FOXP2, BRCA1, CEBPB, CREB1, EBF1 and ZNF354C for HIV/AIDS; and RUNX2, HIF1A, JUN/AP-1, NR4A2, EGR1 for both diseases). Validating with the OregAnno database and cell-specific functional/non functional SNPs from additional 13 genes, our algorithm performed 53% sensitivity and 84.6% specificity to detect functional rSNPs using the DNAseI-HUP database. We are proposing our algorithm as a novel in silico method to detect true functional rSNPs in antimicrobial peptide genes. With further

  20. Antimicrobial Properties of Amyloid Peptides

    PubMed Central

    Kagan, Bruce L.; Jang, Hyunbum; Capone, Ricardo; Arce, Fernando Teran; Ramachandran, Srinivasan; Lal, Ratnesh; Nussinov, Ruth

    2011-01-01

    More than two dozen clinical syndromes known as amyloid diseases are characterized by the buildup of extended insoluble fibrillar deposits in tissues. These amorphous Congo red staining deposits known as amyloids exhibit a characteristic green birefringence and cross-β structure. Substantial evidence implicates oligomeric intermediates of amyloids as toxic species in the pathogenesis of these chronic disease states. A growing body of data has suggested that these toxic species form ion channels in cellular membranes causing disruption of calcium homeostasis, membrane depolarization, energy drainage, and in some cases apoptosis. Amyloid peptide channels exhibit a number of common biological properties including the universal U-shape β-strand-turn-β-strand structure, irreversible and spontaneous insertion into membranes, production of large heterogeneous single-channel conductances, relatively poor ion selectivity, inhibition by Congo red, and channel blockade by zinc. Recent evidence has suggested that increased amounts of amyloids are not only toxic to its host target cells but also possess antimicrobial activity. Furthermore, at least one human antimicrobial peptide, protegrin-1, which kills microbes by a channel-forming mechanism, has been shown to possess the ability to form extended amyloid fibrils very similar to those of classic disease-forming amyloids. In this paper, we will review the reported antimicrobial properties of amyloids and the implications of these discoveries for our understanding of amyloid structure and function. PMID:22081976

  1. Membrane disruption mechanism of antimicrobial peptides

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yee

    2012-04-01

    Largely distributed among living organisms, antimicrobial peptides are a class of small (<100 residues) host defense peptides that induce selective membrane lytic activity against microbial pathogens. The permeabilizing behavior of these diverse peptides has been commonly attributed to the formation of pores, and such pore formation has been categorized as barrel-stave, toroidal, or carpet-like. With the continuing discovery of new peptide species, many are uncharacterized and the exact mechanism is unknown. Through the use of atomic force microscopy, the disruption of supported lipid bilayer patches by protegrin-1 is concentration-dependent. The intercalation of antimicrobial peptide into the bilayer results in structures beyond that of pore formation, but with the formation of worm-like micelles at high peptide concentration. Our results suggest that antimicrobial peptide acts to lower the interfacial energy of the bilayer in a way similar to detergents. Antimicrobial peptides with structural differences, magainin-1 and aurein 1.1, exhibit a mechanistic commonality.

  2. Antimicrobial Peptides: Versatile Biological Properties

    PubMed Central

    Pushpanathan, Muthuirulan; Rajendhran, Jeyaprakash

    2013-01-01

    Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries. PMID:23935642

  3. The First Salamander Defensin Antimicrobial Peptide

    PubMed Central

    Jiang, Ke; Rong, Mingqiang; Lai, Ren

    2013-01-01

    Antimicrobial peptides have been widely identified from amphibian skins except salamanders. A novel antimicrobial peptide (CFBD) was isolated and characterized from skin secretions of the salamander, Cynops fudingensis. The cDNA encoding CFBD precursor was cloned from the skin cDNA library of C. fudingensis. The precursor was composed of three domains: signal peptide of 17 residues, mature peptide of 41 residues and intervening propeptide of 3 residues. There are six cysteines in the sequence of mature CFBD peptide, which possibly form three disulfide-bridges. CFBD showed antimicrobial activities against Staphylococcus aureus, Bacillus subtilis, Candida albicans and Escherichia coli. This peptide could be classified into family of β-defensin based on its seqeuence similarity with β-defensins from other vertebrates. Evolution analysis indicated that CFBD was close to fish β-defensin. As far as we know, CFBD is the first β-defensin antimicrobial peptide from salamanders. PMID:24386139

  4. Human Antimicrobial Peptides and Proteins

    PubMed Central

    Wang, Guangshun

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to

  5. Antimicrobial Peptides in Human Sepsis.

    PubMed

    Martin, Lukas; van Meegern, Anne; Doemming, Sabine; Schuerholz, Tobias

    2015-01-01

    Nearly 100 years ago, antimicrobial peptides (AMPs) were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP) 1-3 and human beta-defensins (HBDs) 1-3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP 1-3 and HBD-2 in sepsis. The bactericidal/permeability-increasing protein (BPI) attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP 1-3, lactoferrin, BPI, and heparin-binding protein are increased in sepsis. Human lactoferrin peptide 1-11 (hLF 1-11) possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin [talactoferrin alpha (TLF)] has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe infections. PMID

  6. Antimicrobial Peptides in Human Sepsis

    PubMed Central

    Martin, Lukas; van Meegern, Anne; Doemming, Sabine; Schuerholz, Tobias

    2015-01-01

    Nearly 100 years ago, antimicrobial peptides (AMPs) were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP) 1–3 and human beta-defensins (HBDs) 1–3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP 1–3 and HBD-2 in sepsis. The bactericidal/permeability-increasing protein (BPI) attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP 1–3, lactoferrin, BPI, and heparin-binding protein are increased in sepsis. Human lactoferrin peptide 1–11 (hLF 1–11) possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin [talactoferrin alpha (TLF)] has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe infections

  7. The Potential of Antimicrobial Peptides as Biocides

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2011-01-01

    Antimicrobial peptides constitute a diverse class of naturally occurring antimicrobial molecules which have activity against a wide range of pathogenic microorganisms. Antimicrobial peptides are exciting leads in the development of novel biocidal agents at a time when classical antibiotics are under intense pressure from emerging resistance, and the global industry in antibiotic research and development stagnates. This review will examine the potential of antimicrobial peptides, both natural and synthetic, as novel biocidal agents in the battle against multi-drug resistant pathogen infections. PMID:22072905

  8. Combination Effects of Antimicrobial Peptides

    PubMed Central

    Yu, Guozhi; Baeder, Desiree Y.; Regoes, Roland R.

    2016-01-01

    Antimicrobial peptides (AMPs) are ancient and conserved across the tree of life. Their efficacy over evolutionary time has been largely attributed to their mechanisms of killing. Yet, the understanding of their pharmacodynamics both in vivo and in vitro is very limited. This is, however, crucial for applications of AMPs as drugs and also informs the understanding of the action of AMPs in natural immune systems. Here, we selected six different AMPs from different organisms to test their individual and combined effects in vitro. We analyzed their pharmacodynamics based on the Hill function and evaluated the interaction of combinations of two and three AMPs. Interactions of AMPs in our study were mostly synergistic, and three-AMP combinations displayed stronger synergism than two-AMP combinations. This suggests synergism to be a common phenomenon in AMP interaction. Additionally, AMPs displayed a sharp increase in killing within a narrow dose range, contrasting with those of antibiotics. We suggest that our results could lead a way toward better evaluation of AMP application in practice and shed some light on the evolutionary consequences of antimicrobial peptide interactions within the immune system of organisms. PMID:26729502

  9. Regulation of the human cathelicidin antimicrobial peptide gene by 1α,25-dihydroxyvitamin D3 in primary immune cells.

    PubMed

    Lowry, Malcolm B; Guo, Chunxiao; Borregaard, Niels; Gombart, Adrian F

    2014-09-01

    Production of the human cathelicidin antimicrobial peptide gene (hCAP18/LL-37), is regulated by 1α,25-dihydroxyvitamin D3 (1,25D3) and is critical in the killing of pathogens by innate immune cells. In addition, secreted LL-37 binds extracellular receptors and modulates the recruitment and activity of both innate and adaptive immune cells. Evidence suggests that during infections activated immune cells locally produce increased levels of 1,25D3 thus increasing production of hCAP18/LL-37. The relative expression levels of hCAP18/LL-37 among different immune cell types are not well characterized. The aim of this study was to determine the relative levels of hCAP18/LL-37 in human peripheral blood immune cells and determine to what extent 1,25D3 increased its expression in peripheral blood-derived cells. We show for the first time, a hierarchy of expression of hCAP18 in freshly isolated cells with low levels in lymphocytes, intermediate levels in monocytes and the highest levels found in neutrophils. In peripheral blood-derived cells, the highest levels of hCAP18 following treatment with 1,25D3 were in macrophages, while comparatively lower levels were found in GM-CSF-derived dendritic cells and osteoclasts. We also tested whether treatment with parathyroid hormone in combination with 1,25D3 would enhance hCAP18 induction as has been reported in skin cells, but we did not find enhancement in any immune cells tested. Our results indicate that hCAP18 is expressed at different levels according to cell type and lineage. Furthermore, potent induction of hCAP18 by 1,25D3 in macrophages and dendritic cells may modulate functions of both innate and adaptive immune cells at sites of infection. PMID:24565560

  10. Antimicrobial peptides in human skin disease

    PubMed Central

    Kenshi, Yamasaki; Richard, L. Gallo

    2009-01-01

    The skin continuously encounters microbial pathogens. To defend against this, cells of the epidermis and dermis have evolved several innate strategies to prevent infection. Antimicrobial peptides are one of the primary mechanisms used by the skin in the early stages of immune defense. In general, antimicrobial peptides have broad antibacterial activity against gram-positive and negative bacteria and also show antifungal and antiviral activity. The antimicrobial activity of most peptides occurs as a result of unique structural characteristics that enable them to disrupt the microbial membrane while leaving human cell membranes intact. However, antimicrobial peptides also act on host cells to stimulate cytokine production, cell migration, proliferation, maturation, and extracellular matrix synthesis. The production by human skin of antimicrobial peptides such as defensins and cathelicidins occurs constitutively but also greatly increases after infection, inflammation or injury. Some skin diseases show altered expression of antimicrobial peptides, partially explaining the pathophysiology of these diseases. Thus, current research suggests that understanding how antimicrobial peptides modify susceptibility to microbes, influence skin inflammation, and modify wound healing, provides greater insight into the pathophysiology of skin disorders and offers new therapeutic opportunities. PMID:18086583

  11. Antimicrobial peptides of multicellular organisms

    NASA Astrophysics Data System (ADS)

    Zasloff, Michael

    2002-01-01

    Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?

  12. Ultrashort Antimicrobial Peptides with Antiendotoxin Properties

    PubMed Central

    Chih, Ya-Han; Lin, Yen-Shan; Yip, Bak-Sau; Wei, Hsiu-Ju; Chu, Hung-Lun; Yu, Hui-Yuan; Cheng, Hsi-Tsung

    2015-01-01

    Release of lipopolysaccharide (LPS) (endotoxin) from bacteria into the bloodstream may cause serious unwanted stimulation of the host immune system. Some but not all antimicrobial peptides can neutralize LPS-stimulated proinflammatory responses. Salt resistance and serum stability of short antimicrobial peptides can be boosted by adding β-naphthylalanine to their termini. Herein, significant antiendotoxin effects were observed in vitro and in vivo with the β-naphthylalanine end-tagged variants of the short antimicrobial peptides S1 and KWWK. PMID:26033727

  13. Diversity of wheat anti-microbial peptides.

    PubMed

    Egorov, Tsezi A; Odintsova, Tatyana I; Pukhalsky, Vitaliy A; Grishin, Eugene V

    2005-11-01

    From seeds of Triticum kiharae Dorof. et Migusch., 24 novel anti-microbial peptides were isolated and characterized by a combination of three-step HPLC (affinity, size-exclusion and reversed-phase) with matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and Edman degradation. Based on sequence similarity and cysteine motifs, partially sequenced peptides were assigned to 7 families: defensins, thionins, lipid-transfer proteins, hevein-like peptides, knottin-like peptides, glycine-rich peptides, and MBP-1 homologs. A novel subfamily of defensins consisting of 6 peptides and a new family of glycine-rich (8 peptides with different repeat motifs) were identified. Three 6-cysteine knottin-like peptides represented by N- and C-terminally truncated variants revealed no sequence homology to any known plant anti-microbial peptides. A new 8-cysteine hevein-like peptide and three 4-cysteine peptides homologous to MBP-1 from maize were isolated. This is the first communication on the occurrence of nearly all families of plant anti-microbial peptides in a single species. PMID:16269343

  14. Cathelicidin peptides as candidates for a novel class of antimicrobials.

    PubMed

    Zanetti, Margherita; Gennaro, Renato; Skerlavaj, Barbara; Tomasinsig, Linda; Circo, Raffaella

    2002-01-01

    Cathelicidin peptides are a numerous group of mammalian cationic antimicrobial peptides. Despite a common evolutionary origin of their genes, peptides display a remarkable variety of sizes, sequences and structures. Their spectra of antimicrobial activity are varied and cover a range of organisms that includes bacteria, fungi and enveloped viruses. In addition, they bind to and neutralize the effects of endotoxin. These features make this family of peptides good candidates in view of a therapeutic use. The most promising ones are currently under evaluation as leads for the development of novel anti-infectives, and synthetic variants are in an advanced stage of development for specific clinical applications. This review focuses on recent studies on the structure and in vitro and in vivo biological activities of these peptides. PMID:11945171

  15. [Antimicrobial peptide in dentisty. Literature review].

    PubMed

    Sato, F Simain; Rompen, E; Heinen, E

    2009-12-01

    The use of antimicrobial substances has contributed to the development of multiple antimicrobial resistances (1), challenging the pharmaceutical industry to develop with new, innovative, and effective molecules. Discovered around 1980, molecules called natural antimicrobial peptides (AMPs) appear to hold great potential for the treatment of infections. These cationic peptides are able to stop the bacterial development and to control infections. The purpose of this review is to help improve the understanding of the way AMPs operate in the context of the development of new cures against viruses, bacteria, and mushrooms found in the human body in general and in the oral cavity in particular. PMID:20143750

  16. Differential regulation of mRNA stability controls the transient expression of genes encoding Drosophila antimicrobial peptide with distinct immune response characteristics

    PubMed Central

    Wei, Youheng; Xiao, Qianghai; Zhang, Ting; Mou, Zongchun; You, Jia; Ma, Wei-Jun

    2009-01-01

    The tight regulation of transiently expressed antimicrobial peptides (AMPs) with a distinct antimicrobial spectrum and different expression kinetics contributes greatly to the properly regulated immune response for resistance to pathogens and for the maintenance of mutualistic microbiota in Drosophila. The important role of differential regulation of AMP expression at the posttranscriptional level needs to be elucidated. It was observed that the highly expressed Cecropin A1 (CecA1) mRNA encoding a broad antimicrobial spectrum AMP against both bacteria and fungi decayed more quickly than did the moderately expressed Diptericin mRNA encoding AMP against Gram negative bacteria. The mRNA stability of AMPs is differentially regulated and is attributed to the specific interaction between cis-acting ARE in 3′-UTR of AMP mRNA and the RNA destabilizing protein transactor Tis11 as shown in co-immunoprecipitation of the Tis11 RNP complex with CecA1 mRNA but not other AMP mRNA. The p38MAPK was further demonstrated to play a crucial role in stabilizing ARE-bearing mRNAs by inhibiting Tis11-mediated degradation in LPS induced AMP expression. This evidence suggests an evolutionarily conserved and functionally important molecular basis for and effective approach to exact control of AMP gene expression. These mechanisms thereby orchestrate a well balanced and dynamic antimicrobial spectrum of innate immunity to resist infection and maintain resident microbiota properly. PMID:19726583

  17. Differential regulation of mRNA stability controls the transient expression of genes encoding Drosophila antimicrobial peptide with distinct immune response characteristics.

    PubMed

    Wei, Youheng; Xiao, Qianghai; Zhang, Ting; Mou, Zongchun; You, Jia; Ma, Wei-Jun

    2009-10-01

    The tight regulation of transiently expressed antimicrobial peptides (AMPs) with a distinct antimicrobial spectrum and different expression kinetics contributes greatly to the properly regulated immune response for resistance to pathogens and for the maintenance of mutualistic microbiota in Drosophila. The important role of differential regulation of AMP expression at the posttranscriptional level needs to be elucidated. It was observed that the highly expressed Cecropin A1 (CecA1) mRNA encoding a broad antimicrobial spectrum AMP against both bacteria and fungi decayed more quickly than did the moderately expressed Diptericin mRNA encoding AMP against Gram negative bacteria. The mRNA stability of AMPs is differentially regulated and is attributed to the specific interaction between cis-acting ARE in 3'-UTR of AMP mRNA and the RNA destabilizing protein transactor Tis11 as shown in co-immunoprecipitation of the Tis11 RNP complex with CecA1 mRNA but not other AMP mRNA. The p38MAPK was further demonstrated to play a crucial role in stabilizing ARE-bearing mRNAs by inhibiting Tis11-mediated degradation in LPS induced AMP expression. This evidence suggests an evolutionarily conserved and functionally important molecular basis for and effective approach to exact control of AMP gene expression. These mechanisms thereby orchestrate a well balanced and dynamic antimicrobial spectrum of innate immunity to resist infection and maintain resident microbiota properly. PMID:19726583

  18. Resistance to Antimicrobial Peptides and Stress Response in Mycoplasma pulmonis

    PubMed Central

    Fehri, Lina Fassi; Sirand-Pugnet, Pascal; Gourgues, Géraldine; Jan, Gwenaël; Wróblewski, Henri; Blanchard, Alain

    2005-01-01

    Antimicrobial peptides are widely distributed in nature, and in vertebrates, they play a key function in the innate immune defense system. It is generally agreed that these molecules may provide new antibiotics with therapeutic value. However, there are still many unsolved questions regarding the mechanisms underlying their antimicrobial activity as well as the mechanisms of resistance evolved by microorganisms against these molecules. The second point was addressed in this study. After determining the activity of 10 antimicrobial peptides against Mycoplasma pulmonis, a murine respiratory pathogen, the development of resistance was investigated. Following in vitro selection using subinhibitory concentrations of peptides, clones of this bacterium showing increased resistance to melittin or gramicidin D were obtained. For some of the clones, a cross-resistance was observed between these two peptides, in spite of their deep structural differences, and also with tetracycline. A proteomic analysis suggested that the stress response in these clones was constitutively activated, and this was confirmed by finding mutations in the hrcA gene; in mycoplasmas, bacteria which lack alternative sigma factors, the HrcA protein is supposed to play a key role as a negative regulator of heat shock proteins. By complementation of the hrcA mutants with the wild-type gene, the initial MICs of melittin and gramicidin D decreased to values close to the initial ones. This indicates that the resistance of M. pulmonis to these two antimicrobial peptides could result from a stress response involving HrcA-regulated genes. PMID:16189093

  19. Antimicrobial Cyclic Peptides for Plant Disease Control

    PubMed Central

    Lee, Dong Wan; Kim, Beom Seok

    2015-01-01

    Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources. PMID:25774105

  20. Salt-resistant short antimicrobial peptides.

    PubMed

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  1. Expression profiles of seven channel catfish antimicrobial peptides in response to Edwardsiella ictaluri infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using quantitative PCR technique, the relative transcriptional levels of seven channel catfish antimicrobial peptide (AMP) genes [NK-lysin type 1, NK-lysin type 2, NK-lysin type 3, bactericidal permeability-increasing protein (BPI), cathepsin D, hepcidin, and liver-expressed antimicrobial peptide 2 ...

  2. Toxins and antimicrobial peptides: interactions with membranes

    NASA Astrophysics Data System (ADS)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of <200-nm bilayer vesicles composed of anionic and neutral lipids as well as cholesterol. Vesicle disruption, or peptide potency, was monitored with a sensitive fluorescence leakage assay. Detailed molecular information on peptidemembrane interactions and peptide structure was further gained through vibrational spectroscopy combined with circular dichroism. Finally, steady-state fluorescence experiments yielded insight into the local environment of native or engineered tryptophan residues in melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  3. Antimicrobial Peptides Design by Evolutionary Multiobjective Optimization

    PubMed Central

    Maccari, Giuseppe; Di Luca, Mariagrazia; Nifosí, Riccardo; Cardarelli, Francesco; Signore, Giovanni; Boccardi, Claudia; Bifone, Angelo

    2013-01-01

    Antimicrobial peptides (AMPs) are an abundant and wide class of molecules produced by many tissues and cell types in a variety of mammals, plant and animal species. Linear alpha-helical antimicrobial peptides are among the most widespread membrane-disruptive AMPs in nature, representing a particularly successful structural arrangement in innate defense. Recently, AMPs have received increasing attention as potential therapeutic agents, owing to their broad activity spectrum and their reduced tendency to induce resistance. The introduction of non-natural amino acids will be a key requisite in order to contrast host resistance and increase compound's life. In this work, the possibility to design novel AMP sequences with non-natural amino acids was achieved through a flexible computational approach, based on chemophysical profiles of peptide sequences. Quantitative structure-activity relationship (QSAR) descriptors were employed to code each peptide and train two statistical models in order to account for structural and functional properties of alpha-helical amphipathic AMPs. These models were then used as fitness functions for a multi-objective evolutional algorithm, together with a set of constraints for the design of a series of candidate AMPs. Two ab-initio natural peptides were synthesized and experimentally validated for antimicrobial activity, together with a series of control peptides. Furthermore, a well-known Cecropin-Mellitin alpha helical antimicrobial hybrid (CM18) was optimized by shortening its amino acid sequence while maintaining its activity and a peptide with non-natural amino acids was designed and tested, demonstrating the higher activity achievable with artificial residues. PMID:24039565

  4. Pseudomonas aeruginosa High-Level Resistance to Polymyxins and Other Antimicrobial Peptides Requires cprA, a Gene That Is Disrupted in the PAO1 Strain

    PubMed Central

    Gutu, Alina D.; Rodgers, Nicole S.; Park, Jihye

    2015-01-01

    The arn locus, found in many Gram-negative bacterial pathogens, mediates resistance to polymyxins and other cationic antimicrobial peptides through 4-amino-l-arabinose modification of the lipid A moiety of lipopolysaccharide. In Pseudomonas aeruginosa, several two-component regulatory systems (TCSs) control the arn locus, which is necessary but not sufficient for these resistance phenotypes. A previous transposon mutagenesis screen to identify additional polymyxin resistance genes that these systems regulate implicated an open reading frame designated PA1559 in the genome of the P. aeruginosa PAO1 strain. Resequencing of this chromosomal region and bioinformatics analysis for a variety of P. aeruginosa strains revealed that in the sequenced PAO1 strain, a guanine deletion at the end of PA1559 results in a frameshift and truncation of a full-length open reading frame that also encompasses PA1560 in non-PAO1 strains, such as P. aeruginosa PAK. Deletion analysis in the PAK strain showed that this full-length open reading frame, designated cprA, is necessary for polymyxin resistance conferred by activating mutations in the PhoPQ, PmrAB, and CprRS TCSs. The cprA gene was also required for PmrAB-mediated resistance to other cationic antimicrobial peptides in the PAK strain. Repair of the mutated cprA allele in the PAO1 strain restored polymyxin resistance conferred by an activating TCS mutation. The deletion of cprA did not affect the arn-mediated lipid A modification, indicating that the CprA protein is necessary for a different aspect of polymyxin resistance. This protein has a domain structure with a strong similarity to the extended short-chain dehydrogenase/reductase family that comprises isomerases, lyases, and oxidoreductases. These results suggest a new avenue through which to pursue targeted inhibition of polymyxin resistance. PMID:26100714

  5. Bacterial strategies of resistance to antimicrobial peptides.

    PubMed

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160595

  6. Design and Application of Antimicrobial Peptide Conjugates.

    PubMed

    Reinhardt, Andre; Neundorf, Ines

    2016-01-01

    Antimicrobial peptides (AMPs) are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT) or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry. PMID:27187357

  7. Design and Application of Antimicrobial Peptide Conjugates

    PubMed Central

    Reinhardt, Andre; Neundorf, Ines

    2016-01-01

    Antimicrobial peptides (AMPs) are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT) or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry. PMID:27187357

  8. The role of antimicrobial peptides in animal defenses

    NASA Astrophysics Data System (ADS)

    Hancock, Robert E. W.; Scott, Monisha G.

    2000-08-01

    It is becoming clear that the cationic antimicrobial peptides are an important component of the innate defenses of all species of life. Such peptides can be constitutively expressed or induced by bacteria or their products. The best peptides have good activities vs. a broad range of bacterial strains, including antibiotic-resistant isolates. They kill very rapidly, do not easily select resistant mutants, are synergistic with conventional antibiotics, other peptides, and lysozyme, and are able to kill bacteria in animal models. It is known that bacterial infections, especially when treated with antibiotics, can lead to the release of bacterial products such as lipopolysaccharide (LPS) and lipoteichoic acid, resulting in potentially lethal sepsis. In contrast to antibiotics, the peptides actually prevent cytokine induction by bacterial products in tissue culture and human blood, and they block the onset of sepsis in mouse models of endotoxemia. Consistent with this, transcriptional gene array experiments using a macrophage cell line demonstrated that a model peptide, CEMA, blocks the expression of many genes whose transcription was induced by LPS. The peptides do this in part by blocking LPS interaction with the serum protein LBP. In addition, CEMA itself has a direct effect on macrophage gene expression. Because cationic antimicrobial peptides are induced by LPS and are able to dampen the septic response of animal cells to LPS, we propose that, in addition to their role in direct and lysozyme-assisted killing of microbes, they have a role in feedback regulation of cytokine responses. We are currently developing variant peptides as therapeutics against antibiotic-resistant infections.

  9. Antimicrobial peptides in echinoderm host defense.

    PubMed

    Li, Chun; Blencke, Hans-Matti; Haug, Tor; Stensvåg, Klara

    2015-03-01

    Antimicrobial peptides (AMPs) are important effector molecules in innate immunity. Here we briefly summarize characteristic traits of AMPs and their mechanisms of antimicrobial activity. Echinoderms live in a microbe-rich marine environment and are known to express a wide range of AMPs. We address two novel AMP families from coelomocytes of sea urchins: cysteine-rich AMPs (strongylocins) and heterodimeric AMPs (centrocins). These peptide families have conserved preprosequences, are present in both adults and pluteus stage larvae, have potent antimicrobial properties, and therefore appear to be important innate immune effectors. Strongylocins have a unique cysteine pattern compared to other cysteine-rich peptides, which suggests a novel AMP folding pattern. Centrocins and SdStrongylocin 2 contain brominated tryptophan residues in their native form. This review also includes AMPs isolated from other echinoderms, such as holothuroidins, fragments of beta-thymosin, and fragments of lectin (CEL-III). Echinoderm AMPs are crucial molecules for the understanding of echinoderm immunity, and their potent antimicrobial activity makes them potential precursors of novel drug leads. PMID:25445901

  10. Antimicrobial activity of polycationic peptides.

    PubMed

    Giacometti, A; Cirioni, O; Barchiesi, F; Del Prete, M S; Scalise, G

    1999-11-01

    The in vitro activity of six polycationic peptides, buforin II, cecropin P1, indolicidin, magainin II, nisin, and ranalexin, were evaluated against several clinical isolates of gram-positive and gram-negative aerobic bacteria, yeasts, Pneumocystis carinii and Cryptosporidium parvum, by using microbroth dilution methods. The peptides exhibited different antibacterial activities and rapid time-dependent killing. The gram-negative organisms were more susceptible to buforin II and cecropin P1, whereas buforin II and ranalexin were the most active compounds against the gram-positive strains. Similarly, ranalexin showed the highest activity against Candida spp., whereas magainin II exerted the highest anticryptococcal activity. Finally, the peptides showed high anti-Pneumocystis activity, whereas no compound had strong inhibitory effect on C. parvum. PMID:10612440

  11. Classification of antimicrobial peptides with imbalanced datasets

    NASA Astrophysics Data System (ADS)

    Camacho, Francy L.; Torres, Rodrigo; Ramos Pollán, Raúl

    2015-12-01

    In the last years, pattern recognition has been applied to several fields for solving multiple problems in science and technology as for example in protein prediction. This methodology can be useful for prediction of activity of biological molecules, e.g. for determination of antimicrobial activity of synthetic and natural peptides. In this work, we evaluate the performance of different physico-chemical properties of peptides (descriptors groups) in the presence of imbalanced data sets, when facing the task of detecting whether a peptide has antimicrobial activity. We evaluate undersampling and class weighting techniques to deal with the class imbalance with different classification methods and descriptor groups. Our classification model showed an estimated precision of 96% showing that descriptors used to codify the amino acid sequences contain enough information to correlate the peptides sequences with their antimicrobial activity by means of learning machines. Moreover, we show how certain descriptor groups (pseudoaminoacid composition type I) work better with imbalanced datasets while others (dipeptide composition) work better with balanced ones.

  12. Macrobrachium rosenbergii mannose binding lectin: synthesis of MrMBL-N20 and MrMBL-C16 peptides and their antimicrobial characterization, bioinformatics and relative gene expression analysis.

    PubMed

    Arockiaraj, Jesu; Chaurasia, Mukesh Kumar; Kumaresan, Venkatesh; Palanisamy, Rajesh; Harikrishnan, Ramasamy; Pasupuleti, Mukesh; Kasi, Marimuthu

    2015-04-01

    Mannose-binding lectin (MBL), an antimicrobial protein, is an important component of innate immune system which recognizes repetitive sugar groups on the surface of bacteria and viruses leading to activation of the complement system. In this study, we reported a complete molecular characterization of cDNA encoded for MBL from freshwater prawn Macrobrachium rosenbergii (Mr). Two short peptides (MrMBL-N20: (20)AWNTYDYMKREHSLVKPYQG(39) and MrMBL-C16: (307)GGLFYVKHKEQQRKRF(322)) were synthesized from the MrMBL polypeptide. The purity of the MrMBL-N20 (89%) and MrMBL-C16 (93%) peptides were confirmed by MS analysis (MALDI-ToF). The purified peptides were used for further antimicrobial characterization including minimum inhibitory concentration (MIC) assay, kinetics of bactericidal efficiency and analysis of hemolytic capacity. The peptides exhibited antimicrobial activity towards all the Gram-negative bacteria taken for analysis, whereas they showed the activity towards only a few selected Gram-positive bacteria. MrMBL-C16 peptides produced the highest inhibition towards both the Gram-negative and Gram-positive bacteria compared to the MrMBL-N20. Both peptides do not produce any inhibition against Bacillus sps. The kinetics of bactericidal efficiency showed that the peptides drastically reduced the number of surviving bacterial colonies after 24 h incubation. The results of hemolytic activity showed that both peptides produced strong activity at higher concentration. However, MrMBL-C16 peptide produced the highest activity compared to the MrMBL-N20 peptide. Overall, the results indicated that the peptides can be used as bactericidal agents. The MrMBL protein sequence was characterized using various bioinformatics tools including phylogenetic analysis and structure prediction. We also reported the MrMBL gene expression pattern upon viral and bacterial infection in M. rosenbergii gills. It could be concluded that the prawn MBL may be one of the important molecule which

  13. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  14. Membrane Thickening by the Antimicrobial Peptide PGLa

    PubMed Central

    Pabst, Georg; Grage, Stephan L.; Danner-Pongratz, Sabine; Jing, Weiguo; Ulrich, Anne S.; Watts, Anthony; Lohner, Karl; Hickel, Andrea

    2008-01-01

    Using x-ray diffraction, solid-state 2H-NMR, differential scanning calorimetry, and dilatometry, we have observed a perturbation of saturated acyl chain phosphatidylglycerol bilayers by the antimicrobial peptide peptidyl-glycylleucine-carboxyamide (PGLa) that is dependent on the length of the hydrocarbon chain. In the gel phase, PGLa induces a quasi-interdigitated phase, previously reported also for other peptides, which is most pronounced for C18 phosphatidylglycerol. In the fluid phase, we found an increase of the membrane thickness and NMR order parameter for C14 and C16 phosphatidylglycerol bilayers, though not for C18. The data is best understood in terms of a close hydrophobic match between the C18 bilayer core and the peptide length when PGLa is inserted with its helical axis normal to the bilayer surface. The C16 acyl chains appear to stretch to accommodate PGLa, whereas tilting within the bilayer seems to be energetically favorable for the peptide when inserted into bilayers of C14 phosphatidylglycerol. In contrast to the commonly accepted membrane thinning effect of antimicrobial peptides, the data demonstrate that pore formation does not necessarily relate to changes in the overall bilayer structure. PMID:18835902

  15. Antimicrobial peptides: a review of how peptide structure impacts antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Soares, Jason W.; Mello, Charlene M.

    2004-03-01

    Antimicrobial peptides (AMPs) have been discovered in insects, mammals, reptiles, and plants to protect against microbial infection. Many of these peptides have been isolated and studied exhaustively to decipher the molecular mechanisms that impart protection against infectious bacteria, fungi, and viruses. Unfortunately, the molecular mechanisms are still being debated within the scientific community but valuable clues have been obtained through structure/function relationship studies1. Biophysical studies have revealed that cecropins, isolated from insects and pigs, exhibit random structure in solution but undergo a conformational change to an amphipathic α-helix upon interaction with a membrane surface2. The lack of secondary structure in solution results in an extremely durable peptide able to survive exposure to high temperatures, organic solvents and incorporation into fibers and films without compromising antibacterial activity. Studies to better understand the antimicrobial action of cecropins and other AMPs have provided insight into the importance of peptide sequence and structure in antimicrobial activities. Therefore, enhancing our knowledge of how peptide structure imparts function may result in customized peptide sequences tailored for specific applications such as targeted cell delivery systems, novel antibiotics and food preservation additives. This review will summarize the current state of knowledge with respect to cell binding and antimicrobial activity of AMPs focusing primarily upon cecropins.

  16. Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic Applications

    PubMed Central

    Zhang, Guolong; Sunkara, Lakshmi T.

    2014-01-01

    Host defense peptides (HDPs) are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens. PMID:24583933

  17. A novel Toll like receptor with two TIR domains (HcToll-2) is involved in regulation of antimicrobial peptide gene expression of Hyriopsis cumingii.

    PubMed

    Ren, Qian; Lan, Jiang-Feng; Zhong, Xue; Song, Xiao-Jun; Ma, Fei; Hui, Kai-Min; Wang, Wen; Yu, Xiao-Qiang; Wang, Jin-Xing

    2014-07-01

    Animal Toll-like receptors (TLRs) are involved in innate immunity. Toll proteins are generally transmembrane proteins. In this study, an atypical Toll-like receptor (HcToll-2) was identified from the triangle-shell pearl mussel Hyriopsis cumingii, which belongs to phylum Mollusca. Unlike the typical Toll like receptors with extracellular leucine-rich repeats (LRRs), transmembrane, and intracellular Toll/interleukin-1 receptor (TIR) domains, HcToll-2 has two homologous TIR domains located at the C-terminal (designated as HcTIR1 and HcTIR2) and lacks a transmembrane domain. Phylogenetic analysis showed that HcTIR1 was clustered with TIR of sea anemone Toll, and HcTIR2 was clustered with TIR of Drosophila Toll. HcToll-2 mRNA could be detected in the hepatopancreas and was upregulated after challenge with Escherichia coli and Staphylococcus aureus. Recombinant HcLRR protein with GST tag could bind to bacteria and also to LPS and PGN. Over-expression of both HcTIR1 and HcTIR2 induced drosomycin genes in Drosophila S2 cells. RNAi analysis showed that HcToll-2 was required for the expression of theromacin, which is a cysteine-rich antimicrobial peptide (AMP) gene. This research is the first report of an atypical Toll-like receptor HcToll-2 involved in antibacterial immunity through induction of AMP expression. PMID:24631579

  18. Peptides and proteins with antimicrobial activity

    PubMed Central

    Coutinho, Henrique Douglas Melo; Lôbo, Katiuscia Menezes; Bezerra, Denise Aline Casimiro; Lôbo, Inalzuir

    2008-01-01

    The increase of microbial resistance to antibiotics has led to a continuing search for newer and more effective drugs. Antimicrobial peptides are generally found in animals, plants, and microorganisms and are of great interest to medicine, pharmacology, and the food industry. These peptides are capable of inhibiting pathogenic microorganisms. They can attack parasites, while causing little or no harm to the host cells. The defensins are peptides found in granules in the polymorphonuclear neutrophils (PMNs) and are responsible for the defense of the organism. Several animal defensins, like dermaseptin, antileukoprotease, protegrin, and others, have had their activities and efficacy tested and been shown to be effective against bacteria, fungi, and protists; there are also specific defensins from invertebrates, e.g., drosomycin and heliomicin; from plants, e.g., the types A and B; and the bacteriocins, e.g., acrocin, marcescin, etc. The aim of the present work was to compile a comprehensive bibliographic review of the diverse potentially antimicrobial peptides in an effort to systematize the current knowledge on these substances as a contribution for further researches. The currently available bibliography does not give a holistic approach on this subject. The present work intends to show that the mechanism of defense represented by defensins is promising from the perspective of its application in the treatment of infectious diseases in human, animals and plants. PMID:21264153

  19. Antimicrobial peptides: Old Molecules with New Ideas

    PubMed Central

    Nakatsuji, Teruaki; Gallo, Richard L.

    2011-01-01

    Almost 90 years have passed since Alexander Fleming discovered the antimicrobial activity of lysozyme, the first natural antibiotic isolated from our body. Since then, various types of molecules with antibiotic activity have been isolated from animals, insects, plants and bacteria, and their use has revolutionised clinical medicine. So far, more than 1200 types of peptides with antimicrobial activity have been isolated from various cells and tissues, and it appears all living organisms employ these antimicrobial peptides (AMPs) in their host defense. In the last decade, innate AMPs produced by mammals have been shown to be essential for the protection of skin and other organs. Their importance is due to their pleiotrophic functions to not only kill microbes but also control host physiological functions such as inflammation, angiogenesis and wound healing. Recent advances in our understanding of the function of AMPs have associated their altered production with various human diseases such as psoriasis, atopic dermatitis and rosacea. In this review, we summarize the history of AMP biology and provide an overview of recent research progress in this field. PMID:22158560

  20. Resistance to Antimicrobial Peptides in Vibrios

    PubMed Central

    Destoumieux-Garzón, Delphine; Duperthuy, Marylise; Vanhove, Audrey Sophie; Schmitt, Paulina; Wai, Sun Nyunt

    2014-01-01

    Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs) as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space. PMID:27025756

  1. Antiendotoxin activity of cationic peptide antimicrobial agents.

    PubMed Central

    Gough, M; Hancock, R E; Kelly, N M

    1996-01-01

    The endotoxin from gram-negative bacteria consists of a molecule lipopolysaccharide (LPS) which can be shed by bacteria during antimicrobial therapy. A resulting syndrome, endotoxic shock, is a leading cause of death in the developed world. Thus, there is great interest in the development of antimicrobial agents which can reverse rather than promote sepsis, especially given the recent disappointing clinical performance of antiendotoxin therapies. We describe here two small cationic peptides, MBI-27 and MBI-28, which have both antiendotoxic and antibacterial activities in vitro and in vivo in animal models. We had previously demonstrated that these peptides bind to LPS with an affinity equivalent to that of polymyxin B. Consistent with this, the peptides blocked the ability of LPS and intact cells to induce the endotoxic shock mediator, tumor necrosis factor (TNF), upon incubation with the RAW 264.7 murine macrophage cell line. MBI-28 was equivalent to polymyxin B in its ability to block LPS induction of TNF by this cell line, even when added 60 min after the TNF stimulus. Furthermore, MBI-28 offered significant protection in a galactosamine-sensitized mouse model of lethal endotoxic shock. This protection correlated with the ability of MBI-28 to reduce LPS-induced circulating TNF by nearly 90% in this mouse model. Both MBI-27 and MBI-28 demonstrated antibacterial activity against gram-negative bacteria in vitro and in vivo against Pseudomonas aeruginosa infections in neutropenic mice. PMID:8945527

  2. Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans.

    PubMed

    Yoo, Won Gi; Lee, Joon Ha; Shin, Younhee; Shim, Jae-Young; Jung, Myunghee; Kang, Byeong-Chul; Oh, Jaedon; Seong, Jiyeon; Lee, Hak Kyo; Kong, Hong Sik; Song, Ki-Duk; Yun, Eun-Young; Kim, In-Woo; Kwon, Young-Nam; Lee, Dong Gun; Hwang, Ui-Wook; Park, Junhyung; Hwang, Jae Sam

    2014-06-01

    The centipede Scolopendra subspinipes mutilans is an environmentally beneficial and medically important arthropod species. Although this species is increasingly applied as a reliable source of new antimicrobial peptides, the transcriptome of this species is a prerequisite for more rational selection of antimicrobial peptides. In this report, we isolated total RNA from the whole body of adult centipedes, S. subspinipes mutilans, that were nonimmunized and immunized against Escherichia coli, and we generated a total of 77,063 pooled contigs and singletons using high-throughput sequencing. To screen putative antimicrobial peptides, in silico analyses of the S. subspinipes mutilans transcriptome were performed based on the physicochemical evidence of length, charge, isoelectric point, and in vitro and in vivo aggregation scores together with the existence of continuous antimicrobial peptide stretches. Moreover, we excluded some transcripts that showed similarity with both previously known antimicrobial peptides and the human proteome, had a proteolytic cleavage site, and had downregulated expression compared with the nonimmunized sample. As a result, we selected 17 transcripts and tested their antimicrobial activity with a radial diffusion assay. Among them, ten synthetic peptides experimentally showed antimicrobial activity against microbes and no toxicity to mouse erythrocytes. Our results provide not only a useful set of antimicrobial peptide candidates and an efficient strategy for novel antimicrobial peptide development but also the transcriptome data of a big centipede as a valuable resource. PMID:24652097

  3. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus).

    PubMed

    Kim, In-Woo; Lee, Joon Ha; Subramaniyam, Sathiyamoorthy; Yun, Eun-Young; Kim, Iksoo; Park, Junhyung; Hwang, Jae Sam

    2016-01-01

    Cockroaches are surrogate hosts for microbes that cause many human diseases. In spite of their generally destructive nature, cockroaches have recently been found to harbor potentially beneficial and medically useful substances such as drugs and allergens. However, genomic information for the American cockroach (Periplaneta americana) is currently unavailable; therefore, transcriptome and gene expression profiling is needed as an important resource to better understand the fundamental biological mechanisms of this species, which would be particularly useful for the selection of novel antimicrobial peptides. Thus, we performed de novo transcriptome analysis of P. americana that were or were not immunized with Escherichia coli. Using an Illumina HiSeq sequencer, we generated a total of 9.5 Gb of sequences, which were assembled into 85,984 contigs and functionally annotated using Basic Local Alignment Search Tool (BLAST), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) database terms. Finally, using an in silico antimicrobial peptide prediction method, 86 antimicrobial peptide candidates were predicted from the transcriptome, and 21 of these peptides were experimentally validated for their antimicrobial activity against yeast and gram positive and -negative bacteria by a radial diffusion assay. Notably, 11 peptides showed strong antimicrobial activities against these organisms and displayed little or no cytotoxic effects in the hemolysis and cell viability assay. This work provides prerequisite baseline data for the identification and development of novel antimicrobial peptides, which is expected to provide a better understanding of the phenomenon of innate immunity in similar species. PMID:27167617

  4. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus)

    PubMed Central

    Subramaniyam, Sathiyamoorthy; Yun, Eun-Young; Kim, Iksoo; Park, Junhyung; Hwang, Jae Sam

    2016-01-01

    Cockroaches are surrogate hosts for microbes that cause many human diseases. In spite of their generally destructive nature, cockroaches have recently been found to harbor potentially beneficial and medically useful substances such as drugs and allergens. However, genomic information for the American cockroach (Periplaneta americana) is currently unavailable; therefore, transcriptome and gene expression profiling is needed as an important resource to better understand the fundamental biological mechanisms of this species, which would be particularly useful for the selection of novel antimicrobial peptides. Thus, we performed de novo transcriptome analysis of P. americana that were or were not immunized with Escherichia coli. Using an Illumina HiSeq sequencer, we generated a total of 9.5 Gb of sequences, which were assembled into 85,984 contigs and functionally annotated using Basic Local Alignment Search Tool (BLAST), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) database terms. Finally, using an in silico antimicrobial peptide prediction method, 86 antimicrobial peptide candidates were predicted from the transcriptome, and 21 of these peptides were experimentally validated for their antimicrobial activity against yeast and gram positive and -negative bacteria by a radial diffusion assay. Notably, 11 peptides showed strong antimicrobial activities against these organisms and displayed little or no cytotoxic effects in the hemolysis and cell viability assay. This work provides prerequisite baseline data for the identification and development of novel antimicrobial peptides, which is expected to provide a better understanding of the phenomenon of innate immunity in similar species. PMID:27167617

  5. [Abnormal floral meristem development in transgenic tomato plants do not depend on the expression of genes encoding defense-related PR-proteins and antimicrobial peptides].

    PubMed

    Khaliluev, M R; Chaban, I A; Kononenko, N V; Baranova, E N; Dolgov, S V; Kharchenko, P N; Poliakov, V Iu

    2014-01-01

    In this study, the morphological and cytoembryological analyses of the tomato plants transformed with the genes encoding chitin-binding proteins (ac and RS-intron-Shir) from Amaranthus caudatus L. andA. retroflexus L., respectively, as well as the gene amp2 encoding hevein-like antimicrobial peptides from Stellaria media L., have been performed. The transgenic lines were adapted to soil and grown the greenhouse. The analysis of putative transgenic tomato plants revealed several lines that did not differ phenotypically from the wild type plants and three lines with disruption in differentiation of the inflorescence shoot and the flower, as well as the fruit formation (modified plants of each line were transformed with a single gene as noted before). Abnormalities in the development of the generative organs were maintained for at least six vegetative generations. These transgenic plants were shown to be defective in the mail gametophyte formation, fertilization, and, consequently, led to parthenocarpic fruits. The detailed analysis of growing ovules in the abnormal transgenic plants showed that the replacement tissue was formed and proliferated instead of unfertilized embryo sac. The structure of the replacement tissue differed from both embryonic and endosperm tissue of the normal ovule. The formation of the replacement tissue occurred due to continuing proliferation of the endothelial cells that lost their ability for differentiation. The final step in the development of the replacement tissue was its death, which resulted in the cell lysis. The expression of the genes used was confirmed by RT-PCR in all three lines with abnormal phenotype, as well as in several lines that did not phenotypically differ from the untransformed control. This suggests that abnormalities in the organs of the generative sphere in the transgenic plants do not depend on the expression of the foreign genes that were introduced in the tomato genome. Here, we argue that agrobacterial

  6. Plant Antimicrobial Peptides as Potential Anticancer Agents

    PubMed Central

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy. PMID:25815333

  7. Membrane Disruption Mechanism by Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yee C.

    2011-03-01

    Antimicrobial peptides (AMPs) are a class of small (less than100 residues) host defense peptides that induce selective membrane lytic activity against microbes. To understand the mechanism of membrane disruption by AMPs, we investigated, via atomic force microscopy, topological changes in supported phospholipid bilayers induced by protegrin-1 (PG-1). We have observed that PG-1 induces structural transformations, progressing from fingerlike instabilities at bilayer edges, to the formation of sievelike nanoporous structures and finally to a network of stripelike structures in a zwitterionic dimyristoylphosphatidylcholine (DMPC) model membrane in buffer, with increasing PG-1 concentration. Our results suggest that AMPs act to lower the interfacial energy of the bilayer in a way similar to detergents. By varying the lipid composition, temperature and using AMPs with different secondary structures, we are able to identify factors other than electrostatics that are important for the efficacy of AMPs.

  8. Antimicrobial Peptides, Infections and the Skin Barrier.

    PubMed

    Clausen, Maja-Lisa; Agner, Tove

    2016-01-01

    The skin serves as a strong barrier protecting us from invading pathogens and harmful organisms. An important part of this barrier comes from antimicrobial peptides (AMPs), which are small peptides expressed abundantly in the skin. AMPs are produced in the deeper layers of the epidermis and transported to the stratum corneum, where they play a vital role in the first line of defense against potential pathogens. Numerous AMPs exist, and they have a broad antibiotic-like activity against bacteria, fungi and viruses. They also act as multifunctional effector molecules, linking innate and adaptive immune responses. AMPs play an essential part in maintaining an optimal and functional skin barrier - not only by direct killing of pathogens, but also by balancing immune responses and interfering in wound healing, cell differentiation, reepithelialization and their synergistic interplay with the skin microflora. PMID:26844896

  9. Epithelial antimicrobial peptides in host defense against infection

    PubMed Central

    Bals, Robert

    2000-01-01

    One component of host defense at mucosal surfaces seems to be epithelium-derived antimicrobial peptides. Antimicrobial peptides are classified on the basis of their structure and amino acid motifs. Peptides of the defensin, cathelicidin, and histatin classes are found in humans. In the airways, α-defensins and the cathelicidin LL-37/hCAP-18 originate from neutrophils. β-Defensins and LL-37/hCAP-18 are produced by the respiratory epithelium and the alveolar macrophage and secreted into the airway surface fluid. Beside their direct antimicrobial function, antimicrobial peptides have multiple roles as mediators of inflammation with effects on epithelial and inflammatory cells, influencing such diverse processes as proliferation, immune induction, wound healing, cytokine release, chemotaxis, protease-antiprotease balance, and redox homeostasis. Further, antimicrobial peptides qualify as prototypes of innovative drugs that might be used as antibiotics, anti-lipopolysaccharide drugs, or modifiers of inflammation. PMID:11667978

  10. Interaction between antimicrobial peptides and mycobacteria.

    PubMed

    Gutsmann, Thomas

    2016-05-01

    Mycobacteria can cause different severe health problems, including tuberculosis (TB). The treatment of TB with conventional antibiotics is successful, however, the number of multi-drug and extensively-drug resistant Mycobacterium tuberculosis strains increases. Moreover, many classical antimycobacterial antibiotics have severe side effects. Therefore, antimicrobial peptides (AMPs) seem to be good candidates for new therapeutic strategies. On the one hand AMPs can be used as a single drug or in combination with conventional antibiotics to directly kill mycobacteria, or on the other hand to act as immunstimulatory agents. This review summarizes the findings on the role of endogenous human AMPs being involved in TB, the antimycobacterial activity of various AMPs, and the molecular modes of action. Most active AMPs interact with the mycobacterial cell envelope and in particular with the mycomembrane and the plasma membrane. The mycomembrane is a very rigid membrane probably leading to a lower activity of the AMPs against mycobacteria as compared to other Gram-negative or Gram-positive bacteria. For some AMPs also other targets have been identified. Because of the complex environment of intracellular mycobacteria being trapped in the phagosome, within the macrophage, within the granuloma, within the lung, the external administration of AMPs in the latent phase of TB is a challenge. However, in the acute phase the AMPs can attack mycobacteria in a direct way. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26851776

  11. Analysis of Expression, Cellular Localization, and Function of Three Inhibitors of Apoptosis (IAPs) from Litopenaeus vannamei during WSSV Infection and in Regulation of Antimicrobial Peptide Genes (AMPs)

    PubMed Central

    Wang, Pei-Hui; Wan, Ding-Hui; Gu, Zhi-Hua; Qiu, Wei; Chen, Yong-Gui; Weng, Shao-Ping; Yu, Xiao-Qiang; He, Jian-Guo

    2013-01-01

    Inhibitors of apoptosis (IAPs) play important roles in apoptosis and NF-κB activation. In this study, we cloned and characterized three IAPs (LvIAP1-3) from the Pacific white shrimp, Litopenaeusvannamei. LvIAP1-3 proteins shared signature domains and exhibited significant similarities with other IAP family proteins. The tissue distributions of LvIAP1-3 were studied. The expression of LvIAP1-3 was induced in the muscle after white spot syndrome virus (WSSV) infection. LvIAP1 expression in the gill, hemocytes, hepatopancreas, and intestine was responsive to WSSV and Vibrioalginolyticus infections. LvIAP2 expression in the gill, hemocytes, and hepatopancreas was also responsive to WSSV infection. The expression of LvIAP3 in the gill, hemocytes, and intestine was reduced after V. alginolyticus infection. When overexpressed in Drosophila S2 cells, GFP labeled-LvIAP2 was distributed in the cytoplasm and appeared as speck-like aggregates in the nucleus. Both LvIAP1 and LvIAP3 were widely distributed throughout the cytoplasm and nucleus. The expression of LvIAP1, LvIAP2, and LvIAP3 was significantly knocked down by dsRNA-mediated gene silencing. In the gill of LvIAP1- or LvIAP3-silenced shrimp, the expression of WSSV VP28 was significantly higher than that of the dsGFP control group, suggesting that LvIAP1 and LvIAP3 may play protective roles in host defense against WSSV infection. Intriguingly, the LvIAP2-silenced shrimp all died within 48 hours after dsLvIAP2 injection. In the hemocytes of LvIAP2-silenced shrimps, the expression of antimicrobial peptide genes (AMPs), including Penaeidins, lysozyme, crustins, Vibriopenaeicidae-induced cysteine and proline-rich peptides (VICPs), was significantly downregulated, while the expression of anti-lipopolysaccharide factors (ALFs) was upregulated. Moreover, LvIAP2 activated the promoters of the NF-κB pathway-controlled AMPs, such as shrimp Penaeidins and Drosophila drosomycin and attacin A, in Drosophila S2 cells. Taken together

  12. Genes encoding 4-Cys antimicrobial peptides in wheat Triticum kiharae Dorof. et Migush.: multimodular structural organization, instraspecific variability, distribution and role in defence.

    PubMed

    Utkina, Lyubov L; Andreev, Yaroslav A; Rogozhin, Eugene A; Korostyleva, Tatyana V; Slavokhotova, Anna A; Oparin, Peter B; Vassilevski, Alexander A; Grishin, Eugene V; Egorov, Tsezi A; Odintsova, Tatyana I

    2013-08-01

    A novel family of antifungal peptides was discovered in the wheat Triticum kiharae Dorof. et Migusch. Two members of the family, designated Tk-AMP-X1 and Tk-AMP-X2, were completely sequenced and shown to belong to the α-hairpinin structural family of plant peptides with a characteristic C1XXXC2-X(n)-C3XXXC4 motif. The peptides inhibit the spore germination of several fungal pathogens in vitro. cDNA and gene cloning disclosed unique structure of genes encoding Tk-AMP-X peptides. They code for precursor proteins of unusual multimodular structure, consisting of a signal peptide, several α-hairpinin (4-Cys) peptide domains with a characteristic cysteine pattern separated by linkers and a C-terminal prodomain. Three types of precursor proteins, with five, six or seven 4-Cys peptide modules, were found in wheat. Among the predicted family members, several peptides previously isolated from T. kiharae seeds were identified. Genes encoding Tk-AMP-X precursors have no introns in the protein-coding regions and are upregulated by fungal pathogens and abiotic stress, providing conclusive evidence for their role in stress response. A combined PCR-based and bioinformatics approach was used to search for related genes in the plant kingdom. Homologous genes differing in the number of peptide modules were discovered in phylogenetically-related Triticum and Aegilops species, including polyploid wheat genome donors. Association of the Tk-AMP-X genes with A, B/G or D genomes of hexaploid wheat was demonstrated. Furthermore, Tk-AMP-X-related sequences were shown to be widespread in the Poaceae family among economically important crops, such as barley, rice and maize. PMID:23702306

  13. The Roles of Antimicrobial Peptides in Innate Host Defense

    PubMed Central

    Diamond, Gill; Beckloff, Nicholas; Weinberg, Aaron; Kisich, Kevin O.

    2009-01-01

    Antimicrobial peptides (AMPs) are multi-functional peptides whose fundamental biological role in vivo has been proposed to be the elimination of pathogenic microorganisms, including Gram-positive and -negative bacteria, fungi, and viruses. Genes encoding these peptides are expressed in a variety of cells in the host, including circulating phagocytic cells and mucosal epithelial cells, demonstrating a wide range of utility in the innate immune system. Expression of these genes is tightly regulated; they are induced by pathogens and cytokines as part of the host defense response, and they can be suppressed by bacterial virulence factors and environmental factors which can lead to increased susceptibility to infection. New research has also cast light on alternative functionalities, including immunomodulatory activities, which are related to their unique structural characteristics. These peptides represent not only an important component of innate host defense against microbial colonization and a link between innate and adaptive immunity, but also form a foundation for the development of new therapeutic agents. PMID:19601838

  14. From antimicrobial to anticancer peptides. A review.

    PubMed

    Gaspar, Diana; Veiga, A Salomé; Castanho, Miguel A R B

    2013-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms. Although AMPs have been essentially studied and developed as potential alternatives for fighting infectious diseases, their use as anticancer peptides (ACPs) in cancer therapy either alone or in combination with other conventional drugs has been regarded as a therapeutic strategy to explore. As human cancer remains a cause of high morbidity and mortality worldwide, an urgent need of new, selective, and more efficient drugs is evident. Even though ACPs are expected to be selective toward tumor cells without impairing the normal body physiological functions, the development of a selective ACP has been a challenge. It is not yet possible to predict antitumor activity based on ACPs structures. ACPs are unique molecules when compared to the actual chemotherapeutic arsenal available for cancer treatment and display a variety of modes of action which in some types of cancer seem to co-exist. Regardless the debate surrounding the definition of structure-activity relationships for ACPs, great effort has been invested in ACP design and the challenge of improving effective killing of tumor cells remains. As detailed studies on ACPs mechanisms of action are crucial for optimizing drug development, in this review we provide an overview of the literature concerning peptides' structure, modes of action, selectivity, and efficacy and also summarize some of the many ACPs studied and/or developed for targeting different solid and hematologic malignancies with special emphasis on the first group. Strategies described for drug development and for increasing peptide selectivity toward specific cells while reducing toxicity are also discussed. PMID:24101917

  15. From antimicrobial to anticancer peptides. A review

    PubMed Central

    Gaspar, Diana; Veiga, A. Salomé; Castanho, Miguel A. R. B.

    2013-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms. Although AMPs have been essentially studied and developed as potential alternatives for fighting infectious diseases, their use as anticancer peptides (ACPs) in cancer therapy either alone or in combination with other conventional drugs has been regarded as a therapeutic strategy to explore. As human cancer remains a cause of high morbidity and mortality worldwide, an urgent need of new, selective, and more efficient drugs is evident. Even though ACPs are expected to be selective toward tumor cells without impairing the normal body physiological functions, the development of a selective ACP has been a challenge. It is not yet possible to predict antitumor activity based on ACPs structures. ACPs are unique molecules when compared to the actual chemotherapeutic arsenal available for cancer treatment and display a variety of modes of action which in some types of cancer seem to co-exist. Regardless the debate surrounding the definition of structure-activity relationships for ACPs, great effort has been invested in ACP design and the challenge of improving effective killing of tumor cells remains. As detailed studies on ACPs mechanisms of action are crucial for optimizing drug development, in this review we provide an overview of the literature concerning peptides' structure, modes of action, selectivity, and efficacy and also summarize some of the many ACPs studied and/or developed for targeting different solid and hematologic malignancies with special emphasis on the first group. Strategies described for drug development and for increasing peptide selectivity toward specific cells while reducing toxicity are also discussed. PMID:24101917

  16. Coleopteran Antimicrobial Peptides: Prospects for Clinical Applications

    PubMed Central

    Ntwasa, Monde; Goto, Akira; Kurata, Shoichiro

    2012-01-01

    Antimicrobial peptides (AMPs) are activated in response to septic injury and have important roles in vertebrate and invertebrate immune systems. AMPs act directly against pathogens and have both wound healing and antitumor activities. Although coleopterans comprise the largest and most diverse order of eukaryotes and occupy an earlier branch than Drosophila in the holometabolous lineage of insects, their immune system has not been studied extensively. Initial research reports, however, indicate that coleopterans possess unique immune response mechanisms, and studies of these novel mechanisms may help to further elucidate innate immunity. Recently, the complete genome sequence of Tribolium was published, boosting research on coleopteran immunity and leading to the identification of Tribolium AMPs that are shared by Drosophila and mammals, as well as other AMPs that are unique. AMPs have potential applicability in the development of vaccines. Here, we review coleopteran AMPs, their potential impact on clinical medicine, and the molecular basis of immune defense. PMID:22500175

  17. Antimicrobial peptides and cell processes tracking endosymbiont dynamics.

    PubMed

    Masson, Florent; Zaidman-Rémy, Anna; Heddi, Abdelaziz

    2016-05-26

    Many insects sustain long-term relationships with intracellular symbiotic bacteria that provide them with essential nutrients. Such endosymbiotic relationships likely emerged from ancestral infections of the host by free-living bacteria, the genomes of which experience drastic gene losses and rearrangements during the host-symbiont coevolution. While it is well documented that endosymbiont genome shrinkage results in the loss of bacterial virulence genes, whether and how the host immune system evolves towards the tolerance and control of bacterial partners remains elusive. Remarkably, many insects rely on a 'compartmentalization strategy' that consists in secluding endosymbionts within specialized host cells, the bacteriocytes, thus preventing direct symbiont contact with the host systemic immune system. In this review, we compile recent advances in the understanding of the bacteriocyte immune and cellular regulators involved in endosymbiont maintenance and control. We focus on the cereal weevils Sitophilus spp., in which bacteriocytes form bacteriome organs that strikingly evolve in structure and number according to insect development and physiological needs. We discuss how weevils track endosymbiont dynamics through at least two mechanisms: (i) a bacteriome local antimicrobial peptide synthesis that regulates endosymbiont cell cytokinesis and helps to maintain a homeostatic state within bacteriocytes and (ii) some cellular processes such as apoptosis and autophagy which adjust endosymbiont load to the host developmental requirements, hence ensuring a fine-tuned integration of symbiosis costs and benefits.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160600

  18. Probing protein sequences as sources for encrypted antimicrobial peptides.

    PubMed

    Brand, Guilherme D; Magalhães, Mariana T Q; Tinoco, Maria L P; Aragão, Francisco J L; Nicoli, Jacques; Kelly, Sharon M; Cooper, Alan; Bloch, Carlos

    2012-01-01

    Starting from the premise that a wealth of potentially biologically active peptides may lurk within proteins, we describe here a methodology to identify putative antimicrobial peptides encrypted in protein sequences. Candidate peptides were identified using a new screening procedure based on physicochemical criteria to reveal matching peptides within protein databases. Fifteen such peptides, along with a range of natural antimicrobial peptides, were examined using DSC and CD to characterize their interaction with phospholipid membranes. Principal component analysis of DSC data shows that the investigated peptides group according to their effects on the main phase transition of phospholipid vesicles, and that these effects correlate both to antimicrobial activity and to the changes in peptide secondary structure. Consequently, we have been able to identify novel antimicrobial peptides from larger proteins not hitherto associated with such activity, mimicking endogenous and/or exogenous microorganism enzymatic processing of parent proteins to smaller bioactive molecules. A biotechnological application for this methodology is explored. Soybean (Glycine max) plants, transformed to include a putative antimicrobial protein fragment encoded in its own genome were tested for tolerance against Phakopsora pachyrhizi, the causative agent of the Asian soybean rust. This procedure may represent an inventive alternative to the transgenic technology, since the genetic material to be used belongs to the host organism and not to exogenous sources. PMID:23029273

  19. Studies on Anticancer Activities of Antimicrobial Peptides

    PubMed Central

    Hoskin, David W.; Ramamoorthy, Ayyalusamy

    2008-01-01

    In spite of great advances in cancer therapy, there is considerable current interest in developing anticancer agents with a new mode of action because of the development of resistance by cancer cells towards current anticancer drugs. A growing number of studies have shown that some of the cationic antimicrobial peptides (AMPs), which are toxic to bacteria but not to normal mammalian cells, exhibit a broad spectrum of cytotoxic activity against cancer cells. Such studies have considerably enhanced the significance of AMPs, both synthetic and from natural sources, which have been of importance both for an increased understanding of the immune system and for their potential as clinical antibiotics. The electrostatic attraction between the negatively charged components of bacterial and cancer cells and the positively charged AMPs is believed to play a major role in the strong binding and selective disruption of bacterial and cancer cell membranes, respectively. However, it is unclear why some host defense peptides are able to kill cancer cells when others do not. In addition, it is not clear whether the molecular mechanism(s) underlying the antibacterial and anticancer activities of AMPs are the same or different. In this article, we review various studies on different AMPs that exhibit cytotoxic activity against cancer cells. The suitability of cancer cell-targeting AMPs as cancer therapeutics is also discussed. PMID:18078805

  20. Binding studies of antimicrobial peptides to Escherichia coli cells.

    PubMed

    Avitabile, Concetta; D'Andrea, Luca D; Saviano, Michele; Olivieri, Michele; Cimmino, Amelia; Romanelli, Alessandra

    2016-09-01

    Understanding the mechanism of action of antimicrobial peptides is pivotal to the design of new and more active peptides. In the last few years it has become clear that the behavior of antimicrobial peptides on membrane model systems does not always translate to cells; therefore the need to develop methods aimed at capturing details of the interactions of peptides with bacterial cells is compelling. In this work we analyzed binding of two peptides, namely temporin B and TB_KKG6A, to Escherichia coli cells and to Escherichia coli LPS. Temporin B is a natural peptide active against Gram positive bacteria but inactive against Gram negative bacteria, TB_KKG6A is an analogue of temporin B showing activity against both Gram positive and Gram negative bacteria. We found that binding to cells occurs only for the active peptide TB_KKG6A; stoichiometry and affinity constant of this peptide toward Escherichia coli cells were determined. PMID:27450805

  1. Uses of antimicrobial genes from microbial genome

    DOEpatents

    Sorek, Rotem; Rubin, Edward M.

    2013-08-20

    We describe a method for mining microbial genomes to discover antimicrobial genes and proteins having broad spectrum of activity. Also described are antimicrobial genes and their expression products from various microbial genomes that were found using this method. The products of such genes can be used as antimicrobial agents or as tools for molecular biology.

  2. Antimicrobial peptide expression is developmentally regulated in the ovine gastrointestinal tract.

    PubMed

    Huttner, K M; Brezinski-Caliguri, D J; Mahoney, M M; Diamond, G

    1998-02-01

    Antimicrobial peptides are abundant components of the innate immune system present in species throughout the plant and animal kingdoms. In mammals, these immune peptides have been localized to epithelial tissues of the pig, mouse, rat, cow and human gastrointestinal tracts. We have identified in sheep two members of the beta-defensin antimicrobial peptide gene family that are expressed in a unique pattern throughout the gastrointestinal tract. Sheep beta-defensin 1 mRNA is the most prevalent from tongue to colon with the exception of the distal ileum, where beta-defensin 2 mRNA predominates. Sheep beta-defensin expression varies significantly between animals and is developmentally regulated both pre- and postnatally. These changes in antimicrobial peptide expression may correlate with anatomical differentiation as well as physiologic adaptations to extra-uterine life. PMID:9478010

  3. Improving short antimicrobial peptides despite elusive rules for activity.

    PubMed

    Mikut, Ralf; Ruden, Serge; Reischl, Markus; Breitling, Frank; Volkmer, Rudolf; Hilpert, Kai

    2016-05-01

    Antimicrobial peptides (AMPs) can effectively kill a broad range of life threatening multidrug-resistant bacteria, a serious threat to public health worldwide. However, despite great hopes novel drugs based on AMPs are still rare. To accelerate drug development we studied different approaches to improve the antibacterial activity of short antimicrobial peptides. Short antimicrobial peptides seem to be ideal drug candidates since they can be synthesized quickly and easily, modified and optimized. In addition, manufacturing a short peptide drug will be more cost efficient than long and structured ones. In contrast to longer and structured peptides short AMPs seem hard to design and predict. Here, we designed, synthesized and screened five different peptide libraries, each consisting of 600 9-mer peptides, against Pseudomonas aeruginosa. Each library is presenting a different approach to investigate effectiveness of an optimization strategy. The data for the 3000 peptides were analyzed using models based on fuzzy logic bioinformatics and plausible descriptors. The rate of active or superior active peptides was improved from 31.0% in a semi-random library from a previous study to 97.8% in the best new designed library. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26687790

  4. Antimicrobial and Immunomodulatory Activities of PR-39 Derived Peptides

    PubMed Central

    Veldhuizen, Edwin J. A.; Schneider, Viktoria A. F.; Agustiandari, Herfita; van Dijk, Albert; Tjeerdsma-van Bokhoven, Johanna L. M.; Bikker, Floris J.; Haagsman, Henk P.

    2014-01-01

    The porcine cathelicidin PR-39 is a host defence peptide that plays a pivotal role in the innate immune defence of the pig against infections. Besides direct antimicrobial activity, it is involved in immunomodulation, wound healing and several other biological processes. In this study, the antimicrobial- and immunomodulatory activity of PR-39, and N- and C-terminal derivatives of PR-39 were tested. PR-39 exhibited an unexpected broad antimicrobial spectrum including several Gram positive strains such as Bacillus globigii and Enterococcus faecalis. Of organisms tested, only Staphylococcus aureus was insensitive to PR-39. Truncation of PR-39 down to 15 (N-terminal) amino acids did not lead to major loss of activity, while peptides corresponding to the C-terminal part of PR-39 were hampered in their antimicrobial activity. However, shorter peptides were all much more sensitive to inhibition by salt. Active peptides induced ATP leakage and loss of membrane potential in Bacillus globigii and Escherichia coli, indicating a lytic mechanism of action for these peptides. Finally, only the mature peptide was able to induce IL-8 production in porcine macrophages, but some shorter peptides also had an effect on TNF-α production showing differential regulation of cytokine induction by PR-39 derived peptides. None of the active peptides showed high cytotoxicity highlighting the potential of these peptides for use as an alternative to antibiotics. PMID:24755622

  5. The role of antimicrobial peptides in chronic inflammatory skin diseases

    PubMed Central

    Majewski, Sławomir

    2016-01-01

    Antimicrobial peptides (AMPs) are effector molecules of the innate immune system of the skin. They present an activity against a broad spectrum of Gram-positive and Gram-negative bacteria as well as some fungi, parasites and enveloped viruses. Several inflammatory skin diseases including psoriasis, atopic dermatitis, acne vulgaris and rosacea are characterized by a dysregulated expression of AMPs. Antimicrobial peptides are excessively produced in lesional psoriatic scales or rosacea in contrast to the atopic skin that shows lower AMP levels when compared with psoriasis. The importance of the AMPs contribution to host immunity is indisputable as alterations in the antimicrobial peptide expression have been associated with various pathologic processes. This review discusses the biology and clinical relevance of antimicrobial peptides expressed in the skin and their role in the pathogenesis of inflammatory skin diseases. PMID:26985172

  6. The role of antimicrobial peptides in chronic inflammatory skin diseases.

    PubMed

    Marcinkiewicz, Małgorzata; Majewski, Sławomir

    2016-02-01

    Antimicrobial peptides (AMPs) are effector molecules of the innate immune system of the skin. They present an activity against a broad spectrum of Gram-positive and Gram-negative bacteria as well as some fungi, parasites and enveloped viruses. Several inflammatory skin diseases including psoriasis, atopic dermatitis, acne vulgaris and rosacea are characterized by a dysregulated expression of AMPs. Antimicrobial peptides are excessively produced in lesional psoriatic scales or rosacea in contrast to the atopic skin that shows lower AMP levels when compared with psoriasis. The importance of the AMPs contribution to host immunity is indisputable as alterations in the antimicrobial peptide expression have been associated with various pathologic processes. This review discusses the biology and clinical relevance of antimicrobial peptides expressed in the skin and their role in the pathogenesis of inflammatory skin diseases. PMID:26985172

  7. De-Novo Design of Antimicrobial Peptides for Plant Protection

    PubMed Central

    Zeitler, Benjamin; Herrera Diaz, Areli; Dangel, Alexandra; Thellmann, Martha; Meyer, Helge; Sattler, Michael; Lindermayr, Christian

    2013-01-01

    This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of “healthy” food, these peptides might serve as templates for novel antibacterial and antifungal agents. PMID:23951222

  8. Distinct profiling of antimicrobial peptide families

    PubMed Central

    Khamis, Abdullah M.; Essack, Magbubah; Gao, Xin; Bajic, Vladimir B.

    2015-01-01

    Motivation: The increased prevalence of multi-drug resistant (MDR) pathogens heightens the need to design new antimicrobial agents. Antimicrobial peptides (AMPs) exhibit broad-spectrum potent activity against MDR pathogens and kills rapidly, thus giving rise to AMPs being recognized as a potential substitute for conventional antibiotics. Designing new AMPs using current in-silico approaches is, however, challenging due to the absence of suitable models, large number of design parameters, testing cycles, production time and cost. To date, AMPs have merely been categorized into families according to their primary sequences, structures and functions. The ability to computationally determine the properties that discriminate AMP families from each other could help in exploring the key characteristics of these families and facilitate the in-silico design of synthetic AMPs. Results: Here we studied 14 AMP families and sub-families. We selected a specific description of AMP amino acid sequence and identified compositional and physicochemical properties of amino acids that accurately distinguish each AMP family from all other AMPs with an average sensitivity, specificity and precision of 92.88%, 99.86% and 95.96%, respectively. Many of our identified discriminative properties have been shown to be compositional or functional characteristics of the corresponding AMP family in literature. We suggest that these properties could serve as guides for in-silico methods in design of novel synthetic AMPs. The methodology we developed is generic and has a potential to be applied for characterization of any protein family. Contact: vladimir.bajic@kaust.edu.sa Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25388148

  9. Selection on an antimicrobial peptide defensin in ants.

    PubMed

    Viljakainen, Lumi; Pamilo, Pekka

    2008-12-01

    Ants live in crowded nests with interacting individuals, which makes them particularly prone to infectious diseases. The question is, how do ants cope with the increased risk of pathogen transmission due to sociality? We have studied the molecular evolution of defensin, a gene encoding an antimicrobial protein, in ants. Defensin sequences from several ant species were analyzed with maximum likelihood models of codon substitution to infer selection. Positive selection was detected in the mature region of defensin, whereas the signal and pro regions seem to be evolving neutrally. We also found a significantly higher rate of nonsynonymous substitutions in some phylogenetic lineages, as well as dN/dS >1, suggesting varying selection pressures in different lineages. Earlier studies on the molecular evolution of insect antimicrobial peptide genes have focused on termites and dipteran species, and detected positive selection only in duplicated termicin genes in termites. These findings, together with our present results, provide an indication that the immune systems of social insects (ants and termites) and dipteran insects may have responded differently to the selection pressure caused by microbial pathogens. PMID:18956133

  10. Strategies and molecular tools to fight antimicrobial resistance: resistome, transcriptome, and antimicrobial peptides

    PubMed Central

    Tavares, Letícia S.; Silva, Carolina S. F.; de Souza, Vinicius C.; da Silva, Vânia L.; Diniz, Cláudio G.; Santos, Marcelo O.

    2013-01-01

    The increasing number of antibiotic resistant bacteria motivates prospective research toward discovery of new antimicrobial active substances. There are, however, controversies concerning the cost-effectiveness of such research with regards to the description of new substances with novel cellular interactions, or description of new uses of existing substances to overcome resistance. Although examination of bacteria isolated from remote locations with limited exposure to humans has revealed an absence of antibiotic resistance genes, it is accepted that these genes were both abundant and diverse in ancient living organisms, as detected in DNA recovered from Pleistocene deposits (30,000 years ago). Indeed, even before the first clinical use of antibiotics more than 60 years ago, resistant organisms had been isolated. Bacteria can exhibit different strategies for resistance against antibiotics. New genetic information may lead to the modification of protein structure affecting the antibiotic carriage into the cell, enzymatic inactivation of drugs, or even modification of cellular structure interfering in the drug-bacteria interaction. There are still plenty of new genes out there in the environment that can be appropriated by putative pathogenic bacteria to resist antimicrobial agents. On the other hand, there are several natural compounds with antibiotic activity that may be used to oppose them. Antimicrobial peptides (AMPs) are molecules which are wide-spread in all forms of life, from multi-cellular organisms to bacterial cells used to interfere with microbial growth. Several AMPs have been shown to be effective against multi-drug resistant bacteria and have low propensity to resistance development, probably due to their unique mode of action, different from well-known antimicrobial drugs. These substances may interact in different ways with bacterial cell membrane, protein synthesis, protein modulation, and protein folding. The analysis of bacterial transcriptome

  11. DRAMP: a comprehensive data repository of antimicrobial peptides.

    PubMed

    Fan, Linlin; Sun, Jian; Zhou, Meifeng; Zhou, Jie; Lao, Xingzhen; Zheng, Heng; Xu, Hanmei

    2016-01-01

    The growing problem of antibiotic-resistant microorganisms results in an urgent need for substitutes to conventional antibiotics with novel modes of action and effective activities. Antimicrobial peptides (AMPs), produced by a wide variety of living organisms acting as a defense mechanism against invading pathogenic microbes, are considered to be such promising alternatives. AMPs display a broad spectrum of antimicrobial activity and a low propensity for developing resistance. Therefore, a thorough understanding of AMPs is essential to exploit them as antimicrobial drugs. Considering this, we developed a comprehensive user-friendly data repository of antimicrobial peptides (DRAMP), which holds 17349 antimicrobial sequences, including 4571 general AMPs, 12704 patented sequences and 74 peptides in drug development. Entries in the database have detailed annotations, especially detailed antimicrobial activity data (shown as target organism with MIC value) and structure information. Annotations also include accession numbers crosslinking to Pubmed, Swiss-prot and Protein Data Bank (PDB). The website of the database comes with easy-to-operate browsing as well as searching with sorting and filtering functionalities. Several useful sequence analysis tools are provided, including similarity search, sequence alignment and conserved domain search (CD-Search). DRAMP should be a useful resource for the development of novel antimicrobial peptide drugs. PMID:27075512

  12. DRAMP: a comprehensive data repository of antimicrobial peptides

    PubMed Central

    Fan, Linlin; Sun, Jian; Zhou, Meifeng; Zhou, Jie; Lao, Xingzhen; Zheng, Heng; Xu, Hanmei

    2016-01-01

    The growing problem of antibiotic-resistant microorganisms results in an urgent need for substitutes to conventional antibiotics with novel modes of action and effective activities. Antimicrobial peptides (AMPs), produced by a wide variety of living organisms acting as a defense mechanism against invading pathogenic microbes, are considered to be such promising alternatives. AMPs display a broad spectrum of antimicrobial activity and a low propensity for developing resistance. Therefore, a thorough understanding of AMPs is essential to exploit them as antimicrobial drugs. Considering this, we developed a comprehensive user-friendly data repository of antimicrobial peptides (DRAMP), which holds 17349 antimicrobial sequences, including 4571 general AMPs, 12704 patented sequences and 74 peptides in drug development. Entries in the database have detailed annotations, especially detailed antimicrobial activity data (shown as target organism with MIC value) and structure information. Annotations also include accession numbers crosslinking to Pubmed, Swiss-prot and Protein Data Bank (PDB). The website of the database comes with easy-to-operate browsing as well as searching with sorting and filtering functionalities. Several useful sequence analysis tools are provided, including similarity search, sequence alignment and conserved domain search (CD-Search). DRAMP should be a useful resource for the development of novel antimicrobial peptide drugs. PMID:27075512

  13. BhSGAMP-1, a gene that encodes an antimicrobial peptide, is developmentally regulated by the direct action of 20-OH ecdysone in the salivary gland of Bradysia hygida (Diptera, Sciaridae).

    PubMed

    Zanarotti, Gabriela Morilha; Cândido-Silva, Juliana A; de Almeida, Jorge Cury

    2009-12-01

    Recently we have shown that BhSGAMP-1 is a developmentally regulated reiterated gene that encodes an antimicrobial peptide (AMP) and is expressed exclusively in the salivary glands, at the end of the larval stage. We show, for the first time, that a gene for an AMP is directly activated by 20-OH ecdysone. This control probably involves the participation of short-lived repressor(s). We also found that the promoter of BhSGAMP-1 is not equipped with elements that respond to infection, provoked by the injection of microorganisms, in the salivary glands or in the fat body. We produced polyclonal antibodies against the synthetic peptide and found that the BhSGAMP-1 peptide is secreted in the saliva. The BhSGAMP-1 gene was also activated during the third larval molt. These facts confirm our hypothesis that this preventive system of defense was selected to produce an environment free of harmful microorganisms in the insect's immediate vicinity, during molts. PMID:19882668

  14. Archetypal tryptophan-rich antimicrobial peptides: properties and applications.

    PubMed

    Shagaghi, Nadin; Palombo, Enzo A; Clayton, Andrew H A; Bhave, Mrinal

    2016-02-01

    Drug-resistant microorganisms ('superbugs') present a serious challenge to the success of antimicrobial treatments. Subsequently, there is a crucial need for novel bio-control agents. Many antimicrobial peptides (AMPs) show a broad-spectrum activity against bacteria, fungi or viruses and are strong candidates to complement or substitute current antimicrobial agents. Some AMPs are also effective against protozoa or cancer cells. The tryptophan (Trp)-rich peptides (TRPs) are a subset of AMPs that display potent antimicrobial activity, credited to the unique biochemical properties of tryptophan that allow it to insert into biological membranes. Further, many Trp-rich AMPs cross bacterial membranes without compromising their integrity and act intracellularly, suggesting interactions with nucleic acids and enzymes. In this work, we overview some archetypal TRPs derived from natural sources, i.e., indolicidin, tritrpticin and lactoferricin, summarising their biochemical properties, structures, antimicrobial activities, mechanistic studies and potential applications. PMID:26748808

  15. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides.

    PubMed

    Hilchie, Ashley L; Wuerth, Kelli; Hancock, Robert E W

    2013-12-01

    Cationic host defense (antimicrobial) peptides were originally studied for their direct antimicrobial activities. They have since been found to exhibit multifaceted immunomodulatory activities, including profound anti-infective and selective anti-inflammatory properties, as well as adjuvant and wound-healing activities in animal models. These biological properties suggest that host defense peptides, and synthetic derivatives thereof, possess clinical potential beyond the treatment of antibiotic-resistant infections. In this Review, we provide an overview of the biological activities of host defense and synthetic peptides, their mechanism(s) of action and new therapeutic applications and challenges that are associated with their clinical use. PMID:24231617

  16. Antimicrobial Peptides and Their Analogs: Searching for New Potential Therapeutics

    PubMed Central

    Midura-Nowaczek, Krystyna; Markowska, Agnieszka

    2014-01-01

    Antimicrobial peptides (AMPs) are an essential part of innate immunity. These compounds have been considered as potential therapeutics because of their broad-spectrum activities and proven ability to avoid antimicrobial resistance, but their clinical and commercial developments have some limitations, such as susceptibility to proteases and a high cost of peptide production. To overcome these problems, many researchers have tried to develop short active peptides, their modifications and mimics with better properties while retaining their basic features of natural AMPs such as cationic charge and the amphipathic structure. PMID:25374459

  17. Nanomechanical Response of Bacterial Cells to Cationic Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Walters, Grant; Parg, Richard; Dutcher, John

    2014-03-01

    The effectiveness of antimicrobial compounds can be easily screened, however their mechanism of action is much more difficult to determine. Many compounds act by compromising the mechanical integrity of the bacterial cell envelope, and our study introduces an atomic force microscopy (AFM)-based creep deformation technique to evaluate changes in the time-dependent mechanical properties of Pseudomonas aeruginosa PAO1 bacterial cells upon exposure to two different but structurally related antimicrobial peptides: polymyxin B and polymyxin B nonapeptide. We observed a distinctive signature for the loss of integrity of the bacterial cell envelope following exposure to the peptides. Measurements performed before and after exposure, as well as time-resolved measurements and those performed at different concentrations, revealed large changes to the viscoelastic parameters that are consistent with differences in the membrane permeabilizing effects of the peptides. The AFM creep deformation measurement provides new, unique insight into the kinetics and mechanism of action of antimicrobial peptides on bacteria.

  18. Perspectives on the evolutionary ecology of arthropod antimicrobial peptides.

    PubMed

    Rolff, Jens; Schmid-Hempel, Paul

    2016-05-26

    Antimicrobial peptides (AMPs) are important elements of the innate immune defence in multicellular organisms that target and kill microbes. Here, we reflect on the various points that are raised by the authors of the 11 contributions to a special issue of Philosophical Transactions on the 'evolutionary ecology of arthropod antimicrobial peptides'. We see five interesting topics emerging. (i) AMP genes in insects, and perhaps in arthropods more generally, evolve much slower than most other immune genes. One explanation refers to the constraints set by AMPs being part of a finely tuned defence system. A new view argues that AMPs are under strong stabilizing selection. Regardless, this striking observation still invites many more questions than have been answered so far. (ii) AMPs almost always are expressed in combinations and sometimes show expression patterns that are dependent on the infectious agent. While it is often assumed that this can be explained by synergistic interactions, such interactions have rarely been demonstrated and need to be studied further. Moreover, how to define synergy in the first place remains difficult and needs to be addressed. (iii) AMPs play a very important role in mediating the interaction between a host and its mutualistic or commensal microbes. This has only been studied in a very small number of (insect) species. It has become clear that the very same AMPs play different roles in different situations and hence are under concurrent selection. (iv) Different environments shape the physiology of organisms; especially the host-associated microbial communities should impact on the evolution host AMPs. Studies in social insects and some organisms from extreme environments seem to support this notion, but, overall, the evidence for adaptation of AMPs to a given environment is scant. (v) AMPs are considered or already developed as new drugs in medicine. However, bacteria can evolve resistance to AMPs. Therefore, in the light of our

  19. Evolution of Antimicrobial Peptides to Self-Assembled Peptides for Biomaterial Applications

    PubMed Central

    McCloskey, Alice P.; Gilmore, Brendan F.; Laverty, Garry

    2014-01-01

    Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a “bottom-up” approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes) and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection. PMID:25436505

  20. Expressing antimicrobial peptide cathelicidin-BF in Bacillus subtilis using SUMO technology.

    PubMed

    Luan, Chao; Zhang, Hai Wen; Song, De Guang; Xie, Yong Gang; Feng, Jie; Wang, Yi Zhen

    2014-04-01

    Small ubiquitin-related modifier (SUMO) technology has been widely used in Escherichia coli expression systems to produce antimicrobial peptides. However, E. coli is a pathogenic bacterium that produces endotoxins and can secrete proteins into the periplasm, forming inclusion bodies. In our work, cathelicidin-BF (CBF), an antimicrobial peptide purified from Bungarus fasciatus venom, was produced in a Bacillus subtilis expression system using SUMO technology. The chimeric genes his-SUMO-CBF and his-SUMO protease 1 were ligated into vector pHT43 and expressed in B. subtilis WB800N. Approximately 22 mg of recombinant fusion protein SUMO-CBF and 1 mg of SUMO protease 1 were purified per liter of culture supernatant. Purified SUMO protease 1 was highly active and cleaved his-SUMO-CBF with an enzyme-to-substrate ratio of 1:40. Following cleavage, recombinant CBF was further purified by affinity and cation exchange chromatography. Peptide yields of ~3 mg/l endotoxin-free CBF were achieved, and the peptide demonstrated antimicrobial activity. This is the first report of the production of an endotoxin-free antimicrobial peptide, CBF, by recombinant DNA technology, as well as the first time purified SUMO protease 1 with high activity has been produced from B. subtilis. This work has expanded the application of SUMO fusion technology and may represent a safe and efficient way to generate peptides and proteins in B. subtilis. PMID:24121930

  1. Improved methods for classification, prediction, and design of antimicrobial peptides.

    PubMed

    Wang, Guangshun

    2015-01-01

    Peptides with diverse amino acid sequences, structures, and functions are essential players in biological systems. The construction of well-annotated databases not only facilitates effective information management, search, and mining but also lays the foundation for developing and testing new peptide algorithms and machines. The antimicrobial peptide database (APD) is an original construction in terms of both database design and peptide entries. The host defense antimicrobial peptides (AMPs) registered in the APD cover the five kingdoms (bacteria, protists, fungi, plants, and animals) or three domains of life (bacteria, archaea, and eukaryota). This comprehensive database ( http://aps.unmc.edu/AP ) provides useful information on peptide discovery timeline, nomenclature, classification, glossary, calculation tools, and statistics. The APD enables effective search, prediction, and design of peptides with antibacterial, antiviral, antifungal, antiparasitic, insecticidal, spermicidal, anticancer activities, chemotactic, immune modulation, or antioxidative properties. A universal classification scheme is proposed herein to unify innate immunity peptides from a variety of biological sources. As an improvement, the upgraded APD makes predictions based on the database-defined parameter space and provides a list of the sequences most similar to natural AMPs. In addition, the powerful pipeline design of the database search engine laid a solid basis for designing novel antimicrobials to combat resistant superbugs, viruses, fungi, or parasites. This comprehensive AMP database is a useful tool for both research and education. PMID:25555720

  2. Improved Methods for Classification, Prediction and Design of Antimicrobial Peptides

    PubMed Central

    Wang, Guangshun

    2015-01-01

    Peptides with diverse amino acid sequences, structures and functions are essential players in biological systems. The construction of well-annotated databases not only facilitates effective information management, search and mining, but also lays the foundation for developing and testing new peptide algorithms and machines. The antimicrobial peptide database (APD) is an original construction in terms of both database design and peptide entries. The host defense antimicrobial peptides (AMPs) registered in the APD cover the five kingdoms (bacteria, protists, fungi, plants, and animals) or three domains of life (bacteria, archaea, and eukaryota). This comprehensive database (http://aps.unmc.edu/AP) provides useful information on peptide discovery timeline, nomenclature, classification, glossary, calculation tools, and statistics. The APD enables effective search, prediction, and design of peptides with antibacterial, antiviral, antifungal, antiparasitic, insecticidal, spermicidal, anticancer activities, chemotactic, immune modulation, or anti-oxidative properties. A universal classification scheme is proposed herein to unify innate immunity peptides from a variety of biological sources. As an improvement, the upgraded APD makes predictions based on the database-defined parameter space and provides a list of the sequences most similar to natural AMPs. In addition, the powerful pipeline design of the database search engine laid a solid basis for designing novel antimicrobials to combat resistant superbugs, viruses, fungi or parasites. This comprehensive AMP database is a useful tool for both research and education. PMID:25555720

  3. Host Antimicrobial Peptides in Bacterial Homeostasis and Pathogenesis of Disease

    PubMed Central

    Heimlich, Derek R.; Harrison, Alistair; Mason, Kevin M.

    2014-01-01

    Innate immune responses function as a first line of host defense against the development of bacterial infection, and in some cases to preserve the sterility of privileged sites in the human host. Bacteria that enter these sites must counter host responses for colonization. From the host’s perspective, the innate immune system works expeditiously to minimize the bacterial threat before colonization and subsequent dysbiosis. The multifactorial nature of disease further challenges predictions of how each independent variable influences bacterial pathogenesis. From bacterial colonization to infection and through disease, the microenvironments of the host are in constant flux as bacterial and host factors contribute to changes at the host-pathogen interface, with the host attempting to eradicate bacteria and the bacteria fighting to maintain residency. A key component of this innate host response towards bacterial infection is the production of antimicrobial peptides (AMPs). As an early component of the host response, AMPs modulate bacterial load and prevent establishment of infection. Under quiescent conditions, some AMPs are constitutively expressed by the epithelium. Bacterial infection can subsequently induce production of other AMPs in an effort to maintain sterility, or to restrict colonization. As demonstrated in various studies, the absence of a single AMP can influence pathogenesis, highlighting the importance of AMP concentration in maintaining homeostasis. Yet, AMPs can increase bacterial virulence through the co-opting of the peptides or alteration of bacterial virulence gene expression. Further, bacterial factors used to subvert AMPs can modify host microenvironments and alter colonization of the residential flora that principally maintain homeostasis. Thus, the dynamic interplay between host defense peptides and bacterial factors produced to quell peptide activity play a critical role in the progression and outcome of disease. PMID:26029470

  4. De Novo Designed Synthetic Mimics of Antimicrobial Peptides

    PubMed Central

    Scott, Richard W.; DeGrado, William F.; Tew, Gregory N.

    2008-01-01

    Summary Antimicrobial peptides are small cationic amphiphiles that play an important role in the innate immune system. Given their broad specificity, they appear to be ideal therapeutic agents. As a result, over the last decade, there has been considerable interest in developing them as intravenously administered antibiotics. However, it has proven difficult to accomplish this goal with peptide-based structures. While it has been possible to solve some relatively simple problems such as susceptibility to proteolysis, more severe problems have included the expense of the materials, toxicity, limited efficacy, and limited tissue distribution. As a result, we developed small synthetic oligomers designed to adopt amphiphilic conformations and exhibit potent antimicrobial activity while being non-toxic to host cells. One class of these synthetic mimics of antimicrobial peptides (SMAMPs) is being developed as intravenous antibiotics PMID:18996193

  5. A Novel Peptide Hydrogel for an Antimicrobial Bandage Contact Lens.

    PubMed

    Gallagher, Andrew G; Alorabi, Jamal A; Wellings, Donald A; Lace, Rebecca; Horsburgh, Mal J; Williams, Rachel L

    2016-08-01

    A peptide hydrogel with an antimicrobial activity is developed as a bandage contact lens. The antimicrobial activity is enhanced with the addition of the biomolecules penicillin G or poly-ε-lysine and is positive against Staphylococcus aureus and Escherichia coli. The lens is also noncytotoxic toward a human corneal epithelial cell line and as a consequence is of great potential as a drug-eluting bandage lens replacing conventional corneal ulcer treatment. PMID:27276231

  6. Analysis of expressed sequence tags (ESTs) from avocado seed (Persea americana var. drymifolia) reveals abundant expression of the gene encoding the antimicrobial peptide snakin.

    PubMed

    Guzmán-Rodríguez, Jaquelina J; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Ochoa-Zarzosa, Alejandra; Suárez-Rodríguez, Luis María; Rodríguez-Zapata, Luis C; Salgado-Garciglia, Rafael; Jimenez-Moraila, Beatriz; López-Meza, Joel E; López-Gómez, Rodolfo

    2013-09-01

    Avocado is one of the most important fruits in the world. Avocado "native mexicano" (Persea americana var. drymifolia) seeds are widely used in the propagation of this plant and are the primary source of rootstocks globally for a variety of avocado cultivars, such as the Hass avocado. Here, we report the isolation of 5005 ESTs from the 5' ends of P. americana var. drymifolia seed cDNA clones representing 1584 possible unigenes. These avocado seed ESTs were compared with the avocado flower EST library, and we detected several genes that are expressed either in both tissues or only in the seed. The snakin gene, which encodes an element of the innate immune response in plants, was one of those most frequently found among the seed ESTs, and this suggests that it is abundantly expressed in the avocado seed. We expressed the snakin gene in a heterologous system, namely the bovine endothelial cell line BVE-E6E7. Conditioned media from transfected BVE-E6E7 cells showed antimicrobial activity against strains of Escherichia coli and Staphylococcus aureus. This is the first study of the function of the snakin gene in plant seed tissue, and our observations suggest that this gene might play a protective role in the avocado seed. PMID:23811120

  7. Insights into Antimicrobial Peptides from Spiders and Scorpions.

    PubMed

    Wang, Xiuqing; Wang, Guangshun

    2016-01-01

    The venoms of spiders and scorpions contain a variety of chemical compounds. Antimicrobial peptides (AMPs) from these organisms were first discovered in the 1990s. As of May 2015, there were 42 spider's and 63 scorpion's AMPs in the Antimicrobial Peptide Database (http://aps.unmc.edu/AP). These peptides have demonstrated broad or narrow-spectrum activities against bacteria, fungi, viruses, and parasites. In addition, they can be toxic to cancer cells, insects and erythrocytes. To provide insight into such an activity spectrum, this article discusses the discovery, classification, structure and activity relationships, bioinformatics analysis, and potential applications of spider and scorpion AMPs. Our analysis reveals that, in the case of linear peptides, spiders use both glycine-rich and helical peptide models for defense, whereas scorpions use two distinct helical peptide models with different amino acid compositions to exert the observed antimicrobial activities and hemolytic toxicity. Our structural bioinformatics study improves the knowledge in the field and can be used to design more selective peptides to combat tumors, parasites, and viruses. PMID:27165405

  8. Acne Inversa: Evaluating Antimicrobial Peptides and Proteins

    PubMed Central

    Sand, Michael; Skrygan, Marina; Kreuter, Alexander; Altmeyer, Peter; Gambichler, Thilo

    2012-01-01

    Background Acne inversa is a chronic, suppurative relapsing inflammatory skin disease that primarily affects the axillae, perineum and inframammary regions. Evidence suggests that the innate immune system is involved in the pathogenesis of acne inversa. Objective To investigate the role of the innate immune system in acne inversa. Methods Skin biopsies were obtained from inflammatory skin lesions (n=17) and from non-lesional skin (intraindividual control, n=17) of patients with acne inversa. Additional skin lesions were taken from patients with chronic venous leg ulcers (interindividual control, n=5). Quantitative real-time reverse transcription-polymerase chain reaction was used to determine the mRNA levels of antimicrobial peptides and proteins (AMPs), including human β-defensin (hBD)-1, hBD-2 and hBD-3, LL-37 (cathelicidin) and Ribonuclease 7 (RNase 7). mRNA levels were also determined for inflammatory and anti-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), matrix metalloproteinase-1 (MMP1), interleukin (IL)-1β, IL-6, IL-8 and IL-10. Results The mRNA levels of hBD-2, LL-37, IL-1β, IL-6, IL-8, IL-10 and MMP1 were significantly higher in acne inversa lesions compared to non-lesional skin (p<0.05). A significant positive correlation expression was observed between hBD-2 mRNA expression and LL-37 (ρ=0.53, p=0.03), and between hBD-2 and RNAse 7 (ρ=0.68, p=0.006). When compared to the chronic venous leg ulcer lesions, acne inversa lesions showed a significantly higher expression of RNase 7 mRNA, while IL-1 β, IL-6, IL-8, TNF-α and MMP1 mRNA expression was significantly higher in the chronic venous leg ulcer lesions (p<0.05). Conclusion The AMP, cytokine milieu and tissue proteases in acne inversa lesions differ significantly from non-lesional skin and chronic venous leg ulcers. The positively correlating up-regulation of AMPs in acne inversa indicates an important role of the innate immune system in the pathogenesis of this disorder

  9. LPS interactions with immobilized and soluble antimicrobial peptides.

    PubMed

    Gustafsson, Anna; Olin, Anders I; Ljunggren, Lennart

    2010-04-19

    A promising approach in sepsis therapy is the use of peptides truncated from serum- and membrane-proteins with binding domains for LPS: antimicrobial peptides (AMPs). AMPs can be useful in combination with conventional antibiotics to increase killing and neutralize LPS. Although many AMPs show a high specificity towards bacterial membranes, they can also exhibit toxicity, i.e. non-specific membrane lysis, of mammalian cells such as erythrocytes and therefore, unsuitable as systemic drugs. A way to overcome this problem may be an extracorporeal therapy with immobilized peptides. This study will compare neutralization of LPS using different AMPs in solution and when immobilized on to solid phases. The peptides ability to neutralize LPS-induced cytokine release in whole blood will also be tested. The peptides are truncated derivates from the known AMPs LL-37, SC4, BPI, S3 Delta and CEME. Two different methods were used to immobilize peptides, biomolecular interaction analysis, and Pierce SulfoLink Coupling Gel. To investigate LPS binding in solution the LAL test was used. After whole blood incubation with LPS and AMPs ELISA was used to measure TNFalpha, IL-1 beta and IL-6 production. The results suggest that immobilization of antimicrobial peptides does not inhibit their capacity to neutralize LPS, although there are differences between the peptides tested. Thus, peptides derived from LL-37 and CEME were more efficient both in LPS binding and neutralizing LPS-induced cytokine production. PMID:20233038

  10. NMR and computational data of two novel antimicrobial peptides.

    PubMed

    Falcigno, Lucia; Palmieri, Gianna; Balestrieri, Marco; Proroga, Yolande T R; Facchiano, Angelo; Riccio, Alessia; Capuano, Federico; Marrone, Raffaele; Campanile, Giuseppe; Anastasio, Aniello

    2016-09-01

    Here we report details on the design and conformational analysis of two novel peptides showing antimicrobial properties, as reported in the research article, "New antimicrobial peptides against foodborne pathogens: from in silico design to experimental evidence" G. Palmieri, M. Balestrieri, Y.T.R. Proroga, L. Falcigno, A. Facchiano, A. Riccio, F. Capuano, R. Marrone, G. Campanile, A. Anastasio (2016) [1]. NMR data, such as chemical shifts in two different solvents as well as aCH protons deviations from random coil values and NOE patterns, are shown together with the statistics of structural calculations. Strategy and particulars of molecular design are presented. PMID:27508217

  11. Identification of a genetic locus responsible for antimicrobial peptide resistance in Clostridium difficile.

    PubMed

    McBride, Shonna M; Sonenshein, Abraham L

    2011-01-01

    Clostridium difficile causes chronic intestinal disease, yet little is understood about how the bacterium interacts with and survives in the host. To colonize the intestine and cause persistent disease, the bacterium must circumvent killing by host innate immune factors, such as cationic antimicrobial peptides (CAMPs). In this study, we investigated the effect of model CAMPs on growth and found that C. difficile is not only sensitive to these compounds but also responds to low levels of CAMPs by expressing genes that lead to CAMP resistance. By plating the bacterium on medium containing the CAMP nisin, we isolated a mutant capable of growing in three times the inhibitory concentration of CAMPs. This mutant also showed increased resistance to the CAMPs gallidermin and polymyxin B, demonstrating tolerance to different types of antimicrobial peptides. We identified the mutated gene responsible for the resistance phenotype as CD1352. This gene encodes a putative orphan histidine kinase that lies adjacent to a predicted ABC transporter operon (CD1349 to CD1351). Transcriptional analysis of the ABC transporter genes revealed that this operon was upregulated in the presence of nisin in wild-type cells and was more highly expressed in the CD1352 mutant. The insertional disruption of the CD1349 gene resulted in significant decreases in resistance to the CAMPs nisin and gallidermin but not polymyxin B. Because of their role in cationic antimicrobial peptide resistance, we propose the designation cprABC for genes CD1349 to CD1351 and cprK for the CD1352 gene. These results provide the first evidence of a C. difficile gene associated with antimicrobial peptide resistance. PMID:20974818

  12. Imaging the action of antimicrobial peptides on living bacterial cells

    PubMed Central

    Gee, Michelle L.; Burton, Matthew; Grevis-James, Alistair; Hossain, Mohammed Akhter; McArthur, Sally; Palombo, Enzo A.; Wade, John D.; Clayton, Andrew H. A.

    2013-01-01

    Antimicrobial peptides hold promise as broad-spectrum alternatives to conventional antibiotics. The mechanism of action of this class of peptide is a topical area of research focused predominantly on their interaction with artificial membranes. Here we compare the interaction mechanism of a model antimicrobial peptide with single artificial membranes and live bacterial cells. The interaction kinetics was imaged using time-lapse fluorescence lifetime imaging of a fluorescently-tagged melittin derivative. Interaction with the synthetic membranes resulted in membrane pore formation. In contrast, the interaction with bacteria led to transient membrane disruption and corresponding leakage of the cytoplasm, but surprisingly with a much reduced level of pore formation. The discovery that pore formation is a less significant part of lipid-peptide interaction in live bacteria highlights the mechanistic complexity of these interactions in living cells compared to simple artificial systems. PMID:23532056

  13. cDNA cloning, characterization and expression analysis of a novel antimicrobial peptide gene penaeidin-3 (Fi-Pen3) from the haemocytes of Indian white shrimp Fenneropenaeus indicus.

    PubMed

    Shanthi, S; Vaseeharan, B

    2012-03-20

    A new member of antimicrobial peptide genes of the penaeidin family, penaeidin 3, was cloned from the haemocytes of Indian white shrimp Fenneropeneaus indicus (F. indicus), by reverse transcription PCR (RT-PCR) and rapid amplification of cDNA end (RACE-PCR) methods. The complete nucleotide sequence of cDNA clone of Indian white shrimp F. indicus Penaeidin 3 (Fi-Pen3) was 243bp long and has an open reading frame which encodes 80 amino acid peptide. The homology analysis of Fi-Pen3 sequence with other Penaeidins 3 shows higher similarity with Penaeus monodon (92%). The theoretical 3D structure generated through ab initio modelling indicated the presence of two-disulphide bridges in the alpha-helix. The signal peptide sequence of Fi-Pen3 is almost entirely homologous to that of other Penaeidin 3 of crustaceans, while differing relatively in the N-terminal domain of the mature peptide. The mature peptide has a predicted molecular weight of 84.9kDa, and a theoretical pI of 9.38. Phylogenetic analysis of Fi-Pen3 shows high resemblance with other Pen-3 from P. monodon, Litopenaeus stylirostris, Litopenaeus vannamei and Litopenaeus setiferus. Fi-Pen3 found to be expressed in haemocytes, heart, hepatopancreas, muscles, gills, intestine, and eyestalk with higher expression in haemocytes. Microbial challenge resulted in mRNA up-regulation, up to 6h post injection of Vibrio parahemolyticus. The Fi-Pen3 mRNA expression of F. indicus in the premolt stage (D(01) and D(02)) was significantly up-regulated than the postmolt (A and B) and intermolt stages (C). The findings of the present paper underline the involvement of Fi-Pen3 in innate immune system of F. indicus. PMID:21885268

  14. Characterization of the Antimicrobial Peptide Penisin, a Class Ia Novel Lantibiotic from Paenibacillus sp. Strain A3.

    PubMed

    Baindara, Piyush; Chaudhry, Vasvi; Mittal, Garima; Liao, Luciano M; Matos, Carolina O; Khatri, Neeraj; Franco, Octavio L; Patil, Prabhu B; Korpole, Suresh

    2016-01-01

    Attempts to isolate novel antimicrobial peptides from microbial sources have been on the rise recently, despite their low efficacy in therapeutic applications. Here, we report identification and characterization of a new efficient antimicrobial peptide from a bacterial strain designated A3 that exhibited highest identity with Paenibacillus ehimensis. Upon purification and subsequent molecular characterization of the antimicrobial peptide, referred to as penisin, we found the peptide to be a bacteriocin-like peptide. Consistent with these results, RAST analysis of the entire genome sequence revealed the presence of a lantibiotic gene cluster containing genes necessary for synthesis and maturation of a lantibiotic. While circular dichroism and one-dimension nuclear magnetic resonance experiments confirmed a random coil structure of the peptide, similar to other known lantibiotics, additional biochemical evidence suggests posttranslational modifications of the core peptide yield six thioether cross-links. The deduced amino acid sequence of the putative biosynthetic gene penA showed approximately 74% similarity with elgicin A and 50% similarity with the lantibiotic paenicidin A. Penisin effectively killed methicillin-resistant Staphylococcus aureus (MRSA) and did not exhibit hemolysis activity. Unlike other lantibiotics, it effectively inhibited the growth of Gram-negative bacteria. Furthermore, 80 mg/kg of body weight of penisin significantly reduced bacterial burden in a mouse thigh infection model and protected BALB/c mice in a bacteremia model entailing infection with Staphylococcus aureus MTCC 96, suggesting that it could be a promising new antimicrobial peptide. PMID:26574006

  15. Characterization of the Antimicrobial Peptide Penisin, a Class Ia Novel Lantibiotic from Paenibacillus sp. Strain A3

    PubMed Central

    Baindara, Piyush; Chaudhry, Vasvi; Mittal, Garima; Liao, Luciano M.; Matos, Carolina O.; Khatri, Neeraj; Franco, Octavio L.; Patil, Prabhu B.

    2015-01-01

    Attempts to isolate novel antimicrobial peptides from microbial sources have been on the rise recently, despite their low efficacy in therapeutic applications. Here, we report identification and characterization of a new efficient antimicrobial peptide from a bacterial strain designated A3 that exhibited highest identity with Paenibacillus ehimensis. Upon purification and subsequent molecular characterization of the antimicrobial peptide, referred to as penisin, we found the peptide to be a bacteriocin-like peptide. Consistent with these results, RAST analysis of the entire genome sequence revealed the presence of a lantibiotic gene cluster containing genes necessary for synthesis and maturation of a lantibiotic. While circular dichroism and one-dimension nuclear magnetic resonance experiments confirmed a random coil structure of the peptide, similar to other known lantibiotics, additional biochemical evidence suggests posttranslational modifications of the core peptide yield six thioether cross-links. The deduced amino acid sequence of the putative biosynthetic gene penA showed approximately 74% similarity with elgicin A and 50% similarity with the lantibiotic paenicidin A. Penisin effectively killed methicillin-resistant Staphylococcus aureus (MRSA) and did not exhibit hemolysis activity. Unlike other lantibiotics, it effectively inhibited the growth of Gram-negative bacteria. Furthermore, 80 mg/kg of body weight of penisin significantly reduced bacterial burden in a mouse thigh infection model and protected BALB/c mice in a bacteremia model entailing infection with Staphylococcus aureus MTCC 96, suggesting that it could be a promising new antimicrobial peptide. PMID:26574006

  16. A novel C-type lectin with four CRDs is involved in the regulation of antimicrobial peptide gene expression in Hyriopsis cumingii.

    PubMed

    Zhao, Ling-Ling; Wang, Yu-Qing; Dai, Yun-Jia; Zhao, Li-Juan; Qin, Qiwei; Lin, Li; Ren, Qian; Lan, Jiang-Feng

    2016-08-01

    C-type lectins (CTLs) are found in a wide number of invertebrates, and have been reported to participate in immune responses, such as the activation of prophenoloxidase, cell adhesion, bacterial clearance and phagocytosis. Previous studies on CTLs focused on the function of their carbohydrate recognition domains (CRDs). Currently, studies on lectins with multi-CRDs are limited. In this study, a lectin with four CRDs was cloned from Hyriopsis cumingii, and called HcLec4. HcLec4 was widely distributed in several tissues and was significantly down-regulated at the early stage (2 h) of bacterial infection. We further analyzed the bacteria and carbohydrate binding activities of HcLec4. The results showed that HcLec4 could bind to several bacteria, lipopolysaccharide (LPS) and peptidoglycan (PGN). In HcLec4 knockdown mussels, the bacterial clearance rate was increased, and the expression level of antimicrobial peptides (AMPs) was up-regulated. This study reveals that HcLec4 exerts its antibacterial effect by regulating the expression of AMPs at the early stage of bacterial infection. PMID:27288254

  17. Antimicrobial peptides: a new class of antimalarial drugs?

    PubMed Central

    Vale, Nuno; Aguiar, Luísa; Gomes, Paula

    2014-01-01

    A range of antimicrobial peptides (AMP) exhibit activity on malaria parasites, Plasmodium spp., in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity, and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs. PMID:25566072

  18. SMALL CYSTEINE-RICH PEPTIDES RESEMBLING ANTIMICROBIAL PEPTIDES HAVE BEEN UNDER-PREDICTED IN PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multicellular organisms produce small cysteine-rich anti-microbial peptides as an innate defense against pathogens. While defensins, a well-known class of such peptides, are common among eukaryotes, there are classes restricted to the plant kingdom. These include thionins, lipid transfer proteins,...

  19. Linear antimicrobial peptides from Ectatomma quadridens ant venom.

    PubMed

    Pluzhnikov, Kirill A; Kozlov, Sergey A; Vassilevski, Alexander A; Vorontsova, Olga V; Feofanov, Alexei V; Grishin, Eugene V

    2014-12-01

    Venoms from three poneromorph ant species (Paraponera clavata, Ectatomma quadridens and Ectatomma tuberculatum) were investigated for the growth inhibition of Gram-positive and Gram-negative bacteria. It was shown that the venom of E. quadridens and its peptide fraction in particular possess marked antibacterial action. Three linear antimicrobial peptides sharing low similarity to the well-known ponericin peptides were isolated from this ant venom by means of size-exclusion and reversed-phase chromatography. The peptides showed antimicrobial activity at low micromolar concentrations. Their primary structure was established by direct Edman sequencing in combination with mass spectrometry. The most active peptide designated ponericin-Q42 was chemically synthesized. Its secondary structure was investigated in aqueous and membrane-mimicking environment, and the peptide was shown to be partially helical already in water, which is unusual for short linear peptides. Analysis of its activity on different bacterial strains, human erythrocytes and chronic myelogenous leukemia K562 cells revealed that the peptide shows broad spectrum cytolytic activity at micromolar and submicromolar concentrations. Ponericin-Q42 also possesses weak toxic activity on flesh fly larvae with LD50 of ∼105 μg/g. PMID:25220871

  20. Prediction of Antibacterial Activity from Physicochemical Properties of Antimicrobial Peptides

    PubMed Central

    Melo, Manuel N.; Ferre, Rafael; Feliu, Lídia; Bardají, Eduard; Planas, Marta; Castanho, Miguel A. R. B.

    2011-01-01

    Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations. PMID:22194847

  1. Selected antimicrobial peptides inhibit in vitro growth of Campylobacter spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel alternatives to traditional antibiotics are urgently needed for food-animal production. A goal of our laboratory is to develop and evaluate antimicrobial peptides (AMP) to control and reduce foodborne pathogens in poultry. AMP have been found in most every class of living organism where they h...

  2. Synergistic Effects of Antimicrobial Peptides and Antibiotics against Clostridium difficile

    PubMed Central

    Nuding, Sabine; Frasch, Tina; Schaller, Martin; Stange, Eduard F.

    2014-01-01

    Accelerating rates of health care-associated infections caused by Clostridium difficile, with increasing recurrence and rising antibiotic resistance rates, have become a serious problem in recent years. This study was conducted to explore whether a combination of antibiotics with human antimicrobial peptides may lead to an increase in antibacterial activity. The in vitro activities of the antimicrobial peptides HBD1 to HBD3, HNP1, HD5, and LL-37 and the antibiotics tigecycline, moxifloxacin, piperacillin-tazobactam, and meropenem alone or in combination against 10 toxinogenic and 10 nontoxinogenic C. difficile strains were investigated. Bacterial viability was determined by flow cytometry and toxin production by enzyme-linked immunosorbent assay (ELISA). When combined at subinhibitory concentrations, antimicrobial peptides and antibiotics generally led to an additive killing effect against toxinogenic and nontoxinogenic C. difficile strains. However, LL-37 and HBD3 acted in synergism with all the antibiotics that were tested. Electron microscopy revealed membrane perturbation in bacterial cell walls by HBD3. In 3 out of 10 toxinogenic strains, HBD3, LL-37, piperacillin-tazobactam, and meropenem administration led to an increased toxin release which was not neutralized by the addition of HNP1. Antimicrobial peptides increase the bacterial killing of antibiotics against C. difficile regardless of the antibiotics' mode of action. Membrane perturbation in or pore formation on the bacterial cell wall may enhance the uptake of antibiotics and increase their antibacterial effect. Therefore, a combination of antibiotics with antimicrobial peptides may represent a promising novel approach to the treatment of C. difficile infections. PMID:25022581

  3. Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities.

    PubMed

    Yu, Hui-Yuan; Huang, Kuo-Chun; Yip, Bak-Sau; Tu, Chih-Hsiang; Chen, Heng-Li; Cheng, Hsi-Tsung; Cheng, Jya-Wei

    2010-11-01

    Trp-rich antimicrobial peptides play important roles in the host innate defense mechanism of many plants and animals. A series of short Trp-rich peptides derived from the C-terminal region of Bothrops asper myothoxin II, a Lys49 phospholipase A(2) (PLA(2)), were found to reproduce the antimicrobial activities of their parent molecule. Of these peptides, KKWRWWLKALAKK-designated PEM-2-was found to display improved activity against both Gram-positive and Gram-negative bacteria. To improve the antimicrobial activity of PEM-2 for potential clinical applications further, we determined the solution structure of PEM-2 bound to membrane-mimetic dodecylphosphocholine (DPC) micelles by two-dimensional NMR methods. The DPC micelle-bound structure of PEM-2 adopts an α-helical conformation and the positively charged residues are clustered together to form a hydrophilic patch. The surface electrostatic potential map indicates that two of the three tryptophan residues are packed against the peptide backbone and form a hydrophobic face with Leu7, Ala9, and Leu10. A variety of biophysical and biochemical experiments, including circular dichroism, fluorescence spectroscopy, and microcalorimetry, were used to show that PEM-2 interacted with negatively charged phospholipid vesicles and efficiently induced dye release from these vesicles, suggesting that the antimicrobial activity of PEM-2 could be due to interactions with bacterial membranes. Potent analogues of PEM-2 with enhanced antimicrobial and less pronounced hemolytic activities were designed with the aid of these structural studies. PMID:20865718

  4. Novel Antimicrobial Peptides with High Anticancer Activity and Selectivity

    PubMed Central

    Chen, Kuan-Hao; Yu, Hui-Yuan; Chih, Ya-Han; Cheng, Hsi-Tsung; Chou, Yu-Ting; Cheng, Jya-Wei

    2015-01-01

    We describe a strategy to boost anticancer activity and reduce normal cell toxicity of short antimicrobial peptides by adding positive charge amino acids and non-nature bulky amino acid β-naphthylalanine residues to their termini. Among the designed peptides, K4R2-Nal2-S1 displayed better salt resistance and less toxicity to hRBCs and human fibroblast than Nal2-S1 and K6-Nal2-S1. Fluorescence microscopic studies indicated that the FITC-labeled K4R2-Nal2-S1 preferentially binds cancer cells and causes apoptotic cell death. Moreover, a significant inhibition in human lung tumor growth was observed in the xenograft mice treated with K4R2-Nal2-S1. Our strategy provides new opportunities in the development of highly effective and selective antimicrobial and anticancer peptide-based therapeutics. PMID:25970292

  5. Ancient Antimicrobial Peptides Kill Antibiotic-Resistant Pathogens: Australian Mammals Provide New Options

    PubMed Central

    Wang, Jianghui; Wong, Emily S. W.; Whitley, Jane C.; Li, Jian; Stringer, Jessica M.; Short, Kirsty R.; Renfree, Marilyn B.

    2011-01-01

    Background To overcome the increasing resistance of pathogens to existing antibiotics the 10×'20 Initiative declared the urgent need for a global commitment to develop 10 new antimicrobial drugs by the year 2020. Naturally occurring animal antibiotics are an obvious place to start. The recently sequenced genomes of mammals that are divergent from human and mouse, including the tammar wallaby and the platypus, provide an opportunity to discover novel antimicrobials. Marsupials and monotremes are ideal potential sources of new antimicrobials because they give birth to underdeveloped immunologically naïve young that develop outside the sterile confines of a uterus in harsh pathogen-laden environments. While their adaptive immune system develops innate immune factors produced either by the mother or by the young must play a key role in protecting the immune-compromised young. In this study we focus on the cathelicidins, a key family of antimicrobial peptide genes. Principal Finding We identified 14 cathelicidin genes in the tammar wallaby genome and 8 in the platypus genome. The tammar genes were expressed in the mammary gland during early lactation before the adaptive immune system of the young develops, as well as in the skin of the pouch young. Both platypus and tammar peptides were effective in killing a broad range of bacterial pathogens. One potent peptide, expressed in the early stages of tammar lactation, effectively killed multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Conclusions and Significance Marsupial and monotreme young are protected by antimicrobial peptides that are potent, broad spectrum and salt resistant. The genomes of our distant relatives may hold the key for the development of novel drugs to combat multidrug-resistant pathogens. PMID:21912615

  6. High-yield recombinant expression of the chicken antimicrobial peptide fowlicidin-2 in Escherichia coli.

    PubMed

    Feng, Xingjun; Xu, Wenshan; Qu, Pei; Li, Xiaochong; Xing, Liwei; Liu, Di; Jiao, Jian; Wang, Jue; Li, Zhongqiu; Liu, Chunlong

    2015-01-01

    The antimicrobial peptide fowlicidin-2 identified in chicken is a member of the cathelicidins family. The mature fowlicidin-2 possesses high antibacterial efficacy and lipopolysaccharide (LPS) neutralizing activity, and also represents an excellent candidate as an antimicrobial agent. In the present study, the recombinant fowlicidin-2 was successfully produced by Escherichia coli (E. coli) recombinant expression system. The gene encoding fowlicidin-2 with the codon preference of E. coli was designed through codon optimization and synthesized in vitro. The gene was then ligated into the plasmid pET-32a(+), which features fusion protein thioredoxin at the N-terminal. The recombinant plasmid was transformed into E. coli BL21(DE3) and cultured in Luria-Bertani (LB) medium. After isopropyl-β-D-thiogalactopyranoside (IPTG) induction, the fowlicidin-2 fusion protein was successfully expressed as inclusion bodies. The inclusion bodies were dissolved and successfully released the peptide in 70% formic acid solution containing cyanogen bromide (CNBr) in a single step. After purification by reverse-phase high-performance liquid chromatography (RP-HPLC), ∼6.0 mg of fowlicidin-2 with purity more than 97% was obtained from 1 litre of bacteria culture. The recombinant peptide exhibited high antibacterial activity against the Gram-positive and Gram-negative bacteria, and even drug-resistant strains. This system could be used to rapidly and efficiently produce milligram quantities of a battery of recombinant antimicrobial peptides as well as for large-scale production. PMID:25641948

  7. Epithelial Antimicrobial Peptides: Guardian of the Oral Cavity

    PubMed Central

    Hans, Mayank; Madaan Hans, Veenu

    2014-01-01

    Gingival epithelium provides first line of defence from the microorganisms present in dental plaque. It not only provides a mechanical barrier but also has an active immune function too. Gingival epithelial cells participate in innate immunity by producing a range of antimicrobial peptides to protect the host against oral pathogens. These epithelial antimicrobial peptides (EAPs) include the β-defensin family, cathelicidin (LL-37), calprotectin, and adrenomedullin. While some are constitutively expressed in gingival epithelial cells, others are induced upon exposure to microbial insults. It is likely that these EAPs have a role in determining the initiation and progression of oral diseases. EAPs are broad spectrum antimicrobials with a different but overlapping range of activity. Apart from antimicrobial activity, they participate in several other crucial roles in host tissues. Some of these, for instance, β-defensins, are chemotactic to immune cells. Others, such as calprotectin are important for wound healing and cell proliferation. Adrenomedullin, a multifunctional peptide, has its biological action in a wide range of tissues. Not only is it a potent vasodilator but also it has several endocrine effects. Knowing in detail the various bioactions of these EAPs may provide us with useful information regarding their utility as therapeutic agents. PMID:25435884

  8. Design and Engineering Strategies for Synthetic Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Tossi, Alessandro

    Thousands of antimicrobial peptides (AMPs) of prokaryotic, fungal, plant, or animal origin have been identified, and their potential as lead compounds for the design of novel therapeutic agents in the treatment of infection, for stimulating the immune system, or in countering septic shock has been widely recognized. Added to this is their possible use in prophylaxis of infectious diseases for animal or plant protection, for disinfection of surgical instruments or industrial surfaces, and for food preservation among other commercially important applications. Since the early eighties, AMPs have been subject to a vast number of studies aimed at understanding what determines their potency and spectrum of activities against bacterial or fungal pathogens, and at maximizing these while limiting cytotoxic activities toward host cells. Much research has also been directed toward understanding specific mechanisms of action underlying the antimicrobial activity and selectivity, to be able to redesign the peptides for optimal performance. A central theme in the mode of action of many AMPs is their dynamic interaction with biological membranes, which involves various properties of these peptides such as, among others, surface hydrophobicity and polarity, charge, structure, and induced conformational variations. These features are often intimately interconnected so that engineering peptides to independently adjust any one property in particular is not an easy task. However, solid-phase peptide synthesis allows the use of a large repertoire of nonproteinogenic amino acids that can be used in the rational design of peptides to finely tune structural and physicochemical properties and precisely probe structure-function relationships.

  9. Defensins and Other Antimicrobial Peptides at the Ocular Surface

    PubMed Central

    McDermott, Alison M.

    2006-01-01

    Although constantly exposed to the environment and “foreign bodies” such as contact lenses and unwashed fingertips, the ocular surface succumbs to infection relatively infrequently. This is, in large part, due to a very active and robust innate immune response mounted at the ocular surface. Studies over the past 20 years have revealed that small peptides with antimicrobial activity are a major component of the human innate immune response system. The ocular surface is no exception, with peptides of the defensin and cathelicidin families being detected in the tear film and secreted by corneal and conjunctival epithelial cells. There is also much evidence to suggest that the role of some antimicrobial peptides is not restricted to direct killing of pathogens, but, rather, that they function in various aspects of the immune response, including recruitment of immune cells, and through actions on dendritic cells provide a link to adaptive immunity. A role in wound healing is also supported. In this article, the properties, mechanisms of actions and functional roles of antimicrobial peptides are reviewed, with particular emphasis on the potential multifunctional roles of defensins and LL-37 (the only known human cathelicidin) at the ocular surface. PMID:17216098

  10. Design and characterization of an acid-activated antimicrobial peptide.

    PubMed

    Li, Lina; He, Jian; Eckert, Randal; Yarbrough, Daniel; Lux, Renate; Anderson, Maxwell; Shi, Wenyuan

    2010-01-01

    Dental caries is a microbial biofilm infection in which the metabolic activities of plaque bacteria result in a dramatic pH decrease and shift the demineralization/remineralization equilibrium on the tooth surface towards demineralization. In addition to causing a net loss in tooth minerals, creation of an acidic environment favors growth of acid-enduring and acid-generating species, which causes further reduction in the plaque pH. In this study, we developed a prototype antimicrobial peptide capable of achieving high activity exclusively at low environmental pH to target bacterial species like Streptococcus mutans that produce acid and thrive under the low pH conditions detrimental for tooth integrity. The features of clavanin A, a naturally occurring peptide rich in histidine and phenylalanine residues with pH-dependent antimicrobial activity, served as a design basis for these prototype 'acid-activated peptides' (AAPs). Employing the major cariogenic species S. mutans as a model system, the two AAPs characterized in this study exhibited a striking pH-dependent antimicrobial activity, which correlated well with the calculated charge distribution. This type of peptide represents a potential new way to combat dental caries. PMID:19878192

  11. Bacterial resistance to antimicrobial peptides: an evolving phenomenon.

    PubMed

    Fleitas, Osmel; Agbale, Caleb M; Franco, Octavio L

    2016-01-01

    Bacterial resistance to conventional antibiotics is currently a real problem all over the world, making novel antimicrobial compounds a real research priority. Some of the most promising compounds found to date are antimicrobial peptides (AMPs). The benefits of these drugs include their broad spectrum of activity that affects several microbial processes, making the emergence of resistance less likely. However, bacterial resistance to AMPs is an evolving phenomenon that compromises the therapeutic potential of these compounds. Therefore, it is mandatory to understand bacterial mechanisms of resistance to AMPs in depth, in order to develop more powerful AMPs that overcome the bacterial resistance response. PMID:27100488

  12. Small cationic antimicrobial peptides delocalize peripheral membrane proteins

    PubMed Central

    Wenzel, Michaela; Chiriac, Alina Iulia; Otto, Andreas; Zweytick, Dagmar; May, Caroline; Schumacher, Catherine; Gust, Ronald; Albada, H. Bauke; Penkova, Maya; Krämer, Ute; Erdmann, Ralf; Metzler-Nolte, Nils; Straus, Suzana K.; Bremer, Erhard; Becher, Dörte; Brötz-Oesterhelt, Heike; Sahl, Hans-Georg; Bandow, Julia Elisabeth

    2014-01-01

    Short antimicrobial peptides rich in arginine (R) and tryptophan (W) interact with membranes. To learn how this interaction leads to bacterial death, we characterized the effects of the minimal pharmacophore RWRWRW-NH2. A ruthenium-substituted derivative of this peptide localized to the membrane in vivo, and the peptide also integrated readily into mixed phospholipid bilayers that resemble Gram-positive membranes. Proteome and Western blot analyses showed that integration of the peptide caused delocalization of peripheral membrane proteins essential for respiration and cell-wall biosynthesis, limiting cellular energy and undermining cell-wall integrity. This delocalization phenomenon also was observed with the cyclic peptide gramicidin S, indicating the generality of the mechanism. Exogenous glutamate increases tolerance to the peptide, indicating that osmotic destabilization also contributes to antibacterial efficacy. Bacillus subtilis responds to peptide stress by releasing osmoprotective amino acids, in part via mechanosensitive channels. This response is triggered by membrane-targeting bacteriolytic peptides of different structural classes as well as by hypoosmotic conditions. PMID:24706874

  13. APD2: the updated antimicrobial peptide database and its application in peptide design

    PubMed Central

    Wang, Guangshun; Li, Xia; Wang, Zhe

    2009-01-01

    The antimicrobial peptide database (APD, http://aps.unmc.edu/AP/main.php) has been updated and expanded. It now hosts 1228 entries with 65 anticancer, 76 antiviral (53 anti-HIV), 327 antifungal and 944 antibacterial peptides. The second version of our database (APD2) allows users to search peptide families (e.g. bacteriocins, cyclotides, or defensins), peptide sources (e.g. fish, frogs or chicken), post-translationally modified peptides (e.g. amidation, oxidation, lipidation, glycosylation or d-amino acids), and peptide binding targets (e.g. membranes, proteins, DNA/RNA, LPS or sugars). Statistical analyses reveal that the frequently used amino acid residues (>10%) are Ala and Gly in bacterial peptides, Cys and Gly in plant peptides, Ala, Gly and Lys in insect peptides, and Leu, Ala, Gly and Lys in amphibian peptides. Using frequently occurring residues, we demonstrate database-aided peptide design in different ways. Among the three peptides designed, GLK-19 showed a higher activity against Escherichia coli than human LL-37. PMID:18957441

  14. Occurrence and function of D-amino acid-containing peptides and proteins: antimicrobial peptides.

    PubMed

    Mignogna, G; Simmaco, M; Barra, D

    1998-01-01

    Antimicrobial peptides are widely distributed in living organisms, where they represent a constitutive defence system acting as a first line of response against infections. The number of such peptides discovered has increased rapidly in the last few years, and more than 100 have been described from different sources. So far, antimicrobial peptides containing a D-amino acid have only been found in the skin secretions of frogs belonging to the genus Bombina. In the second position of the sequence of the mature peptides either D-alloisoleucine or D-leucine were detected. The D-amino acids are derived from the corresponding L forms by an as yet unknown posttranslational reaction. PMID:9949866

  15. Inhibition of Escherichia coli ATP synthase by amphibian antimicrobial peptides.

    PubMed

    Laughlin, Thomas F; Ahmad, Zulfiqar

    2010-04-01

    Previously melittin, the alpha-helical basic honey bee venom peptide, was shown to inhibit F(1)-ATPase by binding at the beta-subunit DELSEED motif of F(1)F(o)-ATP synthase. Herein, we present the inhibitory effects of the basic alpha-helical amphibian antimicrobial peptides, ascaphin-8, aurein 2.2, aurein 2.3, carein 1.8, carein 1.9, citropin 1.1, dermaseptin, maculatin 1.1, maganin II, MRP, or XT-7, on purified F(1) and membrane bound F(1)F(0)Escherichia coli ATP synthase. We found that the extent of inhibition by amphibian peptides is variable. Whereas MRP-amide inhibited ATPase essentially completely (approximately 96% inhibition), carein 1.8 did not inhibit at all (0% inhibition). Inhibition by other peptides was partial with a range of approximately 13-70%. MRP-amide was also the most potent inhibitor on molar scale (IC(50) approximately 3.25 microM). Presence of an amide group at the c-terminal of peptides was found to be critical in exerting potent inhibition of ATP synthase ( approximately 20-40% additional inhibition). Inhibition was fully reversible and found to be identical in both F(1)F(0) membrane preparations as well as in isolated purified F(1). Interestingly, growth of E. coli was abrogated in the presence of ascaphin-8, aurein 2.2, aurein 2.3, citropin 1.1, dermaseptin, magainin II-amide, MRP, MRP-amide, melittin, or melittin-amide but was unaffected in the presence of carein 1.8, carein 1.9, maculatin 1.1, magainin II, or XT-7. Hence inhibition of F(1)-ATPase and E. coli cell growth by amphibian antimicrobial peptides suggests that their antimicrobial/anticancer properties are in part linked to their actions on ATP synthase. PMID:20100509

  16. Inhibition of Escherichia coli ATP synthase by amphibian antimicrobial peptides

    PubMed Central

    Laughlin, Thomas F.; Ahmad, Zulfiqar

    2010-01-01

    Previously melittin, the α-helical basic honey bee venom peptide, was shown to inhibit F1-ATPase by binding at the β-subunit DELSEED motif of F1Fo ATP synthase. Herein, we present the inhibitory effects of the basic α-helical amphibian antimicrobial peptides, ascaphin-8, aurein 2.2, aurein 2.3, carein 1.8, carein 1.9, citropin 1.1, dermaseptin, maculatin 1.1, maganin II, MRP, or XT-7, on purified F1 and membrane bound F1Fo E. coli ATP synthase. We found that the extent of inhibition by amphibian peptides is variable. Whereas MRP-amide inhibited ATPase essentially completely (~96% inhibition), carein 1.8 did not inhibit at all (0% inhibition). Inhibition by other peptides was partial with a range of ~13% to 70%. MRP-amide was also the most potent inhibitor on molar scale (IC50 ~3.25 µM). Presence of an amide group at the c-terminal of peptides was found to be critical in exerting potent inhibition of ATP synthase (~20–40% additional inhibition). Inhibition was fully reversible and found to be identical in both F1Fo membrane preparations as well as in isolated purified F1. Interestingly, growth of Escherichia coli was abrogated in the presence of ascaphin-8, aurein 2.2, aurein 2.3, citropin 1.1, dermaseptin, magainin II-amide, MRP, MRP-amide, melittin, or melittin-amide but was unaffected in the presence of carein 1.8, carein 1.9, maculatin 1.1, magainin II, or XT-7. Hence inhibition of F1-ATPase and E. coli cell growth by amphibian antimicrobial peptides suggests that their antimicrobial/anticancer properties are in part linked to their actions on ATP synthase. PMID:20100509

  17. Antimicrobial Lactoferrin Peptides: The Hidden Players in the Protective Function of a Multifunctional Protein

    PubMed Central

    Sinha, Mau; Kaushik, Sanket; Kaur, Punit; Singh, Tej P.

    2013-01-01

    Lactoferrin is a multifunctional, iron-binding glycoprotein which displays a wide array of modes of action to execute its primary antimicrobial function. It contains various antimicrobial peptides which are released upon its hydrolysis by proteases. These peptides display a similarity with the antimicrobial cationic peptides found in nature. In the current scenario of increasing resistance to antibiotics, there is a need for the discovery of novel antimicrobial drugs. In this context, the structural and functional perspectives on some of the antimicrobial peptides found in N-lobe of lactoferrin have been reviewed. This paper provides the comparison of lactoferrin peptides with other antimicrobial peptides found in nature as well as interspecies comparison of the structural properties of these peptides within the native lactoferrin. PMID:23554820

  18. Antimicrobial peptides and proteins of the horse - insights into a well-armed organism

    PubMed Central

    2011-01-01

    Antimicrobial peptides play a pivotal role as key effectors of the innate immune system in plants and animals and act as endogenous antibiotics. The molecules exhibit an antimicrobial activity against bacteria, viruses, and eukaryotic pathogens with different specificities and potencies depending on the structure and amino-acid composition of the peptides. Several antimicrobial peptides were comprehensively investigated in the last three decades and some molecules with remarkable antimicrobial properties have reached the third phase of clinical studies. Next to the peptides themselves, numerous organisms were examined and analyzed regarding their repertoire of antimicrobial peptides revealing a huge number of candidates with potencies and properties for future medical applications. One of these organisms is the horse, which possesses numerous peptides that are interesting candidates for therapeutical applications in veterinary medicine. Here we summarize investigations and knowledge on equine antimicrobial peptides, point to interesting candidates, and discuss prospects for therapeutical applications. PMID:21888650

  19. Peptides from the scorpion Vaejovis punctatus with broad antimicrobial activity.

    PubMed

    Ramírez-Carreto, Santos; Jiménez-Vargas, Juana María; Rivas-Santiago, Bruno; Corzo, Gerardo; Possani, Lourival D; Becerril, Baltazar; Ortiz, Ernesto

    2015-11-01

    The antimicrobial potential of two new non-disulfide bound peptides, named VpAmp1.0 (LPFFLLSLIPSAISAIKKI, amidated) and VpAmp2.0 (FWGFLGKLAMKAVPSLIGGNKSSSK) is here reported. These are 19- and 25-aminoacid-long peptides with +2 and +4 net charges, respectively. Their sequences correspond to the predicted mature regions from longer precursors, putatively encoded by cDNAs derived from the venom glands of the Mexican scorpion Vaejovis punctatus. Both peptides were chemically synthesized and assayed against a variety of microorganisms, including pathogenic strains from clinical isolates and strains resistant to conventional antibiotics. Two shorter variants, named VpAmp1.1 (FFLLSLIPSAISAIKKI, amidated) and VpAmp2.1 (FWGFLGKLAMKAVPSLIGGNKK), were also synthesized and tested. The antimicrobial assays revealed that the four synthetic peptides effectively inhibit the growth of both Gram-positive (Staphylococcus aureus and Streptococcus agalactiaea) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria, with MICs in the range of 2.5-24.0 μM; yeasts (Candida albicans and Candida glabrata) with MICs of 3.1-50.0 μM; and two clinically isolated strains of Mycobacterium tuberculosis-including a multi-drug resistant one- with MICs in the range of 4.8-30.5 μM. A comparison between the activities of the original peptides and their derivatives gives insight into the structural/functional role of their distinctive residues. PMID:26352292

  20. Salivary Antimicrobial Peptides in Early Detection of Periodontitis

    PubMed Central

    Güncü, Güliz N.; Yilmaz, Dogukan; Könönen, Eija; Gürsoy, Ulvi K.

    2015-01-01

    In the pathogenesis of periodontitis, an infection-induced inflammatory disease of the tooth-supporting tissues, there is a complex interaction between the subgingival microbiota and host tissues. A periodontal diagnostic tool for detecting the initiation and progression of the disease, monitoring the response to therapy, or measuring the degree of susceptibility to future disease progression has been of interest for a long time. The value of various enzymes, proteins, and immunoglobulins, which are abundant constituents of saliva, as potential biomarkers has been recognized and extensively investigated for periodontal diseases. Gingival defensins and cathelicidins are small cationic antimicrobial peptides that play an important role in innate immune response. However, their applicability as salivary biomarkers is still under debate. The present review focuses on proteomic biomarkers and antimicrobial peptides, in particular, to be used at early phases of periodontitis. PMID:26734583

  1. A Large-Scale Structural Classification of Antimicrobial Peptides

    PubMed Central

    Lee, Chen-Che; Yang, Je-Ruei; Lai, Jim Z. C.

    2015-01-01

    Antimicrobial peptides (AMPs) are potent drug candidates against microbial organisms such as bacteria, fungi, parasites, and viruses. AMPs have abundant sequences and structures, two fundamental resources for bioinformatics researches, but analyses on how they associate with each other are either nonexistent or limited to partial classification and data. We thus present A Database of Anti-Microbial peptides (ADAM), which contains 7,007 unique sequences and 759 structures, to systematically establish comprehensive associations between AMP sequences and structures through structural folds and to provide an easy access to view their relationships. 30 distinct AMP structural fold clusters with more than one structure are detected and about a thousand AMPs are associated with at least one structural fold cluster. According to ADAM, AMP structural folds are limited—AMPs only cover about 3% of the overall protein fold space. PMID:26000295

  2. Bactericidal synergy of lysostaphin in combination with antimicrobial peptides.

    PubMed

    Desbois, A P; Coote, P J

    2011-08-01

    Drug-resistant staphylococci constitute a serious problem that urgently requires the discovery of new therapeutic agents. There has been a resurgence in interest in using lysostaphin (a specific anti-staphylococcal enzyme) as a treatment for infections caused by these important pathogens. However, bacterial resistance to lysostaphin is a problem, but the use of a combination treatment may surmount this issue. In this present study, using viable counts from suspension incubations, lysostaphin is shown to be synergistically bactericidal in combination with various conventional antimicrobial peptides, the antimicrobial protein bovine lactoferrin, a lantibiotic (nisin), and certain lipopeptides used clinically (colistin, daptomycin and polymyxin B). Combinations that act in synergy are of clinical importance as these reduce the doses of the compounds needed for effective treatments and decrease the chances of resistance being selected. The use of lysostaphin in combination with a peptide may represent a new avenue in tackling drug-resistant staphylococci. PMID:21311938

  3. Collectins and Cationic Antimicrobial Peptides of the Respiratory Epithelia

    PubMed Central

    Grubor, B.; Meyerholz, D. K.; Ackermann, M. R.

    2009-01-01

    The respiratory epithelium is a primary site for the deposition of microorganisms that are acquired during inspiration. The innate immune system of the respiratory tract eliminates many of these potentially harmful agents preventing their colonization. Collectins and cationic antimicrobial peptides are antimicrobial components of the pulmonary innate immune system produced by respiratory epithelia, which have integral roles in host defense and inflammation in the lung. Synthesis and secretion of these molecules are regulated by the developmental stage, hormones, as well as many growth and immunoregulatory factors. The purpose of this review is to discuss antimicrobial innate immune elements within the respiratory tract of healthy and pneumonic lung with emphasis on hydrophilic surfactant proteins and β-defensins. PMID:16966437

  4. Context Mediates Antimicrobial Efficacy of Kinocidin Congener Peptide RP-1

    PubMed Central

    Yount, Nannette Y.; Cohen, Samuel E.; Kupferwasser, Deborah; Waring, Alan J.; Ruchala, Piotr; Sharma, Shantanu; Wasserman, Karlman; Jung, Chun-Ling; Yeaman, Michael R.

    2011-01-01

    Structure-mechanism relationships are key determinants of host defense peptide efficacy. These relationships are influenced by anatomic, physiologic and microbiologic contexts. Structure-mechanism correlates were assessed for the synthetic peptide RP-1, modeled on microbicidal domains of platelet kinocidins. Antimicrobial efficacies and mechanisms of action against susceptible (S) or resistant (R) Salmonella typhimurium (ST), Staphylococcus aureus (SA), and Candida albicans (CA) strain pairs were studied at pH 7.5 and 5.5. Although RP-1 was active against all study organisms, it exhibited greater efficacy against bacteria at pH 7.5, but greater efficacy against CA at pH 5.5. RP-1 de-energized SA and CA, but caused hyperpolarization of ST in both pH conditions. However, RP-1 permeabilized STS and CA strains at both pH, whereas permeabilization was modest for STR or SA strain at either pH. Biochemical analysis, molecular modeling, and FTIR spectroscopy data revealed that RP-1 has indistinguishable net charge and backbone trajectories at pH 5.5 and 7.5. Yet, concordant with organism-specific efficacy, surface plasmon resonance, and FTIR, molecular dynamics revealed modest helical order increases but greater RP-1 avidity and penetration of bacterial than eukaryotic lipid systems, particularly at pH 7.5. The present findings suggest that pH– and target–cell lipid contexts influence selective antimicrobial efficacy and mechanisms of RP-1 action. These findings offer new insights into selective antimicrobial efficacy and context–specificity of antimicrobial peptides in host defense, and support design strategies for potent anti-infective peptides with minimal concomitant cytotoxicity. PMID:22073187

  5. Nanomechanical Response of Bacterial Cells to Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Parg, Richard; Dutcher, John

    2015-03-01

    The effectiveness of antimicrobial compounds can be easily screened, however their mechanism of action is much more difficult to determine. Many compounds act by compromising the mechanical integrity of the bacterial cell envelope, and we have developed an atomic force microscopy (AFM)-based creep deformation technique to evaluate changes in the time-dependent mechanical properties of bacterial cells upon exposure to antimicrobial peptides. Measurements performed before and after exposure, as well as time-resolved measurements and those performed at different antimicrobial concentrations, revealed large changes to the viscoelastic parameters including a distinctive signature for the loss of integrity of the bacterial cell envelope. Our previous experiments have focused on Pseudomonas aeruginosaPAO1 bacterial cells in Milli-Q water, for which the cells can withstand the large osmotic pressure. In the present study we have focused on performing the measurements in buffer to obtain more biologically relevant results. The AFM creep deformation measurement provides new, unique insight into the kinetics and mechanism of action of antimicrobial peptides on bacteria.

  6. Sphingolipids and Antimicrobial Peptides: Function and Roles in Atopic Dermatitis

    PubMed Central

    Park, Kyungho; Lee, Sinhee; Lee, Yong-Moon

    2013-01-01

    Inflammatory skin diseases such as atopic dermatitis (AD) and rosacea were complicated by barrier abrogation and deficiency in innate immunity. The first defender of epidermal innate immune response is the antimicrobial peptides (AMPs) that exhibit a broad-spectrum antimicrobial activity against multiple pathogens, including Gram-positive and Gram-negative bacteria, viruses, and fungi. The deficiency of these AMPs in the skin of AD fails to protect our body against virulent pathogen infections. In contrast to AD where there is a suppression of AMPs, rosacea is characterized by overexpression of cathelicidin antimicrobial peptide (CAMP), the products of which result in chronic epidermal inflammation. In this regard, AMP generation that is controlled by a key ceramide metabolite S1P-dependent mechanism could be considered as alternate therapeutic approaches to treat these skin disorders, i.e., Increased S1P levels strongly stimulated the CAMP expression which elevated the antimicrobial activity against multiple pathogens resulting the improved AD patient skin. PMID:24244808

  7. Inhibitory Effects of Antimicrobial Peptides on Lipopolysaccharide-Induced Inflammation

    PubMed Central

    Sun, Yue; Shang, Dejing

    2015-01-01

    Antimicrobial peptides (AMPs) are usually small molecule peptides, which display broad-spectrum antimicrobial activity, high efficiency, and stability. For the multiple-antibiotic-resistant strains, AMPs play a significant role in the development of novel antibiotics because of their broad-spectrum antimicrobial activities and specific antimicrobial mechanism. Besides broad-spectrum antibacterial activity, AMPs also have anti-inflammatory activity. The neutralization of lipopolysaccharides (LPS) plays a key role in anti-inflammatory action of AMPs. On the one hand, AMPs can readily penetrate the cell wall barrier by neutralizing LPS to remove Gram-negative bacteria that can lead to infection. On the contrary, AMPs can also inhibit the production of biological inflammatory cytokines to reduce the inflammatory response through neutralizing circulating LPS. In addition, AMPs also modulate the host immune system by chemotaxis of leukocytes, to promote immune cell proliferation, epithelialization, and angiogenesis and thus play a protective role. This review summarizes some recent researches about anti-inflammatory AMPs, with a focus on the interaction of AMPs and LPS on the past decade. PMID:26612970

  8. Temporin-SHf, a New Type of Phe-rich and Hydrophobic Ultrashort Antimicrobial Peptide*

    PubMed Central

    Abbassi, Feten; Lequin, Olivier; Piesse, Christophe; Goasdoué, Nicole; Foulon, Thierry; Nicolas, Pierre; Ladram, Ali

    2010-01-01

    Because issues of cost and bioavailability have hampered the development of gene-encoded antimicrobial peptides to combat infectious diseases, short linear peptides with high microbial cell selectivity have been recently considered as antibiotic substitutes. A new type of short antimicrobial peptide, designated temporin-SHf, was isolated and cloned from the skin of the frog Pelophylax saharica. Temporin-SHf has a highly hydrophobic sequence (FFFLSRIFa) and possesses the highest percentage of Phe residues of any known peptide or protein. Moreover, it is the smallest natural linear antimicrobial peptide found to date, with only eight residues. Despite its small size and hydrophobicity, temporin-SHf has broad-spectrum microbicidal activity against Gram-positive and Gram-negative bacteria and yeasts, with no hemolytic activity. CD and NMR spectroscopy combined with restrained molecular dynamics calculations showed that the peptide adopts a well defined non-amphipathic α-helical structure from residue 3 to 8, when bound to zwitterionic dodecyl phosphocholine or anionic SDS micelles. Relaxation enhancement caused by paramagnetic probes showed that the peptide adopts nearly parallel orientations to the micelle surface and that the helical structure is stabilized by a compact hydrophobic core on one face that penetrates into the micelle interior. Differential scanning calorimetry on multilamellar vesicles combined with membrane permeabilization assays on bacterial cells indicated that temporin-SHf disrupts the acyl chain packing of anionic lipid bilayers, thereby triggering local cracks and microbial membrane disintegration through a detergent-like effect probably via the carpet mechanism. The short length, compositional simplicity, and broad-spectrum activity of temporin-SHf make it an attractive candidate to develop new antibiotic agents. PMID:20308076

  9. Diversity, evolution and medical applications of insect antimicrobial peptides.

    PubMed

    Mylonakis, Eleftherios; Podsiadlowski, Lars; Muhammed, Maged; Vilcinskas, Andreas

    2016-05-26

    Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolution of insect AMPs by mapping their phylogenetic distribution, allowing us to predict the evolutionary origins of selected AMP families and to identify evolutionarily conserved and taxon-specific families. Furthermore, we highlight the use of the nematode Caenorhabditis elegans as a whole-animal model in high-throughput screening methods to identify AMPs with efficacy against human pathogens, including Acinetobacter baumanii and methicillin-resistant Staphylococcus aureus We also discuss the potential medical applications of AMPs, including their use as alternatives for conventional antibiotics in ectopic therapies, their combined use with antibiotics to restore the susceptibility of multidrug-resistant pathogens, and their use as templates for the rational design of peptidomimetic drugs that overcome the disadvantages of therapeutic peptides.The article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160593

  10. Insect Antimicrobial Peptide Complexes Prevent Resistance Development in Bacteria

    PubMed Central

    Chernysh, Sergey; Gordya, Natalia; Suborova, Tatyana

    2015-01-01

    In recent decades much attention has been paid to antimicrobial peptides (AMPs) as natural antibiotics, which are presumably protected from resistance development in bacteria. However, experimental evolution studies have revealed prompt resistance increase in bacteria to any individual AMP tested. Here we demonstrate that naturally occurring compounds containing insect AMP complexes have clear advantage over individual peptide and small molecule antibiotics in respect of drug resistance development. As a model we have used the compounds isolated from bacteria challenged maggots of Calliphoridae flies. The compound isolated from blow fly Calliphora vicina was found to contain three distinct families of cell membrane disrupting/permeabilizing peptides (defensins, cecropins and diptericins), one family of proline rich peptides and several unknown antimicrobial substances. Resistance changes under long term selective pressure of the compound and reference antibiotics cefotaxime, meropenem and polymyxin B were tested using Escherichia coli, Klebsiella pneumonia and Acinetobacter baumannii clinical strains. All the strains readily developed resistance to the reference antibiotics, while no signs of resistance growth to the compound were registered. Similar results were obtained with the compounds isolated from 3 other fly species. The experiments revealed that natural compounds containing insect AMP complexes, in contrast to individual AMP and small molecule antibiotics, are well protected from resistance development in bacteria. Further progress in the research of natural AMP complexes may provide novel solutions to the drug resistance problem. PMID:26177023

  11. A synthetic peptide adhesion epitope as a novel antimicrobial agent.

    PubMed

    Kelly, C G; Younson, J S; Hikmat, B Y; Todryk, S M; Czisch, M; Haris, P I; Flindall, I R; Newby, C; Mallet, A I; Ma, J K; Lehner, T

    1999-01-01

    The earliest step in microbial infection is adherence by specific microbial adhesins to the mucosa of the oro-intestinal, nasorespiratory, or genitourinary tract. We inhibited binding of a cell surface adhesin of Streptococcus mutans to salivary receptors in vitro, as measured by surface plasmon resonance, using a synthetic peptide (p1025) corresponding to residues 1025-1044 of the adhesin. Two residues within p1025 that contribute to binding (Q1025, E1037) were identified by site-directed mutagenesis. In an in vivo human streptococcal adhesion model, direct application of p1025 to the teeth prevented recolonization of S. mutans but not Actinomyces, as compared with a control peptide or saline. This novel antimicrobial strategy, applying competitive peptide inhibitors of adhesion, may be used against other microorganisms in which adhesins mediate colonization of mucosal surfaces. PMID:9920267

  12. A novel single-domain peptide, anti-LPS factor from prawn: synthesis of peptide, antimicrobial properties and complete molecular characterization.

    PubMed

    Arockiaraj, Jesu; Kumaresan, Venkatesh; Bhatt, Prasanth; Palanisamy, Rajesh; Gnanam, Annie J; Pasupuleti, Mukesh; Kasi, Marimuthu; Chaurasia, Mukesh Kumar

    2014-03-01

    In this study, we reported a complete molecular characterization including bioinformatics features, gene expression, peptide synthesis and its antimicrobial activities of an anti-lipopolysaccharide (LPS) factor (ALF) cDNA identified from the established cDNA library of freshwater prawn Macrobrachium rosenbergii (named as MrALF). The mature protein has an estimated molecular weight of 11.240 kDa with an isoelectric point of 9.46. The bioinformatics analysis showed that the MrALF contains an antimicrobial peptide (AMP) region between T54 and P77 with two conserved cysteine residues (Cys55 and Cys76) which have an anti-parallel β-sheet confirmation. The β-sheet is predicted as cationic with hydrophobic nature containing a net charge of +5. The depicted AMP region is determined to be amphipathic with a predicted hydrophobic face 'FPVFI'. A highest MrALF gene expression was observed in hemocytes and is up-regulated with virus [white spot syndrome baculovirus (WSBV)], bacteria (Aeromonas hydrophila) and Escherichia coli LPS at various time points. The LPS binding region of MrALF peptide was synthesized to study the antimicrobial property, bactericidal efficiency and hemolytic capacity. The peptide showed antimicrobial activity against both the Gram-negative and Gram-positive bacteria. The bactericidal assay showed that the peptide recognized the LPS of bacterial cell walls and binding on its substrate and thereby efficiently distinguishing the pathogens. The hemolytic activity of MrALF peptide is functioning in a concentration dependant manner. In summary, the comprehensive analysis of MrALF showed it to be an effective antimicrobial peptide and thus it plays a crucial role in the defense mechanism of M. rosenbergii. PMID:24269604

  13. A liaR deletion restores susceptibility to daptomycin and antimicrobial peptides in multidrug-resistant Enterococcus faecalis.

    PubMed

    Reyes, Jinnethe; Panesso, Diana; Tran, Truc T; Mishra, Nagendra N; Cruz, Melissa R; Munita, Jose M; Singh, Kavindra V; Yeaman, Michael R; Murray, Barbara E; Shamoo, Yousif; Garsin, Danielle; Bayer, Arnold S; Arias, Cesar A

    2015-04-15

    Daptomycin is a lipopeptide antibiotic that is used clinically against many gram-positive bacterial pathogens and is considered a key frontline bactericidal antibiotic to treat multidrug-resistant enterococci. Emergence of daptomycin resistance during therapy of serious enterococcal infections is a major clinical issue. In this work, we show that deletion of the gene encoding the response regulator, LiaR (a member of the LiaFSR system that controls cell envelope homeostasis), from daptomycin-resistant Enterococcus faecalis not only reversed resistance to 2 clinically available cell membrane-targeting antimicrobials (daptomycin and telavancin), but also resulted in hypersusceptibility to these antibiotics and to a variety of antimicrobial peptides of diverse origin and with different mechanisms of action. The changes in susceptibility to these antibiotics and antimicrobial peptides correlated with in vivo attenuation in a Caenorhabditis elegans model. Mechanistically, deletion of liaR altered the localization of cardiolipin microdomains in the cell membrane. Our findings suggest that LiaR is a master regulator of the enterococcal cell membrane response to diverse antimicrobial agents and peptides; as such, LiaR represents a novel target to restore the activity of clinically useful antimicrobials against these organisms and, potentially, increase susceptibility to endogenous antimicrobial peptides. PMID:25362197

  14. The potential for adaptive maintenance of diversity in insect antimicrobial peptides.

    PubMed

    Unckless, Robert L; Lazzaro, Brian P

    2016-05-26

    Genes involved in immune defence are among the fastest evolving in the genomes of many species. Interestingly, however, genes encoding antimicrobial peptides (AMPs) have shown little evidence for adaptive divergence in arthropods, despite the centrality of these peptides in direct killing of microbial pathogens. This observation, coupled with a failure to detect phenotypic consequence of genetic variation in AMPs, has led to the hypothesis that individual AMPs make minor contributions to overall immune defence and that AMPs instead act as a collective cocktail. Recent data, however, have suggested an alternative explanation for the apparent lack of adaptive divergence in AMP genes. Molecular evolutionary and phenotypic data have begun to suggest that variant AMP alleles may be maintained through balancing selection in invertebrates, a pattern similar to that observed in several vertebrate AMPs. Signatures of balancing selection include high rates of non-synonymous polymorphism, trans-species amino acid polymorphisms, and convergence of amino acid states across the phylogeny. In this review, we revisit published literature on insect AMP genes and analyse newly available population genomic datasets in Drosophila, finding enrichment for patterns consistent with adaptive maintenance of polymorphism.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160594

  15. Transmembrane Pores Formed by Human Antimicrobial Peptide LL-37

    SciTech Connect

    Qian, Shuo

    2011-01-01

    Human LL-37 is a multifunctional cathelicidin peptide that has shown a wide spectrum of antimicrobial activity by permeabilizing microbial membranes similar to other antimicrobial peptides; however, its molecular mechanism has not been clarified. Two independent experiments revealed LL-37 bound to membranes in the {alpha}-helical form with the axis lying in the plane of membrane. This led to the conclusion that membrane permeabilization by LL-37 is a nonpore carpet-like mechanism of action. Here we report the detection of transmembrane pores induced by LL-37. The pore formation coincided with LL-37 helices aligning approximately normal to the plane of the membrane. We observed an unusual phenomenon of LL-37 embedded in stacked membranes, which are commonly used in peptide orientation studies. The membrane-bound LL-37 was found in the normal orientation only when the membrane spacing in the multilayers exceeded its fully hydrated value. This was achieved by swelling the stacked membranes with excessive water to a swollen state. The transmembrane pores were detected and investigated in swollen states by means of oriented circular dichroism, neutron in-plane scattering, and x-ray lamellar diffraction. The results are consistent with the effect of LL-37 on giant unilamellar vesicles. The detected pores had a water channel of radius 2333 {angstrom}. The molecular mechanism of pore formation by LL-37 is consistent with the two-state model exhibited by magainin and other small pore-forming peptides. The discovery that peptide-membrane interactions in swollen states are different from those in less hydrated states may have implications for other large membrane-active peptides and proteins studied in stacked membranes.

  16. The New Antimicrobial Peptide SpHyastatin from the Mud Crab Scylla paramamosain with Multiple Antimicrobial Mechanisms and High Effect on Bacterial Infection.

    PubMed

    Shan, Zhongguo; Zhu, Kexin; Peng, Hui; Chen, Bei; Liu, Jie; Chen, Fangyi; Ma, Xiaowan; Wang, Shuping; Qiao, Kun; Wang, Kejian

    2016-01-01

    SpHyastatin was first identified as a new cationic antimicrobial peptide in hemocytes of the mud crab Scylla paramamosain. Based on the amino acid sequences deduced, it was predicted that this peptide was composed of two different functional domains, a proline-rich domain (PRD) and a cysteine-rich domain (CRD). The recombinant product of SpHyastatin displayed potent antimicrobial activities against the human pathogen Staphylococcus aureus and the aquatic animal pathogens Aeromonas hydrophila and Pseudomonas fluorescens. Compared with the CRD of SpHyastatin, the PRD presented better antimicrobial and chitin binding activities, but both regions were essential for allowing SpHyastatin complete antimicrobial activity. The binding properties of SpHyastatin to different microbial surface molecules suggested that this might be an initial and crucial step for performing its antimicrobial activities. Evaluated using propidium iodide uptake assays and scanning electron microscopy images, the antimicrobial mechanism of SpHyastatin was found to be prone to disrupt cell membrane integrity. Interestingly, SpHyastatin exerted its role specifically on the surface of S. aureus and Pichia pastoris whereas it directly killed P. fluorescens through simultaneous targeting the membrane and the cytoplasm, indicating that SpHyastatin could use different antimicrobial mechanisms to kill different species of microbes. As expected, the recombinant SpHyastatin increased the survival rate of crabs challenged with Vibrio parahaemolyticus. In addition, SpHyastatin could modulate some V. parahaemolyticus-responsive genes in S. paramamosain. PMID:27493644

  17. The New Antimicrobial Peptide SpHyastatin from the Mud Crab Scylla paramamosain with Multiple Antimicrobial Mechanisms and High Effect on Bacterial Infection

    PubMed Central

    Shan, Zhongguo; Zhu, Kexin; Peng, Hui; Chen, Bei; Liu, Jie; Chen, Fangyi; Ma, Xiaowan; Wang, Shuping; Qiao, Kun; Wang, Kejian

    2016-01-01

    SpHyastatin was first identified as a new cationic antimicrobial peptide in hemocytes of the mud crab Scylla paramamosain. Based on the amino acid sequences deduced, it was predicted that this peptide was composed of two different functional domains, a proline-rich domain (PRD) and a cysteine-rich domain (CRD). The recombinant product of SpHyastatin displayed potent antimicrobial activities against the human pathogen Staphylococcus aureus and the aquatic animal pathogens Aeromonas hydrophila and Pseudomonas fluorescens. Compared with the CRD of SpHyastatin, the PRD presented better antimicrobial and chitin binding activities, but both regions were essential for allowing SpHyastatin complete antimicrobial activity. The binding properties of SpHyastatin to different microbial surface molecules suggested that this might be an initial and crucial step for performing its antimicrobial activities. Evaluated using propidium iodide uptake assays and scanning electron microscopy images, the antimicrobial mechanism of SpHyastatin was found to be prone to disrupt cell membrane integrity. Interestingly, SpHyastatin exerted its role specifically on the surface of S. aureus and Pichia pastoris whereas it directly killed P. fluorescens through simultaneous targeting the membrane and the cytoplasm, indicating that SpHyastatin could use different antimicrobial mechanisms to kill different species of microbes. As expected, the recombinant SpHyastatin increased the survival rate of crabs challenged with Vibrio parahaemolyticus. In addition, SpHyastatin could modulate some V. parahaemolyticus-responsive genes in S. paramamosain. PMID:27493644

  18. Prediction of Antimicrobial Activity of Synthetic Peptides by a Decision Tree Model

    PubMed Central

    Lira, Felipe; Perez, Pedro S.; Baranauskas, José A.

    2013-01-01

    Antimicrobial resistance is a persistent problem in the public health sphere. However, recent attempts to find effective substitutes to combat infections have been directed at identifying natural antimicrobial peptides in order to circumvent resistance to commercial antibiotics. This study describes the development of synthetic peptides with antimicrobial activity, created in silico by site-directed mutation modeling using wild-type peptides as scaffolds for these mutations. Fragments of antimicrobial peptides were used for modeling with molecular modeling computational tools. To analyze these peptides, a decision tree model, which indicated the action range of peptides on the types of microorganisms on which they can exercise biological activity, was created. The decision tree model was processed using physicochemistry properties from known antimicrobial peptides available at the Antimicrobial Peptide Database (APD). The two most promising peptides were synthesized, and antimicrobial assays showed inhibitory activity against Gram-positive and Gram-negative bacteria. Colossomin C and colossomin D were the most inhibitory peptides at 5 μg/ml against Staphylococcus aureus and Escherichia coli. The methods described in this work and the results obtained are useful for the identification and development of new compounds with antimicrobial activity through the use of computational tools. PMID:23455341

  19. Diversity in penaeidin antimicrobial peptide form and function

    PubMed Central

    Cuthbertson, Brandon J.; Deterding, Leesa J.; Williams, Jason G.; Tomer, Kenneth B.; Etienne, Kizee; Blackshear, Perry J.; Büllesbach, Erika E.; Gross, Paul S.

    2008-01-01

    Penaeidins are a diverse family of two-domain antimicrobial peptides expressed in shrimp. Variation in penaeidin sequence results in functional diversity, which was discovered using synthetic reproductions of native penaeidins. An isoform of penaeidin class 3 from L. setiferus (Litset Pen3−4) was synthesized using native ligation and compared directly with the synthetic penaeidin class 4 known to be expressed in the same organism. New antimicrobial activity data is included in this review that emphasizes differences in effectiveness that are apparent from a direct comparison of two classes. A novel approach to intact penaeidin analysis is presented in the form of Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry, which has implications for the identification of individual penaeidin isoforms without chemical modification or enzymatic cleavage. The new information included in this review helps gather the perspective on relevance of penaeidin diversity to antimicrobial function, the use of synthetic peptides as tools to evaluate specific immune functions and the application of high mass resolution, top-down sequencing methods to the intact analysis of individual penaeidin isoforms. PMID:17716729

  20. Diversity, evolution and medical applications of insect antimicrobial peptides

    PubMed Central

    Mylonakis, Eleftherios; Podsiadlowski, Lars; Muhammed, Maged

    2016-01-01

    Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolution of insect AMPs by mapping their phylogenetic distribution, allowing us to predict the evolutionary origins of selected AMP families and to identify evolutionarily conserved and taxon-specific families. Furthermore, we highlight the use of the nematode Caenorhabditis elegans as a whole-animal model in high-throughput screening methods to identify AMPs with efficacy against human pathogens, including Acinetobacter baumanii and methicillin-resistant Staphylococcus aureus. We also discuss the potential medical applications of AMPs, including their use as alternatives for conventional antibiotics in ectopic therapies, their combined use with antibiotics to restore the susceptibility of multidrug-resistant pathogens, and their use as templates for the rational design of peptidomimetic drugs that overcome the disadvantages of therapeutic peptides. The article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’. PMID:27160593

  1. Identification of a Novel Proline-Rich Antimicrobial Peptide from Brassica napus.

    PubMed

    Cao, Huihui; Ke, Tao; Liu, Renhu; Yu, Jingyin; Dong, Caihua; Cheng, Mingxing; Huang, Junyan; Liu, Shengyi

    2015-01-01

    Proline-rich antimicrobial peptides (PR-AMPs) are a group of cationic host defense peptides that are characterized by a high content of proline residues. Up to now, they have been reported in some insects, vertebrate and invertebrate animals, but are not found in plants. In this study, we performed an in silico screening of antimicrobial peptides, which led to discovery of a Brassica napus gene encoding a novel PR-AMP. This gene encodes a 35-amino acid peptide with 13 proline residues, designated BnPRP1. BnPRP1 has 40.5% identity with a known proline-rich antimicrobial peptide SP-B from the pig. BnPRP1 was artificially synthetized and cloned into the prokaryotic expression vector pET30a/His-EDDIE-GFP. Recombinant BnPRP1 was produced in Escherichia coli and has a predicted molecular mass of 3.8 kDa. Analysis of its activity demonstrated that BnPRP1 exhibited strong antimicrobial activity against Gram-positive bacterium, Gram-negative bacterium, yeast and also had strong antifungal activity against several pathogenic fungi, such as Sclerotinia sclerotiorum, Mucor sp., Magnaporthe oryzae and Botrytis cinerea. Circular dichroism (CD) revealed the main secondary structure of BnPRP1 was the random coil. BnPRP1 gene expression detected by qRT-PCR is responsive to pathogen inoculation. At 48 hours after S. sclerotiorum inoculation, the expression of BnPRP1 increased significantly in the susceptible lines while slight decrease occurred in resistant lines. These suggested that BnPRP1 might play a role in the plant defense response against S. sclerotiorum. BnPRP1 isolated from B. napus was the first PR-AMP member that was characterized in plants, and its homology sequences were found in some other Brassicaceae plants by the genome sequences analysis. Compared with the known PR-AMPs, BnPRP1 has the different primary sequences and antimicrobial activity. Above all, this study gives a chance to cast a new light on further understanding about the AMPs' mechanism and application

  2. Identification of a Novel Proline-Rich Antimicrobial Peptide from Brassica napus

    PubMed Central

    Liu, Renhu; Yu, Jingyin; Dong, Caihua; Cheng, Mingxing; Huang, Junyan; Liu, Shengyi

    2015-01-01

    Proline-rich antimicrobial peptides (PR-AMPs) are a group of cationic host defense peptides that are characterized by a high content of proline residues. Up to now, they have been reported in some insects, vertebrate and invertebrate animals, but are not found in plants. In this study, we performed an in silico screening of antimicrobial peptides, which led to discovery of a Brassica napus gene encoding a novel PR-AMP. This gene encodes a 35-amino acid peptide with 13 proline residues, designated BnPRP1. BnPRP1 has 40.5% identity with a known proline-rich antimicrobial peptide SP-B from the pig. BnPRP1 was artificially synthetized and cloned into the prokaryotic expression vector pET30a/His-EDDIE-GFP. Recombinant BnPRP1 was produced in Escherichia coli and has a predicted molecular mass of 3.8 kDa. Analysis of its activity demonstrated that BnPRP1 exhibited strong antimicrobial activity against Gram-positive bacterium, Gram-negative bacterium, yeast and also had strong antifungal activity against several pathogenic fungi, such as Sclerotinia sclerotiorum, Mucor sp., Magnaporthe oryzae and Botrytis cinerea. Circular dichroism (CD) revealed the main secondary structure of BnPRP1 was the random coil. BnPRP1 gene expression detected by qRT-PCR is responsive to pathogen inoculation. At 48 hours after S. sclerotiorum inoculation, the expression of BnPRP1 increased significantly in the susceptible lines while slight decrease occurred in resistant lines. These suggested that BnPRP1 might play a role in the plant defense response against S. sclerotiorum. BnPRP1 isolated from B. napus was the first PR-AMP member that was characterized in plants, and its homology sequences were found in some other Brassicaceae plants by the genome sequences analysis. Compared with the known PR-AMPs, BnPRP1 has the different primary sequences and antimicrobial activity. Above all, this study gives a chance to cast a new light on further understanding about the AMPs’ mechanism and application

  3. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria

    PubMed Central

    Ebbensgaard, Anna; Mordhorst, Hanne; Overgaard, Michael Toft; Nielsen, Claus Gyrup; Aarestrup, Frank Møller; Hansen, Egon Bech

    2015-01-01

    Analysis of a Selected Set of Antimicrobial Peptides The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram-negative bacteria. We compared the potency of Cap18, Cap11, Cap11-1-18m2, Cecropin P1, Cecropin B, Bac2A, Bac2A-NH2, Sub5-NH2, Indolicidin, Melittin, Myxinidin, Myxinidin-NH2, Pyrrhocoricin, Apidaecin and Metalnikowin I towards Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, Aeromonas salmonicida, Listeria monocytogenes, Campylobacter jejuni, Flavobacterium psychrophilum, Salmonella typhimurium and Yersinia ruckeri by minimal inhibitory concentration (MIC) determinations. Additional characteristics such as cytotoxicity, thermo and protease stability were measured and compared among the different peptides. Further, the antimicrobial activity of a selection of cationic AMPs was investigated in various E. coli LPS mutants. Cap18 Shows a High Broad Spectrum Antimicrobial Activity Of all the tested AMPs, Cap18 showed the most efficient antimicrobial activity, in particular against Gram-negative bacteria. In addition, Cap18 is highly thermostable and showed no cytotoxic effect in a hemolytic assay, measured at the concentration used. However, Cap18 is, as most of the tested AMPs, sensitive to proteolytic digestion in vitro. Thus, Cap18 is an excellent candidate for further development into practical use; however, modifications that should reduce the protease sensitivity would be needed. In addition, our

  4. Antagonistic interactions and production of halocin antimicrobial peptides among extremely halophilic prokaryotes isolated from the solar saltern of Sfax, Tunisia.

    PubMed

    Ghanmi, Fadoua; Carré-Mlouka, Alyssa; Vandervennet, Manon; Boujelben, Ines; Frikha, Doniez; Ayadi, Habib; Peduzzi, Jean; Rebuffat, Sylvie; Maalej, Sami

    2016-05-01

    Thirty-five extremely halophilic microbial strains isolated from crystallizer (TS18) and non-crystallizer (M1) ponds in the Sfax solar saltern in Tunisia were examined for their ability to exert antimicrobial activity. Antagonistic assays resulted in the selection of eleven strains that displayed such antimicrobial activity and they were further characterized. Three cases of cross-domain inhibition (archaea/bacteria or bacteria/archaea) were observed. Four archaeal strains exerted antimicrobial activity against several other strains. Three strains, for which several lines of evidence suggested the antimicrobial activity was, at least in part, due to peptide/protein agents (Halobacterium salinarum ETD5, Hbt. salinarum ETD8, and Haloterrigena thermotolerans SS1R12), were studied further. Optimal culture conditions for growth and antimicrobial production were determined. Using DNA amplification with specific primers, sequencing and RT-PCR analysis, Hbt. salinarum ETD5 and Hbt. salinarum ETD8 were shown to encode and express halocin S8, a hydrophobic antimicrobial peptide targeting halophilic archaea. Although the gene encoding halocin H4 was amplified from the genome of Htg. thermotolerans SS1R12, no transcript could be detected and the antimicrobial activity was most likely due to multiple antimicrobial compounds. This is also the first report that points to four different strains isolated from different geographical locations with the capacity to produce identical halocin S8 proteins. PMID:27074936

  5. Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells

    NASA Astrophysics Data System (ADS)

    Avitabile, Concetta; D'Andrea, Luca Domenico; Romanelli, Alessandra

    2014-03-01

    Studying how antimicrobial peptides interact with bacterial cells is pivotal to understand their mechanism of action. In this paper we explored the use of Circular Dichroism to detect the secondary structure of two antimicrobial peptides, magainin 2 and cecropin A, with E. coli bacterial cells. The results of our studies allow us to gain two important information in the context of antimicrobial peptides- bacterial cells interactions: peptides fold mainly due to interaction with LPS, which is the main component of the Gram negative bacteria outer membrane and the time required for the folding on the bacterial cells depends on the peptide analyzed.

  6. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts

    PubMed Central

    Katzenback, Barbara A.

    2015-01-01

    Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection. PMID:26426065

  7. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts.

    PubMed

    Katzenback, Barbara A

    2015-01-01

    Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18-46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent-the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection. PMID:26426065

  8. Mammalian antimicrobial peptide influences control of cutaneous Leishmania infection

    PubMed Central

    Kulkarni, Manjusha M.; Barbi, Joseph; McMaster, W. Robert; Gallo, Richard L.; Satoskar, Abhay R.; McGwire, Bradford S.

    2011-01-01

    Summary Cathelicidin-type antimicrobial peptides (CAMP) are important mediators of innate immunity against microbial pathogens acting through direct interaction with and disruption of microbial membranes and indirectly through modulation of host cell migration and activation. Using a mouse knock-out model in CAMP we studied the role of this host peptide in control of dissemination of cutaneous infection by the parasitic protozoan Leishmania. The presence of pronounced host inflammatory infiltration in lesions and lymph nodes of infected animals was CAMP-dependent. Lack of CAMP expression was associated with higher levels of IL-10 receptor expression in bone marrow, splenic and lymph node macrophages as well as higher anti-inflammatory IL-10 production by bone marrow macrophages and spleen cells but reduced production of the pro-inflammatory cytokines IL-12 and IFN-γ by lymph nodes. Unlike wild-type mice, local lesions were exacerbated and parasites were found largely disseminated in CAMP knockouts. Infection of CAMP knockouts with parasite mutants lacking the surface metalloprotease virulence determinant resulted in more robust disseminated infection than in control animals suggesting that CAMP activity is negatively regulated by parasite surface proteolytic activity. This correlated with the ability of the pro-tease to degrade CAMP in vitro and co-localization of CAMP with parasites within macrophages. Our results highlight the interplay of antimicrobial peptides and Leishmania that influence the host immune response and the outcome of infection. PMID:21501359

  9. Importance of Tryptophan in Transforming an Amphipathic Peptide into a Pseudomonas aeruginosa-Targeted Antimicrobial Peptide

    PubMed Central

    Zhu, Xin; Ma, Zhi; Wang, Jiajun; Chou, Shuli; Shan, Anshan

    2014-01-01

    Here, we found that simple substitution of amino acids in the middle position of the hydrophobic face of an amphipathic peptide RI16 with tryptophan (T9W) considerably transformed into an antimicrobial peptide specifically targeting Pseudomonas aeruginosa. Minimal inhibitory concentration (MIC) results demonstrated that T9W had a strong and specifically antimicrobial activity against P. aeruginosa, including antibiotic-resistant strains, but was not active against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Staphyfococcus epidermidis. Fluorescent spectroscopic assays indicated that T9W interacted with the membrane of P. aeruginosa, depolarizing the outer and the inner membrane of bacterial cells. Salt susceptibility assay showed that T9W still maintained its strong anti-pseudomonas activity in the presence of salts at physiological concentrations, and in hemolytic and MTT assays T9W also showed no toxicity against human blood cells and macrophages. In vivo assay demonstrated that T9W also displayed no toxicity to Chinese Kun Ming (KM) mice. Furthermore, the strong antibiofilm activity was also observed with the peptide T9W, which decreased the percentage of biomass formation in a dose-dependent manner. Overall, these findings indicated that design of single-pathogen antimicrobial agents can be achieved by simple amino acid mutation in naturally occurring peptide sequences and this study suggested a model of optimization/design of anti-pseudomonas drugs in which the tryptophan residue was a conserved element. PMID:25494332

  10. Characterization of Antimicrobial Peptides toward the Development of Novel Antibiotics

    PubMed Central

    Aoki, Wataru; Ueda, Mitsuyoshi

    2013-01-01

    Antimicrobial agents have eradicated many infectious diseases and significantly improved our living environment. However, abuse of antimicrobial agents has accelerated the emergence of multidrug-resistant microorganisms, and there is an urgent need for novel antibiotics. Antimicrobial peptides (AMPs) have attracted attention as a novel class of antimicrobial agents because AMPs efficiently kill a wide range of species, including bacteria, fungi, and viruses, via a novel mechanism of action. In addition, they are effective against pathogens that are resistant to almost all conventional antibiotics. AMPs have promising properties; they directly disrupt the functions of cellular membranes and nucleic acids, and the rate of appearance of AMP-resistant strains is very low. However, as pharmaceuticals, AMPs exhibit unfavorable properties, such as instability, hemolytic activity, high cost of production, salt sensitivity, and a broad spectrum of activity. Therefore, it is vital to improve these properties to develop novel AMP treatments. Here, we have reviewed the basic biochemical properties of AMPs and the recent strategies used to modulate these properties of AMPs to enhance their safety. PMID:24276381

  11. Toll-like receptor and antimicrobial peptide expression in the bovine endometrium

    PubMed Central

    Davies, Darren; Meade, Kieran G; Herath, Shan; Eckersall, P David; Gonzalez, Deyarina; White, John O; Conlan, R Steven; O'Farrelly, Cliona; Sheldon, I Martin

    2008-01-01

    Background The endometrium is commonly infected with bacteria leading to severe disease of the uterus in cattle and humans. The endometrial epithelium is the first line of defence for this mucosal surface against bacteria and Toll-like receptors (TLRs) are a critical component of the innate immune system for detection of pathogen associated molecular patterns (PAMPs). Antimicrobial peptides, acute phase proteins and Mucin-1 (MUC-1) also provide non-specific defences against microbes on mucosal surfaces. The present study examined the expression of innate immune defences in the bovine endometrium and tested the hypothesis that endometrial epithelial cells express functional receptors of the TLR family and the non-specific effector molecules for defence against bacteria. Methods Bovine endometrial tissue and purified populations of primary epithelial and stromal cells were examined using RT-PCR for gene expression of TLRs, antimicrobial peptides and MUC-1. Functional responses were tested by evaluating the secretion of prostaglandin E2 and acute phase proteins when cells were treated with bacterial PAMPs such as bacterial lipopolysaccharide (LPS) and lipoproteins. Results The endometrium expressed TLRs 1 to 10, whilst purified populations of epithelial cells expressed TLRs 1 to 7 and 9, and stromal cells expressed TLRs 1 to 4, 6, 7, 9 and 10. The TLRs appear to be functional as epithelial cells secreted prostaglandin E2 in response to bacterial PAMPs. In addition, the epithelial cells expressed antimicrobial peptides, such as Tracheal and Lingual Antimicrobial Peptides (TAP and LAP) and MUC-1, which were upregulated when the cells were treated with LPS. However, the epithelial cells did not express appreciable amounts of the acute phase proteins haptoglobin or serum amyloid A. Conclusion Epithelial cells have an essential role in the orchestration of innate immune defence of the bovine endometrium and are likely to be the key to prevention of endometrial infection

  12. A novel antimicrobial peptide derived from fish goose type lysozyme disrupts the membrane of Salmonella enterica.

    PubMed

    Kumaresan, Venkatesh; Bhatt, Prasanth; Ganesh, Munuswamy-Ramanujam; Harikrishnan, Ramasamy; Arasu, MariadhasValan; Al-Dhabi, Naif Abdullah; Pasupuleti, Mukesh; Marimuthu, Kasi; Arockiaraj, Jesu

    2015-12-01

    In aquaculture, accumulation of antibiotics resulted in development of resistance among bacterial pathogens. Consequently, it became mandatory to find alternative to synthetic antibiotics. Antimicrobial peptides (AMPs) which are described as evolutionary ancient weapons have been considered as promising alternates in recent years. In this study, a novel antimicrobial peptide had been derived from goose type lysozyme (LyzG) which was identified from the cDNA library of freshwater fish Channa striatus (Cs). The identified lysozyme cDNA contains 585 nucleotides which encodes a protein of 194 amino acids. CsLyzG was closely related to Siniperca chuatsi with 92.8% homology. The depicted protein sequence contained a GEWL domain with conserved GLMQ motif, 7 active residues and 2 catalytic residues. Gene expression analysis revealed that CsLyzG was distributed in major immune organs with highest expression in head kidney. Results of temporal expression analysis after bacterial (Aeromonas hydrophila) and fungal (Aphanomyces invadans) challenges indicated a stimulant-dependent expression pattern of CsLyzG. Two antimicrobial peptides IK12 and TS10 were identified from CsLyzG and synthesized. Antibiogram showed that IK12 was active against Salmonella enterica, a major multi-drug resistant (MDR) bacterial pathogen which produces beta lactamase. The IK12 induced loss of cell viability in the bacterial pathogen. Flow cytometry assay revealed that IK12 disrupt the membrane of S. enterica which is confirmed by scanning electron microscope (SEM) analysis that reveals blebs around the bacterial cell membrane. Conclusively, CsLyzG is a potential innate immune component and the identified antimicrobial peptide has great caliber to be used as an ecofriendly antibacterial substance in aquaculture. PMID:26477736

  13. Dynamical and Phase Behavior of a Phospholipid Membrane Altered by an Antimicrobial Peptide at Low Concentration.

    PubMed

    Sharma, V K; Mamontov, E; Tyagi, M; Qian, S; Rai, D K; Urban, V S

    2016-07-01

    The mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature no longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides. PMID:27232190

  14. On the Physiology and Pathophysiology of Antimicrobial Peptides

    PubMed Central

    Pálffy, Roland; Gardlík, Roman; Behuliak, Michal; Kadasi, Ludevit; Turna, Jan; Celec, Peter

    2009-01-01

    Antimicrobial peptides (AMP) are a heterogeneous group of molecules involved in the nonspecific immune responses of a variety of organisms ranging from prokaryotes to mammals, including humans. AMP have various physical and biological properties, yet the most common feature is their antimicrobial effect. The majority of AMP disrupt the integrity of microbial cells by 1 of 3 known mechanisms—the barrel-stave pore model, the thoroidal pore model, or the carpet model. Results of growing numbers of descriptive and experimental studies show that altered expression of AMP in various tissues is important in the pathogenesis of several gastrointestinal, respiratory, and other diseases. We discuss novel approaches and strategies to further improve the promising future of therapeutic applications of AMP. The spread of antibiotic resistance increases the importance of developing a clinical role for AMP. PMID:19015736

  15. Antimicrobial peptides as an opportunity against bacterial diseases.

    PubMed

    Galdiero, Stefania; Falanga, Annarita; Berisio, Rita; Grieco, Paolo; Morelli, Giancarlo; Galdiero, Massimiliano

    2015-01-01

    Antimicrobial peptides (AMPs) are an heterogeneous group of small amino acidic molecules produced by the innate immune system of a variety of organisms encompassing all orders of life from eukaryotes to amphibians, insects and plants. Numerous AMPs have been isolated from natural sources and many others have been de novo designed and synthetically produced. AMPs have antimicrobial activity in the micromolar range and compared with traditional antibiotics, they kill bacteria very rapidly. They act, principally, by the electrostatic attraction to negatively charged bacterial cells and consequently membrane disruption, but their antibacterial activity may also involve interference with metabolic processes or different cytoplasmic targets. AMPs are a group of unique and incredible compounds that may be directed to a therapeutic use either alone or in combination with existing antibiotics. PMID:25760092

  16. Genomic Signatures of Experimental Adaptation to Antimicrobial Peptides in Staphylococcus aureus

    PubMed Central

    Johnston, Paul R.; Dobson, Adam J.; Rolff, Jens

    2016-01-01

    The evolution of resistance against antimicrobial peptides has long been considered unlikely due to their mechanism of action, yet experimental selection with antimicrobial peptides (AMPs) results in rapid evolution of resistance in several species of bacteria. Although numerous studies have utilized mutant screens to identify loci that determine AMP susceptibility, there is a dearth of data concerning the genomic changes that accompany experimental evolution of AMP resistance. Using genome resequencing, we analyzed the mutations that arose during experimental evolution of resistance to the cationic AMPs iseganan, melittin, and pexiganan, as well as to a combination of melittin and pexiganan, or to the aminoglycoside antibiotic streptomycin. Analysis of 17 independently replicated Staphylococcus aureus selection lines, including unselected controls, showed that each AMP selected for mutations at distinct loci. We identify mutations in genes involved in the synthesis and maintenance of the cell envelope. These include genes previously identified from mutant screens for AMP resistance, and genes involved in the response to AMPs and cell-wall-active antibiotics. Furthermore, transposon insertion mutants were used to verify that a number of the identified genes are directly involved in determining AMP susceptibility. Strains selected for AMP resistance under controlled experimental evolution displayed consistent AMP-specific mutations in genes that determine AMP susceptibility. This suggests that different routes to evolve resistance are favored within a controlled genetic background. PMID:27172179

  17. Genomic Signatures of Experimental Adaptation to Antimicrobial Peptides in Staphylococcus aureus.

    PubMed

    Johnston, Paul R; Dobson, Adam J; Rolff, Jens

    2016-01-01

    The evolution of resistance against antimicrobial peptides has long been considered unlikely due to their mechanism of action, yet experimental selection with antimicrobial peptides (AMPs) results in rapid evolution of resistance in several species of bacteria. Although numerous studies have utilized mutant screens to identify loci that determine AMP susceptibility, there is a dearth of data concerning the genomic changes that accompany experimental evolution of AMP resistance. Using genome resequencing, we analyzed the mutations that arose during experimental evolution of resistance to the cationic AMPs iseganan, melittin, and pexiganan, as well as to a combination of melittin and pexiganan, or to the aminoglycoside antibiotic streptomycin. Analysis of 17 independently replicated Staphylococcus aureus selection lines, including unselected controls, showed that each AMP selected for mutations at distinct loci. We identify mutations in genes involved in the synthesis and maintenance of the cell envelope. These include genes previously identified from mutant screens for AMP resistance, and genes involved in the response to AMPs and cell-wall-active antibiotics. Furthermore, transposon insertion mutants were used to verify that a number of the identified genes are directly involved in determining AMP susceptibility. Strains selected for AMP resistance under controlled experimental evolution displayed consistent AMP-specific mutations in genes that determine AMP susceptibility. This suggests that different routes to evolve resistance are favored within a controlled genetic background. PMID:27172179

  18. Structure and Biological Functions of β-Hairpin Antimicrobial Peptides

    PubMed Central

    Panteleev, P. V.; Bolosov, I. A.; Balandin, S. V.; Ovchinnikova, T. V.

    2015-01-01

    Antimicrobial peptides (AMPs) are evolutionarily ancient factors of the innate immune system that serve as a crucial first line of defense for humans, animals, and plants against infection. This review focuses on the structural organization, biosynthesis, and biological functions of AMPs that possess a β-hairpin spatial structure. Representatives of this class of AMPs are among the most active antibiotic molecules of animal origin. Due to their wide spectrum of activity and resistance to internal environmental factors, natural β-hairpin AMPbased compounds might become the most promising drug candidates. PMID:25927000

  19. Supramolecular amphipathicity for probing antimicrobial propensity of host defence peptides.

    PubMed

    Ravi, Jascindra; Bella, Angelo; Correia, Ana J V; Lamarre, Baptiste; Ryadnov, Maxim G

    2015-06-28

    Host defence peptides (HDPs) are effector components of innate immunity that provide defence against pathogens. These are small-to-medium sized proteins which fold into amphipathic conformations toxic to microbial membranes. Here we explore the concept of supramolecular amphipathicity for probing antimicrobial propensity of HDPs using elementary HDP-like amphiphiles. Such amphiphiles are individually inactive, but when ordered into microscopic micellar assemblies, respond to membrane binding according to the orthogonal type of their primary structure. The study demonstrates that inducible supramolecular amphipathicity can discriminate against bacterial growth and colonisation thereby offering a physico-chemical rationale for tuneable targeting of biological membranes. PMID:25966444

  20. Antimicrobial peptides and wound healing: biological and therapeutic considerations.

    PubMed

    Mangoni, Maria Luisa; McDermott, Alison M; Zasloff, Michael

    2016-03-01

    Repair of tissue wounds is a fundamental process to re-establish tissue integrity and regular function. Importantly, infection is a major factor that hinders wound healing. Multicellular organisms have evolved an arsenal of host-defense molecules, including antimicrobial peptides (AMPs), aimed at controlling microbial proliferation and at modulating the host's immune response to a variety of biological or physical insults. In this brief review, we provide the evidence for a role of AMPs as endogenous mediators of wound healing and their promising therapeutic potential for the treatment of non-life-threatening skin and other epithelial injuries. PMID:26738772

  1. Influence of the yjiL-mdtM Gene Cluster on the Antibacterial Activity of Proline-Rich Antimicrobial Peptides Overcoming Escherichia coli Resistance Induced by the Missing SbmA Transporter System

    PubMed Central

    Krizsan, Andor; Knappe, Daniel

    2015-01-01

    In view of increasing health threats from multiresistant pathogens, antimicrobial peptides (AMPs) and, specifically, proline-rich AMPs (PrAMPs) have been investigated in animal models. PrAMPs enter bacteria via the ABC transporter SbmA and inhibit intracellular targets. We used phage transduction (Tn10 insertion) to screen by random mutagenesis for alternative uptake mechanisms for analogs of apidaecin 1b, a honeybee-derived PrAMP. All 24 apidaecin-resistant mutants had the Tn10 insertion in the sbmA gene. These sbmA::Tn10 insertion mutants and the Escherichia coli BW25113 ΔsbmA (JW0368) strain were still susceptible to the bactenecin PrAMP Bac7(1-35) and oncocin PrAMPs Onc18 and Onc112, as well as to Chex1-Arg20, despite significantly reduced internalizations. In a second round of random mutagenesis, the remaining susceptibility was linked to the yjiL-mdtM gene cluster. E. coli BW25113 and its ΔyjiL null mutant (JW5785) were equally susceptible to all PrAMPs tested, whereas the BW25113 ΔmdtM mutant was less susceptible to oncocins. The JW0368 yjiL::Tn10 transposon mutant (BS2) was resistant to all short PrAMPs and susceptible only to full-length Bac7 and A3-APO. Interestingly, PrAMPs appear to enter bacteria via MdtM, a multidrug resistance transporter (drug/H+ antiporter) of the major facilitator superfamily (MFS) that can efflux antibiotics, biocides, and bile salts. In conclusion, PrAMPs enter bacteria via ABC and MFS transporters that efflux antibiotics and cytotoxic compounds from the cytoplasm to the periplasm. PMID:26169420

  2. Multiple Peptide Resistance Factor (MprF)-mediated Resistance of Staphylococcus aureus against Antimicrobial Peptides Coincides with a Modulated Peptide Interaction with Artificial Membranes Comprising Lysyl-Phosphatidylglycerol*

    PubMed Central

    Andrä, Jörg; Goldmann, Torsten; Ernst, Christoph M.; Peschel, Andreas; Gutsmann, Thomas

    2011-01-01

    Modification of the membrane lipid phosphatidylglycerol (PG) of Staphylococcus aureus by enzymatic transfer of a l-lysine residue leading to lysyl-PG converts the net charge of PG from −1 to +1 and is thought to confer resistance to cationic antimicrobial peptides (AMPs). Lysyl-PG synthesis and translocation to the outer leaflet of the bacterial membrane are achieved by the membrane protein MprF. Consequently, mutants lacking a functional mprF gene are in particular vulnerable to the action of AMPs. Hence, we aim at elucidating whether and to which extent lysyl-PG modulates membrane binding, insertion, and permeabilization by various AMPs. Lysyl-PG was incorporated into artificial lipid bilayers, mimicking the cytoplasmic membrane of S. aureus. Moreover, we determined the activity of the peptides against a clinical isolate of S. aureus strain SA113 and two mutants lacking a functional mprF gene and visualized peptide-induced ultrastructural changes of bacteria by transmission electron microscopy. The studied peptides were: (i) NK-2, an α-helical fragment of mammalian NK-lysin, (ii) arenicin-1, a lugworm β-sheet peptide, and (iii) bee venom melittin. Biophysical data obtained by FRET spectroscopy, Fourier transform infrared spectroscopy, and electrical measurements with planar lipid bilayers were correlated with the biological activities of the peptides. They strongly support the hypothesis that peptide-membrane interactions are a prerequisite for eradication of S. aureus. However, degree and mode of modulation of membrane properties such as fluidity, capacitance, and conductivity were unique for each of the peptides. Altogether, our data support and underline the significance of lysyl-PG for S. aureus resistance to AMPs. PMID:21474443

  3. Multiple peptide resistance factor (MprF)-mediated Resistance of Staphylococcus aureus against antimicrobial peptides coincides with a modulated peptide interaction with artificial membranes comprising lysyl-phosphatidylglycerol.

    PubMed

    Andrä, Jörg; Goldmann, Torsten; Ernst, Christoph M; Peschel, Andreas; Gutsmann, Thomas

    2011-05-27

    Modification of the membrane lipid phosphatidylglycerol (PG) of Staphylococcus aureus by enzymatic transfer of a l-lysine residue leading to lysyl-PG converts the net charge of PG from -1 to +1 and is thought to confer resistance to cationic antimicrobial peptides (AMPs). Lysyl-PG synthesis and translocation to the outer leaflet of the bacterial membrane are achieved by the membrane protein MprF. Consequently, mutants lacking a functional mprF gene are in particular vulnerable to the action of AMPs. Hence, we aim at elucidating whether and to which extent lysyl-PG modulates membrane binding, insertion, and permeabilization by various AMPs. Lysyl-PG was incorporated into artificial lipid bilayers, mimicking the cytoplasmic membrane of S. aureus. Moreover, we determined the activity of the peptides against a clinical isolate of S. aureus strain SA113 and two mutants lacking a functional mprF gene and visualized peptide-induced ultrastructural changes of bacteria by transmission electron microscopy. The studied peptides were: (i) NK-2, an α-helical fragment of mammalian NK-lysin, (ii) arenicin-1, a lugworm β-sheet peptide, and (iii) bee venom melittin. Biophysical data obtained by FRET spectroscopy, Fourier transform infrared spectroscopy, and electrical measurements with planar lipid bilayers were correlated with the biological activities of the peptides. They strongly support the hypothesis that peptide-membrane interactions are a prerequisite for eradication of S. aureus. However, degree and mode of modulation of membrane properties such as fluidity, capacitance, and conductivity were unique for each of the peptides. Altogether, our data support and underline the significance of lysyl-PG for S. aureus resistance to AMPs. PMID:21474443

  4. Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium.

    PubMed Central

    Parra-Lopez, C; Baer, M T; Groisman, E A

    1993-01-01

    The innate immunity of vertebrates and invertebrates to microbial infection is mediated in part by small cationic peptides with antimicrobial activity. Successful pathogens have evolved mechanisms to withstand the antibiotic activity of these molecules. We have isolated a set of genes from Salmonella typhimurium which are required for virulence and resistance to the antimicrobial peptides melittin and protamine. Sequence analysis of a 5.7 kb segment from the wild-type plasmid conferring resistance to protamine contained five open reading frames: sapA, sapB, sapC, sapD and sapF, organized in an operon structure and transcribed as a 5.3 kb mRNA. SapD and SapF exhibited similarity with the 'ATP binding cassette' family of transporters including the bacterial Opp and SpoOK, involved in the uptake of oligopeptides; the yeast STE6, necessary for the export of a peptide pheromone; and the mammalian mdr, which mediates resistance to chemotherapeutic agents in cancer cells. SapA showed identity with other periplasmic solute binding proteins involved in peptide transport. The SapABCDF system constitutes a novel transporter for enteric bacteria and the first one harboring a periplasmic component with a role in virulence. Images PMID:8223423

  5. Challenges and Limits Using Antimicrobial Peptides in Boar Semen Preservation.

    PubMed

    Schulze, M; Grobbel, M; Müller, K; Junkes, C; Dathe, M; Rüdiger, K; Jung, M

    2015-07-01

    Antibiotics are of great importance for the preservation of ejaculates for livestock breading. The use of antibiotics, however, is not an appropriate compensation for a lack of hygiene standards in artificial insemination (AI) centres. Sophisticated hygiene management and the proper identification of hygienic critical control points (HCCPs) at AI centres provide the basis for counteracting the development of antibiotic resistance in contaminant bacteria and their settlement in AI centres. In recent years, efforts have been made to use antimicrobial peptides (AMPs) in the preservation of boar semen. Investigations have included the testing of synthetic magainin derivatives and cyclic hexapeptides. One prerequisite for the application of AMPs is that they have a minor impact on eukaryotic cells. Bacterial selectivity, proteolytic stability, thermodynamic resistance, and mechanisms including synergistic interaction with conventional antibiotics have made cyclic hexapeptides highly promising candidates for potential application as peptide antibiotics for semen preservation. PMID:26174913

  6. Identification of acquired antimicrobial resistance genes

    PubMed Central

    Zankari, Ea; Hasman, Henrik; Cosentino, Salvatore; Vestergaard, Martin; Rasmussen, Simon; Lund, Ole; Aarestrup, Frank M.; Larsen, Mette Voldby

    2012-01-01

    Objectives Identification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data. Methods We developed a web-based method, ResFinder that uses BLAST for identification of acquired antimicrobial resistance genes in whole-genome data. As input, the method can use both pre-assembled, complete or partial genomes, and short sequence reads from four different sequencing platforms. The method was evaluated on 1862 GenBank files containing 1411 different resistance genes, as well as on 23 de-novo-sequenced isolates. Results When testing the 1862 GenBank files, the method identified the resistance genes with an ID = 100% (100% identity) to the genes in ResFinder. Agreement between in silico predictions and phenotypic testing was found when the method was further tested on 23 isolates of five different bacterial species, with available phenotypes. Furthermore, ResFinder was evaluated on WGS chromosomes and plasmids of 30 isolates. Seven of these isolates were annotated to have antimicrobial resistance, and in all cases, annotations were compatible with the ResFinder results. Conclusions A web server providing a convenient way of identifying acquired antimicrobial resistance genes in completely sequenced isolates was created. ResFinder can be accessed at www.genomicepidemiology.org. ResFinder will continuously be updated as new resistance genes are identified. PMID:22782487

  7. The Amazing World of Peptide Engineering: the Example of Antimicrobial Peptides from Frogs and Their Analogues.

    PubMed

    Guimarães, Aline B; Costa, Fabiano J Q; Pires, Osmindo R; Fontes, Wagner; Castro, Mariana S

    2016-01-01

    This review discusses the importance and properties of antimicrobial peptides from frogs and their synthetic analogues as potential therapeutic alternatives in fighting not only bacterial infections, but also protozoans involved with the major neglected diseases, which afflict human populations (e.g., Chagas disease, African sleeping sickness, Leishmaniasis and malaria). Here, we emphasize their multifunctional properties such as promising broad-spectrum drugs that target protozoan parasites too. PMID:27262306

  8. Protocols to test the activity of antimicrobial peptides against the honey bee pathogen Paenibacillus larvae.

    PubMed

    Khilnani, Jasmin C; Wing, Helen J

    2015-10-01

    Paenibacillus larvae is the causal agent of the honey bee disease American Foulbrood. Two enhanced protocols that allow the activity of antimicrobial peptides to be tested against P. larvae are presented. Proof of principle experiments demonstrate that the honey bee antimicrobial peptide defensin 1 is active in both assays. PMID:26210039

  9. Antimicrobial peptides from frog skin: biodiversity and therapeutic promises.

    PubMed

    Ladram, Ali; Nicolas, Pierre

    2016-01-01

    More than a thousand antimicrobial peptides (AMPs) have been reported in the last decades arising from the skin secretion of amphibian species. Generally, each frog species can express its own repertoire of AMPs (typically, 10-20 peptides) with differing sequences, sizes, and spectrum of action, which implies very rapid divergence, even between closely related species. Frog skin AMPs are highly potent against antibiotic-resistant bacteria, protozoa, yeasts, and fungi by permeating and destroying their plasma membrane and/or inactivating intracellular targets. These peptides have attracted considerable interest as a therapeutic alternative to conventional anti-infective agents. However, efforts to obtain a new generation of drugs using these peptides are still challenging because of high associated R&D costs due to their large size (up to 46 residues) and cytotoxicity. This review deals with the biodiversity of frog skin AMPs and assesses the therapeutic possibilities of temporins, the shortest AMPs found in the frog skin, with 8-17 residues. Such short sequences are easily amenable to optimization of the structure and to solution-phase synthesis that offer reduced costs over solid-phase chemistry. PMID:27100511

  10. The potential for adaptive maintenance of diversity in insect antimicrobial peptides

    PubMed Central

    2016-01-01

    Genes involved in immune defence are among the fastest evolving in the genomes of many species. Interestingly, however, genes encoding antimicrobial peptides (AMPs) have shown little evidence for adaptive divergence in arthropods, despite the centrality of these peptides in direct killing of microbial pathogens. This observation, coupled with a failure to detect phenotypic consequence of genetic variation in AMPs, has led to the hypothesis that individual AMPs make minor contributions to overall immune defence and that AMPs instead act as a collective cocktail. Recent data, however, have suggested an alternative explanation for the apparent lack of adaptive divergence in AMP genes. Molecular evolutionary and phenotypic data have begun to suggest that variant AMP alleles may be maintained through balancing selection in invertebrates, a pattern similar to that observed in several vertebrate AMPs. Signatures of balancing selection include high rates of non-synonymous polymorphism, trans-species amino acid polymorphisms, and convergence of amino acid states across the phylogeny. In this review, we revisit published literature on insect AMP genes and analyse newly available population genomic datasets in Drosophila, finding enrichment for patterns consistent with adaptive maintenance of polymorphism. This article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’. PMID:27160594

  11. Analysis of the antimicrobial activities of a chemokine-derived peptide (CDAP-4) on Pseudomonas aeruginosa

    SciTech Connect

    Martinez-Becerra, Francisco; Dominguez-Ramirez, Lenin; Mendoza-Hernandez, Guillermo; Lopez-Vidal, Yolanda; Soldevila, Gloria . E-mail: garciaze@servidor.unam.mx

    2007-04-06

    Chemokines are key molecules involved in the control of leukocyte trafficking. Recently, a novel function as antimicrobial proteins has been described. CCL13 is the only member of the MCP chemokine subfamily displaying antimicrobial activity. To determine Key residues involved in its antimicrobial activity, CCL13 derived peptides were synthesized and tested against several bacterial strains, including Pseudomonas aeruginosa. One of these peptides, corresponding to the C-terminal region of CCL13 (CDAP-4) displayed good antimicrobial activity. Electron microscopy studies revealed remarkable morphological changes after CDAP-4 treatment. By computer modeling, CDAP-4 in {alpha} helical configuration generated a positive electrostatic potential that extended beyond the surface of the molecule. This feature is similar to other antimicrobial peptides. Altogether, these findings indicate that the antimicrobial activity was displayed by CCL13 resides to some extent at the C-terminal region. Furthermore, CDAP-4 could be considered a good antimicrobial candidate with a potential use against pathogens including P. aeruginosa.

  12. Insect antimicrobial peptides act synergistically to inhibit a trypanosome parasite.

    PubMed

    Marxer, Monika; Vollenweider, Vera; Schmid-Hempel, Paul

    2016-05-26

    The innate immune system provides protection from infection by producing essential effector molecules, such as antimicrobial peptides (AMPs) that possess broad-spectrum activity. This is also the case for bumblebees, Bombus terrestris, when infected by the trypanosome, Crithidia bombi Furthermore, the expressed mixture of AMPs varies with host genetic background and infecting parasite strain (genotype). Here, we used the fact that clones of C. bombi can be cultivated and kept as strains in medium to test the effect of various combinations of AMPs on the growth rate of the parasite. In particular, we used pairwise combinations and a range of physiological concentrations of three AMPs, namely Abaecin, Defensin and Hymenoptaecin, synthetized from the respective genomic sequences. We found that these AMPs indeed suppress the growth of eight different strains of C. bombi, and that combinations of AMPs were typically more effective than the use of a single AMP alone. Furthermore, the most effective combinations were rarely those consisting of maximum concentrations. In addition, the AMP combination treatments revealed parasite strain specificity, such that strains varied in their sensitivity towards the same mixtures. Hence, variable expression of AMPs could be an alternative strategy to combat highly variable infections.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160603

  13. Antimicrobial peptides in marine invertebrate health and disease.

    PubMed

    Destoumieux-Garzón, Delphine; Rosa, Rafael Diego; Schmitt, Paulina; Barreto, Cairé; Vidal-Dupiol, Jeremie; Mitta, Guillaume; Gueguen, Yannick; Bachère, Evelyne

    2016-05-26

    Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as 'marine invertebrates'. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160602

  14. Cationic Antimicrobial Peptides Disrupt the Streptococcus pyogenes ExPortal

    PubMed Central

    Vega, Luis Alberto; Caparon, Michael G.

    2012-01-01

    Summary Although they possess a well-characterized ability to porate the bacterial membrane, emerging research suggests that cationic antimicrobial peptides (CAPs) can influence pathogen behavior at levels that are sub-lethal. In this study, we investigated the interaction of polymyxin B and human neutrophil peptide (HNP-1) with the human pathogen Streptococcus pyogenes. At sub-lethal concentrations, these CAPs preferentially targeted the ExPortal, a unique microdomain of the S. pyogenes membrane, specialized for protein secretion and processing. A consequence of this interaction was the disruption of ExPortal organization and a redistribution of ExPortal components into the peripheral membrane. Redistribution was associated with inhibition of secretion of certain toxins, including the SpeB cysteine protease and the Streptolysin O (SLO) cytolysin, but not SIC, a protein that protects S. pyogenes from CAPs. These data suggest a novel function for CAPs in targeting the ExPortal and interfering with secretion of factors required for infection and survival. This mechanism may prove valuable for the design of new types of antimicrobial agents to combat the emergence of antibiotic-resistant pathogens. PMID:22780862

  15. Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin.

    PubMed Central

    Haynie, S L; Crum, G A; Doele, B A

    1995-01-01

    A series of polymer-bound antimicrobial peptides was prepared, and the peptides were tested for their antimicrobial activities. The immobilized peptides were prepared by a strategy that used solid-phase peptide synthesis that linked the carboxy-terminal amino acid with an ethylenediamine-modified polyamide resin (PepsynK). The acid-stable, permanent amide bond between the support and the nascent peptide renders the peptide resistant to cleavage from the support during the final acid-catalyzed deprotection step in the synthesis. Select immobilized peptides containing amino acid sequences that ranged from the naturally occurring magainin to simpler synthetic sequences with idealized secondary structures were excellent antimicrobial agents against several organisms. The immobilized peptides typically reduced the number of viable cells by > or = 5 log units. We show that the reduction in cell numbers cannot be explained by the action of a soluble component. We observed no leached or hydrolyzed peptide from the resin, nor did we observe any antimicrobial activity in soluble extracts from the immobilized peptide. The immobilized peptides were washed and reused for repeated microbial contact and killing. These results suggest that the surface actions by magainins and structurally related antimicrobial peptides are sufficient for their lethal activities. PMID:7726486

  16. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Rodina, N. P.; Yudenko, A. N.; Terterov, I. N.; Eliseev, I. E.

    2013-08-01

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested.

  17. Comparative surface antimicrobial properties of synthetic biocides and novel human apolipoprotein E derived antimicrobial peptides.

    PubMed

    Forbes, Sarah; McBain, Andrew J; Felton-Smith, Susan; Jowitt, Thomas A; Birchenough, Holly L; Dobson, Curtis B

    2013-07-01

    Medical device infection remains a major clinical concern. Biocidal compounds have been incorporated into medical device materials ideally to inhibit bacterial colonisation whilst exhibiting relatively low cytotoxicity. We compared the antibacterial activity, anti-biofilm efficacy and cytotoxicity of a novel peptide derivative of human apolipoprotein E (apoEdpL-W) to that of commonly used biocides, before and after coating onto a range of standard polymers. Since the antimicrobial function of most biocides frequently involves associations with cellular membranes, we have also studied the detailed interactions of the test antimicrobials with phospholipid bilayers, using the quartz crystal microbalance device combined with dual-polarisation interferometry. ApoEdpL-W displayed broad-spectrum antibacterial activity and marked efficacy against nascent Staphylococcus aureus biofilms. Compounds showed better antimicrobial activity when combined with hydrogel materials than with non-porous materials. The membrane interactions of apoEdpL-W were most similar to that of PHMB, with both agents appearing to readily bind and insert into lipid bilayers, possibly forming pores. However apoEdpL-W showed lower cytotoxicity than PHMB, its efficacy was less affected by the presence of serum, and it demonstrated the highest level of biocompatibility of all the biocides, as indicated by our measurement of its antimicrobial biocompatibility index. This work shows the potential of apoEdpL-W as an effective antiseptic coating agent. PMID:23623325

  18. Identification and characterization of a novel antimicrobial peptide from the venom of the ant Tetramorium bicarinatum.

    PubMed

    Rifflet, Aline; Gavalda, Sabine; Téné, Nathan; Orivel, Jérôme; Leprince, Jérôme; Guilhaudis, Laure; Génin, Eric; Vétillard, Angélique; Treilhou, Michel

    2012-12-01

    A novel antimicrobial peptide, named Bicarinalin, has been isolated from the venom of the ant Tetramorium bicarinatum. Its amino acid sequence has been determined by de novo sequencing using mass spectrometry and by Edman degradation. Bicarinalin contained 20 amino acid residues and was C-terminally amidated as the majority of antimicrobial peptides isolated to date from insect venoms. Interestingly, this peptide had a linear structure and exhibited no meaningful similarity with any known peptides. Antibacterial activities against Staphylococcus aureus and S. xylosus strains were evaluated using a synthetic replicate. Bicarinalin had a potent and broad antibacterial activity of the same magnitude as Melittin and other hymenopteran antimicrobial peptides such as Pilosulin or Defensin. Moreover, this antimicrobial peptide has a weak hemolytic activity compared to Melittin on erythrocytes, suggesting potential for development into an anti-infective agent for use against emerging antibiotic-resistant pathogens. PMID:22960382

  19. Controlling the release of peptide antimicrobial agents from surfaces.

    PubMed

    Shukla, Anita; Fleming, Kathleen E; Chuang, Helen F; Chau, Tanguy M; Loose, Christopher R; Stephanopoulos, Gregory N; Hammond, Paula T

    2010-03-01

    Medical conditions are often exacerbated by the onset of infection caused by hospital dwelling bacteria such as Staphylococcus aureus. Antibiotics taken orally or intravenously can require large and frequent doses, further contributing to the sharp rise in resistant bacteria observed over the past several decades. These existing antibiotics are also often ineffective in preventing biofilm formation, a common cause of medical device failure. Local delivery of new therapeutic agents that do not allow bacterial resistance to occur, such as antimicrobial peptides, could alleviate many of the problems associated with current antibacterial treatments. By taking advantage of the versatility of layer-by-layer assembly of polymer thin films, ponericin G1, an antimicrobial peptide known to be highly active against S. aureus, was incorporated into a hydrolytically degradable polyelectrolyte multilayer film. Several film architectures were examined to obtain various drug loadings that ranged from 20 to 150 microg/cm2. Release was observed over approximately ten days, with varying release profiles, including burst as well as linear release. Results indicated that film-released peptide did not suffer any loss in activity against S. aureus and was able to inhibit bacteria attachment, a necessary step in preventing biofilm formation. Additionally, all films were found to be biocompatible with the relevant wound healing cells, NIH 3T3 fibroblasts and human umbilical vein endothelial cells. These films provide the level of control over drug loading and release kinetics required in medically relevant applications including coatings for implant materials and bandages, while eliminating susceptibility to bacterial resistance. PMID:20004967

  20. In Vitro Antimicrobial Properties of Recombinant ASABF, an Antimicrobial Peptide Isolated from the Nematode Ascaris suum

    PubMed Central

    Zhang, Hong; Yoshida, Shigenobu; Aizawa, Tomoyasu; Murakami, Ritsuko; Suzuki, Masato; Koganezawa, Nozomu; Matsuura, Atsushi; Miyazawa, Mitsuhiro; Kawano, Keiichi; Nitta, Katsutoshi; Kato, Yusuke

    2000-01-01

    ASABF is a CSαβ-type antimicrobial peptide that contains four intramolecular disulfide bridges (Y. Kato and S. Komatsu, J. Biol. Chem. 271:30493–30498, 1996). In the present study, a recombinant ASABF was produced by using a yeast expression system, and its antimicrobial activity was characterized in detail. The recombinant ASABF was active against all gram-positive bacteria tested (7 of 7; minimum bactericidal concentration [MBC], 0.03 to 1 μg/ml) except Leuconostoc mesenteroides, some gram-negative bacteria (8 of 14; MBC, >0.5 μg/ml), and some yeasts (3 of 9; MBC >3 μg/ml). Slight hemolytic activity (4.2% at 100 μg/ml) against human erythrocytes was observed only under low-ionic-strength conditions. Less than 1 min of contact was enough to kill Staphylococcus aureus ATCC 6538P. The bactericidal activity against S. aureus was inhibited by salts. PMID:10991847

  1. Characterization of an abaecin-like antimicrobial peptide identified from a Pteromalus puparum cDNA clone.

    PubMed

    Shen, Xiaojing; Ye, Gongyin; Cheng, Xiongying; Yu, Chunyan; Altosaar, Illimar; Hu, Cui

    2010-09-01

    Abaecin is a major antimicrobial peptide, initially identified from the honeybee. In our effort to discover new antimicrobial peptides from the endoparasitoid wasp Pteromalus puparum, we identified an antibacterial cDNA clone that codes a fragment with high amino acid sequence similarity to abaecin. The proline-rich peptide (YVPPVQKPHPNGPKFPTFP, named PP30) was chemically synthesized and characterized in this study. Antimicrobial assays indicated that the cationic peptide was active against both Gram-negative and positive bacteria, but not active against fungi tested. No hemolytic activity was observed against human erythrocytes after 1h incubation at concentration of 125 microM or below. The antibacterial activity of PP30 against Escherichia coli was attenuated in the presence of increasing concentrations of NaCl. Transmission electron microscopic (TEM) examination of PP30-treated E. coli cells showed morphological changes in the cells and extensive damage to the cell membranes. The circular dichroism (CD) spectroscopy studies indicated that PP30 formed random coil structures in phosphate buffer (pH 7.4), 50% TFE and 25 mM SDS solution. Expression analysis of the gene coding for the peptide indicated that its expression was upregulated upon bacterial infection, indicating that the gene may play a role in preventing potential infection by microorganisms during parasitization in Pieris rapae. PMID:20466006

  2. AMPed Up immunity: how antimicrobial peptides have multiple roles in immune defense

    PubMed Central

    Lai, Yuping; Gallo, Richard L.

    2009-01-01

    Antimicrobial peptides (AMPs) are widely expressed and rapidly induced at epithelial surfaces to repel assault from diverse infectious agents including bacteria, viruses, fungi and parasites. Much information suggests that AMPs act by mechanisms that extend beyond their capacity to serve as gene-encoded antibiotics. For example, some AMPs alter the properties of the mammalian membrane or interact with its receptors to influence diverse cellular processes including cytokine release, chemotaxis, antigen presentation, angiogenesis and wound healing. These functions complement their antimicrobial action and favor resolution of infection and repair of damaged epithelia. Opposing this, some microbes have evolved mechanisms to inactivate or avoid AMPs and subsequently become pathogens. Thus, AMPs are multifunctional molecules that have a central role in infection and Inflammation. PMID:19217824

  3. Antimicrobial function of the GAPDH-related antimicrobial peptide in the skin of skipjack tuna, Katsuwonus pelamis.

    PubMed

    Seo, Jung-Kil; Lee, Min Jeong; Go, Hye-Jin; Kim, Yeon Jun; Park, Nam Gyu

    2014-02-01

    A 3.4 kDa of antimicrobial peptide was purified from an acidified skin extract of skipjack tuna, Katsuwonus pelamis, by preparative acid-urea-polyacrylamide gel electrophoresis and C18 reversed-phase HPLC. A comparison of the N-terminal amino acid sequence of the purified peptide with that of other known polypeptides revealed high sequence homology with the YFGAP (Yellowfin tuna Glyceraldehyde-3-phosphate dehydrogenase-related Antimicrobial Peptide); thus, this peptide was identified as the skipjack tuna GAPDH-related antimicrobial peptide (SJGAP). SJGAP showed potent antimicrobial activity against Gram-positive bacteria, such as Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, and Streptococcus iniae (minimal effective concentrations [MECs], 1.2-17.0 μg/mL), Gram-negative bacteria, such as Aeromonas hydrophila, Escherichia coli D31, and Vibrio parahaemolyticus (MECs, 3.1-12.0 μg/mL), and against Candida albicans (MEC, 16.0 μg/mL) without significant hemolytic activity. Antimicrobial activity of this peptide is heat-stable but salt-sensitive. According to the secondary structural prediction and the homology modeling, this peptide consists of three secondary structural motifs, including one α-helix and two parallel β-strands, and forms an amphipathic structure. This peptide showed neither membrane permeabilization ability nor killing ability, but did display a small degree of leakage ability. These results suggest that SJGAP acts through a bacteriostatic process rather than bactericidal one. SJGAP is another GAPDH-related antimicrobial peptide isolated from skipjack tuna and likely plays an important role for GAPDH in the innate immune defense of tuna fish. PMID:24412436

  4. Effects of Antimicrobial Peptide Revealed by Simulations: Translocation, Pore Formation, Membrane Corrugation and Euler Buckling

    PubMed Central

    Chen, Licui; Jia, Nana; Gao, Lianghui; Fang, Weihai; Golubovic, Leonardo

    2013-01-01

    We explore the effects of the peripheral and transmembrane antimicrobial peptides on the lipid bilayer membrane by using the coarse grained Dissipative Particle Dynamics simulations. We study peptide/lipid membrane complexes by considering peptides with various structure, hydrophobicity and peptide/lipid interaction strength. The role of lipid/water interaction is also discussed. We discuss a rich variety of membrane morphological changes induced by peptides, such as pore formation, membrane corrugation and Euler buckling. PMID:23579956

  5. Antimicrobial peptides as novel anti-tuberculosis therapeutics.

    PubMed

    Silva, João P; Appelberg, Rui; Gama, Francisco Miguel

    2016-01-01

    Tuberculosis (TB), a disease caused by the human pathogen Mycobacterium tuberculosis, has recently joined HIV/AIDS as the world's deadliest infectious disease, affecting around 9.6 million people worldwide in 2014. Of those, about 1.2 million died from the disease. Resistance acquisition to existing antibiotics, with the subsequent emergence of Multi-Drug Resistant mycobacteria strains, together with an increasing economic burden, has urged the development of new anti-TB drugs. In this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that make part of the innate immune system, now arise as promising candidates for TB treatment. In this review, we analyze the potential of AMPs for this application. We address the mechanisms of action, advantages and disadvantages over conventional antibiotics and how problems associated with its use may be overcome to boost their therapeutic potential. Additionally, we address the challenges of translational development from benchside to bedside, evaluate the current development pipeline and analyze the expected global impact from a socio-economic standpoint. The quest for more efficient and more compliant anti-TB drugs, associated with the great therapeutic potential of emerging AMPs and the rising peptide market, provide an optimal environment for the emergence of AMPs as promising therapies. Still, their pharmacological properties need to be enhanced and manufacturing-associated issues need to be addressed. PMID:27235189

  6. Multiple Functions of the New Cytokine-Based Antimicrobial Peptide Thymic Stromal Lymphopoietin (TSLP).

    PubMed

    Bjerkan, Louise; Sonesson, Andreas; Schenck, Karl

    2016-01-01

    Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine, hitherto mostly known to be involved in inflammatory responses and immunoregulation. The human tslp gene gives rise to two transcription and translation variants: a long form (lfTSLP) that is induced by inflammation, and a short, constitutively-expressed form (sfTSLP), that appears to be downregulated by inflammation. The TSLP forms can be produced by a number of cell types, including epithelial and dendritic cells (DCs). lfTSLP can activate mast cells, DCs, and T cells through binding to the lfTSLP receptor (TSLPR) and has a pro-inflammatory function. In contrast, sfTSLP inhibits cytokine secretion of DCs, but the receptor mediating this effect is unknown. Our recent studies have demonstrated that both forms of TSLP display potent antimicrobial activity, exceeding that of many other known antimicrobial peptides (AMPs), with sfTSLP having the strongest effect. The AMP activity is primarily mediated by the C-terminal region of the protein and is localized within a 34-mer peptide (MKK34) that spans the C-terminal α-helical region in TSLP. Fluorescent studies of peptide-treated bacteria, electron microscopy, and liposome leakage models showed that MKK34 exerted membrane-disrupting effects comparable to those of LL-37. Expression of TSLP in skin, oral mucosa, salivary glands, and intestine is part of the defense barrier that aids in the control of both commensal and pathogenic microbes. PMID:27399723

  7. Design and characterization of short antimicrobial peptides using leucine zipper templates with selectivity towards microorganisms.

    PubMed

    Ahmad, Aqeel; Azmi, Sarfuddin; Srivastava, Saurabh; Kumar, Amit; Tripathi, Jitendra Kumar; Mishra, Nripendra N; Shukla, Praveen K; Ghosh, Jimut Kanti

    2014-11-01

    Design of antimicrobial peptides with selective activity towards microorganisms is an important step towards the development of new antimicrobial agents. Leucine zipper sequence has been implicated in cytotoxic activity of naturally occurring antimicrobial peptides; moreover, this motif has been utilized for the design of novel antimicrobial peptides with modulated cytotoxicity. To understand further the impact of substitution of amino acids at 'a' and/or 'd' position of a leucine zipper sequence of an antimicrobial peptides on its antimicrobial and cytotoxic properties four short peptides (14-residue) were designed on the basis of a leucine zipper sequence without or with replacement of leucine residues in its 'a' and 'd' positions with D-leucine or alanine or proline residue. The original short leucine zipper peptide (SLZP) and its D-leucine substituted analog, DLSA showed comparable activity against the tested Gram-positive and negative bacteria and the fungal strains. The alanine substituted analog (ASA) though showed appreciable activity against the tested bacteria, it showed to some extent lower activity against the tested fungi. However, the proline substituted analog (PSA) showed lower activity against the tested bacterial or fungal strains. Interestingly, DLSA, ASA and PSA showed significantly lower cytotoxicity than SLZP against both human red blood cells (hRBCs) and murine 3T3 cells. Cytotoxic and bactericidal properties of these peptides matched with peptide-induced damage/permeabilization of mammalian cells and bacteria or their mimetic lipid vesicles suggesting cell membrane could be the target of these peptides. As evidenced by tryptophan fluorescence and acrylamide quenching studies the peptides showed similarities either in interaction or in their localization within the bacterial membrane mimetic negatively charged lipid vesicles. Only SLZP showed localization inside the mammalian membrane mimetic zwitterionic lipid vesicles. The results show

  8. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis

    PubMed Central

    Blower, Ryan J.; Barksdale, Stephanie M.; van Hoek, Monique L.

    2015-01-01

    Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly “highly resistant” to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense) peptides. In this study, a number of cationic antimicrobial peptides (CAMPs) were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra) cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A) was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2) and a short beta-defensin-derived peptide (Peptide 4 of hBD-3) were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis. PMID:26196513

  9. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis.

    PubMed

    Blower, Ryan J; Barksdale, Stephanie M; van Hoek, Monique L

    2015-01-01

    Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly "highly resistant" to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense) peptides. In this study, a number of cationic antimicrobial peptides (CAMPs) were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra) cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A) was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2) and a short beta-defensin-derived peptide (Peptide 4 of hBD-3) were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis. PMID:26196513

  10. Combined Systems Approaches Reveal Highly Plastic Responses to Antimicrobial Peptide Challenge in Escherichia coli

    PubMed Central

    Kozlowska, Justyna; Vermeer, Louic S.; Rogers, Geraint B.; Rehnnuma, Nabila; Amos, Sarah-Beth T. A.; Koller, Garrit; McArthur, Michael; Bruce, Kenneth D.; Mason, A. James

    2014-01-01

    Obtaining an in-depth understanding of the arms races between peptides comprising the innate immune response and bacterial pathogens is of fundamental interest and will inform the development of new antibacterial therapeutics. We investigated whether a whole organism view of antimicrobial peptide (AMP) challenge on Escherichia coli would provide a suitably sophisticated bacterial perspective on AMP mechanism of action. Selecting structurally and physically related AMPs but with expected differences in bactericidal strategy, we monitored changes in bacterial metabolomes, morphological features and gene expression following AMP challenge at sub-lethal concentrations. For each technique, the vast majority of changes were specific to each AMP, with such a plastic response indicating E. coli is highly capable of discriminating between specific antibiotic challenges. Analysis of the ontological profiles generated from the transcriptomic analyses suggests this approach can accurately predict the antibacterial mode of action, providing a fresh, novel perspective for previous functional and biophysical studies. PMID:24789011

  11. LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity.

    PubMed

    Fabisiak, Adam; Murawska, Natalia; Fichna, Jakub

    2016-08-01

    Antimicrobial peptides (AMPs) is a large family of compounds serving as natural antibiotics, widely distributed across the organism, mainly in mucus layers. They are designed to prevent pathogens from colonization. Among them, defensins and cathelicidins could be found. LL-37, the sole human cathelicidin draws particular attention because of its outstanding abilities. In addition to being a broad spectrum antibiotic, LL-37 has potent chemotactic and immunomodulatory properties. In this review, we discussed the potency of LL-37 as a therapeutic agent in four systems: immunological, respiratory, gastrointestinal and in the skin. We analyzed the main molecular pathways dependent on human cathelicidin and related them to specific diseases. We conclude that LL-37 shows a great potential to be further investigated and developed as a drug with clinical use. PMID:27117377

  12. New Milk Protein-Derived Peptides with Potential Antimicrobial Activity: An Approach Based on Bioinformatic Studies

    PubMed Central

    Dziuba, Bartłomiej; Dziuba, Marta

    2014-01-01

    New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs) from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM), random forest (RF), artificial neural networks (ANN) and discriminant analysis (DA) available in the Collection of Anti-Microbial Peptides (CAMP database). Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins. PMID:25141106

  13. Fungicidal mechanisms of the antimicrobial peptide Bac8c.

    PubMed

    Lee, Wonyoung; Lee, Dong Gun

    2015-02-01

    Bac8c (RIWVIWRR-NH2) is an analogue peptide derived through complete substitution analysis of the linear bovine host defense peptide variant Bac2A. In the present study, the antifungal mechanism of Bac8c against pathogenic fungi was investigated, with a particular focus on the effects of Bac8c on the cytoplasmic membrane. We used bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)] staining and 3,3'-dipropylthiacarbocyanine iodide [DiSC3(5)] assays to show that Bac8c induced disturbances in the membrane potential of Candida albicans. An increase in membrane permeability and suppression of cell wall regeneration were also observed in Bac8c-treated C. albicans. We studied the effects of Bac8c treatment on model membranes to elucidate its antifungal mechanism. Using calcein and FITC-labeled dextran leakage assays from Bac8c-treated large unilamellar vesicles (LUVs) and giant unilamellar vesicles (GUVs), we found that Bac8c has a pore-forming action on fungal membranes, with an estimated pore radius of between 2.3 and 3.3 nm. A membrane-targeted mechanism of action was also supported by the observation of potassium release from the cytosol of Bac8c-treated C. albicans. These results indicate that Bac8c is considered as a potential candidate to develop a novel antimicrobial agent because of its low-cost production characteristics and high antimicrobial activity via its ability to induce membrane perturbations in fungi. PMID:25434926

  14. Membrane selectivity and disordering mechanism of antimicrobial peptide protegrin-1

    NASA Astrophysics Data System (ADS)

    Ishitsuka, Yuji

    Protegrin-1 (PG-1) is a beta-sheet antimicrobial peptide (AMP), a class of peptides innate to various organisms and functions as a defense agent against harmful microorganisms by means of membrane disordering. Characteristic chemical and structural properties of AMPs allow selective interaction against invaders' cell membranes. Despite their enormous biomedical potential, progress towards developing them into therapeutic agents has been hampered by a lack of insight into their mechanism of action. AMP insertion assays using Langmuir monolayers reveal that both electrostatic properties of the lipid head group as well as the packing density of the lipid tail group play important roles in determining the membrane selectivity of AMPs. These results help elucidate how the AMP selectively targets the cell membrane of microorganisms over the cell membrane of the host. In addition, these results also explain the higher hemolytic ability of PG-1 against human red blood cells (RBCs) compared to the hemolytic ability of PG-1 against sheep and pig RBCs. Synchrotron X-ray reflectivity shows that PG-1 penetrates into the lipid layer. Grazing incidence X-ray diffraction and fluorescence microscopy indicate that the insertion of PG-1 disorders tail group packing. Membrane selectivity and insertion location information of AMPs with different primary sequence and secondary structure have been obtained by using a truncated version of PG-1: PC-17, and an alpha-helical AMP, LL-37, respectively. The similarity of the membrane disordering process across these various peptides motivated us to test the membrane disordering effect of molecules designed to mimic these peptides. Peptide-mimics based on meta-phenylene ethynylenes demonstrate similar membrane disordering effects, showing that the potency of AMPs is derived from their overall chemical and structural properties, rather than exact peptide sequence. Atomic force microscopy (AFM) was used to directly image first, the PG-1

  15. Molecular Design, Structures, and Activity of Antimicrobial Peptide-Mimetic Polymers

    PubMed Central

    Takahashi, Haruko; Palermo, Edmund F.; Yasuhara, Kazuma; Caputo, Gregory A.

    2014-01-01

    There is an urgent need for new antibiotics which are effective against drug-resistant bacteria without contributing to resistance development. We have designed and developed antimicrobial copolymers with cationic amphiphilic structures based on the mimicry of naturally occurring antimicrobial peptides. These copolymers exhibit potent antimicrobial activity against a broad spectrum of bacteria including methicillin-resistant Staphylococcus aureus with no adverse hemolytic activity. Notably, these polymers also did not result in any measurable resistance development in E. coli. The peptide-mimetic design principle offers significant flexibility and diversity in the creation of new antimicrobial materials and their potential biomedical applications. PMID:23832766

  16. The proteome targets of intracellular targeting antimicrobial peptides.

    PubMed

    Shah, Pramod; Hsiao, Felix Shih-Hsiang; Ho, Yu-Hsuan; Chen, Chien-Sheng

    2016-04-01

    Antimicrobial peptides have been considered well-deserving candidates to fight the battle against microorganisms due to their broad-spectrum antimicrobial activities. Several studies have suggested that membrane disruption is the basic mechanism of AMPs that leads to killing or inhibiting microorganisms. Also, AMPs have been reported to interact with macromolecules inside the microbial cells such as nucleic acids (DNA/RNA), protein synthesis, essential enzymes, membrane septum formation and cell wall synthesis. Proteins are associated with many intracellular mechanisms of cells, thus protein targets may be specifically involved in mechanisms of action of AMPs. AMPs like pyrrhocoricin, drosocin, apidecin and Bac 7 are documented to have protein targets, DnaK and GroEL. Moreover, the intracellular targeting AMPs are reported to influence more than one protein targets inside the cell, suggesting for the multiple modes of actions. This complex mechanism of intracellular targeting AMPs makes them more difficult for the development of resistance. Herein, we have summarized the current status of AMPs in terms of their mode of actions, entry to cytoplasm and inhibition of macromolecules. To reveal the mechanism of action, we have focused on AMPs with intracellular protein targets. We have also included the use of high-throughput proteome microarray to determine the unidentified AMP protein targets in this review. PMID:26648572

  17. Mechanism of bacterial membrane poration by Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Arora, Ankita; Mishra, Abhijit

    2015-03-01

    Bacterial resistance to conventional antibiotics is a major health concern. Antimicrobial peptides (AMPs), an important component of mammalian immune system, are thought to utilize non-specific interactions to target common features on the outer membranes of pathogens; hence development of resistance to such AMPs may be less pronounced. Most AMPs are amphiphilic and cationic in nature. Most AMPs form pores in the bacterial membranes causing them to lyse, however, the exact mechanism is unknown. Here, we study the AMP CHRG01 (KSSTRGRKSSRRKK), derived from human β defensin 3 (hBD3) with all Cysteine residues substituted with Serine. Circular Dichorism studies indicate that CHRG01 shows helicity and there is change in helicity as it interacts with the lipid membrane. The AMP was effective against different species of bacteria. Leakage of cellular components from bacterial cells observed by SEM and AFM indicates AMP action by pore formation. Confocal microscopy studies on giant vesicles incubated with AMP confirm poration. The effect of this AMP on model bacterial membranes is characterized using Small Angle X-ray scattering and Fluorescence spectroscopy to elucidate the mechanism behind antimicrobial activity.

  18. Short antimicrobial peptides as cosmetic ingredients to deter dermatological pathogens.

    PubMed

    Rahnamaeian, Mohammad; Vilcinskas, Andreas

    2015-11-01

    Antimicrobial peptides (AMPs) are components of the innate immune system in many species of animals. Their diverse spectrum of activity against microbial pathogens, both as innate defense molecules and immunomodulators, makes them attractive candidates for the development of a new generation of antibiotics. Although the potential immunogenicity of AMPs means they are not suitable for injection and their susceptibility to digestive peptidases is likely to reduce their oral efficacy, they are ideal for topical formulations such as lotions, creams, shampoos, and wound dressings and could therefore be valuable products for the cosmetic industry. In this context, short AMPs (<20 amino acids) lacking disulfide bonds combine optimal antimicrobial activity with inexpensive chemical synthesis and are therefore more compatible with large-scale production and the modifications required to ensure stability, low toxicity, and microbial specificity. Proof-of-concept for the application of AMPs as novel anti-infectives has already been provided in clinical trials. This perspective considers the anti-infective properties of short AMPs lacking disulfide bonds, which are active against dermatologically important microflora. We consider the challenges that need to be addressed to facilitate the prophylactic application of AMPs in personal care products. PMID:26307444

  19. Relative free energy of binding between antimicrobial peptides and SDS or DPC micelles.

    PubMed

    Sayyed-Ahmad, Abdallah; Khandelia, Himanshu; Kaznessis, Yiannis N

    2009-09-01

    We present relative binding free energy calculations for six antimicrobial peptide-micelle systems, three peptides interacting with two types of micelles. The peptides are the scorpion derived antimicrobial peptide (AMP), IsCT and two of its analogues. The micelles are dodecylphosphatidylcholine (DPC) and sodium dodecylsulphate (SDS) micelles. The interfacial electrostatic properties of DPC and SDS micelles are assumed to be similar to those of zwitterionic mammalian and anionic bacterial membrane interfaces, respectively. We test the hypothesis that the binding strength between peptides and the anionic micelle SDS can provide information on peptide antimicrobial activity, since it is widely accepted that AMPs function by binding to and disrupting the predominantly anionic lipid bilayer of the bacterial cytoplasmic membrane. We also test the hypothesis that the binding strength between peptides and the zwitterionic micelle DPC can provide information on peptide haemolytic activities, since it is accepted that they also bind to and disrupt the zwitterionic membrane of mammalian cells. Equilibrium structures of the peptides, micelles and peptide-micelle complexes are obtained from more than 300 ns of molecular dynamics simulations. A thermodynamic cycle is introduced to compute the binding free energy from electrostatic, non-electrostatic and entropic contributions. We find relative binding free energy strengths between peptides and SDS to correlate with the experimentally measured rankings for peptide antimicrobial activities, and relative free energy binding strengths between peptides and DPC to correlate with the observed rankings for peptide haemolytic toxicities. These findings point to the importance of peptide-membrane binding strength for antimicrobial activity and haemolytic activity. PMID:21113423

  20. Antibacterial Peptidomimetics: Polymeric Synthetic Mimics of Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lienkamp, Karen; Madkour, Ahmad E.; Tew, Gregory N.

    Polymer-based peptidomimetics, or proteinomimetics, are a relatively young and dynamic field of research. The ability to successfully mimic the biochemical activity of antimicrobial peptides (AMPs) has been demonstrated by several groups. This has been accomplished by careful tuning of the molecule's hydrophobicity and charge density. At the same time, many important questions remain to be answered, including the role of backbone rigidity, details of membrane insertion, and the role of curvature in the self-assemblies between these novel peptidemimetics and phospholipids. As the biological properties of polymeric synthetic mimics of AMPs (SMAMPs) result from the interplay of many parameters, it is not yet possible to predict the exact properties of such molecules from their mere chemical structure. However, as demonstrated here, the effect of certain design features such as charge and hydrophobicity on the properties across a polymer series is understood. Compared to the mechanistic specifics that are known about the interactions of AMPs or small antibacterial molecules with membranes and cells, relatively little is known concerning the interaction of polymeric SMAMPs with membranes. Beyond SMAMPs, numerous opportunities exist and protein transduction domain mimics are an active area of research in the Tew laboratory. These two examples, one quite new and the other studied for almost a decade, demonstrate that it is possible to teach synthetic polymers to behave like peptides, despite their lack of sequence specificity and secondary structure.

  1. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides.

    PubMed

    Rashid, Rafi; Veleba, Mark; Kline, Kimberly A

    2016-01-01

    Antimicrobial peptides (AMPs) are utilized by both eukaryotic and prokaryotic organisms. AMPs such as the human beta defensins, human neutrophil peptides, human cathelicidin, and many bacterial bacteriocins are cationic and capable of binding to anionic regions of the bacterial surface. Cationic AMPs (CAMPs) target anionic lipids [e.g., phosphatidylglycerol (PG) and cardiolipins (CL)] in the cell membrane and anionic components [e.g., lipopolysaccharide (LPS) and lipoteichoic acid (LTA)] of the cell envelope. Bacteria have evolved mechanisms to modify these same targets in order to resist CAMP killing, e.g., lysinylation of PG to yield cationic lysyl-PG and alanylation of LTA. Since CAMPs offer a promising therapeutic alternative to conventional antibiotics, which are becoming less effective due to rapidly emerging antibiotic resistance, there is a strong need to improve our understanding about the AMP mechanism of action. Recent literature suggests that AMPs often interact with the bacterial cell envelope at discrete foci. Here we review recent AMP literature, with an emphasis on focal interactions with bacteria, including (1) CAMP disruption mechanisms, (2) delocalization of membrane proteins and lipids by CAMPs, and (3) CAMP sensing systems and resistance mechanisms. We conclude with new approaches for studying the bacterial membrane, e.g., lipidomics, high resolution imaging, and non-detergent-based membrane domain extraction. PMID:27376064

  2. Immune Signaling and Antimicrobial Peptide Expression in Lepidoptera

    PubMed Central

    Casanova-Torres, Ángel M.; Goodrich-Blair, Heidi

    2013-01-01

    Many lepidopteran insects are agricultural pests that affect stored grains, food and fiber crops. These insects have negative ecological and economic impacts since they lower crop yield, and pesticides are expensive and can have off-target effects on beneficial arthropods. A better understanding of lepidopteran immunity will aid in identifying new targets for the development of specific insect pest management compounds. A fundamental aspect of immunity, and therefore a logical target for control, is the induction of antimicrobial peptide (AMP) expression. These peptides insert into and disrupt microbial membranes, thereby promoting pathogen clearance and insect survival. Pathways leading to AMP expression have been extensively studied in the dipteran Drosophila melanogaster. However, Diptera are an important group of pollinators and pest management strategies that target their immune systems is not recommended. Recent advances have facilitated investigation of lepidopteran immunity, revealing both conserved and derived characteristics. Although the general pathways leading to AMP expression are conserved, specific components of these pathways, such as recognition proteins have diverged. In this review we highlight how such comparative immunology could aid in developing pest management strategies that are specific to agricultural insect pests. PMID:25861461

  3. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides

    PubMed Central

    Rashid, Rafi; Veleba, Mark; Kline, Kimberly A.

    2016-01-01

    Antimicrobial peptides (AMPs) are utilized by both eukaryotic and prokaryotic organisms. AMPs such as the human beta defensins, human neutrophil peptides, human cathelicidin, and many bacterial bacteriocins are cationic and capable of binding to anionic regions of the bacterial surface. Cationic AMPs (CAMPs) target anionic lipids [e.g., phosphatidylglycerol (PG) and cardiolipins (CL)] in the cell membrane and anionic components [e.g., lipopolysaccharide (LPS) and lipoteichoic acid (LTA)] of the cell envelope. Bacteria have evolved mechanisms to modify these same targets in order to resist CAMP killing, e.g., lysinylation of PG to yield cationic lysyl-PG and alanylation of LTA. Since CAMPs offer a promising therapeutic alternative to conventional antibiotics, which are becoming less effective due to rapidly emerging antibiotic resistance, there is a strong need to improve our understanding about the AMP mechanism of action. Recent literature suggests that AMPs often interact with the bacterial cell envelope at discrete foci. Here we review recent AMP literature, with an emphasis on focal interactions with bacteria, including (1) CAMP disruption mechanisms, (2) delocalization of membrane proteins and lipids by CAMPs, and (3) CAMP sensing systems and resistance mechanisms. We conclude with new approaches for studying the bacterial membrane, e.g., lipidomics, high resolution imaging, and non-detergent-based membrane domain extraction. PMID:27376064

  4. Novel antimicrobial peptide specifically active against Porphyromonas gingivalis.

    PubMed

    Suwandecha, T; Srichana, T; Balekar, N; Nakpheng, T; Pangsomboon, K

    2015-09-01

    Porphyromonas gingivalis, the major etiologic agent of chronic periodontitis, produces a broad spectrum of virulence factors, including outer membrane vesicles, lipopolysaccharides, hemolysins and proteinases. Antimicrobial peptides (AMPs) including bacteriocins have been found to inhibit the growth of P. gingivalis; however, these peptides are relatively large molecules. Hence, it is difficult to synthesize them by a scale-up production. Therefore, this study aimed to synthesize a shorter AMP that was still active against P. gingivalis. A peptide that contained three cationic amino acids (Arg, His and Lys), two anionic amino acids (Glu and Asp), hydrophobic amino acids residues (Leu, Ile, Val, Ala and Pro) and hydrophilic residues (Ser and Gly) was obtained and named Pep-7. Its bioactivity and stability were tested after various treatments. The mechanism of action of Pep-7 and its toxicity to human red blood cells were investigated. The Pep-7 inhibited two pathogenic P. gingivalis ATCC 33277 and P. gingivalis ATCC 53978 (wp50) strains at a minimum bactericidal concentration (MBC) of 1.7 µM, but was ineffective against other oral microorganisms (P. intermedia, Tannerella forsythensis, Streptococcus salivarius and Streptococcus sanguinis). From transmission electron microscopy studies, Pep-7 caused pore formation at the poles of the cytoplasmic membranes of P. gingivalis. A concentration of Pep-7 at four times that of its MBC induced some hemolysis but only at 0.3%. The Pep-7 was heat stable under pressure (autoclave at 110 and 121 °C) and possessed activity over a pH range of 6.8-8.5. It was not toxic to periodontal cells over a range of 70.8-4.4 μM and did not induce toxic pro-inflammatory cytokines. The Pep-7 showed selective activity against Porphyromonas sp. by altering the permeability barriers of P. gingivalis. The Pep-7 was not mutagenic in vitro. This work highlighted the potential for the use of this synthetic Pep-7 against P. gingivalis. PMID:26041027

  5. The Cooperative Behaviour of α-Helical Antimicrobial Peptides in Different Environments

    NASA Astrophysics Data System (ADS)

    Pinna, Marco; Wang, Janping; Mura, Manuela; Zhou, Yuhua; Zvelindovsky, Andrei; Dennison, Sarah; Phoenix, David

    2014-03-01

    A systematic analysis of the antimicrobial peptides (AMPs) cooperative action is performed by means of a full atomistic molecular dynamics simulation. The following peptide analogues: Aurein 2.5-COOH, Aurein 2.6-COOH and Aurein 3.1-COOH are investigated in different environments including aqueous solution, trifluoroethanol (TFE), palmitoyloleoylphosphatidylethanolamine (POPE), and palmitoyloleoylphosphatidylglycerol (POPG) lipid bilayers. Simulations conducted for monomer and trimer peptide highlight the importance of the cooperative behaviour and reveal the different mechanisms of antimicrobial peptides action in different lipid bilayers.

  6. A Novel Beta-Defensin Antimicrobial Peptide in Atlantic Cod with Stimulatory Effect on Phagocytic Activity

    PubMed Central

    Ruangsri, Jareeporn; Kitani, Yoichiro; Kiron, Viswanath; Lokesh, Jep; Brinchmann, Monica F.; Karlsen, Bård Ove; Fernandes, Jorge M. O.

    2013-01-01

    A novel defensin antimicrobial peptide gene was identified in Atlantic cod, Gadus morhua. This three exon/two intron defensin gene codes for a peptide precursor consisting of two domains: a signal peptide of 26 amino acids and a mature peptide of 40 residues. The mature cod defensin has six conserved cysteine residues that form 1–5, 2–4 and 3–6 disulphide bridges. This pattern is typical of beta-defensins and this gene was therefore named cod beta-defensin (defb). The tertiary structure of Defb exhibits an α/β fold with one α helix and β1β2β3 sheets. RT-PCR analysis indicated that defb transcripts were present mainly in the swim bladder and peritoneum wall but could also be detected at moderate to low levels in skin, head- and excretory kidneys. In situ hybridisation revealed that defb was specifically expressed by cells located in the swim bladder submucosa and the oocytes. During embryonic development, defb gene transcripts were detectable from the golden eye stage onwards and their expression was restricted to the swim bladder and retina. Defb was differentially expressed in several tissues following antigenic challenge with Vibrio anguillarum, being up-regulated up to 25-fold in head kidney. Recombinant Defb displayed antibacterial activity, with a minimal inhibitory concentration of 0.4–0.8 µM and 25–50 µM against the Gram-(+) bacteria Planococcus citreus and Micrococcus luteus, respectively. In addition, Defb stimulated phagocytic activity of cod head kidney leucocytes in vitro. These findings imply that beta-defensins may play an important role in the innate immune response of Atlantic cod. PMID:23638029

  7. Centrocins: isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis.

    PubMed

    Li, Chun; Haug, Tor; Moe, Morten K; Styrvold, Olaf B; Stensvåg, Klara

    2010-09-01

    As immune effector molecules, antimicrobial peptides (AMPs) play an important role in the invertebrate immune system. Here, we present two novel AMPs, named centrocins 1 (4.5kDa) and 2 (4.4kDa), purified from coelomocyte extracts of the green sea urchin, Strongylocentrotus droebachiensis. The native peptides are cationic and show potent activities against Gram-positive and Gram-negative bacteria. The centrocins have an intramolecular heterodimeric structure, containing a heavy chain (30 amino acids) and a light chain (12 amino acids). The cDNA encoding the peptides and genomic sequences were cloned and sequenced. One putative isoform (centrocin 1b) was identified and one intron was found in the genes coding for the centrocins. The full length protein sequence of centrocin 1 consists of 119 amino acids, whereas centrocin 2 consists of 118 amino acids which both include a preprosequence of 51 or 50 amino acids for centrocins 1 and 2, respectively, and an interchain of 24 amino acids between the heavy and light chain. The difference of molecular mass between the native centrocins and the deduced sequences from cDNA indicates that the native centrocins contain a post-translational brominated tryptophan. In addition, two amino acids at the C-terminal, Gly-Arg, were removed from the light chains during the post-translational processing. The separate peptide chains of centrocin 1 were synthesized and the heavy chain alone was shown to be sufficient for antimicrobial activity. The genome of the closely related species, the purple sea urchin (S. purpuratus), was shown to contain two putative proteins with high similarity to the centrocins. PMID:20438753

  8. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside.

    PubMed

    Maria-Neto, Simone; de Almeida, Keyla Caroline; Macedo, Maria Ligia Rodrigues; Franco, Octávio Luiz

    2015-11-01

    Resistant bacterial infections are a major health problem in many parts of the world. The major commercial antibiotic classes often fail to combat common bacteria. Although antimicrobial peptides are able to control bacterial infections by interfering with microbial metabolism and physiological processes in several ways, a large number of cases of resistance to antibiotic peptide classes have also been reported. To gain a better understanding of the resistance process various technologies have been applied. Here we discuss multiple strategies by which bacteria could develop enhanced antimicrobial peptide resistance, focusing on sub-cellular regions from the surface to deep inside, evaluating bacterial membranes, cell walls and cytoplasmic metabolism. Moreover, some high-throughput methods for antimicrobial resistance detection and discrimination are also examined. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides. PMID:25724815

  9. Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella.

    PubMed

    Amer, Lilian S; Bishop, Barney M; van Hoek, Monique L

    2010-05-28

    Francisella infects the lungs causing pneumonic tularemia. Focusing on the lung's host defense, we have examined antimicrobial peptides as part of the innate immune response to Francisella infection. Interest in antimicrobial peptides, such as the cathelicidins, has grown due their potential therapeutic applications and the increasing problem of bacterial resistance to commonly used antibiotics. Only one human cathelicidin, LL-37, has been characterized. Helical cathelicidins have also been discovered in snakes including the Chinese King Cobra, Naja atra (NA-CATH). Four synthetic 11-residue peptides (ATRA-1, -2, -1A and -1P) containing variations of a repeated motif within NA-CATH were designed. We hypothesized that these smaller synthetic peptides could have excellent antimicrobial effectiveness with shorter length (and less cost), making them strong potential candidates for development into broad-spectrum antimicrobial compounds. We tested the susceptibility of F. novicida to four ATRA peptides, LL-37, and NA-CATH. Two of the ATRA peptides had high antimicrobial activity (microM), while the two proline-containing ATRA peptides had low activity. The ATRA peptides did not show significant hemolytic activity even at high peptide concentration, indicating low cytotoxicity against host cells. NA-CATH killed Francisella bacteria more quickly than LL-37. However, LL-37 was the most effective peptide against F. novicida (EC50=50 nM). LL-37 mRNA was induced in A549 cells by Francisella infection. We recently demonstrated that F. novicida forms in vitro biofilms. LL-37 inhibited F. novicida biofilm formation at sub-antimicrobial concentrations. Understanding the properties of these peptides, and their endogenous expression in the lung could lead to potential future therapeutic interventions for this lung infection. PMID:20399752

  10. Cathelicidin-related antimicrobial peptide modulates the severity of acute pancreatitis in mice

    PubMed Central

    DENG, YUAN-YUAN; SHAMOON, MUHAMMAD; HE, YUE; BHATIA, MADHAV; SUN, JIA

    2016-01-01

    The present study aimed to investigate the immunomodulatory effects of mouse cathelicidin-related antimicrobial peptide (CRAMP) on experimental acute pancreatitis (AP). AP is a common clinical condition characterized by acute abdominal inflammation. Innate immune cells and mediators are intrinsically linked to the pathogenesis of AP. Cathelicidins are innate immunity-derived antimicrobial peptides that exert immunomodulatory effects on various host cells. However, how cathelicidins are involved and modulate the severity and inflammatory responses of AP remains unclear. In the present study, the mouse CRAMP gene-deficient cnlp−/− mice and their wild-type C57BL/6J littermates were induced with AP by multiple hourly injections of supramaximal doses of caerulein. Serum amylase levels, pancreatic myeloperoxidase activity and histological examination were performed in order to determine the disease severity and the levels of inflammatory cytokines. Disease severity and inflammatory markers were subsequently evaluated in the control mice, cnlp−/− C57BL/6J mice with AP, and wild-type C57BL/6J mice with AP. The results demonstrated that cnlp−/− mice exhibited a more severe phenotype and inflammatory response following AP induction compared with the wild-type mice, as evidenced by increased serum amylase levels, pancreatic myeloperoxidase release, and early inflammatory mediator tumor necrosis factor-α production. Histological examination confirmed that CRAMP deficiency worsened the pancreatic inflammatory condition. These results indicate that CRAMP may be considered a novel modulatory mediator in mouse experimental AP. PMID:27035328

  11. Inducible Resistance of Fish Bacterial Pathogens to the Antimicrobial Peptide Cecropin B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cecropin B is a cationic antimicrobial peptide originally isolated from the diapausing pupae of the giant silk moth, Hylphora cecropia. Cecropin B elicits its antimicrobial effects through disruption of the anionic cell membranes of gram-negative bacteria. Previous work by our laboratory demonstra...

  12. Euler buckling, membrane corrugation and pore formation induced by antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Jia, Nana; Fang, Weihai

    2014-03-01

    Antimicrobial peptides serve as defense weapons against bacteria. They are secreted by organisms of plants and animals and have a wide variety in composition and structure. In this study, we theoretically explore the effects of the antimicrobial peptides on the lipid bilayer membrane by using analytic arguments and the coarse grained dissipative particle dynamics simulations. We study peptide/lipid membrane complexes by considering peptides with various structure, hydrophobicity and peptide/lipid interaction strength. The role of lipid/water interaction is also discussed. We discuss a rich variety of membrane morphological changes induced by peptides, such as pore formation, membrane corrugation and Euler buckling. Such buckled membrane states have been indeed seen in a number of experiments with bacteria affected by peptide, yet this is the first theoretical study addressing these phenomena more deeply.

  13. Staphylococcal antimicrobial peptides: relevant properties and potential biotechnological applications.

    PubMed

    Bastos, M C F; Ceotto, H; Coelho, M L V; Nascimento, J S

    2009-01-01

    Bacteriocins are bacterial antimicrobial peptides with bactericidal activity against other bacteria. Staphylococcins are bacteriocins produced by staphylococci, which are Gram-positive bacteria with medical and veterinary importance. Most bacteriocins produced by staphylococci are either lantibiotics (e.g., Pep5, epidermin, epilancin K7, epicidin 280, staphylococcin C55/BacR1, and nukacin ISK-1) or class II bacteriocins (e.g., aureocins A70 and 53). Only one staphylococcin belonging to class III, lysostaphin, has been described so far. Production of staphylococcins is a self-protection mechanism that helps staphylococci to survive in their natural habitats. However, since these substances generally have a broad spectrum of activity, inhibiting several human and animal pathogens, they have potential biotechnological applications either as food preservatives or therapeutic agents. Due to the increasing consumer awareness of the risks derived not only from food-borne pathogens, but also from the artificial chemical preservatives used to control them, the interest in the discovery of natural food preservatives has increased considerably. The emergence and dissemination of antibiotic resistance among human and animal pathogens and their association with the use of antibiotics constitute a serious problem worldwide requiring effective measures for controlling their spread. Staphylococcins may be used, solely or in combination with other chemical agents, to avoid food contamination or spoilage and to prevent or treat bacterial infectious diseases. The use of combinations of antimicrobials is common in the clinical setting and expands the spectrum of organisms that can be targeted, prevents the emergence of resistant organisms, decreases toxicity by allowing lower doses of both agents and can result in synergistic inhibition. PMID:19149589

  14. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity†

    PubMed Central

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.

    2016-01-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure–property–activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications. PMID:26524425

  15. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity.

    PubMed

    Spitzer, Philipp; Condic, Mateja; Herrmann, Martin; Oberstein, Timo Jan; Scharin-Mehlmann, Marina; Gilbert, Daniel F; Friedrich, Oliver; Grömer, Teja; Kornhuber, Johannes; Lang, Roland; Maler, Juan Manuel

    2016-01-01

    Amyloid-β (Aβ) peptides are the main components of the plaques found in the brains of patients with Alzheimer's disease. However, Aβ peptides are also detectable in secretory compartments and peripheral blood contains a complex mixture of more than 40 different modified and/or N- and C-terminally truncated Aβ peptides. Recently, anti-infective properties of Aβ peptides have been reported. Here, we investigated the interaction of Aβ peptides of different lengths with various bacterial strains and the yeast Candida albicans. The amyloidogenic peptides Aβ1-42, Aβ2-42, and Aβ3p-42 but not the non-amyloidogenic peptides Aβ1-40 and Aβ2-40 bound to microbial surfaces. As observed by immunocytochemistry, scanning electron microscopy and Gram staining, treatment of several bacterial strains and Candida albicans with Aβ peptide variants ending at position 42 (Aβx-42) caused the formation of large agglutinates. These aggregates were not detected after incubation with Aβx-40. Furthermore, Aβx-42 exerted an antimicrobial activity on all tested pathogens, killing up to 80% of microorganisms within 6 h. Aβ1-40 only had a moderate antimicrobial activity against C. albicans. Agglutination of Aβ1-42 was accelerated in the presence of microorganisms. These data demonstrate that the amyloidogenic Aβx-42 variants have antimicrobial activity and may therefore act as antimicrobial peptides in the immune system. PMID:27624303

  16. PFR peptide, one of the antimicrobial peptides identified from the derivatives of lactoferrin, induces necrosis in leukemia cells

    PubMed Central

    Lu, Yan; Zhang, Teng-Fei; Shi, Yue; Zhou, Han-Wei; Chen, Qi; Wei, Bu-Yun; Wang, Xi; Yang, Tian-Xin; Chinn, Y. Eugene; Kang, Jian; Fu, Cai-Yun

    2016-01-01

    LF11-322 (PFWRIRIRR-NH2) (PFR peptide), a nine amino acid-residue peptide fragment derived from human lactoferricin, possesses potent cytotoxicity against bacteria. We report here the discovery and characterization of its antitumor activity in leukemia cells. PFR peptide inhibited the proliferation of MEL and HL-60 leukemia cells by inducing cell death in the absence of the classical features of apoptosis, including chromatin condensation, Annexin V staining, Caspase activation and increase of abundance of pro-apoptotic proteins. Instead, necrotic cell death as evidenced by increasing intracellular PI staining and LDH release, inducing membrane disruption and up-regulating intracellular calcium level, was observed following PFR peptide treatment. In addition to necrotic cell death, PFR peptide also induced G0/G1 cell cycle arrest. Moreover, PFR peptide exhibited favorable antitumor activity and tolerability in vivo. These findings thus provide a new clue of antimicrobial peptides as a potential novel therapy for leukemia. PMID:26860588

  17. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection

    PubMed Central

    Melvin, Jeffrey A.; Lashua, Lauren P.; Kiedrowski, Megan R.; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C.

    2016-01-01

    ABSTRACT Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents. Here, we tested the ability of an eCAP, WLBU2, to disrupt recalcitrant Pseudomonas aeruginosa biofilms. WLBU2 was capable of significantly reducing biomass and viability of P. aeruginosa biofilms formed on airway epithelium and maintained activity during viral coinfection, a condition that confers extraordinary levels of antibiotic resistance. Biofilm disruption was achieved in short treatment times by permeabilization of bacterial membranes. Additionally, we observed simultaneous reduction of infectivity of the viral pathogen respiratory syncytial virus (RSV). WLBU2 is notable for its ability to maintain activity across a broad range of physiological conditions and showed negligible toxicity toward the airway epithelium, expanding its potential applications as an antimicrobial therapeutic. IMPORTANCE Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms

  18. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection.

    PubMed

    Melvin, Jeffrey A; Lashua, Lauren P; Kiedrowski, Megan R; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C; Bomberger, Jennifer M

    2016-01-01

    Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents. Here, we tested the ability of an eCAP, WLBU2, to disrupt recalcitrant Pseudomonas aeruginosa biofilms. WLBU2 was capable of significantly reducing biomass and viability of P. aeruginosa biofilms formed on airway epithelium and maintained activity during viral coinfection, a condition that confers extraordinary levels of antibiotic resistance. Biofilm disruption was achieved in short treatment times by permeabilization of bacterial membranes. Additionally, we observed simultaneous reduction of infectivity of the viral pathogen respiratory syncytial virus (RSV). WLBU2 is notable for its ability to maintain activity across a broad range of physiological conditions and showed negligible toxicity toward the airway epithelium, expanding its potential applications as an antimicrobial therapeutic. IMPORTANCE Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms formed by the

  19. Characterization of three novel beta-defensin antimicrobial peptides in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Casadei, Elisa; Wang, Tiehui; Zou, Jun; González Vecino, Jose L; Wadsworth, Simon; Secombes, Christopher J

    2009-10-01

    An initial bioinformatics investigation followed by cloning and sequencing analysis, has led to the identification of three novel members (omDB-2, omDB-3, omBD-4) of the beta-defensin family in rainbow trout (Oncorhynchus mykiss). The contiguous sequences could be translated to give predicted peptides of 62 (omDB-2), 63 (omDB-3) and 68 (omDB-4) amino acids (aa) in length, with mature peptides of 43 (omDB-2), 39 (omDB-3) and 42 (omDB-4) aa, with no obvious proregion present. Analysis of the gene organization found that all three new genes contained three exons divided by two introns, as seen in defensin genes of other fish species. Constitutive expression of all the trout defensins was detected by RT-PCR in a wide range of mucosal and systemic tissues from healthy fish, with omDB-3 and omDB-4 showing the highest expression levels. Following bacterial challenge in vivo, the defensin genes were induced at the three mucosal sites examined (skin, gill, gut), with levels of omDB-2 and omDB-3 increased some 16-fold in gut and gill respectively. Using polyinosinic polycytosinic RNA (polyI:C) as a viral mimic, all of the four trout beta-defensin genes were induced in head kidney primary leucocyte cultures at 4h post-stimulation, with omDB-1 and omDB-3 particularly highly expressed. These data suggest that beta-defensins are likely an important component of the innate defences of fish, and reveal an added level of antimicrobial peptide complexity in fish to that known previously. PMID:19709750

  20. Mechanisms and consequences of bacterial resistance to antimicrobial peptides.

    PubMed

    Andersson, D I; Hughes, D; Kubicek-Sutherland, J Z

    2016-05-01

    Cationic antimicrobial peptides (AMPs) are an intrinsic part of the human innate immune system. Over 100 different human AMPs are known to exhibit broad-spectrum antibacterial activity. Because of the increased frequency of resistance to conventional antibiotics there is an interest in developing AMPs as an alternative antibacterial therapy. Several cationic peptides that are derivatives of AMPs from the human innate immune system are currently in clinical development. There are also ongoing clinical studies aimed at modulating the expression of AMPs to boost the human innate immune response. In this review we discuss the potential problems associated with these therapeutic approaches. There is considerable experimental data describing mechanisms by which bacteria can develop resistance to AMPs. As for any type of drug resistance, the rate by which AMP resistance would emerge and spread in a population of bacteria in a natural setting will be determined by a complex interplay of several different factors, including the mutation supply rate, the fitness of the resistant mutant at different AMP concentrations, and the strength of the selective pressure. Several studies have already shown that AMP-resistant bacterial mutants display broad cross-resistance to a variety of AMPs with different structures and modes of action. Therefore, routine clinical administration of AMPs to treat bacterial infections may select for resistant bacterial pathogens capable of better evading the innate immune system. The ramifications of therapeutic levels of exposure on the development of AMP resistance and bacterial pathogenesis are not yet understood. This is something that needs to be carefully studied and monitored if AMPs are used in clinical settings. PMID:27180309

  1. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides.

    PubMed

    Hollmann, Axel; Martínez, Melina; Noguera, Martín E; Augusto, Marcelo T; Disalvo, Anibal; Santos, Nuno C; Semorile, Liliana; Maffía, Paulo C

    2016-05-01

    Cationic antimicrobial peptides (CAMPs) represent important self defense molecules in many organisms, including humans. These peptides have a broad spectrum of activities, killing or neutralizing many Gram-negative and Gram-positive bacteria. The emergence of multidrug resistant microbes has stimulated research on the development of alternative antibiotics. In the search for new antibiotics, cationic antimicrobial peptides (CAMPs) offer a viable alternative to conventional antibiotics, as they physically disrupt the bacterial membranes, leading to lysis of microbial membranes and eventually cell death. In particular, the group of linear α-helical cationic peptides has attracted increasing interest from clinical as well as basic research during the last decade. In this work, we studied the biophysical and microbiological characteristics of three new designed CAMPs. We modified a previously studied CAMP sequence, in order to increase or diminish the hydrophobic face, changing the position of two lysines or replacing three leucines, respectively. These mutations modified the hydrophobic moment of the resulting peptides and allowed us to study the importance of this parameter in the membrane interactions of the peptides. The structural properties of the peptides were also correlated with their membrane-disruptive abilities, antimicrobial activities and hemolysis of human red blood cells. PMID:26896660

  2. Toward Infection-Resistant Surfaces: Achieving High Antimicrobial Peptide Potency by Modulating the Functionality of Polymer Brush and Peptide.

    PubMed

    Yu, Kai; Lo, Joey C Y; Mei, Yan; Haney, Evan F; Siren, Erika; Kalathottukaren, Manu Thomas; Hancock, Robert E W; Lange, Dirk; Kizhakkedathu, Jayachandran N

    2015-12-30

    Bacterial infection associated with indwelling medical devices and implants is a major clinical issue, and the prevention or treatment of such infections is challenging. Antimicrobial coatings offer a significant step toward addressing this important clinical problem. Antimicrobial coatings based on tethered antimicrobial peptides (AMPs) on hydrophilic polymer brushes have been shown to be one of the most promising strategies to avoid bacterial colonization and have demonstrated broad spectrum activity. Optimal combinations of the functionality of the polymer-brush-tethered AMPs are essential to maintaining long-term AMP activity on the surface. However, there is limited knowledge currently available on this topic. Here we report the development of potent antimicrobial coatings on implant surfaces by elucidating the roles of polymer brush chemistry and peptide structure on the overall antimicrobial activity of the coatings. We screened several combinations of polymer brush coatings and AMPs constructed on nanoparticles, titanium surfaces, and quartz slides on their antimicrobial activity and bacterial adhesion against Gram-positive and Gram-negative bacteria. Highly efficient killing of planktonic bacteria by the antimicrobial coatings on nanoparticle surfaces, as well as potent killing of adhered bacteria in the case of coatings on titanium surfaces, was observed. Remarkably, the antimicrobial activity of AMP-conjugated brush coatings demonstrated a clear dependence on the polymer brush chemistry and peptide structure, and optimization of these parameters is critical to achieving infection-resistant surfaces. By analyzing the interaction of polymer-brush-tethered AMPs with model lipid membranes using circular dichroism spectroscopy, we determined that the polymer brush chemistry has an influence on the extent of secondary structure change of tethered peptides before and after interaction with biomembranes. The peptide structure also has an influence on the density

  3. Role of Antimicrobial Peptides in Amphibian Defense Against Trematode Infection

    PubMed Central

    Calhoun, Dana M.; Woodhams, Doug; Howard, Cierra; LaFonte, Bryan E.; Gregory, Jacklyn R.; Johnson, Pieter T. J.

    2016-01-01

    Antimicrobial peptides (AMPs) contribute to the immune defenses of many vertebrates, including amphibians. As larvae, amphibians are often exposed to the infectious stages of trematode parasites, many of which must penetrate the host’s skin, potentially interacting with host AMPs. We tested the effects of the natural AMPs repertoires on both the survival of trematode infectious stages as well as their ability to infect larval amphibians. All five trematode species exhibited decreased survival of cercariae in response to higher concentrations of adult bullfrog AMPs, but no effect when exposed to AMPs from larval bullfrogs. Similarly, the use of norepinephrine to remove AMPs from larval bullfrogs, Pacific chorus frogs, and gray treefrogs had only weak (gray treefrogs) or non-significant (other tested species) effects on infection success by Ribeiroia ondatrae. We nonetheless observed strong differences in parasite infection as a function of both host stage (first- versus second-year bullfrogs) and host species (Pacific chorus frogs versus gray treefrogs) that were apparently unrelated to AMPs. Taken together, our results suggest that AMPs do not play a significant role in defending larval amphibians against trematode cercariae, but that they could be one mechanism helping to prevent infection of post-metamorphic amphibians, particularly for highly aquatic species. PMID:26911920

  4. Potential Use of Antimicrobial Peptides as Vaginal Spermicides/Microbicides.

    PubMed

    Tanphaichitr, Nongnuj; Srakaew, Nopparat; Alonzi, Rhea; Kiattiburut, Wongsakorn; Kongmanas, Kessiri; Zhi, Ruina; Li, Weihua; Baker, Mark; Wang, Guanshun; Hickling, Duane

    2016-01-01

    The concurrent increases in global population and sexually transmitted infection (STI) demand a search for agents with dual spermicidal and microbicidal properties for topical vaginal application. Previous attempts to develop the surfactant spermicide, nonoxynol-9 (N-9), into a vaginal microbicide were unsuccessful largely due to its inefficiency to kill microbes. Furthermore, N-9 causes damage to the vaginal epithelium, thus accelerating microbes to enter the women's body. For this reason, antimicrobial peptides (AMPs), naturally secreted by all forms of life as part of innate immunity, deserve evaluation for their potential spermicidal effects. To date, twelve spermicidal AMPs have been described including LL-37, magainin 2 and nisin A. Human cathelicidin LL-37 is the most promising spermicidal AMP to be further developed for vaginal use for the following reasons. First, it is a human AMP naturally produced in the vagina after intercourse. Second, LL-37 exerts microbicidal effects to numerous microbes including those that cause STI. Third, its cytotoxicity is selective to sperm and not to the female reproductive tract. Furthermore, the spermicidal effects of LL-37 have been demonstrated in vivo in mice. Therefore, the availability of LL-37 as a vaginal spermicide/microbicide will empower women for self-protection against unwanted pregnancies and STI. PMID:26978373

  5. Do Antimicrobial Peptides and Complement Collaborate in the Intestinal Mucosa?

    PubMed Central

    Kopp, Zoë A.; Jain, Umang; Van Limbergen, Johan; Stadnyk, Andrew W.

    2015-01-01

    It is well understood that multiple antimicrobial peptides (AMPs) are constitutively deployed by the epithelium to bolster the innate defenses along the entire length of the intestines. In addition to this constitutive/homeostatic production, AMPs may be inducible and levels changed during disease. In contrast to this level of knowledge on AMP sources and roles in the intestines, our understanding of the complement cascade in the healthy and diseased intestines is rudimentary. Epithelial cells make many complement proteins and there is compelling evidence that complement becomes activated in the lumen. With the common goal of defending the host against microbes, the opportunities for cross-talk between these two processes is great, both in terms of actions on the target microbes but also on regulating the synthesis and secretion of the alternate family of molecules. This possibility is beginning to become apparent with the finding that colonic epithelial cells possess anaphylatoxin receptors. There still remains much to be learned about the possible points of collaboration between AMPs and complement, for example, whether there is reciprocal control over expression in the intestinal mucosa in homeostasis and restoring the balance following infection and inflammation. PMID:25688244

  6. The Antimicrobial Peptide Lysozyme Is Induced after Multiple Trauma

    PubMed Central

    Klüter, Tim; Fitschen-Oestern, Stefanie; Lippross, Sebastian; Weuster, Matthias; Pufe, Thomas; Tohidnezhad, Mersedeh; Beyer, Andreas; Seekamp, Andreas; Varoga, Deike

    2014-01-01

    The antimicrobial peptide lysozyme is an important factor of innate immunity and exerts high potential of antibacterial activity. In the present study we evaluated the lysozyme expression in serum of multiple injured patients and subsequently analyzed their possible sources and signaling pathways. Expression of lysozyme was examined in blood samples of multiple trauma patients from the day of trauma until 14 days after trauma by ELISA. To investigate major sources of lysozyme, its expression and regulation in serum samples, different blood cells, and tissue samples were analysed by ELISA and real-time PCR. Neutrophils and hepatocytes were stimulated with cytokines and supernatant of Staphylococcus aureus. The present study demonstrates the induction and release of lysozyme in serum of multiple injured patients. The highest lysozyme expression of all tested cells and tissues was detected in neutrophils. Stimulation with trauma-related factors such as interleukin-6 and S. aureus induced lysozyme expression. Liver tissue samples of patients without trauma show little lysozyme expression compared to neutrophils. After stimulation with bacterial fragments, lysozyme expression of hepatocytes is upregulated significantly. Toll-like receptor 2, a classic receptor of Gram-positive bacterial protein, was detected as a possible target for lysozyme induction. PMID:25258475

  7. Antimicrobial peptides and gut microbiota in homeostasis and pathology

    PubMed Central

    Ostaff, Maureen J; Stange, Eduard Friedrich; Wehkamp, Jan

    2013-01-01

    We survive because we adapted to a world of microorganisms. All our epithelial surfaces participate in keeping up an effective barrier against microbes while not initiating ongoing inflammatory processes and risking collateral damage to the host. Major players in this scenario are antimicrobial peptides (AMPs). Such broad-spectrum innate antibiotics are in part produced by specialized cells but also widely sourced from all epithelia as well as circulating inflammatory cells. AMPs belong to an ancient defense system found in all organisms and participated in a preservative co-evolution with a complex microbiome. Particularly interesting interactions between host barrier and microbiota can be found in the gut. The intestinal cell lining not only has to maintain a tightly regulated homeostasis during its high-throughput regeneration, but also a balanced relationship towards an extreme number of mutualistic or commensal inhabitants. Recent research suggests that advancing our understanding of the circumstances of such balanced and sometimes imbalanced interactions between gut microbiota and host AMPs should have therapeutic implications for different intestinal disorders. PMID:24039130

  8. Reactive Oxygen Species, Apoptosis, Antimicrobial Peptides and Human Inflammatory Diseases

    PubMed Central

    Oyinloye, Babatunji Emmanuel; Adenowo, Abiola Fatimah; Kappo, Abidemi Paul

    2015-01-01

    Excessive free radical generation, especially reactive oxygen species (ROS) leading to oxidative stress in the biological system, has been implicated in the pathogenesis and pathological conditions associated with diverse human inflammatory diseases (HIDs). Although inflammation which is considered advantageous is a defensive mechanism in response to xenobiotics and foreign pathogen; as a result of cellular damage arising from oxidative stress, if uncontrolled, it may degenerate to chronic inflammation when the ROS levels exceed the antioxidant capacity. Therefore, in the normal resolution of inflammatory reactions, apoptosis is acknowledged to play a crucial role, while on the other hand, dysregulation in the induction of apoptosis by enhanced ROS production could also result in excessive apoptosis identified in the pathogenesis of HIDs. Apparently, a careful balance must be maintained in this complex environment. Antimicrobial peptides (AMPs) have been proposed in this review as an excellent candidate capable of playing prominent roles in maintaining this balance. Consequently, in novel drug design for the treatment and management of HIDs, AMPs are promising candidates owing to their size and multidimensional properties as well as their wide spectrum of activities and indications of reduced rate of resistance. PMID:25850012

  9. The antimicrobial peptide lysozyme is induced after multiple trauma.

    PubMed

    Klüter, Tim; Fitschen-Oestern, Stefanie; Lippross, Sebastian; Weuster, Matthias; Mentlein, Rolf; Steubesand, Nadine; Neunaber, Claudia; Hildebrand, Frank; Pufe, Thomas; Tohidnezhad, Mersedeh; Beyer, Andreas; Seekamp, Andreas; Varoga, Deike

    2014-01-01

    The antimicrobial peptide lysozyme is an important factor of innate immunity and exerts high potential of antibacterial activity. In the present study we evaluated the lysozyme expression in serum of multiple injured patients and subsequently analyzed their possible sources and signaling pathways. Expression of lysozyme was examined in blood samples of multiple trauma patients from the day of trauma until 14 days after trauma by ELISA. To investigate major sources of lysozyme, its expression and regulation in serum samples, different blood cells, and tissue samples were analysed by ELISA and real-time PCR. Neutrophils and hepatocytes were stimulated with cytokines and supernatant of Staphylococcus aureus. The present study demonstrates the induction and release of lysozyme in serum of multiple injured patients. The highest lysozyme expression of all tested cells and tissues was detected in neutrophils. Stimulation with trauma-related factors such as interleukin-6 and S. aureus induced lysozyme expression. Liver tissue samples of patients without trauma show little lysozyme expression compared to neutrophils. After stimulation with bacterial fragments, lysozyme expression of hepatocytes is upregulated significantly. Toll-like receptor 2, a classic receptor of Gram-positive bacterial protein, was detected as a possible target for lysozyme induction. PMID:25258475

  10. Potential Use of Antimicrobial Peptides as Vaginal Spermicides/Microbicides

    PubMed Central

    Tanphaichitr, Nongnuj; Srakaew, Nopparat; Alonzi, Rhea; Kiattiburut, Wongsakorn; Kongmanas, Kessiri; Zhi, Ruina; Li, Weihua; Baker, Mark; Wang, Guanshun; Hickling, Duane

    2016-01-01

    The concurrent increases in global population and sexually transmitted infection (STI) demand a search for agents with dual spermicidal and microbicidal properties for topical vaginal application. Previous attempts to develop the surfactant spermicide, nonoxynol-9 (N-9), into a vaginal microbicide were unsuccessful largely due to its inefficiency to kill microbes. Furthermore, N-9 causes damage to the vaginal epithelium, thus accelerating microbes to enter the women’s body. For this reason, antimicrobial peptides (AMPs), naturally secreted by all forms of life as part of innate immunity, deserve evaluation for their potential spermicidal effects. To date, twelve spermicidal AMPs have been described including LL-37, magainin 2 and nisin A. Human cathelicidin LL-37 is the most promising spermicidal AMP to be further developed for vaginal use for the following reasons. First, it is a human AMP naturally produced in the vagina after intercourse. Second, LL-37 exerts microbicidal effects to numerous microbes including those that cause STI. Third, its cytotoxicity is selective to sperm and not to the female reproductive tract. Furthermore, the spermicidal effects of LL-37 have been demonstrated in vivo in mice. Therefore, the availability of LL-37 as a vaginal spermicide/microbicide will empower women for self-protection against unwanted pregnancies and STI. PMID:26978373

  11. Biosynthesis of the Polycyclic Antimicrobial Peptides Lacticin 481, Haloduracin, and Cinnamycin

    ERIC Educational Resources Information Center

    Cooper, Lisa E.

    2009-01-01

    Lantibiotics are bacterial-derived polycyclic antimicrobial peptides. They are genetically encoded and ribosomally synthesized as precursor peptides containing a structural region that undergoes post-translational modification and a leader sequence that is not modified. Specific serine and threonine residues in the pre-lantibiotic structural…

  12. Rational Evolution of Antimicrobial Peptides Containing Unnatural Amino Acids to Combat Burn Wound Infections.

    PubMed

    Xiong, Meng; Chen, Ming; Zhang, Jue

    2016-09-01

    Antimicrobial peptides have long been raised as a promising strategy to combat bacterial infection in burn wounds. Here, we attempted to rationally design small antimicrobial peptides containing unnatural amino acids by integrating in silico analysis and in vitro assay. Predictive quantitative sequence-activity models were established and validated rigorously based on a large panel of nonamer antimicrobial peptides with known antibacterial activity. The best quantitative sequence-activity model predictor was employed to guide genetic evolution of a peptide population. In the evolution procedure, a number of unnatural amino acids with desired physicochemical properties were introduced, resulting in a genetic evolution-improved population, from which seven peptide candidates with top scores, containing 1-3 unnatural amino acids, and having diverse structures were successfully identified, and their antibacterial potencies against two antibiotic-resistant bacterial strains isolated from infected burn wounds were measured using in vitro susceptibility test. Consequently, four (WL-Orn-LARKIV-NH2 , ARKRWF-Dab-FL-NH2 , KFI-Hag-IWR-Orn-R-NH2 and YW-Hag-R-Cit-RF-Orn-N-NH2 ) of the seven tested peptides were found to be more potent than reference Bac2A, the smallest naturally occurring broad spectrum antimicrobial peptide. Molecular dynamics simulations revealed that the designed peptides can fold into amphipathic helical structure that allows them to interact directly with microbial membranes. PMID:27062533

  13. Antimicrobial peptide scolopendrasin VII, derived from the centipede Scolopendra subspinipes mutilans, stimulates macrophage chemotaxis via formyl peptide receptor 1.

    PubMed

    Park, Yoo Jung; Lee, Ha Young; Jung, Young Su; Park, Joon Seong; Hwang, Jae Sam; Bae, Yoe-Sik

    2015-08-01

    In this study, we report that one of the antimicrobial peptides scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates actin polymerization and the subsequent chemotactic migration of macrophages through the activation of ERK and protein kinase B (Akt) activity. The scolopendrasin VII-induced chemotactic migration of macrophages is inhibited by the formyl peptide receptor 1 (FPR1) antagonist cyclosporine H. We also found that scolopendrasin VII stimulate the chemotactic migration of FPR1-transfected RBL-2H3 cells, but not that of vector-transfected cells; moreover, scolopendrasin VII directly binds to FPR1. Our findings therefore suggest that the antimicrobial peptide scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates macrophages, resulting in chemotactic migration via FPR1 signaling, and the peptide can be useful in the study of FPR1-related biological responses. PMID:26129676

  14. Design, recombinant expression, and antibacterial activity of the cecropins-melittin hybrid antimicrobial peptides.

    PubMed

    Cao, Yu; Yu, Rong Qing; Liu, Yi; Zhou, Huo Xiang; Song, Ling Ling; Cao, Yi; Qiao, Dai Rong

    2010-09-01

    In order to evaluate their antibacterial activities and toxicities, the cecropins-melittin hybrid antimicrobial peptide, CA(1-7)-M(4-11) (CAM) and CB(1-7)-M(4-11) (CBM), were designed by APD2 database. The recombinant hybrid antimicrobial peptides were successfully expressed and purified in Pichia pastoris. Antimicrobial activity assay showed that both of the two hybrid antimicrobial peptides had strong antibacterial abilities against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Bacillus subtilis, Bacillus thuringiensis, and Salmonella derby. The potency of CAM and CBM to E. coli 25922 were 0.862 and 0.849, respectively, slightly lower than Amp's 0.957. The hemolytic assays indicated CAM and CBM had no hemolytic in vivo and in vitro, and so they had a good application prospect. PMID:20111863

  15. Alpha-Melanocyte Stimulating Hormone: An Emerging Anti-Inflammatory Antimicrobial Peptide

    PubMed Central

    Singh, Madhuri; Mukhopadhyay, Kasturi

    2014-01-01

    The alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide belonging to the melanocortin family. It is well known for its anti-inflammatory and antipyretic effects and shares several characteristics with antimicrobial peptides (AMPs). There have been some recent reports about the direct antimicrobial activity of α-MSH against various microbes belonging to both fungal and bacterial pathogens. Similar to α-MSH's anti-inflammatory properties, its C-terminal residues also exhibit antimicrobial activity parallel to that of the entire peptide. This review is focused on the current findings regarding the direct antimicrobial potential and immunomodulatory mechanism of α-MSH and its C-terminal fragments, with particular emphasis on the prospects of α-MSH based peptides as a strong anti-infective agent. PMID:25140322

  16. Expansion of the antimicrobial peptide repertoire in the invasive ladybird Harmonia axyridis.

    PubMed

    Vilcinskas, Andreas; Mukherjee, Krishnendu; Vogel, Heiko

    2013-01-01

    The harlequin ladybird beetle Harmonia axyridis has emerged as a model species in invasion biology because of its strong resistance against pathogens and remarkable capacity to outcompete native ladybirds. The invasive success of the species may reflect its well-adapted immune system, a hypothesis we tested by analysing the transcriptome and characterizing the immune gene repertoire of untreated beetles and those challenged with bacteria and fungi. We found that most H. axyridis immunity-related genes were similar in diversity to their counterparts in the reference beetle Tribolium castaneum, but there was an unprecedented expansion among genes encoding antimicrobial peptides and proteins (AMPs). We identified more than 50 putative AMPs belonging to seven different gene families, and many of the corresponding genes were shown by quantitative real-time RT-PCR to be induced in the immune-stimulated beetles. AMPs with the highest induction ratio in the challenged beetles were shown to demonstrate broad and potent activity against Gram-negative bacteria and entomopathogenic fungi. The invasive success of H. axyridis can therefore be attributed at least in part to the greater efficiency of its immune system, particularly the expansion of AMP gene families and their induction in response to pathogens. PMID:23173204

  17. Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of β-Hairpin Peptides

    PubMed Central

    2016-01-01

    Bacteria have acquired extensive resistance mechanisms to protect themselves against antibiotic action. Today the bacterial membrane has become one of the “final frontiers” in the search for new compounds acting on novel targets to address the threat of multi-drug resistant (MDR) and XDR bacterial pathogens. β-Hairpin antimicrobial peptides are amphipathic, membrane-binding antibiotics that exhibit a broad range of activities against Gram-positive, Gram-negative, and fungal pathogens. However, most members of the class also possess adverse cytotoxicity and hemolytic activity that preclude their development as candidate antimicrobials. We examined peptide hydrophobicity, amphipathicity, and structure to better dissect and understand the correlation between antimicrobial activity and toxicity, membrane binding, and membrane permeability. The hydrophobicity, pI, net charge at physiological pH, and amphipathic moment for the β-hairpin antimicrobial peptides tachyplesin-1, polyphemusin-1, protegrin-1, gomesin, arenicin-3, and thanatin were determined and correlated with key antimicrobial activity and toxicity data. These included antimicrobial activity against five key bacterial pathogens and two fungi, cytotoxicity against human cell lines, and hemolytic activity in human erythrocytes. Observed antimicrobial activity trends correlated with compound amphipathicity and, to a lesser extent, with overall hydrophobicity. Antimicrobial activity increased with amphipathicity, but unfortunately so did toxicity. Of note, tachyplesin-1 was found to be 8-fold more amphipathic than gomesin. These analyses identify tachyplesin-1 as a promising scaffold for rational design and synthetic optimization toward an antibiotic candidate. PMID:27331141

  18. Production of phytotoxic cationic α-helical antimicrobial peptides in plant cells using inducible promoters.

    PubMed

    Company, Nuri; Nadal, Anna; Ruiz, Cristina; Pla, Maria

    2014-01-01

    Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, have potent and specific activities against economically important plant pathogenic bacteria. They are also recognized as valuable therapeutics and preservatives. However, highly active BP100 derivatives are often phytotoxic when expressed at high levels as recombinant peptides in plants. Here we demonstrate that production of recombinant phytotoxic peptides in transgenic plants is possible by strictly limiting transgene expression to certain tissues and conditions, and specifically that minimization of this expression during transformation and regeneration of transgenic plants is essential to obtain viable plant biofactories. On the basis of whole-genome transcriptomic data available online, we identified the Os.hsp82 promoter that fulfilled this requirement and was highly induced in response to heat shock. Using this strategy, we generated transgenic rice lines producing moderate yields of severely phytotoxic BP100 derivatives on exposure to high temperature. In addition, a threshold for gene expression in selected tissues and stages was experimentally established, below which the corresponding promoters should be suitable for driving the expression of recombinant phytotoxic proteins in genetically modified plants. In view of the growing transcriptomics data available, this approach is of interest to assist promoter selection for specific purposes. PMID:25387106

  19. Production of Phytotoxic Cationic α-Helical Antimicrobial Peptides in Plant Cells Using Inducible Promoters

    PubMed Central

    Company, Nuri; Nadal, Anna; Ruiz, Cristina; Pla, Maria

    2014-01-01

    Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, have potent and specific activities against economically important plant pathogenic bacteria. They are also recognized as valuable therapeutics and preservatives. However, highly active BP100 derivatives are often phytotoxic when expressed at high levels as recombinant peptides in plants. Here we demonstrate that production of recombinant phytotoxic peptides in transgenic plants is possible by strictly limiting transgene expression to certain tissues and conditions, and specifically that minimization of this expression during transformation and regeneration of transgenic plants is essential to obtain viable plant biofactories. On the basis of whole-genome transcriptomic data available online, we identified the Os.hsp82 promoter that fulfilled this requirement and was highly induced in response to heat shock. Using this strategy, we generated transgenic rice lines producing moderate yields of severely phytotoxic BP100 derivatives on exposure to high temperature. In addition, a threshold for gene expression in selected tissues and stages was experimentally established, below which the corresponding promoters should be suitable for driving the expression of recombinant phytotoxic proteins in genetically modified plants. In view of the growing transcriptomics data available, this approach is of interest to assist promoter selection for specific purposes. PMID:25387106

  20. Cathelicidin Antimicrobial Peptide: A Novel Regulator of Islet Function, Islet Regeneration, and Selected Gut Bacteria.

    PubMed

    Pound, Lynley D; Patrick, Christopher; Eberhard, Chandra E; Mottawea, Walid; Wang, Gen-Sheng; Abujamel, Turki; Vandenbeek, Roxanne; Stintzi, Alain; Scott, Fraser W

    2015-12-01

    Cathelicidin antimicrobial peptide (CAMP) is a naturally occurring secreted peptide that is expressed in several organs with pleiotropic roles in immunomodulation, wound healing, and cell growth. We previously demonstrated that gut Camp expression is upregulated when type 1 diabetes-prone rats are protected from diabetes development. Unexpectedly, we have also identified novel CAMP expression in the pancreatic β-cells of rats, mice, and humans. CAMP was present even in sterile rat embryo islets, germ-free adult rat islets, and neogenic tubular complexes. Camp gene expression was downregulated in young BBdp rat islets before the onset of insulitis compared with control BBc rats. CAMP treatment of dispersed islets resulted in a significant increase in intracellular calcium mobilization, an effect that was both delayed and blunted in the absence of extracellular calcium. Additionally, CAMP treatment promoted insulin and glucagon secretion from isolated rat islets. Thus, CAMP is a promoter of islet paracrine signaling that enhances islet function and glucoregulation. Finally, daily treatment with the CAMP/LL-37 peptide in vivo in BBdp rats resulted in enhanced β-cell neogenesis and upregulation of potentially beneficial gut microbes. In particular, CAMP/LL-37 treatment shifted the abundance of specific bacterial populations, mitigating the gut dysbiosis observed in the BBdp rat. Taken together, these findings indicate a novel functional role for CAMP/LL-37 in islet biology and modification of gut microbiota. PMID:26370175

  1. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.

    PubMed

    Yazici, Hilal; O'Neill, Mary B; Kacar, Turgay; Wilson, Brandon R; Oren, E Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-03-01

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property. PMID:26795060

  2. Dynamical and phase behavior of a phospholipid membrane altered by an antimicrobial peptide at low concentration

    DOE PAGESBeta

    Mamontov, Eugene; Tyagi, M.; Qian, Shuo; Rai, Durgesh K.; Urban, Volker S.; Sharma, V. K.

    2016-05-27

    Here we discuss that the mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature nomore » longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.« less

  3. Expression of Caenorhabditis elegans antimicrobial peptide NLP-31 in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Lim, Mei-Perng; Nathan, Sheila

    2014-09-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a fulminant disease endemic in Southeast Asia and Northern Australia. The standardized form of therapy is antibiotics treatment; however, the bacterium has become increasingly resistant to these antibiotics. This has spurred the need to search for alternative therapeutic agents. Antimicrobial peptides (AMPs) are small proteins that possess broad-spectrum antimicrobial activity. In a previous study, the nematode Caenorhabditis elegans was infected by B. pseudomallei and a whole animal transcriptome analysis identified a number of AMP-encoded genes which were induced significantly in the infected worms. One of the AMPs identified is NLP-31 and to date, there are no reports of anti-B. pseudomallei activity demonstrated by NLP-31. To produce NLP-31 protein for future studies, the gene encoding for NLP-31 was cloned into the pET32b expression vector and transformed into Escherichia coli BL21(DE3). Protein expression was induced with 1 mM IPTG for 20 hours at 20°C and recombinant NLP-31 was detected in the soluble fraction. Taken together, a simple optimized heterologous production of AMPs in an E. coli expression system has been successfully developed.

  4. Enhanced antimicrobial activity of peptide-cocktails against common bacterial contaminants of ex vivo stored platelets.

    PubMed

    Mohan, K V K; Rao, S Sainath; Gao, Y; Atreya, C D

    2014-01-01

    Bacterial contamination of blood components such as ex vivo-stored platelets is a major safety risk in transfusion medicine. We have recently shown that synthetic antimicrobial peptides named PD1-PD4 derived from the thrombin-induced human platelet-derived antimicrobial proteins, and repeats of Arg-Trp (RW1-RW5) demonstrate microbicidal activity against selected bacteria and viruses. In the present study, we selected PD3, PD4, RW2, RW3 and RW4 and evaluated each individual peptide and their various combinations to see whether the cocktail regimen enhances the antimicrobial activity above and over the individual peptides. Stored platelet or plasma samples spiked with known titres of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Bacillus cereus were treated with either individual peptides or with peptides in various combinations. Analyses revealed that individual peptides show moderate microbicidal activity (10- to 100-fold reduction) against the tested bacteria relative to their combined regimen. The peptide combinations (RW2 + RW4, RW2 + RW3 + RW4 and PD4 + RW3 + RW4) on the other hand enhanced the microbicidal activity (c.10 000-fold reduction) and revealed a minimal inhibitory concentration of 5 μM. Time-kill kinetics indicated that these three peptide combinations exhibited enhanced antimicrobial activity bringing about a 100-fold reduction of bacterial titres within 20 min of incubation. The present study therefore demonstrates the synergistic effect of antimicrobial peptides when used in combinations and provides a proof-of-concept of its potential application as a molecular tool towards pathogen reduction and further extends the possibility of using peptide combinatorial therapeutics as broad-spectrum antibiotics or as alternatives to combat drug-resistant bacteria. PMID:23926880

  5. The emerging role of peptides and lipids as antimicrobial epidermal barriers and modulators of local inflammation

    PubMed Central

    Brogden, N.K.; Mehalick, L.; Fischer, C.L.; Wertz, P.W.; Brogden, K.A.

    2012-01-01

    Skin is complex and comprised of distinct layers, each layer with unique architecture and immunologic functions. Cells within these layers produce differing amounts of antimicrobial peptides and lipids (sphingoid bases and sebaceous fatty acids) that limit colonization of commensal and opportunistic microorganisms. Furthermore, antimicrobial peptides and lipids have distinct, concentration-dependent ancillary innate and adaptive immune functions. At 0.1-2.0 μM, antimicrobial peptides induce cell migration and adaptive immune responses to co-administered antigens. At 2.0-6.0 μM, they induce cell proliferation and enhance wound healing. At 6.0-12.0 μM, antimicrobial peptides can regulate chemokine and cytokine production and at their highest concentrations of 15.0-30.0 μM, antimicrobial peptides can be cytotoxic. At 1-100 nM, lipids enhance cell migration induced by chemokines, suppress apoptosis, and optimize T cell cytotoxicity and at 0.3-1.0 μM, they inhibit cell migration and attenuate chemokine and pro-inflammatory cytokine responses. Recently many antimicrobial peptides and lipids at 0.1-2.0 μM have been found to attenuate the production of chemokines and pro-inflammatory cytokines to microbial antigens. Together, both the antimicrobial and the anti-inflammatory activities of these peptides and lipids may serve to create a strong, overlapping immunologic barrier that not only controls the concentrations of cutaneous commensal flora but also the extent to which they induce a localized inflammatory response. PMID:22538862

  6. Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle.

    PubMed

    Pal, Indrani; Brahmkhatri, Varsha P; Bera, Swapna; Bhattacharyya, Dipita; Quirishi, Yasrib; Bhunia, Anirban; Atreya, Hanudatta S

    2016-12-01

    The conjugation of nanoparticles with antimicrobial peptides (AMP) is emerging as a promising route to achieve superior antimicrobial activity. However, the nature of peptide-nanoparticle interactions in these systems remains unclear. This study describes a system consisting of a cysteine containing antimicrobial peptide conjugated with silver nanoparticles, in which the two components exhibit a dynamic interaction resulting in a significantly enhanced stability and biological activity compared to that of the individual components. This was investigated using NMR spectroscopy in conjunction with other biophysical techniques. Using fluorescence assisted cell sorting and membrane mimics we carried out a quantitative comparison of the activity of the AMP-nanoparticle system and the free peptide. Taken together, the study provides new insights into nanoparticle-AMP interactions at a molecular level and brings out the factors that will be useful for consideration while designing new conjugates with enhanced functionality. PMID:27585423

  7. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Liu, Lihong; Xu, Kaijin; Wang, Huaying; Jeremy Tan, P. K.; Fan, Weimin; Venkatraman, Subbu S.; Li, Lanjuan; Yang, Yi-Yan

    2009-07-01

    Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core-shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood-brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.

  8. The contribution of skin antimicrobial peptides to the system of innate immunity in anurans.

    PubMed

    Conlon, J Michael

    2011-01-01

    Cationic peptides with the propensity to adopt an amphipathic α-helical conformation in a membrane-mimetic environment are synthesized in the skins of many species of anurans (frogs and toads). These peptides frequently display cytolytic activities against a range of pathogenic bacteria and fungi consistent with the idea that they play a role in the host's system of innate immunity. However, the importance of the peptides in the survival strategy of the animal is not clearly understood. It is a common misconception that antimicrobial peptides are synthesized in the skins of all anurans. In fact, the species distribution is sporadic suggesting that their production may confer some evolutionary advantage to the organism but is not necessary for survival. Although growth inhibitory activity against the chytrid fungus Batrachochytrium dendrobatidis, responsible for anuran population declines worldwide, has been demonstrated in vitro, the ability of frog skin antimicrobial peptides to protect the animal in the wild appears to be limited and there is no clear correlation between their production by a species and its resistance to fatal chytridiomycosis. The low potency of many frog skin antimicrobial peptides is consistent with the hypothesis that cutaneous symbiotic bacteria may provide the major system of defense against pathogenic microorganisms in the environment with antimicrobial peptides assuming a supplementary role in some species. PMID:20640445

  9. Induction of group A Streptococcus virulence by a human antimicrobial peptide

    PubMed Central

    Gryllos, Ioannis; Tran-Winkler, Hien J.; Cheng, Ming-Fang; Chung, Hachung; Bolcome, Robert; Lu, Wuyuan; Lehrer, Robert I.; Wessels, Michael R.

    2008-01-01

    Group A streptococci (Streptococcus pyogenes or GAS) freshly isolated from individuals with streptococcal sore throat or invasive (“flesh-eating”) infection often grow as mucoid colonies on primary culture but lose this colony appearance after laboratory passage. The mucoid phenotype is due to abundant production of the hyaluronic acid capsular polysaccharide, a key virulence determinant associated with severe GAS infections. These observations suggest that signal(s) from the human host trigger increased production of capsule and perhaps other virulence factors during infection. Here we show that subinhibitory concentrations of the human antimicrobial cathelicidin peptide LL-37 stimulate expression of the GAS capsule synthesis operon (hasABC). Up-regulation is mediated by the CsrRS 2-component regulatory system: it requires a functional CsrS sensor protein and can be antagonized by increased extracellular Mg2+, the other identified environmental signal for CsrS. Up-regulation was also evident for other CsrRS-regulated virulence genes, including the IL-8 protease PrtS/ScpC and the integrin-like/IgG protease Mac/IdeS, findings that suggest a coordinated GAS virulence response elicited by this antimicrobial immune effector peptide. LL-37 signaling through CsrRS led to a marked increase in GAS resistance to opsonophagocytic killing by human leukocytes, an in vitro measure of enhanced GAS virulence, consistent with increased expression of the antiphagocytic capsular polysaccharide and Mac/IdeS. We propose that the human cathelicidin LL-37 has the paradoxical effect of stimulating CsrRS-regulated virulence gene expression, thereby enhancing GAS pathogenicity during infection. The ability of GAS to sense and respond to LL-37 may explain, at least in part, the unique susceptibility of the human species to streptococcal infection. PMID:18936485

  10. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress.

    PubMed

    Goyal, Ravinder K; Mattoo, Autar K

    2014-11-01

    Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense against a pathogen including the use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AMPs). Unlike a complex R gene-mediated immunity, AMPs directly target diverse microbial pathogens. Many a times, R-mediated immunity breaks down and plant defense is compromised. Although R-gene dependent pathogen resistance has been well studied, comparatively little is known about the interactions of AMPs with host defense and physiology. AMPs are ubiquitous, low molecular weight peptides that display broad spectrum resistance against bacteria, fungi and viruses. In plants, AMPs are mainly classified into cyclotides, defensins, thionins, lipid transfer proteins, snakins, and hevein-like vicilin-like and knottins. Genetic distance lineages suggest their conservation with minimal effect of speciation events during evolution. AMPs provide durable resistance in plants through a combination of membrane lysis and cellular toxicity of the pathogen. Plant hormones - gibberellins, ethylene, jasmonates, and salicylic acid, are among the physiological regulators that regulate the expression of AMPs. Transgenically produced AMP-plants have become a means showing that AMPs are able to mitigate host defense responses while providing durable resistance against pathogens. PMID:25438794

  11. Sonorensin: an Antimicrobial Peptide, Belonging to the Heterocycloanthracin Subfamily of Bacteriocins, from a New Marine Isolate, Bacillus sonorensis MT93

    PubMed Central

    Chopra, Lipsy; Singh, Gurdeep; Choudhary, Vikas

    2014-01-01

    Marine environments are the greatest fronts of biodiversity, representing a resource of unexploited or unknown microorganisms and new substances having potential applications. Among microbial products, antimicrobial peptides (AMPs) have received great attention recently due to their applications as food preservatives and therapeutic agents. A new marine soil isolate producing an AMP was identified as Bacillus sonorensis based on 16S rRNA gene sequence analysis. It produced an AMP that showed a broad spectrum of activity against both Gram-positive and Gram-negative bacteria. The peptide, named sonorensin, was purified to homogeneity using a combination of chromatographic techniques. The intact molecular mass of the purified peptide, 6,274 Da, as revealed by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF), was in agreement with Tricine-SDS-PAGE analysis. A PCR array of primers was used to identify AMP structural genes, which allowed the successful amplification of the related genes from strain MT93. The putative open reading frame of sonorensin was amplified, cloned into the pET-32a(+) vector, expressed as a thioredoxin (Trx) fusion protein in Escherichia coli, and then purified. Sequence alignment analysis revealed that the bacteriocin being reported could belong to new subfamily of bacteriocins, heterocycloanthracin. The peptide indicated its potential as a biocontrol agent or food antimicrobial agent, due to its antimicrobial activity against bacteria such as Listeria monocytogenes and Staphylococcus aureus. This is the first report of the production, purification, and characterization of wild-type and recombinant bacteriocin by B. sonorensis and the first bacteriocin of the heterocycloanthracin subfamily to be characterized. PMID:24610839

  12. Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides.

    PubMed

    Gao, Bin; Sherman, Patrick; Luo, Lan; Bowie, John; Zhu, Shunyi

    2009-04-01

    Both vertebrates and invertebrates employ alpha-helical antimicrobial peptides (AMPs) as an essential component of their innate immune system. However, evolutionary relation of these immune molecules remains unresolved. Venoms, as key weapons of venomous arthropods for prey and defense, receive increasing recognition as an emerging source of such peptides. From a cDNA library prepared from the venom gland of the scorpion Mesobuthus eupeus, clones encoding precursors of two new AMPs, named meucin-13 (IFGAIAGLLKNIF-NH(2)) and meucin-18 (FFGHLFKLATKIIPSLFQ), have been isolated. The precursor of meucins consists of a signal peptide, a mature peptide, and an acidic propeptide, in which dibasic residues as the typical processing signal are located between the mature and propeptide. Meucin-13 is an ortholog of several previously described AMPs from scorpion venom and has also detectable sequence similarity to temporins, a large family of AMPs from frog skin, whereas meucin-18 displays some similarity to AMPs from diverse origin including arthropod venoms, fish mast cells, and frog skins. These two meucin peptides form alpha-helical structure in the presence of 50% trifluoroethanol (TFE), a membrane-mimicking environment, as identified by circular dichroism (CD) spectroscopy. This finding is further verified by their NMR structures that show a typical alpha-helical amphipathic design, a structural prerequisite for cytolytic activity. Meucins exhibit extensive cytolytic effects on both prokaryotic and eukaryotic cells (gram(+) and gram(-) bacteria, fungi, yeasts, rabbit erythrocytes, and rat dorsal root ganglion cells) at micromolar concentrations. It is remarkable that muecin-18 was 2- to >14-fold more potent than meucin-13 against nearly all the cells tested. Structural differences in hydrophilic/hydrophobic balance and cationic amino acid location between two meucins could account for their differential potency. Despite these differences, commonalities at precursor

  13. Development of Antimicrobial Peptide Prediction Tool for Aquaculture Industries.

    PubMed

    Gautam, Aditi; Sharma, Asuda; Jaiswal, Sarika; Fatma, Samar; Arora, Vasu; Iquebal, M A; Nandi, S; Sundaray, J K; Jayasankar, P; Rai, Anil; Kumar, Dinesh

    2016-09-01

    Microbial diseases in fish, plant, animal and human are rising constantly; thus, discovery of their antidote is imperative. The use of antibiotic in aquaculture further compounds the problem by development of resistance and consequent consumer health risk by bio-magnification. Antimicrobial peptides (AMPs) have been highly promising as natural alternative to chemical antibiotics. Though AMPs are molecules of innate immune defense of all advance eukaryotic organisms, fish being heavily dependent on their innate immune defense has been a good source of AMPs with much wider applicability. Machine learning-based prediction method using wet laboratory-validated fish AMP can accelerate the AMP discovery using available fish genomic and proteomic data. Earlier AMP prediction servers are based on multi-phyla/species data, and we report here the world's first AMP prediction server in fishes. It is freely accessible at http://webapp.cabgrid.res.in/fishamp/ . A total of 151 AMPs related to fish collected from various databases and published literature were taken for this study. For model development and prediction, N-terminus residues, C-terminus residues and full sequences were considered. Best models were with kernels polynomial-2, linear and radial basis function with accuracy of 97, 99 and 97 %, respectively. We found that performance of support vector machine-based models is superior to artificial neural network. This in silico approach can drastically reduce the time and cost of AMP discovery. This accelerated discovery of lead AMP molecules having potential wider applications in diverse area like fish and human health as substitute of antibiotics, immunomodulator, antitumor, vaccine adjuvant and inactivator, and also for packaged food can be of much importance for industries. PMID:27141850

  14. On the Functional Overlap between Complement and Anti-Microbial Peptides

    PubMed Central

    Zimmer, Jana; Hobkirk, James; Mohamed, Fatima; Browning, Michael J.; Stover, Cordula M.

    2015-01-01

    Intriguingly, activated complement and anti-microbial peptides share certain functionalities; lytic, phagocytic, and chemo-attractant activities and each may, in addition, exert cell instructive roles. Each has been shown to have distinct LPS detoxifying activity and may play a role in the development of endotoxin tolerance. In search of the origin of complement, a functional homolog of complement C3 involved in opsonization has been identified in horseshoe crabs. Horseshoe crabs possess anti-microbial peptides able to bind to acyl chains or phosphate groups/saccharides of endotoxin, LPS. Complement activity as a whole is detectable in marine invertebrates. These are also a source of anti-microbial peptides with potential pharmaceutical applicability. Investigating the locality for the production of complement pathway proteins and their role in modulating cellular immune responses are emerging fields. The significance of local synthesis of complement components is becoming clearer from in vivo studies of parenchymatous disease involving specifically generated, complement-deficient mouse lines. Complement C3 is a central component of complement activation. Its provision by cells of the myeloid lineage varies. Their effector functions in turn are increased in the presence of anti-microbial peptides. This may point to a potentiating range of activities, which should serve the maintenance of health but may also cause disease. Because of the therapeutic implications, this review will consider closely studies dealing with complement activation and anti-microbial peptide activity in acute inflammation (e.g., dialysis-related peritonitis, appendicitis, and ischemia). PMID:25646095

  15. On the Functional Overlap between Complement and Anti-Microbial Peptides.

    PubMed

    Zimmer, Jana; Hobkirk, James; Mohamed, Fatima; Browning, Michael J; Stover, Cordula M

    2014-01-01

    Intriguingly, activated complement and anti-microbial peptides share certain functionalities; lytic, phagocytic, and chemo-attractant activities and each may, in addition, exert cell instructive roles. Each has been shown to have distinct LPS detoxifying activity and may play a role in the development of endotoxin tolerance. In search of the origin of complement, a functional homolog of complement C3 involved in opsonization has been identified in horseshoe crabs. Horseshoe crabs possess anti-microbial peptides able to bind to acyl chains or phosphate groups/saccharides of endotoxin, LPS. Complement activity as a whole is detectable in marine invertebrates. These are also a source of anti-microbial peptides with potential pharmaceutical applicability. Investigating the locality for the production of complement pathway proteins and their role in modulating cellular immune responses are emerging fields. The significance of local synthesis of complement components is becoming clearer from in vivo studies of parenchymatous disease involving specifically generated, complement-deficient mouse lines. Complement C3 is a central component of complement activation. Its provision by cells of the myeloid lineage varies. Their effector functions in turn are increased in the presence of anti-microbial peptides. This may point to a potentiating range of activities, which should serve the maintenance of health but may also cause disease. Because of the therapeutic implications, this review will consider closely studies dealing with complement activation and anti-microbial peptide activity in acute inflammation (e.g., dialysis-related peritonitis, appendicitis, and ischemia). PMID:25646095

  16. Antimicrobial peptide-based treatment for endodontic infections--biotechnological innovation in endodontics.

    PubMed

    Lima, Stella Maris de Freitas; de Pádua, Gabriela Martins; Sousa, Maurício Gonçalves da Costa; Freire, Mirna de Souza; Franco, Octávio Luiz; Rezende, Taia Maria Berto

    2015-01-01

    The presence/persistence of microorganisms in the pulp and periapical area corresponds to the maintenance of an exacerbated immune response that leads to the start of periradicular bone resorption and its perpetuation. In endodontic treatment, the available intracanal medications do not have all the desirable properties in the context of endodontic infection and apical periodontitis; they need to include not only strong antimicrobial performance but also an immunomodulatory and reparative activity, without host damage. In addition, there are various levels of resistance to root canal medications. Thus, antimicrobial agents that effectively eliminate resistant species in root canals could potentially improve endodontic treatment. In the emergence of new therapies, an increasing number of studies on antimicrobial peptides (AMPs) have been seen over the past few years. AMPs are defense biomolecules produced in response to infection, and they have a wide spectrum of action against many oral microorganisms. There are some studies that correlate peptides and oral infections, including oral peptides, neuropeptides, and bacterial, fish, bovine and synthetic peptides. So far, there are around 120 published studies correlating endodontic microbiota with AMPs but, according to our knowledge, there are no registered patents in the American patent database. There are a considerable number of AMPs that exhibit excellent antimicrobial activity against endodontic microbiota at a small inhibitory concentration and modulate an exacerbated immune response, down-regulating bone resorption. All these reasons indicate the antimicrobial peptide-based endodontic treatment as an emerging and promising option. PMID:25447423

  17. Prokaryotic expression and antimicrobial mechanism of XPF-St7-derived α-helical peptides.

    PubMed

    Yi, Tonghui; Huang, Yibing; Chen, Yuxin

    2015-01-01

    XPF-St7 (GLLSNVAGLLKQFAKGGVNAVLNPK) is an antimicrobial peptide isolated from Silurana tropicalis. We developed an α-helical segment of XPF-St7 termed as XPF2. Using the XPF2 as a framework, we increased the positive net charge of XPF2 by amino acid substitutions, and thus obtained two novel antimicrobial peptides XPF4 and XPF6. These were each fused with an ubiquitin tag and successfully expressed in Escherichia coli. This ubiquitin fusion system may present a viable alternative for industrial production of antimicrobial peptides. XPF4 and XPF6 showed much better overall antimicrobial activity against both Gram-negative and Gram-positive bacteria than XPF2. The therapeutic index of XPF4 and XPF6 was 5.6-fold and 6.7-fold of XPF2, respectively. Bacterial cell membrane permeabilization and genomic DNA interaction assays were utilized to explore the mechanism of action of XPF serial peptides. The results revealed that the target of these antimicrobial peptides was the bacterial cytoplasmic membrane. PMID:25421112

  18. Dermaseptins as models for the elucidation of membrane-acting helical amphipathic antimicrobial peptides.

    PubMed

    Amiche, Mohamed; Galanth, Cécile

    2011-08-01

    Antimicrobial peptides (AMPs) produced by a wide variety of organisms are major actors of the host defense systems against invading pathogenic microorganisms. These peptides exhibit a broad spectrum of action against bacteria, yeasts, fungi, protozoa and viruses. It is widely believed that a large part of their antimicrobial effect derives from direct interactions with the lipid membrane surrounding the target cells, causing its permeabilization and cell lysis. However, the exact nature of these interactions is presently unclear. The skin of the amphibians has proved to be a remarkably rich storehouse of AMPs that encompass a wide variety of structural motifs. This natural AMP bank is used in combined approaches, based on biophysical and cellular biology methods, to elucidate how these peptides perturb the membrane and whether such membrane perturbations are related to the antimicrobial activity of these peptides. Here we review our current knowledge about the structure and the mechanism of action of the dermaseptin super-family, α-helical amphipathic AMPs isolated from the skin of frogs of the Phyllomedusa genus. Dermaseptins are genetically related, with a remarkable identity in signal sequences and acidic propieces of their preproforms but have clearly diverged to yield several families of microbicidal cationic peptides that are structurally distinct. Particularly, we focused on the orthologous peptides dermaseptin S and B of which the shortening from the carboxy terminal extremity causes a drastic change in their membrane disruption activity. These peptides could be good models to study the membrane-peptide interactions discussed in this review. PMID:21470155

  19. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator.

    PubMed Central

    Corzo, G; Escoubas, P; Villegas, E; Barnham, K J; He, W; Norton, R S; Nakajima, T

    2001-01-01

    Two novel antimicrobial peptides have been identified and characterized from venom of the African scorpion Pandinus imperator. The peptides, designated pandinin 1 and 2, are alpha-helical polycationic peptides, with pandinin 1 belonging to the group of antibacterial peptides previously described from scorpions, frogs and insects, and pandinin 2 to the group of short magainin-type helical peptides from frogs. Both peptides demonstrated high antimicrobial activity against a range of Gram-positive bacteria (2.4-5.2 microM), but were less active against Gram-negative bacteria (2.4-38.2 microM), and only pandinin 2 affected the yeast Candida albicans. Pandinin 2 also demonstrated strong haemolytic activity (11.1-44.5 microM) against sheep erythrocytes, in contrast with pandinin 1, which was not haemolytic. CD studies and a high-resolution structure of pandinin 2 determined by NMR, showed that the two peptides are both essentially helical, but differ in their overall structure. Pandinin 2 is composed of a single alpha-helix with a predominantly hydrophobic N-terminal sequence, whereas pandinin 1 consists of two distinct alpha-helices separated by a coil region of higher flexibility. This is the first report of magainin-type polycationic antimicrobial peptides in scorpion venom. Their presence brings new insights into the mode of action of scorpion venom and also opens new avenues for the discovery of novel antibiotic molecules from arthropod venoms. PMID:11563967

  20. Two novel antimicrobial peptides from skin venoms of spadefoot toad Megophrys minor.

    PubMed

    Yang, Hong-Ling; Shen, Zhi-Qiang; Liu, Xuan; Kong, Yi

    2016-04-01

    Amphibian skin contains rich bioactive peptides. Especially, a large amount of antimicrobial peptides have been identified from amphibian skin secretions. Antimicrobial peptides display potent cytolytic activities against a range of pathogenic bacteria and fungi and play important defense roles. No antimicrobial peptides have been reported from toads belonging to the family of Pelobatidae. In this work, two novel antimicrobial peptides (Megin 1 and Megin 2) were purified and characterized from the skin venoms of spadefoot toad Megophrys minor (Pelobatidae, Anura, Amphibia). Megin 1 had an amino acid sequence of FLKGCWTKWYSLKPKCPF-NH2, which was composed of 18 amino acid residues and contained an intra-molecular disulfide bridge and an amidated C-terminus. Megin 2 had an amino acid sequence of FFVLKFLLKWAGKVGLEHLACKFKNWC, which was composed of 27 amino acid residues and contained an intra-molecular disulfide bridge. Both Megin 1 and Megin 2 showed potential antimicrobial abilities against bacteria and fungi. The MICs of Megin 1 against Escherichia coli, Bacillus dysenteriae, Staphylococcus aureus, Bacillus subtilis, and Candida albicans were 25, 3, 6.25, 3, and 50 μg·mL(-1), respectively. The corresponding MICs for Megin 2 were 6.25, 1.5, 12.5, 1.5, and 12.5 μg·mL(-1), respectively. They also exerted strong hemolytic activity against human and rabbit red cells. The results suggested that megin peptides in the toad skin of M. minor displayed toxic effects on both eukaryotes and prokaryotes. This was the first report of antimicrobial peptides from amphibians belonging to the family of Pelobatidae. PMID:27114317

  1. Use of Galerina marginata genes and proteins for peptide production

    DOEpatents

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2016-03-01

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  2. Aerosolized Medications for Gene and Peptide Therapy.

    PubMed

    Laube, Beth L

    2015-06-01

    Inhalation therapy has matured to include drugs that: (1) deliver nucleic acids that either lead to the restoration of a gene construct or protein coding sequence in a population of cells or suppress or disrupt production of an abnormal gene product (gene therapy); (2) deliver peptides that target lung diseases such as asthma, sarcoidosis, pulmonary hypertension, and cystic fibrosis; and (3) deliver peptides to treat diseases outside the lung whose target is the systemic circulation (systemic drug delivery). These newer applications for aerosol therapy are the focus of this paper, and I discuss the status of each and the challenges that remain to their successful development. Drugs that are highlighted include: small interfering ribonucleic acid to treat lung cancer and Mycobacterium tuberculosis; vectors carrying the normal alpha-1 antitrypsin gene to treat alpha-1 antitrypsin deficiency; vectors carrying the normal cystic fibrosis transmembrane conductance regulator gene to treat cystic fibrosis; vasoactive intestinal peptide to treat asthma, pulmonary hypertension, and sarcoidosis; glutathione to treat cystic fibrosis; granulocyte-macrophage colony-stimulating factor to treat pulmonary alveolar proteinosis; calcitonin for postmenopausal osteoporosis; and insulin to treat diabetes. The success of these new aerosol applications will depend on many factors, such as: (1) developing gene therapy formulations that are safe for acute and chronic administrations to the lung, (2) improving the delivery of the genetic material beyond the airway mucus barrier and cell membrane and transferring the material to the cell cytoplasm or the cell nucleus, (3) developing aerosol devices that efficiently deliver genetic material and peptides to their lung targets over a short period of time, (4) developing devices that increase aerosol delivery to the lungs of infants, (5) optimizing the bioavailability of systemically delivered peptides, and (6) developing peptide formulations for

  3. Progressive Structuring of a Branched Antimicrobial Peptide on the Path to the Inner Membrane Target*

    PubMed Central

    Bai, Yang; Liu, Shouping; Li, Jianguo; Lakshminarayanan, Rajamani; Sarawathi, Padmanabhan; Tang, Charles; Ho, Duncun; Verma, Chandra; Beuerman, Roger W.; Pervushin, Konstantin

    2012-01-01

    In recent years, interest has grown in the antimicrobial properties of certain natural and non-natural peptides. The strategy of inserting a covalent branch point in a peptide can improve its antimicrobial properties while retaining host biocompatibility. However, little is known regarding possible structural transitions as the peptide moves on the access path to the presumed target, the inner membrane. Establishing the nature of the interactions with the complex bacterial outer and inner membranes is important for effective peptide design. Structure-activity relationships of an amphiphilic, branched antimicrobial peptide (B2088) are examined using environment-sensitive fluorescent probes, electron microscopy, molecular dynamics simulations, and high resolution NMR in solution and in condensed states. The peptide is reconstituted in bacterial outer membrane lipopolysaccharide extract as well as in a variety of lipid media mimicking the inner membrane of Gram-negative pathogens. Progressive structure accretion is observed for the peptide in water, LPS, and lipid environments. Despite inducing rapid aggregation of bacteria-derived lipopolysaccharides, the peptide remains highly mobile in the aggregated lattice. At the inner membranes, the peptide undergoes further structural compaction mediated by interactions with negatively charged lipids, probably causing redistribution of membrane lipids, which in turn results in increased membrane permeability and bacterial lysis. These findings suggest that peptides possessing both enhanced mobility in the bacterial outer membrane and spatial structure facilitating its interactions with the membrane-water interface may provide excellent structural motifs to develop new antimicrobials that can overcome antibiotic-resistant Gram-negative pathogens. PMID:22700968

  4. Expression analysis and identification of antimicrobial peptide transcripts from six North American frog species

    USGS Publications Warehouse

    Robertson, Laura S.; Fellers, Gary M.; Marranca, Jamie Marie; Kleeman, Patrick M.

    2013-01-01

    Frogs secrete antimicrobial peptides onto their skin. We describe an assay to preserve and analyze antimicrobial peptide transcripts from field-collected skin secretions that will complement existing methods for peptide analysis. We collected skin secretions from 4 North American species in the field in California and 2 species in the laboratory. Most frogs appeared healthy after release; however, Rana boylii in the Sierra Nevada foothills, but not the Coast Range, showed signs of morbidity and 2 died after handling. The amount of total RNA extracted from skin secretions was higher in R. boylii and R. sierrae compared to R. draytonii, and much higher compared to Pseudacris regilla. Interspecies variation in amount of RNA extracted was not explained by size, but for P. regilla it depended upon collection site and date. RNA extracted from skin secretions from frogs handled with bare hands had poor quality compared to frogs handled with gloves or plastic bags. Thirty-four putative antimicrobial peptide precursor transcripts were identified. This study demonstrates that RNA extracted from skin secretions collected in the field is of high quality suitable for use in sequencing or quantitative PCR (qPCR). However, some species do not secrete profusely, resulting in very little extracted RNA. The ability to measure transcript abundance of antimicrobial peptides in field-collected skin secretions complements proteomic analyses and may provide insight into transcriptional mechanisms that could affect peptide abundance.

  5. Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide.

    PubMed

    Wenzel, Michaela; Schriek, Patrick; Prochnow, Pascal; Albada, H Bauke; Metzler-Nolte, Nils; Bandow, Julia E

    2016-05-01

    Antimicrobial peptides are a potent class of antibiotics. In the Gram-positive model organism Bacillus subtilis the synthetic peptide RWRWRW-NH2 integrates into the bacterial membrane and delocalizes essential peripheral membrane proteins involved in cell wall biosynthesis and respiration. A lysine residue has been added to the hexapeptide core structure, either C or N-terminally. Lipidation of the lysine residues by a C8-acyl chain significantly improved antibacterial activity against both Gram-positive and Gram-negative bacteria. Here, we report a comparative proteomic study in B. subtilis on the mechanism of action of the lipidated and non-lipidated peptides. All derivatives depolarized the bacterial membrane without forming pores and all affected cell wall integrity. Proteomic profiling of the bacterial stress responses to the small RW-rich antimicrobial peptides was reflective of non-disruptive membrane integration. Overall, our results indicate that antimicrobial peptides can be derivatized with lipid chains enhancing antibacterial activity without significantly altering the mechanism of action. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26603779

  6. Structure-function relationships in histidine-rich antimicrobial peptides from Atlantic cod.

    PubMed

    McDonald, Mark; Mannion, Michael; Pike, Damien; Lewis, Krystina; Flynn, Andrew; Brannan, Alex M; Browne, Mitchell J; Jackman, Donna; Madera, Laurence; Power Coombs, Melanie R; Hoskin, David W; Rise, Matthew L; Booth, Valerie

    2015-07-01

    Gad-1 and Gad-2 are antimicrobial peptide (AMP) sequences encoded by paralogous genes. They are rich in histidine, which suggests that their activity might be pH-dependent. We examined their structure-function relationships with a view to learning how to improve AMP therapeutic ratios. Activity assays with Gram-negative bacteria and cancer cell lines demonstrate that Gad-2 is substantially more active at slightly acidic pH than it is at neutral pH. By contrast, the activity of Gad-1 at lower pH is similar to its activity at pH7. Circular dichroism spectra indicate that the greater functional plasticity of Gad-2 correlates with a greater structural plasticity; Gad-2's percent helicity varies dramatically with altered pH and lipid environment. Interestingly, Gad-2's highest levels of helicity do not correspond to the conditions where it is most active. High resolution solution NMR structures were determined in SDS micelles at pH5, conditions that induce an intermediate level of helicity in the peptides. Gad-1 is more helical than Gad-2, with both peptides exhibiting the greatest helical tendencies in their central region and lowest helicity in their N-termini. The high resolution structures suggest that maximum activity relies on the appropriate balance between an N-terminal region with mixed hydrophobic/hydrophilic structure features and an amphipathic central and C-terminal region. Taken together with previous studies, our results suggest that to improve the therapeutic ratio of AMPs, consideration should be given to including sequential histidine-pairs, keeping the overall charge of the peptide modest, and retaining a degree of structural plasticity and imperfect amphipathicity. PMID:25839356

  7. Purification and characterization of a plant antimicrobial peptide expressed in Escherichia coli.

    PubMed

    Harrison, S J; McManus, A M; Marcus, J P; Goulter, K C; Green, J L; Nielsen, K J; Craik, D J; Maclean, D J; Manners, J M

    1999-03-01

    MiAMP1 is a low-molecular-weight, cysteine-rich, antimicrobial peptide isolated from the nut kernel of Macadamia integrifolia. A DNA sequence encoding MiAMP1 with an additional ATG start codon was cloned into a modified pET vector under the control of the T7 RNA polymerase promoter. The pET vector was cotransformed together with the vector pSB161, which expresses a rare arginine tRNA. The peptide was readily isolated in high yield from the insoluble fraction of the Escherichia coli extract. The purified peptide was shown to have an identical molecular weight to the native peptide by mass spectroscopy indicating that the N-terminal methionine had been cleaved. Analysis by NMR spectroscopy indicated that the refolded recombinant peptide had a similar overall three-dimensional structure to that of the native peptide. The peptide inhibited the growth of phytopathogenic fungi in vitro in a similar manner to the native peptide. To our knowledge, MiAMP1 is the first antimicrobial peptide from plants to be functionally expressed in E. coli. This will permit a detailed structure-function analysis of the peptide and studies of its mode of action on phytopathogens. PMID:10049672

  8. Characterization of a highly potent antimicrobial peptide microcin N from uropathogenic Escherichia coli.

    PubMed

    Kaur, Kamaljit; Tarassova, Oxana; Dangeti, Ramana Venkata; Azmi, Sarfuddin; Wishart, David; McMullen, Lynn; Stiles, Michael

    2016-06-01

    Microcin N is a low-molecular weight, highly active antimicrobial peptide produced by uropathogenic Escherichia coli In this study, the native peptide was expressed and purified from pGOB18 plasmid carrying E. coli in low yield. The pure peptide was characterized using mass spectrometry, N-terminal sequencing by Edman degradation as well as trypsin digestion. We found that the peptide is 74-residue long, cationic (+2 total charge), highly hydrophobic and consists of glycine as the first N-terminal residue. The minimum inhibitory concentration of the peptide against Salmonella enteritidis was found to be 150 nM. Evaluation of the solution conformation of the peptide using circular dichroism spectroscopy showed that the peptide is well folded in 40% trifluoroethanol with helical structure whereas the folded structure is lost in aqueous solution. To increase the yield of this potent peptide, we overexpressed GST-tagged microcin N using E. coli BL21. Recombinant GST-tagged microcin N was successfully expressed in E. coli BL21; however, the cleaved mature microcin N did not show activity against the indicator strain (S. enterica) most likely due to the extreme hydrophobic nature of the peptide. Efforts to produce active microcin N in large scale are discussed as this peptide has huge potential to be the next generation antimicrobial agent. PMID:27190283

  9. Antimicrobial Activity of Novel Synthetic Peptides Derived from Indolicidin and Ranalexin against Streptococcus pneumoniae

    PubMed Central

    Jindal, Hassan Mahmood; Le, Cheng Foh; Mohd Yusof, Mohd Yasim; Velayuthan, Rukumani Devi; Lee, Vannajan Sanghiran; Zain, Sharifuddin Md; Isa, Diyana Mohd; Sekaran, Shamala Devi

    2015-01-01

    Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development. PMID:26046345

  10. Sex, offspring and carcass determine antimicrobial peptide expression in the burying beetle

    PubMed Central

    Jacobs, Chris G. C.; Steiger, Sandra; Heckel, David G.; Wielsch, Natalie; Vilcinskas, Andreas; Vogel, Heiko

    2016-01-01

    The burying beetle Nicrophorus vespilloides has emerged as a model system for the investigation of adaptations that allow the utilization of carrion as a diet and as a resource for reproduction. The survival of beetles and their offspring given their exposure to soil-dwelling and cadaver-borne microbes requires mechanisms that reduce bacterial contamination in the diet and that achieve sanitation of the microhabitat. To explore the role of antimicrobial peptides (AMPs) in this context, we analyzed burying beetle males and females at different stages of their breeding cycle using the RNA-Seq and proteomics approaches. To address variation in immune functions, we investigated the impact of adult sex, the presence or absence of offspring (social context), and the presence of carrion (environmental context) on the expression of the identified immune effector genes. We found that particular AMPs are sex-specific and tightly regulated by the presence of a carcass or offspring and identified the two most context-dependent antimicrobial proteins in anal secretions. The context-specific expression dynamics of particular AMPs and lysozymes reveals a complex regulatory system, reflecting adaptations to specific ecological niches. This study highlights how burying beetles cope with microorganisms found on carrion and identifies candidates for both internal and external immunity. PMID:27139635

  11. Sex, offspring and carcass determine antimicrobial peptide expression in the burying beetle.

    PubMed

    Jacobs, Chris G C; Steiger, Sandra; Heckel, David G; Wielsch, Natalie; Vilcinskas, Andreas; Vogel, Heiko

    2016-01-01

    The burying beetle Nicrophorus vespilloides has emerged as a model system for the investigation of adaptations that allow the utilization of carrion as a diet and as a resource for reproduction. The survival of beetles and their offspring given their exposure to soil-dwelling and cadaver-borne microbes requires mechanisms that reduce bacterial contamination in the diet and that achieve sanitation of the microhabitat. To explore the role of antimicrobial peptides (AMPs) in this context, we analyzed burying beetle males and females at different stages of their breeding cycle using the RNA-Seq and proteomics approaches. To address variation in immune functions, we investigated the impact of adult sex, the presence or absence of offspring (social context), and the presence of carrion (environmental context) on the expression of the identified immune effector genes. We found that particular AMPs are sex-specific and tightly regulated by the presence of a carcass or offspring and identified the two most context-dependent antimicrobial proteins in anal secretions. The context-specific expression dynamics of particular AMPs and lysozymes reveals a complex regulatory system, reflecting adaptations to specific ecological niches. This study highlights how burying beetles cope with microorganisms found on carrion and identifies candidates for both internal and external immunity. PMID:27139635

  12. Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample.

    PubMed

    Baindara, Piyush; Mandal, Santi M; Chawla, Niharika; Singh, Pradip Kumar; Pinnaka, Anil Kumar; Korpole, Suresh

    2013-01-01

    A bacterial strain producing two antimicrobial peptides was isolated from a rhizosphere soil sample and identified as Bacillus subtilis based on both phenotypic and 16S rRNA gene sequence phylogenetic analysis. It grew optimally up to 14% NaCl and produced antimicrobial peptide within 24 h of growth. The peptides were purified using a combination of chemical extraction and chromatographic techniques. The MALDI-TOF analysis of HPLC purified fractions revealed that the strain SK.DU.4 secreted a bacteriocin-like peptide with molecular mass of 5323.9 Da and a surface-active lipopeptide (m/z 1056 Da). The peptide mass fingerprinting of low-molecular-weight bacteriocin exhibited significant similarity with stretches of secreted lipoprotein of Methylomicrobium album BG8 and displayed 70% sequence coverage. MALDI MS/MS analysis elucidated the lipopeptide as a cyclic lipopeptide with a β-hydroxy fatty acid linked to Ser of a peptide with seven α-amino acids (Asp-Tyr-Asn-Gln-Pro-Asn-Ser) and assigned it to iturin-like group of antimicrobial biosurfactants. However, it differed in amino acid composition with other members of the iturin family. Both peptides were active against Gram-positive bacteria, suggesting that they had an additive effect. PMID:23289832

  13. Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample

    PubMed Central

    2013-01-01

    A bacterial strain producing two antimicrobial peptides was isolated from a rhizosphere soil sample and identified as Bacillus subtilis based on both phenotypic and 16S rRNA gene sequence phylogenetic analysis. It grew optimally up to 14% NaCl and produced antimicrobial peptide within 24 h of growth. The peptides were purified using a combination of chemical extraction and chromatographic techniques. The MALDI-TOF analysis of HPLC purified fractions revealed that the strain SK.DU.4 secreted a bacteriocin-like peptide with molecular mass of 5323.9 Da and a surface-active lipopeptide (m/z 1056 Da). The peptide mass fingerprinting of low-molecular-weight bacteriocin exhibited significant similarity with stretches of secreted lipoprotein of Methylomicrobium album BG8 and displayed 70% sequence coverage. MALDI MS/MS analysis elucidated the lipopeptide as a cyclic lipopeptide with a β-hydroxy fatty acid linked to Ser of a peptide with seven α-amino acids (Asp-Tyr-Asn-Gln-Pro-Asn-Ser) and assigned it to iturin-like group of antimicrobial biosurfactants. However, it differed in amino acid composition with other members of the iturin family. Both peptides were active against Gram-positive bacteria, suggesting that they had an additive effect. PMID:23289832

  14. A Review of Antimicrobial Peptides and Their Therapeutic Potential as Anti-Infective Drugs

    PubMed Central

    Gordon, Y. Jerold; Romanowski, Eric G.; McDermott, Alison M.

    2006-01-01

    Purpose. Antimicrobial peptides (AMPs) are an essential part of innate immunity that evolved in most living organisms over 2.6 billion years to combat microbial challenge. These small cationic peptides are multifunctional as effectors of innate immunity on skin and mucosal surfaces and have demonstrated direct antimicrobial activity against various bacteria, viruses, fungi, and parasites. This review summarizes their progress to date as commercial antimicrobial drugs for topical and systemic indications. Methods. Literature review. Results. Despite numerous clinical trials, no modified AMP has obtained Food & Drug Administration approval yet for any topical or systemic medical indications. Conclusions. While AMPs are recognized as essential components of natural host innate immunity against microbial challenge, their usefulness as a new class of antimicrobial drugs still remains to be proven. PMID:16020284

  15. Peptide Synthetase Gene in Trichoderma virens

    PubMed Central

    Wilhite, S. E.; Lumsden, R. D.; Straney, D. C.

    2001-01-01

    Trichoderma virens (synonym, Gliocladium virens), a deuteromycete fungus, suppresses soilborne plant diseases caused by a number of fungi and is used as a biocontrol agent. Several traits that may contribute to the antagonistic interactions of T. virens with disease-causing fungi involve the production of peptide metabolites (e.g., the antibiotic gliotoxin and siderophores used for iron acquisition). We cloned a 5,056-bp partial cDNA encoding a putative peptide synthetase (Psy1) from T. virens using conserved motifs found within the adenylate domain of peptide synthetases. Sequence similarities with conserved motifs of the adenylation domain, acyl transfer, and two condensation domains support identification of the Psy1 gene as a gene that encodes a peptide synthetase. Disruption of the native Psy1 gene through gene replacement was used to identify the function of this gene. Psy1 disruptants produced normal amounts of gliotoxin but grew poorly under low-iron conditions, suggesting that Psy1 plays a role in siderophore production. Psy1 disruptants cannot produce the major T. virens siderophore dimerum acid, a dipetide of acylated Nδ-hydroxyornithine. Biocontrol activity against damping-off diseases caused by Pythium ultimum and Rhizoctonia solani was not reduced by the Psy1 disruption, suggesting that iron competition through dimerum acid production does not contribute significantly to disease suppression activity under the conditions used. PMID:11679326

  16. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would

  17. High Antimicrobial Activity and Low Human Cell Cytotoxicity of Core-Shell Magnetic Nanoparticles Functionalized with an Antimicrobial Peptide.

    PubMed

    Maleki, Hajar; Rai, Akhilesh; Pinto, Sandra; Evangelista, Marta; Cardoso, Renato M S; Paulo, Cristiana; Carvalheiro, Tiago; Paiva, Artur; Imani, Mohammad; Simchi, Abdolreza; Durães, Luísa; Portugal, António; Ferreira, Lino

    2016-05-11

    Superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with antimicrobial agents are promising infection-targeted therapeutic platforms when coupled with external magnetic stimuli. These antimicrobial nanoparticles (NPs) may offer advantages in fighting intracellular pathogens as well as biomaterial-associated infections. This requires the development of NPs with high antimicrobial activity without interfering with the biology of mammalian cells. Here, we report the preparation of biocompatible antimicrobial SPION@gold core-shell NPs based on covalent immobilization of the antimicrobial peptide (AMP) cecropin melittin (CM) (the conjugate is named AMP-NP). The minimal inhibitory concentration (MIC) of the AMP-NP for Escherichia coli was 0.4 μg/mL, 10-times lower than the MIC of soluble CM. The antimicrobial activity of CM depends on the length of the spacer between the CM and the NP. AMP-NPs are taken up by endothelial (between 60 and 170 pg of NPs per cell) and macrophage (between 18 and 36 pg of NPs per cell) cells and accumulate preferentially in endolysosomes. These NPs have no significant cytotoxic and pro-inflammatory activities for concentrations up to 200 μg/mL (at least 100 times higher than the MIC of soluble CM). Our results in membrane models suggest that the selectivity of AMP-NPs for bacteria and not eukaryotic membranes is due to their membrane compositions. The AMP-NPs developed here open new opportunities for infection-site targeting. PMID:27074633

  18. Molecular Basis of Resistance to Muramidase and Cationic Antimicrobial Peptide Activity of Lysozyme in Staphylococci

    PubMed Central

    Herbert, Silvia; Bera, Agnieszka; Nerz, Christiane; Kraus, Dirk; Peschel, Andreas; Goerke, Christiane; Meehl, Michael; Cheung, Ambrose; Götz, Friedrich

    2007-01-01

    It has been shown recently that modification of peptidoglycan by O-acetylation renders pathogenic staphylococci resistant to the muramidase activity of lysozyme. Here, we show that a Staphylococcus aureus double mutant defective in O-acetyltransferase A (OatA), and the glycopeptide resistance-associated two-component system, GraRS, is much more sensitive to lysozyme than S. aureus with the oatA mutation alone. The graRS single mutant was resistant to the muramidase activity of lysozyme, but was sensitive to cationic antimicrobial peptides (CAMPs) such as the human lysozyme-derived peptide 107R-A-W-V-A-W-R-N-R115 (LP9), polymyxin B, or gallidermin. A comparative transcriptome analysis of wild type and the graRS mutant revealed that GraRS controls 248 genes. It up-regulates global regulators (rot, sarS, or mgrA), various colonization factors, and exotoxin-encoding genes, as well as the ica and dlt operons. A pronounced decrease in the expression of the latter two operons explains why the graRS mutant is also biofilm-negative. The decrease of the dlt transcript in the graRS mutant correlates with a 46.7% decrease in the content of esterified d-alanyl groups in teichoic acids. The oatA/dltA double mutant showed the highest sensitivity to lysozyme; this mutant completely lacks teichoic acid–bound d-alanine esters, which are responsible for the increased susceptibility to CAMPs and peptidoglycan O-acetylation. Our results demonstrate that resistance to lysozyme can be dissected into genes mediating resistance to its muramidase activity (oatA) and genes mediating resistance to CAMPs (graRS and dlt). The two lysozyme activities act synergistically, as the oatA/dltA or oatA/graRS double mutants are much more susceptible to lysozyme than each of the single mutants. PMID:17676995

  19. Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties.

    PubMed

    Li, Xiang; Li, Peng; Saravanan, Rathi; Basu, Anindya; Mishra, Biswajit; Lim, Suo Hon; Su, Xiaodi; Tambyah, Paul Anantharajah; Leong, Susanna Su Jan

    2014-01-01

    Catheter-associated urinary tract infections (CAUTIs) are often preceded by pathogen colonization on catheter surfaces and are a major health threat facing hospitals worldwide. Antimicrobial peptides (AMPs) are a class of new antibiotics that hold promise in curbing CAUTIs caused by antibiotic-resistant pathogens. This study aims to systematically evaluate the feasibility of immobilizing two newly engineered arginine/lysine/tryptophan-rich AMPs with broad antimicrobial spectra and salt-tolerant properties on silicone surfaces to address CAUTIs. The peptides were successfully immobilized on polydimethylsiloxane and urinary catheter surfaces via an allyl glycidyl ether (AGE) polymer brush interlayer, as confirmed by X-ray photoelectron spectroscopy and water contact angle analyses. The peptide-coated silicone surfaces exhibited excellent microbial killing activity towards bacteria and fungi in urine and in phosphate-buffered saline. Although both the soluble and immobilized peptides demonstrated membrane disruption capabilities, the latter showed a slower rate of kill, presumably due to reduced diffusivity and flexibility resulting from conjugation to the polymer brush. The synergistic effects of the AGE polymer brush and AMPs prevented biofilm formation by repelling cell adhesion. The peptide-coated surface showed no toxicity towards smooth muscle cells. The findings of this study clearly indicate the potential for the development of AMP-based coating platforms to prevent CAUTIs. PMID:24056098

  20. Antimicrobial properties of analgesic kyotorphin peptides unraveled through atomic force microscopy

    SciTech Connect

    Ribeiro, Marta M.B.; Franquelim, Henri G.; Torcato, Ines M.; Ramu, Vasanthakumar G.; Heras, Montserrat; Bardaji, Eduard R.; Castanho, Miguel A.R.B.

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer New kyotorphin derivatives have antimicrobial properties against S. aureus. Black-Right-Pointing-Pointer Atomic force microscopy show membrane disturbing effects of KTP-NH{sub 2} and IbKTP-NH{sub 2}. Black-Right-Pointing-Pointer None of the KTP derivatives are hemolytic. Black-Right-Pointing-Pointer The minimal peptidic sequence with antimicrobial activity is Tyr-Arg, if amidated. -- Abstract: Antimicrobial peptides (AMPs) are promising candidates as alternatives to conventional antibiotics for the treatment of resistant pathogens. In the last decades, new AMPs have been found from the cleavage of intact proteins with no antibacterial activity themselves. Bovine hemoglobin hydrolysis, for instance, results in AMPs and the minimal antimicrobial peptide sequence was defined as Tyr-Arg plus a positively charged amino acid residue. The Tyr-Arg dipeptide alone, known as kyotorphin (KTP), is an endogenous analgesic neuropeptide but has no antimicrobial activity itself. In previous studies new KTP derivatives combining C-terminal amidation and Ibuprofen (Ib) - KTP-NH{sub 2}, IbKTP, IbKTP-NH{sub 2} - were designed in order to improve KTP brain targeting. Those modifications succeeded in enhancing peptide-cell membrane affinity towards fluid anionic lipids and higher analgesic activity after systemic injection resulted therefrom. Here, we investigated if this affinity for anionic lipid membranes also translates into antimicrobial activity because bacteria have anionic membranes. Atomic force microscopy revealed that KTP derivatives perturbed Staphylococcus aureus membrane structure by inducing membrane blebbing, disruption and lysis. In addition, these peptides bind to red blood cells but are non-hemolytic. From the KTP derivatives tested, amidated KTP proves to be the most active antibacterial agent. The combination of analgesia and antibacterial activities with absence of toxicity is highly appealing from the clinical point of view

  1. Characterization of Histone H2A Derived Antimicrobial Peptides, Harriottins, from Sicklefin Chimaera Neoharriotta pinnata (Schnakenbeck, 1931) and Its Evolutionary Divergence with respect to CO1 and Histone H2A

    PubMed Central

    Sathyan, Naveen; Philip, Rosamma; Chaithanya, E. R.; Anil Kumar, P. R.; Sanjeevan, V. N.; Singh, I. S. Bright

    2013-01-01

    Antimicrobial peptides (AMPs) are humoral innate immune components of fishes that provide protection against pathogenic infections. Histone derived antimicrobial peptides are reported to actively participate in the immune defenses of fishes. Present study deals with identification of putative antimicrobial sequences from the histone H2A of sicklefin chimaera, Neoharriotta pinnata. A 52 amino acid residue termed Harriottin-1, a 40 amino acid Harriottin-2, and a 21 mer Harriottin-3 were identified to possess antimicrobial sequence motif. Physicochemical properties and molecular structure of Harriottins are in agreement with the characteristic features of antimicrobial peptides, indicating its potential role in innate immunity of sicklefin chimaera. The histone H2A sequence of sicklefin chimera was found to differ from previously reported histone H2A sequences. Phylogenetic analysis based on histone H2A and cytochrome oxidase subunit-1 (CO1) gene revealed N. pinnata to occupy an intermediate position with respect to invertebrates and vertebrates.

  2. Characterization of Histone H2A Derived Antimicrobial Peptides, Harriottins, from Sicklefin Chimaera Neoharriotta pinnata (Schnakenbeck, 1931) and Its Evolutionary Divergence with respect to CO1 and Histone H2A.

    PubMed

    Sathyan, Naveen; Philip, Rosamma; Chaithanya, E R; Anil Kumar, P R; Sanjeevan, V N; Singh, I S Bright

    2013-01-01

    Antimicrobial peptides (AMPs) are humoral innate immune components of fishes that provide protection against pathogenic infections. Histone derived antimicrobial peptides are reported to actively participate in the immune defenses of fishes. Present study deals with identification of putative antimicrobial sequences from the histone H2A of sicklefin chimaera, Neoharriotta pinnata. A 52 amino acid residue termed Harriottin-1, a 40 amino acid Harriottin-2, and a 21 mer Harriottin-3 were identified to possess antimicrobial sequence motif. Physicochemical properties and molecular structure of Harriottins are in agreement with the characteristic features of antimicrobial peptides, indicating its potential role in innate immunity of sicklefin chimaera. The histone H2A sequence of sicklefin chimera was found to differ from previously reported histone H2A sequences. Phylogenetic analysis based on histone H2A and cytochrome oxidase subunit-1 (CO1) gene revealed N. pinnata to occupy an intermediate position with respect to invertebrates and vertebrates. PMID:27398241

  3. Expression of Antimicrobial Peptides in Cecal Tonsils of Chickens Treated with Probiotics and Infected with Salmonella enterica Serovar Typhimurium ▿

    PubMed Central

    Akbari, Mohammad Reza; Haghighi, Hamid Reza; Chambers, James R.; Brisbin, Jennifer; Read, Leah R.; Sharif, Shayan

    2008-01-01

    Several strategies currently exist for control of Salmonella enterica serovar Typhimurium colonization in the chicken intestine, among which the use of probiotics is of note. Little is known about the underlying mechanisms of probiotic-mediated reduction of Salmonella colonization. In this study, we asked whether the effect of probiotics is mediated by antimicrobial peptides, including avian beta-defensins (also called gallinacins) and cathelicidins. Four treatment groups were included in this study: a negative-control group, a probiotic-treated group, a Salmonella-infected group, and a probiotic-treated and Salmonella-infected group. On days 1, 3, and 5 postinfection (p.i.), the cecal tonsils were removed, and RNA was extracted and used for measurement of avian beta-defensin 1 (AvBD1), AvBD2, AvBD4, AvBD6, and cathelicidin gene expression by real-time PCR. The expressions of all avian beta-defensins and cathelicidin were detectable in all groups, irrespective of treatment and time point. Probiotic treatment and Salmonella infection did not affect the expression of any of the investigated genes on day 1 p.i. Furthermore, probiotic treatment had no significant effect on the expression of the genes at either 3 or 5 days p.i. However, the expression levels of all five genes were significantly increased (P < 0.05) in response to Salmonella infection at 3 and 5 days p.i. However, administration of probiotics eliminated the effect of Salmonella infection on the expression of antimicrobial genes. These findings indicate that the expression of antimicrobial peptides may be repressed by probiotics in combination with Salmonella infection or, alternatively, point to the possibility that, due to a reduction in Salmonella load in the intestine, these genes may not be induced. PMID:18827189

  4. Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression

    PubMed Central

    Grether-Beck, Susanne; Felsner, Ingo; Brenden, Heidi; Kohne, Zippora; Majora, Marc; Marini, Alessandra; Jaenicke, Thomas; Rodriguez-Martin, Marina; Trullas, Carles; Hupe, Melanie; Elias, Peter M.; Krutmann, Jean

    2012-01-01

    Urea is an endogenous metabolite, known to enhance stratum corneum hydration. Yet, topical urea anecdotally also improves permeability barrier function, and it appears to exhibit antimicrobial activity. Hence, we hypothesized that urea is not merely a passive metabolite, but a small-molecule regulator of epidermal structure and function. In 21 human volunteers, topical urea improved barrier function in parallel with enhanced antimicrobial peptide (LL-37 and β-defensin-2) expression. Urea both stimulates expression of, and is transported into keratinocytes by two urea transporters, UT-A1 and UT-A2, and by aquaporin 3, 7 and 9. Inhibitors of these urea transporters block the downstream biological effects of urea, which include increased mRNA and protein levels for: (i) transglutaminase-1, involucrin, loricrin and filaggrin; (ii) epidermal lipid synthetic enzymes, and (iii) cathelicidin/LL-37 and β-defensin-2. Finally, we explored the potential clinical utility of urea, showing that topical urea applications normalized both barrier function and antimicrobial peptide expression in a murine model of atopic dermatitis (AD). Together, these results show that urea is a small-molecule regulator of epidermal permeability barrier function and antimicrobial peptide expression after transporter uptake, followed by gene regulatory activity in normal epidermis, with potential therapeutic applications in diseased skin. PMID:22418868

  5. Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia.

    PubMed

    Schikorski, David; Cuvillier-Hot, Virginie; Leippe, Matthias; Boidin-Wichlacz, Céline; Slomianny, Christian; Macagno, Eduardo; Salzet, Michel; Tasiemski, Aurélie

    2008-07-15

    Following trauma, the CNS of the medicinal leech, unlike the mammalian CNS, has a strong capacity to regenerate neurites and synaptic connections that restore normal function. In this study, we show that this regenerative process is enhanced by a controlled bacterial infection, suggesting that induction of regeneration of normal CNS function may depend critically upon the coinitiation of an immune response. We explore the interaction between the activation of a neuroimmune response and the process of regeneration by assaying the potential roles of two newly characterized antimicrobial peptides. Our data provide evidence that microbial components differentially induce the transcription, by microglial cells, of both antimicrobial peptide genes, the products of which accumulate rapidly at sites in the CNS undergoing regeneration following axotomy. Using a preparation of leech CNS depleted of microglial cells, we also demonstrate the production of antimicrobial peptides by neurons. Interestingly, in addition to exerting antibacterial properties, both peptides act as promoters of the regenerative process of axotomized leech CNS. These data are the first to report the neuronal synthesis of antimicrobial peptides and their participation in the immune response and the regeneration of the CNS. Thus, the leech CNS appears as an excellent model for studying the implication of immune molecules in neural repair. PMID:18606660

  6. Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia

    PubMed Central

    Schikorski, David; Cuvillier-Hot, Virginie; Leippe, Matthias; Boidin-Wichlacz, Céline; Slomianny, Christian; Macagno, Eduardo; Salzet, Michel; Tasiemski, Aurélie

    2010-01-01

    Following trauma, the central nervous system (CNS) of the medicinal leech, unlike the mammalian CNS, has a strong capacity to regenerate neurites and synaptic connections that restore normal function. Here, we show that this regenerative process is enhanced by a controlled bacterial infection, suggesting that induction of regeneration of normal CNS function may depend critically upon the co-initiation of an immune response. We explore the interaction between the activation of a neuroimmune response and the process of regeneration by assaying the potential roles of two newly characterized antimicrobial peptides. Our data provide evidence that microbial components differentially induce the transcription, by microglial cells, of both antimicrobial peptide genes, the products of which accumulate rapidly at sites in the CNS undergoing regeneration following axotomy. Using a preparation of leech CNS depleted of microglial cells, we also demonstrate the production of antimicrobial peptides by neurons. Interestingly, in addition to exerting antibacterial properties, both peptides act as promoters of the regenerative process of axotomized leech CNS. These data are the first to report the neuronal synthesis of antimicrobial peptides and their participation in the immune response and the regeneration of the CNS. Thus, the leech CNS appears as an excellent model for studying the implication of immune molecules in neural repair. PMID:18606660

  7. Surveying the potential of secreted antimicrobial peptides to enhance plant disease resistance

    PubMed Central

    Breen, Susan; Solomon, Peter S.; Bedon, Frank; Vincent, Delphine

    2015-01-01

    Antimicrobial peptides (AMPs) are natural products found across diverse taxa as part of the innate immune system against pathogen attacks. Some AMPs are synthesized through the canonical gene expression machinery and are called ribosomal AMPs. Other AMPs are assembled by modular enzymes generating nonribosomal AMPs and harbor unusual structural diversity. Plants synthesize an array of AMPs, yet are still subject to many pathogen invasions. Crop breeding programs struggle to release new cultivars in which complete disease resistance is achieved, and usually such resistance becomes quickly overcome by the targeted pathogens which have a shorter generation time. AMPs could offer a solution by exploring not only plant-derived AMPs, related or unrelated to the crop of interest, but also non-plant AMPs produced by bacteria, fungi, oomycetes or animals. This review highlights some promising candidates within the plant kingdom and elsewhere, and offers some perspectives on how to identify and validate their bioactivities. Technological advances, particularly in mass spectrometry (MS) and nuclear magnetic resonance (NMR), have been instrumental in identifying and elucidating the structure of novel AMPs, especially nonribosomal peptides which cannot be identified through genomics approaches. The majority of non-plant AMPs showing potential for plant disease immunity are often tested using in vitro assays. The greatest challenge remains the functional validation of candidate AMPs in plants through transgenic experiments, particularly introducing nonribosomal AMPs into crops. PMID:26579150

  8. Overexpression of antimicrobial lytic peptides protects grapevine from Pierce's disease under greenhouse but not field conditions.

    PubMed

    Li, Zhijian T; Hopkins, Donald L; Gray, Dennis J

    2015-10-01

    Pierce's disease (PD) caused by Xylella fastidiosa prevents cultivation of grapevine (Vitis vinifera) and susceptible hybrids in the southeastern United States and poses a major threat to the grape industry of California and Texas. Genetic resistance is the only proven control of X. fastidiosa. Genetic engineering offers an alternative to heretofore ineffective conventional breeding in order to transfer only PD resistance traits into elite cultivars. A synthetic gene encoding lytic peptide LIMA-A was introduced into V. vinifera and a Vitis hybrid to assess in planta inhibition of X. fastidiosa. Over 1050 independent transgenic plant lines were evaluated in the greenhouse, among which nine lines were selected and tested under naturally-inoculated field conditions. These selected plant lines in the greenhouse remain disease-free for 10 years, to date, even with multiple manual pathogen inoculations. However, all these lines in the field, including a grafted transgenic rootstock, succumbed to PD within 7 years. We conclude that in planta production of antimicrobial lytic peptides does not provide durable PD resistance to grapevine under field conditions. PMID:25894660

  9. Co-expression of Dorsal and Rel2 Negatively Regulates Antimicrobial Peptide Expression in the Tobacco Hornworm Manduca sexta

    PubMed Central

    Zhong, Xue; Rao, Xiang-Jun; Yi, Hui-Yu; Lin, Xin-Yu; Huang, Xiao-Hong; Yu, Xiao-Qiang

    2016-01-01

    Nuclear factor κB (NF-κB) plays an essential role in regulation of innate immunity. In mammals, NF-κB factors can form homodimers and heterodimers to activate gene expression. In insects, three NF-κB factors, Dorsal, Dif and Relish, have been identified to activate antimicrobial peptide (AMP) gene expression. However, it is not clear whether Dorsal (or Dif) and Relish can form heterodimers. Here we report the identification and functional analysis of a Dorsal homologue (MsDorsal) and two Relish short isoforms (MsRel2A and MsRel2B) from the tobacco hornworm, Manduca sexta. Both MsRel2A and MsRel2B contain only a Rel homology domain (RHD) and lack the ankyrin-repeat inhibitory domain. Overexpression of the RHD domains of MsDorsal and MsRel2 in Drosophila melanogaster S2 and Spodoptera frugiperda Sf9 cells can activate AMP gene promoters from M. sexta and D. melanogaster. We for the first time confirmed the interaction between MsDorsal-RHD and MsRel2-RHD, and suggesting that Dorsal and Rel2 may form heterodimers. More importantly, co-expression of MsDorsal-RHD with MsRel2-RHD suppressed activation of several M. sexta AMP gene promoters. Our results suggest that the short MsRel2 isoforms may form heterodimers with MsDorsal as a novel mechanism to prevent over-activation of antimicrobial peptides. PMID:26847920

  10. Synthetic Mimic of Antimicrobial Peptide with Nonmembrane-Disrupting Antibacterial Properties

    PubMed Central

    2008-01-01

    Polyguanidinium oxanorbornene (PGON) was synthesized from norbornene monomers via ring-opening metathesis polymerization. This polymer was observed to be strongly antibacterial against Gram-negative and Gram-positive bacteria as well as nonhemolytic against human red blood cells. Time-kill studies indicated that this polymer is lethal and not just bacteriostatic. In sharp contrast to previously reported SMAMPs (synthetic mimics of antimicrobial peptides), PGON did not disrupt membranes in vesicle-dye leakage assays and microscopy experiments. The unique biological properties of PGON, in same ways similar to cell-penetrating peptides, strongly encourage the examination of other novel guanidino containing macromolecules as powerful and selective antimicrobial agents. PMID:18850741

  11. Obtaining antimicrobial peptides by controlled peptic hydrolysis of bovine hemoglobin.

    PubMed

    Adje, Estelle Yaba; Balti, Rafik; Kouach, Mostafa; Dhulster, Pascal; Guillochon, Didier; Nedjar-Arroume, Naïma

    2011-08-01

    Under standard conditions, the peptides and specially the active peptides were obtained from either the denatured hemoglobin that all structures are completely modified or either the native hemoglobin where all structures are intact. In these conditions, antibacterial peptides were isolated from a very complex peptidic hydrolysate which contains more than one hundred peptides having various sizes and characteristics, involving a complex purification process. The new hydrolysis conditions were obtained by using 40% methanol, 30% ethanol, 20% propanol or 10% butanol. These conditions, where only the secondary structure of hemoglobin retains intact, were followed in order to enrich the hydrolyzed hemoglobin by active peptides or obtain new antibacterial peptides. In these controlled peptic hydrolysis of hemoglobin, a selective and restrictive hydrolysate contained only 29 peptides was obtained. 26 peptides have an antibacterial activity against Micrococcus luteus, Listeria innocua, and Escherichia coli with MIC from 187.1 to 1 μM. Among these peptides, 13 new antibacterial peptides are obtained only in these new hydrolysis conditions. PMID:21510973

  12. The effect of thiol functional group incorporation into cationic helical peptides on antimicrobial activities and spectra.

    PubMed

    Wiradharma, Nikken; Khan, Majad; Yong, Lin-Kin; Hauser, Charlotte A E; Seow, See Voon; Zhang, Shuguang; Yang, Yi-Yan

    2011-12-01

    Antimicrobial peptides (AMP) have been proposed as blueprints for the development of new antimicrobial agents for the treatment of drug resistant infections. A series of synthetic AMPs capable of forming α-helical structures and containing free-sulfhydryl groups are designed in this study ((LLKK)(2)C, C(LLKK)(2)C, (LLKK)(3)C, C(LLKK)(3)C). In particular, the AMP with 2 cysteine residues at the terminal ends of the peptide and 2 repeat units of LLKK, i.e., C(LLKK)(2)C, has been demonstrated to have high selectivity towards a wide range of microbes from Gram-positive Bacillus subtilis, Gram-negative Escherichia coli, Pseudomonas aerogenosa, and yeast Candida albicans over red blood cells. At the MIC levels, this peptide does not induce significant hemolysis, and its MIC values occur at the concentration of more than 10 times of their corresponding 50% hemolysis concentrations (HC(50)). Microscopy studies suggest that this peptide kills microbial cells by inducing pores of ∼20-30 nm in size in microbial membrane on a short time scale, which further develops to grossly damaged membrane envelope on a longer time scale. Multiple treatments of microbes with this peptide at sub MIC concentration do not induce resistance, even up to passage 10. However, the same treatment with conventional antibiotics penicillin G or ciprofloxacin easily develop resistance in the treated microbes. In addition, the peptides are shown not to induce secretion of IFN-γ and TNF-α in human monocytes as compared to lipopolysaccharide, which implies additional safety aspects of the peptides to be used as both systemic and topical antimicrobial agents. Therefore, this study provides an excellent basis to develop promising antimicrobial agents that possess a broad range of antimicrobial activities with less susceptibility for development of drug resistance. PMID:21906803

  13. DETECTION OF ANTIMICROBIAL RESISTANCE GENES BY DNA MICROARRAY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To study the spread of antimicrobial resistance in bacteria it is necessary to identify the genes responsible for resistance. Currently, each gene must be screened individually in order to identify the gene(s) responsible for the observed resistance expressed by a bacterium. The inability to rapidly...

  14. Detection of antimicrobial resistance genes by DNA microarray

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To study the spread of antimicrobial resistance in bacteria it is necessary to detect and characterize the genes responsible for resistance. Currently, each gene must be screened individually in order to identify the gene(s) responsible for the observed resistance expressed by a bacterium. The inabi...

  15. Detection of antimicrobial resistance genes by DNA microarray

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To study the spread of antimicrobial resistance in bacteria it is necessary to identify the genes responsible for resistance. Currently, each gene must be screened individually in order to identify the gene(s) responsible for the observed resistance expressed by a bacterium. The inability to rapidly...

  16. Identification and Molecular Characterization of Molluskin, a Histone-H2A-Derived Antimicrobial Peptide from Molluscs

    PubMed Central

    Sathyan, Naveen; Philip, Rosamma; Chaithanya, E. R.; Anil Kumar, P. R.

    2012-01-01

    Antimicrobial peptides are humoral innate immune components of molluscs that provide protection against pathogenic microorganisms. Among these, histone-H2A-derived antimicrobial peptides are known to actively participate in host defense responses of molluscs. Present study deals with identification of putative antimicrobial sequences from the histone-H2A of back-water oyster Crassostrea madrasensis, rock oyster Saccostrea cucullata, grey clam Meretrix casta, fig shell Ficus gracilis, and ribbon bullia Bullia vittata. A 75 bp fragment encoding 25 amino acid residues was amplified from cDNA of these five bivalves and was named “Molluskin.” The 25 amino acid peptide exhibited high similarity to previously reported histone-H2A-derived AMPs from invertebrates indicating the presence of an antimicrobial sequence motif. Physicochemical properties of the peptides are in agreement with the characteristic features of antimicrobial peptides, indicating their potential role in innate immunity of molluscs.

  17. Can antimicrobial peptides scavenge around a cell in less than a second?

    PubMed

    Chekmenev, Eduard Y; Vollmar, Breanna S; Cotten, Myriam

    2010-02-01

    Antimicrobial peptides, which play multiple host-defense roles, have garnered increased experimental focus because of their potential applications in the pharmaceutical and food production industries. While their mechanisms of action are richly debated, models that have been advanced share modes of peptide-lipid interactions that require peptide dynamics. Before the highly cooperative and specific events suggested in these models take place, peptides must undergo an important process of migration along the membrane surface and delivery from their site of binding on the membrane to the actual site of functional performance. This phenomenon, which contributes significantly to antimicrobial function, is poorly understood, largely due to a lack of experimental and computational tools needed to assess it. Here, we use (15)N solid-state nuclear magnetic resonance to obtain molecular level data on the motions of piscidin's amphipathic helices on the surface of phospholipid bilayers. The studies presented here may help contribute to a better understanding of the speed at which the events that lead to antimicrobial response take place. Specifically, from the perspective of the kinetics of cellular processes, we discuss the possibility that piscidins and perhaps many other amphipathic antimicrobial peptides active on the membrane surface may represent a class of fast scavengers rather than static polypeptides attached to the water-lipid interface. PMID:19735645

  18. Conformational study of melectin and antapin antimicrobial peptides in model membrane environments.

    PubMed

    Kocourková, Lucie; Novotná, Pavlína; Čujová, Sabína; Čeřovský, Václav; Urbanová, Marie; Setnička, Vladimír

    2017-01-01

    Antimicrobial peptides have long been considered as promising compounds against drug-resistant pathogens. In this work, we studied the secondary structure of antimicrobial peptides melectin and antapin using electronic (ECD) and vibrational circular dichroism (VCD) spectroscopies that are sensitive to peptide secondary structures. The results from quantitative ECD spectral evaluation by Dichroweb and CDNN program and from the qualitative evaluation of the VCD spectra were compared. The antimicrobial activity of the selected peptides depends on their ability to adopt an amphipathic α-helical conformation on the surface of the bacterial membrane. Hence, solutions of different zwitterionic and negatively charged liposomes and micelles were used to mimic the eukaryotic and bacterial biological membranes. The results show a significant content of α-helical conformation in the solutions of negatively charged liposomes mimicking the bacterial membrane, thus correlating with the antimicrobial activity of the studied peptides. On the other hand in the solutions of zwitterionic liposomes used as models of the eukaryotic membranes, the fraction of α-helical conformation was lower, which corresponds with their moderate hemolytic activity. PMID:27450123

  19. Modulation of the Activity of Secretory Phospholipase A2 by Antimicrobial Peptides

    PubMed Central

    Zhao, Hongxia; Kinnunen, Paavo K. J.

    2003-01-01

    The antimicrobial peptides magainin 2, indolicidin, and temporins B and L were found to modulate the hydrolytic activity of secretory phospholipase A2 (sPLA2) from bee venom and in human lacrimal fluid. More specifically, hydrolysis of phosphatidylcholine (PC) liposomes by bee venom sPLA2 at 10 μM Ca2+ was attenuated by these peptides while augmented product formation was observed in the presence of 5 mM Ca2+. The activity of sPLA2 towards anionic liposomes was significantly enhanced by the antimicrobial peptides at low [Ca2+] and was further enhanced in the presence of 5 mM Ca2+. Similarly, with 5 mM Ca2+ the hydrolysis of anionic liposomes was enhanced significantly by human lacrimal fluid sPLA2, while that of PC liposomes was attenuated. These results indicate that concerted action of antimicrobial peptides and sPLA2 could improve the efficiency of the innate response to infections. Interestingly, inclusion of a cationic gemini surfactant in the vesicles showed an essentially similar pattern on sPLA2 activity, suggesting that the modulation of the enzyme activity by the antimicrobial peptides may involve also charge properties of the substrate surface. PMID:12604528

  20. Yeast β-d-glucans induced antimicrobial peptide expressions against Salmonella infection in broiler chickens.

    PubMed

    Shao, Yujing; Wang, Zhong; Tian, Xiangyu; Guo, Yuming; Zhang, Haibo

    2016-04-01

    The present study was designed to investigate the effects of yeast β-d-glucans (YG) on gene expression of endogenous β-defensins (AvBDs), cathelicidins (Cath) and liver-expressed antimicrobial peptide-2 (LEAP-2) in broilers challenged with Salmonella enteritidis (SE). 240 day-old Cobb male broilers were randomly assigned to 2×2 factorial arrangements of treatments with two levels of dietary YG (0 or 200mg/kg in diet) and two levels of SE challenge (0 or 1×10(9) SE at 7-9 days of age). The results showed SE infection reduced growth performance,and increased salmonella cecal colonization and internal organs invasion, increased concentration of intestinal specific IgA and serum specific IgG antibody, as compared to uninfected birds. SE challenge differentially regulated AvBDs, Caths and LEAP-2 gene expression in the jejunum and spleen of broiler chickens during the infection period. However, YG supplementation inhibited the growth depression by SE challenge, and further increased level of serum specific IgG and intestinal specific IgA antibody. Higher level of salmonella colonization and internal organs invasion in the SE-infected birds were reduced by YG. SE-induced differentially expression patterns of AMPs genes was inhibited or changed by YG. Results indicated YG enhance chicken's resistance to salmonella infection. PMID:26794312

  1. Antimicrobial Peptide-Driven Colloidal Transformations in Liquid-Crystalline Nanocarriers.

    PubMed

    Gontsarik, Mark; Buhmann, Matthias T; Yaghmur, Anan; Ren, Qun; Maniura-Weber, Katharina; Salentinig, Stefan

    2016-09-01

    Designing efficient colloidal systems for the delivery of membrane active antimicrobial peptides requires in-depth understanding of their structural and morphological characteristics. Using dispersions of inverted type bicontinuous cubic phase (cubosomes), we examine the effect of integrating the amphiphilic peptide LL-37 at different concentrations on the self-assembled structure and evaluate its bactericidal ability against Escherichia coli. Small-angle X-ray scattering, dynamic light scattering, and cryogenic transmission electron microscopy show that LL-37 integrates into the bicontinuous cubic structure, inducing colloidal transformations to sponge and lamellar phases and micelles in a concentration-dependent manner. These investigations, together with in vitro evaluation studies using a clinically relevant bacterial strain, established the composition-nanostructure-activity relationship that can guide the design of new nanocarriers for antimicrobial peptides and may provide essential knowledge on the mechanisms underlying the bacterial membrane disruption with peptide-loaded nanostructures. PMID:27541048

  2. Nanomechanical Response of Pseudomonas aeruginosa PAO1 Bacterial Cells to Cationic Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Walters, Grant; Dutcher, John

    2013-03-01

    We have used an atomic force microscopy (AFM)-based creep deformation technique to study changes to the viscoelastic properties of individual Gram-negative Pseudomonas aeruginosa PAO1 cells as a function of time of exposure to two cationic peptides: polymyxin B (PMB), a cyclic antimicrobial peptide, and the structurally-related compound, polymyxin B nonapeptide (PMBN). The measurements provide a direct measure of the mechanical integrity of the bacterial cell envelope, and the results can be understood in terms of simple viscoelastic models of arrangements of springs and dashpots, which can be ascribed to different components within the bacterial cell. Time-resolved creep deformation experiments reveal abrupt changes to the viscoelastic properties of P. aeruginosa bacterial cells after exposure to both PMB and PMBN, with quantitatively different changes for the two cationic peptides. These measurements provide new insights into the kinetics and mechanism of action of antimicrobial peptides on bacterial cells.

  3. Anticancer Activity of the Antimicrobial Peptide Scolopendrasin VII Derived from the Centipede, Scolopendra subspinipes mutilans.

    PubMed

    Lee, Joon Ha; Kim, In-Woo; Kim, Sang-Hee; Kim, Mi-Ae; Yun, Eun-Young; Nam, Sung-Hee; Ahn, Mi-Young; Kang, Dongchul; Hwang, Jae Sam

    2015-08-01

    Previously, we performed de novo RNA sequencing of Scolopendra subspinipes mutilans using high-throughput sequencing technology and identified several antimicrobial peptide candidates. Among them, a cationic antimicrobial peptide, scolopendrasin VII, was selected based on its physicochemical properties, such as length, charge, and isoelectric point. Here, we assessed the anticancer activities of scolopendrasin VII against U937 and Jurkat leukemia cell lines. The results showed that scolopendrasin VII decreased the viability of the leukemia cells in MTS assays. Furthermore, flow cytometric analysis and acridine orange/ethidium bromide staining revealed that scolopendrasin VII induced necrosis in the leukemia cells. Scolopendrasin VII-induced necrosis was mediated by specific interaction with phosphatidylserine, which is enriched in the membrane of cancer cells. Taken together, these data indicated that scolopendrasin VII induced necrotic cell death in leukemia cells, probably through interaction with phosphatidylserine. The results provide a useful anticancer peptide candidate and an efficient strategy for new anticancer peptide development. PMID:25907065

  4. Glucagon-Like Peptide-1 Gene Therapy

    PubMed Central

    Rowzee, Anne M.; Cawley, Niamh X.; Chiorini, John A.; Di Pasquale, Giovanni

    2011-01-01

    Glucagon-like peptide 1 (GLP-1) is a small peptide component of the prohormone, proglucagon, that is produced in the gut. Exendin-4, a GLP-1 receptor agonist originally isolated from the saliva of H. suspectum or Gila monster, is a peptide that shares sequence and functional homology with GLP-1. Both peptides have been demonstrated to stimulate insulin secretion, inhibit glucagon secretion, promote satiety and slow gastric emptying. As such, GLP-1 and Exendin-4 have become attractive pharmaceutical targets as an adjunctive therapy for individuals with type II diabetes mellitus, with several products currently available clinically. Herein we summarize the cell biology leading to GLP-1 production and secretion from intestinal L-cells and the endocrine functions of this peptide and Exendin-4 in humans. Additionally, gene therapeutic applications of GLP-1 and Exendin-4 are discussed with a focus on recent work using the salivary gland as a gene therapy target organ for the treatment of diabetes mellitus. PMID:21747830

  5. Novel endosomolytic peptides for enhancing gene delivery in nanoparticles.

    PubMed

    Ahmad, Aqeel; Ranjan, Sanjeev; Zhang, Weikai; Zou, Jing; Pyykkö, Ilmari; Kinnunen, Paavo K J

    2015-02-01

    Trapping in the endosomes is currently believed to represent the main barrier for transfection. Peptides, which allow endosomal escape have been demonstrated to overcome this barrier, similarly to the entry of viruses. However, the design principles of such endosomolytic peptides remain unclear. We characterized three analogs derived from membrane disrupting antimicrobial peptides (AMP), viz. LL-37, melittin, and bombolitin V, with glutamic acid substituting for all basic residues. These analogs are pH-sensitive and cause negligible membrane permeabilization and insignificant cytotoxicity at pH7.4. However, at pH5.0, prevailing in endosomes, membrane binding and hemolysis of human erythrocytes become evident. We first condensed the emerald green fluorescent protein (emGFP) containing plasmid by protamine, yielding 115 nm diameter soluble nanoplexes. For coating of the nanoplex surface with a lipid bilayer we introduced a hydrophobic tether, stearyl-octa-arginine (SR8). The indicated peptides were dissolved in methanol and combined with lipid mixtures in chloroform, followed by drying at RT under a nitrogen flow. The dry residues were hydrated with nanoplexes in Hepes, pH7.4 yielding after a 30 min incubation at RT,rather monodisperse nanoparticles having an average diameter of 150-300 nm, measured by DLS and cryo-TEM. Studies with cell cultures showed the above peptides to yield expression levels comparable to those obtained using Lipofectamine 2000. However, unlike the polydisperse aggregates formed upon mixing Lipofectamine 2000 and plasmid, the procedure described yields soluble, and reasonably monodisperse nanoparticles, which can be expected to be suitable for gene delivery in vivo, using intravenous injection. PMID:25445677

  6. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus.

    PubMed

    Mohamed, Mohamed F; Abdelkhalek, Ahmed; Seleem, Mohamed N

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections present a serious challenge because of the emergence of resistance to numerous conventional antibiotics. Due to their unique mode of action, antimicrobial peptides are novel alternatives to traditional antibiotics for tackling the issue of bacterial multidrug resistance. Herein, we investigated the antibacterial activity of two short novel peptides (WR12, a 12 residue peptide composed exclusively of arginine and tryptophan, and D-IK8, an eight residue β-sheet peptide) against multidrug resistant staphylococci. In vitro, both peptides exhibited good antibacterial activity against MRSA, vancomycin-resistant S. aureus, linezolid-resistant S. aureus, and methicillin-resistant S. epidermidis. WR12 and D-IK8 were able to eradicate persisters, MRSA in stationary growth phase, and showed significant clearance of intracellular MRSA in comparison to both vancomycin and linezolid. In vivo, topical WR12 and D-IK8 significantly reduced both the bacterial load and the levels of the pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in MRSA-infected skin lesions. Moreover, both peptides disrupted established in vitro biofilms of S. aureus and S. epidermidis significantly more so than traditional antimicrobials tested. Taken together, these results support the potential of WR12 and D-IK8 to be used as a topical antimicrobial agent for the treatment of staphylococcal skin infections. PMID:27405275

  7. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus

    PubMed Central

    Mohamed, Mohamed F.; Abdelkhalek, Ahmed; Seleem, Mohamed N.

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections present a serious challenge because of the emergence of resistance to numerous conventional antibiotics. Due to their unique mode of action, antimicrobial peptides are novel alternatives to traditional antibiotics for tackling the issue of bacterial multidrug resistance. Herein, we investigated the antibacterial activity of two short novel peptides (WR12, a 12 residue peptide composed exclusively of arginine and tryptophan, and D-IK8, an eight residue β-sheet peptide) against multidrug resistant staphylococci. In vitro, both peptides exhibited good antibacterial activity against MRSA, vancomycin-resistant S. aureus, linezolid-resistant S. aureus, and methicillin-resistant S. epidermidis. WR12 and D-IK8 were able to eradicate persisters, MRSA in stationary growth phase, and showed significant clearance of intracellular MRSA in comparison to both vancomycin and linezolid. In vivo, topical WR12 and D-IK8 significantly reduced both the bacterial load and the levels of the pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in MRSA-infected skin lesions. Moreover, both peptides disrupted established in vitro biofilms of S. aureus and S. epidermidis significantly more so than traditional antimicrobials tested. Taken together, these results support the potential of WR12 and D-IK8 to be used as a topical antimicrobial agent for the treatment of staphylococcal skin infections. PMID:27405275

  8. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism.

    PubMed

    Lee, Heejeong; Hwang, Jae-Sam; Lee, Jaeho; Kim, Jae Il; Lee, Dong Gun

    2015-02-01

    Scolopendin 2 is a 16-mer peptide (AGLQFPVGRIGRLLRK) derived from the centipede Scolopendra subspinipes mutilans. We observed that this peptide exhibited antimicrobial activity in a salt-dependent manner against various fungal and bacterial pathogens and showed no hemolytic effect in the range of 1.6 μM to 100 μM. Circular dichroism analysis showed that the peptide has an α-helical properties. Furthermore, we determined the mechanism(s) of action using flow cytometry and by investigating the release of intracellular potassium. The results showed that the peptide permeabilized the membranes of Escherichia coli O157 and Candida albicans, resulting in loss of intracellular potassium ions. Additionally, bis-(1,3-dibutylbarbituric acid) trimethine oxonol and 3,3'-dipropylthiacarbocyanine iodide assays showed that the peptide caused membrane depolarization. Using giant unilamellar vesicles encapsulating calcein and large unilamellar vesicles containing fluorescein isothiocyanate-dextran, which were similar in composition to typical E. coli O157 and C. albicans membranes, we demonstrated that scolopendin 2 disrupts membranes, resulting in a pore size between 4.8 nm and 5.0 nm. Thus, we have demonstrated that a cationic antimicrobial peptide, scolopendin 2, exerts its broad-spectrum antimicrobial effects by forming pores in the cell membrane. PMID:25462167

  9. Generic and specific adaptive responses of Streptococcus pneumoniae to challenge with three distinct antimicrobial peptides, bacitracin, LL-37, and nisin.

    PubMed

    Majchrzykiewicz, Joanna A; Kuipers, Oscar P; Bijlsma, Jetta J E

    2010-01-01

    To investigate the response of Streptococcus pneumoniae to three distinct antimicrobial peptides (AMPs), bacitracin, nisin, and LL-37, transcriptome analysis of challenged bacteria was performed. Only a limited number of genes were found to be up- or downregulated in all cases. Several of these common highly induced genes were chosen for further analysis, i.e., SP0385-SP0387 (SP0385-0387 herein), SP0912-0913, SP0785-0787, SP1714-1715, and the blp gene cluster. Deletion of these genes in combination with MIC determinations showed that several putative transporters, i.e., SP0785-0787 and SP0912-0913, were indeed involved in resistance to lincomycin and LL-37 and to bacitracin, nisin, and lincomycin, respectively. Mutation of the blp bacteriocin immunity genes resulted in an increased sensitivity to LL-37. Interestingly, a putative ABC transporter (SP1715) protected against bacitracin and Hoechst 33342 but conferred sensitivity to LL-37. A GntR-like regulator, SP1714, was identified as a negative regulator of itself and two of the putative transporters. In conclusion, we show that resistance to three different AMPs in S. pneumoniae is mediated by several putative ABC transporters, some of which have not been associated with antimicrobial resistance in this organism before. In addition, a GntR-like regulator that regulates two of these transporters was identified. Our findings extend the understanding of defense mechanisms of this important human pathogen against antimicrobial compounds and point toward novel proteins, i.e., putative ABC transporters, which can be used as targets for the development of new antimicrobials. PMID:19917758

  10. Antimicrobial properties of two novel peptides derived from Theobroma cacao osmotin.

    PubMed

    Falcao, Loeni L; Silva-Werneck, Joseilde O; Ramos, Alessandra de R; Martins, Natalia F; Bresso, Emmanuel; Rodrigues, Magali A; Bemquerer, Marcelo P; Marcellino, Lucilia H

    2016-05-01

    The osmotin proteins of several plants display antifungal activity, which can play an important role in plant defense against diseases. Thus, this protein can be useful as a source for biotechnological strategies aiming to combat fungal diseases. In this work, we analyzed the antifungal activity of a cacao osmotin-like protein (TcOsm1) and of two osmotin-derived synthetic peptides with antimicrobial features, differing by five amino acids residues at the N-terminus. Antimicrobial tests showed that TcOsm1 expressed in Escherichia coli inhibits the growth of Moniliophthora perniciosa mycelium and Pichia pastoris X-33 in vitro. The TcOsm1-derived peptides, named Osm-pepA (H-RRLDRGGVWNLNVNPGTTGARVWARTK-NH2), located at R23-K49, and Osm-pepB (H-GGVWNLNVNPGTTGARVWARTK-NH2), located at G28-K49, inhibited growth of yeasts (Saccharomyces cerevisiae S288C and Pichia pastoris X-33) and spore germination of the phytopathogenic fungi Fusarium f. sp. glycines and Colletotrichum gossypi. Osm-pepA was more efficient than Osm-pepB for S. cerevisiae (MIC=40μM and MIC=127μM, respectively), as well as for P. pastoris (MIC=20μM and MIC=127μM, respectively). Furthermore, the peptides presented a biphasic performance, promoting S. cerevisiae growth in doses around 5μM and inhibiting it at higher doses. The structural model for these peptides showed that the five amino acids residues, RRLDR at Osm-pepA N-terminus, significantly affect the tertiary structure, indicating that this structure is important for the peptide antimicrobial potency. This is the first report of development of antimicrobial peptides from T. cacao. Taken together, the results indicate that the cacao osmotin and its derived peptides, herein studied, are good candidates for developing biotechnological tools aiming to control phytopathogenic fungi. PMID:26996966

  11. Stylicins, a new family of antimicrobial peptides from the Pacific blue shrimp Litopenaeus stylirostris.

    PubMed

    Rolland, J L; Abdelouahab, M; Dupont, J; Lefevre, F; Bachère, E; Romestand, B

    2010-03-01

    The present study reports the characterization of Ls-Stylicin1, a novel antimicrobial peptide from the penaeid shrimp, Litopenaeus stylirostris. The predicted mature peptide of 82 residues is negatively charged (theoretical pI=5.0) and characterized by a proline-rich N-terminal region and a C-terminal region containing 13 cysteine residues. The recombinant Ls-Stylicin1 has been isolated in both monomeric and dimeric forms. Both display strong antifungal activity against Fusarium oxysporum (1.25 microMantimicrobial activity against Gram (-) bacteria, Vibrio sp. (40 microMantimicrobial peptides but identified herein several species of penaeid shrimp is thought to be the first member of a shrimp antimicrobial peptide family, which we termed stylicins. PMID:20061030

  12. Antimicrobial peptides trigger a division block in Escherichia coli through stimulation of a signalling system.

    PubMed

    Yadavalli, Srujana S; Carey, Jeffrey N; Leibman, Rachel S; Chen, Annie I; Stern, Andrew M; Roggiani, Manuela; Lippa, Andrew M; Goulian, Mark

    2016-01-01

    Antimicrobial peptides are an important component of the molecular arsenal employed by hosts against bacteria. Many bacteria in turn possess pathways that provide protection against these compounds. In Escherichia coli and related bacteria, the PhoQ/PhoP signalling system is a key regulator of this antimicrobial peptide defence. Here we show that treating E. coli with sublethal concentrations of antimicrobial peptides causes cells to filament, and that this division block is controlled by the PhoQ/PhoP system. The filamentation results from increased expression of QueE, an enzyme that is part of a tRNA modification pathway but that, as we show here, also affects cell division. We also find that a functional YFP-QueE fusion localizes to the division septum in filamentous cells, suggesting QueE blocks septation through interaction with the divisome. Regulation of septation by PhoQ/PhoP may protect cells from antimicrobial peptide-induced stress or other conditions associated with high-level stimulation of this signalling system. PMID:27471053

  13. Multitasking antimicrobial peptides, plant development, and host defense against biotic/abiotic stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense system against pathogens including use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AM...

  14. Cationic antimicrobial peptides in psoriatic skin cooperate to break innate tolerance to self-DNA.

    PubMed

    Lande, Roberto; Chamilos, Georgios; Ganguly, Dipyaman; Demaria, Olivier; Frasca, Loredana; Durr, Sophie; Conrad, Curdin; Schröder, Jens; Gilliet, Michel

    2015-01-01

    Psoriasis is a T-cell-mediated skin autoimmune disease characterized by the aberrant activation of dermal dendritic cells (DCs) and the sustained epidermal expression of antimicrobial peptides. We have previously identified a link between these two events by showing that the cathelicidin antimicrobial peptide LL37 has the ability to trigger self-nucleic acid mediated activation of plasmacytoid DCs (pDCs) in psoriatic skin. Whether other cationic antimicrobial peptides exert similar activities is unknown. By analyzing heparin-binding HPLC fractions of psoriatic scales, we found that human beta-defensin (hBD)2, hBD3, and lysozyme are additional triggers of pDC activation in psoriatic skin lesions. Like LL37, hBD2, hBD3, and lysozyme are able to condense self-DNA into particles that are endocytosed by pDCs, leading to activation of TLR9. In contrast, other antimicrobial peptides expressed in psoriatic skin including elafin, hBD1, and psoriasin (S100A7) did not show similar activities. hBD2, hBD3, and lysozyme were detected in psoriatic skin lesions in the vicinity of pDCs and found to cooperate with LL37 to induce high levels of IFN production by pDCs, suggesting their concerted role in the pathogenesis of psoriasis. PMID:25332209

  15. Antimicrobial Peptides: Insights into Membrane Permeabilization, Lipopolysaccharide Fragmentation and Application in Plant Disease Control

    PubMed Central

    Datta, Aritreyee; Ghosh, Anirban; Airoldi, Cristina; Sperandeo, Paola; Mroue, Kamal H.; Jiménez-Barbero, Jesús; Kundu, Pallob; Ramamoorthy, Ayyalusamy; Bhunia, Anirban

    2015-01-01

    The recent increase in multidrug resistance against bacterial infections has become a major concern to human health and global food security. Synthetic antimicrobial peptides (AMPs) have recently received substantial attention as potential alternatives to conventional antibiotics because of their potent broad-spectrum antimicrobial activity. These peptides have also been implicated in plant disease control for replacing conventional treatment methods that are polluting and hazardous to the environment and to human health. Here, we report de novo design and antimicrobial studies of VG16, a 16-residue active fragment of Dengue virus fusion peptide. Our results reveal that VG16KRKP, a non-toxic and non-hemolytic analogue of VG16, shows significant antimicrobial activity against Gram-negative E. coli and plant pathogens X. oryzae and X. campestris, as well as against human fungal pathogens C. albicans and C. grubii. VG16KRKP is also capable of inhibiting bacterial disease progression in plants. The solution-NMR structure of VG16KRKP in lipopolysaccharide features a folded conformation with a centrally located turn-type structure stabilized by aromatic-aromatic packing interactions with extended N- and C-termini. The de novo design of VG16KRKP provides valuable insights into the development of more potent antibacterial and antiendotoxic peptides for the treatment of human and plant infections. PMID:26144972

  16. Antimicrobial peptides trigger a division block in Escherichia coli through stimulation of a signalling system

    PubMed Central

    Yadavalli, Srujana S.; Carey, Jeffrey N.; Leibman, Rachel S.; Chen, Annie I.; Stern, Andrew M.; Roggiani, Manuela; Lippa, Andrew M.; Goulian, Mark

    2016-01-01

    Antimicrobial peptides are an important component of the molecular arsenal employed by hosts against bacteria. Many bacteria in turn possess pathways that provide protection against these compounds. In Escherichia coli and related bacteria, the PhoQ/PhoP signalling system is a key regulator of this antimicrobial peptide defence. Here we show that treating E. coli with sublethal concentrations of antimicrobial peptides causes cells to filament, and that this division block is controlled by the PhoQ/PhoP system. The filamentation results from increased expression of QueE, an enzyme that is part of a tRNA modification pathway but that, as we show here, also affects cell division. We also find that a functional YFP–QueE fusion localizes to the division septum in filamentous cells, suggesting QueE blocks septation through interaction with the divisome. Regulation of septation by PhoQ/PhoP may protect cells from antimicrobial peptide-induced stress or other conditions associated with high-level stimulation of this signalling system. PMID:27471053

  17. Fatty acid composition modulates sensitivity of Legionella pneumophila to warnericin RK, an antimicrobial peptide.

    PubMed

    Verdon, Julien; Labanowski, Jérome; Sahr, Tobias; Ferreira, Thierry; Lacombe, Christian; Buchrieser, Carmen; Berjeaud, Jean-Marc; Héchard, Yann

    2011-04-01

    Warnericin RK is an antimicrobial peptide, produced by a Staphyloccocus warneri strain, described to be specifically active against Legionella, the pathogenic bacteria responsible for Legionnaires' disease. Warnericin RK is an amphiphilic alpha-helical peptide, which possesses a detergent-like mode of action. Two others peptides, δ-hemolysin I and II, produced by the same S. warneri strain, are highly similar to S. aureus δ-hemolysin and also display anti-Legionella activity. It has been recently reported that S. aureus δ-hemolysin activity on vesicles is likewise related to phospholipid acyl-chain structure, such as chain length and saturation. As staphylococcal δ-hemolysins were highly similar, we thus hypothesized that fatty acid composition of Legionella's membrane might influence the sensitivity of the bacteria to warnericin RK. Relationship between sensitivity to the peptide and fatty acid composition was then followed in various conditions. Cells in stationary phase, which were already described as less resistant than cells in exponential phase, displayed higher amounts of branched-chain fatty acids (BCFA) and short chain fatty acids. An adapted strain, able to grow at a concentration 33 fold higher than minimal inhibitory concentration of the wild type (i.e. 1μM), was isolated after repeated transfers of L. pneumophila in the presence of increased concentrations of warnericin RK. The amount of BCFA was significantly higher in the adapted strain than in the wild type strain. Also, a transcriptomic analysis of the wild type and adapted strains showed that two genes involved in fatty acid biosynthesis were repressed in the adapted strain. These genes encode enzymes involved in desaturation and elongation of fatty acids respectively. Their repression was in agreement with the decrease of unsaturated fatty acids and fatty acid chain length in the adapted strain. Conclusively, our results indicate that the increase of BCFA and the decrease of fatty acid

  18. Cathelicidin peptide sheep myeloid antimicrobial peptide-29 prevents endotoxin-induced mortality in rat models of septic shock.

    PubMed

    Giacometti, Andrea; Cirioni, Oscar; Ghiselli, Roberto; Mocchegiani, Federico; D'Amato, Giuseppina; Circo, Raffaella; Orlando, Fiorenza; Skerlavaj, Barbara; Silvestri, Carmela; Saba, Vittorio; Zanetti, Margherita; Scalise, Giorgio

    2004-01-15

    The present study was designed to investigate the antiendotoxin activity and therapeutic efficacy of sheep myeloid antimicrobial peptide (SMAP)-29, a cathelicidin-derived peptide. The in vitro ability of SMAP-29 to bind LPS from Escherichia coli 0111:B4 was determined using a sensitive limulus chromogenic assay. Two rat models of septic shock were performed: (1) rats were injected intraperitoneally with 1 mg E. coli 0111:B4 LPS and (2) intraabdominal sepsis was induced via cecal ligation and single puncture. All animals were randomized to receive parenterally isotonic sodium chloride solution, 1 mg/kg SMAP-29, 1 mg/kg polymyxin B or 20 mg/kg imipenem. The main outcome measures were: abdominal exudate and plasma bacterial growth, plasma endotoxin and tumor necrosis factor-alpha concentrations, and lethality. The in vitro study showed that SMAP-29 completely inhibited the LPS procoagulant activity at approximately 10 microM peptide concentration. The in vivo experiments showed that all compounds reduced the lethality when compared with control animals. SMAP-29 achieved a substantial decrease in endotoxin and tumor necrosis factor-alpha plasma concentrations when compared with imipenem and saline treatment and exhibited a slightly lower antimicrobial activity than imipenem. No statistically significant differences were noted between SMAP-29 and polymyxin B. SMAP-29, because of its double antiendotoxin and antimicrobial activities, could be an interesting compound for septic shock treatment. PMID:14563656

  19. Antimicrobial Activity of Lactoferrin-Related Peptides and Applications in Human and Veterinary Medicine.

    PubMed

    Bruni, Natascia; Capucchio, Maria Teresa; Biasibetti, Elena; Pessione, Enrica; Cirrincione, Simona; Giraudo, Leonardo; Corona, Antonio; Dosio, Franco

    2016-01-01

    Antimicrobial peptides (AMPs) represent a vast array of molecules produced by virtually all living organisms as natural barriers against infection. Among AMP sources, an interesting class regards the food-derived bioactive agents. The whey protein lactoferrin (Lf) is an iron-binding glycoprotein that plays a significant role in the innate immune system, and is considered as an important host defense molecule. In search for novel antimicrobial agents, Lf offers a new source with potential pharmaceutical applications. The Lf-derived peptides Lf(1-11), lactoferricin (Lfcin) and lactoferrampin exhibit interesting and more potent antimicrobial actions than intact protein. Particularly, Lfcin has demonstrated strong antibacterial, anti-fungal and antiparasitic activity with promising applications both in human and veterinary diseases (from ocular infections to osteo-articular, gastrointestinal and dermatological diseases). PMID:27294909

  20. Structure and antimicrobial activity of platypus 'intermediate' defensin-like peptide.

    PubMed

    Torres, Allan M; Bansal, Paramjit; Koh, Jennifer M S; Pagès, Guilhem; Wu, Ming J; Kuchel, Philip W

    2014-05-01

    The three-dimensional structure of a chemically synthesized peptide that we have called 'intermediate' defensin-like peptide (Int-DLP), from the platypus genome, was determined by nuclear magnetic resonance (NMR) spectroscopy; and its antimicrobial activity was investigated. The overall structural fold of Int-DLP was similar to that of the DLPs and β-defensins, however the presence of a third antiparallel β-strand makes its structure more similar to the β-defensins than the DLPs. Int-DLP displayed potent antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The four arginine residues at the N-terminus of Int-DLP did not affect the overall fold, but were important for its antimicrobial potency. PMID:24694388

  1. Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties.

    PubMed

    Lim, Kaiyang; Chua, Ray Rong Yuan; Bow, Ho; Tambyah, Paul Anantharajah; Hadinoto, Kunn; Leong, Susanna Su Jan

    2015-03-01

    Catheter-associated urinary tract infections (CAUTIs) are the most common hospital-acquired infections worldwide, aggravating the problem of antimicrobial resistance and patient morbidity. There is a need for a potent and robust antimicrobial coating for catheters to prevent these infections. An ideal coating agent should possess high antimicrobial efficacy and be easily and economically conjugated to the catheter surface. In this study, we report a simple yet effective immobilization strategy to tether a potent synthetic antimicrobial peptide, CWR11, onto catheter-relevant surfaces. Polydopamine (PD) was deposited as a thin adherent film onto a polydimethylsiloxane (PDMS) surface to facilitate attachment of CWR11 onto the PD-functionalized polymer. Surface characterization of the CWR11-tethered surfaces confirmed the successful immobilization of peptides onto the PD-coated PDMS. The CWR11-immobilized PDMS slides displayed excellent antimicrobial (significant inhibition of 5×10(4) colony-forming units of CAUTI-relevant microbes) and antibiofilm (∼92% enhanced antibacterial adherence) properties. To assess its clinical relevance, the PD-based immobilization platform was translated onto commercial silicone-coated Foley catheters. The CWR11-impregnated catheter displayed potent bactericidal properties against both Gram-positive and Gram-negative bacteria, and retained its antimicrobial functionality for at least 21days, showing negligible cytotoxicity against human erythrocyte and uroepithelial cells. The outcome of this study demonstrates the proof-of-concept potential of a polydopamine-CWR11-functionalized catheter to combat CAUTIs. PMID:25541344

  2. Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration.

    PubMed

    Pfalzgraff, Anja; Heinbockel, Lena; Su, Qi; Gutsmann, Thomas; Brandenburg, Klaus; Weindl, Günther

    2016-01-01

    The stagnation in the development of new antibiotics and the concomitant high increase of resistant bacteria emphasize the urgent need for new therapeutic options. Antimicrobial peptides are promising agents for the treatment of bacterial infections and recent studies indicate that Pep19-2.5, a synthetic anti-lipopolysaccharide (LPS) peptide (SALP), efficiently neutralises pathogenicity factors of Gram-negative (LPS) and Gram-positive (lipoprotein/-peptide, LP) bacteria and protects against sepsis. Here, we investigated the potential of Pep19-2.5 and the structurally related compound Pep19-4LF for their therapeutic application in bacterial skin infections. SALPs inhibited LP-induced phosphorylation of NF-κB p65 and p38 MAPK and reduced cytokine release and gene expression in primary human keratinocytes and dermal fibroblasts. In LPS-stimulated human monocyte-derived dendritic cells and Langerhans-like cells, the peptides blocked IL-6 secretion, downregulated expression of maturation markers and inhibited dendritic cell migration. Both SALPs showed a low cytotoxicity in all investigated cell types. Furthermore, SALPs markedly promoted cell migration via EGFR transactivation and ERK1/2 phosphorylation and accelerated artificial wound closure in keratinocytes. Peptide-induced keratinocyte migration was mediated by purinergic receptors and metalloproteases. In contrast, SALPs did not affect proliferation of keratinocytes. Conclusively, our data suggest a novel therapeutic target for the treatment of patients with acute and chronic skin infections. PMID:27509895

  3. Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration

    PubMed Central

    Pfalzgraff, Anja; Heinbockel, Lena; Su, Qi; Gutsmann, Thomas; Brandenburg, Klaus; Weindl, Günther

    2016-01-01

    The stagnation in the development of new antibiotics and the concomitant high increase of resistant bacteria emphasize the urgent need for new therapeutic options. Antimicrobial peptides are promising agents for the treatment of bacterial infections and recent studies indicate that Pep19-2.5, a synthetic anti-lipopolysaccharide (LPS) peptide (SALP), efficiently neutralises pathogenicity factors of Gram-negative (LPS) and Gram-positive (lipoprotein/-peptide, LP) bacteria and protects against sepsis. Here, we investigated the potential of Pep19-2.5 and the structurally related compound Pep19-4LF for their therapeutic application in bacterial skin infections. SALPs inhibited LP-induced phosphorylation of NF-κB p65 and p38 MAPK and reduced cytokine release and gene expression in primary human keratinocytes and dermal fibroblasts. In LPS-stimulated human monocyte-derived dendritic cells and Langerhans-like cells, the peptides blocked IL-6 secretion, downregulated expression of maturation markers and inhibited dendritic cell migration. Both SALPs showed a low cytotoxicity in all investigated cell types. Furthermore, SALPs markedly promoted cell migration via EGFR transactivation and ERK1/2 phosphorylation and accelerated artificial wound closure in keratinocytes. Peptide-induced keratinocyte migration was mediated by purinergic receptors and metalloproteases. In contrast, SALPs did not affect proliferation of keratinocytes. Conclusively, our data suggest a novel therapeutic target for the treatment of patients with acute and chronic skin infections. PMID:27509895

  4. Crustin, a WAP domain containing antimicrobial peptide from freshwater prawn Macrobrachium rosenbergii: immune characterization.

    PubMed

    Arockiaraj, Jesu; Gnanam, Annie J; Muthukrishnan, Dhanaraj; Gudimella, Ranganath; Milton, James; Singh, Arun; Muthupandian, Saravanan; Kasi, Marimuthu; Bhassu, Subha

    2013-01-01

    Crustin (MrCrs) was sequenced from a freshwater prawn Macrobrachium rosenbergii. The MrCrs protein contains a signal peptide region at N-terminus between 1 and 22 and a long whey acidic protein domain (WAP domain) at C-terminus between 57 and 110 along with a WAP-type 'four-disulfide core' motif. Phylogenetic results show that MrCrs is clustered together with other crustacean crustin groups. MrCrs showed high sequence similarity (77%) with crustin from Pacific white shrimp Litopenaeus vannamei and Japanese spiny lobster Panulirus japonicas. I-TASSER uses the best structure templates to predict the possible structures of MrCrs along with PDB IDs such as 2RELA and 1FLEI. The gene expressions of MrCrs in both healthy M. rosenbergii and those infected with virus including infectious hypodermal and hematopoietic necrosis virus (IHHNV) and white spot syndrome virus (WSSV) and bacteria Aeromonas hydrophila (Gram-negative) and Enterococcus faecium (Gram-positive) were examined using quantitative real time PCR. To understand its biological activity, the recombinant MrCrs gene was constructed and expressed in Escherichia coli BL21 (DE3). The recombinant MrCrs protein agglutinated with the bacteria considered for analysis at a concentration of 25 μg/ml, except Lactococcus lactis. The bactericidal results showed that the recombinant MrCrs protein destroyed all the bacteria after incubation, even less than 6 h. These results suggest that MrCrs is a potential antimicrobial peptide, which is involved in the defense system of M. rosenbergii against viral and bacterial infections. PMID:23069787

  5. Selective Acylation Enhances Membrane Charge Sensitivity of the Antimicrobial Peptide Mastoparan-X

    PubMed Central

    Etzerodt, Thomas; Henriksen, Jonas R.; Rasmussen, Palle; Clausen, Mads H.; Andresen, Thomas L.

    2011-01-01

    The partitioning of the wasp venom peptide mastoparan-X (MPX) into neutral and negatively charged lipid membranes has been compared with two new synthetic analogs of MPX where the Nα-terminal of MPX was acylated with propanoic acid (PA) and octanoic acid (OA). The acylation caused a considerable change in the membrane partitioning properties of MPX and it was found that the shorter acylation with PA gave improved affinity and selectivity toward negatively charged membranes, whereas OA decreased the selectivity. Based on these findings, we hypothesize that minor differences in the embedding and positioning of the peptide in the membrane caused by either PA or OA acylation play a critical role in the fine-tuning of the effective charge of the peptide and thereby the fine-tuning of the peptide's selectivity between neutral and negatively charged lipid membranes. This finding is unique compared to previous reports where peptide acylation enhanced membrane affinity but also resulted in impaired selectivity. Our result may provide a method of enhancing selectivity of antimicrobial peptides toward bacterial membranes due to their high negative charge—a finding that should be investigated for other, more potent antimicrobial peptides in future studies. PMID:21244836

  6. Chemoselective surface attachment of antimicrobial peptides and its effects on interfacial behavior

    NASA Astrophysics Data System (ADS)

    North, Stella H.; So, Christopher; Fears, Kenan; Taitt, Chris R.

    2014-06-01

    Peptide-based biological recognition elements are valuable tools for detection in biodefense systems. The utilization of such biomolecules for detection purposes relies on the ability to immobilize them on the surface of a detection platform in a predictable and reliable manner that facilitates target binding. Numerous immobilization methods have been used to improve the performance of peptide-based biosensors; however, the molecular details of how surface attachment affects structure and activity require further investigation to establish general approaches for obtaining consistent sensor surfaces. This has been largely due to the lack of analytical techniques. Using surface spectroscopy techniques, we examined the secondary structure of peptides tethered to solid support. Different tethering parameters were investigated by substituting a cysteine residue to the N-terminus or C-terminus in cationic antimicrobial peptides, and its effects on antimicrobial activity against gram-negative bacteria, E. coli. Spectroscopic analysis showed that surface immobilization drives transition of peptides secondary structures, resulting in different interfacial behaviors that may influence the secondary structure of the peptides once they interact with the bacterial cells. We have begun to gain insight into how surface attachment may have direct implications for peptide presentation and function and is an important advance in preparing a robust sensing interface.

  7. Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide curvacin A.

    PubMed

    Haugen, Helen Sophie; Fimland, Gunnar; Nissen-Meyer, Jon; Kristiansen, Per Eugen

    2005-12-13

    The 3D structure of the membrane-permeabilizing 41-mer pediocin-like antimicrobial peptide curvacin A produced by lactic acid bacteria has been studied by NMR spectroscopy. In DPC micelles, the cationic and hydrophilic N-terminal half of the peptide forms an S-shaped beta-sheet-like domain stabilized by a disulfide bridge and a few hydrogen bonds. This domain is followed by two alpha-helices: a hydrophilic 6-mer helix between residues 19 and 24 and an amphiphilic/hydrophobic 11-mer helix between residues 29 and 39. There are two hinges in the peptide, one at residues 16-18 between the N-terminal S-shaped beta-sheet-like structure and the central 6-mer helix and one at residues 26-28 between the central helix and the 11-mer C-terminal helix. The latter helix is the only amphiphilic/hydrophobic part of the peptide and is thus presumably the part that penetrates into the hydrophobic phase of target-cell membranes. The hinge between the two helices may introduce the flexibility that allows the helix to dip into membranes. The helix-hinge-helix structure in the C-terminal half of curvacin A clearly distinguishes this peptide from the other pediocin-like peptides whose structures have been analyzed and suggests that curvacin A along with the structural homologues enterocin P and carnobacteriocin BM1 belong to a subgroup of the pediocin-like family of antimicrobial peptides. PMID:16331975

  8. Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides.

    PubMed

    Braun, Katharina; Pochert, Alexander; Lindén, Mika; Davoudi, Mina; Schmidtchen, Artur; Nordström, Randi; Malmsten, Martin

    2016-08-01

    Membrane interactions are critical for the successful use of mesoporous silica nanoparticles as delivery systems for antimicrobial peptides (AMPs). In order to elucidate these, we here investigate effects of nanoparticle charge and porosity on AMP loading and release, as well as consequences of this for membrane interactions and antimicrobial effects. Anionic mesoporous silica particles were found to incorporate considerable amounts of the cationic AMP LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES (LL-37), whereas loading is much lower for non-porous or positively charged silica nanoparticles. Due to preferential pore localization, anionic mesoporous particles, but not the other particles, protect LL-37 from degradation by infection-related proteases. For anionic mesoporous nanoparticles, membrane disruption is mediated almost exclusively by peptide release. In contrast, non-porous silica particles build up a resilient LL-37 surface coating due to their higher negative surface charge, and display largely particle-mediated membrane interactions and antimicrobial effects. For positively charged mesoporous silica nanoparticles, LL-37 incorporation promotes the membrane binding and disruption displayed by the particles in the absence of peptide, but also causes toxicity against human erythrocytes. Thus, the use of mesoporous silica nanoparticles as AMP delivery systems requires consideration of membrane interactions and selectivity of both free peptide and the peptide-loaded nanoparticles, the latter critically dependent on nanoparticle properties. PMID:27174622

  9. Lipid membrane structure and dynamics in the presence of tamoxifen and antimicrobial peptides

    NASA Astrophysics Data System (ADS)

    Hebenstreit, Samuel; Khadka, Nawal; Pan, Jianjun

    2015-03-01

    Lipids are organic molecules composed of hydrophobic fatty acid tails and hydrophilic head groups that can form a multitude of structures, including lipid vesicles which provides an excellent model representing cell membranes. In this study, we examine the effects of antimicrobial peptides and drugs on lipid vesicles. Fourier transform infrared spectroscopy measurements are performed with and without the antimicrobial peptide. A change in absorbance corresponding to the wavenumber regimes associated with the stretching of the carbonyl and phosphate groups is observed. Also, a dye leakage assay is performed with vesicles composed of neutral and charged lipids. Calcein dye is enclosed within these vesicles in solution. Different concentrations of the active and inactive antimicrobial peptides, and tamoxifen are incubated with the vesicles. Concentration dependent dye leakage is determined by measuring fluorescence intensity before and after the addition of the peptides and tamoxifen. Different leakage behavior is observed for the active and inactive peptides, and the lipid composition of the vesicle is found to have a large effect. Supported by an NSF grant.

  10. Interaction of antimicrobial peptide Plantaricin149a and four analogs with lipid bilayers and bacterial membranes

    PubMed Central

    de Souza Lopes, José Luiz; Hissa, Denise Cavalcante; Melo, Vânia Maria Maciel; Beltramini, Leila Maria

    2013-01-01

    The amidated analog of Plantaricin149, an antimicrobial peptide from Lactobacillus plantarum NRIC 149, directly interacts with negatively charged liposomes and bacterial membranes, leading to their lysis. In this study, four Pln149-analogs were synthesized with different hydrophobic groups at their N-terminus with the goal of evaluating the effect of the modifications at this region in the peptide’s antimicrobial properties. The interaction of these peptides with membrane models, surface activity, their hemolytic effect on red blood cells, and antibacterial activity against microorganisms were evaluated. The analogs presented similar action of Plantaricin149a; three of them with no hemolytic effect (< 5%) until 0.5 mM, in addition to the induction of a helical element when binding to negative liposomes. The N-terminus difference between the analogs and Plantaricin149a retained the antibacterial effect on S. aureus and P. aeruginosa for all peptides (MIC50 of 19 μM and 155 μM to Plantaricin149a, respectively) but resulted in a different mechanism of action against the microorganisms, that was bactericidal for Plantaricin149a and bacteriostatic for the analogs. This difference was confirmed by a reduction in leakage action for the analogs. The lytic activity of Plantaricin149a is suggested to be a result of the peptide-lipid interactions from the amphipathic helix and the hydrophobic residues at the N-terminus of the antimicrobial peptide. PMID:24688525

  11. Correlation of charge, hydrophobicity, and structure with antimicrobial activity of S1 and MIRIAM peptides.

    PubMed

    Leptihn, Sebastian; Har, Jia Yi; Wohland, Thorsten; Ding, Jeak Ling

    2010-11-01

    Antimicrobial peptides are key elements of the innate immune system. Many of them interact with membranes of bacteria leading to perturbation of the lipid bilayer and eventually to inactivation of the pathogen. The emergence of multidrug-resistant bacteria has necessitated innovations of new and more powerful classes of antimicrobials. Here we present the in-depth study of an antimicrobial peptide, MIRIAM, derived from Sushi1 (S1), a well-characterized peptide from the horseshoe crab. MIRIAM interacts strongly with negatively charged lipids, forming an α-helical structure. MIRIAM was found to neutralize LPS and kill Gram-negative bacteria with high efficiency, while not releasing LPS. The promising therapeutic potential of MIRIAM is shown by hemolytic assays, which demonstrate that eukaryotic membranes are unaffected at bactericidal concentrations. Nanoparticle-conjugated MIRIAM used in single-molecule fluorescence and electron microscopy experiments showed that MIRIAM targets bacterial membranes to kill bacteria similarly to parental S1. Furthermore, fragments derived from MIRIAM and S1 provided insights on their molecular mechanisms of action, in particular, the relationships of functional motifs comprised by charge, hydrophobicity, and structure within each peptide. We conclude that the combination of charge, hydrophobicity, and length of the peptide is important. A close interaction of amino acids in a single molecule in a carefully balanced ensemble of sequence position and secondary structure is crucial. PMID:20873868

  12. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Bai, Liqiang; Zhu, Liangjun; Min, Sijia; Liu, Lin; Cai, Yurong; Yao, Juming

    2008-03-01

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B ( CB) antimicrobial peptide, (NH 2)-NGIVKAGPAIAVLGEAAL-CONH 2, using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC·HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI).

  13. High CO2 concentration as an inductor agent to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.

    PubMed

    Ruiz, Cristina; Pla, Maria; Company, Nuri; Riudavets, Jordi; Nadal, Anna

    2016-03-01

    Cationic α-helical antimicrobial peptides such as BP100 are of increasing interest for developing novel phytosanitary or therapeutic agents and products with industrial applications. Biotechnological production of these peptides in plants can be severely impaired due to the toxicity exerted on the host by high-level expression. This can be overcome by using inducible promoters with extremely low activity throughout plant development, although the yields are limited. We examined the use of modified atmospheres using the increased levels of [CO2], commonly used in the food industry, as the inductor agent to biotechnologically produce phytotoxic compounds with higher yields. Here we show that 30% [CO2] triggered a profound transcriptional response in rice leaves, including a change in the energy provision from photosynthesis to glycolysis, and the activation of stress defense mechanisms. Five genes with central roles in up-regulated pathways were initially selected and their promoters successfully used to drive the expression of phytotoxic BP100 in genetically modified (GM) rice. GM plants had a normal phenotype on development and seed production in non-induction conditions. Treatment with 30 % [CO2] led to recombinant peptide accumulation of up to 1 % total soluble protein when the Os.hb2 promoter was used. This is within the range of biotechnological production of other peptides in plants. Using BP100 as a proof-of-concept we demonstrate that very high [CO2] can be considered an economically viable strategy to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories. PMID:26687131

  14. Detection and classification of related lipopolysaccharides via a small array of immobilized antimicrobial peptides.

    PubMed

    Uzarski, Joshua R; Mello, Charlene M

    2012-09-01

    A small array of antimicrobial peptides comprising three cysteine-terminated natural sequences covalently immobilized to pendant surface maleimide groups are used to bind and successfully discriminate five types of lipopolysaccharide (LPS) molecules. Using surface plasmon resonance, LPSs isolated from four strains of Escherichia coli and one strain of Pseudomonas aeruginosa yield distinct binding profiles to the three immobilized peptides. Linear discriminant analysis generated 100% training set and 80% validation set classification success for the 40 samples evaluated. This work demonstrates the discriminatory binding capabilities of immobilized antimicrobial peptides toward LPS molecules and alludes to their use as probes in pathogen sensing devices potentially superior to the current state-of-the-art. PMID:22881053

  15. How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23.

    PubMed

    Roversi, Daniela; Luca, Vincenzo; Aureli, Simone; Park, Yoonkyung; Mangoni, Maria Luisa; Stella, Lorenzo

    2014-09-19

    Antimicrobial peptides (AMPs) kill bacteria mainly through the perturbation of their membranes and are promising compounds to fight drug resistance. Models of the mechanism of AMPs-induced membrane perturbation were developed based on experiments in liposomes, but their relevance for bacterial killing is debated. We determined the association of an analogue of the AMP PMAP-23 to Escherichia coli cells, under the same experimental conditions used to measure bactericidal activity. Killing took place only when bound peptides completely saturated bacterial membranes (10(6)-10(7) bound peptides per cell), indicating that the "carpet" model for the perturbation of artificial bilayers is representative of what happens in real bacteria. This finding supports the view that, at least for this peptide, a microbicidal mechanism is possible in vivo only at micromolar total peptide concentrations. We also showed that, notwithstanding their simplicity, liposomes represent a reliable model to characterize AMPs partition in bacterial membranes. PMID:25058470

  16. Identification, expression and antibacterial activities of an antimicrobial peptide NK-lysin from a marine fish Larimichthys crocea.

    PubMed

    Zhou, Qi-Jia; Wang, Jun; Liu, Min; Qiao, Ying; Hong, Wan-Shu; Su, Yong-Quan; Han, Kun-Huang; Ke, Qiao-Zhen; Zheng, Wei-Qiang

    2016-08-01

    As fundamental immunologic mechanism, the innate immunity system is more important than the specific immunity system in teleost fishes during pathogens infection. Antimicrobial peptides are integral parts of the innate immune system, and play significant roles against pathogens infection. NK-lysin, the compounds of the natural killer cells and cytotoxic T cells, are potent and effective antimicrobial peptides widely distributed in animals. In this study, we reported the sequence characteristics, expression profiles and antibacterial activities of a NK-lysin gene (Lc-NK-lysin) from a commercially important marine fish, the large yellow croaker (Larimichthys crocea). The open reading frame of Lc-NK-lysin cDNA sequence was 447 bp in length, coding 148 amino acids. The genomic DNA of Lc-NK-lysin has the common features of NK-lysin family, consisting of five exons and four introns, and in its deduced mature peptide, there are six well-conserved cysteine residues and a Saposin B domain. Lc-NK-lysin was expressed in all tested tissues (skin, muscle, gill, brain, head kidney, heart, liver, spleen, stomach and intestine) with different expression patterns. In pathogens infection the expression profiles of Lc-NK-lysin varied significantly in gill, head kidney, spleen and liver, indicating its role in immune response. Two peptides (Lc-NK-lysin-1 and Lc-NK-lysin-2) divided from the core region of the Lc-NK-lysin mature polypeptide were chemically synthesized and their antibacterial activities were examined; the potential function on the inhibition of bacteria propagation was revealed. Our results suggested that Lc-NK-lysin is a typical member of the NK-lysin family and as an immune-related gene it involves in the immune response when pathogens invasion. PMID:27238427

  17. Narrow grass hedges reduce tylosin and associated antimicrobial resistance genes in agricultural runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural runoff from areas receiving livestock manure can potentially contaminate surface water with antimicrobials and antimicrobial resistance genes (ARGs). The objective of this study was to investigate the effectiveness of narrow grass hedges (NGHs) on reducing the transport of antimicrobial...

  18. Novel antimicrobial peptides that inhibit gram positive bacterial exotoxin synthesis.

    PubMed

    Merriman, Joseph A; Nemeth, Kimberly A; Schlievert, Patrick M

    2014-01-01

    Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges. PMID:24748386

  19. Cationic Antimicrobial Peptides Promote Microbial Mutagenesis and Pathoadaptation in Chronic Infections

    PubMed Central

    Limoli, Dominique H.; Rockel, Andrea B.; Host, Kurtis M.; Jha, Anuvrat; Kopp, Benjamin T.; Hollis, Thomas; Wozniak, Daniel J.

    2014-01-01

    Acquisition of adaptive mutations is essential for microbial persistence during chronic infections. This is particularly evident during chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients. Thus far, mutagenesis has been attributed to the generation of reactive species by polymorphonucleocytes (PMN) and antibiotic treatment. However, our current studies of mutagenesis leading to P. aeruginosa mucoid conversion have revealed a potential new mutagen. Our findings confirmed the current view that reactive oxygen species can promote mucoidy in vitro, but revealed PMNs are proficient at inducing mucoid conversion in the absence of an oxidative burst. This led to the discovery that cationic antimicrobial peptides can be mutagenic and promote mucoidy. Of specific interest was the human cathelicidin LL-37, canonically known to disrupt bacterial membranes leading to cell death. An alternative role was revealed at sub-inhibitory concentrations, where LL-37 was found to induce mutations within the mucA gene encoding a negative regulator of mucoidy and to promote rifampin resistance in both P. aeruginosa and Escherichia coli. The mechanism of mutagenesis was found to be dependent upon sub-inhibitory concentrations of LL-37 entering the bacterial cytosol and binding to DNA. LL-37/DNA interactions then promote translesion DNA synthesis by the polymerase DinB, whose error-prone replication potentiates the mutations. A model of LL-37 bound to DNA was generated, which reveals amino termini α-helices of dimerized LL-37 bind the major groove of DNA, with numerous DNA contacts made by LL-37 basic residues. This demonstrates a mutagenic role for antimicrobials previously thought to be insusceptible to resistance by mutation, highlighting a need to further investigate their role in evolution and pathoadaptation in chronic infections. PMID:24763694

  20. Development of an anti-microbial peptide-mediated liposomal delivery system: a novel approach towards pH-responsive anti-microbial peptides.

    PubMed

    Zhang, Qianyu; Tang, Jie; Ran, Rui; Liu, Yayuan; Zhang, Zhirong; Gao, Huile; He, Qin

    2016-05-01

    On one hand, the application of anti-microbial peptides (AMPs) in the construction of AMPs-mediated drug delivery system has not yet been fully exploited; on the other hand, its non-selectivity in vivo has also limited its clinical application. In this work, we chose one pH-responsive peptide, [D]-H6L9, and functionalized it onto the surface of liposomes (D-Lip). The protonation of histidines in the sequence of [D]-H6L9 under pH 6.3 could switch the surface charge of D-Lip from negative (under pH 7.4) to positive (under pH 6.3), and the cellular uptake and tumor spheroids uptake were increased accordingly. Lysosome co-localization assay suggested that there was only little overlap of D-Lip with lysosomes in 12 h, which indicated that D-Lip could escape lysosomes effectively. In vivo biodistribution assay on C26 tumor-bearing BALB/C mice showed that DiR-labeled D-Lip could reach tumors as much as PEG-Lip, and both tumor slices and quantitative measurement of dispersed cells of in vivo tumors by flow cytometry demonstrated that D-Lip could be taken up by tumors more efficiently. Therefore, we have established an anti-microbial peptide-mediated liposomal delivery system for tumor delivery. PMID:25693639

  1. Database screening and in vivo efficacy of antimicrobial peptides against meticillin-resistant Staphylococcus aureus USA300

    PubMed Central

    Menousek, Joseph; Mishra, Biswajit; Hanke, Mark L.; Heim, Cortney E.; Kielian, Tammy; Wang, Guangshun

    2012-01-01

    Natural antimicrobial peptides (AMPs) are promising candidates for developing a generation of new antimicrobials to meet the challenge of antibiotic-resistant pathogens such as meticillin-resistant Staphylococcus aureus (MRSA). To facilitate the search for new candidates, we have utilised the Antimicrobial Peptide Database (APD), which contains natural AMPs from bacteria, fungi, plants and animals. This study demonstrates the identification of novel templates against MRSA by screening 30 peptides selected from the APD. These peptides are short (<25 residues), cysteine-free, cationic and represent candidates from different biological sources such as bacteria, insects, arachnids, tunicates, amphibians, fish and mammals. Six peptides, including ascaphin-8, database-screened antimicrobial peptide 1 (DASamP1), DASamP2, lycotoxin I, maculatin 1.3 and piscidin 1, were found to exert potent antimicrobial activity against an MRSA USA300 isolate. Although five of the six peptides showed broad-spectrum antibacterial activity, DASamP1 displayed killing of MRSA in vitro but not of Escherichia coli, Bacillus subtilis or Pseudomonas aeruginosa. In addition, DASamP1 suppressed early biofilm formation in a mouse model of catheter-associated MRSA infection. DASamP1 is a novel, short and potent peptide that will be a useful starting template for further developing novel anti-MRSA peptides. PMID:22445495

  2. Subacute toxicity of antimicrobial peptide S-thanatin in ICR mice.

    PubMed

    Wu, Guoqiu; Deng, Xuepeng; Wu, Pengpeng; Shen, Zilong; Xu, Hanmei

    2012-07-01

    Antibiotics are commonly used for infectious diseases and saved a lot of lives since its discovery, but the emergence of drug-resistant microorganism has brought a tremendous challenge to clinical therapy at present. Antimicrobial peptides, which are of broad antimicrobial spectrum and rare resistance development in pathogens, are expected to replace conventional antibiotics. S-thanatin, a novel antimicrobial peptide with 21 amino acid residues, was proved of significant benefit on therapy of pathogens infection. To evaluate the security of S-thanatin, its subacute toxicity was examined in ICR mice by continually intravenous injection with 125, 50, 20 mg/kg (1/4, 1/10, 1/25 LD(50)) or saline with equal volume for two weeks. Results demonstrated that neither significant difference of serum chemistry and hematology, nor pathological changes were changed in major organs caused by S-thanatin between groups. In conclusion, S-thanatin appears to be a safe antimicrobial peptide for further preclinical trials. PMID:22537943

  3. Membrane aggregation and perturbation induced by antimicrobial peptide of S-thanatin

    SciTech Connect

    Wu, Guoqiu; Wu, Hongbin; Li, Linxian; Fan, Xiaobo; Ding, Jiaxuan; Li, Xiaofang; Xi, Tao; Shen, Zilong

    2010-04-23

    Thanatin, a 21-residue peptide, is an inducible insect peptide. In our previous study, we have identified a novel thanatin analog of S-thanatin, which exhibited a broad antimicrobial activity against bacteria and fungi with low hemolytic activity. This study was aimed to delineate the antimicrobial mechanism of S-thanatin and identify its interaction with bacterial membranes. In this study, membrane phospholipid was found to be the target for S-thanatin. In the presence of vesicles, S-thanatin interestingly led to the aggregation of anionic vesicles and sonicated bacteria. Adding S-thanatin to Escherichia coli suspension would result in the collapse of membrane and kill bacteria. The sensitivity assay of protoplast elucidated the importance of outer membrane (OM) for S-thanatin's antimicrobial activity. Compared with other antimicrobial peptide, S-thanatin produced chaotic membrane morphology and cell debris in electron microscopic appearance. These results supported our hypothesis that S-thanatin bound to negatively charged LPS and anionic lipid, impeded membrane respiration, exhausted the intracellular potential, and released periplasmic material, which led to cell death.

  4. Interactions between chensinin-1, a natural antimicrobial peptide derived from Rana chensinensis, and lipopolysaccharide.

    PubMed

    Dong, Weibing; Sun, Yue; Shang, Dejing

    2015-12-01

    Lipopolysaccharide (LPS) plays a critical role in the pathogenesis of sepsis caused by gram-negative bacterial infections. Therefore, LPS-neutralizing molecules would have important clinical applications. Chensinin-1, a novel antimicrobial peptide with atypical structural features, was found in the skin secretions of the Chinese brown frog Rana chensinensis. To understand the role of LPS in the bacterial susceptibility to chensinin-1 and to investigate its anti-endotoxin effects, the interactions of chensinin-1 with LPS were investigated in this study using circular dichroism, in situ IR, isothermal titration calorimetry, and zeta potential. This study is the first to use in situ IR spectroscopy to evaluate the secondary structural changes of this peptide. The capacity of chensinin-1 to block the LPS-dependent cytokine secretion of macrophages was also investigated. Our results show that chensinin-1 can form α-helical structures in LPS suspensions. LPS can affect the antimicrobial activity of chensinin-1, and chensinin-1 was able to mitigate the effects of LPS. These data may facilitate the development of antimicrobial peptides with potent antimicrobial and anti-endotoxin activities. PMID:26340228

  5. Lycotoxins, antimicrobial peptides from venom of the wolf spider Lycosa carolinensis.

    PubMed

    Yan, L; Adams, M E

    1998-01-23

    Two peptide toxins with antimicrobial activity, lycotoxins I and II, were identified from venom of the wolf spider Lycosa carolinensis (Araneae: Lycosidae) by virtue of their abilities to reduce ion and voltage gradients across membranes. Both peptides were purified to homogeneity by reversed-phase liquid chromatography and determined to have the following primary structures by Edman microsequencing: IWLTALKFLGKHAAKHLAKQQLSKL-NH2 for lycotoxin I and KIKWFKTMKSIAKFIAKEQMKKHLGGE-OH for lycotoxin II. The predicted secondary structures of the lycotoxins display amphipathic alpha-helix character typical of antimicrobial pore-forming peptides. Antimicrobial assays showed that both lycotoxins potently inhibit the growth of bacteria (Escherichia coli) and yeast (Candida glabrata) at micromolar concentrations. To verify its hypothesized pore-forming activity, lycotoxin I was synthesized and shown to promote efflux of Ca2+ from synaptosomes, to cause hemolysis of erythrocytes, and to dissipate voltage gradients across muscle membrane. The lycotoxins may play a dual role in spider-prey interaction, functioning both in the prey capture strategy as well as to protect the spider from potentially infectious organisms arising from prey ingestion. Spider venoms may represent a potentially new source of novel antimicrobial agents with important medical implications. PMID:9442044

  6. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria.

    PubMed

    Wu, Tingquan; Tang, Dingzhong; Chen, Weida; Huang, Hexun; Wang, Rui; Chen, Yongfang

    2013-09-15

    Thanatin(S) is an analog of thanatin, an insect antimicrobial peptide possessing strong and broad spectrum of antimicrobial activity. In order to investigate if the thanatin could be used in engineering transgenic plants for increased resistance against phytopathogens, the synthetic thanatin(S) was introduced into Arabidopsis thaliana plants. To increase the expression level of thanatin(S) in plants, the coding sequence was optimized by plant-preference codon. To avoid cellular protease degradation, signal peptide of rice Cht1 was fused to N terminal of thanatin(S) for secreting the expressed thanatin(S) into intercellular spaces. To evaluate the application value of thanatin(S) in plant disease control, the synthesized coding sequence of Cht1 signal peptide (Cht1SP)-thanatin(S) was ligated to plant gateway destination binary vectors pGWB11 (with FLAG tag). Meanwhile, in order to observe the subcellular localization of Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP, the sequences of Cht1SP-thanatin(S) and thanatin(S) were respectively linked to pGWB5 (with GFP tag). The constructs were transformed into Arabidopsis ecotype Col-0 and mutant pad4-1 via Agrobacterium-mediated transformation. The transformants with Cht1SP-thanatin(S)-FLAG fusion gene were analyzed by genomic PCR, real-time PCR, and western blots and the transgenic Arabidopsis plants introduced respectively Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP were observed by confocal microscopy. Transgenic plants expressing Cht1SP-thanatin(S)-FLAG fusion protein showed antifungal activity against Botrytis cinerea and powdery mildew, as well as antibacterial activity against Pseudomonas syringae pv. tomato. And the results from confocal observation showed that the GFP signal from Cht1SP-thanatin(S)-GFP transgenic Arabidopsis plants occurred mainly in intercellular space, while that from thanatin(S)-GFP transgenic plants was mainly detected in the cytoplasm and that from empty vector transgenic plants was distributed

  7. Extensive Manipulation of Caseicins A and B Highlights the Tolerance of These Antimicrobial Peptides to Change

    PubMed Central

    Norberg, Sarah; O'Connor, Paula M.; Stanton, Catherine; Ross, R. Paul; Hill, Colin; Cotter, Paul D.

    2012-01-01

    Caseicins A and B are low-molecular-weight antimicrobial peptides which are released by proteolytic digestion of sodium caseinate. Caseicin A (IKHQGLPQE) is a nine-amino-acid cationic peptide, and caseicin B (VLNENLLR) is a neutral eight-amino-acid peptide; both have previously been shown to exhibit antibacterial activity against a number of pathogens, including Cronobacter sakazakii. Previously, four variants of each caseicin which differed subtly from their natural counterparts were generated by peptide synthesis. Antimicrobial activity assays revealed that the importance of a number of the residues within the peptides was dependent on the strain being targeted. In this study, this engineering-based approach was expanded through the creation of a larger collection of 26 peptides which are altered in a variety of ways. The investigation highlights the generally greater tolerance of caseicin B to change, the fact that changes have a more detrimental impact on anti-Gram-negative activity, and the surprising number of variants which exhibit enhanced activity against Staphylococcus aureus. PMID:22247170

  8. Chimeric peptides as implant functionalization agents for titanium alloy implants with antimicrobial properties

    PubMed Central

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.

    2015-01-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMP’s), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host- and bacterial- cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with antimicrobial peptides can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, S. mutans, S. epidermidis, and E. coli. In biological interactions such as occurs on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore open up

  9. Antimicrobial activities of chicken β-defensin (4 and 10) peptides against pathogenic bacteria and fungi

    PubMed Central

    Yacoub, Haitham A.; Elazzazy, Ahmed M.; Abuzinadah, Osama A. H.; Al-Hejin, Ahmed M.; Mahmoud, Maged M.; Harakeh, Steve M.

    2015-01-01

    Host Defense Peptides (HDPs) are small cationic peptides found in several organisms. They play a vital role in innate immunity response and immunomodulatory stimulation. This investigation was designed to study the antimicrobial activities of β-defensin peptide-4 (sAvBD-4) and 10 (sAvBD-4) derived from chickens against pathogenic organisms including bacteria and fungi. Ten bacterial strains and three fungal species were used in investigation. The results showed that the sAvBD-10 displayed a higher bactericidal potency against all the tested bacterial strains than that of sAvBD-4. The exhibited bactericidal activity was significant against almost the different bacterial strains at different peptide concentrations except for that of Pseudomonas aeruginosa (P. aeruginosa) and Streptococcus bovis (Str. bovis) strains where a moderate effect was noted. Both peptides were effective in the inactivation of fungal species tested yielding a killing rate of up to 95%. The results revealed that the synthetic peptides were resistant to salt at a concentration of 50 mM NaCl. However, they lost antimicrobial potency when applied in the presence of high salt concentrations. Based on blood hemolysis studies, a little hemolytic effect was showed in the case of both peptides even when applied at high concentrations. The data obtained from this study indicated that synthetic avian peptides exhibit strong antibacterial and antifungal activity. In conclusion, future work and research should be tailored to a better understanding of the mechanisms of action of those peptides and their potential use in the pharmaceutical industry to help reduce the incidence and impact of infectious agent and be marketed as a naturally occurring antibiotic. PMID:25941665

  10. Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes.

    PubMed

    Gehman, John D; Luc, Fiona; Hall, Kristopher; Lee, Tzong-Hsien; Boland, Martin P; Pukala, Tara L; Bowie, John H; Aguilar, Marie-Isabel; Separovic, Frances

    2008-08-19

    Skin secretions of numerous Australian tree frogs contain antimicrobial peptides that form part of the host defense mechanism against bacterial infection. The mode of action of these antibiotics is thought to be lysis of infectious organisms via cell membrane disruption, on the basis of vesicle-encapsulated dye leakage data [Ambroggio et al. (2005) Biophys. J. 89, 1874-1881]. A detailed understanding of the interaction of these peptides with bacterial membranes at a molecular level, however, is critical to their development as novel antibacterial therapeutics. We focus on four of these peptides, aurein 1.2, citropin 1.1, maculatin 1.1, and caerin 1.1, which exist as random coil in aqueous solution but have alpha-helical secondary structure in membrane mimetic environments. In our earlier solid-state NMR studies, only neutral bilayers of the zwitterionic phospholipid dimyristoylphosphatidylcholine (DMPC) were used. Deuterated DMPC ( d 54-DMPC) was used to probe the effect of the peptides on the order of the lipid acyl chains and dynamics of the phospholipid headgroups by deuterium and (31)P NMR, respectively. In this report we demonstrate several important differences when anionic phospholipid is included in model membranes. Peptide-membrane interactions were characterized using surface plasmon resonance (SPR) spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy. Changes in phospholipid motions and membrane binding information provided additional insight into the action of these antimicrobial peptides. While this set of peptides has significant C- and N-terminal sequence homology, they vary in their mode of membrane interaction. The longer peptides caerin and maculatin exhibited properties that were consistent with transmembrane insertion while citropin and aurein demonstrated membrane disruptive mechanisms. Moreover, aurein was unique with greater perturbation of neutral versus anionic membranes. The results are consistent with a surface

  11. Antimicrobial activities of chicken β-defensin (4 and 10) peptides against pathogenic bacteria and fungi.

    PubMed

    Yacoub, Haitham A; Elazzazy, Ahmed M; Abuzinadah, Osama A H; Al-Hejin, Ahmed M; Mahmoud, Maged M; Harakeh, Steve M

    2015-01-01

    Host Defense Peptides (HDPs) are small cationic peptides found in several organisms. They play a vital role in innate immunity response and immunomodulatory stimulation. This investigation was designed to study the antimicrobial activities of β-defensin peptide-4 (sAvBD-4) and 10 (sAvBD-4) derived from chickens against pathogenic organisms including bacteria and fungi. Ten bacterial strains and three fungal species were used in investigation. The results showed that the sAvBD-10 displayed a higher bactericidal potency against all the tested bacterial strains than that of sAvBD-4. The exhibited bactericidal activity was significant against almost the different bacterial strains at different peptide concentrations except for that of Pseudomonas aeruginosa (P. aeruginosa) and Streptococcus bovis (Str. bovis) strains where a moderate effect was noted. Both peptides were effective in the inactivation of fungal species tested yielding a killing rate of up to 95%. The results revealed that the synthetic peptides were resistant to salt at a concentration of 50 mM NaCl. However, they lost antimicrobial potency when applied in the presence of high salt concentrations. Based on blood hemolysis studies, a little hemolytic effect was showed in the case of both peptides even when applied at high concentrations. The data obtained from this study indicated that synthetic avian peptides exhibit strong antibacterial and antifungal activity. In conclusion, future work and research should be tailored to a better understanding of the mechanisms of action of those peptides and their potential use in the pharmaceutical industry to help reduce the incidence and impact of infectious agent and be marketed as a naturally occurring antibiotic. PMID:25941665

  12. Vitamin D, the Cutaneous Barrier, Antimicrobial Peptides and Allergies: Is There a Link?

    PubMed Central

    Roider, Elisabeth; Ruzicka, Thomas

    2013-01-01

    Atopic diseases such as atopic dermatitis (AD) are very common in industrialized countries. Up to 15%-30% of all children and 2%-10% of all adults suffer from AD. Already in early disease stages, a defective epidermal barrier is known to contribute to the pathogenesis of AD. Central elements in the epidermal barrier are antimicrobial peptides (AMPs), which are secreted by keratinocytes, sweat gland cells but also infiltrating immune cells. AMPs function as endogenous antibiotics and are able to kill bacteria, viruses, and fungi. Furthermore AMPs act as immune modulators with effects on the innate and adaptive immune system. The probably best studied AMPs in human skin are the defensins and cathelicidin. In atopic diseases the functions of AMPs such as cathelicidin might be impaired and microbial superinfections could serve as cofactors for allergic sensitization. Hence, induction of AMPs could be beneficial in these patients. Cathelicidin which is often referred to its peptide form hCAP18 or LL-37 can be induced by ultraviolet light B (UVB) irradiation and is upregulated in infected and injured skin. The cathelicidin gene carries a vitamin D response element and the vitamin D pathway could therefore be targeted for cathelicidin regulation. As the development and course of atopic diseases might be influenced by vitamin D signaling these pathomechanisms could explain the growing evidence connecting vitamin D to allergic diseases, including AD, allergic rhinitis, food allergies and asthma. In this review the role of vitamin D and the AMP cathelicidin in the pathogenesis of atopic diseases with impaired barrier function will be discussed. PMID:23638309

  13. Proteolytic activity of Escherichia coli oligopeptidase B against proline-rich antimicrobial peptides.

    PubMed

    Mattiuzzo, Maura; De Gobba, Cristian; Runti, Giulia; Mardirossian, Mario; Bandiera, Antonella; Gennaro, Renato; Scocchi, Marco

    2014-02-28

    Oligopeptidase B (OpdB) is a serine peptidase widespread among bacteria and protozoa that has emerged as a virulence factor despite its function has not yet been precisely established. By using an OpdB-overexpressing Escherichia coli strain, we found that the overexpressed peptidase makes the bacterial cells specifically less susceptible to several proline-rich antimicrobial peptides known to penetrate into the bacterial cytosol, and that its level of activity directly correlates with the degree of resistance. We established that E. coli OpdB can efficiently hydrolyze in vitro cationic antimicrobial peptides up to 30 residues in length, even though they contained several prolines, shortening them to inactive fragments. Two consecutive basic residues are a preferred cleavage site for the peptidase. In the case of a single basic residue, there is no cleavage if proline residues are present in the P1 and P2 positions. These results also indicate that cytosolic peptidases may cause resistance to antimicrobial peptides that have an intracellular mechanism of action, such as the proline-rich peptides, and may contribute to define the substrate specificity of the E. coli OpdB. PMID:24225368

  14. Sap Transporter Mediated Import and Subsequent Degradation of Antimicrobial Peptides in Haemophilus

    PubMed Central

    Shelton, Catherine L.; Raffel, Forrest K.; Beatty, Wandy L.; Johnson, Sara M.; Mason, Kevin M.

    2011-01-01

    Antimicrobial peptides (AMPs) contribute to host innate immune defense and are a critical component to control bacterial infection. Nontypeable Haemophilus influenzae (NTHI) is a commensal inhabitant of the human nasopharyngeal mucosa, yet is commonly associated with opportunistic infections of the upper and lower respiratory tracts. An important aspect of NTHI virulence is the ability to avert bactericidal effects of host-derived antimicrobial peptides (AMPs). The Sap (sensitivity to antimicrobial peptides) ABC transporter equips NTHI to resist AMPs, although the mechanism of this resistance has remained undefined. We previously determined that the periplasmic binding protein SapA bound AMPs and was required for NTHI virulence in vivo. We now demonstrate, by antibody-mediated neutralization of AMP in vivo, that SapA functions to directly counter AMP lethality during NTHI infection. We hypothesized that SapA would deliver AMPs to the Sap inner membrane complex for transport into the bacterial cytoplasm. We observed that AMPs localize to the bacterial cytoplasm of the parental NTHI strain and were susceptible to cytoplasmic peptidase activity. In striking contrast, AMPs accumulated in the periplasm of bacteria lacking a functional Sap permease complex. These data support a mechanism of Sap mediated import of AMPs, a novel strategy to reduce periplasmic and inner membrane accumulation of these host defense peptides. PMID:22072973

  15. Transcriptome analysis of Streptococcus pneumoniae treated with the designed antimicrobial peptides, DM3.

    PubMed

    Le, Cheng-Foh; Gudimella, Ranganath; Razali, Rozaimi; Manikam, Rishya; Sekaran, Shamala Devi

    2016-01-01

    In our previous studies, we generated a short 13 amino acid antimicrobial peptide (AMP), DM3, showing potent antipneumococcal activity in vitro and in vivo. Here we analyse the underlying mechanisms of action using Next-Generation transcriptome sequencing of penicillin (PEN)-resistant and PEN-susceptible pneumococci treated with DM3, PEN, and combination of DM3 and PEN (DM3PEN). DM3 induced differential expression in cell wall and cell membrane structural and transmembrane processes. Notably, DM3 altered the expression of competence-induction pathways by upregulating CelA, CelB, and CglA while downregulating Ccs16, ComF, and Ccs4 proteins. Capsular polysaccharide subunits were downregulated in DM3-treated cells, however, it was upregulated in PEN- and DM3PEN-treated groups. Additionally, DM3 altered the amino acids biosynthesis pathways, particularly targeting ribosomal rRNA subunits. Downregulation of cationic AMPs resistance pathway suggests that DM3 treatment could autoenhance pneumococci susceptibility to DM3. Gene enrichment analysis showed that unlike PEN and DM3PEN, DM3 treatment exerted no effect on DNA-binding RNA polymerase activity but observed downregulation of RpoD and RNA polymerase sigma factor. In contrast to DM3, DM3PEN altered the regulation of multiple purine/pyrimidine biosynthesis and metabolic pathways. Future studies based on in vitro experiments are proposed to investigate the key pathways leading to pneumococcal cell death caused by DM3. PMID:27225022

  16. Transcriptome analysis of Streptococcus pneumoniae treated with the designed antimicrobial peptides, DM3

    PubMed Central

    Le, Cheng-Foh; Gudimella, Ranganath; Razali, Rozaimi; Manikam, Rishya; Sekaran, Shamala Devi

    2016-01-01

    In our previous studies, we generated a short 13 amino acid antimicrobial peptide (AMP), DM3, showing potent antipneumococcal activity in vitro and in vivo. Here we analyse the underlying mechanisms of action using Next-Generation transcriptome sequencing of penicillin (PEN)-resistant and PEN-susceptible pneumococci treated with DM3, PEN, and combination of DM3 and PEN (DM3PEN). DM3 induced differential expression in cell wall and cell membrane structural and transmembrane processes. Notably, DM3 altered the expression of competence-induction pathways by upregulating CelA, CelB, and CglA while downregulating Ccs16, ComF, and Ccs4 proteins. Capsular polysaccharide subunits were downregulated in DM3-treated cells, however, it was upregulated in PEN- and DM3PEN-treated groups. Additionally, DM3 altered the amino acids biosynthesis pathways, particularly targeting ribosomal rRNA subunits. Downregulation of cationic AMPs resistance pathway suggests that DM3 treatment could autoenhance pneumococci susceptibility to DM3. Gene enrichment analysis showed that unlike PEN and DM3PEN, DM3 treatment exerted no effect on DNA-binding RNA polymerase activity but observed downregulation of RpoD and RNA polymerase sigma factor. In contrast to DM3, DM3PEN altered the regulation of multiple purine/pyrimidine biosynthesis and metabolic pathways. Future studies based on in vitro experiments are proposed to investigate the key pathways leading to pneumococcal cell death caused by DM3. PMID:27225022

  17. Innate immunity and the role of the antimicrobial peptide cathelicidin in inflammatory skin disease

    PubMed Central

    Roby, Keith D; Nardo, Anna Di

    2013-01-01

    Cathelicidin antimicrobial peptide is an important mediator of the innate immune response. In addition to its potent antimicrobial activity, cathelicidin has been shown to have chemoattractant and angiogenic properties. Recent research has demonstrated that, in addition to its aforementioned functions, cathelicidin plays an important role in the complex pathogenesis of several chronic inflammatory skin diseases. This review will present a concise overview of the role of cathelicidin in infection and in the development of atopic dermatitis, psoriasis, and rosacea. This understanding will direct future research efforts to identify therapeutic approaches that use cathelicidin as a novel drug itself, or aim to modify its expression and regulation. PMID:24489580

  18. Perspectives on polymeric nanostructures for the therapeutic application of antimicrobial peptides.

    PubMed

    Sandreschi, Stefania; Piras, Anna Maria; Batoni, Giovanna; Chiellini, Federica

    2016-07-01

    Antimicrobial peptides (AMPs) are a class of promising anti-infective molecules but their therapeutic application is opposed by their poor bioavailability, susceptibility to protease degradation and potential toxicity. The advancement of nanoformulation technologies offers encouraging perspectives for the development of novel therapeutic strategies based on AMPs to treat antibiotic resistant microbial infections. Additionally, the use of polymers endowed per-se with antibacterial properties, stands out as an innovative approach for the development of a new generation of drug delivery systems in which an enhanced antimicrobial action could be obtained by the synergic combination of bioactive polymer matrices and drugs. Herein, the latest AMPs drug delivery research is discussed. PMID:27348155

  19. Biochemical and biophysical combined study of bicarinalin, an ant venom antimicrobial peptide.

    PubMed

    Téné, Nathan; Bonnafé, Elsa; Berger, Fanny; Rifflet, Aline; Guilhaudis, Laure; Ségalas-Milazzo, Isabelle; Pipy, Bernard; Coste, Agnès; Leprince, Jérôme; Treilhou, Michel

    2016-05-01

    We have recently characterized bicarinalin as the most abundant peptide from the venom of the ant Tetramorium bicarinatum. This antimicrobial peptide is active against Staphylococcus and Enterobacteriaceae. To further investigate the antimicrobial properties of this cationic and cysteine-free peptide, we have studied its antibacterial, antifungal and antiparasitic activities on a large array of microorganisms. Bicarinalin was active against fifteen microorganisms with minimal inhibitory concentrations ranging from 2 and 25μmolL(-1). Cronobacter sakazakii, Salmonella enterica, Candida albicans, Aspergilus niger and Saccharomyces cerevisiae were particularly susceptible to this novel antimicrobial peptide. Resistant strains of Staphylococcus aureus, Pseudomonas aeruginosa and C. albicans were as susceptible as the canonical strains. Interestingly, bicarinalin was also active against the parasite Leishmania infantum with a minimal inhibitory concentrations of 2μmolL(-1). The bicarinalin pre-propeptide cDNA sequence has been determined using a combination of degenerated primers with RACE PCR strategy. Interestingly, the N-terminal domain of bicarinalin pre-propeptide exhibited sequence similarity with the pilosulin antimicrobial peptide family previously described in the Myrmecia venoms. Moreover, using SYTOX green uptake assay, we showed that, for all the tested microorganisms, bicarinalin acted through a membrane permeabilization mechanism. Two dimensional-NMR experiments showed that bicarinalin displayed a 10 residue-long α-helical structure flanked by two N- and C-terminal disordered regions. This partially amphipathic helix may explain the membrane permeabilization mechanism of bicarinalin observed in this study. Finally, therapeutic value of bicarinalin was highlighted by its low cytotoxicity against human lymphocytes at bactericidal concentrations and its long half-life in human serum which was around 15h. PMID:27058430

  20. Antimicrobial peptide, hdMolluscidin, purified from the gill of the abalone, Haliotis discus.

    PubMed

    Seo, Jung-Kil; Go, Hye-Jin; Kim, Chan-Hee; Nam, Bo-Hye; Park, Nam Gyu

    2016-05-01

    A 4.7 kDa antimicrobial peptide was purified from the acidified gill extract of the Abalone, Haliotis discus, by cation-exchange and C18 reversed-phase high performance liquid chromatography (HPLC). Comparison of the amino acid sequences and molecular weight of this peptide with those of other known antimicrobial peptides revealed that this antimicrobial peptide have high sequence homology with that of cgMolluscidin and was designated hdMolluscidin. hdMolluscidin is composed of 46 amino acid residues containing several dibasic residue repeats like KK or K-R. hdMolluscidin showed potent antimicrobial activity against both Gram-positive bacteria including Bacillus subtilis and Staphylococcus aureus (minimal effective concentrations [MECs]; 0.8-19.0 μg/mL) and Gram-negative bacteria including Aeromonas hydrophila, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Shigella flexneri, and Vibrio parahemolyticus ([MECs]; 1.0-4.0 μg/mL) without hemolytic activity. However, hdMolluscidin did not show any significant activity against Candida albicans. The secondary structural prediction suggested that hdMolluscidin might not form an ordered or an amphipathic structure. hdMolluscidin did not show membrane permeabilization or leakage ability. The full-length hdMolluscidin cDNA contained 566-bp, including a 5'-untranslated region (UTR) of 63-bp, a 3'-UTR of 359-bp, and an open reading frame of 144-bp encoding 47 amino acids (containing Met). cDNA study of hdMolluscidin suggests that it is expressed as a mature peptide. Our results indicate that hdMolluscidin could relate to the innate immune defenses in abalone and it may not act directly on bacterial membrane. PMID:27033467

  1. Fate and transport of antimicrobials and antimicrobial resistance genes in soil and runoff following land application of swine slurry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the use of antimicrobials in livestock production, residual antimicrobials and antimicrobial resistance genes (ARGs) could enter the environment following the land application of animal wastes and could further contaminate surface and groundwater. The objective of this study was to determine ...

  2. sigma(B) and sigma(L) contribute to Listeria monocytogenes 10403S response to the antimicrobial peptides SdpC and nisin.

    PubMed

    Palmer, M Elizabeth; Wiedmann, Martin; Boor, Kathryn J

    2009-11-01

    The ability of the foodborne pathogen Listeria monocytogenes to survive antimicrobial treatments is a public health concern; therefore, this study was designed to investigate genetic mechanisms contributing to antimicrobial response in L. monocytogenes. In previous studies, the putative bacteriocin immunity gene lmo2570 was predicted to be regulated by the stress responsive alternative sigma factor, sigma(B). As the alternative sigma factor sigma(L) controls expression of genes important for resistance to some antimicrobial peptides, we hypothesized roles for lmo2570, sigma(B), and sigma(L) in L. monocytogenes antimicrobial response. Results from phenotypic characterization of a L. monocytogenes lmo2570 null mutant suggested that this gene does not contribute to resistance to nisin or to SdpC, an antimicrobial peptide produced by some strains of Bacillus subtilis. While lmo2570 transcript levels were confirmed to be sigma(B) dependent, they were sigma(L) independent and were not affected by the presence of nisin under the conditions used in this study. In spot-on-lawn assays with the SdpC-producing B. subtilis EG351, the L. monocytogenes DeltasigB, DeltasigL, and DeltasigB/DeltasigL strains all showed increased sensitivity to SdpC, indicating that both sigma(B) and sigma(L) regulate genes contributing to SdpC resistance. Nisin survival assays showed that sigma(B) and sigma(L) both affect L. monocytogenes sensitivity to nisin in broth survival assays; that is, a sigB null mutant is more resistant than the parent strain to nisin, while a sigB null mutation in DeltasigL background leads to reduced nisin resistance. In summary, while the sigma(B)-dependent lmo2570 does not contribute to resistance of L. monocytogenes to nisin or SdpC, both sigma(B) and sigma(L) contribute to the L. monocytogenes antimicrobial response. PMID:19642919

  3. Inhibition of Growth and Gene Expression by PNA-peptide Conjugates in Streptococcus pyogenes

    PubMed Central

    Patenge, Nadja; Pappesch, Roberto; Krawack, Franziska; Walda, Claudia; Mraheil, Mobarak Abu; Jacob, Anette; Hain, Torsten; Kreikemeyer, Bernd

    2013-01-01

    While Streptococcus pyogenes is consistently susceptible toward penicillin, therapeutic failure of penicillin treatment has been reported repeatedly and a considerable number of patients exhibit allergic reactions to this substance. At the same time, streptococcal resistance to alternative antibiotics, e.g., macrolides, has increased. Taken together, these facts demand the development of novel therapeutic strategies. In this study, S. pyogenes growth was inhibited by application of peptide-conjugated antisense-peptide nucleic acids (PNAs) specific for the essential gyrase A gene (gyrA). Thereby, HIV-1 Tat peptide-coupled PNAs were more efficient inhibitors of streptococcal growth as compared with (KFF)3K-coupled PNAs. Peptide-anti-gyrA PNAs decreased the abundance of gyrA transcripts in S. pyogenes. Growth inhibition by antisense interference was enhanced by combination of peptide-coupled PNAs with protein-level inhibitors. Antimicrobial synergy could be detected with levofloxacin and novobiocin, targeting the gyrase enzyme, and with spectinomycin, impeding ribosomal function. The prospective application of carrier peptide-coupled antisense PNAs in S. pyogenes covers the use as an antimicrobial agent and the employment as a knock-down strategy for the investigation of virulence factor function. PMID:24193033

  4. Novel mode of action of plant defense peptides: hevein-like antimicrobial peptides from wheat inhibit fungal metalloproteases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The multilayered plant immune system relies on rapid recognition of pathogen-associated molecular patterns followed by activation of defense-related genes that results in the reinforcement of plant cell walls and production of antimicrobial compounds. To suppress plant defense, fungi secrete effecto...

  5. Novel mode of action in plant defense peptides: hevein-like antimicrobial peptides from wheat inhibit fungal metalloproteases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The multilayered plant immune system relies on rapid recognition of pathogen-associated molecular patterns followed by activation of defense-related genes that results in the reinforcement of plant cell walls and production of antimicrobial compounds. To suppress plant defense, fungi secrete effecto...

  6. Enzymatic fractionation of the antimicrobial peptides casocidin and isracidin by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cumulative effect of peptidase and protease activities associated with cells of Streptococcus thermophilus (ST) and Lactobacillus delbrueckii subsp. bulgaricus (LB) was evaluated on the milk-protein based antimicrobial peptides casocidin and isracidin. Reaction mixtures of casocidin or isracidin...

  7. Prophenoloxidase genes and antimicrobial host defense of the model beetle, Tribolium castaneum.

    PubMed

    Yokoi, Kakeru; Hayakawa, Yuuki; Kato, Daiki; Minakuchi, Chieka; Tanaka, Toshiharu; Ochiai, Masanori; Kamiya, Katsumi; Miura, Ken

    2015-11-01

    In this study, we characterized prophenoloxidase (proPO, (PPO)) genes of Tribolium castaneum and examined their involvement in antimicrobial host defense. Amino acid sequence comparison with well-characterized PPO proteins from other insect species suggested that T. castaneum PPO genes encoded functional proenzymes, with crucial sequence motifs being conserved. Developmental kinetics of the mRNA of two PPO genes, PPO1 and PPO2 in the pupal stage were different to each other. The PPO1 mRNA levels consistently decreased during pupal development while that of PPO2 peaked at mid-pupal stage. The two mRNAs also exhibited distinct responses upon immune challenges with heat-killed model microbes. The PPO1 mRNA stayed nearly unchanged by 6h post challenge, and was somewhat elevated at 24h. In contrast, the PPO2 mRNA significantly decreased at 3, 6 and 24h post challenge. These trends exhibited by respective PPO genes were consistent irrespective of the microbial species used as elicitors. Finally, we investigated the involvement of T. castaneum PPO genes in antimicrobial host defense by utilizing RNA interference-mediated gene silencing. Survival assays demonstrated that double knockdown of PPO genes, which was accompanied by weakened hemolymph PO activities, significantly impaired the host defense against Bacillus subtilis. By contrast, the knockdown did not influence the induction of any of the T. castaneum antimicrobial peptide genes that were studied here, except for one belonging to the gene group that shows very weak or negligible microbial induction. PPO knockdown as well weakened host defense against Beauveria bassiana moderately but significantly depending on the combination of infection methods and targeted genes. Our results indicated that the PPO genes represented constituents of both antibacterial and antifungal host defense of T. castaneum. PMID:26519623

  8. Coqui frogs persist with the deadly chytrid fungus despite a lack of defensive antimicrobial peptides.

    PubMed

    Rollins-Smith, Louise A; Reinert, Laura K; Burrowes, Patricia A

    2015-02-10

    The amphibian skin fungus Batrachochytrium dendrobatidis (Bd) occurs widely in Puerto Rico and is thought to be responsible for the apparent extinction of 3 species of endemic frogs in the genus Eleutherodactylus, known as coquis. To examine immune defenses which may protect surviving species, we induced secretion of skin peptides from adult common coqui frogs E. coqui collected from upland forests at El Yunque. By matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, we were unable to detect peptide signals suggestive of antimicrobial peptides, and enriched peptides showed no capacity to inhibit growth of Bd. Thus, it appears that E. coqui depend on other skin defenses to survive in the presence of this deadly fungus. PMID:25667340

  9. A cactus-derived toxin-like cystine knot Peptide with selective antimicrobial activity.

    PubMed

    Aboye, Teshome L; Strömstedt, Adam A; Gunasekera, Sunithi; Bruhn, Jan G; El-Seedi, Hesham; Rosengren, K Johan; Göransson, Ulf

    2015-05-01

    Naturally occurring cystine knot peptides show a wide range of biological activity, and as they have inherent stability they represent potential scaffolds for peptide-based drug design and biomolecular engineering. Here we report the discovery, sequencing, chemical synthesis, three-dimensional solution structure determination and bioactivity of the first cystine knot peptide from Cactaceae (cactus) family: Ep-AMP1 from Echinopsis pachanoi. The structure of Ep-AMP1 (35 amino acids) conforms to that of the inhibitor cystine knot (or knottin) family but represents a novel diverse sequence; its activity was more than 500 times higher against bacterial than against eukaryotic cells. Rapid bactericidal action and liposome leakage implicate membrane permeabilisation as the mechanism of action. Sequence homology places Ec-AMP1 in the plant C6-type of antimicrobial peptides, but the three dimensional structure is highly similar to that of a spider neurotoxin. PMID:25821084

  10. Inducible ASABF-Type Antimicrobial Peptide from the Sponge Suberites domuncula: Microbicidal and Hemolytic Activity in Vitro and Toxic Effect on Molluscs in Vivo†

    PubMed Central

    Wiens, Matthias; Schröder, Heinz C.; Korzhev, Michael; Wang, Xiao-Hong; Batel, Renato; Müller, Werner E. G.

    2011-01-01

    Since sponges, as typical filter-feeders, are exposed to a high load of attacking prokaryotic and eukaryotic organisms, they are armed with a wide arsenal of antimicrobial/cytostatic low-molecular-weight, non-proteinaceous bioactive compounds. Here we present the first sponge agent belonging to the group of ASABF-type antimicrobial peptides. The ASABF gene was identified and cloned from the demosponge Suberites domuncula. The mature peptide, with a length of 64 aa residues has a predicted pI of 9.24, and comprises the characteristic CSα β structural motif. Consequently, the S. domuncula ASABF shares high similarity with the nematode ASABFs; it is distantly related to the defensins. The recombinant peptide was found to display besides microbicidal activity, anti-fungal activity. In addition, the peptide lyses human erythrocytes. The expression of ASABF is upregulated after exposure to the apoptosis-inducing agent 2,2′-dipyridyl. During the process of apoptosis of surface tissue of S. domuncula, grazing gastropods (Bittium sp.) are attracted by quinolinic acid which is synthesized through the kynurenine pathway by the enzyme 3-hydroxyanthranilate 3,4-dioxygenase (HAD). Finally, the gastropods are repelled from the sponge tissue by the ASABF. It is shown that the effector peptide ASABF is sequentially expressed after the induction of the HAD gene and a caspase, as a central enzyme executing apoptosis. PMID:22073005

  11. Inducible ASABF-type antimicrobial peptide from the sponge Suberites domuncula: microbicidal and hemolytic activity in vitro and toxic effect on molluscs in vivo.

    PubMed

    Wiens, Matthias; Schröder, Heinz C; Korzhev, Michael; Wang, Xiao-Hong; Batel, Renato; Müller, Werner E G

    2011-01-01

    Since sponges, as typical filter-feeders, are exposed to a high load of attacking prokaryotic and eukaryotic organisms, they are armed with a wide arsenal of antimicrobial/cytostatic low-molecular-weight, non-proteinaceous bioactive compounds. Here we present the first sponge agent belonging to the group of ASABF-type antimicrobial peptides. The ASABF gene was identified and cloned from the demosponge Suberites domuncula. The mature peptide, with a length of 64 aa residues has a predicted pI of 9.24, and comprises the characteristic CSα β structural motif. Consequently, the S. domuncula ASABF shares high similarity with the nematode ASABFs; it is distantly related to the defensins. The recombinant peptide was found to display besides microbicidal activity, anti-fungal activity. In addition, the peptide lyses human erythrocytes. The expression of ASABF is upregulated after exposure to the apoptosis-inducing agent 2,2'-dipyridyl. During the process of apoptosis of surface tissue of S. domuncula, grazing gastropods (Bittium sp.) are attracted by quinolinic acid which is synthesized through the kynurenine pathway by the enzyme 3-hydroxyanthranilate 3,4-dioxygenase (HAD). Finally, the gastropods are repelled from the sponge tissue by the ASABF. It is shown that the effector peptide ASABF is sequentially expressed after the induction of the HAD gene and a caspase, as a central enzyme executing apoptosis. PMID:22073005

  12. Osmoprotection of bacterial cells from toxicity caused by antimicrobial hybrid peptide CM15.

    PubMed

    Sato, Hiromi; Feix, Jimmy B

    2006-08-22

    Antimicrobial peptides exist ubiquitously as a host defense system in a broad range of species, including insects, amphibians, and mammals. The binding of these peptides is followed by the disruption of cytoplasmic membranes, leading to bacterial cell death; however, the precise mechanism of membrane destruction has remained controversial. In this study, we have examined the mechanism of action for the antimicrobial peptide, CM15 (KWKLFKKIGAVLKVL), a chimeric peptide of cecropin and mellitin. We find that the cytotoxicity of CM15 against either E. coli or Pseudomonas aeruginosa can be mitigated by the addition of sugar or poly(ethylene glycol) osmolytes to the extracellular media. The dependence of osmoprotection on solute size suggests the formation of pores with an effective diameter of 2.2-3.8 nm. In contrast, no osmoprotection was observed for cell killing by the cationic detergent dodecyltrimethylammonium bromide. Osmolytes also protected cells against the cytotoxicity of CM15 expressed intracellularly as a C-terminal extension of the carrier protein ketosteroid isomerase (KSI). Osmoprotection against the intracellularly produced peptide was also dependent on osmolyte size, in a manner that was in agreement with that observed for extracellularly added synthetic CM15. These data indicate that the formation of discrete pores in the cytoplasmic membrane is a key factor in the mechanism of bacterial killing by CM15. PMID:16906758

  13. Combined Bioinformatic and Rational Design Approach To Develop Antimicrobial Peptides against Mycobacterium tuberculosis.

    PubMed

    Pearson, C Seth; Kloos, Zachary; Murray, Brian; Tabe, Ebot; Gupta, Monica; Kwak, Jun Ha; Karande, Pankaj; McDonough, Kathleen A; Belfort, Georges

    2016-05-01

    Drug-resistant pathogens are a growing problem, and novel strategies are needed to combat this threat. Among the most significant of these resistant pathogens is Mycobacterium tuberculosis, which is an unusually difficult microbial target due to its complex membrane. Here, we design peptides for specific activity against M. tuberculosis using a combination of "database filtering" bioinformatics, protein engineering, and de novo design. Several variants of these peptides are structurally characterized to validate the design process. The designed peptides exhibit potent activity (MIC values as low as 4 μM) against M. tuberculosis and also exhibit broad activity against a host of other clinically relevant pathogenic bacteria such as Gram-positive bacteria (Streptococcus) and Gram-negative bacteria (Escherichia coli). They also display excellent selectivity, with low cytotoxicity against cultured macrophages and lung epithelial cells. These first-generation antimicrobial peptides serve as a platform for the design of antibiotics and for investigating structure-activity relationships in the context of the M. tuberculosis membrane. The antimicrobial peptide design strategy is expected to be generalizable for any pathogen for which an activity database can be created. PMID:26902758

  14. Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli.

    PubMed

    Bommarius, B; Jenssen, H; Elliott, M; Kindrachuk, J; Pasupuleti, Mukesh; Gieren, H; Jaeger, K-E; Hancock, R E W; Kalman, D

    2010-11-01

    Cationic antimicrobial host defense peptides (HDPs) combat infection by directly killing a wide variety of microbes, and/or modulating host immunity. HDPs have great therapeutic potential against antibiotic-resistant bacteria, viruses and even parasites, but there are substantial roadblocks to their therapeutic application. High manufacturing costs associated with amino acid precursors have limited the delivery of inexpensive therapeutics through industrial-scale chemical synthesis. Conversely, the production of peptides in bacteria by recombinant DNA technology has been impeded by the antimicrobial activity of these peptides and their susceptibility to proteolytic degradation, while subsequent purification of recombinant peptides often requires multiple steps and has not been cost-effective. Here we have developed methodologies appropriate for large-scale industrial production of HDPs; in particular, we describe (i) a method, using fusions to SUMO, for producing high yields of intact recombinant HDPs in bacteria without significant toxicity and (ii) a simplified 2-step purification method appropriate for industrial use. We have used this method to produce seven HDPs to date (IDR1, MX226, LL37, CRAMP, HHC-10, E5 and E6). Using this technology, pilot-scale fermentation (10L) was performed to produce large quantities of biologically active cationic peptides. Together, these data indicate that this new method represents a cost-effective means to enable commercial enterprises to produce HDPs in large-scale under Good Laboratory Manufacturing Practice (GMP) conditions for therapeutic application in humans. PMID:20713107

  15. APD3: the antimicrobial peptide database as a tool for research and education

    PubMed Central

    Wang, Guangshun; Li, Xia; Wang, Zhe

    2016-01-01

    The antimicrobial peptide database (APD, http://aps.unmc.edu/AP/) is an original database initially online in 2003. The APD2 (2009 version) has been regularly updated and further expanded into the APD3. This database currently focuses on natural antimicrobial peptides (AMPs) with defined sequence and activity. It includes a total of 2619 AMPs with 261 bacteriocins from bacteria, 4 AMPs from archaea, 7 from protists, 13 from fungi, 321 from plants and 1972 animal host defense peptides. The APD3 contains 2169 antibacterial, 172 antiviral, 105 anti-HIV, 959 antifungal, 80 antiparasitic and 185 anticancer peptides. Newly annotated are AMPs with antibiofilm, antimalarial, anti-protist, insecticidal, spermicidal, chemotactic, wound healing, antioxidant and protease inhibiting properties. We also describe other searchable annotations, including target pathogens, molecule-binding partners, post-translational modifications and animal models. Amino acid profiles or signatures of natural AMPs are important for peptide classification, prediction and design. Finally, we summarize various database applications in research and education. PMID:26602694

  16. Medicinal Chemistry of ATP Synthase: A Potential Drug Target of Dietary Polyphenols and Amphibian Antimicrobial Peptides

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.

    2015-01-01

    In this review we discuss the inhibitory effects of dietary polyphenols and amphibian antimicrobial/antitumor peptides on ATP synthase. In the beginning general structural features highlighting catalytic and motor functions of ATP synthase will be described. Some details on the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it an interesting drug target with respect to dietary polyphenols and amphibian antimicrobial peptides will also be reviewed. ATP synthase is known to have distinct polyphenol and peptide binding sites at the interface of α/β subunits. Molecular interaction of polyphenols and peptides with ATP synthase at their respective binding sites will be discussed. Binding and inhibition of other proteins or enzymes will also be covered so as to understand the therapeutic roles of both types of molecules. Lastly, the effects of polyphenols and peptides on the inhibition of Escherichia coli cell growth through their action on ATP synthase will also be presented. PMID:20586714

  17. Intrathecal application of the antimicrobial peptide CRAMP reduced mortality and neuroinflammation in an experimental model of pneumococcal meningitis.

    PubMed

    Dörr, Arndt; Kress, Eugenia; Podschun, Rainer; Pufe, Thomas; Tauber, Simone C; Brandenburg, Lars-Ove

    2015-08-01

    Antimicrobial peptides (AP) are important components of the innate immune system. Our previous work revealed a higher mortality rate and up-regulation of proinflammatory gene expression as well as glial cell activation in cathelicidin-related antimicrobial peptide (CRAMP)-deficient mice after bacterial meningitis. However, the influence of CRAMP application on the progression of inflammation and its impact on mortality after bacterial meningitis remains unknown. To assess the effects of continuous CRAMP exposure in the brain, C57BL/6 wildtype mice were given intracerebroventricular infusion of CRAMP to investigate the effects on mortality, glial cell activation and inflammation in a mouse model of pneumococcal meningitis using immunohistochemistry and realtime RT-PCR. Our results revealed a decrease of mortality after CRAMP infusion. The intrathecal CRAMP infusion after pneumococcal meningitis resulted in a decreased mRNA expression of pro-inflammatory cytokines, whereas the immune responses including the expression of pattern recognition receptors and chemokines were increased in bacterial meningitis. Taken together, the results support the important role of CRAMP as part of the innate immune response against pathogens in bacterial CNS infections. The APs may be a promising approach for the development of an adjuvant therapy for bacterial meningitis. PMID:25896094

  18. Effect of synthetic antimicrobial peptides on Naegleria fowleri trophozoites.

    PubMed

    Tiewcharoen, Supathra; Phurttikul, Watchara; Rabablert, Jundee; Auewarakul, Prasert; Roytrakul, Sittiruk; Chetanachan, Pruksawan; Atithep, Thassanant; Junnu, Virach

    2014-05-01

    We evaluated the effect of tritrpticin, lactoferrin, killer decapeptide and scrambled peptide in vitro against Naegleria fowleri trophozoites compared with amphotericin B. Tritrpticin (100 microg/ml) caused apoptosis of N. fowleri trophozoites (2x10(5) cells/ml), while lactoferrin, killer decapeptide and scrambled peptide did not. On Gormori trichrome staining, tritrpticin affected the elasticity of the surface membrane and reduced the size of the nuclei of N. fowleri trophozoites. The ultrastructure surface membrane and food cup formation of the trophozoites were 100% inhibited. These results are consistent with inhibition of the nfa1, Mp2CL5 of the treated trophozoite, which plays a role in food cup formation. Tritrpticin 100 microg/ml was not toxic against SK-N-MC cells. Our findings suggest tritrpticin has activity against the surface membrane and nfa1 and Mp2CL5 of N. fowleri trophozoites and could be developed as a potential therapeutic agent. PMID:24974637

  19. The immunology of host defence peptides: beyond antimicrobial activity.

    PubMed

    Hancock, Robert E W; Haney, Evan F; Gill, Erin E

    2016-05-01

    Host defence peptides (HDPs) are short, cationic amphipathic peptides with diverse sequences that are produced by various cells and tissues in all complex life forms. HDPs have important roles in the body's response to infection and inflammation. This Review focuses on human HDPs and explores the diverse immunomodulatory effects of HDPs from a systems biology perspective, which highlights the interconnected nature of the effect (or effects) of HDPs on the host. Studies have demonstrated that HDPs are expressed throughout the body and mediate a broad range of activities, which explains their association with various inflammatory diseases and autoimmune disorders. The diverse actions of HDPs, such as their roles in wound healing and in the maintenance of the microbiota, are also explored, in addition to potential therapeutic applications. PMID:27087664

  20. Expression and one-step purification of the antimicrobial peptide cathelicidin-BF using the intein system in Bacillus subtilis.

    PubMed

    He, Qing; Fu, Ai-yun; Li, Tian-jiao

    2015-04-01

    The intein expression system has been widely applied in Escherichia coli to express various proteins and peptides. However, the removal of endotoxin from the recombinant proteins expressed in E. coli is very difficult and therefore complicates the purification process. In this study, we constructed an intein-based expression vector for an antimicrobial peptide (cathelicidin from Bungarus fasciatus) and expressed the intein fusion peptide in a Bacillus subtilis expression system. The fusion peptide was secreted into the culture medium, identified by Western blot and purified by affinity chromatography and intein self-cleavage in just one step. Approximately, 0.5 mg peptide was obtained from 1 litre of culture medium. The purified peptide showed antimicrobial activity. Our results indicate that the intein expression system may be a safe and efficient method to produce soluble peptides and proteins in B. subtilis. PMID:25578306

  1. The role of biophysical parameters in the antilipopolysaccharide activities of antimicrobial peptides from marine fish.

    PubMed

    Gopal, Ramamourthy; Seo, Chang Ho; Park, Yoonkyung

    2014-03-01

    Numerous antimicrobial peptides (AMPs) from marine fish have been identified, isolated and characterized. These peptides act as host defense molecules that exert antimicrobial effects by targeting the lipopolysaccharide (LPS) of Gram-negative bacteria. The LPS-AMP interactions are driven by the biophysical properties of AMPs. In this review, therefore, we will focus on the physiochemical properties of AMPs; that is, the contributions made by their sequences, net charge, hydrophobicity and amphipathicity to their mechanism of action. Moreover, the interactions between LPS and fish AMPs and the structure of fish AMPs with LPS bound will also be discussed. A better understanding of the biophysical properties will be useful in the design of AMPs effective against septic shock and multidrug-resistant bacterial strains, including those that commonly produce wound infections. PMID:24633250

  2. The Role of Biophysical Parameters in the Antilipopolysaccharide Activities of Antimicrobial Peptides from Marine Fish

    PubMed Central

    Gopal, Ramamourthy; Seo, Chang Ho; Park, Yoonkyung

    2014-01-01

    Numerous antimicrobial peptides (AMPs) from marine fish have been identified, isolated and characterized. These peptides act as host defense molecules that exert antimicrobial effects by targeting the lipopolysaccharide (LPS) of Gram-negative bacteria. The LPS-AMP interactions are driven by the biophysical properties of AMPs. In this review, therefore, we will focus on the physiochemical properties of AMPs; that is, the contributions made by their sequences, net charge, hydrophobicity and amphipathicity to their mechanism of action. Moreover, the interactions between LPS and fish AMPs and the structure of fish AMPs with LPS bound will also be discussed. A better understanding of the biophysical properties will be useful in the design of AMPs effective against septic shock and multidrug-resistant bacterial strains, including those that commonly produce wound infections. PMID:24633250

  3. Reducing Escherichia coli growth on a composite biomaterial by a surface immobilized antimicrobial peptide.

    PubMed

    Buckholtz, Gavin A; Reger, Nina A; Anderton, William D; Schimoler, Patrick J; Roudebush, Shana L; Meng, Wilson S; Miller, Mark C; Gawalt, Ellen S

    2016-08-01

    A new composite bioceramic consisting of calcium aluminum oxide (CaAlO) and hydroxyapatite (HA) was functionalized with the synthetic antimicrobial peptide Inverso-CysHHC10. CaAlO is a bioceramic that can be mold cast easily and quickly at room temperature. Improved functionality was previously achieved through surface reactions. Here, composites containing 0-5% HA (by mass) were prepared and the elastic modulus and modulus of rupture were mechanically similar to non-load bearing bone. The addition of hydroxyapatite resulted in increased osteoblast attachment (>180%) and proliferation (>140%) on all composites compared to 100% CaAlO. Antimicrobial peptide (AMP) immobilization was achieved using an interfacial alkene-thiol click reaction. The linked AMP persisted on the composite (>99.6% after 24h) and retained its activity against Escherichia coli based on N-phenylnaphthylamine uptake and bacterial turbidity tests. Overall, this simple scaffold system improves osteoblast activity and reduces bacterial activity. PMID:27157735

  4. Using adjuvants and environmental factors to modulate the activity of antimicrobial peptides.

    PubMed

    Walkenhorst, William F

    2016-05-01

    The increase in antibiotic resistant and multi-drug resistant bacterial infections has serious implications for the future of health care. The difficulty in finding both new microbial targets and new drugs against existing targets adds to the concern. The use of combination and adjuvant therapies are potential strategies to counter this threat. Antimicrobial peptides (AMPs) are a promising class of antibiotics (ABs), particularly for topical and surface applications. Efforts have been directed toward a number of strategies, including the use of conventional ABs combined with AMPs, and the use of potentiating agents to increase the performance of AMPs. This review focuses on combination strategies such as adjuvants and the manipulation of environmental variables to improve the efficacy of AMPs as potential therapeutic agents. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26751595

  5. Antimicrobial peptide protonectin disturbs the membrane integrity and induces ROS production in yeast cells.

    PubMed

    Wang, Kairong; Dang, Wen; Xie, Junqiu; Zhu, Ranran; Sun, Mengyang; Jia, Fengjing; Zhao, Yanyan; An, Xiaoping; Qiu, Shuai; Li, Xiaoyuan; Ma, Zelin; Yan, Wenjin; Wang, Rui

    2015-10-01

    Candidiasis is often observed in immunocompromised patients and is the 4th most common cause of bloodstream infections. However, antifungals are limited, so novel antifungal agents are urgently needed. Antimicrobial peptides (AMPs) are considered as potential alternatives of conventional antibiotics. In the present study, antimicrobial peptide protonectin was chemically synthesized and its antifungal activity and mode of action were studied. Our results showed that protonectin has potent antifungal activity and fungicidal activity against the tested fungi cells. Its action mode involved the disruption of the membrane integrity and the inducing of the production of cellular ROS. Furthermore, protonectin could inhibit the formation of biofilm and kill the adherent fungi cells. In conclusion, with the increase of fungal infection, protonectin may offer a new strategy and be considered as a potential therapeutic agent against fungal disease. PMID:26209560

  6. Antifungal effect and action mechanism of antimicrobial peptide polybia-CP.

    PubMed

    Wang, Kairong; Jia, Fengjing; Dang, Wen; Zhao, Yanyan; Zhu, Ranran; Sun, Mengyang; Qiu, Shuai; An, Xiaoping; Ma, Zelin; Zhu, Yuanyuan; Yan, Jiexi; Kong, Ziqing; Yan, Wenjin; Wang, Rui

    2016-01-01

    The incidence of life-threatening invasive fungal infections increased significantly in recent years. However, the antifungal therapeutic options are very limited. Antimicrobial peptides are a class of potential lead chemical for the development of novel antifungal agents. Antimicrobial peptide polybia-CP was purified from the venom of the social wasp Polybia paulista. In this study, we synthesized polybia-CP and determined its antifungal effects against a series of Candidian species. Our results showed that polybia-CP has potent antifungal activity and fungicidal activity against the tested fungal cells with a proposed membrane-active action mode. In addition, polybia-CP could induce the increase of cellular reactive oxygen species production, which would attribute to its antifungal activity. In conclusion, the present study suggests that polybia-CP has potential as an antifungal agent or may offer a new strategy for antifungal therapeutic option. PMID:26680221

  7. Interaction between a Cationic Surfactant-like Peptide and Lipid Vesicles and Its Relationship to Antimicrobial Activity

    PubMed Central

    2013-01-01

    We investigate the properties of an antimicrobial surfactant-like peptide (Ala)6(Arg), A6R, containing a cationic headgroup. The interaction of this peptide with zwitterionic (DPPC) lipid vesicles is investigated using a range of microscopic, X-ray scattering, spectroscopic, and calorimetric methods. The β-sheet structure adopted by A6R is disrupted in the presence of DPPC. A strong effect on the small-angle X-ray scattering profile is observed: the Bragg peaks from the DPPC bilayers in the vesicle walls are eliminated in the presence of A6R and only bilayer form factor peaks are observed. All of these observations point to the interaction of A6R with DPPC bilayers. These studies provide insight into interactions between a model cationic peptide and vesicles, relevant to understanding the action of antimicrobial peptides on lipid membranes. Notably, peptide A6R exhibits antimicrobial activity without membrane lysis. PMID:24156610

  8. A prawn core histone 4: derivation of N- and C-terminal peptides and their antimicrobial properties, molecular characterization and mRNA transcription.

    PubMed

    Chaurasia, Mukesh Kumar; Palanisamy, Rajesh; Bhatt, Prasanth; Kumaresan, Venkatesh; Gnanam, Annie J; Pasupuleti, Mukesh; Kasi, Marimuthu; Harikrishnan, Ramaswamy; Arockiaraj, Jesu

    2015-01-01

    This study investigates the complete molecular characterization including bioinformatics characterization, gene expression, synthesis of N and C terminal peptides and their antimicrobial activity of the core histone 4 (H4) from freshwater giant prawn Macrobrachium rosenbergii (Mr). A cDNA encoding MrH4 was identified from the constructed cDNA library of M. rosenbergii during screening and the sequence was obtained using internal sequencing primers. The MrH4 coding region possesses a polypeptide of 103 amino acids with a calculated molecular weight of 11kDa and an isoelectric point of 11.5. The bioinformatics analysis showed that the MrH4 polypeptide contains a H4 signature at (15)GAKRH(19). Multiple sequence alignment of MrH4 showed that the N-terminal (21-42) and C-terminal (87-101) antimicrobial peptide regions and the pentapeptide or H4 signature (15-19) are highly conserved including in humans. The phylogenetic tree formed two separate clades of vertebrate and invertebrate H4, wherein MrH4 was located within the arthropod monophyletic clade of invertebrate H4 groups. Three-dimensional model of MrH4 was established using I-TASSER program and the model was validated using Ramachandran plot analysis. Schiffer-Edmundson helical wheel modeling was used to predict the helix propensity of N (21-42) and C (87-101) terminal derived Mr peptides. The highest gene expression was observed in gills and is induced by viral [white spot syndrome baculovirus (WSBV) and M. rosenbergii nodovirus (MrNV)] and bacterial (Aeromonas hydrophila and Vibrio harveyi) infections. The N and C terminal peptides were synthesized and their antimicrobial and hemolytic properties were examined. Both peptides showed activity against the tested Gram negative and Gram positive bacteria; however, the highest activity was noticed against Gram negative bacteria. Among the two peptides used in this study, C-terminal peptide yielded better results than the N-terminal peptide. Therefore, C terminal

  9. Antimicrobial peptides and pro-inflammatory cytokines are differentially regulated across epidermal layers following bacterial stimuli.

    PubMed

    Percoco, Giuseppe; Merle, Chloé; Jaouen, Thomas; Ramdani, Yasmina; Bénard, Magalie; Hillion, Mélanie; Mijouin, Lily; Lati, Elian; Feuilloley, Marc; Lefeuvre, Luc; Driouich, Azeddine; Follet-Gueye, Marie-Laure

    2013-12-01

    The skin is a natural barrier between the body and the environment and is colonised by a large number of microorganisms. Here, we report a complete analysis of the response of human skin explants to microbial stimuli. Using this ex vivo model, we analysed at both the gene and protein level the response of epidermal cells to Staphylococcus epidermidis (S. epidermidis) and Pseudomonas fluorescens (P. fluorescens), which are present in the cutaneous microbiota. We showed that both bacterial species affect the structure of skin explants without penetrating the living epidermis. We showed by real-time quantitative polymerase chain reaction (qPCR) that S. epidermidis and P. fluorescens increased the levels of transcripts that encode antimicrobial peptides (AMPs), including human β defensin (hBD)2 and hBD3, and the pro-inflammatory cytokines interleukin (IL)-1α and (IL)-1-β, as well as IL-6. In addition, we analysed the effects of bacterial stimuli on the expression profiles of genes related to innate immunity and the inflammatory response across the epidermal layers, using laser capture microdissection (LCM) coupled to qPCR. We showed that AMP transcripts were principally upregulated in suprabasal keratinocytes. Conversely, the expression of pro-inflammatory cytokines was upregulated in the lower epidermis. These findings were confirmed by protein localisation using specific antibodies coupled to optical or electron microscopy. This work underscores the potential value of further studies that use LCM on human skin explants model to study the roles and effects of the epidermal microbiota on human skin physiology. PMID:24118337

  10. Increased survival of experimentally evolved antimicrobial peptide-resistant Staphylococcus aureus in an animal host

    PubMed Central

    Dobson, Adam J; Purves, Joanne; Rolff, Jens

    2014-01-01

    Antimicrobial peptides (AMPs) have been proposed as new class of antimicrobial drugs, following the increasing prevalence of bacteria resistant to antibiotics. Synthetic AMPs are functional analogues of highly evolutionarily conserved immune effectors in animals and plants, produced in response to microbial infection. Therefore, the proposed therapeutic use of AMPs bears the risk of ‘arming the enemy’: bacteria that evolve resistance to AMPs may be cross-resistant to immune effectors (AMPs) in their hosts. We used a panel of populations of Staphylococcus aureus that were experimentally selected for resistance to a suite of individual AMPs and antibiotics to investigate the ‘arming the enemy’ hypothesis. We tested whether the selected strains showed higher survival in an insect model (Tenebrio molitor) and cross-resistance against other antimicrobials in vitro. A population selected for resistance to the antimicrobial peptide iseganan showed increased in vivo survival, but was not more virulent. We suggest that increased survival of AMP-resistant bacteria almost certainly poses problems to immune-compromised hosts. PMID:25469169

  11. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry.

    PubMed

    Wang, Shuai; Zeng, Xiangfang; Yang, Qing; Qiao, Shiyan

    2016-01-01

    Over the last decade, the rapid emergence of multidrug-resistant pathogens has become a global concern, which has prompted the search for alternative antibacterial agents for use in food animals. Antimicrobial peptides (AMPs), produced by bacteria, insects, amphibians and mammals, as well as by chemical synthesis, are possible candidates for the design of new antimicrobial agents because of their natural antimicrobial properties and a low propensity for development of resistance by microorganisms. This manuscript reviews the current knowledge of the basic biology of AMPs and their applications in non-ruminant nutrition. Antimicrobial peptides not only have broad-spectrum activity against bacteria, fungi, and viruses but also have the ability to bypass the common resistance mechanisms that are placing standard antibiotics in jeopardy. In addition, AMPs have beneficial effects on growth performance, nutrient digestibility, intestinal morphology and gut microbiota in pigs and broilers. Therefore, AMPs have good potential as suitable alternatives to conventional antibiotics used in swine and poultry industries. PMID:27153059

  12. New antimicrobial peptides against foodborne pathogens: From in silico design to experimental evidence.

    PubMed

    Palmieri, Gianna; Balestrieri, Marco; Proroga, Yolande T R; Falcigno, Lucia; Facchiano, Angelo; Riccio, Alessia; Capuano, Federico; Marrone, Raffaele; Neglia, Gianluca; Anastasio, Aniello

    2016-11-15

    Recently there has been growing interest in the discovery of new antimicrobial agents to increase safety and shelf-life of food products. Here, we developed an innovative approach by introducing the concept that mitochondrial targeting peptides (MTP) can interact and disrupt bacterial membranes, acting as antimicrobial agents. As proof-of-principle, we used a multidisciplinary strategy by combining in silico predictions, docking simulations and antimicrobial assays, to identify two peptides, MTP1 and MTP2, which were structurally and functionally characterized. Both compounds appeared effective against Listeria monocytogenes, one of the most important foodborne pathogens. Specifically, a significant bactericidal activity was evidenced with EC50 values of 16.8±1.2μM for MTP1 and 109±7.0μM for MTP2. Finally, NMR structure determinations suggested that MTP1 would be oriented into the membrane bilayer, while the molecular shape of MTP2 could indicate porin-mediated antimicrobial mechanisms, as predicted using molecular docking analysis. Therefore, MTPs represent alternative sources to design new potential bio-preservatives. PMID:27283665

  13. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes.

    PubMed

    Schmitt, Paulina; Rosa, Rafael D; Destoumieux-Garzón, Delphine

    2016-05-01

    Antimicrobial peptides and proteins (AMPs) are widespread in the living kingdom. They are key effectors of defense reactions and mediators of competitions between organisms. They are often cationic and amphiphilic, which favors their interactions with the anionic membranes of microorganisms. Several AMP families do not directly alter membrane integrity but rather target conserved components of the bacterial membranes in a process that provides them with potent and specific antimicrobial activities. Thus, lipopolysaccharides (LPS), lipoteichoic acids (LTA) and the peptidoglycan precursor Lipid II are targeted by a broad series of AMPs. Studying the functional diversity of immune effectors tells us about the essential residues involved in AMP mechanism of action. Marine invertebrates have been found to produce a remarkable diversity of AMPs. Molluscan defensins and crustacean anti-LPS factors (ALF) are diverse in terms of amino acid sequence and show contrasted phenotypes in terms of antimicrobial activity. Their activity is directed essentially against Gram-positive or Gram-negative bacteria due to their specific interactions with Lipid II or Lipid A, respectively. Through those interesting examples, we discuss here how sequence diversity generated throughout evolution informs us on residues required for essential molecular interaction at the bacterial membranes and subsequent antibacterial activity. Through the analysis of molecular variants having lost antibacterial activity or shaped novel functions, we also discuss the molecular bases of functional divergence in AMPs. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26498397

  14. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry

    PubMed Central

    Wang, Shuai; Zeng, Xiangfang; Yang, Qing; Qiao, Shiyan

    2016-01-01

    Over the last decade, the rapid emergence of multidrug-resistant pathogens has become a global concern, which has prompted the search for alternative antibacterial agents for use in food animals. Antimicrobial peptides (AMPs), produced by bacteria, insects, amphibians and mammals, as well as by chemical synthesis, are possible candidates for the design of new antimicrobial agents because of their natural antimicrobial properties and a low propensity for development of resistance by microorganisms. This manuscript reviews the current knowledge of the basic biology of AMPs and their applications in non-ruminant nutrition. Antimicrobial peptides not only have broad-spectrum activity against bacteria, fungi, and viruses but also have the ability to bypass the common resistance mechanisms that are placing standard antibiotics in jeopardy. In addition, AMPs have beneficial effects on growth performance, nutrient digestibility, intestinal morphology and gut microbiota in pigs and broilers. Therefore, AMPs have good potential as suitable alternatives to conventional antibiotics used in swine and poultry industries. PMID:27153059

  15. Supramolecular assembly of a biomineralizing antimicrobial peptide in coarse-grained Monte Carlo simulations.

    PubMed

    Eby, D Matthew; Johnson, Glenn R; Farmer, Barry L; Pandey, Ras B

    2011-01-21

    Monte Carlo simulations are used to model the self-organizing behavior of the biomineralizing peptide KSL (KKVVFKVKFK) in the presence of phosphate. Originally identified as an antimicrobial peptide, KSL also directs the formation of biosilica through a hypothetical supramolecular template that requires phosphate for assembly. Specificity of each residue and the interactions between the peptide and phosphate are considered in a coarse-grained model. Both local and global physical quantities are calculated as the constituents execute their stochastic motion in the presence and absence of phosphate. Ordered peptide aggregates develop after simulations reach thermodynamic equilibrium, wherein phosphates form bridging ligands with lysines and are found interdigitated between peptide molecules. Results demonstrate that interactions between the lysines and phosphate drive self-organization into lower energy conformations of interconnected peptide scaffolds that resemble the supramolecular structures of polypeptide- and polyamine-mediated silica condensation systems. Furthermore, the specific phosphate-peptide organization appears to mimic the zwitterionic structure of native silaffins (scaffold proteins of diatom shells), suggesting a similar template organization for silica deposition between the in vitro KSL and silaffin systems. PMID:21072418

  16. Identification and characterization of an antimicrobial peptide of Hypsiboas semilineatus (Spix, 1824) (Amphibia, Hylidae).

    PubMed

    Nacif-Marçal, Lorena; Pereira, Gracielle R; Abranches, Monise V; Costa, Natália C S; Cardoso, Silvia A; Honda, Eduardo R; de Paula, Sérgio O; Feio, Renato N; Oliveira, Leandro L

    2015-06-01

    The multidrug-resistant bacteria have become a serious problem to public health. In this scenery the antimicrobial peptides (AMPs) derived from animals and plants emerge as a novel therapeutic modality, substituting or in addition to the conventional antimicrobial. The anurans are one of the richest natural sources of AMPs. In this work several cycles of cDNA cloning of the skin of the Brazilian treefrog Hypsiboas semilineatus led to isolation of a precursor sequence that encodes a new AMP. The sequence comprises a 27 residue signal peptide, followed by an acidic intervening sequence that ends in the mature peptide at the carboxy terminal. The AMP, named Hs-1, has 20 amino acids residues, mostly arranged in an alpha helix and with a molecular weight of 2144.6 Da. The chemically synthesized Hs-1 showed an antimicrobial activity against all Gram-positive bacteria tested, with a range of 11-46 μM, but it did not show any effect against Gram-negative bacteria, which suggest that Hs-1 may have a selective action for Gram-positive bacteria. The effects of Hs-1 on bacterial cells were also demonstrated by transmission electron microscopy. Hs-1 is the first AMP to be described from H. semilineatus. PMID:25772860

  17. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria

    PubMed Central

    Falanga, Annarita; Lombardi, Lucia; Franci, Gianluigi; Vitiello, Mariateresa; Iovene, Maria Rosaria; Morelli, Giancarlo; Galdiero, Massimiliano; Galdiero, Stefania

    2016-01-01

    The discovery of antibiotics for the treatment of bacterial infections brought the idea that bacteria would no longer endanger human health. However, bacterial diseases still represent a worldwide treat. The ability of microorganisms to develop resistance, together with the indiscriminate use of antibiotics, is mainly responsible for this situation; thus, resistance has compelled the scientific community to search for novel therapeutics. In this scenario, antimicrobial peptides (AMPs) provide a promising strategy against a wide array of pathogenic microorganisms, being able to act directly as antimicrobial agents but also being important regulators of the innate immune system. This review is an attempt to explore marine AMPs as a rich source of molecules with antimicrobial activity. In fact, the sea is poorly explored in terms of AMPs, but it represents a resource with plentiful antibacterial agents performing their role in a harsh environment. For the application of AMPs in the medical field limitations correlated to their peptide nature, their inactivation by environmental pH, presence of salts, proteases, or other components have to be solved. Thus, these peptides may act as templates for the design of more potent and less toxic compounds. PMID:27213366

  18. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria.

    PubMed

    Falanga, Annarita; Lombardi, Lucia; Franci, Gianluigi; Vitiello, Mariateresa; Iovene, Maria Rosaria; Morelli, Giancarlo; Galdiero, Massimiliano; Galdiero, Stefania

    2016-01-01

    The discovery of antibiotics for the treatment of bacterial infections brought the idea that bacteria would no longer endanger human health. However, bacterial diseases still represent a worldwide treat. The ability of microorganisms to develop resistance, together with the indiscriminate use of antibiotics, is mainly responsible for this situation; thus, resistance has compelled the scientific community to search for novel therapeutics. In this scenario, antimicrobial peptides (AMPs) provide a promising strategy against a wide array of pathogenic microorganisms, being able to act directly as antimicrobial agents but also being important regulators of the innate immune system. This review is an attempt to explore marine AMPs as a rich source of molecules with antimicrobial activity. In fact, the sea is poorly explored in terms of AMPs, but it represents a resource with plentiful antibacterial agents performing their role in a harsh environment. For the application of AMPs in the medical field limitations correlated to their peptide nature, their inactivation by environmental pH, presence of salts, proteases, or other components have to be solved. Thus, these peptides may act as templates for the design of more potent and less toxic compounds. PMID:27213366

  19. Alarin but not its alternative-splicing form, GALP (Galanin-like peptide) has antimicrobial activity

    SciTech Connect

    Wada, Akihiro; Wong, Pooi-Fong; Hojo, Hironobu; Hasegawa, Makoto; Ichinose, Akitoyo; Llanes, Rafael; Kubo, Yoshinao; Senba, Masachika; Ichinose, Yoshio

    2013-05-03

    Highlights: • Alarin inhibits the growth of E. coli but not S. aureus. • Alarin’s potency is comparable to LL-37 in inhibiting the growth of E. coli. • Alarin can cause bacterial membrane blebbing. • Alalin does not induce hemolysis on erythrocytes. -- Abstract: Alarin is an alternative-splicing form of GALP (galanin-like peptide). It shares only 5 conserved amino acids at the N-terminal region with GALP which is involved in a diverse range of normal brain functions. This study seeks to investigate whether alarin has additional functions due to its differences from GALP. Here, we have shown using a radial diffusion assay that alarin but not GALP inhibited the growth of Escherichia coli (strain ML-35). The conserved N-terminal region, however, remained essential for the antimicrobial activity of alarin as truncated peptides showed reduced killing effect. Moreover, alarin inhibited the growth of E. coli in a similar potency as human cathelicidin LL-37, a well-studied antimicrobial peptide. Electron microscopy further showed that alarin induced bacterial membrane blebbing but unlike LL-37, it did not cause hemolysis of erythrocytes. In addition, alarin is only active against the gram-negative bacteria, E. coli but not the gram-positive bacteria, Staphylococcus aureus. Thus, these data suggest that alarin has potentials as an antimicrobial and should be considered for the development in human therapeutics.

  20. CS-AMPPred: An Updated SVM Model for Antimicrobial Activity Prediction in Cysteine-Stabilized Peptides

    PubMed Central

    Porto, William F.; Pires, Állan S.; Franco, Octavio L.

    2012-01-01

    The antimicrobial peptides (AMP) have been proposed as an alternative to control resistant pathogens. However, due to multifunctional properties of several AMP classes, until now there has been no way to perform efficient AMP identification, except through in vitro and in vivo tests. Nevertheless, an indication of activity can be provided by prediction methods. In order to contribute to the AMP prediction field, the CS-AMPPred (Cysteine-Stabilized Antimicrobial Peptides Predictor) is presented here, consisting of an updated version of the Support Vector Machine (SVM) model for antimicrobial activity prediction in cysteine-stabilized peptides. The CS-AMPPred is based on five sequence descriptors: indexes of (i) α-helix and (ii) loop formation; and averages of (iii) net charge, (iv) hydrophobicity and (v) flexibility. CS-AMPPred was based on 310 cysteine-stabilized AMPs and 310 sequences extracted from PDB. The polynomial kernel achieves the best accuracy on 5-fold cross validation (85.81%), while the radial and linear kernels achieve 84.19%. Testing in a blind data set, the polynomial and radial kernels achieve an accuracy of 90.00%, while the linear model achieves 89.33%. The three models reach higher accuracies than previously described methods. A standalone version of CS-AMPPred is available for download at and runs on any Linux machine. PMID:23240023

  1. Purification and characterization of YFGAP, a GAPDH-related novel antimicrobial peptide, from the skin of yellowfin tuna, Thunnus albacares.

    PubMed

    Seo, Jung-Kil; Lee, Min Jeong; Go, Hye-Jin; Park, Tae Hyun; Park, Nam Gyu

    2012-10-01

    A 3.4 kDa of antimicrobial peptide was purified from an acidified skin extract of the yellowfin tuna, Thunnus albacares, by preparative acid-urea-polyacrylamide gel electrophoresis and C(18) reversed-phase HPLC. A comparison of the N-terminal amino acid sequence of the purified peptide with that of other known polypeptides revealed high homology with the N-terminus of glyceraldehyde-3-phosphate dehydrogenase (GAPDH); thus, this peptide was designated as the yellowfin tuna GAPDH-related antimicrobial peptide (YFGAP). YFGAP showed potent antimicrobial activity against Gram-positive bacteria, such as Bacillus subtilis, Micrococcus luteus, and Streptococcus iniae (minimal effective concentrations [MECs], 1.2-17.0 μg/mL), and Gram-negative bacteria, such as Aeromonas hydrophila, Escherichia coli D31, and Vibrio parahaemolyticus (MECs, 3.1-12.0 μg/mL) without significant hemolytic activity. According to the secondary structural prediction and the homology modeling, this peptide forms an amphipathic structure and consists of three secondary structural motifs including one α-helix and two parallel β-strands. This peptide did not show membrane permeabilization ability and its activity was bacteriostatic rather than bactericidal. This is the first report of the isolation of an antimicrobial peptide from a tuna species and the first description of the antimicrobial function of the N-terminus of GAPDH of an animal species. PMID:22771964

  2. A genomic approach highlights common and diverse effects and determinants of susceptibility on the yeast Saccharomyces cerevisiae exposed to distinct antimicrobial peptides

    PubMed Central

    2010-01-01

    Background The mechanism of action of antimicrobial peptides (AMP) was initially correlated with peptide membrane permeation properties. However, recent evidences indicate that action of a number of AMP is more complex and involves specific interactions at cell envelopes or with intracellular targets. In this study, a genomic approach was undertaken on the model yeast Saccharomyces cerevisiae to characterize the antifungal effect of two unrelated AMP. Results Two differentiated peptides were used: the synthetic cell-penetrating PAF26 and the natural cytolytic melittin. Transcriptomic analyses demonstrated distinctive gene expression changes for each peptide. Quantitative RT-PCR confirmed differential expression of selected genes. Gene Ontology (GO) annotation of differential gene lists showed that the unique significant terms shared by treatment with both peptides were related to the cell wall (CW). Assays with mutants lacking CW-related genes including those of MAPK signaling pathways revealed genes having influence on sensitivity to peptides. Fluorescence microscopy and flow cytometry demonstrated PAF26 interaction with cells and internalization that correlated with cell killing in sensitive CW-defective mutants such as Δecm33 or Δssd1. GO annotation also showed differential responses between peptides, which included ribosomal biogenesis, ARG genes from the metabolism of amino groups (specifically induced by PAF26), or the reaction to unfolded protein stress. Susceptibility of deletion mutants confirmed the involvement of these processes. Specifically, mutants lacking ARG genes from the metabolism of arginine pathway were markedly more resistant to PAF26 and had a functional CW. In the deletant in the arginosuccinate synthetase (ARG1) gene, PAF26 interaction occurred normally, thus uncoupling peptide interaction from cell killing. The previously described involvement of the glycosphingolipid gene IPT1 was extended to the peptides studied here. Conclusions

  3. Pegylation of Antimicrobial Peptides Maintains the Active Peptide Conformation, Model Membrane Interactions, and Antimicrobial Activity while Improving Lung Tissue Biocompatibility following Airway Delivery

    PubMed Central

    Morris, Christopher J.; Beck, Konrad; Fox, Marc A.; Ulaeto, David; Clark, Graeme C.

    2012-01-01

    Antimicrobial peptides (AMPs) have therapeutic potential, particularly for localized infections such as those of the lung. Here we show that airway administration of a pegylated AMP minimizes lung tissue toxicity while nevertheless maintaining antimicrobial activity. CaLL, a potent synthetic AMP (KWKLFKKIFKRIVQRIKDFLR) comprising fragments of LL-37 and cecropin A peptides, was N-terminally pegylated (PEG-CaLL). PEG-CaLL derivatives retained significant antimicrobial activity (50% inhibitory concentrations [IC50s] 2- to 3-fold higher than those of CaLL) against bacterial lung pathogens even in the presence of lung lining fluid. Circular dichroism and fluorescence spectroscopy confirmed that conformational changes associated with the binding of CaLL to model microbial membranes were not disrupted by pegylation. Pegylation of CaLL reduced AMP-elicited cell toxicity as measured using in vitro lung epithelial primary cell cultures. Further, in a fully intact ex vivo isolated perfused rat lung (IPRL) model, airway-administered PEG-CaLL did not result in disruption of the pulmonary epithelial barrier, whereas CaLL caused an immediate loss of membrane integrity leading to pulmonary edema. All AMPs (CaLL, PEG-CaLL, LL-37, cecropin A) delivered to the lung by airway administration showed limited (<3%) pulmonary absorption in the IPRL with extensive AMP accumulation in lung tissue itself, a characteristic anticipated to be beneficial for the treatment of pulmonary infections. We conclude that pegylation may present a means of improving the lung biocompatibility of AMPs designed for the treatment of pulmonary infections. PMID:22430978

  4. Acipensins – Novel Antimicrobial Peptides from Leukocytes of the Russian Sturgeon Acipenser gueldenstaedtii

    PubMed Central

    Shamova, O. V.; Orlov, D. S.; Balandin, S. V.; Shramova, E. I.; Tsvetkova, E. V.; Panteleev, P. V.; Leonova, Yu. F.; Tagaev, A. A.; Kokryakov, V. N.; Ovchinnikova, T. V.

    2014-01-01

    Antimicrobial peptides (AMPs) play an important role in the innate defense mechanisms in humans and animals. We have isolated and studied a set of antimicrobial peptides from leukocytes of the Russian sturgeon Acipenser gueldenstaedtii belonging to a subclass of chondrosteans, an ancient group of bony fish. Structural analysis of the isolated peptides, designated as acipensins (Ac), revealed in leukocytes of the Russian sturgeon six novel peptides with molecular masses of 5336.2 Da, 3803.0 Da, 5173.0 Da, 4777.5 Da, 5449.4 Da, and 2740.2 Da, designated as Ac1–Ac6, respectively. Complete primary structures of all the isolated peptides were determined, and the biological activities of three major components – Ac1, Ac2, and Ac6 – were examined. The peptides Ac1, Ac2, Ac3, Ac4, and Ac5 were found to be the N-terminal acetylated fragments 1–0, 1–5, 1–9, 1–4, and 1–1 of the histone H2A, respectively, while Ac6 was shown to be the 62–5 fragment of the histone H2A. The peptides Ac1 and Ac2 displayed potent antimicrobial activity towards Gram-negative and Gram-positive bacteria (Escherichia coli ML35p, Listeria monocytogenes EGD, MRSA ATCC 33591) and the fungus Candida albicans 820, while Ac6 proved effective only against Gram-negative bacteria. The efficacy of Ac 1 and Ac2 towards the fungus and MRSA was reduced upon an increase in the ionic strength of the solution. Ac1, Ac2, and Ac6, at concentrations close to their minimum inhibitory concentrations, enhanced the permeability of the E.coli ML35p outer membrane to the chromogenic marker, but they did not affect appreciably the permeability of the bacterial inner membrane in comparison with a potent pore-forming peptide, protegrin 1. Ac1, Ac2, and Ac6 revealed no hemolytic activity against human erythrocytes at concentrations of 1 to 40 μM and had no cytotoxic effect (1 to 20 μM) on K-562 and U-937 cells in vitro. Our findings suggest that histone-derived peptides serve as important anti-infective host

  5. Enhanced Amphiphilic Profile of a Short β-Stranded Peptide Improves Its Antimicrobial Activity

    PubMed Central

    Manzo, Giorgia; Scorciapino, Mariano A.; Wadhwani, Parvesh; Bürck, Jochen; Montaldo, Nicola Pietro; Pintus, Manuela; Sanna, Roberta; Casu, Mariano; Giuliani, Andrea; Pirri, Giovanna; Luca, Vincenzo; Ulrich, Anne S.; Rinaldi, Andrea C.

    2015-01-01

    SB056 is a novel semi-synthetic antimicrobial peptide with a dimeric dendrimer scaffold. Active against both Gram-negative and -positive bacteria, its mechanism has been attributed to a disruption of bacterial membranes. The branched peptide was shown to assume a β-stranded conformation in a lipidic environment. Here, we report on a rational modification of the original, empirically derived linear peptide sequence [WKKIRVRLSA-NH2, SB056-lin]. We interchanged the first two residues [KWKIRVRLSA-NH2, β-SB056-lin] to enhance the amphipathic profile, in the hope that a more regular β-strand would lead to a better antimicrobial performance. MIC values confirmed that an enhanced amphiphilic profile indeed significantly increases activity against both Gram-positive and -negative strains. The membrane binding affinity of both peptides, measured by tryptophan fluorescence, increased with an increasing ratio of negatively charged/zwitterionic lipids. Remarkably, β-SB056-lin showed considerable binding even to purely zwitterionic membranes, unlike the original sequence, indicating that besides electrostatic attraction also the amphipathicity of the peptide structure plays a fundamental role in binding, by stabilizing the bound state. Synchrotron radiation circular dichroism and solid-state 19F-NMR were used to characterize and compare the conformation and mobility of the membrane bound peptides. Both SB056-lin and β-SB056-lin adopt a β-stranded conformation upon binding POPC vesicles, but the former maintains an intrinsic structural disorder that also affects its aggregation tendency. Upon introducing some anionic POPG into the POPC matrix, the sequence-optimized β-SB056-lin forms well-ordered β-strands once electro-neutrality is approached, and it aggregates into more extended β-sheets as the concentration of anionic lipids in the bilayer is raised. The enhanced antimicrobial activity of the analogue correlates with the formation of these extended β-sheets, which

  6. Enhanced membrane pore formation by multimeric/oligomeric antimicrobial peptides.

    PubMed

    Arnusch, Christopher J; Branderhorst, Hilbert; de Kruijff, Ben; Liskamp, Rob M J; Breukink, Eefjan; Pieters, Roland J

    2007-11-20

    The pore-forming antibacterial peptide magainin 2 was made divalent, tetravalent, and octavalent via a copper(I)-mediated 1-3 dipolar cycloaddition reaction ("click" chemistry). This series of pore-forming compounds was tested in vitro for their ability to form pores in large unilamillar vesicles (LUVs). A large increase in the pore-forming capability was especially observed with the tetravalent and octavalent magainin compounds in the LUVs consisting of DOPC, and the octavalent magainin compound showed a marked increase with the DOPC/DOPG LUVs. Activity was observed in the low nanomolar range for these compounds. PMID:17944489

  7. Effect of antimicrobial peptides (AMPS) on mycorrhizal associations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In transgenic research, it is essential to document the non-toxic nature of gene products when used in producing transgenic crops. In our laboratory, we have produced transgenic cotton and tobacco plants expressing synthetic genes which control fungal pathogens including Aspergillus flavus that cau...

  8. Deletion of mtrC in Haemophilus ducreyi Increases Sensitivity to Human Antimicrobial Peptides and Activates the CpxRA Regulon ▿

    PubMed Central

    Rinker, Sherri D.; Trombley, Michael P.; Gu, Xiaoping; Fortney, Kate R.; Bauer, Margaret E.

    2011-01-01

    Haemophilus ducreyi resists killing by antimicrobial peptides encountered during human infection, including cathelicidin LL-37, α-defensins, and β-defensins. In this study, we examined the role of the proton motive force-dependent multiple transferable resistance (MTR) transporter in antimicrobial peptide resistance in H. ducreyi. We found a proton motive force-dependent effect on H. ducreyi's resistance to LL-37 and β-defensin HBD-3, but not α-defensin HNP-2. Deletion of the membrane fusion protein MtrC rendered H. ducreyi more sensitive to LL-37 and human β-defensins but had relatively little effect on α-defensin resistance. The mtrC mutant 35000HPmtrC exhibited phenotypic changes in outer membrane protein profiles, colony morphology, and serum sensitivity, which were restored to wild type by trans-complementation with mtrC. Similar phenotypes were reported in a cpxA mutant; activation of the two-component CpxRA regulator was confirmed by showing transcriptional effects on CpxRA-regulated genes in 35000HPmtrC. A cpxR mutant had wild-type levels of antimicrobial peptide resistance; a cpxA mutation had little effect on defensin resistance but led to increased sensitivity to LL-37. 35000HPmtrC was more sensitive than the cpxA mutant to LL-37, indicating that MTR contributed to LL-37 resistance independent of the CpxRA regulon. The CpxRA regulon did not affect proton motive force-dependent antimicrobial peptide resistance; however, 35000HPmtrC had lost proton motive force-dependent peptide resistance, suggesting that the MTR transporter promotes proton motive force-dependent resistance to LL-37 and human β-defensins. This is the first report of a β-defensin resistance mechanism in H. ducreyi and shows that LL-37 resistance in H. ducreyi is multifactorial. PMID:21444663

  9. Antimicrobial Peptides and their Pore/Ion Channel Properties in Neutralization of Pathogenic Microbes.

    PubMed

    Sharma, Shruti; Sahoo, Nirakar; Bhunia, Anirban

    2016-01-01

    The essence of successful antimicrobial chemotherapy lies in selective toxicity of the agent towards the pathogen. An ideal antimicrobial agent should kill pathogens effectively with little or no effect on host cells. There is a dearth of antibiotic and antimicrobial therapies due the rapid development of microbial resistance to these agents, as evidenced by increasing incidences of hospital acquired infections. This challenge necessitates the discovery and development of novel and effective antimicrobial agents. One promising approach is Antimicrobial Peptides (AMPs), which are synthesized by a large number of organisms. The presence of AMPs throughout evolution hints at their importance. The first and foremost interaction between AMPs and target cell occurs at the membrane of the pathogen. The details about these interactions will pave way for the development of new synthetic analogues or modified analogues of existing AMPs. Mechanistic insights into adoption of different structures in presence of bacterial membranes (and with their specific targets) will enhance our understanding and knowledge about these agents and their detailed mechanism of action. AMPs interact with lipids and form lipid-AMP complexes that create AMP-lined ion channels, which in turn modulate the membrane potential. This may have an effect on various biological processes leading to arrest of cell growth or cell death. This review summarizes the ion channel formation property of AMPs as an effective approach in dealing with neutralization of pathogenic microbes. PMID:26139119

  10. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.

    PubMed

    Lam, Shu J; O'Brien-Simpson, Neil M; Pantarat, Namfon; Sulistio, Adrian; Wong, Edgar H H; Chen, Yu-Yen; Lenzo, Jason C; Holden, James A; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-01-01

    With the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy. Furthermore, we did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. Comprehensive analyses using a range of microscopy and (bio)assay techniques revealed that the antimicrobial activity of SNAPPs proceeds via a multimodal mechanism of bacterial cell death by outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane and induction of the apoptotic-like death pathway, possibly accounting for why we did not observe resistance to SNAPPs in CMDR bacteria. Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria. PMID:27617798

  11. Penetration of Milk-Derived Antimicrobial Peptides into Phospholipid Monolayers as Model Biomembranes

    PubMed Central

    Rogalska, Ewa; Więcław-Czapla, Katarzyna

    2013-01-01

    Three antimicrobial peptides derived from bovine milk proteins were examined with regard to penetration into insoluble monolayers formed with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DPPG). Effects on surface pressure (Π) and electric surface potential (ΔV) were measured, Π with a platinum Wilhelmy plate and ΔV with a vibrating plate. The penetration measurements were performed under stationary diffusion conditions and upon the compression of the monolayers. The two type measurements showed greatly different effects of the peptide-lipid interactions. Results of the stationary penetration show that the peptide interactions with DPPC monolayer are weak, repulsive, and nonspecific while the interactions with DPPG monolayer are significant, attractive, and specific. These results are in accord with the fact that antimicrobial peptides disrupt bacteria membranes (negative) while no significant effect on the host membranes (neutral) is observed. No such discrimination was revealed from the compression isotherms. The latter indicate that squeezing the penetrant out of the monolayer upon compression does not allow for establishing the penetration equilibrium, so the monolayer remains supersaturated with the penetrant and shows an under-equilibrium orientation within the entire compression range, practically. PMID:24455264

  12. Synthesis and Evaluation of Biological Activity of Antimicrobial – Pro-Proliferative Peptide Conjugates

    PubMed Central

    Langa, Paulina; Trzonkowski, Piotr; Obuchowski, Michał; Lesner, Adam

    2015-01-01

    Skin represents the largest organ of the human body and plays a crucial role in its protection from the negative impact of the outside environment, maintains its homeostasis, enables sensory interaction and thermoregulation. The traumatized skin tissue undergoes several phenotype switches due to progressive reoxygenation and release of cytokine and growth factors, that activate mechanisms of reparative processes. However, in case of wounds colonized with pathogenic microflora natural regenerative mechanisms become substantially impaired, that could lead to chronic inflammatory states with non-healing skin lesions. Herein, we present the initial results of our studies aimed at the design of bifunctional peptide-based compounds. The chemical approach, that was utilized in this work, was based on the conjugation of antimicrobial peptides with the peptides, that have potential pro-proliferative and/or cytoprotective activity towards human keratinocytes and fibroblasts, in order to obtain antimicrobials with reduced cytotoxicity or compounds that maintain both activities, i.e. inhibit bacterial or fungi growth and activate cell proliferation/migration in in vitro tests. As a result, we obtained a group of peptide conjugates that effectively inhibited the growth of selected bacterial and fungi strains and were able to stimulate proliferation and migration of keratinocytes and fibroblasts under their effective microbicidal concentrations. PMID:26473368

  13. The specificity of protection against cationic antimicrobial peptides by lactoferrin binding protein B.

    PubMed

    Morgenthau, Ari; Partha, Sarathy K; Adamiak, Paul; Schryvers, Anthony B

    2014-10-01

    A variety of Gram-negative pathogens possess host-specific lactoferrin (Lf) receptors that mediate the acquisition of iron from host Lf. The integral membrane protein component of the receptor, lactoferrin binding protein A specifically binds host Lf and is required for acquisition of iron from Lf. In contrast, the role of the bi-lobed surface lipoprotein, lactoferrin binding protein B (LbpB), in Lf binding and iron acquisition is uncertain. A common feature of LbpBs from most species is the presence of clusters of negatively charged amino acids in the protein's C-terminal lobe. Recently it has been shown that the negatively charged regions from the Neisseria meningitidis LbpB are responsible for protecting against an 11 amino acid cationic antimicrobial peptide (CAP), lactoferricin (Lfcin), derived from human Lf. In this study we investigated whether the LbpB confers resistance to other CAPs since N. meningitidis is likely to encounter other CAPs from the host. LbpB provided protection against the cathelicidin derived peptide, cathelicidin related antimicrobial peptide (mCRAMP), but did not confer protection against Tritrp 1 or LL37 under our experimental conditions. When tested against a range of rationally designed synthetic peptides, LbpB was shown to protect against IDR-1002 and IDR-0018 but not against HH-2 or HHC10. PMID:25038734

  14. Novel Peptides from Skins of Amphibians Showed Broad-Spectrum Antimicrobial Activities.

    PubMed

    Wang, Ying; Zhang, Yue; Lee, Wen-Hui; Yang, Xinwang; Zhang, Yun

    2016-03-01

    Peptide agents are often considered as potential biomaterials for developing new drugs that can overcome the rising resistance of pathogenic micro-organisms to classic antibiotic treatments. One key source of peptide agents is amphibian skin, as they provide a great deal of naturally occurring antimicrobial peptide (AMP) templates awaiting further exploitation and utilization. In this study, 12 novel AMPs from the skins of 3 ranid frogs, Rana limnocharis, R. exilispinosa, and Amolops afghanus, were identified using a 5' PCR primer. A total of 11 AMPs exhibited similarities with currently known AMP families, including brevinin-1, brevinin-2, esculentin-1, and nigrocin, besides, one AMP, named as Limnochariin, represented a novel AMP family. All 12 AMPs contain a C-terminus cyclic motif and most of them show obvious antimicrobial activities against 18 standard and clinically isolated strains of bacteria, including 4 Gram-positive bacteria, 11 Gram-negative bacteria, and 3 fungus. These findings provide helpful insight that will be useful in the design of anti-infective peptide agents. PMID:26452973

  15. Penetration of milk-derived antimicrobial peptides into phospholipid monolayers as model biomembranes.

    PubMed

    Barzyk, Wanda; Rogalska, Ewa; Więcław-Czapla, Katarzyna

    2013-01-01

    Three antimicrobial peptides derived from bovine milk proteins were examined with regard to penetration into insoluble monolayers formed with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DPPG). Effects on surface pressure (Π) and electric surface potential (ΔV) were measured, Π with a platinum Wilhelmy plate and ΔV with a vibrating plate. The penetration measurements were performed under stationary diffusion conditions and upon the compression of the monolayers. The two type measurements showed greatly different effects of the peptide-lipid interactions. Results of the stationary penetration show that the peptide interactions with DPPC monolayer are weak, repulsive, and nonspecific while the interactions with DPPG monolayer are significant, attractive, and specific. These results are in accord with the fact that antimicrobial peptides disrupt bacteria membranes (negative) while no significant effect on the host membranes (neutral) is observed. No such discrimination was revealed from the compression isotherms. The latter indicate that squeezing the penetrant out of the monolayer upon compression does not allow for establishing the penetration equilibrium, so the monolayer remains supersaturated with the penetrant and shows an under-equilibrium orientation within the entire compression range, practically. PMID:24455264

  16. In Vitro and In Vivo Activities of Antimicrobial Peptides Developed Using an Amino Acid-Based Activity Prediction Method

    PubMed Central

    Wu, Xiaozhe; Wang, Zhenling; Li, Xiaolu; Fan, Yingzi; He, Gu; Wan, Yang; Yu, Chaoheng; Tang, Jianying; Li, Meng; Zhang, Xian; Zhang, Hailong; Xiang, Rong; Pan, Ying; Liu, Yan; Lu, Lian

    2014-01-01

    To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections. PMID:24982064

  17. Rapid turnover of antimicrobial-type cysteine-rich protein genes in closely related Oryza genomes.

    PubMed

    Shenton, Matthew R; Ohyanagi, Hajime; Wang, Zi-Xuan; Toyoda, Atsushi; Fujiyama, Asao; Nagata, Toshifumi; Feng, Qi; Han, Bin; Kurata, Nori

    2015-10-01

    Defensive and reproductive protein genes undergo rapid evolution. Small, cysteine-rich secreted peptides (CRPs) act as antimicrobial agents and function in plant intercellular signaling and are over-represented among reproductively expressed proteins. Because of their roles in defense, reproduction and development and their presence in multigene families, CRP variation can have major consequences for plant phenotypic and functional diversification. We surveyed the CRP genes of six closely related Oryza genomes comprising Oryza sativa ssp. japonica and ssp. indica, Oryza glaberrima and three accessions of Oryza rufipogon to observe patterns of evolution in these gene families and the effects of variation on their gene expression. These Oryza genomes, like other plant genomes, have accumulated large reservoirs of CRP sequences, comprising 26 groups totaling between 676 and 843 genes, in contrast to antimicrobial CRPs in animal genomes. Despite the close evolutionary relationships between the genomes, we observed rapid changes in number and structure among CRP gene families. Many CRP sequences are in gene clusters generated by local duplications, have undergone rapid turnover and are more likely to be silent or specifically expressed. By contrast, conserved CRP genes are more likely to be highly and broadly expressed. Variable CRP genes created by repeated duplication, gene modification and inactivation can gain new functions and expression patterns in newly evolved gene copies. For the CRP proteins, the process of gain/loss by deletion or duplication at gene clusters seems to be an important mechanism in evolution of the gene families, which also contributes to their expression evolution. PMID:25842177

  18. Identification of antimicrobial peptides from teleosts and anurans in expressed sequence tag databases using conserved signal sequences.

    PubMed

    Tessera, Valentina; Guida, Filomena; Juretić, Davor; Tossi, Alessandro

    2012-03-01

    The problem of multidrug resistance requires the efficient and accurate identification of new classes of antimicrobial agents. Endogenous antimicrobial