Science.gov

Sample records for antioxidant dietary deficiency

  1. Induction of renal growth and injury in the intact rat kidney by dietary deficiency of antioxidants.

    PubMed Central

    Nath, K A; Salahudeen, A K

    1990-01-01

    We report induction of renal growth and injury in the intact rat kidney using a diet deficient in vitamin E and selenium. This diet was imposed in 3-wk-old male weanling rats, and after 9 wk, enhancement of growth, characterized by increased wet weight, dry weight, protein content, and DNA content appeared. Morphometric analyses revealed increased kidney volume, tubular epithelial volume, and mean glomerular volume. There were no differences in nephron number. The animals on the deficient diet displayed increased urinary protein excretion at 9 wk. Renal injury was also characterized by an interstitial cellular infiltrate and diminutions in glomerular filtration rate. Enhanced growth and injury were antedated by increased renal ammoniagenesis. The deficient diet did not induce metabolic acidosis, potassium depletion, glucose intolerance, or elevated plasma amino acid concentration. Enhancement of renal growth and ammoniagenesis by the deficient diet was not suppressible by chronic alkali therapy. Stimulation of renal growth could not be ascribed to increased intrarenal iron, induction of ornithine decarboxylase, or alterations in glomerular hemodynamics. Stimulation of renal ammoniagenesis by dietary deficiency of antioxidants is a novel finding, as is induction of growth and injury. We suggest that increased renal ammoniagenesis contributes to induction of renal growth and injury. Images PMID:2212007

  2. Dietary blueberries sttenuate atherosclerosis in apolipoprotein E-deficient mice by upregulating antioxidant enzymes expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberries (BB) contain high levels of polyphenols and exhibit high antioxidant capacity. In this study, protective effects of BB against atherosclerosis and possible underlying mechanisms in reducing oxidative stress were examined in ApoE deficient (apoE-/-) mice. ApoE-/- mice were fed AIN-93G die...

  3. Cardiac Electrophysiological Alterations in Heart/Muscle-Specific Manganese-Superoxide Dismutase-Deficient Mice: Prevention by a Dietary Antioxidant Polyphenol

    PubMed Central

    Matsumoto, Akio; Tagashira, Motoyuki; Kanda, Tomomasa; Nakaya, Haruaki

    2014-01-01

    Cardiac electrophysiological alterations induced by chronic exposure to reactive oxygen species and protective effects of dietary antioxidant have not been thoroughly examined. We recorded surface electrocardiograms (ECG) and evaluated cellular electrophysiological abnormalities in enzymatically-dissociated left ventricular (LV) myocytes in heart/muscle-specific manganese-superoxide dismutase-deficient (H/M-Sod2−/−) mice, which exhibit dilated cardiomyopathy due to increased oxidative stress. We also investigated the influences of intake of apple polyphenols (AP) containing mainly procyanidins with potent antioxidant activity. The QRS and QT intervals of ECG recorded in H/M-Sod2−/− mice were prolonged. The effective refractory period in the LV myocardium of H/M-Sod2−/− mice was prolonged, and susceptibility to ventricular tachycardia or fibrillation induced by rapid ventricular pacing was increased. Action potential duration in H/M-Sod2−/− LV myocytes was prolonged, and automaticity was enhanced. The density of the inwardly rectifier K+ current (IK1) was decreased in the LV cells of H/M-Sod2−/− mice. The AP intake partially improved these electrophysiological alterations and extended the lifespan in H/M-Sod2−/− mice. Thus, chronic exposure of the heart to oxidative stress produces a variety of electrophysiological abnormalities, increased susceptibility to ventricular arrhythmias, and action potential changes associated with the reduced density of IK1. Dietary intake of antioxidant nutrients may prevent oxidative stress-induced electrophysiological disturbances. PMID:24772433

  4. Flesh Quality Loss in Response to Dietary Isoleucine Deficiency and Excess in Fish: A Link to Impaired Nrf2-Dependent Antioxidant Defense in Muscle

    PubMed Central

    Gan, Lu; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Li, Shu-Hong; Tang, Ling; Kuang, Sheng-Yao; Feng, Lin; Zhou, Xiao-Qiu

    2014-01-01

    The present study explored the impact of dietary isoleucine (Ile) on fish growth and flesh quality and revealed a possible role of muscle antioxidant defense in flesh quality in relation to dietary Ile. Grass carp (weighing 256.8±3.5 g) were fed diets containing six graded levels of Ile (3.8, 6.6, 9.3, 12.5, 15.2 and 18.5 g/kg) for eight weeks. The results indicated that compared with Ile deficiency (3.8 g/kg diets) and excess (18.5 g/kg diets) groups, 9.3–15.2 g Ile/kg diet supplementations promoted fish growth and muscle fat deposition, whereas 6.6–15.2 g Ile/kg diets supplementation enhanced muscle nutrients (protein and total EAAs) deposition. Furthermore, muscle shear force, pH value, and hydroxyproline concentration were improved by 9.3–12.5, 9.3 and 9.3 g Ile/kg diet supplementations, respectively. However, muscle cooking loss, lactate content, and activities of cathepsin B and L were decreased by 6.6–15.2, 9.3–12.5, 9.3–12.5 and 9.3–15.2 g Ile/kg diet supplementations, respectively. Additionally, 6.6–15.2 and 6.6–12.5 g Ile/kg diet supplementations attenuated malondialdehyde and protein carbonyl contents, respectively. The activities of copper/zinc superoxide dismutase (Cu/Zn-SOD) and glutathione peroxidase (GPx), and glutathione content were enhanced by 6.6–9.3, 6.6–12.5 and 6.6–15.2 g Ile/kg diet supplementations, respectively. Moreover, the relative mRNA expressions of antioxidant enzymes, including Cu/Zn-SOD (6.6–12.5 g/kg diets) and GPx (12.5 g/kg diets), as well as antioxidant-related signaling molecules, including NF-E2-related factor 2 (Nrf2) (6.6–12.5 g/kg diets), target of rapamycin (6.6–12.5 g/kg diets), ribosomal S6 protein kinase 1 (9.3–12.5 g/kg diets) and casein kinase 2 (6.6–12.5 g/kg diets), were up-regulated when Ile diet supplementations were administered at these levels, respectively, whereas the relative mRNA expression of Kelch-like ECH-associated protein 1 was down-regulated with 9.3 g Ile/kg diet

  5. Significance of Dietary Antioxidants for Health

    PubMed Central

    Gordon, Michael H.

    2012-01-01

    Since evidence became available that free radicals were involved in mechanisms for the development of major diseases, including cardiovascular disease and cancer, there has been considerable research into the properties of natural dietary antioxidants. However, it has become clear that dietary antioxidants can only have beneficial effects in vivo by radical scavenging or effects on redox potential if they are present in tissues or bodily fluids at sufficient concentrations. For many dietary components, absorption is limited or metabolism into derivatives reduces the antioxidant capacity. For many dietary phytochemicals, direct antioxidant effects may be less important for health than other effects including effects on cell signalling or gene expression in vivo. PMID:22312245

  6. Jian carp (Cyprinus carpio var. Jian) intestinal immune responses, antioxidant status and tight junction protein mRNA expression are modulated via Nrf2 and PKC in response to dietary arginine deficiency.

    PubMed

    Wang, Biao; Feng, Lin; Chen, Gang-Fu; Jiang, Wei-Dan; Liu, Yang; Kuang, Sheng-Yao; Jiang, Jun; Tang, Ling; Wu, Pei; Tang, Wu-Neng; Zhang, Yong-An; Zhao, Juan; Zhou, Xiao-Qiu

    2016-04-01

    This study investigated the effect of dietary arginine on the immune response, antioxidant status and tight junction mRNA expression in the intestine of juvenile Jian carp (Cyprinus carpio var. Jian). A total of 1200 juvenile Jian carp with an average initial weight of 6.33 ± 0.03 g were fed graded levels of arginine (9.8-24.5 g kg(-1) diet) for nine weeks. The study showed that arginine deficiency up-regulated interleukin 1, interleukin 8 and transforming growth factor-β and down-regulated tumour necrosis factor α gene expression (P < 0.05). Additionally, arginine deficiency increased malondialdehyde (MDA), protein carbonyl (PC) and glutathione contents and decreased the activities of copper/zinc superoxide dismutase (SOD1), glutathione peroxidase (GPx), catalase (CAT) and glutathione reductase (GR) and glutathione-S-transferase (GST) (P < 0.05). Meanwhile, arginine deficiency significantly increased claudin 7, occludin, protein kinase C, NF-E2-related factor 2 and Kelch-like-ECH- associated protein 1 mRNA expression and decreased SOD1, CAT and GR mRNA expression (P < 0.05). All of these results indicated that arginine deficiency impaired intestinal immune function via the regulation of mRNA expression of cytokines, tight junction proteins, antioxidant enzymes, Nrf2/Keap1 and PKC in fish intestine. PMID:26518504

  7. Deficiency of dietary niacin impaired gill immunity and antioxidant capacity, and changes its tight junction proteins via regulating NF-κB, TOR, Nrf2 and MLCK signaling pathways in young grass carp (Ctenopharyngodon idella).

    PubMed

    Li, Shun-Quan; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-08-01

    To investigate the effects of dietary niacin on gill immunity, tight junction proteins, antioxidant system and related signaling molecules mRNA expression, young grass carp (Ctenopharyngodon idella) were fed six diets containing graded levels of niacin (3.95-55.01 mg/kg diet) for 8 weeks. The study indicated that niacin deficiency decreased lysozyme and acid phosphatase activities, and complement 3 content, and caused oxidative damage that might be partly due to the decreased copper, zinc superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and glutathione-S-transferase activities and reduced glutathione content in fish gills (P < 0.05). Moreover, the relative mRNA levels of antimicrobial peptides (liver expressed antimicrobial peptide 2 and Hepcidin), anti-inflammatory cytokines (interleukin 10 and transforming growth factor β1), tight junction proteins (Occludin, zonula occludens 1, Claudin-15 and -3), signaling molecules (inhibitor of κBα (IκBα), target of rapamycin (TOR), ribosomal protein S6 kinase 1 (S6K1) and NF-E2-related factor 2 (Nrf2)) and antioxidant enzymes were significantly decreased (P < 0.05) in niacin-deficient diet group. Conversely, the mRNA levels of pro-inflammatory cytokines (tumor necrosis factor α, interleukin 8, interferon γ2, and interleukin 1β), signaling molecules (nuclear factor kappa B p65, IκB kinase α, IκB kinase β, IκB kinase γ, Kelch-like-ECH-associated protein 1b, myosin light chain kinase and p38 mitogen-activated protein kinase (p38 MAPK) were significantly increased (P < 0.05) in fish gills fed niacin-deficient diet. Interestingly, the varying niacin levels of 3.95-55.01 mg/kg diet had no effect on the mRNA level of Kelch-like-ECH-associated protein 1a, Claudin-c and -12 in fish gills (P > 0.05). In conclusion, niacin deficiency decreased gill immunity, impaired gill antioxidant system, as well as regulated mRNA expression of gill tight junction proteins and related signaling

  8. Dietary Zinc Deficiency Exaggerates Ethanol-Induced Liver Injury in Mice: Involvement of Intrahepatic and Extrahepatic Factors

    PubMed Central

    Sun, Xinguo; Song, Zhenyuan; McClain, Craig J.; Zhou, Zhanxiang

    2013-01-01

    Clinical studies have demonstrated that alcoholics have a lower dietary zinc intake compared to health controls. The present study was undertaken to determine the interaction between dietary zinc deficiency and ethanol consumption in the pathogenesis of alcoholic liver disease. C57BL/6N mice were subjected to 8-week feeding of 4 experimental liquid diets: (1) zinc adequate diet, (2) zinc adequate diet plus ethanol, (3) zinc deficient diet, and (4) zinc deficient diet plus ethanol. Ethanol exposure with adequate dietary zinc resulted in liver damage as indicated by elevated plasma alanine aminotransferase level and increased hepatic lipid accumulation and inflammatory cell infiltration. Dietary zinc deficiency alone increased hepatic lipid contents, but did not induce hepatic inflammation. Dietary zinc deficiency showed synergistic effects on ethanol-induced liver damage. Dietary zinc deficiency exaggerated ethanol effects on hepatic genes related to lipid metabolism and inflammatory response. Dietary zinc deficiency worsened ethanol-induced imbalance between hepatic pro-oxidant and antioxidant enzymes and hepatic expression of cell death receptors. Dietary zinc deficiency exaggerated ethanol-induced reduction of plasma leptin, although it did not affect ethanol-induced reduction of white adipose tissue mass. Dietary zinc deficiency also deteriorated ethanol-induced gut permeability increase and plasma endotoxin elevation. These results demonstrate, for the first time, that dietary zinc deficiency is a risk factor in alcoholic liver disease, and multiple intrahepatic and extrahepatic factors may mediate the detrimental effects of zinc deficiency. PMID:24155903

  9. Dietary antioxidants and environmental stress.

    PubMed

    Kelly, Frank J

    2004-11-01

    Air is one of our most important natural resources; however, it is also in the front line for receiving environmental pollution. Air quality decreased markedly following the industrial revolution, but it was not until the great London Smog in 1952 that air quality made it onto the political agenda. The introduction of the Clean Air Act in 1956 led to dramatic decreases in black smoke and SO2 concentrations over the next two decades, as domestic and industrial coal-burning activities ceased. However, as these improvements progressed, a new threat to public health was being released into the air in ever-increasing quantities. Rapid motorisation of society from the 1960s onwards has led to the increased release of atmospheric pollutants such as tiny particles (particulate matter of <10 microm in aerodynamic diameter) and oxides of N, and the generation of the secondary pollutant O3. These primary and secondary traffic-related pollutants have all proved to be major risks factors to public health. Recently, oxidative stress has been identified as a unifying feature underlying the toxic actions of these pollutants. Fortunately, the surface of the lung is covered with a thin layer of fluid containing a range of antioxidants that appear to provide the first line of defence against oxidant pollutants. As diet is the only source of antioxidant micronutrients, a plausible link now exists between the sensitivity to air pollution and the quality of the food eaten. However, many questions remain unanswered in relation to inter-individual sensitivity to ambient air pollution, and extent to which this sensitivity is modified by airway antioxidant defences. PMID:15831130

  10. Dietary antioxidants: immunity and host defense.

    PubMed

    Puertollano, María A; Puertollano, Elena; de Cienfuegos, Gerardo Álvarez; de Pablo, Manuel A

    2011-01-01

    Natural antioxidants may be defined as molecules that prevent cell damage against free radicals and are critical for maintaining optimum health in both animals and humans. In all living systems, cells require adequate levels of antioxidant defenses in order to avoid the harmful effect of an excessive production of reactive oxygen species (ROS) and to prevent damage to the immune cells. During the inflammatory processes, the activation of phagocytes and/or the action of bacterial products with specific receptors are capable of promoting the assembly of the multicomponent flavoprotein NADPH oxidase, which catalyzes the production of high amounts of the superoxide anion radical (O(2)(-)). Under these particular circumstances, neutrophils and macrophages are recognized to produce superoxide free radicals and H(2)O(2), which are essential for defence against phagocytized or invading microbes. In this state, antioxidants are absolutely necessary to regulate the reactions that release free radicals. Antioxidant nutrients commonly included in the diet such as vitamin E, vitamin C, β-carotene, selenium, copper, iron and zinc improve different immune function exhibiting an important protective role in infections caused by bacteria, viruses or parasites. As a result, dietary antioxidants have been related to modulate the host susceptibility or resistance to infectious pathogens. Overall, numerous studies have suggested that the development of tolerance, and control of inflammation are strongly correlated with specific immune mechanisms that may be altered by an inadequate supply of either macronutrients or micronutrients. Therefore, the present paper will review the effects of dietary antioxidants on immune cell function and the impact on protection against infectious microorganisms. PMID:21506934

  11. Dietary Antioxidants and Prostate Cancer: A Review

    PubMed Central

    Vance, Terrence M.; Su, Joseph; Fontham, Elizabeth T. H.; Koo, Sung I.; Chun, Ock K.

    2013-01-01

    Prostate cancer is the most common non-cutaneous cancer in men in the United States. Several studies have examined the relationship between prostate cancer and antioxidants; however, the results of these studies are inconsistent. This article provides a systematic review of studies on prostate cancer and antioxidant intake from diet and supplements. Tea and coffee appear to offer protection against advanced prostate cancer. Different forms of vitamin E appear to exert different effects on prostate cancer, with alpha-tocopherol potentially increasing and gamma-tocopherol potentially decreasing risk of the disease. There is no strong evidence for a beneficial effect of selenium, vitamin C, or beta-carotene, while lycopene appears to be negatively associated with risk of the disease. The effect of dietary antioxidants on prostate cancer remains undefined and inconclusive, with different antioxidants affecting prostate cancer risk differentially. Further studies are needed to clarify the relationship between antioxidants and prostate cancer risk and to delineate the underlying mechanisms. PMID:23909722

  12. Dietary vitamin B12 deficiency in an adolescent white boy

    PubMed Central

    O'Gorman, P; Holmes, D; Ramanan, A V; Bose-Haider, B; Lewis, M J; Will, A

    2002-01-01

    Dietary deficiency of cobalamin resulting in tissue deficiency in white individuals is unusual. However, several patients with dietary deficiency who were neither vegan nor Hindu have been described. This report describes the case of a 14 year old boy who was a white non-Hindu with a very low intake of cobalamin, which was not apparent until a detailed dietary assessment was performed. The patient responded rapidly to a combination of oral and parenteral B12. This case illustrates the fact that severe dietary vitamin B12 deficiency can occur in non-Hindu white individuals. Inadequate dietary content of B12 may not be apparent until a detailed dietary assessment is performed. This patient is likely to have had subclinical vitamin B12 deficiency for several years. Increased vitamin B12 requirements associated with the adolescent growth spurt may have provoked overt tissue deficiency. PMID:12037034

  13. Dietary vitamin B12 deficiency in an adolescent white boy.

    PubMed

    O'Gorman, P; Holmes, D; Ramanan, A V; Bose-Haider, B; Lewis, M J; Will, A

    2002-06-01

    Dietary deficiency of cobalamin resulting in tissue deficiency in white individuals is unusual. However, several patients with dietary deficiency who were neither vegan nor Hindu have been described. This report describes the case of a 14 year old boy who was a white non-Hindu with a very low intake of cobalamin, which was not apparent until a detailed dietary assessment was performed. The patient responded rapidly to a combination of oral and parenteral B12. This case illustrates the fact that severe dietary vitamin B12 deficiency can occur in non-Hindu white individuals. Inadequate dietary content of B12 may not be apparent until a detailed dietary assessment is performed. This patient is likely to have had subclinical vitamin B12 deficiency for several years. Increased vitamin B12 requirements associated with the adolescent growth spurt may have provoked overt tissue deficiency. PMID:12037034

  14. Dietary sources and antioxidant effects of ergothioneine.

    PubMed

    Ey, Janine; Schömig, Edgar; Taubert, Dirk

    2007-08-01

    Ergothioneine is a native membrane-impermeable thiol compound that is specifically accumulated in cells via the organic cation transporter OCTN1. In humans, OCTN1 and ergothioneine have been implicated in the etiopathogenesis of autoimmune disorders. However, available evidence about dietary sources and the functional role of ergothioneine in human physiology is scarce. Here, we analyzed the ergothioneine content in common foods using liquid chromatography tandem-mass spectrometry. Additionally, we assessed the protective potency of ergothioneine against various oxidative stressors in OCTN1-expressing cells in comparison with the main intracellular thiol antioxidant glutathione by evaluating cell viability with the MTT reduction assay. Only some food contained ergothioneine with highest concentrations detected in specialty mushrooms, kidney, liver, black and red beans, and oat bran. Ergothioneine exhibited cell protection only against copper(II)-induced toxicity but was far less potent than glutathione, indicting that ergothioneine is not involved in the intracellular antioxidant thiol defense system. PMID:17616140

  15. Dietary selenium increases the antioxidant levels and ATPase activity in the arteries and veins of poultry.

    PubMed

    Cao, Changyu; Zhao, Xia; Fan, Ruifeng; Zhao, Jinxin; Luan, Yilin; Zhang, Ziwei; Xu, Shiwen

    2016-07-01

    Selenium (Se) deficiency is associated with the pathogenesis of vascular diseases. It has been shown that oxidative levels and ATPase activity were involved in Se deficiency diseases in humans and mammals; however, the mechanism by how Se influences the oxidative levels and ATPase activity in the poultry vasculature is unclear. We assessed the effects of dietary Se deficiency on the oxidative stress parameters (superoxide dismutase, catalase, and hydroxyl radical) and ATPase (Na(+)K(+)-ATPase, Ca(++)-ATPase, Mg(++)-ATPase, and Ca(++)Mg(++)-ATPase) activity in broiler poultry. A total of 40 broilers (1-day old) were randomly divided into a Se-deficient group (L group, fed a Se-deficient diet containing 0.08 mg/kg Se) and a control group (C group, fed a diet containing sodium selenite at 0.20 mg/kg Se). Then, arteries and veins were collected following euthanasia when typical symptoms of Se deficiency appeared. Antioxidant indexes and ATPase activity were evaluated using standard assays in arteries and veins. The results indicated that superoxide dismutase activity in the artery according to dietary Se deficiency was significantly lower (p < 0.05) compared with the C group. The catalase activity in the veins and hydroxyl radical inhibition in the arteries and veins by dietary Se deficiency were significantly higher (p < 0.05) compared with the C group. The Se-deficient group showed a significantly lower (p < 0.05) tendency in Na(+)K(+)-ATPase activity, Ca(++)-ATPase activity, and Ca(++)Mg(++)-ATPase activity. There were strong correlations between antioxidant indexes and Ca(++)-ATPase activity. Thus, these results indicate that antioxidant indexes and ATPases may have special roles in broiler artery and vein injuries under Se deficiency. PMID:26637493

  16. Oxidative stress, circulating antioxidants, and dietary preferences in songbirds.

    PubMed

    Alan, Rebecca R; McWilliams, Scott R

    2013-03-01

    Oxidative stress is an unavoidable consequence of metabolism and increases during intensive exercise. This is especially problematic for migratory birds that metabolize fat to fuel long-distance flight. Birds can mitigate damage by increasing endogenous antioxidants (e.g. uric acid) or by consuming dietary antioxidants (e.g. tocopherol). During flight, birds may increase protein catabolism of lean tissue which may increase circulating uric acid and many birds also consume an antioxidant-rich frugivorous diet during autumn migration. We evaluated three related hypotheses in a migratory passerine: (1) protein consumption is positively related to circulating antioxidants, (2) a dietary oxidative stressor [i.e. polyunsaturated fatty acid (PUFA)] influences antioxidant capacity and oxidative damage, and (3) oxidative stress influences dietary antioxidant preferences. White-throated Sparrows (Zonotrichia albicollis) consuming a high protein diet increased circulating uric acid; however, uric acid, antioxidant capacity, and oxidative stress did not differ between birds consuming a high PUFA versus a low PUFA diet, despite increased oxidative damage in high PUFA birds. Birds did not prefer antioxidant-rich diets even when fed high PUFA, low protein. We conclude that White-throated Sparrows successfully mitigated oxidative damage associated with a high PUFA diet and mounted an endogenous antioxidant response independent of uric acid, other circulating antioxidants, and dietary antioxidants. PMID:23270695

  17. Improving Asthma during Pregnancy with Dietary Antioxidants: The Current Evidence

    PubMed Central

    Grieger, Jessica A.; Wood, Lisa G.; Clifton, Vicki L.

    2013-01-01

    The complication of asthma during pregnancy is associated with a number of poor outcomes for the mother and fetus. This may be partially driven by increased oxidative stress induced by the combination of asthma and pregnancy. Asthma is a chronic inflammatory disease of the airways associated with systemic inflammation and oxidative stress, which contributes to worsening asthma symptoms. Pregnancy alone also intensifies oxidative stress through the systemic generation of excess reactive oxidative species (ROS). Antioxidants combat the damaging effects of ROS; yet antioxidant defenses are reduced in asthma. Diet and nutrition have been postulated as potential factors to combat the damaging effects of asthma. In particular, dietary antioxidants may play a role in alleviating the heightened oxidative stress in asthma. Although there are some observational and interventional studies that have shown protective effects of antioxidants in asthma, assessment of antioxidants in pregnancy are limited and there are no antioxidant intervention studies in asthmatic pregnancies on asthma outcomes. The aims of this paper are to (i) review the relationships between oxidative stress and dietary antioxidants in adults with asthma and asthma during pregnancy, and (ii) provide the rationale for which dietary management strategies, specifically increased dietary antioxidants, might positively impact maternal asthma outcomes. Improving asthma control through a holistic antioxidant dietary approach might be valuable in reducing asthma exacerbations and improving asthma management during pregnancy, subsequently impacting perinatal health. PMID:23948757

  18. Dietary Fatty Acid Composition Alters Magnesium Metabolism, Distribution, and Marginal Deficiency Response in Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based on dietary intake recommendations, magnesium deficiency commonly occurs throughout the world. However, widespread pathological conditions induced by dietary magnesium deficiency have not been identified. This discrepancy may be caused by other dietary factors ameliorating or exacerbating the r...

  19. Biology of Ageing and Role of Dietary Antioxidants

    PubMed Central

    Peng, Cheng; Wang, Xiaobo; Chen, Jingnan; Jiao, Rui; Li, Yuk Man; Zuo, Yuanyuan; Lei, Lin; Ma, Ka Ying; Huang, Yu

    2014-01-01

    Interest in relationship between diet and ageing is growing. Research has shown that dietary calorie restriction and some antioxidants extend lifespan in various ageing models. On the one hand, oxygen is essential to aerobic organisms because it is a final electron acceptor in mitochondria. On the other hand, oxygen is harmful because it can continuously generate reactive oxygen species (ROS), which are believed to be the factors causing ageing of an organism. To remove these ROS in cells, aerobic organisms possess an antioxidant defense system which consists of a series of enzymes, namely, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). In addition, dietary antioxidants including ascorbic acid, vitamin A, vitamin C, α-tocopherol, and plant flavonoids are also able to scavenge ROS in cells and therefore theoretically can extend the lifespan of organisms. In this connection, various antioxidants including tea catechins, theaflavins, apple polyphenols, black rice anthocyanins, and blueberry polyphenols have been shown to be capable of extending the lifespan of fruit flies. The purpose of this review is to brief the literature on modern biological theories of ageing and role of dietary antioxidants in ageing as well as underlying mechanisms by which antioxidants can prolong the lifespan with focus on fruit flies as an model. PMID:24804252

  20. Total dietary antioxidant capacity, individual antioxidant intake and breast cancer risk: the Rotterdam Study.

    PubMed

    Pantavos, Athanasios; Ruiter, Rikje; Feskens, Edith F; de Keyser, Catherine E; Hofman, Albert; Stricker, Bruno H; Franco, Oscar H; Kiefte-de Jong, Jessica C

    2015-05-01

    Some studies suggest a favorable role of antioxidants on breast cancer risk but this is still inconclusive. The aim of this study was to assess whether overall dietary antioxidant capacity, as assessed by dietary ferric reducing antioxidant potential (FRAP), and individual dietary antioxidant intake were associated with breast cancer risk. Data was used from women participating in the Rotterdam Study, a prospective cohort study among subjects aged 55 years and older (N = 3,209). FRAP scores and antioxidant intake (i.e., vitamin A, C, E, selenium, flavonoids and carotenoids) was assessed at baseline by a food frequency questionnaire. Incident cases of breast cancer were confirmed through medical reports. During a median follow-up of 17 years, 199 cases with breast cancer were identified. High dietary FRAP score was associated with a lower risk of breast cancer [hazard ratio (HR): 0.68; 95% confidence intervals (CI): 0.49, 0.96]. No overall association between individual antioxidant intake and breast cancer risk was found. However, low intake of alpha carotene and beta carotene was associated with a higher risk of breast cancer among smokers (HR: 2.48; 95% CI: 1.21, 5.12 and HR: 2.31; 95% CI: 1.12, 4.76 for alpha and beta carotene, respectively) and low intake of flavonoids was associated with breast cancer risk in women over the age of 70 (HR: 1.80; 95% CI: 1.09, 2.99). These results suggest that high overall dietary antioxidant capacity is associated with a lower risk of breast cancer. Individual effects of dietary carotenoids and dietary flavonoids may be restricted to subgroups such as smokers and elderly. PMID:25284450

  1. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice

    PubMed Central

    van Dijk, Miriam; Dijk, Francina J.; Bunschoten, Annelies; van Dartel, Dorien A.M.; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-01-01

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model. PMID:26943770

  2. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice.

    PubMed

    van Dijk, Miriam; Dijk, Francina J; Bunschoten, Annelies; van Dartel, Dorien A M; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-04-01

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model. PMID:26943770

  3. Associations between dietary antioxidants intake and radiographic knee osteoarthritis.

    PubMed

    Li, Hui; Zeng, Chao; Wei, Jie; Yang, Tuo; Gao, Shu-Guang; Li, Yu-Sheng; Lei, Guang-Hua

    2016-06-01

    The aim of the study is to examine the cross-sectional associations between dietary antioxidants (carotenoid, vitamin C, E, and selenium) intake and radiographic knee osteoarthritis (OA). A total of 4685 participants were included in this study. Dietary intake was assessed using a validated semi-quantitative food frequency questionnaire. Radiographic knee OA was defined as Kellgren-Lawrence (K-L) grade 2 in at least one leg. A multivariable logistic analysis model was established to test the relationship between dietary antioxidants (carotenoid, vitamin C, E, and selenium) intake and radiographic knee OA with adjustment of a number of potential confounding factors. A significant positive association between dietary vitamin C intake (P value for trend was 0.04 in multivariable adjusted analysis) and radiographic knee OA was observed. The relative odds of radiographic knee OA were increased by 0.39 times in the third quintile (OR 1.39, 95 % CI 1.11-1.73), 0.42 times in the fourth quintile (OR 1.42, 95 % CI 1.13-1.79), and 0.33 times in the fifth quintile (OR 1.33, 95 % CI 1.03-1.71). However, radiographic knee OA was not significantly associated with dietary carotenoid, vitamin E, and selenium. Among dietary antioxidants, dietary vitamin C intake was positively correlated with the prevalence of radiographic knee OA, while no significant association was found between dietary intake of carotenoid, vitamin E, and selenium and the prevalence of radiographic knee OA. PMID:26781781

  4. Dietary Antioxidant and Flavonoid Intakes Are Reduced in the Elderly

    PubMed Central

    Zujko, Małgorzata Elżbieta; Witkowska, Anna Maria; Waśkiewicz, Anna; Mirończuk-Chodakowska, Iwona

    2015-01-01

    The objective of this study was to determine sources and patterns of antioxidant and flavonoid intakes in the elderly (61–74 yrs) in comparison with young (20–40 yrs) and middle age (41–60 yrs) groups in a cross-sectional study. More than 6000 subjects of both genders, aged 20–74 years, participants of the National Multicenter Health Survey (WOBASZ) took part in this study. Daily food consumption was estimated by the single 24-hour dietary recall. Dietary total antioxidant capacity (TAC) and flavonoid content (FC) were calculated according to the amount of food consumed by the participants combined with antioxidant capacity and flavonoid contents in foods. Food consumption, dietary TAC, and FC were significantly lower in the elderly, especially elderly women in comparison to the young and middle age groups. The consumption of tea, coffee, and apples was associated with the largest contribution to dietary TAC and FC in all participants. Despite high nutrient density of the energy-adjusted diet of ageing people, the elderly consumed the lowest amounts of antioxidants and flavonoids due to the lowest food intake. PMID:26236427

  5. Dietary nutrient intake and antioxidant status in preeclamptic women

    PubMed Central

    Sheykhi, Mahdiye; Paknahad, Zamzam; Hasanzadeh, Akbar

    2015-01-01

    Background: Preeclampsia (PE) is the most common cause of maternal death in the world. Some studies showed that inadequate intake of foods rich in antioxidant leads to increase oxidative stress and adverting obstetrical outcomes. The aim of the present study was to investigate the relationship between antioxidant status and dietary nutrient intake in pregnant women with PE. Materials and Methods: This cross-sectional study was conducted among 55 pregnant women with PE admitted in the Obstetrics and Gynecology department of Shahid Beheshti Hospital in Isfahan, Iran. The subjects were interviewed about demographic data and dietary intakes by using a 168-items semi-quantitative food frequency questionnaire (FFQ). The total antioxidant capacity (TAC) of this serum was measured by using a double-antibody sandwich enzyme-linked immune-sorbent assay (ELISA). Nonparametric correlation statistics were used to meet assumptions of normality and equal variances. Results: Total antioxidant status was significantly higher in comparison with healthy pregnant women (which measured as pilot). Intake of vitamin E was below the dietary reference intakes, and was positively associated with serum TAC (r = 0.367, P = 0.003), but this correlation was significantly negative about dietary selenium. There wasn’t any significant correlation between intake of vitamin C, β-carotene, riboflavin, copper and serum TAC. Conclusion: Our findings showed that intake of vitamin E was positively associated with serum TAC. Little support was found on a relationship between dietary intakes of other micronutrients and serum TAC. Further research is required to explore the relationships between maternal nutrient intake and antioxidant status in women with PE. PMID:26605222

  6. Dietary zinc deficiency predisposes mice to the development of preneoplastic lesions in chemically-induced hepatocarcinogenesis.

    PubMed

    Romualdo, Guilherme Ribeiro; Goto, Renata Leme; Henrique Fernandes, Ana Angélica; Cogliati, Bruno; Barbisan, Luis Fernando

    2016-10-01

    Although there is a concomitance of zinc deficiency and high incidence/mortality for hepatocellular carcinoma in certain human populations, there are no experimental studies investigating the modifying effects of zinc on hepatocarcinogenesis. Thus, we evaluated whether dietary zinc deficiency or supplementation alter the development of hepatocellular preneoplastic lesions (PNL). Therefore, neonatal male Balb/C mice were submitted to a diethylnitrosamine/2-acetylaminefluorene-induced hepatocarcinogenesis model. Moreover, mice were fed adequate (35 mg/kg diet), deficient (3 mg/kg) or supplemented (180 mg/kg) zinc diets. Mice were euthanized at 12 (early time-point) or 24 weeks (late time-point) after introducing the diets. At the early time-point, zinc deficiency decreased Nrf2 protein expression and GSH levels while increased p65 and p53 protein expression and the number of PNL/area. At the late time-point, zinc deficiency also decreased GSH levels while increased liver genotoxicity, cell proliferation into PNL and PNL size. In contrast, zinc supplementation increased antioxidant defense at both time-points but not altered PNL development. Our findings are the first to suggest that zinc deficiency predisposes mice to the PNL development in chemically-induced hepatocarcinogenesis. The decrease of Nrf2/GSH pathway and increase of liver genotoxicity, as well as the increase of p65/cell proliferation, are potential mechanisms to this zinc deficiency-mediated effect. PMID:27544374

  7. Fisetin: A Dietary Antioxidant for Health Promotion

    PubMed Central

    Khan, Naghma; Syed, Deeba N.; Ahmad, Nihal

    2013-01-01

    Abstract Significance: Diet-derived antioxidants are now being increasingly investigated for their health-promoting effects, including their role in the chemoprevention of cancer. In general, botanical antioxidants have received much attention, as they can be consumed for longer periods of time without any adverse effects. Flavonoids are a broadly distributed class of plant pigments that are regularly consumed in the human diet due to their abundance. One such flavonoid, fisetin (3,3′,4′,7-tetrahydroxyflavone), is found in various fruits and vegetables, such as strawberry, apple, persimmon, grape, onion, and cucumber. Recent Advances: Several studies have demonstrated the effects of fisetin against numerous diseases. It is reported to have neurotrophic, anticarcinogenic, anti-inflammatory, and other health beneficial effects. Critical Issues: Although fisetin has been reported as an anticarcinogenic agent, further in-depth in vitro and in vivo studies are required to delineate the mechanistic basis of its observed effects. In this review article, we describe the multiple effects of fisetin with special emphasis on its anticancer activity as investigated in cell culture and animal models. Future Directions: Additional research focused toward the identification of molecular targets could lead to the development of fisetin as a chemopreventive/chemotherapeutic agent against cancer and other diseases. Antioxid. Redox Signal. 19, 151–162. PMID:23121441

  8. Dietary antioxidants and other dietary factors in the etiology of Parkinson's disease.

    PubMed

    Scheider, W L; Hershey, L A; Vena, J E; Holmlund, T; Marshall, J R; Freudenheim

    1997-03-01

    It has been suggested that dietary antioxidants reduce Parkinson's disease (PD) risk by neutralizing free radicals, thus preventing injury to neurons in the substantia nigra. This case-control study examined the possible role of long-term dietary antioxidant intake in PD etiology. Cases (n = 57) were males 45-79 years old with at least two cardinal signs of PD and no evidence of other forms of parkinsonism or dementia. Age-matched friend controls (n = 50) were chosen from lists provided by the cases. Usual dietary intake 20 years ago, including vitamins E and C and carotenoids, was assessed by a 102-item food frequency questionnaire. Odds ratios and 95% confidence intervals were calculated using conditional logistic regression. Antioxidant intake, adjusted for age, education, smoking, rural living, and total energy intake, was not associated with reduced PD risk. Trends toward greater PD risk were associated with higher intakes of vitamin C and carotenoids, especially xanthophylls, reflecting higher intakes by PD cases of fruit and certain vegetables. Intakes of sweet foods, including fruit, were associated with higher PD risk, suggesting that the observed trends may be due to a preference for sweet foods. This study does not provide support for a protective effect of long-term dietary antioxidant intake on PD risk. PMID:9087977

  9. A Methionine Deficient Diet Enhances Adipose Tissue Lipid Metabolism and Alters Anti-Oxidant Pathways in Young Growing Pigs

    PubMed Central

    Castellano, Rosa; Perruchot, Marie-Hélène; Conde-Aguilera, José Alberto; van Milgen, Jaap; Collin, Anne; Tesseraud, Sophie; Mercier, Yves; Gondret, Florence

    2015-01-01

    Methionine is a rate-limiting amino-acid for protein synthesis but non-proteinogenic roles on lipid metabolism and oxidative stress have been demonstrated. Contrary to rodents where a dietary methionine deficiency led to a lower adiposity, an increased lipid accretion rate has been reported in growing pigs fed a methionine deficient diet. This study aimed to clarify the effects of a dietary methionine deficiency on different aspects of tissue lipid metabolism and anti-oxidant pathways in young pigs. Post-weaned pigs (9.8 kg initial body weight) were restrictively-fed diets providing either an adequate (CTRL) or a deficient methionine supply (MD) during 10 days (n=6 per group). At the end of the feeding trial, pigs fed the MD diet had higher lipid content in subcutaneous adipose tissue. Expression levels of genes involved in glucose uptake, lipogenesis but also lipolysis, and activities of NADPH enzyme suppliers were generally higher in subcutaneous and perirenal adipose tissues of MD pigs, suggesting an increased lipid turnover in those pigs. Activities of the anti-oxidant enzymes superoxide dismutase, catalase and glutathione reductase were increased in adipose tissues and muscle of MD pigs. Expression level and activity of the glutathione peroxidase were also higher in liver of MD pigs, but hepatic contents in the reduced and oxidized forms of glutathione and glutathione reductase activity were lower compared with control pigs. In plasma, superoxide dismutase activity was higher but total anti-oxidant power was lower in MD pigs. These results show that a dietary methionine deficiency resulted in increased levels of lipogenesis and lipolytic indicators in porcine adipose tissues. Decreased glutathione content in the liver and coordinated increase of enzymatic antioxidant activities in adipose tissues altered the cellular redox status of young pigs fed a methionine-deficient diet. These findings illustrate that a rapidly growing animal differently adapts tissue

  10. Ventilatory Function in Young Adults and Dietary Antioxidant Intake

    PubMed Central

    Garcia-Larsen, Vanessa; Amigo, Hugo; Bustos, Patricia; Bakolis, Ioannis; Rona, Roberto J.

    2015-01-01

    Dietary antioxidants may protect against poor ventilatory function. We assessed the relation between ventilatory function and antioxidant components of diet in young Chileans. Forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and the ratio FEV1/FVC were measured in 1232 adults aged 22–28 years, using a Vitalograph device. Dietary intake was ascertained with a food frequency questionnaire (FFQ) designed for this study, from which nutrient and flavonoid intakes were estimated. Dietary patterns were derived with Principal Component Analysis (PCA). After controlling for potential confounders, dietary intake of total catechins was positively associated with FVC (Regression coefficient (RC) of highest vs. lowest quintile of intake 0.07; 95% CI 0.01 to 0.15; p per trend 0.006). Total fruit intake was related to FVC (RC of highest vs. lowest quintile 0.08; 95% CI 0.003 to 0.15; p per trend 0.02). Intake of omega 3 fatty acids was associated with a higher FEV1 (RC for highest vs. lowest quintile 0.08; 95% CI 0.01 to 0.15 L; p per trend 0.02) and with FVC 0.08 (RC in highest vs. lowest quintile of intake 0.08, 95% CI 0.001 to 0.16; p per trend 0.04). Our results show that fresh fruits, flavonoids, and omega 3 fatty acids may contribute to maintain ventilatory function. PMID:25884660

  11. Pharmacological and dietary antioxidant therapies for chronic obstructive pulmonary disease.

    PubMed

    Biswas, S; Hwang, J W; Kirkham, P A; Rahman, I

    2013-01-01

    The progression and exacerbations of chronic obstructive pulmonary disease (COPD) are intimately associated with tobacco smoke/biomass fuel-induced oxidative and aldehyde/carbonyl stress. Alterations in redox signaling proinflammatory kinases and transcription factors, steroid resistance, unfolded protein response, mucus hypersecretion, extracellular matrix remodeling, autophagy/apoptosis, epigenetic changes, cellular senescence/aging, endothelial dysfunction, autoimmunity, and skeletal muscle dysfunction are some of the pathological hallmarks of COPD. In light of the above it would be prudent to target systemic and local oxidative stress with agents that can modulate the antioxidants/ redox system or by boosting the endogenous levels of antioxidants for the treatment and management of COPD. Identification of various antioxidant agents, such as thiol molecules (glutathione and mucolytic drugs, such as N-acetyl-L-cysteine, N-acystelyn, erdosteine, fudosteine, ergothioneine, and carbocysteine lysine salt), dietary natural product-derived polyphenols and other compounds (curcumin, resveratrol, green tea catechins, quercetin sulforaphane, lycopene, acai, alpha-lipoic acid, tocotrienols, and apocynin) have made it possible to modulate various biochemical aspects of COPD. Various researches and clinical trials have revealed that these antioxidants can detoxify free radicals and oxidants, control expression of redox and glutathione biosynthesis genes, chromatin remodeling, and ultimately inflammatory gene expression. In addition, modulation of cigarette smoke-induced oxidative stress and related cellular changes have also been reported to be effected by synthetic molecules. This includes specific spin traps like α-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a superoxide dismutase mimetic M40419, lipid peroxidation and protein carbonylation blockers/inhibitors, such as edaravone and lazaroids

  12. Antioxidative activity of animal and vegetable dietary fibers.

    PubMed

    Suzuki, Nobutaka; Fujimura, Ayako; Nagai, Takeshi; Mizumoto, Iwao; Itami, Toshiaki; Hatate, Hideo; Nozawa, Takashi; Kato, Norihisa; Nomoto, Tateo; Yoda, Binkoh

    2004-01-01

    Some dietary fibers originated from insects such as silkworm (Sericin) and others along with constituents of several representative seaweeds such as wakame Undaria pinnatifida; hijiki Hizikia fusifome; and kombu Laminaria japonica, were found to have fairly large reaction rates determined by quenching experiments of emission spectra in the near-infrared region lambdamax 1270 nm for singlet oxygen 1O2, Cypridina luminescence method for superoxide, and peroxide value (POV) for autoxidation. The determined reaction rates are between 10(3)-10(5) (g/L)(-1) s(-1) for the insect and the plant dietary fibers; the larger ones are as large as that of ascorbic acid, 1.93 x 10(4) (g/L)(-1) s(-1) for singlet oxygen. Most of these seaweed constituents also showed antioxidative activity against autoxidation and superoxide as well as their immunological enhancing activity. These results suggest a possibility that dietary fibers that are supposed to prevent the large-intestine cancer by their physical properties may prevent the cancer, at least in parts, by their chemical, antioxidative activity. PMID:15630221

  13. Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases.

    PubMed

    Calabrese, Vittorio; Cornelius, Carolin; Mancuso, Cesare; Barone, Eugenio; Calafato, Stella; Bates, Timothy; Rizzarelli, Enrico; Kostova, Albena T Dinkova

    2009-01-01

    The ability of a cell to counteract stressful conditions, known as cellular stress response, requires the activation of pro-survival pathways and the production of molecules with anti-oxidant, anti-apoptotic or pro-apoptotic activities. Among the cellular pathways conferring protection against oxidative stress, a key role is played by vitagenes, which include heat shock proteins (Hsps) heme oxygenase-1 and Hsp70, as well as the thioredoxin/thioredoxin reductase system. Heat shock response contributes to establish a cytoprotective state in a wide variety of human diseases, including inflammation, cancer, aging and neurodegenerative disorders. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. Dietary antioxidants, such as curcumin, L-carnitine/acetyl-L-carnitine and carnosine have recently been demonstrated in vitro to be neuroprotective through the activation of hormetic pathways, including vitagenes. In the present review we discuss the importance of vitagenes in the cellular stress response and analyse, from a pharmacological point of view, the potential use of dietary antioxidants in the treatment of neurodegenerative disorders in humans. PMID:19273073

  14. Plant polyphenols as dietary antioxidants in human health and disease

    PubMed Central

    Pandey, Kanti Bhooshan

    2009-01-01

    Polyphenols are secondary metabolites of plants and are generally involved in defense against ultraviolet radiation or aggression by pathogens. In the last decade, there has been much interest in the potential health benefits of dietary plant polyphenols as antioxidant. Epidemiological studies and associated meta-analyses strongly suggest that long term consumption of diets rich in plant polyphenols offer protection against development of cancers, cardiovascular diseases, diabetes, osteoporosis and neurodegenerative diseases. Here we present knowledge about the biological effects of plant polyphenols in the context of relevance to human health. PMID:20716914

  15. ROLE OF DIETARY ANTIOXIDANTS IN HUMAN METAPNEUMOVIRUS INFECTION

    PubMed Central

    Komaravelli, Narayana; Kelley, John P.; Garofalo, Matteo P.; Wu, Hoatian; Casola, Antonella; Kolli, Deepthi

    2016-01-01

    Summary Human metapneumovirus (hMPV) is a major cause of respiratory tract infections in children, elderly and immunocompromised hosts, for which no vaccine or treatment are currently available. Oxidative stress and inflammatory responses represent important pathogenic mechanism(s) of hMPV infection. Here, we explored the potential protective role of dietary antioxidants in hMPV infection. Treatment of airway epithelial cells with resveratrol and quercetin during hMPV infection significantly reduced cellular oxidative damage, inflammatory mediator secretion and viral replication, without affecting viral gene transcription and protein synthesis, indicating that inhibition of viral replication occurred at the level of viral assembly and/or release. Modulation of proinflammatory mediator expression occurred through the inhibition of transcription factor nuclear factor (NF)-κB and interferon regulatory factor (IRF)-3 binding to their cognate site of endogenous gene promoters. Our results indicate the use of dietary antioxidants as an effective treatment approach for modulating hMPV induced lung oxidative damage and inflammation. PMID:25645280

  16. Sensitivity of antioxidant-deficient yeast to hypochlorite and chlorite.

    PubMed

    Kwolek-Mirek, Magdalena; Bartosz, Grzegorz; Spickett, Corinne M

    2011-08-01

    Sodium hypochlorite and sodium chlorite are commonly used as disinfectants, and understanding the mechanisms of microbial resistance to these compounds is of considerable importance. In this study, the role of oxidative stress and antioxidant enzymes in the sensitivity of the yeast Saccharomyces cerevisiae to hypochlorite and chlorite was studied. Yeast mutants lacking Cu-Zn superoxide dismutase, but not mutants deficient in cytoplasmic and peroxisomal catalase, were hypersensitive to the action of both hypochlorite and chlorite. Both compounds depleted cellular glutathione, induced the production of reactive oxygen species and decreased the viability of the cells. The toxicity of hypochlorite and chlorite was abolished by hypoxic and anoxic conditions and ameliorated by thiol antioxidants and ascorbate. The results demonstrated that the action of hypochlorite and chlorite involves the formation of superoxide and peroxide and that SOD1 is protective, probably by limiting the formation of hydroxyl radicals and damage to proteins. PMID:21761455

  17. DIETARY FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED MICRONUCLEUS FORMATION IN MICE

    EPA Science Inventory


    Dietary folate deficiency enhances arsenic-induced micronucleus formation in mice.

    Folate deficiency increases background levels ofDNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary...

  18. Impact of Dietary Antioxidants on Sport Performance: A Review.

    PubMed

    Braakhuis, Andrea J; Hopkins, Will G

    2015-07-01

    Many athletes supplement with antioxidants in the belief this will reduce muscle damage, immune dysfunction and fatigue, and will thus improve performance, while some evidence suggests it impairs training adaptations. Here we review the effect of a range of dietary antioxidants and their effects on sport performance, including vitamin E, quercetin, resveratrol, beetroot juice, other food-derived polyphenols, spirulina and N-acetylcysteine (NAC). Older studies suggest vitamin E improves performance at altitude, with possible harmful effects on sea-level performance. Acute intake of vitamin E is worthy of further consideration, if plasma levels can be elevated sufficiently. Quercetin has a small beneficial effect for exercise of longer duration (>100 min), but it is unclear whether this benefits athletes. Resveratrol benefits trained rodents; more research is needed in athletes. Meta-analysis of beetroot juice studies has revealed that the nitrate component of beetroot juice had a substantial but unclear effect on performance when averaged across athletes, non-athletes and modes of exercise (single dose 1.4 ± 2.0%, double dose 0.5 ± 1.9%). The effect of addition of polyphenols and other components to beetroot juice was trivial but unclear (single dose 0.4 ± 3.2%, double dose -0.5 ± 3.3%). Other food-derived polyphenols indicate a range of performance outcomes from a large improvement to moderate impairment. Limited evidence suggests spirulina enhances endurance performance. Intravenous NAC improved endurance cycling performance and reduced muscle fatigue. On the basis of vitamin E and NAC studies, acute intake of antioxidants is likely to be beneficial. However, chronic intakes of most antioxidants have a harmful effect on performance. PMID:25790792

  19. Effect of dietary antioxidant supplementation (Cuminum cyminum) on bacterial susceptibility of diabetes-induced rats

    PubMed Central

    Embaby, Mohamed A.; Doleib, Nada M.; Taha, Mona M.

    2016-01-01

    Diabetic patients are at risk of acquiring infections. Chronic low-grade inflammation is an important factor in the pathogenesis of diabetic complication. Diabetes causes generation of reactive oxygen species that increases oxidative stress, which may play a role in the development of complications as immune-deficiency and bacterial infection. The study aimed to investigate the role of a natural antioxidant, cumin, in the improvement of immune functions in diabetes. Diabetes was achieved by interperitoneal injection of streptozotocin (STZ). Bacterial infection was induced by application of Staphylococcus aureus suspension to a wound in the back of rats. The antioxidant was administered for 6 weeks. Results revealed a decrease in blood glucose levels in diabetic rats (p < 0.001), in addition to improving immune functions by decreasing total IgE approaching to the normal control level. Also, inflammatory cytokine (IL-6, IL-1β and TNF) levels, as well as total blood count decreased in diabetic rats as compared to the control group. Thus, cumin may serve as anti-diabetic treatment and may help in attenuating diabetic complications by improving immune functions. Therefore, a medical dietary antioxidant supplementation is important to improve the immune functions in diabetes. PMID:27536197

  20. Antioxidants

    MedlinePlus

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  1. Plasma total antioxidant capacity is associated with dietary intake and plasma level of antioxidants in postmenopausal women.

    PubMed

    Wang, Ying; Yang, Meng; Lee, Sang-Gil; Davis, Catherine G; Kenny, Anne; Koo, Sung I; Chun, Ock K

    2012-12-01

    Increased plasma total antioxidant capacity (TAC) has been associated with a high consumption of fruits and vegetables. However, limited information is available on whether plasma TAC reflects the dietary intake of antioxidants and the levels of individual antioxidants in plasma. By using three different assays, the study aimed to determine if plasma TAC can effectively predict dietary intake of antioxidants and plasma antioxidant status. Forty overweight and apparently healthy postmenopausal women were recruited. Seven-day food records and 12-h fasting blood samples were collected for dietary and plasma antioxidant assessments. Plasma TAC was determined by vitamin C equivalent antioxidant capacity (VCEAC), ferric-reducing ability of plasma (FRAP) and oxygen radical absorbance capacity (ORAC) assays. TAC values determined by VCEAC were highly correlated with FRAP (r=0.79, P<.01) and moderately correlated with ORAC (r=0.34, P<.05). Pearson correlation analyses showed that plasma TAC values by VCEAC and ORAC had positive correlation with plasma uric acid (r=0.56 for VCEAC; r=0.49 for ORAC) and total phenolics (r=0.63 for VCEAC; r=0.36 for ORAC). However, TAC measured by FRAP was correlated only with uric acid (r=0.69). After multivariate adjustment, plasma TAC determined by VCEAC was positively associated with dietary intakes of γ-tocopherol (P<.001), β-carotene (P<.05), anthocyanidins (P<.05), flavones (P<.05), proanthocyanidins (P<.01) and TAC (P<.05), as well as with plasma total phenolics (P<.05), α-tocopherol (P<.001), β-cryptoxanthin (P<.05) and uric acid (P<.05). The findings indicate that plasma TAC measured by VCEAC reflects both dietary and plasma antioxidants and represents more closely the plasma antioxidant levels than ORAC and FRAP. PMID:22617460

  2. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity1

    PubMed Central

    Delles, Rebecca M.; Xiong, Youling L.; True, Alma D.; Ao, Touying; Dawson, Karl A.

    2014-01-01

    Recent nutrigenomic studies have shown that animal nutrition can have a major influence on tissue gene expression. Dietary antioxidant supplements can enhance the quality of meat through modification of tissue metabolic processes. This study investigated the influence of dietary antioxidants and quality of oil on the oxidative and enzymatic properties of chicken broiler breast meat stored in an oxygen-enriched package (HiOx: 80% O2/20% CO2) in comparison with air-permeable polyvinylchloride (PVC) or skin packaging systems during retail display at 2 to 4°C for up to 21 d. Broilers were fed either a diet with a low-oxidized (peroxide value 23 mEq of O2/kg) or high-oxidized (peroxide value 121 mEq of O2/kg) oil, supplemented with or without an algae-based Se yeast and organic mineral antioxidant pack for 42 d. Lipid and protein oxidation and tissue enzymatic activity were analyzed. In all packaging systems, lipid oxidation (TBA reactive substances) was inhibited by up to 32.5% (P < 0.05) with an antioxidant-supplemented diet when compared with diets without antioxidants, particularly in the HiOx and PVC systems. Protein sulfhydryls were significantly protected by antioxidant diets (e.g., by 14.6 and 17.8% for low-and high-oxidized dietary groups, respectively, in PVC d 7 samples). Glutathione peroxidase, catalase, and superoxide dismutase activities were significantly higher (P < 0.05) in antioxidant-supplemented diets compared with the basal diet, regardless of oil quality. Also, serum carbonyls were lower in broilers fed a low-oxidized antioxidant-supplemented treatment. The results demonstrate that dietary antioxidants can minimize the oxidative instability of proteins and lipids, and the protection may be linked to improved cellular antioxidant enzymatic activity. PMID:24879706

  3. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity.

    PubMed

    Delles, Rebecca M; Xiong, Youling L; True, Alma D; Ao, Touying; Dawson, Karl A

    2014-06-01

    Recent nutrigenomic studies have shown that animal nutrition can have a major influence on tissue gene expression. Dietary antioxidant supplements can enhance the quality of meat through modification of tissue metabolic processes. This study investigated the influence of dietary antioxidants and quality of oil on the oxidative and enzymatic properties of chicken broiler breast meat stored in an oxygen-enriched package (HiOx: 80% O2/20% CO2) in comparison with air-permeable polyvinylchloride (PVC) or skin packaging systems during retail display at 2 to 4°C for up to 21 d. Broilers were fed either a diet with a low-oxidized (peroxide value 23 mEq of O2/kg) or high-oxidized (peroxide value 121 mEq of O2/kg) oil, supplemented with or without an algae-based Se yeast and organic mineral antioxidant pack for 42 d. Lipid and protein oxidation and tissue enzymatic activity were analyzed. In all packaging systems, lipid oxidation (TBA reactive substances) was inhibited by up to 32.5% (P < 0.05) with an antioxidant-supplemented diet when compared with diets without antioxidants, particularly in the HiOx and PVC systems. Protein sulfhydryls were significantly protected by antioxidant diets (e.g., by 14.6 and 17.8% for low-and high-oxidized dietary groups, respectively, in PVC d 7 samples). Glutathione peroxidase, catalase, and superoxide dismutase activities were significantly higher (P < 0.05) in antioxidant-supplemented diets compared with the basal diet, regardless of oil quality. Also, serum carbonyls were lower in broilers fed a low-oxidized antioxidant-supplemented treatment. The results demonstrate that dietary antioxidants can minimize the oxidative instability of proteins and lipids, and the protection may be linked to improved cellular antioxidant enzymatic activity. PMID:24879706

  4. Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus.

    PubMed

    Mehedint, Mihai G; Craciunescu, Corneliu N; Zeisel, Steven H

    2010-07-20

    We examined whether maternal dietary choline modulates angiogenesis in fetal brain. Pregnant C57BL/6 mice were fed either a choline-deficient (CD), control (CT), or choline-supplemented diet (CS) from days 12 to 17 (E12-17) of pregnancy and then fetal brains were studied. In CD fetal hippocampus, proliferation of endothelial cells (EC) was decreased by 32% (p < 0.01 vs. CT or CS) while differentiated EC clusters (expressing factor VIII related antigen (RA)) increased by 25% (p < 0.01 vs. CT or CS). These changes were associated with > 25% decrease in the number of blood vessels in CD fetal hippocampus (p < 0.01 vs. CT and CS), with no change in total cross-sectional area of these blood vessels. Expression of genes for the angiogenic signals derived from both endothelial and neuronal progenitor cells (NPC) was increased in CD fetal hippocampus VEGF C (Vegfc), 2.0-fold, p < 0.01 vs. CT and angiopoietin 2 (Angpt2), 2.1-fold, (p < 0.01 vs. CT)). Similar increased expression was observed in NPC isolated from E14 fetal mouse brains and exposed to low (5 microM), CT (70 microM), or high choline (280 microM) media for 72 h (low choline caused a 9.7-fold increase in relative gene expression of Vegfc (p < 0.001 vs. CT and high) and a 3.4-fold increase in expression of Angpt2, (p < 0.05 vs. CT and high). ANGPT2 protein was increased 42.2% (p < 0.01). Cytosine-phosphate-guanine dinucleotide islands in the proximity of the promoter areas of Vegfc and Angpt2 were hypomethylated in low choline NPC compared to CT NPC (p < 0.01). We conclude that maternal dietary choline intake alters angiogenesis in the developing fetal hippocampus. PMID:20624989

  5. Dietary factors and luteal phase deficiency in healthy eumenorrheic women

    PubMed Central

    Andrews, Mary A.; Schliep, Karen C.; Wactawski-Wende, Jean; Stanford, Joseph B.; Zarek, Shvetha M.; Radin, Rose G.; Sjaarda, Lindsey A.; Perkins, Neil J.; Kalwerisky, Robyn A.; Hammoud, Ahmad O.; Mumford, Sunni L.

    2015-01-01

    STUDY QUESTION Are prospectively assessed dietary factors, including overall diet quality, macronutrients and micronutrients, associated with luteal phase deficiency (LPD) in healthy reproductive aged women with regular menstrual cycles? SUMMARY ANSWER Mediterranean Diet Score (MDS), fiber and isoflavone intake were positively associated with LPD while selenium was negatively associated with LPD after adjusting for age, percentage body fat and total energy intake. WHAT IS KNOWN ALREADY LPD may increase the risk of infertility and early miscarriage. Prior research has shown positive associations between LPD and low energy availability, either through high dietary restraint alone or in conjunction with high energy expenditure via exercise, but few studies with adequate sample sizes have been conducted investigating dietary factors and LPD among healthy, eumenorrheic women. STUDY DESIGN, SIZE, DURATION The BioCycle Study (2005–2007) prospectively enrolled 259 women from Western New York state, USA, and followed them for one (n = 9) or two (n = 250) menstrual cycles. PARTICIPANTS/MATERIALS, SETTING, METHODS Women aged 18–44 years, with self-reported BMI between 18 and 35 kg/m2 and cycle lengths between 21 and 35 days, were included in the study. Participants completed baseline questionnaires, four 24-h dietary recalls per cycle and daily diaries capturing vigorous exercise, perceived stress and sleep; they also provided up to eight fasting serum samples during clinic visits timed to specific phases of the menstrual cycle using a fertility monitor. Cycles were included for this analysis if the peak serum luteal progesterone was >1 ng/ml and a urine or serum LH surge was detected. Associations between prospectively assessed diet quality, macronutrients and micronutrients and LPD (defined as luteal duration <10 days) were evaluated using generalized linear models adjusting for age, percentage body fat and total energy intake. MAIN RESULTS AND THE ROLE OF CHANCE LPD

  6. Immunomodulatory and Antioxidant Effects of Purple Sweet Potato Extract in LP-BM5 Murine Leukemia Virus-Induced Murine Acquired Immune Deficiency Syndrome.

    PubMed

    Kim, Ok-Kyung; Nam, Da-Eun; Yoon, Ho-Geun; Baek, Sun Jung; Jun, Woojin; Lee, Jeongmin

    2015-08-01

    The immunomodulatory effects of a dietary supplement of purple sweet potato extract (PSPE) in LP-BM5 murine leukemia virus (MuLV)-induced immune-deficient mice were investigated. Mice were divided into six groups: normal control, infected control (LP-BM5 MuLV infection), positive control (LP-BM5 MuLV infection+dietary supplement of red ginseng 300 mg/kg), purple sweet potato water extract (PSPWE) (LP-BM5 MuLV infection+dietary supplement of PSPE 300 mg/kg), PSP10EE (LP-BM5 MuLV infection+dietary supplement of 10% ethanol PSPE 300 mg/kg), and PSP80EE (LP-BM5 MuLV infection+dietary supplement of 80% ethanol PSPE 300 mg/kg). Dietary supplementation began on the day of LP-BM5 MuLV infection and continued for 12 weeks. Dietary supplementation of PSPE inhibited LP-BM5 MuLV-induced splenomegaly and lymphadenopathy and attenuated the suppression of T- and B-cell proliferation and T helper 1/T helper 2 cytokine imbalance in LP-BM5 MuLV-infected mice. Dietary supplement of PSPE increased the activity of the antioxidant enzymes, superoxide dismutase and glutathione peroxidase. The data suggest that PSPE may ameliorate immune dysfunction due to LP-BM5 MuLV infection by modulating antioxidant defense systems. PMID:26076116

  7. Dietary total antioxidant capacity is associated with plasmatic antioxidant capacity, nutrient intake and lipid and DNA damage in healthy women.

    PubMed

    Stedile, Natalia; Canuto, Raquel; de Col, Camila Dallavechia; de Sene, Juliane Souza; Stolfo, Adriana; Wisintainer, Gabrielle Nunes de Souza; Henriques, João Antonio Pêgas; Salvador, Mirian

    2016-06-01

    Dietary total antioxidant capacity (DTAC) seems to be associated with reducing risk of diseases. However, data about the influence of the DTAC on oxidative stress parameters are scarce. The aim of this study was to estimate the DTAC and its influence on plasma total antioxidant capacity (PTAC), and damage to lipids, proteins and DNA in healthy women. It was found a positive correlation between DTAC and PTAC in young and healthy subjects, where presumably the endogenous defenses are fully functional. DTAC and PTAC were positively correlated with the intake of known antioxidants, including vitamin C and polyphenols. The DTAC exhibited a negative correlation with lipid oxidative damage, while PTAC showed a negative correlation with DNA damage. This data contributes to better understanding of the recommended dietary antioxidant intake for promoting health. PMID:27018203

  8. Selenium Deficiency Mainly Influences Antioxidant Selenoproteins Expression in Broiler Immune Organs.

    PubMed

    Yang, Zijiang; Liu, Ci; Liu, Chunpeng; Teng, Xiaohua; Li, Shu

    2016-07-01

    Selenoprotein has many functions in chicken, and the expression of selenoproteins is closely associated with the selenium (Se) level. However, little is known about the expression patterns of selenoproteins in chicken immune organs. Here, we investigated the effect of dietary Se deficiency on the expressions of 23 selenoproteins in broiler immune organs. In this study, 150 broilers were randomly divided into two groups (75 chickens per group). The chickens were maintained either on a diet supplemented with Se through the addition of 0.2 mg/kg of Se (C group) via sodium selenite or on a Se-deficient granulated diet (L group) until the broilers exhibited an onset of exudative diathesis (ED). Following euthanasia, the samples from the immune tissues (including the spleen, thymus, and bursa of Fabricius) were quickly collected, and the messenger RNA (mRNA) expression levels of 23 selenoproteins were examined by real-time quantitative PCR and analyzed using principal component analysis. The results showed that Se deficiency decreased the mRNA levels of 23 selenoproteins in the thymus, spleen, and bursa of the Fabricius tissues of broiler chickens. Furthermore, we found that among 23 selenoproteins, the mRNA levels of Dio1 in the thymus, Txnrd2 in the spleen, and Txnrd3 in the bursa of Fabricius decreased significantly (90.9 %, 83.3 %, and 96.8 %, respectively). In addition, the principal component analysis (PCA) results suggested that Se deficiency mainly influenced the expression of antioxidative selenoproteins, especially glutathione peroxidases (Gpxs), thioredoxin reductases (Txnrds), and iodothyronine deiodinases (Dios) in chicken immune organs. The results of this study are valuable for understanding the relevance of selenoprotein activity in vivo. PMID:26631053

  9. Antioxidant dietary fibre recovery from Brazilian Pinot noir grape pomace.

    PubMed

    Beres, Carolina; Simas-Tosin, Fernanda F; Cabezudo, Ignacio; Freitas, Suely P; Iacomini, Marcello; Mellinger-Silva, Caroline; Cabral, Lourdes M C

    2016-06-15

    Brazilian grape pomace was extracted in hot water, and a factorial experiment was used to evaluate polysaccharide recovery. The dependent variables were the temperature, particle size and solute:solvent ratio. Polysaccharide yields varied from 3% to 10%, and the highest sugar content was observed when extraction was carried out at 100 °C from finely sized particles (⩽249 μm) in a 1:12 solute:solvent ratio. The monosaccharide composition of extracts obtained from flours were, on average, Rha:Ara:Xyl:Man:Gal:Glc:GalA in a 3:32:2:13:11:20:19 M ratio, with varying Glc:GalA ratios. (13)C NMR and HSQC spectra confirmed the presence of pectic- and glucose-based polysaccharides in the extracts. Phenolic compounds were found after pomace extraction, and catechin, gallic acid and epicatechin were the principal compounds identified. The extracts also had ABTS radical scavenging capacity (from 8.00 to 46.60 mMol Trolox/100 g pomace). These findings indicate that these grape pomace flours are rich in antioxidant dietary fibre and have a potential use as food ingredients. PMID:26868559

  10. Dietary induced subclinical vitamin K deficiency in normal human subjects.

    PubMed Central

    Ferland, G; Sadowski, J A; O'Brien, M E

    1993-01-01

    A subclinical vitamin K deficiency was induced in 32 healthy subjects (four groups of eight males and females) aged 20-40 and 60-80 yr residing in the Metabolic Research Unit of the Human Nutrition Research Center on Aging at Tufts University. Volunteers were initially fed (4 d) a baseline-period diet containing the recommended daily allowance for vitamin K which is equivalent to 80 micrograms/d of phylloquinone (vitamin K1). During the baseline period various parameters of vitamin K nutritional status were monitored. The baseline period was followed by a 13-d depletion period during which the subjects were fed a very low vitamin K1 diet (approximately 10 micrograms/d). After depletion, the subjects entered a 16-d repletion period (four stages lasting 4 d each) during which time they were repleted with 5, 15, 25, and 45 micrograms of vitamin K1 per day. Vitamin K1 depletion dramatically and significantly decreased plasma vitamin K1 levels (P < 0.0001) in both elderly and young groups to values 13-18% of day 1 (elderly 0.22 nM, young 0.14 nM). Repleting the subjects with up to 45 micrograms of vitamin K1 per day failed, in the case of the young subjects, to bring plasma vitamin K1 levels back into the normal range. Dietary vitamin K1 restriction induced different responses in the urinary excretion of gamma-carboxyglutamic acid between the young and the elderly subjects with values decreasing significantly (P < 0.03) in the young while remaining unchanged in the elderly. The vitamin K1 depletion period had no significant effect on either prothrombin and activated partial thromboplastin times, or Factor VII and protein C (as determined by antigenic and functional assays). By using a monoclonal antibody, decarboxy prothrombin was found to increase slightly but significantly in both groups (P < 0.05) as a consequence of the low vitamin K1 diet. This study clearly shows that a diet low in vitamin K1 can result in a functional subclinical deficiency of vitamin K

  11. Antioxidant and antiglycation activity of selected dietary polyphenols in a cookie model.

    PubMed

    Zhang, Xinchen; Chen, Feng; Wang, Mingfu

    2014-02-19

    Dietary polyphenols have been proposed to be promising functional food additives for their potent antioxidant capacity and other health-beneficial bioactivities. The current study prepared cookies fortified with five selected dietary polyphenols (naringenin, quercetin, epicatechin, chlorogenic acid, and rosmarinic acid). Results indicated that the enhancement of the antioxidant capacity was not as obvious as expected because the phenolics' antioxidant activity was seriously lowered by the baking process due to thermal degradation and transformation. Meanwhile, the tested polyphenols, especially quercetin, showed inhibition against formation of both reactive carbonyl species and total fluorescent advanced glycation endproducts (AGEs). Polyphenol fortification could also induce colorimetric changes and alterations in selected quality attributes. Overall, the findings support dietary polyphenols as functional food ingredients in the purpose of health benefits associated with a higher intake of antioxidants and a lower load of reactive carbonyls and AGEs. The polyphenols' stability and reactivity during thermal processing should be an important consideration. PMID:24471469

  12. DIETARY FOLATE DEFICIENCY ENHANCES INDUCTION OF MICRONUCLEI BY ARSENIC IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the genotoxicity of chemical agents. Arsenic, a known human carcinogen present in drinking water supplies around the world, induces chromosomal and DNA damage. The effect of dietary folate deficiency on...

  13. The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants

    PubMed Central

    Palafox-Carlos, Hugo; Ayala-Zavala, Jesús Fernando; González-Aguilar, Gustavo A

    2011-01-01

    Antioxidants are abundant compounds primarily found in fresh fruits and vegetables, and evidence for their role in the prevention of degenerative diseases is continuously emerging. However, the bioaccessibility and bioavailability of each compound differs greatly, and the most abundant antioxidants in ingested fruit are not necessarily those leading to the highest concentrations of active metabolites in target tissues. Fruit antioxidants are commonly mixed with different macromolecules such as carbohydrates, lipids, and proteins to form a food matrix. In fruits and vegetables, carbohydrates are the major compounds found, mainly in free and conjugated forms. Dietary fiber, the indigestible cell wall component of plant material, is considered to play an important role in human diet and health. Most studies on antioxidant bioavailability are focused on foods and beverages from which antioxidants are easily released. There is evidence indicating that food microstructure affects the bioaccessibility and bioavailability of several nutrients, referring mostly to antioxidants. Nevertheless, the specific role of dietary fiber in the absorption of antioxidants has not been widely discussed. In this context, the purpose of the present review is to compile and analyze evidence relating to the association between dietary fiber and antioxidants, and the physical and chemical interactions that modulate their release from the chyme in the gastrointestinal tract. PMID:21535705

  14. Deficiency of glutathione transferase zeta causes oxidative stress and activation of antioxidant response pathways.

    PubMed

    Blackburn, Anneke C; Matthaei, Klaus I; Lim, Cindy; Taylor, Matthew C; Cappello, Jean Y; Hayes, John D; Anders, M W; Board, Philip G

    2006-02-01

    Glutathione S-transferase (GST) zeta (GSTZ1-1) plays a significant role in the catabolism of phenylalanine and tyrosine, and a deficiency of GSTZ1-1 results in the accumulation of maleylacetoacetate and its derivatives maleylacetone (MA) and succinylacetone. Induction of GST subunits was detected in the liver of Gstz1(-/-) mice by Western blotting with specific antisera and high-performance liquid chromatography analysis of glutathione affinity column-purified proteins. The greatest induction was observed in members of the mu class. Induction of NAD(P)H:quinone oxidoreductase 1 and the catalytic and modifier subunits of glutamate-cysteine ligase was also observed. Many of the enzymes that are induced in Gstz1(-/-) mice are regulated by antioxidant response elements that respond to oxidative stress via the Keap1/Nrf2 pathway. It is significant that diminished glutathione concentrations were also observed in the liver of Gstz1(-/-) mice, which supports the conclusion that under normal dietary conditions, the accumulation of electrophilic intermediates such as maleylacetoacetate and MA results in a high level of oxidative stress. Elevated GST activities in the livers of Gstz1(-/-) mice suggest that GSTZ1-1 deficiency may alter the metabolism of some drugs and xenobiotics. Gstz1(-/-) mice given acetaminophen demonstrated increased hepatotoxicity compared with wild-type mice. This toxicity may be attributed to the increased GST activity or the decreased hepatic concentrations of glutathione, or both. Patients with acquired deficiency of GSTZ1-1 caused by therapeutic exposure to dichloroacetic acid for the clinical treatment of lactic acidosis may be at increased risk of drug- and chemical-induced toxicity. PMID:16278372

  15. Dietary antioxidants and behavioral enrichment enhance neutrophil phagocytosis in geriatric Beagles.

    PubMed

    Hall, Jean A; Picton, Rebecca A; Finneran, Phyllis S; Bird, Karyn E; Skinner, Monica M; Jewell, Dennis E; Zicker, Steven

    2006-09-15

    The study objective was to determine the effects of feeding food enriched in antioxidants and a program of environmental/cognitive enrichment on selected ex vivo assays of inflammatory and immune cells in healthy geriatric Beagle dogs (n=21). Four groups of dogs were tested using a 2 x 2 factorial design. The 2-year longitudinal study included both nutritional (control food or antioxidant-fortified food) and behavioral (normal level or cognitive enrichment) interventions. Behavior enrichment included increased exercise, environmental enrichment, and a series of learning tasks. Phagocytosis of opsonized latex-coated beads by peripheral blood neutrophils was measured by flow cytometry and found to be significantly increased in dogs receiving both dietary antioxidants and cognitive enrichment. Simultaneous stimulation of cells with Con A and suppression with Dex resulted in decreased lymphocyte proliferation in dogs receiving both dietary antioxidants and cognitive enrichment, compared to dogs receiving dietary antioxidants or cognitive enrichment alone. There were no significant differences between the groups of dogs for percentages of CD4 and CD8 T-lymphocyte subpopulations before or after lymphocyte stimulation with Con A. These results support our hypothesis that both dietary antioxidants and behavioral enrichment enhance host defense mechanisms. PMID:16806493

  16. Assessment of antioxidant nutrient intake of a population of southern US African-American and Caucasian women of various ages when compared to dietary reference intakes.

    PubMed

    Lewis, S M; Mayhugh, M A; Freni, S C; Thorn, B; Cardoso, S; Buffington, C; Jairaj, K; Feuers, R J

    2003-01-01

    Antioxidant nutrient intervention strategies to ameliorate negative health factors are of notable research interest. Central to the thesis that antioxidant nutrients improve biological defense systems and provide health benefits is an accurate indication of daily antioxidant nutrient intake. Little information is available concerning these nutrient intakes among non-affluent women of the southern U.S. This study examines the 24-h intake of vitamins: A, E, C, -carotene, a-tocopherol, riboflavin, and minerals: zinc, selenium, copper, manganese, iron, and molybdenum among 259 Caucasian (CA) and African-American (AA) women from small urban communities. Women were non-pregnant females, 19-93 y of age. Statistical comparisons of nutrient intake were made by least squares means within age groups. Intakes were compared to various Dietary Reference Intakes including Recommended Daily Allowance (RDA) and Estimated Average Requirement (EAR) values as established by the U.S. National Research Council. Numerous dietary deficiencies in important antioxidant nutrients associated with metabolic antioxidant systems were identified. Few race-related differences were detected. Intake of vitamin A was generally within recommended levels while vitamin E intake was below the EAR. The vitamin precursors, -carotene and a-tocopherol, were significantly (P<0.05) below customary intakes at all ages. More than 60% of this population reported dietary copper, zinc, and selenium intakes below recommended levels. A lack of race differences for most nutrient intakes suggests similar socioeconomic or endogeneous regional factors. All women in this population reported dietary intakes of antioxidant vitamins and minerals below recommended values, conditions that could contribute to subsequent health risks unless nutrient-dense food choices and antioxidant supplementation are considered in their overall nutritional support. PMID:12679833

  17. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model

    SciTech Connect

    Ergaz, Zivanit; Shoshani-Dror, Dana; Guillemin, Claire; Neeman-azulay, Meytal; Fudim, Liza; Weksler-Zangen, Sarah; Stodgell, Christopher J.; Miller, Richard K.; Ornoy, Asher

    2012-12-01

    High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy. Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and

  18. A cytochrome c-enhanced peroxidation reaction with potential use in screening dietary antioxidants.

    PubMed

    Zhou, Suiping; Yao, Yu; Davison, Allan; Vieira, Amandio

    2004-03-10

    Reactive oxygen species (ROS) that result from events such as cellular respiration can cause damage to biological molecules and tissues. A variety of endogenous and dietary antioxidants function in moderating the extent of oxidative damage in the body. In this report, a pro-oxidant system is presented as an assay for screening possible antioxidant activities of dietary factors. The assay reaction involves peroxidatic oxidation of the redox indicator N,N,N',N'-tetramethyl-1,4-phenylenediamine (TMPD). It is shown that the reaction rate is enhanced by up to 10-fold in the presence of cytochrome c (cyt c), a mitochondrial electron transport protein. The extent to which selected dietary antioxidant factors inhibit the cytochrome c-enhanced peroxidatic oxidation of TMPD is also reported. Considering the known pathological consequences of mitochondrial membrane disruption and cytochrome c release in the cell, this reaction and assay may be of pathological and therapeutic relevance. PMID:15019039

  19. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent.

    PubMed

    Kumssa, Diriba B; Joy, Edward J M; Ander, E Louise; Watts, Michael J; Young, Scott D; Walker, Sue; Broadley, Martin R

    2015-01-01

    Globally, more than 800 million people are undernourished while >2 billion people have one or more chronic micronutrient deficiencies (MNDs). More than 6% of global mortality and morbidity burdens are associated with undernourishment and MNDs. Here we show that, in 2011, 3.5 and 1.1 billion people were at risk of calcium (Ca) and zinc (Zn) deficiency respectively due to inadequate dietary supply. The global mean dietary supply of Ca and Zn in 2011 was 684 ± 211 and 16 ± 3 mg capita(-1) d(-1) (± SD) respectively. Between 1992 and 2011, global risk of deficiency of Ca and Zn decreased from 76 to 51%, and 22 to 16%, respectively. Approximately 90% of those at risk of Ca and Zn deficiency in 2011 were in Africa and Asia. To our knowledge, these are the first global estimates of dietary Ca deficiency risks based on food supply. We conclude that continuing to reduce Ca and Zn deficiency risks through dietary diversification and food and agricultural interventions including fortification, crop breeding and use of micronutrient fertilisers will remain a significant challenge. PMID:26098577

  20. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent

    PubMed Central

    Kumssa, Diriba B.; Joy, Edward J. M.; Ander, E. Louise; Watts, Michael J.; Young, Scott D.; Walker, Sue; Broadley, Martin R.

    2015-01-01

    Globally, more than 800 million people are undernourished while >2 billion people have one or more chronic micronutrient deficiencies (MNDs). More than 6% of global mortality and morbidity burdens are associated with undernourishment and MNDs. Here we show that, in 2011, 3.5 and 1.1 billion people were at risk of calcium (Ca) and zinc (Zn) deficiency respectively due to inadequate dietary supply. The global mean dietary supply of Ca and Zn in 2011 was 684 ± 211 and 16 ± 3 mg capita−1 d−1 (±SD) respectively. Between 1992 and 2011, global risk of deficiency of Ca and Zn decreased from 76 to 51%, and 22 to 16%, respectively. Approximately 90% of those at risk of Ca and Zn deficiency in 2011 were in Africa and Asia. To our knowledge, these are the first global estimates of dietary Ca deficiency risks based on food supply. We conclude that continuing to reduce Ca and Zn deficiency risks through dietary diversification and food and agricultural interventions including fortification, crop breeding and use of micronutrient fertilisers will remain a significant challenge. PMID:26098577

  1. Antioxidant Status before and after Dietary Intervention in Cardiovascular Disease (CVD) Patients.

    PubMed

    Karajibani, M; Hashemi, M; Montazerifar, F; Dikshit, M

    2010-12-01

    There is some evidence showing an inverse correlation between dietary sources including natural antioxidant vitamins and the risk of cardiovascular disease (CVD). The aim of this study was to evaluate the effect of dietary antioxidants on oxidative stress in CVD patients. This study was carried out on 31 CVD patients and 63 healthy individuals. Nutritional status and dietary antioxidant vitamins were assessed by 48-hour recall. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities as well as the levels of vitamins A, E, C, total antioxidant capacity (TAC) and malondialdehyde (MDA) were determined before and after serving fresh fruits and vegetables for 3 months. Before intervention intake, levels of vitamins A, E and C were significantly lower in patients than in normal individuals (P<0.001). The serum levels of vitamins A, E and C were significantly lower in the cases than in the control subjects. After intervention, the serum levels of vitamins A, E and C were increased significantly (P<0.0001). Similarly, the levels of TAC as well as the activities of SOD and GPx were found to increase by end of 3 months. In addition, a significant increase of TAC and a decrease in MDA levels were observed. In conclusion, the findings show that dietary supplementation improves the antioxidant defense system in CVD patients. PMID:22691986

  2. Suppression of the later stages of radiation-induced carcinogenesis by antioxidant dietary formulations.

    PubMed

    Kennedy, Ann R; Ware, Jeffrey H; Carlton, William; Davis, James G

    2011-07-01

    We have previously reported data from a long-term carcinogenesis study indicating that dietary antioxidant supplements can suppress radiation-induced malignant lymphoma and harderian gland tumors induced by space radiations (specifically, 1 GeV/n iron ions or protons) in CBA/J mice. Two different antioxidant dietary supplements were used in these studies: a supplement containing a mixture of antioxidant agents [l-selenomethionine (SeM), N-acetyl cysteine (NAC), ascorbic acid, co-enzyme Q10, α-lipoic acid and vitamin E succinate], termed the AOX supplement, and another supplement known as Bowman-Birk Inhibitor Concentrate (BBIC). In the present report, the results from the earlier analysis of the harderian gland data from the published long-term animal study have been combined with new data derived from the same long-term animal study. In the earlier analysis, harderian glands were removed from animals exhibiting abnormalities (e.g. visibly swollen areas) around the eyes at the time of euthanasia or death in the long-term animal study. Abnormalities around the eyes were usually due to the development of tumors in the harderian glands of these mice. The new data presented here focused on the histopathological results obtained from analyses of the harderian glands of mice that did not have visible abnormalities around the eyes at the time of necropsy in the long-term animal study. In this paper, the original published data and the new data have been combined to provide a more complete evaluation of the harderian glands from animals in the long-term carcinogenesis study, with all available harderian glands from the animals processed and prepared for histopathological evaluation. The results indicate that, although dietary antioxidant supplements suppressed harderian gland tumors in a statistically significant fashion when all glands were analyzed, the antioxidant diets were less effective at suppressing the incidence of all harderian gland tumors than they were at

  3. Carrots, tomatoes and cocoa: Research on dietary antioxidants in Düsseldorf.

    PubMed

    Stahl, Wilhelm

    2016-04-01

    Dietary antioxidants, their biological effects and underlying mechanisms of action are key topics of research at the Institute of Biochemistry and Molecular Biology I at the Heinrich-Heine University in Düsseldorf where Helmut Sies is active now since more than 35 years. In the present article his research activity on carotenoids is summarized including studies on their bioavailability, antioxidant properties, cellular signaling and dermatological effects. Additionally, comparable studies on cocoa polyphenols are described. PMID:27095228

  4. Plasma and Dietary Antioxidant Status as Cardiovascular Disease Risk Factors: A Review of Human Studies

    PubMed Central

    Wang, Ying; Chun, Ock K.; Song, Won O.

    2013-01-01

    Extensive evidence has demonstrated that many antioxidants such as vitamin C, vitamin E, carotenoids and polyphenols have protective effects in preventing cardiovascular disease (CVD), a chronic disease that is mediated by oxidative stress and inflammation. This review focuses on evidence from prospective cohort studies and clinical trials in regard to the associations between plasma/dietary antioxidants and cardiovascular events. Long-term, large-scale, population-based cohort studies have found that higher levels of serum albumin, bilirubin, glutathione, vitamin E, vitamin C, and carotenoids were associated with a lower risk of CVD. Evidence from the cohort studies in regard to dietary antioxidants also supported the protective effects of dietary vitamin E, vitamin C, carotenoids, and polyphenols on CVD risk. However, results from large randomized controlled trials did not support long-term use of single antioxidant supplements for CVD prevention due to their null or even adverse effects on major cardiovascular events or cancer. Diet quality indexes that consider overall diet quality rather than single nutrients have been drawing increasing attention. Cohort studies and intervention studies that focused on diet patterns such as high total antioxidant capacity have documented protective effects on CVD risk. This review provides a perspective for future studies that investigate antioxidant intake and risk of CVD. PMID:23912327

  5. Effects of Particulate Matter and Antioxidant Dietary Intake on Blood Pressure

    PubMed Central

    Mentz, Graciela B.; Sampson, Natalie R.; Dvonch, J. Timothy; Reyes, Angela G.; Izumi, Betty

    2015-01-01

    Objectives. We assessed 2 pathways through which dietary antioxidants may counter adverse effects of exposure to particulate matter less than 2.5 micrometers in diameter (PM2.5) on blood pressure (BP): main (compensatory) and modifying (protective) models. Methods. We used 2002 to 2003 data from the Detroit Healthy Environments Partnership community survey conducted with a multiethnic sample of adults (n = 347) in low- to moderate-income, predominantly Hispanic and non-Hispanic Black neighborhoods in Detroit, Michigan. We used generalized estimating equations to test the effects of ambient exposure to PM2.5 and dietary antioxidant intake on BP, with adjustment for multiple confounders. Results. Dietary antioxidant intake was inversely associated with systolic BP (b = −0.5; P < .05) and pulse pressure (b  = −0.6; P < .05) in neighborhoods closest to major sources of air pollutants. Adverse effects of PM2.5 remained significant after accounting for antioxidant intakes. Exploratory analyses suggested potential modifying effects of antioxidant intake on associations between ambient PM2.5 exposure and BP. Conclusions. Interventions to improve access to antioxidant-rich foods in polluted urban areas may be protective of cardiovascular health. However, efforts to reduce PM2.5 exposure remain critical for cardiovascular health promotion. PMID:25320896

  6. Exercise-Induced Oxidative Stress and Dietary Antioxidants

    PubMed Central

    Yavari, Abbas; Javadi, Maryam; Mirmiran, Parvin; Bahadoran, Zahra

    2015-01-01

    Context: Overproduction of reactive oxygen and nitrogen species during physical exercise, exercise induced oxidative stress and antioxidant supplementation is interesting and controversial concepts that have been considered during the past decades. Evidence Acquisition: In this review, we aimed to summarize current evidence in relation to antioxidant supplementation outcomes during exercise and physical activity. For this aim, we obtained relevant articles through searches of the Medline and PubMed databases between 1980 to 2013. Although major studies have indicated that antioxidants could attenuate biomarkers of exercise-induced oxidative stress and the use of antioxidant supplement is a common phenomenon among athletes and physically active people, there are some doubts regarding the benefits of these. Results: It seems that the best recommendations regarding antioxidants and exercise are having a balanced diet rich in natural antioxidants and phytochemicals. Conclusions: Regular consumption of various fresh fruits and vegetables, whole grains, legumes and beans, sprouts and seeds is an effective and safe way to meet all antioxidant requirements in physically active persons and athletes. PMID:25883776

  7. Disruption of brain redox homeostasis in glutaryl-CoA dehydrogenase deficient mice treated with high dietary lysine supplementation.

    PubMed

    Seminotti, Bianca; Amaral, Alexandre Umpierrez; da Rosa, Mateus Struecker; Fernandes, Carolina Gonçalves; Leipnitz, Guilhian; Olivera-Bravo, Silvia; Barbeito, Luis; Ribeiro, César Augusto J; de Souza, Diogo Onofre Gomes; Woontner, Michael; Goodman, Stephen I; Koeller, David M; Wajner, Moacir

    2013-01-01

    Deficiency of glutaryl-CoA dehydrogenase (GCDH) activity or glutaric aciduria type I (GA I) is an inherited neurometabolic disorder biochemically characterized by predominant accumulation of glutaric acid and 3-hydroxyglutaric acid in the brain and other tissues. Affected patients usually present acute striatum necrosis during encephalopathic crises triggered by metabolic stress situations, as well as chronic leukodystrophy and delayed myelination. Considering that the mechanisms underlying the brain injury in this disease are not yet fully established, in the present study we investigated important parameters of oxidative stress in the brain (cerebral cortex, striatum and hippocampus), liver and heart of 30-day-old GCDH deficient knockout (Gcdh(-/-)) and wild type (WT) mice submitted to a normal lysine (Lys) (0.9% Lys), or high Lys diets (2.8% or 4.7% Lys) for 60 h. It was observed that the dietary supplementation of 2.8% and 4.7% Lys elicited noticeable oxidative stress, as verified by an increase of malondialdehyde concentrations (lipid oxidative damage) and 2-7-dihydrodichlorofluorescein (DCFH) oxidation (free radical production), as well as a decrease of reduced glutathione levels and alteration of various antioxidant enzyme activities (antioxidant defenses) in the cerebral cortex and the striatum, but not in the hippocampus, the liver and the heart of Gcdh(-/-) mice, as compared to WT mice receiving the same diets. Furthermore, alterations of oxidative stress parameters in the cerebral cortex and striatum were more accentuated in symptomatic, as compared to asymptomatic Gcdh(-/-) mice exposed to 4.7% Lys overload. Histopathological studies performed in the cerebral cortex and striatum of these animals exposed to high dietary Lys revealed increased expression of oxidative stress markers despite the absence of significant structural damage. The results indicate that a disruption of redox homeostasis in the cerebral cortex and striatum of young Gcdh(-/-) mice

  8. Thioredoxin 1 in Prostate Tissue Is Associated with Gleason Score, Erythrocyte Antioxidant Enzyme Activity, and Dietary Antioxidants

    PubMed Central

    Vance, Terrence M.; Azabdaftari, Gissou; Pop, Elena A.; Lee, Sang Gil; Su, L. Joseph; Fontham, Elizabeth T. H.; Bensen, Jeannette T.; Steck, Susan E.; Arab, Lenore; Mohler, James L.; Chen, Ming-Hui; Koo, Sung I.; Chun, Ock K.

    2015-01-01

    Background. Prostate cancer is the most common noncutaneous cancer and second leading cause of cancer-related mortality in men in the US. Growing evidence suggests that oxidative stress is involved in prostate cancer. Methods. In this study, thioredoxin 1 (Trx 1), an enzyme and subcellular indicator of redox status, was measured in prostate biopsy tissue from 55 men from the North Carolina-Louisiana Prostate Cancer Project. A pathologist blindly scored levels of Trx 1. The association between Trx 1 and the Gleason score, erythrocyte antioxidant enzyme activity, and dietary antioxidant intake was determined using Fisher's exact test. Results. Trx 1 levels in benign prostate tissue in men with incident prostate cancer were positively associated with the Gleason score (P = 0.01) and inversely associated with dietary antioxidant intake (P = 0.03). In prostate cancer tissue, Trx 1 levels were associated with erythrocyte glutathione peroxidase activity (P = 0.01). No association was found for other erythrocyte enzymes. Greater Gleason score of malignant tissue corresponds to a greater difference in Trx 1 levels between malignant and benign tissue (P = 0.04). Conclusion. These results suggest that the redox status of prostate tissue is associated with prostate cancer grade and both endogenous and exogenous antioxidants. PMID:26357575

  9. Thioredoxin 1 in Prostate Tissue Is Associated with Gleason Score, Erythrocyte Antioxidant Enzyme Activity, and Dietary Antioxidants.

    PubMed

    Vance, Terrence M; Azabdaftari, Gissou; Pop, Elena A; Lee, Sang Gil; Su, L Joseph; Fontham, Elizabeth T H; Bensen, Jeannette T; Steck, Susan E; Arab, Lenore; Mohler, James L; Chen, Ming-Hui; Koo, Sung I; Chun, Ock K

    2015-01-01

    Background. Prostate cancer is the most common noncutaneous cancer and second leading cause of cancer-related mortality in men in the US. Growing evidence suggests that oxidative stress is involved in prostate cancer. Methods. In this study, thioredoxin 1 (Trx 1), an enzyme and subcellular indicator of redox status, was measured in prostate biopsy tissue from 55 men from the North Carolina-Louisiana Prostate Cancer Project. A pathologist blindly scored levels of Trx 1. The association between Trx 1 and the Gleason score, erythrocyte antioxidant enzyme activity, and dietary antioxidant intake was determined using Fisher's exact test. Results. Trx 1 levels in benign prostate tissue in men with incident prostate cancer were positively associated with the Gleason score (P = 0.01) and inversely associated with dietary antioxidant intake (P = 0.03). In prostate cancer tissue, Trx 1 levels were associated with erythrocyte glutathione peroxidase activity (P = 0.01). No association was found for other erythrocyte enzymes. Greater Gleason score of malignant tissue corresponds to a greater difference in Trx 1 levels between malignant and benign tissue (P = 0.04). Conclusion. These results suggest that the redox status of prostate tissue is associated with prostate cancer grade and both endogenous and exogenous antioxidants. PMID:26357575

  10. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports.

    PubMed

    Pingitore, Alessandro; Lima, Giuseppina Pace Pereira; Mastorci, Francesca; Quinones, Alfredo; Iervasi, Giorgio; Vassalle, Cristina

    2015-01-01

    Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need

  11. Dietary Deficiency of Cobalamin Presented Solely as Schizoaffective Disorder in a Lacto-Vegetarian Adolescent.

    PubMed

    Dhananjaya, Somashekarappa; Manjunatha, Narayana; Manjunatha, Rajashekaaiah; Kumar, Seetharamarao Udaya

    2015-01-01

    Cobalamin is an important nutrient. It is not synthesized in human body and supplied only in nonvegetarian diet. Its deficiency reported with range of psychiatric disorders. Only four pediatric cases have been reported as psychiatric disorders. Authors report a case of dietary deficiency of cobalamin presenting solely as schizoaffective disorder without hematological/neurological manifestations. Early diagnosis and treatment of cobalamin deficiency is an opportunity to reverse pathophysiology. This case highlights the importance of diet history and serum cobalamin level in atypical psychiatric presentations. PMID:26664085

  12. Effects of dietary menadione on the activity of antioxidant enzymes in abalone, Haliotis discus hannai Ino

    NASA Astrophysics Data System (ADS)

    Fu, Jinghua; Xu, Wei; Mai, Kangsen; Zhang, Wenbing; Feng, Xiuni; Liufu, Zhiguo

    2012-01-01

    A 240-day growth experiment in a re-circulating water system was conducted to investigate the effects of dietary menadione on the growth and antioxidant responses of abalone Haliotis discus hannai Ino. Triplicate groups of juvenile abalone (initial weight: 1.19 ± 0.01 g; shell length: 19.23 ± 0.01 mm) were fed to satiation with 3 semi-purified diets containing 0, 10, and 1 000 mg menadione sodium bisulfite (MSB)/kg, respectively. Results show that there were no significant differences in the rate of weight gain or in the daily increment in shell length of abalone among different treatments. Activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR) in viscera were significantly decreased with dietary menadione. However, activities of these enzymes except for GPX in muscle were increased. Therefore, antioxidant responses of abalone were increased in muscle and decreased in viscera by dietary menadione.

  13. Response to Dietary Phosphate Deficiency is Affected by Genetic Background in Growing Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concern over the environmental impact of phosphate (P) excretion from pig production has led to reduced dietary P supplementation. To examine how genetics influence P utilization, 94 gilts sired by 2 genetic lines (PIC337 and PIC280) were fed either a P adequate diet (PA) or a 20% P deficient diet ...

  14. Dietary Zinc Deficiency in Rodents: Effects on T-Cell Development, Maturation and Phenotypes

    PubMed Central

    Blewett, Heather J.; Taylor, Carla G.

    2012-01-01

    Zinc deficiency is one of the leading risk factors for developing disease and yet we do not have a clear understanding of the mechanisms behind the increased susceptibility to infection. This review will examine the interrelationships among the hypothalamus-pituitary-adrenal stress axis, p56lck, and T-cell maturation in both zinc deficiency and responses during zinc repletion. We will highlight differences between the adult mouse model (wasting malnutrition) and growing rat model (stunting malnutrition) of dietary zinc deficiency and discuss the use of various controls to separate out the effects of zinc deficiency from the associated malnutrition. Elevated serum corticosterone in both zinc deficient and pair-fed rats does not support the hypothesis that zinc deficiency per se leads to corticosterone-induced apoptosis and lymphopenia. In fact, the zinc deficient rat does not have lymphopenia. Thymocytes from zinc deficient mice and rats have elevated levels of p56lck, a signalling protein with a zinc clasp structure, but this does not appear to affect thymocyte maturation. However, post-thymic T-cell maturation appears to be altered based on the lower proportion of splenic late thymic emigrants in zinc deficient rats. Fewer new T-cells in the periphery could adversely affect the T-cell repertoire and contribute to immunodeficiency in zinc deficiency. PMID:22822446

  15. Dietary Antioxidants and Melanoma: Evidence from Cohort and Intervention Studies.

    PubMed

    Miura, Kyoko; Green, Adèle C

    2015-01-01

    Melanoma is the most serious form of skin cancer affecting mostly people of Caucasian origin and is associated with high exposure to solar ultraviolet (UV) radiation. Antioxidants in the diet are thought to prevent UV-induced DNA damage and oxidative stress and laboratory-based studies have shown that high antioxidant intakes inhibit melanoma development. Corresponding epidemiological evidence is inconsistent, however. We therefore reviewed results from prospective observational studies and randomized controlled trials (RCTs) to clarify whether consumption of antioxidant vitamin C, E (tocopherol), and A (retinol), carotenoids and selenium, as food, supplements, or both, or high fruit and vegetable intake, reduce the incidence of cutaneous melanoma. A total of 9 studies (2 cohort, 1 nested case-control, 6 RCTs) were included. Neither antioxidant nutrients, individually or combined, nor fruit and vegetable intake showed any strong and significant associations with melanoma, though the number of relevant studies was limited and several had methodological shortcomings. In particular, melanoma was not a primary disease outcome in any of the RCTs and therefore, none adequately accounted for potential confounding by sun exposure. In conclusion, available evidence is currently inadequate to assess possible beneficial effects of antioxidant intake on melanoma risk. PMID:26147450

  16. Dimethylthiourea inhibits heart weight and hematocrit changes caused by dietary copper deficiency

    SciTech Connect

    Saari, J.T. )

    1991-03-11

    Feeding antioxidants to rats in a copper (Cu)-deficient diet can partially inhibit the cardiac enlargement and anemia caused by Cu deficiency. This study was done to determine whether an antioxidant which bypassed the gastrointestinal tract was also protective and whether an agent more potent than previously used was more effective in this inhibition. Male, weanling rats were fed diets deficient or sufficient in Cu for 4 wks. Dimethylthiourea (DMTU) or saline was injected (ip) 4 times a week; minimum amount of DMTU retained during the experiment was estimated to be 250 mg/kg. Unlike other antioxidants, DMTU completely prevented the increase in heart wt/body wt ratio; like the other agents, it only partially inhibited the anemia of Cu deficiency. DMTU did not affect plasma or liver Cu content of CuD rats; however, heart copper of CuD rats was significantly increased by DMTU. The effects of DMTU on heart size and hematocrit (Hct) may be attributed to its antioxidant function, but the possibility of altered mineral status must also be considered.

  17. EFFECT OF DIETARY FOLATE DEFICIENCY ON ARSENIC GENOTOXICITY IN MICE

    EPA Science Inventory

    Arsenic, a human carcinogen found in drinking water supplies throughout the world, is clastogenic in human and rodent cells. An estimated ten percent of Americans are deficient in folate, a methyl donor necessary for normal nucleotide metabolism, DNA synthesis, and DNA methylatio...

  18. Long-Term Dietary Folate Deficiency Accelerates Progressive Hearing Loss on CBA/Ca Mice

    PubMed Central

    Martínez-Vega, Raquel; Murillo-Cuesta, Silvia; Partearroyo, Teresa; Varela-Moreiras, Gregorio; Varela-Nieto, Isabel; Pajares, María A.

    2016-01-01

    Dietary folic acid deficiency induced early hearing loss in C57BL/6J mice after 2-months, corroborates the epidemiological association previously described between vitamin deficiency and this sensory impairment. However, this strain is prone to early hearing loss, and hence we decided to analyze whether the effects exerted by folate deprivation follow the same pattern in a mouse strain such as CBA/Ca, which is resistant to hearing impairment. Here, we show results of a long-term study on hearing carried out on CBA/Ca mice subjected to dietary folate deprivation. Systemic changes included decreased serum folate levels, hyperhomocysteinemia and signs of anemia in the group fed with folate-deficient (FD) diet. Initial signs of hearing loss were detected in this strain after 8-months of vitamin deficiency, and correlated with histological damage in the cochleae. In conclusion, the data presented reinforce the importance of adequate folic acid levels for the auditory system and suggest that the impact of dietary deficiencies may depend on the genetic background.

  19. Plant derived and dietary phenolic antioxidants: anticancer properties.

    PubMed

    Roleira, Fernanda M F; Tavares-da-Silva, Elisiário J; Varela, Carla L; Costa, Saul C; Silva, Tiago; Garrido, Jorge; Borges, Fernanda

    2015-09-15

    In this paper, a review of the literature on the phenolic compounds with anticancer activity published between 2008 and 2012 is presented. In this overview only phenolic antioxidant compounds that display significant anticancer activity have been described. In the first part of this review, the oxidative and nitrosative stress relation with cancer are described. In the second part, the plant-derived food extracts, containing identified phenolic antioxidants, the phenolic antioxidants isolated from plants and plant-derived food or commercially available and the synthetic ones, along with the type of cancer and cells where they exert anticancer activity, are described and summarized in tables. The principal mechanisms for their anti-proliferative effects were also described. Finally, a critical analysis of the studies and directions for future research are included in the conclusion. PMID:25863633

  20. Adolescent behavior and dopamine availability are uniquely sensitive to dietary omega-3 fatty acid deficiency

    PubMed Central

    Bondi, Corina O.; Taha, Ameer Y.; Tock, Jody L.; Totah, Nelson K.; Cheon, Yewon; Torres, Gonzalo E.; Rapoport, Stanley I.; Moghaddam, Bita

    2013-01-01

    Background Understanding the nature of environmental factors that contribute to behavioral health is critical for successful prevention strategies in individuals at-risk for psychiatric disorders. These factors are typically experiential in nature, such as stress and urbanicity, but nutrition, in particular dietary deficiency of omega-3 polyunsaturated fatty acids (n-3 PUFAs), has increasingly been implicated in the symptomatic onset of schizophrenia and mood disorders, which typically occurs during adolescence to early adulthood. Thus, adolescence may be the critical age range for the negative impact of diet as an environmental insult. Methods A rat model involving consecutive generations of n-3 PUFA deficiency was developed based on the assumption that dietary trends toward decreased consumption of these fats began four-five decades ago when the parents of current adolescents were born. Behavioral performance in a wide range of tasks, as well as markers of dopamine-related neurotransmission was compared in adolescents and adults fed n-3 PUFA adequate and deficient diets. Results In adolescents, dietary n-3 PUFA deficiency across consecutive generations produced a modality-selective and task-dependent impairment in cognitive and motivated behavior distinct from the deficits observed in adults. While this dietary deficiency affected expression of dopamine-related proteins in both age groups, in adolescents, but not adults, there was an increase in tyrosine hydroxylase expression that was selective to the dorsal striatum. Conclusions These data support a nutritional contribution to optimal cognitive and affective functioning in adolescents. Furthermore, they suggest that n-3 PUFA deficiency disrupts adolescent behaviors through enhanced dorsal striatal dopamine availability. PMID:23890734

  1. ESTIMATING DIETARY INTAKE OF ANTIOXIDANTS FROM OATS AND OTHER GRAINS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several large cohort studies have shown that subjects with high consumption of whole grain cereals have significantly lower coronary heart disease. High intakes of whole grain, fruits and vegetables have also been associated with lower risk of some cancers. Apart from dietary fiber, whole grains als...

  2. Banana (Musa sp. var. elakki bale) flower and pseudostem: dietary fiber and associated antioxidant capacity.

    PubMed

    Bhaskar, Jamuna J; S, Mahadevamma; Chilkunda, Nandini D; Salimath, Paramahans V

    2012-01-11

    Banana flower (BF) and pseudostem (PS) are byproducts of banana cultivation and are known to have health beneficial effects. The main objective of this study was to evaluate the dietary fiber composition and antioxidant effect of BF and PS. In the present study, BF and PS were found to be rich in dietary fiber (65.6 ± 1.32 and 28.8 ± 0.98%, respectively). Dietary fiber fractions were extracted and characterized in terms of sugar profile, and antioxidant activities were determined. BF and PS fractions were rich in sugars and showed wide diversity with respect to the nature of the sugars. Hemicellulose A fraction of BF showed high amounts of total polyphenols and total antioxidants, which were 121.8 ± 1.9 and 39.03 ± 0.118 μg/mg extract, respectively. HPLC analysis showed the presence of phenolic acids in hemicellulose A and B fractions of BF. These results indicate that BF and PS are rich sources of dietary fiber associated with polyphenols, which could promote health beneficial effects. PMID:22122826

  3. Global Transcriptional Response to Hfe Deficiency and Dietary Iron Overload in Mouse Liver and Duodenum

    PubMed Central

    Rodriguez, Alejandra; Luukkaala, Tiina; Fleming, Robert E.; Britton, Robert S.; Bacon, Bruce R.; Parkkila, Seppo

    2009-01-01

    Iron is an essential trace element whose absorption is usually tightly regulated in the duodenum. HFE-related hereditary hemochromatosis (HH) is characterized by abnormally low expression of the iron-regulatory hormone, hepcidin, which results in increased iron absorption. The liver is crucial for iron homeostasis as it is the main production site of hepcidin. The aim of this study was to explore and compare the genome-wide transcriptome response to Hfe deficiency and dietary iron overload in murine liver and duodenum. Illumina™ arrays containing over 47,000 probes were used to study global transcriptional changes. Quantitative RT-PCR (Q-RT-PCR) was used to validate the microarray results. In the liver, the expression of 151 genes was altered in Hfe−/− mice while dietary iron overload changed the expression of 218 genes. There were 173 and 108 differentially expressed genes in the duodenum of Hfe−/− mice and mice with dietary iron overload, respectively. There was 93.5% concordance between the results obtained by microarray analysis and Q-RT-PCR. Overexpression of genes for acute phase reactants in the liver and a strong induction of digestive enzyme genes in the duodenum were characteristic of the Hfe-deficient genotype. In contrast, dietary iron overload caused a more pronounced change of gene expression responsive to oxidative stress. In conclusion, Hfe deficiency caused a previously unrecognized increase in gene expression of hepatic acute phase proteins and duodenal digestive enzymes. PMID:19787063

  4. Acai juice attenuates atherosclerosis in apoe deficient mice through antioxidant and anti-inflammatory activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective - Acai fruit pulp has received much attention because of its high antioxidant capacity and potential anti-inflammatory effects. In this study, athero-protective effects of açaí juice were investigated in apolipoprotein E deficient (apoE -/-) mice. Methods and Results - ApoE-/- mice were f...

  5. Effect of selenium and vitamin E dietary deficiencies on chick lymphoid organ development (42361)

    SciTech Connect

    Marsh, J.A.; Combs, G.F. Jr.; Whitacre, M.E.; Dietert, R.R.

    1986-09-01

    Diets specifically deficient in selenium (Se) and/or vitamin E or adequate in both nutrients were fed to chicks from the time of hatching. Lymphoid organs (bursa, thymus, and in some instances, spleen) were collected from chicks 7-35 days of age. Growth of the chicks fed these diets was monitored over the experimental period as was lymphoid organ growth. The development of the primary lymphoid organs was further assessed by histological techniques and the organ contents of vitamin E (..cap alpha..-tocopherol) and Se were determined. Specific deficiencies of either Se or vitamin E were found to significantly impair bursal growth as did a combined deficiency. Thymic growth was impaired only by the combined deficiency diet. Severe histopathological changes in the bursa resulted from the combined deficiency and these were detectable by 10-14 days after hatching. These changes were characterized by a gradual degeneration of the epithelium and an accompanying depletion of lymphocytes. Similar changes, although slower to develop and less severe, were observed in the thymus as a result of the combined deficiency. When both serum and tissue levels of vitamin E and Se were monitored, it was observed that these were rapidly and independently depleted by the specific deficiency diets. These data suggest that the primary lymphoid organs are major targets of Se and vitamin E dietary deficiencies and provide a possible mechanism by which immune function may be impaired.

  6. Dietary Deficiency of Essential Amino Acids Rapidly Induces Cessation of the Rat Estrous Cycle

    PubMed Central

    Bannai, Makoto; Ichimaru, Toru; Nakano, Sayako; Murata, Takuya; Higuchi, Takashi; Takahashi, Michio

    2011-01-01

    Reproductive functions are regulated by the sophisticated coordination between the neuronal and endocrine systems and are sustained by a proper nutritional environment. Female reproductive function is vulnerable to effects from dietary restrictions, suggesting a transient adaptation that prioritizes individual survival over reproduction until a possible future opportunity for satiation. This adaptation could also partially explain the existence of amenorrhea in women with anorexia nervosa. Because amino acid nutritional conditions other than caloric restriction uniquely alters amino acid metabolism and affect the hormonal levels of organisms, we hypothesized that the supply of essential amino acids in the diet plays a pivotal role in the maintenance of the female reproductive system. To test this hypothesis, we examined ovulatory cyclicity in female rats under diets that were deficient in threonine, lysine, tryptophan, methionine or valine. Ovulatory cyclicity was monitored by daily cytological evaluations of vaginal smears. After continuous feeding of the deficient diet, a persistent diestrus or anovulatory state was induced most quickly by the valine-deficient diet and most slowly by the lysine-deficient diet. A decline in the systemic insulin-like growth factor 1 level was associated with a dietary amino acid deficiency. Furthermore, a paired group of rats that were fed an isocaloric diet with balanced amino acids maintained normal estrous cyclicity. These disturbances of the estrous cycle by amino acid deficiency were quickly reversed by the consumption of a normal diet. The continuous anovulatory state in this study is not attributable to a decrease in caloric intake but to an imbalance in the dietary amino acid composition. With a shortage of well-balanced amino acid sources, reproduction becomes risky for both the mother and the fetus. It could be viewed as an adaptation to the diet, diverting resources away from reproduction and reallocating them to

  7. Matrix metalloproteinases and gastrointestinal cancers: Impacts of dietary antioxidants

    PubMed Central

    Verma, Sugreev; Kesh, Kousik; Ganguly, Nilanjan; Jana, Sayantan; Swarnakar, Snehasikta

    2014-01-01

    The process of carcinogenesis is tightly regulated by antioxidant enzymes and matrix degrading enzymes, namely, matrix metalloproteinases (MMPs). Degradation of extracellular matrix (ECM) proteins like collagen, proteoglycan, laminin, elastin and fibronectin is considered to be the prerequisite for tumor invasion and metastasis. MMPs can degrade essentially all of the ECM components and, most MMPs also substantially contribute to angiogenesis, differentiation, proliferation and apoptosis. Hence, MMPs are important regulators of tumor growth both at the primary site and in distant metastases; thus the enzymes are considered as important targets for cancer therapy. The implications of MMPs in cancers are no longer mysterious; however, the mechanism of action is yet to be explained. Herein, our major interest is to clarify how MMPs are tied up with gastrointestinal cancers. Gastrointestinal cancer is a variety of cancer types, including the cancers of gastrointestinal tract and organs, i.e., esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum and anus. The activity of MMPs is regulated by its endogenous inhibitor tissue inhibitor of metalloproteinase (TIMP) which bind MMPs with a 1:1 stoichiometry. In addition, RECK (reversion including cysteine-rich protein with kazal motifs) is a membrane bound glycoprotein that inhibits MMP-2, -9 and -14. Moreover, α2-macroglobulin mediates the uptake of several MMPs thereby inhibit their activity. Cancerous conditions increase intrinsic reactive oxygen species (ROS) through mitochondrial dysfunction leading to altered protease/anti-protease balance. ROS, an index of oxidative stress is also involved in tumorigenesis by activation of different MAP kinase pathways including MMP induction. Oxidative stress is involved in cancer by changing the activity and expression of regulatory proteins especially MMPs. Epidemiological studies have shown that high intake of fruits that rich in antioxidants is

  8. Dietary Antioxidants as Modifiers of Physiologic Adaptations to Exercise

    PubMed Central

    Mankowski, Robert T.; Anton, Stephen D.; Buford, Thomas W.; Leeuwenburgh, Christiaan

    2015-01-01

    Adaptive responses to exercise training (ET) are crucial in maintaining physiological homeostasis and health span. Exercise-induced aerobic bioenergetic reactions in mitochondria and cytosol increase production of reactive oxygen species (ROSs), where excess of ROS can be scavenged by enzymatic as well as non-enzymatic antioxidants to protect against deleterious oxidative stress. Free radicals, however, have recently been recognized as crucial signaling agents that promote adaptive mechanisms to ET, such as mitochondrial biogenesis, antioxidant (AO) enzyme activity defense system upregulation, insulin sensitivity, and glucose uptake in skeletal muscle. Commonly used non-enzymatic AO supplements, such as vitamins C and E, a-lipoic acid, and polyphenols, in combination with ET, have been proposed as ways to prevent exercise-induced oxidative stress and hence improve adaptation responses to endurance training. Preclinical and clinical studies to date have shown inconsistent results indicating either positive or negative effects of endurance training combined with different blends of AO supplements (mostly vitamins C and E and a-lipoic acid) on redox status, mitochondrial biogenesis pathways, and insulin sensitivity. Preclinical reports on ET combined with resveratrol, however, have shown consistent positive effects on exercise performance, mitochondrial biogenesis, and insulin sensitivity, with clinical trials reporting mixed effects. Relevant clinical studies have been few and have used inconsistent results and methodology (types of compounds, combinations, and supplementation time). The future studies would investigate the effects of specific antioxidants and other popular supplements, such as a-lipoic acid and resveratrol, on training effects in humans. Of particular importance are older adults who may be at higher risk of age-related increased oxidative stress, an impaired AO enzyme defense system, and comorbidities such as hypertension, insulin resistance, and

  9. Changes in circulating levels of fibroblast growth factor 23 induced by short-term dietary magnesium deficiency in rats.

    PubMed

    Matsuzaki, Hiroshi; Katsumata, Shinichi; Maeda, Yoshiaki; Kajita, Yasutaka

    2016-06-01

    Fibroblast growth factor 23 (FGF23) is a potent regulator of phosphorus (P) and vitamin D metabolism. Long-term dietary magnesium (Mg) deficiency increases circulating levels of FGF23, whereas the effects of short-term dietary Mg deficiency are unclear. Thus, the present study investigated whether short-term dietary Mg deficiency affects circulating levels of FGF23. We also assessed changes in renal mRNA expression of vitamin D metabolizing enzymes and type II sodium-phosphate (Na/Pi) cotransporters, since these are regulated by FGF23. Rats were fed a control diet (control group) or an Mg-deficient diet (Mg-deficient group) for 2, 4 or 7 days. Serum Mg levels were significantly lower in the Mg-deficient group than in the control group at all time points. Serum FGF23 levels were significantly higher in the Mg-deficient group than in the control group at day 7. The 25-hydroxyvitamin D-24-hydroxylase (24(OH)ase) mRNA levels were significantly higher in the Mg-deficient group than in the control group at day 7 . No significant differences in types IIa and IIc Na/Pi cotransporter mRNA levels were observed between the control and Mg-deficient groups. These results suggest that dietary Mg deficiency causes a rapid increase in circulating levels of FGF23 and renal 24(OH)ase mRNA levels. PMID:27624533

  10. Antioxidative and proteolytic systems protect mitochondria from oxidative damage in S-deficient Arabidopsis thaliana.

    PubMed

    Ostaszewska-Bugajska, Monika; Rychter, Anna M; Juszczuk, Izabela M

    2015-08-15

    We examined the functioning of the antioxidative defense system in Arabidopsis thaliana under sulphur (S) deficiency with an emphasis on the role of mitochondria. In tissue extracts and in isolated mitochondria from S-deficient plants, the concentration of non-protein thiols declined but protein thiols did not change. Superoxide anion and hydrogen peroxide were accumulated in leaf blades and the generation of superoxide anion by isolated mitochondria was higher. Lower abundance of reduced (GSH) plus oxidized (GSSG) glutathione in the leaf and root tissues, and leaf mitochondria from S-deficient plants was accompanied by a decrease in the level of GSH and the changes in the GSH/GSSG ratios. In the chloroplasts, the total level of glutathione decreased. Lower levels of reduced (AsA) and oxidized (DHA) ascorbate were reflected in much higher ratios of AsA/DHA. Sulphur deficiency led to an increase in the activity of cytosolic, mitochondrial and chloroplastic antioxidative enzymes, peroxidases, catalases and superoxide dismutases. The protein carbonyl level was higher in the leaves of S-deficient plants and in the chloroplasts, while in the roots, leaf and root mitochondria it remained unchanged. Protease activity in leaf extracts of S-deficient plants was higher, but in root extracts it did not differ. The proteolytic system reflected subcellular specificity. In leaf and root mitochondria the protease activity was higher, whereas in the chloroplasts it did not change. We propose that the preferential incorporation of S to protein thiols and activation of antioxidative and proteolytic systems are likely important for the survival of S-deficient plants and that the mitochondria maintain redox homeostasis. PMID:26339750

  11. Effects of Dietary Strawberry Supplementation on Antioxidant Biomarkers in Obese Adults with Above Optimal Serum Lipids

    PubMed Central

    Basu, Arpita; Morris, Stacy; Nguyen, Angel; Betts, Nancy M.; Fu, Dongxu; Lyons, Timothy J.

    2016-01-01

    Berries have shown several cardiovascular health benefits and have been associated with antioxidant functions in experimental models. Clinical studies are limited. We examined the antioxidant effects of freeze-dried strawberries (FDS) in adults [n = 60; age: 49 ± 10 years; BMI: 36 ± 5 kg/m2 (mean ± SD)] with abdominal adiposity and elevated serum lipids. Participants were randomized to one of the following arms: low dose strawberry (25 g/day FDS), low dose control beverage (LD-C), high dose strawberry (50 g/d FDS), and high dose control beverage (HD-C) for 12 weeks. Control beverages were matched for calories and total fiber. Plasma antioxidant capacity, trace elements (copper, iron, selenium, and zinc), whole blood glutathione (GSH), and enzyme activity (catalase, glutathione peroxidase, and glutathione reductase) were examined at screening (0 week) and after 12 weeks' intervention. At 12 weeks, plasma antioxidant capacity and glutathione levels were higher in the strawberry versus control groups (low and high dose FDS: 45% and 42% for plasma antioxidant capacity and 28% and 36% for glutathione, resp.); glutathione was higher in the high versus low dose strawberry group (all p < 0.05). Serum catalase activity was higher in the low dose strawberry (43%) versus control group (p < 0.01). No differences were noted in plasma trace elements and glutathione enzyme activity. Dietary strawberries may selectively increase plasma antioxidant biomarkers in obese adults with elevated lipids. PMID:27429802

  12. Effects of Dietary Strawberry Supplementation on Antioxidant Biomarkers in Obese Adults with Above Optimal Serum Lipids.

    PubMed

    Basu, Arpita; Morris, Stacy; Nguyen, Angel; Betts, Nancy M; Fu, Dongxu; Lyons, Timothy J

    2016-01-01

    Berries have shown several cardiovascular health benefits and have been associated with antioxidant functions in experimental models. Clinical studies are limited. We examined the antioxidant effects of freeze-dried strawberries (FDS) in adults [n = 60; age: 49 ± 10 years; BMI: 36 ± 5 kg/m(2) (mean ± SD)] with abdominal adiposity and elevated serum lipids. Participants were randomized to one of the following arms: low dose strawberry (25 g/day FDS), low dose control beverage (LD-C), high dose strawberry (50 g/d FDS), and high dose control beverage (HD-C) for 12 weeks. Control beverages were matched for calories and total fiber. Plasma antioxidant capacity, trace elements (copper, iron, selenium, and zinc), whole blood glutathione (GSH), and enzyme activity (catalase, glutathione peroxidase, and glutathione reductase) were examined at screening (0 week) and after 12 weeks' intervention. At 12 weeks, plasma antioxidant capacity and glutathione levels were higher in the strawberry versus control groups (low and high dose FDS: 45% and 42% for plasma antioxidant capacity and 28% and 36% for glutathione, resp.); glutathione was higher in the high versus low dose strawberry group (all p < 0.05). Serum catalase activity was higher in the low dose strawberry (43%) versus control group (p < 0.01). No differences were noted in plasma trace elements and glutathione enzyme activity. Dietary strawberries may selectively increase plasma antioxidant biomarkers in obese adults with elevated lipids. PMID:27429802

  13. Levels of the Antioxidant Nutrients Vitamin C, Vitamin E, and Selenium in the Dietary Supplement Ingredient Database: NHANES Data Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory evidence indicates that antioxidants may slow or possibly prevent the development of certain cancers by protecting cells from damage caused by free radicals or other mechanisms. Many dietary supplements containing antioxidant constituents (e.g., vitamin C) are available to consumers. Th...

  14. By-products of Opuntia ficus-indica as a source of antioxidant dietary fiber.

    PubMed

    Bensadón, Sara; Hervert-Hernández, Deisy; Sáyago-Ayerdi, Sonia G; Goñi, Isabel

    2010-09-01

    Dietary fiber and bioactive compounds are widely used as functional ingredients in processed foods. The market in this field is competitive and the development of new types of quality ingredients for the food industry is on the rise. Opuntia ficus-indica (cactus pear) produces edible tender stems (cladodes) and fruits with a high nutritional value in terms of minerals, protein, dietary fiber and phytochemicals; however, around 20% of fresh weight of cladodes and 45% of fresh weight of fruits are by-products. The objective of this study was therefore to determine the nutritional value of by-products obtained from cladodes and fruits from two varieties of Opuntia ficus-indica, examining their dietary fiber and natural antioxidant compound contents in order to obtain quality ingredients for functional foods and increase the added value of these by-products. PMID:20623195

  15. Dietary calcium deficiency in laying ducks impairs eggshell quality by suppressing shell biomineralization.

    PubMed

    Chen, Wei; Zhao, Fei; Tian, Zhi Mei; Zhang, Han Xing; Ruan, Dong; Li, Yan; Wang, Shuang; Zheng, Chun Tian; Lin, Ying Cai

    2015-10-01

    The objective of this study was to determine the effects of dietary calcium deficiency on the process of shell formation. Four hundred and fifty female ducks (Anas platyrhynchos) at 22 weeks were randomly assigned to three groups. Ducks were fed one of two calcium-deficient diets (containing 1.8% or 0.38% calcium, respectively) or a calcium-adequate control diet (containing 3.6% calcium) for 67 days (depletion period) and then all ducks were fed a calcium-adequate diet for an additional 67 days (repletion period). Compared with the calcium-adequate control, the average shell thickness, egg shell weight, breaking strength, mammillae density and mammillary knob thickness of shell from ducks that consumed the diet with 0.38% calcium were significantly decreased (P<0.05) during the depletion period, accompanied by reduced tibia quality. The mRNA expression of both secreted phosphoprotein 1 (SPP1) and carbonic anhydrase 2 (CA2) in the uterus was decreased after feeding calcium-deficient diets (1.8% or 0.38% calcium). mRNA transcripts of calbindin 1 (CALB1), an important protein responsible for calcium transport, and the matrix protein genes ovocalyxin-32 (OCX-32) and ovocleidin-116 (OC-116) were reduced in ducks fed 0.38% calcium but not 1.8% calcium. Plasma estradiol concentration was decreased by both of the calcium-deficient diets (P<0.05). The impaired shell quality and suppressed functional proteins involved in shell formation could be reversed by repletion of dietary calcium. The results of the present study suggest that dietary calcium deficiency negatively affects eggshell quality and microarchitecture, probably by suppressing shell biomineralization. PMID:26385336

  16. Effect of dietary antioxidant supplementation on the oxidative status of plasma in broilers.

    PubMed

    Vossen, E; Ntawubizi, M; Raes, K; Smet, K; Huyghebaert, G; Arnouts, S; De Smet, S

    2011-04-01

    In this study, the effect of dietary antioxidants on the plasma oxidative status of growing birds fed a diet rich in polyunsaturated fatty acids was investigated. One-day-old broilers were fed for 42 days a diet containing 4% linseed oil and supplemented with single plant extracts rich in antioxidants (natural tocopherols, rosemary, grape seed, green tea, tomato) or a combination of some of these plant extracts, in two different total doses (100 and 200 mg product/kg feed). A diet with synthetic antioxidants with and without α-tocopheryl acetate (200 mg/kg feed) were also included. The plasma oxidative status was evaluated measuring the ferric reducing ability of plasma (FRAP), the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity. Lipid peroxidation was measured by thiobarbituric acid-reactive substances (TBARS). No significant effect of the dietary treatments was observed for FRAP as well as for TBARS. However, diet affected GSH-Px activity (p = 0.002) and a trend for an effect on SOD activity was observed (p=0.084). A higher GSH-Px activity was found for 200 mg/kg tomato extract and natural α-tocopherol in relation to the corresponding 100 mg/kg treatment, and the lowest GSH-Px activity was measured for the synthetic antioxidants treatment. The lowest and highest SOD activity were found for the 200. and 100 mg/kg treatment with tomato extract respectively. In conclusion, the oxidative status and lipid oxidation of plasma in broilers was not affected by feeding natural antioxidant extracts at the doses in the present study, but some changes in antioxidant enzyme activities were observed, of which the implication remains to be elucidated. PMID:20796081

  17. Dietary antioxidants, lipid peroxidation and plumage colouration in nestling blue tits Cyanistes caeruleus

    NASA Astrophysics Data System (ADS)

    Larcombe, Stephen D.; Mullen, William; Alexander, Lucille; Arnold, Kathryn E.

    2010-10-01

    Carotenoid pigments are responsible for many of the red, yellow and orange plumage and integument traits seen in birds. One idea suggests that since carotenoids can act as antioxidants, carotenoid-mediated colouration may reveal an individual's ability to resist oxidative damage. In fact, there is currently very little information on the effects of most dietary-acquired antioxidants on oxidative stress in wild birds. Here, we assessed the impacts on oxidative damage, plasma antioxidants, growth and plumage colouration after supplementing nestling blue tits Cyanistes caeruleus with one of three diets; control, carotenoid treatment or α-tocopherol treatment. Oxidative damage was assessed by HPLC analysis of plasma levels of malondialdehyde (MDA), a by-product of lipid peroxidation. Contrary to predictions, we found no differences in oxidative damage, plumage colouration or growth rate between treatment groups. Although plasma lutein concentrations were significantly raised in carotenoid-fed chicks, α-tocopherol treatment had no effect on concentrations of plasma α-tocopherol compared with controls. Interestingly, we found that faster growing chicks had higher levels of oxidative damage than slower growing birds, independent of treatment, body mass and condition at fledging. Moreover, the chromatic signal of the chest plumage of birds was positively correlated with levels of MDA but not plasma antioxidant concentrations: more colourful nestlings had higher oxidative damage than less colourful individuals. Thus, increased carotenoid-mediated plumage does not reveal resistance to oxidative damage for nestling blue tits, but may indicate costs paid, in terms of oxidative damage. Our results indicate that the trade-offs between competing physiological systems for dietary antioxidants are likely to be complex in rapidly developing birds. Moreover, interpreting the biological relevance of different biomarkers of antioxidant status represents a challenge for evolutionary

  18. Visual loss and optic nerve head swelling in thiamine deficiency without prolonged dietary deficiency

    PubMed Central

    Gratton, Sean M; Lam, Byron L

    2014-01-01

    Visual loss due to optic neuropathy is a rare manifestation of thiamine deficiency. We report a case of a 39-year-old woman with a body mass index (BMI) of 29 kg/m2 who developed visual loss and bilateral optic nerve head swelling after a short, self-limited gastrointestinal illness. She was disoriented and inattentive and had absent ankle jerk reflexes, diminished sensation in both legs below the knees, and marked truncal ataxia. Magnetic resonance imaging (MRI) showed increased T2-signal in the medial thalami and mammillary bodies. The serum thiamine level was 8 nmol/L (normal 8–30). The diagnosis of thiamine deficiency was made, and the patient’s vision and neurologic symptoms improved significantly with intramuscular thiamine treatment. Thiamine deficiency can occur in the absence of an obvious predisposing factor such as alcoholism or low body weight. The clinician must be aware of the factors that govern vitamin availability and maintain a high index of suspicion to make the diagnosis in such cases. PMID:24899800

  19. Mate and Tea Intake, Dietary Antioxidants and Risk of Breast Cancer: a Case-Control Study.

    PubMed

    Ronco, Alvaro L; Stefani, Eduardo De; Mendoza, Beatriz; Vazquez, Alvaro; Abbona, Estela; Sanchez, Gustavo; Rosa, Alejandro De

    2016-01-01

    Recently, we reported an inverse association between high 'mate' intake (infusion of Ilex paraguariensis herb, a staple beverage in temperate South America) and breast cancer (BC) risk. Stronger inverse associations were found in high strata of tea, vegetable, fruit and energy intakes, and in overweight/obese women, suggesting possible roles for 'mate' mainly from its antioxidant contribution. The present study attempted to thoroughly explore possible associations among 'mate' and tea intake, dietary antioxidants and BC risk. Combining two databases of previous studies, 572 BC incident cases and 889 controls were interviewed with a specific questionnaire featuring socio-demographic, reproductive and lifestyle variables, and a food frequency questionnaire (64 items), focusing on 'mate' intake (consumer status, daily intake, age at start, age at quit, duration of habit). Food-derived nutrients were calculated from available databases. Odds ratios (OR) and their 95% confidence intervals were calculated through unconditional logistic regression, adjusting for relevant potential confounders. The highest 'mate' intake was significantly inversely associated with BC risk for both low and high carotenoids (OR=0.40 vs. 0.41), vitamin C (OR=0.33 vs. 0.50), vitamin E (OR=0.37 vs. 0.45), flavonols (OR=0.38 vs. 0.48) and reduced glutathione (OR=0.48 vs. 0.46) strata. High tea intake showed significant inverse risk associations only with high carotenoids (OR=0.41), vitamin E (OR=0.48) and reduced glutathione (OR=0.43) strata. In conclusion, a strong and inverse association for 'mate' intake and BC was found, independent of dietary antioxidant levels. Also strong inverse associations with tea intake were more evident only at high levels of certain dietary antioxidants. PMID:27356713

  20. Influence of dietary iron level and form on biochemical, hematological, and immunological changes in copper deficient rats

    SciTech Connect

    Leu, H.; Gallaher, D.D.; Kramer, T.R.

    1986-03-01

    Weanling male Lewis rats (N = 10/group) were fed ad-libitum for 42 days diets based on AIN standards containing 21% casein, 5% safflower oil, deficient (0.6 ..mu..g/g) or adequate (5.6 ..mu..g/g) levels of Cu, and adequate (50 ..mu..g/g) or high (300 ..mu..g/g) levels of Fe/sup +2/ or Fe/sup +3/. Cu-deficient rats, regardless of Fe level or form, exhibited depressed (p < 0.05) serum Cu, Fe and ceruloplasmin activity, and hemoglobin levels; and elevated (p < 0.05) unsaturated serum Fe binding capacity. Except for high Fe/sup +3/ fed rats, Cu-deficient rats showed decreased hematocrits. Decreased proliferation was exhibited by concanavalin-A (Con-A) stimulated spleen lymphoid cells (SLC) of Cu-deficient rats fed adequate dietary Fe, but not by SLC of Cu-deficient rats fed high dietary Fe. High Fe fed rats exhibited reduced proliferation and increased variability in proliferation by Con-A stimulated SLC, which apparently caused a lack of difference in proliferation by SLC of Cu-deficient and Cu-adequate rats fed high Fe. Thus, high dietary Fe did not correct biochemical and hematological parameters in Cu-deficient rats, but because of lowered proliferation and increased variability of SLC proliferation, high dietary Fe did alleviate suppressed Con-A stimulated SLC proliferation in Cu-deficiency.

  1. Dietary antioxidants and risk of Barrett's esophagus and adenocarcinoma of the esophagus in an Australian population.

    PubMed

    Ibiebele, Torukiri I; Hughes, Maria Celia; Nagle, Christina M; Bain, Christopher J; Whiteman, David C; Webb, Penelope M

    2013-07-01

    While dietary antioxidants are emerging as potentially modifiable risk factors for esophageal adenocarcinoma (EAC), studies on dietary antioxidants and its precursor Barrett's esophagus (BE) are limited. The present study extends previous work on BE by investigating risks of nondysplastic BE, dysplastic BE and EAC associated with intake of antioxidants such as vitamin C, vitamin E, β-carotene, and selenium. Age and sex matched control subjects (n=577 for BE; n=1,507 for EAC) were sampled from an Australian population register. Information on demography, and well established EAC risk factors were obtained using self-administered questionnaires. Intake of antioxidants for patients newly diagnosed with nondysplastic BE (n=266), dysplastic BE (n=101), or EAC (n=299), aged 18-79 years, were obtained using a food frequency questionnaire. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using multivariable adjusted logistic regression models. High intake of β-carotene from food and supplement sources combined was inversely associated with risk of dysplastic BE (OR Q4 vs. Q1=0.45; 95%CI: 0.20-1.00). High intake of vitamin E from food sources (OR Q4 vs. Q1=0.43; 95%CI: 0.28-0.67), from food and supplements combined (OR Q4 vs. Q1=0.64; 95%CI: 0.43-0.96), and a high antioxidant index score were inversely associated with risk of EAC. We found no significant trends between intake of β-carotene, vitamin C, vitamin E, and selenium and risk of nondysplastic or dysplastic BE. However, our data suggest that a high intake of β-carotene may be associated with decreased risk of dysplastic BE. PMID:23292980

  2. Dietary Total Antioxidant Capacity and Colorectal Cancer in the Italian EPIC Cohort

    PubMed Central

    Vece, Marilena Monica; Agnoli, Claudia; Grioni, Sara; Sieri, Sabina; Pala, Valeria; Pellegrini, Nicoletta; Frasca, Graziella; Tumino, Rosario; Mattiello, Amalia; Panico, Salvatore; Bendinelli, Benedetta; Masala, Giovanna; Ricceri, Fulvio; Sacerdote, Carlotta; Krogh, Vittorio

    2015-01-01

    Background Colorectal cancer is the third most common cancer worldwide. Diet has been hypothesized as involved in colorectal cancer etiology, but few studies on the influence of total dietary antioxidant intake on colorectal cancer risk have been performed. Methods We investigated the association between colorectal cancer risk and the total antioxidant capacity (TAC) of the diet, and also of intake of selected antioxidants, in 45,194 persons enrolled in 5 centers (Florence, Naples, Ragusa, Turin and Varese) of the European Prospective Investigation into Cancer and Nutrition (EPIC) Italy study. TAC was estimated by the Trolox equivalent antioxidant capacity (TEAC) assay. Hazard ratios (HRs) for developing colorectal cancer, and colon and rectal cancers separately, adjusted for confounders, were estimated for tertiles of TAC by Cox modeling, stratifying by center. Results Four hundred thirty-six colorectal cancers were diagnosed over a mean follow-up of 11.28 years. No significant association between dietary TAC and colorectal cancer incidence was found. However for the highest category of TAC compared to the lowest, risk of developing colon cancer was lower (HR: 0.63; 95% CI: 0.44–0.89, P trend: 0.008). By contrast, increasing TAC intake was associated with significantly increasing risks of rectal cancer (2nd tertile HR: 2.09; 95%CI: 1.19–3.66; 3rd tertile 2.48 95%CI: 1.32–4.66; P trend 0.007). Intakes of vitamin C, vitamin E, and ß-carotene were not significantly associated with colorectal cancer risk. Conclusions Further prospective studies are needed to confirm the contrasting effects of high total antioxidant intake on risk of colon and rectal cancers. PMID:26565695

  3. Role of the Immune System in Hypertension: Modulation by Dietary Antioxidants

    PubMed Central

    Vasdev, Sudesh; Stuckless, Jennifer; Richardson, Vernon

    2011-01-01

    Hypertension is a major health problem worldwide. Individuals with hypertension are at an increased risk for stroke, heart disease, and kidney failure. Although the etiology of essential hypertension has a genetic component, lifestyle factors such as diet play an important role. Insulin resistance is a common feature of hypertension in both humans and animal models affecting glucose and lipid metabolism producing excess aldehydes including methylglyoxal. These aldehydes react with proteins to form conjugates called advanced glycation end products (AGEs). This alters protein structure and function and can affect vascular and immune cells leading to their activation and secretion of inflammatory cytokines. AGEs also act via receptors for advanced glycation end products on these cells altering the function of antioxidant and metabolic enzymes, and ion channels. This results in an increase in cytosolic free calcium, decrease in nitric oxide, endothelial dysfunction, oxidative stress, peripheral vascular resistance, and infiltration of vascular and kidney tissue with inflammatory cells leading to hypertension. Supplementation with dietary antioxidants including vitamins C, E, or B6, thiols such as cysteine and lipoic acid, have been shown to lower blood pressure and plasma inflammatory cytokines in animal models and humans with essential hypertension. A well-balanced diet rich in antioxidants that includes vegetables, fruits, low fat dairy products, low salt, and includes whole grains, poultry, fish and nuts, lowers blood pressure and vascular inflammation. These antioxidants may achieve their antihypertensive and anti-inflammatory/immunomodulatory effects by reducing AGEs and improving insulin resistance and associated alterations. Dietary supplementation with antioxidants may be a beneficial, inexpensive, front-line alterative treatment modality for hypertension. PMID:23204821

  4. Dietary antioxidants and ozone-induced bronchial hyperresponsiveness in adults with asthma.

    PubMed

    Trenga, C A; Koenig, J Q; Williams, P V

    2001-01-01

    Ozone exposure aggravates asthma, as has been demonstrated in both controlled exposures and epidemiologic studies. In the current double-blind crossover study, the authors evaluated the effects of dietary antioxidants (i.e., 400 IU vitamin E/500 mg vitamin C) on ozone-induced bronchial hyperresponsiveness in adult subjects with asthma. Seventeen subjects were exposed to 0.12 ppm of ozone or to air for 45 min during intermittent moderate exercise. Bronchial hyperresponsiveness was assessed with 10-min sulfur dioxide (i.e., 0.10 ppm and 0.25 ppm) inhalation challenges. Subjects who were given dietary antioxidants responded less severely to sulfur dioxide challenge than subjects given a placebo (i.e., forced expiratory volume in the 1st sec: -1.2% vs. 4.4%, respectively; peak flow: +2.2% vs. -3.0%, respectively; and mid-forced expiratory flow: +2.0% vs. -4.3%, respectively). Effects were more pronounced when subjects were grouped by response to sulfur dioxide at the screening visit. The results suggest that dietary supplementation with vitamins E and C benefits asthmatic adults who are exposed to air pollutants. PMID:11480500

  5. Antioxidant status of faeces of captive black rhinoceros (Diceros bicornis) in relation to dietary tannin supplementation.

    PubMed

    Clauss, M; Pellegrini, N; Castell, J C; Kienzle, E; Dierenfeld, E S; Hummel, J; Flach, E J; Streich, W J; Hatt, J-M

    2006-08-01

    In context with the frequent observations of excessive iron (Fe) storage in captive black rhinoceroses (Diceros bicornis), it has been suggested that both an excessive dietary Fe content and a lack of dietary Fe-chelating substances, such as tannins, is the underlying cause. Therefore, studies on the effects of tannin supplementation to captive diet are warranted. Six captive rhinoceroses were fed their normal zoo diet (N), and a similar diet supplemented with either tannic acid (T, hydrolysable tannin) or quebracho (Q, condensed tannins), and the total antioxidant capacity (TAC) was measured as mmol Trolox equivalents per kg fresh faeces. The TAC values on diets N (1.24 +/- 0.39 mmol/kg fresh faeces) and T (1.34 +/- 0.33 mmol/kg fresh faeces) were similar, but significantly higher on diet Q (2.32 +/- 0.61 mmol/kg fresh faeces). In contrast to expectations, faecal TAC increased with increasing faecal Fe, possibly as a result of the fact that the faecal Fe content was positively correlated to the proportion of concentrate feeds in the diet, which also contain antioxidants, such as vitamin E, in addition to Fe. Increased antioxidant status caused by the use of tannin substances could have a beneficial effect on animal health, but if tannins should be incorporated in designed diets, other tannin sources, such as grape pomace should be tested. PMID:16901277

  6. The effects of dietary carbohydrate on the growth, antioxidant capacities, innate immune responses and pathogen resistance of juvenile Black carp Mylopharyngodon piceus.

    PubMed

    Wu, Chenglong; Ye, Jinyun; Gao, Jun'e; Chen, Lian; Lu, Zhibin

    2016-02-01

    The present study was focused on the growth, antioxidant capacities, innate immune responses and pathogen resistance in juvenile Black carp Mylopharyngodon piceus fed with graded levels of dietary carbohydrate (CHO) (0.6, 106.5, 194.3, 288.4, 379.1 and 473.8 g kg(-1)) for 9 weeks. Results showed that highest weight gain and special growth ratio was obtained at 288.4 g kg(-1) dietary CHO. And adequate dietary CHO content (288.4 g kg(-1)) could significantly increase the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (Gpx), promote reduced glutathione (GSH) content and then increase the total antioxidant capacities (TAOC) in the liver of M. piceus. However, the malondialdehyde (MDA) levels in the fish liver could be significantly aggravated by excessive dietary CHO. Serum cortisol (COL) levels could be significantly increased in juvenile Black carp M. piceus fed with 379.1 g kg(-1) dietary CHO compared with CHO-deficient diets. Activities of alanine transaminase (GPT) and aspartate transaminase (GOT) were both decreased in the serum of juvenile Black carp M. piceus fed with 194.3 g kg(-1) dietary CHO compared with CHO-deficient diets (0.6 and 106.5 g kg(-1)) or CHO-excess diets (379.1 and 473.8 g kg(-1)). In addition, 288.4 g kg(-1) dietary CHO could significantly up-regulate the mRNA expression levels of hepcidin (HEPC), natural resistance-associated macrophage protein (NRAMP), tumor necrosis factor-α (TNF-α) and interferon (IFN), lysozyme (LYZ) and complement component 3 (C3) in the blood and liver samples of juvenile Black carp M. piceus compared with the CHO-deficient diets (0.6 and 106.5 g kg(-1)). Moreover, 288.4 g kg(-1) dietary CHO could also enhance the contents of C3 and plasma nitrogen monoxide (NO), and increase the activities of LYZ and total nitric oxide synthase (t-NOS) in the serum compared with the CHO-deficient or CHO-excess diets. Furthermore, the survival rates were also increased by

  7. Metabolic adaptations to dietary fat malabsorption in chylomicron-deficient mice.

    PubMed Central

    Jung, H R; Turner, S M; Neese, R A; Young, S G; Hellerstein, M K

    1999-01-01

    A mouse model of chylomicron deficiency was recently developed; these mice express a human apolipoprotein (apo) B transgene in the liver but do not synthesize any apoB in the intestine. Despite severe intestinal fat malabsorption, the mice maintain normal concentrations of plasma lipids and liver-derived apoB 100-containing lipoproteins. We investigated the metabolic mechanisms by which plasma lipid levels are kept normal. De novo lipogenesis (DNL) and cholesterogenesis were measured by mass isotopomer distribution analysis (MIDA). Plasma non-esterified fatty acid (NEFA) fluxes and hepatic re-esterification of labelled plasma NEFA were also measured. Hepatic and plasma triacylglycerol (TG) concentrations and plasma NEFA fluxes were not different between chylomicron-deficient mice and controls. The contribution from DNL to the hepatic TG pool was only modestly higher in chylomicron-deficient mice [12+/-2.1% (n=7) compared with 3.7+/-1.0% (n=9); means+/-S.E.M.], whereas cholesterogenesis was markedly elevated. The fractional contribution from plasma NEFA to hepatic TG was greatly elevated in the chylomicron-deficient animals (62% compared with 23%). Accordingly, 73% of hepatic TG was neither from DNL nor from plasma NEFA in controls, presumably reflecting prior contribution from chylomicron remnants, compared with only 26% in the chylomicron-deficient group. The long-term contribution from DNL to adipose fat stores reached approximately the same steady-state values (approximately 30%) in the two groups. Body fat accumulation was much lower in chylomicron-deficient animals; thus, whole-body absolute DNL was significantly lower. We conclude that plasma and hepatic TG pools and hepatic secretion of apoB-containing particles are maintained at normal levels in chylomicron-deficient mice, not by de novo fatty acid synthesis, but by more avid re-esterification of plasma NEFA, replacing the normally predominant contribution from chylomicrons, and that some dietary fat can be

  8. Augmentation of water-holding and textural properties of breast meat from oxidatively stressed broilers by dietary antioxidant regimens.

    PubMed

    Delles, R M; Xiong, Y L; True, A D; Ao, T; Dawson, K A

    2015-01-01

    1. The impact of dietary antioxidants and degree of oil oxidation on textural attributes of chicken broiler breast meat stored in oxygen-enriched, air-permeable polyvinylchloride and skin packaging systems during retail display at 2-4°C for up to 21 d was assessed. 2. Broilers were fed on diets either with a low-oxidised oil (peroxide 23 mEq O2/kg) or with a high-oxidised oil (peroxide 121 mEq O2/kg), with or without an algae-based antioxidant and organic mineral antioxidant supplement for 42 d. 3. Fatty acids and radical scavenging activities of the diets were estimated. Meat colour, pH, myofibrillar protein profile and textural traits were measured. 4. Diets with high-oxidised oil reduced stearic, linoleic and linolenic acid content compared to low-oxidised oil samples, regardless of antioxidant supplementation. Meat colour and pH varied among dietary treatments throughout storage. Meat samples from the antioxidant dietary group, irrespective of oil oxidation level, had lower amounts of purge and cooking losses compared to the unsupplemented diets. For all packaging systems, meat shear force was significantly higher for broilers fed on high-oxidised diets. 5. The results demonstrate that dietary antioxidant supplementation can minimise the negative impact of oxidised oil on the quality of broiler meat packaged in different atmospheric environments. PMID:25854630

  9. Optimal management of iron deficiency anemia due to poor dietary intake

    PubMed Central

    Aspuru, Kattalin; Villa, Carlos; Bermejo, Fernando; Herrero, Pilar; López, Santiago García

    2011-01-01

    Iron is necessary for the normal development of multiple vital processes. Iron deficiency (ID) may be caused by several diseases, even by physiological situations that increase requirements for this mineral. One of its possible causes is a poor dietary iron intake, which is infrequent in developed countries, but quite common in developing areas. In these countries, dietary ID is highly prevalent and comprises a real public health problem and a challenge for health authorities. ID, with or without anemia, can cause important symptoms that are not only physical, but can also include a decreased intellectual performance. All this, together with a high prevalence, can even have negative implications for a community’s economic and social development. Treatment consists of iron supplements. Prevention of ID obviously lies in increasing the dietary intake of iron, which can be difficult in developing countries. In these regions, foods with greater iron content are scarce, and attempts are made to compensate this by fortifying staple foods with iron. The effectiveness of this strategy is endorsed by multiple studies. On the other hand, in developed countries, ID with or without anemia is nearly always associated with diseases that trigger a negative balance between iron absorption and loss. Its management will be based on the treatment of underlying diseases, as well as on oral iron supplements, although these latter are limited by their tolerance and low potency, which on occasions may compel a change to intravenous administration. Iron deficiency has a series of peculiarities in pediatric patients, in the elderly, in pregnant women, and in patients with dietary restrictions, such as celiac disease. PMID:22114518

  10. Iron and exercise induced alterations in antioxidant status. Protection by dietary milk proteins.

    PubMed

    Zunquin, Gautier; Rouleau, Vincent; Bouhallab, Said; Bureau, Francois; Theunynck, Denis; Rousselot, Pierre; Arhan, Pierre; Bougle, Dominique

    2006-05-01

    Lipid peroxidation stress induced by iron supplementation can contribute to the induction of gut lesions. Intensive sports lead to ischemia reperfusion, which increases free radical production. Athletes frequently use heavy iron supplementation, whose effects are unknown. On the other hand, milk proteins have in vitro antioxidant properties, which could counteract these potential side effects. The main aims of the study were: (1) to demonstrate the effects of combined exercise training (ET) and iron overload on antioxidant status; (2) to assess the protective properties of casein in vivo; (3) to study the mechanisms involved in an in vitro model. Antioxidant status was assessed by measuring the activity of antioxidant enzymes (superoxide dismutase (SOD); glutathione peroxidase (GSH-Px)), and on the onset of aberrant crypts (AC) in colon, which can be induced by lipid peroxidation. At day 30, all ET animals showed an increase in the activity of antioxidant enzymes, in iron concentration in colon mucosa and liver and in the number of AC compared to untrained rats. It was found that Casein's milk protein supplementation significantly reduced these parameters. Additional information on protective effect of casein was provided by measuring the extent of TBARS formation during iron/ascorbate-induced oxidation of liposomes. Free casein and casein bound to iron were found to significantly reduce iron-induced lipid peroxidation. The results of the overall study suggest that Iron supplementation during intensive sport training would decrease anti-oxidant status. Dietary milk protein supplementation could at least partly prevent occurrence of deleterious effects to tissue induced by iron overload. PMID:17390518

  11. Dietary n-3 PUFAs Deficiency Increases Vulnerability to Inflammation-Induced Spatial Memory Impairment.

    PubMed

    Delpech, Jean-Christophe; Thomazeau, Aurore; Madore, Charlotte; Bosch-Bouju, Clementine; Larrieu, Thomas; Lacabanne, Chloe; Remus-Borel, Julie; Aubert, Agnès; Joffre, Corinne; Nadjar, Agnès; Layé, Sophie

    2015-11-01

    Dietary n-3 polyunsaturated fatty acids (PUFAs) are critical components of inflammatory response and memory impairment. However, the mechanisms underlying the sensitizing effects of low n-3 PUFAs in the brain for the development of memory impairment following inflammation are still poorly understood. In this study, we examined how a 2-month n-3 PUFAs deficiency from pre-puberty to adulthood could increase vulnerability to the effect of inflammatory event on spatial memory in mice. Mice were given diets balanced or deficient in n-3 PUFAs for a 2-month period starting at post-natal day 21, followed by a peripheral administration of lipopolysaccharide (LPS), a bacterial endotoxin, at adulthood. We first showed that spatial memory performance was altered after LPS challenge only in n-3 PUFA-deficient mice that displayed lower n-3/n-6 PUFA ratio in the hippocampus. Importantly, long-term depression (LTD), but not long-term potentiation (LTP) was impaired in the hippocampus of LPS-treated n-3 PUFA-deficient mice. Proinflammatory cytokine levels were increased in the plasma of both n-3 PUFA-deficient and n-3 PUFA-balanced mice. However, only n-3 PUFA-balanced mice showed an increase in cytokine expression in the hippocampus in response to LPS. In addition, n-3 PUFA-deficient mice displayed higher glucocorticoid levels in response to LPS as compared with n-3 PUFA-balanced mice. These results indicate a role for n-3 PUFA imbalance in the sensitization of the hippocampal synaptic plasticity to inflammatory stimuli, which is likely to contribute to spatial memory impairment. PMID:25948102

  12. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate.

    PubMed

    Martínez, Ruth; Torres, Paulina; Meneses, Miguel A; Figueroa, Jorge G; Pérez-Álvarez, José A; Viuda-Martos, Manuel

    2012-12-01

    The aim of this work was to determine the chemical, technological and in vitro antioxidant properties of co-products from the industrialisation of some tropical exotic fruits, such as mango, pineapple, guava and passion fruit, and to evaluate their potential use as dietary fibre sources for food enrichment. Proximate compositions were determined, as well as the total, insoluble and soluble fibre contents. The water holding, oil holding and swelling capacities were also determined. For the antioxidant activity, three different test systems were used (ABTS, DPPH and FRAP). The dietary fibre content of the co-products varied in a range between 69.1 and 81.5g/100g on a dry matter basis with a good balanced ratio between insoluble dietary fibre and soluble dietary fibre. Phenol recovery was dependent on the fruit type and the solvent system used. Methanol:acetone was a more efficient solvent for extracting phenols than ethanol. There was a good correlation between total phenol content and antioxidant capacity of the fruit extracts. All samples analysed had good antioxidant capacity. The results of this study indicate that exotic fruit fibres obtained as co-products in the process to obtain juice may be considered a good source of natural compounds with significant antioxidant activity. PMID:22953888

  13. Effects of dietary carbohydrate on iron metabolism and cytochrome oxidase activity in copper-deficient rats

    SciTech Connect

    Johnson, M.A.; Henderson, J.

    1986-03-01

    The effects of dietary carbohydrate on the metabolism of iron and the activity of cytochrome oxidase were examined in Cu-deficient and Cu-adequate rats. Male rats (n = 36) were fed one of six diets which varied in copper level (Cu-: < 0.6 ppm or Cu+: 8.2 ppm) and carbohydrate type (cornstarch, sucrose or fructose). After 31 days, Cu- rats had 50% more iron in the liver and 38, 30 and 18% less iron in the tibia, spleen and kidneys, respectively, than Cu+ rats. The activity of cytochrome oxidase in the bone marrow, heart, and liver were 59%, 51%, and 43%, respectively, of the levels in Cu/sup +/ rats. The type of dietary carbohydrate significantly affected the development of anemia during copper deficiency. Cu-rats fed cornstarch, sucrose or fructose had hematocrit levels which were 92, 83 or 73%, respectively, of Cu+ rats. Similarly, the levels of iron in the tibias of Cu- rats fed cornstarch, sucrose or fructose were 69, 66 or 54%, respectively, of Cu+ rats. The hematocrit levels of Cu- rats were positively correlated to both tibia iron levels (r = 0.64, p < 0.005) and liver cytochrome oxidase activities (r = 0.50, p < 0.05). Thus, it appears that changes in the metabolism of iron may be involved with the development of anemia in Cu- rats fed fructose or sucrose.

  14. The effects of dietary lead on growth, bioaccumulation and antioxidant capacity in sea cucumber, Apostichopus japonicus.

    PubMed

    Wang, Jing; Ren, Tongjun; Han, Yuzhe; Zhao, Yang; Liao, Mingling; Wang, Fuqiang; Jiang, Zhiqiang

    2015-09-01

    Three different diets amended with lead nitrate [Pb(NO3)2] (100, 500 and 1000mg Pb/kg dry weight) and a Pb-free control diet (1.03mg Pb/kg dry weight) were fed to sea cucumber (Apostichopus japonicus) for 30 days. The patterns of Pb accumulation over time were determined in various tissues (body wall, intestine and respiratory tree), as well as growth performance and antioxidant enzymes activities. Pb accumulation in body wall and intestine increased with time in all dietary Pb treatments. When fed the highest Pb diet, the body wall exhibited the greatest Pb burden (16.37mg Pb/kg tissue wet weight), while Pb content in the intestine (2.68mg Pb/kg tissue wet weight) and the respiratory tree (1.78mg Pb/kg tissue wet weight) were lower than Pb content in the body wall by day 30. The body weight gain (BWG), specific growth rate (SGR) and survival rate (SR) had not been affected by 30 days oral administration of Pb supplemented diet. However, the antioxidant enzymes activities [superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px)] of test groups were lower than control group in body wall and malondialdehyde (MDA) concentration in the body wall was opposite after 30 days in sea cucumbers. In summary, this work reports toxic effects in sea cucumber, A. japonicus, after dietary exposure to Pb. PMID:26318566

  15. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses

    PubMed Central

    Chaiprasongsuk, Anyamanee; Onkoksoong, Tasanee; Pluemsamran, Thanyawan; Limsaengurai, Saowalak; Panich, Uraiwan

    2015-01-01

    Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8 J/cm2) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. PMID:26765101

  16. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses.

    PubMed

    Chaiprasongsuk, Anyamanee; Onkoksoong, Tasanee; Pluemsamran, Thanyawan; Limsaengurai, Saowalak; Panich, Uraiwan

    2016-08-01

    Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8J/cm(2)) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. PMID:26765101

  17. DIETARY VITAMIN E DEFICIENCY AS A MODIFIER OF THE ASSOCIATIONS OF RESPIRATORY OUTCOMES WITH AIR POLLUTION IN ADOLESCENTS

    EPA Science Inventory

    Introduction: We investigated whether low dietary intake of the lipophilic antioxidant vitamin E may act as a modifier of chronic air pollution's associations with respiratory outcomes among adolescents due to an increased respiratory response to the oxidative effects of air pol...

  18. Mutant p53 protein expression and antioxidant status deficiency in breast cancer

    PubMed Central

    Milicevic, Zorka; Kasapovic, Jelena; Gavrilovic, Ljubica; Milovanovic, Zorka; Bajic, Vladan; Spremo-Potparevic, Biljana

    2014-01-01

    It is well recognized that cancers develop and grow as a result of disordered function of tumor suppressor genes and oncogenes, which may be exploited for screening purposes. Extensive evidence indicated tumor suppressor protein p53 as candidate marker for mutation identification. We have investigated mutant p53 protein expression in human breast tumors in relation to antioxidant status deficiency. The study included 100 breast cancer patients. p53 protein expression was evaluated by Western blot assay and immunostaining using a CM-1, DO-7 and Pab240 antibodies. Antioxidant parameters and lipid peroxidation were estimated by biochemical analyses. Western blotting with epitopespecific monoclonal antibody Pab240 strongly suggests that nuclear extracts from breast cancer cells express mutant forms of p53. It is of interest that the mutant forms of p53 overexpression in conjunction with the appearance of nuclear bodies are observed in highly aggressive carcinomas. Expression of isoform Δp53 (45 kDa) and isoform of ~ 29 kDa were more common in cases with LN metastasis. These studies point out the molecular consequences of oxidative stress (lipid peroxides, LP, p<0.001) and antioxidant status deficiency (copper, zinc superoxid dismutase, SOD, p<0.001; catalase, CAT, p<0.01; glutathione reductase, GR, p<0.001; glutathione, GSH, p<0.05) and indicate the importance of p53 mutation as the commonest genetic alteration detected in breast cancer cells. The expression of mutant p53 is correlated to increased lipid peroxides (0.346, p<0.05 ) and lowered antioxidant activity of CAT (- 0.437, p<0.01) in the breast cancer patients. PMID:26417293

  19. MicroRNA dysregulation and esophageal cancer development depend on the extent of zinc dietary deficiency

    PubMed Central

    Fong, Louise Y.; Taccioli, Cristian; Jing, Ruiyan; Smalley, Karl J.; Alder, Hansjuerg; Jiang, Yubao; Fadda, Paolo; Farber, John L.; Croce, Carlo M.

    2016-01-01

    Zinc deficiency (ZD) increases the risk of esophageal squamous cell carcinoma (ESCC), and marginal ZD is prevalent in humans. In rats, marked-ZD (3 mg Zn/kg diet) induces a proliferative esophagus with a 5-microRNA signature (miR-31, -223, -21, -146b, -146a) and promotes ESCC. Here we report that moderate and mild-ZD (6 and 12 mg Zn/kg diet) also induced esophageal hyperplasia, albeit less pronounced than induced by marked-ZD, with a 2-microRNA signature (miR-31, -146a). On exposure to an environmental carcinogen, ∼16% of moderate/mild-ZD rats developed ESCC, a cancer incidence significantly greater than for Zn-sufficient rats (0%) (P ≤ 0.05), but lower than marked-ZD rats (68%) (P < 0.001). Importantly, the high ESCC, marked-ZD esophagus had a 15-microRNA signature, resembling the human ESCC miRNAome, with miR-223, miR-21, and miR-31 as the top-up-regulated species. This signature discriminated it from the low ESCC, moderate/mild-ZD esophagus, with a 2-microRNA signature (miR-31, miR-223). Additionally, Fbxw7, Pdcd4, and Stk40 (tumor-suppressor targets of miR-223, -21, and -31) were downregulated in marked-ZD cohort. Bioinformatics analysis predicted functional relationships of the 3 tumor-suppressors with other cancer-related genes. Thus, microRNA dysregulation and ESCC progression depend on the extent of dietary Zn deficiency. Our findings suggest that even moderate ZD may promote esophageal cancer and dietary Zn has preventive properties against ESCC. Additionally, the deficiency-associated miR-223, miR-21, and miR-31 may be useful therapeutic targets in ESCC. PMID:26918602

  20. Valorization of pomegranate peel from 12 cultivars: dietary fibre composition, antioxidant capacity and functional properties.

    PubMed

    Hasnaoui, Nejib; Wathelet, Bernard; Jiménez-Araujo, Ana

    2014-10-01

    The dried powdered fruit peels of pomegranate (Punica granatum L.) (PomP) from 12 cultivars were used to extract and characterise their dietary fibre (DF) and to assess their functional and antioxidant properties. The total DF content varied between 33.10 and 62/100 g. The cellulose, Klason lignin, uronic acid and total neutral sugars (NS) composition of DF was: 16.53-22.71, 20.59-41.86, 13.98-23.31 and 16.88-19.66/100g, respectively. Arabinose and xylose were the most present NS with more than 60% of total NS content. The ratio of insoluble to soluble DF was around 1, reflecting the balanced composition of PomP's DF. Besides, PomP powder showed intermediate values for water- and oil-holding capacities: 2.31-3.53 and 2.80-4.05 mL/g, respectively, and strong retardation effect on the dialysis of glucose, reaching ∼60%. Also, it has been shown that most of the antioxidants can be extracted, based on the strong soluble antioxidant activity (2018-2649 μmol Trolox/g) compared to the insoluble one (13-23 μmol Trolox/g). PMID:24799227

  1. Effect of boiling in water of barley and buckwheat groats on the antioxidant properties and dietary fiber composition.

    PubMed

    Hęś, Marzanna; Dziedzic, Krzysztof; Górecka, Danuta; Drożdżyńska, Agnieszka; Gujska, Elżbieta

    2014-09-01

    In recent years, there has been an ever-increasing interest in the research of polyphenols obtained from dietary sources, and their antioxidative properties. The purpose of this study was to determine the effect of boiling buckwheat and barley groats on the antioxidant properties and dietary fiber composition. Antioxidative properties were investigated using methyl linoleate model system, by assessing the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity and metal chelating activity. The results were compared with butylated hydroxytoluene (BHT). Raw barley and buckwheat groats extracts showed higher DPPH scavenging ability compared to boiled barley and buckwheat groats extracts. Raw barley groats extract exhibited higher antioxidant activity than boiled groats extract in the methyl linoleate emulsion. Higher chelating ability in relation to Fe (II) ions was observed for boiled groats extracts as compared to raw groats extracts. BHT showed small antiradical activity and metal chelating activity, while showing higher antioxidative activity in emulsion system. The analysis of groats extracts using HPLC method showed the presence of rutin, catechin, quercetin, gallic, p-hydroxybenzoic, p-coumaric, o-coumaric, vanillic, sinapic, and ferulic acids. Differences in the content of dietary fiber and its fractions were observed in the examined products. The highest total dietary fiber content was detected in boiled buckwheat groats, while the lowest - in boiled barley groats. The scientific achievements of this research could help consumers to choose those cereal products available on the market, such as barley and buckwheat groats, which are a rich source of antioxidative compounds and dietary fiber. PMID:24938316

  2. Alterations in immune function in rats caused by dietary lipotrope deficiency: effect of age.

    PubMed

    Nauss, K M; Connor, A M; Kavanaugh, A; Newberne, P M

    1982-12-01

    Weanling male Sprague-Dawley rats were maintained on a control (C), folacin-deficient (F) or marginal methionine-choline diet (M/C) for 3 weeks, 3 months or 12 months. The immunocompetence of the animals was determined by in vivo (response to infection with salmonella typhimurium) and in vitro (lymphocyte transformation assay) methods. It was found that young animals were most sensitive to dietary lipotrope deficiency, and the in vivo response to bacterial infection did not always correlate with in vitro assessment of immune function. Histopathologic examination of spleens from S. typhimurium-infected rats maintained for 3 weeks on the experimental diets showed an overall decreased cellularity especially in the follicular areas, compared to controls. No differences were seen in the spleens of infected animals at later time points. A short-term (3-week) lipotrope deficiency resulted in a depressed lymphocyte transformation response to concanavalin A (Con A) in the spleen, thymus and lymph nodes; to phytohemagglutinin A (PHA) in the spleen and lymph nodes only. After 3 months on the F or M/C diets, a depressed Con A-induced transformation response was still seen in the spleen, but the normal aging-induced immunosuppression resulted in a low response in all animals, with few significant differences existing among groups. PMID:6754890

  3. Antioxidant intake, plasma antioxidants and oxidative stress in a randomized, controlled, parallel, Mediterranean dietary intervention study on patients with rheumatoid arthritis

    PubMed Central

    Hagfors, Linda; Leanderson, Per; Sköldstam, Lars; Andersson, Jan; Johansson, Gunnar

    2003-01-01

    Background Previously we have reported that patients with rheumatoid arthritis (RA) obtained a significant reduction in disease activity by adopting a Mediterranean-type diet. The present study was carried out to investigate the antioxidant intake, the plasma levels of antioxidants and a marker of oxidative stress (malondialdehyde) during the study presented earlier. Methods RA patients randomized to either a Mediterranean type diet (MD group; n = 26) or a control diet (CD group; n = 25) were compared during a three month dietary intervention study. Their antioxidant intake was assessed by means of diet history interviews and their intake of antioxidant-rich foods by a self-administered questionnaire. The plasma levels of retinol, antioxidants (α- and γ-tocopherol, β-carotene, lycopene, vitamin C and uric acid) and urinary malondialdehyde (MDA), a marker for oxidative stress, were determined using high performance liquid chromatography. The Student's t-test for independent samples and paired samples were used to test differences between and within groups. For variables with skewed distributions Mann-Whitney U-test and Wilcoxon signed ranks test were performed. To evaluate associations between dietary intake of antioxidants, as well as between disease activity, MDA and antioxidants we used Pearson's product moment correlation or Spearman's rank correlation. Results The MD group had significantly higher intake frequencies of antioxidant-rich foods, and also higher intakes of vitamin C (p = 0.014), vitamin E (p = 0.007) and selenium (p = 0.004), and a lower intake of retinol (p = 0.049), compared to the CD group. However, the difference between the groups regarding vitamin C intake was not significant when under- and over-repoters were excluded (p = 0.066). There were no changes in urine MDA or in the plasma levels of antioxidants (after p-lipid adjustments of the tocopherol results), from baseline to the end of the study. The levels of retinol, vitamin C and uric

  4. Dietary antioxidants protect gut epithelial cells from oxidant-induced apoptosis

    PubMed Central

    Miller, Mark JS; Angeles, Fausto M; Reuter, Brian K; Bobrowski, Paul; Sandoval, Manuel

    2001-01-01

    Background The potential of ascorbic acid and two botanical decoctions, green tea and cat's claw, to limit cell death in response to oxidants were evaluated in vitro. Methods Cultured human gastric epithelial cells (AGS) or murine small intestinal epithelial cells (IEC-18) were exposed to oxidants – DPPH (3 μM), H2O2 (50 μM), peroxynitrite (300 μM) – followed by incubation for 24 hours, with antioxidants (10 μg/ml) administered as a 1 hour pretreatment. Cell number (MTT assay) and death via apoptosis or necrosis (ELISA, LDH release) was determined. The direct interactions between antioxidants and DPPH (100 μM) or H2O2 (50 μM) were evaluated by spectroscopy. Results The decoctions did not interact with H2O2, but quenched DPPH although less effectively than vitamin C. In contrast, vitamin C was significantly less effective in protecting human gastric epithelial cells (AGS) from apoptosis induced by DPPH, peroxynitrite and H2O2 (P < 0.001). Green tea and cat's claw were equally protective against peroxynitrite and H2O2, but green tea was more effective than cat's claw in reducing DPPH-induced apoptosis (P < 0.01). Necrotic cell death was marginally evident at these low concentrations of peroxynitrite and H2O2, and was attenuated both by cat's claw and green tea (P < 0.01). In IEC-18 cells, all antioxidants were equally effective as anti-apoptotic agents. Conclusions These results indicate that dietary antioxidants can limit epithelial cell death in response to oxidant stress. In the case of green tea and cat's claw, the cytoprotective response exceed their inherent ability to interact with the injurious oxidant, suggestive of actions on intracellular pathways regulating cell death. PMID:11749672

  5. Three successful pregnancies through dietary management of fructose-1,6-bisphosphatase deficiency.

    PubMed

    Krishnamurthy, V; Eschrich, K; Boney, A; Sullivan, J; McDonald, M; Kishnani, P S; Koeberl, D D

    2007-10-01

    Fructose-1,6-bisphosphatase (FBPase) deficiency (OMIM 229700) has been characterized as the cause of life-threatening hypoglycaemia and lactic acidaemia following prolonged fasting. The patient, an adult African-American woman, presented during the second trimester of her first pregnancy with recurrent episodes of lactic acidaemia and hypoglycaemia. She had recently been admitted to a nearby intensive care unit after presentation with profound hypoglycaemia and lactic acidosis, and was found to be pregnant. The history was remarkable for approximately 30 hospitalizations for hypoglycaemia and acidosis. She had previously undergone liver biopsy at another centre and was diagnosed with a 'glycogen storage disease', although no enzyme testing had been done for confirmation. Based on clinical symptoms, a diagnosis of FBPase deficiency was accomplished through gene sequencing, which revealed homozygosity for a panethnic, common mutation, 960/961insG in exon 7. The availability of mutation testing facilitated the confirmation of FBPase deficiency in this patient, obviating liver biopsy for enzyme activity confirmation. The patient underwent three successful pregnancies by strict compliance with dietary management, including nocturnal uncooked cornstarch to manage hypoglycaemia. The pregnancies were complicated by mild gestational diabetes, increased cornstarch requirements, and hypoglycaemia at the time of discharge from the hospital. The three infants had normal birth weights and experienced no complications during the neonatal period. The patient subsequently developed sensorineural hearing loss and early-onset cognitive impairment, despite compliance with the monitoring and treatment of hypoglycaemia. The experience with multiple pregnancies in this FBPase-deficient patient provides insight into the management of hypoglycaemia in inherited disorders of gluconeogenesis. PMID:17705024

  6. Effect of Dietary Selenium Deficiency on the Cell Apoptosis and the Level of Thyroid Hormones in Chicken.

    PubMed

    Huang, Yunmao; Li, Wanyan; Xu, Danning; Li, Bingxin; Tian, Yunbo; Zan, Linsen

    2016-06-01

    This study assessed the effect of dietary selenium (Se) deficiency on male reproductive function in chicken. A total of 180 Hy-line laying cocks (1 day old; Weiwei) were randomly divided into 2 groups (n = 90) of Se-deficient chickens and control chickens. The control group was fed a basic diet (containing 0.15 mg of Se/kg). The Se-deficient group was fed a Se-deficient corn-soy basal diet (containing 0.033 mg of Se/kg). Fifteen chickens were killed in each group on days 30, 60, and 90, respectively. Then, serum and testes were collected and used in the detection of experimental index. Results indicated that GSH-Px activity and Bcl-2 mRNA level in the testes and thyroidal triiodothyronine (T3) and free triiodothyronine (FT3) levels in serum by dietary Se deficiency were significantly decreased compared to the corresponding control groups. Se deficiency-treated group showed a significant increase in MDA concent, TUNEL-positive cells, and mRNA level of Bax, Caspase3, and p53 in the testes and thyroidal thyroxine (T4), free thyroxine (FT4), and thyroid-stimulating hormone (TSH) levels in serum. Histopathologically, Se deficiency caused impairments in the testes. These results suggested that dietary Se deficiency exerts significant harmful effects on male reproductive organ and that the intrinsic and extrinsic pathways and the upstream regulators such as p53, Bax, and Bcl-2 were all involved in Se deficiency-induced testicular apoptosis. PMID:26507440

  7. Cross-sectional dietary deficiencies among a prison population in Papua New Guinea

    PubMed Central

    2013-01-01

    Background To investigate the dietary adequacy of prisoners of Beon Prison, Madang, Papua New Guinea in response to a report of possible nutritional deficiency. Methods We undertook an observational, cross-sectional study. All 254 male inmates (May 2010) were eligible to answer a validated interview-based questionnaire; to have a comprehensive dietary assessment; and to provide blood for biochemical analysis (α-tocopherol, β-carotene, lutein, thiamin, riboflavin, niacin, folate, homocysteine, zinc, ferritin, and vitamins A, B12 and C). Prison guards were invited to participate as a comparison group. Results 148 male prisoners (58.3%) and 13 male prison guards participated. Prison rations consisted of white rice fortified with thiamin, niacin, and iron, tinned tuna, tinned corned beef, water crackers, and black tea, with occasional intakes of fruit and vegetables. Some prisoners received supplementary food from weekend visitors. From assessment of the prisoners dietary data, median intakes of calcium (137 mg), potassium (677 mg), magnesium (182 mg), riboflavin (0.308 mg), vitamin A (54.1 μg), vitamin E (1.68 mg), vitamin C (5.7 mg) and folate (76.4 μg) were found to be below estimated average requirements (EAR). Following are the prisoners median (P25, P75) concentration of circulating nutrients and the percentage of prisoners with levels below normal reference ranges or recognized cut-off values: serum retinol 0.73 (0.40, 1.21) μmol/L, 46% below 0.7 μmol/L; plasma folate 2.0 (1.4, 2.6) nmol/L, 98% below 6.8 nmol/L; plasma vitamin C 6.3 (1.0, 19.3) μmol/L, 64% below 11.4 μmol/L; serum zinc 9.9 (8.8, 11.1) μmol/L, 66% below 10.7 μmol/L. Guards had diets with a higher dietary diversity that were associated with greater intakes of nutrients and biomarker concentrations. Conclusions The prisoners diets are likely lacking in several micronutrients and recommendations for dietary change have been made to the prison authorities. Ongoing vigilance is

  8. Vitamin A deficiency decreases and high dietary vitamin A increases disease severity in the mouse model of asthma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Th1/ Th2 paradigm has become an important issue in the pathogenesis of asthma, characterized by normal Th-1 and elevated Th-2 cytokine expression, resulting in a Th2 predominance. Vitamin A deficiency (VAD) produces a significant Th1 bias, while high-level dietary vitamin A supplementation promo...

  9. Dietary Available Phosphorus Affected Growth Performance, Body Composition, and Hepatic Antioxidant Property of Juvenile Yellow Catfish Pelteobagrus fulvidraco

    PubMed Central

    Tang, Qin; Wang, Chunfang; Xie, Congxin; Jin, Jiali; Huang, Yanqing

    2012-01-01

    An 8-week feeding trial was carried out with juvenile yellow catfish to study the effects of dietary available phosphorus (P) on growth performance, body composition, and hepatic antioxidant property. Six pellet diets were formulated to contain graded available P levels at 0.33, 0.56, 0.81, 1.15, 1.31, and 1.57% of dry matter, respectively. Triplicate tanks with each tank containing 60 juveniles (3.09 ± 0.03 g) were fed one of the six experimental diets for 8 weeks. Specific growth rate, feeding rate, and protein efficiency ratio were significantly higher at 0.81% dietary available P. Efficiency of P utilization distinctly decreased with increasing P level. Body lipid content significantly decreased while body ash and feces P content significantly increased with increasing P level. Quadratic regression analysis indicated that vertebrae P content was maximized at 1.21% dietary available P. Fish fed 1.57% dietary available P had highest activity of hepatic superoxide dismutase and catalase and malonaldehyde content. In conclusion, decreasing dietary available P increased P utilization efficiency and body lipid content while decreased vertebrae P content. Juvenile yellow catfish were subjected to oxidative damage under the condition of high dietary P content (1.57%), and the damage could not be eradicated by their own antioxidant defense system. PMID:22924032

  10. Effect of dietary zinc deficiency on the accumulation of cadmium and metallothionein in selected tissues of the rat

    SciTech Connect

    Waalkes, M.P.

    1986-01-01

    The effect of continuous dietary zinc deficiency on the metabolism of the toxic heavy metal cadmium has not been widely studied. This investigation was designed to assess the effects of subadequate dietary zinc intake on the accumulation of dietary cadmium and on metallothionein (MT) and zinc concentrations in target organs of cadmium toxicity. Adult male Wistar rats (180-200 g) were allowed, ad libitum, diets either adequate (60 ppm) or deficient (7 ppm) in zinc for a total of 9 wk. The zinc-deficient diet resulted in an approximately 40% reduction in plasma zinc (assessed at 3, 6, and 9 wk) in the absence of overt signs of zinc deficiency (i.e., reduced weight gain, alopecia, etc.). Separate groups of rats were also maintained on zinc-defined diets for a total of 9 wk, but cadmium was added to the diet (0, 12.5, 25, 50, 100, and 200 ppm) a the end of wk 3 and maintained at that level throughout the remaining 6 wk of the study, when the rats were killed. The feeding of the zinc-deficient diet markedly enhanced the accumulation of cadmium in the liver, kidney, and testes. Hepatic, renal, and testicular zinc concentrations were not affected by suboptimal zinc intake alone. However, marked reductions in renal and testicular zinc concentrations were caused by zinc deficiency in concert with cadmium exposure. MT levels, when related to tissue cadmium concentrations, were elevated to a significantly lesser extent in the kidneys of zinc-deficient animals. These results indicate that marginal zinc deficiency markedly increases cadmium accumulation in various organs and reduces zinc content and MT induction in some organs.

  11. Raman microspectroscopy for probing the impact of a dietary antioxidant on human breast cancer cells.

    PubMed

    Medeiros, P S C; Batista de Carvalho, A L M; Ruano, C; Otero, J C; Marques, M P M

    2016-06-15

    Breast cancer is the second most common type of cancer worldwide and the most frequent among women, being the fifth cause of death from neoplastic disease. Since this is an oxidative-stress related neoplasia, it is largely preventable. A dietary isoflavone abundant in soybean - daidzein - is currently being investigated owing to its chemopreventive and/or chemotherapeutic properties towards the human MDA-MB-231 (metastatic, estrogen-unresponsive) and MCF-7 (estrogen-responsive) breast cancer cell lines. Biological assays for evaluation of antitumour and anti-invasive activities were combined with state-of-the-art vibrational microspectroscopy techniques. At 50 and 100 μM concentrations and 48 h incubation time, daidzein was found to induce a marked decrease in cell viability (ca. 50%) for MDA-MB-231 and MCF-7 cells (respectively ca. 50% and 42%) and 40% inhibition of cell migration. MicroRaman analysis of fixed cells upon exposure to this isoflavone unveiled its metabolic impact on both cell lines. Multivariate data analysis (unsupervised PCA) led to a clear discrimination between the control and DAID-exposed cells, with distinctive effects on their biochemical profile, particularly regarding DNA, lipids and protein components, in a cell-dependent way. This is the first reported study on the impact of dietary antioxidants on cancer cells by microRaman techniques. PMID:27227510

  12. Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals.

    PubMed

    Andreasen, M F; Kroon, P A; Williamson, G; Garcia-Conesa, M T

    2001-11-01

    Hydroxycinnamic acids are effective antioxidants and are abundant components of plant cell walls, especially in cereal bran. For example, wheat and rye brans are rich sources of the hydroxycinnamates ferulic acid, sinapic acid, and p-coumaric acid. These phenolics are part of human and animal diets and may contribute to the beneficial effects derived from consumption of cereal bran. However, these compounds are ester linked to the main polymers in the plant cell wall and cannot be absorbed in this complex form. The present work shows that esterases with activity toward esters of the major dietary hydroxycinnamates are distributed throughout the intestinal tract of mammals. In rats, the cinnamoyl esterase activity in the small intestine is derived mainly from the mucosa, whereas in the large intestine the esterase activity was found predominantly in the luminal microflora. Mucosa cell-free extracts obtained from human duodenum, jejunum, and ileum efficiently hydrolyzed various hydroxycinnamoyl esters, providing the first evidence of human cinnamoyl esterase(s). This study first demonstrates the release by human colonic esterase(s) (mostly of microbial origin) of sinapic acid and p-coumaric acid from rye and wheat brans. Hydrolysis by intestinal esterase(s) is very likely the major route for release of antioxidant hydroxycinnamic acids in vivo. PMID:11714377

  13. Effects of dietary heavy metals on the immune and antioxidant systems of Galleria mellonella larvae.

    PubMed

    Wu, Gongqing; Yi, Yunhong

    2015-01-01

    In this work, we analyzed the effects of chromium (Cr) and lead (Pb) on immune and antioxidant systems of Galleria mellonella. In particular, after exposure to diets containing environmentally relevant concentrations (5, 50 and 100 μg/g) of Cr or Pb for 7 d, alterations in innate immune parameters and the activity of endogenous enzymes were measured in larvae. The results showed that 1) compared with the control, the lowest doses (5 μg/g) of Cr and Pb significantly increased the levels of innate immune parameters (total hemocyte count, THC; phagocytic activity; extent of encapsulation) of the larvae and hemolymph immune enzyme activities (acid phosphatase, ACP; alkaline phosphatase, AKP; phenoloxidase, PO), whereas the highest doses (100 μg/g) of Cr and Pb inhibited them; 2) the activity of antioxidant enzymes (superoxide dismutase, SOD; peroxidase, POD; catalase, CAT) showed significant increases with increasing concentrations of dietary Cr and Pb, and were significantly higher than those of the control; and 3) feeding the larvae with experimental concentrations of either Cr or Pb resulted similar patterns of changes of all the parameters examined. The current study suggested that moderate amounts of Cr and Pb enhance the innate immunity of G. mellonella, but that large amounts led to the inhibition of larval immune function, and also indicated that the experimental concentrations of Cr and Pb used caused strong oxidative stresses in the larvae. PMID:25463648

  14. Antioxidant Capacity, Cytotoxicity and Antimycobacterial Activity of Madeira Archipelago Endemic Helichrysum Dietary and Medicinal Plants

    PubMed Central

    Gouveia-Figueira, Sandra C.; Gouveia, Carla A.; Carvalho, Maria J.; Rodrigues, Ana I.; Nording, Malin L.; Castilho, Paula C.

    2014-01-01

    The potential bioactivity of dietary and medicinal endemic Helichrysum plants from Madeira Archipelago was explored, for the first time, in order to supply new information for the general consumer. In vitro antioxidant properties were investigated using DPPH, ABTS•+, FRAP and β-Carotene assays, and the total phenolic content (TPC) and total flavonoid content (TFC) were also determined. Although the results generally showed a large variation among the three analyzed plants, the methanolic extracts showed the highest antioxidant capacity. Exception is made for H. devium n-hexane extract that showed good radical scavenger capacity associated to compounds with good reducing properties. In the Artemia salina toxicity assay and antimycobaterial activity, H. devium was the most potent plant with the lowest LD50 at 216.7 ± 10.4 and MIC ≤ 50 μg·mL−1. Chemometric evaluation (Principal Component Analysis—PCA) showed close interdependence between the ABTS, TPC and TFC methods and allowed to group H. devium samples. PMID:26785236

  15. Plantain peel - a potential source of antioxidant dietary fibre for developing functional cookies.

    PubMed

    Arun, K B; Persia, Florence; Aswathy, P S; Chandran, Janu; Sajeev, M S; Jayamurthy, P; Nisha, P

    2015-10-01

    Plantain cultivar Nendran is popular as a staple food in many parts of India and deep fried chips made from raw matured Nendran are one of the popular snack items in India. This study aims to utilize peel from Nendran variety- the main byproduct of banana chips industry- to develop high fibre cookies with enhanced bioactive content. Proximate analysis indicated that peels are rich in total dietary fibre (64.33 g/100 g), vitamins (Folic acid- 33.12 mg/100 g) and minerals (Potassium- 35.61 mg/100 g). Nendran Peel Flour (NPF) was extracted with hexane, ethyl acetate and methanol. Phenolic and flavonoid content was high for ethyl acetate extract (15.21 and 9.39 mg QE/g dry weight). Methanol extract was more potent in reducing Copper ion (2.36 μM TR/g dry weight) and scavenging NO (IC50-381.71 μg/mL). Ethyl acetate extract was capable of scavenging DPPH and hydroxyl radical. HPLC profiling showed presence of gallic acid, protocatechuic acid, rutin hydrate and quercetin in ethyl acetate extract and gallic acid, chlorogenic acid and vanillic acid in methanol extract. Cookies prepared with NPF possess higher total dietary fibre content. There was a decrease in spread ratio, breaking strength and browning index of cookies as the percentage of NPF increased. NPF incorporation gradually increased the phenolic content from 4.36 to 5.28 mg GAE, compared to control cookie (3.21 mg GAE). DPPH scavenging activity also increased with increase in NPF. Hence NPF is a very good source of antioxidant dietary fibre and acceptable cookies can be produced by replacing wheat flour with 10 % NPF. PMID:26396380

  16. [Hematological indices of rats having complete and vitamin-deficient diets enriched with dietary fibers].

    PubMed

    Mustafina, O K; Trushina, É N; Kosheleva, O V; Pereverzeva, O G; Kodentsova, V M; Vrzhesinskaia, O A

    2013-01-01

    The hematological indices in 48 rats Wistar male with initial body weight 58.1+/- 0.5g has been studied. The rats were divided into 6 group and fed the complete semi-synthetic diet, containing 100% or 20% of vitamin mixture (Vit) with or without addition of dietary fiber (DF) in the form of wheat bran (5% of diet mass) during 4 weeks. The animals of the 1 group received 100% of vitamin mixture (100% Vit); of the 2 group--100% Vit+DF; 3 group--20% of vitamin mixture (20% Vit); 4 group--20% of vitamin mixture and DF (20% Vit+DF). The next 5 days rats from vitamin-deficient groups were fed with diets supplemented with 80% of Vit: (5 group--20% Vit+ 80% Vit; 6 group--20% Vit+DF+80% Vit). The animals fed vitamin-deficient diet lag significantly in growth from animals fed a complete diet. The growth curve of rats fed a diet with DF took an intermediate position. The studies were carried out at the Hematology analyzer "Coulter AC TTM 5 diff OV" (Beckman Coulter, USA) under the program, developed for the study of rat blood. Mean corpuscular volume (MCV) and mean corpuscular hemoglobin content (MCHC) were significantly decreased in rats with combined vitamin deficiency (20% Vit) in the diet compared with those of control group rats, while the compensatory increase in the number of red blood cells (RBC) and leukocytopenia took place. The enrichment of vitamin-deficient diet with DF (20% Vit+DF) prevented MCV and RBC changes, but MCHC left reduced in comparison with the indicator of the rats in control group. Indicators characterizing the state of platelets had no statistically significant differences between the groups. Compensation of vitamin deficiency in the diet of rats from group 5 (20% Vit+80% Vit) led only to the normalization of MCV. After vitamin restore in the diet of group 6 (20% Vit+DF+80% Vit) all investigated parameters were indistinguishable from the parameters of the control group. This indicates a positive effect of wheat bran DF consumption on the studied

  17. Critical Thresholds of Antioxidant and Immune Function Parameters for Se deficiency Prediction in Dairy Cows.

    PubMed

    Wu, Ling; Zhang, Hongyou; Xu, Chuang; Xia, Cheng

    2016-08-01

    The aim of this study was to determine the plasma selenium (Se) levels of lactating cows and to evaluate its association with antioxidant ability and immune function. In a descriptive study, 20 healthy Holstein cows with normal Se level (C) and 30 Holstein cows with subclinical Se deficiency (T) were randomly selected between 14 and 21 days postpartum from a dairy farm, according to a cutoff point of 70 mg/L Se in plasma. Analysis of biochemical parameters of antioxidant and immune function were performed on all the cows, and the risk prediction thresholds for subclinical Se deficiency were determined by area under receiver operating characteristic curve. Cows in the T group had significantly lower plasma Se concentrations compared with cows in the C group (52.16 ± 8.81 vs. 80.37 ± 8.46 μg/L, P = 0.02). There was a marked decrease in plasma glutathione peroxidase (GSH-Px) activity in the T group that correlated positively with the plasma Se level (R = 0.65, P = 0.00), and a significant increase of plasma methane dicarboxylic aldehyde (MDA), total nitric oxide synthase, and lipid peroxidation that correlated negatively with plasma Se levels (R = -0.47, P = 0.01; R = -0.33, P = 0.04; R = -0.40, P = 0.03). Furthermore, there were significantly lower plasma tumor necrosis factor-α and immunoglobulin G levels in the T group that correlated positively with plasma Se levels (R = 0.41, P = 0.01 and R = 0.45, P = 0.01), and a markedly lower plasma interleukin-6 level that correlated negatively with plasma Se levels (R = -0.38, P = 0.02). In addition, if plasma GSH-Px activity was less than 42.37 U/ml, the risk of Se deficiency was significantly increased in lactating cows. These results suggest that low plasma Se levels may reduce the antioxidant ability and immune function, and the risk of low plasma Se level may be predicted effectively by plasma GSH-Px activity in lactating cows. PMID:26743861

  18. ESR spin trapping study of the effect of oxidative stress and dietary Zn deficiency on free radical production in vivo

    SciTech Connect

    Xu, Z.; Chen, G.; Bray, T.M. )

    1991-03-15

    The objective of this study is to examine if free radicals can be trapped in vivo in dietary Zn deficient rats using ESR spin trapping techniques. The ability of Zn deficient rats to cope with oxidative stress is also assessed. {alpha}-Phenyl-N-t-butyl-nitrone (PBN), a spin trap, was i.p injected at a dose of 75 mg or 150 mg/kg body weight. The tissue distribution and metabolism of PBN in Zn deficient, pair-fed and control rats were compared. ESR signals in liver and lung were used as a measure of free radicals generated in vivo. When the rats were challenged with free radical generating agents, CCl{sub 4}, or FeNTA, the intensity of ESR signal recorded from the Zn deficient rats was about 50% and 30% of its pair-fed and ad libitum control, respectively. Under other oxidative stress, such as exposure to ethanol and hyperoxia, there was a higher production of free radicals in the Zn deficient rats compared to its control. These results suggest that dietary Zn deficiency may either increase the susceptibility or reduce the defense ability of the animal to increased oxidative stress.

  19. Dietary zinc deficiency effects dorso-lateral and ventral prostate of Wistar rats: histological, biochemical and trace element study.

    PubMed

    Joshi, Sangeeta; Nair, Neena; Bedwal, R S

    2014-10-01

    Zinc deficiency has become a global problem affecting the developed and developing countries due to inhibitors in the diet which prevents its absorption or due to a very low concentration of bioavailable zinc in the diet. Being present in high concentration in the prostate and having diverse biological function, we investigated the effects of dietary zinc deficiency for 2 and 4 weeks on dorso-lateral and ventral prostate. Sixty prepubertal rats were divided into three groups: zinc control (ZC), pair fed (PF) and zinc deficient (ZD) and fed on 100 μg/g (zinc control and pair fed groups) and 1 μg/g (zinc deficient) diet. Zinc deficiency was associated with degenerative changes in dorso-lateral and ventral prostate as made evident by karyolysis, karyorhexis, cytoplasmolysis, loss of cellularisation, decreased intraluminar secretion and degeneration of fibromuscular stroma. In response, protein carbonyl, nitric oxide, acid phosphatase, 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase increased, exhibiting variable level of significance. Total protein and total zinc concentration in dorso-lateral and ventral prostate as well as in serum decreased (P < 0.001). Decrease (P < 0.001) was recorded in serum FSH and testosterone after 2 and 4 weeks of zinc deficiency. The changes were more prominent after 4 weeks of synthetic zinc deficient diet. The results indicate that zinc deficiency during prepubertal period affects the prostate structure, total protein concentration, enhanced protein carbonyl concentration, nitric oxide as well as acid phosphatase activities and impaired hydroxysteroid dehydrogenase activities. Evidently these changes could be attributed to dysfunction of dorso-lateral and ventral prostate after dietary zinc deficiency as well as impairment of metabolic and secretory activity, reduced gonadotropin levels by hypothalamus -hypophysial system which is indicative of a critical role of zinc in maintaining the prostate integrity. PMID

  20. Dietary total antioxidant capacity from different assays in relation to serum C-reactive protein among young Japanese women

    PubMed Central

    2012-01-01

    Background The association between dietary total antioxidant capacity (TAC) from different assays and serum C-reactive protein (CRP) has not been assessed in non-Western populations. We examined the association between dietary TAC and serum CRP concentration in young Japanese women using different four TAC assays. Methods The subjects were 443 young Japanese women aged 18–22 years. Dietary TAC was assessed with a self-administered diet history questionnaire and the TAC value of each food using the following four assays: ferric reducing ability of plasma (FRAP); oxygen radical absorbance capacity (ORAC); Trolox equivalent antioxidant capacity (TEAC); and total radical-trapping antioxidant parameter (TRAP). Serum CRP concentrations were measured by highly sensitive nephelometry. Results The major contributor to dietary TAC was green, barley, and oolong tea (FRAP: 53%, ORAC: 45%, TEAC: 36%, and TRAP: 44%). The prevalence of elevated CRP concentrations (≥ 1 mg/L) was 5.6%. TAC from FRAP was inversely associated with serum CRP concentrations (adjusted odds ratio [OR] for elevated CRP concentration in high [compared with low] dietary TAC group: 0.39 [95% confidence interval (CI): 0.16-0.98]; P = 0.04). TAC from ORAC was inversely associated with CRP, although the association was not significant (OR: 0.48 [95% CI: 0.20-1.14]; P = 0.10). TAC from TEAC was inversely associated with CRP (OR: 0.32 [95% CI: 0.12-0.82]; P = 0.02), as was TAC from TRAP (OR: 0.31 [95% CI: 0.12-0.81]; P = 0.02). Conclusions Dietary TAC was inversely associated with serum CRP concentration in young Japanese women regardless of assay. Further studies are needed in other populations to confirm these results. PMID:23110638

  1. An Antioxidant Dietary Supplement Improves Brain-Derived Neurotrophic Factor Levels in Serum of Aged Dogs: Preliminary Results

    PubMed Central

    Sechi, Sara; Chiavolelli, Francesca; Spissu, Nicoletta; Di Cerbo, Alessandro; Canello, Sergio; Guidetti, Gianandrea; Fiore, Filippo; Cocco, Raffaella

    2015-01-01

    Biological aging is characterized by a progressive accumulation of oxidative damage and decreased endogenous antioxidant defense mechanisms. The production of oxidants by normal metabolism damages proteins, lipids, and nucleotides, which may contribute to cognitive impairment. In this study 36 dogs were randomly divided into four groups and fed croquettes of different compositions for 6 months. We monitored derivatives of reactive oxygen metabolites (dROMs) and biological antioxidant potential (BAP) levels in dogs' plasma samples as well as brain-derived neurotrophic factor (BDNF) serum levels at the beginning and at the end of the dietary regime. Our results showed that a dietary regime, enriched with antioxidants, induced a significant decrease of plasma levels of dROMs (p < 0.005) and a significant increase in BDNF serum levels (p < 0.005) after six months. Thus, we hypothesized a possible role of the diet in modulating pro- and antioxidant species as well as BDNF levels in plasma and serum, respectively. In conclusion the proposed diet enriched with antioxidants might be considered a valid alternative and a valuable strategy to counteract aging-related cognitive decline in elderly dogs. PMID:26464952

  2. Antioxidant potential of yerba mate (Ilex paraguariensis St. Hil.) extracts in Saccharomyces cerevisae deficient in oxidant defense genes.

    PubMed

    Piovezan-Borges, A C; Valério-Júnior, C; Gonçalves, I L; Mielniczki-Pereira, A A; Valduga, A T

    2016-06-01

    Yerba-mate (Ilex paraguariensis St. Hil) is mainly consumed as "chimarrão", a hot drink highly appreciated in Brazil, Argentina, Paraguay and Uruguay. This study evaluated the antioxidant potential of aqueous extracts of I. paraguariensis precipitated with ethanol. The leaves were processed as for tea product (TM) and oxidized (OX). The antioxidant potential was evaluated in cells of Saccharomyces cerevisiae deficient in antioxidant defense genes. Three strains evaluated were: a wild (EG) and two mutants (ctt1Δ e ctt1Δsod1Δ). These strains were pre-treated with the yerba-mate extracts (TM e OX) and submitted to oxidative stress induced by hydrogen peroxide. None of the extracts produced loss of cell viability. The extracts exerted antioxidant activity, protecting the strains (except sod1∆ctt1∆). The TM extract was more effective than OX. I. paraguariensis extracts showed a potential to be explored in the development of new products. PMID:26934149

  3. Effects of dietary cadmium on growth, antioxidants and bioaccumulation of sea cucumber (Apostichopus japonicus) and influence of dietary vitamin C supplementation.

    PubMed

    Wang, Jing; Ren, Tongjun; Wang, Fuqiang; Han, Yuzhe; Liao, Mingling; Jiang, Zhiqiang; Liu, Haiying

    2016-07-01

    The effects of dietary cadmium (Cd) supplementation on growth, antioxidant capacity and accumulation of Cd in tissues (body wall, digestive tracts, and respiratory tree) of sea cucumber, Apostichopus japonicus, exposed to sub-chronic concentrations (0, 10, 50, 100, and 500mg Cd/kg dry weight) of Cd were investigated. In addition, the potential protective effects of vitamin C (L-ascorbic acid, AsA) against the effects of Cd on sea cucumbers were investigated. Sea cucumbers were exposed to dietary Cd for 30 days, after which another group of healthy sea cucumbers was supplied diet supplemented with mixed Cd and AsA for another 30 days. Cd exposure for 30 days resulted in increased Cd accumulation in tissues of sea cucumbers with exposure time and concentration. The order of Cd accumulation in organs was digestive tracts>respiratory tree>body wall. On day 30, the body weight gain (BWG) and specific growth rate (SGR) decreased significantly (P<0.05) in the 500mg Cd/kg treatment. Superoxide dismutase (SOD) activity, glutathione peroxidase (GSH-Px) activity and catalase (CAT) activity in the coelomic fluid of sea cucumbers decreased with increasing dietary Cd concentration, but malondialdehyde (MDA) content in the coelomic fluid increased. Providing diet supplemented with Cd and AsA indicated that although sea cucumbers exhibited signs of Cd toxicity, no death occurred in response to 50mg Cd/kg for 30 days. Based on these findings, five treatments were provided: 50mg Cd/kg+0mg AsA/kg, 50mg Cd/kg+ 3000mg AsA/kg, 50mg Cd/kg+ 5000mg AsA/kg, 50mg Cd/kg+10,000mg AsA/kg, and 50mg Cd/kg+15,000mg AsA/kg. The BWG and SGR of sea cucumbers fed the AsA supplemented diet mixed with Cd increased. Additionally, MDA levels in coelomic fluid were negatively correlated with dietary AsA levels, while antioxidant capacities (SOD, GSH-Px and CAT) were positively correlated with dietary AsA levels. Moreover, Cd accumulation in tissues decreased in response to dietary AsA supplementation of

  4. Dietary Supplement Enriched in Antioxidants and Omega-3 Protects from Progressive Light-Induced Retinal Degeneration

    PubMed Central

    Ramchani-Ben Othman, Khaoula; Cercy, Christine; Amri, Mohamed; Doly, Michel; Ranchon-Cole, Isabelle

    2015-01-01

    In the present study, we have evaluated one of the dietary supplements enriched with antioxidants and fish oil used in clinical care for patient with age-related macular degeneration. Rats were orally fed by a gastric canula daily with 0.2 ml of water or dietary supplement until they were sacrificed. After one week of treatment, animals were either sacrificed for lipid analysis in plasma and retina, or used for evaluation of rod-response recovery by electroretinography (ERG) followed by their sacrifice to measure rhodopsin content, or used for progressive light-induced retinal degeneration (PLIRD). For PLIRD, animals were transferred to bright cyclic light for one week. Retinal damage was quantified by ERG, histology and detection of apoptotic nuclei. Animals kept in dim-cyclic-light were processed in parallel. PLIRD induced a thinning of the outer nuclear layer and a reduction of the b-wave amplitude of the ERG in the water group. Retinal structure and function were preserved in supplemented animals. Supplement induced a significant increase in omega-3 fatty acids in plasma by 168% for eicosapentaenoic acid (EPA), 142% for docosapentaenoic acid (DPA) and 19% for docosahexaenoic acid (DHA) and a decrease in the omega-6 fatty acids, DPA by 28%. In the retina, supplement induced significant reduction of linolenic acid by 67% and an increase in EPA and DPA by 80% and 72%, respectively, associated with significant decrease in omega-6 DPA by 42%. Supplement did not affect rhodopsin content or rod-response recovery. The present data indicate that supplement rapidly modified the fatty acid content and induced an accumulation of EPA in the retina without affecting rhodopsin content or recovery. In addition, it protected the retina from oxidative stress induced by light. Therefore, this supplement might be beneficial to slow down progression of certain retinal degeneration. PMID:26042773

  5. The effect of dietary antioxidant on the COPD risk: the community-based KoGES (Ansan–Anseong) cohort

    PubMed Central

    Joshi, Pankaj; Kim, Woo Jin; Lee, Sang-Ah

    2015-01-01

    Background Dietary antioxidants have been suggested to have protective role against chronic obstructive pulmonary disease (COPD), but few prospective studies examined this relationship. The prospective study was conducted to evaluate the effect of dietary antioxidants on COPD risk and lung function in the Korean population. Methods The data were collected from the community-based Korean Genome Epidemiology Study (KoGES) cohort. To diagnose COPD, forced expiratory volume (FEV1) and forced vital capacity (FVC) were measured by spirometry. The dietary intake of antioxidant vitamins was estimated from validated Food-Frequency Questionnaire. For the analysis, 325 COPD patients and 6,781 at risk subjects were selected from the cohort of 10,038 subjects. Multiple logistic regression models were used to examine the odds ratio (OR) after adjusting for age, sex, marital status, income, history of asthma, history of tuberculosis, and smoking. Results The risk of COPD was positively associated with aging, low education, low household income, lower body mass index, and cigarette smoking. The risk of COPD decreased with increase in the dietary vitamin C (ORQ1 vs Q5=0.66, Ptrend=0.03) and vitamin E (ORQ1 vs Q5=0.56, Ptrend=0.05) intake, predominantly, in men (Ptrend=0.01 and 0.05 for vitamins C and E, respectively). In addition, the lung function was significantly improved with increase in vitamins C (FEV1, P=0.04; FVC, P=0.03) and E (FEV1, P=0.03; FVC, P=0.04) intake. No statistically significant interactions were observed between smoking and vitamin C or E intake in relation to COPD risk among men. Conclusion Our results suggest the independent beneficial effect of antioxidants, particularly vitamins C and E, on COPD risk and lung function in men. PMID:26504380

  6. Deficit in Prepulse Inhibition in Mice Caused by Dietary n-3 Fatty Acid Deficiency

    PubMed Central

    Fedorova, Irina; Alvheim, Anita R.; Hussein, Nahed; Salem, Norman

    2010-01-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) may be biosynthesized from a precursor α-linolenic acid (LNA) or obtained preformed in the diet. Dams were fed four diets with different levels of the various n-3 fatty acids during pregnancy and lactation, and their offspring were weaned to the same diets: “n-3 Deficient”, containing (as % total fatty acids) 0.07% of LNA; “Low LNA” (0.4%); “High LNA” (4.8%); and a “DHA+EPA” diet, containing 0.4% of LNA, 2% DHA and 2% EPA. Sensorimotor gating was measured by prepulse inhibition (PPI) of the acoustic startle response in C57Bl6 mice. The n-3 Deficient and Low LNA diets caused a substantial deficit in PPI compared to the DHA+EPA diet, whereas the High LNA diet induced a less pronounced, but significant reduction of PPI. These are the first data that demonstrate a deficit in sensorimotor gating in rodents caused by an inadequate amount of the n-3 fatty acids in the diet. Our results differentiate the effects of a High LNA diet from one with added EPA and DHA even though the difference in brain DHA content is only 12% between these dietary groups. PMID:20001105

  7. Dietary methyl donor deficiency during pregnancy in rats shapes learning and anxiety in offspring.

    PubMed

    Konycheva, Galina; Dziadek, Marie A; Ferguson, Lynnette R; Krägeloh, Christian U; Coolen, Marcel W; Davison, Michael; Breier, Bernhard H

    2011-10-01

    Two important lines of research have enhanced our understanding of the molecular role of nutrition in influencing behavior. First, exposure to an adverse environment during early life can influence the long-term behavior of the offspring. Second, regulation of the nervous system development and functioning appears to involve epigenetic mechanisms that require a continuous supply of methyl group donors in food. We hypothesized that a maternal diet during pregnancy deficient in methyl donors (MDD) may lead to altered behavior in offspring through permanent changes in hippocampal DNA methylation. We used a rat model of prenatal dietary MDD to test this hypothesis in female offspring as they aged. Prenatal MDD reduced birth weight, litter size, and newborn viability. Aged female offspring of MDD mothers showed increased anxiety and increased learning ability in comparison with control diet group offspring. To explore the role of MDD on epigenetic mechanisms in the brain of adult offspring, we studied expression and methylation of 4 selected genes coding for glucocorticoid receptor, hydroxysteroid dehydrogenase 11 type 2, neuronatin, and reelin proteins in the hippocampus. No major group differences in methylation or expression of the studied genes were detected, except for a significant down-regulation of the reelin gene in the MDD female offspring. The prenatal MDD diet caused intrauterine growth restriction, associated with long-term effects on the behavior of the offspring. However, the observed behavioral differences between the MDD and control diet offspring cannot be explained by epigenetic regulation of the specific genes investigated in this study. PMID:22074804

  8. Suppression of muscle protein turnover and amino acid degradation by dietary protein deficiency

    NASA Technical Reports Server (NTRS)

    Tawa, N. E. Jr; Goldberg, A. L.

    1992-01-01

    To define the adaptations that conserve amino acids and muscle protein when dietary protein intake is inadequate, rats (60-70 g final wt) were fed a normal or protein-deficient (PD) diet (18 or 1% lactalbumin), and their muscles were studied in vitro. After 7 days on the PD diet, both protein degradation and synthesis fell 30-40% in skeletal muscles and atria. This fall in proteolysis did not result from reduced amino acid supply to the muscle and preceded any clear decrease in plasma amino acids. Oxidation of branched-chain amino acids, glutamine and alanine synthesis, and uptake of alpha-aminoisobutyrate also fell by 30-50% in muscles and adipose tissue of PD rats. After 1 day on the PD diet, muscle protein synthesis and amino acid uptake decreased by 25-40%, and after 3 days proteolysis and leucine oxidation fell 30-45%. Upon refeeding with the normal diet, protein synthesis also rose more rapidly (+30% by 1 day) than proteolysis, which increased significantly after 3 days (+60%). These different time courses suggest distinct endocrine signals for these responses. The high rate of protein synthesis and low rate of proteolysis during the first 3 days of refeeding a normal diet to PD rats contributes to the rapid weight gain ("catch-up growth") of such animals.

  9. Dietary xenosterols lead to infertility and loss of abdominal adipose tissue in sterolin-deficient mice.

    PubMed

    Solca, Curzio; Tint, G Stephen; Patel, Shailendra B

    2013-02-01

    The investigation of the human disease sitosterolemia (MIM 210250) has shed light not only on the pathways by which dietary sterols may traffic but also on how the mammalian body rids itself of cholesterol and defends against xenosterols. Two genes, ABCG5 and ABCG8, located at the sitosterolemia locus, each encodes a membrane-bound ABC half-transporter and constitutes a functional unit whose activity has now been shown to account for biliary and intestinal sterol excretion. Knockout mice deficient in Abcg5 or Abcg8 recapitulate many of the phenotypic features of sitosterolemia. During the course of our studies to characterize these knockout mice, we noted that these mice, raised on normal rodent chow, exhibited infertility as well as loss of abdominal fat. We show that, although sitosterolemia does not lead to any structural defects or to any overt endocrine defects, fertility could be restored if xenosterols are specifically blocked from entry and that the loss of fat is also reversed by a variety of maneuvers that limit xenosterol accumulation. These studies show that xenosterols may have a significant biological impact on normal mammalian physiology and that the Abcg5 or Abcg8 knockout mouse model may prove useful in investigating the role of xenosterols on mammalian physiology. PMID:23180829

  10. The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants.

    PubMed

    Kanner, J; Lapidot, T

    2001-12-01

    Atherosclerosis may result partly from processes that occur following food consumption and that involve oxidized lipids in chylomicrons. We investigated reactions that could occur in the acidic pH of the stomach and accelerate the generation of lipid hydroperoxides and co-oxidation of dietary constituents. The ability of dietary polyphenols to invert catalysis from pro-oxidation to antioxidation was examined. The acidic pH of gastric fluid amplified lipid peroxidation catalyzed by metmyoglobin or iron ions. Metmyoglobin catalyzed peroxidation of edible oil, resulting in 8-fold increase of hydroperoxide concentration. The incubation of heated muscle tissue in simulated gastric fluid for 2 h enhanced hydroperoxides accumulation by 6-fold to 1200 microM. In the presence of catechin or red wine polyphenols, metmyoglobin catalyzed the breakdown of hydroperoxides to zero, totally preventing lipid peroxidation and beta-carotene cooxidation. We suggest that human gastric fluid may be an excellent medium for enhancing the oxidation of lipids and other dietary constituents. The results indicate the potentially harmful effects of oxidized fats intake in the presence of endogenous catalysts found in foods, and the major benefit of including in the meal plant dietary antioxidants. PMID:11728810

  11. Dietary antioxidants at supranutritional doses improve oxidative status and reduce the negative effects of heat stress in sheep.

    PubMed

    Chauhan, S S; Celi, P; Leury, B J; Clarke, I J; Dunshea, F R

    2014-08-01

    The present study was undertaken to investigate the impact of heat (thermal) stress and dietary antioxidant supplementation on the oxidative and physiological status of sheep. Twenty-four Merino × Poll Dorset crossbred ewes were housed in 1 of 2 climatic chambers (thermoneutral or heat stress) and offered either a control (10 IU vitamin E/kg DM and 0.24 mg Se/kg DM) or high antioxidant (100 IU vitamin E/kg DM and 1.20 mg Se/kg DM) diet. The sheep were exposed to 2 thermal (temperature) treatments (thermoneutral [TN]: 18-21°C and 26-30% relative humidity; and heat stress [HS]: 28-40°C and 40-50% relative humidity) for 2 wk in a single reversal design. After 1 wk of dietary treatment, animals in 1 chamber were subjected to HS for 1 wk, with the temperature being increased to 40°C between 0900 and 1700 h and then maintained at 28°C overnight. Those sheep in the TN group were maintained at 18 to 21°C. Physiological parameters were recorded 4 times a day (0900, 1300, 1700, and 2100 h) and blood samples were collected on d 1 and 7 of heat treatment. Plasma samples and red blood cell lysates were assayed for oxidative stress biomarkers. The thermal treatments were then reversed and the above measures repeated. All measured physiological parameters were elevated (P < 0.001) by thermal treatment. Respiration rate was lower during HS in sheep supplemented with antioxidants as indicated by a diet × temperature × time interaction (P = 0.010). There was 13% decline (P = 0.014) in feed intake of the unsupplemented animals during HS whereas the same was maintained in sheep supplemented with high doses of antioxidants. Plasma reactive oxygen metabolites concentrations were reduced (114 vs. 85 units/dL; P < 0.005) while biological antioxidant potential tended to be increased (3,688 vs. 3,985 μmol/L; P = 0.070) in heat stressed sheep supplemented with antioxidants. The oxidative stress index was 30% lower (P < 0.001) in supplemented sheep (2.16 ± 0.06 arbitrary units

  12. The colorants, antioxidants, and toxicants from nonenzymatic browning reactions and the impacts of dietary polyphenols on their thermal formation.

    PubMed

    Zhang, Xinchen; Tao, Ningping; Wang, Xichang; Chen, Feng; Wang, Mingfu

    2015-02-01

    Nonenzymatic browning reactions proceed with the starting reactants of sugar and/or protein during thermal processing and storage of food. In addition to food color formation, the process also contributes to the loss of essential nutrients, generation of beneficial antioxidants, and production of toxicants, including 5-hydroxymethylfurfural (5-HMF), reactive carbonyl species, advanced glycation end products (AGEs), and heterocyclic amines (HAs). Recent research has demonstrated that dietary polyphenols can actively participate in nonenzymatic browning reactions, contributing to the generation of new colorants and antioxidants. More importantly, polyphenol addition has been found to be an effective approach to mitigate heat-induced formation of toxicants, mainly through inhibiting oxidative pathways and trapping reactive intermediates. In the matrix of polyphenol-fortified foods, a complex array of chemical interactions happen among polyphenols, traditional nutritional components, and neo-formed compounds they are thermally converted to. These reactions play a significant role in the colorants, antioxidants as well as toxicants production. Our findings support the potential of dietary polyphenols for increasing the antioxidant content and for reducing the level of toxicants when they participate in nonenzymatic browning reactions in fortified food products. PMID:25468403

  13. Osteocyte-derived RANKL is a critical mediator of the increased bone resorption caused by dietary calcium deficiency

    PubMed Central

    Xiong, Jinhu; Piemontese, Marilina; Thostenson, Jeff D.; Weinstein, Robert S.; Manolagas, Stavros C.; O’Brien, Charles A.

    2014-01-01

    Parathyroid hormone (PTH) excess stimulates bone resorption. This effect is associated with increased expression of the osteoclastogenic cytokine receptor activator of nuclear factor кB ligand (RANKL) in bone. However, several different cell types, including bone marrow stromal cells, osteocytes, and T lymphocytes, express both RANKL and the PTH receptor and it is unclear whether RANKL expression by any of these cell types is required for PTH-induced bone loss. Here we have used mice lacking the RANKL gene in osteocytes to determine whether RANKL produced by this cell type is required for the bone loss caused by secondary hyperparathyroidism induced by dietary calcium deficiency in adult mice. Thirty days of dietary calcium deficiency caused bone loss in control mice, but this effect was blunted in mice lacking RANKL in osteocytes. The increase in RANKL expression in bone and the increase in osteoclast number caused by dietary calcium deficiency were also blunted in mice lacking RANKL in osteocytes. These results demonstrate that RANKL produced by osteocytes contributes to the increased bone resorption and the bone loss caused by secondary hyperparathyroidism, strengthening the evidence that osteocytes are an important target cell for hormonal control of bone remodeling. PMID:24933342

  14. Iron deficiency is uncommon among lactating women in urban Nepal, despite a high risk of inadequate dietary iron intake.

    PubMed

    Henjum, Sigrun; Manger, Mari; Skeie, Eli; Ulak, Manjeswori; Thorne-Lyman, Andrew L; Chandyo, Ram; Shrestha, Prakash S; Locks, Lindsey; Ulvik, Rune J; Fawzi, Wafaie W; Strand, Tor A

    2014-07-14

    The main objective of the present study was to examine the association between dietary Fe intake and dietary predictors of Fe status and Hb concentration among lactating women in Bhaktapur, Nepal. We included 500 randomly selected lactating women in a cross-sectional survey. Dietary information was obtained through three interactive 24 h recall interviews including personal recipes. Concentrations of Hb and plasma ferritin and soluble transferrin receptors were measured. The daily median Fe intake from food was 17·5 mg, and 70% of the women were found to be at the risk of inadequate dietary Fe intake. Approximately 90% of the women had taken Fe supplements in pregnancy. The prevalence of anaemia was 20% (Hb levels < 123 g/l) and that of Fe deficiency was 5% (plasma ferritin levels < 15 μg/l). In multiple regression analyses, there was a weak positive association between dietary Fe intake and body Fe (β 0·03, 95% CI 0·014, 0·045). Among the women with children aged < 6 months, but not those with older infants, intake of Fe supplements in pregnancy for at least 6 months was positively associated with body Fe (P for interaction < 0·01). Due to a relatively high dietary intake of non-haem Fe combined with low bioavailability, a high proportion of the women in the present study were at the risk of inadequate intake of Fe. The low prevalence of anaemia and Fe deficiency may be explained by the majority of the women consuming Fe supplements in pregnancy. PMID:24708993

  15. Simultaneous Activation of Nrf2 and Elevation of Dietary and Endogenous Antioxidant Chemicals for Cancer Prevention in Humans.

    PubMed

    Prasad, Kedar N

    2016-01-01

    Despite extensive studies in cancer prevention, the incidence of cancer is increasing. We review studies that have identified several biochemical and genetic defects as well as potential carcinogens in the diet, environmental factors, and lifestyle-related habits. Two of the biochemical abnormalities increased oxidative stress and chronic inflammation, and chronic exposure to carcinogens and mutagens play a significant role in the initiation of multistage carcinogenesis. Therefore, attenuation of these biochemical defects may be useful in reducing the incidence of cancer. Activation of the transcriptional factor called nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which enhances the levels of antioxidant enzymes and phase-2-detoxifying enzymes by complex mechanisms, may be one of the ways to reduce oxidative stress and chronic inflammation. Antioxidant enzymes destroy free radicals by catalysis, whereas phase-2-detoxifying enzymes remove potential carcinogens by converting them to harmless compounds for elimination from the body. However, increasing the levels of antioxidant enzymes by activating Nrf2 may not be sufficient to decrease oxidative stress and chronic inflammation optimally, because antioxidant chemicals, which are decreased in a high oxidative environment, must also be elevated. This review discusses the regulation of activation of Nrf2 and proposes a hypothesis that an elevation of the levels of antioxidant enzymes and dietary and endogenous antioxidant chemicals simultaneously may reduce the incidence of cancer by decreasing oxidative stress and chronic inflammation. The levels of antioxidant chemicals can be increased by supplementation, but increasing the levels of antioxidant enzymes requires activation of Nrf2 by reactive oxygen species (ROS)-dependent and-independent mechanisms. Several phytochemicals and antioxidant chemicals that activate Nrf2 have been identified. This review also describes clinical studies on antioxidants in cancer

  16. Dietary antioxidants and flight exercise in female birds affect allocation of nutrients to eggs: how carry-over effects work.

    PubMed

    Skrip, Megan M; Seeram, Navindra P; Yuan, Tao; Ma, Hang; McWilliams, Scott R

    2016-09-01

    Physiological challenges during one part of the annual cycle can carry over and affect performance at a subsequent phase, and antioxidants could be one mediator of trade-offs between phases. We performed a controlled experiment with zebra finches to examine how songbirds use nutrition to manage trade-offs in antioxidant allocation between endurance flight and subsequent reproduction. Our treatment groups included (1) a non-supplemented, non-exercised group (control group) fed a standard diet with no exercise beyond that experienced during normal activity in an aviary; (2) a supplemented non-exercised group fed a water- and lipid-soluble antioxidant-supplemented diet with no exercise; (3) a non-supplemented exercised group fed a standard diet and trained to perform daily endurance flight for 6 weeks; and (4) a supplemented exercised group fed an antioxidant-supplemented diet and trained to perform daily flight for 6 weeks. After flight training, birds were paired within treatment groups for breeding. We analyzed eggs for lutein and vitamin E concentrations and the plasma of parents throughout the experiment for non-enzymatic antioxidant capacity and oxidative damage. Exercised birds had higher oxidative damage levels than non-exercised birds after flight training, despite supplementation with dietary antioxidants. Supplementation with water-soluble antioxidants decreased the deposition of lipid-soluble antioxidants into eggs and decreased yolk size. Flight exercise also lowered deposition of lutein, but not vitamin E, to eggs. These findings have important implications for future studies of wild birds during migration and other oxidative challenges. PMID:27582563

  17. Dietary vitamin D3 deficiency alters intestinal mucosal defense and increases susceptibility to Citrobacter rodentium-induced colitis.

    PubMed

    Ryz, Natasha R; Lochner, Arion; Bhullar, Kirandeep; Ma, Caixia; Huang, Tina; Bhinder, Ganive; Bosman, Else; Wu, Xiujuan; Innis, Sheila M; Jacobson, Kevan; Vallance, Bruce A

    2015-11-01

    Vitamin D deficiency affects more that 1 billion people worldwide. Although thought to increase risk of bacterial infections, the importance of vitamin D on host defense against intestinal bacterial pathogens is currently unclear since injection of the active form of vitamin D, 1,25(OH)2D3, increased susceptibility to the enteric bacterial pathogen Citrobacter rodentium by suppressing key immune/inflammatory factors. To further characterize the role of vitamin D during bacteria-induced colitis, we fed weanling mice either vitamin D3-deficient or vitamin D3-sufficient diets for 5 wk and then challenged them with C. rodentium. Vitamin D3-deficient mice lost significantly more body weight, carried higher C. rodentium burdens, and developed worsened histological damage. Vitamin D3-deficient mice also suffered greater bacterial translocation to extra-intestinal tissues, including mesenteric lymph nodes, spleen, and liver. Intestinal tissues of infected vitamin D3-deficient mice displayed increased inflammatory cell infiltrates as well as significantly higher gene transcript levels of inflammatory mediators TNF-α, IL-1β, IL-6, TGF-β, IL-17A, and IL-17F as well as the antimicrobial peptide REG3γ. Notably, these exaggerated inflammatory responses accelerated the loss of commensal microbes and were associated with an impaired ability to detoxify bacterial lipopolysaccharide. Overall, these studies show that dietary-induced vitamin D deficiency exacerbates intestinal inflammatory responses to infection, also impairing host defense. PMID:26336925

  18. Repletion of copper-deficient rats with dietary copper restores duodenal hephaestin protein and iron absorption.

    PubMed

    Reeves, Philip G; Demars, Lana C S

    2005-05-01

    Copper (Cu) deficiency in rats reduces the relative concentration of duodenal hephaestin (Hp), reduces iron (Fe) absorption, and causes anemia. An experiment was conducted to determine whether these effects could be reversed by dietary Cu repletion. Five groups of eight weanling male rats each were used. Group 1 was fed a Cu-adequate diet (5.0 mg Cu/kg; CuA) and Group 2 was fed a Cu-deficient diet (0.25 mg Cu/kg; CuD) for 28 days. The rats were fed 1.0 g each of their respective diets labeled with 59Fe (37 kBq/g), and the amount of label retained was measured one week later by whole-body-counting (WBC). Group 3 was fed a CuA diet and Groups 4 and 5 were fed a CuD diet for 28 days. Group 5 was then fed the CuA diet for another week while Groups 3 and 4 continued on their previous regimens. Rats in Groups 3, 4, and 5 were fed 1.0 g of diet labeled with 59Fe, and the amount of label retained was measured by WBC one week later. Rats were killed and duodenal enterocytes isolated for Hp protein analysis, whole blood was analyzed for hematological parameters, and various organs for 59Fe content. CuD rats absorbed less (P<0.05) Fe than CuA rats, the relative amount of duodenal Hp was less (P<0.05) in CuD rats, and the CuD rats developed anemia. After the CuD rats had been repleted with Cu for one week, Fe retention rose to values even higher (P<0.05) than those in CuA rats. After two weeks, the relative amount of duodenal Hp was higher (P<0.05) than normal, and most signs of anemia were reversed. Liver 59Fe was elevated in CuD rats, but was restored to normal upon Cu repletion. These findings suggest a strong association between duodenal Hp abundance and Fe absorption in the CuD rat, and that reduced Fe absorption is an important factor in the cause of anemia. PMID:15855298

  19. Influence of Butyrate Loaded Clinoptilolite Dietary Supplementation on Growth Performance, Development of Intestine and Antioxidant Capacity in Broiler Chickens.

    PubMed

    Wu, Yanan; Zhou, Yanmin; Lu, Changhui; Ahmad, Hussain; Zhang, Hao; He, Jintian; Zhang, Lili; Wang, Tian

    2016-01-01

    The study was conducted to evaluate the effects of dietary butyrate loaded clinoptilolite (CLI-B) on growth performance, pancreatic digestive enzymes, intestinal development and histomorphology, as well as antioxidant capacity of serum and intestinal mucosal in chickens. Two hundred forty 1-day-old commercial Arbor Acres broilers were randomly assigned to 4 groups: CON group (fed basal diets), SB group (fed basal diet with 0.05% sodium butyrate), CLI group (fed basal diet with 1% clinoptilolite), and CLI-B group (fed basal diet with 1% CLI-B). The results showed that supplementation of CLI-B significantly decreased (P < 0.05) feed conservation ratio at both 21 and 42 days of age, improved the pancreatic digestive enzymes activities (P < 0.05), increased the villus length and villus/crypt ratio (P < 0.05), and decreased the crypt depth of intestine (P < 0.05) as compared to the other experimental groups. Furthermore, the CLI-B environment improved the antioxidant capacity by increasing the antioxidant enzyme activities (P < 0.05) in intestine mucosal, and decreasing the NO content and iNOS activity (P < 0.05) in serum. In addition, CLI-B supplementation had improved the development of intestine and antioxidant capacity of broilers than supplementation with either clinoptilolite or butyrate sodium alone. In conclusion, 1% CLI-B supplementation improved the health status, intestine development and antioxidant capacity in broiler chickens, thus appearing as an important feed additive for the poultry industry. PMID:27104860

  20. Influence of Butyrate Loaded Clinoptilolite Dietary Supplementation on Growth Performance, Development of Intestine and Antioxidant Capacity in Broiler Chickens

    PubMed Central

    Wu, Yanan; Zhou, Yanmin; Lu, Changhui; Ahmad, Hussain; Zhang, Hao; He, Jintian; Zhang, Lili; Wang, Tian

    2016-01-01

    The study was conducted to evaluate the effects of dietary butyrate loaded clinoptilolite (CLI-B) on growth performance, pancreatic digestive enzymes, intestinal development and histomorphology, as well as antioxidant capacity of serum and intestinal mucosal in chickens. Two hundred forty 1-day-old commercial Arbor Acres broilers were randomly assigned to 4 groups: CON group (fed basal diets), SB group (fed basal diet with 0.05% sodium butyrate), CLI group (fed basal diet with 1% clinoptilolite), and CLI-B group (fed basal diet with 1% CLI-B). The results showed that supplementation of CLI-B significantly decreased (P < 0.05) feed conservation ratio at both 21 and 42 days of age, improved the pancreatic digestive enzymes activities (P < 0.05), increased the villus length and villus/crypt ratio (P < 0.05), and decreased the crypt depth of intestine (P < 0.05) as compared to the other experimental groups. Furthermore, the CLI-B environment improved the antioxidant capacity by increasing the antioxidant enzyme activities (P < 0.05) in intestine mucosal, and decreasing the NO content and iNOS activity (P < 0.05) in serum. In addition, CLI-B supplementation had improved the development of intestine and antioxidant capacity of broilers than supplementation with either clinoptilolite or butyrate sodium alone. In conclusion, 1% CLI-B supplementation improved the health status, intestine development and antioxidant capacity in broiler chickens, thus appearing as an important feed additive for the poultry industry. PMID:27104860

  1. Dietary zinc deficiency fuels esophageal cancer development by inducing a distinct inflammatory signature

    PubMed Central

    Taccioli, C; Chen, H; Jiang, Y; Liu, XP; Huang, K; Smalley, KJ; Farber, JL; Croce, CM; Fong, LY

    2011-01-01

    Chronic inflammation is implicated in the pathogenesis of esophageal squamous cell cancer (ESCC). The causes of inflammation in ESCC, however, are undefined. Dietary zinc-deficiency (ZD) increases the risk of ESCC. We have previously shown that short-term ZD (6 weeks) in rats induces overexpression of the proinflammatory mediators S100a8 and S100a9 in the esophageal mucosa with accompanying esophageal epithelial hyperplasia. Here we report that prolonged ZD (21 weeks) in rats amplified this inflammation that when combined with non-carcinogenic low doses of the environmental carcinogen N-nitrosomethylbenzylamine (NMBA) elicited a 66.7% (16/24) incidence of ESCC. With zinc-sufficiency NMBA produced no cancers (0/21) (P<0.001). At tumor endpoint, the neoplastic ZD esophagus as compared with zinc-sufficient esophagus had an inflammatory gene signature with upregulation of numerous cancer-related inflammation genes (CXC and CC chemokines, chemokine receptors, cytokines, and Cox-2) in addition to S100a8 and S100a9. This signature was already activated in the earlier dysplastic stage. Additionally, time-course bioinformatics analysis of expression profiles at tumor endpoint and prior to NMBA exposure revealed that this sustained inflammation was due to ZD rather than carcinogen exposure. Importantly, zinc replenishment reversed this inflammatory signature at both the dysplastic and neoplastic stages of ESCC development, and prevented cancer formation. Thus, the molecular definition of ZD-induced inflammation as a critical factor in ESCC development has important clinical implications with regard to development and prevention of this deadly disease. PMID:22179833

  2. Effect of dietary vanadium and vitamin C on egg quality and antioxidant status in laying hens.

    PubMed

    Wang, J P; He, K R; Ding, X M; Luo, Y H; Bai, S P; Zeng, Q F; Su, Z W; Xuan, Y; Zhang, K Y

    2016-06-01

    This study assessed the effect of dietary vanadium (V) and vitamin C (VC) on production performance, egg quality and antioxidant status in laying hens. A total of 360 laying hens (31-week-old) were randomly allotted into a 3 × 3 factorial arrangement treatments (four replicates and 10 chicks per replicate) with three levels of dietary V (0, 5 and 10 mg/kg) and three levels of vitamin C (0, 50 and 100 mg/kg) for 12 weeks. The effect of V and VC did not alter egg production, egg weight, average daily feed intake and feed conversion ratio during 1-12 week. Albumen height and Haugh unit value were linearly decreased (p < 0.001) by addition of V, whereas the effect of 100 mg/kg VC was observed to counteract (p < 0.05) this effect in V-containing treatments during 1-12 week. Hens fed V-containing diet laid lighter (linear effect, p < 0.05) coloured eggs (higher lightness value, lower redness and yellowness value), and the VC exerted no influence on it during 1-12 week. The serum superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities, ability to inhibit hydroxyl radical, were significantly decreased, and the malondialdehyde (MDA) and V contents were increased (p < 0.05) by effect of V during 4, 8 and 12 week. The effect of VC alone and the interactive effect between VC and V were shown to increase serum (p < 0.05) SOD activity in 4 week and decrease MAD levels in 12 week. The result indicate that V decreased the egg quality and caused the oxidative stress at level of 5 mg/kg and 10 mg/kg, and the addition of 100 mg/kg vitamin C can alleviate its egg quality reduction effect and can mitigate the oxidative stress to some extent. PMID:26259765

  3. Dietary antioxidant intake and its association with cognitive function in an ethnically diverse sample of US adults

    PubMed Central

    Beydoun, M. A.; Fanelli Kuczmarski, M.; Kitner-Triolo, M. H.; Beydoun, H. A.; Kaufman, J. S.; Mason, M. A.; Evans, M. K.; Zonderman, A. B.

    2015-01-01

    Background Dietary antioxidants can inhibit reactions accompanying neurodegeneration, and thus prevent cognitive impairment. We describe associations of dietary antioxidants with cognitive function in a large biracial population, while testing moderation by sex, race and age and mediation by depressive symptoms. Methods This was a cross-sectional analysis of 1,274 adults (541 men and 733 women) aged 30–64y at baseline (Mean±SD: 47.5±9.3) in the Healthy Aging in Neighborhoods of Diversity Across the Lifespan Study (HANDLS), Baltimore city, MD. Cognitive performance in the domains of memory, language/verbal, attention, spatial, psychomotor speed, executive function, and global mental status were assessed. The 20-item Center for Epidemiologic Studies Depression Scale (CES-D) scale was used to measure depressive symptoms. Dietary intake was assessed with two 24-hr recalls, estimating daily consumption of total carotenoids, vitamins A, C and E, per 1,000 kcal. Results Among key findings, one standard deviation (SD~2.02 mg/1,000kcal) higher vitamin E was associated with a higher score on verbal memory, immediate recall, (β=+0.64±0.19, p=0.001) and better language/verbal fluency performance (β=+0.53±0.16, p=0.001), particularly among the younger age group. Women with higher vitamin E intake (β=+0.68±0.21, p=0.001) had better performance on a psychomotor speed test. The vitamin E-verbal memory association was partially mediated by depressive symptoms (proportion mediated=13–16%). Conclusions In sum, future cohort studies and dietary interventions should focus on associations of dietary vitamin E with cognitive decline, specifically for domains of verbal memory, verbal fluency and psychomotor speed. PMID:25478706

  4. Effects of dietary pyrroloquinoline quinone disodium on growth performance, carcass yield and antioxidant status of broiler chicks.

    PubMed

    Samuel, K G; Zhang, H J; Wang, J; Wu, S G; Yue, H Y; Sun, L L; Qi, G H

    2015-03-01

    Pyrroloquinoline quinone (PQQ), a putative essential nutrient and redox modulator in microorganisms, cell and animal models, has been recognized as a growth promoter in rodents. Growth performance, carcass yield and antioxidant status were evaluated on broiler chickens fed different levels of PQQ disodium (PQQ.Na2). A total of 784 day-old male Arbor Acres (AA) broilers were randomly allotted into seven dietary groups: negative control group (NC) fed a basal diet without virginiamycin (VIR) or PQQ.Na2; a positive control group (PC) fed a diet with 15 mg of VIR/kg diet; and PQQ.Na2 groups fed with 0.05, 0.10, 0.20, 0.40 or 0.80 mg PQQ.Na2/kg diet. Each treatment contained eight replicates with 14 birds each. The feeding trial lasted for 6 weeks. The results showed that chicks fed 0.2 mg PQQ.Na2/kg diet significantly improved growth performance comparable to those in PC group, and the feed efficiency enhancement effects of dietary PQQ.Na2 was more apparent in grower phase. Dietary addition of PQQ.Na2 had the potential to stimulate immune organs development, and low level dietary addition (<0.1 mg/kg) increased plasma lysozyme level. Broilers fed 0.2 mg PQQ.Na2/kg diet gained more carcasses at day 42, and had lower lipid peroxide malondialdehyde content and higher total antioxidant power in plasma. The results indicated that dietary PQQ.Na2 (0.2 mg/kg diet) had the potential to act as a growth promoter comparable to antibiotic in broiler chicks. PMID:25229409

  5. Pre-weaning dietary iron deficiency impairs spatial learning and memory in the cognitive holeboard task in piglets

    PubMed Central

    Antonides, Alexandra; Schoonderwoerd, Anne C.; Scholz, Gabi; Berg, Brian M.; Nordquist, Rebecca E.; van der Staay, Franz Josef

    2015-01-01

    Iron deficiency is the most common nutritional deficiency in humans, affecting more than two billion people worldwide. Early-life iron deficiency can lead to irreversible deficits in learning and memory. The pig represents a promising model animal for studying such deficits, because of its similarities to humans during early development. We investigated the effects of pre-weaning dietary iron deficiency in piglets on growth, blood parameters, cognitive performance, and brain histology later in life. Four to six days after birth, 10 male sibling pairs of piglets were taken from 10 different sows. One piglet of each pair was given a 200 mg iron dextran injection and fed a control milk diet for 28 days (88 mg Fe/kg), whereas the other sibling was given a saline injection and fed an iron deficient (ID) milk diet (21 mg Fe/kg). Due to severely retarded growth of two of the ID piglets, only eight ID piglets were tested behaviorally. After dietary treatment, all piglets were fed a balanced commercial pig diet (190–240 mg Fe/kg). Starting at 7.5 weeks of age, piglets were tested in a spatial cognitive holeboard task. In this task, 4 of 16 holes contain a hidden food reward, allowing measurement of working (short-term) memory and reference (long-term) memory (RM) simultaneously. All piglets received 40–60 acquisition trials, followed by a 16-trial reversal phase. ID piglets showed permanently retarded growth and a strong decrease in blood iron parameters during dietary treatment. After treatment, ID piglets' blood iron values restored to normal levels. In the holeboard task, ID piglets showed impaired RM learning during acquisition and reversal. Iron staining at necropsy at 12 weeks of age showed that ID piglets had fewer iron-containing cells in hippocampal regions CA1 and dentate gyrus (DG). The number of iron-containing cells in CA3 correlated positively with the average RM score during acquisition across all animals. Our results support the hypothesis that early

  6. Dietary supplemented and meat-added antioxidants effect on the lipid oxidative stability of refrigerated and frozen cooked chicken meat.

    PubMed

    Avila-Ramos, F; Pro-Martínez, A; Sosa-Montes, E; Cuca-García, J Manuel; Becerril-Pérez, C; Figueroa-Velasco, J L; Ruiz-Feria, C A; Hernández-Cázares, A S; Narciso-Gaytán, C

    2013-01-01

    The oxidation of fatty acids decreases the quality and shelf-life of meats. To reduce this process, dietary supplemented and meat-added antioxidants were evaluated on the lipid oxidative stability of cooked chicken meat. Broilers were fed 2 levels of vitamin E (10 or 100 mg•kg(-1) of feed; VE-10 and VE-100, respectively) or oregano essential oil (100 mg•kg(-1) of feed; OR-100). Additionally, honey (3%) or butylated hydroxytoluene (0.02%; BHT) were added to chicken meat from the control treatment (VE-10). Breast meat was ground, formed into patties, and cooked on electric grills until it reached an internal temperature of 74°C. Cooked meat was cooled at room temperature, packaged, and stored under refrigeration for 9 d (4°C) or frozen for 45 d (-20°C). The 2-thiobarbituric acid reactive substance test was used to quantify malondialdehyde (MDA) values in the meat. Data were analyzed using a repeated measures design, 5 treatments with 12 replications each, and the least squares means were compared with 4 orthogonal contrasts. The results showed that the meat of the VE-10 treatment had higher values of MDA (P ≤ 0.05) compared with the other antioxidant treatments in all the storage days. There were no differences (P ≥ 0.05) in MDA values between the dietary supplemented and meat-added antioxidant treatments. The meat added with honey had lower MDA values than the one with BHT (P ≤ 0.05). Meat of the VE-100 treatment showed lower MDA values than the one of OR-100 (P ≤ 0.05) in most storage days. In conclusion, supplementation of 10 mg•kg(-1) of vitamin E to the diet resulted in a higher development of lipid oxidation in the meat. Both dietary supplemented or meat-added antioxidants had similar effects on the lipid oxidative stability. The addition of honey maintained longer the lipid oxidative stability of the meat than BHT. Finally, dietary supplementation of vitamin E at the same level of oregano oil, 100 mg•kg(-1), resulted in a higher antioxidant

  7. The Cinnamon-derived Dietary Factor Cinnamic Aldehyde Activates the Nrf2-dependent Antioxidant Response in Human Epithelial Colon Cells

    PubMed Central

    Wondrak, Georg T.; Villeneuve, Nicole F.; Lamore, Sarah D.; Bause, Alexandra S.; Jiang, Tao; Zhang, Donna D.

    2011-01-01

    Colorectal cancer (CRC) is a major cause of tumor-related morbidity and mortality worldwide. Recent research suggests that pharmacological intervention using dietary factors that activate the redox sensitive Nrf2/Keap1-ARE signaling pathway may represent a promising strategy for chemoprevention of human cancer including CRC. In our search for dietary Nrf2 activators with potential chemopreventive activity targeting CRC, we have focused our studies on trans-cinnamic aldehyde (cinnamaldeyde, CA), the key flavor compound in cinnamon essential oil. Here we demonstrate that CA and an ethanolic extract (CE) prepared from Cinnamomum cassia bark, standardized for CA content by GC-MS analysis, display equipotent activity as inducers of Nrf2 transcriptional activity. In human colon cancer cells (HCT116, HT29) and non-immortalized primary fetal colon cells (FHC), CA- and CE-treatment upregulated cellular protein levels of Nrf2 and established Nrf2 targets involved in the antioxidant response including heme oxygenase 1 (HO-1) and γ-glutamylcysteine synthetase (γ-GCS, catalytic subunit). CA- and CE-pretreatment strongly upregulated cellular glutathione levels and protected HCT116 cells against hydrogen peroxide-induced genotoxicity and arsenic-induced oxidative insult. Taken together our data demonstrate that the cinnamon-derived food factor CA is a potent activator of the Nrf2-orchestrated antioxidant response in cultured human epithelial colon cells. CA may therefore represent an underappreciated chemopreventive dietary factor targeting colorectal carcinogenesis. PMID:20657484

  8. Evaluation of tolerable levels of dietary quercetin for exerting its antioxidative effect in high cholesterol-fed rats.

    PubMed

    Azuma, Keiko; Ippoushi, Katsunari; Terao, Junji

    2010-04-01

    The tolerable level of dietary quercetin for exerting its antioxidative effect was evaluated in high cholesterol-fed rats, using quercetin-containing diets (31-1260 mg quercetin/kg body weight/day) and onion diets (19-94 mg quercetin aglycone equivalent/kg body weight/day), from the viewpoint of a safety assessment. After feeding for 4 weeks, the urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) levels of the quercetin-containing diet groups fed more than 157 mg quercetin/kg body weight/day were higher than the group fed a quercetin-free diet, although the plasma quercetin metabolite levels and plasma antioxidative activity were elevated depending on the amounts of quercetin or onion diet intake. No significant effect on body weight gain by quercetin-containing diets or onion diets was observed. However, ratios of the liver and kidney weights to the body weight were significantly increased in the quercetin-containing diet groups fed more than 314 mg and 157 mg quercetin/kg body weight/day, respectively, and in the onion diet groups fed more than 47 mg quercetin aglycone equivalent/kg body weight/day. These results indicated that the tolerable level for dietary quercetin for exerting its antioxidative effect was between 126 and 157 mg/kg/day for the quercetin diet and between 19 and 34 mg/kg/day for the onion diet. PMID:20138950

  9. Regulation of dietary glutamine on the growth, intestinal function, immunity and antioxidant capacity of sea cucumber Apostichopus japonicus (Selenka).

    PubMed

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Lan, Ying; Ye, Zhi; Wen, Bin

    2016-03-01

    The present study examined the effects of dietary glutamine (Gln) on the growth, intestinal function, immunity and antioxidant capacity of sea cucumber Apostichopus japonicus (Selenka). The specific growth rate, intestinal morphology, activity of digestive enzymes, activity and gene expression of lysozyme and antioxidative enzymes of the sea cucumbers were determined after feeding 5 experimental diets with additions of increasing levels of Gln (at 0%, 0.4%, 0.8%,1.2% and 1.6%, respectively) for 60 days. We discovered that the specific growth rate of the sea cucumbers in 0.4%, 0.8% and 1.2% groups increased 35.3%, 27.3% and 24.1%, respectively, compared to the control (0%) group with significant differences. Dietary Gln can improve the intestinal function of the sea cucumbers by increasing the activities of trypsin and lipase in the intestine and the villus height and villus density of the intestine, eventhough significant differences were not observed in some groups. 0.4%-0.8% of dietary Gln can significantly increase the activity of lysozyme (LSZ) in the coelomic fluid of the sea cucumbers. Significant improvements were observed on the SOD activity in coelomic fluid of the sea cucumbers fed diets supplemented with 0.4%-1.6% of Gln compared to the control group. Similarly, the CAT activity in coelomic fluid of the sea cucumbers significantly increased in 0.8%, 1.2% and 1.6% groups compared to the control and 0.4% groups. Change pattern of the activity of CAT was consistent with the change pattern of the expression of CAT gene, indicating the dietary Gln can up-regulate the expression of CAT gene and consequently promote the secretion of CAT. However, the down-regulation of the expression of SOD gene by dietary Gln were observed in almost all of the treatment groups, which is in contrast with the change pattern of the activity of SOD, indicating the negative feedback regulation of the secretion of SOD on the expression of SOD gene. In summary, the suitable

  10. Effects of Dietary Lycopene Supplementation on Plasma Lipid Profile, Lipid Peroxidation and Antioxidant Defense System in Feedlot Bamei Lamb.

    PubMed

    Jiang, Hongqin; Wang, Zhenzhen; Ma, Yong; Qu, Yanghua; Lu, Xiaonan; Luo, Hailing

    2015-07-01

    Lycopene, a red non-provitamin A carotenoid, mainly presenting in tomato and tomato byproducts, has the highest antioxidant activity among carotenoids because of its high number of conjugated double bonds. The objective of this study was to investigate the effect of lycopene supplementation in the diet on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot lamb. Twenty-eight Bamei male lambs (90 days old) were divided into four groups and fed a basal diet (LP0, 40:60 roughage: concentrate) or the basal diet supplemented with 50, 100, and 200 mg/kg lycopene. After 120 days of feeding, all lambs were slaughtered and sampled. Dietary lycopene supplementation significantly reduced the levels of plasma total cholesterol (p<0.05, linearly), total triglycerides (TG, p<0.05) and low-density lipoprotein cholesterol (LDL-C, p<0.05), as well as atherogenic index (p<0.001), whereas no change was observed in high-density lipoprotein cholesterol (p>0.05). The levels of TG (p<0.001) and LDL-C (p<0.001) were decreased with the feeding time extension, and both showed a linear trend (p<0.01). Malondialdehyde level in plasma and liver decreased linearly with the increase of lycopene inclusion levels (p<0.01). Dietary lycopene intake linearly increased the plasma antioxidant vitamin E level (p<0.001), total antioxidant capacity (T-AOC, p<0.05), and activities of catalase (CAT, p<0.01), glutathione peroxidase (GSH-Px, p<0.05) and superoxide dismutase (SOD, p<0.05). The plasma T-AOC and activities of GSH-Px and SOD decreased with the extension of the feeding time. In liver, dietary lycopene inclusion showed similar antioxidant effects with respect to activities of CAT (p<0.05, linearly) and SOD (p<0.001, linearly). Therefore, it was concluded that lycopene supplementation improved the antioxidant status of the lamb and optimized the plasma lipid profile, the dosage of 200 mg lycopene/kg feed might be desirable for growing lambs to prevent environment

  11. Effects of Dietary Lycopene Supplementation on Plasma Lipid Profile, Lipid Peroxidation and Antioxidant Defense System in Feedlot Bamei Lamb

    PubMed Central

    Jiang, Hongqin; Wang, Zhenzhen; Ma, Yong; Qu, Yanghua; Lu, Xiaonan; Luo, Hailing

    2015-01-01

    Lycopene, a red non-provitamin A carotenoid, mainly presenting in tomato and tomato byproducts, has the highest antioxidant activity among carotenoids because of its high number of conjugated double bonds. The objective of this study was to investigate the effect of lycopene supplementation in the diet on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot lamb. Twenty-eight Bamei male lambs (90 days old) were divided into four groups and fed a basal diet (LP0, 40:60 roughage: concentrate) or the basal diet supplemented with 50, 100, and 200 mg/kg lycopene. After 120 days of feeding, all lambs were slaughtered and sampled. Dietary lycopene supplementation significantly reduced the levels of plasma total cholesterol (p<0.05, linearly), total triglycerides (TG, p<0.05) and low-density lipoprotein cholesterol (LDL-C, p<0.05), as well as atherogenic index (p<0.001), whereas no change was observed in high-density lipoprotein cholesterol (p>0.05). The levels of TG (p<0.001) and LDL-C (p<0.001) were decreased with the feeding time extension, and both showed a linear trend (p<0.01). Malondialdehyde level in plasma and liver decreased linearly with the increase of lycopene inclusion levels (p<0.01). Dietary lycopene intake linearly increased the plasma antioxidant vitamin E level (p<0.001), total antioxidant capacity (T-AOC, p<0.05), and activities of catalase (CAT, p<0.01), glutathione peroxidase (GSH-Px, p<0.05) and superoxide dismutase (SOD, p<0.05). The plasma T-AOC and activities of GSH-Px and SOD decreased with the extension of the feeding time. In liver, dietary lycopene inclusion showed similar antioxidant effects with respect to activities of CAT (p<0.05, linearly) and SOD (p<0.001, linearly). Therefore, it was concluded that lycopene supplementation improved the antioxidant status of the lamb and optimized the plasma lipid profile, the dosage of 200 mg lycopene/kg feed might be desirable for growing lambs to prevent environment

  12. Vitamin A-Deficient Diet Accelerated Atherogenesis in Apolipoprotein E−/− Mice and Dietary β-Carotene Prevents This Consequence

    PubMed Central

    Relevy, Noa Zolberg; Harats, Dror; Harari, Ayelet; Ben-Amotz, Ami; Bitzur, Rafael; Rühl, Ralph; Shaish, Aviv

    2015-01-01

    Vitamin A is involved in regulation of glucose concentrations, lipid metabolism, and inflammation, which are major risk factors for atherogenesis. However, the effect of vitamin A deficiency on atherogenesis has not been investigated. Therefore, the objective of the current study was to examine whether vitamin A deficiency accelerates atherogenesis in apolipoprotein E-deficient mice (apoE−/−). ApoE−/− mice were allocated into the following groups: control, fed vitamin A-containing chow diet; BC, fed chow diet fortified with Dunaliella powder containing βc isomers; VAD, fed vitamin A-deficient diet; and VAD-BC group, fed vitamin A-deficient diet fortified with a Dunaliella powder. Following 15 weeks of treatment, liver retinol concentration had decreased significantly in the VAD group to about 30% that of control group. Vitamin A-deficient diet significantly increased both plasma cholesterol concentrations and the atherosclerotic lesion area at the aortic sinus (+61%) compared to the control group. Dietary βc fortification inhibited the elevation in plasma cholesterol and retarded atherogenesis in mice fed the vitamin A-deficient diet. The results imply that dietary vitamin A deficiency should be examined as a risk factor for atherosclerosis and that dietary βc, as a sole source of retinoids, can compensate for vitamin A deficiency. PMID:25802864

  13. Dietary myo-inositol modulates immunity through antioxidant activity and the Nrf2 and E2F4/cyclin signalling factors in the head kidney and spleen following infection of juvenile fish with Aeromonas hydrophila.

    PubMed

    Jiang, Wei-Dan; Hu, Kai; Liu, Yang; Jiang, Jun; Wu, Pei; Zhao, Juan; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2016-02-01

    This study was conducted to investigate the effects of the dietary vitamin myo-inositol (MI), on the immunity and structural integrity of the head kidney and spleen following infection of fish with the major freshwater pathogen bacterial Aeromonas hydrophila. The results demonstrated for the first time that MI deficiency depressed the lysozyme and acid phosphatase (ACP) activities and the complement 3 (C3) and C4 contents in the head kidney and spleen compared with the optimal MI levels, indicating that MI deficiency decreased the immunity of these important fish immune organs. The depression in immunity due to MI deficiency was partially related to oxidative damage [indicated by increases in the malondialdehyde (MDA) and protein carbonyl (PC) contents] that was in turn partially due to the decreased glutathione (GSH) content and the disturbances in antioxidant enzyme activities [total superoxide dismutase (T-SOD), CuZnSOD, MnSOD, catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR)]. MI deficiency inhibited the antioxidant-related gene transcription [CuZnSOD, MnSOD, CAT, GPx1a, GR and NF-E2-related factor 2 (Nrf2)] in the head kidney and spleen following infection of the fish with A. hydrophila. The oxidative damage due to MI deficiency also resulted in the inhibition of proliferation-associated signalling (cyclin D1, cyclin A, cyclin E and E2F4). Thus, MI deficiency partially inhibited damage repair. Excessive MI exhibited negative effects that were similar to MI deficiency, whereas the optimal MI content reversed those indicators. These observations indicated that an MI deficiency or excess could cause depression of the immune system that might be partially related to oxidative damage, antioxidant disturbances, and the inhibition of the proliferation-associated signalling in the head kidney and spleen following infection of fish with A. hydrophila. Finally, the optimal MI levels were 660.7 (based on ACP) and 736.8 mg kg(-1) diet (based

  14. Effect of Dietary n − 3 Polyunsaturated Fatty Acids on Oxidant/Antioxidant Status in Macrosomic Offspring of Diabetic Rats

    PubMed Central

    Guermouche, B.; Soulimane-Mokhtari, N. A.; Bouanane, S.; Merzouk, H.; Merzouk, S.; Narce, M.

    2014-01-01

    The aim of this work was to determine the effect of dietary n − 3 PUFA on oxidant/antioxidant status, in vitro very low and low density lipoprotein (VLDL-LDL), and VLDL-LDL-fatty acid composition in macrosomic pups of diabetic mothers. We hypothesized that n − 3 PUFA would improve oxidative stress in macrosomia. Diabetes was induced in female Wistar rats fed with the ISIO diet (control) or with the EPAX diet (enriched in n − 3 PUFAs), by streptozotocin. The macrosomic pups were killed at birth (day 0) and at adulthood (day 90). Lipid parameters and VLDL-LDL-fatty acid composition were investigated. The oxidant/antioxidant status was determined by measuring plasma oxygen radical absorbance capacity (ORAC), hydroperoxides, carbonyl proteins, and VLDL-LDL oxidation. Macrosomic rats of ISIO fed diabetic mothers showed an increase in plasma and VLDL-LDL-triglycerides and VLDL-LDL-cholesterol levels and altered VLDL-LDL-fatty acid composition. Plasma ORAC was low with high hydroperoxide and carbonyl protein levels. The in vitro oxidizability of VLDL-LDL was enhanced in these macrosomic rats. The EPAX diet corrected lipid parameters and improved oxidant/antioxidant status but increased VLDL-LDL susceptibility to oxidation. Macrosomia is associated with lipid abnormalities and oxidative stress. n − 3 PUFA exerts favorable effects on lipid metabolism and on the oxidant/antioxidant status of macrosomic rats. However, there are no evident effects on VLDL-LDL oxidation. PMID:24987679

  15. Dietary Total Antioxidant Capacity is Inversely Associated with Prostate Cancer Aggressiveness in a Population-Based Study.

    PubMed

    Vance, Terrence M; Wang, Ying; Su, L Joseph; Fontham, Elizabeth T H; Steck, Susan E; Arab, Lenore; Bensen, Jeannette T; Mohler, James L; Chen, Ming-Hui; Chun, Ock K

    2016-01-01

    The purpose of this study was to determine the relationship between total antioxidant capacity (TAC) from diet and supplements and prostate cancer aggressiveness among 855 African Americans (AA) and 945 European Americans (EA) in the North Carolina-Louisiana Prostate Cancer Project (PCaP). Cases were classified as either high aggressive, low aggressive, or intermediate aggressive. TAC was calculated from the vitamin C equivalent antioxidant capacity of 42 antioxidants measured via food frequency questionnaire. EA reported greater dietary TAC from diet and supplements combined (P < 0.0001). In both minimally and fully adjusted logistic regression models, TAC from diet and supplements combined was associated with a reduced odds of high aggressive prostate cancer in all men, AA and EA: odds ratios for highest vs. lowest level (>1500 vs. <500 mg vitamin C equivalent/day): 0.31 [95% confidence interval (CI): 0.15, 0.67; P-trend < 0.01], 0.28 (95% CI: 0.08, 0.96; P-trend < 0.001), and 0.36 (95% CI: 0.15, 0.86; P-trend = 0.58), respectively. These associations did not appear to differ between AA and EA. These data suggest that greater intake of antioxidants is associated with less aggressive prostate cancer. Additional research is needed to confirm these results and determine the underlying mechanisms. PMID:26847416

  16. Effect of dietary creatine monohydrate supplementation on muscle lipid peroxidation and antioxidant capacity of transported broilers in summer.

    PubMed

    Wang, X F; Zhu, X D; Li, Y J; Liu, Y; Li, J L; Gao, F; Zhou, G H; Zhang, L

    2015-11-01

    This experiment was to evaluate the effect of dietary supplementation with creatine monohydrate (CMH) during the finishing period on the muscle lipid peroxidation and antioxidant capacity of broilers that experienced transport stress in summer. A total of 320 male Arbor Acres broilers (28 d in age) were randomly allotted to 3 dietary treatments including a basal control diet without additional CMH (160 birds), or with 600 (80 birds) or 1,200 mg/kg (80 birds) CMH for 14 d. On the morning of d 42, after an 8-h fast, the birds fed the basal diets were divided into 2 equal groups, and all birds in the 4 groups of 80 birds were transported according to the following protocols: 1) a 0.75-h transport of birds on basal diets (as a lower-stress control group), 2) a 3-h transport of birds on basal diets, 3) a 3-h transport of birds on 600 or 4) 1,200 mg/kg CMH supplementation diets. The results showed that the 3-h transport decreased the concentration of creatine (Cr) in both the pectoralis major (PM) and the tibialis anterior (TA) muscles, increased the concentration of phosphocreatine (PCr) and PCr/Cr ratio in PM muscle, and elevated the concentrations of thiobarbituric acid-reactive substances and the activities of total superoxide dismutase and glutathione peroxidase in both the PM and TA muscles of birds (P < 0.05). In addition, transport also upregulated mRNA expression of avian uncoupling protein and heat shock protein 70 in both the PM and TA muscles, as well as avian peroxisome proliferator-activated receptor γ coactivator-1α in the TA muscle (P < 0.05). Dietary supplementation with 1,200 mg/kg CMH increased the concentrations of Cr and PCr in PM muscle, and Cr in TA muscle than those in the 3-h transport group (P < 0.05). However, contrary to our hypothesis, dietary CMH did not alter the measured parameters in relation to muscle lipid peroxidation and antioxidant capacity affected by 3-h transport (P > 0.05). These results indicate that dietary CMH

  17. Dual Role of Selected Antioxidants Found in Dietary Supplements: Crossover between Anti- and Pro-oxidant Activities in the Presence of Copper

    PubMed Central

    Yin, Jun-Jie; Fu, Peter P.; Lutterodt, Herman; Zhou, Yu-Ting; Antholine, William E.; Wamer, Wayne

    2014-01-01

    Overproduction of reactive oxygen species (ROS) in vivo can result in damage associated with many aging-associated diseases. Defenses against ROS that have evolved include antioxidant enzymes, such as superoxide dismutases, peroxidases, and catalases, which can scavenge ROS. In addition, endogenous and dietary antioxidants play an important role in moderating damage associated with ROS. In this study, we use four common dietary antioxidants to demonstrate that, in the presence of copper (cupric sulfate and cupric gluconate) and physiologically relevant levels of hydrogen peroxide, these antioxidants can also act as pro-oxidants by producing hydroxyl radicals. Using electron spin resonance (ESR) spin trapping techniques, we demonstrate that the level of hydroxyl radical formation is a function of the pH of the medium and the relative amounts of antioxidant and copper. Based on the level of hydroxyl radical formation, the relative pro-oxidant potential of these antioxidants is: cysteine > ascorbate >EGCG > GSH. It has been reported that copper sequestered by protein ligands, as happens in vivo, loses its redox activity (diminishing/abolishing the formation of free radicals). However, in the presence of hydrogen peroxide, cysteine and GSH efficiently react with cupric sulfate sequestered with bovine serum albumin to generate hydroxyl radicals. Overall, the results demonstrate that, in the presence of copper endogenous and dietary antioxidants can also exhibit pro-oxidative activity. PMID:22339379

  18. Antihypertensive and antioxidant effects of dietary black sesame meal in pre-hypertensive humans

    PubMed Central

    2011-01-01

    Background It has been known that hypertension is an independent risk factor for cardiovascular disease (CVD). CVD is the major cause of morbidity and mortality in developed and developing countries. Elevation of blood pressure (BP) increases the adverse effect for cardiovascular outcomes. Prevention of increased BP plays a crucial role in a reduction of those outcomes, leading to a decrease in mortality. Therefore, the purpose of this study was to investigate the effects of dietary black sesame meal on BP and oxidative stress in individuals with prehypertension. Methods Twenty-two women and eight men (aged 49.8 ± 6.6 years) with prehypertension were randomly divided into two groups, 15 subjects per group. They ingested 2.52 g black sesame meal capsules or placebo capsules each day for 4 weeks. Blood samples were obtained after overnight fasting for measurement of plasma lipid, malondialdehyde (MDA) and vitamin E levels. Anthropometry, body composition and BP were measured before and after 4-week administration of black sesame meal or a placebo. Results The results showed that 4-week administration of black sesame meal significantly decreased systolic BP (129.3 ± 6.8 vs. 121.0 ± 9.0 mmHg, P < 0.05) and MDA level (1.8 ± 0.6 vs. 1.2 ± 0.6 μmol/L, P < 0.05), and increased vitamin E level (29.4 ± 6.0 vs. 38.2 ± 7.8 μmol/L, P < 0.01). In the black sesame meal group, the change in SBP tended to be positively related to the change in MDA (R = 0.50, P = 0.05), while the change in DBP was negatively related to the change in vitamin E (R = -0.55, P < 0.05). There were no correlations between changes in BP and oxidative stress in the control group. Conclusions These results suggest the possible antihypertensive effects of black sesame meal on improving antioxidant status and decreasing oxidant stress. These data may imply a beneficial effect of black sesame meal on prevention of CVD. PMID:21827664

  19. Hepatic lipase- and endothelial lipase-deficiency in mice promotes macrophage-to-feces RCT and HDL antioxidant properties.

    PubMed

    Escolà-Gil, Joan Carles; Chen, Xiangyu; Julve, Josep; Quesada, Helena; Santos, David; Metso, Jari; Tous, Monica; Jauhiainen, Matti; Blanco-Vaca, Francisco

    2013-04-01

    Hepatic lipase (HL) and endothelial lipase (EL) are negative regulators of plasma HDL cholesterol (HDLc) levels and presumably could affect two main HDL atheroprotective functions, macrophage-to-feces reverse cholesterol transport (RCT) and HDL antioxidant properties. In this study, we assessed the effects of both HL and EL deficiency on macrophage-specific RCT process and HDL ability to protect against LDL oxidation. HL- and EL-deficient and wild-type mice were injected intraperitoneally with [(3)H]cholesterol-labeled mouse macrophages, after which the appearance of [(3)H]cholesterol in plasma, liver, and feces was determined. The degree of HDL oxidation and the protection of oxidative modification of LDL co-incubated with HDL were evaluated by measuring conjugated diene kinetics. Plasma levels of HDLc, HDL phospholipids, apoA-I, and platelet-activated factor acetyl-hydrolase were increased in both HL- and EL-deficient mice. These genetically modified mice displayed increased levels of radiolabeled, HDL-bound [(3)H]cholesterol 48h after the label injection. The magnitude of macrophage-derived [(3)H]cholesterol in feces was also increased in both the HL- and EL-deficient mice. HDL from the HL- and EL-deficient mice was less prone to oxidation and had a higher ability to protect LDL from oxidation, compared with the HDL derived from the wild-type mice. These changes were correlated with plasma apoA-I and apoA-I/HDL total protein levels. In conclusion, targeted inactivation of both HL and EL in mice promoted macrophage-to-feces RCT and enhanced HDL antioxidant properties. PMID:23328279

  20. Dietary rice protein isolate attenuates atherosclerosis in apoE-deficient mice by upregulating antioxidant enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice-based diets may have been reported to protect against the development of atherosclerosis; however, the underlying mechanism(s) for this protection remains unknown. In this report, the mechanism(s) contributing to the atheroprotective effects of rice-based diet was addressed using the apolipopro...

  1. Cadmium-induced alterations in the antioxidant defense system of the rat eye in relation to dietary selenium intake

    SciTech Connect

    Sinno, J.A.M.

    1989-01-01

    Studies were conducted to investigate the effects of dietary cadmium (Cd)upon enzymatic antioxidant function in the ocular tissues of the albino rat. Activity of glutathione peroxidase (GSH-Px), Se-independent GSH-Px and catalase, and concentrations of thiobarbituric acid-reactive substances (TBARS), glutathione, and the elements Se, Cd and copper (Cu) were determined in ocular tissues from each group. Feeding rats a low Se diet resulted in a significant decrease in GSH-Px activity irrespective of Cd treatment. Activity of Se-independent GSH-Px in rats maintained on the low Se diet decreased when compared to Se-adequate controls. Cd treatment of rats fed low Se resulted in increased activity when compared to low-Se controls. When comparisons were made between ocular TBARS in rats maintained at either level of dietary Se, with or without Cd treatment, decreased ocular TBARS were observed in Cd-treated groups. A significant decrease in the ocular concentration of Se occurred in rats fed 0.05 ppm Se when compared to rats supplemented with 0.10 ppm Se. Administering Cd to the low Se group increased ocular Se levels 100%. A negative correlation between ocular Se concentration and the level of TBARS was observed, suggesting a possible alternate role for Se as an antioxidant in the eye.

  2. Neuroprotective effects of dietary supplement Kang-fu-ling against high-power microwave through antioxidant action.

    PubMed

    Hu, Shaohua; Peng, Ruiyun; Wang, Changzhen; Wang, Shuiming; Gao, Yabing; Dong, Ji; Zhou, Hongmei; Su, Zhentao; Qiao, Shanyi; Zhang, Shouguo; Wang, Lin; Wen, Xiaoxue

    2014-09-01

    Kang-fu-ling (KFL) is a polybotanical dietary supplement with antioxidant properties. This study aimed to evaluate the potential protective effects of KFL on cognitive deficit induced by high-power microwave (HPM) and the underlying mechanism for this neuroprotection. The electron spin resonance technique was employed to evaluate the free radical scavenging activity of KFL in vitro and KFL exhibited scavenging hydroxyl radical activity. KFL at doses of 0.75, 1.5 and 3 g kg(-1) and vehicle were administered orally once daily for 14 days to male Wistar rats after being exposed to 30 mW cm(-2) HPM for 15 minutes. KFL reversed HPM-induced memory loss and the histopathological changes in hippocampus of rats. In addition, KFL displayed a protective effect against HPM-induced oxidative stress and activated the nuclear factor-E2-related factor 2 (Nrf2) and its target genes in the hippocampus of rats. The Nrf2-antioxidant response element (ARE) signaling pathway may be involved in the neuroprotective effects of KFL against HPM-induced oxidative stress. In summary, the dietary supplement KFL is a promising natural complex, which ameliorates oxidative stress, with neuroprotective effects against HPM. PMID:25058795

  3. The effect of dietary Digestarom® herbal supplementation on rabbit meat fatty acid profile, lipid oxidation and antioxidant content.

    PubMed

    Mattioli, S; Dal Bosco, A; Szendrő, Zs; Cullere, M; Gerencsér, Zs; Matics, Zs; Castellini, C; Dalle Zotte, A

    2016-11-01

    The experiment tested the effect of Digestarom® herbal supplementation on the antioxidant content, lipid oxidation and fatty acid profile of rabbit meat. At kindling, rabbit does and litters were divided into two dietary groups (N=162 kits/dietary group) and fed either a control diet (C) or the C diet supplemented with Digestarom® (D: 300mg/kg). At weaning (35days) four experimental fattening groups (54 rabbits each) were considered: CC, CD, DC and DD. After slaughtering (12weeks of age), Longissimus thoracis et lumborum muscles were dissected from 20 rabbits/group and analyzed. Rabbit meat of DD group was enriched in essential C18:3 n-3 fatty acid and in other long-chain PUFA of n-3 series. Despite meat of DD group displayed the highest peroxidability index, TBARs value was the lowest. Meat antioxidant content followed the rank order: DD>CD>DC>CC. Digestarom® improved fatty acid composition and oxidative status of rabbit meat, particularly when administered from weaning throughout the growing period. PMID:27351068

  4. Serum lipids in rats as related to modifications in dietary fat, fiber, and sodium with magnesium deficiency

    SciTech Connect

    Howe, C.A.; Kubena, K.S. )

    1991-03-11

    Recommendations to modify dietary intake to attenuate risk of cardiovascular disease have been released by numerous governmental and health organizations. Since magnesium is associated with lipid metabolism and normal cardiovascular function, this study was designed to determine the effect of modifications in dietary fat, fiber, and sodium with magnesium deficiency on serum lipids and tissue minerals. The control (C) diet was based upon the AIN-76 diet formulation; the American (A) diet included average fat, fiber, and sodium levels in the US; and the recommended (R) diet was lower in fat and sodium and higher in fiber. Diets contained either 1,000 or 150 (L) mg Mg/kg diet. Male weanling Sprague-Dawley rats were fed one of the diets (C, CL, A, Al, R, RL) for six weeks. Levels of tissue Mg, Ca, Zn, and P were determined. Neither initial nor final body weights varied between groups. Serum levels of triglyceride were higher in the C and Cl groups than in the others. Serum cholesterol was lower in the R and Rl groups than in the Cl and A groups. Animals which were fed the diet modified with regard to fat, fiber, and sodium had lower serum cholesterol levels than did those fed the American diet. Magnesium deficiency was not consistently related to serum lipid levels.

  5. An increase in reactive oxygen species by dietary fish oil coupled with the attenuation of antioxidant defenses by dietary pectin enhances rat colonocyte apoptosis.

    PubMed

    Sanders, Lisa M; Henderson, Cara E; Hong, Mee Young; Barhoumi, Rola; Burghardt, Robert C; Wang, Naisyin; Spinka, Christine M; Carroll, Raymond J; Turner, Nancy D; Chapkin, Robert S; Lupton, Joanne R

    2004-12-01

    We showed previously that the dietary combination of fish oil, rich in (n-3) fatty acids, and the fermentable fiber pectin enhances colonocyte apoptosis in a rat model of experimentally induced colon cancer. In this study, we propose that the mechanism by which this dietary combination heightens apoptosis is via modulation of the colonocyte redox environment. Male Sprague-Dawley rats (n = 60) were fed 1 of 2 fats (corn oil or fish oil) and 1 of 2 fibers (cellulose or pectin) for 2 wk before determination of reactive oxygen species (ROS), oxidative DNA damage, antioxidant enzyme activity [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx)] and apoptosis in isolated colonocytes. Fish oil enhanced ROS, whereas the combination of fish oil and pectin suppressed SOD and CAT and enhanced the SOD/CAT ratio compared with a corn oil and cellulose diet. Despite this modulation to a seemingly prooxidant environment, oxidative DNA damage was inversely related to ROS in the fish oil and pectin diet, and apoptosis was enhanced relative to other diets. Furthermore, apoptosis increased exponentially as ROS increased. These results suggest that the enhancement of apoptosis associated with fish oil and pectin feeding may be due to a modulation of the redox environment that promotes ROS-mediated apoptosis. PMID:15570018

  6. Oxidative stress and antioxidant status in rat blood, liver and muscle: effect of dietary lipid, carnitine and exercise.

    PubMed

    Karanth, Jyothsna; Jeevaratnam, Kadirvelu

    2005-09-01

    The purpose of this study was to determine the effect of dietary fat, carnitine supplementation, and exercise on oxidative damage and antioxidant status. Male Wistar rats (60 days old) were fed diets containing either hydrogenated fat (HF) or peanut oil (PO) with or without 0.5 mg % (of dry diet) carnitine. The rats were given exercise, i.e. swimming for 60 minutes, for 6 days/week for 6 months under each dietary condition. The blood malondialdehyde (MDA) level was higher in PO-fed rats, more so in exercising ones, while the same was not altered in carnitine-supplemented rats irrespective of the dietary fat or physical activity. The MDA level was significantly decreased in muscle, while increased in liver, of carnitine-fed rats. The blood glutathione (GSH) level also significantly increased in exercising rats as compared to sedentary ones, while carnitine supplementation elevated it in all the groups. Exercise and carnitine supplementation significantly lowered GSH levels in liver while increasing it in muscle. The glutathione peroxidase (GPX) activity was significantly increased in blood and muscle from PO-fed exercising rats as compared to sedentary ones, while carnitine supplementation elevated GPX activity in all the groups. The liver and muscle catalase (CAT) activities were significantly increased in PO-fed exercising rats, while carnitine did not have any effect. The pro-oxidative effect of the monounsaturated fatty acid (MUFA)-rich PO diet and prolonged regular exercise was less pronounced due to augmented antioxidant enzymes, GPX and CAT, induced by training to protect against the oxidative stress, while carnitine supplementation could help to counter lipid peroxidation due to exercise through redistribution of GSH from liver to blood and muscle. PMID:16477765

  7. Effects of dietary tannic acid on the growth, hepatic gene expression, and antioxidant enzyme activity in Brandt's voles (Microtus brandti).

    PubMed

    Ye, Man-Hong; Nan, Yan-Lei; Ding, Meng-Meng; Hu, Jun-Bang; Liu, Qian; Wei, Wan-Hong; Yang, Sheng-Mei

    2016-01-01

    This study was designed to investigate the physiological and biochemical responses of Brandt's voles to the persistent presence of dietary tannic acid. The diet for animals in the experimental group was supplemented with 3% dietary tannic acid for 5weeks. The control group received a commercial lab chow. No significant differences were detected in body weight, organ (heart, kidney, and liver) weights, and organ parameters between animals from two groups. However, voles in the experimental group had significantly higher daily food intake, increased contents of proline and histidine in saliva and feces after protein hydrolysis, and elevated hepatic expression of transferrin than the control. Our results suggested the existence of adaptive strategies developed in Brandt's voles to overcome the adverse effects of dietary tannic acid. (1) Food consumption was increased to satisfy their nutritional demands. (2) The secretion of tannic-acid-binding salivary proteins was promoted. (3) The absorption of iron was enhanced. These alterations contributed to neutralize the negative effects of tannic acid and maintain body mass in animals supplemented with tannic acid. As the result of the consumption of tannic acid, hepatic expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase was significantly decreased, while the overall potential of the antioxidant system, characterized by increased hepatic enzymatic activities of catalase and glutathione peroxidase, was enhanced. Our results also implied the involvement of tannic acid in the regulation of lipid metabolism and oxidative stress in voles. PMID:26850644

  8. Dietary quebracho tannins are not absorbed, but increase the antioxidant capacity of liver and plasma in sheep.

    PubMed

    López-Andrés, Patricia; Luciano, Giuseppe; Vasta, Valentina; Gibson, Trevor M; Biondi, Luisa; Priolo, Alessandro; Mueller-Harvey, Irene

    2013-08-01

    A total of sixteen lambs were divided into two groups and fed two different diets. Of these, eight lambs were fed a control diet (C) and eight lambs were fed the C diet supplemented with quebracho tannins (C+T). The objective of the present study was to assess whether dietary quebracho tannins can improve the antioxidant capacity of lamb liver and plasma and if such improvement is due to a direct transfer of phenolic compounds or their metabolites, to the animal tissues. Feed, liver and plasma samples were purified by solid-phase extraction (SPE) and analysed by liquid chromatography-MS for phenolic compounds. Profisitinidin compounds were identified in the C+T diet. However, no phenolic compounds were found in lamb tissues. The liver and the plasma from lambs fed the C+T diet displayed a greater antioxidant capacity than tissues from lambs fed the C diet, but only when samples were not purified with SPE. Profisetinidin tannins from quebracho seem not to be degraded or absorbed in the gastrointestinal tract. However, they induced antioxidant effects in animal tissues. PMID:23312208

  9. Mitochondrial response to the BCKDK-deficiency: Some clues to understand the positive dietary response in this form of autism.

    PubMed

    Oyarzabal, A; Bravo-Alonso, I; Sánchez-Aragó, M; Rejas, M T; Merinero, B; García-Cazorla, A; Artuch, R; Ugarte, M; Rodríguez-Pombo, P

    2016-04-01

    Mutations on the mitochondrial-expressed Branched Chain α-Keto acid Dehydrogenase Kinase (BCKDK) gene have been recently associated with a novel dietary-treatable form of autism. But, being a mitochondrial metabolism disease, little is known about the impact on mitochondrial performance. Here, we analyze the mitochondrial response to the BCKDK-deficiency in patient's primary fibroblasts by measuring bioenergetics, ultra-structural and dynamic parameters. A two-fold increase in superoxide anion production, together with a reduction in ATP-linked respiration and intracellular ATP levels (down to 60%) detected in mutants fibroblasts point to a general bioenergetics depletion that could affect the mitochondrial dynamics and cell fate. Ultrastructure analysis of BCKDK-deficient fibroblasts shows an increased number of elongated mitochondria, apparently associated with changes in the mediator of inner mitochondria membrane fusion, GTPase OPA1 forms, and in the outer mitochondrial membrane, mitofusin 2/MFN2. Our data support a possible hyperfusion response of BCKDK-deficient mitochondria to stress. Cellular fate also seems to be affected as these fibroblasts show an altered proportion of the cells on G0/G1 and G2/M phases. Knockdown of BCKDK gene in control fibroblasts recapitulates most of these features. Same BCKDK-knockdown in a MSUD patient fibroblasts unmasks the direct involvement of the accelerated BCAAs catabolism in the mitochondrial dysfunction. All these data give us a clue to understand the positive dietary response to an overload of branched-chain amino acids. We hypothesize that a combination of the current therapeutic option with a protocol that considers the oxidative damage and energy expenditure, addressing the patients' individuality, might be useful for the physicians. PMID:26809120

  10. Enhanced excitability of hippocampal mossy fibers and CA3 neurons under dietary zinc deficiency.

    PubMed

    Takeda, Atsushi; Yamada, Kohei; Minami, Akira; Nagano, Tetsuo; Oku, Naoto

    2005-02-01

    On the basis of the evidence that susceptibility to kainate-induced seizures is enhanced by zinc deficiency and that glutamate concentrations in hippocampal extracellular fluid are excessively increased during seizures, excitability of hippocampal mossy fibers and CA3 neurons was examined using hippocampal slices, which were prepare from mice fed a zinc-deficient diet for 4 weeks. The spatio-temporal dynamics of zinc and calcium was monitored using their indicators, membrane-impermeable ZnAF-2 and membrane-permeable fura-2 AM, respectively. When the molecular layer of dentate gyrus was stimulated with 100mM KCl for 1s, the increased percentages of extracellular zinc in the stratum lucidum and CA3 pyramidal cell layer were higher in zinc-deficient mice than in the control mice, implying that glutamate release from the mossy fibers of the dentate granular cells is enhanced by zinc deficiency. Judging from the increased percentages, however, the amount of zinc released was estimated to be less in zinc-deficient mice. On the other hand, the basal calcium concentrations in the stratum lucidum and CA3 pyramidal cell layer detected with fura-2 were higher in zinc-deficient mice than in the control mice, indicating that hippocampal calcium homeostasis is affected by zinc deficiency. Furthermore, the increased percentage of intracellular calcium in the stratum lucidum by stimulation with high K+ was enhanced by the zinc deficiency. The alteration of hippocampal calcium homeostasis seems to enhance excitability of dentate granular cells in zinc deficiency, following by an enhanced excitability of postsynaptic structures in CA3 neurons. PMID:15716032

  11. Changes in barrier health status of the gill for grass carp (Ctenopharyngodon idella) during valine deficiency: Regulation of tight junction protein transcript, antioxidant status and apoptosis-related gene expression.

    PubMed

    Feng, Lin; Luo, Jian-Bo; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-08-01

    This study investigated the effects of dietary valine on tight junction protein transcription, antioxidant status and apoptosis on grass carp gills (Ctenopharyngodon idella). Fish were fed six different experimental diets containing graded levels of valine (4.3, 8.0, 10.6, 13.1, 16.7, 19.1 g/kg). The results indicated that valine deficiency decreased Claudin b, Claudin 3, Occludin and ZO-1 transcription and increased Claudin 15 expression in the fish gill (P < 0.05). These effects were partly due to the down-regulation of interleukin 10 (IL-10), transforming growth factor β1 (TGF-β1) and IκB α and the up-regulation of relative mRNA expression of interleukin 1β (IL-1β), interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α) and nuclear factor κB P65 (NF-κB P65) (P < 0.05). However, valine deficiency and valine supplementation did not have a significant effect on Claudin c and Claudin 12 expression in grass carp gills (P > 0.05). Valine deficiency also disrupted antioxidant status in the gill by decreasing anti-superoxide radicals and hydroxyl radical capacity, glutathione contents and the activities and mRNA levels of Cu/Zn superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) (P < 0.05). These results may be ascribed to the down-regulation of NF-E2-related factor 2 (Nrf2), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1) and the up-regulation of Kelch-like-ECH-associated protein 1 (Keap1) (P < 0.05). Additionally, valine deficiency induced DNA fragmentation via the up-regulation of Caspase 3, Caspase 8 and Caspase 9 expressions (P < 0.05). These results may be ascribed to the improvement in ROS levels in the fish gill (P < 0.05). Taken together, the results showed that valine deficiency impaired the structural integrity of fish gill by disrupted fish antioxidant defenses and regulating the expression of tight junction protein, cytokines, antioxidant

  12. Diet and Skin Cancer: The Potential Role of Dietary Antioxidants in Nonmelanoma Skin Cancer Prevention

    PubMed Central

    Katta, Rajani; Brown, Danielle Nicole

    2015-01-01

    Nonmelanoma skin cancer (NMSC) is the most common cancer among Americans. Ultraviolet (UV) radiation exposure is the major risk factor for the development of NMSC. Dietary AOs may prevent free radical-mediated DNA damage and tumorigenesis secondary to UV radiation. Numerous laboratory studies have found that certain dietary AOs show significant promise in skin cancer prevention. These results have been substantiated by animal studies. In human studies, researchers have evaluated both oral AO supplements and dietary intake of AOs via whole foods. In this review, we provide an overview of the role of AOs in preventing tumorigenesis and outline four targeted dietary AOs. We review the results of research evaluating oral AOs supplements as compared to dietary AOs intake via whole foods. While these specific supplements have not shown efficacy, intake of AOs via consumption of whole foods has shown some promise. Lessons learned from the field of hypertension research may provide important guidance in future study design. Further research on the role of dietary AOs in the prevention of NMSC is warranted and should focus on intake via whole food consumption. PMID:26583073

  13. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    PubMed Central

    Wang, Likui; Gao, Shijuan; Jiang, Wei; Luo, Cheng; Xu, Maonian; Bohlin, Lars; Rosendahl, Markus; Huang, Wenlin

    2014-01-01

    Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2) called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE), which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix) polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen) and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair. PMID:25226533

  14. Effect of dietary carbohydrate on non-specific immune response, hepatic antioxidative abilities and disease resistance of juvenile golden pompano (Trachinotus ovatus).

    PubMed

    Zhou, Chuanpeng; Ge, Xianping; Lin, Heizhao; Niu, Jin

    2014-12-01

    The present study was conducted to investigate the effects of dietary carbohydrate (CHO) levels on non-specific immune responses, hepatic antioxidative status and disease resistance of juvenile golden pompano. Fish were fed six isonitrogenous and isoenergetic diets containing various CHO levels for 8 weeks. After the feeding trial, fish were challenged by Vibrio harveyi and survival rate was recorded for the next 12 days. Plasma total protein and albumin content, respiratory burst activity, alkaline phosphatase, slightly increased with dietary starch level from 0% to 16.8%, but significantly decreased at dietary starch levels of 16.8%-28%. Plasma lysozyme, complement 3 and complement 4 levels increased with increasing dietary carbohydrate up to 11.2% and then declined (P < 0.05). Contrary to glutamic-oxalacetic transaminase and triiodothyronine, plasma cortisol content increased with increasing dietary carbohydrate up to 22.4%, and then levelled off. The hepatic total antioxidative capacity, reduced glutathione and catalase levels reached the peak at the fish fed diet with 16.8% carbohydrate (P < 0.05). This also held true for hepatic superoxide dismutase activities, whereas the hepatic malondialdehyde content of fish fed dietary starch level of 16.8% was significantly lower than that of fish fed no CHO diet, but showed little difference (P > 0.05) with those of the other treatments. After challenge, fish fed 11.2% and 16.8% dietary CHO showed higher survival rate than that of fish in 0% CHO group (P < 0.05). However, survival rate showed little difference among 0%, 5.6%, 22.4% and 28% CHO groups (P > 0.05). The results of this study suggest that ingestion of 11.2-16.8% dietary CHO can enhance the non-specific immune responses, increase the hepatic antioxidant abilities, and improve resistance to V. harveyi infection of juvenile golden pompano. PMID:25181652

  15. The Functions of Antioxidants and Heat Shock Proteins Are Altered in the Immune Organs of Selenium-Deficient Broiler Chickens.

    PubMed

    Yang, Zijiang; Liu, Ci; Zheng, Weijia; Teng, Xiaohua; Li, Shu

    2016-02-01

    Despite increasing evidence indicating the essential involvement of selenium (Se) in the immune system, the effect of Se deficiency on the regulation of oxidative stress and heat shock proteins (Hsps) in broiler chickens is still unclear. In the present study, we established an exudative diathesis (ED) broiler chicken model caused by Se deficiency. We then analyzed histological observations and detected the expression levels of Hsps and antioxidant indexes in immune tissues. The antioxidant function declined remarkably, and most of the Hsp expression levels increased significantly in the spleen, thymus, and bursa of Fabricius of the broiler chicks with ED (except the messenger RNA (mRNA) levels of Hsp27, Hsp40, and Hsp70, which decreased in thymus tissues from the treatment groups); therefore, constitutive oxidation resistance and higher Hsps in broiler chicks with ED caused defects in immune organ morphology and function, as evidenced by abnormal histological structures: red pulp broadening and lymphocytes in the cortex and medulla of the thymic lobule decreased distinctly and distributed loosely. These results underscore the importance of Se in establishing an immune organ microenvironment conducive to normal function. PMID:26123162

  16. Effect of dietary supplementation with glycitein during late pregnancy and lactation on antioxidative indices and performance of primiparous sows.

    PubMed

    Hu, Y J; Gao, K G; Zheng, C T; Wu, Z J; Yang, X F; Wang, L; Ma, X Y; Zhou, A G; Jiang, Z J

    2015-05-01

    The objective of the present study was to investigate the effects of dietary supplementation with glycitein, a major soy isoflavone, during late pregnancy (starting on d 85) and lactation on antioxidative indices and performance in primiparous sows. A total of 227 gilts (Yorkshire × Landrace) were used, and after parturition, piglets were cross-fostered within treatment so that each sow suckled 10 piglets. Gilts were randomly divided into 4 groups on d 85 of pregnancy and thereafter fed the basal diets of gestation or lactation (controls) or those supplemented with 15, 30, or 45 mg/kg diet glycitein. Reproductive performance of the sows, growth of litters, concentration of plasma glycitein, milk composition, and antioxidative indices in sows' plasma and milk, such as the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and the content of malondialdehyde (MDA), were measured. Supplementation of the dam's diets with glycitein increased ADG of piglets (linear, P = 0.003) and weaned BW of litters (linear, P = 0.01) and both variables were approximately 10% greater than controls with the 45 mg/kg treatment. The percentage of milk protein was linearly (P < 0.05) increased on d 1 and 7 of lactation, and milk fat content increased on d 7 and 14 (linear, P< 0.05). All other measured indices of performance were unaffected by supplementation with glycitein (P > 0.05). The glycitein concentration in sow's plasma was linearly (P < 0.0001) elevated. During lactation, linear increases occurred in plasma activities of SOD (P < 0.001) and T-AOC (P < 0.05 to P< 0.001), CAT (d 7 to 18 of lactation, P < 0.05) and GSH-Px (d 7 of lactation, P < 0.05), whereas the content of plasma MDA decreased (linear, P < 0.05) throughout lactation with glycitein supplementation. Activities of CAT and T-AOC in milk were not affected by maternal supplementation with glycitein, but increases in SOD on d 18 of lactation (P

  17. Effects of dietary zinc deficiency on gonadotrophin secretion and testicular growth in young male sheep.

    PubMed

    Martin, G B; White, C L

    1992-11-01

    The hypothesis that the secretion of gonadotrophins would be reduced by zinc deficiency was tested in five groups of four young Merino rams (initial liveweight 22 kg). Four groups were fed ad libitum with diets containing 4, 10, 17 or 27 micrograms Zn g-1. The effects of loss of appetite on the deficient diet was controlled by feeding a fifth group (pair-fed control) at a rate of 27 micrograms Zn g-1, but the amount of feed offered was restricted to that eaten voluntarily by the deficient (4 micrograms Zn g-1) group. Blood was sampled every 20 min for 32 h on two occasions before the treatments were imposed and 96 days later, at the end of the experiment. The rams were injected with gonadotrophin-releasing hormone (GnRH; 10 ng kg-1 i.v.) after each serial sampling, and with naloxone (1 mg kg-1 i.v.) 24 h after the end of the final GnRH test. In the group that were fed the diet with the lowest zinc content, the concentration of zinc in blood plasma was reduced to 18% of that in the pair-fed controls (P < 0.05) and was within the deficient range. The appetite of the deficient rams was half that of the controls fed 27 micrograms Zn g-1 ad libitum and there was no increase in liveweight or testicular diameter during pubertal development. Similar, but smaller, effects were observed in the pair-fed controls. There were no significant differences between pair-fed and deficient groups in the frequency of the luteinizing hormone (LH) pulses or in the concentration of follicle-stimulating hormone (FSH), but the secretion of gonadotrophins was markedly lower in both groups than in the control rams fed ad libitum. The response to GnRH was not affected by treatment, but the increase in LH pulse frequency evoked by naloxone was lower in the deficient animals than in other groups. The animals fed zinc at intermediate rates (10-17 micrograms g-1) showed similar responses to the controls fed ad libitum. It is concluded that the specific effects of zinc deficiency on testicular

  18. Further studies on the effects of dietary copper deficiency on rat pancreas

    SciTech Connect

    Mylroie, A.A.; Boseman, A.; Kyle, J.

    1988-01-01

    The present study was designed to obtain further information on the effect of Cu deficiency on the pancreas and on pancreatic SOD activity. In a series of experiments, groups of male weanling Sprague Dawley rats were fed either a Cu sufficient Cu or Cu deficient purified AIN-'76 diet. Cu levels were determined in blood and selected organs by atomic absorption spectrophotometry. Serum ceruloplasmin, hemoglobin and hematocrit values were determined. Aliquots of homogenized pancreas were assayed for CuSOD, MnSOD and other pancreatic enzyme activities. Although the experimental conditions appeared to be identical to those used in previous experiments, the results were different. In the experiments reported here, even though pancreatic weights decreased by week 7 relative to controls, there was no evidence of pancreatic atrophy. There was no significant decrease in CuSOD, but an unexpected increase in MnSOD activity by week 9 in rats fed Cu-deficient diet. An examination of all data indicates that the difference in results between previous experiments and those reported here was due to the varying degree of Cu deficiency produced: Cu deficiency was less pronounced in the present study.

  19. Malondialdehyde, antioxidant enzymes, and renal tubular functions in children with iron deficiency or iron-deficiency anemia.

    PubMed

    Altun, Demet; Kurekci, Ahmet Emin; Gursel, Orhan; Hacıhamdioglu, Duygu Ovunc; Kurt, Ismail; Aydın, Ahmet; Ozcan, Okan

    2014-10-01

    We aimed to investigate the effects of iron deficiency (ID) or iron-deficiency anemia (IDA) on oxidative stress and renal tubular functions before and after treatment of children. A total of 30 children with a diagnosis of IDA constituted the IDA group and 32 children with a diagnosis of ID constituted the ID group. Control group consisted 38 age-matched children. Serum ferritin, soluble transferrin receptor (sTfR), serum, and urinary sodium (Na), potassium (K), calcium (Ca), phosphorus (P), creatinine (Cr), uric acid (UA), urinary N-acetyl-β-D-glucosaminidase (NAG) levels, and intra-erythrocyte malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels were measured before and after iron therapy in the IDA and ID groups, whereas it was studied once in the control group. We have divided the study group in groups according to age (infants <2 years, children 3-9 years, and adolescents 10-15 years). Patients with IDA (infant, adolescent) and ID (infant, children, and adolescent) had a significantly high level of MDA in post-treatment period in comparison to those of healthy control. Patients with IDA (children, adolescent) and ID (infant, children) had a significantly high level of pre-treatment GSH-Px than controls. Post-treatment SOD was lower in IDA (children and adolescent) groups than control and post-treatment CAT was lower in IDA and ID (adolescent) groups than control. These findings show that ferrous sulfate used in the treatment of ID or IDA could lead to oxidative stress; however, a marked deterioration of in proximal renal tubular functions was not seen. PMID:25099508

  20. Dietary component isorhamnetin is a PPARγ antagonist and ameliorates metabolic disorders induced by diet or leptin deficiency

    PubMed Central

    Zhang, Yu; Gu, Ming; Cai, Wujie; Yu, Lijing; Feng, Li; Zhang, Lu; Zang, Qingqing; Wang, Yahui; Wang, Dongshan; Chen, Hui; Tong, Qingchun; Ji, Guang; Huang, Cheng

    2016-01-01

    Studies on peroxisome proliferator-activated receptor (PPAR)-γ ligands have been focused on agonists. However, PPARγ activation may induce obesity and nonalcoholic fatty liver disease (NAFLD), one of the most challenging medical conditions. Here, we identified that isorhamnetin, a naturally occurring compound in fruits and vegetables and the metabolite of quercetin, is a novel antagonist of PPARγ. Isorhamnetin treatment inhibited the adipocyte differentiation induced by the PPARγ agonist rosiglitazone, reduced obesity development and ameliorated hepatic steatosis induced by both high-fat diet treatment and leptin deficiency. Our results suggest that dietary supplement of isorhamnetin may be beneficial to prevent obesity and steatosis and PPARγ antagonists may be useful to treat hepatic steatosis. PMID:26775807

  1. TRIBROMOMETHANE EXPOSURE AND DIETARY FOLATE DEFICIENCY IN THE FORMATION OF ABERRANT CRYPT FOCI IN THE COLONS OF F344/N RATS

    EPA Science Inventory

    TRIBROMOMETHANE EXPOSURE AND DIETARY FOLATE DEFICIENCY IN THE FORMATION OF ABERRANT CRYPT FOCI IN THE COLONS OF F344/N RATS

    David R. Geter', Tanya M. Moore', Michael H. George', Steve R. Kilburn', Gloria Huggins-Clark', James W. Allen', and Anthony B. DeAngelo' 'National H...

  2. Bovine hemoglobin as the sole source of dietary iron does not support adequate iron status in copper-adequate or copper-deficient rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This experiment was designed to determine whether hemoglobin as the sole source of dietary iron (Fe) could sustain normal Fe status in growing rats. Because adequate copper (Cu) status is required for efficient Fe absorption in the rat, we also determined the effects of Cu deficiency on Fe status of...

  3. Interactive effects of dietary fat/carbohydrate ratio and body mass index on iron deficiency anemia among Taiwanese women.

    PubMed

    Chang, Jung-Su; Chen, Yi-Chun; Owaga, Eddy; Palupi, Khairizka Citra; Pan, Wen-Harn; Bai, Chyi-Huey

    2014-09-01

    Whether being overweight or obese is associated with increased risk of iron deficiency anemia (IDA) remains controversial. We evaluated the dietary intakes and risk for IDA in relation to body mass index (BMI). One thousand two hundred and seventy-four females aged ≥ 19 years, enrolled in the third Nutrition and Health Survey in Taiwan (NAHSIT) 2005-2008, were selected. Half of the women were either overweight (24.0%) or obese (25.3%). The overall prevalence of anemia, iron deficiency and IDA among adult women was 19.5%, 8.6% and 6.2%. BMI showed a protective effect on IDA: overweight (odds ratio, OR: 0.365 (0.181-0.736)) and obese (OR: 0.480 (0.259-0.891)) when compared with normal weight. Univariate analysis identified increased IDA risk for overweight/obese women who consumed higher dietary fat but lower carbohydrate (CHO) (OR: 10.119 (1.267-80.79)). No such relationship was found in IDA women with normal weight (OR: 0.375 (0.036-4.022)). Analysis of interaction(s) showed individuals within the highest BMI tertile (T3) had the lowest risk for IDA and the risk increased with increasing tertile groups of fat/CHO ratio; OR 0.381 (0.144-1.008; p = 0.051), 0.370 (0.133-1.026; p = 0.056) and 0.748 (0.314-1.783; p = 0.513); for T1, T2 and T3, respectively. In conclusion, a protective effect of BMI on IDA may be attenuated in women who had increased fat/CHO ratio. PMID:25255383

  4. Dietary interaction of high fat and marginal copper deficiency on cardiac contractile function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High fat and copper deficient diets impair heart function leading to cardio hypertrophy, increased lipid droplet volume and compromised contractile function, resembling liptoxic cardiac dysfunction. However, the combined effect of the two on cardiac function is unknown. The purpose or objective of t...

  5. Smoking, Antioxidant Supplementation and Dietary Intakes among Older Adults with Age-Related Macular Degeneration over 10 Years

    PubMed Central

    Gopinath, Bamini; Flood, Victoria M.; Kifley, Annette; Liew, Gerald; Mitchell, Paul

    2015-01-01

    We aimed to compare the micronutrient usage and other lifestyle behaviors over 10 years among those with and without age-related macular degeneration (AMD). 1612 participants aged 49+ years at baseline were re-examined over 10 years, west of Sydney, Australia. AMD was assessed from retinal photographs. Dietary data were collected using a semi-quantitative food frequency questionnaire. Smoking status was self-reported. 56 participants had any AMD at baseline, of these 25% quit smoking at 5 years and were still not smoking at 10-year follow-up. Among participants who had below the recommended intake of vitamins A, C or E supplements at baseline, those who did compared to those who did not develop late AMD over 10 years were more likely to report vitamins A (total), C or E supplement intake above the recommended intake at 10-year follow-up: multivariable-adjusted OR 4.21 (95% CI 1.65-10.73); OR 6.52 (95% CI 2.76-15.41); and OR 5.71 (95% CI 2.42-13.51), respectively. Participants with compared to without AMD did not appreciably increase fish, fruit and vegetable consumption and overall diet quality. Adherence to smoking and dietary recommendations was poor among older adults with AMD. However, uptake of antioxidant supplements increased significantly among those with late AMD. PMID:25822372

  6. The physicochemical properties and antioxidative potential of raw thigh meat from broilers fed a dietary medicinal herb extract mixture

    PubMed Central

    Shirzadegan, K.; Falahpour, P.

    2014-01-01

    A 6-wk feeding study was conducted to evaluate the antioxidative potential, indices such as quality of the thigh meat and liver of broiler chickens fed with a dietary medicinal herb extract mixture (HEM, consisting: Iranian green tea, cinnamon, garlic and chicory at a ratio of 25:15:45:15). A total of 320, one-d-old Ross (male) broiler chickens were used to investigate the effects of 0.0, 2.5, 5.0 and 7.5 g/kg HEM in the diet, on aforementioned factors. The HEM supplementation did not influence the composition of raw thigh meat except for the total phenols and crude ash (P<0.05). Furthermore, pH, water-holding capacity (WHC) and acceptability of thigh meat were affecting by administration of HEM in diets (P<0.05). Meat flavor increased in the supplemented groups (P<0.05). According to our data, HEM supplementation decreased the amount of thiobarbituric acid reactive substance (TBARS) in various times of storage and improved the liver lipid peroxides and superoxide dismutase (SOD) activities at week 6 (P<0.05), but did not influence the catalase activity. Our results reveal that the addition of 7.5 g/kg or higher HEM in diet could be sufficient to increase the antioxidative activity and 2.5 g/kg for meat taste of broilers in maximum levels. PMID:26623342

  7. Dietary Repletion with ω3 Fatty Acid or with COX Inhibition Reverses Cognitive Effects in F3 ω3 Fatty-Acid–Deficient Mice

    PubMed Central

    Hafandi, Ahmad; Begg, Denovan P; Premaratna, Shirmila D; Sinclair, Andrew J; Jois, Mark; Weisinger, Richard S

    2014-01-01

    Dietary deficiency of ω3 fatty acid during development leads to impaired cognitive function. However, the effects of multiple generations of ω3 fatty-acid deficiency on cognitive impairment remain unclear. In addition, we sought to test the hypothesis that the cognitive impairments of ω3 fatty-acid–deficient mice are mediated through the arachidonic acid–cyclooxygenase (COX) pathway. To address these issues, C57BL/6J mice were bred for 3 generations and fed diets either deficient (DEF) or sufficient (SUF) in ω3 fatty acids. At postnatal day 21, the F3 offspring remained on the dam's diet or were switched to the opposite diet, creating 4 groups. In addition, 2 groups that remained on the dam's diet were treated with a COX inhibitor. At 19 wk of age, spatial-recognition memory was tested on a Y-maze. Results showed that 16 wk of SUF diet reversed the cognitive impairment of F3 DEF mice. However, 16 wk of ω3 fatty-acid–deficient diet impaired the cognitive performance of the F3 SUF mice, which did not differ from that of the F3 DEF mice. These findings suggest that the cognitive deficits after multigenerational maintenance on ω3 fatty-acid–deficient diet are not any greater than are those after deficiency during a single generation. In addition, treatment with a COX inhibitor prevented spatial-recognition deficits in F3 DEF mice. Therefore, cognitive impairment due to dietary ω3 fatty-acid deficiency appears to be mediated by the arachidonic acid–COX pathway and can be prevented by 16 wk of dietary repletion with ω3 fatty acids or COX inhibition. PMID:24674584

  8. Antioxidant and Physicochemical Properties of Hydrogen Peroxide-Treated Sugar Beet Dietary Fibre.

    PubMed

    Mišan, Aleksandra; Sakač, Marijana; Medić, Đorđe; Tadić, Vanja; Marković, Goran; Gyura, Julliana; Pagano, Ester; Izzo, Angelo A; Borrelli, Francesca; Šarić, Bojana; Milovanović, Ivan; Milić, Nataša

    2016-05-01

    The aim of the present work was to examine if hydrogen peroxide treatment of sugar beet fibre that aimed at improving its physicochemical properties would impair its antioxidant potential. Three different sugar beet fibres were obtained from sugar beet - non-treated fibre (NTF) from sugar beet cossettes extracted with sulphurous acid, treated fibre (TF) from NTF treated with hydrogen peroxide in alkaline solution and commercially available Fibrex(®) . The antioxidant activity of extractable and non-extractable fibre fractions in ethanol/water mixture (80:20, v/v) of three fibre samples was estimated. Non-extractable fractions obtained after alkaline treatment of investigated fibres were much higher in phenolic compounds and possessed higher antioxidant potential than extractable fractions. Ferulic acid was proven to be the dominant phenolic acid. Regarding both extractable and non-extractable fractions, Fibrex(®) had the highest antioxidant activity in chemical tests, while NTF was superior in comparison with TF. Based on the results of Caco-2 cells-based test, all non-extractable fractions possessed potential for reactive oxygen species inhibition. Regarding the extractable fractions, only the TF manifested this effect.Copyright © 2016 John Wiley & Sons, Ltd. PMID:26929014

  9. Research Advances: Nanoscale Molecular Tweezers; Cinnamon as Pesticide?; Recently Identified Dietary Sources of Antioxidants

    NASA Astrophysics Data System (ADS)

    King, Angela G.

    2004-12-01

    This Report from Other Journals surveys articles of interest to chemists that have been recently published in other science journals. Topics surveyed include reports that receptors have been designed to act as molecular tweezers; cinnamon has potential in the fight against mosquitoes; and high levels of antioxidants are found in some surprising foods. See Featured Molecules .

  10. Acute effects of dietary glycemic index on antioxidant capacity in nutrient-controlled feeding study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative stress, caused by an imbalance between antioxidant capacity and reactive oxygen species, may be an early event in a metabolic cascade elicited by a high glycemic index (GI) diet, ultimately increasing the risk for cardiovascular disease and diabetes. We conducted a feeding study to evalua...

  11. Relationship between antioxidant status and oxidative stability in lamb meat reinforced with dietary rosemary diterpenes.

    PubMed

    Ortuño, Jordi; Serrano, Rafael; Jordán, María José; Bañón, Sancho

    2016-01-01

    The relationship between the antioxidant status of fresh meat and oxidative stability of chilled-packed meat obtained from lambs fed on a diet supplemented with two different doses of a rosemary extract containing carnosic acid and carnosol was studied. The incorporation of rosemary extract in the lamb diet led to the deposition of functional levels of the diterpenic metabolite C19H22O3 in meat, which improved its stability against oxidation. The antioxidant status could be assessed through both the radical scavenging capacity (DPPH and TEAC) and the ferric reducing antioxidant power (FRAP). In general, antioxidant status values correlated better (P < 0.05) with the changes in CIELAB colour, malondialdehyde and sensory scoring than with the changes in hexanal and protein carboxylation measured in the lamb cuts kept under protective atmosphere for up to 14 days. The FRAP and DPPH assays were more suitable than the TEAC assay for predicting meat oxidation and any resulting discolouration and rancidity. PMID:26213076

  12. Dietary selenium and prolonged exercise alter gene expression and activity of antioxidant enzymes in equine skeletal muscle.

    PubMed

    White, S H; Johnson, S E; Bobel, J M; Warren, L K

    2016-07-01

    Untrained Thoroughbred horses (6 mares and 6 geldings; 11 yr [SE 1] and 565 kg [SE 11]) were used to evaluate antioxidant gene expression and enzyme activity in blood and skeletal muscle in response to prolonged exercise after receiving 2 levels of dietary selenium for 36 d: 0.1 (CON; = 6) or 0.3 mg/kg DM (SEL; = 6). Horses were individually fed 1.6% BW coastal bermudagrass hay, 0.4% BW whole oats, and a mineral/vitamin premix containing no Se. Sodium selenite was added to achieve either 0.1 or 0.3 mg Se/kg DM in the total diet. On d 35, horses underwent 2 h of submaximal exercise in a free-stall exerciser. Blood samples were obtained before (d 0) and after 34 d of Se supplementation and on d 35 to 36 immediately after exercise and at 6 and 24 h after exercise. Biopsies of the middle gluteal muscle were obtained on d 0, before exercise on d 34, and at 6 and 24 h after exercise. Supplementation with Se above the NRC requirement (SEL) increased serum Se ( = 0.011) and muscle thioredoxin reductase (TrxR) activity ( = 0.051) but had no effect on glutathione peroxidase (GPx) activity in plasma, red blood cell (RBC) lysate, or muscle in horses at rest. Serum creatine kinase activity increased ( < 0.0001) in response to prolonged exercise but was not affected by dietary treatment. Serum lipid hydroperoxides were affected by treatment ( = 0.052) and were higher ( = 0.012) in horses receiving CON than SEL immediately following exercise. Muscle expression of was unchanged at 6 h but increased ( = 0.005) 2.8-fold 24 h after exercise, whereas muscle TrxR activity remained unchanged. Glutathione peroxidase activity increased in plasma (P < 0.0001) and decreased in RBC lysate ( = 0.010) after prolonged exercise. A Se treatment × time interaction was observed for RBC GPx activity (P = 0.048). Muscle and expression and GPx activity did not change during the 24-h period after exercise. Level of dietary Se had no overall effect on expression of , , , , , , or in muscle following

  13. Pre- and postnatal dietary protein deficiency influences anxiety, memory and social behaviour in the African striped mouse Rhabdomys dilectus chakae.

    PubMed

    Pillay, Neville; Rimbach, Rebecca; Rymer, Tasmin

    2016-07-01

    Dietary protein deficiency influences the behavioural phenotypes of mammals. We studied whether protein deficiency during gestation and/or post-weaning heightened anxiety, reduced memory recall and influenced competitive ability in the African striped mouse Rhabdomys dilectus chakae. Mice were subjected to five protein diet treatments, which they received continuously, or were raised on one diet to weaning and switched to an alternate diet post-weaning (Day 16): 1) HP-HP: high protein (24%); first letter pair indicates maternal diet and the second pair indicates offspring diet post-weaning; 2) BP-BP: baseline protein (19%); 3) LP-LP: low protein (10%); 4) HP-LP: switched from high to low protein diet; and 5) LP-HP: switched from low protein to high protein diet. From Day 70, when mice were sexually mature, 20 individuals (10 males, 10 females) per treatment were subjected to three successive experiments, in which we tested their anxiety responses in: 1) an open field arena (time spent in the centre of the open field); 2) novel object recognition (time spent exploring a novel object); and 3) social interactions (excluding BP-BP) in age-matched same-sex dyadic encounters (aggressive, amicable and avoidance behaviours). LP-LP and LP-HP treatment mice spent the least amount of time in the centre of the open field, did not demonstrate object preference compared to the other treatments, and were the most aggressive in dyadic encounters. Our study shows that the systemic effects of protein-deficient diets during early life shapes the behavioural phenotype in R. d. chakae, possibly through early organisation of neuro-biological pathways or competition among littermates. PMID:27080079

  14. Effect of dietary iron deficiency and overload on the expression of ZIP metal-ion transporters in rat liver

    PubMed Central

    Nam, Hyeyoung; Knutson, Mitchell D.

    2015-01-01

    The mammalian ZIP (Zrt-, Irt-like Protein) family of transmembrane transport proteins consists of 14 members that share considerable homology. ZIP proteins have been shown to mediate the cellular uptake of the essential trace elements zinc, iron, and manganese. The aim of the present study was to determine the effect of dietary iron deficiency and overload on the expression of all 14 ZIP transporters in the liver, the main site of iron storage. Weanling male rats (n=6/group) were fed iron-deficient (FeD), iron-adequate (FeA), or iron-overloaded (FeO) diets in two independent feeding studies. In study 1, diets were based on the TestDiet 5755 formulation and contained iron at 9 ppm (FeD), 215 ppm (FeA), and 27,974 ppm (3% FeO). In study 2, diets were based on the AIN-93G formulation and contained iron at 9 ppm Fe (FeD), 50 ppm Fe (FeA), or 18916 ppm (2% FeO). After 3 weeks, the FeD diets depleted liver non-heme iron stores and induced anemia, whereas FeO diets resulted in hepatic iron overload. Quantitative RT-PCR revealed that ZIP5 mRNA levels were 3- and 8-fold higher in 2% FeO and 3% FeO livers, respectively, compared with FeA controls. In both studies, a consistent downregulation of ZIP6, ZIP7, and ZIP10 was also observed in FeO liver relative to FeA controls. Studies in H4IIE hepatoma cells further documented that iron loading affects the expression of these ZIP transporters. Overall, our data suggest that ZIP5, ZIP6, ZIP7, and ZIP10 are regulated by iron, indicating that they may play a role in hepatic iron/metal homeostasis during iron deficiency and overload. PMID:21826460

  15. Manganese deficiency and toxicity: are high or low dietary amounts of manganese cause for concern?

    PubMed

    Finley, J W; Davis, C D

    1999-01-01

    Manganese is an essential trace element that is required for the activity of several enzymes. Manganese is also quite toxic when ingested in large amounts, such as the inhalation of Mn-laden dust by miners. This review examines Mn intake by way of the food supply and poses the question: Is there reason to be concerned with Mn toxicity or deficiency in free-living populations in North America? Although much remains to be learned of the functions of Mn, at present there are only a few vaguely described cases of Mn deficiency in the medical literature. Given the heterogeneity of the North American food supply, it is difficult to see the possibility of more than greatly isolated and unique instances of Mn deficiency. However, low Mn-dependent superoxide dismutase activity may be associated with cancer susceptibility, and deserves further study. There may be reasons, however, to be concerned about Mn toxicity under some very specialized conditions. Increasing numbers of young people are adopting a vegetarian lifestyle which may greatly increase Mn intake. Iron deficiency may increase Mn absorption and further increase the body-burden of Mn, especially in vegetarians. Mn is eliminated primarily through the bile, and hepatic dysfunction could depress Mn excretion and further contribute to the body burden. Would such a combination of events predispose substantial numbers of people to chronic Mn toxicity? At present, there is no definite proof of this occurring, but given the state of knowledge at the present time, more studies with longer time-frames and more sensitive methods of analysis are needed. PMID:10475586

  16. Use of Sodium Butyrate as an Alternative to Dietary Fiber: Effects on the Embryonic Development and Anti-Oxidative Capacity of Rats

    PubMed Central

    Lin, Yan; Fang, Zheng-feng; Che, Lian-qiang; Xu, Sheng-yu; Wu, De; Wu, Cai-mei; Wu, Xiu-qun

    2014-01-01

    In this study, we evaluated the effect of replacing dietary fiber with sodium butyrate on reproductive performance and antioxidant defense in a high fat diet during pregnancy by using a rat model. Eighty virgin female Sprague Dawley rats were fed one of four diets—(1) control diet (C group), (2) high fat + high fiber diet (HF group), (3) high-fat +5% sodium butyrate diet (SB group), and (4) HF diet + α-cyano-4-hydroxy cinnamic acid (CHC group)—intraperitoneally on days 8, 10, 12, 14, and 16 of gestation. SB and dietary fiber had similar effects on improving fetal number and reducing the abortion rate; however, the anti-oxidant capacity of maternal serum, placenta, and fetus was superior in the HF group than in the SB group. In comparison, CHC injection decreased reproductive performance and antioxidant defense. Both dietary fiber (DF) and SB supplementation had a major but different effect on the expression of anti-oxidant related genes and nutrient transporters genes. In summary, our data indicate that SB and DF showed similar effect on reproductive performance, but SB cannot completely replace the DF towards with respect to redox regulation in high-fat diet; and SB might influence offspring metabolism and health differently to DF. PMID:24852604

  17. Effects of dietary fucoidan on the blood constituents, anti-oxidation and innate immunity of juvenile yellow catfish (Pelteobagrus fulvidraco).

    PubMed

    Yang, Qing; Yang, Rui; Li, Ming; Zhou, Qicun; Liang, Xiongpei; Elmada, Zacharia Cassian

    2014-12-01

    This experiment was conducted to investigate the effects of fucoidan on the blood constituents, anti-oxidation and innate immunity of juvenile yellow catfish, Pelteobagrus fulvidraco. Totally 420 individuals of juvenile yellow catfish were randomly allocated to 7 groups with 3 replicates per group and 20 fishes per replicate. The same experimental fish were randomly subjected to one of the following 7 treatments for 12 weeks: The basal diet was applied as control group, the experimental groups were fed on fucoidan extracted from Sargassum horneri (SF) and commodity fucoidan purchased from the market (MF), and the effective dosages were 0.05%, 0.1% and 0.2% per kilogram feed (the groups were respectively marked as SF1, SF2, SF3, MF1, MF2 and MF3). The capabilities of anti-oxidation and innate immunity were detected by the blood characters, serum enzyme activities, serum MDA content, respiratory burst activity and phagocytic index of head-kidney macrophages. Challenge test was conducted also. The results indicated that the triglyceride (TG) and total cholesterol (TC) values of the yellow catfish were significantly decreased when dietary with SF and MF, while there was no significant difference between the MF1 and the control group. Fish fed on SF and MF diets had a lower high density lipoprotein-cholesterol (HDL-C) level than those fed on basal diet except SF2 group. The low density lipoprotein-cholesterol (LDL-C) and glucose (GUL) levels of the fish were significantly decreased at the 0.2% dietary fucoidan level, and there were no significant differences between the other groups. The activities of serum superoxide dismutase (SOD) significantly increased and the contents of malondialdehyde (MDA) significantly decreased when the fish fed dietary SF and MF. The CAT activities of SF groups were higher than that of control groups, while these values were not significantly changed in MF1 and MF3 groups. The maximum of catalase (CAT) activities of the fish fed on two kind

  18. Effects of dietary n-6:n-3 fatty acid ratio and vitamin E on semen quality, fatty acid composition and antioxidant status in boars.

    PubMed

    Liu, Q; Zhou, Y F; Duan, R J; Wei, H K; Jiang, S W; Peng, J

    2015-11-01

    The aim of the present study was to evaluate the effects of dietary n-6:n-3 fatty acid (FA) ratio and vitamin E on the semen quality, FA composition and antioxidant status of boars. Forty-eight Landrace boars were randomly distributed in a 3×2 factorial design with three n-6:n-3 FA ratios (14.4, 6.6 and 2.2) by the inclusion of three oil sources (soybean, fish/soybean, fish) and two vitamin E levels (200 and 400mg/kg). During the 8 weeks of treatment, semen parameters were evaluated. Serum, sperm and seminal plasma samples were taken at 0 and 8 weeks to monitor the FA composition and antioxidant status. Results showed that the 6.6 and 2.2 dietary ratios very effectively increased docosahexaenoic acid (DHA) and n-3 polyunsaturated fatty acid (PUFA) and decreased docosapentaenoic acid (DPA) and n-6:n-3 ratio in spermatozoa. The 6.6 dietary ratio contributed to a greater progressive sperm motility (P<0.05) than the 14.4 and 2.2 dietary ratio, and this ratio also enhanced the superoxide dismutase (SOD) and total antioxidant capacity (TAC) (P<0.05) in seminal plasma more significantly than the other two ratios at week 8. Compared with 200mg/kg supplementation of vitamin E, 400mg/kg supplementation of vitamin E increased the progressive sperm motility, SOD of sperm, TAC and SOD of seminal plasma and serum, and decreased sperm malondialdehyde (MDA) (P<0.05). In conclusion, the 6.6 dietary ratio and 400mg/kg vitamin E supplementation improve progressive sperm motility by modifying the sperm FA composition and antioxidant status. PMID:26417649

  19. Effect of dietary n-3 polyunsaturated fatty acids on antioxidant defense and sperm quality in rainbow trout (Oncorhynchus mykiss) under regular stripping conditions.

    PubMed

    Köprücü, Kenan; Yonar, Muhammet Enis; Özcan, Sinan

    2015-12-01

    This study examined the effect of dietary n-3 polyunsaturated fatty acids (PUFA) on malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and reduced glutathione (GSH) levels; semen and liver fatty acid compositions; and spermatological values (semen volume and pH, sperm density, percentage and duration of sperm motility) in rainbow trout (Oncorhynchus mykiss) under regular stripping conditions. For this purpose, one control and two experimental diets were prepared as isonitrogenous and isocaloric. The control diet did not contain n-3 PUFA. However, the D1 and D2 diets were supplemented with n-3 PUFA concentrated anchovy oil at a 1% and 2% level, respectively. The n-3 PUFA content in the semen and liver, semen volume, initial sperm motility, duration of 50% sperm motility, total duration of sperm motility and sperm density values of the control fish fed the n-3 PUFA-deficient diet were decreased and were accompanied by a reduction of the antioxidant defense (SOD, CAT, GSH-Px and GSH) and an elevation of MDA in the blood, gonad, liver and kidney at all of the sampling periods (P<0.01 for each case). However, the effects of the sampling period on the MDA and antioxidant defense values in the blood, gonad, liver and kidney of the control diet fish (with the exception of the GSH and GSH-Px activities) and the D1 and D2 diet fish were not significant (P>0.01). However, supplementation with n-3 PUFA protected the fish from these adverse effects. The modulations were clearly observed in the fish fed the D2 diet because they were under lower oxidative stress, as indicated by MDA. The increased enzyme activity corresponds with the physiological mechanisms combating the elevation of free radicals under oxidative stress. The highest n-3 PUFA levels in the semen and liver and spermatological values were obtained from the fish fed the D2 diet at all of the sampling periods. On the other hand, the effects of the sampling stage on the

  20. In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants.

    PubMed

    Conforti, Filomena; Sosa, Silvio; Marrelli, Mariangela; Menichini, Federica; Statti, Giancarlo A; Uzunov, Dimitar; Tubaro, Aurelia; Menichini, Francesco; Loggia, Roberto Della

    2008-02-28

    Five hydroalcoholic extracts of edible plants from Calabria region (Italy) used in local traditional medicine for the treatment of inflammatory diseases were evaluated for their in vivo topical anti-inflammatory activity (inhibition of croton oil-induced ear oedema in mice) and in vitro antioxidant and antiradical properties (inhibition of linoleic acid oxidation and bovine brain liposomes peroxidation, DPPH radical scavenging). All the extracts showed an anti-inflammatory effect: 300 microg/cm(2) provoked oedema reductions ranging from 21 to 27%. All the extracts exerted also radical scavenging and/or antioxidant properties, the most active plant being Mentha aquatica L. (Lamiaceae) which contained the highest amount of phenolics (337 mg/g) and of flavonoids (15.75 mg/g). Moreover, the content and the composition of sterols were assessed by GC-MS in the examined plants Borago officinalis L. (Boraginaceae) contained the highest number of sterols. PMID:18164564

  1. Processed tomato products as a source of dietary lycopene: bioavailability and antioxidant properties.

    PubMed

    Rao, A Venket

    2004-01-01

    Oxidative stress is one of the major contributors to increased risk of chronic diseases. A diet rich in tomatoes and tomato products containing lycopene, a carotenoid antioxidant, has been found to protect against these chronic diseases by mitigating oxidative damage. The study aim was to evaluate the effects of a long-term tomato-rich diet, consisting of various processed tomato products, on bioavailability and antioxidant properties of lycopene. Seventeen healthy human subjects (ten men, seven non-pregnant women) participated in the study. Following a two-week washout period during which subjects avoided foods containing lycopene, all subjects consumed test tomato products including tomato juice, tomato sauce, tomato paste, ketchup, spaghetti sauce, and ready-to-serve tomato soup providing 30 mg of lycopene a day for four weeks. At the end of treatment, serum lycopene level increased significantly (p <0.05), from 181.79 +/- 31.25 to 684.7 +/- 113.91 nmol/L. Similarly, total antioxidant potential increased significantly (p <0.05), from 2.26 +/- 0.015 to 2.38 +/- 0.17 mmol/L Trolox equivalent. Lipid and protein oxidation was reduced significantly (p <0.05). The results suggest that a tomato-rich diet containing different sources of lycopene can increase serum lycopene levels and reduce oxidative stress effectively. PMID:15596034

  2. Dietary folate deficiency with normal red cell folate and circulating blasts.

    PubMed

    Stark, G L; Hamilton, P J

    2003-04-01

    This report describes a 26 year old woman, of Pakistani origin, who presented five months postpartum with severe megaloblastic anaemia as a result of nutritional folate deficiency. This case was unusual in that a small number of myeloblasts were present in the peripheral blood at presentation, and this circulating population temporarily increased in size when folate replacement was begun. We also highlight the need to recognise the non-linear relation between haematocrit and red blood cell folate concentration when the haematocrit is very low (< 0.15) and emphasise the importance of the clinical history. PMID:12663648

  3. Dietary copper deficiency reduces iron absorption and duodenal enterocyte hephaestin protein in male and female rats.

    PubMed

    Reeves, Philip G; Demars, Lana C S; Johnson, W Thomas; Lukaski, Henry C

    2005-01-01

    The mechanism for reduced Fe absorption in Cu deficiency is unknown, but may involve the intestinal Cu-dependent ferroxidase, Hephaestin (Hp). A 2 x 2 factorial experiment was designed to include Cu-deficient (CuD) and Cu-adequate (CuA) male and female rats. Weanling rats of both sexes were randomly divided into 2 groups each and fed an AIN-93G diet with low (<0.3 mg/kg; CuD) or adequate Cu (5.0 mg/kg; CuA). After 19 d, rats were fed 1.0 g each of their respective diets labeled with (59)Fe. Retained (59)Fe was monitored by whole-body counting for 12 d. Then, rats were killed for (59)Fe and Fe measurements in blood and various organs. Duodenal enterocytes were isolated for Western blot analysis of Hp. Signs of Cu and Fe deficiency were evident in both sexes. CuD male rats absorbed 60% as much Fe as CuA male rats (P < 0.001), whereas CuD female rats absorbed 70% (P < 0.001) as much as CuA females, with no difference between the sexes. Hp protein in enterocytes of CuD rats of both sexes was only 35% of that in CuA rats. The biological half-life of (59)Fe in CuD rats was only 50% (P < 0.001) of that in CuA rats, suggesting that Fe turnover was faster in CuD rats than CuA rats. Serum, spleen, and kidney Fe were lower (P < 0.001) in CuD rats than in CuA rats. Duodenal mucosa and liver Fe were higher (P < 0.01) in CuD male rats than CuA rats. Duodenal Fe but not liver Fe was higher in CuD female rats than CuA rats. Liver Fe was much higher (<0.001) overall in females than males. The data suggest that Cu deficiency reduces Fe absorption in rats through reduced expression of duodenal Hp protein. PMID:15623839

  4. NITROGEN DIOXIDE EXPOSURE AND LUNG ANTIOXIDANTS IN ASCORBIC ACID-DEFICIENT GUINEA PIGS

    EPA Science Inventory

    The authors have previously found that ascorbic acid (AA) deficiency in guinea pigs enhances the pulmonary toxicity of nitrogen dioxide (NO2). The present study showed that exposure to NO2 (4.8 ppm, 3 hr) significantly increased lung lavage fluid protein (a sensitive indicator of...

  5. Selenium deficiency decreases antioxidative capacity and is detrimental to bone microarchitecture in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium (Se), a chemical component of selenoproteins (such as glutathione peroxidases and thioredoxin reductase), plays a major role in cellular redox status and may have beneficial effects on bone health. The deficiency of Se has been linked to increased oxidative stress with increased levels of r...

  6. Effects of zinc deficiency on endogenous antioxidant enzymes and lipid peroxidation in glomerular cells of normal and five-sixths nephrectomized rats.

    PubMed

    Chen, S M; Young, T K

    1998-11-01

    We evaluated the effects of zinc deficiency on the activities of endogenous antioxidant enzymes and lipid peroxidation in rat glomerular cells (GCs). Male Sprague-Dawley rats (n = 48) were fed a zinc-deficient diet and deionized distilled water for 1 week to induce zinc deficiency. Half of the rats (zinc-deficient group) continued on this diet for 4 weeks, and the other half (zinc-replete group) were maintained on the same diet but with zinc-supplemented water (150 mg/Lzinc sulfate solution). Half of each group underwent five-sixths nephrectomy, while the other half underwent a sham operation. Another 12 normal rats (controls) were fed standard rat chow (containing 23.4% protein and 70 ppm zinc) and drank deionized distilled water. The zinc-deficient rats, including sham and five-sixths nephrectomized rats, showed severe growth retardation and poor appetite. Their mean plasma zinc concentrations were half that of normal control rats, but their plasma copper concentration was significantly higher than that of the control rats. Zinc supplementation corrected the abnormality of plasma zinc and copper concentrations and the loss of body weight in zinc-deficient rats. Zinc-deficient rats exhibited lower renal creatinine clearance and higher GC-malondialdehyde (GC-MDA) than zinc-replete rats. The remnant kidney of all five-sixths nephrectomized rats, including zinc-deficient and zinc-replete rats, showed a compensatory elevation in renal creatinine clearance and increased GC-MDA concentrations. Zinc concentrations in the renal cortex were decreased in zinc-deficient rats and the activities of GC-superoxide dismutase and GC-glutathione peroxidase were increased, while zinc-replete rats exhibited normal activities of GC-superoxide dismutase and GC-glutathione peroxidase. We suggest that zinc deficiency enhances the formation of reactive oxygen species but does not affect the activities of endogenous antioxidant enzymes in glomerular cells. PMID:9872031

  7. Antioxidants

    MedlinePlus

    ... carotene Lutein Lycopene Selenium Vitamin A Vitamin C Vitamin E Vegetables and fruits are rich sources of antioxidants. There is good ... eating a diet with lots of vegetables and fruits is healthy and lowers risks ... smokers. High doses of vitamin E may increase risks of prostate cancer and ...

  8. Complex carbohydrates in the dietary management of patients with glycogenosis caused by glucose-6-phosphatase deficiency.

    PubMed

    Smit, G P; Ververs, M T; Belderok, B; Van Rijn, M; Berger, R; Fernandes, J

    1988-07-01

    Carbohydrates with digestion characteristics between those of lente uncooked starches and rapidly digestible oligosaccharides were administered in a dose of 1.5 g/kg body weight to five patients with glycogenosis from glucose-6-phosphatase deficiency. Postprandial duration of normoglycemia and concentrations of blood insulin and lactate were determined. Uncooked barley groats in water, or incorporated in a meal turned out to behave as lente carbohydrates. Uncooked couscous in water, couscous incorporated in a meal, and partially cooked macaroni given as a meal behaved as semilente carbohydrates as compared with uncooked cornstarch and glucose. The in vitro determination of the digestibility index along with the in vivo tolerance test enables us to choose and incorporate semilente carbohydrates in the day-time treatment of patients. PMID:3291600

  9. Effects of 2-acetylaminofluorene, dietary fats and antioxidants on nuclear envelope cytochrome P-450

    SciTech Connect

    Carubelli, R.; Graham, S.A.; Griffin, M.J.; McCay, P.B.

    1986-05-01

    The authors reported a marked loss of cytochrome P-450 in hepatic nuclear envelope (NE) but not in microsomes of male Sprague-Dawley rats fed a semipurified diet containing 0.05% w/w 2-acetylaminofluorene (AAF) for 3 weeks. This may reflect loss of NE capacity to detoxify AAF metabolites generated by microsomal P-450. They are now investigating if dietary effects such as progressive decrease in the incidence of AAF-induced tumors in rats fed high polyunsaturated fat diet (HPUF) vs. high saturated fat diet (HSF) vs. low fat diet (LF), and the anticarcinogenic activity of butylated hydroxytoluene (BHT; 0.3% w/w) correlate with preservation of NE P-450. Rats fed AAF HSF (25.6% w/w corn oil) showed marked loss of NE P-450 after 3 weeks; BHT protected against this loss. Rats fed AAF in HSF (25.6% w/w; 18 parts beef tallow + 2 parts corn oil), on the other hand, experienced a marked drop in NE P-450 after 9 weeks; BHT protected against this loss. Comparison of NE P-450 levels in control rats fed HPUF or HSF for 3 weeks with those of rats fed a semipurified diet with 10% fat or Purina chow (ca. 5% fat), support the prediction of an inverse correlation between the levels of dietary fat and the NE P-450 content. Studies on AAF and BHT effects using LF (2% w/w corn oil) are in progress.

  10. Dietary deficiency increases presenilin expression, gamma-secretase activity, and Abeta levels: potentiation by ApoE genotype and alleviation by S-adenosyl methionine.

    PubMed

    Chan, Amy; Tchantchou, Flaubert; Rogers, Eugene J; Shea, Thomas B

    2009-08-01

    Apolipoprotein E4 (ApoE4) is a risk factor for Alzheimer's disease (AD). Whether this risk arises from a deficient function of E4 or the lack of protection provided by E2 or E3 is unclear. Previous studies demonstrate that deprivation of folate and vitamin E, coupled with dietary iron as a pro-oxidant, for 1 month displayed increased presenilin 1 (PS-1) expression, gamma-secretase, and Abeta generation in mice lacking ApoE (ApoE-/- mice). While ApoE-/- mice are a model for ApoE deficiency, they may not reflect the entire range of consequences of E4 expression. We therefore compared herein the impact of the above deficient diet on mice expressing human E2, E3, or E4. As folate deficiency is accompanied by a decrease in the major methyl donor, S-adenosyl methionine (SAM), additional mice received the deficient diet plus SAM. E2 was more protective than murine ApoE or E3 and E4. Surprisingly, PS-1 and gamma-secretase were over-expressed in E3 to the same extent as in E4 even under a complete diet, and were not alleviated by SAM supplementation. Abeta increased only in E4 mice maintained under the complete diet, and was alleviated by SAM supplementation. These findings suggest dietary compromise can potentiate latent risk factors for AD. PMID:19457069

  11. Behavioral Abnormality Induced by Enhanced Hypothalamo-Pituitary-Adrenocortical Axis Activity under Dietary Zinc Deficiency and Its Usefulness as a Model

    PubMed Central

    Takeda, Atsushi; Tamano, Haruna; Nishio, Ryusuke; Murakami, Taku

    2016-01-01

    Dietary zinc deficiency increases glucocorticoid secretion from the adrenal cortex via enhanced hypothalamo-pituitary-adrenocortical (HPA) axis activity and induces neuropsychological symptoms, i.e., behavioral abnormality. Behavioral abnormality is due to the increase in glucocorticoid secretion rather than disturbance of brain zinc homeostasis, which occurs after the increase in glucocorticoid secretion. A major target of glucocorticoids is the hippocampus and their actions are often associated with disturbance of glutamatergic neurotransmission, which may be linked to behavioral abnormality, such as depressive symptoms and aggressive behavior under zinc deficiency. Glucocorticoid-mediated disturbance of glutamatergic neurotransmission in the hippocampus is also involved in the pathophysiology of, not only psychiatric disorders, such as depression, but also neurodegenerative disorders, e.g., Alzheimer’s disease. The evidence suggests that zinc-deficient animals are models for behavioral and psychological symptoms of dementia (BPSD), as well as depression. To understand validity to apply zinc-deficient animals as a behavioral abnormality model, this paper deals with the effect of antidepressive drugs and herbal medicines on hippocampal dysfunctions and behavioral abnormality, which are induced by enhanced HPA axis activity under dietary zinc deficiency. PMID:27438830

  12. Behavioral Abnormality Induced by Enhanced Hypothalamo-Pituitary-Adrenocortical Axis Activity under Dietary Zinc Deficiency and Its Usefulness as a Model.

    PubMed

    Takeda, Atsushi; Tamano, Haruna; Nishio, Ryusuke; Murakami, Taku

    2016-01-01

    Dietary zinc deficiency increases glucocorticoid secretion from the adrenal cortex via enhanced hypothalamo-pituitary-adrenocortical (HPA) axis activity and induces neuropsychological symptoms, i.e., behavioral abnormality. Behavioral abnormality is due to the increase in glucocorticoid secretion rather than disturbance of brain zinc homeostasis, which occurs after the increase in glucocorticoid secretion. A major target of glucocorticoids is the hippocampus and their actions are often associated with disturbance of glutamatergic neurotransmission, which may be linked to behavioral abnormality, such as depressive symptoms and aggressive behavior under zinc deficiency. Glucocorticoid-mediated disturbance of glutamatergic neurotransmission in the hippocampus is also involved in the pathophysiology of, not only psychiatric disorders, such as depression, but also neurodegenerative disorders, e.g., Alzheimer's disease. The evidence suggests that zinc-deficient animals are models for behavioral and psychological symptoms of dementia (BPSD), as well as depression. To understand validity to apply zinc-deficient animals as a behavioral abnormality model, this paper deals with the effect of antidepressive drugs and herbal medicines on hippocampal dysfunctions and behavioral abnormality, which are induced by enhanced HPA axis activity under dietary zinc deficiency. PMID:27438830

  13. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice.

    PubMed

    Reis, Felipe C G; Branquinho, Jéssica L O; Brandão, Bruna B; Guerra, Beatriz A; Silva, Ismael D; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C Ronald; Festuccia, William T; Kowaltowski, Alicia J; Mori, Marcelo A

    2016-06-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  14. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice

    PubMed Central

    Reis, Felipe C. G.; Branquinho, Jéssica L. O.; Brandão, Bruna B.; Guerra, Beatriz A.; Silva, Ismael D.; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C. Ronald; Festuccia, William T.; Kowaltowski, Alicia J.; Mori, Marcelo A.

    2016-01-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  15. Nanoencapsulation of dietary flavonoid fisetin: Formulation and in vitro antioxidant and α-glucosidase inhibition activities.

    PubMed

    Sechi, Mario; Syed, Deeba N; Pala, Nicolino; Mariani, Alberto; Marceddu, Salvatore; Brunetti, Antonio; Mukhtar, Hasan; Sanna, Vanna

    2016-11-01

    The bioactive flavonoid fisetin (FS) is a diet-derived antioxidant that is being increasingly investigated for its health-promoting effects. Unfortunately, the poor physicochemical and pharmacokinetic properties affect and limit the clinical application. In this study, novel polymeric nanoparticles (NPs), based on Poly-(ε-caprolactone) (PCL) and PLGA-PEG-COOH, encapsulating FS were formulated as suitable oral controlled release systems. Results showed NPs having a mean diameter of 140-200nm, and a percent loading of FS ranging from 70 to 82%. In vitro release studies revealed that NPs are able to protect and preserve the release of FS in gastric simulated conditions, also controlling the release in the intestinal medium. Moreover, the DPPH and ABTS scavenging capacity of FS, as well as α-glucosidase inhibition activity, that resulted about 20-fold higher than commercial Acarbose, were retained during nanoencapsulation process. In summary, our developed NPs can be proposed as an attractive delivery system to control the release of antioxidant and anti-hyperglycemic FS for nutraceutical and/or therapeutic application. PMID:27524059

  16. The level of elements and antioxidant activity of commercial dietary supplement formulations based on edible mushrooms.

    PubMed

    Stilinović, Nebojša; Škrbić, Biljana; Živančev, Jelena; Mrmoš, Nataša; Pavlović, Nebojša; Vukmirović, Saša

    2014-12-01

    Commercial preparations of Cordyceps sinensis, Ganoderma lucidum and Coprinus comatus mushroom marketed as healthy food supplements in Serbia were analyzed by atomic absorption spectrometry with a graphite furnace (GFAAS) for their element content. Antioxidant activity potential and total phenolics of the same mushrooms were determined. The element content of mushroom samples was in the range of 0.130-0.360 mg kg(-1) for lead (Pb), <0.03-0.46 mg kg(-1) for arsenic (As), 0.09-0.39 mg kg(-1) for cadmium (Cd), 98.14-989.18 mg kg(-1) for iron (Fe), 0.10-101.32 mg kg(-1) for nickel (Ni), 5.06-26.50 mg kg(-1) for copper (Cu), 0.20-0.70 mg kg(-1) for cobalt (Co), 1.74-136.33 mg kg(-1) for chromium (Cr) and 2.19-21.54 mg kg(-1) for manganese (Mn). In the tests for measuring the antioxidant activity, the methanolic extract of C. sinensis showed the best properties. The same was seen for the analysis of selected phenolic compounds; C. sinensis was found to have the highest content. Commercial preparations of C. sinensis and C. comatus can be considered to be safe and suitable food supplements included in well-balanced diets. PMID:25294630

  17. Dietary protein deficiency reduces lysosomal and nonlysosomal ATP-dependent proteolysis in muscle

    NASA Technical Reports Server (NTRS)

    Tawa, N. E. Jr; Kettelhut, I. C.; Goldberg, A. L.

    1992-01-01

    When rats are fed a protein deficient (PD) diet for 7 days, rates of proteolysis in skeletal muscle decrease by 40-50% (N. E. Tawa, Jr., and A. L. Goldberg. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E317-325, 1992). To identify the underlying biochemical adaptations, we measured different proteolytic processes in incubated muscles. The capacity for intralysosomal proteolysis, as shown by sensitivity to methylamine or lysosomal protease inhibitors, fell 55-75% in muscles from PD rats. Furthermore, extracts of muscles of PD rats showed 30-70% lower activity of many lysosomal proteases, including cathepsins B, H, and C, and carboxypeptidases A and C, as well as other lysosomal hydrolases. The fall in cathepsin B and proteolysis was evident by 3 days on the PD diet, and both returned to control levels 3 days after refeeding of the normal diet. In muscles maintained under optimal conditions, 80-90% of protein breakdown occurs by nonlysosomal pathways. In muscles of PD rats, this ATP-dependent process was also 40-60% slower. Even though overall proteolysis decreased in muscles of PD rats, their capacity for Ca(2+)-dependent proteolysis increased (by 66%), as did the activity of the calpains (+150-250%). Thus the lysosomal and the ATP-dependent processes decrease coordinately and contribute to the fall in muscle proteolysis in PD animals.

  18. Dietary calcium deficiency increases Ca2+ uptake and Ca2+ extrusion mechanisms in chick enterocytes.

    PubMed

    Centeno, Viviana A; Díaz de Barboza, Gabriela E; Marchionatti, Ana M; Alisio, Arturo E; Dallorso, Maria E; Nasif, Renée; Tolosa de Talamoni, Nori G

    2004-10-01

    Ca2+ uptake and Ca2+ extrusion mechanisms were studied in enterocytes with different degree of differentiation from chicks adapted to a low Ca2+ diet as compared to animals fed a normal diet. Chicks adapted to a low Ca2+ diet presented hypocalcemia, hypophosphatemia and increased serum 1,25(OH)2D3 and Ca2+ absorption. Low Ca2+ diet increased the alkaline phosphatase (AP) activity, independently of the cellular maturation, but it did not alter gamma-glutamyl-transpeptidase activity. Ca2+ uptake, Ca2+-ATPase and Na(+)/Ca2+ exchanger activities and expressions were increased by the mineral-deficient diet either in mature or immature enterocytes. Western blots analysis shows that vitamin D receptor (VDR) expression was much higher in crypt cells than in mature cells. Low Ca2+ diet decreased the number of vitamin D receptor units in both kinds of cells. In conclusion, changes in Ca2+ uptake and Ca2+ extrusion mechanisms in the enterocytes by a low Ca2+ diet appear to be a result of enhanced serum levels of 1,25(OH)2D3, which would promote cellular differentiation producing cells more efficient to express vitamin D dependent genes required for Ca2+ absorption. PMID:15528161

  19. Antioxidants in dietary oils: their potential role in breast cancer prevention.

    PubMed

    Sylvester, Paul W; Shah, Sumit

    2002-03-01

    Edible oils contain variable amounts of natural antioxidants such as vitamin E. Antioxidants act not only to prevent lipid peroxidation and free-radical production, but also display potent anticancer activity. The vitamin E family of compounds is divided into two subgroups called tocopherols and tocotrienols, but only tocotrienols display potent anticancer activity at treatment doses that have little or no effect on normal cell growth or viability. Palm oil contains the highest concentrations of natural tocotrienols. Tocotrienols induced apoptosis or programmed cell death in breast cancer cells. Morphological and biochemical characteristics of apoptosis, such as nuclear and cytoplasmic condensation and DNA fragmentation, are mediated by the activation of cysteine proteases called caspases. Apoptosis is triggered by the activation of initiator caspases (caspase-8 or 9) that subsequently activate effector caspases (caspase-3, 6, and 7). Studies were conducted using the highly malignant +SA mouse mammary epithelial cell line to determine if tocotrienol-induced programmed cell death is mediated through the caspase-8 or caspase-9 pathway. Treatment with cytotoxic doses of tocotrienol resulted in a large increase in caspase-8 and caspase-3, but not caspase-9 activity. Combined treatment of tocotrienol with selective caspase-8 or caspase-3 inhibitors completely blocked tocotrieno-linduced apoptosis and activation of caspase-8 and caspase-3, respectively. These findings demonstrate that tocotrienol-induced apoptosis in highly malignant mammary epithelial cells is mediated through caspase-8 activation, and may provide essential information necessary for understanding the potential health benefits of these compounds in preventing and/or reducing the risk of breast cancer in women. PMID:22692436

  20. Dietary fiber from Tunisian common date cultivars (Phoenix dactylifera L.): chemical composition, functional properties, and antioxidant capacity.

    PubMed

    Mrabet, Abdessalem; Rodríguez-Arcos, Rocío; Guillén-Bejarano, Rafael; Chaira, Nizar; Ferchichi, Ali; Jiménez-Araujo, Ana

    2012-04-11

    The dietary fibers (DF) of 10 date varieties from Tunisian oases have been investigated. Further knowledge on the content, composition, and technological applications of those fibers could support their genetic variability and promote the socioeconomical development of growing areas. The composition, water- and oil-holding capacities, solubility, and antiradical activity have been determined. The DF content ranged from 4.7% (Matteta, Rochdi) to >7% (Deglé Nour, Garen Gaze, Smeti). Composition varied significantly among cultivars, and the results evidenced that uronic acids and lignin determine to a great extent the organoleptic quality of dates. Many of the varieties that have been studied (Garen Gaze, Matteta, Kenta, Rochdi, Mermella, Korkobbi, Eguwa) were selected because of great interest from technological and functional points of view. Among their physicochemical characteristics, these samples presented water- and oil-holding capacities of higher than 17 and 4 mL/g fiber, respectively, which make them suitable for use as additives in fiber-enriched foods. Also, DF of Garen Gaze, Smeti, Mermella, and Eguwa had a high antiradical capacity (>230 Trolox equiv/kg fiber). It was concluded that some of these varieties could be grown as potential sources of DF, which could be included in the formulation of fiber- and antioxidant-enriched foods. PMID:22443221

  1. Antioxidant and Anticoagulant Status Were Improved by Personalized Dietary Intervention Based on Biochemical and Clinical Parameters in Cancer Patients.

    PubMed

    Lee, Ga-Yi; Lee, Jong Jyun; Lee, Seung-Min

    2015-01-01

    We investigated whether personalized dietary intervention could improve clinical measurements such as immune cell-mediated cytotoxicity, serum albumin, derivatives of reactive oxygen metabolites (D-ROMS), D-dimer, and fibrinogen. Cancer patients received either a treatment support diet (TD, for those with chemotherapy), or a remission support diet (RD; for those in remission) for at least 3 wk (21-61 days). Both diets were low glycemic, low fat, and high plant protein diets; the diet for the TD group contained an additional 0.5 servings of protein. Based on clinical values, additional amounts of garlic, onion, tomato, shiitake, rice bran, kale, blueberry, pineapples, and/or turmeric powder were provided in regular meals. Estimated daily intake of protein, plant fat, garlic, onion, allicin, and quercetin was greater in the TD compared to the RD. An increased intake of vitamin A, vitamin C, vitamin E and selenium and a reduction in D-dimer were noted compared to baseline diets in both groups. A decrease in D-ROMS in the RD and an increase in albumin and an increased tendency in cytotoxicity in the TD were observed. In conclusion, personalized diets with supplemented functional ingredients improved antioxidant status and/or anticoagulant activity in cancer patients undergoing chemotherapy and in remission. PMID:26333154

  2. Dietary zinc deficiency induces oxidative stress and promotes tumor necrosis factor-α- and interleukin-1β-induced RANKL expression in rat bone

    PubMed Central

    Suzuki, Takako; Katsumata, Shin-ichi; Matsuzaki, Hiroshi; Suzuki, Kazuharu

    2016-01-01

    We investigated the effects of dietary zinc deficiency on oxidative stress and bone metabolism. Four-week-old male Wistar rats were randomly assigned to one of three groups for 4 weeks: a zinc-adequate group (30 ppm); a zinc-deficient group (1 ppm); and a pair-fed group (30 ppm) that was pair-fed to the zinc-deficient group. The iron content and the thiobarbituric acid reactive substance level in bone were higher in the zinc-deficient group than in the zinc-adequate and pair-fed groups. The mRNA expression level of osteoblastogenesis-related genes such as bone morphogenetic protein 2 and runt-related transcription factor 2 was lower in the zinc-deficient group than in the zinc-adequate and pair-fed groups. In contrast, the mRNA expression levels of tumor necrosis factor-α, interleukin-1β and osteoclastogenesis-related genes such as receptor activator of nuclear factor-κB ligand and nuclear factor of activated T cells cytoplasmic 1 were higher in the zinc-deficient group than in the zinc-adequate and pair-fed groups. These findings suggested that dietary zinc deficiency reduced osteoblastogenesis via a decrease in the expression of bone morphogenetic protein 2 and increased osteoclastogenesis via enhancement of the expression of receptor for activator of nuclear factor-κB ligand induced by oxidative stress-stimulated tumor necrosis factor-α and interleukin-1β. PMID:27013778

  3. Modulation of miRNA Expression by Dietary Polyphenols in apoE Deficient Mice: A New Mechanism of the Action of Polyphenols

    PubMed Central

    Milenkovic, Dragan; Deval, Christiane; Gouranton, Erwan; Landrier, Jean-François; Scalbert, Augustin; Morand, Christine; Mazur, Andrzej

    2012-01-01

    Background Polyphenols are the most abundant antioxidants in the human diet and are widespread constituents of fruits and beverages, such as tea, coffee or wine. Epidemiological, clinical and animal studies support a role of polyphenols in the prevention of various diseases, such as cardiovascular diseases, cancers or neurodegenerative diseases. Recent findings suggest that polyphenols could interact with cellular signaling cascades regulating the activity of transcription factors and consequently affecting the expression of genes. However, the impact of polyphenol on the expression of microRNA, small non-coding RNAs, has not yet been studied. The aim of this study was to investigate the impact of dietary supplementation with polyphenols at nutritional doses on miRNA expression in the livers of apolipoprotein E-deficient mice (apoE−/−) jointly with mRNA expression profiling. Methodology/Principal Findings Using microarrays, we measured the global miRNA expression in the livers of wild-type (C57B6/J) mice or apoE−/− mice fed diets supplemented with one of nine different polyphenols or a control diet. This analysis revealed that knock-out of the apoE gene induced significant modulation in the expression of miRNA. Moreover, changes in miRNA expression were observed after polyphenol supplementation, and five miRNAs (mmu-miR-291b-5p, mmu-miR-296-5p, mmu-miR-30c-1*, mmu-miR-467b* and mmu-miR-374*) were identified as being commonly modulated by these polyphenols. We also observed that these polyphenols counteracted the modulation of miRNA expression induced by apoE mutation. Pathway analyses on these five miRNA-target genes revealed common pathways, some of which were also identified from a pathway analysis on mRNA profiles. Conclusion This in vivo study demonstrated for the first time that polyphenols at nutritional doses modulate the expression of miRNA in the liver. Even if structurally different, all polyphenols induced a similar miRNA expression profile

  4. Dietary iron deficiency compromises normal development of elastic fibers in the aorta and lungs of chicks.

    PubMed

    Hill, Charles H; Ashwell, Chris M; Nolin, Shelly J; Keeley, Fred; Billingham, Catherine; Hinek, Aleksander; Starcher, Barry

    2007-08-01

    Elastic fibers play a key role in the structure and function of numerous organs that require elasticity. Elastogenesis is a complex process in which cells first produce a microfibrillar scaffold, composed of numerous structural proteins, upon which tropoelastin assembles to be cross-linked into polymeric elastin. Recently, it was demonstrated that low concentrations of free iron upregulate elastin gene expression in cultured fibroblasts. The present studies were conducted to assess whether low-iron diets would affect the deposition of elastic fibers in an in vivo model. One-day-old chicks were fed semipurified diets containing 1.3 (low), 12 (moderate), and 24 (control) mg/kg of iron. After 3 wk, chicks in the low-iron group were underweight and anemic. Their aortas were smaller with significantly thinner walls than control chicks, yet elastin or collagen content did not decrease relative to total protein. They also demonstrated a significantly lower stress-strain resistance than the controls. Electron microscopy demonstrated that aortic and lung smooth muscle cells were vacuolated and surrounded by loose extracellular matrix and disorganized elastic lamellae with diffuse and fragmented networks of elastic fibers and microfibrils. Immunohistology demonstrated that fibrillin-3 (FBN3) was disorganized and markedly reduced in amount in aortas of the low-iron chicks. Elastin messenger RNA levels were not downregulated in the tissues from the low-iron-fed chicks; however, there was a significant reduction in expression of the FBN1 and FBN3 genes compared with control chicks. The studies indicate that iron deficiency had a pronounced negative effect on elastic fiber development and suggests that fibrillin may have an important role in this pathology. PMID:17634261

  5. The effect of ingested sulfite on visual evoked potentials, lipid peroxidation, and antioxidant status of brain in normal and sulfite oxidase-deficient aged rats.

    PubMed

    Ozsoy, Ozlem; Aras, Sinem; Ozkan, Ayse; Parlak, Hande; Aslan, Mutay; Yargicoglu, Piraye; Agar, Aysel

    2016-07-01

    Sulfite, commonly used as a preservative in foods, beverages, and pharmaceuticals, is a very reactive and potentially toxic molecule which is detoxified by sulfite oxidase (SOX). Changes induced by aging may be exacerbated by exogenous chemicals like sulfite. The aim of this study was to investigate the effects of ingested sulfite on visual evoked potentials (VEPs) and brain antioxidant statuses by measuring superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities. Brain lipid oxidation status was also determined via thiobarbituric acid reactive substances (TBARS) in normal- and SOX-deficient aged rats. Rats do not mimic the sulfite responses seen in humans because of their relatively high SOX activity level. Therefore this study used SOX-deficient rats since they are more appropriate models for studying sulfite toxicity. Forty male Wistar rats aged 24 months were randomly assigned to four groups: control (C), sulfite (S), SOX-deficient (D) and SOX-deficient + sulfite (DS). SOX deficiency was established by feeding rats with low molybdenum (Mo) diet and adding 200 ppm tungsten (W) to their drinking water. Sulfite in the form of sodium metabisulfite (25 mg kg(-1) day(-1)) was given by gavage. Treatment continued for 6 weeks. At the end of the experimental period, flash VEPs were recorded. Hepatic SOX activity was measured to confirm SOX deficiency. SOX-deficient rats had an approximately 10-fold decrease in hepatic SOX activity compared with the normal rats. The activity of SOX in deficient rats was thus in the range of humans. There was no significant difference between control and treated groups in either latence or amplitude of VEP components. Brain SOD, CAT, and GPx activities and brain TBARS levels were similar in all experimental groups compared with the control group. Our results indicate that exogenous administration of sulfite does not affect VEP components and the antioxidant/oxidant status of aged rat brains. PMID:25342669

  6. Role of dietary antioxidant (-)-epicatechin in the development of β-lactoglobulin fibrils.

    PubMed

    Carbonaro, M; Di Venere, A; Filabozzi, A; Maselli, P; Minicozzi, V; Morante, S; Nicolai, E; Nucara, A; Placidi, E; Stellato, F

    2016-07-01

    Under specific physico-chemical conditions β-lactoglobulin is seen to form fibrils structurally highly similar to those that are formed by the amyloid-like proteins associated with neurodegenerative disorders, such as Alzheimer and Parkinson diseases. In the present study we provide insights on the possible role that the dietary flavonoid (-)-epicatechin plays on β-lactoglobulin fibril formation. Fibril formation is induced by keeping β-lactoglobulin solutions at pH2.0 and at a temperature of 80°C for 24h. Atomic Force Microscopy measurements suggest that, by adding (-)-epicatechin in the solution, fibrils density is visibly lowered. This last observation is confirmed by Fluorescence Correlation Spectroscopy experiments. With the use of Fourier Transform IR spectroscopy we monitored the relative abundances of the secondary structures components during the heating process. We observed that in the presence of (-)-epicatechin the spectral-weight exchange between different secondary structures is partially inhibited. Molecular Dynamics simulations have been able to provide an atomistic explanation of this experimental observation, showing that (-)-epicatechin interacts with β-lactoglobulin mainly via the residues that, normally in the absence of (-)-epicatechin, are involved in β-sheet formation. Unveiling this molecular mechanism is an important step in the process of identifying suitable molecules apt at finely tuning fibril formation like it is desirable to do in food industry applications. PMID:27049464

  7. Dietary Aloe vera improves plasma lipid profile, antioxidant, and hepatoprotective enzyme activities in GIFT-tilapia (Oreochromis niloticus) after Streptococcus iniae challenge.

    PubMed

    Gabriel, Ndakalimwe Naftal; Qiang, Jun; Ma, Xin Yu; He, Jie; Xu, Pao; Liu, Kai

    2015-10-01

    The current study investigated the effects of dietary Aloe vera on plasma lipid profile status, antioxidant, and hepatoprotective enzyme activities of GIFT-tilapia juveniles under Streptococcus iniae challenge. Five dietary groups were designed including a control and 100 % Aloe powder incorporated into a tilapia feed at 0.5, 1, 2, and 4 %/kg feed, which were administered for 8 weeks. Fish fed dietary Aloe at 4 %/kg feed significantly reduced in total cholesterol, while triacylglycerol reduced (P < 0.05) in those fed 0.5, 2, and 4 % Aloe/kg feed compared to unsupplemented ones. High-density lipoprotein was significantly elevated in fish fed 0.5 and 1 % Aloe/kg feed compared to unsupplemented ones, and no significant changes (P > 0.05) were noted in low-density lipoprotein among test groups. Furthermore, high activities of superoxide dismutase, catalase, and glutathione peroxide in liver tissues were observed in Aloe-supplemented fish compared to unsupplemented ones, before and after S. iniae challenge (7.7 × 10(6) CFU cells/mL). Variations were also noted in malondialdehyde activity throughout the trial, but no significant difference (P > 0.05) was observed between groups. Meanwhile, Aloe-supplemented fish reduced serum aspartate and alanine aminotransferase (AST and ALT) activities before and after challenge. Based on the second-order polynomial regression analysis, dietary Aloe inclusion levels less than or equal to 1.88, 1.86, and 2.79 %/kg feed were determined to be suitable in improving plasma lipid profile status, antioxidant, and hepatoprotective enzyme activities in GIFT-tilapia in this study, respectively. Thus, A. vera extracts may be recommended as a tilapia feed supplement to enhance fish antioxidant and hepatoprotective capacities, especially during disease outbreaks. PMID:26109009

  8. Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes.

    PubMed

    Kavitha, K; Thiyagarajan, P; Rathna Nandhini, J; Mishra, Rajakishore; Nagini, S

    2013-08-01

    Identifying agents that activate nuclear factor erythroid-2 related factor-2 (Nrf2), a key regulator of various cytoprotective antioxidant, and detoxifying enzymes has evolved as a promising strategy for cancer chemoprevention. In the present study, we investigated the effect of dietary supplementation of structurally diverse phytochemicals- astaxanthin, blueberry, chlorophyllin, ellagic acid, and theaphenon-E on Nrf2 signaling, and xenobiotic-metabolizing and antioxidant enzymes in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model. We observed that these phytochemicals induce nuclear accumulation of Nrf2 while downregulating its negative regulator, Keap-1. This was associated with reduced expression of CYP1A1 and CYP1B1, the cytochrome P450 isoforms involved in the activation of DMBA, and the oxidative stress marker 8-hydroxy-2'-deoxyguanosine coupled with upregulation of the phase II detoxification enzymes glutathione S-transferases and NAD(P)H:quinone oxidoreductase 1 and the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. In addition, these dietary phytochemicals also enhanced the DNA repair enzymes 8-oxoguanine glycosylase 1 (OGG1), xeroderma pigmentosum D (XPD), xeroderma pigmentosum G (XPG), and x-ray repair cross complementing group 1 (XRCC1). Our data provide substantial evidence that the dietary phytochemicals inhibit the development of HBP carcinomas through the activation of Nrf2/Keap-1 signaling and by upregulating cytoprotective enzymes. The extent of the chemopreventive effects of the phytochemicals was in the order: chlorophyllin > blueberry > ellagic acid > astaxanthin > theaphenon-E. Thus these dietary phytochemicals that function as potent activators of Nrf2 and its orchestrated response are novel candidates for cancer chemoprevention. PMID:23707664

  9. Transcriptome analysis of the Tan sheep testes: Differential expression of antioxidant enzyme-related genes and proteins in response to dietary vitamin E supplementation.

    PubMed

    Xu, Chenchen; Zuo, Zhaoyun; Liu, Kun; Jia, Huina; Zhang, Yuwei; Luo, Hailing

    2016-03-15

    Gene-chip technology was employed to study the effect of dietary vitamin E on gene expression in sheep testes based on our previous research. Thirty-five male Tan sheep (20-30 days after weaning) with similar body weight were randomly allocated into five groups and supplemented 0, 20, 100, 200 and 2,000 IU sheep(-1)day(-1) vitamin E (treatments denoted as E0, E20, E100, E200, and E2000, respectively) for 120 days. At the end of the study the sheep were slaughtered and the testis samples were immediately collected and stored in liquid nitrogen. Differences in gene expression between different treated groups were identified. Based on GO enrichment analysis and the KEGG database to evaluate the gene expression data we found that vitamin E might affect genes in the testes by modulating the oxidation level, by affecting the expression of various receptors and transcription factors in biological pathways, and by regulating the expression of metabolism-associated genes. The effect of vitamin E supplementation on the expression of oxidative enzyme-related genes was detected by quantitative real-time PCR (qRT-PCR) and Western blot. The results show that dietary vitamin E, at various doses, can significantly increase (P<0.05) the mRNA and protein expression of Glutathione peroxidase 3 and Glutathione S-transferase alpha 1. In addition, the results of qRT-PCR of the antioxidant enzyme genes were consistent with those obtained using the gene chip microarray analysis. In summary, the dietary vitamin E treatment altered the expression of a number of genes in sheep testes. The increase in the mRNA and protein levels of antioxidant enzyme genes, coupled with the elevation in the activity of the antioxidant enzymes were primarily responsible for the improved reproductive performance promoted by dietary vitamin E. PMID:26723511

  10. Adherence to a Mediterranean diet is associated with a better health-related quality of life: a possible role of high dietary antioxidant content

    PubMed Central

    Bonaccio, Marialaura; Di Castelnuovo, Augusto; Bonanni, Americo; Costanzo, Simona; De Lucia, Francesca; Pounis, George; Zito, Francesco; Donati, Maria Benedetta; de Gaetano, Giovanni; Iacoviello, Licia

    2013-01-01

    Objectives Mediterranean diet (MD) is associated with a reduced risk of major chronic disease. Health-related quality of life (HRQL) is a valid predictor of mortality. The aim of this study is to investigate the association between MD and HRQL and to examine the possible role of dietary antioxidants, fibre content and/or fatty acid components. Design Cross-sectional study on a sample of Italian participants enrolled in the Moli-sani Project, a population-based cohort study. Food intake was recorded by the Italian European prospective investigation into cancer and nutrition study food frequency questionnaire. Adherence to MD was appraised by a Greek Mediterranean diet score (MDS), an Italian Mediterranean diet index (IMI) and by principal component analysis (PCA). HRQL was assessed by the 36-Item Short Form Health Survey. Setting Molise region, Italy. Participants 16 937 participants of 24 325 Italian citizens (age≥35). Main outcomes Dietary patterns and HRQL. Results Mental health was associated consistently and positively with MDS, IMI and an ‘Olive oil and vegetable’ pattern (PCA1), but negatively with an ‘Eggs and sweets’ pattern (PCA3). Physical health was associated positively with MDS and PCA1, but negatively with a ‘Meat and pasta’ pattern. Subjects with the highest MD adherence had 42% (MDS), 34% (IMI) or 59% (PCA1) statistically significant multivariable odds of being in the uppermost level of mental health, as compared with subjects in the lowest category. The associations disappeared after further adjustment for either total food antioxidant content or dietary fibre, while they were not modified by the inclusion of either monounsaturated or polyunsaturated fatty acids. Individuals in the highest PCA1 or PCA3 had significantly higher odds of being in the top level of physical health. Conclusions Adherence to an MD pattern is associated with better HRQL. The association is stronger with mental health than with physical health. Dietary