Science.gov

Sample records for antimony hydrides

  1. Characterization of laser induced breakdown plasmas used for measurements of arsenic, antimony and selenium hydrides

    NASA Astrophysics Data System (ADS)

    Simeonsson, J. B.; Williamson, L. J.

    2011-09-01

    Studies have been performed to characterize laser induced breakdown spectroscopy (LIBS) plasmas formed in Ar/H 2 gas mixtures that are used for hydride generation (HG) LIBS measurements of arsenic (As), antimony (Sb) and selenium (Se) hydrides. The plasma electron density and plasma excitation temperature have been determined through hydrogen, argon and arsenic emission measurements. The electron density ranges from 4.5 × 10 17 to 8.3 × 10 15 cm -3 over time delays of 0.2 to 15 μs. The plasma temperatures range from 8800 to 7700 K for Ar and from 8800 to 6500 K for As in the HG LIBS plasmas. Evaluation of the plasma properties leads to the conclusion that partial local thermodynamic equilibrium conditions are present in the HG LIBS plasmas. Comparison measurements in LIBS plasmas formed in Ar gas only indicate that the temperatures are similar in both plasmas. However it is also observed that the electron density is higher in the Ar only plasmas and that the emission intensities of Ar are higher and decay more slowly in the Ar only plasmas. These differences are attributed to the presence of H 2 which has a higher thermal conductivity and provides additional dissociation, excitation and ionization processes in the HG LIBS plasma environment. Based on the observed results, it is anticipated that changes to the HG conditions that change the amount of H 2 in the plasma will have a significant effect on analyte emission in the HG LIBS plasmas that is independent of changes in the HG efficiency. The HG LIBS plasmas have been evaluated for measurements of elements hydrides using a constant set of HG LIBS plasma conditions. Linear responses are observed and limits of detection of 0.7, 0.2 and 0.6 mg/L are reported for As, Sb and Se, respectively.

  2. Determination of antimony in environment samples by gas phase chemiluminescence detection following flow injection hydride generation and cryotrapping.

    PubMed

    Ye, Yousheng; Sang, Jianchi; Ma, Hongbing; Tao, Guanhong

    2010-06-15

    A novel method for the determination of antimony in environmental samples was developed with gas phase chemiluminescence detection following flow injection hydride generation and cryotrapping. The stibine, generated from samples by borohydride reduction of antimony using flow injection technique, was separated by using a new gas-liquid separator, dried with an ice-salt cryogenic bath and concentrated in a glass U-tube immersed in liquid nitrogen. Re-vaporization of stibine based on its boiling point was achieved by allowing the tube to warm at room temperature. A gas phase chemiluminescence signal was produced during the ozonation of the hydride in a reflective chamber. Under optimal conditions, the proposed method was characterized by a wide linear calibration range from 1.0microgL(-1) to 10.0mgL(-1) with a detection limit of 0.18microgL(-1) (n=11). The relative standard deviation for 10.0microgL(-1) antimony was 3.56% (n=11) and the sampling rate was 15 samples h(-1). Blank signal was reduced by the purification of reagents and the interference from transition metal ions was eliminated by the addition of L-cysteine into samples. The method was applied to the determination of antimony in environmental samples with satisfactory results. PMID:20441930

  3. Arsenic and antimony determination by on-line flow hydride generation glow discharge optical emission detection

    NASA Astrophysics Data System (ADS)

    Guillermo Orellana-Velado, Néstor; Fernández, Matilde; Pereiro, Rosario; Sanz-Medel, Alfredo

    2001-01-01

    Hollow cathode (HC) and conventional flat cathode (FC) glow discharge (GD) optical emission spectrometry (OES) were used as detectors for the determination of arsenic and antimony by on-line hydride generation (HG) in a flow system. Both radiofrequency (rf) and direct current (dc) sources were investigated to produce the discharge. The design of the HC and FC and also the parameters governing the discharge (pressure, He flow rate, voltage, current and delivered power) and the HG (sodium borohydride concentration and reagent flow rates) were investigated using both cathodes. The analytical performance characteristics of HG-GD-OES with HC and FC were evaluated for some emission lines of arsenic (193.7, 200.3, 228.8 and 234.9 nm). The best detection limit (0.2 μg l -1) was obtained when the emission line of 228.8 nm was used with FC. Under the same arsenic optimized experimental conditions, the system was evaluated to determine antimony at 259.7, 252.7 and 231.1 nm, 252.7 nm being the emission line which produced the best detection limit (0.7 μg l -1). The rf-HC-GD-OES system was applied successfully to the determination of arsenic in freeze-dried urine in the standard reference material 2670 from NIST. Finally, a flow injection system was assayed to determine arsenic at 228.8 nm, using a dc-GD with both FC and HC. The results indicated that for low volumes of sample, the HC discharge allows better analytical signals than the FC.

  4. Development of an analytical method for antimony speciation in vegetables by HPLC-hydride generation-atomic fluorescence spectrometry.

    PubMed

    Olivares, David; Bravo, Manuel; Feldmann, Jorg; Raab, Andrea; Neaman, Alexander; Quiroz, Waldo

    2012-01-01

    A new method for antimony speciation in terrestrial edible vegetables (spinach, onions, and carrots) was developed using HPLC with hydride generation-atomic fluorescence spectrometry. Mechanical agitation and ultrasound were tested as extraction techniques. Different extraction reagents were evaluated and optimal conditions were determined using experimental design methodology, where EDTA (10 mmol/L, pH 2.5) was selected because this chelate solution produced the highest extraction yield and exhibited the best compatibility with the mobile phase. The results demonstrated that EDTA prevents oxidation of Sb(III) to Sb(V) and maintains the stability of antimony species during the entire analytical process. The LOD and precision (RSD values obtained) for Sb(V), Sb(III), and trimethyl Sb(V) were 0.08, 0.07, and 0.9 microg/L and 5.0, 5.2, and 4.7%, respectively, for a 100 microL sample volume. The application of this method to real samples allowed extraction of 50% of total antimony content from spinach, while antimony extracted from carrots and onion samples ranged between 50 and 60 and 54 and 70%, respectively. Only Sb(V) was detected in three roots (onion and spinach) that represented 60-70% of the total antimony in the extracts. PMID:22970588

  5. Antimony

    Integrated Risk Information System (IRIS)

    Antimony ; CASRN 7440 - 36 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  6. Development of a MSFIA system for sequential determination of antimony, arsenic and selenium using hydride generation atomic fluorescence spectrometry.

    PubMed

    de Santana, Fernanda A; Portugal, Lindomar A; Serra, Antonio M; Ferrer, Laura; Cerdà, Víctor; Ferreira, Sergio L C

    2016-08-15

    This paper proposed a multisyringe flow injection analysis (MSFIA) system for antimony, arsenic and selenium determination in peanut samples by hydride generation atomic fluorescence spectrometry (HG-AFS). The optimization step of the hydride generation was performed using a two-level full factorial design involving the parameters: hydrochloric acid, sodium tetrahydroborate and potassium iodide concentrations. So, using the chemical conditions optimized, this method allows the determination of these elements employing the external calibration technique using aqueous standards with limits of detection and quantification of 0.04 and 0.14µgL(-1) for antimony, 0.04 and 0.14µgL(-1) for arsenic and 0.14 and 0.37µgL(-1) for selenium, respectively. Additionally, the effect of vanadium, chromium, cobalt, nickel, zinc, copper, iron and molybdenum on the generation of chemical vapour was also studied. The precision expressed as relative standard deviation varied from 1.2 to 3.6% for antimony, 1.8-3.9% for arsenic and 1.8-2% for selenium. The accuracy for arsenic and selenium was confirmed using the certified peach leaves reference material SRM 1547 produced by National Institute of Standard and Technology. The proposed method showed 45 injection throughput (h(-1)) using 1.6mL sample volume for each element, 0.8mL NaBH4 0.5% (w/v) containing NaOH 0.05% (w/v), 0.8mL HCl 5M and 0.4mL KI 14% (w/v) containing L-ascorbic acid 2.5% (w/v). The method was applied to the determination of antimony, arsenic and selenium in peanut samples, which were firstly lyophilized and afterward digested using microwave assisted radiation. Six samples were analyzed and the contents of the elements found were: 28.7-41.3µgkg(-1) for arsenic, 86.4-480.1µgkg(-1) for selenium and 32.6-52.4µgkg(-1) for antimony. Addition/recovery tests were also performed to confirm the method accuracy for the three elements. PMID:27260431

  7. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of antimony by automated-hydride atomic absorption spectrophotometry

    USGS Publications Warehouse

    Brown, G.E.; McLain, B.J.

    1994-01-01

    The analysis of natural-water samples for antimony by automated-hydride atomic absorption spectrophotometry is described. Samples are prepared for analysis by addition of potassium and hydrochloric acid followed by an autoclave digestion. After the digestion, potassium iodide and sodium borohydride are added automatically. Antimony hydride (stibine) gas is generated, then swept into a heated quartz cell for determination of antimony by atomic absorption spectrophotometry. Precision and accuracy data are presented. Results obtained on standard reference water samples agree with means established by interlaboratory studies. Spike recoveries for actual samples range from 90 to 114 percent. Replicate analyses of water samples of varying matrices give relative standard deviations from 3 to 10 percent.

  8. New considerations about the separation and quantification of antimony species by ion chromatography-hydride generation atomic fluorescence spectrometry.

    PubMed

    Miravet, R; López-Sánchez, J F; Rubio, R

    2004-10-15

    A new method for the speciation of inorganic [Sb(III) and Sb(V)] and organic (Me3SbCl2) antimony species by using a polystyrene-divinylbenzene-based anion-exchange HPLC column (Hamilton PRP-X100) coupled to hydride generation atomic fluorescence spectrometry (HG-AFS) is presented. Several mobile phases were tested for the baseline separation of these three antimony species, investigating in detail experimental parameters such as concentration and pH. The best efficiency and resolution was achieved by using a gradient elution between diammonium tartrate 250 mmol l(-1) pH 5.5 (A) and KOH 20 mmol l(-1) pH 12 (B). The gradient programme used was 100% B for 1.5 min, decreasing to 0% B in 0.1 min and maintained the elution with 100% A for 5.5 min. Analysis time was less than 7 min. Equilibration of the column with the complexing mobile phase was found to be critical in order to avoid Sb(III) double peak formation. Dilution in diammonium tartrate medium was necessary in order to avoid Sb(III) oxidation at microg l(-1) concentration level. Detection limits of 0.06 microg l(-1) for Sb(V), 0.09 microg l(-1) for Me3SbCl2 and 0.04 microg l(-1) for Sb(III) as well as repeatability and reproducibility better than 5% R.S.D. (n = 10) and 9% R.S.D. (n = 30) (for 1 and 5 microg l(-1) of Sb(V) and Sb(III) and 5 and 10 microg l(-1) of Me3SbCl2) were obtained. Accuracy and recovery studies were carried out by analysing one river freshwater sample and two water certified reference materials. The proposed methodology can be considered reliable and straightforward for antimony speciation in fresh water samples. PMID:15527128

  9. SYSTEM OPTIMIZATION FOR THE AUTOMATIC SIMULTANEOUS DETERMINATION OF ARSENIC, SELENIUM, AND ANTIMONY, USING HYDRIDE GENERATION INTRODUCTION TO AN INDUCTIVELY COUPLED PLASMA.

    USGS Publications Warehouse

    Pyen, Grace S.; Browner, Richard F.; Long, Stephen

    1986-01-01

    A fixed-size simplex has been used to determine the optimum conditions for the simultaneous determination of arsenic, selenium, and antimony by hydride generation and inductively coupled plasma emission spectrometry. The variables selected for the simplex were carrier gas flow rate, rf power, viewing height, and reagent conditions. The detection limit for selenium was comparable to the preoptimized case, but there were twofold and fourfold improvements in the detection limits for arsenic and antimony, respectively. Precision of the technique was assessed with the use of artificially prepared water samples.

  10. A study of mechanism of nickel interferences in hydride generation atomic absorption spectrometric determination of arsenic and antimony

    NASA Astrophysics Data System (ADS)

    Henden, Emur; İşlek, Yasemin; Kavas, Miray; Aksuner, Nur; Yayayürük, Onur; Çiftçi, Tülin Deniz; İlktaç, Raif

    2011-11-01

    Studies have been carried out to clarify the mechanism of nickel interferences in the hydride generation atomic absorption spectrometric determination of arsenic and antimony. The most serious nickel interferences are observed when nickel/nickel boride nanoparticles are produced during NaBH 4 reduction. In this study these particles have been observed to have diameters of less than 40 nm and sorb As(III), As(V) and Sb(III) species rather than arsine and stibine generated as so far assumed. Bulk chemical composition and surface structure of these nanoparticles were studied and it was found that if the NaBH 4 reduction is carried out while passing nitrogen through the solution the black nanoparticles were composed of Ni 2B and, if the reduction is carried out under air the black nanoparticles were found to consist of Ni 3B or possibly a mixture of Ni(0) and Ni 2B. Surface analysis studies with scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray photoelectron spectrometry and X-ray diffraction analysis have shown that the particles have amorphous structure consisting of Ni(0), Ni 2B, Ni 3B and Ni(OH) 2. However, sorption studies have shown that Ni(0) and Ni(OH) 2 do not sorb the analyte ions and arsine and stibine significantly.

  11. An improved method for the determination of trace levels of arsenic and antimony in geological materials by automated hydride generation-atomic absorption spectroscopy

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    An improved, automated method for the determination of arsenic and antimony in geological materials is described. After digestion of the material in sulfuric, nitric, hydrofluoric and perchloric acids, a hydrochloric acid solution of the sample is automatically mixed with reducing agents, acidified with additional hydrochloric acid, and treated with a sodium tetrahydroborate solution to form arsine and stibine. The hydrides are decomposed in a heated quartz tube in the optical path of an atomic absorption spectrometer. The absorbance peak height for arsenic or antimony is measured. Interferences that exist are minimized to the point where most geological materials including coals, soils, coal ashes, rocks and sediments can be analyzed directly without use of standard additions. The relative standard deviation of the digestion and the instrumental procedure is less than 2% at the 50 ??g l-1 As or Sb level. The reagent-blank detection limit is 0.2 ??g l-1 As or Sb. ?? 1982.

  12. Development of a non-chromatographic method for the speciation analysis of inorganic antimony in mushroom samples by hydride generation atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Sousa Ferreira, Hadla; Costa Ferreira, Sergio Luis; Cervera, M. Luisa; de la Guardia, Miguel

    2009-06-01

    A simple and sensitive method has been developed for the direct determination of toxic species of antimony in mushroom samples by hydride generation atomic fluorescence spectrometry (HG AFS). The determination of Sb(III) and Sb(V) was based on the efficiency of hydride generation employing NaBH 4, with and without a previous KI reduction, using proportional equations corresponding to the two different measurement conditions. The extraction efficiency of total antimony and the stability of Sb(III) and Sb(V) in different extraction media (nitric, sulfuric, hydrochloric, acetic acid, methanol and ethanol) were evaluated. Results demonstrated that, based on the extraction yield and the stability of extracts, 0.5 mol L - 1 H 2SO 4 proved to be the best extracting solution for the speciation analysis of antimony in mushroom samples. The limits of detection of the developed methodology were 0.6 and 1.1 ng g - 1 for Sb(III) and Sb(V), respectively. The relative standard derivation was 3.8% (14.7 ng g - 1 ) for Sb(V) and 5.1% (4.6 ng g - 1 ) for Sb(III). The recovery values obtained for Sb(III) and Sb(V) varied from 94 to 106% and from 98 to 105%, respectively. The method has been applied to determine Sb(III), Sb(V) and total Sb in five different mushroom samples; the Sb(III) content varied from 4.6 to 11.4 ng g - 1 and Sb(V) from 14.7 to 21.2 ng g - 1 . The accuracy of the method was confirmed by the analysis of a certified reference material of tomato leaves.

  13. Antimony Toxicity

    PubMed Central

    Sundar, Shyam; Chakravarty, Jaya

    2010-01-01

    Antimony toxicity occurs either due to occupational exposure or during therapy. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms. In addition antimony trioxide is possibly carcinogenic to humans. Improvements in working conditions have remarkably decreased the incidence of antimony toxicity in the workplace. As a therapeutic, antimony has been mostly used for the treatment of leishmaniasis and schistosomiasis. The major toxic side-effects of antimonials as a result of therapy are cardiotoxicity (~9% of patients) and pancreatitis, which is seen commonly in HIV and visceral leishmaniasis co-infections. Quality control of each batch of drugs produced and regular monitoring for toxicity is required when antimonials are used therapeutically. PMID:21318007

  14. Observations on the measurement of total antimony and antimony species in algae, plant and animal tissues.

    PubMed

    Foster, S; Maher, W; Krikowa, F; Telford, K; Ellwood, M

    2005-12-01

    This paper describes our experiences with undertaking measurements of total antimony and antimony speciation in algae, plant and animal tissues. Digestion with nitric acid alone is suitable to release antimony from animal tissues. When organisms have high silica contents, e.g. some plants and algae, the addition of tetrafluorboric acid is required to dissolve silica as some antimony is retained by silica in extracts. Antimony in digested extracts is present as Sb5+ and hydride generation procedures can be used to determine total antimony concentrations, as total antimony in extracts will not be under estimated. Relatively non-aggressive solvents such as water, dilute nitric acid, sodium hydroxide and enzymes remove highly variable amounts of antimony (2-84%) from algae, plant and animal tissues. Addition of Sb3+ and Sb5+ to NIST CRM 1572 Citrus Leaves, pre- and post-extraction with water showed that Sb3+ is oxidised to Sb5+ while Sb5+ is redistributed amongst binding sites giving rise to artefacts. DOLT-2 and algae extracts indicated the presence of only inorganic antimony. A moss sample had inorganic antimony and a number of unknown antimony species in extracts. Future studies should explore the nature of the binding of antimony in tissues as solvents commonly used to extract metals and metalloids from algae, plant and animal tissues are not appropriate. PMID:16307074

  15. Hydride generation in-atomizer collection atomic absorption spectrometry for the determination of antimony in acetic acid leachates from pewter cups.

    PubMed

    Dessuy, Morgana B; Kratzer, Jan; Vale, Maria Goreti R; Welz, Bernhard; Dědina, Jiří

    2011-12-15

    Antimony is one of the constituents of pewter, an alloy composed of a minimum of 90% tin with the balance being made up with copper, antimony and perhaps some bismuth. A method has been developed to determine Sb in acetic acid leachates from pewter cups. The employed instrumentation, an atomic absorption spectrometer, equipped with a quartz trap-and-atomizer device, is simple and relatively inexpensive with low running costs. Interferences due to the presence of tin and ways to control them were investigated in detail. The applied approach made possible to overcome potentially serious interference of Sn leached from the cup material (which was shown to take place in the atomizer), by a combination of (i) high concentration of HCl, which decreases the efficiency of stannane generation and (ii) in-atomizer collection. The resulting Sn tolerance limit was between 10 and 20 mg L(-1). The advantages of the in-atomizer collection are a lower tin interference in the atomizer, and a much better limit of detection (LOD), which makes possible reducing the atomization interference further by working with more diluted sample solutions. Besides the Sn interference, an interference of an unknown volatile compound transported to the atomizer together with stibine was identified in the measured sample solutions. This interference could be controlled using the analyte addition technique. The applicability of the method was tested on solutions containing a wide range of interferents leached from the pewter cups, obtained at leaching times between 1 and 24h. The LOD in the sample solutions was found to be 0.03 μg L(-1) Sb. PMID:22099676

  16. Antimony trioxide

    Integrated Risk Information System (IRIS)

    Antimony trioxide ; CASRN 1309 - 64 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  17. Hydriding process

    DOEpatents

    Raymond, J.W.; Taketani, H.

    1973-12-01

    BS>A method is described for hydriding a body of a Group IV-B metal, preferably zirconium, to produce a crack-free metal-hydride bedy of high hydrogen content by cooling the body at the beta to beta + delta boundary, without further addition of hydrogen, to precipitate a fine-grained delta-phase metal hydride in the beta + delta phase region and then resuming the hydriding, preferably preceded by a reheating step. (Official Gazette)

  18. Antimony: a flame fighter

    USGS Publications Warehouse

    Wintzer, Niki E.; Guberman, David E.

    2015-01-01

    In the 11th century, the word antimonium was used by medieval scholar Constantinus Africanus, but antimony metal was not isolated until the 16th century by Vannoccio Biringuccio, an Italian metallurgist. In the early 18th century, chemist Jons Jakob Berzelius chose the periodic symbol for antimony (Sb) based on stibium, which is the Latin name for stibnite.

  19. Hydride compositions

    DOEpatents

    Lee, Myung W.

    1995-01-01

    A composition for use in storing hydrogen, and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the hydrogen equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to hydrogen and then heating at a temperature below the softening temperature of any of the. constituents so that their chemical and structural integrity is preserved. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P.sub.H.sbsb.2 and determining H/M from the isothermic function of the composition.

  20. Hydride compositions

    DOEpatents

    Lee, Myung, W.

    1994-01-01

    Disclosed are a composition for use in storing hydrogen and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the H equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to H, and then heating below the softening temperature of any of the constituents. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P{sub H}{sub 2} and determining H/M from the isothermic function of the composition.

  1. Antimony and arsenic biogeochemistry in the East China Sea

    NASA Astrophysics Data System (ADS)

    Ren, Jing-Ling; Zhang, Xu-Zhou; Sun, You-Xu; Liu, Su-Mei; Huang, Daji; Zhang, Jing

    2016-02-01

    The biogeochemical cycles of the metalloid elements arsenic and antimony in the East China Sea (ECS), one of the most important marginal seas for western Pacific, were examined in May 2011. Dissolved inorganic arsenic (As(V) and As(III)) and antimony (Sb(V) and Sb(III)) species were determined by selective hydride generation-atomic fluorescence spectrometry (HG-AFS). Results show that total dissolved inorganic arsenic (TDIAs; [TDIAs]=[As(V)]+[As(III)]) were moderately depleted in the surface water and enriched in the deep water. Arsenite (As(III)) showed different vertical profiles with that of TDIAs, with significant surface enrichment in the middle shelf region where the concentrations of phosphate were extremely low. Speciation of dissolved arsenic was subtly controlled by the stoichiometric molar ratio of arsenate (As(V)) to phosphate. The average As(V)/P ratio for the ECS in spring 2011 was 10.8×10-3, which is higher than previous results and indicates the arsenate stress. The concentrations of total dissolved inorganic antimony (TDISb; [TDISb]=[Sb(V)]+[Sb(III)]) were high near the Changjiang Estuary and the coastal area of Hangzhou Bay and decreased moderately off the coast. TDISb displayed moderate conservative behavior in the ECS that confirms by the correlations with salinity and dissolved aluminum. Different with that of As(III), antimonite (Sb(III)) concentrations were extremely lower in the ECS, with relative higher concentration appeared at the bottom layer which indicates the contribution from sediment-water interface. A preliminary box model was established to estimate the water-mass balance and antimony budgets for the ECS. Compared with other areas in the world, the concentrations of dissolved inorganic arsenic and antimony in the ECS remain at natural levels.

  2. Hydride compressor

    DOEpatents

    Powell, James R.; Salzano, Francis J.

    1978-01-01

    Method of producing high energy pressurized gas working fluid power from a low energy, low temperature heat source, wherein the compression energy is gained by using the low energy heat source to desorb hydrogen gas from a metal hydride bed and the desorbed hydrogen for producing power is recycled to the bed, where it is re-adsorbed, with the recycling being powered by the low energy heat source. In one embodiment, the adsorption-desorption cycle provides a chemical compressor that is powered by the low energy heat source, and the compressor is connected to a regenerative gas turbine having a high energy, high temperature heat source with the recycling being powered by the low energy heat source.

  3. Oligosilanylated Antimony Compounds

    PubMed Central

    2015-01-01

    By reactions of magnesium oligosilanides with SbCl3, a number of oligosilanylated antimony compounds were obtained. When oligosilanyl dianions were used, either the expected cyclic disilylated halostibine was obtained or alternatively the formation of a distibine was observed. Deliberate formation of the distibine from the disilylated halostibine was achieved by reductive coupling with C8K. Computational studies of Sb–Sb bond energies, barriers of pyramidal inversion at Sb, and the conformational behavior of distibines provided insight for the understanding of the spectroscopic properties. PMID:25937691

  4. Silica Embedded Metal Hydrides

    SciTech Connect

    Heung, L.K.; Wicks, G.G.

    1998-08-01

    A method to produce silica embedded metal hydride was developed. The product is a composite in which metal hydride particles are embedded in a matrix of silica. The silica matrix is highly porous. Hydrogen gas can easily reach the embedded metal hydride particles. The pores are small so that the metal hydride particles cannot leave the matrix. The porous matrix also protects the metal hydride particles from larger and reactive molecules such as oxygen, since the larger gas molecules cannot pass through the small pores easily. Tests show that granules of this composite can absorb hydrogen readily and withstand many cycles without making fines.

  5. Modelling of hydride cracking

    SciTech Connect

    Zheng, X.J.; Metzger, D.R.; Glinka, G.; Dubey, R.N.

    1996-12-01

    Zirconium alloys may be susceptible to hydride formation under certain service conditions, due to hydrogen diffusion and precipitation in the presence of stress concentrations and temperature gradients. The inhomogeneous brittle hydride platelets that form are modeled as plane defects of zero thickness, with fracture toughness less than that of the matrix. A fracture criterion based on sufficient energy and stress is proposed for either delayed hydride cracking (DHC) under constant loading conditions, or hydride cracking at rising loads, such as in a fracture toughness test. The fracture criterion is validated against available experimental data concerning initiation of hydride fracture in smooth specimens, and DHC in cracked specimens under various loading and temperature conditions.

  6. Hydride precipitation in titanium

    SciTech Connect

    Numakura, H.; Kowia, M.

    1984-10-01

    The crystal structure and morphology of hydride (deuteride) precipitates are investigated on ..cap alpha..-titanium specimens containing 1-3 at.% H or D by transmission electron microscopy. The hydride is found to have a face-centered tetragonal structure (c/a = 1.09) with an ordered arrangement of hydrogen, being isomorphous to ..gamma..-zirconium hydride. Two types of precipitation mode are observed with the habit planes (0110) and near (0225).

  7. Extraction of antimony with tertiary amines.

    PubMed

    Alian, A; Sanad, W

    1967-06-01

    The extractability of antimony(III) and (V) with tridodecylamine from various aqueous solutions is reported. Extraction from nitric and hydrofluoric acid solutions is low, but extraction from sulphuric, hydrochloric and hydrobromic solutions is high. Antimony-(III) can be separated from antimony(V) in 7M nitric acid or 0.64M hydrobromic acid. The extraction of antimony from hydrochloric acid solutions in methanol, ethanol, and acetone-water mixtures is greater than from pure aqueous solutions of the same acidity. The elements from which antimony can be separated with tertiary amines are given. PMID:18960147

  8. Mineral Resource of the Month: Antimony

    USGS Publications Warehouse

    Guberman, David E.

    2015-01-01

    Antimony is a lustrous silvery-white semimetal or metalloid. Archaeological and historical studies indicate that antimony and its mineral sulfides have been used by humans for at least six millennia. The alchemist Basil Valentine is sometimes credited with “discovering” the element; he described the extraction of metallic antimony from stibnite in his treatise “The Triumphal Chariot of Antimony,” published sometime between 1350 and 1600. In the early 18th century, Jöns Jakob Berzelius chose the periodic symbol for antimony (Sb) based on stibium, which is the Latin name for stibnite.

  9. Hysteresis in Metal Hydrides.

    ERIC Educational Resources Information Center

    Flanagan, Ted B., And Others

    1987-01-01

    This paper describes a reproducible process where the irreversibility can be readily evaluated and provides a thermodynamic description of the important phenomenon of hysteresis. A metal hydride is used because hysteresis is observed during the formation and decomposition of the hydride phase. (RH)

  10. Metal hydride heat pump

    SciTech Connect

    Nishizaki, T.; Miyamoto, K.; Miyamoto, M.; Nakata, Y.; Yamaji, K.; Yoshida, K.

    1983-12-27

    A metal hydride heat pump is disclosed comprising a first and a second heat medium receptacle having heat media flowing therein and a plurality of closed vessels each containing a hydrogen gas atmosphere and divided into a first chamber having a first metal hydride filled therein and a second chamber having a second metal hydride filled therein. The first and second chambers of each closed vessel are made to communicate with each other so that hydrogen gas passes from one chamber to the other but the metal hydrides do not, and a group of the first chambers of the closed vessels being located within the first heat medium receptacle and a group of the second chambers of the closed vessels being located within the second heat medium receptacle, whereby heat exchange is carried out between the heat media in the first and second heat medium receptacles and the first and second metal hydrides through the external walls of the closed vessels.

  11. 40 CFR 421.140 - Applicability: Description of the primary antimony subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary antimony subcategory. 421.140 Section 421.140 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Antimony Subcategory § 421.140 Applicability: Description of the primary antimony... antimony at primary antimony facilities....

  12. 40 CFR 421.140 - Applicability: Description of the primary antimony subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary antimony subcategory. 421.140 Section 421.140 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Antimony Subcategory § 421.140 Applicability: Description of the primary antimony... antimony at primary antimony facilities....

  13. 40 CFR 421.140 - Applicability: Description of the primary antimony subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary antimony subcategory. 421.140 Section 421.140 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Antimony Subcategory § 421.140 Applicability: Description of the primary antimony... antimony at primary antimony facilities....

  14. Speciation analysis of inorganic antimony in sediment samples from São Paulo Estuary, Bahia State, Brazil.

    PubMed

    Silva, Mario Marques; Leao, Danilo Junqueira; Moreira, Ícaro Thiago Andrade; de Oliveira, Olívia Maria Cordeiro; de Souza Queiroz, Antônio Fernando; Ferreira, Sergio Luis Costa

    2015-06-01

    This paper proposes an extraction procedure for the speciation analysis of inorganic antimony in sediment samples using slurry sampling and hydride generation atomic absorption spectrometry. The optimization step of extraction of the species was performed employing a full two-level factorial design (2(3)) and a Box-Behnken matrix where the studied factors in both experiments were: extraction temperature, ultrasonic radiation time, and hydrochloric acid concentration. Using the optimized conditions, antimony species can be extracted in closed system using a 6.0 M hydrochloric acid solution at temperature of 70 °C and an ultrasonic radiation time of 20 min. The determination of antimony is performed in presence of 2.0 M hydrochloric acid solution using HG AAS by external calibration technique with limits of detection and quantification of 5.6 and 19.0 ng L(-1) and a precision expressed as relative standard deviation of 5.6 % for an antimony solution with concentration of 6.0 μg L(-1). The accuracy of the method was confirmed by analysis of two certified reference materials of sediments. For a sample mass of sediment of 0.20 g, the limits of detection and quantification obtained were 0.70 and 2.34 ng g(-1), respectively. During speciation analysis, antimony(III) is determined in presence of citrate, while total antimony is quantified after reduction of antimony(V) to antimony(III) using potassium iodide and ascorbic acid. The method was applied for analysis of six sediment samples collected in São Paulo Estuary (Bahia State, Brazil). The antimony contents obtained varied from 45.3 to 89.1 ng g(-1) for total antimony and of 17.7 to 31.4 ng g(-1) for antimony(III). These values are agreeing with other data reported by the literature for this element in uncontaminated sediment samples. PMID:25537284

  15. Nickel Hydride Complexes.

    PubMed

    Eberhardt, Nathan A; Guan, Hairong

    2016-08-10

    Nickel hydride complexes, defined herein as any molecules bearing a nickel hydrogen bond, are crucial intermediates in numerous nickel-catalyzed reactions. Some of them are also synthetic models of nickel-containing enzymes such as [NiFe]-hydrogenase. The overall objective of this review is to provide a comprehensive overview of this specific type of hydride complexes, which has been studied extensively in recent years. This review begins with the significance and a very brief history of nickel hydride complexes, followed by various methods and spectroscopic or crystallographic tools used to synthesize and characterize these complexes. Also discussed are stoichiometric reactions involving nickel hydride complexes and how some of these reactions are developed into catalytic processes. PMID:27437790

  16. Mineral resource of the month: antimony

    USGS Publications Warehouse

    U.S. Geological Survey

    2008-01-01

    The article describes the characteristics and industrial uses of antimony. Antimony, which is produced as a byproduct of mining other metals such as gold, lead or silver, is used in everything from flame retardants, batteries, ceramics and glass. It is also used in glass for television picture tubes, computer monitors, pigments and catalysts.

  17. ANTIMONY REMOVAL TECHNOLOGY FOR MINING INDUSTRY WASTEWATERS

    EPA Science Inventory

    This report assessed the current state-of-the-art of antimony removal technology for mining industry wastewaters. Through literature review and personal interviews, it was found that most mines and mills reporting significant quantities of antimony in their raw wastewater had app...

  18. Lightweight hydride storage materials

    SciTech Connect

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.

    1995-09-01

    The need for lightweight hydrides in vehicular applications has prompted considerable research into the use of magnesium and its alloys. Although this earlier work has provided some improved performance in operating temperature and pressure, substantial improvements are needed before these materials will significantly enhance the performance of an engineered system on a vehicle. We are extending the work of previous investigators on Mg alloys to reduce the operating temperature and hydride heat of formation in light weight materials. Two important results will be discussed in this paper: (1) a promising new alloy hydride was found which has better pressure-temperature characteristics than any previous Mg alloy and, (2) a new fabrication process for existing Mg alloys was developed and demonstrated. The new alloy hydride is composed of magnesium, aluminum and nickel. It has an equilibrium hydrogen overpressure of 1.3 atm. at 200{degrees}C and a storage capacity between 3 and 4 wt.% hydrogen. A hydrogen release rate of approximately 5 x 10{sup -4} moles-H{sub 2}/gm-min was measured at 200{degrees}C. The hydride heat of formation was found to be 13.5 - 14 kcal/mole-H{sub 2}, somewhat lower than Mg{sub 2}Ni. The new fabrication method takes advantage of the high vapor transport of magnesium. It was found that Mg{sub 2}Ni produced by our low temperature process was better than conventional materials because it was single phase (no Mg phase) and could be fabricated with very small particle sizes. Hydride measurements on this material showed faster kinetic response than conventional material. The technique could potentially be applied to in-situ hydride bed fabrication with improved packing density, release kinetics, thermal properties and mechanical stability.

  19. 21 CFR 862.3110 - Antimony test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Antimony test system. 862.3110 Section 862.3110....3110 Antimony test system. (a) Identification. An antimony test system is a device intended to measure antimony, a heavy metal, in urine, blood, vomitus, and stomach contents. Measurements obtained by...

  20. 21 CFR 862.3110 - Antimony test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Antimony test system. 862.3110 Section 862.3110....3110 Antimony test system. (a) Identification. An antimony test system is a device intended to measure antimony, a heavy metal, in urine, blood, vomitus, and stomach contents. Measurements obtained by...

  1. 21 CFR 862.3110 - Antimony test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Antimony test system. 862.3110 Section 862.3110....3110 Antimony test system. (a) Identification. An antimony test system is a device intended to measure antimony, a heavy metal, in urine, blood, vomitus, and stomach contents. Measurements obtained by...

  2. 21 CFR 862.3110 - Antimony test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Antimony test system. 862.3110 Section 862.3110....3110 Antimony test system. (a) Identification. An antimony test system is a device intended to measure antimony, a heavy metal, in urine, blood, vomitus, and stomach contents. Measurements obtained by...

  3. 21 CFR 862.3110 - Antimony test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Antimony test system. 862.3110 Section 862.3110....3110 Antimony test system. (a) Identification. An antimony test system is a device intended to measure antimony, a heavy metal, in urine, blood, vomitus, and stomach contents. Measurements obtained by...

  4. Metal hydride heat pump system

    SciTech Connect

    Nishizaki, T.; Miyamoto, K.; Miyamoto, M.; Nakata, Y.; Yamaji, K.; Yoshida, K.

    1985-06-18

    A metal hydride heat pump system has a plurality of operating units, the metal hydride heat exchange medium of each operating unit be a combination of a first metal hydride having a lower equilibrium dissociation pressure at the operating temperature and a second metal hydride having a higher equilibrium dissociation pressure at the opening temperature and the metal hydrides being such that hydrogen can flow freely between the two metal hydrides, wherein the equilibrium dissociation pressure characteristics of one or both of the first and second metal hydrides in a given operating unit differ from those of one or both of the first and second metal hydrides in at least one other operating unit.

  5. Human biomonitoring of arsenic and antimony in case of an elevated geogenic exposure.

    PubMed Central

    Gebel, T W; Suchenwirth, R H; Bolten, C; Dunkelberg, H H

    1998-01-01

    Part of the northern Palatinate region in Germany is characterized by elevated levels of arsenic and antimony in the soil due to the presence of ore sources and former mining activities. In a biomonitoring study, 218 residents were investigated for a putative increased intake of these elements. Seventy-six nonexposed subjects in a rural region in south lower Saxony were chosen as the reference group. Urine and scalp hair samples were obtained as surrogates to determine the internal exposures to arsenic and antimony. The analyses were performed using graphite furnace atomic absorption spectrometry except for arsenic in urine, which was determined by the hydride technique. This method does not detect organoarsenicals from seafood, which are not toxicologically relevant. In the northern Palatinate subjects, slightly elevated arsenic contents in urine and scalp hair (presumably not hazardous) could be correlated with an increased arsenic content in the soil. On the other hand, the results did not show a correlation between the antimony contents in the soil of the housing area and those in urine and hair. Except for antimony in scalp hair, age tended to be associated with internal exposures to arsenic and antimony in both study groups. Consumption of seafood had a slight impact on the level of urinary arsenic, which is indicative of the presence of low quantities of inorganic arsenicals and dimethylarsinic acid in seafood. The arsenic and antimony contents in scalp hair were positively correlated with the 24-hr arsenic excretion in urine. However, antimony in scalp hair was not correlated with seafood consumption as was arsenic in scalp hair and in urine. This indicated the existence of unidentified common pathways of exposure contributing to the alimentary body burden. Short time peaks in the 24-hr excretion of arsenic in urine, which could not be assigned to a high consumption of seafood, were detected for six study participants. This suggests that additional factors

  6. Hydrated hydride anion clusters

    NASA Astrophysics Data System (ADS)

    Lee, Han Myoung; Kim, Dongwook; Singh, N. Jiten; Kołaski, Maciej; Kim, Kwang S.

    2007-10-01

    On the basis of density functional theory (DFT) and high level ab initio theory, we report the structures, binding energies, thermodynamic quantities, IR spectra, and electronic properties of the hydride anion hydrated by up to six water molecules. Ground state DFT molecular dynamics simulations (based on the Born-Oppenheimer potential surface) show that as the temperature increases, the surface-bound hydride anion changes to the internally bound structure. Car-Parrinello molecular dynamics simulations are also carried out for the spectral analysis of the monohydrated hydride. Excited-state ab initio molecular dynamics simulations show that the photoinduced charge-transfer-to-solvent phenomena are accompanied by the formation of the excess electron-water clusters and the detachment of the H radical from the clusters. The dynamics of the detachment process of a hydrogen radical upon the excitation is discussed.

  7. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.

    1987-01-01

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  8. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

    1986-08-27

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  9. Antimony and silicon environments in antimony silicate glasses

    SciTech Connect

    Mee, M.; Davies, B.C.; Orman, R.G.; Thomas, M.F.; Holland, D.

    2010-09-15

    Antimony silicate glasses, of general formula xSb{sub 2}O{sub 3}.(1-x)SiO{sub 2} (0.1{<=}x{<=}0.78), have been prepared by melt-quenching and their structures studied using {sup 29}Si MAS NMR spectroscopy, {sup 121}Sb Moessbauer spectroscopy and Raman spectroscopy. Oxidation during melting gives rise to Sb{sup 5+} in concentrations, which increase linearly with x to give a value of {approx}10% when x=0.78. {sup 121}Sb Moessbauer spectra show Moessbauer shifts and quadrupole splittings consistent with Sb{sup 3+} in a [:SbO{sub 3}] trigonal pyramid, similar to that in crystalline Sb{sub 2}O{sub 3}. A broad band in the Raman spectrum at {approx}410 cm{sup -1} is due to the vibrations of such a unit. The dependence of the silicon Q{sup n} speciation on x can be interpreted by the formation of Sb-O-Sb links possibly to form rings of 4 [:SbO{sub 3}] units such as are found in valentinite. - Graphical abstract: Antimony silicate glasses have been shown to contain Sb{sup 3+} in [:SbO{sub 3}] trigonal pyramid units using {sup 121}Sb Moessbauer spectroscopy and Raman spectroscopy. {sup 29}Si magic-angle-spinning NMR has shown silicon Q{sup n} speciation which can be interpreted as formation of rings of 4 [:SbO{sub 3}] units such as are found in valentinite.

  10. Antimony-doped graphene nanoplatelets

    PubMed Central

    Jeon, In-Yup; Choi, Min; Choi, Hyun-Jung; Jung, Sun-Min; Kim, Min-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Yoo, Seonyoung; Kim, Guntae; Jeong, Hu Young; Park, Noejung; Baek, Jong-Beom

    2015-01-01

    Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalysts. PMID:25997811

  11. Speciation of antimony in polyethylene terephthalate bottles

    SciTech Connect

    Martin, R.R.; Ablett, J.; Shotyk, W.S.; Naftel, S.; Northrup, P.

    2009-12-18

    Antimony contamination has been reported in drinking water from polyethylene terephthalate (PET) bottles. Micro-X-ray fluorescence (XRF) analysis has been used to identify the distribution and chemical form of residual antimony used as a catalyst in the manufacture of PET bottles. The results are consistent with clusters of Sb(III) having dimensions of the order of tens of micrometers, clearly showing the ability of synchrotron radiation analyses to both map elemental distribution and determine oxidation state.

  12. Superstoichiometric hydride of zirconium

    SciTech Connect

    Kupryazhkin, A.Ya.; Shchepetkin, A.A.; Zabolotskaya, E.V.; Pletnev, R.N.; Alyamovskii, S.I.; Kitaev, G.A.

    1987-12-01

    Superstoichiometric hydrides of zirconium have been obtained all the way up to the composition ZrH/sub 2.4/ by additional hydrogenation of ZrH/sub 2/ as a result of redistribution of hydrogen atoms between t- and o-positions. In the preparation of the hydrides the authors used zirconium iodide with an impurity content no greater than 10/sup -2/ to 10/sup -2/ mole %; the hydrogen and helium used in this work had a minimum purity of 99.95%. The content of hydrogen in the specimens was determined by a volumetric method. The x-ray diffraction analysis was performed in a DRON-2.0 unit (CuK/sub ..cap alpha../ radiation). PMR spectra were recorded in a broad-line spectrometer in the temperature interval 150-450 K.

  13. Hydrogen Outgassing from Lithium Hydride

    SciTech Connect

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  14. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  15. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  16. 17. VIEW OF HYDRIDING SYSTEM IN BUILDING 881. THE HYDRIDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF HYDRIDING SYSTEM IN BUILDING 881. THE HYDRIDING SYSTEM WAS PART OF THE FAST ENRICHED URANIUM RECOVERY PROCESS. (11/11/59) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  17. 40 CFR 721.1930 - Butanoic acid, antimony (3=) salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butanoic acid, antimony (3=) salt. 721... Substances § 721.1930 Butanoic acid, antimony (3=) salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as butanoic acid, antimony (3=) salt (PMN...

  18. 40 CFR 721.1930 - Butanoic acid, antimony (3=) salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Butanoic acid, antimony (3=) salt. 721... Substances § 721.1930 Butanoic acid, antimony (3=) salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as butanoic acid, antimony (3=) salt (PMN...

  19. 40 CFR 721.1930 - Butanoic acid, antimony (3=) salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Butanoic acid, antimony (3=) salt. 721... Substances § 721.1930 Butanoic acid, antimony (3=) salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as butanoic acid, antimony (3=) salt (PMN...

  20. 40 CFR 721.1930 - Butanoic acid, antimony (3=) salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Butanoic acid, antimony (3=) salt. 721... Substances § 721.1930 Butanoic acid, antimony (3=) salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as butanoic acid, antimony (3=) salt (PMN...

  1. 40 CFR 721.1930 - Butanoic acid, antimony (3=) salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Butanoic acid, antimony (3=) salt. 721... Substances § 721.1930 Butanoic acid, antimony (3=) salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as butanoic acid, antimony (3=) salt (PMN...

  2. 40 CFR 721.10713 - Antimony tris(dialkyldithiocarbamate) (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Antimony tris(dialkyldithiocarbamate... Specific Chemical Substances § 721.10713 Antimony tris(dialkyldithiocarbamate) (generic). (a) Chemical... as antimony tris(dialkyldithiocarbamate) (PMN P-13-259) is subject to reporting under this...

  3. 40 CFR 721.10712 - Antimony tris(dialkyldithiocarbamate) (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Antimony tris(dialkyldithiocarbamate... Specific Chemical Substances § 721.10712 Antimony tris(dialkyldithiocarbamate) (generic). (a) Chemical... as antimony tris(dialkyldithiocarbamate) (PMN P-13-217) is subject to reporting under this...

  4. 40 CFR 721.5547 - Antimony double oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Antimony double oxide. 721.5547... Substances § 721.5547 Antimony double oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as antimony double oxide (PMNs P-95-677 and...

  5. 40 CFR 721.5547 - Antimony double oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Antimony double oxide. 721.5547... Substances § 721.5547 Antimony double oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as antimony double oxide (PMNs P-95-677 and...

  6. 40 CFR 721.5547 - Antimony double oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Antimony double oxide. 721.5547... Substances § 721.5547 Antimony double oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as antimony double oxide (PMNs P-95-677 and...

  7. 40 CFR 721.5547 - Antimony double oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Antimony double oxide. 721.5547... Substances § 721.5547 Antimony double oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as antimony double oxide (PMNs P-95-677 and...

  8. 40 CFR 721.5547 - Antimony double oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Antimony double oxide. 721.5547... Substances § 721.5547 Antimony double oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as antimony double oxide (PMNs P-95-677 and...

  9. Uranium thorium hydride nuclear fuel

    SciTech Connect

    Simnad, M.T.

    1985-01-15

    A nuclear fuel includes uranium dispersed within a thorium hydride matrix. The uranium may be in the form of particles including fissile and non-fissile isotopes. Various hydrogen to thorium ratios may be included in the matrix. The matrix with the fissile dispersion may be used as a complete fuel for a metal hydride reactor or may be combined with other fuels.

  10. Metal hydrides as electrode/catalyst materials for oxygen evolution/reduction in electrochemical devices

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); Halpert, Gerald (Inventor); Fultz, Brent (Inventor); Witham, Charles K. (Inventor); Bowman, Robert C. (Inventor); Hightower, Adrian (Inventor)

    1997-01-01

    An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  11. Dimensionally stable metallic hydride composition

    DOEpatents

    Heung, Leung K.

    1994-01-01

    A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.

  12. The Membrane Electrowinning Separation of Antimony from a Stibnite Concentrate

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Guang; Yang, Sheng-Hai; Tang, Chao-Bo

    2010-06-01

    The main purpose of this study was to characterize and to extract antimony from a stibnite concentrate through electrowinning. This article reports an account of a study conducted on the optimization of the process parameters for antimony pentachloride circular leaching, purification, and electrowinning of antimony from antimony trichloride solution. The effect of electrowinning parameters, such as antimony and sodium chloride concentration in the catholyte, temperature, current density, polar distance, etc., on the voltage requirement and the current efficiency (CE) of antimony electrodeposition was explored. A maximum CE of more than 97 pct was attained with a catholyte composition of 70-g/L antimony, 25-g/L NaCl, 4.5-mol/L hydrogen ion concentration, with an anolyte composition of 40-g/L antimony trichloride at a temperature of 328 K (55 °C), a 4-cm polar distance, and a cathode current density of 200 A/m2. Under the optimized conditions, the CE was more than 97 pct, and a 99.98 pct antimony plate was obtained on the cathode. The chemical content analysis of the resulting anolyte was indicated to be 97 pct antimony pentachloride and 3 pct antimony trichloride, which could be recycled to leaching tank as the leaching agent.

  13. Microbial antimony biogeochemistry: Enzymes, regulation, and related metabolic pathways

    USGS Publications Warehouse

    Li, Jingxin; Qian Wang; Oremland, Ronald S.; Kulp, Thomas R.; Rensing, Christopher; Wang, Gejiao

    2016-01-01

    Antimony (Sb) is a toxic metalloid that occurs widely at trace concentrations in soil, aquatic systems, and the atmosphere. Nowadays, with the development of its new industrial applications and the corresponding expansion of antimony mining activities, the phenomenon of antimony pollution has become an increasingly serious concern. In recent years, research interest in Sb has been growing and reflects a fundamental scientific concern regarding Sb in the environment. In this review, we summarize the recent research on bacterial antimony transformations, especially those regarding antimony uptake, efflux, antimonite oxidation, and antimonate reduction. We conclude that our current understanding of antimony biochemistry and biogeochemistry is roughly equivalent to where that of arsenic was some 20 years ago. This portends the possibility of future discoveries with regard to the ability of microorganisms to conserve energy for their growth from antimony redox reactions and the isolation of new species of “antimonotrophs.”

  14. Microbial Antimony Biogeochemistry: Enzymes, Regulation, and Related Metabolic Pathways.

    PubMed

    Li, Jingxin; Wang, Qian; Oremland, Ronald S; Kulp, Thomas R; Rensing, Christopher; Wang, Gejiao

    2016-09-15

    Antimony (Sb) is a toxic metalloid that occurs widely at trace concentrations in soil, aquatic systems, and the atmosphere. Nowadays, with the development of its new industrial applications and the corresponding expansion of antimony mining activities, the phenomenon of antimony pollution has become an increasingly serious concern. In recent years, research interest in Sb has been growing and reflects a fundamental scientific concern regarding Sb in the environment. In this review, we summarize the recent research on bacterial antimony transformations, especially those regarding antimony uptake, efflux, antimonite oxidation, and antimonate reduction. We conclude that our current understanding of antimony biochemistry and biogeochemistry is roughly equivalent to where that of arsenic was some 20 years ago. This portends the possibility of future discoveries with regard to the ability of microorganisms to conserve energy for their growth from antimony redox reactions and the isolation of new species of "antimonotrophs." PMID:27342551

  15. Vacuum Evaporation Technology for Treating Antimony-Rich Anode Slime

    NASA Astrophysics Data System (ADS)

    Qiu, Keqiang; Lin, Deqiang; Yang, Xuelin

    2012-11-01

    A vacuum evaporation technology for treating antimony-rich anode slime was developed in this work. Experiments were carried out at temperatures from 873 K to 1073 K and residual gas pressures from 50 Pa to 600 Pa. During vacuum evaporation, silver from the antimony-rich anode slime was left behind in the distilland in a silver alloy containing antimony and lead, and antimony trioxide was evaporated. The experimental results showed that 92% by weight of antimony can be removed, and the silver content in the alloy was up to 12.84%. The antimony trioxide content in the distillate was more than 99.7%, and the distillate can be used directly as zero-grade antimony trioxide (China standard).

  16. Development of metal hydride composites

    SciTech Connect

    Congdon, J.W.

    1992-12-01

    Most of current hydride technology at Savannah River Site is based on beds of metal hydride powders; the expansion upon hydridation and the cycling results in continued breakdown into finer particles. Goal is to develop a composite which will contain the fines in a dimensionally stable matrix, for use in processes which require a stable gas flow through a hydride bed. Metal hydride composites would benefit the advanced Thermal Cycling Absorption process (hydrogen isotope separation), and the Replacement Tritium Facility (storage, pumping, compression, purification of hydrogen isotopes). These composites were fabricated by cold compaction of a mixture of metal hydride granules and coarse copper powder; the porosity in the granules was introduced by means of ammonium carbonate. The composite pellets were cycled 138 times in hydrogen with the loss of LANA0.75 (LaNi{sub 4.25}Al{sub 0.75}) limited to the surface. Vacuum sintering can provide additional strength at the edges. Without a coating, the metal hydride particles exposed at the pellet surface can be removed by cycling several times in hydrogen.

  17. Thank God for Babel: Analysis, Articulation, Antimony.

    ERIC Educational Resources Information Center

    Nyberg, David

    1981-01-01

    Three approaches to philosophical inquiry (analysis, articulation, antimony) are explored in a commentary on "Philosophy and Education: Eightieth Yearbook of the National Society for the Study of Education." A discussion of the sometimes-contradictory school role in providing both educational excellence and socialization illustrates how these…

  18. Arsenic and Antimony Transporters in Eukaryotes

    PubMed Central

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  19. Antimony isotopic composition in river waters affected by ancient mining activity.

    PubMed

    Resongles, Eléonore; Freydier, Rémi; Casiot, Corinne; Viers, Jérôme; Chmeleff, Jérôme; Elbaz-Poulichet, Françoise

    2015-11-01

    In this study, antimony (Sb) isotopic composition was determined in natural water samples collected along two hydrosystems impacted by historical mining activities: the upper Orb River and the Gardon River watershed (SE, France). Antimony isotope ratio was measured by HG-MC-ICP-MS (Hydride Generation Multi-Collector Inductively Coupled Plasma Mass Spectrometer) after a preconcentration and purification step using a new thiol-cellulose powder (TCP) procedure. The external reproducibility obtained for δ(123)Sb measurements of our in-house Sb isotopic standard solution and a certified reference freshwater was 0.06‰ (2σ). Significant isotopic variations were evident in surface waters from the upper Orb River (-0.06‰≤δ(123)Sb≤+0.11‰) and from the Gardon River watershed (+0.27‰≤δ(123)Sb≤+0.83‰). In particular, streams that drained different former mining sites exploited for Sb or Pb-Zn exhibited contrasted Sb isotopic signature, that may be related to various biogeochemical processes occurring during Sb transfer from rocks, mine wastes and sediments to the water compartment. Nevertheless, Sb isotopic composition appeared to be stable along the Gardon River, which might be attributed to the conservative transport of Sb at distance from mine-impacted streams, due to the relative mobile behavior of Sb(V) in natural oxic waters. This study suggests that Sb isotopic composition could be a useful tool to track pollution sources and/or biogeochemical processes in hydrologic systems. PMID:26452900

  20. Erbium hydride decomposition kinetics.

    SciTech Connect

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  1. Metallurgy of rechargeable hydrides

    SciTech Connect

    Rudman, P.S.; Sandrock, G.D.

    1982-01-01

    Thermodynamic principles of metal-hydrogen (M-H) systems are reviewed, and the theory and practice of M-H alloys are detailed. Pseudobinary systems, phase transformations, and metastability are briefly discussed. The LaNi5-H system is used to examine plateau slope and hysteresis in M-H alloy formation, and the rules of simple averaging and reversed stability are assessed with respect to their usefulness in predicting the behavior of such systems. The crystal structure of metal hydrides is addressed, including AB, AB2, and AB5 structure. Finally, the use of ternary substitutional alloying in controlling the thermodynamic properties of M-H systems is discussed, illustrating the substitution of copper for nickel in LaN5 and the dependence of the equilibrium pressure on the unit cell volume of various CaCu5 type compounds.

  2. Complex Hydrides for Hydrogen Storage

    SciTech Connect

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  3. Hydride development for hydrogen storage

    SciTech Connect

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.; Yang, N.Y.C.; Sandrock, G.

    1996-10-01

    The purpose of this project is to develop and demonstrate improved hydride materials for hydrogen storage. The work currently is organized into four tasks: hydride development, bed fabrication, materials support for engineering systems, and IEA Annex 12 activities. At the present time, hydride development is focused on Mg alloys. These materials generally have higher weight densities for storing hydrogen than rare earth or transition metal alloys, but suffer from high operating temperatures, slow kinetic behavior and material stability. The authors approach is to study bulk alloy additions which increase equilibrium overpressure, in combination with stable surface alloy modification and particle size control to improve kinetic properties. This work attempts to build on the considerable previous research in this area, but examines specific alloy systems in greater detail, with attention to known phase properties and structures. The authors have found that specific phases can be produced which have significantly improved hydride properties compared to previous studies.

  4. Low density metal hydride foams

    DOEpatents

    Maienschein, Jon L.; Barry, Patrick E.

    1991-01-01

    Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.

  5. Bulk Hydrides and Delayed Hydride Cracking in Zirconium Alloys

    NASA Astrophysics Data System (ADS)

    Tulk, Eric F.

    Zirconium alloys are susceptible to engineering problems associated with the uptake of hydrogen throughout their design lifetime in nuclear reactors. Understanding of hydrogen embrittlement associated with the precipitation of brittle hydride phases and a sub-critical crack growth mechanism known as Delayed Hydride Cracking (DHC) is required to provide the engineering justifications for safe reactor operation. The nature of bulk zirconium hydrides at low concentrations (< 100 wt. ppm) is subject to several contradictory descriptions in the literature associated with the stability and metastability of gamma-phase zirconium hydride. Due to the differing volume expansions (12-17%) and crystallography between gamma and delta hydride phases, it is suggested that the matrix yield strength may have an effect on the phase stability. The present work indicated that although yield strength can shift the phase stability, other factors such as microstructure and phase distribution can be as or more important. This suggests that small material differences are the reason for the literature discrepancies. DHC is characterised by the repeated precipitation, growth, fracture of brittle hydride phases and subsequent crack arrest in the ductile metal. DHC growth is associated primarily the ability of hydrogen to diffuse under a stress induced chemical potential towards a stress raiser. Knowledge of the factors controlling DHC are paramount in being able to appropriately describe DHC for engineering purposes. Most studies characterise DHC upon cooling to the test temperature. DHC upon heating has not been extensively studied and the mechanism by which it occurs is somewhat controversial in the literature. This work shows that previous thermo-mechanical processing of hydrided zirconium can have a significant effect on the dissolution behaviour of the bulk hydride upon heating. DHC tests with gamma-quenched, furnace cooled-delta and reoriented bulk hydrides upon heating and DHC upon

  6. High Temperature Interactions of Antimony with Nickel

    SciTech Connect

    Marina, Olga A.; Pederson, Larry R.

    2012-07-01

    In this chapter, the surface and bulk interactions of antimony with the Ni-based anodes in solid oxide fuel cells (SOFC) will be discussed. High fuel flexibility is a significant advantage of SOFCs, allowing the direct use of fossil and bio fuels without a hydrogen separation unit. Synthesis gas derived from coal and biomass consists of a mixture of hydrogen, carbon monoxide, carbon dioxide, and steam, but finite amounts of tars and trace impurities such as S, Se, P, As, Sb, Cd, Pb, Cl, etc, are also always present. While synthesis gas is commonly treated with a series of chemical processes and scrubbers to remove the impurities, complete purification is not economical. Antimony is widely distributed in coals. During coal gasification antimony is volatilized, such that contact with the SOFC anodes and other SOFC parts, e.g., interconnect, current collecting wires, fuel gas supplying tubing, is most likely. This chapter addresses the following topics: high temperature Ni - Sb interactions; alteration phase, Ni3Sb, Ni5Sb2, NiSb, formation; thermochemical modeling; impact of Sb on the electrocatalytic activity of Ni toward the fuel oxidation and the presence of other impurities (sulfur, in particular); converted anode structural instability during long-term SOFC operation; comparison with nickel heterogeneous catalysts.

  7. Complex and liquid hydrides for energy storage

    NASA Astrophysics Data System (ADS)

    Callini, Elsa; Atakli, Zuleyha Özlem Kocabas; Hauback, Bjørn C.; Orimo, Shin-ichi; Jensen, Craig; Dornheim, Martin; Grant, David; Cho, Young Whan; Chen, Ping; Hjörvarsson, Bjørgvin; de Jongh, Petra; Weidenthaler, Claudia; Baricco, Marcello; Paskevicius, Mark; Jensen, Torben R.; Bowden, Mark E.; Autrey, Thomas S.; Züttel, Andreas

    2016-04-01

    The research on complex hydrides for hydrogen storage was initiated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized, and the knowledge regarding the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant portion of the research groups active in the field of complex hydrides is collaborators in the International Energy Agreement Task 32. This paper reports about the important issues in the field of complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and is an excellent summary of the recent achievements.

  8. Method of producing a chemical hydride

    DOEpatents

    Klingler, Kerry M.; Zollinger, William T.; Wilding, Bruce M.; Bingham, Dennis N.; Wendt, Kraig M.

    2007-11-13

    A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.

  9. Hydrogen, lithium, and lithium hydride production

    SciTech Connect

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  10. Vanadium hydride deuterium-tritium generator

    DOEpatents

    Christensen, Leslie D.

    1982-01-01

    A pressure controlled vanadium hydride gas generator to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  11. The exposure to and health effects of antimony

    PubMed Central

    Cooper, Ross G.; Harrison, Adrian P.

    2009-01-01

    Context: This minireview describes the health effects of antimony exposure in the workplace and the environment. Aim: To collate information on the consequences of occupational and environmental exposure to antimony on physiological function and well-being. Methods: The criteria used in the current minireview for selecting articles were adopted from proposed criteria in The International Classification of Functioning, Disability and Health. Articles were classified from an acute and chronic exposure and toxicity thrust. Results: The proportion of utilised and non-utilised articles was tabulated. Antimony toxicity is dependent on the exposure dose, duration, route (breathing, eating, drinking, or skin contact), other chemical exposures, age, sex, nutritional status, family traits, life style, and state of health. Chronic exposure to antimony in the air at levels of 9 mg/m3 may exacerbate irritation of the eyes, skin, and lungs. Long-term inhalation of antimony can potentiate pneumoconiosis, altered electrocardiograms, stomach pain, diarrhea, vomiting, and stomach ulcers, results which were confirmed in laboratory animals. Although there were investigations of the effect of antimony in sudden infant death syndrome, current findings suggest no link. Antimony trioxide exposure is predominant in smelters. Mining and exposure via glass working, soldering, and brazing are also important. Conclusion: Antimony has some useful but undoubtedly harmful effects on health and well-being and measures need to be taken to prevent hazardous exposure of the like. Its biological monitoring in the workplace is essential. PMID:20165605

  12. Characteristics and Applications of Metal Hydrides

    NASA Technical Reports Server (NTRS)

    Egan, G. J.; Lynch, F. E.

    1987-01-01

    Report discusses engineering principles of uses of metal hydrides in spacecraft. Metal hydrides absorb, store, pump, compress, and expand hydrogen gas. Additionally, they release or absorb sizeable amounts of heat as they form and decompose - property adapted for thermal-energy management or for propulsion. Describes efforts to: Identify heat sources and sinks suitable for driving metal hydride thermal cycles in spacecraft; develop concepts for hydride subsystems employing available heating and cooling methods; and produce data base on estimated sizes, masses, and performances of hydride devices for spacecraft.

  13. Undercooling and crystallization behaviour of antimony droplets

    NASA Technical Reports Server (NTRS)

    Graves, J. A.; Perepezko, J. H.

    1986-01-01

    The droplet emulsion technique is presently used to examine the undercooling and crystallization behavior of pure antimony. Control of droplet size and applied cooling rate allowed maximum undercooling to be extended from 0.08 to 0.23 T(m). A droplet coating was produced by means of emulsification which appears to furnish a favorable crystallographic matching for effective nucleation catalysis of a metastable simple cubic structure. Thermal analysis shows the melting temperature of the single cubic phase to be about 625 C.

  14. Cheaper Hydride-Forming Cathodes

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Blue, Gary

    1990-01-01

    Hydride-forming cathodes for electrochemical experiments made of materials or combinations of materials cheaper and more abundant than pure palladium, according to proposal. Concept prompted by needs of experimenters in now-discredited concept of electrochemical nuclear fusion, cathodes useful in other electrochemical applications involving generation or storage of hydrogen, deuterium, or tritium.

  15. Properties of nanoscale metal hydrides.

    PubMed

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption. PMID:19420657

  16. Antimony ore in the Fairbanks district, Alaska

    USGS Publications Warehouse

    Killeen, Pemberton Lewis; Mertie, John B., Jr.

    1951-01-01

    Antimony-bearing ores in the Fairbanks district, Alaska, are found principally in two areas, the extremities of which are at points 10 miles west and 23 miles northeast of Fairbanks; and one of two minor areas lies along this same trend 30 miles farther to the northeast. These areas are probably only local manifestations of mineralization that affected a much broader area and formed antimony-bearing deposits in neighboring districts, the closest of which is 50 miles away. The ores were exposed largely as a result of lode gold mining, but at two periods in the past, high prices for antimony ore warranted an independent production and about 2500 tons of stibnite ore was shipped. The sulfide deposits occupy the same fractures along which a gold-quartz mineralization of greater economic importance occurred; and both are probably genetically related to igneous rocks which intrude the schistose country rock. The sulfide is in part contemporaneous with some late-stage quartz in which it occurs as disseminated crystals; and in part the latest filling in the mineralized zones where it forms kidney-shaped masses of essentially solid sulfide. One extremely long mass must have contained nearly 100 tons of ore, but the average of the larger kidneys is closer to several tons. Much of the ore is stibnite, with quartz as a minor impurity, and assays show the tenor to vary from 40 to 65 percent antimony. Sulphantimonites are less abundant but likewise occur as disseminated crystals and as kidney-shaped bodies. Antimony oxides appear on the weathered surface and along fractures within the sulfide ore. Deposits containing either stibnite or sulphantimonite are known at more than 50 localities, but only eighteen have produced ore and the bulk of this came from the mines. The geology of the deposit, and the nature, extent, and period of the workings are covered in the detailed descriptions of individual occurrences. Several geologic and economic factors, which greatly affect

  17. Microstructure of surface cerium hydride growth sites

    SciTech Connect

    Brierley, Martin; Knowles, John; Montgomery, Neil; Preuss, Michael

    2014-05-15

    Samples of cerium were exposed to hydrogen under controlled conditions causing cerium hydride sites to nucleate and grow on the surface. The hydriding rate was measured in situ, and the hydrides were characterised using secondary ion mass spectrometry, scanning electron microscopy, and optical microscopy. The results show that the hydriding rate proceeded more quickly than earlier studies. Characterisation confirmed that the hydrogen is confined to the sites. The morphology of the hydrides was confirmed to be oblate, and stressed material was observed surrounding the hydride, in a number of cases lathlike features were observed surrounding the hydride sites laterally with cracking in the surface oxide above them. It is proposed that during growth the increased lattice parameter of the CeH{sub 2} induces a lateral compressive stress around the hydride, which relieves by the ca. 16% volume collapse of the γ-Ce to α-Ce pressure induced phase transition. Cracking of the surface oxide above the laths reduces the diffusion barrier to hydrogen reaching the metal/oxide interface surrounding the hydride site and contributes to the anisotropic growth of the hydrides.

  18. Selective determination of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by atomic-absorption spectrometry with a carbon-tube atomizer.

    PubMed

    Kamada, T; Yamamoto, Y

    1977-05-01

    The extraction behaviour of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of frameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of antimony(III) and differential determination of antimony(III) and antimony(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone, when the aqueous phase/solvent volume ratio is 50 ml/10 ml and the injection volume in the carbon tube is 20 mul, the sensitivity for antimony is 0.2 ng/ml for 1% absorption. The relative standard deviations are ca. 2%. Interferences by many metal ions can be prevented by masking with EDTA. The proposed methods have been applied satisfactorily to determination of antimony(III) and antimony(V) in various types of water. PMID:18962096

  19. Disposition of antimony in rhesus monkeys infected with Leishmania braziliensis and treated with meglumine antimoniate.

    PubMed

    Friedrich, Karen; Vieira, Flávia A; Porrozzi, Renato; Marchevsky, Renato S; Miekeley, Norbert; Grimaldi, Gabriel; Paumgartten, Francisco J R

    2012-01-01

    Antimony (Sb) disposition and toxicity was evaluated in Leishmania braziliensis-infected monkeys (Macaca mulatta) treated with a 21-d course of low (LOW) or standard (STD) meglumine antimoniate (MA) dosage regimens (5 or 20 mg Sb(V)/kg body weight/d im). Antimony levels in biological matrices were determined by inductively coupled plasma mass spectrometry (ICPMS), while on-line ion chromatography coupled to ICPMS was used to separate and quantify Sb species in plasma. Nadir Sb levels rose steadily from 19.6 ± 4 and 65.1 ± 17.4 ng/g, 24 h after the first injection, up to 27.4 ± 5.8 and 95.7 ± 6.6 ng/g, 24 h after the 21st dose in LOW and SDT groups, respectively. Subsequently, Sb plasma levels gradually declined with a terminal elimination phase half-life of 35.8 d. Antimony speciation in plasma on posttreatment days 1-9 indicated that as total Sb levels declined, proportion of Sb(V) remained nearly constant (11-20%), while proportion of Sb(III) rose from 5% (d 1) to 50% (d 9). Plasma [Sb]/erythrocyte [Sb] ratio was >1 until 12 h after dosing and reversed thereafter. Tissue Sb concentrations (posttreatment days 55 and 95) were as follows: >1000 ng/g in thyroid, nails, liver, gall bladder and spleen; >200 and <1000 ng/g in lymph nodes, kidneys, adrenals, bones, skeletal muscles, heart and skin; and <200 ng/g in various brain structures, thymus, stomach, colon, pancreas. and teeth. Results from this study are therefore consistent with view that Sb(V) is reduced to Sb(III), the active form, within cells from where it is slowly eliminated. Localization of Sb active forms in the thyroid gland and liver and the pathophysiological consequences of marked Sb accumulation in these tissues warrant further studies. PMID:22129235

  20. Tissue distribution of residual antimony in rats treated with multiple doses of meglumine antimoniate

    PubMed Central

    Coelho, Deise Riba; Miranda, Elaine Silva; Saint’Pierre, Tatiana Dillenburg; Paumgartten, Francisco José Roma

    2014-01-01

    Meglumine antimoniate (MA) and sodium stibogluconate are pentavalent antimony (SbV) drugs used since the mid-1940s. Notwithstanding the fact that they are first-choice drugs for the treatment of leishmaniases, there are gaps in our knowledge of their toxicological profile, mode of action and kinetics. Little is known about the distribution of antimony in tissues after SbV administration. In this study, we evaluated the Sb content of tissues from male rats 24 h and three weeks after a 21-day course of treatment with MA (300 mg SbV/kg body wt/d, subcutaneous). Sb concentrations in the blood and organs were determined by inductively coupled plasma-mass spectrometry. In rats, as with in humans, the Sb blood levels after MA dosing can be described by a two-compartment model with a fast (t1/2 = 0.6 h) and a slow (t1/2 >> 24 h) elimination phase. The spleen was the organ that accumulated the highest amount of Sb, while bone and thyroid ranked second in descending order of tissues according to Sb levels (spleen >> bone, thyroid, kidneys > liver, epididymis, lungs, adrenals > prostate > thymus, pancreas, heart, small intestines > skeletal muscle, testes, stomach > brain). The pathophysiological consequences of Sb accumulation in the thyroid and Sb speciation in the liver, thyroid, spleen and bone warrant further studies. PMID:25075781

  1. Rechargeable metal hydrides for spacecraft application

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  2. Metal hydride composition and method of making

    DOEpatents

    Congdon, James W.

    1995-01-01

    A dimensionally stable hydride composition and a method for making such a composition. The composition is made by forming particles of a metal hydride into porous granules, mixing the granules with a matrix material, forming the mixture into pellets, and sintering the pellets in the absence of oxygen. The ratio of matrix material to hydride is preferably between approximately 2:1 and 4:1 by volume. The porous structure of the granules accommodates the expansion that occurs when the metal hydride particles absorb hydrogen. The porous matrix allows the flow of hydrogen therethrough to contact the hydride particles, yet supports the granules and contains the hydride fines that result from repeated absorption/desorption cycles.

  3. Ten degree Kelvin hydride refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    A compact hydride absorption refrigeration system with few moving parts for 10 Kelvin operation is disclosed and comprises liquid hydrogen producing means in combination with means for solidifying and subliming the liquid hydrogen produced. The liquid hydrogen is sublimed at about 10 Kelvin. By using a symmetrical all hydrogen redundant loop system, a 10 Kelvin refrigeration system can be operated for many years with only a fraction of the power required for prior art systems.

  4. Complex hydrides for hydrogen storage

    DOEpatents

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  5. Hydrogen /Hydride/-air secondary battery

    NASA Technical Reports Server (NTRS)

    Sarradin, J.; Bronoel, G.; Percheron-Guegan, A.; Achard, J. C.

    1979-01-01

    The use of metal hydrides as negative electrodes in a hydrogen-air secondary battery seems promising. However, in an unpressurized cell, more stable hydrides that LaNi5H6 must be selected. Partial substitutions of nickel by aluminium or manganese increase the stability of hydrides. Combined with an air reversible electrode, a specific energy close to 100 Wh/kg can be expected.

  6. Use of reversible hydrides for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Darriet, B.; Pezat, M.; Hagenmuller, P.

    1980-01-01

    The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.

  7. Inhibited solid propellant composition containing beryllium hydride

    NASA Technical Reports Server (NTRS)

    Thompson, W. W. (Inventor)

    1978-01-01

    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  8. Vanadium hydride deuterium-tritium generator

    DOEpatents

    Christensen, L.D.

    1980-03-13

    A pressure controlled vanadium hydride gas generator was designed to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  9. Thermodynamic Hydricity of Transition Metal Hydrides.

    PubMed

    Wiedner, Eric S; Chambers, Matthew B; Pitman, Catherine L; Bullock, R Morris; Miller, Alexander J M; Appel, Aaron M

    2016-08-10

    Transition metal hydrides play a critical role in stoichiometric and catalytic transformations. Knowledge of free energies for cleaving metal hydride bonds enables the prediction of chemical reactivity, such as for the bond-forming and bond-breaking events that occur in a catalytic reaction. Thermodynamic hydricity is the free energy required to cleave an M-H bond to generate a hydride ion (H(-)). Three primary methods have been developed for hydricity determination: the hydride transfer method establishes hydride transfer equilibrium with a hydride donor/acceptor pair of known hydricity, the H2 heterolysis method involves measuring the equilibrium of heterolytic cleavage of H2 in the presence of a base, and the potential-pKa method considers stepwise transfer of a proton and two electrons to give a net hydride transfer. Using these methods, over 100 thermodynamic hydricity values for transition metal hydrides have been determined in acetonitrile or water. In acetonitrile, the hydricity of metal hydrides spans a range of more than 50 kcal/mol. Methods for using hydricity values to predict chemical reactivity are also discussed, including organic transformations, the reduction of CO2, and the production and oxidation of hydrogen. PMID:27483171

  10. LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells

    DOEpatents

    Bugga, R.V.; Fultz, B.; Bowman, R.; Surampudi, S.R.; Witham, C.K.; Hightower, A.

    1999-03-30

    An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.

  11. Fundamental experiments on hydride reorientation in zircaloy

    NASA Astrophysics Data System (ADS)

    Colas, Kimberly B.

    In the current study, an in-situ X-ray diffraction technique using synchrotron radiation was used to follow directly the kinetics of hydride dissolution and precipitation during thermomechanical cycles. This technique was combined with conventional microscopy (optical, SEM and TEM) to gain an overall understanding of the process of hydride reorientation. Thus this part of the study emphasized the time-dependent nature of the process, studying large volume of hydrides in the material. In addition, a micro-diffraction technique was also used to study the spatial distribution of hydrides near stress concentrations. This part of the study emphasized the spatial variation of hydride characteristics such as strain and morphology. Hydrided samples in the shape of tensile dog-bones were used in the time-dependent part of the study. Compact tension specimens were used during the spatial dependence part of the study. The hydride elastic strains from peak shift and size and strain broadening were studied as a function of time for precipitating hydrides. The hydrides precipitate in a very compressed state of stress, as measured by the shift in lattice spacing. As precipitation proceeds the average shift decreases, indicating average stress is reduced, likely due to plastic deformation and morphology changes. When nucleation ends the hydrides follow the zirconium matrix thermal contraction. When stress is applied below the threshold stress for reorientation, hydrides first nucleate in a very compressed state similar to that of unstressed hydrides. After reducing the average strain similarly to unstressed hydrides, the average hydride strain reaches a constant value during cool-down to room temperature. This could be due to a greater ease of deforming the matrix due to the applied far-field strain which would compensate for the strains due to thermal contraction. Finally when hydrides reorient, the average hydride strains become tensile during the first precipitation regime and

  12. Reduced Antimony Accumulation in ARM58-Overexpressing Leishmania infantum

    PubMed Central

    Schäfer, Carola; Tejera Nevado, Paloma; Zander, Dorothea

    2014-01-01

    Antimony-based drugs are still the mainstay of chemotherapy against Leishmania infections in many countries where the parasites are endemic. The efficacy of antimonials has been compromised by increasing numbers of resistant infections, the basis of which is not fully understood and likely involves multiple factors. By using a functional cloning strategy, we recently identified a novel antimony resistance marker, ARM58, from the parasite Leishmania braziliensis that protects the parasites against antimony-based antileishmanial compounds. Here we show that the Leishmania infantum homologue also confers resistance against antimony but not against other antileishmanial drugs and that its function depends critically on one of four conserved domains of unknown function. This critical domain requires at least two hydrophobic amino acids and is predicted to form a transmembrane structure. Overexpression of ARM58 in antimony-exposed parasites reduces the intracellular Sb accumulation by over 70%, indicating a role for ARM58 in Sb extrusion pathways, but without involvement of energy-dependent transporter proteins. PMID:24366738

  13. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials.

    PubMed

    Jiang, Xiuming; Wen, Shengping; Xiang, Guoqiang

    2010-03-15

    A simple, sensitive method for the speciation of inorganic antimony by cloud point extraction combined with electrothermal atomic absorption spectrometry (ETAAS) is presented and evaluated. The method based on the fact that formation of a hydrophobic complex of antimony(III) with ammonium pyrrolidine dithiocarbamate (APDC) at pH 5.0 and subsequently the hydrophobic complex enter into surfactant-rich phase, whereas antimony(V) remained in aqueous solutions. Antimony(III) in surfactant-rich phase was analyzed by ETAAS after dilution by 0.2 mL nitric acid in methanol (0.1M), and antimony(V) was calculated by subtracting antimony(III) from the total antimony after reducing antimony(V) to antimony(III) by l-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of APDC and Triton X-114, equilibrium temperature and incubation time, sample volume were investigated in detail. Under the optimum conditions, the detection limit (3 sigma) of the proposed method was 0.02 ng mL(-1) for antimony(III), and the relative standard deviation was 7.8% (c=1.0 ng mL(-1), n=7). The proposed method was successfully applied to speciation of inorganic antimony in the leaching solutions of different food packaging materials with satisfactory results. PMID:19853991

  14. Erbium hydride thermal desorption : controlling kinetics.

    SciTech Connect

    Ferrizz, Robert Matthew

    2007-08-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report show that hydride film processing parameters directly impact thermal stability. Issues to be addressed include desorption kinetics for dihydrides and trihydrides, and the effect of film growth parameters, loading parameters, and substrate selection on desorption kinetics.

  15. Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ball, James W.

    2003-01-01

    Hydride generation atomic absorption spectrometry (HGAAS) is a sensitive and selective method for the determination of total arsenic (arsenic(III) plus arsenic(V)) and arsenic(III); however, it is subject to metal interferences for acid mine waters. Sodium borohydride is used to produce arsine gas, but high metal concentrations can suppress arsine production. This report investigates interferences of sixteen metal species including aluminum, antimony(III), antimony(V), cadmium, chromium(III), chromium(IV), cobalt, copper(II), iron(III), iron(II), lead, manganese, nickel, selenium(IV), selenium(VI), and zinc ranging in concentration from 0 to 1,000 milligrams per liter and offers a method for removing interfering metal cations with cation exchange resin. The degree of interference for each metal without cation-exchange on the determination of total arsenic and arsenic(III) was evaluated by spiking synthetic samples containing arsenic(III) and arsenic(V) with the potential interfering metal. Total arsenic recoveries ranged from 92 to 102 percent for all metals tested except antimony(III) and antimony(V) which suppressed arsine formation when the antimony(III)/total arsenic molar ratio exceeded 4 or the antimony(V)/total arsenic molar ratio exceeded 2. Arsenic(III) recoveries for samples spiked with aluminum, chromium(III), cobalt, iron(II), lead, manganese, nickel, selenium(VI), and zinc ranged from 84 to 107 percent over the entire concentration range tested. Low arsenic(III) recoveries occurred when the molar ratios of metals to arsenic(III) were copper greater than 120, iron(III) greater than 70, chromium(VI) greater than 2, cadmium greater than 800, antimony(III) greater than 3, antimony(V) greater than 12, or selenium(IV) greater than 1. Low recoveries result when interfering metals compete for available sodium borohydride, causing incomplete arsine production, or when the interfering metal oxidizes arsenic(III). Separation of interfering metal cations using

  16. Submillimeter Spectroscopy of Hydride Molecules

    NASA Astrophysics Data System (ADS)

    Phillips, T. G.

    1998-05-01

    Simple hydride molecules are of great importance in astrophysics and astrochemistry. Physically they dominate the cooling of dense, warm phases of the ISM, such as the cores and disks of YSOs. Chemically they are often stable end points of chemical reactions, or may represent important intermediate stages of the reaction chains, which can be used to test the validity of the process. Through the efforts of astronomers, physicists, chemists, and laboratory spectroscopists we have an approximate knowledge of the abundance of some of the important species, but a great deal of new effort will be required to achieve the comprehensive and accurate data set needed to determine the energy balance and firmly establish the chemical pathways. Due to the low moment of inertia, the hydrides rotate rapidly and so have their fundamental spectral lines in the submillimeter. Depending on the cloud geometry and temperature profile they may be observed in emission or absorption. Species such as HCl, HF, OH, CH, CH(+) , NH_2, NH_3, H_2O, H_2S, H_3O(+) and even H_3(+) have been detected, but this is just a fraction of the available set. Also, most deduced abundances are not nearly sufficiently well known to draw definitive conclusions about the chemical processes. For example, the most important coolant for many regions, H_2O, has a possible range of deduced abundance of a factor of 1000. The very low submillimeter opacity at the South Pole site will be a significant factor in providing a new capabilty for interstellar hydride spectroscopy. The new species and lines made available in this way will be discussed.

  17. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand.

    PubMed

    Wilson, N J; Craw, D; Hunter, K

    2004-05-01

    A historic antimony smelter site at Endeavour Inlet, New Zealand has smelter residues with up to 17 wt.% antimony. Residues include coarse tailings (cm scale particles, poorly sorted), sand tailings (well sorted) and smelter slag (blocks up to 30 cm across). All of this material has oxidised to some degree over the ca. 100 years since the site was abandoned. Oxidation has resulted in acidification of the residues down to pH 2-5. Smelter slag contains pyrrhotite (FeS) and metallic antimony, and oxidation is restricted to surfaces only. The coarse tailings are the most oxidised, and few sulfide grains persist. Unoxidised sand tailings contain 10-20 vol.% stibnite (Sb2S3) containing up to 5% As, with subordinate arsenopyrite (FeAsS), and minor pyrite (FeS2). The sand tailings are variably oxidised on a scale of 2-10 cm, but original depositional layering is preserved during oxidation and formation of senarmontite (Sb2O3). Oxidation of sand tailings has resulted in localised mobility of both Sb and As on the cm scale, resulting in redistribution of these metalloids with iron oxyhydroxide around sand grain boundaries. Experiments demonstrate that Sb mobility decreases with time on a scale of days. Attenuation of both As and Sb occurs due to adsorption on to iron oxyhydroxides which are formed during oxidation of the smelter residues. There is no detectable loss of Sb or As from the smelter site into the adjacent river, <50 m away, which has elevated Sb (ca. 20 microg/l) and As (ca. 7 microg/l) from mineralised rocks upstream. Despite the high concentrations of Sb and As in the smelter residues, these metalloids are not being released into the environment. PMID:14987811

  18. Direct synthesis of catalyzed hydride compounds

    DOEpatents

    Gross, Karl J.; Majzoub, Eric

    2004-09-21

    A method is disclosed for directly preparing alkali metal aluminum hydrides such as NaAlH.sub.4 and Na.sub.3 AlH.sub.6 from either the alkali metal or its hydride, and aluminum. The hydride thus prepared is doped with a small portion of a transition metal catalyst compound, such as TiCl.sub.3, TiF.sub.3, or a mixture of these materials, in order to render them reversibly hydridable. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen while heating the mixture to about 125.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  19. Zirconium hydride containing explosive composition

    DOEpatents

    Walker, Franklin E.; Wasley, Richard J.

    1981-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

  20. 40 CFR 421.140 - Applicability: Description of the primary antimony subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary antimony subcategory. 421.140 Section 421.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Antimony Subcategory § 421.140 Applicability: Description of the primary...

  1. 40 CFR 421.140 - Applicability: Description of the primary antimony subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary antimony subcategory. 421.140 Section 421.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Antimony Subcategory § 421.140 Applicability: Description of the primary...

  2. Activated aluminum hydride hydrogen storage compositions and uses thereof

    DOEpatents

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  3. Cyclopentadiene-mediated hydride transfer from rhodium complexes.

    PubMed

    Pitman, C L; Finster, O N L; Miller, A J M

    2016-07-12

    Attempts to generate a proposed rhodium hydride catalytic intermediate instead resulted in isolation of (Cp*H)Rh(bpy)Cl (1), a pentamethylcyclopentadiene complex, formed by C-H bond-forming reductive elimination from the fleeting rhodium hydride. The hydride transfer ability of diene 1 was explored through thermochemistry and hydride transfer reactions, including the reduction of NAD(+). PMID:26949917

  4. Hydrogen-storing hydride complexes

    DOEpatents

    Srinivasan, Sesha S.; Niemann, Michael U.; Goswami, D. Yogi; Stefanakos, Elias K.

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  5. pH-dependent release characteristics of antimony and arsenic from typical antimony-bearing ores.

    PubMed

    Hu, Xingyun; Guo, Xuejun; He, Mengchang; Li, Sisi

    2016-06-01

    The pH-dependent leaching of antimony (Sb) and arsenic (As) from three typical Sb-bearing ores (Banxi, Muli and Tongkeng Antimony Mine) in China was assessed using a pH-static leaching experiment. The pH changes of the leached solutions and pH-dependent leaching of Sb and As occurred in different ways. For the Banxi and Muli Sb ores, alkaline conditions were more favorable for the release of Sb compared to neutral and acidic conditions, but the reverse was true for the pH-dependent release of As. For the Tongkeng Sb ore, unlike the previous two Sb-bearing ores, acidic conditions were more favorable for Sb release than neutral and alkaline conditions. The ores with lower Sb and As contents released higher percentages of their Sb and As after 16day leaching, suggesting that they are the largest potential sources of pollution. This work may provide key information on the geochemistry of Sb and As in the weathering zone. PMID:27266313

  6. Liquid suspensions of reversible metal hydrides

    DOEpatents

    Reilly, J.J.; Grohse, E.W.; Winsche, W.E.

    1983-12-08

    The reversibility of the process M + x/2 H/sub 2/ ..-->.. MH/sub x/, where M is a metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under a liquid, thereby to reduce contamination, provide better temperature control and provide in situ mobility of the reactants. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen (at high pressures) and to release (at low pressures) previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the former is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the H/sub 2/ pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  7. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory....

  8. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory....

  9. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory. The provisions of...

  10. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory. The provisions of...

  11. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory....

  12. Hydride heat pump with heat regenerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  13. Technetium-99m antimony colloid for bone-marrow imaging

    SciTech Connect

    Martindale, A.A.; Papadimitriou, J.M.; Turner, J.H.

    1980-11-01

    Technetium-99m antimony colloid was prepared in our laboratory for bone-marrow imaging. Optimal production of colloid particles of size range 1 to 13 nm was achieved by the use of polyvinylpyrrolidone of mol. wt. 44,000. Electron microscopy was used to size the particles. Studies in rabbits showed exclusive concentration in the subendothelial dendritic phagocytes of the bone marrow. Pseudopods from these cells were found to traverse interendothelial junctions and concentrate colloid from the sinusoids. Imaging studies of bone marrow in rabbits showed the superiority of the Tc-99m antimony colloid over the much larger colloidal particle of Tc-99m sulfur colloid. Tissue distribution studies in the rat confirmed that bone-marrow uptake of Tc-99m antimony colloid was greater than that of Tc-99m sulfur colloid, although blood clearance was much slower.

  14. Possible Links between Sickle Cell Crisis and Pentavalent Antimony

    PubMed Central

    Garcerant, Daniel; Rubiano, Luisa; Blanco, Victor; Martinez, Javier; Baker, Nancy C.; Craft, Noah

    2012-01-01

    For over 60 years, pentavalent antimony (Sbv) has been the first-line treatment of leishmaniasis. Sickle cell anemia is a disease caused by a defect in red blood cells, which among other things can cause vasooclusive crisis. We report the case of a 6-year-old child with leishmaniasis who during treatment with meglumine antimoniate developed a sickle cell crisis (SCC). No previous reports describing the relationship between antimonial drugs and sickle cell disease were found. Reviews of both the pathophysiology of SCC and the mechanism of action of Sbv revealed that a common pathway (glutathione) may have resulted in the SCC. ChemoText, a novel database created to predict chemical-protein-disease interactions, was used to perform a more expansive and systematic review that was able to support the association between glutathione, Sbv, and SCC. Although suggestive evidence to support the hypothesis, additional research at the bench would be needed to prove Sbv caused the SCC. PMID:22665619

  15. Antimony Based III-V Thermophotovoltaic Devices

    SciTech Connect

    CA Wang

    2004-06-09

    Antimony-based III-V thermophotovoltaic (TPV) cells are attractive converters for systems with low radiator temperature around 1100 to 1700 K, since these cells potentially can be spectrally matched to the thermal source. Cells under development include GaSb and the lattice-matched GaInAsSb/GaSb and InPAsSb/InAs quaternary systems. GaSb cell technology is the most mature, owing in part to the relative ease in preparation of the binary alloy compared to quaternary GaInAsSb and InPAsSb alloys. Device performance of 0.7-eV GaSb cells exceeds 90% of the practical limit. GaInAsSb TPV cells have been the primary focus of recent research, and cells with energy gap E{sub g} ranging from {approx}0.6 to 0.49 eV have been demonstrated. Quantum efficiency and fill factor approach theoretical limits. Open-circuit voltage factor is as high as 87% of the practical limit for the higher-E{sub g} cells, but degrades to below 80% with decreasing E{sub g} of the alloy, which might be due to Auger recombination. InPAsSb cells are the least studied, and a cell with E{sub g} = 0.45-eV has extended spectral response out to 4.3 {micro}m. This paper briefly reviews the main contributions that have been made for antimonide-based TPV cells, and suggests additional studies for further performance enhancements.

  16. Reductive precipitation of metals photosensitized by tin and antimony porphyrins

    DOEpatents

    Shelnutt, John A.; Gong, Weiliang; Abdelouas, Abdesselam; Lutze, Werner

    2003-09-30

    A method for reducing metals using a tin or antimony porphyrin by forming an aqueous solution of a tin or antimony porphyrin, an electron donor, such as ethylenediaminetetraaceticacid, triethylamine, triethanolamine, and sodium nitrite, and at least one metal compound selected from a uranium-containing compound, a mercury-containing compound, a copper-containing compound, a lead-containing compound, a gold-containing compound, a silver-containing compound, and a platinum-containing compound through irradiating the aqueous solution with light.

  17. Lattice dynamics of femtosecond laser-excited antimony

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Mahmoud Hanafy; Bugayev, Aleksey; Elsayed-Ali, Hani E.

    2016-07-01

    Ultrafast electron diffraction is used to probe the lattice dynamics of femtosecond laser-excited antimony thin film. The temporal hierarchies of the intensity and position of diffraction orders are monitored. The femtosecond laser excitation of antimony film was found to lead to initial compression after the laser pulse, which gives way to tension vibrating at new equilibrium displacement. A damped harmonic oscillator model, in which the hot electron-blast force contributes to the driving force of oscillations in lattice spacing, is used to interpret the data. The electron-phonon energy-exchange rate and the electronic Grüneisen parameter were obtained.

  18. Barium and antimony distributions on the hands of nonshooters.

    PubMed

    Havakost, D G; Peters, C A; Koons, R D

    1990-09-01

    Barium and antimony levels from selected areas of the left and right hands of 269 nonshooters provide a database for interpretation of gunshot residue swab analysis results. The database represents a variety of activities of individuals sampled by collectors throughout the United States. Nonshooting exposure to barium and antimony can generally be distinguished from firearms-associated exposure by considering the relative levels of the elements, location on the hands, and condition of the swabs. Consistent definition of sampling procedures and accurate analytical results make this database applicable for interpretation of data generated by most gunshot residue swab examiners. PMID:2230685

  19. Antimony recycling in the United States in 2000

    USGS Publications Warehouse

    Carlin, James F.

    2006-01-01

    The importance of recycling has become more obvious as concerns about the environment and import dependence have grown in recent years. When materials are recycled, fewer natural resources are consumed, and less waste products go to landfills or pollute the water and air. This study, one of a series of reports on metals recycling in 2000, discusses the flow of antimony from mining through its uses and disposal with emphasis on recycling. In 2000, the recycling efficiency for antimony was estimated to be 89 percent, and the recycling rate was about 20 percent.

  20. Method of forming metal hydride films

    NASA Technical Reports Server (NTRS)

    Steinberg, R.; Alger, D. L.; Cooper, D. W. (Inventor)

    1977-01-01

    The substrate to be coated (which may be of metal, glass or the like) is cleaned, both chemically and by off-sputtering in a vacuum chamber. In an ultra-high vacuum system, vapor deposition by a sublimator or vaporizer coats a cooled shroud disposed around the substrate with a thin film of hydride forming metal which getters any contaminant gas molecules. A shutter is then opened to allow hydride forming metal to be deposited as a film or coating on the substrate. After the hydride forming metal coating is formed, deuterium or other hydrogen isotopes are bled into the vacuum system and diffused into the metal film or coating to form a hydride of metal film. Higher substrate temperatures and pressures may be used if various parameters are appropriately adjusted.

  1. Sealed aerospace metal-hydride batteries

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine

    1992-01-01

    Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.

  2. Red and blue shifted hydridic bonds.

    PubMed

    Jabłoński, Mirosław

    2014-09-15

    By performing MP2/aug-cc-pVTZ ab initio calculations for a large set of dimer systems possessing a R-H hydridic bond involved in diverse types of intermolecular interactions (dihydrogen bonds, hydride halogen bonds, hydride hydrogen bonds, and charge-assisted hydride hydrogen bonds), we show that this is rather an elongation than a shortening that a hydride bond undergoes on interaction. Contrary to what might have been expected on the basis of studies in uniform electric field, this elongation is accompanied by a blue instead of red shift of the R-H stretching vibration frequency. We propose that the "additional" elongation of the R-H hydridic bond results from the significant charge outflow from the sigma bonding orbital of R-H that weakens this bond. The more standard red shift obtained for stronger complexes is explained by means of the Hermansson's formula and the particularly strong electric field produced by the H-acceptor molecule. PMID:25043253

  3. Metastable Metal Hydrides for Hydrogen Storage

    DOE PAGESBeta

    Graetz, Jason

    2012-01-01

    The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However, a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however, many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. Onmore » the other hand, the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid, low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However, a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.« less

  4. Acid-base properties of titanium-antimony oxides catalysts

    SciTech Connect

    Zenkovets, G.A.; Paukshtis, E.A.; Tarasova, D.V.; Yurchenko, E.N.

    1982-06-01

    The acid-base properties of titanium-antimony oxide catalysts were studied by the methods of back titration and ir spectroscopy. The interrelationship between the acid-base and catalytic properties in the oxidative ammonolysis of propylene was discussed. 3 figures, 1 table.

  5. Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes

    SciTech Connect

    Kathawa, J.; Fry, C.; Thoennessen, M.

    2013-01-15

    Currently, thirty-eight palladium, thirty-eight antimony, thirty-nine tellurium, thirty-eight iodine, and forty xenon isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  6. Antimony tartrate corrosion inhibitive composition for coolant systems

    SciTech Connect

    Payerle, N.E.

    1987-08-11

    An automobile coolant concentrate is described comprising (a) a liquid polyhydric alcohol chosen from the group consisting of ethylene glycol, propylene glycol, diethylene glycol and mixtures thereof, and (b) corrosion inhibitors in a corrosion inhibitory amount with respect to corrosion of lead-containing solders, the corrosion inhibitors comprising (i) an alkali metal antimony tartrate, and (ii) an azole compound.

  7. Antimony to Cure Visceral Leishmaniasis Unresponsive to Liposomal Amphotericin B

    PubMed Central

    Morizot, Gloria; Jouffroy, Romain; Faye, Albert; Chabert, Paul; Belhouari, Katia; Calin, Ruxandra; Charlier, Caroline; Miailhes, Patrick; Siriez, Jean-Yves; Mouri, Oussama; Yera, Hélène; Gilquin, Jacques; Tubiana, Roland; Lanternier, Fanny; Mamzer, Marie-France; Legendre, Christophe; Peyramond, Dominique; Caumes, Eric; Lortholary, Olivier; Buffet, Pierre

    2016-01-01

    We report on 4 patients (1 immunocompetent, 3 immunosuppressed) in whom visceral leishmaniasis had become unresponsive to (or had relapsed after) treatment with appropriate doses of liposomal amphotericin B. Under close follow-up, full courses of pentavalent antimony were administered without life-threatening adverse events and resulted in rapid and sustained clinical and parasitological cure. PMID:26735920

  8. Antimony to Cure Visceral Leishmaniasis Unresponsive to Liposomal Amphotericin B.

    PubMed

    Morizot, Gloria; Jouffroy, Romain; Faye, Albert; Chabert, Paul; Belhouari, Katia; Calin, Ruxandra; Charlier, Caroline; Miailhes, Patrick; Siriez, Jean-Yves; Mouri, Oussama; Yera, Hélène; Gilquin, Jacques; Tubiana, Roland; Lanternier, Fanny; Mamzer, Marie-France; Legendre, Christophe; Peyramond, Dominique; Caumes, Eric; Lortholary, Olivier; Buffet, Pierre

    2016-01-01

    We report on 4 patients (1 immunocompetent, 3 immunosuppressed) in whom visceral leishmaniasis had become unresponsive to (or had relapsed after) treatment with appropriate doses of liposomal amphotericin B. Under close follow-up, full courses of pentavalent antimony were administered without life-threatening adverse events and resulted in rapid and sustained clinical and parasitological cure. PMID:26735920

  9. LaNi.sub.5 is-based metal hydride electrode in Ni-MH rechargeable cells

    DOEpatents

    Bugga, Ratnakumar V.; Fultz, Brent; Bowman, Robert; Surampudi, Subra Rao; Witham, Charles K.; Hightower, Adrian

    1999-01-01

    An at least ternary metal alloy of the formula AB.sub.(Z-Y) X.sub.(Y) is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB.sub.5 alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  10. Three Birds with One Fe3O4 Nanoparticle: Integration of Microwave Digestion, Solid Phase Extraction, and Magnetic Separation for Sensitive Determination of Arsenic and Antimony in Fish.

    PubMed

    Jia, Yun; Yu, Huimin; Wu, Li; Hou, Xiandeng; Yang, Lu; Zheng, Chengbin

    2015-06-16

    An environmentally friendly and fast sample treatment approach that integrates accelerated microwave digestion (MWD), solid phase extraction, and magnetic separation into a single step was developed for the determination of arsenic and antimony in fish samples by using Fe3O4 magnetic nanoparticles (MNPs). Compared to conventional microwave digestion, the consumption of HNO3 was reduced significantly to 12.5%, and the digestion time and temperature were substantially decreased to 6 min and 80 °C, respectively. This is largely attributed to Fe3O4 magnetic nanoparticles being a highly effective catalyst for rapid generation of oxidative radicals from H2O2, as well as an excellent absorber of microwave irradiation. Moreover, potential interferences from sample matrices were eliminated because the As and Sb species adsorbed on the nanoparticles were efficiently separated from the digests with a hand-held magnet prior to analysis. Limits of detection for arsenic and antimony were in the range of 0.01-0.06 μg g(-1) and 0.03-0.08 μg g(-1) by using hydride generation atomic fluorescence spectrometry, respectively, and further improved to 0.002-0.005 μg g(-1) and 0.005-0.01 μg g(-1) when inductively coupled plasma mass spectrometry was used as a detector. The precision of replicate measurements (n = 9) was better than 6% by analyzing 0.1 g test sample spiked with 1 μg g(-1) arsenic and antimony. The proposed method was validated by analysis of two certified reference materials (DORM-3 and DORM-4) with good recoveries (90%-106%). PMID:25962876

  11. Thin-film metal hydrides.

    PubMed

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis. PMID:18980236

  12. Computational Study of Metal Hydride Destabilization

    NASA Astrophysics Data System (ADS)

    Johnson, Karl

    2006-03-01

    The safe and efficient on-board storage of hydrogen in fuel cell vehicles is one of the major road-blocks for utilization of hydrogen in transportation. This talk will illustrate the use quantum molecular modeling techniques for investigating atomic- level details of hydrogen storage in new materials. Metal hydrides of period 2 and 3 materials have high volumetric and gravimetric hydrogen storage capacities. However, these materials typically have very high heats of reaction, meaning that high temperatures are required to dissociate the hydrides. Likewise, hydrogenation reactions evolve very large quantities of energy, making thermal management during refueling a impractical. Recent experimental work has focused on chemical destabilization of metal hydrides as a means of decreasing the heats of reaction. We have carried out quantum mechanical calculations, using the electronic density functional theory (DFT) formalism, for various metal hydride systems. The heats of reaction for over 300 different reactions have been computed. We have compared our calculations with experimental and tabulated data where available and find reasonable agreement. Our calculations demonstrate the utility of DFT for screening reactions and for identifying promising materials for further computational and experimental studies. We have also studied the hydration of Mg2Si, a destabilized hydride of MgH2. Experiments have failed to hydrogenate this material in the laboratory under high pressures of H2. We examine adsorption of H2 and dissociation on the Mg2Si(110) surface to see if kinetic limitations are responsible for the failure to observe hydrogenation of this material.

  13. High H- ionic conductivity in barium hydride

    NASA Astrophysics Data System (ADS)

    Verbraeken, Maarten C.; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T. S.

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H-) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm-1 at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  14. BioGeochemistry of antimony, Sources, Transfers, Impacts and Assessment

    NASA Astrophysics Data System (ADS)

    Le Roux, Gael; Pinelli, Eric; Hedde, Mickael; Guiresse, Maritxu; De Vleeschouwer, François; Silvestre, Jérôme; Enrico, Maxime; Gandois, Laure; Monna, Fabrice; Gers, Charles; Probst, Anne

    2013-04-01

    BioGeoSTIB is a project funded by ADEME (French Environmental Protection Agency). Its aim is to provide a better understanding of biogeochemical cycle disturbances of antimony by man. Specifically, it is focused on the atmosphere-soil-organism interfaces. Based on a multi-scale approach, the impact of antimony on organisms and organism communities and the factors of Sb dispersion in the environment aim to better characterized. This report gives the main results of 2 and 1 -2 years of research. Using peat bogs as environmental archives, we show that Sb contamination in soils date back to the beginning of the metallurgy. Atmospheric deposition of Sb largely increased by 100 times during the Industrial Revolution compared to natural levels (~0,001-0,01 mg m-2 an-1) estimated in the deepest peat layers. This disturbance in the antimony geochemical cycle modified its concentrations in soils. One main source of present Sb contamination is automotive traffic due to Sb in braking lines. This emerging contamination was characterized close to a roundabout. This additional source of Sb does not seem to impact soil fauna but Sb concentrations in soil solutions exceed 1 μg L-1. Genotoxicity tests have been performed on the model plant Vicia faba and show that antimony is genotoxic at its lowest concentrations and that there is a synergistic effect lead, a trace metal frequently found in association with antimony in the environment. It is a main issue to determine Sb critical loads in the environment but main identified lacks are thermodynamic data, which are not available yet, to model the behavior of Sb in soil solutions and the fact the antimony is always associated with other anthropogenic trace metals like lead. Critical thresholds of Sb have been determined for the first time based on genotoxicity experiment. Simulations show that these thresholds can be exceeded in the future, whereas present limits for invertebrates (US-EPA) are and will not be reached. However

  15. 49 CFR 173.311 - Metal hydride storage systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage...

  16. Determination of fluorine in antimony catalysts for the liquid-phase production of freons

    SciTech Connect

    Shchavelev, V.B.

    1986-08-01

    In order to reduce the solubility of lanthanum fluoride and to improve the precision of fluorine determination, (ILLEGIBLE) recommend (ILLEGIBLE) organic solvents (ethanol, acetone, etc.) to the titrated solution. It is shown that fluoride can be determined in the presence of antimony without preparation only when all antimony is present in the tervalent state. The results obtained in the determination of fluoride ion in synthetic mixtures at a fluorine:antimony molar ratio of 2, which approximates the composition of the antimony catalyst, are shown in tables. It can be seen that hydrobromic acid is the only suitable of the agents tested, whereby its concentration in the analyzed sample must not be less than 7.6. The relatively high reproducibility of the proposed procedure allows the authors to recommend it for the determination of fluorine in antimony catalysts or other analogous compositions when fluorine and pentavalent antimony are present simultaneously.

  17. Antimony-assisted carbonization of Si(111) with solid source molecular beam epitaxy

    SciTech Connect

    Hackley, Justin; Richardson, Christopher J. K.; Sarney, Wendy L.

    2013-11-15

    The carbonization of an antimony-terminated Si (111) surface in a solid source molecular beam epitaxy system is presented. Reflection high-energy electron diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and cross-sectional transmission electron microscopy are used to characterize samples grown with and without antimony termination. It is shown that the antimony-terminated surface promotes the formation of thin, smooth and continuous SiC films at a relatively low temperature of 800 °C.

  18. States of antimony and tin atoms in lead chalcogenides

    SciTech Connect

    Bordovsky, G. A.; Nemov, S. A.; Marchenko, A. V.; Zaiceva, A. V.; Kozhokar, M. Yu.; Seregin, P. P.

    2011-04-15

    It is shown by Moessbauer spectroscopy of the {sup 119}Sb({sup 119m}Sn) isotope that impurity antimony atoms in PbS, PbSe, and PbTe lattices are distributed between cation and anion sublattices. In n-type samples, the greatest part of antimony is located in the anion sublattice; in hole ones, in the cation sublattice. The tin atoms formed as a result of radioactive decay of {sup 119}Sb (antisite state) are electrically inactive in the anion sub-lattice of PbS and PbSe, while, in the cation sublattice, they form donor U{sup -} centers. Electron exchange between the neutral and doubly ionized tin U{sup -} centers via the allowed band states is observed. The tin atoms formed after radioactive decay of {sup 119}Sb are electrically inactive in the anion and cation sublattices of PbTe.

  19. Transmission Potential of Antimony-Resistant Leishmania Field Isolates

    PubMed Central

    Seblova, Veronika; Oury, Bruno; Eddaikra, Naouel; Aït-Oudhia, Khatima; Pratlong, Francine; Gazanion, Elodie; Maia, Carla; Volf, Petr

    2014-01-01

    We studied the development of antimony-resistant Leishmania infantum in natural vectors Lutzomyia longipalpis and Phlebotomus perniciosus to ascertain the risk of parasite transmission by sand flies. All three resistant strains produced fully mature late-stage infections in sand flies; moreover, the resistant phenotype was maintained after the passage through the vector. These results highlight the risk of circulation of resistant Leishmania strains and question the use of human drugs for treatment of dogs as Leishmania reservoirs. PMID:25049256

  20. Solid solutions based on bismuth and antimony tellurides andbismuth selenides

    SciTech Connect

    Abrikosov, N.K.; Stasova, M.M.

    1986-05-01

    The phase diagrams of the systems Bi-Te, Bi-Se, and Sb-Te serve as a basis for constructing multiphase diagrams of ternary semiconductor systems. This paper studies layered structures with large unit-cell parameters in the regions of the solid solutions to explain the ordering processes in the solid solutions of semiconductor and intermetallic systems. The laws governing the formation and structral features of bismuth and antimony chalcogenides are studied to obtain thermoelectric materials and identification of minerals.

  1. Transmission potential of antimony-resistant leishmania field isolates.

    PubMed

    Seblova, Veronika; Oury, Bruno; Eddaikra, Naouel; Aït-Oudhia, Khatima; Pratlong, Francine; Gazanion, Elodie; Maia, Carla; Volf, Petr; Sereno, Denis

    2014-10-01

    We studied the development of antimony-resistant Leishmania infantum in natural vectors Lutzomyia longipalpis and Phlebotomus perniciosus to ascertain the risk of parasite transmission by sand flies. All three resistant strains produced fully mature late-stage infections in sand flies; moreover, the resistant phenotype was maintained after the passage through the vector. These results highlight the risk of circulation of resistant Leishmania strains and question the use of human drugs for treatment of dogs as Leishmania reservoirs. PMID:25049256

  2. [Successful treatment of cutaneous leishmaniasis with amphotericin B; a case of unresponsive to pentavalent antimony therapy].

    PubMed

    Yeşilova, Yavuz; Turan, Enver; Sürücü, Hacer Altın; Aksoy, Mustafa; Özbilgin, Ahmet

    2015-03-01

    Cutaneous Leishmaniasis (CL) is a skin infection caused by various species of Leishmania parasites, which is transmitted by infected Phlebotomus sandfly bites. Pentavalent antimonials (meglumine antimoniate and sodium stibogluconate) are used for the treatment of adult CL patients as an effective and safe method. Liposomal amphotericin B is an alternative for the treatment of choice in cutaneous leishmaniasis cases which pentavalan antimony contraindicated or unresponsive to pentavalent antimony therapy. In this study, successful treatment with systemic liposomal amphotericin B of a cutaneous leishmaniasis case developing local side effects related both systemic and intralesional meglumine antimonate treatment was presented. PMID:25917587

  3. Correlation of CsK{sub 2}Sb photocathode lifetime with antimony thickness

    SciTech Connect

    Mamun, M. A. Elmustafa, A. A.; Hernandez-Garcia, C.; Poelker, M.

    2015-06-01

    CsK{sub 2}Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  4. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    SciTech Connect

    Mamun, M. A.; Hernandez-Garcia, C.; Poelker, M.; Elmustafa, A. A.

    2015-06-01

    CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  5. 1. VIEW OF A PORTION OF THE HYDRIDE PROCESSING LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF A PORTION OF THE HYDRIDE PROCESSING LABORATORY. OPERATIONS IN THE GLOVE BOX IN THE BACKGROUND OF THE PHOTOGRAPH INCLUDED HYDRIDING OF PLUTONIUM AND HYDRIDE SEPARATION. IN THE FOREGROUND, THE VACUUM MONITOR CONTROL PANEL MEASURED TEMPERATURES WITHIN THE GLOVEBOX. THE CENTER CONTROL PANEL REGULATED THE FURNACE INSIDE THE GLOVE BOX USED IN THE HYDRIDING PROCESSES. THIS EQUIPMENT WAS ESSENTIAL TO THE HYDRIDING PROCESS, AS WELL AS OTHER GLOVE BOX OPERATIONS. - Rocky Flats Plant, Plutonium Laboratory, North-central section of industrial area at 79 Drive, Golden, Jefferson County, CO

  6. Possible links between sickle cell crisis and pentavalent antimony.

    PubMed

    Garcerant, Daniel; Rubiano, Luisa; Blanco, Victor; Martinez, Javier; Baker, Nancy C; Craft, Noah

    2012-06-01

    For over 60 years, pentavalent antimony (Sb(v)) has been the first-line treatment of leishmaniasis. Sickle cell anemia is a disease caused by a defect in red blood cells, which among other things can cause vasooclusive crisis. We report the case of a 6-year-old child with leishmaniasis who during treatment with meglumine antimoniate developed a sickle cell crisis (SCC). No previous reports describing the relationship between antimonial drugs and sickle cell disease were found. Reviews of both the pathophysiology of SCC and the mechanism of action of Sb(v) revealed that a common pathway (glutathione) may have resulted in the SCC. ChemoText, a novel database created to predict chemical-protein-disease interactions, was used to perform a more expansive and systematic review that was able to support the association between glutathione, Sb(v), and SCC. Although suggestive evidence to support the hypothesis, additional research at the bench would be needed to prove Sb(v) caused the SCC. PMID:22665619

  7. Hydridable material for the negative electrode in a nickel-metal hydride storage battery

    DOEpatents

    Knosp, Bernard; Bouet, Jacques; Jordy, Christian; Mimoun, Michel; Gicquel, Daniel

    1997-01-01

    A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

  8. Ionic hydrogenations of hindered olefins at low temperature. Hydride transfer reactions of transition metal hydrides

    SciTech Connect

    Bullock, R.M.; Song, J.S. )

    1994-09-21

    Sterically hindered olefins can be hydrogenated at -50[degree]C in dichloromethane using triflic acid (CF[sub 3]SO[sub 3]H) and a hydride donor. Mechanistic studies indicate that these reactions proceed by hydride transfer to the carbenium ion that is formed by protonation of the olefin. Olefins that form tertiary carbenium ions upon protonation are hydrogenated in high yields (90-100%). Styrenes generally produce lower yields of hydrogenated products (50-60%). Suitable hydride donors include HSiE[sub 3] and several transition metal carbonyl hydrides HW(CO)[sub 3]Cp, HW(CO)[sub 3]Cp[sup +], HMo-(CO)[sub 3]Cp, HMn(CO)[sub 5], HRe(CO)[sub 3], and HO[sub 3](CO)[sub 1]Cp*; Cp = [eta][sup 5]-C[sub 3]H[sub 5+], Cp* = [eta][sup 5]-C[sub 5]Me[sub 5]. A characteristic that is required for transition metal hydrides to be effective is that the cationic dihydrides (or dihydrogen complexes) that result from their protonation must have sufficient acidity to transfer a proton to the olefin, as well as sufficient thermal stability to avoid significant decomposition on the time scale of the hydrogenation reaction. Metal hydrides that fall due to insufficient stability of their protonated forms include HMo(CO)[sub 2](PPH[sub 3])Cp, HMo(CO)[sub 3]Cp*, and HFe(CO)[sub 2]Cp*. 62 refs., 2 tabs.

  9. Understanding the Origins of Nucleophilic Hydride Reactivity of a Sodium Hydride-Iodide Composite.

    PubMed

    Hong, Zonghan; Ong, Derek Yiren; Muduli, Subas Kumar; Too, Pei Chui; Chan, Guo Hao; Tnay, Ya Lin; Chiba, Shunsuke; Nishiyama, Yusuke; Hirao, Hajime; Soo, Han Sen

    2016-05-17

    Sodium hydride (NaH) has been commonly used as a Brønsted base in chemical syntheses, while it has rarely been employed to add hydride (H(-) ) to unsaturated electrophiles. We previously developed a procedure to activate NaH through the addition of a soluble iodide source and found that the new NaH-NaI composite can effect even stereoselective nucleophilic hydride reductions of nitriles, imines, and carbonyl compounds. In this work, we report that mixing NaH with NaI or LiI in tetrahydrofuran (THF) as a solvent provides a new inorganic composite, which consists of NaI interspersed with activated NaH, as revealed by powder X-ray diffraction, and both solid-state NMR and X-ray photoelectron spectroscopies. DFT calculations imply that this remarkably simple inorganic composite, which is comprised of NaH and NaI, gains nucleophilic hydridic character similar to covalent hydrides, resulting in unprecedented and unique hydride donor chemical reactivity. PMID:27038135

  10. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan F [Livermore, CA; Yu, Conrad [Antioch, CA

    2009-05-05

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  11. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan F.; Yu, Conrad

    2006-10-17

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  12. Ductility Evaluation of As-Hydrided and Hydride Reoriented Zircaloy-4 Cladding under Simulated Dry-Storage Condition

    SciTech Connect

    Yan, Yong; Plummer, Lee K; Ray, Holly B; Cook, Tyler S; Bilheux, Hassina Z

    2014-01-01

    Pre-storage drying-transfer operations and early stage storage expose cladding to higher temperatures and much higher pressure-induced tensile hoop stresses relative to normal operation in-reactor and pool storage under these conditions. Radial hydrides could precipitate during slow cooling and provide an additional embrittlement mechanism as the cladding temperature decreases below the ductile-to-brittle transition temperature. As a means of simulating this behavior, unirradiated hydrided Zircaloy-4 samples were fabricated by a gas charging method to levels that encompass the range of hydrogen concentrations observed in current used fuel. Mechanical testing was carried out by the ring compression test (RCT) method at various temperatures to evaluate the sample s ductility for both as-hydrided and post-hydride reorientation treated specimens. As-hydrided samples with higher hydrogen concentration (>800 ppm) resulted in lower strain before fracture and reduced maximum load. Increasing RCT temperatures resulted in increased ductility of the as-hydrided cladding. A systematic radial hydride treatment was conducted at various pressures and temperatures for the hydrided samples with H content around 200 ppm. Following the radial hydride treatment, RCTs on the hydride reoriented samples were conducted and exhibited lower ductility compared to as-hydrided samples.

  13. Thermal cycle limits for tritium hydride beds

    SciTech Connect

    Klein, J.E.

    1992-12-31

    During revision of the Tritium Facility Technical Standards, a thermal cycle limit was added to the {open_quotes}Hydride Vessels{close_quotes} Technical Standard. A limit of 1,000 cycles was added since the metallurgical effect of repeated thermal cycling of the stainless steel hydride beds was not known. Procedures would require modifications to record the number of thermal cycles a bed has experienced during its life-time. The calculations in this report show that the operations of the hydride beds in the Tritium Facilities can experience at least 10,000 thermal cycles. Maximum temperature differences across the walls of the hydride beds were calculated to determine the cycle limits. The calculated temperature differentials were less than 50% of the temperature differentials which would require a 10,000 cycle limit. 10,000 cycles is equivalent to cycling the bed over nine times per day for the next three years or five times per day for the next five years. If the expected number of bed cycles for the beds are to be less than 10,000 cycles, the number of thermal cycles for the beds do not need to be recorded or logged. Not logging or tracking the number of thermal cycles for the beds will greatly reduce the administrative burden of operating these vessels. These results are based ultimately on the pressure drop of nitrogen through the hydride bed cooling coils which is controlled by the liquid nitrogen dewer`s 22 psig relief valve. This 22 psi differential for flow and the conservative assumptions made in the calculations gave maximum temperature differentials less than 50 percent of the values allowed for the 10,000 cycle limit. Changes which would increase the liquid nitrogen supply pressure for the beds would need to be reviewed to verify that the conclusions of this report were to remain valid.

  14. Thermal cycle limits for tritium hydride beds

    SciTech Connect

    Klein, J.E.

    1992-01-01

    During revision of the Tritium Facility Technical Standards, a thermal cycle limit was added to the [open quotes]Hydride Vessels[close quotes] Technical Standard. A limit of 1,000 cycles was added since the metallurgical effect of repeated thermal cycling of the stainless steel hydride beds was not known. Procedures would require modifications to record the number of thermal cycles a bed has experienced during its life-time. The calculations in this report show that the operations of the hydride beds in the Tritium Facilities can experience at least 10,000 thermal cycles. Maximum temperature differences across the walls of the hydride beds were calculated to determine the cycle limits. The calculated temperature differentials were less than 50% of the temperature differentials which would require a 10,000 cycle limit. 10,000 cycles is equivalent to cycling the bed over nine times per day for the next three years or five times per day for the next five years. If the expected number of bed cycles for the beds are to be less than 10,000 cycles, the number of thermal cycles for the beds do not need to be recorded or logged. Not logging or tracking the number of thermal cycles for the beds will greatly reduce the administrative burden of operating these vessels. These results are based ultimately on the pressure drop of nitrogen through the hydride bed cooling coils which is controlled by the liquid nitrogen dewer's 22 psig relief valve. This 22 psi differential for flow and the conservative assumptions made in the calculations gave maximum temperature differentials less than 50 percent of the values allowed for the 10,000 cycle limit. Changes which would increase the liquid nitrogen supply pressure for the beds would need to be reviewed to verify that the conclusions of this report were to remain valid.

  15. Recent advances on antimony(III/V) compounds with potential activity against tumor cells.

    PubMed

    Hadjikakou, S K; Ozturk, I I; Banti, C N; Kourkoumelis, N; Hadjiliadis, N

    2015-12-01

    Antimony one of the heavier pnictogens, has been in medical use against microbes and parasites as well. Antimony-based drugs have been prescribed against leishmaniasis since the parasitic transmission of the tropical disease was understood in the beginning of the 20th century. The activity of arsenic against visceral leishmaniasis led to the synthesis of an array of arsenic-containing parasitic agents, among them the less toxic pentavalent antimonials: Stibosan, Neostibosan, and Ureastibamine. Other antimony drugs followed: sodium stibogluconate (Pentostam) and melglumine antimoniate (Glucantim or Glucantime); both continue to be in use today despite their toxic side effects and increasing loss in potency due to the growing resistance of the parasite against antimony. Antimony compounds and their therapeutic potentials are under consideration from many research groups, while a number of early reviews recording advances of antimony biomedical applications are also available. However, there are only few reports on the screening for antitumor potential of antimony compounds. This review focuses upon results obtained on the anti-proliferative activity of antimony compounds in the past years. This survey shows that antimony(III/V) complexes containing various types of ligands such as thiones, thiosemicarbazones, dithiocarbamates, carboxylic acids, or ketones, nitrogen donor ligands, exhibit selectivity against a variety of cancer cells. The role of the ligand type of the complex is elucidated within this review. The complexes and their biological activity are already reported elsewhere. However quantitative structure-activity relationship (QSAR) modeling studies have been carried out and they are reported for the first time here. PMID:26092367

  16. Microstructural study of hydride formation in Zr-1Nb alloy

    NASA Astrophysics Data System (ADS)

    Neogy, S.; Srivastava, D.; Tewari, R.; Singh, R. N.; Dey, G. K.; Banerjee, S.

    2003-11-01

    Hydriding of Zr-1Nb alloy having a microstructure comprising equiaxed α grains and a uniform distribution of spherical particles of the β-phase has been carried out in this study. The specimens were hydrided by gaseous charging method to different hydrogen levels. The microstructures of hydrided samples were examined as a function of hydrogen content. The formation of δ-hydride in slow cooled specimens and formation of γ-hydride in rapidly cooled specimens has been studied with their morphology, habit plane and orientation relationship with the α matrix in view. The habit planes of either type of hydride phase has been determined and compared with those observed in other Zr-Nb alloys. The orientation relationship between the α matrix and the δ-hydride was found to be the following: (0 0 0 1) α∥( 1¯ 1 1¯) δ and [1 1 2¯ 0] α∥[1 1 0] δ. The orientation relationship between the α matrix and the γ-hydride was of the following type: (0 0 0 1) α∥(0 0 1) γ and [1 2¯ 1 0] α∥[1 1¯ 0] γ. The internal structure of both types of hydride has been examined. The effect of the presence of the spherical β-phase particles in the α matrix on the growth of the hydride plates has been investigated.

  17. 78 FR 59679 - Antimony Trioxide TSCA Chemical Risk Assessment; Notice of Public Meetings and Opportunity To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... AGENCY Antimony Trioxide TSCA Chemical Risk Assessment; Notice of Public Meetings and Opportunity To... review of EPA's draft Toxic Substances Control Act (TSCA) chemical risk assessment, ``TSCA Workplan Chemical Risk Assessment for Antimony Trioxide.'' EPA will hold three peer review meetings by web...

  18. Corrosion of low-antimony lead-cadmium alloys in conditions of long-term polarization

    NASA Astrophysics Data System (ADS)

    Nuzhny, Alex

    Nowadays, lead-acid battery grids are manufactured mostly from low-antimony and lead-calcium alloys. A variable corrosion resistance of battery grids is caused by either battery operation conditions, purity of used alloy components, an alloy makeup, and the castings quality. Such compositions as usual lead-antimony alloy, low-antimony lead-arsenious alloy and lead-calcium alloy with moderate content of tin today may be regarded as the most studied ones. A significant share of published works has been devoted to low-antimony lead-tin alloys. In the present article, results of corrosion tests of the samples made with application of cadmium as the second component of low-antimony alloy, has been represented. Several samples were extra-alloyed by selenium and silver. Samples of lead-calcium and usual antimony alloys as well as pure lead samples were being tested simultaneously. Upon termination of polarization, weight of anodic films referred to a unit of the sample surface has been determined. Thus, the film covering lead-antimony alloy sample has the maximal weight, whereas the oxidation products on the pure lead surface have the lowest one. Among low-antimony alloys, the highest corrosion resistance has been found out with the samples alloyed by a low amount of silver. The microstructure of the castings surface has been analysed. Process of corrosion has been considered in connection with size of grains.

  19. Oxidation and mobilization of metallic antimony in aqueous systems with simulated groundwater

    NASA Astrophysics Data System (ADS)

    Ilgen, A. G.; Majs, F.; Barker, A. J.; Douglas, T. A.; Trainor, T. P.

    2014-05-01

    Antimony (Sb) is a contaminant of concern that can be present in elevated concentrations in shooting range soils due to mobilization from spent lead/antimony bullets. Antimony in shooting range soils has been observed as either metallic Sb(0) or as Sb(V) immobilized by iron (hydr)oxides. The absence of Sb(III) in soils is indicative of rapid Sb(III) oxidation to Sb(V) under surface soil conditions. However, the major controls on antimony oxidation and mobility are poorly understood. To better understand these controls we performed multiple batch experiments under oxic conditions to quantify the oxidation and dissolution of antimony in systems where Sb(0) is oxidized to Sb(III) and further to Sb(V). We also tested how variations in the aqueous matrix composition and the presence of metallic lead (Pb) affect the dissolution, solid phase speciation, and oxidation of antimony. We monitored changes in the aqueous antimony speciation using liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS). To test which solid phases form as a result of Sb(0) oxidation, and therefore potentially limit the mobility of antimony in our studied systems, we characterized the partially oxidized Sb(0) powders by means of extended X-ray absorption fine structure (EXAFS) spectroscopy and powder X-ray diffraction (XRD).

  20. Testing of antimony selective media for treatment of liquid radwaste

    SciTech Connect

    Yarnell, P.A.

    2007-07-01

    Nuclear power plants have sought radiation source term reduction and reduced discharge of radioactive constituents for many years. In the case of pressurized water reactors (PWRs), the latter efforts have been directed toward capture and immobilization of recalcitrant (ubiquitous radionuclides with long half-lives) species such as Cs-134 and Cs-137 and Co-58 and Co-60. As these plants resolved, or at least mitigated, the problems with radiocesium and radio-cobalt, antimony radionuclides (Sb-122, Sb-124, and Sb-125) have become a primary concern in liquid liquid radwaste systems Graver Technologies developed a granular composite metal oxide media with good selectivity for radio-antimony. Initial laboratory data were collected using non-radioactive salts of antimony, cesium, and cobalt to judge efficacy of selective removal of antimony. Based on success of those trials, the media, designated Gravex GX187, was tested in partnership with Energy Solutions (nee Duratek) using actual liquid liquid radwaste in two PWR plants. One of these plants performed extensive slip-stream trials comparing the GX187 with strong base anion resins. With more than 2500 bed volumes of throughput, the GX187 outperformed the other competitors by reducing both Sb-124 and Sb-125 radionuclides below minimum detectable activity (MDA) with average decontamination factors (DF's) of 170, even when subjected to high levels of borate. Based on these favorable results, Energy Solutions installed the GX187 in a layered bed in their ALPS liquid radwaste processing system at this plant in August 2005. After one year of intermittent, batchwise operation including an outage, the GX187 processed more than 2.25 million liters (>600,000 gallons) of liquid liquid radwaste while reducing the Sb-125 activity to 2.9 E-08 Bq/L (DF=111) on average. This evaluation is ongoing and will continue at least until the fall 2006 outage at this plant. Concurrently, Graver developed a second generation antimony selective

  1. New antimony substituted Mg-Al layered double hydroxides.

    PubMed

    Kim, Jin A; Hwang, Seong-Ju; Choy, Jin-Ho

    2008-10-01

    No antimony hydroxide has been previously reported not only in solid state but also in aqueous solution, surely due to the fact that the formation of antimony oxide, Sb2O3, is thermodynamically more favorable than that of the hydroxide phase, Sb(OH)3. According to the pH dependent solubility diagram of Sb2O3, antimony (III) hydroxide may not exist as a definite compound but be proposed as a hydrated monomeric molecular species, Sb(OH)3(aq), which is in equilibrium with Sb2O3, under a condition of very small ionic strength. This is probably the reason why no Sb(3+)-containing layered double hydroxide, LDH, has been reported as yet. In the present study, an attempt has been made to prepare new Sb(3+)-LDH by substituting the Al3+ in octahedral site partially with Sb3+ up to approximately 10%. From the X-ray diffraction analysis, we found that the lattice constants (a = 3.075 angstroms, c = 23.788 angstroms) of the pristine, Mg-Al LDH, increased gradually upto those (a = 3.087 angstroms, c = 24.167 angstroms) of Sb-LDH (8%-substituted). Beyond 10%, the Sb substitution does not lead to any further increases of lattice constants but the impurity Sb2O3 phase is formed. It is, therefore, concluded that the solubility limit of Sb3+ in LDH would be around 10%. In addition, we were able to determine the chemical formula of Sb-substituted LDHs as follows, Mg4Al(1-x)Sb(x)OH10(CO3)(1/2) x H2O (x = 0 approximately 0.08) on the basis of energy dispersive X-ray spectroscopy. PMID:19198414

  2. The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver

    SciTech Connect

    Bessinger, Brad; Apps, John A.

    2003-03-23

    A comprehensive thermodynamic database based on the Helgeson-Kirkham-Flowers (HKF) equation of state was developed for metal complexes in hydrothermal systems. Because this equation of state has been shown to accurately predict standard partial molal thermodynamic properties of aqueous species at elevated temperatures and pressures, this study provides the necessary foundation for future exploration into transport and depositional processes in polymetallic ore deposits. The HKF equation of state parameters for gold, arsenic, antimony, mercury, and silver sulfide and hydroxide complexes were derived from experimental equilibrium constants using nonlinear regression calculations. In order to ensure that the resulting parameters were internally consistent, those experiments utilizing incompatible thermodynamic data were re-speciated prior to regression. Because new experimental studies were used to revise the HKF parameters for H2S0 and HS-1, those metal complexes for which HKF parameters had been previously derived were also updated. It was found that predicted thermodynamic properties of metal complexes are consistent with linear correlations between standard partial molal thermodynamic properties. This result allowed assessment of several complexes for which experimental data necessary to perform regression calculations was limited. Oxygen fugacity-temperature diagrams were calculated to illustrate how thermodynamic data improves our understanding of depositional processes. Predicted thermodynamic properties were used to investigate metal transport in Carlin-type gold deposits. Assuming a linear relationship between temperature and pressure, metals are predicted to predominantly be transported as sulfide complexes at a total aqueous sulfur concentration of 0.05 m. Also, the presence of arsenic and antimony mineral phases in the deposits are shown to restrict mineralization within a limited range of chemical conditions. Finally, at a lesser aqueous sulfur

  3. METHOD OF FABRICATING A URANIUM-ZIRCONIUM HYDRIDE REACTOR CORE

    DOEpatents

    Weeks, I.F.; Goeddel, W.V.

    1960-03-22

    A method is described of evenly dispersing uranlum metal in a zirconium hydride moderator to produce a fuel element for nuclear reactors. According to the invention enriched uranium hydride and zirconium hydride powders of 200 mesh particle size are thoroughly admixed to form a mixture containing 0.1 to 3% by weight of U/sup 235/ hydride. The mixed powders are placed in a die and pressed at 100 tons per square inch at room temperature. The resultant compacts are heated in a vacuum to 300 deg C, whereby the uranium hydride deoomposes into uranium metal and hydrogen gas. The escaping hydrogen gas forms a porous matrix of zirconium hydride, with uramum metal evenly dispersed therethrough. The advantage of the invention is that the porosity and uranium distribution of the final fuel element can be more closely determined and controlled than was possible using prior methods of producing such fuel ele- ments.

  4. The influence of prior deformation on hydride precipitation in zircolay

    SciTech Connect

    Perovic, V.; Leger, M. . Metallurgical Research Dept.); Weatherly, G.C. ); MacEwen, S.R. )

    1992-02-01

    This paper reports on precipitation of hydrides that has been studied in samples of Zircaloy subjected to prior tensile or compressive deformation before charging with hydrogen. The mean residual stress pattern in the alloys prior to charging was assessed by neutron diffraction techniques and provided a rough guide as to the preferred site of hydride nucleation. Heterogeneous hydride nucleation at grain boundaries or twin boundaries was commonly found in samples subjected to 4% prior deformation, while transgranular hydrides were most frequently observed after a prior 1/2% compressive deformation or an annealing. The local stress state at grain boundary facets or twins is thought to be the deciding factor in determining where hydrides nucleate and how hydride stacks form.

  5. Growth and Characterization of Bismuth and Antimony Thin Films

    NASA Astrophysics Data System (ADS)

    Martinez, A.; Berrios, A. R.; Collazo, R.; Garcia, J. L.; Ducoudray, G. O.

    1996-03-01

    We have grown thin films of bismuth and antimony using hot wall epitaxy. The polycrystalline films were grown onto (111)-silicon substrates. The chemical integrity of the films was established using Auger electron spectroscopy. The crystallographical properties of the films were assessed using x-ray diffraction techniques. We will report on the results of these characterization efforts, as well as, on the growth apparatus and process. Work supported in part by NSWC-CRADA 93-01 and EPSCoR-NSF Grant EHR-9108775

  6. Numerical study of a magnesium hydride tank

    NASA Astrophysics Data System (ADS)

    Delhomme, Baptiste; de Rango, Patricia; Marty, Philippe

    2012-11-01

    Hydrogen storage in metal hydride tanks (MHT) is a very promising solution. Several experimental tanks, studied by different teams, have already proved the feasibility and the interesting performances of this solution. However, in much cases, an optimization of tank geometry is still needed in order to perform fast hydrogen loading. The development of efficient numerical tools is a key issue for MHT design and optimization. We propose a simple model representing a metal hydride tank exchanging its heat of reaction with a thermal fluid flow. In this model, the radial and axial discretisations have been decoupled by using Matlab® one-dimensional tools. Calculations are compared to experimental results obtained in a previous study. A good agreement is found for the loading case. The discharging case shows some discrepancies, which are discussed in this paper.

  7. Flow in a metal hydride chromatographic column

    SciTech Connect

    Nichols, G.S.

    1990-01-01

    The flow of hydrogen isotopes in a metal hydride chromatographic column is calculated by a one-dimensional finite difference method. The Ergun equation is used to define the gas flow; and equilibrium pressure isotherms are used to define the column holdup. Solid phase loadings are shown to move as a wave front on absorption, but remain more uniform on desorption. 3 refs., 4 figs.

  8. Nickel metal hydride LEO cycle testing

    NASA Technical Reports Server (NTRS)

    Lowery, Eric

    1995-01-01

    The George C. Marshall Space Flight Center is working to characterize aerospace AB5 Nickel Metal Hydride (NiMH) cells. The cells are being evaluated in terms of storage, low earth orbit (LEO) cycling, and response to parametric testing (high rate charge and discharge, charge retention, pulse current ability, etc.). Cells manufactured by Eagle Picher are the subjects of the evaluation. There is speculation that NiMH cells may become direct replacements for current Nickel Cadmium cells in the near future.

  9. Dissipative hydride precipitates in superconducting niobium cavities

    SciTech Connect

    Romanenko, A.; Cooley, L.D.; Ciovati, G.; Wu, G.; /Argonne

    2011-10-01

    We report the first direct observation of the microstructural features exhibiting RF losses at high surface magnetic fields of above 100 mT in field emission free superconducting niobium cavities. The lossy areas were identified by advanced thermometry. Surface investigations using different techniques were carried out on cutout samples from lossy areas and showed the presence of dendritic niobium hydrides. This finding has possible implications to the mechanisms of RF losses in superconducting niobium at all field levels.

  10. HYDRIDE-RELATED DEGRADATION OF SNF CLADDING UNDER REPOSITORY CONDITIONS

    SciTech Connect

    K. McCoy

    2000-12-12

    The purpose and scope of this analysis/model report is to analyze the degradation of commercial spent nuclear fuel (CSNF) cladding under repository conditions by the hydride-related metallurgical processes, such as delayed hydride cracking (DHC), hydride reorientation and hydrogen embrittlement, thereby providing a better understanding of the degradation process and clarifying which aspects of the process are known and which need further evaluation and investigation. The intended use is as an input to a more general analysis of cladding degradation.

  11. Plasmonic hydrogen sensing with nanostructured metal hydrides.

    PubMed

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-12-23

    In this review, we discuss the evolution of localized surface plasmon resonance and surface plasmon resonance hydrogen sensors based on nanostructured metal hydrides, which has accelerated significantly during the past 5 years. We put particular focus on how, conceptually, plasmonic resonances can be used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and at the single-nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes in the quest to develop efficient solid-state hydrogen storage materials with fast response times, reasonable thermodynamics, and acceptable long-term stability. Therefore, a brief introduction to the thermodynamics of metal hydride formation is also given. However, plasmonic hydrogen sensors not only are of academic interest as research tool in materials science but also are predicted to find more practical use as all-optical gas detectors in industrial and medical applications, as well as in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier. Therefore, the wide range of different plasmonic hydrogen sensor designs already available is reviewed together with theoretical efforts to understand their fundamentals and optimize their performance in terms of sensitivity. In this context, we also highlight important challenges to be addressed in the future to take plasmonic hydrogen sensors from the laboratory to real applications in devices, including poisoning/deactivation of the active materials, sensor lifetime, and cross-sensitivity toward other gas species. PMID:25427244

  12. METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW

    SciTech Connect

    Bowman Jr, Robert C; Yartys, Dr. Volodymyr A.; Lototskyy, Dr. Michael V; Pollet, Dr. B.G.

    2014-01-01

    Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

  13. Materials compatibility and wall stresses in hydride storage beds

    SciTech Connect

    Clark, E.A.; Dunn, K.A.; McKillip, S.T.; Bannister, C.E.

    1991-01-01

    Hydrogen isotope handling and storage will be accomplished using solid-state hydride compounds at the Savannah River Site in the new Replacement Tritium Facility (RTF). The hydride powder is contained in a horizontal cylindrical vessel, and the combination of hydride powder, vessel, and associated heating and cooling facilities are termed in a hydride storage bed. The materials compatibility of the storage powder with the stainless steel vessel has been examined, and the stresses developed in the vessel due to expansion of the powder by absorbing hydrogen have been measured.

  14. Materials compatibility and wall stresses in hydride storage beds

    SciTech Connect

    Clark, E.A.; Dunn, K.A.; McKillip, S.T.; Bannister, C.E.

    1991-12-31

    Hydrogen isotope handling and storage will be accomplished using solid-state hydride compounds at the Savannah River Site in the new Replacement Tritium Facility (RTF). The hydride powder is contained in a horizontal cylindrical vessel, and the combination of hydride powder, vessel, and associated heating and cooling facilities are termed in a hydride storage bed. The materials compatibility of the storage powder with the stainless steel vessel has been examined, and the stresses developed in the vessel due to expansion of the powder by absorbing hydrogen have been measured.

  15. Storing hydrogen in the form of light alloy hydrides

    NASA Technical Reports Server (NTRS)

    Freund, E.; Gillerm, C.

    1981-01-01

    Different hydrides are investigated to find a system with a sufficiently high storage density (at least 3%). The formation of hydrides with light alloys is examined. Reaction kinetics for hydride formation were defined and applied to the systems Mg-Al-H, Mg-Al-Cu-H, Ti-Al-H, Ti-Al-Cu-H, and Ti-Al-Ni-H. Results indicate that the addition of Al destabilizes MgH2 and TiH2 hydrides while having only a limited effect on the storage density.

  16. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi[sub 5-x]Al[sub x] (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  17. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi{sub 5-x}Al{sub x} (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  18. Materials compatibility of hydride storage materials with austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Clark, E. A.

    1992-09-01

    This task evaluated the materials compatibility of LaNi(5-x)Al(x) (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  19. METHOD AND APPARATUS FOR MAKING URANIUM-HYDRIDE COMPACTS

    DOEpatents

    Wellborn, W.; Armstrong, J.R.

    1959-03-10

    A method and apparatus are presented for making compacts of pyrophoric hydrides in a continuous operation out of contact with air. It is particularly useful for the preparation of a canned compact of uranium hydride possessing high density and purity. The metallic uranium is enclosed in a container, positioned in a die body evacuated and nvert the uranium to the hydride is admitted and the container sealed. Heat is applied to bring about the formation of the hydride, following which compression is used to form the compact sealed in a container ready for use.

  20. Hydride phase formation in carbon supported palladium hydride nanoparticles by in situ EXAFS and XRD

    NASA Astrophysics Data System (ADS)

    Bugaev, A. L.; Guda, A. A.; Lomachenko, K. A.; Lazzarini, A.; Srabionyan, V. V.; Vitillo, J. G.; Piovano, A.; Groppo, E.; Bugaev, L. A.; Soldatov, A. V.; Dmitriev, V. P.; Pellegrini, R.; van Bokhoven, J. A.; Lamberti, C.

    2016-05-01

    In the current work we present a detailed analysis of the hydride phase formation in industrial Pd/C nanocatalysts by means of combined in situ X-ray absorption spectroscopy (EXAFS), X-ray diffraction (XRD) and volumetric measurements for the temperatures from - 10 to 50 °C in the hydrogen pressure range from 0 to 1000 mbar. α- and β- hydride phases are clearly distinguished in XRD. For the first time, H/Pd atomic ratio were obtained by theoretical fitting of the near-edge region of the absorption spectra (XANES) and compared with volumetric measurements.

  1. Antimony sulphide, an absorber layer for solar cell application

    NASA Astrophysics Data System (ADS)

    Ali, N.; Hussain, Arshad; Ahmed, R.; Shamsuri, W. N. Wan; Shaari, A.; Ahmad, N.; Abbas, S. M.

    2016-01-01

    Replacement of the toxic, expensive and scarce materials with nontoxic, cheap and earth-abundant one, in solar cell absorber layer, is immensely needed to realize the vision of green and sustainable energy. Two-micrometre-thin antimony sulphide film is considered to be adequate as an absorbing layer in solar cell applications. In this paper, we synthesize antimony sulphide thin films on glass substrate by physical vapour deposition technique, and the obtained films were then annealed at different temperatures (150-250 °C). The as-deposited and annealed samples were investigated for structural and optoelectronic properties using different characterization techniques. The X-ray diffraction analysis showed that the annealed samples were polycrystalline with Sb2S3 phase, while the as-deposited sample was amorphous in nature. The optical properties are measured via optical ellipsometric techniques. The measured absorbance of the film is adequately high, and every photon is found to be absorbed in visible and NIR range. The conductivity type of the films measured by hot-point probe technique is determined to be p-type. The optical band gap of the resulted samples was in the range (2.4-1.3 eV) for the as-deposited and annealed films.

  2. Alkali oxide-tantalum, niobium and antimony oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Brower, W. S.; Parker, H. S.; Minor, D. B.; Waring, J. L.

    1975-01-01

    The phase equilibrium relations of four systems were investigated in detail. These consisted of sodium and potassium antimonates with antimony oxide and tantalum and niobium oxide with rubidium oxide as far as the ratio 4Rb2O:llB2O5 (B=Nb, Ta). The ternary system NaSbO3-Sb2O4-NaF was investigated extensively to determine the actual composition of the body centered cubic sodium antimonate. Various other binary and ternary oxide systems involving alkali oxides were examined in lesser detail. The phases synthesized were screened by ion exchange methods to determine mobility of the mobility of the alkali ion within the niobium, tantalum or antimony oxide (fluoride) structural framework. Five structure types warranted further investigation; these structure types are (1) hexagonal tungsten bronze (HTB), (2) pyrochlore, (3) the hybrid HTB-pyrochlore hexagonal ordered phases, (4) body centered cubic antimonates and (5) 2K2O:3Nb2O5. Although all of these phases exhibit good ion exchange properties only the pyrochlore was prepared with Na(+) ions as an equilibrium phase and as a low porosity ceramic. Sb(+3) in the channel interferes with ionic conductivity in this case, although relatively good ionic conductivity was found for the metastable Na(+) ion exchanged analogs of RbTa2O5F and KTaWO6 pyrochlore phases.

  3. Antimony contamination and its effect on Trifolium plants

    NASA Astrophysics Data System (ADS)

    Corrales, Isabel; Barceló, Juan; Bech, Jaume; Poschenrieder, Charlotte

    2014-05-01

    Antimony is not an essential element and soil Sb contents usually are low.However, soil contamination by Sb has increased in the last years due to the human activities (combustion of fossil fuels, mining, waste incineration, smelting, shooting and road traffic). The main objective of this work was to study the effect of different concentrations of antimony (KSb(OH)6) in order to evaluate the effect on growth and Sb uptake on Trifolium pratense cv. Milvus and Trifolium repens. Our results show that Sb accumulated both in roots and shoots of clover without any negative effect on root growth, cellular viability and lipid peroxidation. This absence of toxicity sympthoms in clover plants could be very dangerous because Sb can be inadvertedly incorporated into the trophic chain causing toxic effects both in animals and humans. The absence of toxic effects on plants does not seem to be due to detoxification by phytochelatins because the use of the gamma-glutamylcysteine synthetase inhibitor, L-buthionine-[S,R]-sulphoximine (BSO) did not enhance Sb toxicity to plants. (Supported by the Spanish MICINN project BFU2010-14873)

  4. Electronic band structure calculations of bismuth-antimony nanowires

    NASA Astrophysics Data System (ADS)

    Levin, Andrei; Dresselhaus, Mildred

    2012-02-01

    Alloys of bismuth and antimony received initial interest due to their unmatched low-temperature thermoelectric performance, and have drawn more recent attention as the first 3D topological insulators. One-dimensional bismuth-antimony (BiSb) nanowires display interesting quantum confinement effects, and are expected to exhibit even better thermoelectric properties than bulk BiSb. Due to the small, anisotropic carrier effective masses, the electronic properties of BiSb nanowires show great sensitivity to nanowire diameter, crystalline orientation, and alloy composition. We develop a theoretical model for calculating the band structure of BiSb nanowires. For a given crystalline orientation, BiSb nanowires can be in the semimetallic, direct semiconducting, or indirect semiconducting phase, depending on nanowire diameter and alloy composition. These ``phase diagrams'' turn out to be remarkably similar among the different orientations, which is surprising in light of the anisotropy of the bulk BiSb Fermi surface. We predict a novel direct semiconducting phase for nanowires with diameter less than ˜15 nm, over a narrow composition range. We also find that, in contrast to the bulk and thin film BiSb cases, a gapless state with Dirac dispersion cannot be realized in BiSb nanowires.

  5. Periodic macroporous nanocrystalline antimony-doped tin oxide electrode.

    PubMed

    Arsenault, Eric; Soheilnia, Navid; Ozin, Geoffrey A

    2011-04-26

    Optically transparent and electrically conductive electrodes are ubiquitous in the myriad world of devices. They are an indispensable component of solar and photoelectrochemical cells, organic and polymer light emitting diodes, lasers, displays, electrochromic windows, photodetectors, and chemical sensors. The majority of the electrodes in such devices are made of large electronic band-gap doped metal oxides fashioned as a dense low-surface-area film deposited on a glass substrate. Typical transparent conducting oxide materials include indium-, fluorine-, or antimony-doped tin oxides. Herein we introduce for the first time a transparent conductive periodic macroporous electrode that has been self-assembled from 6 nm nanocrystalline antimony-doped tin oxide with high thermal stability, optimized electrical conductivity, and high quality photonic crystal properties, and present an electrochemically actuated optical light switch built from this electrode, whose operation is predicated on its unique combination of electrical, optical, and photonic properties. The ability of this macroporous electrode to host active functional materials like dyes, polymers, nanocrystals, and nanowires provides new opportunities to create devices with improved performance enabled by the large area, spatially accessible and electroactive internal surface. PMID:21391718

  6. Exploring antimony isotope ratio variations for provenancing purposes

    NASA Astrophysics Data System (ADS)

    Lobo, L.; Degryse, P.; Vanhaecke, F.

    2012-04-01

    Production sites and trade routes of Roman glass have received much attention over the past decade. It is assumed that raw glass was produced in primary workshops near the raw material sources used, to be transported to secondary glass houses. Colourless glass was a particularly prestigious material in this process, difficult to make. It has been looked at from the perspective of the provenance of its sand and flux, but rarely from the perspective of the origin of the decolourizing material. In effect, for the production of early Roman colourless glass, antimony was used, deliberately added under the form of Sb-bearing minerals. Isotopic analysis of Sb ores could help identify the origin of the decolorizing agent present in Roman glasses and, consequently, to reconstruct how such material was traded and transported, and how this can be integrated in the network of primary and secondary glass producers. In this work, variations in the isotopic composition of Sb in different ore sources (stibnites) are explored using multi-collector ICP - mass spectrometry. A new method is proposed, where Sb is directly analysed for its isotopic composition using MC-ICP-MS after chromatographic isolation of the target element from a sample digest. The isotopic composition of the selected materials shows variations up to 6 ?-units relative to an antimony standard solution. Indium was used as internal standard for correction for instrumental mass discrimination and an external precision for the 123Sb/121Sb ratio of 0.01% RSD was obtained

  7. Antimony in the environment: A review focused on natural waters. III. Microbiota relevant interactions

    NASA Astrophysics Data System (ADS)

    Filella, Montserrat; Belzile, Nelson; Lett, Marie-Claire

    2007-02-01

    Antimony is ubiquitously present in the environment as a result of natural processes and human activities. Antimony is not considered to be an essential element for plants or animals. In this third review paper on the occurrence of antimony in natural waters, the interactions of antimony with microbiota are discussed in relation to its fate in natural waters. This paper covers the following aspects: occurrence in microbiota, uptake transport mechanisms, pathways of Sb(III) removal from cells involved in antimony tolerance, oxidation and reduction of antimony by living organisms, phytochelatin induction and biomethylation. This review is based on a careful and systematic examination of a comprehensive collection of papers on the above mentioned aspects of the subject. All data are quoted from the original sources. Relatively little existing information falls within the strict scope of this review and, when relevant, discussion on the interactions of antimony with reference microorganisms, such as Escherichia coli, Saccharomyces cerevisiae and different protozoan parasites of the genus Leishmania, has been included.

  8. Immobilization of antimony waste slag by applying geopolymerization and stabilization/solidification technologies.

    PubMed

    Salihoglu, Güray

    2014-11-01

    During the processing of antimony ore by pyrometallurgical methods, a considerable amount of slag is formed. This antimony waste slag is listed by the European Union as absolutely hazardous waste with a European Waste Catalogue code of 10 08 08. Since the levels of antimony and arsenic in the leachate of the antimony waste slag are generally higher than the landfilling limits, it is necessary to treat the slag before landfilling. In this study, stabilization/solidification and geopolymerization technologies were both applied in order to limit the leaching potential of antimony and arsenic. Different combinations ofpastes by using Portland cement, fly ash, clay, gypsum, and blast furnace slag were prepared as stabilization/solidification or geopoljymer matrixes. Sodium silicate-sodium hydroxide solution and sodium hydroxide solution at 8 M were used as activators for geopolymer samples. Efficiencies of the combinations were evaluated in terms of leaching and unconfined compressive strength. None of the geopolymer samples prepared with the activators yielded arsenic and antimony leaching below the regulatory limit at the same time, although they yielded high unconfined compressive strength levels. On the other hand, the stabilization/solidification samples prepared by using water showed low leaching results meeting the landfilling criteria. Use of gypsum as an additive was found to be successful in immobilizing the arsenic and antimony. PMID:25509550

  9. Removal of arsenic and antimony from anode slime by vacuum dynamic flash reduction.

    PubMed

    Lin, Deqiang; Qiu, Keqiang

    2011-04-15

    Anode slime is an important material of recycling precious metals. Up to now, treating the arsenic- and antimony-rich anode slime by conventional processes has the following problems: its economic and environmental effect is less than satisfactory, and the removal effect of arsenic and antimony from anode slime in present processes is not all that could be desired. Therefore, vacuum dynamic flash reduction, a new process for treating arsenic- and antimony-rich anode slime, was investigated in this work. During vacuum dynamic flash reduction, silver from the arsenic- and antimony-rich anode slime was left behind in the distilland as the silver alloy, and trivalent oxides of arsenic and antimony were evaporated in the distillate. The experimental results showed that the evaporation percent of the arsenic- and antimony-rich anode slime was 65.6%. Namely, 98.92% by weight of arsenic and 93.67% by weight of antimony can be removed under the following experimental conditions: temperature of 1083 K, vacuum evaporation time of 60 min, and air flow rate of 400 mL/min corresponding to the residual gas pressure of 250 Pa. Moreover, vacuum treatment eliminates much of the air pollution and material losses associated with other conventional treatment methods. PMID:21446728

  10. Structural and optical characterization of thermally evaporated bismuth and antimony films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Srimathy, N.; Ruban Kumar, A.

    2016-05-01

    In this present study, the thin film of bismuth and antimony is coated by thermal evaporation system equipped with the inbuilt ultra high vacuum system. XRD analysis confirmed the rhombohedral structure of Bismuth and Antimony on the prepared film. The surface roughness and physical appearance is analyzed by Atomic force microscopy. The results of Raman Spectroscopy show the wave functions and the spectrum of electrons. The preparation technique and conditions strongly influence the crystalline structure and the phase composition of bismuth and antimony thin films. The electrical and optical properties for the prepared film are analyzed. The results show a great interest and promising applications in Photovoltaic devices.

  11. Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems

    SciTech Connect

    2011-12-05

    HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

  12. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.

    PubMed

    Jones, J Stuart; Gabbaï, François P

    2016-05-17

    Stimulated by applications in catalysis, the chemistry of ambiphilic ligands featuring both donor and acceptor functionalities has experienced substantial growth in the past several years. The unique opportunities in catalysis offered by ambiphilic ligands stem from the ability of their acceptor functionalities to play key roles via metal-ligand cooperation or modulation of the reactivity of the metal center. Ligands featuring group 13 centers, most notably boranes, as their acceptor functionalities have undoubtedly spearheaded these developments, with remarkable results having been achieved in catalytic hydrogenation and hydrosilylation. Motivated by these developments as well as by our fundamental interest in the chemistry of heavy group 15 elements, we became fascinated by the possibility of employing antimony centers as Lewis acids within ambiphilic ligands. The chemistry of antimony-based ligands, most often encountered as trivalent stibines, has historically been considered to mirror that of their lighter phosphorus-based congeners. There is growing evidence, however, that antimony-based ligands may display unique coordination behavior and reactivity. Additionally, despite the diverse Lewis acid and redox chemistry that antimony exhibits, there have been only limited efforts to explore this chemistry within the coordination sphere of a transition metal. By incorporation of antimony into the framework of polydentate ligands in order to enforce the main group metal-transition metal interaction, the effect of redox and coordination events at the antimony center on the structure, electronics, and reactivity of the metal complex may be investigated. This Account describes our group's continuing efforts to probe the coordination behavior, reactivity, and application of ambiphilic ligands incorporating antimony centers. Structural and theoretical studies have established that both Sb(III) and Sb(V) centers in polydentate ligands may act as Z-type ligands toward late

  13. Metal Hydrides for High-Temperature Power Generation

    SciTech Connect

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, or during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.

  14. Hydrogen storage in the form of metal hydrides

    NASA Technical Reports Server (NTRS)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  15. Metal Hydrides for High-Temperature Power Generation

    DOE PAGESBeta

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore » during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less

  16. High energy density battery based on complex hydrides

    DOEpatents

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  17. Method of making crack-free zirconium hydride

    DOEpatents

    Sullivan, Richard W.

    1980-01-01

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  18. Modular hydride beds for mobile applications

    SciTech Connect

    Malinowski, M.E.; Stewart, K.D.

    1997-08-01

    Design, construction, initial testing and simple thermal modeling of modular, metal hydride beds have been completed. Originally designed for supplying hydrogen to a fuel cell on a mobile vehicle, the complete bed design consists of 8 modules and is intended for use on the Palm Desert Vehicle (PDV) under development at the Schatz Energy Center, Humbolt State University. Each module contains approximately 2 kg of a commercially available, low temperature, hydride-forming metal alloy. Waste heat from the fuel cell in the form of heated water is used to desorb hydrogen from the alloy for supplying feed hydrogen to the fuel cell. In order to help determine the performance of such a modular bed system, six modules were constructed and tested. The design and construction of the modules is described in detail. Initial testing of the modules both individually and as a group showed that each module can store {approximately} 30 g of hydrogen (at 165 PSIA fill pressure, 17 C), could be filled with hydrogen in 6 minutes at a nominal, 75 standard liters/min (slm) fueling rate, and could supply hydrogen during desorption at rates of 25 slm, the maximum anticipated hydrogen fuel cell input requirement. Tests made of 5 modules as a group indicated that the behavior of the group run in parallel both in fueling and gas delivery could be directly predicted from the corresponding, single module characteristics by using an appropriate scaling factor. Simple thermal modeling of a module as an array of cylindrical, hydride-filled tubes was performed. The predictions of the model are in good agreement with experimental data.

  19. Porous metal hydride composite and preparation and uses thereof

    DOEpatents

    Steyert, William A.; Olsen, Clayton E.

    1982-01-01

    A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

  20. Metal hydrides for concentrating solar thermal power energy storage

    NASA Astrophysics Data System (ADS)

    Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E.

    2016-04-01

    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

  1. Recent advances in metal hydrides for clean energy applications

    SciTech Connect

    Ronnebro, Ewa; Majzoub, Eric H.

    2013-06-01

    Metal hydrides are a fascinating class of materials that can be utilized for a surprising variety of clean energy applications, including smart solar collectors, smart windows, sensors, thermal energy storage, and batteries, in addition to their traditional application for hydrogen storage. Over the past decade, research on metal hydrides for hydrogen storage increased due to global governmental incentives and an increased focus on hydrogen storage research for polymer electrolyte membrane fuel cell operation. Tremendous progress has been made in so-called complex metal hydrides for hydrogen storage applications with the discovery of many new hydrides containing covalently bound complex anions. Many of these materials have applications beyond hydrogen storage and are being investigated for lithium-ion battery separator and anode materials. In this issue of MRS Bulletin , we present the state of the art of key evolving metal-hydride-based clean energy technologies with an outlook toward future needs.

  2. A novel plating process for microencapsulating metal hydrides

    SciTech Connect

    Law, H.H.; Vyas, B.; Zahurak, S.M.; Kammlott, G.W.

    1996-08-01

    One approach to increasing the lifetime of the metal hydride electrode has been the use of conventional electroless plating to produce a coating of copper or nickel on the surface of the metal hydride powders. In this paper, a novel method for microencapsulating the active electrode powders is presented. This new plating technique takes advantage of the reducing power of hydrogen already stored inside the metal hydride to plate a variety of metals onto metal hydride materials. This method greatly simplifies electroless plating for these powders, eliminating the need for stabilizers and additives typically required for conventional electroless plating solutions. Metals that can be electrolessly plated with stored hydrogen have been identified based on thermodynamic considerations. Experimentally, micrometers thick coatings of copper, silver, and nickel have been plated on several metal hydrides.

  3. Electrochemical characteristics of encapsulated metal-hydride-alloy electrodes

    SciTech Connect

    Zhu, W.H.; Zhang, D.J.; Ke, J.J.

    1996-06-01

    Metal hydride electrodes with copper-encapsulated alloys and non-coated alloys were fabricated using suitable conductive and binding agents. The charge-discharge characteristics of three kinds of hydride electrodes were comparatively investigated. The encapsulated alloy electrode is remarkably superior to the non-coated LaNi{sub 5}-based one, discharging at a high rate and exhibiting a smaller capacity decay at the stage of cycle tests. The hydride alloy quality of hydride electrodes can be effectively determined by measuring rate capability. The results of vented cell experiments confirm that the capacity decay of non-coated alloy electrodes in sealed cells is not due to the oxidation of oxygen from the nickel hydroxide positive electrodes. The relationship between the equilibrium potential of hydride electrode and the equilibrium hydrogen pressure has been deduced by a succinct thermodynamic method, without consideration of the unknown activity of water and fugacity coefficient of hydrogen.

  4. Porous metal hydride composite and preparation and uses thereof

    DOEpatents

    Steyert, W.A.; Olsen, C.E.

    1980-03-12

    A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

  5. Highly Concentrated Palladium Hydrides/Deuterides; Theory

    SciTech Connect

    Papaconstantopoulos, Dimitrios

    2013-11-26

    Accomplishments are reported in these areas: tight-binding molecular dynamics study of palladium; First-principles calculations and tight-binding molecular dynamics simulations of the palladium-hydrogen system; tight-binding studies of bulk properties and hydrogen vacancies in KBH{sub 4}; tight-binding study of boron structures; development of angular dependent potentials for Pd-H; and density functional and tight-binding calculations for the light-hydrides NaAlH4 and NaBH4

  6. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan F.; Yu, Conrad

    2010-08-10

    An apparatus having a first substrate having (1) a cavity, (2) one or more resistive heaters, and (3) one or more coatings forming a diffusion barrier to hydrogen; a second substrate having (1) an outlet valve comprising a pressure relief structure and (2) one or more coatings forming a diffusion barrier to hydrogen, wherein said second substrate is coupled to said first substrate forming a sealed volume in said cavity; a metal hydride material contained within said cavity; and a gas distribution system formed by coupling a microfluidic interconnect to said pressure relief structure. Additional apparatuses and methods are also disclosed.

  7. Nanostructured Magnesium Hydride for Reversible Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    de Rango, P.; Chaise, A.; Fruchart, D.; Miraglia, S.; Marty, Ph.

    2013-05-01

    The aim of this work was to develop suitable materials to store hydrogen in a solid state. A systematic investigation of the co-milling process of magnesium hydride with a transition metal was undertaken in order to produce nanostructured and highly reactive powders. The initiating role of the transition metal was evidenced by in situ neutron diffraction experiments. High performances in terms of thermal and mechanical behavior were achieved introducing expanded graphite and compacting the mixture to form composite materials. Absorption and desorption kinetics have been measured versus temperature and H2 pressure.

  8. Development of nickel-metal hydride cell

    NASA Technical Reports Server (NTRS)

    Kuwajima, Saburo; Kamimori, Nolimits; Nakatani, Kensuke; Yano, Yoshiaki

    1993-01-01

    National Space Development Agency of Japan (NASDA) has conducted the research and development (R&D) of battery cells for space use. A new R&D program about a Nickel-Metal Hydride (Ni-MH) cell for space use from this year, based on good results in evaluations of commercial Ni-MH cells in Tsukuba Space Center (TKSC), was started. The results of those commercial Ni-MH cell's evaluations and recent status about the development of Ni-MH cells for space use are described.

  9. Results of NDE Technique Evaluation of Clad Hydrides

    SciTech Connect

    Dennis C. Kunerth

    2014-09-01

    This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used to detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing

  10. Calcium metal as a scavenger for antimony from aluminum alloys

    SciTech Connect

    Bonsignore, P.V.; Daniels, E.J.; Wu, C.T.

    1994-10-04

    Previous work has shown that trace amounts of antimony (Sb) can affect the mechanical properties of strontium (Sr) modified aluminum castings. ANL has been investigating technology to remove or neutralize Sb to reduce its negative effect on the physical properties of those alloys. Review of past work on processing and recovery of scrap aluminum inferred that calcium (Ca) is an effective scavenger of Sb, bismuth, lead and cadmium. Following up on that lead, we have found that Ca is, indeed, effective for removing Sb from molten aluminum alloys although its effectiveness can be compromised by a wide range of processing conditions. A minimum ratio of about four to one, by weight, of Ca to Sb appears necessary to insure an effective scavenging of contained Sb.in 356 aluminum alloys.

  11. Diameter Dependence of the Transport Properties of Antimony Telluride Nanowires

    NASA Astrophysics Data System (ADS)

    Zuev, Yuri; Lee, Jin Sook; Park, Hongkun; Kim, Philip

    2010-03-01

    We report measurements of electronic, thermoelectric, and galvanometric properties of individual semimetallic single crystal antimony telluride (Sb2Te3) nanowires. Microfabricated heater and thermometer electrodes were used to probe the transport properties of the nanowires with diameters in the range of 22 - 95nm and temperatures in the range of 2 - 300K. Temperature dependent resistivity varies depending on nanowire diameter. Thermoelectric power (TEP) measurements indicate hole dominant diffusive thermoelectric generation, with an enhancement of the TEP for smaller diameter wires. The large surface-to-volume ratio of Sb2Te3 nanowires makes them an excellent platform to explore novel phenomena in this predicted topological insulator. We investigate mesoscopic magnetoresistance effects in magnetic fields both parallel and perpendicular to the nanowire axis.

  12. Copper, lead, zinc, antimony, and arsenic in Pakistan

    USGS Publications Warehouse

    White, Max Gregg

    1975-01-01

    Copper localities that merit geological investigation are found in the western Chasai District, in North Waziristan Agency, and in the Salt Range in Mianwali and Sargodha Districts. No high-grade deposits have been .reported from these ,areas and if deposits are developed they will likely be low-grade, high-tonnage, disseminated deposits. Those localities reported from Chitral State are too remote and inaccessible to be of interest now. All lead localities found to date are of minor importance; there has been small production at one .locality in Chasai District and in the southern part of the Hazara District. Zinc, antimony, and arsenic are sparse in Pakistan and no important localities of these metals are reported.

  13. Magnesium-Antimony Liquid Metal Battery for Stationary Energy Storage

    SciTech Connect

    Bradwell, DJ; Kim, H; Sirk, AHC; Sadoway, DR

    2012-02-01

    Batteries are an attractive option for grid: scale energy storage applications because of their small footprint and flexible siting. A high-temperature (700 degrees C) magnesium antimony (MgllSb) liquid metal battery comprising a negative electrode of Mg, a molten salt electrolyte (MgCL2-KCl-NaCl), and a positive electrode of Sb is proposed and characterized. Because of the immiscibility of the contiguous salt and metal phases, they stratify by density into three distinct layers. Cells were cycled at rates ranging from 50 to 200 mA/cm(2) and demonstrated up to 69% DC-DC energy efficiency. The self-segregating nature of the battery components and the use Of low-cost materials results in a promising technology for stationary energy storage applications.

  14. Atomistic mechanisms governing structural stability change of zinc antimony thermoelectrics

    SciTech Connect

    Yang, Xiaolong; Lin, Jianping; Qiao, Guanjun; Wang, Zhao

    2015-01-05

    The structural stability of thermoelectric materials is a subject of growing importance for their energy harvesting applications. Here, we study the microscopic mechanisms governing the structural stability change of zinc antimony at its working temperature, using molecular dynamics combined with experimental measurements of the electrical and thermal conductivity. Our results show that the temperature-dependence of the thermal and electrical transport coefficients is strongly correlated with a structural transition. This is found to be associated with a relaxation process, in which a group of Zn atoms migrates between interstitial sites. This atom migration gradually leads to a stabilizing structural transition of the entire crystal framework, and then results in a more stable crystal structure of β–Zn{sub 4}Sb{sub 3} at high temperature.

  15. Silicon quantum dots with counted antimony donor implants

    NASA Astrophysics Data System (ADS)

    Singh, Meenakshi; Pacheco, Jose; Perry, Daniel; Wendt, Joel; Manginell, Ronald; Dominguez, Jason; Pluym, Tammy; Luhman, Dwight; Bielejec, Edward; Lilly, Michael; Carroll, Malcolm

    Antimony donor implants next to silicon quantum dots have been detected with integrated solid-state diode detectors with single ion precision. Devices with counted number of donors have been fabricated and low temperature transport measurements have been performed. Charge offsets, indicative of donor ionization and coupling to the quantum dot, have been detected in these devices. The number of offsets corresponds to 10-50% of the number of donors counted. We will report on tunneling time measurements and spin readout measurements on the donor offsets. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  16. Antimony toxicity in the lichen Xanthoria parietina (L.) Th. Fr.

    PubMed

    Paoli, L; Fiorini, E; Munzi, S; Sorbo, S; Basile, A; Loppi, S

    2013-11-01

    In this paper we tested if treating the lichen Xanthoria parietina with Sb-containing solutions causes Sb bioaccumulation as well as physiological and ultrastructural changes. Total and intracellular antimony content in Sb-treated samples increased progressively with increasing concentration in the treatment solutions. Incubation of X. parietina thalli with Sb at concentrations as low as 0.1mM caused a decrease in sample viability, measured as intensity of respiratory activity, and damage to cell membranes, expressed in terms of membrane lipid peroxidation, as well as ultrastructural changes such as plasmolysis, impairment of the thylakoid system of the alga and cytoplasmic lipid droplets. The photosynthetic system hardly responded, at least under the tested experimental conditions. PMID:24001672

  17. Geochemistries of arsenic, antimony, mercury, and related elements in sediments of puget sound

    USGS Publications Warehouse

    Crecelius, E.A.; Bothner, Michael H.; Carpenter, R.

    1975-01-01

    The natural distributions of arsenic, antimony mercury, chromium, cobalt, iron, aluminum, and carbon in the surface sediments of Puget Sound are perturbed by two major anthropogenic sources of trace metals: a copper smelter near Tacoma, Wash., that discharges large amounts of arsenic and antimony, and a chlor-alkali plant in Bellingham, Wash., which, in the recent past, discharged significant amounts of mercury. Arsenic and antimony inputs from the smelter over the past 80 years are evident in sediment cores whose accumulation rates have been determined by the lead-210 technique. An arsenic budget for Puget Sound reveals the importance of atmospheric input resulting from smokestack emissions of the smelter. Chemical extraction studies of sediments showed that more than 82% of the mercury was associated with easily oxidizable organic matter, whereas about 50% of both arsenic and antimony was associated with extractable iron and aluminum compounds.

  18. Concentrations of arsenic, antimony, and boron in steam and steam condensate at The Geysers, California

    USGS Publications Warehouse

    Smith, C.L.; Ficklin, W.H.; Thompson, J.M.

    1987-01-01

    Studies at The Geysers Geothermal Field, California indicate that under some circumstances elements that are transported in the vapor phase can become enriched in the liquid phase. Waters from two condensate traps (steam traps) on steam lines at The Geysers are enriched with arsenic, antimony, and boron compared to the concentrations of these elements in coexisting steam. Concentrations of boron in condensate-trap waters were as high as 160 mg/L, arsenic as high as 35 mg/L, and antimony as high as 200 ??g/L. Enrichment of arsenic, antimony, and boron is at least partially controlled by the partitioning of these elements into the liquid phase, according to their vapor-liquid distribution coefficients, after they are transported in steam. Several of the elements that are most soluble in steam, including arsenic and antimony, are part of the trace-element suite that characterizes precious-metal epithermal ore deposits. ?? 1987.

  19. One-step synthesis and flame retardancy of sheaf-like microcrystal antimony oxychloride.

    PubMed

    Zhou, Jing; Zhao, Hewei; Li, Lidong; Tian, Ming; Han, Jibing; Zhang, Liqun; Guo, Lin

    2011-10-01

    A mild and facile solution route has been developed for large-scale synthesis of sheaf-like antimony oxychloride Sb8O11CI2 (H2O)6 microcrystal at room temperature. The morphologies and structures of the as-prepared products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A mechanism for the formation of the sheaf-like microstructure was tentatively proposed. The shape regulation was attributed to the capping mode of the PVP-directed antimony oxychloride crystal. The thermogravimetric and differential thermal analysis (TG/DTA) were employed to investigate thermal decomposition mechanism and temperature-dependent phase transition of antimony oxychloride Sb8O11CI2 (H2O)6 in the air. The flammable property determined by the cone calorimeter showed excellent flame retardancy when applied this antimony oxychloride in poly (vinyl chloride) (PVC) polymer. PMID:22400215

  20. New low-antimony alloy for straps and cycling service in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Prengaman, R. David

    Lead-antimony alloys used for the positive grids in lead-acid batteries for cycling service have generally used antimony contents of 4.5 wt.% and above. Tubular batteries for cycling service that impart high compression of the active material to the grid surface via gauntlet use alloys with antimony contents as low as 1.5 wt.%. These batteries are generally employed in less-severe cycling service. Value-regulated lead-acid (VRLA) batteries can give good cycling service without lead-antimony in the positive grid, but require a high tin content and high compression. The change in automotive battery positive grid alloys to lead-calcium-tin and the tin contents of VRLA positive grids and straps have dramatically increased the tin content of the recycled grid and strap lead in the USA, Europe, and Australia. The higher tin contents can contaminate the lead used for lead-antimony battery grids and generally must be removed to low levels to meet the specifications. This study describes a low-antimony alloy that contains a substantial amount of tin. The high tin content reduces the rate of corrosion of low-antimony positive grid alloys, improves conductivity, increases the bond between the grid and the active material, and cycles as well as the traditional 5-6 wt.% antimony alloys employed in conventional flat-plate batteries. The alloy is also used as a corrosion-resistant cast-on strap alloy for automotive batteries for high temperature service, as well as for posts, bushings, and connectors for all wet batteries.

  1. Neutron-activation analysis by standard addition and solvent extraction Determination of traces of antimony.

    PubMed

    Alian, A; Shabana, R; Sanad, W; Allam, B; Khalifa, K

    1968-02-01

    The application of neutron activation analysis by standard addition and solvent extraction to the determination of traces of antimony in aluminium and rocks is reported. Three simple extraction procedures, using isopropyl ether, hexone, and tributyl phosphate, are described for the selective separation of radioantimony from interfering radionuclides. Antimony concentration is measured by counting the activities of the (122)Sb and (124)Sb photopeaks at 0.564 and 0.603 MeV. PMID:18960289

  2. Pressure-stabilized superconductive yttrium hydrides

    PubMed Central

    Li, Yinwei; Hao, Jian; Liu, Hanyu; Tse, John S.; Wang, Yanchao; Ma, Yanming

    2015-01-01

    The search for high-temperature superconductors has been focused on compounds containing a large fraction of hydrogen, such as SiH4(H2)2, CaH6 and KH6. Through a systematic investigation of yttrium hydrides at different hydrogen contents using an structure prediction method based on the particle swarm optimization algorithm, we have predicted two new yttrium hydrides (YH4 andYH6), which are stable above 110 GPa. Three types of hydrogen species with increased H contents were found, monatomic H in YH3, monatomic H+molecular “H2” in YH4 and hexagonal “H6” unit in YH6. Interestingly, H atoms in YH6 form sodalite-like cage sublattice with centered Y atom. Electron-phonon calculations revealed the superconductive potential of YH4 and YH6 with estimated transition temperatures (Tc) of 84–95 K and 251–264 K at 120 GPa, respectively. These values are higher than the predicted maximal Tc of 40 K in YH3. PMID:25942452

  3. Surface passivation of metal hydrides for applications

    SciTech Connect

    Suda, S.; Li, Z.P.; Sun, Y.M.; Liu, B.H.; Gao, X.P.

    1998-12-31

    Properties and characteristics of hydriding alloys are strongly dependent on surface compositions and morphologies. For instance, oxides such as La{sub 2}O{sub 3} on AB{sub 5} alloys and ZrO{sub 2} on AB{sub 2}, AB, and body-centered-cubic (BCC) alloys act as the barriers for the conversion of molecular and ionic hydrogen to atomic hydrogen at the surface, thus reducing the kinetics in both the gas-solid and electrochemical reactions. Alloy surfaces chemically treated by an aqueous F-ion containing solution have been developed to solve such problems. F-treated surfaces exhibit significantly improved characteristics in regard to the hydrogen uptakes and the protection against impurities and electrolyte solution. In addition, highly conductive metallic Ni layers can be formed on the surface of the alloy particles by the fluorination. The authors report the properties and characteristics of fluorinated hydriding alloys, mainly of a typical AB{sub 2} Laves phase material which represents the difficult activation characteristics and poor long-term durability during electrochemical charge/discharge cycles.

  4. Metal hydrides for lithium-ion batteries.

    PubMed

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries. PMID:18849978

  5. Regeneration of Aluminum Hydride Using Trimethylamine

    SciTech Connect

    D Lacina; J Reilly; Y Celebi; J Wegrzyn; J Johnson; J Graetz

    2011-12-31

    Aluminum hydride is an attractive reducing agent and energy storage compound possessing a low decomposition temperature and a high gravimetric and volumetric hydrogen density. However, it is thermodynamically unstable at room temperature and requires extremely high pressures to form the hydride from aluminum and hydrogen gas. Here, we describe an alternate method of synthesizing AlH{sub 3} using Ti-catalyzed Al powder, H{sub 2}, and trimethylamine (TMA) to form an alane adduct. The formation of trimethylamine alane occurs at modest hydrogen pressures ({approx}100 bar), forming the 2:1 bis complex (2 trimethylamine/AlH{sub 3}). Along with the hydrogenation product, mono (1:1) and bis (2:1) standards of TMA-AlH{sub 3} were prepared and characterized using X-ray diffraction and Raman spectroscopy. X-ray absorption spectroscopy of the reaction products showed that the Ti catalyst remains with the unreacted Al powder after hydrogenation and is not present in the alane adduct. We also demonstrate that TMA can be transaminated with triethylamine to form triethylamine alane, which can easily be separated to recover AlH{sub 3}.

  6. Millimeter-Wave Spectroscopy of Ethylmercury Hydride

    NASA Astrophysics Data System (ADS)

    Goubet, M.; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.

    2012-06-01

    The first millimeter-wave rotational spectrum of an organomercury compound, ethylmercury hydride (CH_3CH_2HgH), has been recorded using the Lille fast-scan spectrometer in the frequency range 120 -- 180 GHz. The spectroscopic study is complemented by quantum chemical calculations taking into account relativistic effects on the mercury atom. The very good agreement between theoretical and experimental molecular parameters validates the chosen ab initio method, in particular its capability to predict the accurate values of the quartic centrifugal distortion constants related to this type of compound. Estimations of the nuclear quadrupole coupling constants are not as predictive as the structural parameters but good enough to satisfy the spectroscopic needs. In addition, the orientation of the H--Hg--C bonds axis deduced from the experimental nuclear quadrupole coupling constants compares well with the corresponding ab initio value. From the good agreement between experimental and theoretical results, together with the observation of the six most abundant isotopes of mercury, ethylmercury hydride is unambiguously identified and its calculated equilibrium geometry is confirmed. Alekseev, E.A. et al. Radio Physics and Radio Astronomy 3 (2012) 78.

  7. A comprehensive global inventory of atmospheric Antimony emissions from anthropogenic activities, 1995-2010.

    PubMed

    Tian, Hezhong; Zhou, JunRui; Zhu, Chuanyong; Zhao, Dan; Gao, Jiajia; Hao, Jiming; He, Mengchang; Liu, Kaiyun; Wang, Kun; Hua, Shenbing

    2014-09-01

    Antimony (Sb) and its compounds are considered as global pollutants due to their health risks and long-range transport characteristics. A comprehensive global inventory of atmospheric antimony emissions from anthropogenic activities during the period of 1995-2010 has been developed with specific estimation methods based on the relevant data available for different continents and countries. Our results indicate that the global antimony emissions have increased to a peak at about 2232 t (t) in 2005 and then declined gradually. Global antimony emissions in 2010 are estimated at about 1904 t (uncertainty of a 95% confidence interval (CI): -30% ∼ 67%), with fuel combustion as the major source category. Asia and Europe account for about 57% and 24%, respectively, of the global total emissions, and China, the United States, and Japan rank as the top three emitting countries. Furthermore, global antimony emissions are distributed into gridded cells with a resolution of 1° × 1°. Regions with high Sb emissions are generally concentrated in the Southeastern Asia and Western Europe, while South Africa, economically developed regions in the eastern U.S., and Mexico are also responsible for the high antimony emission intensity. PMID:25110938

  8. Urinary antimony and leukocyte telomere length: An analysis of NHANES 1999-2002.

    PubMed

    Scinicariello, Franco; Buser, Melanie C

    2016-10-01

    Telomeres are repetitive DNA sequences (TTAGGG) at the end of chromosomes. Cells with critically short telomeres enter replicative senescence and apoptosis. Several in vitro studies report that antimony causes cell apoptosis in human leukocyte cell lines. The goal of this analysis was to investigate whether there is an association between antimony exposure and leukocyte telomere length (LTL) among US adults aged 20 and older based on the National Health and Nutrition Examination Survey (NHANES) 1999-2002. We used multivariate linear regression to analyze the association of urinary antimony with LTL. LTL was log-natural transformed and the results were re-transformed and presented as percent differences. After adjustment for potential confounders, individuals in the 3rd and 4th quartiles of urinary antimony had statistically significantly shorter LTL (-4.78%, 95% CI: -8.42,-0.90; and -6.11%, 95% CI: -11.04,-1.00, respectively) compared to the lowest referent quartile, with evidence of a dose-response relationship (p-value for trend =0.03). Shorter LTL with antimony was driven by middle aged (40-59 years) and older (60-85 years) adult groups. The association may be biologically plausible because of reported oxidative stress and apoptosis effects of antimony on blood cells, effects known to shorten telomere length. PMID:27423705

  9. Nano-titania-crosslinked chitosan composite as a superior sorbent for antimony (III) and (V).

    PubMed

    Nishad, Padala Abdul; Bhaskarapillai, Anupkumar; Velmurugan, Sankaralingam

    2014-08-01

    Removal of radioactive antimony, especially at low levels, is a difficult problem faced by nuclear power plants all over the world. Further, antimony is classified as a pollutant of priority importance by the United States and the European environmental protection agencies. Chitosan, a biopolymer well known for its sorption properties, can also serve as a stable matrix for inorganic sorbents such as titania on crosslinking. A robust high performing sorbent for antimony, in the form of stable beads, has been prepared using nano-TiO2 and chitosan. Raman spectra of the beads confirmed the incorporation of nano-TiO2 in the chitosan matrix. The sorbent exhibited complete sorption of antimony from aqueous solutions with antimony concentrations ranging from as low as 150 ppb to as high as 120 ppm. The sorption dependence on equilibrium pH has been investigated. The beads have been shown to be effective sorbent of antimony in both +3 and +5 oxidation states. The sorption properties of the beads were attributed to the TiO2 component present in the beads, while the crosslinked chitosan provided strong matrix and influenced the formation of much needed stable spherical beads suitable for real life large scale applications. The beads exhibited high sorption efficiency in the column mode, and were found to be physically stable at a flow rate of one bed volume per minute. PMID:24751261

  10. Antimony: an unlikely confounder in the relationship between well water arsenic and health outcomes in Bangladesh.

    PubMed Central

    McCarty, Kathleen M; Senn, David B; Kile, Molly L; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Christiani, David C

    2004-01-01

    Recent in vitro studies have suggested a potential role for antimony as a confounder in human health studies related to arsenic in drinking water. We measured tube-well water concentrations of antimony and arsenic in the Pabna region of Bangladesh, where arsenic concentrations are known to be elevated and the concentrations of antimony have not yet been thoroughly documented. Two hundred forty-five tube-well water samples were collected from various regions in Pabna, Bangladesh, as part of an ongoing case-control study. Water samples were analyzed for arsenic and antimony concentrations by inductively coupled plasma-mass spectrometry using U.S. Environmental Protection Agency method 200.8. The arsenic concentrations in the tube-well water samples ranged from < 1 microg/L to 747 microg/L. All 245 water samples had antimony concentrations < 1 microg/L. Based on consideration of the concentrations used the in vitro studies compared with field-observed concentrations, our results do not support the hypothesis that antimony would be a significant confounder in observed relationships between arsenic exposure through drinking water and potential health outcomes in Pabna, Bangladesh. PMID:15175164

  11. Synthesis and Hydride Transfer Reactions of Cobalt and Nickel Hydride Complexes to BX3 Compounds

    SciTech Connect

    Mock, Michael T.; Potter, Robert G.; O'Hagan, Molly J.; Camaioni, Donald M.; Dougherty, William G.; Kassel, W. S.; DuBois, Daniel L.

    2011-12-05

    Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H{sub 2} gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe){sub 2}, dmpe = 1,2-bis(dimethylphosphinoethane) was capable of reducing a variety of BX{sub 3} compounds having hydride affinity (HA) greater than or equal to HA of BEt{sub 3}. This study examines the reactivity of less expensive cobalt and nickel hydride complexes, (HCo(dmpe){sub 2} and [HNi(dmpe){sub 2}]{sup +}), to form B-H bonds. The hydride donor abilities ({Delta}G{sub H{sup -}}{sup o}) of HCo(dmpe){sub 2} and [HNi(dmpe){sub 2}]{sup +} were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX{sub 3} compounds. The collective data guided our selection of BX{sub 3} compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe){sub 2} was observed to transfer H{sup -} to BX{sub 3} compounds with X = H, OC{sub 6}F{sub 5} and SPh. The reaction with B(SPh){sub 3} is accompanied by formation of (BH{sub 3}){sub 2}-dmpe and (BH{sub 2}SPh){sub 2}-dmpe products that follow from reduction of multiple BSPh bonds and loss of a dmpe ligand from Co. Reactions between HCo(dmpe){sub 2} and B(SPh){sub 3} in the presence of triethylamine result in formation of Et{sub 3}N-BH{sub 2}SPh and Et{sub 3}N-BH{sub 3} with no loss of dmpe ligand. Reactions of the cationic complex [HNi(dmpe){sub 2}]{sup +} with B(SPh){sub 3} under analogous conditions give Et{sub 3}N-BH{sub 2}SPh as the final product along with the nickel-thiolate complex [Ni(dmpe){sub 2}(SPh)]{sup +}. The synthesis and characterization of HCo(dedpe){sub 2} (dedpe = diethyldiphenyl(phosphino)ethane) from H{sub 2} and a base is also discussed; including the formation of an uncommon trans

  12. Synthesis and Hydride Transfer Reactions of Cobalt and Nickel Hydride Complexes to BX₃ Compounds

    SciTech Connect

    Mock, Michael T.; Potter, Robert G.; O'Hagan, Molly; Camaioni, Donald M.; Dougherty, William G.; Kassel, W. Scott; DuBois, Daniel L.

    2011-10-31

    Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H₂ gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe)₂ (dmpe = 1,2-bis(dimethylphosphinoethane)) was capable of reducing a variety of BX₃ compounds having a hydride affinity (HA) greater than or equal to the HA of BEt₃. This study examines the reactivity of less expensive cobalt and nickel hydride complexes, HCo(dmpe)₂ and [HNi(dmpe)₂]+, to form B–H bonds. The hydride donor abilities (ΔGH °) of HCo(dmpe)₂ and [HNi(dmpe)₂]+ were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX₃ compounds. The collective data guided our selection of BX₃ compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe)₂ was observed to transfer H to BX₃ compounds with X = H, OC₆F₅, and SPh. The reaction with B(SPh)₃ is accompanied by the formation of dmpe-(BH₃)₂ and dmpe-(BH₂(SPh))₂ products that follow from a reduction of multiple B–SPh bonds and a loss of dmpe ligands from cobalt. Reactions between HCo(dmpe)₂ and B(SPh)₃ in the presence of triethylamine result in the formation of Et₃N–BH₂SPh and Et₃N–BH₃ with no loss of a dmpe ligand. Reactions of the cationic complex [HNi(dmpe)₂]+ with B(SPh)₃ under analogous conditions give Et₃N–BH₂SPh as the final product along with the nickel–thiolate complex [Ni(dmpe)₂(SPh)]+. The synthesis and characterization of HCo(dedpe)₂ (dedpe = Et₂PCH₂CH₂PPh₂) from H₂ and a base is also discussed, including the formation of an uncommon trans dihydride species, trans-[(H)₂Co(dedpe)₂][BF₄].

  13. A study of hydriding kinetics of metal hydrides using a physically based model

    NASA Astrophysics Data System (ADS)

    Voskuilen, Tyler G.

    The reaction of hydrogen with metals to form metal hydrides has numerous potential energy storage and management applications. The metal hydrogen system has a high volumetric energy density and is often reversible with a high cycle life. The stored hydrogen can be used to produce energy through combustion, reaction in a fuel cell, or electrochemically in metal hydride batteries. The high enthalpy of the metal-hydrogen reaction can also be used for rapid heat removal or delivery. However, improving the often poor gravimetric performance of such systems through the use of lightweight metals usually comes at the cost of reduced reaction rates or the requirement of pressure and temperature conditions far from the desired operating conditions. In this work, a 700 bar Sievert system was developed at the Purdue Hydrogen Systems Laboratory to study the kinetic and thermodynamic behavior of high pressure hydrogen absorption under near-ambient temperatures. This system was used to determine the kinetic and thermodynamic properties of TiCrMn, an intermetallic metal hydride of interest due to its ambient temperature performance for vehicular applications. A commonly studied intermetallic hydride, LaNi5, was also characterized as a base case for the phase field model. The analysis of the data obtained from such a system necessitate the use of specialized techniques to decouple the measured reaction rates from experimental conditions. These techniques were also developed as a part of this work. Finally, a phase field model of metal hydride formation in mass-transport limited interstitial solute reactions based on the regular solution model was developed and compared with measured kinetics of LaNi5 and TiCrMn. This model aided in the identification of key reaction features and was used to verify the proposed technique for the analysis of gas-solid reaction rates determined volumetrically. Additionally, the phase field model provided detailed quantitative predictions of the

  14. Synthesis and hydride transfer reactions of cobalt and nickel hydride complexes to BX3 compounds.

    PubMed

    Mock, Michael T; Potter, Robert G; O'Hagan, Molly J; Camaioni, Donald M; Dougherty, William G; Kassel, W Scott; DuBois, Daniel L

    2011-12-01

    Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H(2) gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe)(2) (dmpe = 1,2-bis(dimethylphosphinoethane)) was capable of reducing a variety of BX(3) compounds having a hydride affinity (HA) greater than or equal to the HA of BEt(3). This study examines the reactivity of less expensive cobalt and nickel hydride complexes, HCo(dmpe)(2) and [HNi(dmpe)(2)](+), to form B-H bonds. The hydride donor abilities (ΔG(H(-))°) of HCo(dmpe)(2) and [HNi(dmpe)(2)](+) were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX(3) compounds. The collective data guided our selection of BX(3) compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe)(2) was observed to transfer H(-) to BX(3) compounds with X = H, OC(6)F(5), and SPh. The reaction with B(SPh)(3) is accompanied by the formation of dmpe-(BH(3))(2) and dmpe-(BH(2)(SPh))(2) products that follow from a reduction of multiple B-SPh bonds and a loss of dmpe ligands from cobalt. Reactions between HCo(dmpe)(2) and B(SPh)(3) in the presence of triethylamine result in the formation of Et(3)N-BH(2)SPh and Et(3)N-BH(3) with no loss of a dmpe ligand. Reactions of the cationic complex [HNi(dmpe)(2)](+) with B(SPh)(3) under analogous conditions give Et(3)N-BH(2)SPh as the final product along with the nickel-thiolate complex [Ni(dmpe)(2)(SPh)](+). The synthesis and characterization of HCo(dedpe)(2) (dedpe = Et(2)PCH(2)CH(2)PPh(2)) from H(2) and a base is also discussed, including the formation of an uncommon trans dihydride species, trans-[(H)(2)Co(dedpe)(2)][BF(4)]. PMID:22040085

  15. A self-induced stress model for simulating hydride formation at flaws

    SciTech Connect

    Metzger, D.R.; Sauve, R.G.

    1996-12-01

    Formation of hydride at stress concentrations occurs in some materials as part of a stable cracking mechanism called delayed hydride cracking (DHC). As hydrogen combines with matrix material to become hydride, transformation strain is accommodated by local redistribution of stress. Since stress gradients drive hydrogen diffusion, this self-induced stress alters the conditions for subsequent hydride growth, and conditions required to fracture the hydrided material. A numerical model, using the finite element method, has been developed which couples the effect of stress driven hydrogen diffusion, and stress due to applied loads and hydride formation. Strong nonlinearities in this problem are solved effectively by a unique adaptation of the dynamic relaxation method. The simulation provides the volume fraction distribution of hydride, and the corresponding stress distribution. Application of the model to hydride formation at sharp and blunt flaws predicts hydride distribution shapes that are in good agreement with hydrides observed in experiments.

  16. The development of metal hydrides using as concentrating solar thermal storage materials

    NASA Astrophysics Data System (ADS)

    Qu, Xuanhui; Li, Yang; Li, Ping; Wan, Qi; Zhai, Fuqiang

    2015-12-01

    Metal hydrides high temperature thermal heat storage technique has great promising future prospects in solar power generation, industrial waste heat utilization and peak load regulating of power system. This article introduces basic principle of metal hydrides for thermal storage, and summarizes developments in advanced metal hydrides high-temperature thermal storage materials, numerical simulation and thermodynamic calculation in thermal storage systems, and metal hydrides thermal storage prototypes. Finally, the future metal hydrides high temperature thermal heat storage technique is been looked ahead.

  17. Molecular rare-earth-metal hydrides in non-cyclopentadienyl environments.

    PubMed

    Fegler, Waldemar; Venugopal, Ajay; Kramer, Mathias; Okuda, Jun

    2015-02-01

    Molecular hydrides of the rare-earth metals play an important role as homogeneous catalysts and as counterparts of solid-state interstitial hydrides. Structurally well-characterized non-metallocene-type hydride complexes allow the study of elementary reactions that occur at rare-earth-metal centers and of catalytic reactions involving bonds between rare-earth metals and hydrides. In addition to neutral hydrides, cationic derivatives have now become available. PMID:25413985

  18. Technical and economic aspects of hydrogen storage in metal hydrides

    NASA Technical Reports Server (NTRS)

    Schmitt, R.

    1981-01-01

    The recovery of hydrogen from such metal hydrides as LiH, MgH2, TiH2, CaH2 and FeTiH compounds is studied, with the aim of evaluating the viability of the technique for the storage of hydrogen fuel. The pressure-temperature dependence of the reactions, enthalpies of formation, the kinetics of the hydrogen absorption and desorption, and the mechanical and chemical stability of the metal hydrides are taken into account in the evaluation. Economic aspects are considered. Development of portable metal hydride hydrogen storage reservoirs is also mentioned.

  19. Finite difference program for calculating hydride bed wall temperature profiles

    SciTech Connect

    Klein, J.E.

    1992-10-29

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis.

  20. Structural Characterization of Metal Hydrides for Energy Applications

    NASA Astrophysics Data System (ADS)

    George, Lyci

    Hydrogen can be an unlimited source of clean energy for future because of its very high energy density compared to the conventional fuels like gasoline. An efficient and safer way of storing hydrogen is in metals and alloys as hydrides. Light metal hydrides, alanates and borohydrides have very good hydrogen storage capacity, but high operation temperatures hinder their application. Improvement of thermodynamic properties of these hydrides is important for their commercial use as a source of energy. Application of pressure on materials can have influence on their properties favoring hydrogen storage. Hydrogen desorption in many complex hydrides occurs above the transition temperature. Therefore, it is important to study the physical properties of the hydride compounds at ambient and high pressure and/or high temperature conditions, which can assist in the design of suitable storage materials with desired thermodynamic properties. The high pressure-temperature phase diagram, thermal expansion and compressibility have only been evaluated for a limited number of hydrides so far. This situation serves as a main motivation for studying such properties of a number of technologically important hydrides. Focus of this dissertation was on X-ray diffraction and Raman spectroscopy studies of Mg2FeH6, Ca(BH4) 2, Mg(BH4)2, NaBH4, NaAlH4, LiAlH4, LiNH2BH3 and mixture of MgH 2 with AlH3 or Si, at different conditions of pressure and temperature, to obtain their bulk modulus and thermal expansion coefficient. These data are potential source of information regarding inter-atomic forces and also serve as a basis for developing theoretical models. Some high pressure phases were identified for the complex hydrides in this study which may have better hydrogen storage properties than the ambient phase. The results showed that the highly compressible B-H or Al-H bonds and the associated bond disordering under pressure is responsible for phase transitions observed in brorohydrides or

  1. Simulation of antimony adsorption on nano-zero valent iron and kaolinite and analyzing the influencing parameters.

    PubMed

    Saeidnia, Setareh; Asadollahfardi, Gholamreza; Darban, Ahmad Khodadadi; Mohseni, Mehdi

    2016-01-01

    Antimony is one of the most toxic pollutants in industrial and mineral wastewaters threatening the life of humans and other creatures. We simulated the adsorption of antimony in the presence of nano-zero valent iron (nZVI) adsorbent, on kaolinite and in the presence of nZVI coated on kaolinite from mineral wastewater using VISUAL MINTEQ 3.1 software. Our aim was to determine the factors affecting the adsorption of antimony by applying simulation. The simulation was performed using an adsorption model of a diffuse layer model. The results of the simulation indicated that the nZVI concentration, initial concentrations of antimony and pH factor are effective on the adsorption of antimony. In the conducted stimulation, the optimum pH was 2-5 and the highest adsorption occurred in an acidic state. With increasing initial concentrations of antimony in the simulation, we concluded that nZVI had absorbed various concentrations above 90% and, by increasing the concentration of nZVI, antimony adsorption rate increased. The increased surface area of nZVI and the expansion of more interchangeable surfaces available for reaction with antimony ions causes more antimony ions to be adsorbed. In all cases, the coefficient of determination between the laboratory results and the model predictions that was obtained was more than 0.9. PMID:27191572

  2. The Hydriding Kinetics of Organic Hydrogen Getters

    SciTech Connect

    Powell, G. L.

    2002-02-11

    The aging of hermetically sealed systems is often accompanied by the gradual production of hydrogen gas that is a result of the decay of environmental gases and the degradation of organic materials. In particular, the oxygen, water, hydrogen ''equilibrium'' is affected by the removal of oxygen due the oxidation of metals and organic materials. This shift of the above ''equilibrium'' towards the formation of hydrogen gas, particularly in crevices, may eventually reach an explosive level of hydrogen gas or degrade metals by hydriding them. The latter process is generally delayed until the oxidizing species are significantly reduced. Organic hydrogen getters introduced by Allied Signal Aerospace Company, Kansas City Division have proven to be a very effective means of preventing hydrogen gas accumulation in sealed containers. These getters are relatively unaffected by air and environmental gases. They can be packaged in a variety of ways to fit particular needs such as porous pellets, fine or coarse [gravel] powder, or loaded into silicone rubber. The hydrogen gettering reactions are extremely irreversible since the hydrogen gas is converted into an organic hydrocarbon. These getters are based on the palladium-catalyzed hydrogenation of triple bonds to double and then single bonds in aromatic aryl compounds. DEB (1,4 bis (phenyl ethynyl) benzene) typically mixed with 25% by weight carbon with palladium (1% by weight of carbon) is one of the newest and best of these organic hydrogen getters. The reaction mechanisms are complex involving solid state reaction with a heterogeneous catalyst leading to the many intermediates, including mixed alkyl and aryl hydrocarbons with the possibilities of many isomers. The reaction kinetics mechanisms are also strongly influenced by the form in which they are packaged. For example, the hydriding rates for pellets and gravel have a strong dependence on reaction extent (i.e., DEB reduction) and a kinetic order in pressure of 0

  3. Synthesis and some reactions of dibutyltin (S)- and (R)-camphorsulfonyl hydrides.

    PubMed

    Kinart, Wojciech J; Kinart, Cezary M; Kozak, Monika; Kinart, Andrzej; Sendecki, Marcin; Matczak, Piotr

    2009-08-01

    The synthesis and physical properties of dibutyltin (S)-camphorsulfonyl hydride (1) and dibutyltin (R)-camphorsulfonyl hydride (2), and diphenyltin (S)-camphorsulfonyl hydride (3) as well as that of their organotin precursors are described. Their reactivity with different amines as triethylamine, morpholine and pyridine has been compared with other mixed hydrides as dibutyltin chloride hydride, dibutyltin acetate hydride and dibutyltin dihydride. It has been studied also the possibility of using of dibutyltin (R)- or (S)-camphorsulfonyl hydrides for the stereoselective reduction of different ketones as acetophenone, menthon, camphor and cyclopropyl-(4-metoxyphenyl)-methanone. The reduction of acetophenone with studied camphorsulfonyl hydrides carried out in benzene at room temperature afforded 1-phenylethanol with relatively low enantioselectivity. Addition of 10 equiv. of MnCl(2)*4H(2)O or ZnCl(2) to the reduction mixture involving dibutyltin (S)-camphorsulfonyl hydride (1) and acetophenone and carried out in methanol and tetrahydrofuran, respectively, resulted in remarkable increase in enantioselectivity. The comparative kinetic studies of reduction of acetophenone by different hydrides proved that dibutyltin camphorsulfonyl hydride is significantly more reactive in comparison with dibutyltin chloro hydride and dibutyltin acetate hydride. Analogous results have been obtained from kinetic studies for different tin hydrides with chosen amines. The outcome of these studies supported by theoretical calculations led to the conclusion that the order of reactivity of the studied hydrides correlates with the rate of their homolytic decomposition at room temperature. PMID:19531015

  4. Zirconium Hydride Space Power Reactor design.

    NASA Technical Reports Server (NTRS)

    Asquith, J. G.; Mason, D. G.; Stamp, S.

    1972-01-01

    The Zirconium Hydride Space Power Reactor being designed and fabricated at Atomics International is intended for a wide range of potential applications. Throughout the program a series of reactor designs have been evaluated to establish the unique requirements imposed by coupling with various power conversion systems and for specific applications. Current design and development emphasis is upon a 100 kilowatt thermal reactor for application in a 5 kwe thermoelectric space power generating system, which is scheduled to be fabricated and ground tested in the mid 70s. The reactor design considerations reviewed in this paper will be discussed in the context of this 100 kwt reactor and a 300 kwt reactor previously designed for larger power demand applications.

  5. Process for production of a metal hydride

    SciTech Connect

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  6. Ni/metal hydride secondary element

    DOEpatents

    Bauerlein, Peter

    2005-04-19

    A Ni/metal hydride secondary element having a positive nickel hydroxide electrode, a negative electrode having a hydrogen storage alloy, and an alkaline electrolyte, the positive electrode, provided with a three-dimensional metallic conductive structure, also contains an aluminum compound which is soluble in the electrolyte, in addition to nickel hydroxide and cobalt oxide. The aluminum compound is aluminum hydroxide and/or aluminum oxide, and the mass of the aluminum compound which is present in the positive bulk material mixture is 0.1 to 2% by weight relative to the mass of the nickel hydroxide which is present. In combination with aluminum hydroxide or aluminum oxide, the positive electrode further contains lanthanoid oxidic compounds Y.sub.2 O.sub.3, La.sub.2 O.sub.3 and Ca(OH).sub.2, as well as mixtures of these compounds.

  7. Novel Hydride Transfer Catalysis for Carbohydrate Conversions

    SciTech Connect

    Holladay, John E.; Brown, Heather M.; Appel, Aaron M.; Zhang, Z. Conrad

    2008-04-03

    5-Hydroxymethylfurfural (HMF), an important versatile sugar derivative has been synthesized from glucose using catalytic amounts of CrCl2 in 1-ethyl-3-methylimidizolium chloride. Glycerol and glyceraldehyde were tested as sugar model compounds. Glycerol is unreactive and does not interfere with glucose conversion. Glyceraldehyde is reactive and does interfere with glucose conversion in competitive experiments. MnCl2 or FeCl2 catalyze dehydration of glyceraldehyde dimer to form compound I, a cyclic hemiacetal with an exocyclic double bond. Upon aqueous work-up I forms pyruvaldehyde. CrCl2 or VCl3 further catalyze a hydride transfer of I to form lactide. Upon aqueous work-up lactide is converted to lactic acid.

  8. Hydrogen storage in sodium aluminum hydride.

    SciTech Connect

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  9. New Antimony Lanthanide Disulfide Dibromides LnSbS

    SciTech Connect

    Gout, D.; Jobic, S.; Evain, M.; Brec, R.

    2001-05-01

    CeSbS{sub 2}Br{sub 2} (I), Ce{sub 1/2}La{sub 1/2}SbS{sub 2}Br{sub 2} (II), and LaSbS{sub 2}Br{sub 2} (III) have been synthesized at 700 C from a mixture of LnBr{sub 3}, Ln{sub 2}S{sub 3}, Sb, and S and characterized by single-crystal X-ray diffraction. The three phases are isostructural (space group P2{sub 1}/c, Z=4) and crystallize in a novel, dense, bidimensional structure with cell parameters a=8.709(3) {angstrom}, b=9.187(2) {angstrom}, c=17.397(5) {angstrom} {beta}=104.26(3) for I, a=8.739(7) {angstrom}, b=9.219(7) {angstrom}, c=17.41(2) {angstrom}, =104.3(1) for II, and a=8.785(1) {angstrom}, b=9.236(2) {angstrom}, c=17.372(3) {angstrom}, {beta}=104.09(2) for III. In these compounds, [Ln S{sub 5}Br{sub 4}] and [Ln S{sub 3}Br{sub 6}] (Ln=Ce, La) distorted tricapped trigonal prisms define infinite {sub {infinity}}{sup 2}[LnS{sub 2}Br{sub 2}] layers counterbalanced and capped by antimony cations. In good accordance with the structural features, the charge balance in these materials is to be written Ln{sup III}Sb{sup III}S{sup -II}{sub 2}Br{sup -I}{sub 2}. These compounds exhibit a yellow hue with a measured absorption threshold of 2.42(1), 2.55(1), and 2.72(1) eV for I, II, and III, respectively. In the two cerium containing bromothioantimonates I and II, the origin of the color is assigned to a Ce-4f{yields}Ce-5d electronic transition, which shifts to higher energy from I to II due either to a matrix effect (increase of the mean Ln-S distances under the substitution of Ce for La) or to an atomic ordering between Ce and La cations on the Ln(1) and Ln(2) crystallographic sites. In contrast, the electronic transition at play in III involves a charge transfer from the bromine and sulfur ions to the antimony ions, the latter contributing substantially to the lowermost levels of the conduction band.

  10. MAPK1 of Leishmania donovani Modulates Antimony Susceptibility by Downregulating P-Glycoprotein Efflux Pumps

    PubMed Central

    Garg, Mansi

    2015-01-01

    Emergence of resistance to pentavalent antimonials has become a severe obstacle in the treatment of visceral leishmaniasis (VL) in the Indian subcontinent. Mitogen-activated protein kinases (MAPKs) are well-known mediators of signal transduction of eukaryotes, regulating important processes, like proliferation, differentiation, stress response, and apoptosis. In Leishmania, MAPK1 has been shown to be consistently downregulated in antimony-resistant field isolates, suggesting that it has a role in antimony resistance. The present work investigates the molecular mechanism of MAPK1 in antimony resistance in Leishmania donovani. The L. donovani MAPK1 (LdMAPK1) single-allele replacement mutants exhibited increased resistance to Sb(III) (5.57-fold) compared to wild-type promastigotes, while overexpressing parasites became much more susceptible to antimony. The LdMAPK1-mediated drug sensitivity was directly related to antimony-induced apoptotic death of the parasite, as was evidenced by a 4- to 5-fold decrease in cell death parameters in deletion mutants and a 2- to 3-fold increase in MAPK1-overexpressing cells. LdMAPK1-underexpressing parasites also exhibited increased P-glycoprotein (P-gp)-mediated efflux pump activity, while a significant decrease in pump activity was observed in overexpressing cells. This change in efflux pump activity was directly related to expression levels of P-gp in all cell lines. However, episomal complementation of the gene restored normal growth, drug sensitivity, P-gp expression, and efflux pump activity. The data indicate that LdMAPK1 negatively regulates the expression of P-glycoprotein-type efflux pumps in the parasite. The decrease in efflux pump activity with an increase in LdMAPK1 expression may result in increased antimony accumulation in the parasite, making it more vulnerable to the drug. PMID:25870075

  11. The MRP1-mediated effluxes of arsenic and antimony do not require arsenic-glutathione and antimony-glutathione complex formation.

    PubMed

    Salerno, Milena; Petroutsa, Maria; Garnier-Suillerot, Arlette

    2002-04-01

    Arsenic trioxide is an effective treatment for acute promyelocytic leukemia, but resistance to metalloid salts is found in humans. Using atomic absorption spectroscopy, we have measured the rate of uptake of arsenic trioxide and of antimony tartrate in GLC4 and GLC4/ADR cells overexpressing MRP1 and the rate of their MRP1-mediated effluxes as a function of the intracellular GSH concentration. In sensitive cells, after 1 h, a pseudosteady state is reached where intra- and extracellular concentrations of metalloid are the same. This precludes the formation, at short term, of complexes between arsenic or antimony with GSH. In resistant cells reduced intracellular accumulation of arsenic (or antimony), reflecting an increased rate of arsenic (or antimony) efflux from the cells, is observed. No efflux of the metalloid is observed in GSH depleted cells. The two metalloids and GSH are pumped out by MRP1 with the same efficiency. Moreover for the three compounds 50% of the efflux is inhibited by 2 microM MK571. This led us to suggest that As- and Sb-containing species could be cotransported with GSH. PMID:12018890

  12. Precipitation of hydrides in high purity niobium after different treatments

    SciTech Connect

    Barkov, F.; Romanenko, A.; Trenikhina, Y.; Grassellino, A.

    2013-01-01

    Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated at $T=140$~K within $\\sim30$~min. 120$^{\\circ}$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.

  13. Bipolar Nickel-Metal Hydride Battery Being Developed

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1998-01-01

    The NASA Lewis Research Center has contracted with Electro Energy, Inc., to develop a bipolar nickel-metal hydride battery design for energy storage on low-Earth-orbit satellites. The objective of the bipolar nickel-metal hydride battery development program is to approach advanced battery development from a systems level while incorporating technology advances from the lightweight nickel electrode field, hydride development, and design developments from nickel-hydrogen systems. This will result in a low-volume, simplified, less-expensive battery system that is ideal for small spacecraft applications. The goals of the program are to develop a 1-kilowatt, 28-volt (V), bipolar nickel-metal hydride battery with a specific energy of 100 watt-hours per kilogram (W-hr/kg), an energy density of 250 W-hr/liter and a 5-year life in low Earth orbit at 40-percent depth-of-discharge.

  14. Metal hydrides as negative electrode materials for Ni- MH batteries

    NASA Astrophysics Data System (ADS)

    Yartys, V.; Noreus, D.; Latroche, M.

    2016-01-01

    Structural, thermodynamical and electrochemical properties of metallic hydrides belonging to the pseudo-binary family A-Mg-Ni ( A: rare earths) are reviewed and compared. Technology aspects of bipolar cells are also discussed.

  15. Nonaqueous actinide hydride dissolution and production of actinide $beta$- diketonates

    DOEpatents

    Crisler, L.R.

    1975-11-11

    Actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a hydride of the actinide material in a mixture of carbon tetrachloride and methanol. (auth)

  16. Process for massively hydriding zirconium--uranium fuel elements

    DOEpatents

    Katz, N.H.

    1973-12-01

    A method is described of hydriding uranium-zirconium alloy by heating the alloy in a vacuum, introducing hydrogen and maintaining an elevated temperature until occurrence of the beta--delta phase transformation and isobarically cooling the composition. (Official Gazette)

  17. Self-Consistent-Field Calculation on Lithium Hydride for Undergraduates.

    ERIC Educational Resources Information Center

    Rioux, Frank; Harriss, Donald K.

    1980-01-01

    Describes a self-consistent-field-linear combination of atomic orbitals-molecular orbital calculation on the valence electrons of lithium hydride using the method of Roothaan. This description is intended for undergraduate physics students.

  18. Solid-state gadolinium{endash}magnesium hydride optical switch

    SciTech Connect

    Armitage, R.; Rubin, M.; Richardson, T.; OBrien, N.; Chen, Y.

    1999-09-01

    The optical switching properties of gadolinium{endash}magnesium hydride have been demonstrated in a solid-state electrochromic device. With positive polarization of the hydride electrode, the visible reflectance approaches 35{percent} with virtually zero transmission, while with negative polarization, the visible transmission exceeds 25{percent} at 650 nm. The switching is reversible, with intermediate optical properties between the transparent and reflecting states. {copyright} {ital 1999 American Institute of Physics.}

  19. Method of selective reduction of polyhalosilanes with alkyltin hydrides

    DOEpatents

    Sharp, Kenneth G.; D'Errico, John J.

    1989-01-01

    The invention relates to the selective and stepwise reduction of polyhalosilanes by reacting at room temperature or below with alkyltin hydrides without the use of free radical intermediates. Alkyltin hydrides selectively and stepwise reduce the Si--Br, Si--Cl, or Si--I bonds while leaving intact any Si--F bonds. When two or more different halogens are present on the polyhalosilane, the halogen with the highest atomic weight is preferentially reduced.

  20. Method of selective reduction of halodisilanes with alkyltin hydrides

    DOEpatents

    D'Errico, John J.; Sharp, Kenneth G.

    1989-01-01

    The invention relates to the selective and sequential reduction of halodisilanes by reacting these compounds at room temperature or below with trialkyltin hydrides or dialkyltin dihydrides without the use of free radical intermediates. The alkyltin hydrides selectively and sequentially reduce the Si-Cl, Si-Br or Si-I bonds while leaving intact the Si-Si and Si-F bonds present.

  1. Development of a metal hydride electrode waste treatment process

    SciTech Connect

    Bianco, J.C.; Martin, D.; Ansart, F.; Castillo, S.

    1999-12-01

    Manufacturing residues of metal hydride electrodes for nickel - metal hydride batteries were chemically processed to recover the metal part and heat treated for the organic part. Chemical recovery yielded Ni-Co alloy after electrolysis of the solution and hydroxides of other metal, mainly rare earths. The organic part, pyrolyzed at 700 C, led to separation between carbon and fluorinated matter. Infrared coupling at the output of the pyrolysis furnace was used to identify the pyrolysis gases.

  2. Development of the Low-Pressure Hydride/Dehydride Process

    SciTech Connect

    Rueben L. Gutierrez

    2001-04-01

    The low-pressure hydride/dehydride process was developed from the need to recover thin-film coatings of plutonium metal from the inner walls of an isotope separation chamber located at Los Alamos and to improve the safety operation of a hydride recovery process using hydrogen at a pressure of 0.7 atm at Rocky Flats. This process is now the heart of the Advanced Recovery and Integrated Extraction System (ARIES) project.

  3. Simultaneous lead and antimony immobilization in shooting range soil by a combined application of hydroxyapatite and ferrihydrite.

    PubMed

    Ogawa, Shouhei; Katoh, Masahiko; Sato, Takeshi

    2015-01-01

    This study investigated whether a combined application of hydroxyapatite and ferrihydrite could immobilize lead and antimony in shooting range soil in which the level of lead contamination is markedly higher than that of antimony. In addition, we evaluated the stability of lead and antimony immobilized by the combined application with varying soil pH. The levels of water-soluble lead and antimony for the combined application were lower than those of single applications of hydroxyapatite or ferrihydrite, indicating that the combined application could suppress the levels of water-soluble lead and antimony by 99.9% and 95.5%, respectively, as compared with the levels in shooting range soil without immobilization material. The amounts of residual lead and amorphous Fe/Al oxide-bound antimony fractions in sequential extraction increased with a decrease in the exchangeable and carbonate lead fractions as well as in non-specifically bound and specifically bound antimony fractions. The alteration of lead and antimony phases to chemically more stable ones as a result of the combined application would result in the suppression of their mobility. The stability of immobilized lead and antimony in the combined application was equal to that of lead with a single application of hydroxyapatite and that of antimony with a single application of ferrihydrite within neutral to alkaline pH conditions, respectively. Therefore, this study suggests that the combined application of hydroxyapatite and ferrihydrite can simultaneously immobilize lead and antimony in shooting range soil with neutral to alkaline pH. PMID:25894550

  4. Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries

    SciTech Connect

    Ouchi, T; Kim, H; Ning, XH; Sadoway, DR

    2014-08-08

    The performance of a calcium-antimony (Ca-Sb) alloy serving as the positive electrode in a Ca vertical bar vertical bar Sb liquid metal battery was investigated in an electrochemical cell, Ca(in Bi) vertical bar LiCl-NaCl-CaCl2 vertical bar Ca(in Sb). The equilibrium potential of the Ca-Sb electrode was found to lie on the interval, 1.2-0.95 V versus Ca, in good agreement with electromotive force (emf) measurements in the literature. During both alloying and dealloying of Ca at the Sb electrode, the charge transfer and mass transport at the interface are facile enough that the electrode potential varies linearly from 0.95 to 0.75 V vs Ca(s) as current density varies from 50 to 500 mA cm(-2). The discharge capacity of the Ca vertical bar vertical bar Sb cells increases as the operating temperature increases due to the higher solubility and diffusivity of Ca in Sb. The cell was successfully cycled with high coulombic efficiency (similar to 100%) and small fade rate (<0.01% cycle(-1)). These data combined with the favorable costs of these metals and salts make the Ca vertical bar vertical bar Sb liquid metal battery attractive for grid-scale energy storage. (C) The Author(s) 2014. Published by ECS. All rights reserved.

  5. Single-layer crystalline phases of antimony: Antimonenes

    NASA Astrophysics Data System (ADS)

    Aktürk, O. Üzengi; Ã-zçelik, V. Ongun; Ciraci, S.

    2015-06-01

    The pseudolayered character of 3D bulk crystals of antimony has led us to predict its 2D single-layer crystalline phase named antimonene in a buckled honeycomb structure like silicene. Sb atoms also form an asymmetric washboard structure like black phospherene. Based on an extensive analysis comprising ab initio phonon and finite-temperature molecular dynamics calculations, we show that these two single-layer phases are robust and can remain stable at high temperatures. They are nonmagnetic semiconductors with band gaps ranging from 0.3 eV to 1.5 eV, and are suitable for 2D electronic applications. The washboard antimonene displays strongly directional mechanical properties, which may give rise to a strong influence of strain on the electronic properties. Single-layer antimonene phases form bilayer and trilayer structures with wide interlayer spacings. In multilayers, this spacing is reduced and eventually the structure changes to 3D pseudolayered bulk crystals. The zigzag and armchair nanoribbons of the antimonene phases have fundamental band gaps derived from reconstructed edge states and display a diversity of magnetic and electronic properties depending on their width and edge geometry. Their band gaps are tunable with the widths of the nanoribbons. When grown on substrates, such as germanene or Ge(111), the buckled antimonene attains a significant influence of substrates.

  6. Yb3+/Ho3+-codoped antimony-silicate optical fiber

    NASA Astrophysics Data System (ADS)

    Żmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Dorosz, Jan

    The emission properties of Yb3+/Ho3+-codoped antimony-silicate optical fiber has been investigated. Luminescence at 2.1 μm corresponding to 5I7--> 5I8 transition in holmium was obtained by energy transfer between Yb3+ and Ho3+ ions. According to the Dexter-Miyakawa model, the parameters of energy migration CDD of the 2F5/2 (Yb3+) <--> 2F5/2 (Yb3+) transition and direct energy transfer CDA of the 2F5/2 (Yb3+) --> 5I6 (Ho3+) transition was calculated. The optimization of the activator content and the concentration ratio were conducted with the purpose of maximizing the efficiency of energy transfer. It made possible to select best-suited glass which was used to manufacture double-clad optical fiber. Strong and narrow bands of spontaneous emission which formed as a result of energy transfer between ytterbium and holmium ions were observed in the fiber under exciting with radiation at 978 nm wavelength.

  7. Yb3+/Ho3+-codoped antimony-silicate optical fiber

    NASA Astrophysics Data System (ADS)

    Żmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Dorosz, Jan

    2012-05-01

    The emission properties of Yb3+/Ho3+-codoped antimony-silicate optical fiber has been investigated. Luminescence at 2.1 μm corresponding to 5I7--> 5I8 transition in holmium was obtained by energy transfer between Yb3+ and Ho3+ ions. According to the Dexter-Miyakawa model, the parameters of energy migration CDD of the 2F5/2 (Yb3+) <--> 2F5/2 (Yb3+) transition and direct energy transfer CDA of the 2F5/2 (Yb3+) --> 5I6 (Ho3+) transition was calculated. The optimization of the activator content and the concentration ratio were conducted with the purpose of maximizing the efficiency of energy transfer. It made possible to select best-suited glass which was used to manufacture double-clad optical fiber. Strong and narrow bands of spontaneous emission which formed as a result of energy transfer between ytterbium and holmium ions were observed in the fiber under exciting with radiation at 978 nm wavelength.

  8. Antimony-Based III-V Thermophotovoltaic Materials and Devices

    NASA Astrophysics Data System (ADS)

    Wang, C. A.

    2004-11-01

    Antimony-based III-V thermophotovoltaic (TPV) cells are attractive converters for systems with low radiator temperature of around 1100 to 1700 K, since these cells can be spectrally matched to the thermal source. Cells under development include GaSb and lattice-matched GaInAsSb/GaSb and InPAsSb/InAs. GaSb cell technology is the most mature, owing in part to the relative ease in preparation of the binary alloy compared to the quaternary alloys. Cell performance of 0.7-eV GaSb devices is at ˜90% of the practical limit. GaInAsSb cells with energy gap Eg ranging from ˜0.6 to 0.49 eV have been demonstrated with quantum efficiency and fill factor approaching practical limits. InPAsSb cells are the least studied, and a 0.45-eV cell has spectral response out to 4.3 μm. This paper briefly reviews the main efforts in Sb-based TPV cells.

  9. Antimony as an amphoteric dopant in lead telluride

    SciTech Connect

    Jaworski, Christopher M.; Tobola, Janusz; Levin, E.M.; Schmidt-Rohr, Klaus; Heremans, Joseph P.

    2009-09-24

    We elucidate the amphoteric nature of antimony as a dopant in PbTe. Band-structure calculations show that Sb substituting for Pb is a donor and that Sb on the Te site is an acceptor giving rise to a large excess density of states (DOS). Experimentally, in Te-rich Pb{sub 1-x}Sb{sub x}Te samples, {sup 125}Te NMR spectroscopy shows that Sb substitutes for Pb and transport data reveal that it then acts as a simple donor. In Pb-rich PbSb{sub x}Te{sub 1-x} samples, {sup 125}Te NMR shows that little Sb substitutes for Te when samples are prepared above 770 K and then quenched; {sup 207}Pb NMR shows four types of charge carriers, but only a majority hole and a minority electron contribute to transport. Sb acts as an acceptor in PbSb{sub x}Te{sub 1-x}, but the large DOS calculated must correspond to a large concentration of localized holes and the Seebeck coefficient is not enhanced.

  10. AIR PASSIVATION OF METAL HYDRIDE BEDS FOR WASTE DISPOSAL

    SciTech Connect

    Klein, J; R. H. Hsu, R

    2007-07-02

    Metal hydride beds offer compact, safe storage of tritium. After metal hydride beds have reached the end of their useful life, the beds will replaced with new beds and the old beds prepared for disposal. One acceptance criteria for hydride bed waste disposal is that the material inside the bed not be pyrophoric. To determine the pyrophoric nature of spent metal hydride beds, controlled air ingress tests were performed. A simple gas handling manifold fitted with pressure transducers and a calibrated volume were used to introduce controlled quantities of air into a metal hydride bed and the bed temperature rise monitored for reactivity with the air. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 C internal temperature rise upon the first air exposure cycle and a 0.1 C temperature rise upon a second air exposure. A total of 346 scc air was consumed by the bed (0.08 scc per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12th cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water.

  11. Tellurium Hydrides at High Pressures: High-Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Wang, Hui; Zhang, Jurong; Liu, Hanyu; Zhang, Shoutao; Song, Hai-Feng; Yang, Guochun; Zhang, Lijun; Ma, Yanming

    2016-02-01

    Observation of high-temperature superconductivity in compressed sulfur hydrides has generated an irresistible wave of searches for new hydrogen-containing superconductors. We herein report the prediction of high-Tc superconductivity in tellurium hydrides stabilized at megabar pressures identified by first-principles calculations in combination with a swarm structure search. Although tellurium is isoelectronic to sulfur or selenium, its heavier atomic mass and weaker electronegativity makes tellurium hydrides fundamentally distinct from sulfur or selenium hydrides in stoichiometries, structures, and chemical bondings. We identify three metallic stoichiometries of H4Te , H5Te2 , and HTe3 , which are not predicted or known stable structures for sulfur or selenium hydrides. The two hydrogen-rich H4Te and H5Te2 phases are primarily ionic and contain exotic quasimolecular H2 and linear H3 units, respectively. Their high-Tc (e.g., 104 K for H4Te at 170 GPa) superconductivity originates from the strong electron-phonon couplings associated with intermediate-frequency H-derived wagging and bending modes, a superconducting mechanism which differs substantially with those in sulfur or selenium hydrides where the high-frequency H-stretching vibrations make considerable contributions.

  12. Tellurium Hydrides at High Pressures: High-Temperature Superconductors.

    PubMed

    Zhong, Xin; Wang, Hui; Zhang, Jurong; Liu, Hanyu; Zhang, Shoutao; Song, Hai-Feng; Yang, Guochun; Zhang, Lijun; Ma, Yanming

    2016-02-01

    Observation of high-temperature superconductivity in compressed sulfur hydrides has generated an irresistible wave of searches for new hydrogen-containing superconductors. We herein report the prediction of high-T_{c} superconductivity in tellurium hydrides stabilized at megabar pressures identified by first-principles calculations in combination with a swarm structure search. Although tellurium is isoelectronic to sulfur or selenium, its heavier atomic mass and weaker electronegativity makes tellurium hydrides fundamentally distinct from sulfur or selenium hydrides in stoichiometries, structures, and chemical bondings. We identify three metallic stoichiometries of H_{4}Te, H_{5}Te_{2}, and HTe_{3}, which are not predicted or known stable structures for sulfur or selenium hydrides. The two hydrogen-rich H_{4}Te and H_{5}Te_{2} phases are primarily ionic and contain exotic quasimolecular H_{2} and linear H_{3} units, respectively. Their high-T_{c} (e.g., 104 K for H_{4}Te at 170 GPa) superconductivity originates from the strong electron-phonon couplings associated with intermediate-frequency H-derived wagging and bending modes, a superconducting mechanism which differs substantially with those in sulfur or selenium hydrides where the high-frequency H-stretching vibrations make considerable contributions. PMID:26894729

  13. Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding

    SciTech Connect

    Shimskey, Rick W.; Hanson, Brady D.; MacFarlan, Paul J.

    2013-09-30

    The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400°C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available

  14. Electrochemical antimony removal from accumulator acid: results from removal trials in laboratory cells.

    PubMed

    Bergmann, M E Henry; Koparal, A Savas

    2011-11-30

    Regeneration of spent accumulator acid could be an alternative process for crystallization, neutralisation and disposal. Therefore, for the first time in a study of the possibilities of electrochemical removal of antimony and accumulator acid regeneration on a laboratory scale, two synthetic and several real systems containing sulfuric acid of concentrations ranging between 28% and 36%, and antimony species were tested. Discontinuous electrochemical reactors with anion exchange membranes were successfully used in these experiments, which were conducted at a temperature of 35°C. Removal of antimony using cells that were not divided by a separator, however, was not possible. In selected experiments, by varying the electrode material, type of electrolyte, and cell current, the concentration of antimony could be reduced from the range of 5 ppm to 0.15 ppm. This resulted in current efficiencies between 0.00002% and 0.001%, and in specific electroenergy demands between 100 Wh L(-1) and 2000 Wh L(-1). In other experiments on substances with antimony contents up to 3500 mg L(-1), the current efficiencies obtained were more than a thousandfold higher. In contrast to the formally high relative energy consumption parameters absolute demand parameters are relatively small and favour the electrochemical method in small scale application. Besides plate electrodes, 3D-cathodes were used. Copper- and graphite cathodes produced the best results. PMID:21978586

  15. Copper-promoted cementation of antimony in hydrochloric acid system: A green protocol.

    PubMed

    Wu, Lian-Kui; Li, Ying-Ying; Cao, Hua-Zhen; Zheng, Guo-Qu

    2015-12-15

    A new method of recovering antimony in hydrochloric acid system by cementation with copper powder was proposed and carried out at laboratory scale. Thermodynamic analysis and cyclic voltammetry test were conducted to study the cementation process. This is a novel antimony removal technology and quite meets the requirements of green chemistry. The main cement product Cu2Sb is a promising anodic material for lithium and sodium ion battery. And nearly all consumed copper powder are transformed into CuCl which is an important industrial material. The effect of reaction temperature, stoichiometric ratio of Cu to Sb(III), stirring rate and concentration of HCl on the cementation efficiency of antimony were investigated in detail. Optimized cementation condition is obtained at 60 °C for 120 min and stirring rate of 600 rpm with Cu/Sb(III) stoichiometric ratio of 6 in 3 mol L(-1) HCl. At this time, nearly all antimony can be removed by copper powder and the cementation efficiency is over 99%. The structure and morphologies of the cement products were characterized by X-ray diffraction and scanning electron microscopy, respectively. Results show that the reaction temperature has little influence on the morphology of the cement products which consist of particles with various sizes. The activation energy of the cementation antimony on copper is 37.75 kJ mol(-1), indicating a chemically controlled step. Inductively coupled plasma mass spectrometry results show that no stibine generates during the cementation process. PMID:26252996

  16. A quantitative phase field model for hydride precipitation in zirconium alloys: Part II. Modeling of temperature dependent hydride precipitation

    NASA Astrophysics Data System (ADS)

    Xiao, Zhihua; Hao, Mingjun; Guo, Xianghua; Tang, Guoyi; Shi, San-Qiang

    2015-04-01

    A quantitative free energy functional developed in Part I (Shi and Xiao, 2014 [1]) was applied to model temperature dependent δ-hydride precipitation in zirconium in real time and real length scale. At first, the effect of external tensile load on reorientation of δ-hydrides was calibrated against experimental observations, which provides a modification factor for the strain energy in free energy formulation. Then, two types of temperature-related problems were investigated. In the first type, the effect of temperature transient was studied by cooling the Zr-H system at different cooling rates from high temperature while an external tensile stress was maintained. At the end of temperature transients, the average hydride size as a function of cooling rate was compared to experimental data. In the second type, the effect of temperature gradients was studied in a one or two dimensional temperature field. Different boundary conditions were applied. The results show that the hydride precipitation concentrated in low temperature regions and that it eventually led to the formation of hydride blisters in zirconium. A brief discussion on how to implement the hysteresis of hydrogen solid solubility on hydride precipitation and dissolution in the developed phase field scheme is also presented.

  17. Antimony leaching in plastics from waste electrical and electronic equipment (WEEE) with various acids and gamma irradiation

    SciTech Connect

    Tostar, Sandra; Stenvall, Erik; Boldizar, Antal; Foreman, Mark R. St. J.

    2013-06-15

    Highlights: • We have proposed a method to recover antimony from electronic plastics. • The most efficient acid solution was sodium hydrogen tartrate in dimethyl sulfoxide. • Gamma irradiation did not influence the antimony leaching ability. - Abstract: There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are tested for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5 M) dissolved in either dimethyl sulfoxide or water (at ca. 23 °C and heated to ca. 105 °C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed.

  18. Chemical Hydride Slurry for Hydrogen Production and Storage

    SciTech Connect

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  19. Effect of antimony nano-scale surface-structures on a GaSb/AlAsSb distributed Bragg reflector

    SciTech Connect

    Husaini, S.; Shima, D.; Ahirwar, P.; Rotter, T. J.; Hains, C. P.; Dang, T.; Bedford, R. G.; Balakrishnan, G.

    2013-02-11

    Effects of antimony crystallization on the surface of GaSb during low temperature molecular beam epitaxy growth are investigated. The geometry of these structures is studied via transmission electron and atomic force microscopies, which show the surface metal forms triangular-shaped, elongated nano-wires with a structured orientation composed entirely of crystalline antimony. By depositing antimony on a GaSb/AlAsSb distributed Bragg reflector, the field is localized within the antimony layer. Polarization dependent transmission measurements are carried out on these nano-structures deposited on a GaSb/AlAsSb distributed Bragg reflector. It is shown that the antimony-based structures at the surface favor transmission of light polarized perpendicular to the wires.

  20. SESPE-FRAZIER, DIABLO, MATILIJA, DRY LAKES, SAWMILL-BADLANDS, CUYAMA, ANTIMONY, AND QUATAL ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Frizzell, Virgil A., Jr.; Hale, William N.

    1984-01-01

    The study area, consisting of the Sespe-Frazier, Diablo, Matilija, Dry Lakes, Sawmill-Badlands, Cuyama, Antimony, and Quatal Roadless Areas, occupies about 872 sq mi in the Los Padres National Forest, California. Studies indicate that the Sespe-Frazier Roadless Area contains demonstrated resources of gold, gypsum, phosphate and bentonite; deposits in the Cuyama Roadless Area have demonstrated resources of gypsum; mines in the Antimony Roadless Area have demonstrated resources of antimony, gold, silver, and marble; and the Quatal Roadless Area has demonstrated resources of bentonite. The Sespe-Frazier Roadless Area has substantiated potential for geothermal resources suitable for direct-heat purposes, probable and substantiated potential for oil and gas resources, and probable potential for gold resources. Small areas of probable resource potential for antimony and gold were identified in Antimony Roadless Area.

  1. Process for treating spent catalyst including antimony halides from chlorofluorocarbon production

    SciTech Connect

    Kalcevic, V.; McGahan, J.F.

    1988-06-14

    A process for treating spent catalyst from chlorofluorocarbon production is described wherein the catalyst includes antimony halides and undergoes hydrolysis in an aqueous medium to produce insoluble antimony compounds and fluoride ions. The process comprises hydrolyzing the catalyst in an aqueous solution of ferric chloride having a sufficient concentration of ferric ions to complex substantially all of the fluoride ions produced upon hydrolysis of the catalyst, neutralizing the reaction mass present following hydrolysis of the catalyst and complexing of the fluoride ions by contacting the reaction mass with an aqueous suspension of a compound selected from the class consisting of calcium hydroxide and magnesium hydroxide, and separating the insoluble antimony compounds from the neutralized reaction mass.

  2. The influence of nitrogen and antimony on the optical quality of InNAs(Sb) alloys

    NASA Astrophysics Data System (ADS)

    Latkowska, M.; Baranowski, M.; Linhart, W. M.; Janiaka, F.; Misiewicz, J.; Segercrantz, N.; Tuomisto, F.; Zhuang, Q.; Krier, A.; Kudrawiec, R.

    2016-03-01

    In this work we present detailed studies of the influence of nitrogen and antimony on the optical quality of InNAs(Sb) alloys. We employed photoluminescence, photoreflectance and positron annihilation spectroscopy to reveal the role of antimony and nitrogen on the improvement/degradation of the optical qualities of InNAs(Sb) alloys. A series of 1 μm-thick InNAs(Sb) layers with different nitrogen and antimony concentrations were grown by molecular beam epitaxy. The results of these investigations show that Sb atoms serve as a surfactant which effectively improves the optical quality of InNAsSb alloys. The influence of nitrogen on the optical quality however is not the same as to what has been reported for other dilute nitrides. We observed an improvement of the optical quality for some nitrogen contents. These issues are comprehensively examined and explained.

  3. Use of Antimony in the Treatment of Leishmaniasis: Current Status and Future Directions

    PubMed Central

    Haldar, Arun Kumar; Sen, Pradip; Roy, Syamal

    2011-01-01

    In the recent past the standard treatment of kala-azar involved the use of pentavalent antimonials Sb(V). Because of progressive rise in treatment failure to Sb(V) was limited its use in the treatment program in the Indian subcontinent. Until now the mechanism of action of Sb(V) is not very clear. Recent studies indicated that both parasite and hosts contribute to the antimony efflux mechanism. Interestingly, antimonials show strong immunostimulatory abilities as evident from the upregulation of transplantation antigens and enhanced T cell stimulating ability of normal antigen presenting cells when treated with Sb(V) in vitro. Recently, it has been shown that some of the peroxovanadium compounds have Sb(V)-resistance modifying ability in experimental infection with Sb(V) resistant Leishmania donovani isolates in murine model. Thus, vanadium compounds may be used in combination with Sb(V) in the treatment of Sb(V) resistance cases of kala-azar. PMID:22091408

  4. Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells

    SciTech Connect

    Tutu, F. K.; Wu, J.; Lam, P.; Tang, M.; Liu, H.; Miyashita, N.; Okada, Y.; Wilson, J.; Allison, R.

    2013-07-22

    We report enhanced solar cell performance using high-density InAs quantum dots. The high-density quantum dot was grown by antimony mediated molecular beam epitaxy. In-plane quantum dot density over 1 × 10{sup 11} cm{sup −2} was achieved by applying a few monolayers of antimony on the GaAs surface prior to quantum dot growth. The formation of defective large clusters was reduced by optimization of the growth temperature and InAs coverage. Comparing with a standard quantum dot solar cell without the incorporation of antimony, the high-density quantum dot solar cell demonstrates a distinct improvement in short-circuit current from 7.4 mA/cm{sup 2} to 8.3 mA/cm{sup 2}.

  5. Spectrophotometric procedure using rhodamine B for determination of submicrogram quantities of antimony in rocks

    USGS Publications Warehouse

    Schnepfe, M.M.

    1973-01-01

    A spectrophotometric procedure using Rhodamine B is given for the determination of antimony in mineralized rocks after its separation as stibine. A study of the Rhodamine B reaction points to the importance of the order of addition of reagents in enhancing sensitivity and increasing the stability of the system. The tolerance of some 26 elements is established for the overall procedure. Although the limit of determination is approximately 0??5 ppm Sb in a 0??2-g sample, the procedure is intended primarily for screening samples containing more than 1 ppm Sb. In pure solutions 0??1 ??g of antimony can be determined with a relative standard deviation of 25%. For >0??2 ??g of antimony a relative standard deviation of 15% or less can be expected. ?? 1973.

  6. Response of cutaneous leishmaniasis (chiclero's ulcer) to treatment with meglumine antimoniate in Southeast Mexico.

    PubMed

    Vargas-Gonzalez, A; Canto-Lara, S B; Damian-Centeno, A G; Andrade-Narvaez, F J

    1999-12-01

    Cutaneous leishmaniasis, known as chiclero's ulcer in southeastern Mexico, is characterized by a predominantly single, painless, ulcerated lesion, without lymphangitis or adenopathy. When located on the ear, it tends to become chronic, causing destruction of the pinna and disfigurement. It is caused predominantly by Leishmania (L.) mexicana. Although pentavalent antimonials (Sb5+) are the mainstay of leishmanial therapy and have been used for more than 50 years, dosage regimens have been repeatedly modified and the best one has not been fully identified. The main purpose of the present study was to investigate the response of chiclero's ulcer to treatment with meglumine antimoniate. One hundred five patients were treated with meglumine antimoniate at a daily dose of 1 ampule per day (425 mg of Sb5+) until healing. The lesions healed after a mean of 25 days (range = 5-60 days). PMID:10674678

  7. Concentration transient analysis of antimony surface segregation during Si(100) molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Markert, L. C.; Greene, J. E.; Ni, W.-X.; Hansson, G. V.; Sundgren, J.-E.

    1991-01-01

    Antimony surface segregation during Si(100) molecular beam epitaxy (MBE) was investigated at temperatures T(sub s) = 515 - 800 C using concentration transient analysis (CTA). The dopant surface coverage Theta, bulk fraction gamma, and incorporation probability sigma during MBE were determined from secondary-ion mass spectrometry depth profiles of modulation-doped films. Programmed T(sub s) changes during growth were used to trap the surface-segregated dopant overlayer, producing concentration spikes whose integrated area corresponds to Theta. Thermal antimony doping by coevaporation was found to result in segregation strongly dependent on T(sub s) with Theta(sub Sb) values up to 0.9 monolayers (ML): in films doped with Sb(+) ions accelerated by 100 V, Theta(sub Sb) was less than or equal to 4 x 10(exp -3) ML. Surface segregation of coevaporated antimony was kinematically limited for the film growth conditions in these experiments.

  8. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  9. On-line lab-in-syringe cloud point extraction for the spectrophotometric determination of antimony.

    PubMed

    Frizzarin, Rejane M; Portugal, Lindomar A; Estela, José M; Rocha, Fábio R P; Cerdà, Victor

    2016-02-01

    Most of the procedures for antimony determination require time-consuming sample preparation (e.g. liquid-liquid extraction with organic solvents), which are harmful to the environment. Because of the high antimony toxicity, a rapid, sensitive and greener procedure for its determination becomes necessary. The goal of this work was to develop an analytical procedure exploiting for the first time the cloud point extraction on a lab-in-syringe flow system aiming at the spectrophotometric determination of antimony. The procedure was based on formation of an ion-pair between the antimony-iodide complex and H(+) followed by extraction with Triton X-114. The factorial design showed that the concentrations of ascorbic acid, H2SO4 and Triton X-114, as well as second and third order interactions were significant at the 95% confidence level. A Box-Behnken design was applied to obtain the response surfaces and to identify the critical values. System is robust at the 95% confidence level. A linear response was observed from 5 to 50 µg L(-1), described by the equation A=0.137+0.050C(Sb) (r=0.998). The detection limit (99.7% confidence level), the coefficient of variation (n=5; 15 µg L(-1)) and the sampling rate was estimated at 1.8 µg L(-1), 1.6% and 16 h(-1), respectively. The procedure allows quantification of antimony in the concentrations established by environmental legislation (6 µg L(-1)) and it was successfully applied to the determination of antimony in freshwater samples and antileishmanial drugs, yielding results in agreement with those obtained by HGFAAS at the 95% confidence level. PMID:26653503

  10. Amphiphilic Antimony(V) Complexes for Oral Treatment of Visceral Leishmaniasis

    PubMed Central

    Fernandes, Flaviana R.; Ferreira, Weverson A.; Campos, Mariana A.; Ramos, Guilherme S.; Kato, Kelly C.; Almeida, Gregório G.; Corrêa, José D.; Melo, Maria N.; Demicheli, Cynthia

    2013-01-01

    The need for daily parenteral administration is an important limitation in the clinical use of pentavalent antimonial drugs against leishmaniasis. In this study, amphiphilic antimony(V) complexes were prepared from alkylmethylglucamides (L8 and L10, with carbon chain lengths of 8 and 10, respectively), and their potential for the oral treatment of visceral leishmaniasis (VL) was evaluated. Complexes of Sb and ligand at 1:3 (SbL8 and SbL10) were obtained from the reaction of antimony(V) with L8 and L10, as evidenced by elemental and electrospray ionization-tandem mass spectrometry (ESI-MS) analyses. Fluorescence probing of hydrophobic environment and negative-staining transmission electron microscopy showed that SbL8 forms kinetically stabilized nanoassemblies in water. Pharmacokinetic studies with mice in which the compound was administered by the oral route at 200 mg of Sb/kg of body weight indicated that the SbL8 complex promoted greater and more sustained Sb levels in serum and liver than the levels obtained for the conventional antimonial drug meglumine antimoniate (Glucantime [Glu]). The efficacy of SbL8 and SbL10 administered by the oral route was evaluated in BALB/c mice infected with Leishmania infantum after a daily dose of 200 mg of Sb/kg for 20 days. Both complexes promoted significant reduction in the liver and spleen parasite burdens in relation to those in the saline-treated control group. The extent of parasite suppression (>99.96%) was similar to that achieved after Glu given intraperitoneally at 80 mg of Sb/kg/day. As expected, there was no significant reduction in the parasitic load in the group treated orally with Glu at 200 mg of Sb/(kg day). In conclusion, amphiphilic antimony(V) complexes emerge as an innovative and promising strategy for the oral treatment of VL. PMID:23796930

  11. Future trends of global atmospheric antimony emissions from anthropogenic activities until 2050

    NASA Astrophysics Data System (ADS)

    Zhou, Junrui; Tian, Hezhong; Zhu, Chuanyong; Hao, Jiming; Gao, Jiajia; Wang, Yong; Xue, Yifeng; Hua, Shenbin; Wang, Kun

    2015-11-01

    This paper presents the scenario forecast of global atmospheric antimony (Sb) emissions from anthropogenic activities till 2050. The projection scenarios are built based on the comprehensive global antimony emission inventory for the period 1995-2010 which is reported in our previous study. Three scenarios are set up to investigate the future changes of global antimony emissions as well as their source and region contribution characteristics. Trends of activity levels specified as 5 primary source categories are projected by combining the historical trend extrapolation with EIA International energy outlook 2013, while the source-specific dynamic emission factors are determined by applying transformed normal distribution functions. If no major changes in the efficiency of emission control are introduced and keep current air quality legislations (Current Legislation scenario), global antimony emissions will increase by a factor of 2 between 2010 and 2050. The largest increase in Sb emissions is projected from Asia due to large volume of nonferrous metals production and waste incineration. In case of enforcing the pollutant emission standards (Strengthened Control scenario), global antimony emissions in 2050 will stabilize with that of 2010. Moreover, we can anticipate further declines in Sb emissions for all continents with the best emission control performances (Maximum Feasible Technological Reduction scenario). Future antimony emissions from the top 10 largest emitting countries have also been calculated and source category contributions of increasing emissions of these countries present significant diversity. Furthermore, global emission projections in 2050 are distributed within a 1° × 1°latitude/longitude grid. East Asia, Western Europe and North America present remarkable differences in emission intensity under the three scenarios, which implies that source-and-country specific control measures are necessary to be implemented for abating Sb emissions from

  12. A multipoint micro antimony pH electrode for tissue surface measurements.

    PubMed

    Lund, N; Sjöberg, F; Guldbrand, H; Walfridsson, H; Edwall, G

    1984-01-01

    Based on monocrystalline antimony we have developed a multipoint tissue surface pH electrode. The six electrodes were produced by spark cutting from a large antimony single crystal. The electrodes were then cast in epoxy resin in a ring shaped structure which fitted around the MDO oxygen electrode. The antimony electrode was ground and polished to expose an undisturbed closely packed crystal plane of antimony to the measuring solution. Before and after monitoring periods standardization was performed in TRIS buffers of pH 6.72, 7.32 and 7.74 at 37 degrees C. Antimony electrode potential is influenced by oxygen. Therefore, mean tissue oxygen pressure was registered simultaneously with an MDO electrode. The oxygen sensitivity factor used in this study was 18mV/logpO2. The correction factor for the antimony electrode oxygen dependence, measured in vitro, seemed to be correct also for the in vivo state. This, however, needs further investigation. To illustrate the usefulness of the multipoint pH electrode seven normal state rabbits were studied, and thereafter four - one each in a hypoxic, hypocarbic, hypovolemic or hyperoxic situation. In the normal state tissue pH measured on a skeletal muscle surface varied from 7.0 to 7.4. In the case of tissue microcirculation shutdown (in the hypocarbic or the hypovolemic situations), the initial reaction was a scattering of the pH values, and then the development of tissue acidosis. Our conclusion is that the use of a multipoint pH sensor enables improved and more detailed monitoring of the tissue acid-base status. PMID:6546135

  13. Microbial Methylation of Metalloids: Arsenic, Antimony, and Bismuth

    PubMed Central

    Bentley, Ronald; Chasteen, Thomas G.

    2002-01-01

    A significant 19th century public health problem was that the inhabitants of many houses containing wallpaper decorated with green arsenical pigments experienced illness and death. The problem was caused by certain fungi that grew in the presence of inorganic arsenic to form a toxic, garlic-odored gas. The garlic odor was actually put to use in a very delicate microbiological test for arsenic. In 1933, the gas was shown to be trimethylarsine. It was not until 1971 that arsenic methylation by bacteria was demonstrated. Further research in biomethylation has been facilitated by the development of delicate techniques for the determination of arsenic species. As described in this review, many microorganisms (bacteria, fungi, and yeasts) and animals are now known to biomethylate arsenic, forming both volatile (e.g., methylarsines) and nonvolatile (e.g., methylarsonic acid and dimethylarsinic acid) compounds. The enzymatic mechanisms for this biomethylation are discussed. The microbial conversion of sodium arsenate to trimethylarsine proceeds by alternate reduction and methylation steps, with S-adenosylmethionine as the usual methyl donor. Thiols have important roles in the reductions. In anaerobic bacteria, methylcobalamin may be the donor. The other metalloid elements of the periodic table group 15, antimony and bismuth, also undergo biomethylation to some extent. Trimethylstibine formation by microorganisms is now well established, but this process apparently does not occur in animals. Formation of trimethylbismuth by microorganisms has been reported in a few cases. Microbial methylation plays important roles in the biogeochemical cycling of these metalloid elements and possibly in their detoxification. The wheel has come full circle, and public health considerations are again important. PMID:12040126

  14. Fatigue crack growth in lithium hydride

    SciTech Connect

    Healy, T.E.

    1993-09-01

    Subcritical fatigue crack growth, from cyclic tensile loading, was demonstrated in warm pressed Polycrystalline lithium hydride. Experiments were performed with cyclic tension-tension crack opening (mode I) loads applied to a pre-cracked compact type specimen in an argon environment at a temperature of 21C (70F). The fatigue crack growth was found to occur between 7.56 {times} 10{sup {minus}ll} M/cycle (2.98 {times} l0{sup {minus}9} in/cycle) and 2.35 {times} l0{sup {minus}8} m/cycle (9.24{times}10{sup {minus}7} in/cycle) for a range of stress intensity factors between 1.04 MPa{center_dot}{radical}m (0.95 ksi{center_dot}{radical}in) and 1.49 MPa{center_dot}{radical}m (1.36 ksi{center_dot}{radical}in). The rate of fatigue crack growth from cyclic tensile loading was found to be in excess of crack growth from sustained loading at an equivalent stress intensity factor. Furthermore, a fatigue threshold was not evident from the acquired data.

  15. Reactions of NO with nitrogen hydrides x

    NASA Astrophysics Data System (ADS)

    Mebel, A. M.; Lin, M. C.

    In this review, we consider the reactions of NO ( x 1,2) with the nitrogen x hydrides NH, NH and NH . The reactions are relevant to the post-combustion, non-catalytic reduction of NO with NH in the thermal de-NO process and with x x HNCO in the rapid reduction of NO as well as to the thermal decomposition of x some high-energy materials, including ammonium dinitramide. The practical importance has motivated considerable theoretical interest in these reactions. We review numerous ab - initio molecular orbital studies of potential energy surfaces for NO NH and theoretical calculations of their kinetic parameters, such as x y thermal rate constants and branching ratios of various products. The most advanced theoretical calculations are carried out using the Gaussian-2 family of methods which provides the chemical accuracy (within 2 kcal mol ) for the energetics and molecular parameters of the reactants, products, intermediates and transition states. We present a detailed comparison of the theoretical results with available experimental data. We show that the reactions of NO with NH and NH x are very fast because they occur without a barrier and lead to the formation of multiple products which include radicals and stable molecules. The reactions of NO with NH , taking place by the H abstraction to form NH and HNO , are slow x x but still relevant to the NH de-NO system, because of their fast reverse processes x which have not yet been measured experimentally.

  16. Permeation rates for RTF metal hydride vessels

    SciTech Connect

    Klein, J.E.

    1992-05-21

    Contamination rates have been estimated for the RTF nitrogen heating and cooling system (NH and CS) due to tritium permeation through the walls of metal hydride vessels. Tritium contamination of the NH and CS will be seen shortly after start-up of the RTF with the majority of it coming from the TCAP units. Contamination rates of the NH and CS are estimated to exceed 400 Ci/year after three years of operation and will elevate tritium concentrations in the NH and CS above 6 {times} 10{sup {minus}3} {mu}Ci/cc. To reduce tritium activity in the NH and CS, a stripper or ``getter`` bed may need to be installed in the NH and CS. Increasing the purge rate of nitrogen from the NH and CS is shown to be an impractical method for reducing tritium activity due to the high purge rates required. Stripping of the NH and CS nitrogen in the glove box stripper system will give a temporary lowering of tritium activity in the NH and CS, but tritium activity will return to its previous level in approximately two weeks.

  17. Mercury, arsenic, antimony, and selenium contents of sediment from the Kuskokwim River, Bethel, Alaska, USA

    USGS Publications Warehouse

    Belkin, H.E.; Sparck, H.M.

    1993-01-01

    The Kuskokwim River at Bethel, Alaska, drains a major mercury-antimony metallogenic province in its upper reaches and tributaries. Bethel (population 4000) is situated on the Kuskokwim floodplain and also draws its water supply from wells located in river-deposited sediment. A boring through overbank and floodplain sediment has provided material to establish a baseline datum for sediment-hosted heavy metals. Mercury (total), arsenic, antimony, and selenium contents were determined; aluminum was also determined and used as normalizing factor. The contents of the heavy metals were relatively constant with depth and do not reflect any potential enrichment from upstream contaminant sources. ?? 1993 Springer-Verlag.

  18. An evaluation of the migration of antimony from polyethylene terephthalate (PET) plastic used for bottled drinking water.

    PubMed

    Chapa-Martínez, C A; Hinojosa-Reyes, L; Hernández-Ramírez, A; Ruiz-Ruiz, E; Maya-Treviño, L; Guzmán-Mar, J L

    2016-09-15

    The leaching of antimony (Sb) from polyethylene terephthalate (PET) bottling material was assessed in twelve brands of bottled water purchased in Mexican supermarkets by atomic fluorescence spectrometry with a hydride generation system (HG-AFS). Dowex® 1X8-100 ion-exchange resin was used to preconcentrate trace amounts of Sb in water samples. Migration experiments from the PET bottle material were performed in water according to the following storage conditions: 1) temperature (25 and 75°C), 2) pH (3 and 7) and 3) exposure time (5 and 15days), using ultrapure water as a simulant for liquid foods. The test conditions were studied by a 2(3) factorial experimental design. The Sb concentration measured in the PET packaging materials varied between 73.0 and 111.3mg/kg. The Sb concentration (0.28-2.30μg/L) in all of the PET bottled drinking water samples examined at the initial stage of the study was below the maximum contaminant level of 5μg/L prescribed by European Union (EU) regulations. The parameters studied (pH, temperature, and storage time) significantly affected the release of Sb, with temperature having the highest positive significant effect within the studied experimental domain. The highest Sb concentration leached from PET containers was in water samples at pH7 stored at 75°C for a period of 5days. The extent of Sb leaching from the PET ingredients for different brands of drinking water can differ by as much as one order of magnitude in experiments conducted under the worst-case conditions. The chronic daily intake (CDI) caused by the release of Sb in one brand exceeded the Environmental Protection Agency (USEPA) regulated CDI value of 400ng/kg/day, with values of 514.3 and 566.2ng/kg/day for adults and children. Thus, the appropriate selection of the polymer used for the production of PET bottles seems to ensure low Sb levels in water samples. PMID:27192700

  19. Micro-scale fracture experiments on zirconium hydrides and phase boundaries

    NASA Astrophysics Data System (ADS)

    Chan, H.; Roberts, S. G.; Gong, J.

    2016-07-01

    Fracture properties of micro-scale zirconium hydrides and phase boundaries were studied using microcantilever testing methods. FIB-machined microcantilevers were milled on cross-sectional surfaces of hydrided samples, with the most highly-stressed regions within the δ-hydride film, within the α-Zr or along the Zr-hydride interface. Cantilevers were notched using the FIB and then tested in bending using a nanoindenter. Load-displacement results show that three types of cantilevers have distinct deformation properties. Zr cantilevers deformed plastically. Hydride cantilevers fractured after a small amount of plastic flow; the fracture toughness of the δ-hydride was found to be 3.3 ± 0.4 MPam1/2 and SEM examination showed transgranular cleavage on the fracture surfaces. Cantilevers notched at the Zr-hydride interface developed interfacial voids during loading, at loads considerably lower than that which initiate brittle fracture of hydrides.

  20. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  1. Multidimensional simulations of hydrides during fuel rod lifecycle

    NASA Astrophysics Data System (ADS)

    Stafford, D. S.

    2015-11-01

    In light water reactor fuel rods, waterside corrosion of zirconium-alloy cladding introduces hydrogen into the cladding, where it is slightly soluble. When the solubility limit is reached, the hydrogen precipitates into crystals of zirconium hydride which decrease the ductility of the cladding and may lead to cladding failure during dry storage or transportation events. The distribution of the hydride phase and the orientation of the crystals depend on the history of the spatial temperature and stress profiles in the cladding. In this work, we have expanded the existing hydride modeling capability in the BISON fuel performance code with the goal of predicting both global and local effects on the radial, azimuthal and axial distribution of the hydride phase. We compare results from 1D simulations to published experimental data. We demonstrate the new capability by simulating in 2D a fuel rod throughout a lifecycle that includes irradiation, short-term storage in the spent fuel pool, drying, and interim storage in a dry cask. Using the 2D simulations, we present qualitative predictions of the effects of the inter-pellet gap and the drying conditions on the growth of a hydride rim.

  2. Sodium-based hydrides for thermal energy applications

    NASA Astrophysics Data System (ADS)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  3. The effect of stress state on zirconium hydride reorientation

    NASA Astrophysics Data System (ADS)

    Cinbiz, Mahmut Nedim

    Prior to storage in a dry-cask facility, spent nuclear fuel must undergo a vacuum drying cycle during which the spent fuel rods are heated up to elevated temperatures of ≤ 400°C to remove moisture the canisters within the cask. As temperature increases during heating, some of the hydride particles within the cladding dissolve while the internal gas pressure in fuel rods increases generating multi-axial hoop and axial stresses in the closed-end thin-walled cladding tubes. As cool-down starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multiaxial stresses are sufficiently large, the precipitating hydrides reorient from their initial circumferential orientation to radial orientation. Radial hydrides can severely embrittle the spent nuclear fuel cladding at low temperature in response to hoop stress loading. Because the cladding can experience a range of stress states during the thermo-mechanical treatment induced during vacuum drying, this study has investigated the effect of stress state on the process of hydride reorientation during controlled thermo-mechanical treatments utilizing the combination of in situ X-ray diffraction and novel mechanical testing analyzed by the combination of metallography and finite element analysis. The study used cold worked and stress relieved Zircaloy-4 sheet containing approx. 180 wt. ppm hydrogen as its material basis. The failure behavior of this material containing radial hydrides was also studied over a range of temperatures. Finally, samples from reactor-irradiated cladding tubes were examined by X-ray diffraction using synchrotron radiation. To reveal the stress state effect on hydride reorientation, the critical threshold stress to reorient hydrides was determined by designing novel mechanical test samples which produce a range of stress states from uniaxial to "near-equibiaxial" tension when a load is applied. The threshold stress was determined after thermo-mechanical treatments by

  4. Electrochemical and chemical routes to hydride loss from an iridium dihydride.

    PubMed

    Walden, A G; Kumar, A; Lease, N; Goldman, A S; Miller, A J M

    2016-06-14

    With a view towards replacing sacrificial hydrogen acceptors in alkane dehydrogenation catalysis, electrochemical methods for oxidative activation of a pincer-ligated iridium hydride intermediate were explored. A 1H(+)/2e(-) oxidation process was observed in THF solvent, with net hydride loss leading to a reactive cationic intermediate that can be trapped by chloride. Analogous reactivity was observed with the concerted hydride transfer reagent Ph3C(+), connecting chemical and electrochemical hydride loss pathways. PMID:26979786

  5. A study of advanced magnesium-based hydride and development of a metal hydride thermal battery system

    NASA Astrophysics Data System (ADS)

    Zhou, Chengshang

    Metal hydrides are a group of important materials known as energy carriers for renewable energy and thermal energy storage. A concept of thermal battery based on advanced metal hydrides is studied for heating and cooling of cabins in electric vehicles. The system utilizes a pair of thermodynamically matched metal hydrides as energy storage media. The hot hydride that is identified and developed is catalyzed MgH2 due to its high energy density and enhanced kinetics. TiV0.62Mn1.5, TiMn2, and LaNi5 alloys are selected as the matching cold hydride. A systematic experimental survey is carried out in this study to compare a wide range of additives including transitions metals, transition metal oxides, hydrides, intermetallic compounds, and carbon materials, with respect to their effects on dehydrogenation properties of MgH2. The results show that additives such as Ti and V-based metals, hydride, and certain intermetallic compounds have strong catalytic effects. Solid solution alloys of magnesium are exploited as a way to destabilize magnesium hydride thermodynamically. Various elements are alloyed with magnesium to form solid solutions, including indium and aluminum. Thermodynamic properties of the reactions between the magnesium solid solution alloys and hydrogen are investigated, showing that all the solid solution alloys that are investigated in this work have higher equilibrium hydrogen pressures than that of pure magnesium. Cyclic stability of catalyzed MgH2 is characterized and analyzed using a PCT Sievert-type apparatus. Three systems, including MgH2-TiH 2, MgH2-TiMn2, and MgH2-VTiCr, are examined. The hydrogenating and dehydrogenating kinetics at 300°C are stable after 100 cycles. However, the low temperature (25°C to 150°C) hydrogenation kinetics suffer a severe degradation during hydrogen cycling. Further experiments confirm that the low temperature kinetic degradation can be mainly related the extended hydrogenation-dehydrogenation reactions. Proof

  6. Investigation of metal hydride materials as hydrogen reservoirs for metal-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    ONISCHAK

    1976-01-01

    The performance and suitability of various metal hydride materials were examined for use as possible hydrogen storage reservoirs for secondary metal-hydrogen batteries. Lanthanum pentanickel hydride appears as a probable candidate in terms of stable hydrogen supply under feasible thermal conditions. A kinetic model describing the decomposition rate data of the hydride has been developed.

  7. The coordination chemistry of organo-hydride donors: new prospects for efficient multi-electron reduction.

    PubMed

    McSkimming, Alex; Colbran, Stephen B

    2013-06-21

    In biological reduction processes the dihydronicotinamides NAD(P)H often transfer hydride to an unsaturated substrate bound within an enzyme active site. In many cases, metal ions in the active site bind, polarize and thereby activate the substrate to direct attack by hydride from NAD(P)H cofactor. This review looks more widely at the metal coordination chemistry of organic donors of hydride ion--organo-hydrides--such as dihydronicotinamides, other dihydropyridines including Hantzsch's ester and dihydroacridine derivatives, those derived from five-membered heterocycles including the benzimidazolines and benzoxazolines, and all-aliphatic hydride donors such as hexadiene and hexadienyl anion derivatives. The hydride donor properties--hydricities--of organo-hydrides and how these are affected by metal ions are discussed. The coordination chemistry of organo-hydrides is critically surveyed and the use of metal-organo-hydride systems in electrochemically-, photochemically- and chemically-driven reductions of unsaturated organic and inorganic (e.g. carbon dioxide) substrates is highlighted. The sustainable electrocatalytic, photochemical or chemical regeneration of organo-hydrides such as NAD(P)H, including for driving enzyme-catalysed reactions, is summarised and opportunities for development are indicated. Finally, new prospects are identified for metal-organo-hydride systems as catalysts for organic transformations involving 'hydride-borrowing' and for sustainable multi-electron reductions of unsaturated organic and inorganic substrates directly driven by electricity or light or by renewable reductants such as formate/formic acid. PMID:23507957

  8. Iron Hydride Detection and Intramolecular Hydride Transfer in a Synthetic Model of Mono-Iron Hydrogenase with a CNS Chelate.

    PubMed

    Durgaprasad, Gummadi; Xie, Zhu-Lin; Rose, Michael J

    2016-01-19

    We report the identification and reactivity of an iron hydride species in a synthetic model complex of monoiron hydrogenase. The hydride complex is derived from a phosphine-free CNS chelate that includes a Fe-C(NH)(═O) bond (carbamoyl) as a mimic of the active site iron acyl. The reaction of [((O═)C(HN)N(py)S(Me))Fe(CO)2(Br)] (1) with NaHBEt3 generates the iron hydride intermediate [((O═)C(HN)N(py)S(Me))Fe(H)(CO)2] (2; δFe-H = -5.08 ppm). Above -40 °C, the hydride species extrudes CH3S(-) via intramolecular hydride transfer, which is stoichiometrically trapped in the structurally characterized dimer μ2-(CH3S)2-[((O═)C(HN)N(Ph))Fe(CO)2]2 (3). Alternately, when activated by base ((t)BuOK), 1 undergoes desulfurization to form a cyclometalated species, [((O═)C(NH)NC(Ph))Fe(CO)2] (5); derivatization of 5 with PPh3 affords the structurally characterized species [((O═)C(NH)NC)Fe(CO)(PPh3)2] (6), indicating complex 6 as the common intermediate along each pathway of desulfurization. PMID:26405810

  9. Investigation of metal hydride nanoparticles templated in metal organic frameworks.

    SciTech Connect

    Jacobs, Benjamin W.; Herberg, Julie L.; Highley, Aaron M.; Grossman, Jeffrey; Wagner, Lucas; Bhakta, Raghu; Peaslee, D.; Allendorf, Mark D.; Liu, X.; Behrens, Richard, Jr.; Majzoub, Eric H.

    2010-11-01

    Hydrogen is proposed as an ideal carrier for storage, transport, and conversion of energy. However, its storage is a key problem in the development of hydrogen economy. Metal hydrides hold promise in effectively storing hydrogen. For this reason, metal hydrides have been the focus of intensive research. The chemical bonds in light metal hydrides are predominantly covalent, polar covalent or ionic. These bonds are often strong, resulting in high thermodynamic stability and low equilibrium hydrogen pressures. In addition, the directionality of the covalent/ionic bonds in these systems leads to large activation barriers for atomic motion, resulting in slow hydrogen sorption kinetics and limited reversibility. One method for enhancing reaction kinetics is to reduce the size of the metal hydrides to nano scale. This method exploits the short diffusion distances and constrained environment that exist in nanoscale hydride materials. In order to reduce the particle size of metal hydrides, mechanical ball milling is widely used. However, microscopic mechanisms responsible for the changes in kinetics resulting from ball milling are still being investigated. The objective of this work is to use metal organic frameworks (MOFs) as templates for the synthesis of nano-scale NaAlH4 particles, to measure the H2 desorption kinetics and thermodynamics, and to determine quantitative differences from corresponding bulk properties. Metal-organic frameworks (MOFs) offer an attractive alternative to traditional scaffolds because their ordered crystalline lattice provides a highly controlled and understandable environment. The present work demonstrates that MOFs are stable hosts for metal hydrides and their reactive precursors and that they can be used as templates to form metal hydride nanoclusters on the scale of their pores (1-2 nm). We find that using the MOF HKUST-1 as template, NaAlH4 nanoclusters as small as 8 formula units can be synthesized inside the pores. A detailed picture of

  10. Metal hydride hydrogen compression: Recent advances and future prospects

    DOE PAGESBeta

    Bowman, Jr., Robert C.; Yartys, Volodymyr A.; Lototskyy, Mykhaylo V.; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman

    2016-03-17

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the metal hydrides. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units are analyzed. The paper includes also a theoretical modeling of a two-stage compressor aimed at both describing the performance of the experimentally studied systems, but, also, on their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS andmore » the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the metal hydride compression in the overall development of the hydrogen driven energy systems. Lastly, the work is based on the analysis of the development of the technology in Europe, USA and South Africa.« less

  11. Hydrogen storage in fullerenes and in an organic hydride

    SciTech Connect

    Wang, J.C.; Murphy, R.W.; Chen, F.C.; Loutfy, R.O.; Veksler, E.; Li, W.

    1998-05-29

    While the authors have demonstrated the importance and usefulness of thermal management to the hydrogen storage in fullerenes, their recent effort has concentrated on materials improvement and physical model development. In this paper, they report the results of this effort as follows: (1) Liquid phase hydrogenation of fullerenes indicated that more than 6 wt% capacity can be obtained at 180 C, 350--400 psi; (2) Dehydrogenation of fullerenes hydrides below 225 C was demonstrated using an Ir-based P-C-P pincer complex catalyst; (3) Cyclic hydrogenation and dehydrogenation tests of an organic hydride at 7 wt% capacity were conducted at 180--260 C; and (4) Physical models developed for fullerenes were determined to be applicable to this organic hydride (with much smaller activation energies).

  12. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  13. CO2 hydrogenation on a metal hydride surface.

    PubMed

    Kato, Shunsuke; Borgschulte, Andreas; Ferri, Davide; Bielmann, Michael; Crivello, Jean-Claude; Wiedenmann, Daniel; Parlinska-Wojtan, Magdalena; Rossbach, Peggy; Lu, Ye; Remhof, Arndt; Züttel, Andreas

    2012-04-28

    The catalytic hydrogenation of CO(2) at the surface of a metal hydride and the corresponding surface segregation were investigated. The surface processes on Mg(2)NiH(4) were analyzed by in situ X-ray photoelectron spectroscopy (XPS) combined with thermal desorption spectroscopy (TDS) and mass spectrometry (MS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). CO(2) hydrogenation on the hydride surface during hydrogen desorption was analyzed by catalytic activity measurement with a flow reactor, a gas chromatograph (GC) and MS. We conclude that for the CO(2) methanation reaction, the dissociation of H(2) molecules at the surface is not the rate controlling step but the dissociative adsorption of CO(2) molecules on the hydride surface. PMID:22433948

  14. Heat-actuated metal hydride hydrogen compressor testing

    SciTech Connect

    Piraino, M.; Metz, P.D.; Nienke, J.L.; Freitelberg, A.S.; Rahaman, R.S.

    1985-09-01

    Electric utilities use hydrogen for cooling turbine generators. The majority of the utilities purchase the gas from industrial gas markets. On-site electrolytic hydrogen production may prove advantageous both logistically and economically. In order to demonstrate this concept, Public Service Electric and Gas Co. (PSE and G) and EPRI installed an electrolyzer at the Sewaren (NJ) station. To compress the gas, PSE and G purchased a heat-activated metal hydride compressor from Ergenics, Inc. This report describes closed- and open-cycle tests conducted on this metal hydride hydrogen compressor. Test systems, plans, methodologies, and results are presented. A brief discussion evaluates these performance results, addresses some of the practical problems involved with electrolyzer-compressor interface, and compares the costs and benefits of metal hydride versus mechanical hydrogen compression for utility generator cooling.

  15. A nickel metal hydride battery for electric vehicles.

    PubMed

    Ovshinsky, S R; Fetcenko, M A; Ross, J

    1993-04-01

    Widespread use of electric vehicles can have significant impact on urban air quality, national energy independence, and international balance of trade. An efficient battery is the key technological element to the development of practical electric vehicles. The science and technology of a nickel metal hydride battery, which stores hydrogen in the solid hydride phase and has high energy density, high power, long life, tolerance to abuse, a wide range of operating temperature, quick-charge capability, and totally sealed maintenance-free operation, is described. A broad range of multi-element metal hydride materials that use structural and compositional disorder on several scales of length has been engineered for use as the negative electrode in this battery. The battery operates at ambient temperature, is made of nontoxic materials, and is recyclable. Demonstration of the manufacturing technology has been achieved. PMID:17807176

  16. A nickel metal hydride battery for electric vehicles

    SciTech Connect

    Ovshinsky, S.R.; Fetcenko, M.A. ); Ross, J. )

    1993-04-09

    Widespread use of electric vehicles can have significant impact on urban air quality, national energy independence, and international balance of trade. An efficient battery is the key technological element to the development of practical electric vehicles. The science and technology of a nickel metal hydride battery, which stores hydrogen in the solid hydride phase and has high energy density, high power, long life, tolerance to abuse, a wide range of operating temperature, quick-charge capability, and totally sealed maintenance-free operation, is described. A broad range of multi-element metal hydride materials that use structural and compositional disorder on several scales of length has been engineered for use as the negative electrode in this battery. The battery operates at ambient temperature, is made of nontoxic materials, and is recyclable. Demonstration of the manufacturing technology has been achieved. 21 refs., 7 figs., 1 tab.

  17. High-Spin Cobalt Hydrides for Catalysis

    SciTech Connect

    Holland, Patrick L.

    2013-08-29

    Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

  18. Inverse sodium hydride: a theoretical study.

    PubMed

    Sawicka, Agnieszka; Skurski, Piotr; Simons, Jack

    2003-04-01

    A recent experimental investigation in which a salt containing the unusual charge distribution H(+) and Na(-) was synthesized and characterized prompted us to undertake an ab initio theoretical investigation. In the salt synthesized, the H(+) is bound to the nitrogen center of an amine and the Na(-) alkalide is "blocked" from approaching the protonated amine site by steric constraints of a cage structure. Although one expects that the Na(-) would deprotonate an unprotected R(3)N-H(+) cation, we decided to further explore this issue. Using extended atomic orbital basis sets and Møller-Plesset and coupled-cluster treatments of electron correlation, we examined the relative stabilities of the prototype (Me)(3)N + NaH, (Me)(3)N + Na(+) + H(-), (Me)(3)N-H(+) + Na(-), and (Me)(3)N-Na(+) + H(-) as well as the ion pair complexes (Me)(3)N-H(+).Na(-) and (Me)(3)N-Na(+).H(-). The primary focus of this effort was to determine whether the high-energy (Me)(3)N-H(+).Na(-) ion pair, which is the analogue of what the earlier workers termed "inverse sodium hydride", might be stable with respect to proton abstraction under any reasonable solvation conditions (which we treated within the polarized continuum model). Indeed, we find that such ion pairs are metastable (i.e., locally geometrically stable with a barrier to dissociation) for solvents having dielectric constants below approximately 2 but spontaneously decompose into their constituent ions for solvents with higher dielectric constants. We suggest that amines with large proton affinities and/or metals with weaker MH bond strengths should be explored experimentally. PMID:12656631

  19. Electrodeposition and device incorporation of bismuth antimony nanowire arrays

    NASA Astrophysics Data System (ADS)

    Keyani, Jennifer

    Thermoelectric materials have the unique property where the application of a potential difference across the material results in the formation of a temperature gradient, and vice versa. There is continued interest in bulk thermoelectric materials for power generation and refrigeration applications, however these materials are not currently in widespread use due to their low conversion efficiency. It has been predicted that nanostructured thermoelectric materials will show enhanced performance over their bulk counterparts. In this study, bismuth antimony (Bi1-xSbx) nanowire arrays have been synthesized and assembled into devices in order to demonstrate an enhanced performance in nanostructured thermoelectric materials. Bi1-xSbx nanowire arrays were fabricated by potentiostatic electrodeposition into porous alumina templates from a dimethyl sulfoxide (DMSO) solution. The nanowire composition and texture were studied as a function of the electrodeposition conditions in order to maximize their thermoelectric performance. Energy dispersive spectrometry and electron microprobe analysis were used to study the nanowire composition as a function of the electroactive and non-electroactive species in solution. Texturing in the nanowire arrays was observed by X-ray diffraction and controlled by the applied voltage and presence of supporting electrolyte. The nanowire arrays were also optimized for device incorporation by maximizing the number of nanowires and minimizing their length distribution. The areal density of nanowire arrays was on the order of 1010 wires/cm2 due to the high density of pores in the alumina and the high degree to which those pores were filled with electrodeposited material. A narrow distribution of nanowire lengths was observed by scanning electron microscopy across millimeter-length portions of the arrays. A hybrid nanowire-bulk thermoelectric device was assembled after electrical contacts were electrodeposited over Bi1-xSbx nanowire arrays. Nickel was

  20. 78 FR 67141 - Antimony Trioxide (ATO) TSCA Chemical Risk Assessment; Notice of Public Meetings and Opportunity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... AGENCY Antimony Trioxide (ATO) TSCA Chemical Risk Assessment; Notice of Public Meetings and Opportunity... Substances Control Act (TSCA) chemical risk assessment, ``TSCA Workplan Chemical Risk Assessment for ATO... CONTACT: For technical information contact: Stan Barone, Jr., Risk Assessment Division (7403M), Office...

  1. Thermodynamics for arsenic and antimony in copper matte converting—computer simulation

    NASA Astrophysics Data System (ADS)

    Chaubal, P. C.; Nagamori, M.

    1988-08-01

    Thermodynamic data for arsenic and antimony and their sulfide and oxide gases have been critically reviewed and compiled. The entropy values for AsS(g), SbS(g), and BiS(g) have been recalculated based on a statistical thermodynamic method. The standard heat of formation and entropy of As2O3(g) have been newly assessed to be △H{298/0} = -81,500 cal/mole and S{298/0} = 81.5 cal/deg/mole. Copper matte converting has been mathematically described using the stepwise equilibrium simulation technique together with quadratic approximations of oxygen and magnetite solubilities in molten mattes. A differential equation for the volatilization of arsenic and antimony has been derived and solved for successive reaction microsteps, whereby the volatilization, slagging, and alloying of the minor elements in copper matte converting have been examined as functions of reaction time and other process variables. Only the first (slag-making) stage of converting is responsible for the elimination of arsenic and antimony by volatilization. Arsenic volatilizes mainly as AsS(g) and AsO(g), with As2(g) also contributing when initial mattes are unusually rich in arsenic (above 0.5 pct arsenic). Antimony volatilizes chiefly as SbS(g), and the contributions of other gases such as SbO(g) and Sb(g) always remain negligibly low. The results of the stepwise equilibrium simulation compare favorably with the industrial operating data.

  2. An Insight into Sodiation of Antimony from First-Principles Crystal Structure Prediction

    NASA Astrophysics Data System (ADS)

    Caputo, Riccarda

    2016-02-01

    Elemental antimony has recently become an attractive anode material for potential application in rechargeable sodium-ion batteries. I present a first-principles study of the structure-composition dependence of the Na-Sb system for both sodiation and desodiation processes. The enthalpy of reaction of x moles of sodium with the hexagonal structure of antimony reveals several stable crystal structures for 0 < x ≤ 3, with variable composition states for 1.25 < x < 2.75. The direct and reverse reactions pass through similar states in terms of enthalpy of formation and symmetry representation of the corresponding optimized structures, in particular for x = 1 and x = 3, confirming the two known phases, namely NaSb and Na3Sb. The calculations suggest that the optimal composition range for reversible sodiation of antimony is 1 < x ≤ 3, thus avoiding the global minimum at x = 1. This can help to rationalize the structure-composition dependence of the electrochemical performance of antimony in Na-ion batteries.

  3. Nanostructured Carbon/Antimony Composites as Anode Materials for Lithium-Ion Batteries with Long Life.

    PubMed

    Cheng, Yong; Yi, Zheng; Wang, Chunli; Wang, Lidong; Wu, Yaoming; Wang, Limin

    2016-08-01

    A series of nanostructured carbon/antimony composites have been successfully synthesized by a simple sol-gel, high-temperature carbon thermal reduction process. In the carbon/antimony composites, antimony nanoparticles are homogeneously dispersed in the pyrolyzed nanoporous carbon matrix. As an anode material for lithium-ion batteries, the C/Sb10 composite displays a high initial discharge capacity of 1214.6 mAh g(-1) and a reversible charge capacity of 595.5 mAh g(-1) with a corresponding coulombic efficiency of 49 % in the first cycle. In addition, it exhibits a high reversible discharge capacity of 466.2 mAh g(-1) at a current density of 100 mA g(-1) after 200 cycles and a high rate discharge capacity of 354.4 mAh g(-1) at a current density of 1000 mA g(-1) . The excellent cycling stability and rate discharge performance of the C/Sb10 composite could be due to the uniform dispersion of antimony nanoparticles in the porous carbon matrix, which can buffer the volume expansion and maintain the integrity of the electrode during the charge-discharge cycles. PMID:27310879

  4. Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limited mechanistic knowledge is available to understand how biochar interacts with trace elements that exist predominantly as oxoanions, such as antimony (Sb). Soybean stover biochars were produced at 300 degrees C (SBC300) and 700 degrees C (SBC700), and were characterized by BET, Boehm titration,...

  5. Thermodynamics for arsenic and antimony in copper matte converting; Computer simulation

    SciTech Connect

    Chaubal, P.C. ); Nagamori, M. )

    1989-08-01

    In this paper thermodynamic data for arsenic and antimony and their sulfide and oxide gases have been critically reviewed and compiled. The entropy values for AsS(g), SbS(g), and BiS(g) have been recalculated based on a statistical thermodynamic method. The standard heat of formation and entropy of As/sub 2/O/sub 3/(g) have been newly assessed. Copper matte converting has been mathematically described using the stepwise equilibrium simulation technique together with quadratic approximations of oxygen and magnetite solubilities in molten mattes. A differential equation for the volatilization of arsenic and antimony has been solved for successive reaction microsteps whereby the volatilization, slagging, and alloying of the minor elements have been examined as functions of reaction time and other process variables. Only the first (slag-making) stage of converting is responsible for the elimination of arsenic and antimony by volatilization. Arsenic volatilizes mainly as AsS(g) and AsO(g), with As/sub 2/(g) also contributing when initial mattes are unusually rich in arsenic (above 0.5 pct arsenic). Antimony volatilizes chiefly as SbS(g), and the contributions of other gases such as SbO(g) and Sb(g) remain negligibly low. The results of the simulation compare favorably with industrial operating data.

  6. [Oxidation of gold-antimony ores by a thermoacidophilic microbial consortium].

    PubMed

    Tsaplina, I A; Sorokin, V V; Zhuravleva, A E; Melamud, V S; Bogdanova, T I; Kondrat'eva, T F

    2013-01-01

    Antimony leaching from sulfide ore samples by an experimental consortium of thermoacidophilic microorganisms, including Sulfobacillus, Leptospirillum, and Ferroplasma strains was studied. The ores differed significantly in the content of the major metal sulfides (%): Sb(S), 0.84 to 29.95; Fe(S), 0.47 to 2.5, and As(S), 0.01 to 0.4. Independent on the Sb(S) concentration in the experimental sample, after adaptation to a specific ore and pulp compaction the microorganisms grew actively and leached/oxidized all gold-antimony ores at 39 ± 1 degrees C. The lower was the content of iron and arsenic sulfides, the higher was antimony leaching. For the first time the investigations conducted with the use of X-ray microanalysis research made it possible to conclude that in a natural high-antimony ore Sb inhibits growth of only a part of the cell population and that Ca, Fe, and Sb may compete for the binding centers of the cell. PMID:25509404

  7. Hepatotoxicity of Pentavalent Antimonial Drug: Possible Role of Residual Sb(III) and Protective Effect of Ascorbic Acid

    PubMed Central

    Kato, Kelly C.; Morais-Teixeira, Eliane; Reis, Priscila G.; Silva-Barcellos, Neila M.; Salaün, Pascal; Campos, Paula P.; Dias Corrêa-Junior, José; Rabello, Ana; Demicheli, Cynthia

    2014-01-01

    Pentavalent antimonial drugs such as meglumine antimoniate (Glucantime [Glu; Sanofi-Aventis, São Paulo, Brazil]) produce severe side effects, including cardiotoxicity and hepatotoxicity, during the treatment of leishmaniasis. We evaluated the role of residual Sb(III) in the hepatotoxicity of meglumine antimoniate, as well as the protective effect of the antioxidant ascorbic acid (AA) during antimonial chemotherapy in a murine model of visceral leishmaniasis. BALB/c mice infected with Leishmania infantum were treated intraperitoneally at 80 mg of Sb/kg/day with commercial meglumine antimoniate (Glu) or a synthetic meglumine antimoniate with lower Sb(III) level (MA), in association or not with AA (15 mg/kg/day), for a 20-day period. Control groups received saline or saline plus AA. Livers were evaluated for hepatocytes histological alterations, peroxidase activity, and apoptosis. Increased proportions of swollen and apoptotic hepatocytes were observed in animals treated with Glu compared to animals treated with saline or MA. The peroxidase activity was also enhanced in the liver of animals that received Glu. Cotreatment with AA reduced the extent of histological changes, the apoptotic index, and the peroxidase activity to levels corresponding to the control group. Moreover, the association with AA did not affect the hepatic uptake of Sb and the ability of Glu to reduce the liver and spleen parasite loads in infected mice. In conclusion, our data supports the use of pentavalent antimonials with low residue of Sb(III) and the association of pentavalent antimonials with AA, as effective strategies to reduce side effects in antimonial therapy. PMID:24189251

  8. Hydride formation in core-shell alloyed metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2016-07-01

    The model and analysis presented are focused on hydride formation in nanoparticles with a Pd shell and a core formed by another metal. The arrangement of metal atoms is assumed to be coherent (no dislocations). The lattice strain distribution, elastic energy, and chemical potential of hydrogen atoms are scrutinized. The slope of the chemical potential (as a function of hydrogen uptake) is demonstrated to decrease with increasing the core volume, and accordingly the critical temperature for hydride formation and the corresponding hysteresis loops are predicted to decrease as well.

  9. METHOD OF PREPARING SINTERED ZIRCONIUM METAL FROM ITS HYDRIDES

    DOEpatents

    Angier, R.P.

    1958-02-11

    The invention relates to the preparation of metal shapes from zirconium hydride by powder metallurgical techniques. The zirconium hydride powder which is to be used for this purpose can be prepared by rendering massive pieces of crystal bar zirconium friable by heat treatment in purified hydrogen. This any then be ground into powder and powder can be handled in the air without danger of it igniting. It may then be compacted in the normal manner by being piaced in a die. The compact is sintered under vacuum conditions preferably at a temperature ranging from 1200 to 1300 deg C and for periods of one to three hours.

  10. Review of magnesium hydride-based materials: development and optimisation

    NASA Astrophysics Data System (ADS)

    Crivello, J.-C.; Dam, B.; Denys, R. V.; Dornheim, M.; Grant, D. M.; Huot, J.; Jensen, T. R.; de Jongh, P.; Latroche, M.; Milanese, C.; Milčius, D.; Walker, G. S.; Webb, C. J.; Zlotea, C.; Yartys, V. A.

    2016-02-01

    Magnesium hydride has been studied extensively for applications as a hydrogen storage material owing to the favourable cost and high gravimetric and volumetric hydrogen densities. However, its high enthalpy of decomposition necessitates high working temperatures for hydrogen desorption while the slow rates for some processes such as hydrogen diffusion through the bulk create challenges for large-scale implementation. The present paper reviews fundamentals of the Mg-H system and looks at the recent advances in the optimisation of magnesium hydride as a hydrogen storage material through the use of catalytic additives, incorporation of defects and an understanding of the rate-limiting processes during absorption and desorption.

  11. Phase I. Lanthanum-based Start Materials for Hydride Batteries

    SciTech Connect

    Gschneidner, K. A.; Schmidt, F. A.; Frerichs, A. E.; Ament, K. A.

    2013-08-20

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La1-xRx)(Ni1-yMy)(Siz), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  12. Photoelectron spectroscopy of boron aluminum hydride cluster anions

    SciTech Connect

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H. E-mail: kiran@mcneese.edu; Li, Xiang; Kiran, Boggavarapu E-mail: kiran@mcneese.edu; Kandalam, Anil K.

    2014-04-28

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, B{sub x}Al{sub y}H{sub z}{sup −}, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

  13. Copper(I)-Catalyzed Allylic Substitutions with a Hydride Nucleophile.

    PubMed

    Nguyen, T N Thanh; Thiel, Niklas O; Pape, Felix; Teichert, Johannes F

    2016-05-20

    An easily accessible copper(I)/N-heterocyclic carbene (NHC) complex enables a regioselective hydride transfer to allylic bromides, an allylic reduction. The resulting aryl- and alkyl-substituted branched α-olefins, which are valuable building blocks for synthesis, are obtained in good yields and regioselectivity. A commercially available silane, (TMSO)2Si(Me)H, is employed as hydride source. This protocol offers a unified alternative to the established metal-catalyzed allylic substitutions with carbon nucleophiles, as no adaption of the catalyst to the nature of the nucleophile is required. PMID:27151495

  14. Photoelectron spectroscopy of boron aluminum hydride cluster anions

    NASA Astrophysics Data System (ADS)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H.; Li, Xiang; Kiran, Boggavarapu; Kandalam, Anil K.

    2014-04-01

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, BxAlyHz-, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

  15. Photoelectron spectroscopy of boron aluminum hydride cluster anions.

    PubMed

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H; Li, Xiang; Kiran, Boggavarapu; Kandalam, Anil K

    2014-04-28

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, BxAlyHz(-), were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms. PMID:24784280

  16. Hydride Reduction by a Sodium Hydride–Iodide Composite

    PubMed Central

    Too, Pei Chui; Chan, Guo Hao; Tnay, Ya Lin

    2016-01-01

    Abstract Sodium hydride (NaH) is widely used as a Brønsted base in chemical synthesis and reacts with various Brønsted acids, whereas it rarely behaves as a reducing reagent through delivery of the hydride to polar π electrophiles. This study presents a series of reduction reactions of nitriles, amides, and imines as enabled by NaH in the presence of LiI or NaI. This remarkably simple protocol endows NaH with unprecedented and unique hydride‐donor chemical reactivity. PMID:26878823

  17. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, G.L.

    1984-05-18

    A method for preparing reactive metal surfaces, particularly uranium surfaces is disclosed, whereby the metal is immediately reactive to hydrogen gas at room temperature and low pressure. The metal surfaces are first pretreated by exposure to an acid which forms an adherent hydride-bearing composition on the metal surface. Subsequent heating of the pretreated metal at a temperature sufficient to decompose the hydride coating in vacuum or inert gas renders the metal surface instantaneously reactive to hydrogen gas at room temperature and low pressure.

  18. Ab-initio study of transition metal hydrides

    SciTech Connect

    Sharma, Ramesh; Shukla, Seema Dwivedi, Shalini Sharma, Yamini

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  19. Synthesis and characterization of a novel mesoporous silica functionalized with [1,5 bis(di-2-pyridyl)methylene thiocarbohydrazide] and its application as enrichment sorbent for determination of antimony by FI-HG-ETAAS.

    PubMed

    López Guerrero, M M; Siles Cordero, M T; Vereda Alonso, E; García de Torres, A; Cano Pavón, J M

    2014-11-01

    A simple, sensitive, low-cost and rapid flow injection (FI) on-line sorption preconcentration/hydride generation system has been synchronously coupled to an electrothermal atomic absorption spectrometer (ETAAS) for the determination of trace amounts of Sb in aqueous environmental samples (river and sea water samples). The system is based on retention of the analyte onto a micro-column filled with a novel mesoporous silica functionalised with [1,5 bis(di-2-pyridyl) methylene] thiocarbohydrazide placed in the injection valve of the FI manifold. The adsorption capacity of the resin for Sb was found to be 160.8 µmol g(-1). Chemicals and flow variables affecting the continuous preconcentration of antimony, the direct generation of antimony hydride and the final determination of this element by ETAAS were evaluated. The optimized operating conditions selected were: sample pH 5.0, sample flow rate 2.5 ml min(-1), eluent flow rate 5.4 ml min(-1), eluent 2.0% thiourea in 4.0% nitric acid. Under the optimum conditions, the calibration graph obtained was linear over the range 0.025-2.5 μg L(-1). At a sample frequency of 20 h(-1) and 120 s preconcentration time, the enrichment factor was 22. The detection limit of the method (3ơ) was 1 ng L(-1) for a 5.0 mL sample volume and the precision was 0.9% (RSD) for 11 replicate determinations at 1.0 μg L(-1) Sb. The preconcentration factor and detection limit can be improved by increasing the preconcentration time, which can be increased at least up to 5 min. The accuracy of the proposed method was demonstrated by analyzing two certified reference materials and by determining the analyte content in spiked environmental water samples. The results obtained using this method were in good agreement with the certified values of the standard reference materials and the recoveries for the spiked river and sea water samples were 91.3-109.9%. PMID:25127557

  20. Exploring "aerogen-hydride" interactions between ZOF2 (Z = Kr, Xe) and metal hydrides: An ab initio study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba

    2016-06-01

    In this work, a new σ-hole interaction formed between ZOF2 (Z = Kr and Xe) as the Lewis acid and a series of metal-hydrides HMX (M = Be, Mg, Zn and X = H, F, CN, CH3) is reported. The nature of this interaction, called "aerogen-hydride" interaction, is unveiled by molecular electrostatic potential, non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses. Our results indicate that the aerogen-hydride interactions are quite strong and can be comparable in strength to other σ-hole bonds. An important charge-transfer interaction is also associated with the formation of OF2Z⋯HMX complexes.

  1. High performance Zr-based metal hydride alloys for nickel metal hydride batteries

    SciTech Connect

    Young, R.C.; Ovshinsky, S.R.; Huang, B.; Chao, B.S.; Li, Y.

    2000-07-01

    Based upon Ovonic's multi-element, atomic engineering approach, two families of alloys are being used in commercial Nickel Metal Hydride (NiMH) rechargeable batteries, i.e., the mischmetal (Mm) based AB{sub 5} and Zr based AB{sub 2} alloys. While Mm based alloys are faster to activate, they are limited by a discharge capacity of only 320--340 mAh/g. The Zr based alloy, although slightly slower to activate, provides a much higher discharge capacity. In this paper, the authors first discuss the use of Ovonic's multi-element approach to generate a spectrum of disordered local environments. They then present experimental data to illustrate that through these atomically engineered local environments, they are able to control the hydrogen site occupancy, discharge capacity, kinetics, and surface states. The Zr based alloy with a specific discharge capacity of 465 mAh/g and excellent rate capability has been demonstrated.

  2. OBSERVATION AND MECHANISM OF HYDRIDE IN ZIRCALOY-4 AND LOCAL HYDRIDE RE-ORIENTATION INDUCED BY HIGH PRESSURE AT HIGH TEMPERATURES

    SciTech Connect

    Yan, Yong; Blackwell, Andrew S; Plummer, Lee K; Radhakrishnan, Balasubramaniam; Gorti, Sarma B; Clarno, Kevin T

    2013-01-01

    Hydrided Zircaloy-4 samples were produced by a gas charging method to desired amounts of hydrogen. For low hydrogen content samples, the hydrided platelets appear elongated and needle-like, orientated in the circumferential direction. Mechanical testing was carried out by the ring compression method at various temperatures. Samples with higher hydrogen concentration resulted in lower strain before fracture and reduced maximum load. The trend between temperature and ductility was also very clear: increasing temperatures resulted in increased ductility of the hydrided cladding. A single through-wall crack was observed for a hydrided sample having very high hydrogen concentration under ring compression testing. For samples having lower hydrogen concentrations, the fracture surfaces traversed both circumferential and radial directions, and for which voids were observed near the hydrides. Mechanical tests to study hydride reorientation in these samples are under way, and the results will be reported in the near future.

  3. Comparison of the interactions in the rare gas hydride and Group 2 metal hydride anions

    SciTech Connect

    Harris, Joe P.; Manship, Daniel R.; Wright, Timothy G.; Breckenridge, W. H.

    2014-02-28

    We study both the rare gas hydride anions, RG–H{sup −} (RG = He–Rn) and Group 2 (Group IIa) metal hydride anions, M{sub IIa}H{sup −} (M{sub IIa} = Be–Ra), calculating potential energy curves at the CCSD(T) level with augmented quadruple and quintuple basis sets, and extrapolating the results to the basis set limit. We report spectroscopic parameters obtained from these curves; additionally, we study the Be–He complex. While the RG–H{sup −} and Be–He species are weakly bound, we show that, as with the previously studied BeH{sup −} and MgH{sup −} species, the other M{sub IIa}H{sup −} species are strongly bound, despite the interactions nominally also being between two closed shell species: M(ns{sup 2}) and H{sup −}(1s{sup 2}). We gain insight into the interactions using contour plots of the electron density changes and population analyses. For both series, the calculated dissociation energy is significantly less than the ion/induced-dipole attraction term, confirming that electron repulsion is important in these species; this effect is more dramatic for the M{sub IIa}H{sup −} species than for RG–H{sup −}. Our analyses lead us to conclude that the stronger interaction in the case of the M{sub IIa}H{sup −} species arises from sp and spd hybridization, which allows electron density on the M{sub IIa} atom to move away from the incoming H{sup −}.

  4. Hydride transfer and dihydrogen elimination from osmium and ruthenium metalloporphyrin hydrides: Model processes for hydrogenase enzymes and the hydrogen electrode reaction

    SciTech Connect

    Collman, J.P.; Wagenknecht, P.S.; Lewis, N.S.

    1992-07-01

    A series of metalloporphyrin hydride complexes of the type K[M(Por)(L)(H)] (M - Ru, Os; Por - OEP, TMP; L = THF, *Im, PPh{sub 3}, pyridine) has been synthesized by stoichiometric protonation of the corresponding K{sub 2}[M(Por)], followed by addition of L. The addition of excess acids to these hydrides resulted in the elimination of dihydrogen. The kinetics showed no evidence for a bimolecular mechanism for this process and suggest simple protonation of the metal-hydride bond followed by dihydrogen loss. One-electron oxidation of the metal hydrides also resulted in dihydrogen formation. The kinetics of the oxidatively induced hydrogen evolution step from K[Ru(OEP)(THF)(H)] were examined and indicate a biomolecular mechanism in which two metal hydrides reductively eliminate one dihydrogen molecule. The rate constant was determined to be 88 {+-} 14 M{sup -1} s{sup -1}. These reaction mechanisms are discussed in the context of designing bimetallic proton reduction catalysts. The metal hydride K[Ru(OEP)(THF)(H)], was also synthesized by heterolytic activation of H{sub 2}. This hydride is a good one-electron reductant (-1.15 V vs FeCp{sub 2}) and is capable of reducing, by hydride transfer, the NAD{sup +} analogue, 1-benzyl-N,N-diethyl-nicotinamide. This nicotinamide reduction by a hydride formed from heterolytic dihydrogen activation is suggested as the mechanism for hydrogenase enzymes. 38 refs., 4 figs., 3 tabs.

  5. Fabrication of lotus-type porous copper through thermal decomposition of titanium hydride

    NASA Astrophysics Data System (ADS)

    Ide, T.; Nakajima, H.

    2009-05-01

    Lotus-type porous copper was fabricated by unidirectional solidification through thermal decomposition of titanium hydride. Effects of additive method and additive amount of titanium hydride on pore formation were investigated. The porosity of lotus copper depends on additive method and additive amount of titanium hydride. The pore formation effectively occurs in the method that titanium hydride decomposes in molten copper. For all the additive methods of titanium hydride, the porosity increases and pore diameter does not change with increasing additive amount of titanium hydride. While, for adding large amount of titanium hydride, the porosity became constant. This is because hydrogen solubility in liquid phase does not change owing to bubbling of hydrogen gas.

  6. Electrochromism of Mg-Ni hydride switchable mirrors

    NASA Astrophysics Data System (ADS)

    Isidorsson, Jan; Giebels, I. A. M. E.; Di Vece, M.; Griessen, Ronald

    2001-11-01

    Switchable mirrors have so far been made of rare-earth and rare-earth-magnesium based metal-hydrides. In this investigation we study Mg-Ni-hydrides, which have been shown by Richardson et al. to exhibit switchable properties similar to those of the rare-earth hydrides. Cyclic voltammetry on MgzNiHx samples with 0.8 less than z less than 3.7 shows that addition of one Mg atom per Mg2Ni gives the best ab/desorption kinetics for hydrogen. X- ray diffraction reveals a structural change as hydrogen is absorbed. The metal-insulator transition is confirmed with simultaneous resistivity measurements. A pressure- composition isotherm of Mg2NiHx is also determined electrochemically. Optical spectrometry during gas loading gives an optical band gap of 1.6 eV for Mg2NiH4. This gap increases with increasing Mg content in a way similar to that of the Mg-doped rare-earth hydrides.

  7. Process of forming a sol-gel/metal hydride composite

    DOEpatents

    Congdon, James W.

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  8. Cascades for hydrogen isotope separation using metal hydrides

    SciTech Connect

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  9. Aluminium hydride: a reversible material for hydrogen storage.

    PubMed

    Zidan, Ragaiy; Garcia-Diaz, Brenda L; Fewox, Christopher S; Stowe, Ashley C; Gray, Joshua R; Harter, Andrew G

    2009-07-01

    Aluminium hydride has been synthesized electrochemically, providing a synthetic route which closes a reversible cycle for regeneration of the material and bypasses expensive thermodynamic costs which have precluded AlH(3) from being considered as a H(2) storage material. PMID:19557259

  10. Seebeck and figure of merit enhancement in nanostructured antimony telluride by antisite defect suppression through sulfur doping.

    PubMed

    Mehta, Rutvik J; Zhang, Yanliang; Zhu, Hong; Parker, David S; Belley, Matthew; Singh, David J; Ramprasad, Ramamurthy; Borca-Tasciuc, Theodorian; Ramanath, Ganpati

    2012-09-12

    Antimony telluride has a low thermoelectric figure of merit (ZT < ∼0.3) because of a low Seebeck coefficient α arising from high degenerate hole concentrations generated by antimony antisite defects. Here, we mitigate this key problem by suppressing antisite defect formation using subatomic percent sulfur doping. The resultant 10-25% higher α in bulk nanocrystalline antimony telluride leads to ZT ∼ 0.95 at 423 K, which is superior to the best non-nanostructured antimony telluride alloys. Density functional theory calculations indicate that sulfur increases the antisite formation activation energy and presage further improvements leading to ZT ∼ 2 through optimized doping. Our findings are promising for designing novel thermoelectric materials for refrigeration, waste heat recovery, and solar thermal applications. PMID:22891784

  11. Inert blanketing of a hydride bed using typical grade protium

    SciTech Connect

    Klein, J.E.

    2015-03-15

    This paper describes the impact of 500 ppm (0.05%) impurities in protium on the absorption rate of a 9.66 kg LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride bed. The presence of 500 ppm or less inerts (i.e. non-hydrogen isotopes) can significantly impact hydrogen bed absorption rates. The impact on reducing absorption rates is significantly greater than predicted assuming uniform temperature, pressure, and compositions throughout the bed. Possible explanations are discussed. One possibility considered was the feed gas contained impurity levels higher than 500 ppm. It was shown that a level of 5000 ppm of inerts would have been necessary to fit the experimental result so this possibility wa dismissed. Another possibility is that the impurities in the protium supply reacted with the hydride material and partially poisoned the hydride. If the hydride were poisoned with CO or another impurity, the removal of the over-pressure gas in the bed would not be expected to allow the hydride loading of the bed to continue as the experimental results showed, so this possibility was also dismissed. The last possibility questions the validity of the calculations. It is assumed in all the calculations that the gas phase composition, temperature, and pressure are uniform throughout the bed. These assumptions are less valid for large beds where there can be large temperature, pressure, and composition gradients throughout the bed. Eventually the impact of 0.05% inerts in protium on bed absorption rate is shown and explained in terms of an increase in inert partial pressure as the bed was loaded.

  12. Hydride Compressor Sorption Cooler and Surface Contamination Issues

    NASA Astrophysics Data System (ADS)

    Bowman, R. C.; Reiter, J. W.; Prina, M.; Kulleck, J. G.; Lanford, W. A.

    2003-07-01

    A continuous-duty hydrogen sorption cryocooler is being developed for the Planck spacecraft, a mission to map the cosmic microwave background beginning in 2007. This cryocooler uses six individual compressor elements (CEs) filled with the hydriding alloy LaNi4.78Sn0.22 to provide high-pressure (50 bar) hydrogen to a Joule-Thomson (J-T) expander and to absorb low-pressure (˜0.3 bar) gas from liquid hydrogen reservoirs cooled to ˜18K. Quadrupole Mass Spectrometry (QMS) showed methane in these hydride beds after cycling during initial operation of laboratory tests of the Planck engineering breadboard (EBB) cooler. These contaminants have caused problems involving plugged J-T expanders. The contaminants probably come from reactions with residual hydrocarbon species on surfaces inside the hydride bed. The hydride bed in each CE is contained in an annular volume called a "gas-gap heat switch," which serves as a reversible, intermittent thermal path to the spacecraft radiator. The gas-gap is either "off" (i.e., its pressure <1.3 Pa), or "on" (i.e., hydrogen gas at ˜4 kPa). The hydrogen pressure is varied with an independent hydride actuator containing ZrNiHx. Early EBB cooler tests showed increasing parasitic heat losses from the inner beds, suggesting residual pressures in the gas gap during its "off" state. The pressure was shown to be due to hydrogen from outgassing from metallic surfaces in the gas gap and hydrogen permeation through the inner sorbent bed wall. This gas accumulation has serious end-of-life implications, as the ZrNi actuator has limited storage capacity and any excess hydrogen would necessarily affect its operation. This paper summarizes experiments on the behavior of hydrogen in the gas gap switch and formation of methane in the CE sorbent beds.

  13. 5-year review of Metal Hydride Center of Excellence.

    SciTech Connect

    Keller, Jay O.; Klebanoff, Leonard E.

    2010-05-01

    The purpose of the DOE Metal Hydride Center of Excellence (MHCoE) is to develop hydrogen storage materials with engineering properties that allow the use of these materials in a way that satisfies the DOE/FreedomCAR Program system requirements for automotive hydrogen storage. The Center is a multidisciplinary and collaborative effort with technical interactions divided into two broad areas: (1) mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials) and (2) materials development (in which new materials are synthesized and characterized). Driving all of this work are the hydrogen storage system specifications outlined by the FreedomCAR Program for 2010 and 2015. The organization of the MHCoE during the past year is show in Figure 1. During the past year, the technical work was divided into four project areas. The purpose of the project areas is to organize the MHCoE technical work along appropriate and flexible technical lines. The four areas summarized are: (1) Project A - Destabilized Hydrides, The objective of this project is to controllably modify the thermodynamics of hydrogen sorption reactions in light metal hydrides using hydride destabilization strategies; (2) Project B - Complex Anionic Materials, The objective is to predict and synthesize highly promising new anionic hydride materials; (3) Project C - Amides/Imides Storage Materials, The objective of Project C is to assess the viability of amides and imides (inorganic materials containing NH{sub 2} and NH moieties, respectively) for onboard hydrogen storage; and (4) Project D - Alane, AlH{sub 3}, The objective of Project D is to understand the sorption and regeneration properties of AlH{sub 3} for hydrogen storage.

  14. Electrodeposition of SnSbCu Alloy on Copper from an Electrolyte with Varied Content of Antimony Chloride

    NASA Astrophysics Data System (ADS)

    Valeeva, A. Kh.; Valeev, I. Sh.

    2015-10-01

    The microstructure and chemical composition of electrodeposited alloys of the SnSbCu system with varied concentration of antimony chloride in the electrolyte have been investigated. It is shown that during electrodeposition mechanical-mixture alloys are not formed, but rather intermetallic compounds. It is found that increasing the concentration of antimony chloride in the electrolyte leads to a decrease in the tin content and cracking of the coating.

  15. Intrachromosomal Amplification, Locus Deletion and Point Mutation in the Aquaglyceroporin AQP1 Gene in Antimony Resistant Leishmania (Viannia) guyanensis

    PubMed Central

    Monte-Neto, Rubens; Laffitte, Marie-Claude N.; Leprohon, Philippe; Reis, Priscila; Frézard, Frédéric; Ouellette, Marc

    2015-01-01

    Background Antimony resistance complicates the treatment of infections caused by the parasite Leishmania. Methodology/Principal Findings Using next generation sequencing, we sequenced the genome of four independent Leishmania guyanensis antimony-resistant (SbR) mutants and found different chromosomal alterations including aneuploidy, intrachromosomal gene amplification and gene deletion. A segment covering 30 genes on chromosome 19 was amplified intrachromosomally in three of the four mutants. The gene coding for the multidrug resistance associated protein A involved in antimony resistance was also amplified in the four mutants, most likely through chromosomal translocation. All mutants also displayed a reduced accumulation of antimony mainly due to genomic alterations at the level of the subtelomeric region of chromosome 31 harboring the gene coding for the aquaglyceroporin 1 (LgAQP1). Resistance involved the loss of LgAQP1 through subtelomeric deletions in three mutants. Interestingly, the fourth mutant harbored a single G133D point mutation in LgAQP1 whose role in resistance was functionality confirmed through drug sensitivity and antimony accumulation assays. In contrast to the Leishmania subspecies that resort to extrachromosomal amplification, the Viannia strains studied here used intrachromosomal amplification and locus deletion. Conclusions/Significance This is the first report of a naturally occurred point mutation in AQP1 in antimony resistant parasites. PMID:25679388

  16. Fast sequential determination of antimony and lead in pewter alloys using high-resolution continuum source flame atomic absorption spectrometry.

    PubMed

    Dessuy, Morgana B; de Jesus, Robson M; Brandao, Geovani C; Ferreira, Sergio L C; Vale, Maria Goreti R; Welz, Bernhard

    2013-01-01

    A simple method has been developed to determine antimony and lead in pewter alloy cups produced in Brazil, using fast sequential determination by high-resolution continuum source flame atomic absorption spectrometry. The samples were dissolved in HCl and H(2)O(2), employing a cold finger system in order to avoid analyte losses. The main resonance line of lead at 217.001 nm and a secondary line of antimony at 212.739 nm were used. The limits of detection for lead and antimony were 0.02 and 5.7 mg L(-1), respectively. The trueness of the method was established by recovery tests and comparing the results obtained by the proposed method with those obtained by inductively coupled plasma optical emission spectrometry. The results were compared using a student's t-test and there was no significant difference at a 95% confidence interval. With the developed methods, it was possible to determine accurately antimony and lead in pewter samples. The lead concentration found in the analysed samples was around 1 mg g(-1), which means that they are not lead free; however, the content was below the maximum allowed level of 5 mg g(-1). The antimony content, which was found to be between 40 and 46 mg g(-1), is actually of greater concern, as antimony is known to be potentially toxic already at very low concentrations, although there is no legislation yet for this element. PMID:23046152

  17. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria.

    PubMed

    Li, Yongchao; Hu, Xiaoxian; Ren, Bozhi

    2016-01-01

    The present article summarizes antimony mine distribution, antimony mine drainage generation and environmental impacts, and critically analyses the remediation approach with special emphasis on iron oxidizing bacteria and sulfate reducing bacteria. Most recent research focuses on readily available low-cost adsorbents, such as minerals, wastes, and biosorbents. It is found that iron oxides prepared by chemical methods present superior adsorption ability for Sb(III) and Sb(V). However, this process is more costly and iron oxide activity can be inhibited by plenty of sulfate in antimony mine drainage. In the presence of sulfate reducing bacteria, sulfate can be reduced to sulfide and form Sb(2)S(3) precipitates. However, dissolved oxygen and lack of nutrient source in antimony mine drainage inhibit sulfate reducing bacteria activity. Biogenetic iron oxide minerals from iron corrosion by iron-oxidizing bacteria may prove promising for antimony adsorption, while the micro-environment generated from iron corrosion by iron oxidizing bacteria may provide better growth conditions for symbiotic sulfate reducing bacteria. Finally, based on biogenetic iron oxide adsorption and sulfate reducing bacteria followed by precipitation, the paper suggests an alternative treatment for antimony mine drainage that deserves exploration. PMID:27148704

  18. Antimony leaching in plastics from waste electrical and electronic equipment (WEEE) with various acids and gamma irradiation.

    PubMed

    Tostar, Sandra; Stenvall, Erik; Boldizar, Antal; Foreman, Mark R St J

    2013-06-01

    There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are tested for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5M) dissolved in either dimethyl sulfoxide or water (at ca. 23°C and heated to ca. 105°C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed. PMID:23561798

  19. Exploring metal hydrides using autoclave and multi-anvil hydrogenations

    NASA Astrophysics Data System (ADS)

    Puhakainen, Kati

    Metal hydride materials have been intensively studied for hydrogen storage applications. In addition to potential hydrogen economy applications, metal hydrides offer a wide variety of other interesting properties. For example, hydrogen-dominant materials, which are hydrides with the highest hydrogen content for a particular metal/semimetal composition, are predicted to display high-temperature superconductivity. On the other side of the spectrum are hydrides with small amounts of hydrogen (0.1 - 1 at.%) that are investigated as viable magnetic, thermoelectric or semiconducting materials. Research of metal hydride materials is generally important to gain fundamental understanding of metal-hydrogen interactions in materials. Hydrogenation of Zintl phases, which are defined as compounds between an active metal (alkali, alkaline earth, rare earth) and a p-block metal/semimetal, were attempted by a hot sintering method utilizing an autoclave loaded with gaseous hydrogen (< 9 MPa). Hydride formation competes with oxidative decomposition of a Zintl phase. The oxidative decomposition, which leads to a mixture of binary active metal hydride and p-block element, was observed for investigated aluminum (Al) and gallium (Ga) containing Zintl phases. However, a new phase Li2Al was discovered when Zintl phase precursors were synthesized. Using the single crystal x-ray diffraction (SCXRD), the Li2Al was found to crystallize in an orthorhombic unit cell (Cmcm) with the lattice parameters a = 4.6404(8) Å, b = 9.719(2) Å, and c = 4.4764(8) Å. Increased demand for materials with improved properties necessitates the exploration of alternative synthesis methods. Conventional metal hydride synthesis methods, like ball-milling and autoclave technique, are not responding to the demands of finding new materials. A viable alternative synthesis method is the application of high pressure for the preparation of hydrogen-dominant materials. Extreme pressures in the gigapascal ranges can open

  20. Hydriding performances and modeling of a small-scale ZrCo bed

    SciTech Connect

    Koo, D.; Lee, J.; Park, J.; Paek, S.; Chung, H.; Chang, M.H.; Yun, S.H.; Cho, S.; Jung, K.J.

    2015-03-15

    In order to evaluate the performance of the hydriding of a ZrCo bed, a small-scale getter bed of ZrCo was designed and fabricated. The results show that the hydriding time at room temperature was somewhat shorter than that at higher temperatures of ZrCo and that the performance of hydriding at low temperatures of ZrCo was better than that at high temperatures of ZrCo. The experimental results of the hydrogen pressure of hydriding (ZrCoH{sub 2.8}) at different temperatures were in agreement with the computed values using a numerical modeling equation but with a small difference during the first 10 minutes of the hydriding of ZrCo. The model is based on the Kozeny-Carman equation. The effect of a helium blanket on hydriding was measured and analyzed. The hydriding with no helium blanket in the primary vessel of ZrCo is much faster than that with a helium blanket. The hydriding at a helium concentration of 8% is slower than that at 0%. As the helium concentration increases, the hydriding of ZrCo decreases. The experimental results of the hydriding with 0 %, 4%, and 8% of helium concentration are in agreement with the calculated values but with minimal differences during the first 10 minutes.

  1. High pressure hydriding of sponge-Zr in steam-hydrogen mixtures

    NASA Astrophysics Data System (ADS)

    Soo Kim, Yeon; Wang, Wei-E.; Olander, D. R.; Yagnik, S. K.

    1997-07-01

    Hydriding kinetics of thin sponge-Zr layers metallurgically bonded to a Zircaloy disk has been studied by thermogravimetry in the temperature range 350-400°C in 7 MPa hydrogen-steam mixtures. Some specimens were prefilmed with a thin oxide layer prior to exposure to the reactant gas; all were coated with a thin layer of gold to avoid premature reaction at edges. Two types of hydriding were observed in prefilmed specimens, viz., a slow hydrogen absorption process that precedes an accelerated (massive) hydriding. At 7 MPa total pressure, the critical ratio of H 2/H 2O above which massive hydriding occurs at 400°C is ˜ 200. The critical H 2/H 20 ratio is shifted to ˜2.5 × 103 at 350°C. The slow hydriding process occurs only when conditions for hydriding and oxidation are approximately equally favorable. Based on maximum weight gain, the specimen is completely converted to δ-ZrH 2 by massive hydriding in ˜5 h at a hydriding rate of ˜10 -6 mol H/cm 2 s. Incubation times of 10-20 h prior to the onset of massive hydriding increases with prefilm oxide thickness in the range of 0-10 μm. By changing to a steam-enriched gas, massive hydriding that initially started in a steam-starved condition was arrested by re-formation of a protective oxide scale.

  2. Electric quadrupole interaction of 100Rh in antimony, hafnium and rhenium

    NASA Astrophysics Data System (ADS)

    Kemp, W. J.; Abiona, A. A.; Kessler, P.; Timmers, H.

    2013-05-01

    Time differential perturbed angular correlation (TDPAC) spectroscopy in beryllium, zinc, rhodium, antimony, hafnium and rhenium was performed with the 100Pd/100Rh probe using four-detector arrays with relative detector orientations of 90° and 180°. The probe was synthesized using the 92Zr(12C,4n)100Pd fusion evaporation reaction, with evaporation residues recoiling into specimens of the metals. The quadrupole coupling constant for 100Rh has been determined for the first time for antimony, hafnium and rhenium, while results for the other elements agree with known values. The coupling constants for the measured hexagonal lattices of the period VI transition metals, hafnium and rhenium, show the same trend with increasing atomic number as those of period V.

  3. Numerical simulation and experimental characterization of the performance evolution of a liquid antimony anode fuel cell

    NASA Astrophysics Data System (ADS)

    Cao, Tianyu; Shi, Yixiang; Wang, Hongjian; Cai, Ningsheng

    2015-06-01

    A solid oxide fuel cell (SOFC) with a liquid antimony anode is fabricated based on a smooth single crystal YSZ electrolyte substrate and a porous Pt cathode. The performance of the liquid antimony anode was tested under "battery mode", with the anode chamber shielded in argon throughout the test and the cathode exposed to air. Polarization curves were taken and a long term constant potential discharging test was carried out afterwards. Taking electrochemical reaction, mass transport and microstructure of the liquid Sb anode into consideration, a one dimensional mathematical model was built and then validated by the polarization curve and the constant potential discharging performance curve obtained during the test. This model analyzes the metallic Sb distribution in the anode during cell operation, explains the cell performance evolution base on the microstructural development of the liquid Sb anode and simulates how the anode microstructure affects the cell performance.

  4. Hot Wall Epitaxy And Characterization Of Bismuth And Antimony Thin Films On Barium Fluoride Substrates

    NASA Astrophysics Data System (ADS)

    Collazo, Ramon; Dalmau, Rafael; Martinez, Antonio

    1998-03-01

    We have grown thin films of bismuth and antimony using hot wall epitaxy. The epitaxial films were grown on (111)-BaF2 substrates. The chemical integrity of the films was established using Auger electron spectroscopy and X ray Photoelectron Spectroscopy. The thickness of the films was measured using an atomic force microscope to establish their growth rate. The crystallographic properties of the films were assessed using x-ray diffraction techniques. Both bismuth and antimony thin films were found to be oriented with the [003] direction perpendicular to the plane of the films. Pole figures of both types of films indicate the epitaxial nature of the films. Bi/Sb multilayer structures were grown using the same growth technique. We will report on the results of the characterization of these films as well as on the growth apparatus and process. Work supported in part by EPSCoR-NSF Grant EHR-9108775 and NCRADA-NSWCDD-92-01.

  5. Reaction of Antimony-Uranium Composite Oxide in the Chlorination Treatment of Waste Catalyst - 13521

    SciTech Connect

    Sawada, Kayo; Hirabayashi, Daisuke; Enokida, Youichi

    2013-07-01

    The effect of oxygen gas concentration on the chlorination treatment of antimony-uranium composite oxide catalyst waste was investigated by adding different concentrations of oxygen at 0-6 vol% to its chlorination agent of 0.6 or 6 vol% hydrogen chloride gas at 1173 K. The addition of oxygen tended to prevent the chlorination of antimony in the oxide. When 6 vol% hydrogen chloride gas was used, the addition of oxygen up to 0.1 vol% could convert the uranium contained in the catalyst to U{sub 3}O{sub 8} without any significant decrease in the reaction rate compared to that of the treatment without oxygen. (authors)

  6. Antimony/Graphitic Carbon Composite Anode for High-Performance Sodium-Ion Batteries.

    PubMed

    Zhao, Xin; Vail, Sean A; Lu, Yuhao; Song, Jie; Pan, Wei; Evans, David R; Lee, Jong-Jan

    2016-06-01

    Although the room-temperature rechargeable sodium-ion battery has emerged as an attractive alternative energy storage solution for large-scale deployment, major challenges toward practical sodium-ion battery technology remain including identification and engineering of anode materials that are both technologically feasible and economical. Herein, an antimony-based anode is developed by incorporating antimony into graphitic carbon matrices using low-cost materials and scalable processes. The composite anode exhibits excellent overall performance in terms of packing density, fast charge/discharge capability and cyclability, which is enabled by the conductive and compact graphitic network. A full cell design featuring this composite anode with a hexacyanometallate cathode achieves superior power output and low polarization, which offers the potential for realizing a high-performance, cost-effective sodium-ion battery. PMID:27172376

  7. Antimony segregation in stressed SiGe heterostructures grown by molecular beam epitaxy

    SciTech Connect

    Drozdov, M. N.; Novikov, A. V.; Yurasov, D. V.

    2013-11-15

    The effects of the growth temperature, composition, and elastic strains in separate layers on the segregation of antimony are studied experimentally for stressed SiGe structures grown by molecular beam epitaxy. It is established that the growth conditions and parameters of the structures exert an interrelated influence on the segregation of Sb: the degree of the influence of the composition and elastic stresses in the SiGe layers on Sb segregation depends on the growth temperature. It is shown that usage of a method previously proposed by us for the selective doping of silicon structures with consideration for the obtained dependences of Sb segregation on the growth conditions and parameters of the SiGe layers makes it possible to form SiGe structures selectively doped with antimony.

  8. Preparation and Characterization of Antimony and Arsenic Tricyanide and Their 2,2'-Bipyridine Adducts.

    PubMed

    Deokar, Piyush; Leitz, Dominik; Stein, Trent H; Vasiliu, Monica; Dixon, David A; Christe, Karl O; Haiges, Ralf

    2016-09-01

    The arsenic(III) and antimony(III) cyanides M(CN)3 (M=As, Sb) have been prepared in quantitative yields from the corresponding trifluorides through fluoride-cyanide exchange with Me3 SiCN in acetonitrile. When the reaction was carried out in the presence of one equivalent of 2,2'-bipyridine, the adducts [M(CN)3 ⋅(2,2'-bipy)] were obtained. The crystal structures of As(CN)3 , [As(CN)3 ⋅(2,2'-bipy)] and [Sb(CN)3 ⋅(2,2'-bipy)] were determined and are surprisingly different. As(CN)3 possesses a polymeric three-dimensional structure, [As(CN)3 ⋅(2,2'-bipy)] exhibits a two-dimensional sheet structure, and [Sb(CN)3 ⋅(2,2'-bipy)] has a chain structure, and none of the structures resembles those found for the corresponding arsenic and antimony triazides. PMID:27492940

  9. Preparation and spectroscopic studies of antimony(III) and bismuth(III) halodithiocarbamate derivatives

    NASA Astrophysics Data System (ADS)

    Giusti, Aleardo; Preti, Carlo; Tosi, Giuseppe; Zannini, Paolo

    1983-04-01

    The complexes of antimony(III) and bismuth(III) with piperidine (Pipdtc), morpholine (Morphdtc) and thiomorpholinedithiocarbamate (Timdtc) of general formula Sb 2-(Rdtc) 3X 3 and M(Rdtc)X 2 (M is antimony or bismuth, X a halogen and Rdtc the dithiocarbamates) have been prepared and characterized by spectroscopic methods. The IR spectra suggest that the dithiocarbamate group coordinates as a bidentate ligand; the metal-sulphur and metal-halide stretching modes have also been assigned. The spectral data are discussed and compared with those of the corresponding trisdithiocarbamate and monohalobisdithiocarbamate derivatives. The molecular weight determinations indicate that all these dithiocarbamate complexes are dimeric. Tentative stereochemistries are proposed and discussed on the basis of the results obtained.

  10. Genotoxic risk and oxidative DNA damage in workers exposed to antimony trioxide.

    PubMed

    Cavallo, Delia; Iavicoli, Ivo; Setini, Andrea; Marinaccio, Alessandro; Perniconi, Barbara; Carelli, Giovanni; Iavicoli, Sergio

    2002-01-01

    The growing use of antimony (Sb) compounds in industry and the consequent increase in the number of exposed workers make it important to carry out a health risk assessment. The main goal of this study was to assess the genotoxicity of Sb(2)O(3) in occupationally exposed workers. Genotoxicity was evaluated by the sister chromatid exchange (SCE) and micronucleus tests, and the enzyme (Fpg)-modified comet assay. In addition, antimony exposure levels were established by environmental monitoring with personal air samplers. We studied 23 male workers assigned to different fire retardant treatment tasks in the car upholstery industry and a control group of 23 healthy nonexposed males. The exposed workers were divided into two groups on the basis of their tasks and the work cycle: Group A comprised finishing and intermediate inspection operators who directly handled a mixture containing Sb(2)O(3); Group B were jet operators, not directly exposed to the compound. Environmental monitoring detected low Sb exposure levels but significant differences between the two groups, with Group A having the higher exposure level. Cytogenetic analyses showed no difference between exposed workers and controls for micronuclei and SCE. The enzyme-modified comet assay showed a probable relation between moderate levels of oxidative DNA damage and exposure to antimony, with a significantly higher proportion of workers in Group A having oxidative DNA damage compared to controls. The results support the theory that oxidative DNA damage is involved in the genotoxicity of antimony and indicate the need for further research in this field. PMID:12355552

  11. Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure.

    PubMed

    Guo, Xuejun; Wu, Zhijun; He, Mengchang; Meng, Xiaoguang; Jin, Xin; Qiu, Nan; Zhang, Jing

    2014-07-15

    Antimony is detected in soil and water with elevated concentration due to a variety of industrial applications and mining activities. Though antimony is classified as a pollutant of priority interest by the United States Environmental Protection Agency (USEPA) and Europe Union (EU), very little is known about its environmental behavior and adsorption mechanism. In this study, the adsorption behaviors and surface structure of antimony (III/V) on iron oxides were investigated using batch adsorption techniques, surface complexation modeling (SCM), X-ray photon spectroscopy (XPS) and extended X-ray absorption fine structure spectroscopy (EXAFS). The adsorption isotherms and edges indicated that the affinity of Sb(V) and Sb(III) toward the iron oxides depended on the Sb species, solution pH, and the characteristics of iron oxides. Sb(V) adsorption was favored at acidic pH and decreased dramatically with increasing pH, while Sb(III) adsorption was constant over a broad pH range. When pH is higher than 7, Sb(III) adsorption by goethite and hydrous ferric oxide (HFO) was greater than Sb(V). EXAFS analysis indicated that the majority of Sb(III), either adsorbed onto HFO or co-precipitated by FeCl3, was oxidized into Sb(V) probably due to the involvement of O2 in the long duration of sample preservation. Only one Sb-Fe subshell was filtered in the EXAFS spectra of antimony adsorption onto HFO, with the coordination number of 1.0-1.9 attributed to bidentate mononuclear edge-sharing ((2)E) between Sb and HFO. PMID:24910911

  12. Bi-antimony capped Keggin polyoxometalate modified with Cu-ligand fragment

    SciTech Connect

    Huang, Jiao; Han, Zhangang; Zhang, Heng; Yu, Haitao; Zhai, Xueliang

    2012-10-15

    Three polyoxometalates consisting of bi-antimony capped Keggin-type clusters: [Cu(mbpy){sub 2}]{sub 2}[PMo{sub 12}O{sub 40}Sb{sub 2}]{center_dot}4H{sub 2}O (1), [Cu(mbpy){sub 2}][PMo{sub 12}O{sub 40}Sb{sub 2}] (2) and {l_brace}Cu(mbpy)[Cu(mbpy){sub 2}]{sub 2}{r_brace}[VMo{sub 8}V{sub 4}O{sub 40}Sb{sub 2}]{center_dot}2H{sub 2}O (3) (mbpy=4,4 Prime -dimethyl-2,2 Prime - dipyridyl in 1 and 2; 5,5 Prime -dimethyl-2,2 Prime -dipyridyl in 3) have been synthesized and characterized by IR, X-ray powder diffraction, TG analysis and electrochemical property. Single-crystal analysis revealed that all of three compounds are built upon bi-antimony capped Keggin-type polyoxoanions and Cu-mbpy cations. In 1-3, two Sb{sup III} centers located at the two opposite of anionic surface adopt fundamentally tetragonal pyramidal coordination geometry. Both compounds 1 and 2 consist of P-centered Keggin structure, while compound 3 presents a V-centered Keggin anion. The Keggin-type anions present different structural features: isolated cluster in 1 and Cu-ligand-supported cluster in 2 and 3. - Graphical abstract: Three hybrid compounds consisting of bi-antimony capped Keggin-type clusters modified with Cu-ligand cations have been synthesized and characterized. Highlights: Black-Right-Pointing-Pointer Three hybrid compounds consisting of bi-antimony capped Keggin-type clusters have been synthesized. Black-Right-Pointing-Pointer Two Sb{sup III} centers located at the two opposite of anionic surface adopt tetragonal pyramidal coordination geometry. Black-Right-Pointing-Pointer The anions present different structural features: isolated and Cu-ligand-supported cluster.

  13. Chemically deposited thin films of sulfides and selenides of antimony and bismuth as solar energy materials

    NASA Astrophysics Data System (ADS)

    Nair, M. T.; Nair, Padmanabhan K.; Garcia, V. M.; Pena, Y.; Arenas, O. L.; Garcia, J. C.; Gomez-Daza, O.

    1997-10-01

    Chemical bath deposition techniques for bismuth sulfide, bismuth selenide, antimony sulfide, and antimony selenide thin films of about 0.20 - 0.25 micrometer thickness are reported. All these materials may be considered as solar absorber films: strong optical absorption edges, with absorption coefficient, (alpha) , greater than 104 cm-1, are located at 1.31 eV for Bi2Se3, 1.33 eV for Bi2S3, 1.8 eV for Sb2S3, and 1.35 eV for Sb2Se3. As deposited, all the films are nearly amorphous. However, well defined crystalline peaks matching bismuthinite (JCPDS 17- 0320), paraguanajuatite (JCPDS 33-0214), and stibnite (JCPDS 6-0474) and antimony selenide (JCPDS 15-0861) for Bi2S3, Bi2Se3, Sb2S3 and Sb2Se3 respectively, are observed when the films are annealed in nitrogen at 300 degrees Celsius. This is accompanied by a substantial modification of the electrical conductivity in the films: from 10-7 (Omega) -1 cm-1 (in as prepared films) to 10 (Omega) -1 cm-1 in the case of bismuth sulfide and selenide films, and enhancement of photosensitivity in the case of antimony sulfide films. The chemical deposition of a CuS/CuxSe film on these Vx- VIy films and subsequent annealing at 300 degrees Celsius for 1 h at 1 torr of nitrogen leads to the formation of p-type films (conductivity of 1 - 100 (Omega) -1 cm-1) of multinary composition. Among these, the formation of Cu3BiS3 (JCPDS 9-0488) and Cu3SbS4 (JCPDS 35- 0581), CuSbS2 (JCPDS 35-0413) have been clearly detected. Solar energy applications of these films are suggested.

  14. Antimony retention and release from drained and waterlogged shooting range soil under field conditions.

    PubMed

    Hockmann, Kerstin; Tandy, Susan; Lenz, Markus; Reiser, René; Conesa, Héctor M; Keller, Martin; Studer, Björn; Schulin, Rainer

    2015-09-01

    Many soils polluted by antimony (Sb) are subject to fluctuating waterlogging conditions; yet, little is known about how these affect the mobility of this toxic element under field conditions. Here, we compared Sb leaching from a calcareous shooting range soil under drained and waterlogged conditions using four large outdoor lysimeters. After monitoring the leachate samples taken at bi-weekly intervals for >1.5 years under drained conditions, two of the lysimeters were subjected to waterlogging with a water table fluctuating according to natural rainfall water infiltration. Antimony leachate concentrations under drained conditions showed a strong seasonal fluctuation between 110 μg L(-1) in summer and <40 μg L(-1) in winter, which closely correlated with fluctuations in dissolved organic carbon (DOC) concentrations. With the development of anaerobic conditions upon waterlogging, Sb in leachate decreased to 2-5 μg L(-1) Sb and remained stable at this level. Antimony speciation measurements in soil solution indicated that this decrease in Sb(V) concentrations was attributable to the reduction of Sb(V) to Sb(III) and the stronger sorption affinity of the latter to iron (Fe) (hydr)oxide phases. Our results demonstrate the importance of considering seasonal and waterlogging effects in the assessment of the risks from Sb-contaminated sites. PMID:25592464

  15. Structural, magnetic and dielectric investigations in antimony doped nano-phased nickel-zinc ferrites

    NASA Astrophysics Data System (ADS)

    Lakshmi, Ch. S.; Sridhar, Ch. S. L. N.; Govindraj, G.; Bangarraju, S.; Potukuchi, D. M.

    2015-02-01

    Nanocrystalline Ni-Zn-Sb ferrites synthesized by hydrothermal method are reported. Influence of Sb5+ ions on structural, magnetic and dielectric properties of ferrites is studied. Phase identification, lattice parameter and crystallite size studies are carried out using by X-ray diffraction (XRD). Addition of dopant resulted for decrease in lattice parameter. Crystallite size gets reduced from 62 nm to 38 nm with doping of Antimony. Crystallite size and porosity exhibit similar trends with doping. Morphological study is carried out by Field Emission Scanning Electron Microscopy (FESEM). Strong FTIR absorption bands at 400-600 cm-1 confirm the formation of ferrite structure. Increase of porosity is attributed to the grain size. Doping with Antimony results for decrease in saturation magnetization and increase in coercivity. An initial increase of saturation magnetization for x=0.1 is attributed to the unusually high density. Reversed trend of coercivity with crystallite size are observed. Higher value of dielectric constant ε‧(ω) is attributed to the formation of excess of Fe2+ ions caused by aliovalent doping of Sb5+ ions. Variation of dielectric constant infers hopping type of conductivity mechanism. The dielectric loss factor tanδ attains lower values of ~10-2. High ac resistivity ρ(ω) of 108 Ω cm is witnessed for antimony doped ferrites. Higher saturation magnetization and enhanced dielectric response directs for a possible utility as microwave oscillators and switches.

  16. Studies in atomic-fluorescence spectroscopy-V The fluorescence characteristics and determination of antimony.

    PubMed

    Dagnall, R M; Thompson, K C; West, T S

    1967-10-01

    Atomic-fluorescence of antimony may be generated in an air-propane flame by nebulizing aqueous solutions of antimony salts whilst irradiating the flame by means of a microwave-excited electrode-less discharge tube operating at 30 W. The strongest fluorescence is exhibited by the (4)S(11 2 ) --> (4)P(1 3 ) 2311 A resonance line and weaker signals are observed at the 2068 and 2176 A resonance lines and at four intercombination lines, at 2598, 2671, 2770 and 2878 A. A process of thermally assisted direct-line fluorescence is postulated to account for the otherwise inexplicable intensity of the 2598 A line emission. Atomic-fluorescence spectroscopy at 2176 A permits the determination of antimony in the range 0.1-120 ppm with a detection limit of 0.05 ppm. With the same equipment and source, the range of measurement for atomic-absorption was 6-120 ppm and the detection limit was 1 ppm. No interferences were observed from 100-fold molar amounts of Cd, Co, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, NH(4), Pb and Zn or from arsenate, chloride, nitrate, phosphate and sulphate. PMID:18960212

  17. A new method to reduce false positives due to antimony in detection of gunshot residues.

    PubMed

    Aksoy, Çağdaş; Bora, Taner; Şenocak, Nilgün; Aydın, Fırat

    2015-05-01

    False positives due to the presence of antimony in vehicle seat fabrics are a problem in gunshot residue (GSR) analysis, in particular, when graphite furnace atomic absorption spectrometry (GFAAS) is employed. In this study, we sought to determine the reason for the prevalence of false positive results and to propose a new approach for the analysis of GSR on vehicle seats. GFAAS was used to examine adhesive tape swabs collected from 100 seats of 50 different automobiles. Characterization of seat fabrics was carried out by using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy with energy dispersive X-ray (SEM/EDX) spectroscopy. The results of FTIR analysis indicated that all seat covers containing antimony were composed of polyester. Experimental results obtained by SEM/EDX analysis revealed that the fabrics in these seat covers contained evenly distributed antimony within the structure of polyester fibers. This study shows that the type of seat fabric should be determined by FTIR spectroscopy before elemental GSR analysis. In this way, most of the false positives caused by polyester fibers in GSR analysis can be prevented. PMID:25828380

  18. Accumulation of antimony and other potentially toxic elements in plants around a former antimony mine located in the Ribes Valley (Eastern Pyrenees)

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Corrales, Isabel; Duran, Paola; Roca, Núria; Tume, Pedro; Barceló, Juan; Poschenrieder, Charlotte

    2010-05-01

    Soil contamination by antimony is of increasing environmental concern due to the use of this amphoterous p-block element in many industrial applications such as flame retardant, electronics, alloys, rubber and textile industries. However, little is still known about the response of plants to antimony. Here we report on the accumulation of antimony and other potentially toxic elements (mainly As, Pb and Cu) in plants growing around a former antimony mine in the ribes Valley located in the Eastern Pyrenees (424078E, 4686100N alt. 1145 m.a.s.l) that was operating approximately between the years 1870 to 1960. The ore mineral veins are included in quartz gangue. The main ores were: Sulphides: Stibnite (Sb2S3), Pyrite (FeS2), Sphalerite (ZnS), Arsenopyrite (FeAs), Galenite (PbS), Chalcopyrite (CuFeS2), Tetrahydrite (Cu5Sb2S3). Sulphosals: Boulangerite (5PbS•2Sb2S3), Jamesonite (4PbS•FeS•3Sb2S3), Zinckenite (6PbS•7Sb2S3), Plagionite (5PbS•4Sb2S3), Bournonite PbCu (Sb,As)S3, Pyrargirite (Ag3SbS3). Soil and plant samples were taken at five locations with different levels of Sb, As, and polymetallic contamination. Both pseudototal (aqua regia soluble) and extractable (EDTA) concentrations of metals from sites with low (sites 1 and 2), moderate (site 3 and 4) and high (sites 5 and 6) pollutant burdens were studied. The range of agua regia and EDTA values in mgkg-1 is as follows: Sb 8-2904 and 0.88-44; As: 33-16186 and 3.2-167; Pb: 79-4794 and 49-397; Cu: 66-712 and 48-56 mg•kg-1, respectively). While sites 1 to 4 had alkaline soil pH (7.4-8.7), sites 5 and 6 were acidic with values of 6 and 4.6, respectively. Different herbaceous plant species (Poa annua, Echium vulgare, Sonchus asper, Barbera verna among others) at the low and moderately polluted sites were able to efficiently restrict Sb and As transport to shoots showing average concentration ranges between 5.5 and 23 mg/kg As and 1.21 mg/kg and 4.9 mg/kg Sb. However, at the highly polluted acidic sites (5 and

  19. Heat transfer analysis of metal hydrides in metal-hydrogen secondary batteries

    NASA Technical Reports Server (NTRS)

    Onischak, M.; Dharia, D.; Gidaspow, D.

    1976-01-01

    The heat transfer between a metal-hydrogen secondary battery and a hydrogen-storing metal hydride was studied. Temperature profiles of the endothermic metal hydrides and the metal-hydrogen battery were obtained during discharging of the batteries assuming an adiabatic system. Two hydride materials were considered in two physical arrangements within the battery system. In one case the hydride is positioned in a thin annular region about the battery stack; in the other the hydride is held in a tube down the center of the stack. The results show that for a typical 20 ampere-hour battery system with lanthanum pentanickel hydride as the hydrogen reservoir the system could perform successfully.

  20. Molecular early main group metal hydrides: synthetic challenge, structures and applications.

    PubMed

    Harder, Sjoerd

    2012-11-25

    Within the general area of early main group metal chemistry, the controlled synthesis of well-defined metal hydride complexes is a rapidly developing research field. As group 1 and 2 metal complexes are generally highly dynamic and lattice energies for their [MH](∞) and [MH(2)](∞) salts are high, the synthesis of well-defined soluble hydride complexes is an obvious challenge. Access to molecular early main group metal hydrides, however, is rewarding: these hydrocarbon-soluble metal hydrides are highly reactive, have found use in early main group metal catalysis and are potentially also valuable molecular model systems for polar metal hydrides as a hydrogen storage material. The article focusses specifically on alkali and alkaline-earth metal hydride complexes and discusses the synthetic challenge, molecular structures, reactivity and applications. PMID:23012695

  1. Effect of hydride orientation on fracture toughness of Zircaloy-4 cladding

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiao-Hung; Tsay, Leu-Wen

    2011-01-01

    Hydrogen embrittlement is one of the major degradation mechanisms for high burnup fuel cladding during reactor service and spent fuel dry storage, which is related to the hydrogen concentration, morphology and orientation of zirconium hydrides. In this work, the J-integral values for X-specimens with different hydride orientations are measured to evaluate the fracture toughness of Zircaloy-4 (Zry-4) cladding. The toughness values for Zry-4 cladding with various percentages of radial hydrides are much smaller than those with circumferential hydrides only in the same hydrogen content level at 25 °C. The fractograghic features reveal that the crack path is influenced by the orientation of zirconium hydride. Moreover, the fracture toughness measurements for X-specimens at 300 °C are not sensitive to a variation in hydride orientation but to hydrogen concentration.

  2. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    SciTech Connect

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  3. The free-energy barrier to hydride transfer across a dipalladium complex.

    PubMed

    Vanston, C R; Kearley, G J; Edwards, A J; Darwish, T A; de Souza, N R; Ramirez-Cuesta, A J; Gardiner, M G

    2015-01-01

    We use density-functional theory molecular dynamics (DFT-MD) simulations to determine the hydride transfer coordinate between palladium centres of the crystallographically observed terminal hydride locations, Pd-Pd-H, originally postulated for the solution dynamics of the complex bis-NHC dipalladium hydride [{(MesIm)2CH2}2Pd2H][PF6], and then calculate the free-energy along this coordinate. We estimate the transfer barrier-height to be about 20 kcal mol(-1) with a hydride transfer rate in the order of seconds at room temperature. We validate our DFT-MD modelling using inelastic neutron scattering which reveals anharmonicity of the hydride environment that is so pronounced that there is complete failure of the harmonic model for the hydride ligand. The simulations are extended to high temperature to bring the H-transfer to a rate that is accessible to the simulation technique. PMID:25652724

  4. A low tritium hydride bed inventory estimation technique

    SciTech Connect

    Klein, J.E.; Shanahan, K.L.; Baker, R.A.; Foster, P.J.

    2015-03-15

    Low tritium hydride beds were developed and deployed into tritium service in Savannah River Site. Process beds to be used for low concentration tritium gas were not fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory measurement method. Low tritium beds contain less than the detection limit of the IBA (In-Bed Accountability) technique used for tritium inventory. This paper describes two techniques for estimating tritium content and uncertainty for low tritium content beds to be used in the facility's physical inventory (PI). PI are performed periodically to assess the quantity of nuclear material used in a facility. The first approach (Mid-point approximation method - MPA) assumes the bed is half-full and uses a gas composition measurement to estimate the tritium inventory and uncertainty. The second approach utilizes the bed's hydride material pressure-composition-temperature (PCT) properties and a gas composition measurement to reduce the uncertainty in the calculated bed inventory.

  5. Composition and structure of sputter deposited erbium hydride thin films

    SciTech Connect

    ADAMS,DAVID P.; ROMERO,JUAN A.; RODRIGUEZ,MARK A.; FLORO,JERROLD A.; BANKS,JAMES C.

    2000-05-10

    Erbium hydride thin films are grown onto polished, a-axis {alpha} Al{sub 2}O{sub 3} (sapphire) substrates by reactive ion beam sputtering and analyzed to determine composition, phase and microstructure. Erbium is sputtered while maintaining a H{sub 2} partial pressure of 1.4 x 10{sup {minus}4} Torr. Growth is conducted at several substrate temperatures between 30 and 500 C. Rutherford backscattering spectrometry (RBS) and elastic recoil detection analyses after deposition show that the H/Er areal density ratio is approximately 3:1 for growth temperatures of 30, 150 and 275 C, while for growth above {approximately}430 C, the ratio of hydrogen to metal is closer to 2:1. However, x-ray diffraction shows that all films have a cubic metal sublattice structure corresponding to that of ErH{sub 2}. RBS and Auger electron that sputtered erbium hydride thin films are relatively free of impurities.

  6. On the high-pressure superconducting phase in platinum hydride

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, D.; Zemła, T. P.

    2015-08-01

    Motivated by the ambiguous experimental data for the superconducting phase in silane (SiH4), which may originate from platinum hydride (PtH), we provide a theoretical study of the superconducting state in the latter alloy. The quantitative estimates of the thermodynamics of PtH at 100 GPa are given for a wide range of Coulomb pseudopotential values ({μ }*) within the Eliashberg formalism. The obtained critical temperature value ({T}{{C}}\\in < 12.94,20.01> for {μ }*\\in < 0.05,0.15> ) agrees well with the experimental TC for SiH4, which may be ascribed to PtH. Moreover, the calculated characteristic thermodynamic ratios exceed the predictions of the Bardeen-Cooper-Schrieffer theory, implying the occurrence of strong-coupling and retardation effects in PtH. We note that our results may be of high relevance for future theoretical and experimental studies on hydrides.

  7. ALUMINUM HYDRIDE: A REVERSIBLE STORAGE MATERIAL FOR HYDROGEN STORAGE

    SciTech Connect

    Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

    2009-01-09

    One of the challenges of implementing the hydrogen economy is finding a suitable solid H{sub 2} storage material. Aluminium (alane, AlH{sub 3}) hydride has been examined as a potential hydrogen storage material because of its high weight capacity, low discharge temperature, and volumetric density. Recycling the dehydride material has however precluded AlH{sub 3} from being implemented due to the large pressures required (>10{sup 5} bar H{sub 2} at 25 C) and the thermodynamic expense of chemical synthesis. A reversible cycle to form alane electrochemically using NaAlH{sub 4} in THF been successfully demonstrated. Alane is isolated as the triethylamine (TEA) adduct and converted to unsolvated alane by heating under vacuum. To complete the cycle, the starting alanate can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride (NaH) This novel reversible cycle opens the door for alane to fuel the hydrogen economy.

  8. Detecting low concentrations of plutonium hydride with magnetization measurements

    NASA Astrophysics Data System (ADS)

    Kim, Jae Wook; Mun, E. D.; Baiardo, J. P.; Smith, A. I.; Richmond, S.; Mitchell, J.; Schwartz, D.; Zapf, V. S.; Mielke, C. H.

    2015-02-01

    We report the formation of plutonium hydride in 2 at. % Ga-stabilized δ-Pu, with 1 at. % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here, we use magnetization, X-ray, and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuHx on the surface of the sample with x ˜ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with ferromagnetic PuH1.9.

  9. Detecting low concentrations of plutonium hydride with magnetization measurements

    SciTech Connect

    Kim, Jae Wook; Mun, E. D.; Baiardo, J. P.; Zapf, V. S.; Mielke, C. H.; Smith, A. I.; Richmond, S.; Mitchell, J.; Schwartz, D.

    2015-02-07

    We report the formation of plutonium hydride in 2 at. % Ga-stabilized δ-Pu, with 1 at. % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here, we use magnetization, X-ray, and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuH{sub x} on the surface of the sample with x ∼ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with ferromagnetic PuH{sub 1.9}.

  10. Preparation and X-ray diffraction studies of curium hydrides

    NASA Astrophysics Data System (ADS)

    Gibson, J. K.; Haire, R. G.

    1985-10-01

    Curium hydrides were prepared by reaction of curium-248 metal with hydrogen and characterized by X-ray powder diffraction. Several of the syntheses resulted in a hexagonal compound with average lattice parameters of a0 = 0.3769(8) nm and c0 = 0.6732(12) nm. These products are considered to be CmH 3-δ by analogy with the behavior of lanthanide-hydrogen and lighter actinide-hydrogen systems. Face-centered cubic products with an average lattice parameter of a0 = 0.5322(4) nm were obtained from other curium hydride preparations. This parameter is slightly smaller than that reported previously for cubic curium dihydride, CmH 2+ x (B. M. Bansal and D. Damien, Inorg. Nucl. Chem. Lett., 6, 603, 1970). The present results established a continuation of typical heavy trivalent lanthanide-like behavior of the transuranium actinide-hydrogen systems through curium.

  11. Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Colas, Kimberly B.; Motta, Arthur T.; Daymond, Mark R.; Almer, Jonathan D.

    2013-09-01

    The circumferential hydrides normally present in nuclear reactor fuel cladding after reactor exposure may dissolve during drying for dry storage and re-precipitate when cooled under load into a more radial orientation, which could embrittle the fuel cladding. It is necessary to study the rates and conditions under which hydride reorientation may happen in order to assess fuel integrity in dry storage. The objective of this work is to study the effect of applied stress and thermal cycling on the hydride morphology in cold-worked stress-relieved Zircaloy-4 by combining conventional metallography and in situ X-ray diffraction techniques. Metallography is used to study the evolution of hydride morphology after several thermo-mechanical cycles. In situ X-ray diffraction performed at the Advanced Photon Source synchrotron provides real-time information on the process of hydride dissolution and precipitation under stress during several thermal cycles. The detailed study of diffracted intensity, peak position and full-width at half-maximum provides information on precipitation kinetics, elastic strains and other characteristics of the hydride precipitation process. The results show that thermo-mechanical cycling significantly increases the radial hydride fraction as well as the hydride length and connectivity. The radial hydrides are observed to precipitate at a lower temperature than circumferential hydrides. Variations in the magnitude and range of hydride strains due to reorientation and cycling have also been observed. These results are discussed in light of existing models and experiments on hydride reorientation. The study of hydride elastic strains during precipitation shows marked differences between circumferential and radial hydrides, which can be used to investigate the reorientation process. Cycling under stress above the threshold stress for reorientation drastically increases both the reoriented hydride fraction and the hydride size. The reoriented hydride

  12. SPECIATION OF ARSENIC COMPOUNDS IN DRINKING WATER BY CAPILLARY ELECTROPHORESIS WITH HYDRODYNAMICALLY MODIFIED ELECTROOSMOTIC FLOW DETECTED THROUGH HYDRIDE GENERATION INDUCTIVELY COUPLED PLASMA MASS..

    EPA Science Inventory

    Capillary electrophoresis (CE) was used to speciate four environmentally significant, toxic forms of arsenic: arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid. Hydride generation (HG) was used to convert the species into their respective hydrides. The hydride ...

  13. SPECIATION OF ARSENIC COMPOUNDS IN DRINKING WATER BY CAPILLARY ELECTROPHORESIS WITH HYDRODYNAMICALLY MODIFIED ELECTROOSMOTIC FLOW DETECTED THROUGH HYDRIDE GENERATION INDUCTIVELY COUPLED PLASMA MASS...

    EPA Science Inventory

    Capillary electrophoresis (CE) was used to speciate four environmentally significant, toxic forms of arsenic: arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid. Hydride generation (HG) was used to convert the species into their respective hydrides. The hydride s...

  14. Gas chromatographic separation of hydrogen isotopes using metal hydrides

    SciTech Connect

    Aldridge, F.T.

    1984-05-09

    A study was made of the properties of metal hydrides which may be suitable for use in chromatographic separation of hydrogen isotopes. Sixty-five alloys were measured, with the best having a hydrogen-deuterium separation factor of 1.35 at 60/sup 0/C. Chromatographic columns using these alloys produced deuterium enrichments of up to 3.6 in a single pass, using natural abundance hydrogen as starting material. 25 references, 16 figures, 4 tables.

  15. METHOD OF MAKING DELTA ZIRCONIUM HYDRIDE MONOLITHIC MODERATOR PIECES

    DOEpatents

    Vetrano, J.B.

    1962-01-23

    A method is given for preparing large, sound bodies of delta zirconium hydride. The method includes the steps of heating a zirconium body to a temperature of not less than l000 deg C, providing a hydrogen atmosphere for the zirconium body at a pressure not greater than one atmosphere, reducing the temperature slowly to 800 deg C at such a rate that cracks do not form while maintaining the hydrogen pressure substantially constant, and cooling in an atmosphere of hydrogen. (AEC)

  16. Ground-state energy and relativistic corrections for positronium hydride

    SciTech Connect

    Bubin, Sergiy; Varga, Kalman

    2011-07-15

    Variational calculations of the ground state of positronium hydride (HPs) are reported, including various expectation values, electron-positron annihilation rates, and leading relativistic corrections to the total and dissociation energies. The calculations have been performed using a basis set of 4000 thoroughly optimized explicitly correlated Gaussian basis functions. The relative accuracy of the variational energy upper bound is estimated to be of the order of 2x10{sup -10}, which is a significant improvement over previous nonrelativistic results.

  17. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    PubMed Central

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described. PMID:19333448

  18. Design and Characterization of a Hydride-based Hydrogen Storage Container for Neutron Imaging Studies

    NASA Astrophysics Data System (ADS)

    Baruj, A.; Ardito, M.; Marín, J.; Sánchez, F.; Borzone, E. M.; Meyer, G.

    We have designed, constructed and tested a prototype hydride-based container to in-situ observe the hydride decomposition process using a neutron imaging facility. This work describes the container design parameters and the experimental setup used for the studies. The results open new possibilities for the application of the neutron imaging technique to visualize the internal state of massive hydride-based hydrogen containers, thus aiding in the design of efficient hydrogen storage tanks.

  19. High temperature metal hydrides as heat storage materials for solar and related applications.

    PubMed

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 degrees C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described. PMID:19333448

  20. Complications from Dual Roles of Sodium Hydride as a Base and as a Reducing Agent

    PubMed Central

    Hesek, Dusan; Lee, Mijoon; Noll, Bruce C.; Fisher, Jed F.; Mobashery, Shahriar

    2012-01-01

    Sodium hydride is a common reagent for substrate activation in nucleophilic substitution reactions. Sodium hydride can behave both as a base and as a source of hydride. This dual ability in the presence of an electrophile such as benzyl bromide results in the formation of byproducts when dimethylformamide or acetonitrile are used as solvents for these reactions. The structural nature of these byproducts is revealed in this report. PMID:19215116

  1. Safety aspects of tritium storage in metal hydride form

    SciTech Connect

    Perevezentsev, A.N.; Bell, A.C.; Lasser, R.; Rivkis, L.A.

    1995-10-01

    Air or nitrogen ingress accident scenarios into JET tritium storage containers, filled with uranium or intermetallic compound (IMC) hydrides, are discussed based on the experimentally determined kinetics of the reaction of these hydrides with air, O{sub 2} and N{sub 2}. Reaction of uranium with air can occur at room temperature. For the initiation of the reactions of uranium with N{sub 2} or of some intermetallic compounds with air, elevated temperatures are required. Temperature rises of the metal hydrides due to air ingress are estimated for various cases. Modern tritium storage containers are protected against air ingress by intermediate and secondary containments which can be either evacuated or filled with inert gas. Therefore, air ingress can only occur due to double failure: failure of secondary containment and process containment at the same time. At JET, the secondary containments are filled with N{sub 2}. However, even for N{sub 2}, temperature increases are expected during the ingress into uranium beds (U-beds) for particular scenarios. It is shown that the JET design would not fail in this event. The calculation also shows that the smallest temperature rises during air, O{sub 2} or N{sub 2} ingress are expected for a getter bed design with free space above the metal getter layer for the gas to flow from inlet to outlet tube. 14 refs., 3 figs., 4 tabs.

  2. Air passivation of metal hydride beds for waste disposal

    SciTech Connect

    Klein, J. E.; Hsu, R. H.

    2008-07-15

    One waste acceptance criteria for hydride bed waste disposal is that the bed be non-pyrophoric. Batch-wise air ingress tests were performed which determined the amount of air consumed by a metal hydride bed. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 deg.C internal temperature rise upon the first air exposure cycle and a 0.1 deg.C temperature rise upon a second air exposure. A total of 346 sec air was consumed by the bed (0.08 sec per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12. cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water. (authors)

  3. Pressure-driven formation and stabilization of superconductive chromium hydrides.

    PubMed

    Yu, Shuyin; Jia, Xiaojing; Frapper, Gilles; Li, Duan; Oganov, Artem R; Zeng, Qingfeng; Zhang, Litong

    2015-01-01

    Chromium hydride is a prototype stoichiometric transition metal hydride. The phase diagram of Cr-H system at high pressures remains largely unexplored due to the challenges in dealing with the high activation barriers and complications in handing hydrogen under pressure. We have performed an extensive structural study on Cr-H system at pressure range 0 ∼ 300 GPa using an unbiased structure prediction method based on evolutionary algorithm. Upon compression, a number of hydrides are predicted to become stable in the excess hydrogen environment and these have compositions of Cr2Hn (n = 2-4, 6, 8, 16). Cr2H3, CrH2 and Cr2H5 structures are versions of the perfect anti-NiAs-type CrH with ordered tetrahedral interstitial sites filled by H atoms. CrH3 and CrH4 exhibit host-guest structural characteristics. In CrH8, H2 units are also identified. Our study unravels that CrH is a superconductor at atmospheric pressure with an estimated transition temperature (T c) of 10.6 K, and superconductivity in CrH3 is enhanced by the metallic hydrogen sublattice with T c of 37.1 K at 81 GPa, very similar to the extensively studied MgB2. PMID:26626579

  4. Pressure-driven formation and stabilization of superconductive chromium hydrides

    PubMed Central

    Yu, Shuyin; Jia, Xiaojing; Frapper, Gilles; Li, Duan; Oganov, Artem R.; Zeng, Qingfeng; Zhang, Litong

    2015-01-01

    Chromium hydride is a prototype stoichiometric transition metal hydride. The phase diagram of Cr-H system at high pressures remains largely unexplored due to the challenges in dealing with the high activation barriers and complications in handing hydrogen under pressure. We have performed an extensive structural study on Cr-H system at pressure range 0 ∼ 300 GPa using an unbiased structure prediction method based on evolutionary algorithm. Upon compression, a number of hydrides are predicted to become stable in the excess hydrogen environment and these have compositions of Cr2Hn (n = 2–4, 6, 8, 16). Cr2H3, CrH2 and Cr2H5 structures are versions of the perfect anti-NiAs-type CrH with ordered tetrahedral interstitial sites filled by H atoms. CrH3 and CrH4 exhibit host-guest structural characteristics. In CrH8, H2 units are also identified. Our study unravels that CrH is a superconductor at atmospheric pressure with an estimated transition temperature (T c) of 10.6 K, and superconductivity in CrH3 is enhanced by the metallic hydrogen sublattice with T c of 37.1 K at 81 GPa, very similar to the extensively studied MgB2. PMID:26626579

  5. Diffusional exchange of isotopes in a metal hydride sphere.

    SciTech Connect

    Wolfer, Wilhelm G.; Hamilton, John C.; James, Scott Carlton

    2011-04-01

    This report describes the Spherical Particle Exchange Model (SPEM), which simulates exchange of one hydrogen isotope by another hydrogen isotope in a spherical metal hydride particle. This is one of the fundamental physical processes during isotope exchange in a bed of spherical metal particles and is thus one of the key components in any comprehensive physics-based model of exchange. There are two important physical processes in the model. One is the entropy of mixing between the two isotopes; the entropy of mixing is increased by having both isotopes randomly placed at interstitial sites on the lattice and thus impedes the exchange process. The other physical process is the elastic interaction between isotope atoms on the lattice. The elastic interaction is the cause for {beta}-phase formation and is independent of the isotope species. In this report the coupled diffusion equations for two isotopes in the {beta}-phase hydride are solved. A key concept is that the diffusion of one isotope depends not only on its concentration gradient, but also on the concentration gradient of the other isotope. Diffusion rate constants and the chemical potentials for deuterium and hydrogen in the {beta}-phase hydride are reviewed because these quantities are essential for an accurate model of the diffusion process. Finally, a summary of some of the predictions from the SPEM model are provided.

  6. Performance study of a hydrogen powered metal hydride actuator

    NASA Astrophysics Data System (ADS)

    Mainul Hossain Bhuiya, Md; Kim, Kwang J.

    2016-04-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C-50 °C. Stress-strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress-strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future.

  7. Investigation of long term stability in metal hydrides

    NASA Technical Reports Server (NTRS)

    Marmaro, Roger W.; Lynch, Franklin E.; Chandra, Dhanesh; Lambert, Steve; Sharma, Archana

    1991-01-01

    It is apparent from the literature and the results of this study that cyclic degradation of AB(5) type metal hydrides varies widely according to the details of how the specimens are cycled. The Rapid Cycle Apparatus (RCA) used produced less degradation in 5000 to 10000 cycles than earlier work with a Slow Cycle Apparatus (SCA) produced in 1500 cycles. Evidence is presented that the 453 K (356 F) Thermal Aging (TA) time spent in the saturated condition causes hydride degradation. But increasing the cooling (saturation) period in the RCA did not greatly increase the rate of degradation. It appears that TA type degradation is secondary at low temperatures to another degradation mechanism. If rapid cycles are less damaging than slow cycles when the saturation time is equal, the rate of hydriding/dehydriding may be an important factor. The peak temperatures in the RCA were about 30 C lower than the SCA. The difference in peak cycle temperatures (125 C in the SCA, 95 C in RCA) cannot explain the differences in degradation. TA type degradation is similar to cyclic degradation in that nickel peaks and line broadening are observed in X ray diffraction patterns after either form of degradation.

  8. Superconductivity of novel tin hydrides (SnnHm) under pressure

    NASA Astrophysics Data System (ADS)

    Mahdi Davari Esfahani, M.; Wang, Zhenhai; Oganov, Artem R.; Dong, Huafeng; Zhu, Qiang; Wang, Shengnan; Rakitin, Maksim S.; Zhou, Xiang-Feng

    2016-03-01

    With the motivation of discovering high-temperature superconductors, evolutionary algorithm USPEX is employed to search for all stable compounds in the Sn-H system. In addition to the traditional SnH4, new hydrides SnH8, SnH12 and SnH14 are found to be thermodynamically stable at high pressure. Dynamical stability and superconductivity of tin hydrides are systematically investigated. Im2-SnH8, C2/m-SnH12 and C2/m-SnH14 exhibit higher superconducting transition temperatures of 81, 93 and 97 K compared to the traditional compound SnH4 with Tc of 52 K at 200 GPa. An interesting bent H3–group in Im2-SnH8 and novel linear H in C2/m-SnH12 are observed. All the new tin hydrides remain metallic over their predicted range of stability. The intermediate-frequency wagging and bending vibrations have more contribution to electron-phonon coupling parameter than high-frequency stretching vibrations of H2 and H3.

  9. Superconductivity of novel tin hydrides (SnnHm) under pressure

    PubMed Central

    Mahdi Davari Esfahani, M.; Wang, Zhenhai; Oganov, Artem R.; Dong, Huafeng; Zhu, Qiang; Wang, Shengnan; Rakitin, Maksim S.; Zhou, Xiang-Feng

    2016-01-01

    With the motivation of discovering high-temperature superconductors, evolutionary algorithm USPEX is employed to search for all stable compounds in the Sn-H system. In addition to the traditional SnH4, new hydrides SnH8, SnH12 and SnH14 are found to be thermodynamically stable at high pressure. Dynamical stability and superconductivity of tin hydrides are systematically investigated. Im2-SnH8, C2/m-SnH12 and C2/m-SnH14 exhibit higher superconducting transition temperatures of 81, 93 and 97 K compared to the traditional compound SnH4 with Tc of 52 K at 200 GPa. An interesting bent H3–group in Im2-SnH8 and novel linear H in C2/m-SnH12 are observed. All the new tin hydrides remain metallic over their predicted range of stability. The intermediate-frequency wagging and bending vibrations have more contribution to electron-phonon coupling parameter than high-frequency stretching vibrations of H2 and H3. PMID:26964636

  10. Superconductive sodalite-like clathrate calcium hydride at high pressures

    PubMed Central

    Wang, Hui; Tse, John S.; Tanaka, Kaori; Iitaka, Toshiaki; Ma, Yanming

    2012-01-01

    Hydrogen-rich compounds hold promise as high-temperature superconductors under high pressures. Recent theoretical hydride structures on achieving high-pressure superconductivity are composed mainly of H2 fragments. Through a systematic investigation of Ca hydrides with different hydrogen contents using particle-swam optimization structural search, we show that in the stoichiometry CaH6 a body-centered cubic structure with hydrogen that forms unusual “sodalite” cages containing enclathrated Ca stabilizes above pressure 150 GPa. The stability of this structure is derived from the acceptance by two H2 of electrons donated by Ca forming an “H4” unit as the building block in the construction of the three-dimensional sodalite cage. This unique structure has a partial occupation of the degenerated orbitals at the zone center. The resultant dynamic Jahn–Teller effect helps to enhance electron–phonon coupling and leads to superconductivity of CaH6. A superconducting critical temperature (Tc) of 220–235 K at 150 GPa obtained from the solution of the Eliashberg equations is the highest among all hydrides studied thus far. PMID:22492976

  11. Uranium metal reactions with hydrogen and water vapour and the reactivity of the uranium hydride produced

    SciTech Connect

    Godfrey, H.; Broan, C.; Goddard, D.; Hodge, N.; Woodhouse, G.; Diggle, A.; Orr, R.

    2013-07-01

    Within the nuclear industry, metallic uranium has been used as a fuel. If this metal is stored in a hydrogen rich environment then the uranium metal can react with the hydrogen to form uranium hydride which can be pyrophoric when exposed to air. The UK National Nuclear Laboratory has been carrying out a programme of research for Sellafield Limited to investigate the conditions required for the formation and persistence of uranium hydride and the reactivity of the material formed. The experimental results presented here have described new results characterising uranium hydride formed from bulk uranium at 50 and 160 C. degrees and measurements of the hydrolysis kinetics of these materials in liquid water. It has been shown that there is an increase in the proportion of alpha-uranium hydride in material formed at lower temperatures and that there is an increase in the rate of reaction with water of uranium hydride formed at lower temperatures. This may at least in part be attributable to a difference in the reaction rate between alpha and beta-uranium hydride. A striking observation is the strong dependence of the hydrolysis reaction rate on the temperature of preparation of the uranium hydride. For example, the reaction rate of uranium hydride prepared at 50 C. degrees was over ten times higher than that prepared at 160 C. degrees at 20% extent of reaction. The decrease in reaction rate with the extent of reaction also depended on the temperature of uranium hydride preparation.

  12. Measurement and modeling of strain fields in zirconium hydrides precipitated at a stress concentration

    SciTech Connect

    Allen, Gregory B.; Kerr, Matthew; Daymond, Mark R.

    2012-10-23

    Hydrogen adsorption into zirconium, as a result of corrosion in aqueous environments, leads to the precipitation of a secondary brittle hydride phase. These hydrides tend to first form at stress concentrations such as fretting flaws or cracks in engineering components, potentially degrading the structural integrity of the component. One mechanism for component failure is a slow crack growth mechanism known as Delayed Hydride Cracking (DHC), where hydride fracture occurs followed by crack arrest in the ductile zirconium matrix. The current work employs both an experimental and a modeling approach to better characterize the effects and behavior of hydride precipitation at such stress concentrations. Strains around stress concentrations containing hydrides were mapped using High Energy X-ray Diffraction (HEXRD). These studies highlighted important differences in the behavior of the hydride phase and the surrounding zirconium matrix, as well as the strain associated with the precipitation of the hydride. A finite element model was also developed and compared to the X-ray strain mapping results. This model provided greater insight into details that could not be obtained directly from the experimental approaches, as well as providing a framework for future modeling to predict the effects of hydride precipitation under varied conditions.

  13. Measurement and modeling of strain fields in zirconium hydrides precipitated at a stress concentration

    NASA Astrophysics Data System (ADS)

    Allen, Gregory B.; Kerr, Matthew; Daymond, Mark R.

    2012-11-01

    Hydrogen adsorption into zirconium, as a result of corrosion in aqueous environments, leads to the precipitation of a secondary brittle hydride phase. These hydrides tend to first form at stress concentrations such as fretting flaws or cracks in engineering components, potentially degrading the structural integrity of the component. One mechanism for component failure is a slow crack growth mechanism known as Delayed Hydride Cracking (DHC), where hydride fracture occurs followed by crack arrest in the ductile zirconium matrix. The current work employs both an experimental and a modeling approach to better characterize the effects and behavior of hydride precipitation at such stress concentrations. Strains around stress concentrations containing hydrides were mapped using High Energy X-ray Diffraction (HEXRD). These studies highlighted important differences in the behavior of the hydride phase and the surrounding zirconium matrix, as well as the strain associated with the precipitation of the hydride. A finite element model was also developed and compared to the X-ray strain mapping results. This model provided greater insight into details that could not be obtained directly from the experimental approaches, as well as providing a framework for future modeling to predict the effects of hydride precipitation under varied conditions.

  14. Oxygen Reduction Mechanism of Monometallic Rhodium Hydride Complexes.

    PubMed

    Halbach, Robert L; Teets, Thomas S; Nocera, Daniel G

    2015-08-01

    The reduction of O2 to H2O mediated by a series of electronically varied rhodium hydride complexes of the form cis,trans-Rh(III)Cl2H(CNAd)(P(4-X-C6H4)3)2 (2) (CNAd = 1-adamantylisocyanide; X = F (2a), Cl (2b), Me (2c), OMe (2d)) was examined through synthetic and kinetic studies. Rhodium(III) hydride 2 reacts with O2 to afford H2O with concomitant generation of trans-Rh(III)Cl3(CNAd)(P(4-X-C6H4)3)2 (3). Kinetic studies of the reaction of the hydride complex 2 with O2 in the presence of HCl revealed a two-term rate law consistent with an HX reductive elimination (HXRE) mechanism, where O2 binds to a rhodium(I) metal center and generates an η(2)-peroxo complex intermediate, trans-Rh(III)Cl(CNAd)(η(2)-O2)(P(4-X-C6H4)3)2 (4), and a hydrogen-atom abstraction (HAA) mechanism, which entails the direct reaction of O2 with the hydride. Experimental data reveal that the rate of reduction of O2 to H2O is enhanced by electron-withdrawing phosphine ligands. Complex 4 was independently prepared by the addition of O2 to trans-Rh(I)Cl(CNAd)(P(4-X-C6H4)3)2 (1). The reactivity of 4 toward HCl reveals that such peroxo complexes are plausible intermediates in the reduction of O2 to H2O. These results show that the given series of electronically varied rhodium(III) hydride complexes facilitate the reduction of O2 to H2O according to a two-term rate law comprising HXRE and HAA pathways and that the relative rates of these two pathways, which can occur simultaneously and competitively, can be systematically modulated by variation of the electronic properties of the ancillary ligand set. PMID:26168057

  15. Synthesis of Highly Active Mg-BASED Hydrides Using Hydriding Combustion Synthesis and NbF5 Additives

    NASA Astrophysics Data System (ADS)

    Chourashiya, M. G.; Park, C. N.; Park, C. J.

    2012-09-01

    Superiority of the hydriding combustion (HC) technique over conventional metallurgical approach to the synthesis of cost-effective Mg based hydrides, which show promise as hydrogen storage materials, is well known. In the present research, we report further improvements in HC prepared Mg-based materials, achieved by optimizing the preparative parameters of HC and by catalytic addition. Mg90-Ni60-C40 composites prepared using optimized processing parameters were ball-milled with NbF5 (10 h) and characterized for their micro-structural and hydriding properties. The ball-milled/catalyzed powder showed decreased crystallinity with CNTs on its surfaces. Surface area of the ball-milled powder decreased to almost half of the as-HC powder, while TG analysis revealed a four-fold decrease in the desorption temperature of the milled powder compared to that of the as-HC prepared powder. Activated samples achieved the maximum absorption/desorption limits (5.3 wt.%) at as low as 100°C, underlining the possibility of the use of these materials in portable hydrogen storage devices.

  16. Effect of decabromodiphenyl ether and antimony trioxide on controlled pyrolysis of high-impact polystyrene mixed with polyolefins.

    PubMed

    Mitan, Nona Merry M; Bhaskar, Thallada; Hall, William J; Muto, Akinori; Williams, Paul T; Sakata, Yusaku

    2008-07-01

    The controlled pyrolysis of polyethylene/polypropylene/polystyrene mixed with brominated high-impact polystyrene containing decabromodiphenyl ether as a brominated flame-retardant with antimony trioxide as a synergist was performed. The effect of decabromodiphenyl ether and antimony trioxide on the formation of its congeners and their effect on distribution of pyrolysis products were investigated. The controlled pyrolysis significantly affected the decomposition behavior and the formation of products. Analysis with gas chromatograph with electron capture detector confirmed that the bromine content was rich in step 1 (oil 1) liquid products leaving less bromine content in the step 2 (oil 2) liquid products. In the presence of antimony containing samples, the major portion of bromine was observed in the form of antimony bromide and no flame-retardant species were found in oil 1. In the presence of synergist, the step 1 and step 2 oils contain both light and heavy compounds. In the absence of synergist, the heavy compounds in step 1 oil and light compounds in step 2 oils were observed. The presence of antimony bromide was confirmed in the step 1 oils but not in step 2 oils. PMID:18499216

  17. Synthesis of antimony complexes of yeast mannan and mannan derivatives and their effect on Leishmania-infected macrophages.

    PubMed Central

    Cantos, G; Barbieri, C L; Iacomini, M; Gorin, P A; Travassos, L R

    1993-01-01

    Antimony(Sb)-yeast mannan complexes were synthesized as a strategy to introduce Sb into macrophages infected with Leishmania amastigotes. The complexes were taken up by endocytosis after specific recognition by alpha-D-mannosyl receptors on the macrophage membrane. About 90% of the intracellular parasites were destroyed by Sb-mannan in vitro, whereas the corresponding Sb concentration used as the pentavalent antimonial drug glucantime destroyed about 60% of the amastigotes. None of the Sb complexes prepared with mannan acid or basic derivatives was as effective as the simple Sb-mannan complex in clearing macrophage infection by Leishmania (L) amazonensis. The leishmanicidal effect of Sb-mannan was also demonstrated in vivo with infected hamsters. The alternative use of Sb-mannan complex in the treatment of human leishmaniasis is envisaged on the basis of parasite-killing efficiency and the use of a low antimony dose. Images Figure 1 PMID:8424752

  18. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    SciTech Connect

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  19. Antimony film sensor for sensitive rare earth metal analysis in environmental samples.

    PubMed

    Makombe, Martin; van der Horst, Charlton; Silwana, Bongiwe; Iwuoha, Emmanuel; Somerset, Vernon

    2016-07-01

    A sensor for the adsorptive stripping voltammetric determination of rare earth elements has been developed. The electrochemical procedure is based on the oxidation of the rare earth elements complexed with alizarin complexone at a glassy carbon electrode that was in situ modified with an antimony film, during an anodic scan from -0.2 V to 1.1 V (vs. Ag/AgCl) and deposition potential of -0.1 V (vs. Ag/AgCl). The factors influencing the adsorptive stripping capability were optimised, including the complexing agent concentration, plating concentration of antimony and deposition time. The detection of rare earth elements (La, Ce and Pr) were realised in 0.08 M sodium acetate (pH = 5.8) solution as supporting electrolyte, with 2 × 10(-6) M alizarin complexone and 1.0 mg L(-1) antimony solution. Under the optimised conditions, a deposition time of 360 s was obtained and a linear response was observed between 1 and 25 µg L(-1). The reproducibility of the voltammetric measurements was found to be within 5.0% RSD for 12 replicate measurements of cerium(III) concentration of 5 µg L(-1) using the same electrode surface. The detection limits obtained using stripping analysis was 0.06, 0.42 and 0.71 μg L(-1) for Ce(III), La(III) and Pr(III), respectively. The developed sensor has been successfully applied for the determination of cerium, lanthanum and praseodymium in municipal tap water samples. PMID:27065049

  20. Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species.

    PubMed

    Andrade, Juvana M; Baba, Elio H; Machado-de-Avila, Ricardo A; Chavez-Olortegui, Carlos; Demicheli, Cynthia P; Frézard, Frédéric; Monte-Neto, Rubens L; Murta, Silvane M F

    2016-08-01

    Antimony (Sb) resistance in leishmaniasis chemotherapy has become one of the major challenges to the control of this spreading worldwide public health problem. Since the plasma membrane pore-forming protein aquaglyceroporin 1 (AQP1) is the major route of Sb uptake in Leishmania, functional studies are relevant to characterize drug transport pathways in the parasite. We generated AQP1-overexpressing Leishmania guyanensis and L. braziliensis mutants and investigated their susceptibility to the trivalent form of Sb (Sb(III)) in the presence of silver and nitrate salts. Both AQP1-overexpressing lines presented 3- to 4-fold increased AQP1 expression levels compared with those of their untransfected counterparts, leading to an increased Sb(III) susceptibility of about 2-fold. Competition assays using silver nitrate, silver sulfadiazine, or silver acetate prior to Sb(III) exposure increased parasite growth, especially in AQP1-overexpressing mutants. Surprisingly, Sb(III)-sodium nitrate or Sb(III)-potassium nitrate combinations showed significantly enhanced antileishmanial activities compared to those of Sb(III) alone, especially against AQP1-overexpressing mutants, suggesting a putative nitrate-dependent modulation of AQP1 activity. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed that the concomitant exposure to Sb(III) and nitrate favors antimony accumulation in the parasite, increasing the toxicity of the drug and culminating with parasite death. This is the first report showing evidence of AQP1-mediated Sb(III) susceptibility modulation by silver in Leishmania and suggests the potential antileishmanial activity of the combination of nitrate salts and Sb(III). PMID:27161624

  1. The LABCG2 Transporter from the Protozoan Parasite Leishmania Is Involved in Antimony Resistance.

    PubMed

    Perea, Ana; Manzano, José Ignacio; Castanys, Santiago; Gamarro, Francisco

    2016-06-01

    Treatment for leishmaniasis, which is caused by Leishmania protozoan parasites, currently relies on a reduced arsenal of drugs. However, the significant increase in the incidence of drug therapeutic failure and the growing resistance to first-line drugs like antimonials in some areas of Northern India and Nepal limit the control of this parasitic disease. Understanding the molecular mechanisms of resistance in Leishmania is now a matter of urgency to optimize drugs used and to identify novel drug targets to block or reverse resistant mechanisms. Some members of the family of ATP-binding cassette (ABC) transporters in Leishmania have been associated with drug resistance. In this study, we have focused our interest to characterize LABCG2's involvement in drug resistance in Leishmania. Leishmania major parasites overexpressing the ABC protein transporter LABCG2 were generated in order to assess how LABCG2 is involved in drug resistance. Assays of susceptibility to different leishmanicidal agents were carried out. Analysis of the drug resistance profile revealed that Leishmania parasites overexpressing LABCG2 were resistant to antimony, as they demonstrated a reduced accumulation of Sb(III) due to an increase in drug efflux. Additionally, LABCG2 was able to transport thiols in the presence of Sb(III) Biotinylation assays using parasites expressing LABCG2 fused with an N-terminal green fluorescent protein tag revealed that LABCG2 is partially localized in the plasma membrane; this supports data from previous studies which suggested that LABCG2 is localized in intracellular vesicles that fuse with the plasma membrane during exocytosis. In conclusion, Leishmania LABCG2 probably confers antimony resistance by sequestering metal-thiol conjugates within vesicles and through further exocytosis by means of the parasite's flagellar pocket. PMID:27021316

  2. Lithium-antimony-lead liquid metal battery for grid-level energy storage

    NASA Astrophysics Data System (ADS)

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J.; Boysen, Dane A.; Bradwell, David J.; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R.

    2014-10-01

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this finding

  3. Self-assembled flower-like antimony trioxide microstructures with high infrared reflectance performance

    SciTech Connect

    Ge, Shengsong; Yang, Xiaokun; Shao, Qian; Liu, Qingyun; Wang, Tiejun; Wang, Lingyun; Wang, Xiaojie

    2013-04-15

    A simple hydrothermal process was adopted to self-assembly prepare high infrared reflective antimony trioxide with three-dimensional flower-like microstructures. The morphologies of antimony trioxide microstructures were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM) respectively. It is also found that experimental parameters, such as NaOH concentration, surfactant concentration and volume ratio of ethanol–water played crucial roles in controlling the morphologies of Sb{sub 2}O{sub 3} microstructures. A possible growth mechanism of flower-like Sb{sub 2}O{sub 3} microstructure was proposed based on the experimental data. UV–vis–NIR spectra verified that the near infrared reflectivity of the obtained flower-like microstructures could averagely achieve as 92% with maximum reflectivity of 98%, obviously higher than that of other different morphologies of antimony trioxide microstructures. It is expected that the flower-like Sb{sub 2}O{sub 3} nanostructures have some applications in optical materials and heat insulation coatings. - Graphical abstract: Flower-like Sb{sub 2}O{sub 3} microstructures that composed of nanosheets with thickness of ca. 100 nm exhibit high reflectivity under UV–vis–NIR spectra. Highlights: ► Uniform flower-like microstructures were synthesized via simple hydrothermal reaction. ► The flower-like Sb{sub 2}O{sub 3} microstructures exhibited higher reflectivity than other morphologies under the UV–vis–NIR light. ► Influencing parameters on the Sb{sub 2}O{sub 3} morphologies have been discussed in detail. ► Possible mechanism leading to flower-like microstructures was proposed.

  4. Role of Efflux Pumps and Intracellular Thiols in Natural Antimony Resistant Isolates of Leishmania donovani

    PubMed Central

    Rai, Smita; Bhaskar; Goel, Sudhir K.; Nath Dwivedi, Upendra; Sundar, Shyam; Goyal, Neena

    2013-01-01

    Background In view of the recent upsurge in the phenomenon of therapeutic failure, drug resistance in Leishmania, developed under natural field conditions, has become a great concern yet little understood. Accordingly, the study of determinants of antimony resistance is urgently warranted. Efflux transporters have been reported in Leishmania but their role in clinical resistance is still unknown. The present study was designed to elucidate the mechanism of natural antimony resistance in L. donovani field isolates by analyzing the functionality of efflux pump(s) and expression profiles of known genes involved in transport and thiol based redox metabolism Methodology/Principal Findings We selected 7 clinical isolates (2 sensitive and 5 resistant) in addition to laboratory sensitive reference and SbIII resistant mutant strains for the present study. Functional characterization using flow cytometry identified efflux pumps that transported substrates of both P-gp and MRPA and were inhibited by the calmodulin antagonist trifluoperazine. For the first time, verapamil sensitive efflux pumps for rhodamine 123 were observed in L. donovani that were differentially active in resistant isolates. RT-PCR confirmed the over-expression of MRPA in isolates with high resistance index only. Resistant isolates also exhibited consistent down regulation of AQP1 and elevated intracellular thiol levels which were accompanied with increased expression of ODC and TR genes. Interestingly, γ-GCS is not implicated in clinical resistance in L. donovani isolates. Conclusions/Significance Here we demonstrate for the first time, the role of P-gp type plasma membrane efflux transporter(s) in antimony resistance in L. donovani field isolates. Further, decreased levels of AQP1 and elevated thiols levels have emerged as biomarkers for clinical resistance. PMID:24069359

  5. Experimental and theoretical characterization of cationic, neutral, and anionic binary arsenic and antimony azide species.

    PubMed

    Karaghiosoff, Konstantin; Klapötke, Thomas M; Krumm, Burkhard; Nöth, Heinrich; Schütt, Thomas; Suter, Max

    2002-01-28

    Cationic, neutral, and anionic arsenic and antimony halides formed binary arsenic and antimony azide species M(N(3))(4)(+), M(N(3))(4)(-), and M(N(3))(6)(-) (M = As, Sb) upon reaction with trimethylsilyl azide or sodium azide. The compounds were obtained as pure substances or salts, and their identity was established by vibrational spectroscopy and multinuclear NMR spectroscopy and partially by elemental analysis. Attempts to synthesize pentaazides, M(N(3))(5) (M = As, Sb), failed due to spontaneous decomposition of the compounds. Density functional theory (B3LYP) was applied to calculate structural and vibrational data. Vibrational assignments of the normal modes for the isolated azide compounds were made on the basis of their vibrational spectra in comparison with computational results. The molecular structures and vibrational spectra of the arsenic and antimony pentaazides have been investigated theoretically. These calculations (B3LYP) show minima structures (NIMAG = 0) for all reported compounds. It is shown that the M(N(3))(4)(+) (M = As, Sb) cations exhibit ideal S(4) symmetry and the M(N(3))(6)(-) anions (M = As, Sb) ideal S(6) symmetry. The structure of the hexaazidoarsenate(V) has been determined by X-ray diffraction as its pyridinium salt. [py-H][As(N(3))(6)] crystallizes in the triclinic space group P with a = 6.8484(7), b = 7.3957(8), and c = 8.0903(8) A, alpha = 91.017(2), beta = 113.235(2), and gamma = 91.732(2) degrees, V = 376.29(7) A(3), and Z = 1. The structure of the As(N(3))(6)(-) anion exhibits only S(2) symmetry but shows approximately S(6) symmetry. The calculated and experimentally observed structure as well as the calculated and observed IR and Raman frequencies for all azide species (except M(N(3))(5)) are in reasonable agreement. PMID:11800605

  6. Synthesis, characterization and biological studies of new antimony(III) halide complexes with ω-thiocaprolactam.

    PubMed

    Ozturk, Ibrahim I; Banti, Christina N; Manos, Manos J; Tasiopoulos, Anastasios J; Kourkoumelis, Nikolaos; Charalabopoulos, Konstantinos; Hadjikakou, Sotiris K

    2012-04-01

    Three new antimony(III) halide complexes (SbX(3), X=Cl, Br and I) with the heterocyclic thione ω-thiocaprolactam (1-azacycloheptane-2-thione, (Hthcl)) of formulae {[SbCl(2)(μ(2)-Cl)(Hthcl)(2)](n)} (1), {[(SbBr(2)(μ(2)-Br)(Hthcl)(2))(2)]} (2) and {[(SbI(2)(μ(2)-I)(Hthcl)(2))(2)]} (3) were synthesized from the reaction of antimony(III) halides with ω-thiocaprolactam in 1:2 stoichiometry. The complexes were characterized by elemental analysis, FT-IR spectroscopy, (1)H, (13)C NMR spectroscopy and Thermal Gravimetry-Differential Thermal Analysis (TG-DTA). Crystal structures of the ligand ω-thiocaprolactam and its complexes 1-3 were determined with single crystal X-ray diffraction analysis. Complexes 1-3 and ω-thiocaprolactam were evaluated for their in vitro cytotoxic activity against leiomyosarcoma (LMS) and human breast adenocarcinoma (MCF-7) tumor cell lines. Antimony complexes 1-3 exhibit strong antiproliferative activity against both cell lines tested. The higher such activity was found for 3 with IC(50) values of 0.12±0.04 μM (LMS) and 0.76±0.16 μM (MCF-7) which are 60 and 10 times respectively, stronger than that of cisplatin. The influence of these complexes 1-3 and ω-thiocaprolactam upon the catalytic peroxidation of linoleic acid to hyperoxolinoleic acid by the enzyme lipoxygenase (LOX) was kinetically and theoretically studied. The results were shown negligible inhibitory activity of 1-3 against LOX. PMID:22377717

  7. Complex transition metal hydrides: linear correlation of countercation electronegativity versus T-D bond lengths.

    PubMed

    Humphries, T D; Sheppard, D A; Buckley, C E

    2015-06-30

    For homoleptic 18-electron complex hydrides, an inverse linear correlation has been established between the T-deuterium bond length (T = Fe, Co, Ni) and the average electronegativity of the metal countercations. This relationship can be further employed towards aiding structural solutions and predicting physical properties of novel complex transition metal hydrides. PMID:26077621

  8. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    DOEpatents

    Zidan, Ragaiy; Ritter, James A.; Ebner, Armin D.; Wang, Jun; Holland, Charles E.

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  9. Hydride transfer catalysed by Escherichia coli and Bacillus subtilis dihydrofolate reductase: coupled motions and distal mutations.

    PubMed

    Hammes-Schiffer, Sharon; Watney, James B

    2006-08-29

    This paper reviews the results from hybrid quantum/classical molecular dynamics simulations of the hydride transfer reaction catalysed by wild-type (WT) and mutant Escherichia coli and WT Bacillus subtilis dihydrofolate reductase (DHFR). Nuclear quantum effects such as zero point energy and hydrogen tunnelling are significant in these reactions and substantially decrease the free energy barrier. The donor-acceptor distance decreases to ca 2.7 A at transition-state configurations to enable the hydride transfer. A network of coupled motions representing conformational changes along the collective reaction coordinate facilitates the hydride transfer reaction by decreasing the donor-acceptor distance and providing a favourable geometric and electrostatic environment. Recent single-molecule experiments confirm that at least some of these thermally averaged equilibrium conformational changes occur on the millisecond time-scale of the hydride transfer. Distal mutations can lead to non-local structural changes and significantly impact the probability of sampling configurations conducive to the hydride transfer, thereby altering the free-energy barrier and the rate of hydride transfer. E. coli and B. subtilis DHFR enzymes, which have similar tertiary structures and hydride transfer rates with 44% sequence identity, exhibit both similarities and differences in the equilibrium motions and conformational changes correlated to hydride transfer, suggesting a balance of conservation and flexibility across species. PMID:16873124

  10. Non-stoichiometric AB5 alloys for metal hydride electrodes

    DOEpatents

    Reilly, James J.; Adzic, Gordana D.; Johnson, John R.; Vogt, Thomas; McBreen, James

    2001-01-01

    The present invention provides a non-stoichiometric alloy comprising a composition having the formula AB.sub.5+X an atomic ratio wherein A is selected from the group consisting of the rare earth metals, yttrium, mischmetal, or a combination thereof; B is nickel and tin, or nickel and tin and at least a third element selected from the group consisting of the elements in group IVA of the periodic table, aluminum, manganese, iron, cobalt, copper, antimony or a combination thereof; X is greater than 0 and less than or equal to about 2.0; and wherein at least one substituted A site is occupied by at least one of the B elements. An electrode incorporating said alloy and an electrochemical cell incorporating said electrode are also described.

  11. Temperature dependent electrical resistivity of gallium and antimony in a liquid form

    NASA Astrophysics Data System (ADS)

    Prajapati, A. V.; Sonvane, Y. A.; Thakor, P. B.

    2016-05-01

    Present paper deals with the effects of temperature variation on the electrical resistivity (Ω) of liquid Gallium (Ga), and Antimony (Sb). We have used a new parameter free pseudopotential with a Zeeman formula for finding it. To see the effects of screening Farid et al local field correction function is used with the Charged Hard Sphere (CHS) reference system. Analysis and comparison between the plotted graphs, based on present computed data and other experimental data defines and conclude that our newly constructed model potential is an effective one to produce the data for the temperature dependent electrical resistivity of some liquid semiconductors.

  12. Pharmacokinetics of experimental pentavalent antimony after intramuscular administration in adult volunteers*

    PubMed Central

    Vásquez, Laura; Scorza Dagert, José V.; Scorza, José V.; Vicuña-Fernández, Nelson; de Peña, Yaneira Petit; López, Sabrina; Bendezú, Herminia; Rojas, Elina; Vásquez, Libia; Pérez, Belén

    2006-01-01

    Background: Pentavalent antimony (SbV) has demonstrated therapeuticeffectiveness against clinical manifestations of leishmaniasis, an infection caused by Leishmania, a genus of flagellate protozoa comprising parasites of worldwide distribution. Approximately 1.8 million new cases are reported annually. Objective: The aim of this study was to assess the pharmacokinetics of the investigational generic SbV, Ulamina (pentachloride of antimony + N-methylglucamine), in healthy adult volunteers. Methods: In this study, SbV was administered IM as a single 5-mg/kg dose.Blood samples were collected at 0.25, 0.75, 1, 2, 4, 8, 12, and 24 hours after administration; urine samples were collected at 6-hour intervals during the 24-hour postadministration period. Determination of trivalent antimony, SbV, and total antimony concentrations in blood and urine samples was carried out using atomic absorption spectrometry. Clinical history was reviewed and the subjects were monitored before and after administration of SbV using physical examination, weight, and hepatic- and renal-function studies. The pharmacokinetic parameters calculated were Cmax, Tmax, absorption constant (Ka), elimination constant (Kel), AUC2–24h, AUC0-∞, elimination phase (t½β), volume of distribution (Vd), and urinary excretion rate. Results: Five subjects (3 men, 2 women; mean age, 28 years [range, 18–34 years]) were included in the study. One hour after drug administration the following values were obtained: Cmax, 1.1 μg/mL; Tmax, 1.3 hours; Ka, 1.87 hours; Kel, 0.043 hours; AUC0–24h, 12.26 μg/mL · h; AUC0-∞, 19.84 μg/mL · h; t½β, 17.45 hours; Vd, 6.6 L/kg; and urinary excretion rate, 2.8 μg/h; these were mean values for the entire study group. The single dose was well tolerated by all subjects. Conclusions: The investigational generic SbV, Ulamina, was associated with linearelimination after IM administration of a single 5-mg/kg dose. A 2-compartment pharmacokinetic model was observed in

  13. Stable antimony compositions for the passivation of metal contaminated cracking catalysts

    SciTech Connect

    Johnson, M.M.; Tabler, D.C.

    1990-06-12

    This patent describes a stable aqueous metals passivating agent. It comprises: about 10 to about 97 weight percent water, about 1 to about 50 weight percent particulate antimony oxide, and a stabilizing amount of vinyl copolymer in the range of about 0.2 to about 3 weight percent. The weight percentages are based on the total weight of the aqueous metals passivating agent and the vinyl copolymer being the ammonium alt prepared by adding ammonium hydroxide to the hydrolyzed acid form of a poly(methylvinyl ether/maleic anhydride) consisting essentially of repeating units of the formula.

  14. Electromagnetic absorption and shielding behavior of polyaniline-antimony oxide composites

    NASA Astrophysics Data System (ADS)

    Faisal, Muhammad; Khasim, Syed

    2013-02-01

    This work highlights the microwave absorption and electromagnetic interference (EMI) shielding properties of synthesized polyaniline (PAni)-antimony oxide (Sb2O3) composites in the 8-12 GHz (X-band) range. These composites showed absorption dominated EMI shielding effectiveness (EMI SEA) of -34 to -40 dB (> 99 % attenuation), indicating their shielding potential throughout the X-band. Our analyses reveal that the Sb2O3 particles in PAni matrix have key impact in determining the microwave absorption properties of the composites.

  15. Novel antimony doped tin oxide/carbon aerogel as efficient electrocatalytic filtration membrane

    NASA Astrophysics Data System (ADS)

    Liu, Zhimeng; Zhu, Mengfu; Wang, Zheng; Wang, Hong; Deng, Cheng; Li, Kui

    2016-05-01

    A facile method was developed to prepare antimony doped tin oxide (Sb-SnO2)/carbon aerogel (CA) for use as an electrocatalytic filtration membrane. The preparation process included synthesis of a precursor sol, impregnation, and thermal decomposition. The Sb-SnO2, which was tetragonal in phase with an average crystallite size of 10.8 nm, was uniformly distributed on the CA surface and firmly attached via carbon-oxygen-tin chemical bonds. Preliminary filtration tests indicated that the Sb-SnO2/CA membrane had a high rate of total organic carbon removal for aqueous tetracycline owing to its high current efficiency and electrode stability.

  16. Geochemical background of antimony and thallium and its possible relation to soil properties

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, C.; Martínez-Sánchez, M. J.; Molina, J.; García-Lorenzo, M. L.; Hernandez-Cordoba, M.

    2009-04-01

    Background value for trace elements in soils can act as a true reference level for estimating the extent of soil pollution with these elements. Background value is highly dependent on the mineralogical composition of the parent material and on the weathering processes that have led to the formation of the soil clay, and organic matter content. In recent years, environmental geochemical mapping has assumed an increasing relevance. Geochemical maps are of great interest because they constitute an effective tool for environmental planning, and for promoting sustainable development. This explains why, in recent years, many governments have promoted research to define geochemical background and baseline levels to serve as a basis for legislation to diagnose, prevent and reduce soil contamination. The objective of this study was to determine the selenium background and baseline values in agricultural soils or abandoned agricultural soils with natural vegetation not subjected to particular point contamination sources, in the Region of Murcia (SE, Spain). Moreover, the purpose of this paper was to study the possible relationship between soil properties, mineralogical composition and selenium content in soil samples. This work seeks to establish the geochemical background for thallium and antimony in the province of Murcia. The possible relationship between soil properties and target metals concentration has been studied. In the present study, background concentrations were established by analysing a large number of samples soils considered unaffected, or at least minimally affected, by human activities. Samples were analysed for antimony content by atomic fluorescence spectrometry (AFS) and by inductively coupled plasma spectrometry (ICP-MS) for thallium content. Other soil characteristics such as electrical conductivity (EC), organic matter (OM), pH, soluble salts, granulometry and calcium carbonate content were also measured to determine their influence on trace element

  17. Facile catalyst-free straightforward thermal evaporation of ultra-long antimony oxide microwires: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Qurashi, Ahsanulhaq

    2015-05-01

    Antimony oxide microwires (MWs) were grown on Si/SiO2 substrate by proficient non-catalytic economically promising method based on ambient heating of metallic source materials in crucible in a facile conventional muffle furnace. The produced antimony oxide microwires were 200-300 nm in diameter and tens micron in length. These ultra-long microwires were characterized by FESEM, TEM, XRD and Raman analysis. This approach is useful to develop grams quantities of microwires on Si/SiO2 substrate.

  18. ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE

    SciTech Connect

    Fewox, C; Ragaiy Zidan, R; Brenda Garcia-Diaz, B

    2008-12-31

    Hydrogen storage is one of the greatest challenges for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods; the direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

  19. ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE

    SciTech Connect

    Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

    2009-01-09

    Hydrogen storage is one of the challenges to be overcome for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods. The direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali metal alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

  20. Improvement in thallium hydride generation using iodide and Rhodamine B.

    PubMed

    Picón, David; Carrero, Pablo; Valero, Maribel; de Peña, Yaneira Petit; Gutiérrez, Luís

    2015-05-01

    A continuous flow hydride generation atomic absorption spectrometry (CF-HG-AAS) system was used to study the enhancement effect of different substances for conventional chemical HG of thallium. At room temperature, the acidified sample solution containing the respective enhancement reagent merged with the aqueous NaBH4 solution. The generated thallium hydride was stripped from the eluent solution by the addition of a nitrogen flow and thereafter the bulk phases were separated in a gas-liquid separator. The main factors under study were concentration and type of enhancement reagent (Te, iodide added as KI, Rhodamine B, malachite green and crystal violet) and acid (HCl, H2SO4 or HNO3). Other parameters affecting the thallium hydride generation, such as: NaBH4 concentration, carrier gas flow rate, length of reaction-mixing coil and reagents flow rates, were studied and optimized. Among the enhancement reagents tested, the combination of Rhodamine B and iodide produced the best results. A linear response was obtained between the detection limit (LOD (3σ)) of 1.5μg L(-1) and 1000μg L(-1). The RSD% (n=10) for a solution containing 15μg L(-1) of Tl was 2.9%. The recoveries of thallium in environmental water samples by spiking the samples with 10 and 20µg L(-1) of Tl were in the 97.0-102.5% range. The accuracy for Tl determination was further confirmed by the analysis of a water standard reference material (1643e form NIST, USA). Finally, it was demonstrated that malachite green and crystal violet showed similar enhancement effect like Rhodamine B for thallium HG. PMID:25702995

  1. Mathematical modeling of the nickel/metal hydride battery system

    SciTech Connect

    Paxton, B K

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  2. Hydride-phase formation and its influence on fatigue crack propagationbehavior in a Zircaloy-4 alloy

    SciTech Connect

    Garlea, Elena; Choo, H.; Wang, G Y; Liaw, Peter K; Clausen, B; Brown, D. W.; Park, Jae-Sung; Rack, P. D.; Kenik, Edward A

    2010-01-01

    The hydride-phase formation and its influence on the fatigue behavior of a Zircaloy-4 alloy charged with hydrogen gas are investigated. First, the microstructure and fatigue crack propagation rate of the alloy in the as-received condition are studied. Second, the formation and homogeneous distribution of delta zirconium hydride ( -ZrH2) in the bulk, and its effect on the fatigue crack propagation rate are presented. The results show that in the presence of hydrides the zirconium alloy exhibits reduced toughness and enhanced crack growth rates. Finally, the influence of a pre-existing fatigue crack in the specimen and the subsequent hydride formation were investigated. The residual lattice strain profile around the fatigue crack tip was measured using neutron diffraction. The combined effects of residual strains and hydride precipitation on the fatigue behavior are discussed.

  3. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides.

    PubMed

    Schilter, David; Camara, James M; Huynh, Mioy T; Hammes-Schiffer, Sharon; Rauchfuss, Thomas B

    2016-08-10

    Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications. PMID:27353631

  4. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.

    PubMed

    Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D

    2015-04-01

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results. PMID:26262969

  5. Strategies for the improvement of the hydrogen storage properties of metal hydride materials.

    PubMed

    Wu, Hui

    2008-10-24

    Metal hydrides are an important family of materials that can potentially be used for safe, efficient and reversible on-board hydrogen storage. Light-weight metal hydrides in particular have attracted intense interest due to their high hydrogen density. However, most of these hydrides have rather slow absorption kinetics, relatively high thermal stability, and/or problems with the reversibility of hydrogen absorption/desorption cycling. This paper discusses a number of different approaches for the improvement of the hydrogen storage properties of these materials, with emphasis on recent research on tuning the ionic mobility in mixed hydrides. This concept opens a promising pathway to accelerate hydrogenation kinetics, reduce the activation energy for hydrogen release, and minimize deleterious possible by-products often associated with complex hydride systems. PMID:18821548

  6. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction.

    PubMed

    Kim, Ki Chul; Dai, Bing; Karl Johnson, J; Sholl, David S

    2009-05-20

    The reaction thermodynamics of metal hydrides are crucial to the use of these materials for reversible hydrogen storage. In addition to altering the kinetics of metal hydride reactions, the use of nanoparticles can also change the overall reaction thermodynamics. We use density functional theory to predict the equilibrium crystal shapes of seven metals and their hydrides via the Wulff construction. These calculations allow the impact of nanoparticle size on the thermodynamics of hydrogen release from these metal hydrides to be predicted. Specifically, we study the temperature required for the hydride to generate a H(2) pressure of 1 bar as a function of the radius of the nanoparticle. In most, but not all, cases the hydrogen release temperature increases slightly as the particle size is reduced. PMID:19420649

  7. Study on Hydride Reorientation in Zry-2 Fuel Claddings during Interim Dry Storage

    SciTech Connect

    Sakamoto, K.; Matsuoka, H.; Takagi, A.; Kashibe, S.

    2007-07-01

    The hydride reorientation during the interim dry storage was examined by hydride reorientation test using unirradiated recrystallized Zry-2 fuel claddings (Zr-lined). In the case of high hydrogen concentration (above 200 ppm), no measurable hydride reorientation was observed under the condition examined. On the other hand, for low hydrogen concentration (30 - 80 ppm), a significant hydride reorientation was observed above 618 K. The effects of thermal cycling and cooling rate were also examined. The mechanical property of the hydride-reoriented specimens was evaluated at room temperature by the ring-tensile test, which showed no degradation of hoop strength and ductility when temperature and hoop stress were not greater than 573 K and 70 MPa, even if the effects of cooling rate and thermal cycling were taken into account. (authors)

  8. Sintering of sponge and hydride-dehydride titanium powders

    SciTech Connect

    Alman, David E.; Gerdemann, Stephen J.

    2004-04-01

    The sintering behavior of compacts produced from sponge and hydride-dehydride (HDH) Ti powders was examined. Compacts were vacuum sintered at 1200 or 1300 deg C for 30, 60, 120, 240, 480 or 960 minutes. The porosity decreased with sintering time and/or temperature in compacts produced from the HDH powders. Compacts produced from these powders could be sintered to essentially full density. However, the sintering condition did not influence the amount of porosity present in compacts produced from the sponge powders. These samples could only be sintered to a density of 97% theoretical. The sintering behavior was attributed to the chemical impurities in the powders.

  9. The calculated rovibronic spectrum of scandium hydride, ScH

    NASA Astrophysics Data System (ADS)

    Lodi, Lorenzo; Yurchenko, Sergei N.; Tennyson, Jonathan

    2015-07-01

    The electronic structure of six low-lying electronic states of scandium hydride, $X\\,{}^{1}\\Sigma^+$, $a\\,{}^{3}\\Delta$, $b\\,{}^{3}\\Pi$, $A\\,{}^{1}\\Delta$ $c\\,{}^{3}\\Sigma^+$, and $B\\,{}^{1}\\Pi$, is studied using multi-reference configuration interaction as a function of bond length. Diagonal and off-diagonal dipole moment, spin-orbit coupling and electronic angular momentum curves are also computed. The results are benchmarked against experimental measurements and calculations on atomic scandium. The resulting curves are used to compute a line list of molecular ro-vibronic transitions for $^{45}$ScH.

  10. N-Heterocyclic carbene boranes are good hydride donors.

    PubMed

    Horn, Markus; Mayr, Herbert; Lacôte, Emmanuel; Merling, Everett; Deaner, Jordan; Wells, Sarah; McFadden, Timothy; Curran, Dennis P

    2012-01-01

    The nucleophilicity parameters (N) of 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene borane and 1,3-dimethylimidazol-2-ylidene borane are 9.55 and 11.88. This places N-heterocyclic carbene boranes (NHC-boranes) among the most nucleophilic classes of neutral hydride donors. Reductions of highly electron-poor C═N and C═C bonds provide hydrogenation products along with new, stable borylated products. The results suggest that NHC-boranes have considerable untapped potential as neutral organic reductants. PMID:22149270

  11. Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications

    SciTech Connect

    Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

    2012-04-16

    Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

  12. Modeling of Gallium Nitride Hydride Vapor Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A reactor model for the hydride vapor phase epitaxy of GaN is presented. The governing flow, energy, and species conservation equations are solved in two dimensions to examine the growth characteristics as a function of process variables and reactor geometry. The growth rate varies with GaCl composition but independent of NH3 and H2 flow rates. A change in carrier gas for Ga source from H2 to N2 affects the growth rate and uniformity for a fixed reactor configuration. The model predictions are in general agreement with observed experimental behavior.

  13. Stress analysis of hydride bed vessels used for tritium storage

    SciTech Connect

    McKillip, S.T.; Bannister, C.E.; Clark, E.A.

    1991-01-01

    A prototype hydride storage bed, using LaNi{sub 4.25}Al{sub 0.75} as the storage material, was fitted with strain gages to measure strains occurring in the stainless steel bed vessel caused by expansion of the storage powder upon uptake of hydrogen. The strain remained low in the bed as hydrogen was added, up to a bed loading of about 0.5 hydrogen to metal atom ratio (H/M). The strain then increased with increasing hydrogen loading ({approximately} 0.8 H/M). Different locations exhibited greatly different levels of maximum strain. In no case was the design stress of the vessel exceeded.

  14. Stress analysis of hydride bed vessels used for tritium storage

    SciTech Connect

    McKillip, S.T.; Bannister, C.E.; Clark, E.A.

    1991-12-31

    A prototype hydride storage bed, using LaNi{sub 4.25}Al{sub 0.75} as the storage material, was fitted with strain gages to measure strains occurring in the stainless steel bed vessel caused by expansion of the storage powder upon uptake of hydrogen. The strain remained low in the bed as hydrogen was added, up to a bed loading of about 0.5 hydrogen to metal atom ratio (H/M). The strain then increased with increasing hydrogen loading ({approximately} 0.8 H/M). Different locations exhibited greatly different levels of maximum strain. In no case was the design stress of the vessel exceeded.

  15. Electrochemical process and production of novel complex hydrides

    DOEpatents

    Zidan, Ragaiy

    2013-06-25

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  16. Gas phase contributions to topochemical hydride reduction reactions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoji; Li, Zhaofei; Hirai, Kei; Tassel, Cédric; Loyer, François; Ichikawa, Noriya; Abe, Naoyuki; Yamamoto, Takafumi; Shimakawa, Yuichi; Yoshimura, Kazuyoshi; Takano, Mikio; Hernandez, Olivier J.; Kageyama, Hiroshi

    2013-11-01

    Alkali and alkali earth hydrides have been used as solid state reductants recently to yield many interesting new oxygen-deficient transition metal oxides. These reactions have tacitly been assumed to be a solid phase reaction between the reductant and parent oxide. We have conducted a number of experiments with physical separation between the reductant and oxides, and find that in some cases reduction proceeds even when the reagents are physically separated, implying reactions with in-situ generated H2 and, to a lesser extent, getter mechanisms. Our findings change our understanding of these topochemical reactions, and should enhance the synthesis of additional new oxides and nanostructures.

  17. Hydride Ions, HCO+ and Ionizing Irradiation in Star Forming Region

    NASA Astrophysics Data System (ADS)

    Benz, Arnold O.; Bruderer, Simon; van Dishoeck, Ewine

    2016-06-01

    Hydrides are fundamental precursor molecules in cosmic chemistry and many hydride ions have become observable in high quality for the first time thanks to the Herschel Space Observatory. Ionized hydrides, such as CH+ and OH+ and also HCO+ affect the chemistry of molecules such as water. They also provide complementary information on irradiation by far UV (FUV) or X-rays and gas temperature.We explore hydrides of the most abundant heavier elements in an observational survey covering star forming regions with different mass and evolutionary state. Twelve YSOs were observed with HIFI on Herschel in 6 spectral settings providing fully velocity-resolved line profiles. The YSOs include objects of low (Class 0 and I), intermediate, and high mass, with luminosities ranging from 4 Ls to 2 105 Ls.The targeted lines of CH+, OH+, H2O+, and C+ are detected mostly in blue-shifted absorption. H3O+ and SH+ are detected in emission and only toward some high-mass objects. For the low-mass YSOs the column density ratios of CH+/OH+ can be reproduced by simple chemical models implying an FUV flux of 2 – 400 times the ISRF at the location of the molecules. In two high-mass objects, the UV flux is 20 – 200 times the ISRF derived from absorption lines, and 300 – 600 ISRF using emission lines. Upper limits for the X-ray luminosity can be derived from H3O+ observations for some low-mass objects.If the FUV flux required for low-mass objects originates at the central protostar, a substantial FUV luminosity, up to 1.5 Ls, is required. For high-mass regions, the FUV flux required to produce the observed molecular ratios is smaller than the unattenuated flux expected from the central object(s) at the Herschel beam radius. This is consistent with an FUV flux reduced by circumstellar extinction or by bloating of the protostar.The ion molecules are proposed to form in FUV irradiated cavity walls that are shocked by the disk wind. The shock region is turbulent, broadening the lines to some 1

  18. Bipolar Nickel-Metal Hydride Battery Development Project

    NASA Technical Reports Server (NTRS)

    Cole, John H.

    1999-01-01

    This paper reviews the development of the Electro Energy, Inc.'s bipolar nickel metal hydride battery. The advantages of the design are that each cell is individually sealed, and that there are no external cell terminals, no electrode current collectors, it is compatible with plastic bonded electrodes, adaptable to heat transfer fins, scalable to large area, capacity and high voltage. The design will allow for automated flexible manufacturing, improved energy and power density and lower cost. The development and testing of the battery's component are described. Graphic presentation of the results of many of the tests are included.

  19. Structural and optical study on antimony-silicate glasses doped with thulium ions.

    PubMed

    Dorosz, D; Zmojda, J; Kochanowicz, M; Miluski, P; Jelen, P; Sitarz, M

    2015-01-01

    Structural, spectroscopic and thermal properties of SiO₂-Al₂O₃-Sb₂O₃-Na₂O glass system doped with 0.2 mol% Tm₂O₃ have been presented. Synthesis of antimony-silicate glasses with relatively low phonon energy (600 cm(-1), which implicates a small non-radiative decay rate) was performed by conventional high-temperature melt-quenching methods. The effect of SiO₂/Sb₂O₃ ratio in fabricated Tm(3+) doped glass on thermal, structural and luminescence properties was investigated. On the basis of structural investigations decomposition of absorption bands in the infrared FTIR region was performed, thus determining that antimony ions are the only glass-forming ions, setting up the lattice of fabricated glasses. Luminescence band at the wavelength of 1.8 μm corresponding to (3)F₄→(3)H₆ transition in thulium ions was obtained under 795 nm laser pumping. It was observed that combination of relatively low phonon energy and greater separation of optically active centers in the fabricated glasses influenced in decreasing the luminescence intensity at 1800 nm. PMID:25049172

  20. Antimony(III) complexes with 2-amino-4,6-dimethoxypyrimidines: Synthesis, characterization and biological evaluation.

    PubMed

    Tunç, Turgay; Karacan, Mehmet Sayım; Ertabaklar, Hatice; Sarı, Musa; Karacan, Nurcan; Büyükgüngör, Orhan

    2015-12-01

    Novel pyrimidine compound bearing disulfide bridge, 5,5'-disulfanediylbis(2-amino-4,6-dimetoxypyrimidine) (3) was synthesized by reduction of 2-amino-4,6-dimethoxy-5-thiocyanatopyrimidine for the first time, and its structure was confirmed by X-ray crystallographic analysis. Novel binuclear antimony(III) compound of (3), {Sb[5,5'-disulfanediylbis(2-amino-4,6-dimetoxypyrimidine)]Cl3}2 (4) and mononuclear antimony(III) compounds, SbL2Cl3, [L: 2-amino-5-thiol-4,6-dimethoxy pyrimidine (2) and 2-amino-5-(1H-tetrazol-5-ylthio)-4,6-dimethoxypyrimidine (6)] were synthesized and characterized with the help of elemental analysis, molecular conductivity, FT-IR, (1)H-NMR and LC-MS techniques. The geometrical structures optimized by a DFT/B3LYP/LANL2DZ method of the compounds, indicated that monomeric compounds have square pyramidal shape. Both antileishmanial activity against Leishmania tropica promastigote and glutathione reductase inhibitory activity were determined in vitro. The results showed that (3) has the best biological activity. PMID:26427018

  1. Evaluation of antimony microparticles supported on biochar for application in the voltammetric determination of paraquat.

    PubMed

    Gevaerd, Ava; de Oliveira, Paulo R; Mangrich, Antonio S; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2016-05-01

    This work describes the construction and application of carbon paste electrodes modified with biochar and antimony microparticles (SbBCPE) for voltammetric determination of paraquat using a simple and sensitive procedure based on voltammetric stripping analysis. Some parameters such as amount of biochar and antimony used in the composition of the carbon paste and instrumental parameters were examined in detail. Under optimized conditions, an analytical curve was obtained for paraquat determination employing SbBCPE, which showed a linear response ranging from 0.2 to 2.9 μmol L(-1), with limit of detection and quantification of 34 nmol L(-1) and 113 nmol L(-1), respectively, after paraquat pre-concentration of 120 s. The repeatability study presented a RSD=2.0% for 10 consecutive measurements using the same electrode surface and the reproducibility study showed a RSD=2.7% for measurements with 10 different electrode surfaces. The proposed sensor was successfully applied for paraquat determination in tap water and citric fruit juice spiked samples and good recoveries were obtained without any sample pre-treatment, showing its promising analytical performance. PMID:26952405

  2. Alkaline reforming of brominated fire-retardant plastics: fate of bromine and antimony.

    PubMed

    Onwudili, Jude A; Williams, Paul T

    2009-02-01

    High-impact polystyrene (HIPS) flame retarded with decabromodiphenyl ether (DDE), has been reacted in supercritical water from 380 to 450 degrees C and 21.5 to 31.0 MPa pressure in a batch reactor. Different concentrations of sodium hydroxide additive were used in situ to neutralize the corrosive inorganic bromine species released during the reactions. It appeared that supercritical water conditions lowered the decomposition temperature of both the fire-retardant DDE and HIPS. The reaction products included oils (up to 76 wt%), char (up to 18 wt%) and gas (up to 2.4 wt%) which was mainly methane. The presence of the alkaline water led to up to 97 wt% debromination of the product oil, producing virtually bromine-free oil feedstock. The removal of antimony from the oil product during processing was of the order of 98 wt%. The oil consisted of many single- and multiple-ringed aromatic compounds, many of which had alkyl substituents and/or aliphatic C(n)-bridges (n=1-4). The major single-ringed compounds included toluene, xylenes, ethylbenzene, propylbenzene and alpha-methylstyrene. Bibenzyl (diphenylethane), stilbene, diphenylmethane, diphenylpropane, diphenylcyclopropane, diphenylpropene, diphenylbutane, diphenylbutene and diphenylbuta-1,3-diene were the major C(n)-bridged compounds. Diphenyl ether and acetophenone were the major oxygenated compounds found. The process thus has the potential to produce bromine-free and antimony-free oils from fire-retardant plastics. PMID:19054543

  3. A Telomeric Cluster of Antimony Resistance Genes on Chromosome 34 of Leishmania infantum.

    PubMed

    Tejera Nevado, Paloma; Bifeld, Eugenia; Höhn, Katharina; Clos, Joachim

    2016-09-01

    The mechanisms underlying the drug resistance of Leishmania spp. are manifold and not completely identified. Apart from the highly conserved multidrug resistance gene family known from higher eukaryotes, Leishmania spp. also possess genus-specific resistance marker genes. One of them, ARM58, was first identified in Leishmania braziliensis using a functional cloning approach, and its domain structure was characterized in L. infantum Here we report that L. infantum ARM58 is part of a gene cluster at the telomeric end of chromosome 34 also comprising the neighboring genes ARM56 and HSP23. We show that overexpression of all three genes can confer antimony resistance to intracellular amastigotes. Upon overexpression in L. donovani, ARM58 and ARM56 are secreted via exosomes, suggesting a scavenger/secretion mechanism of action. Using a combination of functional cloning and next-generation sequencing, we found that the gene cluster was selected only under antimonyl tartrate challenge and weakly under Cu(2+) challenge but not under sodium arsenite, Cd(2+), or miltefosine challenge. The selective advantage is less pronounced in intracellular amastigotes treated with the sodium stibogluconate, possibly due to the known macrophage-stimulatory activity of this drug, against which these resistance markers may not be active. Our data point to the specificity of these three genes for antimony resistance. PMID:27324767

  4. Antimony oxofluorides - a synthesis concept that yields phase pure samples and single crystals.

    PubMed

    Ali, Sk Imran; Johnsson, Mats

    2016-07-26

    The single crystals of the new isostructural compounds Sb3O4F and Y0.5Sb2.5O4F and the two previously known compounds M-SbOF and α-Sb3O2F5 were successfully grown by a hydrothermal technique at 230 °C. The new compound Sb3O4F crystallizes in the monoclinic space group P21/c; a = 5.6107(5) Å, b = 4.6847(5) Å, c = 20.2256(18) Å, β = 94.145(8)°, z = 4. The replacing part of Sb with Y means a slight increase in the unit cell dimensions. The compounds M-SbOF and α-Sb3O2F5 have not been grown as single crystals before and it can be concluded that hydrothermal synthesis has proved to be a suitable technique for growing single crystals of antimony oxofluorides because of the relatively low solubility of such compounds compared to other antimony oxohalides that most often have been synthesised at high temperatures by solid state reactions or gas-solid reactions. PMID:27402498

  5. Effect of indium and antimony doping in SnS single crystals

    SciTech Connect

    Chaki, Sunil H. Chaudhary, Mahesh D.; Deshpande, M.P.

    2015-03-15

    Highlights: • Single crystals growth of pure SnS, indium doped SnS and antimony doped SnS by direct vapour transport (DVT) technique. • Doping of In and Sb occurred in SnS single crystals by cation replacement. • The replacement mechanism ascertained by EDAX, XRD and substantiated by Raman spectra analysis. • Dopants concentration affects the optical energy bandgap. • Doping influences electrical transport properties. - Abstract: Single crystals of pure SnS, indium (In) doped SnS and antimony (Sb) doped SnS were grown by direct vapour transport (DVT) technique. Two doping concentrations of 5% and 15% each were employed for both In and Sb dopants. Thus in total five samples were studied viz., pure SnS (S1), 5% In doped SnS (S2), 15% In doped SnS (S3), 5% Sb doped SnS (S4) and 15% Sb doped SnS (S5). The grown single crystal samples were characterized by evaluating their surface microstructure, stoichiometric composition, crystal structure, Raman spectroscopy, optical and electrical transport properties using appropriate techniques. The d.c. electrical resistivity and thermoelectric power variations with temperature showed semiconducting and p-type nature of the as-grown single crystal samples. The room temperature Hall Effect measurements further substantiated the semiconducting and p-type nature of the as-grown single crystal samples. The obtained results are deliberated in detail.

  6. New approaches to antimony film screen-printed electrodes using carbon-based nanomaterials substrates.

    PubMed

    Pérez-Ràfols, Clara; Serrano, Núria; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2016-04-15

    Three different commercial carbon nanomaterial-modified screen-printed electrodes based on graphene, carbon nanotubes and carbon nanofibers were pioneeringly tested as electrode platforms for the plating with Sb film. They were microscopically and analytically compared to each other and to the most conventional unmodified carbon screen-printed electrode (SPCE). The obtained detection and quantification limits suggest that the in-situ antimony film electrode prepared from carbon nanofibers modified screen-printed electrode (SbSPCE-CNF) produces a better analytical performance as compared to the classical SPCE modified with antimony for Pb(II) and Cd(II) determination, approving its appropriateness for measuring low μg L(-1) levels of the considered metals. In-situ SbSPCE-CNF was successfully used for the simultaneous determination of Pb(II) and Cd(II) ions, by means of differential pulse anodic stripping voltammetry, in a certified reference estuarine water sample with a very high reproducibility and good trueness. PMID:27016434

  7. A Black Phosphate Conversion Coating on Steel Surface Using Antimony(III)-Tartrate as an Additive

    NASA Astrophysics Data System (ADS)

    Li, Feng; Wang, Guiping

    2016-05-01

    A novel black phosphate conversion coating was formed on steel surface through a Zn-Mn phosphating bath containing mainly ZnO, H3PO4, Mn(H2PO4)2, and Ca(NO3)2, where antimony(III)-tartrate was used as the blackening agent of phosphatization. The surface morphology and composition of the coating were characterized by scanning electron microscopy, energy dispersion spectroscopy, and x-ray photoelectron spectroscopy. Corrosion resistance of the coating was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy. The pH value of the solution had significant influence on the formation and corrosion resistance of the coating. The experimental results indicated that the Sb plays a vital role in the blackening of phosphate conversion coating. The optimal concentration of antimony(III)-tartrate in the phosphating bath used in this experiment was 1.0 g L-1, as higher values reduced the corrosion resistance of the coating. In addition, by saponification and oil seals, the corrosion duration of the black phosphate coating in a copper sulfate spot test can be as long as 20 min.

  8. Sulfur redox chemistry governs diurnal antimony and arsenic cycles at Champagne Pool, Waiotapu, New Zealand

    NASA Astrophysics Data System (ADS)

    Ullrich, Maria K.; Pope, James G.; Seward, Terry M.; Wilson, Nathaniel; Planer-Friedrich, Britta

    2013-07-01

    Champagne Pool, a sulfidic hot spring in New Zealand, exhibits distinct diurnal variations in antimony (Sb) and arsenic (As) concentrations, with daytime high and night-time low concentrations. To identify the underlying mobilization mechanisms, five sites along the drainage channel of Champagne Pool were sampled every 2 h during a 24 h period. Temporal variations in elemental concentrations and Sb, As, and sulfur (S) speciation were monitored in the discharging fluid. Total trace element concentrations in filtered and unfiltered samples were analyzed using ICP-MS, and Sb, As and S species were determined by IC-ICP-MS. Sulfur speciation in the drainage channel was dominated by thiosulfate and sulfide at night, while sulfate dominated during the day. The distinct diurnal changes suggest that the transformations are caused by phototrophic sulfur-oxidizing bacteria. These bacteria metabolize thiosulfate and sulfide in daylight to form sulfate and, as suggested by modeling with PhreeqC, elemental sulfur. Sulfide consumption during the day results in undersaturation of antimony sulfides, which triggers the additional release of dissolved Sb. For As, diurnal cycles were much more pronounced in speciation than in total concentrations, with di- and trithioarsenate forming at night due to excess sulfide, and monothioarsenate forming from arsenite and elemental sulfur during the day. Sulfur speciation was thus found to control Sb and As in terms of both solubility and speciation.

  9. Organically complexed iron enhances bioavailability of antimony to maize (Zea mays) seedlings in organic soils.

    PubMed

    Ptak, Corey; McBride, Murray

    2015-12-01

    Antimony (Sb) is a metalloid belonging to group 15 of the periodic table. Chemical similarities between arsenic (As) and Sb produce concerns about potential health effects of Sb and enrichment in the environment. Antimony is found in oxic environments predominately as an oxyanionic species, antimonite (Sb[OH](6-)). As a result of its net negative charge, Sb[OH](6-) was not initially predicted to have strong interactions with natural organic matter. Oxyanionic species could bind the negatively charged organic matter via a ternary complexation mechanism, in which cationic metals mediate the strong association between organic matter functional groups and oxyanions. However, these interactions are poorly understood in how they influence the bioavailability of oxyanionic contaminants to plants. Iron (Fe) additions to organic soils have been found to increase the number of organically complexed Fe sites suitable for Sb exchange, resulting in a reduced bioavailable fraction of Sb. The bioavailability of Sb to maize seedlings as a function of organically complexed Fe was examined using a greenhouse study. A significant increase in plant tissue Sb was observed as organically complexed Fe increased, which was not predicted by methods commonly used to assess bioavailable Sb. Extraction of soils with organic acids common to the maize rhizosphere suggested that organic acid exudation can readily mobilize Sb bound by organic Fe complexes. PMID:26076768

  10. Morphology-controlled growth of crystalline antimony sulfide via a refluxing polyol process

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Chen, Xiangying; Mo, Maosong; Wang, Zhenghua; Zhang, Meng; Liu, Xinyuan; Qian, Yitai

    2004-02-01

    By refluxing antimony trichloride (SbCl 3) and thiourea in various solvents at suitable reaction conditions, antimony sulfide (Sb 2S 3) crystallites with a diversity of well-defined morphologies were synthesized. Sb 2S 3 rods with the average diameter of 800 nm and the length of 7 μm, as well as microtubes with the average outer diameter of 1.2 μm, the average inner diameter of 800 nm and the length of 8 μm, were obtained in 1,2-propanediol at 180°C for 10 min. In contrast, a series of experiments under different conditions were carried out to investigate the influencing factors on the reaction. The as-synthesized products were characterized by powder X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscope and X-ray photoelectron spectra. The results indicate Sb 2S 3 crystals with different morphologies, including rod-like, tube-like, bowknot-like, flower-like, straw-bundled-like, taken under different experimental conditions. It is found that the reaction temperature, time, solvent and poly(vinyl pyrrolidone) (as a polymer capping reagent) play important roles in the formation of the final Sb 2S 3 crystallites with different morphologies. Also, the possible growth mechanism is discussed.

  11. Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium

    PubMed Central

    Michalski, Rajmund; Szopa, Sebastian; Jabłońska, Magdalena; Łyko, Aleksandra

    2012-01-01

    Due to the fact that metals and metalloids have a strong impact on the environment, the methods of their determination and speciation have received special attention in recent years. Arsenic, antimony, and thallium are important examples of such toxic elements. Their speciation is especially important in the environmental and biomedical fields because of their toxicity, bioavailability, and reactivity. Recently, speciation analytics has been playing a unique role in the studies of biogeochemical cycles of chemical compounds, determination of toxicity and ecotoxicity of selected elements, quality control of food products, control of medicines and pharmaceutical products, technological process control, research on the impact of technological installation on the environment, examination of occupational exposure, and clinical analysis. Conventional methods are usually labor intensive, time consuming, and susceptible to interferences. The hyphenated techniques, in which separation method is coupled with multidimensional detectors, have become useful alternatives. The main advantages of those techniques consist in extremely low detection and quantification limits, insignificant interference, influence as well as high precision and repeatability of the determinations. In view of their importance, the present work overviews and discusses different hyphenated techniques used for arsenic, antimony, and thallium species analysis, in different clinical, environmental and food matrices. PMID:22654649

  12. Synthesis of silver nanoparticles and antimony oxide nanocrystals by pulsed laser ablation in liquid media

    NASA Astrophysics Data System (ADS)

    Mendivil, M. I.; Krishnan, B.; Sanchez, F. A.; Martinez, S.; Aguilar-Martinez, J. A.; Castillo, G. A.; Garcia-Gutierrez, D. I.; Shaji, S.

    2013-03-01

    Pulsed laser ablation in liquid media (PLALM) is a prominent technique for the controlled fabrication of nanomaterials via rapid reactive quenching of ablated species at the interface between the plasma and liquid. Results on nanoparticles and nanocrystals formed by PLALM of silver (Ag) and antimony (Sb) solid targets in different liquid environments (Sodium Dodecyl Sulfate, distilled water) are presented. These experiments were done by irradiating solid targets of Ag and Sb with a nanosecond pulsed Nd:YAG laser output of wavelength 532 nm. Nanoparticles of silver and nanocrystals of antimony oxide (Sb2O3) obtained were characterized using UV-Vis spectrometry, Scanning Electron Microscopy (SEM), transmission electron microscopy (TEM), X-ray Energy Dispersion Analysis (EDAX) and X-ray diffractometry (XRD). The morphology of nanomaterials formed is studied as a function of surfactant environment. The silver nanoparticles obtained were spherical of size in the order of 10-35 nm in solution of SDS having different concentrations. In case of the Sb target, ablation was performed in two different molarities of SDS solution and distilled water. Nanocrystals of Sb2O3 in powder form having cubic and orthorhombic phases were formed in SDS solution and as fibers of nanocrystals of cubic Sb2O3 in distilled water.

  13. Migration of antimony from PET containers into regulated EU food simulants.

    PubMed

    Sánchez-Martínez, María; Pérez-Corona, Teresa; Cámara, Carmen; Madrid, Yolanda

    2013-11-15

    Antimony migration from polyethylene terephthalate (PET) containers into aqueous (distilled water, 3% acetic acid, 10% and 20% ethanol) and fatty food simulants (vegetable oil), as well as into vinegar, was studied. Test conditions were according to the recent European Regulation 10/2011 (EU, 2011). Sb migration was assayed by ICP-MS and HG-AFS. The results showed that Sb migration values ranged from 0.5 to 1.2μg Sb/l, which are far below the maximum permissible migration value for Sb, 40μg Sb/kg, (EU, Regulation 10/2011). Parameters as temperature and bottle re-use influence were studied. To assess toxicity, antimony speciation was performed by HPLC-ICP-MS and HG-AFS. While Sb(V) was the only species detected in aqueous simulants, an additional species (Sb-acetate complex) was measured in wine vinegar. Unlike most of the studies reported in the literature, migration tests were based on the application of the EU directive, which enables comparison and harmonisation of results. PMID:23790852

  14. Behavior of antimony(III) during copper electrowinning in chloride solutions

    SciTech Connect

    Lin, H.K.; Wu, X.

    1996-04-01

    Contamination of cathodic copper by Sb during electrowinning in chloride solutions is a surface phenomenon. A digitized scanning electron microscopy (SEM) micrograph indicates that the Sb is concentrated on the surface /of the cathode. Energy-dispersive X-ray (EDX) analysis reveals that the Sb-containing layer is a complex salt of Cu, Sb, Cl, and O. Electrochemical measurements show that the adsorption of Sb or Cu species decreases with the increase of acidity of the solution when the solution contains antimony chloride or cuprous chloride. The adsorption increases with the increase of the acidity when the solution contains both Sb and Cu. The discharge of cuprous ions in the adsorbed complex salt releases antimonious ions and then forms a new layer of the complex salt with cuprous ions from the solution. This newly formed complex salt is readsorbed on the surface of the cathode. Thus, Sb concentrates on the surface of the cathode instead of being evenly distributed throughout the copper product. This suggested mechanism also explains the fact that the presence of Sb in the electrolyte enhances the electrodeposition of Cu.

  15. Development of a component design tool for metal hydride heat pumps

    NASA Astrophysics Data System (ADS)

    Waters, Essene L.

    Given current demands for more efficient and environmentally friendly energy sources, hydrogen based energy systems are an increasingly popular field of interest. Within the field, metal hydrides have become a prominent focus of research due to their large hydrogen storage capacity and relative system simplicity and safety. Metal hydride heat pumps constitute one such application, in which heat and hydrogen are transferred to and from metal hydrides. While a significant amount of work has been done to study such systems, the scope of materials selection has been quite limited. Typical studies compare only a few metal hydride materials and provide limited justification for the choice of those few. In this work, a metal hydride component design tool has been developed to enable the targeted down-selection of an extensive database of metal hydrides to identify the most promising materials for use in metal hydride thermal systems. The material database contains over 300 metal hydrides with various physical and thermodynamic properties included for each material. Sub-models for equilibrium pressure, thermophysical data, and default properties are used to predict the behavior of each material within the given system. For a given thermal system, this tool can be used to identify optimal materials out of over 100,000 possible hydride combinations. The selection tool described herein has been applied to a stationary combined heat and power system containing a high-temperature proton exchange membrane (PEM) fuel cell, a hot water tank, and two metal hydride beds used as a heat pump. A variety of factors can be used to select materials including efficiency, maximum and minimum system pressures, pressure difference, coefficient of performance (COP), and COP sensitivity. The targeted down-selection of metal hydrides for this system focuses on the system's COP for each potential pair. The values of COP and COP sensitivity have been used to identify pairs of highest interest for

  16. Formation of Alkali Hydrides via Two-photon Excitation

    NASA Astrophysics Data System (ADS)

    Juarros, Elizabeth; Kirby, Kate; Coté, Robin

    2006-05-01

    Alkali hydride molecules are very polar, exhibiting large ground-state dipole moments. Ultracold sources of alkali atoms and hydrogen have been created in the laboratory. We explore theoretically the feasibility of forming such molecules from a mixture of the ultracold atomic gases, employing a two-photon stimulated radiative association process -- Raman excitation. The triplet ground state for lithium hydride is of particular interest since it supports only one bound ro-vibrational level. Using accurate molecular potential energy curves and dipole transition moments, we have calculated the rate coefficients for populating the bound ro-vibrational level of the a^3&+circ; state of LiH via the excited b^3π state. We have found that significant molecule formation rates can be realized with laser intensities and atomic densities that are attainable experimentally. Also, we have calculated the rate coefficients for populating all the vibrational levels of the X^1&+circ; state of LiH via the excited B^1π state. In this case, we have found that significant formation rates into the upper vibrational levels can be realized. We examine the spontaneous emission cascade which takes place from these upper vibrational levels on a timescale of milliseconds, and calculate the resulting rotational populations in v=0. We show that photon emission in the cascade process does not contribute to trap loss.

  17. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    SciTech Connect

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  18. Superconductivity above the lowest Earth temperature in pressurized sulfur hydride

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Jarlborg, Thomas

    2015-11-01

    A recent experiment has shown a macroscopic quantum coherent condensate at 203 K, about 19 degrees above the coldest temperature recorded on the Earth surface, 184 K (-89.2 ^\\circ \\text{C}, -128.6 ^\\circ \\text{F}) in pressurized sulfur hydride. This discovery is relevant not only in material science and condensed matter but also in other fields ranging from quantum computing to quantum physics of living matter. It has given the start to a gold rush looking for other macroscopic quantum coherent condensates in hydrides at the temperature range of living matter 200c <400 \\text{K} . We present here a review of the experimental results and the theoretical works and we discuss the Fermiology of \\text{H}3\\text{S} focusing on Lifshitz transitions as a function of pressure. We discuss the possible role of the shape resonance near a neck disrupting Lifshitz transition, in the Bianconi-Perali-Valletta (BPV) theory, for rising the critical temperature in a multigap superconductor, as the Feshbach resonance rises the critical temperature in Fermionic ultracold gases.

  19. Hydriding of TiZrNiFe nanocompounds

    NASA Astrophysics Data System (ADS)

    Żywczak, A.; Shinya, Daigo; Gondek, Ł.; Takasaki, Akito; Figiel, H.

    2010-01-01

    Ti-based quasicrystals belong to the second largest group of the stable quasicrystals, showing attractive properties as hydrogen storage materials. The Ti 45Zr 38Ni 17 intermetallic compound forms an icosahedral ( i-phase) structure, in which Ti and Zr atoms possess very good chemical affinity for hydrogen absorption. We modified the Ti 45Zr 38Ni 17 compounds by substituting 3d metals (iron) for Ni to obtain amorphous phase. The samples were produced by mechanical alloying. The 3d metal atoms are located in the same positions as nickel. The structural characterization was made by means of XRD measurements. Thermodynamic properties were studied by differential scanning calorimetry (DSC) and thermal desorption spectroscopy (TDS). The obtained amorphous phases Ti 45Zr 38Ni (9,13)Fe (8,4) transform to the i-phase at the similar temperature range as Ti 45Zr 38Ni 17. The final concentration of absorbed hydrogen depends on the amount of Fe. When increasing the amount of iron, the hydrogen release temperature becomes lower. After hydriding, the samples decompose into simple metal hydrides.

  20. Method of generating hydrogen-storing hydride complexes

    DOEpatents

    Srinivasan, Sesha S; Niemann, Michael U; Goswami, D. Yogi; Stefanakos, Elias K

    2013-05-14

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.