Science.gov

Sample records for antimony sulfides

  1. Chemically deposited thin films of sulfides and selenides of antimony and bismuth as solar energy materials

    NASA Astrophysics Data System (ADS)

    Nair, M. T.; Nair, Padmanabhan K.; Garcia, V. M.; Pena, Y.; Arenas, O. L.; Garcia, J. C.; Gomez-Daza, O.

    1997-10-01

    Chemical bath deposition techniques for bismuth sulfide, bismuth selenide, antimony sulfide, and antimony selenide thin films of about 0.20 - 0.25 micrometer thickness are reported. All these materials may be considered as solar absorber films: strong optical absorption edges, with absorption coefficient, (alpha) , greater than 104 cm-1, are located at 1.31 eV for Bi2Se3, 1.33 eV for Bi2S3, 1.8 eV for Sb2S3, and 1.35 eV for Sb2Se3. As deposited, all the films are nearly amorphous. However, well defined crystalline peaks matching bismuthinite (JCPDS 17- 0320), paraguanajuatite (JCPDS 33-0214), and stibnite (JCPDS 6-0474) and antimony selenide (JCPDS 15-0861) for Bi2S3, Bi2Se3, Sb2S3 and Sb2Se3 respectively, are observed when the films are annealed in nitrogen at 300 degrees Celsius. This is accompanied by a substantial modification of the electrical conductivity in the films: from 10-7 (Omega) -1 cm-1 (in as prepared films) to 10 (Omega) -1 cm-1 in the case of bismuth sulfide and selenide films, and enhancement of photosensitivity in the case of antimony sulfide films. The chemical deposition of a CuS/CuxSe film on these Vx- VIy films and subsequent annealing at 300 degrees Celsius for 1 h at 1 torr of nitrogen leads to the formation of p-type films (conductivity of 1 - 100 (Omega) -1 cm-1) of multinary composition. Among these, the formation of Cu3BiS3 (JCPDS 9-0488) and Cu3SbS4 (JCPDS 35- 0581), CuSbS2 (JCPDS 35-0413) have been clearly detected. Solar energy applications of these films are suggested.

  2. Antimony

    Integrated Risk Information System (IRIS)

    Antimony ; CASRN 7440 - 36 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  3. Assessment of Hybrid Organic-Inorganic Antimony Sulfides for Earth-Abundant Photovoltaic Applications.

    PubMed

    Yang, Ruo Xi; Butler, Keith T; Walsh, Aron

    2015-12-17

    Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s(2) lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications. PMID:26624204

  4. Morphology-controlled growth of crystalline antimony sulfide via a refluxing polyol process

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Chen, Xiangying; Mo, Maosong; Wang, Zhenghua; Zhang, Meng; Liu, Xinyuan; Qian, Yitai

    2004-02-01

    By refluxing antimony trichloride (SbCl 3) and thiourea in various solvents at suitable reaction conditions, antimony sulfide (Sb 2S 3) crystallites with a diversity of well-defined morphologies were synthesized. Sb 2S 3 rods with the average diameter of 800 nm and the length of 7 μm, as well as microtubes with the average outer diameter of 1.2 μm, the average inner diameter of 800 nm and the length of 8 μm, were obtained in 1,2-propanediol at 180°C for 10 min. In contrast, a series of experiments under different conditions were carried out to investigate the influencing factors on the reaction. The as-synthesized products were characterized by powder X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscope and X-ray photoelectron spectra. The results indicate Sb 2S 3 crystals with different morphologies, including rod-like, tube-like, bowknot-like, flower-like, straw-bundled-like, taken under different experimental conditions. It is found that the reaction temperature, time, solvent and poly(vinyl pyrrolidone) (as a polymer capping reagent) play important roles in the formation of the final Sb 2S 3 crystallites with different morphologies. Also, the possible growth mechanism is discussed.

  5. Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells.

    PubMed

    Suehiro, Satoshi; Horita, Keisuke; Yuasa, Masayoshi; Tanaka, Tooru; Fujita, Katsuhiko; Ishiwata, Yoichi; Shimanoe, Kengo; Kida, Tetsuya

    2015-08-17

    The p-type nanocrystals (NCs) of copper-based chalcogenides, such as CuInSe2 and Cu2ZnSnS4, have attracted increasing attention in photovoltaic applications due to their potential to produce cheap solution-processed solar cells. Herein, we report the synthesis of copper-antimony-sulfide (CAS) NCs with different crystal phases including CuSbS2, Cu3SbS4, and Cu12Sb4S13. In addition, their morphology, crystal phase, and optical properties were characterized using transmission electron microscopy, X-ray diffractometry, UV-vis-near-IR spectroscopy, and photoemission yield spectroscopy. The morphology, crystal phase, and electronic structure were significantly dependent on the chemical composition in the CAS system. Devices were fabricated using particulate films consisting of CAS NCs prepared by spin coating without a high-temperature treatment. The CAS NC-based devices exhibited a diode-like current-voltage characteristic when coupled with an n-type CdS layer. In particular, the CuSbS2 NC devices exhibited photovoltaic responses under simulated sunlight, demonstrating its applicability for use in solution-processed solar cells. PMID:26237216

  6. Large anharmonic effect and thermal expansion anisotropy of metal chalcogenides: The case of antimony sulfide

    NASA Astrophysics Data System (ADS)

    Gan, Chee Kwan; Soh, Jian Rui; Liu, Yun

    2015-12-01

    We derive a compact matrix expression for the linear thermal expansion coefficients (TECs) for a general orthorhombic system which relates elastic properties and integrated quantities based on deformation and mode dependent Grüneisen parameters and mode dependent heat capacities. The density of Grüneisen parameters Γ (ν ) as a function of frequency ν , weighted by the number of phonon modes, is introduced and found to be illuminating in interpreting the TEC results. Using density functional perturbation theory and Grüneisen formalism for thermal expansion, we illustrate the general usefulness of this method by calculating the linear and volumetric TECs of a low-symmetry orthorhombic compound antimony sulfide (Sb2S3 ), which belongs to a large class of technologically and fundamentally important materials. Even though negative Grüneisen parameters are found for deformations in all three crystal directions, the Γ (ν ) data rule out the occurrences of negative TECs at all temperatures. Sb2S3 exhibits a large thermal expansion anisotropy where the TEC in the b direction can reach as high as 13 ×10-6 K-1 at high temperatures, about two and seven times larger than the TECs in the c and a direction, respectively. Our work suggests a general and practical first-principles approach to calculate the thermal properties of other complicated low-symmetry systems.

  7. A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals with high yield.

    PubMed

    Chen, Keqiang; Zhou, Jing; Chen, Wen; Chen, Qiao; Zhou, Peng; Liu, Yueli

    2016-03-01

    Until now, it is a great challenge for the controllable synthesis of copper antimony sulfide (CAS) nanocrystals (NCs), as the reactivity of precursors is quite difficult to be controlled during the synthesis process. In the present work, a novel solution-based method is proposed to synthesize CAS NCs by choosing N,N'-diphenylthiourea as the sulfide precursor, which is favorable for balancing the relative reactivity of Cu and Sb ions. It is found that three phases (CuSbS2, Cu12Sb4S13 and Cu3SbS4) of CAS NCs with size tunability were successfully synthesized for the first time. To the best of our knowledge, the lowest reaction temperature of 110 °C and the highest yield over 90% for CAS NCs were also achieved for the first time, which may be considered to be a green synthesis route compared with other conventional methods. Optical properties indicate that the as-prepared CAS NCs have strong optical absorption in the visible light region of the solar spectrum, and we also observed the band gap tunability of CuSbS2 and Cu3SbS4 materials for the first time. PMID:26875832

  8. Spatial-temporal and genetic relationships between gold and antimony mineralization at gold-sulfide deposits of the Ob-Zaisan folded zone

    NASA Astrophysics Data System (ADS)

    Kalinin, Yu. A.; Naumov, E. A.; Borisenko, A. S.; Kovalev, K. R.; Antropova, A. I.

    2015-05-01

    The Ob-Zaisan folded zone is a fragment of a single structure composed of Paleozoic sedimentary and volcanogenic rocks (mainly black shale), which was formed at the margin of the Siberian continent and features a common set of magmatic complexes and mineral systems. However, there are some differences that determine the specific geological and metallogenic features of the Irtysh-Zaisan and Kolyvan-Tomsk fragments of the Ob-Zaisan folded zone. In the gold deposits of the West Kalba and Kolyvan-Tomsk auriferous belt, the main gold-sulfide mineralization is controlled by zones of shearing and dynamic metamorphism in carbonaceous carbonate-terrigenous rocks. This type of mineralization was formed in tectonic blocks in a compressional setting. Antimony mineralization is characterized by brecciated textures and the vein-like morphology of ore bodies, reflecting extensional tectonics. At some deposits (Zherek, Mirazh, Dalny), Sb mineralization is spatially separated from the main gold-sulfide ores and shows cross-cutting relations to the principal ore-controlling structures. In other gold deposits, stibnite is spatially associated with disseminated gold-sulfide ores and forms mineral assemblages with Ni, Co, Au, Pb, and Fe (Alimbet, Zhanan, Legostaevskoe, Semiluzhenskoe, and Kamenskoe deposits). This study reveals no direct correlation between Au and Sb in gold-sulfide ores of these deposits. SEM analysis indicated the absence of free gold in stibnite veins. However, atomic absorption and electron microprobe analysis indicated the presence of "invisible gold" from a few ppm to several tens of ppm in the stibnite. High gold contents in the gold-sulfide ores overprinted by antimony mineralization (Suzdalskoe, Zhanan, and Legostaevskoe deposits) can be explained by the processes of regeneration and redeposition. The results of microstructural observations, isotope geochronology, studies of mineral assemblages and fluid inclusions in the ores from gold deposits of the Ob

  9. Mineral Resource of the Month: Antimony

    USGS Publications Warehouse

    Guberman, David E.

    2015-01-01

    Antimony is a lustrous silvery-white semimetal or metalloid. Archaeological and historical studies indicate that antimony and its mineral sulfides have been used by humans for at least six millennia. The alchemist Basil Valentine is sometimes credited with “discovering” the element; he described the extraction of metallic antimony from stibnite in his treatise “The Triumphal Chariot of Antimony,” published sometime between 1350 and 1600. In the early 18th century, Jöns Jakob Berzelius chose the periodic symbol for antimony (Sb) based on stibium, which is the Latin name for stibnite.

  10. Antimony Toxicity

    PubMed Central

    Sundar, Shyam; Chakravarty, Jaya

    2010-01-01

    Antimony toxicity occurs either due to occupational exposure or during therapy. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms. In addition antimony trioxide is possibly carcinogenic to humans. Improvements in working conditions have remarkably decreased the incidence of antimony toxicity in the workplace. As a therapeutic, antimony has been mostly used for the treatment of leishmaniasis and schistosomiasis. The major toxic side-effects of antimonials as a result of therapy are cardiotoxicity (~9% of patients) and pancreatitis, which is seen commonly in HIV and visceral leishmaniasis co-infections. Quality control of each batch of drugs produced and regular monitoring for toxicity is required when antimonials are used therapeutically. PMID:21318007

  11. Lead antimony sulfide (Pb5Sb8S17) solid-state quantum dot-sensitized solar cells with an efficiency of over 4%

    NASA Astrophysics Data System (ADS)

    Chang, Yi-Cheng; Suriyawong, Nipapon; Aragaw, Belete Asefa; Shi, Jen-Bin; Chen, Peter; Lee, Ming-Way

    2016-04-01

    Lead antimony sulfides are rare in nature and relatively unexplored ternary semiconductors. This work investigates the photovoltaic performance of Pb-Sb-S quantum dot-sensitized solar cells (QDSCs). Pb5Sb8S17 nanoparticles are grown on mesoporous TiO2 electrodes using the successive ionic layer adsorption reaction process. The synthesized Pb5Sb8S17 nanoparticles exhibit two attractive features for a good solar absorber material: a high optical absorption coefficient and a near optimal energy gap. Solid-state QDSCs are fabricated from the synthesized Pb5Sb8S17 nanoparticles using Spiro-OMeTAD as the hole-transporting material. The best cell yields a short-circuit current density Jsc of 11.92 mA cm-2, an open-circuit voltage Voc of 0.48 V, a fill factor FF of 30.7% and a power conversion efficiency (PCE) of 1.76% under 1sun. The external quantum efficiency (EQE) spectrum covers a spectral range of 350-800 nm with a maximal EQE = 65% at λ = 450 nm. At the reduced light intensity of 10% sun, the PCE increases to 4.14% with Jsc = 2.0 mA cm-2 (which could be normalized to 20 mA cm-2 under 1 sun). This PCE is 65% higher than the best previous result. The respectable PCE and Jsc indicate that Pb5Sb8S17 could be a potential candidate for a solar absorber material.

  12. In-situ growth of antimony sulfide in carbon nanoparticle matrix: Enhanced electrocatalytic activity as counter electrode in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sun, Panpan; Zhang, Ming; Ai, Changzhi; Wu, Zhixin; Lu, Shuang; Zhang, Xintong; Huang, Niu; Sun, Yihua; Sun, Xiaohua

    2016-07-01

    Considering the undesirable electrocatalytic activity toward I-/I3- redox system of prinstine antimony sulfide (Sb2S3) fabricated with the existing conditions, a mesoporous carbon nanoparticle film (CNP) is introduced here for in-situ growth of Sb2S3 to construct a Sb2S3@CNP hybrid catalyst. Based on a Sb-thiourea precursor solution, in-situ growth of Sb2S3 can be achieved via solution deposition (denoted as Sb2S3@CNP-S) as well as atmospheric pressure thermal evaporation (denoted as Sb2S3@CNP-T) in CNP matrix. Structural characterizations indicate that Sb2S3 particles have well dispersed in the pores of CNP matrix. Because of the introduction of porous and conductive CNP matrix to support Sb2S3, the hybrid catalyst exhibits lower charge transfer resistance at the catalyst/electrolyte interface and higher electrocatalytic activity. When used as counter electrode (CE) for dye-sensitized solar cells (DSSCs), devices using Sb2S3@CNP hybrid catalyst as CE produce fill factor of 67.6% and 66.3%, which is significantly higher than that using pristine Sb2S3 fabricated in our previous work (52.8%). Finally, the corresponding power conversion efficiencies reach 6.69% (Sb2S3@CNP-S) and 6.24% (Sb2S3@CNP-T), respectively, which are comparable to that using Pt CE measured under the same conditions (6.74%).

  13. Structural, optical and charge generation properties of chalcostibite and tetrahedrite copper antimony sulfide thin films prepared from metal xanthates† †Electronic supplementary information (ESI) available: Chemical structures of the used metal xanthates, additional XRD, SEM-EDX and UV-vis data. See DOI: 10.1039/c5ta05777a Click here for additional data file.

    PubMed Central

    MacLachlan, Andrew J.; Brown, Michael D.

    2015-01-01

    Herein, we report on a solution based approach for the preparation of thin films of copper antimony sulfide, an emerging absorber material for third generation solar cells. In this work, copper and antimony xanthates are used as precursor materials for the formation of two different copper antimony sulfide phases: chalcostibite (CuSbS2) and tetrahedrite (Cu12Sb4S13). Both phases were thoroughly investigated regarding their structural and optical properties. Moreover, thin films of chalcostibite and tetrahedrite were prepared on mesoporous TiO2 layers and photoinduced charge transfer in these metal sulfide/TiO2 heterojunctions was studied via transient absorption spectroscopy. Photoinduced charge transfer was detected in both the chalcostibite as well as the tetrahedrite sample, which is an essential property in view of applying these materials as light-harvesting agents in semiconductor sensitized solar cells. PMID:27019713

  14. Antimony trioxide

    Integrated Risk Information System (IRIS)

    Antimony trioxide ; CASRN 1309 - 64 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  15. Antimony: a flame fighter

    USGS Publications Warehouse

    Wintzer, Niki E.; Guberman, David E.

    2015-01-01

    In the 11th century, the word antimonium was used by medieval scholar Constantinus Africanus, but antimony metal was not isolated until the 16th century by Vannoccio Biringuccio, an Italian metallurgist. In the early 18th century, chemist Jons Jakob Berzelius chose the periodic symbol for antimony (Sb) based on stibium, which is the Latin name for stibnite.

  16. Antimony ore in the Fairbanks district, Alaska

    USGS Publications Warehouse

    Killeen, Pemberton Lewis; Mertie, John B., Jr.

    1951-01-01

    Antimony-bearing ores in the Fairbanks district, Alaska, are found principally in two areas, the extremities of which are at points 10 miles west and 23 miles northeast of Fairbanks; and one of two minor areas lies along this same trend 30 miles farther to the northeast. These areas are probably only local manifestations of mineralization that affected a much broader area and formed antimony-bearing deposits in neighboring districts, the closest of which is 50 miles away. The ores were exposed largely as a result of lode gold mining, but at two periods in the past, high prices for antimony ore warranted an independent production and about 2500 tons of stibnite ore was shipped. The sulfide deposits occupy the same fractures along which a gold-quartz mineralization of greater economic importance occurred; and both are probably genetically related to igneous rocks which intrude the schistose country rock. The sulfide is in part contemporaneous with some late-stage quartz in which it occurs as disseminated crystals; and in part the latest filling in the mineralized zones where it forms kidney-shaped masses of essentially solid sulfide. One extremely long mass must have contained nearly 100 tons of ore, but the average of the larger kidneys is closer to several tons. Much of the ore is stibnite, with quartz as a minor impurity, and assays show the tenor to vary from 40 to 65 percent antimony. Sulphantimonites are less abundant but likewise occur as disseminated crystals and as kidney-shaped bodies. Antimony oxides appear on the weathered surface and along fractures within the sulfide ore. Deposits containing either stibnite or sulphantimonite are known at more than 50 localities, but only eighteen have produced ore and the bulk of this came from the mines. The geology of the deposit, and the nature, extent, and period of the workings are covered in the detailed descriptions of individual occurrences. Several geologic and economic factors, which greatly affect

  17. Oligosilanylated Antimony Compounds

    PubMed Central

    2015-01-01

    By reactions of magnesium oligosilanides with SbCl3, a number of oligosilanylated antimony compounds were obtained. When oligosilanyl dianions were used, either the expected cyclic disilylated halostibine was obtained or alternatively the formation of a distibine was observed. Deliberate formation of the distibine from the disilylated halostibine was achieved by reductive coupling with C8K. Computational studies of Sb–Sb bond energies, barriers of pyramidal inversion at Sb, and the conformational behavior of distibines provided insight for the understanding of the spectroscopic properties. PMID:25937691

  18. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand.

    PubMed

    Wilson, N J; Craw, D; Hunter, K

    2004-05-01

    A historic antimony smelter site at Endeavour Inlet, New Zealand has smelter residues with up to 17 wt.% antimony. Residues include coarse tailings (cm scale particles, poorly sorted), sand tailings (well sorted) and smelter slag (blocks up to 30 cm across). All of this material has oxidised to some degree over the ca. 100 years since the site was abandoned. Oxidation has resulted in acidification of the residues down to pH 2-5. Smelter slag contains pyrrhotite (FeS) and metallic antimony, and oxidation is restricted to surfaces only. The coarse tailings are the most oxidised, and few sulfide grains persist. Unoxidised sand tailings contain 10-20 vol.% stibnite (Sb2S3) containing up to 5% As, with subordinate arsenopyrite (FeAsS), and minor pyrite (FeS2). The sand tailings are variably oxidised on a scale of 2-10 cm, but original depositional layering is preserved during oxidation and formation of senarmontite (Sb2O3). Oxidation of sand tailings has resulted in localised mobility of both Sb and As on the cm scale, resulting in redistribution of these metalloids with iron oxyhydroxide around sand grain boundaries. Experiments demonstrate that Sb mobility decreases with time on a scale of days. Attenuation of both As and Sb occurs due to adsorption on to iron oxyhydroxides which are formed during oxidation of the smelter residues. There is no detectable loss of Sb or As from the smelter site into the adjacent river, <50 m away, which has elevated Sb (ca. 20 microg/l) and As (ca. 7 microg/l) from mineralised rocks upstream. Despite the high concentrations of Sb and As in the smelter residues, these metalloids are not being released into the environment. PMID:14987811

  19. The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver

    SciTech Connect

    Bessinger, Brad; Apps, John A.

    2003-03-23

    A comprehensive thermodynamic database based on the Helgeson-Kirkham-Flowers (HKF) equation of state was developed for metal complexes in hydrothermal systems. Because this equation of state has been shown to accurately predict standard partial molal thermodynamic properties of aqueous species at elevated temperatures and pressures, this study provides the necessary foundation for future exploration into transport and depositional processes in polymetallic ore deposits. The HKF equation of state parameters for gold, arsenic, antimony, mercury, and silver sulfide and hydroxide complexes were derived from experimental equilibrium constants using nonlinear regression calculations. In order to ensure that the resulting parameters were internally consistent, those experiments utilizing incompatible thermodynamic data were re-speciated prior to regression. Because new experimental studies were used to revise the HKF parameters for H2S0 and HS-1, those metal complexes for which HKF parameters had been previously derived were also updated. It was found that predicted thermodynamic properties of metal complexes are consistent with linear correlations between standard partial molal thermodynamic properties. This result allowed assessment of several complexes for which experimental data necessary to perform regression calculations was limited. Oxygen fugacity-temperature diagrams were calculated to illustrate how thermodynamic data improves our understanding of depositional processes. Predicted thermodynamic properties were used to investigate metal transport in Carlin-type gold deposits. Assuming a linear relationship between temperature and pressure, metals are predicted to predominantly be transported as sulfide complexes at a total aqueous sulfur concentration of 0.05 m. Also, the presence of arsenic and antimony mineral phases in the deposits are shown to restrict mineralization within a limited range of chemical conditions. Finally, at a lesser aqueous sulfur

  20. [Oxidation of gold-antimony ores by a thermoacidophilic microbial consortium].

    PubMed

    Tsaplina, I A; Sorokin, V V; Zhuravleva, A E; Melamud, V S; Bogdanova, T I; Kondrat'eva, T F

    2013-01-01

    Antimony leaching from sulfide ore samples by an experimental consortium of thermoacidophilic microorganisms, including Sulfobacillus, Leptospirillum, and Ferroplasma strains was studied. The ores differed significantly in the content of the major metal sulfides (%): Sb(S), 0.84 to 29.95; Fe(S), 0.47 to 2.5, and As(S), 0.01 to 0.4. Independent on the Sb(S) concentration in the experimental sample, after adaptation to a specific ore and pulp compaction the microorganisms grew actively and leached/oxidized all gold-antimony ores at 39 ± 1 degrees C. The lower was the content of iron and arsenic sulfides, the higher was antimony leaching. For the first time the investigations conducted with the use of X-ray microanalysis research made it possible to conclude that in a natural high-antimony ore Sb inhibits growth of only a part of the cell population and that Ca, Fe, and Sb may compete for the binding centers of the cell. PMID:25509404

  1. Selenium Sulfide

    MedlinePlus

    Selenium sulfide, an anti-infective agent, relieves itching and flaking of the scalp and removes the dry, ... Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium ...

  2. Sulfur redox chemistry governs diurnal antimony and arsenic cycles at Champagne Pool, Waiotapu, New Zealand

    NASA Astrophysics Data System (ADS)

    Ullrich, Maria K.; Pope, James G.; Seward, Terry M.; Wilson, Nathaniel; Planer-Friedrich, Britta

    2013-07-01

    Champagne Pool, a sulfidic hot spring in New Zealand, exhibits distinct diurnal variations in antimony (Sb) and arsenic (As) concentrations, with daytime high and night-time low concentrations. To identify the underlying mobilization mechanisms, five sites along the drainage channel of Champagne Pool were sampled every 2 h during a 24 h period. Temporal variations in elemental concentrations and Sb, As, and sulfur (S) speciation were monitored in the discharging fluid. Total trace element concentrations in filtered and unfiltered samples were analyzed using ICP-MS, and Sb, As and S species were determined by IC-ICP-MS. Sulfur speciation in the drainage channel was dominated by thiosulfate and sulfide at night, while sulfate dominated during the day. The distinct diurnal changes suggest that the transformations are caused by phototrophic sulfur-oxidizing bacteria. These bacteria metabolize thiosulfate and sulfide in daylight to form sulfate and, as suggested by modeling with PhreeqC, elemental sulfur. Sulfide consumption during the day results in undersaturation of antimony sulfides, which triggers the additional release of dissolved Sb. For As, diurnal cycles were much more pronounced in speciation than in total concentrations, with di- and trithioarsenate forming at night due to excess sulfide, and monothioarsenate forming from arsenite and elemental sulfur during the day. Sulfur speciation was thus found to control Sb and As in terms of both solubility and speciation.

  3. Extraction of antimony with tertiary amines.

    PubMed

    Alian, A; Sanad, W

    1967-06-01

    The extractability of antimony(III) and (V) with tridodecylamine from various aqueous solutions is reported. Extraction from nitric and hydrofluoric acid solutions is low, but extraction from sulphuric, hydrochloric and hydrobromic solutions is high. Antimony-(III) can be separated from antimony(V) in 7M nitric acid or 0.64M hydrobromic acid. The extraction of antimony from hydrochloric acid solutions in methanol, ethanol, and acetone-water mixtures is greater than from pure aqueous solutions of the same acidity. The elements from which antimony can be separated with tertiary amines are given. PMID:18960147

  4. Thin films of copper antimony sulfide: A photovoltaic absorber material

    SciTech Connect

    Ornelas-Acosta, R.E.; Shaji, S.; Avellaneda, D.; Castillo, G.A.; Das Roy, T.K.; Krishnan, B.

    2015-01-15

    Highlights: • CuSbS{sub 2} thin films were prepared by heating Sb{sub 2}S{sub 3}/Cu layers. • Analyzed the structure, composition, optical, and electrical properties. • PV structures: glass/SnO{sub 2}:F/n-CdS/p-CuSbS{sub 2}/C/Ag were formed at different conditions. • The PV parameters (J{sub sc}, V{sub oc}, and FF) were evaluated from the J–V characteristics. • J{sub sc}: 0.52–3.20 mA/cm{sup 2}, V{sub oc}:187–323 mV, FF: 0.27–0.48 were obtained. - Abstract: In this work, we report preparation and characterization of CuSbS{sub 2} thin films by heating glass/Sb{sub 2}S{sub 3}/Cu layers and their use as absorber material in photovoltaic structures: glass/SnO{sub 2}:F/n-CdS/p-CuSbS{sub 2}/C/Ag. The Sb{sub 2}S{sub 3} thin films of 600 nm were prepared by chemical bath deposition on which copper thin films of 50 nm were thermally evaporated, and the glass/Sb{sub 2}S{sub 3}/Cu multilayers were heated in vacuum at different temperatures. X-ray diffraction analysis showed the formation of orthorhombic CuSbS{sub 2} after heating the precursor layers. Studies on identification and chemical state of the elements were done using X-ray photoelectron spectroscopy. The optical band gap of the CuSbS{sub 2} thin films was 1.55 eV and the thin films were photoconductive. The photovoltaic parameters of the devices using CuSbS{sub 2} as absorber and CdS as window layer were evaluated from the J–V curves, yielding J{sub sc}, V{sub oc}, and FF values in the range of 0.52–3.20 mA/cm{sup 2}, 187–323 mV, and 0.27–0.48, respectively, under illumination of AM1.5 radiation.

  5. Selenium Sulfide

    MedlinePlus

    Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium sulfide usually is used twice a week for the first ... it is irritating. Rinse off all of the lotion.Do not use this medication on children younger ...

  6. 40 CFR 421.140 - Applicability: Description of the primary antimony subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary antimony subcategory. 421.140 Section 421.140 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Antimony Subcategory § 421.140 Applicability: Description of the primary antimony... antimony at primary antimony facilities....

  7. 40 CFR 421.140 - Applicability: Description of the primary antimony subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary antimony subcategory. 421.140 Section 421.140 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Antimony Subcategory § 421.140 Applicability: Description of the primary antimony... antimony at primary antimony facilities....

  8. 40 CFR 421.140 - Applicability: Description of the primary antimony subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary antimony subcategory. 421.140 Section 421.140 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Antimony Subcategory § 421.140 Applicability: Description of the primary antimony... antimony at primary antimony facilities....

  9. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria.

    PubMed

    Li, Yongchao; Hu, Xiaoxian; Ren, Bozhi

    2016-01-01

    The present article summarizes antimony mine distribution, antimony mine drainage generation and environmental impacts, and critically analyses the remediation approach with special emphasis on iron oxidizing bacteria and sulfate reducing bacteria. Most recent research focuses on readily available low-cost adsorbents, such as minerals, wastes, and biosorbents. It is found that iron oxides prepared by chemical methods present superior adsorption ability for Sb(III) and Sb(V). However, this process is more costly and iron oxide activity can be inhibited by plenty of sulfate in antimony mine drainage. In the presence of sulfate reducing bacteria, sulfate can be reduced to sulfide and form Sb(2)S(3) precipitates. However, dissolved oxygen and lack of nutrient source in antimony mine drainage inhibit sulfate reducing bacteria activity. Biogenetic iron oxide minerals from iron corrosion by iron-oxidizing bacteria may prove promising for antimony adsorption, while the micro-environment generated from iron corrosion by iron oxidizing bacteria may provide better growth conditions for symbiotic sulfate reducing bacteria. Finally, based on biogenetic iron oxide adsorption and sulfate reducing bacteria followed by precipitation, the paper suggests an alternative treatment for antimony mine drainage that deserves exploration. PMID:27148704

  10. Observations on the measurement of total antimony and antimony species in algae, plant and animal tissues.

    PubMed

    Foster, S; Maher, W; Krikowa, F; Telford, K; Ellwood, M

    2005-12-01

    This paper describes our experiences with undertaking measurements of total antimony and antimony speciation in algae, plant and animal tissues. Digestion with nitric acid alone is suitable to release antimony from animal tissues. When organisms have high silica contents, e.g. some plants and algae, the addition of tetrafluorboric acid is required to dissolve silica as some antimony is retained by silica in extracts. Antimony in digested extracts is present as Sb5+ and hydride generation procedures can be used to determine total antimony concentrations, as total antimony in extracts will not be under estimated. Relatively non-aggressive solvents such as water, dilute nitric acid, sodium hydroxide and enzymes remove highly variable amounts of antimony (2-84%) from algae, plant and animal tissues. Addition of Sb3+ and Sb5+ to NIST CRM 1572 Citrus Leaves, pre- and post-extraction with water showed that Sb3+ is oxidised to Sb5+ while Sb5+ is redistributed amongst binding sites giving rise to artefacts. DOLT-2 and algae extracts indicated the presence of only inorganic antimony. A moss sample had inorganic antimony and a number of unknown antimony species in extracts. Future studies should explore the nature of the binding of antimony in tissues as solvents commonly used to extract metals and metalloids from algae, plant and animal tissues are not appropriate. PMID:16307074

  11. Sulfur passivation of InSb(1 0 0) surfaces: Comparison of aqueous and alcoholic ammonium sulfide solutions using X-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Lvova, Tatiana V.; Shakhmin, Aleksandr L.; Sedova, Irina V.; Lebedev, Mikhail V.

    2014-08-01

    The chemical composition and the electronic properties of the n-InSb(1 0 0) surface treated with ammonium sulfide dissolved in water or in 2-propanol has been studied by X-ray photoemission spectroscopy. The solvent determines the mechanism of chemical reaction between InSb(1 0 0) surface and sulfide solution. The variation of the solvent leads to variations in chemical composition and electronic structure of the final sulfide layers. Aqueous sulfide solution withdraws antimony atoms from the InSb(1 0 0) surface very fast due to solubility of antimony sulfides, whereas after treatment with alcoholic sulfide solution the antimony sulfides remain on the surface. The Fermi level at the InSb(1 0 0)/passivation layer interface occurs usually deeply in the conduction band of semiconductor and its position depends on the time of sulfur treatment. However, after prolonged treatment with aqueous sulfide solution and surface depletion with antimony the Fermi level is found in the valence band. Although both solutions remove the native oxide layer, the residual oxygen content is lower after treatment with the solution of ammonium sulfide in 2-propanol.

  12. ANTIMONY REMOVAL TECHNOLOGY FOR MINING INDUSTRY WASTEWATERS

    EPA Science Inventory

    This report assessed the current state-of-the-art of antimony removal technology for mining industry wastewaters. Through literature review and personal interviews, it was found that most mines and mills reporting significant quantities of antimony in their raw wastewater had app...

  13. Mineral resource of the month: antimony

    USGS Publications Warehouse

    U.S. Geological Survey

    2008-01-01

    The article describes the characteristics and industrial uses of antimony. Antimony, which is produced as a byproduct of mining other metals such as gold, lead or silver, is used in everything from flame retardants, batteries, ceramics and glass. It is also used in glass for television picture tubes, computer monitors, pigments and catalysts.

  14. Thermodynamics for arsenic and antimony in copper matte converting; Computer simulation

    SciTech Connect

    Chaubal, P.C. ); Nagamori, M. )

    1989-08-01

    In this paper thermodynamic data for arsenic and antimony and their sulfide and oxide gases have been critically reviewed and compiled. The entropy values for AsS(g), SbS(g), and BiS(g) have been recalculated based on a statistical thermodynamic method. The standard heat of formation and entropy of As/sub 2/O/sub 3/(g) have been newly assessed. Copper matte converting has been mathematically described using the stepwise equilibrium simulation technique together with quadratic approximations of oxygen and magnetite solubilities in molten mattes. A differential equation for the volatilization of arsenic and antimony has been solved for successive reaction microsteps whereby the volatilization, slagging, and alloying of the minor elements have been examined as functions of reaction time and other process variables. Only the first (slag-making) stage of converting is responsible for the elimination of arsenic and antimony by volatilization. Arsenic volatilizes mainly as AsS(g) and AsO(g), with As/sub 2/(g) also contributing when initial mattes are unusually rich in arsenic (above 0.5 pct arsenic). Antimony volatilizes chiefly as SbS(g), and the contributions of other gases such as SbO(g) and Sb(g) remain negligibly low. The results of the simulation compare favorably with industrial operating data.

  15. Thermodynamics for arsenic and antimony in copper matte converting—computer simulation

    NASA Astrophysics Data System (ADS)

    Chaubal, P. C.; Nagamori, M.

    1988-08-01

    Thermodynamic data for arsenic and antimony and their sulfide and oxide gases have been critically reviewed and compiled. The entropy values for AsS(g), SbS(g), and BiS(g) have been recalculated based on a statistical thermodynamic method. The standard heat of formation and entropy of As2O3(g) have been newly assessed to be △H{298/0} = -81,500 cal/mole and S{298/0} = 81.5 cal/deg/mole. Copper matte converting has been mathematically described using the stepwise equilibrium simulation technique together with quadratic approximations of oxygen and magnetite solubilities in molten mattes. A differential equation for the volatilization of arsenic and antimony has been derived and solved for successive reaction microsteps, whereby the volatilization, slagging, and alloying of the minor elements in copper matte converting have been examined as functions of reaction time and other process variables. Only the first (slag-making) stage of converting is responsible for the elimination of arsenic and antimony by volatilization. Arsenic volatilizes mainly as AsS(g) and AsO(g), with As2(g) also contributing when initial mattes are unusually rich in arsenic (above 0.5 pct arsenic). Antimony volatilizes chiefly as SbS(g), and the contributions of other gases such as SbO(g) and Sb(g) always remain negligibly low. The results of the stepwise equilibrium simulation compare favorably with the industrial operating data.

  16. Sequential solvent extraction for forms of antimony in five selected coals

    USGS Publications Warehouse

    Qi, C.; Liu, Gaisheng; Kong, Y.; Chou, C.-L.; Wang, R.

    2008-01-01

    Abundance of antimony in bulk samples has been determined in five selected coals, three coals from Huaibei Coalfield, Anhui, China, and two from the Illinois Basin in the United States. The Sb abundance in these samples is in the range of 0.11-0.43 ??g/g. The forms of Sb in coals were studied by sequential solvent extraction. The six forms of Sb are water soluble, ion changeable, organic matter bound, carbonate bound, silicate bound, and sulfide bound. Results of sequential extraction show that silicate-bound Sb is the most abundant form in these coals. Silicate- plus sulfide-bound Sb accounts for more than half of the total Sb in all coals. Bituminous coals are higher in organic matterbound Sb than anthracite and natural coke, indicating that the Sb in the organic matter may be incorporated into silicate and sulfide minerals during metamorphism. ?? 2008 by The University of Chicago. All rights reserved.

  17. Sequential solvent extraction for forms of antimony in five selected coals

    SciTech Connect

    Qi, C.C.; Liu, G.J.; Kang, Y.; Chou, C.L.; Wang, R.W.

    2008-03-15

    Abundance of antimony in bulk samples has been determined in five selected coals, three coals from Huaibei Coalfield, Anhui, China, and two from the Illinois Basin in the United States. The Sb abundance in these samples is in the range of 0.11-0.43 {mu} g/g. The forms of Sb in coals were studied by sequential solvent extraction. The six forms of Sb are water soluble, ion changeable, organic matter bound, carbonate bound, silicate bound, and sulfide bound. Results of sequential extraction show that silicate-bound Sb is the most abundant form in these coals. Silicate-plus sulfide-bound Sb accounts for more than half of the total Sb in all coals. Bituminous coals are higher in organic matter bound Sb than anthracite and natural coke, indicating that the Sb in the organic matter may be incorporated into silicate and sulfide minerals during metamorphism.

  18. 21 CFR 862.3110 - Antimony test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Antimony test system. 862.3110 Section 862.3110....3110 Antimony test system. (a) Identification. An antimony test system is a device intended to measure antimony, a heavy metal, in urine, blood, vomitus, and stomach contents. Measurements obtained by...

  19. 21 CFR 862.3110 - Antimony test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Antimony test system. 862.3110 Section 862.3110....3110 Antimony test system. (a) Identification. An antimony test system is a device intended to measure antimony, a heavy metal, in urine, blood, vomitus, and stomach contents. Measurements obtained by...

  20. 21 CFR 862.3110 - Antimony test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Antimony test system. 862.3110 Section 862.3110....3110 Antimony test system. (a) Identification. An antimony test system is a device intended to measure antimony, a heavy metal, in urine, blood, vomitus, and stomach contents. Measurements obtained by...

  1. 21 CFR 862.3110 - Antimony test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Antimony test system. 862.3110 Section 862.3110....3110 Antimony test system. (a) Identification. An antimony test system is a device intended to measure antimony, a heavy metal, in urine, blood, vomitus, and stomach contents. Measurements obtained by...

  2. 21 CFR 862.3110 - Antimony test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Antimony test system. 862.3110 Section 862.3110....3110 Antimony test system. (a) Identification. An antimony test system is a device intended to measure antimony, a heavy metal, in urine, blood, vomitus, and stomach contents. Measurements obtained by...

  3. Selenium sulfide

    Integrated Risk Information System (IRIS)

    Selenium sulfide ; CASRN 7446 - 34 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  4. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    Hydrogen sulfide ; 7783 - 06 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  5. Carbonyl sulfide

    Integrated Risk Information System (IRIS)

    Carbonyl sulfide ; CASRN 463 - 58 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  6. Antimony and silicon environments in antimony silicate glasses

    SciTech Connect

    Mee, M.; Davies, B.C.; Orman, R.G.; Thomas, M.F.; Holland, D.

    2010-09-15

    Antimony silicate glasses, of general formula xSb{sub 2}O{sub 3}.(1-x)SiO{sub 2} (0.1{<=}x{<=}0.78), have been prepared by melt-quenching and their structures studied using {sup 29}Si MAS NMR spectroscopy, {sup 121}Sb Moessbauer spectroscopy and Raman spectroscopy. Oxidation during melting gives rise to Sb{sup 5+} in concentrations, which increase linearly with x to give a value of {approx}10% when x=0.78. {sup 121}Sb Moessbauer spectra show Moessbauer shifts and quadrupole splittings consistent with Sb{sup 3+} in a [:SbO{sub 3}] trigonal pyramid, similar to that in crystalline Sb{sub 2}O{sub 3}. A broad band in the Raman spectrum at {approx}410 cm{sup -1} is due to the vibrations of such a unit. The dependence of the silicon Q{sup n} speciation on x can be interpreted by the formation of Sb-O-Sb links possibly to form rings of 4 [:SbO{sub 3}] units such as are found in valentinite. - Graphical abstract: Antimony silicate glasses have been shown to contain Sb{sup 3+} in [:SbO{sub 3}] trigonal pyramid units using {sup 121}Sb Moessbauer spectroscopy and Raman spectroscopy. {sup 29}Si magic-angle-spinning NMR has shown silicon Q{sup n} speciation which can be interpreted as formation of rings of 4 [:SbO{sub 3}] units such as are found in valentinite.

  7. Antimony-doped graphene nanoplatelets

    PubMed Central

    Jeon, In-Yup; Choi, Min; Choi, Hyun-Jung; Jung, Sun-Min; Kim, Min-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Yoo, Seonyoung; Kim, Guntae; Jeong, Hu Young; Park, Noejung; Baek, Jong-Beom

    2015-01-01

    Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalysts. PMID:25997811

  8. Speciation of antimony in polyethylene terephthalate bottles

    SciTech Connect

    Martin, R.R.; Ablett, J.; Shotyk, W.S.; Naftel, S.; Northrup, P.

    2009-12-18

    Antimony contamination has been reported in drinking water from polyethylene terephthalate (PET) bottles. Micro-X-ray fluorescence (XRF) analysis has been used to identify the distribution and chemical form of residual antimony used as a catalyst in the manufacture of PET bottles. The results are consistent with clusters of Sb(III) having dimensions of the order of tens of micrometers, clearly showing the ability of synchrotron radiation analyses to both map elemental distribution and determine oxidation state.

  9. 40 CFR 721.1930 - Butanoic acid, antimony (3=) salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butanoic acid, antimony (3=) salt. 721... Substances § 721.1930 Butanoic acid, antimony (3=) salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as butanoic acid, antimony (3=) salt (PMN...

  10. 40 CFR 721.1930 - Butanoic acid, antimony (3=) salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Butanoic acid, antimony (3=) salt. 721... Substances § 721.1930 Butanoic acid, antimony (3=) salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as butanoic acid, antimony (3=) salt (PMN...

  11. 40 CFR 721.1930 - Butanoic acid, antimony (3=) salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Butanoic acid, antimony (3=) salt. 721... Substances § 721.1930 Butanoic acid, antimony (3=) salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as butanoic acid, antimony (3=) salt (PMN...

  12. 40 CFR 721.1930 - Butanoic acid, antimony (3=) salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Butanoic acid, antimony (3=) salt. 721... Substances § 721.1930 Butanoic acid, antimony (3=) salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as butanoic acid, antimony (3=) salt (PMN...

  13. 40 CFR 721.1930 - Butanoic acid, antimony (3=) salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Butanoic acid, antimony (3=) salt. 721... Substances § 721.1930 Butanoic acid, antimony (3=) salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as butanoic acid, antimony (3=) salt (PMN...

  14. 40 CFR 721.10713 - Antimony tris(dialkyldithiocarbamate) (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Antimony tris(dialkyldithiocarbamate... Specific Chemical Substances § 721.10713 Antimony tris(dialkyldithiocarbamate) (generic). (a) Chemical... as antimony tris(dialkyldithiocarbamate) (PMN P-13-259) is subject to reporting under this...

  15. 40 CFR 721.10712 - Antimony tris(dialkyldithiocarbamate) (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Antimony tris(dialkyldithiocarbamate... Specific Chemical Substances § 721.10712 Antimony tris(dialkyldithiocarbamate) (generic). (a) Chemical... as antimony tris(dialkyldithiocarbamate) (PMN P-13-217) is subject to reporting under this...

  16. 40 CFR 721.5547 - Antimony double oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Antimony double oxide. 721.5547... Substances § 721.5547 Antimony double oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as antimony double oxide (PMNs P-95-677 and...

  17. 40 CFR 721.5547 - Antimony double oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Antimony double oxide. 721.5547... Substances § 721.5547 Antimony double oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as antimony double oxide (PMNs P-95-677 and...

  18. 40 CFR 721.5547 - Antimony double oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Antimony double oxide. 721.5547... Substances § 721.5547 Antimony double oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as antimony double oxide (PMNs P-95-677 and...

  19. 40 CFR 721.5547 - Antimony double oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Antimony double oxide. 721.5547... Substances § 721.5547 Antimony double oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as antimony double oxide (PMNs P-95-677 and...

  20. 40 CFR 721.5547 - Antimony double oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Antimony double oxide. 721.5547... Substances § 721.5547 Antimony double oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as antimony double oxide (PMNs P-95-677 and...

  1. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1985-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  2. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1985-11-26

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  3. The Membrane Electrowinning Separation of Antimony from a Stibnite Concentrate

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Guang; Yang, Sheng-Hai; Tang, Chao-Bo

    2010-06-01

    The main purpose of this study was to characterize and to extract antimony from a stibnite concentrate through electrowinning. This article reports an account of a study conducted on the optimization of the process parameters for antimony pentachloride circular leaching, purification, and electrowinning of antimony from antimony trichloride solution. The effect of electrowinning parameters, such as antimony and sodium chloride concentration in the catholyte, temperature, current density, polar distance, etc., on the voltage requirement and the current efficiency (CE) of antimony electrodeposition was explored. A maximum CE of more than 97 pct was attained with a catholyte composition of 70-g/L antimony, 25-g/L NaCl, 4.5-mol/L hydrogen ion concentration, with an anolyte composition of 40-g/L antimony trichloride at a temperature of 328 K (55 °C), a 4-cm polar distance, and a cathode current density of 200 A/m2. Under the optimized conditions, the CE was more than 97 pct, and a 99.98 pct antimony plate was obtained on the cathode. The chemical content analysis of the resulting anolyte was indicated to be 97 pct antimony pentachloride and 3 pct antimony trichloride, which could be recycled to leaching tank as the leaching agent.

  4. The behaviour of antimony released from surface geothermal features in New Zealand

    NASA Astrophysics Data System (ADS)

    Wilson, Nathaniel; Webster-Brown, Jenny; Brown, Kevin

    2012-12-01

    Antimony-rich geothermal features in the Taupo Volcanic Zone (TVZ) of New Zealand's North Island drain directly into surface aquatic environments. The discharge from Champagne Pool, a mixed alkali-chloride/sulfate hot spring at Wai-O-Tapu Geothermal Field, contains up to 194 μg/L Sb. The discharge from Frying Pan Lake, a chloride-sulfate hot spring at Waimangu Geothermal Field, contains up to 21.5 μg/L Sb. At Champagne Pool, downstream concentrations of Sb show distinct diurnal variations, particularly in winter, when concentrations in the early morning were less than half those measured mid-afternoon. Changes in sulfide-sulfate equilibria and direct stibnite oxidation may explain this phenomenon. In the discharge from Frying Pan Lake, Sb exhibits little diurnal variation. Most (> 80%) of the dissolved Sb released from Champagne Pool is removed from solution at Alum Lake, an acid-sulfate hot pool containing elevated levels of dissolved sulfide. Therefore relatively little Sb is discharged into the freshwater drainage in the area. However, in the absence of a sulfide-rich feature at Waimangu, most of the Sb discharged from Frying Pan Lake remains dissolved, and is transported into the freshwater drainage system of Lake Rotomahana. The contrast in Sb behaviour between these two sites confirms the importance of dissolved sulfide and low (< 3) pH conditions in the precipitation and removal of dissolved Sb downstream of geothermal features. Otherwise, largely conservative behaviour can be expected.

  5. Microbial antimony biogeochemistry: Enzymes, regulation, and related metabolic pathways

    USGS Publications Warehouse

    Li, Jingxin; Qian Wang; Oremland, Ronald S.; Kulp, Thomas R.; Rensing, Christopher; Wang, Gejiao

    2016-01-01

    Antimony (Sb) is a toxic metalloid that occurs widely at trace concentrations in soil, aquatic systems, and the atmosphere. Nowadays, with the development of its new industrial applications and the corresponding expansion of antimony mining activities, the phenomenon of antimony pollution has become an increasingly serious concern. In recent years, research interest in Sb has been growing and reflects a fundamental scientific concern regarding Sb in the environment. In this review, we summarize the recent research on bacterial antimony transformations, especially those regarding antimony uptake, efflux, antimonite oxidation, and antimonate reduction. We conclude that our current understanding of antimony biochemistry and biogeochemistry is roughly equivalent to where that of arsenic was some 20 years ago. This portends the possibility of future discoveries with regard to the ability of microorganisms to conserve energy for their growth from antimony redox reactions and the isolation of new species of “antimonotrophs.”

  6. Microbial Antimony Biogeochemistry: Enzymes, Regulation, and Related Metabolic Pathways.

    PubMed

    Li, Jingxin; Wang, Qian; Oremland, Ronald S; Kulp, Thomas R; Rensing, Christopher; Wang, Gejiao

    2016-09-15

    Antimony (Sb) is a toxic metalloid that occurs widely at trace concentrations in soil, aquatic systems, and the atmosphere. Nowadays, with the development of its new industrial applications and the corresponding expansion of antimony mining activities, the phenomenon of antimony pollution has become an increasingly serious concern. In recent years, research interest in Sb has been growing and reflects a fundamental scientific concern regarding Sb in the environment. In this review, we summarize the recent research on bacterial antimony transformations, especially those regarding antimony uptake, efflux, antimonite oxidation, and antimonate reduction. We conclude that our current understanding of antimony biochemistry and biogeochemistry is roughly equivalent to where that of arsenic was some 20 years ago. This portends the possibility of future discoveries with regard to the ability of microorganisms to conserve energy for their growth from antimony redox reactions and the isolation of new species of "antimonotrophs." PMID:27342551

  7. Vacuum Evaporation Technology for Treating Antimony-Rich Anode Slime

    NASA Astrophysics Data System (ADS)

    Qiu, Keqiang; Lin, Deqiang; Yang, Xuelin

    2012-11-01

    A vacuum evaporation technology for treating antimony-rich anode slime was developed in this work. Experiments were carried out at temperatures from 873 K to 1073 K and residual gas pressures from 50 Pa to 600 Pa. During vacuum evaporation, silver from the antimony-rich anode slime was left behind in the distilland in a silver alloy containing antimony and lead, and antimony trioxide was evaporated. The experimental results showed that 92% by weight of antimony can be removed, and the silver content in the alloy was up to 12.84%. The antimony trioxide content in the distillate was more than 99.7%, and the distillate can be used directly as zero-grade antimony trioxide (China standard).

  8. Thank God for Babel: Analysis, Articulation, Antimony.

    ERIC Educational Resources Information Center

    Nyberg, David

    1981-01-01

    Three approaches to philosophical inquiry (analysis, articulation, antimony) are explored in a commentary on "Philosophy and Education: Eightieth Yearbook of the National Society for the Study of Education." A discussion of the sometimes-contradictory school role in providing both educational excellence and socialization illustrates how these…

  9. Arsenic and Antimony Transporters in Eukaryotes

    PubMed Central

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  10. Synthetic, spectral, thermal and powder X-ray diffraction studies of bis(O-alkyldithiocarbonato-S,S‧) antimony(III) dialkyldithiocarbamates

    NASA Astrophysics Data System (ADS)

    Chauhan, H. P. S.; Joshi, Sapana; Carpenter, Jaswant

    2015-02-01

    Compounds of antimony(III) with mixed sulfur donor ligands of the type [(ROCS2)2SbS2CNR‧2] (where, R = C2H5, and iC3H7; R‧ = CH3, C2H5, and CH2CH2) have been synthesized using anhydrous acetone as a solvent by the one pot reaction of antimony(III) tris(O-alkyldithiocarbonato-S,S‧), antimony(III) chloride and sodium/ammonium salt of dialkyldithiocarbamate in 2:1:3 molar ratios. These compounds have been characterized by physicochemical [melting points, molecular weight determinations, elemental analyses (C, H, N, S, and Sb)], spectral [UV, IR, Far-IR and NMR (1H and 13C)] studies. In IR spectra strong band was observed at 1028-1051 cm-1 which indicates anisobidentate mode of bonding of both the ligands with antimony metal. NMR spectral data of these compounds show expected proton resonance due to corresponding moieties. The powder XRD, ESI-Mass and thermal (TG and DTA) studies have also been performed to get the information about geometrical parameters, fragmentation pattern and last thermal decomposition product, respectively. The powder XRD studies lead to the structural properties of the synthesized compounds and show the nanorange crystallite size and monoclinic crystal system. Thermal data of these compounds indicate the formation of antimony sulfide (Sb2S3) as a final thermal degradation product which is used in a number of ways like switching devices television cameras and microwave devices.

  11. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  12. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  13. High Temperature Interactions of Antimony with Nickel

    SciTech Connect

    Marina, Olga A.; Pederson, Larry R.

    2012-07-01

    In this chapter, the surface and bulk interactions of antimony with the Ni-based anodes in solid oxide fuel cells (SOFC) will be discussed. High fuel flexibility is a significant advantage of SOFCs, allowing the direct use of fossil and bio fuels without a hydrogen separation unit. Synthesis gas derived from coal and biomass consists of a mixture of hydrogen, carbon monoxide, carbon dioxide, and steam, but finite amounts of tars and trace impurities such as S, Se, P, As, Sb, Cd, Pb, Cl, etc, are also always present. While synthesis gas is commonly treated with a series of chemical processes and scrubbers to remove the impurities, complete purification is not economical. Antimony is widely distributed in coals. During coal gasification antimony is volatilized, such that contact with the SOFC anodes and other SOFC parts, e.g., interconnect, current collecting wires, fuel gas supplying tubing, is most likely. This chapter addresses the following topics: high temperature Ni - Sb interactions; alteration phase, Ni3Sb, Ni5Sb2, NiSb, formation; thermochemical modeling; impact of Sb on the electrocatalytic activity of Ni toward the fuel oxidation and the presence of other impurities (sulfur, in particular); converted anode structural instability during long-term SOFC operation; comparison with nickel heterogeneous catalysts.

  14. Microbial diversity and community structure in an antimony-rich tailings dump.

    PubMed

    Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Xiao, Qingxiang; Sun, Weimin

    2016-09-01

    To assess the impact of antimony (Sb) on microbial community structure, 12 samples were taken from an Sb tailings pile in Guizhou Province, Southwest China. All 12 samples exhibited elevated Sb concentrations, but the mobile and bioaccessible fractions were small in comparison to total Sb concentrations. Besides the geochemical analyses, microbial communities inhabiting the tailing samples were characterized to investigate the interplay between the microorganisms and environmental factors in mine tailings. In all samples, Proteobacteria and Actinobacteria were the most dominant phyla. At the genus level, Thiobacillus, Limnobacter, Nocardioides, Lysobacter, Phormidium, and Kaistobacter demonstrated relatively high abundances. The two most abundant genera, Thiobacillus and Limnobacter, are characterized as sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria, respectively, while the genus Lysobacter contains arsenic (As)-resistant bacteria. Canonical correspondence analysis (CCA) indicates that TOC and the sulfate to sulfide ratio strongly shaped the microbial communities, suggesting the influence of the environmental factors in the indigenous microbial communities. PMID:27188777

  15. The exposure to and health effects of antimony

    PubMed Central

    Cooper, Ross G.; Harrison, Adrian P.

    2009-01-01

    Context: This minireview describes the health effects of antimony exposure in the workplace and the environment. Aim: To collate information on the consequences of occupational and environmental exposure to antimony on physiological function and well-being. Methods: The criteria used in the current minireview for selecting articles were adopted from proposed criteria in The International Classification of Functioning, Disability and Health. Articles were classified from an acute and chronic exposure and toxicity thrust. Results: The proportion of utilised and non-utilised articles was tabulated. Antimony toxicity is dependent on the exposure dose, duration, route (breathing, eating, drinking, or skin contact), other chemical exposures, age, sex, nutritional status, family traits, life style, and state of health. Chronic exposure to antimony in the air at levels of 9 mg/m3 may exacerbate irritation of the eyes, skin, and lungs. Long-term inhalation of antimony can potentiate pneumoconiosis, altered electrocardiograms, stomach pain, diarrhea, vomiting, and stomach ulcers, results which were confirmed in laboratory animals. Although there were investigations of the effect of antimony in sudden infant death syndrome, current findings suggest no link. Antimony trioxide exposure is predominant in smelters. Mining and exposure via glass working, soldering, and brazing are also important. Conclusion: Antimony has some useful but undoubtedly harmful effects on health and well-being and measures need to be taken to prevent hazardous exposure of the like. Its biological monitoring in the workplace is essential. PMID:20165605

  16. Undercooling and crystallization behaviour of antimony droplets

    NASA Technical Reports Server (NTRS)

    Graves, J. A.; Perepezko, J. H.

    1986-01-01

    The droplet emulsion technique is presently used to examine the undercooling and crystallization behavior of pure antimony. Control of droplet size and applied cooling rate allowed maximum undercooling to be extended from 0.08 to 0.23 T(m). A droplet coating was produced by means of emulsification which appears to furnish a favorable crystallographic matching for effective nucleation catalysis of a metastable simple cubic structure. Thermal analysis shows the melting temperature of the single cubic phase to be about 625 C.

  17. Sulfide Mineralogy and Geochemistry

    NASA Astrophysics Data System (ADS)

    Dilles, John

    2007-02-01

    Reviews in Mineralogy and Geochemistry Series, Volume 61 David J. Vaughan, Editor Geochemical Society and Mineralogical Society of America; ISBN 0-939950-73-1 xiii + 714 pp.; 2006; $40. Sulfide minerals as a class represent important minor rock-forming minerals, but they are generally known as the chief sources of many economic metallic ores. In the past two decades, sulfide research has been extended to include important roles in environmental geology of sulfide weathering and resultant acid mine drainage, as well as in geomicrobiology in which bacteria make use of sulfides for metabolic energy sources. In the latter respect, sulfides played an important role in early evolution of life on Earth and in geochemical cycling of elements in the Earth's crust and hydrosphere.

  18. Selective determination of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by atomic-absorption spectrometry with a carbon-tube atomizer.

    PubMed

    Kamada, T; Yamamoto, Y

    1977-05-01

    The extraction behaviour of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of frameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of antimony(III) and differential determination of antimony(III) and antimony(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone, when the aqueous phase/solvent volume ratio is 50 ml/10 ml and the injection volume in the carbon tube is 20 mul, the sensitivity for antimony is 0.2 ng/ml for 1% absorption. The relative standard deviations are ca. 2%. Interferences by many metal ions can be prevented by masking with EDTA. The proposed methods have been applied satisfactorily to determination of antimony(III) and antimony(V) in various types of water. PMID:18962096

  19. Disposition of antimony in rhesus monkeys infected with Leishmania braziliensis and treated with meglumine antimoniate.

    PubMed

    Friedrich, Karen; Vieira, Flávia A; Porrozzi, Renato; Marchevsky, Renato S; Miekeley, Norbert; Grimaldi, Gabriel; Paumgartten, Francisco J R

    2012-01-01

    Antimony (Sb) disposition and toxicity was evaluated in Leishmania braziliensis-infected monkeys (Macaca mulatta) treated with a 21-d course of low (LOW) or standard (STD) meglumine antimoniate (MA) dosage regimens (5 or 20 mg Sb(V)/kg body weight/d im). Antimony levels in biological matrices were determined by inductively coupled plasma mass spectrometry (ICPMS), while on-line ion chromatography coupled to ICPMS was used to separate and quantify Sb species in plasma. Nadir Sb levels rose steadily from 19.6 ± 4 and 65.1 ± 17.4 ng/g, 24 h after the first injection, up to 27.4 ± 5.8 and 95.7 ± 6.6 ng/g, 24 h after the 21st dose in LOW and SDT groups, respectively. Subsequently, Sb plasma levels gradually declined with a terminal elimination phase half-life of 35.8 d. Antimony speciation in plasma on posttreatment days 1-9 indicated that as total Sb levels declined, proportion of Sb(V) remained nearly constant (11-20%), while proportion of Sb(III) rose from 5% (d 1) to 50% (d 9). Plasma [Sb]/erythrocyte [Sb] ratio was >1 until 12 h after dosing and reversed thereafter. Tissue Sb concentrations (posttreatment days 55 and 95) were as follows: >1000 ng/g in thyroid, nails, liver, gall bladder and spleen; >200 and <1000 ng/g in lymph nodes, kidneys, adrenals, bones, skeletal muscles, heart and skin; and <200 ng/g in various brain structures, thymus, stomach, colon, pancreas. and teeth. Results from this study are therefore consistent with view that Sb(V) is reduced to Sb(III), the active form, within cells from where it is slowly eliminated. Localization of Sb active forms in the thyroid gland and liver and the pathophysiological consequences of marked Sb accumulation in these tissues warrant further studies. PMID:22129235

  20. Tissue distribution of residual antimony in rats treated with multiple doses of meglumine antimoniate

    PubMed Central

    Coelho, Deise Riba; Miranda, Elaine Silva; Saint’Pierre, Tatiana Dillenburg; Paumgartten, Francisco José Roma

    2014-01-01

    Meglumine antimoniate (MA) and sodium stibogluconate are pentavalent antimony (SbV) drugs used since the mid-1940s. Notwithstanding the fact that they are first-choice drugs for the treatment of leishmaniases, there are gaps in our knowledge of their toxicological profile, mode of action and kinetics. Little is known about the distribution of antimony in tissues after SbV administration. In this study, we evaluated the Sb content of tissues from male rats 24 h and three weeks after a 21-day course of treatment with MA (300 mg SbV/kg body wt/d, subcutaneous). Sb concentrations in the blood and organs were determined by inductively coupled plasma-mass spectrometry. In rats, as with in humans, the Sb blood levels after MA dosing can be described by a two-compartment model with a fast (t1/2 = 0.6 h) and a slow (t1/2 >> 24 h) elimination phase. The spleen was the organ that accumulated the highest amount of Sb, while bone and thyroid ranked second in descending order of tissues according to Sb levels (spleen >> bone, thyroid, kidneys > liver, epididymis, lungs, adrenals > prostate > thymus, pancreas, heart, small intestines > skeletal muscle, testes, stomach > brain). The pathophysiological consequences of Sb accumulation in the thyroid and Sb speciation in the liver, thyroid, spleen and bone warrant further studies. PMID:25075781

  1. Reduced Antimony Accumulation in ARM58-Overexpressing Leishmania infantum

    PubMed Central

    Schäfer, Carola; Tejera Nevado, Paloma; Zander, Dorothea

    2014-01-01

    Antimony-based drugs are still the mainstay of chemotherapy against Leishmania infections in many countries where the parasites are endemic. The efficacy of antimonials has been compromised by increasing numbers of resistant infections, the basis of which is not fully understood and likely involves multiple factors. By using a functional cloning strategy, we recently identified a novel antimony resistance marker, ARM58, from the parasite Leishmania braziliensis that protects the parasites against antimony-based antileishmanial compounds. Here we show that the Leishmania infantum homologue also confers resistance against antimony but not against other antileishmanial drugs and that its function depends critically on one of four conserved domains of unknown function. This critical domain requires at least two hydrophobic amino acids and is predicted to form a transmembrane structure. Overexpression of ARM58 in antimony-exposed parasites reduces the intracellular Sb accumulation by over 70%, indicating a role for ARM58 in Sb extrusion pathways, but without involvement of energy-dependent transporter proteins. PMID:24366738

  2. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials.

    PubMed

    Jiang, Xiuming; Wen, Shengping; Xiang, Guoqiang

    2010-03-15

    A simple, sensitive method for the speciation of inorganic antimony by cloud point extraction combined with electrothermal atomic absorption spectrometry (ETAAS) is presented and evaluated. The method based on the fact that formation of a hydrophobic complex of antimony(III) with ammonium pyrrolidine dithiocarbamate (APDC) at pH 5.0 and subsequently the hydrophobic complex enter into surfactant-rich phase, whereas antimony(V) remained in aqueous solutions. Antimony(III) in surfactant-rich phase was analyzed by ETAAS after dilution by 0.2 mL nitric acid in methanol (0.1M), and antimony(V) was calculated by subtracting antimony(III) from the total antimony after reducing antimony(V) to antimony(III) by l-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of APDC and Triton X-114, equilibrium temperature and incubation time, sample volume were investigated in detail. Under the optimum conditions, the detection limit (3 sigma) of the proposed method was 0.02 ng mL(-1) for antimony(III), and the relative standard deviation was 7.8% (c=1.0 ng mL(-1), n=7). The proposed method was successfully applied to speciation of inorganic antimony in the leaching solutions of different food packaging materials with satisfactory results. PMID:19853991

  3. Antimony(III) Sulfide Thin Films as a Photoanode Material in Photocatalytic Water Splitting.

    PubMed

    DeAngelis, Alexander Daniel; Kemp, Kingsley Christian; Gaillard, Nicolas; Kim, Kwang S

    2016-04-01

    For the first time, we present exploratory investigations on the performance of thermally evaporated Sb2S3 thin film photoanodes for solar-assisted water-splitting applications. With a band gap of 1.72 eV, a 250 nm thick Sb2S3 photoanode showed a saturation photocurrent density of ∼600 μA cm(-2) measured at 1.0 V reversible hydrogen electrode (RHE) in 0.1 M Na2SO4 under 1-sun illumination, with an onset potential of ∼0.25 V RHE. However, subsequent photodegradation studies revealed that the material dissolves relatively quickly with the application of both illumination and bias. Nonetheless, Sb2S3 does have the advantage of having a relatively low optimal fabrication temperature of 300 °C and thus may have utility as a top cell absorber of a tandem device where the bottom cell is temperature sensitive, if protected from corrosion. Therefore, we characterized relevant aspects of the material in an attempt to explain the large difference between the theoretical maximum and measured current density. From our characterization it is believed that the photocatalytic efficiency of this material can be improved by modifying the surface to reduce optical reflection and addressing inherent issues such as high electrical resistivity and surface defects. PMID:27003726

  4. 40 CFR 421.140 - Applicability: Description of the primary antimony subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary antimony subcategory. 421.140 Section 421.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Antimony Subcategory § 421.140 Applicability: Description of the primary...

  5. 40 CFR 421.140 - Applicability: Description of the primary antimony subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary antimony subcategory. 421.140 Section 421.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Antimony Subcategory § 421.140 Applicability: Description of the primary...

  6. pH-dependent release characteristics of antimony and arsenic from typical antimony-bearing ores.

    PubMed

    Hu, Xingyun; Guo, Xuejun; He, Mengchang; Li, Sisi

    2016-06-01

    The pH-dependent leaching of antimony (Sb) and arsenic (As) from three typical Sb-bearing ores (Banxi, Muli and Tongkeng Antimony Mine) in China was assessed using a pH-static leaching experiment. The pH changes of the leached solutions and pH-dependent leaching of Sb and As occurred in different ways. For the Banxi and Muli Sb ores, alkaline conditions were more favorable for the release of Sb compared to neutral and acidic conditions, but the reverse was true for the pH-dependent release of As. For the Tongkeng Sb ore, unlike the previous two Sb-bearing ores, acidic conditions were more favorable for Sb release than neutral and alkaline conditions. The ores with lower Sb and As contents released higher percentages of their Sb and As after 16day leaching, suggesting that they are the largest potential sources of pollution. This work may provide key information on the geochemistry of Sb and As in the weathering zone. PMID:27266313

  7. Synthetic aspects, spectral, thermal studies and antimicrobial screening on bis(N,N-dimethyldithiocarbamato-S,S‧)antimony(III) complexes with oxo or thio donor ligands

    NASA Astrophysics Data System (ADS)

    Chauhan, H. P. S.; Carpenter, Jaswant; Joshi, Sapana

    2014-09-01

    The bis(N,N-dimethyldithiocarbamato-S,S‧)antimony(III) complexes have been obtained by the reaction of chloro bis(N,N-dimethyldithiocarbamato-S,S‧)antimony(III) with corresponding oxo or thio donor ligands such as sodium benzoate 1, sodium thioglycolate 2, phenol 3, sodium 1-propanethiolate 4, potassium thioacetate 5, sodium salicylate 6, ethane-1,2-dithiolate 7 and disodium oxalate 8. These complexes have been characterized by the physicochemical [melting point, molecular weight determination and elemental analysis (C, H, N, S and Sb)], spectral [UV-Visible, FT-IR, far IR, NMR (1H and 13C)], thermogravimetric (TG & DTA) analysis, ESI-Mass and powder X-ray diffraction studies. Thermogravimetric analysis of the complexes confirmed the final decomposition product as highly pure antimony sulfide (Sb2S3) and powder X-ray diffraction studies show that the complexes are in lower symmetry with monoclinic crystal lattice and nano-ranged particle size (11.51-20.82 nm). The complexes have also been screened against some bacterial and fungal strains for their antibacterial and antifungal activities and compared with standard drugs. These show that the complexes have greater activities against some human pathogenic bacteria and fungi than the activities of standard drugs.

  8. Sulfidation of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Levard, C.; Michel, F. M.; Brown, G. E.

    2010-12-01

    Rapid development of nanotechnologies that exploit the properties of silver nanoparticles (Ag-NPs) raises questions concerning the impact of Ag on the environment. Ag-NPs are currently among the most widely used in the nanotechnology industry and the amount released into the environment is expected to increase along with production (1). When present in geochemical systems, Ag-NPs may undergo a variety of changes due to varying redox, pH, and chemical conditions. Expected changes range from surface modification (e.g., oxidation, sulfidation, chloridation etc.) to complete dissolution and re-precipitation. In this context, the focus of our work is on understanding the behavior of synthetic Ag-NPs with different particle sizes under varying conditions relevant to the environment. Sulfidation of Ag-NPs is of particular interest since it among the processes most likely to occur in aqueous systems, in particular under reducing conditions. Three sizes of Ag-NPs coated with polyvinyl pyrrolidone were produced using the polyol process (2) (7 ±1; 20 ±4, and 40 ±9 nm). Batch solutions containing the different Ag-NPs were subsequently reacted with Na2S solutions of different concentrations. The sulfidation process was followed step-wise for 24 hours and the corrosion products formed were characterized by electron microscopy (TEM/SEM), diffraction (XRD), and photo-electron spectroscopy (XPS). Surface charge (pHPZC) of the products formed during this process was also measured, as were changes in solubility and reactivity. Based on experimental observations we infer that the sulfidation process is the result of dissolution-precipitation and find that: (i) acanthite (Ag2S) is formed as a corrosion product; (ii) Ag-NPs aggregation increased with sulfidation rate; (iii) pHPZC increases with the rate of sulfidation; and (iv) the solubility of the corrosion products formed from sulfidation appears lower than that of non-sulfidated Ag-NPs. We observe size-dependent differences in

  9. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory....

  10. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory....

  11. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory. The provisions of...

  12. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory. The provisions of...

  13. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory....

  14. SULFIDE METHOD PLUTONIUM SEPARATION

    DOEpatents

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  15. Possible Links between Sickle Cell Crisis and Pentavalent Antimony

    PubMed Central

    Garcerant, Daniel; Rubiano, Luisa; Blanco, Victor; Martinez, Javier; Baker, Nancy C.; Craft, Noah

    2012-01-01

    For over 60 years, pentavalent antimony (Sbv) has been the first-line treatment of leishmaniasis. Sickle cell anemia is a disease caused by a defect in red blood cells, which among other things can cause vasooclusive crisis. We report the case of a 6-year-old child with leishmaniasis who during treatment with meglumine antimoniate developed a sickle cell crisis (SCC). No previous reports describing the relationship between antimonial drugs and sickle cell disease were found. Reviews of both the pathophysiology of SCC and the mechanism of action of Sbv revealed that a common pathway (glutathione) may have resulted in the SCC. ChemoText, a novel database created to predict chemical-protein-disease interactions, was used to perform a more expansive and systematic review that was able to support the association between glutathione, Sbv, and SCC. Although suggestive evidence to support the hypothesis, additional research at the bench would be needed to prove Sbv caused the SCC. PMID:22665619

  16. Technetium-99m antimony colloid for bone-marrow imaging

    SciTech Connect

    Martindale, A.A.; Papadimitriou, J.M.; Turner, J.H.

    1980-11-01

    Technetium-99m antimony colloid was prepared in our laboratory for bone-marrow imaging. Optimal production of colloid particles of size range 1 to 13 nm was achieved by the use of polyvinylpyrrolidone of mol. wt. 44,000. Electron microscopy was used to size the particles. Studies in rabbits showed exclusive concentration in the subendothelial dendritic phagocytes of the bone marrow. Pseudopods from these cells were found to traverse interendothelial junctions and concentrate colloid from the sinusoids. Imaging studies of bone marrow in rabbits showed the superiority of the Tc-99m antimony colloid over the much larger colloidal particle of Tc-99m sulfur colloid. Tissue distribution studies in the rat confirmed that bone-marrow uptake of Tc-99m antimony colloid was greater than that of Tc-99m sulfur colloid, although blood clearance was much slower.

  17. Antimony Based III-V Thermophotovoltaic Devices

    SciTech Connect

    CA Wang

    2004-06-09

    Antimony-based III-V thermophotovoltaic (TPV) cells are attractive converters for systems with low radiator temperature around 1100 to 1700 K, since these cells potentially can be spectrally matched to the thermal source. Cells under development include GaSb and the lattice-matched GaInAsSb/GaSb and InPAsSb/InAs quaternary systems. GaSb cell technology is the most mature, owing in part to the relative ease in preparation of the binary alloy compared to quaternary GaInAsSb and InPAsSb alloys. Device performance of 0.7-eV GaSb cells exceeds 90% of the practical limit. GaInAsSb TPV cells have been the primary focus of recent research, and cells with energy gap E{sub g} ranging from {approx}0.6 to 0.49 eV have been demonstrated. Quantum efficiency and fill factor approach theoretical limits. Open-circuit voltage factor is as high as 87% of the practical limit for the higher-E{sub g} cells, but degrades to below 80% with decreasing E{sub g} of the alloy, which might be due to Auger recombination. InPAsSb cells are the least studied, and a cell with E{sub g} = 0.45-eV has extended spectral response out to 4.3 {micro}m. This paper briefly reviews the main contributions that have been made for antimonide-based TPV cells, and suggests additional studies for further performance enhancements.

  18. Lattice dynamics of femtosecond laser-excited antimony

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Mahmoud Hanafy; Bugayev, Aleksey; Elsayed-Ali, Hani E.

    2016-07-01

    Ultrafast electron diffraction is used to probe the lattice dynamics of femtosecond laser-excited antimony thin film. The temporal hierarchies of the intensity and position of diffraction orders are monitored. The femtosecond laser excitation of antimony film was found to lead to initial compression after the laser pulse, which gives way to tension vibrating at new equilibrium displacement. A damped harmonic oscillator model, in which the hot electron-blast force contributes to the driving force of oscillations in lattice spacing, is used to interpret the data. The electron-phonon energy-exchange rate and the electronic Grüneisen parameter were obtained.

  19. Barium and antimony distributions on the hands of nonshooters.

    PubMed

    Havakost, D G; Peters, C A; Koons, R D

    1990-09-01

    Barium and antimony levels from selected areas of the left and right hands of 269 nonshooters provide a database for interpretation of gunshot residue swab analysis results. The database represents a variety of activities of individuals sampled by collectors throughout the United States. Nonshooting exposure to barium and antimony can generally be distinguished from firearms-associated exposure by considering the relative levels of the elements, location on the hands, and condition of the swabs. Consistent definition of sampling procedures and accurate analytical results make this database applicable for interpretation of data generated by most gunshot residue swab examiners. PMID:2230685

  20. Reductive precipitation of metals photosensitized by tin and antimony porphyrins

    DOEpatents

    Shelnutt, John A.; Gong, Weiliang; Abdelouas, Abdesselam; Lutze, Werner

    2003-09-30

    A method for reducing metals using a tin or antimony porphyrin by forming an aqueous solution of a tin or antimony porphyrin, an electron donor, such as ethylenediaminetetraaceticacid, triethylamine, triethanolamine, and sodium nitrite, and at least one metal compound selected from a uranium-containing compound, a mercury-containing compound, a copper-containing compound, a lead-containing compound, a gold-containing compound, a silver-containing compound, and a platinum-containing compound through irradiating the aqueous solution with light.

  1. Antimony recycling in the United States in 2000

    USGS Publications Warehouse

    Carlin, James F.

    2006-01-01

    The importance of recycling has become more obvious as concerns about the environment and import dependence have grown in recent years. When materials are recycled, fewer natural resources are consumed, and less waste products go to landfills or pollute the water and air. This study, one of a series of reports on metals recycling in 2000, discusses the flow of antimony from mining through its uses and disposal with emphasis on recycling. In 2000, the recycling efficiency for antimony was estimated to be 89 percent, and the recycling rate was about 20 percent.

  2. Zinc sulfide liquefaction catalyst

    DOEpatents

    Garg, Diwakar

    1984-01-01

    A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

  3. Sulfidation kinetics of silver nanoparticles reacted with metal sulfides.

    PubMed

    Thalmann, Basilius; Voegelin, Andreas; Sinnet, Brian; Morgenroth, Eberhard; Kaegi, Ralf

    2014-05-01

    Recent studies have documented that the sulfidation of silver nanoparticles (Ag-NP), possibly released to the environment from consumer products, occurs in anoxic zones of urban wastewater systems and that sulfidized Ag-NP exhibit dramatically reduced toxic effects. However, whether Ag-NP sulfidation also occurs under oxic conditions in the absence of bisulfide has not been addressed, yet. In this study we, therefore, investigated whether metal sulfides that are more resistant toward oxidation than free sulfide, could enable the sulfidation of Ag-NP under oxic conditions. We reacted citrate-stabilized Ag-NP of different sizes (10-100 nm) with freshly precipitated and crystalline CuS and ZnS in oxygenated aqueous suspensions at pH 7.5. The extent of Ag-NP sulfidation was derived from the increase in dissolved Cu(2+) or Zn(2+) over time and linked with results from X-ray absorption spectroscopy (XAS) analysis of selected samples. The sulfidation of Ag-NP followed pseudo first-order kinetics, with rate coefficients increasing with decreasing Ag-NP diameter and increasing metal sulfide concentration and depending on the type (CuS and ZnS) and crystallinity of the reacting metal sulfide. Results from analytical electron microscopy revealed the formation of complex sulfidation patterns that seemed to follow preexisting subgrain boundaries in the pristine Ag-NP. The kinetics of Ag-NP sulfidation observed in this study in combination with reported ZnS and CuS concentrations and predicted Ag-NP concentrations in wastewater and urban surface waters indicate that even under oxic conditions and in the absence of free sulfide, Ag-NP can be transformed into Ag2S within a few hours to days by reaction with metal sulfides. PMID:24678586

  4. Chemical passivation of InSb (100) substrates in aqueous solutions of sodium sulfide

    SciTech Connect

    Lvova, T. V. Dunaevskii, M. S.; Lebedev, M. V.; Shakhmin, A. L.; Sedova, I. V.; Ivanov, S. V.

    2013-05-15

    The elemental composition and electronic structure of both native-oxide-covered InSb (100) substrates and substrates treated in aqueous solutions of sodium sulfide are analyzed by X-ray photoelectron spectroscopy. It is found that, as a result of treatment in a 1 M aqueous solution of Na{sub 2}S and subsequent annealing in vacuum at 150 Degree-Sign C, the surface layer consisting of complex antimony and indium oxides of nonstoichiometric composition is removed completely with the formation of a continuous layer of chemisorbed sulfur atoms coherently bound to indium atoms. According to atomic-force microscopy data, no etching of the host substrate material occurs during sulfide passivation. A shift (by 0.37 eV) of the In-Sb bulk photoemission towards higher binding energies is found, which indicates that the surface Fermi level shifts deeper into the conduction band.

  5. Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes

    SciTech Connect

    Kathawa, J.; Fry, C.; Thoennessen, M.

    2013-01-15

    Currently, thirty-eight palladium, thirty-eight antimony, thirty-nine tellurium, thirty-eight iodine, and forty xenon isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  6. Antimony to Cure Visceral Leishmaniasis Unresponsive to Liposomal Amphotericin B.

    PubMed

    Morizot, Gloria; Jouffroy, Romain; Faye, Albert; Chabert, Paul; Belhouari, Katia; Calin, Ruxandra; Charlier, Caroline; Miailhes, Patrick; Siriez, Jean-Yves; Mouri, Oussama; Yera, Hélène; Gilquin, Jacques; Tubiana, Roland; Lanternier, Fanny; Mamzer, Marie-France; Legendre, Christophe; Peyramond, Dominique; Caumes, Eric; Lortholary, Olivier; Buffet, Pierre

    2016-01-01

    We report on 4 patients (1 immunocompetent, 3 immunosuppressed) in whom visceral leishmaniasis had become unresponsive to (or had relapsed after) treatment with appropriate doses of liposomal amphotericin B. Under close follow-up, full courses of pentavalent antimony were administered without life-threatening adverse events and resulted in rapid and sustained clinical and parasitological cure. PMID:26735920

  7. Acid-base properties of titanium-antimony oxides catalysts

    SciTech Connect

    Zenkovets, G.A.; Paukshtis, E.A.; Tarasova, D.V.; Yurchenko, E.N.

    1982-06-01

    The acid-base properties of titanium-antimony oxide catalysts were studied by the methods of back titration and ir spectroscopy. The interrelationship between the acid-base and catalytic properties in the oxidative ammonolysis of propylene was discussed. 3 figures, 1 table.

  8. Antimony tartrate corrosion inhibitive composition for coolant systems

    SciTech Connect

    Payerle, N.E.

    1987-08-11

    An automobile coolant concentrate is described comprising (a) a liquid polyhydric alcohol chosen from the group consisting of ethylene glycol, propylene glycol, diethylene glycol and mixtures thereof, and (b) corrosion inhibitors in a corrosion inhibitory amount with respect to corrosion of lead-containing solders, the corrosion inhibitors comprising (i) an alkali metal antimony tartrate, and (ii) an azole compound.

  9. Antimony to Cure Visceral Leishmaniasis Unresponsive to Liposomal Amphotericin B

    PubMed Central

    Morizot, Gloria; Jouffroy, Romain; Faye, Albert; Chabert, Paul; Belhouari, Katia; Calin, Ruxandra; Charlier, Caroline; Miailhes, Patrick; Siriez, Jean-Yves; Mouri, Oussama; Yera, Hélène; Gilquin, Jacques; Tubiana, Roland; Lanternier, Fanny; Mamzer, Marie-France; Legendre, Christophe; Peyramond, Dominique; Caumes, Eric; Lortholary, Olivier; Buffet, Pierre

    2016-01-01

    We report on 4 patients (1 immunocompetent, 3 immunosuppressed) in whom visceral leishmaniasis had become unresponsive to (or had relapsed after) treatment with appropriate doses of liposomal amphotericin B. Under close follow-up, full courses of pentavalent antimony were administered without life-threatening adverse events and resulted in rapid and sustained clinical and parasitological cure. PMID:26735920

  10. Sulfide detoxification in plant mitochondria.

    PubMed

    Birke, Hannah; Hildebrandt, Tatjana M; Wirtz, Markus; Hell, Rüdiger

    2015-01-01

    In contrast to animals, which release the signal molecule sulfide in small amounts from cysteine and its derivates, phototrophic eukaryotes generate sulfide as an essential intermediate of the sulfur assimilation pathway. Additionally, iron-sulfur cluster turnover and cyanide detoxification might contribute to the release of sulfide in mitochondria. However, sulfide is a potent inhibitor of cytochrome c oxidase in mitochondria. Thus, efficient sulfide detoxification mechanisms are required in mitochondria to ensure adequate energy production and consequently survival of the plant cell. Two enzymes have been recently described to catalyze sulfide detoxification in mitochondria of Arabidopsis thaliana, O-acetylserine(thiol)lyase C (OAS-TL C), and the sulfur dioxygenase (SDO) ethylmalonic encephalopathy protein 1 (ETHE1). Biochemical characterization of sulfide producing and consuming enzymes in mitochondria of plants is fundamental to understand the regulatory network that enables mitochondrial sulfide homeostasis under nonstressed and stressed conditions. In this chapter, we provide established protocols to determine the activity of the sulfide releasing enzyme β-cyanoalanine synthase as well as sulfide-consuming enzymes OAS-TL and SDO. Additionally, we describe a reliable and efficient method to purify OAS-TL proteins from plant material. PMID:25747485

  11. Antimony and arsenic biogeochemistry in the East China Sea

    NASA Astrophysics Data System (ADS)

    Ren, Jing-Ling; Zhang, Xu-Zhou; Sun, You-Xu; Liu, Su-Mei; Huang, Daji; Zhang, Jing

    2016-02-01

    The biogeochemical cycles of the metalloid elements arsenic and antimony in the East China Sea (ECS), one of the most important marginal seas for western Pacific, were examined in May 2011. Dissolved inorganic arsenic (As(V) and As(III)) and antimony (Sb(V) and Sb(III)) species were determined by selective hydride generation-atomic fluorescence spectrometry (HG-AFS). Results show that total dissolved inorganic arsenic (TDIAs; [TDIAs]=[As(V)]+[As(III)]) were moderately depleted in the surface water and enriched in the deep water. Arsenite (As(III)) showed different vertical profiles with that of TDIAs, with significant surface enrichment in the middle shelf region where the concentrations of phosphate were extremely low. Speciation of dissolved arsenic was subtly controlled by the stoichiometric molar ratio of arsenate (As(V)) to phosphate. The average As(V)/P ratio for the ECS in spring 2011 was 10.8×10-3, which is higher than previous results and indicates the arsenate stress. The concentrations of total dissolved inorganic antimony (TDISb; [TDISb]=[Sb(V)]+[Sb(III)]) were high near the Changjiang Estuary and the coastal area of Hangzhou Bay and decreased moderately off the coast. TDISb displayed moderate conservative behavior in the ECS that confirms by the correlations with salinity and dissolved aluminum. Different with that of As(III), antimonite (Sb(III)) concentrations were extremely lower in the ECS, with relative higher concentration appeared at the bottom layer which indicates the contribution from sediment-water interface. A preliminary box model was established to estimate the water-mass balance and antimony budgets for the ECS. Compared with other areas in the world, the concentrations of dissolved inorganic arsenic and antimony in the ECS remain at natural levels.

  12. Geothermal hydrogen sulfide removal

    SciTech Connect

    Urban, P.

    1981-04-01

    UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

  13. Biotreatment of refinery spent sulfidic caustics

    SciTech Connect

    Sublette, K.L.; Rajganesh, B.; Woolsey, M.; Plato, A.

    1995-12-31

    Caustics are used in petroleum refinering to remove hydrogen sulfide from various hydrocarbon streams. Spent sulfidic caustics from two Conoco refineries have been successfully biotreated on bench and pilot scale, resulting in neutralization and removal of active sulfides. Sulfides were completely oxidized to sulfate by Thiobacillus denitrificans. Microbial oxidation of sulfide produced acid, which at least partially neutralized the caustic.

  14. BioGeochemistry of antimony, Sources, Transfers, Impacts and Assessment

    NASA Astrophysics Data System (ADS)

    Le Roux, Gael; Pinelli, Eric; Hedde, Mickael; Guiresse, Maritxu; De Vleeschouwer, François; Silvestre, Jérôme; Enrico, Maxime; Gandois, Laure; Monna, Fabrice; Gers, Charles; Probst, Anne

    2013-04-01

    BioGeoSTIB is a project funded by ADEME (French Environmental Protection Agency). Its aim is to provide a better understanding of biogeochemical cycle disturbances of antimony by man. Specifically, it is focused on the atmosphere-soil-organism interfaces. Based on a multi-scale approach, the impact of antimony on organisms and organism communities and the factors of Sb dispersion in the environment aim to better characterized. This report gives the main results of 2 and 1 -2 years of research. Using peat bogs as environmental archives, we show that Sb contamination in soils date back to the beginning of the metallurgy. Atmospheric deposition of Sb largely increased by 100 times during the Industrial Revolution compared to natural levels (~0,001-0,01 mg m-2 an-1) estimated in the deepest peat layers. This disturbance in the antimony geochemical cycle modified its concentrations in soils. One main source of present Sb contamination is automotive traffic due to Sb in braking lines. This emerging contamination was characterized close to a roundabout. This additional source of Sb does not seem to impact soil fauna but Sb concentrations in soil solutions exceed 1 μg L-1. Genotoxicity tests have been performed on the model plant Vicia faba and show that antimony is genotoxic at its lowest concentrations and that there is a synergistic effect lead, a trace metal frequently found in association with antimony in the environment. It is a main issue to determine Sb critical loads in the environment but main identified lacks are thermodynamic data, which are not available yet, to model the behavior of Sb in soil solutions and the fact the antimony is always associated with other anthropogenic trace metals like lead. Critical thresholds of Sb have been determined for the first time based on genotoxicity experiment. Simulations show that these thresholds can be exceeded in the future, whereas present limits for invertebrates (US-EPA) are and will not be reached. However

  15. Determination of fluorine in antimony catalysts for the liquid-phase production of freons

    SciTech Connect

    Shchavelev, V.B.

    1986-08-01

    In order to reduce the solubility of lanthanum fluoride and to improve the precision of fluorine determination, (ILLEGIBLE) recommend (ILLEGIBLE) organic solvents (ethanol, acetone, etc.) to the titrated solution. It is shown that fluoride can be determined in the presence of antimony without preparation only when all antimony is present in the tervalent state. The results obtained in the determination of fluoride ion in synthetic mixtures at a fluorine:antimony molar ratio of 2, which approximates the composition of the antimony catalyst, are shown in tables. It can be seen that hydrobromic acid is the only suitable of the agents tested, whereby its concentration in the analyzed sample must not be less than 7.6. The relatively high reproducibility of the proposed procedure allows the authors to recommend it for the determination of fluorine in antimony catalysts or other analogous compositions when fluorine and pentavalent antimony are present simultaneously.

  16. Hydrogen sulfide intoxication.

    PubMed

    Guidotti, Tee L

    2015-01-01

    Hydrogen sulfide (H2S) is a hazard primarily in the oil and gas industry, agriculture, sewage and animal waste handling, construction (asphalt operations and disturbing marshy terrain), and other settings where organic material decomposes under reducing conditions, and in geothermal operations. It is an insoluble gas, heavier than air, with a very low odor threshold and high toxicity, driven by concentration more than duration of exposure. Toxicity presents in a unique, reliable, and characteristic toxidrome consisting, in ascending order of exposure, of mucosal irritation, especially of the eye ("gas eye"), olfactory paralysis (not to be confused with olfactory fatigue), sudden but reversible loss of consciousness ("knockdown"), pulmonary edema (with an unusually favorable prognosis), and death (probably with apnea contributing). The risk of chronic neurcognitive changes is controversial, with the best evidence at high exposure levels and after knockdowns, which are frequently accompanied by head injury or oxygen deprivation. Treatment cannot be initiated promptly in the prehospital phase, and currently rests primarily on supportive care, hyperbaric oxygen, and nitrite administration. The mechanism of action for sublethal neurotoxicity and knockdown is clearly not inhibition of cytochrome oxidase c, as generally assumed, although this may play a role in overwhelming exposures. High levels of endogenous sulfide are found in the brain, presumably relating to the function of hydrogen sulfide as a gaseous neurotransmitter and immunomodulator. Prevention requires control of exposure and rigorous training to stop doomed rescue attempts attempted without self-contained breathing apparatus, especially in confined spaces, and in sudden release in the oil and gas sector, which result in multiple avoidable deaths. PMID:26563786

  17. Antimony-assisted carbonization of Si(111) with solid source molecular beam epitaxy

    SciTech Connect

    Hackley, Justin; Richardson, Christopher J. K.; Sarney, Wendy L.

    2013-11-15

    The carbonization of an antimony-terminated Si (111) surface in a solid source molecular beam epitaxy system is presented. Reflection high-energy electron diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and cross-sectional transmission electron microscopy are used to characterize samples grown with and without antimony termination. It is shown that the antimony-terminated surface promotes the formation of thin, smooth and continuous SiC films at a relatively low temperature of 800 °C.

  18. States of antimony and tin atoms in lead chalcogenides

    SciTech Connect

    Bordovsky, G. A.; Nemov, S. A.; Marchenko, A. V.; Zaiceva, A. V.; Kozhokar, M. Yu.; Seregin, P. P.

    2011-04-15

    It is shown by Moessbauer spectroscopy of the {sup 119}Sb({sup 119m}Sn) isotope that impurity antimony atoms in PbS, PbSe, and PbTe lattices are distributed between cation and anion sublattices. In n-type samples, the greatest part of antimony is located in the anion sublattice; in hole ones, in the cation sublattice. The tin atoms formed as a result of radioactive decay of {sup 119}Sb (antisite state) are electrically inactive in the anion sub-lattice of PbS and PbSe, while, in the cation sublattice, they form donor U{sup -} centers. Electron exchange between the neutral and doubly ionized tin U{sup -} centers via the allowed band states is observed. The tin atoms formed after radioactive decay of {sup 119}Sb are electrically inactive in the anion and cation sublattices of PbTe.

  19. Transmission Potential of Antimony-Resistant Leishmania Field Isolates

    PubMed Central

    Seblova, Veronika; Oury, Bruno; Eddaikra, Naouel; Aït-Oudhia, Khatima; Pratlong, Francine; Gazanion, Elodie; Maia, Carla; Volf, Petr

    2014-01-01

    We studied the development of antimony-resistant Leishmania infantum in natural vectors Lutzomyia longipalpis and Phlebotomus perniciosus to ascertain the risk of parasite transmission by sand flies. All three resistant strains produced fully mature late-stage infections in sand flies; moreover, the resistant phenotype was maintained after the passage through the vector. These results highlight the risk of circulation of resistant Leishmania strains and question the use of human drugs for treatment of dogs as Leishmania reservoirs. PMID:25049256

  20. Solid solutions based on bismuth and antimony tellurides andbismuth selenides

    SciTech Connect

    Abrikosov, N.K.; Stasova, M.M.

    1986-05-01

    The phase diagrams of the systems Bi-Te, Bi-Se, and Sb-Te serve as a basis for constructing multiphase diagrams of ternary semiconductor systems. This paper studies layered structures with large unit-cell parameters in the regions of the solid solutions to explain the ordering processes in the solid solutions of semiconductor and intermetallic systems. The laws governing the formation and structral features of bismuth and antimony chalcogenides are studied to obtain thermoelectric materials and identification of minerals.

  1. Transmission potential of antimony-resistant leishmania field isolates.

    PubMed

    Seblova, Veronika; Oury, Bruno; Eddaikra, Naouel; Aït-Oudhia, Khatima; Pratlong, Francine; Gazanion, Elodie; Maia, Carla; Volf, Petr; Sereno, Denis

    2014-10-01

    We studied the development of antimony-resistant Leishmania infantum in natural vectors Lutzomyia longipalpis and Phlebotomus perniciosus to ascertain the risk of parasite transmission by sand flies. All three resistant strains produced fully mature late-stage infections in sand flies; moreover, the resistant phenotype was maintained after the passage through the vector. These results highlight the risk of circulation of resistant Leishmania strains and question the use of human drugs for treatment of dogs as Leishmania reservoirs. PMID:25049256

  2. [Successful treatment of cutaneous leishmaniasis with amphotericin B; a case of unresponsive to pentavalent antimony therapy].

    PubMed

    Yeşilova, Yavuz; Turan, Enver; Sürücü, Hacer Altın; Aksoy, Mustafa; Özbilgin, Ahmet

    2015-03-01

    Cutaneous Leishmaniasis (CL) is a skin infection caused by various species of Leishmania parasites, which is transmitted by infected Phlebotomus sandfly bites. Pentavalent antimonials (meglumine antimoniate and sodium stibogluconate) are used for the treatment of adult CL patients as an effective and safe method. Liposomal amphotericin B is an alternative for the treatment of choice in cutaneous leishmaniasis cases which pentavalan antimony contraindicated or unresponsive to pentavalent antimony therapy. In this study, successful treatment with systemic liposomal amphotericin B of a cutaneous leishmaniasis case developing local side effects related both systemic and intralesional meglumine antimonate treatment was presented. PMID:25917587

  3. Correlation of CsK{sub 2}Sb photocathode lifetime with antimony thickness

    SciTech Connect

    Mamun, M. A. Elmustafa, A. A.; Hernandez-Garcia, C.; Poelker, M.

    2015-06-01

    CsK{sub 2}Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  4. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    SciTech Connect

    Mamun, M. A.; Hernandez-Garcia, C.; Poelker, M.; Elmustafa, A. A.

    2015-06-01

    CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  5. Possible links between sickle cell crisis and pentavalent antimony.

    PubMed

    Garcerant, Daniel; Rubiano, Luisa; Blanco, Victor; Martinez, Javier; Baker, Nancy C; Craft, Noah

    2012-06-01

    For over 60 years, pentavalent antimony (Sb(v)) has been the first-line treatment of leishmaniasis. Sickle cell anemia is a disease caused by a defect in red blood cells, which among other things can cause vasooclusive crisis. We report the case of a 6-year-old child with leishmaniasis who during treatment with meglumine antimoniate developed a sickle cell crisis (SCC). No previous reports describing the relationship between antimonial drugs and sickle cell disease were found. Reviews of both the pathophysiology of SCC and the mechanism of action of Sb(v) revealed that a common pathway (glutathione) may have resulted in the SCC. ChemoText, a novel database created to predict chemical-protein-disease interactions, was used to perform a more expansive and systematic review that was able to support the association between glutathione, Sb(v), and SCC. Although suggestive evidence to support the hypothesis, additional research at the bench would be needed to prove Sb(v) caused the SCC. PMID:22665619

  6. Field method for sulfide determination

    SciTech Connect

    Wilson, B L; Schwarser, R R; Chukwuenye, C O

    1982-01-01

    A simple and rapid method was developed for determining the total sulfide concentration in water in the field. Direct measurements were made using a silver/sulfide ion selective electrode in conjunction with a double junction reference electrode connected to an Orion Model 407A/F Specific Ion Meter. The method also made use of a sulfide anti-oxidant buffer (SAOB II) which consists of ascorbic acid, sodium hydroxide, and disodium EDTA. Preweighed sodium sulfide crystals were sealed in air tight plastic volumetric flasks which were used in standardization process in the field. Field standards were prepared by adding SAOB II to the flask containing the sulfide crystals and diluting it to the mark with deionized deaerated water. Serial dilutions of the standards were used to prepare standards of lower concentrations. Concentrations as low as 6 ppB were obtained on lake samples with a reproducibility better than +- 10%.

  7. Sulfide Mineral Surfaces

    SciTech Connect

    Rosso, Kevin M.; Vaughan, David J.

    2006-08-01

    The past twenty years or so have seen dramatic development of the experimental and theoretical tools available to study the surfaces of solids at the molecular (?atomic resolution?) scale. On the experimental side, two areas of development well illustrate these advances. The first concerns the high intensity photon sources associated with synchrotron radiation; these have both greatly improved the surface sensitivity and spatial resolution of already established surface spectroscopic and diffraction methods, and enabled the development of new methods for studying surfaces. The second centers on the scanning probe microscopy (SPM) techniques initially developed in the 1980's with the first scanning tunneling microscope (STM) and atomic force microscope (AFM) experiments. The direct 'observation' of individual atoms at surfaces made possible with these methods has truly revolutionized surface science. On the theoretical side, the availability of high performance computers coupled with advances in computational modeling has provided powerful new tools to complement the advances in experiment. Particularly important have been the quantum mechanics based computational approaches such as density functional theory (DFT), which can now be easily used to calculate the equilibrium crystal structures of solids and surfaces from first principles, and to provide insights into their electronic structure. In this chapter, we review current knowledge of sulfide mineral surfaces, beginning with an overview of the principles relevant to the study of the surfaces of all crystalline solids. This includes the thermodynamics of surfaces, the atomic structure of surfaces (surface crystallography and structural stability, adjustments of atoms at the surface through relaxation or reconstruction, surface defects) and the electronic structure of surfaces. We then discuss examples where specific crystal surfaces have been studied, with the main sulfide minerals organized by structure type

  8. Recent advances on antimony(III/V) compounds with potential activity against tumor cells.

    PubMed

    Hadjikakou, S K; Ozturk, I I; Banti, C N; Kourkoumelis, N; Hadjiliadis, N

    2015-12-01

    Antimony one of the heavier pnictogens, has been in medical use against microbes and parasites as well. Antimony-based drugs have been prescribed against leishmaniasis since the parasitic transmission of the tropical disease was understood in the beginning of the 20th century. The activity of arsenic against visceral leishmaniasis led to the synthesis of an array of arsenic-containing parasitic agents, among them the less toxic pentavalent antimonials: Stibosan, Neostibosan, and Ureastibamine. Other antimony drugs followed: sodium stibogluconate (Pentostam) and melglumine antimoniate (Glucantim or Glucantime); both continue to be in use today despite their toxic side effects and increasing loss in potency due to the growing resistance of the parasite against antimony. Antimony compounds and their therapeutic potentials are under consideration from many research groups, while a number of early reviews recording advances of antimony biomedical applications are also available. However, there are only few reports on the screening for antitumor potential of antimony compounds. This review focuses upon results obtained on the anti-proliferative activity of antimony compounds in the past years. This survey shows that antimony(III/V) complexes containing various types of ligands such as thiones, thiosemicarbazones, dithiocarbamates, carboxylic acids, or ketones, nitrogen donor ligands, exhibit selectivity against a variety of cancer cells. The role of the ligand type of the complex is elucidated within this review. The complexes and their biological activity are already reported elsewhere. However quantitative structure-activity relationship (QSAR) modeling studies have been carried out and they are reported for the first time here. PMID:26092367

  9. Electrobioleaching of base metal sulfides

    NASA Astrophysics Data System (ADS)

    Natarajan, K. A.

    1992-01-01

    Bioleaching of base metal sulfides, such as pyrite, chalcopyrite, and sphalerite, under the influence of applied direct current (DC) potentials is discussed. Contributions toward mineral dissolution from three effects, namely, galvanic, applied potential, and microbiological, are analyzed and compared. Sphalerite could be selectively bioleached in the presence of Thiobacillus ferrooxidans under an applied potential of -500 mV (SCE) from mixed sulfides containing sphalerite, pyrite, and chalcopyrite. Bacterial activity and growth were found to be promoted under electrobioleaching conditions. Probable mechanisms involved in the bioleaching of different sulfides under positive and negative applied potentials are discussed.

  10. A novel method for improving cerussite sulfidization

    NASA Astrophysics Data System (ADS)

    Feng, Qi-cheng; Wen, Shu-ming; Zhao, Wen-juan; Cao, Qin-bo; Lü, Chao

    2016-06-01

    Evaluation of flotation behavior, solution measurements, and surface analyses were performed to investigate the effects of chloride ion addition on the sulfidization of cerussite in this study. Micro-flotation tests indicate that the addition of chloride ions prior to sulfidization can significantly increase the flotation recovery of cerussite, which is attributed to the formation of more lead sulfide species on the mineral surface. Solution measurement results suggest that the addition of chloride ions prior to sulfidization induces the transformation of more sulfide ions from pulp solution onto the mineral surface by the formation of more lead sulfide species. X-ray diffraction and energy-dispersive spectroscopy indicate that more lead sulfide species form on the mineral surface when chloride ions are added prior to sulfidization. These results demonstrate that the addition of chloride ions prior to sulfidization can significantly improve the sulfidization of cerussite, thereby enhancing the flotation performance.

  11. Corrosion of low-antimony lead-cadmium alloys in conditions of long-term polarization

    NASA Astrophysics Data System (ADS)

    Nuzhny, Alex

    Nowadays, lead-acid battery grids are manufactured mostly from low-antimony and lead-calcium alloys. A variable corrosion resistance of battery grids is caused by either battery operation conditions, purity of used alloy components, an alloy makeup, and the castings quality. Such compositions as usual lead-antimony alloy, low-antimony lead-arsenious alloy and lead-calcium alloy with moderate content of tin today may be regarded as the most studied ones. A significant share of published works has been devoted to low-antimony lead-tin alloys. In the present article, results of corrosion tests of the samples made with application of cadmium as the second component of low-antimony alloy, has been represented. Several samples were extra-alloyed by selenium and silver. Samples of lead-calcium and usual antimony alloys as well as pure lead samples were being tested simultaneously. Upon termination of polarization, weight of anodic films referred to a unit of the sample surface has been determined. Thus, the film covering lead-antimony alloy sample has the maximal weight, whereas the oxidation products on the pure lead surface have the lowest one. Among low-antimony alloys, the highest corrosion resistance has been found out with the samples alloyed by a low amount of silver. The microstructure of the castings surface has been analysed. Process of corrosion has been considered in connection with size of grains.

  12. Oxidation and mobilization of metallic antimony in aqueous systems with simulated groundwater

    NASA Astrophysics Data System (ADS)

    Ilgen, A. G.; Majs, F.; Barker, A. J.; Douglas, T. A.; Trainor, T. P.

    2014-05-01

    Antimony (Sb) is a contaminant of concern that can be present in elevated concentrations in shooting range soils due to mobilization from spent lead/antimony bullets. Antimony in shooting range soils has been observed as either metallic Sb(0) or as Sb(V) immobilized by iron (hydr)oxides. The absence of Sb(III) in soils is indicative of rapid Sb(III) oxidation to Sb(V) under surface soil conditions. However, the major controls on antimony oxidation and mobility are poorly understood. To better understand these controls we performed multiple batch experiments under oxic conditions to quantify the oxidation and dissolution of antimony in systems where Sb(0) is oxidized to Sb(III) and further to Sb(V). We also tested how variations in the aqueous matrix composition and the presence of metallic lead (Pb) affect the dissolution, solid phase speciation, and oxidation of antimony. We monitored changes in the aqueous antimony speciation using liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS). To test which solid phases form as a result of Sb(0) oxidation, and therefore potentially limit the mobility of antimony in our studied systems, we characterized the partially oxidized Sb(0) powders by means of extended X-ray absorption fine structure (EXAFS) spectroscopy and powder X-ray diffraction (XRD).

  13. 78 FR 59679 - Antimony Trioxide TSCA Chemical Risk Assessment; Notice of Public Meetings and Opportunity To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... AGENCY Antimony Trioxide TSCA Chemical Risk Assessment; Notice of Public Meetings and Opportunity To... review of EPA's draft Toxic Substances Control Act (TSCA) chemical risk assessment, ``TSCA Workplan Chemical Risk Assessment for Antimony Trioxide.'' EPA will hold three peer review meetings by web...

  14. Prevention of sulfide oxidation in sulfide-rich waste rock

    NASA Astrophysics Data System (ADS)

    Nyström, Elsa; Alakangas, Lena

    2015-04-01

    The ability to reduce sulfide oxidation in waste rock after mine closure is a widely researched area, but to reduce and/or inhibit the oxidation during operation is less common. Sulfide-rich (ca 30 % sulfur) waste rock, partially oxidized, was leached during unsaturated laboratory condition. Trace elements such as As and Sb were relatively high in the waste rock while other sulfide-associated elements such as Cu, Pb and Zn were low compared to common sulfide-rich waste rock. Leaching of unsaturated waste rock lowered the pH, from around six down to two, resulting in continuously increasing element concentrations during the leaching period of 272 days. The concentrations of As (65 mg/L), Cu (6.9 mg/L), Sb (1.2 mg/L), Zn (149 mg/L) and S (43 g/L) were strongly elevated at the end of the leaching period. Different alkaline industrial residues such as slag, lime kiln dust and cement kiln dust were added as solid or as liquid to the waste rock in an attempt to inhibit sulfide oxidation through neo-formed phases on sulfide surfaces in order to decrease the mobility of metals and metalloids over longer time scale. This will result in a lower cost and efforts of measures after mine closure. Results from the experiments will be presented.

  15. Apparatus for use in sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1987-01-06

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  16. Apparatus for use in sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1987-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  17. Testing of antimony selective media for treatment of liquid radwaste

    SciTech Connect

    Yarnell, P.A.

    2007-07-01

    Nuclear power plants have sought radiation source term reduction and reduced discharge of radioactive constituents for many years. In the case of pressurized water reactors (PWRs), the latter efforts have been directed toward capture and immobilization of recalcitrant (ubiquitous radionuclides with long half-lives) species such as Cs-134 and Cs-137 and Co-58 and Co-60. As these plants resolved, or at least mitigated, the problems with radiocesium and radio-cobalt, antimony radionuclides (Sb-122, Sb-124, and Sb-125) have become a primary concern in liquid liquid radwaste systems Graver Technologies developed a granular composite metal oxide media with good selectivity for radio-antimony. Initial laboratory data were collected using non-radioactive salts of antimony, cesium, and cobalt to judge efficacy of selective removal of antimony. Based on success of those trials, the media, designated Gravex GX187, was tested in partnership with Energy Solutions (nee Duratek) using actual liquid liquid radwaste in two PWR plants. One of these plants performed extensive slip-stream trials comparing the GX187 with strong base anion resins. With more than 2500 bed volumes of throughput, the GX187 outperformed the other competitors by reducing both Sb-124 and Sb-125 radionuclides below minimum detectable activity (MDA) with average decontamination factors (DF's) of 170, even when subjected to high levels of borate. Based on these favorable results, Energy Solutions installed the GX187 in a layered bed in their ALPS liquid radwaste processing system at this plant in August 2005. After one year of intermittent, batchwise operation including an outage, the GX187 processed more than 2.25 million liters (>600,000 gallons) of liquid liquid radwaste while reducing the Sb-125 activity to 2.9 E-08 Bq/L (DF=111) on average. This evaluation is ongoing and will continue at least until the fall 2006 outage at this plant. Concurrently, Graver developed a second generation antimony selective

  18. Thermoelectric Properties of Lanthanum Sulfide

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, R.; Parker, J. B.; Zoltan, A.; Zoltan, L. D.; Danielson, L.; Raag, V.

    1987-01-01

    Report describes measurement of Seebeck coefficient, electrical resistivity, thermal conductivity, and Hall effect in gamma-phase lanthanum sulfide with composition of La3-x S4. Results of study, part of search for high-temperature thermoelectric energy-conversion materials, indicate this sulfide behaves like extrinsic semiconductor over temperature range of 300 to 1,400 K, with degenerate carrier concentration controlled by stoichiometric ratio of La to S.

  19. New antimony substituted Mg-Al layered double hydroxides.

    PubMed

    Kim, Jin A; Hwang, Seong-Ju; Choy, Jin-Ho

    2008-10-01

    No antimony hydroxide has been previously reported not only in solid state but also in aqueous solution, surely due to the fact that the formation of antimony oxide, Sb2O3, is thermodynamically more favorable than that of the hydroxide phase, Sb(OH)3. According to the pH dependent solubility diagram of Sb2O3, antimony (III) hydroxide may not exist as a definite compound but be proposed as a hydrated monomeric molecular species, Sb(OH)3(aq), which is in equilibrium with Sb2O3, under a condition of very small ionic strength. This is probably the reason why no Sb(3+)-containing layered double hydroxide, LDH, has been reported as yet. In the present study, an attempt has been made to prepare new Sb(3+)-LDH by substituting the Al3+ in octahedral site partially with Sb3+ up to approximately 10%. From the X-ray diffraction analysis, we found that the lattice constants (a = 3.075 angstroms, c = 23.788 angstroms) of the pristine, Mg-Al LDH, increased gradually upto those (a = 3.087 angstroms, c = 24.167 angstroms) of Sb-LDH (8%-substituted). Beyond 10%, the Sb substitution does not lead to any further increases of lattice constants but the impurity Sb2O3 phase is formed. It is, therefore, concluded that the solubility limit of Sb3+ in LDH would be around 10%. In addition, we were able to determine the chemical formula of Sb-substituted LDHs as follows, Mg4Al(1-x)Sb(x)OH10(CO3)(1/2) x H2O (x = 0 approximately 0.08) on the basis of energy dispersive X-ray spectroscopy. PMID:19198414

  20. Hydrogen Sulfide Oxidation by Myoglobin.

    PubMed

    Bostelaar, Trever; Vitvitsky, Victor; Kumutima, Jacques; Lewis, Brianne E; Yadav, Pramod K; Brunold, Thomas C; Filipovic, Milos; Lehnert, Nicolai; Stemmler, Timothy L; Banerjee, Ruma

    2016-07-13

    Enzymes in the sulfur network generate the signaling molecule, hydrogen sulfide (H2S), from the amino acids cysteine and homocysteine. Since it is toxic at elevated concentrations, cells are equipped to clear H2S. A canonical sulfide oxidation pathway operates in mitochondria, converting H2S to thiosulfate and sulfate. We have recently discovered the ability of ferric hemoglobin to oxidize sulfide to thiosulfate and iron-bound hydropolysulfides. In this study, we report that myoglobin exhibits a similar capacity for sulfide oxidation. We have trapped and characterized iron-bound sulfur intermediates using cryo-mass spectrometry and X-ray absorption spectroscopy. Further support for the postulated intermediates in the chemically challenging conversion of H2S to thiosulfate and iron-bound catenated sulfur products is provided by EPR and resonance Raman spectroscopy in addition to density functional theory computational results. We speculate that the unusual sensitivity of skeletal muscle cytochrome c oxidase to sulfide poisoning in ethylmalonic encephalopathy, resulting from the deficiency in a mitochondrial sulfide oxidation enzyme, might be due to the concentration of H2S by myoglobin in this tissue. PMID:27310035

  1. Growth and Characterization of Bismuth and Antimony Thin Films

    NASA Astrophysics Data System (ADS)

    Martinez, A.; Berrios, A. R.; Collazo, R.; Garcia, J. L.; Ducoudray, G. O.

    1996-03-01

    We have grown thin films of bismuth and antimony using hot wall epitaxy. The polycrystalline films were grown onto (111)-silicon substrates. The chemical integrity of the films was established using Auger electron spectroscopy. The crystallographical properties of the films were assessed using x-ray diffraction techniques. We will report on the results of these characterization efforts, as well as, on the growth apparatus and process. Work supported in part by NSWC-CRADA 93-01 and EPSCoR-NSF Grant EHR-9108775

  2. Antimony contamination and its effect on Trifolium plants

    NASA Astrophysics Data System (ADS)

    Corrales, Isabel; Barceló, Juan; Bech, Jaume; Poschenrieder, Charlotte

    2014-05-01

    Antimony is not an essential element and soil Sb contents usually are low.However, soil contamination by Sb has increased in the last years due to the human activities (combustion of fossil fuels, mining, waste incineration, smelting, shooting and road traffic). The main objective of this work was to study the effect of different concentrations of antimony (KSb(OH)6) in order to evaluate the effect on growth and Sb uptake on Trifolium pratense cv. Milvus and Trifolium repens. Our results show that Sb accumulated both in roots and shoots of clover without any negative effect on root growth, cellular viability and lipid peroxidation. This absence of toxicity sympthoms in clover plants could be very dangerous because Sb can be inadvertedly incorporated into the trophic chain causing toxic effects both in animals and humans. The absence of toxic effects on plants does not seem to be due to detoxification by phytochelatins because the use of the gamma-glutamylcysteine synthetase inhibitor, L-buthionine-[S,R]-sulphoximine (BSO) did not enhance Sb toxicity to plants. (Supported by the Spanish MICINN project BFU2010-14873)

  3. Electronic band structure calculations of bismuth-antimony nanowires

    NASA Astrophysics Data System (ADS)

    Levin, Andrei; Dresselhaus, Mildred

    2012-02-01

    Alloys of bismuth and antimony received initial interest due to their unmatched low-temperature thermoelectric performance, and have drawn more recent attention as the first 3D topological insulators. One-dimensional bismuth-antimony (BiSb) nanowires display interesting quantum confinement effects, and are expected to exhibit even better thermoelectric properties than bulk BiSb. Due to the small, anisotropic carrier effective masses, the electronic properties of BiSb nanowires show great sensitivity to nanowire diameter, crystalline orientation, and alloy composition. We develop a theoretical model for calculating the band structure of BiSb nanowires. For a given crystalline orientation, BiSb nanowires can be in the semimetallic, direct semiconducting, or indirect semiconducting phase, depending on nanowire diameter and alloy composition. These ``phase diagrams'' turn out to be remarkably similar among the different orientations, which is surprising in light of the anisotropy of the bulk BiSb Fermi surface. We predict a novel direct semiconducting phase for nanowires with diameter less than ˜15 nm, over a narrow composition range. We also find that, in contrast to the bulk and thin film BiSb cases, a gapless state with Dirac dispersion cannot be realized in BiSb nanowires.

  4. Antimony sulphide, an absorber layer for solar cell application

    NASA Astrophysics Data System (ADS)

    Ali, N.; Hussain, Arshad; Ahmed, R.; Shamsuri, W. N. Wan; Shaari, A.; Ahmad, N.; Abbas, S. M.

    2016-01-01

    Replacement of the toxic, expensive and scarce materials with nontoxic, cheap and earth-abundant one, in solar cell absorber layer, is immensely needed to realize the vision of green and sustainable energy. Two-micrometre-thin antimony sulphide film is considered to be adequate as an absorbing layer in solar cell applications. In this paper, we synthesize antimony sulphide thin films on glass substrate by physical vapour deposition technique, and the obtained films were then annealed at different temperatures (150-250 °C). The as-deposited and annealed samples were investigated for structural and optoelectronic properties using different characterization techniques. The X-ray diffraction analysis showed that the annealed samples were polycrystalline with Sb2S3 phase, while the as-deposited sample was amorphous in nature. The optical properties are measured via optical ellipsometric techniques. The measured absorbance of the film is adequately high, and every photon is found to be absorbed in visible and NIR range. The conductivity type of the films measured by hot-point probe technique is determined to be p-type. The optical band gap of the resulted samples was in the range (2.4-1.3 eV) for the as-deposited and annealed films.

  5. Alkali oxide-tantalum, niobium and antimony oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Brower, W. S.; Parker, H. S.; Minor, D. B.; Waring, J. L.

    1975-01-01

    The phase equilibrium relations of four systems were investigated in detail. These consisted of sodium and potassium antimonates with antimony oxide and tantalum and niobium oxide with rubidium oxide as far as the ratio 4Rb2O:llB2O5 (B=Nb, Ta). The ternary system NaSbO3-Sb2O4-NaF was investigated extensively to determine the actual composition of the body centered cubic sodium antimonate. Various other binary and ternary oxide systems involving alkali oxides were examined in lesser detail. The phases synthesized were screened by ion exchange methods to determine mobility of the mobility of the alkali ion within the niobium, tantalum or antimony oxide (fluoride) structural framework. Five structure types warranted further investigation; these structure types are (1) hexagonal tungsten bronze (HTB), (2) pyrochlore, (3) the hybrid HTB-pyrochlore hexagonal ordered phases, (4) body centered cubic antimonates and (5) 2K2O:3Nb2O5. Although all of these phases exhibit good ion exchange properties only the pyrochlore was prepared with Na(+) ions as an equilibrium phase and as a low porosity ceramic. Sb(+3) in the channel interferes with ionic conductivity in this case, although relatively good ionic conductivity was found for the metastable Na(+) ion exchanged analogs of RbTa2O5F and KTaWO6 pyrochlore phases.

  6. Periodic macroporous nanocrystalline antimony-doped tin oxide electrode.

    PubMed

    Arsenault, Eric; Soheilnia, Navid; Ozin, Geoffrey A

    2011-04-26

    Optically transparent and electrically conductive electrodes are ubiquitous in the myriad world of devices. They are an indispensable component of solar and photoelectrochemical cells, organic and polymer light emitting diodes, lasers, displays, electrochromic windows, photodetectors, and chemical sensors. The majority of the electrodes in such devices are made of large electronic band-gap doped metal oxides fashioned as a dense low-surface-area film deposited on a glass substrate. Typical transparent conducting oxide materials include indium-, fluorine-, or antimony-doped tin oxides. Herein we introduce for the first time a transparent conductive periodic macroporous electrode that has been self-assembled from 6 nm nanocrystalline antimony-doped tin oxide with high thermal stability, optimized electrical conductivity, and high quality photonic crystal properties, and present an electrochemically actuated optical light switch built from this electrode, whose operation is predicated on its unique combination of electrical, optical, and photonic properties. The ability of this macroporous electrode to host active functional materials like dyes, polymers, nanocrystals, and nanowires provides new opportunities to create devices with improved performance enabled by the large area, spatially accessible and electroactive internal surface. PMID:21391718

  7. Exploring antimony isotope ratio variations for provenancing purposes

    NASA Astrophysics Data System (ADS)

    Lobo, L.; Degryse, P.; Vanhaecke, F.

    2012-04-01

    Production sites and trade routes of Roman glass have received much attention over the past decade. It is assumed that raw glass was produced in primary workshops near the raw material sources used, to be transported to secondary glass houses. Colourless glass was a particularly prestigious material in this process, difficult to make. It has been looked at from the perspective of the provenance of its sand and flux, but rarely from the perspective of the origin of the decolourizing material. In effect, for the production of early Roman colourless glass, antimony was used, deliberately added under the form of Sb-bearing minerals. Isotopic analysis of Sb ores could help identify the origin of the decolorizing agent present in Roman glasses and, consequently, to reconstruct how such material was traded and transported, and how this can be integrated in the network of primary and secondary glass producers. In this work, variations in the isotopic composition of Sb in different ore sources (stibnites) are explored using multi-collector ICP - mass spectrometry. A new method is proposed, where Sb is directly analysed for its isotopic composition using MC-ICP-MS after chromatographic isolation of the target element from a sample digest. The isotopic composition of the selected materials shows variations up to 6 ?-units relative to an antimony standard solution. Indium was used as internal standard for correction for instrumental mass discrimination and an external precision for the 123Sb/121Sb ratio of 0.01% RSD was obtained

  8. Immobilization of antimony waste slag by applying geopolymerization and stabilization/solidification technologies.

    PubMed

    Salihoglu, Güray

    2014-11-01

    During the processing of antimony ore by pyrometallurgical methods, a considerable amount of slag is formed. This antimony waste slag is listed by the European Union as absolutely hazardous waste with a European Waste Catalogue code of 10 08 08. Since the levels of antimony and arsenic in the leachate of the antimony waste slag are generally higher than the landfilling limits, it is necessary to treat the slag before landfilling. In this study, stabilization/solidification and geopolymerization technologies were both applied in order to limit the leaching potential of antimony and arsenic. Different combinations ofpastes by using Portland cement, fly ash, clay, gypsum, and blast furnace slag were prepared as stabilization/solidification or geopoljymer matrixes. Sodium silicate-sodium hydroxide solution and sodium hydroxide solution at 8 M were used as activators for geopolymer samples. Efficiencies of the combinations were evaluated in terms of leaching and unconfined compressive strength. None of the geopolymer samples prepared with the activators yielded arsenic and antimony leaching below the regulatory limit at the same time, although they yielded high unconfined compressive strength levels. On the other hand, the stabilization/solidification samples prepared by using water showed low leaching results meeting the landfilling criteria. Use of gypsum as an additive was found to be successful in immobilizing the arsenic and antimony. PMID:25509550

  9. Antimony in the environment: A review focused on natural waters. III. Microbiota relevant interactions

    NASA Astrophysics Data System (ADS)

    Filella, Montserrat; Belzile, Nelson; Lett, Marie-Claire

    2007-02-01

    Antimony is ubiquitously present in the environment as a result of natural processes and human activities. Antimony is not considered to be an essential element for plants or animals. In this third review paper on the occurrence of antimony in natural waters, the interactions of antimony with microbiota are discussed in relation to its fate in natural waters. This paper covers the following aspects: occurrence in microbiota, uptake transport mechanisms, pathways of Sb(III) removal from cells involved in antimony tolerance, oxidation and reduction of antimony by living organisms, phytochelatin induction and biomethylation. This review is based on a careful and systematic examination of a comprehensive collection of papers on the above mentioned aspects of the subject. All data are quoted from the original sources. Relatively little existing information falls within the strict scope of this review and, when relevant, discussion on the interactions of antimony with reference microorganisms, such as Escherichia coli, Saccharomyces cerevisiae and different protozoan parasites of the genus Leishmania, has been included.

  10. Removal of arsenic and antimony from anode slime by vacuum dynamic flash reduction.

    PubMed

    Lin, Deqiang; Qiu, Keqiang

    2011-04-15

    Anode slime is an important material of recycling precious metals. Up to now, treating the arsenic- and antimony-rich anode slime by conventional processes has the following problems: its economic and environmental effect is less than satisfactory, and the removal effect of arsenic and antimony from anode slime in present processes is not all that could be desired. Therefore, vacuum dynamic flash reduction, a new process for treating arsenic- and antimony-rich anode slime, was investigated in this work. During vacuum dynamic flash reduction, silver from the arsenic- and antimony-rich anode slime was left behind in the distilland as the silver alloy, and trivalent oxides of arsenic and antimony were evaporated in the distillate. The experimental results showed that the evaporation percent of the arsenic- and antimony-rich anode slime was 65.6%. Namely, 98.92% by weight of arsenic and 93.67% by weight of antimony can be removed under the following experimental conditions: temperature of 1083 K, vacuum evaporation time of 60 min, and air flow rate of 400 mL/min corresponding to the residual gas pressure of 250 Pa. Moreover, vacuum treatment eliminates much of the air pollution and material losses associated with other conventional treatment methods. PMID:21446728

  11. Inhaled Hydrogen Sulfide

    PubMed Central

    Volpato, Gian Paolo; Searles, Robert; Yu, Binglan; Scherrer-Crosbie, Marielle; Bloch, Kenneth D.; Ichinose, Fumito; Zapol, Warren M.

    2010-01-01

    Background Breathing hydrogen sulfide (H2S) has been reported to induce a suspended animation–like state with hypothermia and a concomitant metabolic reduction in rodents. However, the impact of H2S breathing on cardiovascular function remains incompletely understood. In this study, the authors investigated the cardiovascular and metabolic effects of inhaled H2S in a murine model. Methods The impact of breathing H2S on cardiovascular function was examined using telemetry and echocardiography in awake mice. The effects of breathing H2S on carbon dioxide production and oxygen consumption were measured at room temperature and in a warmed environment. Results Breathing H2S at 80 parts per million by volume at 27°C ambient temperature for 6 h markedly reduced heart rate, core body temperature, respiratory rate, and physical activity, whereas blood pressure remained unchanged. Echocardiography demonstrated that H2S exposure decreased both heart rate and cardiac output but preserved stroke volume. Breathing H2S for 6 h at 35°C ambient temperature (to prevent hypothermia) decreased heart rate, physical activity, respiratory rate, and cardiac output without altering stroke volume or body temperature. H2S breathing seems to induce bradycardia by depressing sinus node activity. Breathing H2S for 30 min decreased whole body oxygen consumption and carbon dioxide production at either 27° or 35°C ambient temperature. Both parameters returned to baseline levels within 10 min after the cessation of H2S breathing. Conclusions Inhalation of H2S at either 27° or 35°C reversibly depresses cardiovascular function without changing blood pressure in mice. Breathing H2S also induces a rapidly reversible reduction of metabolic rate at either body temperature. PMID:18362598

  12. Sulfur and sulfides in chondrules

    NASA Astrophysics Data System (ADS)

    Marrocchi, Yves; Libourel, Guy

    2013-10-01

    The nature and distribution of sulfides within type I PO, POP and PP chondrules of the carbonaceous chondrite Vigarano (CV3) have been studied by secondary electron microscopy and electron microprobe. They occur predominantly as spheroidal blebs composed entirely of low-Ni iron sulfide (troilite, FeS) or troilite + magnetite but in less abundance in association with metallic Fe-Ni beads in opaque assemblages. Troilites are mainly located within the low-Ca pyroxene outer zone and their amounts increase with the abundance of low-Ca pyroxene within chondrules, suggesting co-crystallization of troilite and low-Ca pyroxene during high-temperature events. We show that sulfur concentration and sulfide occurrence in chondrules obey high temperature sulfur solubility and saturation laws. Depending on the fS2 and fO2 of the surrounding gas and on the melt composition, mainly the FeO content, sulfur dissolved in chondrule melts may eventually reach a concentration limit, the sulfur content at sulfide saturation (SCSS), at which an immiscible iron sulfide liquid separates from the silicate melt. The occurrence of both a silicate melt and an immiscible iron sulfide liquid is further supported by the non-wetting behavior of sulfides on silicate phases in chondrules due to the high interfacial tension between their precursor iron-sulfide liquid droplets and the surrounding silicate melt during the high temperature chondrule-forming event. The evolution of chondrule melts from PO to PP towards more silicic compositions, very likely due to high PSiO(g) of the surrounding nebular gas, induces saturation of FeS at much lower S content in PP than in PO chondrules, leading to the co-crystallization of iron sulfides and low-Ca pyroxenes. Conditions of co-saturation of low-Ca pyroxene and FeS are only achieved in non canonical environments characterized by high partial pressures of sulfur and SiO and redox conditions more oxidizing than IW-3. Fe and S mass balance calculations also

  13. Mechanistic chemical perspective of hydrogen sulfide signaling.

    PubMed

    Nagy, Péter

    2015-01-01

    Hydrogen sulfide is now a well-appreciated master regulator in a diverse array of physiological processes. However, as a consequence of the rapid growth of the area, sulfide biology suffers from an increasing number of controversial observations and interpretations. A better understanding of the underlying molecular pathways of sulfide's actions is key to reconcile controversial issues, which calls for rigorous chemical/biochemical investigations. Protein sulfhydration and coordination/redox chemical interactions of sulfide with heme proteins are the two most extensively studied pathways in sulfide biochemistry. These pathways are important mediators of protein functions, generate bioactive sulfide metabolites, contribute to sulfide storage/trafficking and carry antioxidant functions. In addition, inorganic polysulfides, which are oxidative sulfide metabolites, are increasingly recognized as important players in sulfide biology. This chapter provides an overview of our mechanistic perspective on the reactions that govern (i) sulfide's bioavailability (including the delicate enzyme machineries that orchestrate sulfide production and consumption and the roles of the large sulfide-storing pools as biological buffers), (ii) biological significance and mechanisms of persulfide formation (including the reduction of disulfides, condensation with sulfenic acids, oxidation of thiols with polysulfides and radical-mediated pathways), (iii) coordination and redox chemical interactions of sulfide with heme proteins (including cytochrome c oxidase, hemoglobins, myoglobins and peroxidases), and (iv) the chemistry of polysulfides. PMID:25725513

  14. Structural and optical characterization of thermally evaporated bismuth and antimony films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Srimathy, N.; Ruban Kumar, A.

    2016-05-01

    In this present study, the thin film of bismuth and antimony is coated by thermal evaporation system equipped with the inbuilt ultra high vacuum system. XRD analysis confirmed the rhombohedral structure of Bismuth and Antimony on the prepared film. The surface roughness and physical appearance is analyzed by Atomic force microscopy. The results of Raman Spectroscopy show the wave functions and the spectrum of electrons. The preparation technique and conditions strongly influence the crystalline structure and the phase composition of bismuth and antimony thin films. The electrical and optical properties for the prepared film are analyzed. The results show a great interest and promising applications in Photovoltaic devices.

  15. Sulfide Stability of Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Caiazza, C. M.; Righter, K.; Gibson, E. K., Jr.; Chesley, J. T.; Ruiz, J.

    2004-01-01

    The isotopic system, 187Re 187Os, can be used to determine the role of crust and mantle in magma genesis. In order to apply the system to natural samples, we must understand variations in Re/Os concentrations. It is thought that low [Os] and [Re] in basalts can be attributed to sulfide (FeS) saturation, as Re behaves incompatibly to high degrees of evolution until sulfide saturation occurs [1]. Previous work has shown that lunar basalts are sulfide under-saturated, and mid-ocean ridge, ocean-island and Martian (shergottites) basalts are saturated [2,3]. However, little is known about arc basalts. In this study, basaltic rocks were analyzed across the Trans-Mexican Volcanic Belt.

  16. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.

    PubMed

    Jones, J Stuart; Gabbaï, François P

    2016-05-17

    Stimulated by applications in catalysis, the chemistry of ambiphilic ligands featuring both donor and acceptor functionalities has experienced substantial growth in the past several years. The unique opportunities in catalysis offered by ambiphilic ligands stem from the ability of their acceptor functionalities to play key roles via metal-ligand cooperation or modulation of the reactivity of the metal center. Ligands featuring group 13 centers, most notably boranes, as their acceptor functionalities have undoubtedly spearheaded these developments, with remarkable results having been achieved in catalytic hydrogenation and hydrosilylation. Motivated by these developments as well as by our fundamental interest in the chemistry of heavy group 15 elements, we became fascinated by the possibility of employing antimony centers as Lewis acids within ambiphilic ligands. The chemistry of antimony-based ligands, most often encountered as trivalent stibines, has historically been considered to mirror that of their lighter phosphorus-based congeners. There is growing evidence, however, that antimony-based ligands may display unique coordination behavior and reactivity. Additionally, despite the diverse Lewis acid and redox chemistry that antimony exhibits, there have been only limited efforts to explore this chemistry within the coordination sphere of a transition metal. By incorporation of antimony into the framework of polydentate ligands in order to enforce the main group metal-transition metal interaction, the effect of redox and coordination events at the antimony center on the structure, electronics, and reactivity of the metal complex may be investigated. This Account describes our group's continuing efforts to probe the coordination behavior, reactivity, and application of ambiphilic ligands incorporating antimony centers. Structural and theoretical studies have established that both Sb(III) and Sb(V) centers in polydentate ligands may act as Z-type ligands toward late

  17. A Reaction Involving Oxygen and Metal Sulfides.

    ERIC Educational Resources Information Center

    Hill, William D. Jr.

    1986-01-01

    Describes a procedure for oxygen generation by thermal decomposition of potassium chlorate in presence of manganese dioxide, reacted with various sulfides. Provides a table of sample product yields for various sulfides. (JM)

  18. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.604 Section 250.604...-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined...

  19. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or...

  20. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or...

  1. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or...

  2. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.504 Section 250.504...-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined...

  3. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of...

  4. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  5. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  6. Nanostructured metal sulfides for energy storage.

    PubMed

    Rui, Xianhong; Tan, Huiteng; Yan, Qingyu

    2014-09-01

    Advanced electrodes with a high energy density at high power are urgently needed for high-performance energy storage devices, including lithium-ion batteries (LIBs) and supercapacitors (SCs), to fulfil the requirements of future electrochemical power sources for applications such as in hybrid electric/plug-in-hybrid (HEV/PHEV) vehicles. Metal sulfides with unique physical and chemical properties, as well as high specific capacity/capacitance, which are typically multiple times higher than that of the carbon/graphite-based materials, are currently studied as promising electrode materials. However, the implementation of these sulfide electrodes in practical applications is hindered by their inferior rate performance and cycling stability. Nanostructures offering the advantages of high surface-to-volume ratios, favourable transport properties, and high freedom for the volume change upon ion insertion/extraction and other reactions, present an opportunity to build next-generation LIBs and SCs. Thus, the development of novel concepts in material research to achieve new nanostructures paves the way for improved electrochemical performance. Herein, we summarize recent advances in nanostructured metal sulfides, such as iron sulfides, copper sulfides, cobalt sulfides, nickel sulfides, manganese sulfides, molybdenum sulfides, tin sulfides, with zero-, one-, two-, and three-dimensional morphologies for LIB and SC applications. In addition, the recently emerged concept of incorporating conductive matrices, especially graphene, with metal sulfide nanomaterials will also be highlighted. Finally, some remarks are made on the challenges and perspectives for the future development of metal sulfide-based LIB and SC devices. PMID:25073046

  7. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.490 Section 250.490 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Hydrogen Sulfide § 250.490 Hydrogen sulfide. (a)...

  8. Diameter Dependence of the Transport Properties of Antimony Telluride Nanowires

    NASA Astrophysics Data System (ADS)

    Zuev, Yuri; Lee, Jin Sook; Park, Hongkun; Kim, Philip

    2010-03-01

    We report measurements of electronic, thermoelectric, and galvanometric properties of individual semimetallic single crystal antimony telluride (Sb2Te3) nanowires. Microfabricated heater and thermometer electrodes were used to probe the transport properties of the nanowires with diameters in the range of 22 - 95nm and temperatures in the range of 2 - 300K. Temperature dependent resistivity varies depending on nanowire diameter. Thermoelectric power (TEP) measurements indicate hole dominant diffusive thermoelectric generation, with an enhancement of the TEP for smaller diameter wires. The large surface-to-volume ratio of Sb2Te3 nanowires makes them an excellent platform to explore novel phenomena in this predicted topological insulator. We investigate mesoscopic magnetoresistance effects in magnetic fields both parallel and perpendicular to the nanowire axis.

  9. Copper, lead, zinc, antimony, and arsenic in Pakistan

    USGS Publications Warehouse

    White, Max Gregg

    1975-01-01

    Copper localities that merit geological investigation are found in the western Chasai District, in North Waziristan Agency, and in the Salt Range in Mianwali and Sargodha Districts. No high-grade deposits have been .reported from these ,areas and if deposits are developed they will likely be low-grade, high-tonnage, disseminated deposits. Those localities reported from Chitral State are too remote and inaccessible to be of interest now. All lead localities found to date are of minor importance; there has been small production at one .locality in Chasai District and in the southern part of the Hazara District. Zinc, antimony, and arsenic are sparse in Pakistan and no important localities of these metals are reported.

  10. Magnesium-Antimony Liquid Metal Battery for Stationary Energy Storage

    SciTech Connect

    Bradwell, DJ; Kim, H; Sirk, AHC; Sadoway, DR

    2012-02-01

    Batteries are an attractive option for grid: scale energy storage applications because of their small footprint and flexible siting. A high-temperature (700 degrees C) magnesium antimony (MgllSb) liquid metal battery comprising a negative electrode of Mg, a molten salt electrolyte (MgCL2-KCl-NaCl), and a positive electrode of Sb is proposed and characterized. Because of the immiscibility of the contiguous salt and metal phases, they stratify by density into three distinct layers. Cells were cycled at rates ranging from 50 to 200 mA/cm(2) and demonstrated up to 69% DC-DC energy efficiency. The self-segregating nature of the battery components and the use Of low-cost materials results in a promising technology for stationary energy storage applications.

  11. Atomistic mechanisms governing structural stability change of zinc antimony thermoelectrics

    SciTech Connect

    Yang, Xiaolong; Lin, Jianping; Qiao, Guanjun; Wang, Zhao

    2015-01-05

    The structural stability of thermoelectric materials is a subject of growing importance for their energy harvesting applications. Here, we study the microscopic mechanisms governing the structural stability change of zinc antimony at its working temperature, using molecular dynamics combined with experimental measurements of the electrical and thermal conductivity. Our results show that the temperature-dependence of the thermal and electrical transport coefficients is strongly correlated with a structural transition. This is found to be associated with a relaxation process, in which a group of Zn atoms migrates between interstitial sites. This atom migration gradually leads to a stabilizing structural transition of the entire crystal framework, and then results in a more stable crystal structure of β–Zn{sub 4}Sb{sub 3} at high temperature.

  12. Calcium metal as a scavenger for antimony from aluminum alloys

    SciTech Connect

    Bonsignore, P.V.; Daniels, E.J.; Wu, C.T.

    1994-10-04

    Previous work has shown that trace amounts of antimony (Sb) can affect the mechanical properties of strontium (Sr) modified aluminum castings. ANL has been investigating technology to remove or neutralize Sb to reduce its negative effect on the physical properties of those alloys. Review of past work on processing and recovery of scrap aluminum inferred that calcium (Ca) is an effective scavenger of Sb, bismuth, lead and cadmium. Following up on that lead, we have found that Ca is, indeed, effective for removing Sb from molten aluminum alloys although its effectiveness can be compromised by a wide range of processing conditions. A minimum ratio of about four to one, by weight, of Ca to Sb appears necessary to insure an effective scavenging of contained Sb.in 356 aluminum alloys.

  13. Antimony toxicity in the lichen Xanthoria parietina (L.) Th. Fr.

    PubMed

    Paoli, L; Fiorini, E; Munzi, S; Sorbo, S; Basile, A; Loppi, S

    2013-11-01

    In this paper we tested if treating the lichen Xanthoria parietina with Sb-containing solutions causes Sb bioaccumulation as well as physiological and ultrastructural changes. Total and intracellular antimony content in Sb-treated samples increased progressively with increasing concentration in the treatment solutions. Incubation of X. parietina thalli with Sb at concentrations as low as 0.1mM caused a decrease in sample viability, measured as intensity of respiratory activity, and damage to cell membranes, expressed in terms of membrane lipid peroxidation, as well as ultrastructural changes such as plasmolysis, impairment of the thylakoid system of the alga and cytoplasmic lipid droplets. The photosynthetic system hardly responded, at least under the tested experimental conditions. PMID:24001672

  14. Silicon quantum dots with counted antimony donor implants

    NASA Astrophysics Data System (ADS)

    Singh, Meenakshi; Pacheco, Jose; Perry, Daniel; Wendt, Joel; Manginell, Ronald; Dominguez, Jason; Pluym, Tammy; Luhman, Dwight; Bielejec, Edward; Lilly, Michael; Carroll, Malcolm

    Antimony donor implants next to silicon quantum dots have been detected with integrated solid-state diode detectors with single ion precision. Devices with counted number of donors have been fabricated and low temperature transport measurements have been performed. Charge offsets, indicative of donor ionization and coupling to the quantum dot, have been detected in these devices. The number of offsets corresponds to 10-50% of the number of donors counted. We will report on tunneling time measurements and spin readout measurements on the donor offsets. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  15. Geochemistries of arsenic, antimony, mercury, and related elements in sediments of puget sound

    USGS Publications Warehouse

    Crecelius, E.A.; Bothner, Michael H.; Carpenter, R.

    1975-01-01

    The natural distributions of arsenic, antimony mercury, chromium, cobalt, iron, aluminum, and carbon in the surface sediments of Puget Sound are perturbed by two major anthropogenic sources of trace metals: a copper smelter near Tacoma, Wash., that discharges large amounts of arsenic and antimony, and a chlor-alkali plant in Bellingham, Wash., which, in the recent past, discharged significant amounts of mercury. Arsenic and antimony inputs from the smelter over the past 80 years are evident in sediment cores whose accumulation rates have been determined by the lead-210 technique. An arsenic budget for Puget Sound reveals the importance of atmospheric input resulting from smokestack emissions of the smelter. Chemical extraction studies of sediments showed that more than 82% of the mercury was associated with easily oxidizable organic matter, whereas about 50% of both arsenic and antimony was associated with extractable iron and aluminum compounds.

  16. Concentrations of arsenic, antimony, and boron in steam and steam condensate at The Geysers, California

    USGS Publications Warehouse

    Smith, C.L.; Ficklin, W.H.; Thompson, J.M.

    1987-01-01

    Studies at The Geysers Geothermal Field, California indicate that under some circumstances elements that are transported in the vapor phase can become enriched in the liquid phase. Waters from two condensate traps (steam traps) on steam lines at The Geysers are enriched with arsenic, antimony, and boron compared to the concentrations of these elements in coexisting steam. Concentrations of boron in condensate-trap waters were as high as 160 mg/L, arsenic as high as 35 mg/L, and antimony as high as 200 ??g/L. Enrichment of arsenic, antimony, and boron is at least partially controlled by the partitioning of these elements into the liquid phase, according to their vapor-liquid distribution coefficients, after they are transported in steam. Several of the elements that are most soluble in steam, including arsenic and antimony, are part of the trace-element suite that characterizes precious-metal epithermal ore deposits. ?? 1987.

  17. One-step synthesis and flame retardancy of sheaf-like microcrystal antimony oxychloride.

    PubMed

    Zhou, Jing; Zhao, Hewei; Li, Lidong; Tian, Ming; Han, Jibing; Zhang, Liqun; Guo, Lin

    2011-10-01

    A mild and facile solution route has been developed for large-scale synthesis of sheaf-like antimony oxychloride Sb8O11CI2 (H2O)6 microcrystal at room temperature. The morphologies and structures of the as-prepared products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A mechanism for the formation of the sheaf-like microstructure was tentatively proposed. The shape regulation was attributed to the capping mode of the PVP-directed antimony oxychloride crystal. The thermogravimetric and differential thermal analysis (TG/DTA) were employed to investigate thermal decomposition mechanism and temperature-dependent phase transition of antimony oxychloride Sb8O11CI2 (H2O)6 in the air. The flammable property determined by the cone calorimeter showed excellent flame retardancy when applied this antimony oxychloride in poly (vinyl chloride) (PVC) polymer. PMID:22400215

  18. New low-antimony alloy for straps and cycling service in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Prengaman, R. David

    Lead-antimony alloys used for the positive grids in lead-acid batteries for cycling service have generally used antimony contents of 4.5 wt.% and above. Tubular batteries for cycling service that impart high compression of the active material to the grid surface via gauntlet use alloys with antimony contents as low as 1.5 wt.%. These batteries are generally employed in less-severe cycling service. Value-regulated lead-acid (VRLA) batteries can give good cycling service without lead-antimony in the positive grid, but require a high tin content and high compression. The change in automotive battery positive grid alloys to lead-calcium-tin and the tin contents of VRLA positive grids and straps have dramatically increased the tin content of the recycled grid and strap lead in the USA, Europe, and Australia. The higher tin contents can contaminate the lead used for lead-antimony battery grids and generally must be removed to low levels to meet the specifications. This study describes a low-antimony alloy that contains a substantial amount of tin. The high tin content reduces the rate of corrosion of low-antimony positive grid alloys, improves conductivity, increases the bond between the grid and the active material, and cycles as well as the traditional 5-6 wt.% antimony alloys employed in conventional flat-plate batteries. The alloy is also used as a corrosion-resistant cast-on strap alloy for automotive batteries for high temperature service, as well as for posts, bushings, and connectors for all wet batteries.

  19. Neutron-activation analysis by standard addition and solvent extraction Determination of traces of antimony.

    PubMed

    Alian, A; Shabana, R; Sanad, W; Allam, B; Khalifa, K

    1968-02-01

    The application of neutron activation analysis by standard addition and solvent extraction to the determination of traces of antimony in aluminium and rocks is reported. Three simple extraction procedures, using isopropyl ether, hexone, and tributyl phosphate, are described for the selective separation of radioantimony from interfering radionuclides. Antimony concentration is measured by counting the activities of the (122)Sb and (124)Sb photopeaks at 0.564 and 0.603 MeV. PMID:18960289

  20. SULFIDE PRECIPITATION OF HEAVY METALS

    EPA Science Inventory

    The research program was initiated with the objective of evaluating a new process, the sulfide precipitation of heavy metals from industrial wastewaters. The process was expected to effect a more complete removal of heavy metals than conventional lime processing because of the mu...

  1. p-Chlorophenyl methyl sulfide

    Integrated Risk Information System (IRIS)

    p - Chlorophenyl methyl sulfide ; CASRN 123 - 09 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for N

  2. Platinum metals magmatic sulfide ores.

    PubMed

    Naldrett, A J; Duke, J M

    1980-06-27

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example. PMID:17796685

  3. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, Victor A.; Iton, Lennox E.; Pasterczyk, James W.; Winterer, Markus; Krause, Theodore R.

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  4. A comprehensive global inventory of atmospheric Antimony emissions from anthropogenic activities, 1995-2010.

    PubMed

    Tian, Hezhong; Zhou, JunRui; Zhu, Chuanyong; Zhao, Dan; Gao, Jiajia; Hao, Jiming; He, Mengchang; Liu, Kaiyun; Wang, Kun; Hua, Shenbing

    2014-09-01

    Antimony (Sb) and its compounds are considered as global pollutants due to their health risks and long-range transport characteristics. A comprehensive global inventory of atmospheric antimony emissions from anthropogenic activities during the period of 1995-2010 has been developed with specific estimation methods based on the relevant data available for different continents and countries. Our results indicate that the global antimony emissions have increased to a peak at about 2232 t (t) in 2005 and then declined gradually. Global antimony emissions in 2010 are estimated at about 1904 t (uncertainty of a 95% confidence interval (CI): -30% ∼ 67%), with fuel combustion as the major source category. Asia and Europe account for about 57% and 24%, respectively, of the global total emissions, and China, the United States, and Japan rank as the top three emitting countries. Furthermore, global antimony emissions are distributed into gridded cells with a resolution of 1° × 1°. Regions with high Sb emissions are generally concentrated in the Southeastern Asia and Western Europe, while South Africa, economically developed regions in the eastern U.S., and Mexico are also responsible for the high antimony emission intensity. PMID:25110938

  5. Urinary antimony and leukocyte telomere length: An analysis of NHANES 1999-2002.

    PubMed

    Scinicariello, Franco; Buser, Melanie C

    2016-10-01

    Telomeres are repetitive DNA sequences (TTAGGG) at the end of chromosomes. Cells with critically short telomeres enter replicative senescence and apoptosis. Several in vitro studies report that antimony causes cell apoptosis in human leukocyte cell lines. The goal of this analysis was to investigate whether there is an association between antimony exposure and leukocyte telomere length (LTL) among US adults aged 20 and older based on the National Health and Nutrition Examination Survey (NHANES) 1999-2002. We used multivariate linear regression to analyze the association of urinary antimony with LTL. LTL was log-natural transformed and the results were re-transformed and presented as percent differences. After adjustment for potential confounders, individuals in the 3rd and 4th quartiles of urinary antimony had statistically significantly shorter LTL (-4.78%, 95% CI: -8.42,-0.90; and -6.11%, 95% CI: -11.04,-1.00, respectively) compared to the lowest referent quartile, with evidence of a dose-response relationship (p-value for trend =0.03). Shorter LTL with antimony was driven by middle aged (40-59 years) and older (60-85 years) adult groups. The association may be biologically plausible because of reported oxidative stress and apoptosis effects of antimony on blood cells, effects known to shorten telomere length. PMID:27423705

  6. Nano-titania-crosslinked chitosan composite as a superior sorbent for antimony (III) and (V).

    PubMed

    Nishad, Padala Abdul; Bhaskarapillai, Anupkumar; Velmurugan, Sankaralingam

    2014-08-01

    Removal of radioactive antimony, especially at low levels, is a difficult problem faced by nuclear power plants all over the world. Further, antimony is classified as a pollutant of priority importance by the United States and the European environmental protection agencies. Chitosan, a biopolymer well known for its sorption properties, can also serve as a stable matrix for inorganic sorbents such as titania on crosslinking. A robust high performing sorbent for antimony, in the form of stable beads, has been prepared using nano-TiO2 and chitosan. Raman spectra of the beads confirmed the incorporation of nano-TiO2 in the chitosan matrix. The sorbent exhibited complete sorption of antimony from aqueous solutions with antimony concentrations ranging from as low as 150 ppb to as high as 120 ppm. The sorption dependence on equilibrium pH has been investigated. The beads have been shown to be effective sorbent of antimony in both +3 and +5 oxidation states. The sorption properties of the beads were attributed to the TiO2 component present in the beads, while the crosslinked chitosan provided strong matrix and influenced the formation of much needed stable spherical beads suitable for real life large scale applications. The beads exhibited high sorption efficiency in the column mode, and were found to be physically stable at a flow rate of one bed volume per minute. PMID:24751261

  7. Antimony: an unlikely confounder in the relationship between well water arsenic and health outcomes in Bangladesh.

    PubMed Central

    McCarty, Kathleen M; Senn, David B; Kile, Molly L; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Christiani, David C

    2004-01-01

    Recent in vitro studies have suggested a potential role for antimony as a confounder in human health studies related to arsenic in drinking water. We measured tube-well water concentrations of antimony and arsenic in the Pabna region of Bangladesh, where arsenic concentrations are known to be elevated and the concentrations of antimony have not yet been thoroughly documented. Two hundred forty-five tube-well water samples were collected from various regions in Pabna, Bangladesh, as part of an ongoing case-control study. Water samples were analyzed for arsenic and antimony concentrations by inductively coupled plasma-mass spectrometry using U.S. Environmental Protection Agency method 200.8. The arsenic concentrations in the tube-well water samples ranged from < 1 microg/L to 747 microg/L. All 245 water samples had antimony concentrations < 1 microg/L. Based on consideration of the concentrations used the in vitro studies compared with field-observed concentrations, our results do not support the hypothesis that antimony would be a significant confounder in observed relationships between arsenic exposure through drinking water and potential health outcomes in Pabna, Bangladesh. PMID:15175164

  8. Simulation of antimony adsorption on nano-zero valent iron and kaolinite and analyzing the influencing parameters.

    PubMed

    Saeidnia, Setareh; Asadollahfardi, Gholamreza; Darban, Ahmad Khodadadi; Mohseni, Mehdi

    2016-01-01

    Antimony is one of the most toxic pollutants in industrial and mineral wastewaters threatening the life of humans and other creatures. We simulated the adsorption of antimony in the presence of nano-zero valent iron (nZVI) adsorbent, on kaolinite and in the presence of nZVI coated on kaolinite from mineral wastewater using VISUAL MINTEQ 3.1 software. Our aim was to determine the factors affecting the adsorption of antimony by applying simulation. The simulation was performed using an adsorption model of a diffuse layer model. The results of the simulation indicated that the nZVI concentration, initial concentrations of antimony and pH factor are effective on the adsorption of antimony. In the conducted stimulation, the optimum pH was 2-5 and the highest adsorption occurred in an acidic state. With increasing initial concentrations of antimony in the simulation, we concluded that nZVI had absorbed various concentrations above 90% and, by increasing the concentration of nZVI, antimony adsorption rate increased. The increased surface area of nZVI and the expansion of more interchangeable surfaces available for reaction with antimony ions causes more antimony ions to be adsorbed. In all cases, the coefficient of determination between the laboratory results and the model predictions that was obtained was more than 0.9. PMID:27191572

  9. Comparison of the native antimony-bearing Paiting gold deposit, Guizhou Province, China, with Carlin-type gold deposits, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Xie, Zhuo-Jun; Xia, Yong; Cline, Jean S.; Yan, Bao-Wen; Wang, Ze-Peng; Tan, Qin-Ping; Wei, Dong-Tian

    2016-03-01

    The Paiting gold deposit, Guizhou Province, China, has been regarded as a Carlin-type gold deposit by several researchers. Alteration and ore-related minerals from the Paiting deposit were examined, and results were compared with the Cortez Hills Carlin-type gold deposit, Nevada, USA. Similarities include the structural and stratigraphic controls on the orebodies in both deposits and the occurrence of invisible gold ionically bound in arsenian pyrite. Significant differences include the following: (1) The gold-bearing mineral in Nevada is arsenian pyrite. However, gold-bearing minerals in the Paiting deposit include arsenopyrite, arsenian pyrite, and trace pyrrhotite. Also, euhedral or subhedral gold-bearing arsenian pyrite at Paiting contains significantly less As, Cu, and Hg than gold-bearing pyrite from Nevada. (2) Alteration in the Paiting deposit displays significantly less decarbonatization. Instead, dolomite precipitation, which has not been described in Nevada deposits, is associated with deposition of gold-bearing sulfide minerals. (3) Stibnite and minor native antimony typify Paiting late-ore-stage minerals, whereas in Nevada, realgar, orpiment, and calcite are common late-ore-stage minerals. Precipitation of native antimony in the Paiting deposit reflects the evolution of a late-ore fluid with unusually low sulfur and oxygen fugacities. Some characteristics of the Paiting gold deposit, including formation of ore-stage dolomite and precipitation from CO2-rich ore fluids at temperatures in excess of 250 °C, are more typical of orogenic deposits than Nevada Carlin deposits. The presence of similarities in the Paiting deposit to both Carlin type and orogenic deposits is consistent with formation conditions intermediate to those typical of Carlin type and orogenic systems.

  10. New Antimony Lanthanide Disulfide Dibromides LnSbS

    SciTech Connect

    Gout, D.; Jobic, S.; Evain, M.; Brec, R.

    2001-05-01

    CeSbS{sub 2}Br{sub 2} (I), Ce{sub 1/2}La{sub 1/2}SbS{sub 2}Br{sub 2} (II), and LaSbS{sub 2}Br{sub 2} (III) have been synthesized at 700 C from a mixture of LnBr{sub 3}, Ln{sub 2}S{sub 3}, Sb, and S and characterized by single-crystal X-ray diffraction. The three phases are isostructural (space group P2{sub 1}/c, Z=4) and crystallize in a novel, dense, bidimensional structure with cell parameters a=8.709(3) {angstrom}, b=9.187(2) {angstrom}, c=17.397(5) {angstrom} {beta}=104.26(3) for I, a=8.739(7) {angstrom}, b=9.219(7) {angstrom}, c=17.41(2) {angstrom}, =104.3(1) for II, and a=8.785(1) {angstrom}, b=9.236(2) {angstrom}, c=17.372(3) {angstrom}, {beta}=104.09(2) for III. In these compounds, [Ln S{sub 5}Br{sub 4}] and [Ln S{sub 3}Br{sub 6}] (Ln=Ce, La) distorted tricapped trigonal prisms define infinite {sub {infinity}}{sup 2}[LnS{sub 2}Br{sub 2}] layers counterbalanced and capped by antimony cations. In good accordance with the structural features, the charge balance in these materials is to be written Ln{sup III}Sb{sup III}S{sup -II}{sub 2}Br{sup -I}{sub 2}. These compounds exhibit a yellow hue with a measured absorption threshold of 2.42(1), 2.55(1), and 2.72(1) eV for I, II, and III, respectively. In the two cerium containing bromothioantimonates I and II, the origin of the color is assigned to a Ce-4f{yields}Ce-5d electronic transition, which shifts to higher energy from I to II due either to a matrix effect (increase of the mean Ln-S distances under the substitution of Ce for La) or to an atomic ordering between Ce and La cations on the Ln(1) and Ln(2) crystallographic sites. In contrast, the electronic transition at play in III involves a charge transfer from the bromine and sulfur ions to the antimony ions, the latter contributing substantially to the lowermost levels of the conduction band.

  11. MAPK1 of Leishmania donovani Modulates Antimony Susceptibility by Downregulating P-Glycoprotein Efflux Pumps

    PubMed Central

    Garg, Mansi

    2015-01-01

    Emergence of resistance to pentavalent antimonials has become a severe obstacle in the treatment of visceral leishmaniasis (VL) in the Indian subcontinent. Mitogen-activated protein kinases (MAPKs) are well-known mediators of signal transduction of eukaryotes, regulating important processes, like proliferation, differentiation, stress response, and apoptosis. In Leishmania, MAPK1 has been shown to be consistently downregulated in antimony-resistant field isolates, suggesting that it has a role in antimony resistance. The present work investigates the molecular mechanism of MAPK1 in antimony resistance in Leishmania donovani. The L. donovani MAPK1 (LdMAPK1) single-allele replacement mutants exhibited increased resistance to Sb(III) (5.57-fold) compared to wild-type promastigotes, while overexpressing parasites became much more susceptible to antimony. The LdMAPK1-mediated drug sensitivity was directly related to antimony-induced apoptotic death of the parasite, as was evidenced by a 4- to 5-fold decrease in cell death parameters in deletion mutants and a 2- to 3-fold increase in MAPK1-overexpressing cells. LdMAPK1-underexpressing parasites also exhibited increased P-glycoprotein (P-gp)-mediated efflux pump activity, while a significant decrease in pump activity was observed in overexpressing cells. This change in efflux pump activity was directly related to expression levels of P-gp in all cell lines. However, episomal complementation of the gene restored normal growth, drug sensitivity, P-gp expression, and efflux pump activity. The data indicate that LdMAPK1 negatively regulates the expression of P-glycoprotein-type efflux pumps in the parasite. The decrease in efflux pump activity with an increase in LdMAPK1 expression may result in increased antimony accumulation in the parasite, making it more vulnerable to the drug. PMID:25870075

  12. Marine diagenesis of hydrothermal sulfide

    SciTech Connect

    Moammar, M.O.

    1985-01-01

    An attempt is made to discuss the artificial and natural oxidation and hydrolysis of hydrothermal sulfide upon interaction with normal seawater. Synthetic and natural ferrosphalerite particles used in kinetic oxidation and hydrolysis studies in seawater develop dense, crystalline coatings consisting of ordered and ferrimagnetic delta-(Fe, Zn)OOH. Due to the formation of this reactive diffusion barrier, the release of Zn into solution decreases rapidly, and sulfide oxidation is reduced to a low rate determined by the diffusion of oxygen through the oxyhydroxide film. This also acts as an efficient solvent for ions such as Zn/sup 2 +/, Ca/sup 2 +/, and possibly Cd/sup 2 +/, which contribute to the stabilization of the delta-FeOOH structure. The oxidation of sulfide occurs in many seafloor spreading areas, such as 21/sup 0/N on the East Pacific Ridge. In these areas the old surface of the sulfide chimneys are found to be covered by an orange stain, and sediment near the base of nonactive vents is also found to consist of what has been referred to as amorphous iron oxide and hydroxide. This thesis also discusses the exceedingly low solubility of zinc in seawater, from delta-(Fe, Zn)OOH and the analogous phase (zinc-ferrihydroxide) and the zinc exchange minerals, 10-A manganate and montmorillonite. The concentrations of all four are of the same magnitude (16, 36.4, and 12 nM, respectively) as the zinc concentration in deep ocean water (approx. 10 nM), which suggests that manganates and montmorillonite with iron oxyhydroxides control zinc concentration in the deep ocean.

  13. The MRP1-mediated effluxes of arsenic and antimony do not require arsenic-glutathione and antimony-glutathione complex formation.

    PubMed

    Salerno, Milena; Petroutsa, Maria; Garnier-Suillerot, Arlette

    2002-04-01

    Arsenic trioxide is an effective treatment for acute promyelocytic leukemia, but resistance to metalloid salts is found in humans. Using atomic absorption spectroscopy, we have measured the rate of uptake of arsenic trioxide and of antimony tartrate in GLC4 and GLC4/ADR cells overexpressing MRP1 and the rate of their MRP1-mediated effluxes as a function of the intracellular GSH concentration. In sensitive cells, after 1 h, a pseudosteady state is reached where intra- and extracellular concentrations of metalloid are the same. This precludes the formation, at short term, of complexes between arsenic or antimony with GSH. In resistant cells reduced intracellular accumulation of arsenic (or antimony), reflecting an increased rate of arsenic (or antimony) efflux from the cells, is observed. No efflux of the metalloid is observed in GSH depleted cells. The two metalloids and GSH are pumped out by MRP1 with the same efficiency. Moreover for the three compounds 50% of the efflux is inhibited by 2 microM MK571. This led us to suggest that As- and Sb-containing species could be cotransported with GSH. PMID:12018890

  14. Sulfide-Driven Microbial Electrosynthesis

    SciTech Connect

    Gong, YM; Ebrahim, A; Feist, AM; Embree, M; Zhang, T; Lovley, D; Zengler, K

    2013-01-01

    Microbial electrosynthesis, the conversion of carbon dioxide to organic molecules using electricity, has recently been demonstrated for acetogenic microorganisms, such as Sporomusa ovata. The energy for reduction of carbon dioxide originates from the hydrolysis of water on the anode, requiring a sufficiently low potential. Here we evaluate the use of sulfide as an electron source for microbial electrosynthesis. Abiotically oxidation of sulfide on the anode yields two electrons. The oxidation product, elemental sulfur, can be further oxidized to sulfate by Desulfobulbus propionicus, generating six additional electrons in the process. The eight electrons generated from the combined abiotic and biotic steps were used to reduce carbon dioxide to acetate on a graphite cathode by Sporomusa ovata at a rate of 24.8 mmol/day.m(2). Using a strain of Desulfuromonas as biocatalyst on the anode resulted in an acetate production rate of 49.9 mmol/day.m(2), with a Coulombic efficiency of over 90%. These results demonstrate that sulfide can serve effectively as an alternative electron donor for microbial electrosynthesis.

  15. Simultaneous lead and antimony immobilization in shooting range soil by a combined application of hydroxyapatite and ferrihydrite.

    PubMed

    Ogawa, Shouhei; Katoh, Masahiko; Sato, Takeshi

    2015-01-01

    This study investigated whether a combined application of hydroxyapatite and ferrihydrite could immobilize lead and antimony in shooting range soil in which the level of lead contamination is markedly higher than that of antimony. In addition, we evaluated the stability of lead and antimony immobilized by the combined application with varying soil pH. The levels of water-soluble lead and antimony for the combined application were lower than those of single applications of hydroxyapatite or ferrihydrite, indicating that the combined application could suppress the levels of water-soluble lead and antimony by 99.9% and 95.5%, respectively, as compared with the levels in shooting range soil without immobilization material. The amounts of residual lead and amorphous Fe/Al oxide-bound antimony fractions in sequential extraction increased with a decrease in the exchangeable and carbonate lead fractions as well as in non-specifically bound and specifically bound antimony fractions. The alteration of lead and antimony phases to chemically more stable ones as a result of the combined application would result in the suppression of their mobility. The stability of immobilized lead and antimony in the combined application was equal to that of lead with a single application of hydroxyapatite and that of antimony with a single application of ferrihydrite within neutral to alkaline pH conditions, respectively. Therefore, this study suggests that the combined application of hydroxyapatite and ferrihydrite can simultaneously immobilize lead and antimony in shooting range soil with neutral to alkaline pH. PMID:25894550

  16. Antimony-Based III-V Thermophotovoltaic Materials and Devices

    NASA Astrophysics Data System (ADS)

    Wang, C. A.

    2004-11-01

    Antimony-based III-V thermophotovoltaic (TPV) cells are attractive converters for systems with low radiator temperature of around 1100 to 1700 K, since these cells can be spectrally matched to the thermal source. Cells under development include GaSb and lattice-matched GaInAsSb/GaSb and InPAsSb/InAs. GaSb cell technology is the most mature, owing in part to the relative ease in preparation of the binary alloy compared to the quaternary alloys. Cell performance of 0.7-eV GaSb devices is at ˜90% of the practical limit. GaInAsSb cells with energy gap Eg ranging from ˜0.6 to 0.49 eV have been demonstrated with quantum efficiency and fill factor approaching practical limits. InPAsSb cells are the least studied, and a 0.45-eV cell has spectral response out to 4.3 μm. This paper briefly reviews the main efforts in Sb-based TPV cells.

  17. Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries

    SciTech Connect

    Ouchi, T; Kim, H; Ning, XH; Sadoway, DR

    2014-08-08

    The performance of a calcium-antimony (Ca-Sb) alloy serving as the positive electrode in a Ca vertical bar vertical bar Sb liquid metal battery was investigated in an electrochemical cell, Ca(in Bi) vertical bar LiCl-NaCl-CaCl2 vertical bar Ca(in Sb). The equilibrium potential of the Ca-Sb electrode was found to lie on the interval, 1.2-0.95 V versus Ca, in good agreement with electromotive force (emf) measurements in the literature. During both alloying and dealloying of Ca at the Sb electrode, the charge transfer and mass transport at the interface are facile enough that the electrode potential varies linearly from 0.95 to 0.75 V vs Ca(s) as current density varies from 50 to 500 mA cm(-2). The discharge capacity of the Ca vertical bar vertical bar Sb cells increases as the operating temperature increases due to the higher solubility and diffusivity of Ca in Sb. The cell was successfully cycled with high coulombic efficiency (similar to 100%) and small fade rate (<0.01% cycle(-1)). These data combined with the favorable costs of these metals and salts make the Ca vertical bar vertical bar Sb liquid metal battery attractive for grid-scale energy storage. (C) The Author(s) 2014. Published by ECS. All rights reserved.

  18. Single-layer crystalline phases of antimony: Antimonenes

    NASA Astrophysics Data System (ADS)

    Aktürk, O. Üzengi; Ã-zçelik, V. Ongun; Ciraci, S.

    2015-06-01

    The pseudolayered character of 3D bulk crystals of antimony has led us to predict its 2D single-layer crystalline phase named antimonene in a buckled honeycomb structure like silicene. Sb atoms also form an asymmetric washboard structure like black phospherene. Based on an extensive analysis comprising ab initio phonon and finite-temperature molecular dynamics calculations, we show that these two single-layer phases are robust and can remain stable at high temperatures. They are nonmagnetic semiconductors with band gaps ranging from 0.3 eV to 1.5 eV, and are suitable for 2D electronic applications. The washboard antimonene displays strongly directional mechanical properties, which may give rise to a strong influence of strain on the electronic properties. Single-layer antimonene phases form bilayer and trilayer structures with wide interlayer spacings. In multilayers, this spacing is reduced and eventually the structure changes to 3D pseudolayered bulk crystals. The zigzag and armchair nanoribbons of the antimonene phases have fundamental band gaps derived from reconstructed edge states and display a diversity of magnetic and electronic properties depending on their width and edge geometry. Their band gaps are tunable with the widths of the nanoribbons. When grown on substrates, such as germanene or Ge(111), the buckled antimonene attains a significant influence of substrates.

  19. Antimony as an amphoteric dopant in lead telluride

    SciTech Connect

    Jaworski, Christopher M.; Tobola, Janusz; Levin, E.M.; Schmidt-Rohr, Klaus; Heremans, Joseph P.

    2009-09-24

    We elucidate the amphoteric nature of antimony as a dopant in PbTe. Band-structure calculations show that Sb substituting for Pb is a donor and that Sb on the Te site is an acceptor giving rise to a large excess density of states (DOS). Experimentally, in Te-rich Pb{sub 1-x}Sb{sub x}Te samples, {sup 125}Te NMR spectroscopy shows that Sb substitutes for Pb and transport data reveal that it then acts as a simple donor. In Pb-rich PbSb{sub x}Te{sub 1-x} samples, {sup 125}Te NMR shows that little Sb substitutes for Te when samples are prepared above 770 K and then quenched; {sup 207}Pb NMR shows four types of charge carriers, but only a majority hole and a minority electron contribute to transport. Sb acts as an acceptor in PbSb{sub x}Te{sub 1-x}, but the large DOS calculated must correspond to a large concentration of localized holes and the Seebeck coefficient is not enhanced.

  20. Yb3+/Ho3+-codoped antimony-silicate optical fiber

    NASA Astrophysics Data System (ADS)

    Żmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Dorosz, Jan

    The emission properties of Yb3+/Ho3+-codoped antimony-silicate optical fiber has been investigated. Luminescence at 2.1 μm corresponding to 5I7--> 5I8 transition in holmium was obtained by energy transfer between Yb3+ and Ho3+ ions. According to the Dexter-Miyakawa model, the parameters of energy migration CDD of the 2F5/2 (Yb3+) <--> 2F5/2 (Yb3+) transition and direct energy transfer CDA of the 2F5/2 (Yb3+) --> 5I6 (Ho3+) transition was calculated. The optimization of the activator content and the concentration ratio were conducted with the purpose of maximizing the efficiency of energy transfer. It made possible to select best-suited glass which was used to manufacture double-clad optical fiber. Strong and narrow bands of spontaneous emission which formed as a result of energy transfer between ytterbium and holmium ions were observed in the fiber under exciting with radiation at 978 nm wavelength.

  1. Yb3+/Ho3+-codoped antimony-silicate optical fiber

    NASA Astrophysics Data System (ADS)

    Żmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Dorosz, Jan

    2012-05-01

    The emission properties of Yb3+/Ho3+-codoped antimony-silicate optical fiber has been investigated. Luminescence at 2.1 μm corresponding to 5I7--> 5I8 transition in holmium was obtained by energy transfer between Yb3+ and Ho3+ ions. According to the Dexter-Miyakawa model, the parameters of energy migration CDD of the 2F5/2 (Yb3+) <--> 2F5/2 (Yb3+) transition and direct energy transfer CDA of the 2F5/2 (Yb3+) --> 5I6 (Ho3+) transition was calculated. The optimization of the activator content and the concentration ratio were conducted with the purpose of maximizing the efficiency of energy transfer. It made possible to select best-suited glass which was used to manufacture double-clad optical fiber. Strong and narrow bands of spontaneous emission which formed as a result of energy transfer between ytterbium and holmium ions were observed in the fiber under exciting with radiation at 978 nm wavelength.

  2. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  3. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  4. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  5. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  6. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  7. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  8. Correlating microbial community profiles with geochemical conditions in a watershed heavily contaminated by an antimony tailing pond.

    PubMed

    Xiao, Enzong; Krumins, Valdis; Tang, Song; Xiao, Tangfu; Ning, Zengping; Lan, Xiaolong; Sun, Weimin

    2016-08-01

    Mining activities have introduced various pollutants to surrounding aquatic and terrestrial environments, causing adverse impacts to the environment. Indigenous microbial communities are responsible for the biogeochemical cycling of pollutants in diverse environments, indicating the potential for bioremediation of such pollutants. Antimony (Sb) has been extensively mined in China and Sb contamination in mining areas has been frequently encountered. To date, however, the microbial composition and structure in response to Sb contamination has remained overlooked. Sb and As frequently co-occur in sulfide-rich ores, and co-contamination of Sb and As is observed in some mining areas. We characterized, for the first time, the microbial community profiles and their responses to Sb and As pollution from a watershed heavily contaminated by Sb tailing pond in Southwest China. The indigenous microbial communities were profiled by high-throughput sequencing from 16 sediment samples (535,390 valid reads). The comprehensive geochemical data (specifically, physical-chemical properties and different Sb and As extraction fractions) were obtained from river water and sediments at different depths as well. Canonical correspondence analysis (CCA) demonstrated that a suite of in situ geochemical and physical factors significantly structured the overall microbial community compositions. Further, we found significant correlations between individual phylotypes (bacterial genera) and the geochemical fractions of Sb and As by Spearman rank correlation. A number of taxonomic groups were positively correlated with the Sb and As extractable fractions and various Sb and As species in sediment, suggesting potential roles of these phylotypes in Sb biogeochemical cycling. PMID:27182975

  9. Copper-promoted cementation of antimony in hydrochloric acid system: A green protocol.

    PubMed

    Wu, Lian-Kui; Li, Ying-Ying; Cao, Hua-Zhen; Zheng, Guo-Qu

    2015-12-15

    A new method of recovering antimony in hydrochloric acid system by cementation with copper powder was proposed and carried out at laboratory scale. Thermodynamic analysis and cyclic voltammetry test were conducted to study the cementation process. This is a novel antimony removal technology and quite meets the requirements of green chemistry. The main cement product Cu2Sb is a promising anodic material for lithium and sodium ion battery. And nearly all consumed copper powder are transformed into CuCl which is an important industrial material. The effect of reaction temperature, stoichiometric ratio of Cu to Sb(III), stirring rate and concentration of HCl on the cementation efficiency of antimony were investigated in detail. Optimized cementation condition is obtained at 60 °C for 120 min and stirring rate of 600 rpm with Cu/Sb(III) stoichiometric ratio of 6 in 3 mol L(-1) HCl. At this time, nearly all antimony can be removed by copper powder and the cementation efficiency is over 99%. The structure and morphologies of the cement products were characterized by X-ray diffraction and scanning electron microscopy, respectively. Results show that the reaction temperature has little influence on the morphology of the cement products which consist of particles with various sizes. The activation energy of the cementation antimony on copper is 37.75 kJ mol(-1), indicating a chemically controlled step. Inductively coupled plasma mass spectrometry results show that no stibine generates during the cementation process. PMID:26252996

  10. Electrochemical antimony removal from accumulator acid: results from removal trials in laboratory cells.

    PubMed

    Bergmann, M E Henry; Koparal, A Savas

    2011-11-30

    Regeneration of spent accumulator acid could be an alternative process for crystallization, neutralisation and disposal. Therefore, for the first time in a study of the possibilities of electrochemical removal of antimony and accumulator acid regeneration on a laboratory scale, two synthetic and several real systems containing sulfuric acid of concentrations ranging between 28% and 36%, and antimony species were tested. Discontinuous electrochemical reactors with anion exchange membranes were successfully used in these experiments, which were conducted at a temperature of 35°C. Removal of antimony using cells that were not divided by a separator, however, was not possible. In selected experiments, by varying the electrode material, type of electrolyte, and cell current, the concentration of antimony could be reduced from the range of 5 ppm to 0.15 ppm. This resulted in current efficiencies between 0.00002% and 0.001%, and in specific electroenergy demands between 100 Wh L(-1) and 2000 Wh L(-1). In other experiments on substances with antimony contents up to 3500 mg L(-1), the current efficiencies obtained were more than a thousandfold higher. In contrast to the formally high relative energy consumption parameters absolute demand parameters are relatively small and favour the electrochemical method in small scale application. Besides plate electrodes, 3D-cathodes were used. Copper- and graphite cathodes produced the best results. PMID:21978586

  11. Rapid Synthesis of Nonstoichiometric Lanthanum Sulfide

    NASA Technical Reports Server (NTRS)

    Matsuda, S.; Shapiro, E.; Danielson, L.; Hardister, H.

    1987-01-01

    New process relatively fast and simple. Improved method of synthesizing nonstoichiometric lanthanum sulfide faster and simpler. Product purer because some of prior sources of contamination eliminated.

  12. Antimony leaching in plastics from waste electrical and electronic equipment (WEEE) with various acids and gamma irradiation

    SciTech Connect

    Tostar, Sandra; Stenvall, Erik; Boldizar, Antal; Foreman, Mark R. St. J.

    2013-06-15

    Highlights: • We have proposed a method to recover antimony from electronic plastics. • The most efficient acid solution was sodium hydrogen tartrate in dimethyl sulfoxide. • Gamma irradiation did not influence the antimony leaching ability. - Abstract: There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are tested for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5 M) dissolved in either dimethyl sulfoxide or water (at ca. 23 °C and heated to ca. 105 °C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed.

  13. Integrated process using non-stoichiometric sulfides or oxides of potassium for making less active metals and hydrocarbons

    SciTech Connect

    Swanson, R.

    1984-04-10

    Disclosed is a combinative integrated chemical process using inorganic reactants and yielding, if desired, organic products. The process involves first the production of elemental potassium by the thermal or thermal-reduced pressure decomposition of potassium oxide or potassium sulfide and distillation of the potassium. This elemental potassium is then used to reduce ores or ore concentrates of copper, zinc, lead, magnesium, cadmium, iron, arsenic, antimony or silver to yield one or more of these less active metals in elemental form. Process potassium can also be used to produce hydrogen by reaction with water or potassium hydroxide. This hydrogen is reacted with potassium to produce potassium hydride. Heating the latter with carbon produces potassium acetylide which forms acetylene when treated with water. Acetylene is hydrogenated to ethene or ethane with process hydrogen. Using Wurtz-Fittig reaction conditions, the ethane can be upgraded to a mixture of hydrocarbons boiling in the fuel range.

  14. Effect of antimony nano-scale surface-structures on a GaSb/AlAsSb distributed Bragg reflector

    SciTech Connect

    Husaini, S.; Shima, D.; Ahirwar, P.; Rotter, T. J.; Hains, C. P.; Dang, T.; Bedford, R. G.; Balakrishnan, G.

    2013-02-11

    Effects of antimony crystallization on the surface of GaSb during low temperature molecular beam epitaxy growth are investigated. The geometry of these structures is studied via transmission electron and atomic force microscopies, which show the surface metal forms triangular-shaped, elongated nano-wires with a structured orientation composed entirely of crystalline antimony. By depositing antimony on a GaSb/AlAsSb distributed Bragg reflector, the field is localized within the antimony layer. Polarization dependent transmission measurements are carried out on these nano-structures deposited on a GaSb/AlAsSb distributed Bragg reflector. It is shown that the antimony-based structures at the surface favor transmission of light polarized perpendicular to the wires.

  15. SESPE-FRAZIER, DIABLO, MATILIJA, DRY LAKES, SAWMILL-BADLANDS, CUYAMA, ANTIMONY, AND QUATAL ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Frizzell, Virgil A., Jr.; Hale, William N.

    1984-01-01

    The study area, consisting of the Sespe-Frazier, Diablo, Matilija, Dry Lakes, Sawmill-Badlands, Cuyama, Antimony, and Quatal Roadless Areas, occupies about 872 sq mi in the Los Padres National Forest, California. Studies indicate that the Sespe-Frazier Roadless Area contains demonstrated resources of gold, gypsum, phosphate and bentonite; deposits in the Cuyama Roadless Area have demonstrated resources of gypsum; mines in the Antimony Roadless Area have demonstrated resources of antimony, gold, silver, and marble; and the Quatal Roadless Area has demonstrated resources of bentonite. The Sespe-Frazier Roadless Area has substantiated potential for geothermal resources suitable for direct-heat purposes, probable and substantiated potential for oil and gas resources, and probable potential for gold resources. Small areas of probable resource potential for antimony and gold were identified in Antimony Roadless Area.

  16. Concentration transient analysis of antimony surface segregation during Si(100) molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Markert, L. C.; Greene, J. E.; Ni, W.-X.; Hansson, G. V.; Sundgren, J.-E.

    1991-01-01

    Antimony surface segregation during Si(100) molecular beam epitaxy (MBE) was investigated at temperatures T(sub s) = 515 - 800 C using concentration transient analysis (CTA). The dopant surface coverage Theta, bulk fraction gamma, and incorporation probability sigma during MBE were determined from secondary-ion mass spectrometry depth profiles of modulation-doped films. Programmed T(sub s) changes during growth were used to trap the surface-segregated dopant overlayer, producing concentration spikes whose integrated area corresponds to Theta. Thermal antimony doping by coevaporation was found to result in segregation strongly dependent on T(sub s) with Theta(sub Sb) values up to 0.9 monolayers (ML): in films doped with Sb(+) ions accelerated by 100 V, Theta(sub Sb) was less than or equal to 4 x 10(exp -3) ML. Surface segregation of coevaporated antimony was kinematically limited for the film growth conditions in these experiments.

  17. Use of Antimony in the Treatment of Leishmaniasis: Current Status and Future Directions

    PubMed Central

    Haldar, Arun Kumar; Sen, Pradip; Roy, Syamal

    2011-01-01

    In the recent past the standard treatment of kala-azar involved the use of pentavalent antimonials Sb(V). Because of progressive rise in treatment failure to Sb(V) was limited its use in the treatment program in the Indian subcontinent. Until now the mechanism of action of Sb(V) is not very clear. Recent studies indicated that both parasite and hosts contribute to the antimony efflux mechanism. Interestingly, antimonials show strong immunostimulatory abilities as evident from the upregulation of transplantation antigens and enhanced T cell stimulating ability of normal antigen presenting cells when treated with Sb(V) in vitro. Recently, it has been shown that some of the peroxovanadium compounds have Sb(V)-resistance modifying ability in experimental infection with Sb(V) resistant Leishmania donovani isolates in murine model. Thus, vanadium compounds may be used in combination with Sb(V) in the treatment of Sb(V) resistance cases of kala-azar. PMID:22091408

  18. Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells

    SciTech Connect

    Tutu, F. K.; Wu, J.; Lam, P.; Tang, M.; Liu, H.; Miyashita, N.; Okada, Y.; Wilson, J.; Allison, R.

    2013-07-22

    We report enhanced solar cell performance using high-density InAs quantum dots. The high-density quantum dot was grown by antimony mediated molecular beam epitaxy. In-plane quantum dot density over 1 × 10{sup 11} cm{sup −2} was achieved by applying a few monolayers of antimony on the GaAs surface prior to quantum dot growth. The formation of defective large clusters was reduced by optimization of the growth temperature and InAs coverage. Comparing with a standard quantum dot solar cell without the incorporation of antimony, the high-density quantum dot solar cell demonstrates a distinct improvement in short-circuit current from 7.4 mA/cm{sup 2} to 8.3 mA/cm{sup 2}.

  19. Spectrophotometric procedure using rhodamine B for determination of submicrogram quantities of antimony in rocks

    USGS Publications Warehouse

    Schnepfe, M.M.

    1973-01-01

    A spectrophotometric procedure using Rhodamine B is given for the determination of antimony in mineralized rocks after its separation as stibine. A study of the Rhodamine B reaction points to the importance of the order of addition of reagents in enhancing sensitivity and increasing the stability of the system. The tolerance of some 26 elements is established for the overall procedure. Although the limit of determination is approximately 0??5 ppm Sb in a 0??2-g sample, the procedure is intended primarily for screening samples containing more than 1 ppm Sb. In pure solutions 0??1 ??g of antimony can be determined with a relative standard deviation of 25%. For >0??2 ??g of antimony a relative standard deviation of 15% or less can be expected. ?? 1973.

  20. Response of cutaneous leishmaniasis (chiclero's ulcer) to treatment with meglumine antimoniate in Southeast Mexico.

    PubMed

    Vargas-Gonzalez, A; Canto-Lara, S B; Damian-Centeno, A G; Andrade-Narvaez, F J

    1999-12-01

    Cutaneous leishmaniasis, known as chiclero's ulcer in southeastern Mexico, is characterized by a predominantly single, painless, ulcerated lesion, without lymphangitis or adenopathy. When located on the ear, it tends to become chronic, causing destruction of the pinna and disfigurement. It is caused predominantly by Leishmania (L.) mexicana. Although pentavalent antimonials (Sb5+) are the mainstay of leishmanial therapy and have been used for more than 50 years, dosage regimens have been repeatedly modified and the best one has not been fully identified. The main purpose of the present study was to investigate the response of chiclero's ulcer to treatment with meglumine antimoniate. One hundred five patients were treated with meglumine antimoniate at a daily dose of 1 ampule per day (425 mg of Sb5+) until healing. The lesions healed after a mean of 25 days (range = 5-60 days). PMID:10674678

  1. Process for treating spent catalyst including antimony halides from chlorofluorocarbon production

    SciTech Connect

    Kalcevic, V.; McGahan, J.F.

    1988-06-14

    A process for treating spent catalyst from chlorofluorocarbon production is described wherein the catalyst includes antimony halides and undergoes hydrolysis in an aqueous medium to produce insoluble antimony compounds and fluoride ions. The process comprises hydrolyzing the catalyst in an aqueous solution of ferric chloride having a sufficient concentration of ferric ions to complex substantially all of the fluoride ions produced upon hydrolysis of the catalyst, neutralizing the reaction mass present following hydrolysis of the catalyst and complexing of the fluoride ions by contacting the reaction mass with an aqueous suspension of a compound selected from the class consisting of calcium hydroxide and magnesium hydroxide, and separating the insoluble antimony compounds from the neutralized reaction mass.

  2. The influence of nitrogen and antimony on the optical quality of InNAs(Sb) alloys

    NASA Astrophysics Data System (ADS)

    Latkowska, M.; Baranowski, M.; Linhart, W. M.; Janiaka, F.; Misiewicz, J.; Segercrantz, N.; Tuomisto, F.; Zhuang, Q.; Krier, A.; Kudrawiec, R.

    2016-03-01

    In this work we present detailed studies of the influence of nitrogen and antimony on the optical quality of InNAs(Sb) alloys. We employed photoluminescence, photoreflectance and positron annihilation spectroscopy to reveal the role of antimony and nitrogen on the improvement/degradation of the optical qualities of InNAs(Sb) alloys. A series of 1 μm-thick InNAs(Sb) layers with different nitrogen and antimony concentrations were grown by molecular beam epitaxy. The results of these investigations show that Sb atoms serve as a surfactant which effectively improves the optical quality of InNAsSb alloys. The influence of nitrogen on the optical quality however is not the same as to what has been reported for other dilute nitrides. We observed an improvement of the optical quality for some nitrogen contents. These issues are comprehensively examined and explained.

  3. Molybdenum sulfide/carbide catalysts

    DOEpatents

    Alonso, Gabriel; Chianelli, Russell R.; Fuentes, Sergio; Torres, Brenda

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  4. Preparation of amorphous sulfide sieves

    DOEpatents

    Siadati, Mohammad H.; Alonso, Gabriel; Chianelli, Russell R.

    2006-11-07

    The present invention involves methods and compositions for synthesizing catalysts/porous materials. In some embodiments, the resulting materials are amorphous sulfide sieves that can be mass-produced for a variety of uses. In some embodiments, methods of the invention concern any suitable precursor (such as thiomolybdate salt) that is exposed to a high pressure pre-compaction, if need be. For instance, in some cases the final bulk shape (but highly porous) may be same as the original bulk shape. The compacted/uncompacted precursor is then subjected to an open-flow hot isostatic pressing, which causes the precursor to decompose and convert to a highly porous material/catalyst.

  5. Future trends of global atmospheric antimony emissions from anthropogenic activities until 2050

    NASA Astrophysics Data System (ADS)

    Zhou, Junrui; Tian, Hezhong; Zhu, Chuanyong; Hao, Jiming; Gao, Jiajia; Wang, Yong; Xue, Yifeng; Hua, Shenbin; Wang, Kun

    2015-11-01

    This paper presents the scenario forecast of global atmospheric antimony (Sb) emissions from anthropogenic activities till 2050. The projection scenarios are built based on the comprehensive global antimony emission inventory for the period 1995-2010 which is reported in our previous study. Three scenarios are set up to investigate the future changes of global antimony emissions as well as their source and region contribution characteristics. Trends of activity levels specified as 5 primary source categories are projected by combining the historical trend extrapolation with EIA International energy outlook 2013, while the source-specific dynamic emission factors are determined by applying transformed normal distribution functions. If no major changes in the efficiency of emission control are introduced and keep current air quality legislations (Current Legislation scenario), global antimony emissions will increase by a factor of 2 between 2010 and 2050. The largest increase in Sb emissions is projected from Asia due to large volume of nonferrous metals production and waste incineration. In case of enforcing the pollutant emission standards (Strengthened Control scenario), global antimony emissions in 2050 will stabilize with that of 2010. Moreover, we can anticipate further declines in Sb emissions for all continents with the best emission control performances (Maximum Feasible Technological Reduction scenario). Future antimony emissions from the top 10 largest emitting countries have also been calculated and source category contributions of increasing emissions of these countries present significant diversity. Furthermore, global emission projections in 2050 are distributed within a 1° × 1°latitude/longitude grid. East Asia, Western Europe and North America present remarkable differences in emission intensity under the three scenarios, which implies that source-and-country specific control measures are necessary to be implemented for abating Sb emissions from

  6. A multipoint micro antimony pH electrode for tissue surface measurements.

    PubMed

    Lund, N; Sjöberg, F; Guldbrand, H; Walfridsson, H; Edwall, G

    1984-01-01

    Based on monocrystalline antimony we have developed a multipoint tissue surface pH electrode. The six electrodes were produced by spark cutting from a large antimony single crystal. The electrodes were then cast in epoxy resin in a ring shaped structure which fitted around the MDO oxygen electrode. The antimony electrode was ground and polished to expose an undisturbed closely packed crystal plane of antimony to the measuring solution. Before and after monitoring periods standardization was performed in TRIS buffers of pH 6.72, 7.32 and 7.74 at 37 degrees C. Antimony electrode potential is influenced by oxygen. Therefore, mean tissue oxygen pressure was registered simultaneously with an MDO electrode. The oxygen sensitivity factor used in this study was 18mV/logpO2. The correction factor for the antimony electrode oxygen dependence, measured in vitro, seemed to be correct also for the in vivo state. This, however, needs further investigation. To illustrate the usefulness of the multipoint pH electrode seven normal state rabbits were studied, and thereafter four - one each in a hypoxic, hypocarbic, hypovolemic or hyperoxic situation. In the normal state tissue pH measured on a skeletal muscle surface varied from 7.0 to 7.4. In the case of tissue microcirculation shutdown (in the hypocarbic or the hypovolemic situations), the initial reaction was a scattering of the pH values, and then the development of tissue acidosis. Our conclusion is that the use of a multipoint pH sensor enables improved and more detailed monitoring of the tissue acid-base status. PMID:6546135

  7. On-line lab-in-syringe cloud point extraction for the spectrophotometric determination of antimony.

    PubMed

    Frizzarin, Rejane M; Portugal, Lindomar A; Estela, José M; Rocha, Fábio R P; Cerdà, Victor

    2016-02-01

    Most of the procedures for antimony determination require time-consuming sample preparation (e.g. liquid-liquid extraction with organic solvents), which are harmful to the environment. Because of the high antimony toxicity, a rapid, sensitive and greener procedure for its determination becomes necessary. The goal of this work was to develop an analytical procedure exploiting for the first time the cloud point extraction on a lab-in-syringe flow system aiming at the spectrophotometric determination of antimony. The procedure was based on formation of an ion-pair between the antimony-iodide complex and H(+) followed by extraction with Triton X-114. The factorial design showed that the concentrations of ascorbic acid, H2SO4 and Triton X-114, as well as second and third order interactions were significant at the 95% confidence level. A Box-Behnken design was applied to obtain the response surfaces and to identify the critical values. System is robust at the 95% confidence level. A linear response was observed from 5 to 50 µg L(-1), described by the equation A=0.137+0.050C(Sb) (r=0.998). The detection limit (99.7% confidence level), the coefficient of variation (n=5; 15 µg L(-1)) and the sampling rate was estimated at 1.8 µg L(-1), 1.6% and 16 h(-1), respectively. The procedure allows quantification of antimony in the concentrations established by environmental legislation (6 µg L(-1)) and it was successfully applied to the determination of antimony in freshwater samples and antileishmanial drugs, yielding results in agreement with those obtained by HGFAAS at the 95% confidence level. PMID:26653503

  8. Amphiphilic Antimony(V) Complexes for Oral Treatment of Visceral Leishmaniasis

    PubMed Central

    Fernandes, Flaviana R.; Ferreira, Weverson A.; Campos, Mariana A.; Ramos, Guilherme S.; Kato, Kelly C.; Almeida, Gregório G.; Corrêa, José D.; Melo, Maria N.; Demicheli, Cynthia

    2013-01-01

    The need for daily parenteral administration is an important limitation in the clinical use of pentavalent antimonial drugs against leishmaniasis. In this study, amphiphilic antimony(V) complexes were prepared from alkylmethylglucamides (L8 and L10, with carbon chain lengths of 8 and 10, respectively), and their potential for the oral treatment of visceral leishmaniasis (VL) was evaluated. Complexes of Sb and ligand at 1:3 (SbL8 and SbL10) were obtained from the reaction of antimony(V) with L8 and L10, as evidenced by elemental and electrospray ionization-tandem mass spectrometry (ESI-MS) analyses. Fluorescence probing of hydrophobic environment and negative-staining transmission electron microscopy showed that SbL8 forms kinetically stabilized nanoassemblies in water. Pharmacokinetic studies with mice in which the compound was administered by the oral route at 200 mg of Sb/kg of body weight indicated that the SbL8 complex promoted greater and more sustained Sb levels in serum and liver than the levels obtained for the conventional antimonial drug meglumine antimoniate (Glucantime [Glu]). The efficacy of SbL8 and SbL10 administered by the oral route was evaluated in BALB/c mice infected with Leishmania infantum after a daily dose of 200 mg of Sb/kg for 20 days. Both complexes promoted significant reduction in the liver and spleen parasite burdens in relation to those in the saline-treated control group. The extent of parasite suppression (>99.96%) was similar to that achieved after Glu given intraperitoneally at 80 mg of Sb/kg/day. As expected, there was no significant reduction in the parasitic load in the group treated orally with Glu at 200 mg of Sb/(kg day). In conclusion, amphiphilic antimony(V) complexes emerge as an innovative and promising strategy for the oral treatment of VL. PMID:23796930

  9. Synthesis and Optical Properties of Sulfide Nanoparticles Prepared in Dimethylsulfoxide

    SciTech Connect

    Li, Yuebin; Ma, Lun; Zhang, Xing; Joly, Alan G.; Liu, Zuli; Chen, Wei

    2008-11-01

    Many methods have been reported for the formation of sulfide nanoparticles by the reaction of metallic salts with sulfide chemical sources in aqueous solutions or organic solvents. Here, we report the formation of sulfide nanoparticles in dimethylsulfoxide (DMSO) by boiling metallic salts without sulfide sources. The sulfide sources are generated from the boiling of DMSO and react with metallic salts to form sulfide nanoparticles. In this method DMSO functions as a solvent and a sulfide source as well as a stabilizer for the formation of the nanoparticles. The recipe is simple and economical making sulfide nanoparticles formed in this way readily available for many potential applications.

  10. 40 CFR 425.03 - Sulfide analytical methods and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Provisions § 425.03 Sulfide analytical methods and applicability. (a) The potassium ferricyanide titration... the potassium ferricyanide titration method for the determination of sulfide in wastewaters...

  11. Microbial Methylation of Metalloids: Arsenic, Antimony, and Bismuth

    PubMed Central

    Bentley, Ronald; Chasteen, Thomas G.

    2002-01-01

    A significant 19th century public health problem was that the inhabitants of many houses containing wallpaper decorated with green arsenical pigments experienced illness and death. The problem was caused by certain fungi that grew in the presence of inorganic arsenic to form a toxic, garlic-odored gas. The garlic odor was actually put to use in a very delicate microbiological test for arsenic. In 1933, the gas was shown to be trimethylarsine. It was not until 1971 that arsenic methylation by bacteria was demonstrated. Further research in biomethylation has been facilitated by the development of delicate techniques for the determination of arsenic species. As described in this review, many microorganisms (bacteria, fungi, and yeasts) and animals are now known to biomethylate arsenic, forming both volatile (e.g., methylarsines) and nonvolatile (e.g., methylarsonic acid and dimethylarsinic acid) compounds. The enzymatic mechanisms for this biomethylation are discussed. The microbial conversion of sodium arsenate to trimethylarsine proceeds by alternate reduction and methylation steps, with S-adenosylmethionine as the usual methyl donor. Thiols have important roles in the reductions. In anaerobic bacteria, methylcobalamin may be the donor. The other metalloid elements of the periodic table group 15, antimony and bismuth, also undergo biomethylation to some extent. Trimethylstibine formation by microorganisms is now well established, but this process apparently does not occur in animals. Formation of trimethylbismuth by microorganisms has been reported in a few cases. Microbial methylation plays important roles in the biogeochemical cycling of these metalloid elements and possibly in their detoxification. The wheel has come full circle, and public health considerations are again important. PMID:12040126

  12. Response of sulfide:quinone oxidoreductase to sulfide exposure in the echiuran worm Urechis unicinctus.

    PubMed

    Ma, Yu-Bin; Zhang, Zhi-Feng; Shao, Ming-Yu; Kang, Kyoung-Ho; Shi, Xiao-Li; Dong, Ying-Ping; Li, Jin-Long

    2012-04-01

    Sulfide is a natural, widely distributed, poisonous substance, and sulfide:quinone oxidoreductase (SQR) is responsible for the initial oxidation of sulfide in mitochondria. In this study, we examined the response of SQR to sulfide exposure (25, 50, and 150 μM) at mRNA, protein, and enzyme activity levels in the body wall and hindgut of the echiuran worm Urechis unicinctus, a benthic organism living in marine sediments. The results revealed SQR mRNA expression during sulfide exposure in the body wall and hindgut increased in a time- and concentration-dependent manner that increased significantly at 12 h and continuously increased with time. At the protein level, SQR expression in the two tissues showed a time-dependent relationship that increased significantly at 12 h in 50 μM sulfide and 6 h in 150 μM, and then continued to increase with time while no significant increase appeared after 25 μM sulfide exposure. SQR enzyme activity in both tissues increased significantly in a time-dependent manner after 50 μM sulfide exposure. We concluded that SQR expression could be induced by sulfide exposure and that the two tissues studied have dissimilar sulfide metabolic patterns. A U. unicinctus sulfide-induced detoxification mechanism was also discussed. PMID:21997848

  13. Mercury, arsenic, antimony, and selenium contents of sediment from the Kuskokwim River, Bethel, Alaska, USA

    USGS Publications Warehouse

    Belkin, H.E.; Sparck, H.M.

    1993-01-01

    The Kuskokwim River at Bethel, Alaska, drains a major mercury-antimony metallogenic province in its upper reaches and tributaries. Bethel (population 4000) is situated on the Kuskokwim floodplain and also draws its water supply from wells located in river-deposited sediment. A boring through overbank and floodplain sediment has provided material to establish a baseline datum for sediment-hosted heavy metals. Mercury (total), arsenic, antimony, and selenium contents were determined; aluminum was also determined and used as normalizing factor. The contents of the heavy metals were relatively constant with depth and do not reflect any potential enrichment from upstream contaminant sources. ?? 1993 Springer-Verlag.

  14. Variation in sulfide tolerance of photosystem II in phylogenetically diverse cyanobacteria from sulfidic habitats

    NASA Technical Reports Server (NTRS)

    Miller, Scott R.; Bebout, Brad M.

    2004-01-01

    Physiological and molecular phylogenetic approaches were used to investigate variation among 12 cyanobacterial strains in their tolerance of sulfide, an inhibitor of oxygenic photosynthesis. Cyanobacteria from sulfidic habitats were found to be phylogenetically diverse and exhibited an approximately 50-fold variation in photosystem II performance in the presence of sulfide. Whereas the degree of tolerance was positively correlated with sulfide levels in the environment, a strain's phenotype could not be predicted from the tolerance of its closest relatives. These observations suggest that sulfide tolerance is a dynamic trait primarily shaped by environmental variation. Despite differences in absolute tolerance, similarities among strains in the effects of sulfide on chlorophyll fluorescence induction indicated a common mode of toxicity. Based on similarities with treatments known to disrupt the oxygen-evolving complex, it was concluded that sulfide toxicity resulted from inhibition of the donor side of photosystem II.

  15. Variation in Sulfide Tolerance of Photosystem II in Phylogenetically Diverse Cyanobacteria from Sulfidic Habitats

    PubMed Central

    Miller, Scott R.; Bebout, Brad M.

    2004-01-01

    Physiological and molecular phylogenetic approaches were used to investigate variation among 12 cyanobacterial strains in their tolerance of sulfide, an inhibitor of oxygenic photosynthesis. Cyanobacteria from sulfidic habitats were found to be phylogenetically diverse and exhibited an approximately 50-fold variation in photosystem II performance in the presence of sulfide. Whereas the degree of tolerance was positively correlated with sulfide levels in the environment, a strain's phenotype could not be predicted from the tolerance of its closest relatives. These observations suggest that sulfide tolerance is a dynamic trait primarily shaped by environmental variation. Despite differences in absolute tolerance, similarities among strains in the effects of sulfide on chlorophyll fluorescence induction indicated a common mode of toxicity. Based on similarities with treatments known to disrupt the oxygen-evolving complex, it was concluded that sulfide toxicity resulted from inhibition of the donor side of photosystem II. PMID:14766549

  16. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE... Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain...

  17. Catalyst and process for oxidizing hydrogen sulfide

    SciTech Connect

    Hass, R.H.; Fullerton; Ward, J.W.; Yorba, L.

    1984-04-24

    Catalysts comprising bismuth and vanadium components are highly active and stable, especially in the presence of water vapor, for oxidizing hydrogen sulfide to sulfur or SO/sub 2/. Such catalysts have been found to be especially active for the conversion of hydrogen sulfide to sulfur by reaction with oxygen or SO/sub 2/.

  18. New biologically active hydrogen sulfide donors.

    PubMed

    Roger, Thomas; Raynaud, Francoise; Bouillaud, Frédéric; Ransy, Céline; Simonet, Serge; Crespo, Christine; Bourguignon, Marie-Pierre; Villeneuve, Nicole; Vilaine, Jean-Paul; Artaud, Isabelle; Galardon, Erwan

    2013-11-25

    Generous donors: The dithioperoxyanhydrides (CH3 COS)2 , (PhCOS)2 , CH3 COSSCO2 Me and PhCOSSCO2 Me act as thiol-activated hydrogen sulfide donors in aqueous buffer solution. The most efficient donor (CH3 COS)2 can induce a biological response in cells, and advantageously replace hydrogen sulfide in ex vivo vascular studies. PMID:24115650

  19. Ammonia and hydrogen sulfide removal using biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing ammonia and hydrogen sulfide emissions from livestock facilities is an important issue for many communities and livestock producers. Ammonia has been regarded as odorous, precursor for particulate matter (PM), and contributed to livestock mortality. Hydrogen sulfide is highly toxic at elev...

  20. Weathering of sulfides on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1987-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produce degradation products in the Martian regolith. By analogy and terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni, and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato-and hydroxo-complex ions and sols formed gossan above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite), and silica (opal). Underlying groundwater, now permafrost contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates, and phyllosilicates during dust storms on Mars.

  1. Percutaneous absorption of selenium sulfide

    SciTech Connect

    Farley, J.; Skelly, E.M.; Weber, C.B.

    1986-01-01

    The purpose of this study was to determine selenium levels in the urine of Tinea patients before and after overnight application of a 2.5% selenium sulfide lotion. Selenium was measured by atomic absorption spectroscopy (AAS). Hydride generation and carbon rod atomization were studied. It was concluded from this study that selenium is absorbed through intact skin. Selenium is then excreted, at least partially, in urine, for at least a week following treatment. The data show that absorption and excretion of selenium vary on an individual basis. Selenium levels in urine following a single application of selenium sulfide lotion do not indicate that toxic amounts of selenium are being absorbed. Repeated treatments with SeS/sub 2/ result in selenium concentrations in urine which are significantly higher than normal. Significant matrix effects are observed in the carbon rod atomization of urine samples for selenium determinations, even in the presence of a matrix modifier such as nickel. The method of standard additions is required to obtain accurate results in the direct determination of selenium in urine by carbon rod AAS.

  2. Characterization of low dimensional molybdenum sulfide nanostructures

    SciTech Connect

    Camacho-Bragado, G. Alejandra; Elechiguerra, Jose Luis; Yacaman, Miguel Jose

    2008-03-15

    It is presented a detailed structural characterization of a nanostructured form of molybdenum disulfide. The material consists of a layer of highly textured molybdenum sulfide growing off a molybdenum dioxide core. The structure and chemical composition of the synthesized nanostructured sulfide was compared to two well-known forms of molybdenum disulfide, i.e. a commercial molybdenite sample and a poorly crystalline sulfide. X-ray diffraction, high-resolution electron microscopy and electron diffraction showed that the material reported here presents crystalline nanodomains with a crystal structure corresponding to the 2H polytype of molybdenum disulfide. X-ray photoelectron spectroscopy was used to demonstrate the differences between our sulfide and other materials such as amorphous MoS{sub 3}, oxysulfides and poorly crystalline MoS{sub 2}, corroborating the molybdenite-2H stacking in this form of sulfide. The material under study showed a high proportion of crystalline planes different from the basal plane.

  3. Synthesis of magnetic rhenium sulfide composite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tang, Naimei; Tu, Weixia

    2009-10-01

    Rhenium sulfide nanoparticles are associated with magnetic iron oxide through coprecipitation of iron salts with tetramethylammonium hydroxide. Sizes of the formed magnetic rhenium sulfide composite particles are in the range 5.5-12.5 nm. X-ray diffraction and energy-dispersive analysis of X-rays spectra demonstrate the coexistence of Fe 3O 4 and ReS 2 in the composite particle, which confirm the formation of the magnetic rhenium sulfide composite nanoparticles. The association of rhenium sulfide with iron oxide not only keeps electronic state and composition of the rhenium sulfide nanoparticles, but also introduces magnetism with the level of 24.1 emu g -1 at 14 kOe. Surface modification with monocarboxyl-terminated poly(ethylene glycol) (MPEG-COOH) has the role of deaggregating the composite nanoparticles to be with average hydrodynamic size of 27.3 nm and improving the dispersion and the stability of the composite nanoparticles in water.

  4. Hydrogen sulfide pollution in wastewater treatment facilities

    SciTech Connect

    AlDhowalia, K.H. )

    1987-01-01

    The hydrogen sulfide (H{sub 2}S) found in wastewater collection systems and wastewater treatment facilities results from the bacterial reduction of the sulfate ion (SO{sub 4}). Hydrogen sulfide is a gas that occurs both in the sewer atmosphere and as a dissolved gas in the wastewater. When raw wastewater first enters the wastewater treatment facility by gravity most of the hydrogen sulfide is in the gaseous phase and will escape into the atmosphere at the inlet structures. Also some of the dissolved hydrogen sulfide will be released at points of turbulance such as at drops in flow, flumes, or aeration chambers. Several factors can cause excessive hydrogen sulfide concentrations in a sewerage system. These include septic sewage, long flow times in the sewerage system, high temperatures, flat sewer grades, and poor ventilation. These factors are discussed in this paper.

  5. Sources, migration and transformation of antimony contamination in the water environment of Xikuangshan, China: Evidence from geochemical and stable isotope (S, Sr) signatures.

    PubMed

    Wen, Bing; Zhou, Jianwei; Zhou, Aiguo; Liu, Cunfu; Xie, Lina

    2016-11-01

    The Xikuangshan (XKS) mine in central China is the largest antimony (Sb) mine in the world. The mining activity has seriously contaminated the waters in the area. To determine the sources, migration and transformation of Sb contamination, 32 samples from groundwater (aquifer water), surface water and mine water were collected for water chemistry, trace element and SSO4 and Sr stable isotope analyses. The results showed that the groundwater and surface water were in an oxidized environment. The SSO4 and Sr isotope compositions in the water indicated that dissolved Sb and SO4(2) originated from sulfide mineral (Sb2S3) oxidation, whereas radiogenic Sr may have been sourced from silicified limestone and stibnite in the Shetianqiao aquifer. Furthermore, a positive correlation between δ(34)SSO4 and δ(87)Sr values revealed that the Sr, S and Sb in the waters had a common contamination source, i.e., silicified limestone and stibnite, whereas the Sr, S and Sb in rock and ore were sourced from Proterozoic basement clastics. The analysis also indicated that the isotope composition of dissolved SO4(2-) had been influenced by slight bacterial SO4 reduction in the Magunao aquifer. Mining or rock collapse may have caused Shetianqiao aquifer water to contaminate the Magunao aquifer water via mixing. This study has demonstrated that the stable isotopes of (34)SSO4 and (87)Sr, combined with hydrochemical methods, are effective in tracking the sources, migration and transformation of Sb contamination. PMID:27341112

  6. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    PubMed

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  7. Primordial Xenon in Allende Sulfides

    NASA Astrophysics Data System (ADS)

    Lee, J. T.; Manuel, O. K.

    1995-09-01

    The Allende C3V carbonaceous chondrite incorporated isotopically anomalous components of several medium-heavy elements (Z=36-62) from nucleosynthesis [1]. Isotopically distinct Xe (Z=54) has been found in grains ranging from several _ to a few mm in size. Diamond [2] is the host of Xe that is enriched in isotopes produced by the very rapid p- and r-processes in a supernova explosion [3]. Silicon carbide [4] is the host of Xe that is enriched in the middle isotopes, 128-132Xe, produced by slow neutron capture [3] before a star reaches the supernova stage. The present study was undertaken to identify the isotopic composition of primitive Xe initially trapped in sulfides of the Allende meteorite. Two FeS mineral separates were analyzed by stepwise heating. One sample was first irradiated in a neutron flux to generate a tracer isotope, 131*Xe, by the 130Te(n, gamma beta-)131*Xe reaction. The release pattern of this tracer isotope, 131*Xe, closely paralleled the release of primordial 132Xe up to 950 degrees C, when the sulfide melted and released the bulk of its trapped Xe (Figure 1). The Xe released from both samples at 950 deg C was terrestrial in isotopic composition, except for enrichments from spallogenic and radiogenic components (Figure 2). From the results of this and earlier analyses of Xe in meteoritic FeS [5, 6, 7], we conclude that terrestrial-type Xe was dominant in the central region of the protoplanetary nebula, and it remains a major component in the FeS of diverse meteorites and in the terrestrial planets that are rich in Fe, S [8]. References: [1] Begemann F. (1993) Origin and Evolution of the Elements (N. Prantzos et al., eds.), 518-527, Cambridge Univ. [2] Lewis R. S. and Anders E. (1988) LPS XIX, 679-680. [3] Burbidge et al. (1957) Rev. Modern Phys., 29, 547-650. [4] Tang M. and Anders E. (1988) GCA, 52, 1235-1244. [5] Niemeyer S. (1979) GCA, 43, 843-860. [6] Lewis et al. (1979) GCA, 43, 1743-1752. [7] Hwaung G. and Manuel O. K. (1982) Nature, 299

  8. Electrodeposition and device incorporation of bismuth antimony nanowire arrays

    NASA Astrophysics Data System (ADS)

    Keyani, Jennifer

    Thermoelectric materials have the unique property where the application of a potential difference across the material results in the formation of a temperature gradient, and vice versa. There is continued interest in bulk thermoelectric materials for power generation and refrigeration applications, however these materials are not currently in widespread use due to their low conversion efficiency. It has been predicted that nanostructured thermoelectric materials will show enhanced performance over their bulk counterparts. In this study, bismuth antimony (Bi1-xSbx) nanowire arrays have been synthesized and assembled into devices in order to demonstrate an enhanced performance in nanostructured thermoelectric materials. Bi1-xSbx nanowire arrays were fabricated by potentiostatic electrodeposition into porous alumina templates from a dimethyl sulfoxide (DMSO) solution. The nanowire composition and texture were studied as a function of the electrodeposition conditions in order to maximize their thermoelectric performance. Energy dispersive spectrometry and electron microprobe analysis were used to study the nanowire composition as a function of the electroactive and non-electroactive species in solution. Texturing in the nanowire arrays was observed by X-ray diffraction and controlled by the applied voltage and presence of supporting electrolyte. The nanowire arrays were also optimized for device incorporation by maximizing the number of nanowires and minimizing their length distribution. The areal density of nanowire arrays was on the order of 1010 wires/cm2 due to the high density of pores in the alumina and the high degree to which those pores were filled with electrodeposited material. A narrow distribution of nanowire lengths was observed by scanning electron microscopy across millimeter-length portions of the arrays. A hybrid nanowire-bulk thermoelectric device was assembled after electrical contacts were electrodeposited over Bi1-xSbx nanowire arrays. Nickel was

  9. An Insight into Sodiation of Antimony from First-Principles Crystal Structure Prediction

    NASA Astrophysics Data System (ADS)

    Caputo, Riccarda

    2016-02-01

    Elemental antimony has recently become an attractive anode material for potential application in rechargeable sodium-ion batteries. I present a first-principles study of the structure-composition dependence of the Na-Sb system for both sodiation and desodiation processes. The enthalpy of reaction of x moles of sodium with the hexagonal structure of antimony reveals several stable crystal structures for 0 < x ≤ 3, with variable composition states for 1.25 < x < 2.75. The direct and reverse reactions pass through similar states in terms of enthalpy of formation and symmetry representation of the corresponding optimized structures, in particular for x = 1 and x = 3, confirming the two known phases, namely NaSb and Na3Sb. The calculations suggest that the optimal composition range for reversible sodiation of antimony is 1 < x ≤ 3, thus avoiding the global minimum at x = 1. This can help to rationalize the structure-composition dependence of the electrochemical performance of antimony in Na-ion batteries.

  10. Nanostructured Carbon/Antimony Composites as Anode Materials for Lithium-Ion Batteries with Long Life.

    PubMed

    Cheng, Yong; Yi, Zheng; Wang, Chunli; Wang, Lidong; Wu, Yaoming; Wang, Limin

    2016-08-01

    A series of nanostructured carbon/antimony composites have been successfully synthesized by a simple sol-gel, high-temperature carbon thermal reduction process. In the carbon/antimony composites, antimony nanoparticles are homogeneously dispersed in the pyrolyzed nanoporous carbon matrix. As an anode material for lithium-ion batteries, the C/Sb10 composite displays a high initial discharge capacity of 1214.6 mAh g(-1) and a reversible charge capacity of 595.5 mAh g(-1) with a corresponding coulombic efficiency of 49 % in the first cycle. In addition, it exhibits a high reversible discharge capacity of 466.2 mAh g(-1) at a current density of 100 mA g(-1) after 200 cycles and a high rate discharge capacity of 354.4 mAh g(-1) at a current density of 1000 mA g(-1) . The excellent cycling stability and rate discharge performance of the C/Sb10 composite could be due to the uniform dispersion of antimony nanoparticles in the porous carbon matrix, which can buffer the volume expansion and maintain the integrity of the electrode during the charge-discharge cycles. PMID:27310879