Science.gov

Sample records for antioxidant response element

  1. The Nrf2-antioxidant response element pathway: a target for regulating energy metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that responds to oxidative stress by binding to the antioxidant response element (ARE) in the promoter of genes coding for antioxidant enzymes like NAD(P)H:quinone oxidoreductase 1 (NQO1) and proteins for glutathione synthesis. ...

  2. Activation of antioxidant response element (ARE)-dependent genes by roasted coffee extracts.

    PubMed

    Yazheng, Liu; Kitts, David D

    2012-09-01

    Coffee beans contain numerous bioactive components that exhibit antioxidant capacity when assessed using both chemical, cell free, and biological, cell-based model systems. However, the mechanisms underlying the antioxidant effects of coffee in biological systems are not totally understood and in some cases vary considerably from results obtained with simpler in vitro chemical assays. In the present study, the physicochemical characteristics and antioxidant activity of roasted and non-roasted coffee extracts were investigated in both cell free (ORAC(FL)) and cell-based systems. A profile of antioxidant gene expression in cultured human colon adenocarcinoma Caco-2 cells treated with both roasted and non-roasted coffee extracts, respectively, was investigated using Real-Time polymerase chain reaction (PCR) array technology. Results demonstrated that the mechanisms of the antioxidant activity associated with coffee constituents assessed by the ORAC(FL) assay were different to those observed using an intracellular oxidation assay with Caco-2 cells. Moreover, roasted coffee (both light and dark roasted) extracts produced both increased- and decreased-expressions of numerous genes that are involved in the management of oxidative stress via the antioxidant defence system. The selective and specific positive induction of antioxidant response element (ARE)-dependent genes, including gastrointestinal glutathione peroxidase (GPX2), sulfiredoxin (SRXN1), thioredoxin reductase 1 (TXNRD1), peroxiredoxin 1 (PRDX1), peroxiredoxin 4 (PDRX4) and peroxiredoxin 6 (PDRX6) were identified with the activation of the endogenous antioxidant defence system in Caco-2 cells. PMID:22699814

  3. Frequency Modulated Translocational Oscillations of Nrf2 Mediate the Antioxidant Response Element Cytoprotective Transcriptional Response

    PubMed Central

    Xue, Mingzhan; Momiji, Hiroshi; Rabbani, Naila; Barker, Guy; Bretschneider, Till; Shmygol, Anatoly; Rand, David A.

    2015-01-01

    Abstract Aims: Stress responsive signaling coordinated by nuclear factor erythroid 2-related factor 2 (Nrf2) provides an adaptive response for protection of cells against toxic insults, oxidative stress and metabolic dysfunction. Nrf2 regulates a battery of protective genes by binding to regulatory antioxidant response elements (AREs). The aim of this study was to examine how Nrf2 signals cell stress status and regulates transcription to maintain homeostasis. Results: In live cell microscopy we observed that Nrf2 undergoes autonomous translocational frequency-modulated oscillations between cytoplasm and nucleus. Oscillations occurred in quiescence and when cells were stimulated at physiological levels of activators, they decrease in period and amplitude and then evoke a cytoprotective transcriptional response. We propose a mechanism whereby oscillations are produced by negative feedback involving successive de-phosphorylation and phosphorylation steps. Nrf2 was inactivated in the nucleus and reactivated on return to the cytoplasm. Increased frequency of Nrf2 on return to the cytoplasm with increased reactivation or refresh-rate under stress conditions activated the transcriptional response mediating cytoprotective effects. The serine/threonine-protein phosphatase PGAM5, member of the Nrf2 interactome, was a key regulatory component. Innovation: We found that Nrf2 is activated in cells without change in total cellular Nrf2 protein concentration. Regulation of ARE-linked protective gene transcription occurs rather through translocational oscillations of Nrf2. We discovered cytoplasmic refresh rate of Nrf2 is important in maintaining and regulating the transcriptional response and links stress challenge to increased cytoplasmic surveillance. We found silencing and inhibition of PGAM5 provides potent activation of Nrf2. Conclusion: Frequency modulated translocational oscillations of Nrf2 mediate the ARE-linked cytoprotective transcriptional response. Antioxid. Redox

  4. Role of Nrf1 in antioxidant response element-mediated gene expression and beyond

    SciTech Connect

    Biswas, Madhurima; Chan, Jefferson Y.

    2010-04-01

    Oxidative stress plays an important part in the pathogenesis of a variety of diseases. The ability to mount an efficient response against the continuous threat posed by exogenous and endogenous oxidants is essential for cellular homeostasis and survival. Oxidative stress activates transcription of a variety of antioxidant genes through cis-acting sequence known as antioxidant response element (ARE). Members of the Cap-N-Collar family of transcription factors, including Nrf1 and Nrf2, that bind ARE have been identified. Nrf1 and Nrf2 are expressed in a wide range of tissues and cell types, and both bind the ARE as heterodimers with small Maf proteins. Numerous studies indicate a pivotal role of Nrf2 in ARE function. Herein, we review data derived from cell-based studies and knockout mice in an attempt to define the role and regulation of Nrf1 in oxidative stress response and other functions.

  5. Bisphenol A activates the Nrf1/2-antioxidant response element pathway in HEK 293 cells.

    PubMed

    Chepelev, Nikolai L; Enikanolaiye, Mutiat I; Chepelev, Leonid L; Almohaisen, Abdulrahman; Chen, Qixuan; Scoggan, Kylie A; Coughlan, Melanie C; Cao, Xu-Liang; Jin, Xiaolei; Willmore, William G

    2013-03-18

    Bisphenol A (BPA) is used in the production of polycarbonate plastics and epoxy resins for baby bottles, liners of canned food, and many other consumer products. Previously, BPA has been shown to reduce the activity of several antioxidant enzymes, which may contribute to oxidative stress. However, the underlying mechanism of the BPA-mediated effect upon antioxidant enzyme activity is unknown. Antioxidant and phase II metabolizing enzymes protect cells from oxidative stress and are transcriptionally activated by Nrf1 and Nrf2 factors through their cis-regulatory antioxidant response elements (AREs). In this work, we have assessed the effect of BPA on the Nrf1/2-ARE pathway in cultured human embryonic kidney (HEK) 293 cells. Surprisingly, glutathione and reactive oxygen species (ROS) assays revealed that BPA application created a more reduced intracellular environment in cultured HEK 293 cells. Furthermore, BPA increased the transactivation activity of ectopic Nrf1 and Nrf2 and increased the expression of ARE-target genes ho-1 and nqo1 at high (100-200 μM) BPA concentrations only. Our study suggests that BPA activates the Nrf1/2-ARE pathway at high (>10 μM) micromolar concentrations. PMID:23360430

  6. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    SciTech Connect

    Chen, Yanyan; Xue, Peng; Hou, Yongyong; Zhang, Hao; Zheng, Hongzhi; Zhou, Tong; Qu, Weidong; Teng, Weiping; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-12-15

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis.

  7. Profiling Environmental Chemicals in the Antioxidant Response Element Pathway using Quantitative High Throughput Screening (qHTS)

    EPA Science Inventory

    The antioxidant response element (ARE) signaling pathway plays an important role in the amelioration of oxidative stress, which can contribute to a number of diseases, including cancer. We screened 1408 NTP-provided substances in 1536-well qHTS format at concentrations ranging fr...

  8. Profiling Environmental Chemicals for Activity in the Antioxidant Response Element Signaling Pathway Using a High-Throughput Screening Approach

    EPA Science Inventory

    1 ABSTRACT 2 3 BACKGROUND: Oxidative stress has been implicated in the pathogenesis of a variety 4 of diseases ranging from cancer to neurodegeneration, highlighti.ng the need to identify 5 chemicals that can induce this effect. The antioxidant response element (ARE)...

  9. Identification of a functional antioxidant responsive element in the promoter of the Chinese hamster carbonyl reductase 3 (Chcr3) gene.

    PubMed

    Miura, Takeshi; Taketomi, Ayako; Nakabayashi, Toshikatsu; Nishinaka, Toru; Terada, Tomoyuki

    2015-07-01

    CHCR3, a member of the short-chain dehydrogenase/reductase superfamily, is a carbonyl reductase 3 enzyme in Chinese hamsters. Carbonyl reductase 3 in humans has been believed to involve the metabolism and/or pharmacokinetics of anthracycline drugs, and the mechanism underlying the gene regulation has been investigated. In this study, the nucleotide sequence of the Chcr3 promoter was originally determined, and its promoter activity was characterised. The proximal promoter region is TATA-less and GC-rich, similar to the promoter region of human carbonyl reductase 3. Cobalt stimulated the transcriptional activity of the Chcr3 gene. The results of a luciferase gene reporter assay demonstrated that cobalt-induced stimulation required an antioxidant responsive element. Forced expression of Nrf2, the transcription factor that binds to antioxidant responsive elements, enhanced the transcriptional activity of the Chcr3 gene. These results suggest that cobalt induces the expression of the Chcr3 gene via the Nrf2-antioxidant responsive element pathway. PMID:25677373

  10. Oxidative Stress Regulates CFTR Gene Expression in Human Airway Epithelial Cells through a Distal Antioxidant Response Element

    PubMed Central

    Zhang, Zhaolin; Leir, Shih-Hsing

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator gene (CFTR) expression in human airway epithelial cells involves the recruitment of distal cis-regulatory elements, which are associated with airway-selective DNase hypersensitive sites at −44 kb and −35 kb from the gene. The −35-kb site encompasses an enhancer that is regulated by the immune mediators interferon regulatory factor 1 and 2 and by nuclear factor Y. Here we investigate the −44-kb element, which also has enhancer activity in vitro in airway epithelial cells but is inactive in intestinal epithelial cells. This site contains an antioxidant response element (ARE) that plays a critical role in its function in airway cell lines and primary human bronchial epithelial cells. The natural antioxidant sulforaphane (SFN) induces nuclear translocation of nuclear factor, erythroid 2-like 2 (Nrf2), a transcription factor that regulates genes with AREs in their promoters, many of which are involved in response to injury. Under normal conditions, the −44-kb ARE is occupied by the repressor BTB and CNC homology 1, basic leucine zipper transcription factor (Bach1), and v-Maf avian musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) heterodimers. After 2 hours of SFN treatment, Nrf2 displaces these repressive factors and activates CFTR expression. Site-directed mutagenesis shows that both the ARE and an adjacent NF-κB binding site are required for activation of the –44-kb element in airway epithelial cells. Moreover, this element is functionally linked to the −35-kb enhancer in modulating CFTR expression in response to environmental stresses in the airway. PMID:25259561

  11. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome.

    PubMed

    Vriend, Jerry; Reiter, Russel J

    2015-02-01

    Both melatonin and proteasome inhibitors upregulate antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GP), hemoxygenase 1 (HO-1), and NADPH:quinone oxidoreductase (NQO1). Recent evidence suggests that the antioxidant action of both melatonin and proteasome inhibitors involves the Keap1-ARE (Keap1 antioxidant response element) pathway via the upregulation of Nrf2. Melatonin and proteasome inhibitors suppress the degradation of Nrf2 and also enhance its nuclear translocation. In the nucleus Nrf2, together with a cofactor, stimulates the transcription of antioxidant enzymes and detoxifying enzymes. The ligase (E3) complex (Keap1-Cul3-Rbx1) responsible for ubiquitinating Nrf2, prior to proteasomal degradation, also ubiquitinates IkB kinase and the antiapoptotic factor Bcl-2, and possibly additional proteins. In various systems, NF-κB, which is inhibited by IkBα, is downregulated by proteasome inhibitors as well as by melatonin. Similarly in leukemic cells, Bcl-2 is down-regulated by the proteasome inhibitor, bortezomib, and also by melatonin. Thus melatonin administration modulates the activity of three separate substrates of the Keap1-Cul3-Rbx1 ubiquitin ligase. These facts could be accounted for by the hypothesis that melatonin interacts with the ubiquitin ligase complex or, more likely, by the hypothesis that melatonin acts as a proteasome inhibitor. A recent study documented that melatonin acts as a proteasome inhibitor in cancer cells as well as inhibiting chymotrypsin-like activity in cell-free systems of these cells. Further studies, however, are needed to clarify the interaction of melatonin and the ubiquitin-proteasome system as they relate to oxidative stress. PMID:25528518

  12. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data

    PubMed Central

    Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao

    2015-01-01

    Background: Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. Objective: The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Methods: Quantitative structure–activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro–in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. Results: The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Conclusion: Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Citation: Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and

  13. Activation of antioxidant response element in mouse primary cortical cultures with sesquiterpene lactones isolated from Tanacetum parthenium

    PubMed Central

    Fischedick, Justin T; Standiford, Miranda; Johnson, Delinda A.; De Vos, Ric C.H.; Todorović, Slađana; Banjanac, Tijana; Verpoorte, Rob; Johnson, Jeffrey A.

    2012-01-01

    Tanacetum parthenium (Asteraceae) produces biologically active sesquiterpene lactones (SL). Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor known to activate a series of genes termed the antioxidant response element (ARE). Activation of the Nrf2/ARE may be useful for the treatment of neurodegenerative disease. In this study we isolated 11 sesquiterpene lactones from T. parthenium with centrifugal partition chromatography and semi-preparative HPLC. Compounds were screened in-vitro for their ability to activate the ARE on primary mouse cortical cultures as well as for their toxicity towards the cultures. All sesquiterpene lactones containing the α-methylene-γ-lactone moiety were able to activate the ARE although a number of compounds displayed significant cellular toxicity towards the cultures. The structure activity relationship of the sesquiterpene lactones indicate that the guaianolides isolated were more active and less toxic then the germacranolides. PMID:22923197

  14. Extract of Ziziphus jujuba Fruit (Jujube) Stimulates Expression of Enzymes Responsible for Heme Recycle via Anti-oxidant Response Element in Cultured Murine Macrophages.

    PubMed

    Chen, Jianping; Lam, Candy T W; Li, Zhonggui; Yao, Ping; Lin, Huangquan; Dong, Tina T X; Tsim, Karl W K

    2016-02-01

    Jujube, the fruit of Ziziphus jujuba Mill., is a functional food and commonly used as a health supplement worldwide. To study the beneficial role of jujube in heme iron recycling during erythrophagocytosis, the expression of heme oxygenase-1 (HO-1), biliverdin reductase A and B, and ferroportin were determined in jujube-treated cultured RAW 264.7 macrophages. Application of a chemically standardized jujube water extract in cultured RAW 264.7 cells for 24 h stimulated the expressions of HO-1, biliverdin reductase A, biliverdin reductase B, and ferroportin in a concentration-dependent manner, having the maximal responses from twofolds to threefolds. A plasmid containing anti-oxidant response element, a regulator for HO-1 transcription, was transfected into RAW 264.7 cells. Application of jujube water extract onto the transfected macrophages stimulated the anti-oxidant response element-mediated transcriptional activity by twofolds. These results supported the potential capacity of jujube by regulating expressions of heme iron recycling genes in cultured macrophages. PMID:26646685

  15. Effect of iron stress on Withania somnifera L.: antioxidant enzyme response and nutrient elemental uptake of in vitro grown plants.

    PubMed

    Rout, Jyoti Ranjan; Behera, Sadhana; Keshari, Nitin; Ram, Shidharth Sankar; Bhar, Subhajit; Chakraborty, Anindita; Sudarshan, Mathummal; Sahoo, Santi Lata

    2015-03-01

    In the present study the response of antioxidant enzyme activities and the level of expression of their corresponding genes on bioaccumulation of iron (Fe) were investigated. In vitro germinated Withania somnifera L. were grown in Murashige and Skoog's liquid medium with increasing concentrations (0, 25, 50, 100 and 200 µM) of FeSO4 for 7 and 14 days. Root and leaf tissues analyzed for catalase (CAT, EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1) and guaiacol peroxidase (GPX, EC 1.11.1.7), have shown an increase in content with respect to exposure time. Isoforms of CAT, SOD and GPX were separated using non-denaturing polyacrylamide gel electrophoresis and observed that the isoenzymes were greatly affected by higher concentrations of Fe. Reverse transcriptase polymerase chain reaction analysis performed by taking three pairs of genes of CAT (RsCat, Catalase1, Cat1) and SOD (SodCp, TaSOD1.2, MnSOD) to find out the differential expression of antioxidant genes under Fe excess. RsCat from CAT and MnSOD from SOD have exhibited high levels of gene expression under Fe stress, which was consistent with the changes of the activity assayed in solution after 7 days of treatment. Analysis by proton induced X-ray emission exhibited an increasing uptake of Fe in plants by suppressing and expressing of other nutrient elements. The results of the present study suggest that higher concentration of Fe causes disturbance in nutrient balance and induces oxidative stress in plant. PMID:25480472

  16. Immunohistochemical Study of Nrf2-Antioxidant Response Element as Indicator of Oxidative Stress Induced by Cadmium in Developing Rats

    PubMed Central

    Montes, Sergio; Juárez-Rebollar, Daniel; Nava-Ruíz, Concepción; Sánchez-García, Aurora; Heras-Romero, Yesica; Rios, Camilo; Méndez-Armenta, Marisela

    2015-01-01

    In developing animals, Cadmium (Cd) induces toxicity to many organs including brain. Reactive oxygen species (ROS) are often implicated in Cd-inducedtoxicity and it has been clearly demonstrated that oxidative stress interferes with the expression of genes as well as transcriptional factors such as Nrf2-dependent Antioxidant Response Element (Nrf2-ARE). Cd-generated oxidative stress and elevated Nrf2 activity have been reported in vitro and in situ cells. In this study we evaluated the morphological changes and the expression pattern of Nrf2 and correlated them with the Cd concentrations in different ages of developing rats in heart, lung, kidney, liver, and brain. The Cd content in different organs of rats treated with the metal was increased in all ages assayed. Comparatively, lower Cd brain levels were found in rats intoxicated at the age of 12 days, then pups treated at 5, 10, or 15 days old, at the same metal dose. No evident changes, as a consequence of cadmium exposure, were evident in the morphological analysis in any of the ages assayed. However, Nrf2-ARE immunoreactivity was observed in 15-day-old rats exposed to Cd. Our results support that fully developed blood-brain barrier is an important protector against Cd entrance to brain and that Nrf2 increased expression is a part of protective mechanism against cadmium-induced toxicity. PMID:26101558

  17. Transcriptional induction of the mouse metallothionein-I gene in hydrogen peroxide-treated Hepa cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements.

    PubMed Central

    Dalton, T; Palmiter, R D; Andrews, G K

    1994-01-01

    Synthesis of metallothionein-I (MT-I) and heme oxygenase mRNAs is rapidly and transiently induced by H2O2 in mouse hepatoma cells (Hepa) and this effect is blocked by catalase. Menadione, which generates free radicals, also induces these mRNAs. Deletion mutagenesis revealed that a region between -42 and -153 in the mouse MT-I promoter was essential for induction of a CAT reporter gene. A multimer of a 16 bp sequence (-101 to -86) that includes an antioxidant response element and overlapping adenovirus major late transcription factor binding site elevated basal expression and allowed induction by H2O2 when inserted upstream of a minimal promoter. However, deletion of this region (-100 to -89) from the intact MT-I promoter (-153) did not completely eliminate response. Multiple copies of a metal response element also permitted response to H2O2. These results suggest that induction of MT-I gene transcription by H2O2 is mediated by at least two different elements within the proximal MT-I gene promoter and suggest a previously undescribed function of the MRE. Induction of MT gene transcription by ROS and the subsequent scavenging of ROS by the MT peptide is reminiscent of the metal regulatory loop and is consistent with the hypothesized protective functions of MT. Images PMID:7800494

  18. Hepatic expression of heme oxygenase-1 and antioxidant response element-mediated genes following administration of ethinyl estradiol to rats

    SciTech Connect

    Morio, Lisa A.; Leone, Angelique; Sawant, Sharmilee P.; Nie, Alex Y.; Brandon Parker, J.; Taggart, Peter; Barron, Alfred M.; McMillian, Michael K. . E-mail: mmcmilli@prdus.jnj.com; Lord, Peter

    2006-11-01

    Heme oxygenase-1 (HO-1) is one of several enzymes induced by hepatotoxicants, and is thought to have an important protective role against cellular stress during liver inflammation and injury. The objective of the present study was to evaluate the role of HO-1 in estradiol-induced liver injury. A single dose of ethinyl estradiol (500 mg/kg, po) resulted in mild liver injury. Repeated administration of ethinyl estradiol (500 mg/kg/day for 4 days, po) resulted in no detectable liver injury or dysfunction. Using RT-PCR analysis, we demonstrate that HO-1 gene expression in whole liver tissue is elevated (> 20-fold) after the single dose of ethinyl estradiol. The number and intensity of HO-1 immunoreactive macrophages were increased after the single dose of ethinyl estradiol. HO-1 expression was undetectable in hepatic parenchymal cells from rats receiving Methocel control or a single dose of ethinyl estradiol, however cytosolic HO-1 immunoreactivity in these cells after repeated dosing of ethinyl estradiol was pronounced. The increases in HO-1 mRNA and HO-1 immunoreactivity following administration of a single dose of ethinyl estradiol suggested that this enzyme might be responsible for the observed protection of the liver during repeated dosing. To investigate the effect of HO-1 expression on ethinyl estradiol-induced hepatotoxicity, rats were pretreated with hemin (50 {mu}mol/kg, ip, a substrate and inducer of HO-1), with tin protoporphyrin IX (60 {mu}mol/kg, ip, an HO-1 inhibitor), or with gadolinium chloride (10 mg/kg, iv, an inhibitor/toxin of Kupffer cells) 24 h before ethinyl estradiol treatment. Pretreatment with modulators of HO-1 expression and activity had generally minimal effects on ethinyl estradiol-induced liver injury. These data suggest that HO-1 plays a limited role in antioxidant defense against ethinyl estradiol-induced oxidative stress and hepatotoxicity, and suggests that other coordinately induced enzymes are responsible for protection observed

  19. Caffeic acid phenethyl ester stimulates human antioxidant response element-mediated expression of the NAD(P)H:quinone oxidoreductase (NQO1) gene.

    PubMed

    Jaiswal, A K; Venugopal, R; Mucha, J; Carothers, A M; Grunberger, D

    1997-02-01

    Caffeic acid phenethyl ester (CAPE) is a phenolic antioxidant derived from the propolis of honeybee hives. CAPE was shown to inhibit the formation of intracellular hydrogen peroxide and oxidized bases in DNA of 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated HeLa cells and was also found to induce a redox change that correlated with differential growth effects in transformed cells but not the nontumorigenic parental ones. Mediated via the electrophile or human antioxidant response element (hARE), induction of the expression of NAD(P)H quinone oxidoreductase (NQO1) and glutathione S-transferase Ya subunit genes by certain phenolic antioxidants has been correlated with the chemopreventive properties of these agents. Here, we determined by Northern analysis that CAPE treatment of hepatoma cells stimulates NQO1 gene expression in cultured human hepatoma cells (HepG2), and we characterized the effects of CAPE treatment on the expression of a reporter gene either containing or lacking the hARE or carrying a mutant version of this element in rodent hepatoma (Hepa-1) transfectants. A dose-dependent transactivation of human hARE-mediated chloramphenicol acetyltransferase (cat) gene expression was observed upon treatments of the Hepa-1 transfectants with TPA, a known inducer, as well as with CAPE. The combined treatments resulted in an apparent additive stimulation of the reporter expression. To learn whether this activation of cat gene expression was effected by protein kinase C in CAPE-treated cells, a comparison was made of cat gene activity after addition of calphostin, a protein kinase C inhibitor. Calphostin reduced the cat gene induction by TPA but not by CAPE, suggesting that stimulation of gene expression in this system by these agents proceeds via distinct mechanisms. Band-shift experiments to examine binding of transactivator proteins from nuclear extracts of treated and untreated cells to a hARE DNA probe showed that TPA exposure increased the binding level

  20. Human antioxidant-response-element-mediated regulation of type 1 NAD(P)H:quinone oxidoreductase gene expression. Effect of sulfhydryl modifying agents.

    PubMed

    Li, Y; Jaiswal, A K

    1994-11-15

    Human antioxidant-response element (hARE) containing two copies of the AP1/AP1-like elements arranged as inverse repeat is known to mediate basal and beta-naphthoflavone-induced transcription of the type 1 NAD(P)H:quinone oxidoreductase (NQO1) gene. Band-shift assays revealed that beta-naphthoflavone increased binding of nuclear proteins at the hARE. Super shift assays identified Jun-D and c-Fos proteins in the band-shift complexes observed with control and beta-naphthoflavone-treated Hepa-1 nuclear extracts. Hepa-1 cells stably transformed with hARE-tk-chloramphenicol acetyl transferase (CAT) recombinant plasmid were used to demonstrate that, in addition to beta-naphthoflavone, a variety of antioxidants, tumor promoters and hydrogen peroxide (H2O2) also increased expression of hARE-mediated CAT gene. beta-naphthoflavone induction of the CAT gene expression in Hepa-1 cells was found insensitive to inhibitors of protein kinase C and tyrosine kinases. However, binding of regulatory proteins at the hARE and the CAT gene expression in Hepa-1 cells were increased by dithiothreitol, 2-mercaptoethanol and diamide. Treatment of the Hepa-1 cells with N-ethylmaleimide reduced binding of proteins at the hARE and interfered with expression and beta-naphthoflavone induction of the CAT gene. These results suggested a role of sulfhydryl modification of hARE binding (Jun and Fos) proteins which mediate basal and induced expression of the NQO1 gene. We also report that in-vitro-translated products of the proto-oncogenes, Jun and Fos, bind to the hARE in band-shift assays. The incubation of Jun and Fos proteins with small amounts of nuclear extract from dimethylsulfoxide-treated (control) or beta-naphthoflavone treated Hepa-1 cells prior to band-shift assays increased the binding of Jun and Fos proteins to the hARE. Interestingly, the increase in binding of Jun and Fos proteins to the hARE was more prominent with beta-naphthoflavone-treated nuclear extract as compared to the control

  1. Overactivation of the nuclear factor (erythroid-derived 2)-like 2-antioxidant response element pathway in hepatocytes decreases hepatic ischemia/reperfusion injury in mice.

    PubMed

    Lee, Lung-Yi; Harberg, Calvin; Matkowskyj, Kristina A; Cook, Shelly; Roenneburg, Drew; Werner, Sabine; Johnson, Jeffrey; Foley, David P

    2016-01-01

    Hepatic ischemia/reperfusion injury (IRI) is a critical component of hepatic surgery. Oxidative stress has long been implicated as a key player in IRI. In this study, we examine the cell-specific role of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-antioxidant response element pathway in warm hepatic IRI. Nrf2 knockout (KO) and wild-type (WT) animals and novel transgenic mice expressing a constitutively active nuclear factor (erythroid-derived 2)-like 2 (caNrf2) mutant in hepatocytes (AlbCre+/caNrf2+) and their littermate controls underwent partial hepatic ischemia or sham surgery. The animals were killed 6 hours after reperfusion, and their serum and tissue were collected for analysis. As compared to WT animals after ischemia/reperfusion (IR), Nrf2 KO mice had increased hepatocellular injury with increased serum alanine aminotransferase and aspartate aminotransferase, Suzuki score, apoptosis, an increased inflammatory infiltrate, and enhanced inflammatory cytokine expression. On the other hand, AlbCre+/caNrf2+ that underwent IR had significantly reduced serum transaminases, less necrosis on histology, and a less pronounced inflammatory infiltrate and inflammatory cytokine expression as compared to the littermate controls. However, there were no differences in apoptosis. Taken together, Nrf2 plays a critical role in our murine model of warm hepatic IRI, with Nrf2 deficiency exacerbating hepatic IRI and hepatocyte-specific Nrf2 overactivation providing protection against warm hepatic IRI. PMID:26285140

  2. Aged garlic extract enhances heme oxygenase-1 and glutamate-cysteine ligase modifier subunit expression via the nuclear factor erythroid 2-related factor 2-antioxidant response element signaling pathway in human endothelial cells.

    PubMed

    Hiramatsu, Kei; Tsuneyoshi, Tadamitsu; Ogawa, Takahiro; Morihara, Naoaki

    2016-02-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway defends cells against oxidative stress and regulates the cellular redox balance. Activation of this pathway induces a variety of antioxidant enzymes, resulting in the protection of our bodies against oxidative damage. It has been reported that aged garlic extract (AGE), a garlic preparation that is rich in water-soluble cysteinyl moieties, reduces oxidative stress and helps to ameliorate of cardiovascular, renal and hepatic diseases. We hypothesized that AGE enhances the expression of antioxidant enzymes via the Nrf2-ARE pathway in human umbilical vein endothelial cells in culture. Gene expression of antioxidant enzymes was measured using real-time polymerase chain reaction. Nuclear accumulation of Nrf2 and antioxidant enzymes expression were evaluated using western blotting analyses. We found that AGE promoted the accumulation of Nrf2 into the nucleus in a time- and dose-dependent manner and increased the gene expression and polypeptide level of heme oxygenase-1 (HO-1) and glutamate-cysteine ligase modifier subunit (GCLM). Moreover, the effect of AGE in elevating the gene expression of HO-1 and GCLM was found to be mediated via Nrf2 activation in human umbilical vein endothelial cells. Taken together, these observations suggest that AGE induces the expression of HO-1 and GCLM, which are antioxidant enzymes, via activation of the Nrf2-ARE signaling pathway. PMID:26507778

  3. Mangiferin activates Nrf2-antioxidant response element signaling without reducing the sensitivity to etoposide of human myeloid leukemia cells in vitro

    PubMed Central

    Zhang, Ben-ping; Zhao, Jie; Li, Shan-shan; Yang, Li-jing; Zeng, Ling-lan; Chen, Yan; Fang, Jun

    2014-01-01

    Aim: Mangiferin is glucosylxanthone extracted from plants of the Anacardiaceae and Gentianaceae families. The aim of this study was to investigate the effects of mangiferin on Nrf2-antioxidant response element (ARE) signaling and the sensitivity to etoposide of human myeloid leukemia cells in vitro. Methods: Human HL-60 myeloid leukemia cells and mononuclear human umbilical cord blood cells (MNCs) were examined. Nrf2 protein was detected using immunofluorescence staining and Western blotting. Binding of Nrf2 to ARE was examined with electrophoretic mobility shift assay. The level of NQO1 was assessed with real-time RT-PCR and Western blotting. DCFH-DA was used to evaluate intracellular ROS level. Cell proliferation and apoptosis were analyzed using MTT and flow cytometry, respectively. Results: Mangiferin (50 μmol/L) significantly increased Nrf2 protein accumulation in HL-60 cells, particularly in the nucleus. Mangiferin also enhanced the binding of Nrf2 to an ARE, significantly up-regulated NQO1 expression and reduced intracellular ROS in HL60 cells. Mangiferin alone dose-dependently inhibited the proliferation of HL-60 cells. Mangiferin (50 mol/L) did not attenuate etoposide-induced cytotoxicity in HL-60 cells, and combined treatment of mangiferin with low concentration of etoposide (0.8 μg/mL) even increased the cell inhibition rate. Nor did mangiferin change the rate of etoposide-induced apoptosis in HL-60 cells. In MNCs, mangiferin significantly relieved oxidative stress, but attenuated etoposide-induced cytotoxicity. Conclusion: Mangiferin is a novel Nrf2 activator that reduces oxidative stress and protects normal cells without reducing the sensitivity to etoposide of HL-60 leukemia cells in vitro. Mangiferin may be a potential chemotherapy adjuvant. PMID:24374812

  4. 5MeCDDO Blocks Metabolic Activation but not Progression of Breast, Intestine, and Tongue Cancers. Is Antioxidant Response Element a Prevention Target?

    PubMed

    Lubet, Ronald A; Townsend, Reid; Clapper, Margie L; Juliana, M Margaret; Steele, Vernon E; McCormick, David L; Grubbs, Clinton J

    2016-07-01

    The preventive efficacy of the triterpenoid 5MeCDDO was tested in two models of mammary cancer, the Min model of intestinal cancer, and a chemically induced model of head and neck cancer. In one model of mammary cancer, female Sprague-Dawley rats were administered MNU at 50 days of age, and 5MeCDDO (27 ppm) was administered in the diet beginning 5 days later for the duration of the study; 5MeCDDO was ineffective. In contrast, in a model examining initiation of mammary cancers by the procarcinogen dimethyl-benzanthracene, 5, 6-benzoflavone (500 ppm, an Ah receptor agonist) or 5MeCDDO (27 or 2.7 ppm) decreased tumor multiplicity by 90%, 80%, and 50%, respectively. This anti-initiating effect which is presumably mediated by altered metabolic activation parallels our observation that 5MeCDDO induced proteins of various antioxidant response element (ARE)-related phase II drug-metabolizing enzymes [e.g., GST Pi, AKR 7A3 (aflatoxicol), epoxide hydrolase, and quinone reductase] in the liver. 5MeCDDO tested in the 4-nitroquinoline-l-oxide (4-NQO) head and neck cancer model failed to decrease tumor incidence or invasiveness. In the Min mouse model of intestinal cancer, a high dose of 5MeCDDO (80 ppm) was weakly effective in reducing adenoma multiplicity [∼30% (P < 0.05)]; however, a lower dose was totally ineffective. These findings question whether measuring increased levels of certain ARE-related genes (e.g., quinone reductase, GST Pi), indicating decreased carcinogen activation are sufficient to imply general chemopreventive efficacy of a given agent or mixture. Cancer Prev Res; 9(7); 616-23. ©2016 AACR. PMID:27150634

  5. Senescence responsive transcriptional element

    DOEpatents

    Campisi, Judith; Testori, Alessandro

    1999-01-01

    Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.

  6. Senescence responsive transcriptional element

    SciTech Connect

    Campisi, J.; Testori, A.

    1999-10-12

    Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.

  7. Antioxidant Vitamins and Trace Elements in Critical Illness.

    PubMed

    Koekkoek, W A C Kristine; van Zanten, Arthur R H

    2016-08-01

    This comprehensive narrative review summarizes relevant antioxidant mechanisms, the antioxidant status, and effects of supplementation in critically ill patients for the most studied antioxidant vitamins A, C, and E and the enzyme cofactor trace elements selenium and zinc. Over the past 15 years, oxidative stress-mediated cell damage has been recognized to be fundamental to the pathophysiology of various critical illnesses such as acute respiratory distress syndrome, ischemia-reperfusion injury, and multiorgan dysfunction in sepsis. Related to these conditions, low plasma levels of antioxidant enzymes, vitamins, and trace elements have been frequently reported, and thus supplementation seems logical. However, low antioxidant plasma levels per se may not indicate low total body stores as critical illness may induce redistribution of antioxidants. Furthermore, low antioxidant levels may even be beneficial as pro-oxidants are essential in bacterial killing. The reviewed studies in critically ill patients show conflicting results. This may be due to different patient populations, study designs, timing, dosing regimens, and duration of the intervention and outcome measures evaluated. Therefore, at present, it remains unclear whether supplementation of antioxidant micronutrients has any clinical benefit in critically ill patients as some studies show clear benefits, whereas others demonstrate neutral outcomes and even harm. Combination therapy of antioxidants seems logical as they work in synergy and function as elements of the human antioxidant network. Further research should focus on defining the normal antioxidant status for critically ill patients and to study optimal supplement combinations either by nutrition enrichment or by enteral or parenteral pharmacological interventions. PMID:27312081

  8. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene.

    PubMed

    Venugopal, R; Jaiswal, A K

    1996-12-10

    Twenty-four base pairs of the human antioxidant response element (hARE) are required for high basal transcription of the NAD(P)H:quinone oxidoreductase1 (NQO1) gene and its induction in response to xenobiotics and antioxidants. hARE is a unique cis-element that contains one perfect and one imperfect AP1 element arranged as inverse repeats separated by 3 bp, followed by a "GC" box. We report here that Jun, Fos, Fra, and Nrf nuclear transcription factors bind to the hARE. Overexpression of cDNA derived combinations of the nuclear proteins Jun and Fos or Jun and Fra1 repressed hARE-mediated chloramphenicol acetyltransferase (CAT) gene expression in transfected human hepatoblastoma (Hep-G2) cells. Further experiments suggested that this repression was due to overexpression of c-Fos and Fra1, but not due to Jun proteins. The Jun (c-Jun, Jun-B, and Jun-D) proteins in all the possible combinations were more or less ineffective in repression or upregulation of hARE-mediated gene expression. Interestingly, overexpression of Nrf1 and Nrf2 individually in Hep-G2 and monkey kidney (COS1) cells significantly increased CAT gene expression from reporter plasmid hARE-thymidine kinase-CAT in transfected cells that were inducible by beta-naphthoflavone and teri-butyl hydroquinone. These results indicated that hARE-mediated expression of the NQO1 gene and its induction by xenobiotics and antioxidants are mediated by Nrf1 and Nrf2. The hARE-mediated basal expression, however, is repressed by overexpression of c-Fos and Fra1. PMID:8962164

  9. Vitamins, trace elements, and antioxidant status in dementia disorders.

    PubMed

    Tabet, N; Mantle, D; Walker, Z; Orrell, M

    2001-09-01

    Antioxidants, such as vitamins C and E, have been proposed for the treatment of dementia disorders. Although other vitamins and trace elements may also have antioxidant-enhancing activities, it is not known whether the overall antioxidant status in dementia patients is associated with the intake level of these vitamins and trace elements. In this study, we assessed the levels of vitamins and trace elements in the diet of patients with Alzheimer's disease (AD), vascular dementia (VaD), and dementia with Lewy bodies (DLB) and a group of carers, along with blood levels of total antioxidant capacity (TAC). Results show that the dietary intake was decreased for most measured vitamins and trace elements in severe AD, but not in other dementia groups. In addition, we found no significant difference in the levels of TAC between any of the dementia groups. There was, however, a significant correlationbetween intake of vitamin B1, vitamin B12, zinc, and selenium and blood levels of TAC in the VaD group, but not in the AD and DLB groups. Furthermore, no association was observed in any of the dementia groups between zinc and copper intake and Cu/Zn superoxide dismutase activity, or between dietary selenium intake and glutathione peroxidase activity. The activities of these two endogenous antioxidant enzymes do not seem to be influenced by intake levels of relevant substances. The data indicate that the influence of dietary vitamins and metal ions on the overall antioxidant status is limited to VaD patients only. Clinical trials are needed to ascertain the value of antioxidant supplementation in VaD patients. PMID:11768374

  10. Arsenic induces NAD(P)H-quinone oxidoreductase I by disrupting the Nrf2 x Keap1 x Cul3 complex and recruiting Nrf2 x Maf to the antioxidant response element enhancer.

    PubMed

    He, Xiaoqing; Chen, Michael G; Lin, Gary X; Ma, Qiang

    2006-08-18

    The ubiquitous toxic metalloid arsenic elicits pleiotropic adverse and adaptive responses in mammalian species. The biological targets of arsenic are largely unknown at present. We analyzed the signaling pathway for induction of detoxification gene NAD(P)H-quinone oxidoreductase (Nqo1) by arsenic. Genetic and biochemical evidence revealed that induction required cap 'n' collar basic leucine zipper transcription factor Nrf2 and the antioxidant response element (ARE) of Nqo1. Arsenic stabilized Nrf2 protein, extending the t(1/2) of Nrf2 from 21 to 200 min by inhibiting the Keap1 x Cul3-dependent ubiquitination and proteasomal turnover of Nrf2. Arsenic markedly inhibited the ubiquitination of Nrf2 but did not disrupt the Nrf2 x Keap1 x Cul3 association in the cytoplasm. In the nucleus, arsenic, but not phenolic antioxidant tert-butylhydroquinone, dissociated Nrf2 from Keap1 and Cul3 followed by dimerization of Nrf2 with a Maf protein (Maf G/Maf K). Chromatin immunoprecipitation demonstrated that Nrf2 and Maf associated with the endogenous Nqo1 ARE enhancer constitutively. Arsenic substantially increased the ARE occupancy by Nrf2 and Maf. In addition, Keap1 was shown to be ubiquitinated in the cytoplasm and deubiquitinated in the nucleus in the presence of arsenic without changing the protein level, implicating nuclear-cytoplasmic recycling of Keap1. Our data reveal that arsenic activates the Nrf2/Keap1 signaling pathway through a distinct mechanism from that by antioxidants and suggest an "on-switch" model of Nqo1 transcription in which the binding of Nrf2 x Maf to ARE controls both the basal and inducible expression of Nqo1. PMID:16785233

  11. Induction of activation of the antioxidant response element and stabilization of Nrf2 by 3-(3-pyridylmethylidene)-2-indolinone (PMID) confers protection against oxidative stress-induced cell death

    SciTech Connect

    Yao, Jia-Wei; Liu, Jing; Kong, Xiang-Zhen; Zhang, Shou-Guo; Wang, Xiao-Hui; Yu, Miao; Zhan, Yi-Qun; Li, Wei; Xu, Wang-Xiang; Tang, Liu-Jun; Ge, Chang-Hui; Wang, Lin; Li, Chang-Yan; Yang, Xiao-Ming

    2012-03-01

    The antioxidant response elements (ARE) are a cis-acting enhancer sequence located in regulatory regions of antioxidant and detoxifying genes. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a member of the Cap ‘n’ Collar family of transcription factors that binds to the ARE and regulates the transcription of specific ARE-containing genes. Under oxidative stress, Nrf2/ARE induction is fundamental to defense against reactive oxygen species (ROS) and serves as a key factor in the protection against toxic xenobiotics. 3-(3-Pyridylmethylidene)-2-Indolinone (PMID) is a derivative of 2-indolinone compounds which act as protein kinase inhibitors and show anti-tumor activity. However, the role of PMID in the oxidative stress remains unknown. In the present study, we showed that PMID induced the activation of ARE-mediated transcription, increased the DNA-binding activity of Nrf2 and then up-regulated the expression of antioxidant genes such as HO-1, SOD, and NQO1. The level of Nrf2 protein was increased in cells treated with PMID by a post-transcriptional mechanism. Under CHX treatment, the stability of Nrf2 protein was enhanced by PMID with decreased turnover rate. We showed that PMID reduced the ubiquitination of Nrf2 and disrupted the Cullin3 (Cul3)-Keap1 interaction. Furthermore, cells treated with PMID showed resistance to cytotoxicity by H{sub 2}O{sub 2} and pro-oxidant 6-OHDA. PMID also up-regulated the antioxidant level in BALB/c mice. Taken together, the compound PMID induces the ARE-mediated gene expression through stabilization of Nrf2 protein and activation of Nrf2/ARE pathway and protects against oxidative stress-mediated cell death. -- Highlights: ► PMID up-regulates ARE-mediated antioxidant gene expression in vitro and in vivo. ► PMID enhances the stabilization of Nrf2 protein, decreasing Nrf2 turnover rate. ► PMID disrupted the Cullin3 (Cul3)-Keap1 interaction. ► PMID protects against cell death induced by H{sub 2}O{sub 2} and pro-oxidant 6

  12. In Vivo Effect of Arsenic Trioxide on Keap1-p62-Nrf2 Signaling Pathway in Mouse Liver: Expression of Antioxidant Responsive Element-Driven Genes Related to Glutathione Metabolism

    PubMed Central

    Srivastava, Ritu; Sengupta, Archya; Mukherjee, Sandip; Chatterjee, Sarmishtha; Sudarshan, Muthammal; Chakraborty, Anindita; Bhattacharya, Shelley; Chattopadhyay, Ansuman

    2013-01-01

    Arsenic is a Group I human carcinogen, and chronic arsenic exposure through drinking water is a major threat to human population. Liver is one of the major organs for the detoxification of arsenic. The present study was carried out in mice in vivo after arsenic treatment through drinking water at different doses and time of exposure. Arsenic toxicity is found to be mediated by reactive oxygen species. Nuclear factor (erythroid-2 related) factor 2 (Nrf2)/Keap1 (Kelch-like ECH-associated protein 1)/ARE (antioxidant response element)—driven target gene system protects cells against oxidative stress and maintains cellular oxidative homeostasis. Our result showed 0.4 ppm, 2 ppm, and 4 ppm arsenic trioxide treatment through drinking water for 30 days and 90 days induced damages in the liver of Swiss albino mice as evidenced by histopathology, disturbances in liver function, induction of heat shock protein 70, modulation of trace elements, alteration in reduced glutathione level, glutathione-s-transferase and catalase activity, malondialdehyde production, and induction of apoptosis. Cellular Nrf2 protein level and mRNA level increased in all treatment groups. Keap1 protein as well as mRNA level decreased concomitantly in arsenic treated mice. Our study clearly indicates the important role of Nrf2 in activating ARE driven genes related to GSH metabolic pathway and also the adaptive response mechanisms in arsenic induced hepatotoxicity. PMID:27335833

  13. Ethanol Extract of Cirsium japonicum var. ussuriense Kitamura Exhibits the Activation of Nuclear Factor Erythroid 2-Related Factor 2-dependent Antioxidant Response Element and Protects Human Keratinocyte HaCaT Cells Against Oxidative DNA Damage

    PubMed Central

    Yoo, Ok-Kyung; Choi, Bu Young; Park, Jin-Oh; Lee, Ji-Won; Park, Byoung-Kwon; Joo, Chul Gue; Heo, Hyo-Jung; Keum, Young-Sam

    2016-01-01

    Keratinocytes are constantly exposed to extracellular insults, such as ultraviolet B, toxic chemicals and mechanical stress, all of which can facilitate the aging of keratinocytes via the generation of intracellular reactive oxygen species (ROS). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that plays a critical role in protecting keratinocytes against oxidants and xenobiotics by binding to the antioxidant response element (ARE), a cis-acting element existing in the promoter of most phase II cytoprotective genes. In the present study, we have attempted to find novel ethanol extract(s) of indigenous plants of Jeju island, Korea that can activate the Nrf2/ARE-dependent gene expression in human keratinocyte HaCaT cells. As a result, we identified that ethanol extract of Cirsium japonicum var. ussuriense Kitamura (ECJUK) elicited strong stimulatory effect on the ARE-dependent gene expression. Supporting this observation, we found that ECJUK induced the expression of Nrf2, hemoxygenase-1, and NAD(P)H:quinone oxidoreductase-1 and this event was correlated with Akt1 phosphorylation. We also found that ECJUK increased the intracellular reduced glutathione level and suppressed 12-O-tetradecanoylphorbol acetate-induced 8-hydroxyguanosine formation without affecting the overall viability. Collectively, our results provide evidence that ECJUK can protect against oxidative stress-mediated damages through the activation of Nrf2/ARE-dependent phase II cytoprotective gene expression. PMID:27051652

  14. Hawthorn (Crataegus oxyacantha L.) bark extract regulates antioxidant response element (ARE)-mediated enzyme expression via Nrf2 pathway activation in normal hepatocyte cell line.

    PubMed

    Krajka-Kuźniak, Violetta; Paluszczak, Jarosław; Oszmiański, Jan; Baer-Dubowska, Wanda

    2014-04-01

    Hawthorn (Crataegus oxyacantha L.), a plant used in traditional medicine, is a rich source of procyanidins which have been reported to exhibit antioxidant and anti-carcinogenic activity. In this study, we assessed the effect of hawthorn bark extract (HBE) on Nrf2 pathway activation in THLE-2 and HepG2 cells. Treatment with 1.1 µg/mL, 5.5 µg/mL and 11 µg/mL of HBE resulted in the translocation of Nrf2 from the cytosol to the nucleus in both cell lines; however, the accumulation of phosphorylated Nrf2 was observed only in THLE-2. Accordingly, treatment of cells with HBE was associated with an increase in the mRNA and protein level of such Nrf2-dependent genes as glutathione S-transferases (GSTA, GSTP, GSTM, GSTT), NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) (0.2-1.1-fold change, p < 0.05), however, only in normal THLE-2 hepatocytes. The induction of NQO1 correlated with an increased level of p53 (0.21-0.42-fold change, p < 0.05). These effects may be related to induction of phosphorylation of upstream ERK and JNK kinases. Collectively, the results suggest that the Nrf2/ARE pathway may play an important role in the regulation of procyanidin-mediated antioxidant/detoxifying effects in hepatocytes, and this may explain the hepatoprotective and chemopreventive properties of these phytochemicals. PMID:23843400

  15. Soy isoflavones increase quinone reductase in hepa-1c1c7 cells via estrogen receptor beta and nuclear factor erythroid 2-related factor 2 binding to the antioxidant response element.

    PubMed

    Froyen, Erik B; Steinberg, Francene M

    2011-09-01

    Soy protein and isoflavones (genistein and daidzein) have been demonstrated to increase quinone reductase (QR) activity, protein, and mRNA in animal and cell culture models. However, their mechanism of action has not been completely characterized. Additionally, it has not been determined if equol, a daidzein metabolite, can modulate QR activity and expression. Estrogen receptor beta (ERβ) is thought to be involved in stimulating QR gene transcription by anti-estrogens and phytoestrogens, along with nuclear factor erythroid 2-related factor 2 (Nrf2). This study tested the hypothesis that genistein, daidzein and equol increase quinone reductase activity, protein and mRNA via ERβ and Nrf2 binding to the QR antioxidant response element (ARE). QR expression and activity were determined using TaqMan polymerase chain reaction, protein immunoblots and activity assays. Molecular events were investigated using luciferase reporter gene assays and chromatin immunoprecipitation (ChIP). Hepa-1c1c7 cells were treated with control [0.1% (v:v) dimethyl sulfoxide (DMSO)]; 1 μmol/L β-naphthoflavone (positive control); 5 μmol/L resveratrol (ChIP positive control for ERβ binding) and 1, 5 and 25 μmol/L genistein, daidzein or equol. Treatment durations were 1 h (ChIP), 24 h (mRNA and luciferase assays) and 24 and 48 h (protein and activity). Genistein, daidzein and equol increased QR activity, protein and mRNA, with daidzein and equol having more of an impact at physiologic concentrations (1 and 5 μmol/L) compared to genistein. Furthermore, the study results demonstrate that genistein, daidzein and equol interact with the QR ARE and that daidzein and equol act via both ERβ and Nrf2 binding strongly to the QR ARE. PMID:21167702

  16. Critical Evaluation of Ayurvedic Plants for Stimulating Intrinsic Antioxidant Response

    PubMed Central

    Shukla, Sunil Dutt; Bhatnagar, Maheep; Khurana, Sukant

    2012-01-01

    Oxidative damage caused by free radicals plays an important role in the causation and progression of many diseases, including aging. Free-radical damage is countered by many mechanisms, including both active antioxidant enzymatic activity in our body and passive antioxidants. Antioxidant response of our body can accommodate increased oxidative damage in diseased states to a level but beyond that level, additional antioxidants are required to combat the increased stress. Apart from the regular dietary sources of antioxidants, many traditional herbal medicines demonstrate a potential to boost antioxidant activity. Rasayana chikitsa that deals with rejuvenation and revitalization is a branch of the Indian traditional medical system of ayurveda. We review some select herbs described in rasayana chikitsa that have been assessed by modern means for stimulating intrinsic antioxidant responses in humans. A critical evaluation of rasayana chikitsa will likely provide urgently needed, actual stimulants of our physiological antioxidant responses and not just more passive antioxidants to add to an already large catalog. PMID:22855669

  17. Antioxidant responses of wheat plants under stress

    PubMed Central

    Caverzan, Andréia; Casassola, Alice; Brammer, Sandra Patussi

    2016-01-01

    Abstract Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals. PMID:27007891

  18. Antioxidant responses of wheat plants under stress.

    PubMed

    Caverzan, Andréia; Casassola, Alice; Brammer, Sandra Patussi

    2016-03-01

    Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals. PMID:27007891

  19. Antioxidant responses and cellular adjustments to oxidative stress

    PubMed Central

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-01-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. PMID:26233704

  20. A systems biology perspective on Nrf2-mediated antioxidant response

    SciTech Connect

    Zhang Qiang; Pi Jingbo; Woods, Courtney G.; Andersen, Melvin E.

    2010-04-01

    Cells in vivo are constantly exposed to reactive oxygen species (ROS) generated endogenously and exogenously. To defend against the deleterious consequences of ROS, cells contain multiple antioxidant enzymes expressed in various cellular compartments to scavenge these toxic species. Under oxidative stresses, these antioxidant enzymes are upregulated to restore redox homeostasis. Such an adaptive response results from the activation of a redox-sensitive gene regulatory network mediated by nuclear factor E2-related factor 2. To more completely understand how the redox control system is designed by nature to meet homeostatic goals, we have examined the network from a systems perspective using engineering approaches. As with man-made control devices, the redox control system can be decomposed into distinct functional modules, including transducer, controller, actuator, and plant. Cells achieve specific performance objectives by utilizing nested feedback loops, feedforward control, and ultrasensitive signaling motifs, etc. Given that endogenously generated ROS are also used as signaling molecules, our analysis suggests a novel mode of action to explain oxidative stress-induced pathological conditions and diseases. Specifically, by adaptively upregulating antioxidant enzymes, oxidative stress may inadvertently attenuate ROS signals that mediate physiological processes, resulting in aberrations of cellular functions and adverse consequences. Lastly, by simultaneously considering the two competing cellular tasks-adaptive antioxidant defense and ROS signaling-we re-examine the premise that dietary antioxidant supplements is generally beneficial to human health. Our analysis highlights some possible adverse effects of these widely consumed antioxidants.

  1. Antioxidant defense response in the Hessian fly (Diptera: Cecidomyiidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbivorous insect species are constantly challenged with reactive oxygen species (ROS) generated from endogenous and exogenous sources. ROS produced within insects due to stress and prooxidant allelochemicals produced by host plants in response to herbivory require a complex mode of antioxidant def...

  2. Uncovering drug-responsive regulatory elements

    PubMed Central

    Luizon, Marcelo R; Ahituv, Nadav

    2016-01-01

    Nucleotide changes in gene regulatory elements can have a major effect on interindividual differences in drug response. For example, by reviewing all published pharmacogenomic genome-wide association studies, we show here that 96.4% of the associated single nucleotide polymorphisms reside in noncoding regions. We discuss how sequencing technologies are improving our ability to identify drug response-associated regulatory elements genome-wide and to annotate nucleotide variants within them. We highlight specific examples of how nucleotide changes in these elements can affect drug response and illustrate the techniques used to find them and functionally characterize them. Finally, we also discuss challenges in the field of drug-responsive regulatory elements that need to be considered in order to translate these findings into the clinic. PMID:26555224

  3. Antioxidants

    MedlinePlus

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  4. Nuclear responses in INTOR plasma stabilization elements

    NASA Astrophysics Data System (ADS)

    Gohar, Y.; Mattas, R. F.; Yang, S.; Wiffen, F. W.

    Nuclear responses in the plasma stabilization elements were studied in a parametric fashion as a part of the transient electromagnetics critical issue C of ETR/INTOR activity. The main responses are neutron fluence and radiation dose in the insulator material, induced resistively and atomic displacement in the conductor material, nuclear heating and life analysis for the elements. Copper and aluminum conductors with either MgAl2O4 or MgO insulating material were investigated. Radiation damage and life analysis for these elements were also discussed.

  5. Status of trace elements and antioxidants in premenopausal and postmenopausal phase of life: a comparative study

    PubMed Central

    Ansar, Sabah; Alhefdhi, Tayef; Aleem, Ansari M

    2015-01-01

    The aim of the study was to determine the extent of free radical damage in the form of oxidative stress, the antioxidant status and correlate with trace element levels in postmenopausal females as compared to premenopausal females. Participants between the ages of 30-60 years were recruited for the study and status of antioxidant enzymes and trace metals level was determined. The serum Calcium (Ca) levels after menopause was higher than that of the premenopausal group (P<0.001). The changes in copper (Cu) and Zinc (Zn) between the groups were not significant (p>0.05). In postmenopausal women, antioxidant enzymes like superoxide dismutase (SOD) and glutathione peroxidase (GPX), catalase (CAT) significantly decreased (P<0.001) in postmenopausal women showing oxidative stress in the cells. Concentrations of vitamin-C pointed out a significant decrease (P<0.05) in postmenopausal women when compared with premenopausal women. In conclusion. PMID:26770597

  6. Increased oxidative stress and impaired antioxidant response in Lafora disease.

    PubMed

    Romá-Mateo, Carlos; Aguado, Carmen; García-Giménez, José Luis; Ibáñez-Cabellos, José Santiago; Seco-Cervera, Marta; Pallardó, Federico V; Knecht, Erwin; Sanz, Pascual

    2014-10-01

    Lafora Disease (LD, OMIM 254780, ORPHA501) is a fatal neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in the vast majority of cases, by mutations in either EPM2A or EPM2B genes, encoding respectively laforin and malin. In the last years, several reports have revealed molecular details of these two proteins and have identified several processes affected in LD, but the pathophysiology of the disease still remains largely unknown. Since autophagy impairment has been reported as a characteristic treat in both Lafora disease cell and animal models, and as there is a link between autophagy and mitochondrial performance, we sought to determine if mitochondrial function could be altered in those models. Using fibroblasts from LD patients, deficient in laforin or malin, we found mitochondrial alterations, oxidative stress and a deficiency in antioxidant enzymes involved in the detoxification of reactive oxygen species (ROS). Similar results were obtained in brain tissue samples from transgenic mice deficient in either the EPM2A or EPM2B genes. Furthermore, in a proteomic analysis of brain tissue obtained from Epm2b-/- mice, we observed an increase in a modified form of peroxirredoxin-6, an antioxidant enzyme involved in other neurological pathologies, thus corroborating an alteration of the redox condition. These data support that oxidative stress produced by an increase in ROS production and an impairment of the antioxidant enzyme response to this stress play an important role in development of LD. PMID:26461389

  7. Nitric oxide, antioxidants and prooxidants in plant defence responses

    PubMed Central

    Groß, Felicitas; Durner, Jörg; Gaupels, Frank

    2013-01-01

    In plant cells the free radical nitric oxide (NO) interacts both with anti- as well as prooxidants. This review provides a short survey of the central roles of ascorbate and glutathione—the latter alone or in conjunction with S-nitrosoglutathione reductase—in controlling NO bioavailability. Other major topics include the regulation of antioxidant enzymes by NO and the interplay between NO and reactive oxygen species (ROS). Under stress conditions NO regulates antioxidant enzymes at the level of activity and gene expression, which can cause either enhancement or reduction of the cellular redox status. For instance chronic NO production during salt stress induced the antioxidant system thereby increasing salt tolerance in various plants. In contrast, rapid NO accumulation in response to strong stress stimuli was occasionally linked to inhibition of antioxidant enzymes and a subsequent rise in hydrogen peroxide levels. Moreover, during incompatible Arabidopsis thaliana-Pseudomonas syringae interactions ROS burst and cell death progression were shown to be terminated by S-nitrosylation-triggered inhibition of NADPH oxidases, further highlighting the multiple roles of NO during redox-signaling. In chemical reactions between NO and ROS reactive nitrogen species (RNS) arise with characteristics different from their precursors. Recently, peroxynitrite formed by the reaction of NO with superoxide has attracted much attention. We will describe putative functions of this molecule and other NO derivatives in plant cells. Non-symbiotic hemoglobins (nsHb) were proposed to act in NO degradation. Additionally, like other oxidases nsHb is also capable of catalyzing protein nitration through a nitrite- and hydrogen peroxide-dependent process. The physiological significance of the described findings under abiotic and biotic stress conditions will be discussed with a special emphasis on pathogen-induced programmed cell death (PCD). PMID:24198820

  8. Tandem antioxidant enzymes confer synergistic protective responses in experimental filariasis.

    PubMed

    Prince, P R; Madhumathi, J; Anugraha, G; Jeyaprita, P J; Reddy, M V R; Kaliraj, P

    2014-12-01

    Helminth parasites use antioxidant defence strategies for survival during oxidative stress due to free radicals in the host. Accordingly, tissue-dwelling filarial parasites counteract host responses by releasing a number of antioxidants. Targeting these redox regulation proteins together, would facilitate effective parasite clearance. Here, we report the combined effect of protective immune responses trigged by recombinant Wuchereria bancrofti thioredoxin (WbTRX) and thioredoxin peroxidase (WbTPX) in an experimental filarial model. The expression of WbTRX and WbTPX in different stages of the parasite and their cross-reactivity were analysed by enzyme-linked immunosorbent assay (ELISA). The immunogenicity of recombinant proteins and their protective efficacy were studied in animal models when immunized in single or cocktail mode. The antigens showed cross-reactive epitopes and induced high humoral and cellular immune responses in mice. Further, parasite challenge against Brugia malayi L3 larvae in Mastomys coucha conferred significant protection of 57% and 62% against WbTRX and WbTPX respectively. The efficacy of L3 clearance was significantly higher (71%) (P <  0.001) when the antigens were immunized together, showing a synergistic effect in multiple-mode vaccination. Hence, the study suggests WbTRX and WbTPX to be attractive vaccine candidates when immunized together and provides a tandem block for parasite elimination in the control of lymphatic filariasis. PMID:23676147

  9. Human mesangial cells resist glycoxidative stress through an antioxidant response.

    PubMed

    Nitti, Mariapaola; Furfaro, Anna Lisa; Patriarca, Stefania; Balbis, Emanuela; Domenicotti, Cinzia; Cottalasso, Damiano; Pronzato, Maria Adelaide; Marinari, Umberto Maria; Traverso, Nicola

    2011-02-01

    The generation of advanced glycation end-products (AGE), the interaction with their receptors, the generation of reactive oxygen species, and the modulation of intracellular redox equilibrium are believed to be the main factors causing alterations of mesangial cell physiology leading to diabetic nephropathy. Normal human primary mesangial cells were exposed to glycoxidative stress by culture in high glucose (HG) or treatment with AGE for up to 6 days. In both cases only a moderate generation of reactive oxygen species and production of HNE-protein adducts were induced while protein nitrotyrosination was not affected. Moreover, HG and AGE caused a significant antioxidant response, confirmed by the induction of heme oxygenase 1 and the consumption of vitamin E. Glutathione was decreased only by HG. Mesangial cell proliferation and viability were slightly affected by HG and AGE. Furthermore, both treatments failed to influence TGF-ß1 and MCP-1 secretion and to modulate RAGE and collagen IV expression. We believe that normal human mesangial cells can resist glycoxidative stress by the observed antioxidant response. These results support the concept that mesangial cells are only partly responsible for the onset and progression of diabetic nephropathy and that the role of other cell types, such as podocytes and endothelial cells, should be taken into consideration. PMID:21152865

  10. Dimerization Controls Marburg Virus VP24-dependent Modulation of Host Antioxidative Stress Responses.

    PubMed

    Johnson, Britney; Li, Jing; Adhikari, Jagat; Edwards, Megan R; Zhang, Hao; Schwarz, Toni; Leung, Daisy W; Basler, Christopher F; Gross, Michael L; Amarasinghe, Gaya K

    2016-08-28

    Marburg virus (MARV), a member of the Filoviridae family that also includes Ebola virus (EBOV), causes lethal hemorrhagic fever with case fatality rates that have exceeded 50% in some outbreaks. Within an infected cell, there are numerous host-viral interactions that contribute to the outcome of infection. Recent studies identified MARV protein 24 (mVP24) as a modulator of the host antioxidative responses, but the molecular mechanism remains unclear. Using a combination of biochemical and mass spectrometry studies, we show that mVP24 is a dimer in solution that directly binds to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) to regulate nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This interaction between Keap1 and mVP24 occurs through the Kelch interaction loop (K-Loop) of mVP24 leading to upregulation of antioxidant response element transcription, which is distinct from other Kelch binders that regulate Nrf2 activity. N-terminal truncations disrupt mVP24 dimerization, allowing monomeric mVP24 to bind Kelch with higher affinity and stimulate higher antioxidative stress response element (ARE) reporter activity. Mass spectrometry-based mapping of the interface revealed overlapping binding sites on Kelch for mVP24 and the Nrf2 proteins. Substitution of conserved cysteines, C209 and C210, to alanine in the mVP24 K-Loop abrogates Kelch binding and ARE activation. Our studies identify a shift in the monomer-dimer equilibrium of MARV VP24, driven by its interaction with Keap1 Kelch domain, as a critical determinant that modulates host responses to pathogenic Marburg viral infections. PMID:27497688

  11. Antioxidant value and element content in some tinctures used in medication.

    PubMed

    Szentmihályi, Klára; Varga, Ilona Szöllősi; Gergely, Anita; Rábai, Mária; Then, Mária

    2015-09-01

    Tinctures are almost the oldest medicines and their use is substantial in the medication nowadays as well. The antioxidant values by ferric reducing/antioxidant power (FRAP) method and element content by inductively coupled plasma optical emission spectrometry (ICP-OES) were investigated in some tinctures official in the VII. and VIII. Pharmacopoeia Hungarica. The highest FRAP values were found for volatile oil containing Tinctura Aurantii amari epicarpii et mesocarpii, Tinctura Amara and Tinctura Valerianae (764.54 ± 19.90; 757.37 ± 14.46; 826.40 ± 5.89 µmol l⁻¹, respectively). The correlations between the FRAP values and dilution with different alcohol content in Tinctura Chinae, Tinctura Ipecacuanhae normata and Tinctura Strychni were also investigated. Remarkable differences were found between the element concentrations in the different tinctures. The element contents in tinctures are not so high in absolute values nevertheless the presence of essential selenium, zinc, manganese and copper is important since they have key role in the antioxidant system. The common feature of the tinctures seems to be the lithium content. The Ca to Mg concentration ratio was found to be shifted towards magnesium in some of the tinctures that can show a higher Mg absorption which could affect against the proinflammatoric processes in the cases of gastrointestinal diseases. PMID:26344025

  12. A potential link among antioxidant enzymes, histopathology and trace elements in canine visceral leishmaniasis

    PubMed Central

    Souza, Carolina C; Barreto, Tatiane de O; da Silva, Sydnei M; Pinto, Aldair W J; Figueiredo, Maria M; Ferreira Rocha, Olguita G; Cangussú, Silvia D; Tafuri, Wagner L

    2014-01-01

    Canine visceral leishmaniasis (CVL) is a severe and fatal systemic chronic inflammatory disease. We investigated the alterations in, and potential associations among, antioxidant enzymes, trace elements and histopathology in CVL. Blood and tissue levels of Cu-Zn superoxide dismutase, catalase and glutathione peroxidase were measured in mixed-breed dogs naturally infected with Leishmania infantum chagasi, symptomatic (n = 19) and asymptomatic (n = 11). Serum levels of copper, iron, zinc, selenium and nitric oxide, and plasma lipid peroxidation were measured. Histological and morphometric analyses were conducted of lesions in liver, spleen and lymph nodes. We found lower blood catalase and glutathione peroxidase activity to be correlated with lower iron and selenium respectively. However, higher activity of Cu-Zn superoxide dismutase was not correlated with the increase in copper and decreased in zinc observed in infected animals compared to controls. Organ tissue was characterized by lower enzyme activity in infected dogs than in controls, but this was not correlated with trace elements. Lipid peroxidation was higher in symptomatic than in asymptomatic and control dogs and was associated with lesions such as chronic inflammatory reaction, congestion, haemosiderin and fibrosis. Systemic iron deposition was observed primarily in the symptomatic dogs showing a higher tissue parasite load. Dogs with symptomatic CVL displayed enhanced LPO and Fe tissue deposition associated with decreased levels of antioxidant enzymes. These results showed new points in the pathology of CVL and might open new treatment perspectives associated with antioxidants and the role of iron in the pathogenesis of CVL. PMID:24766461

  13. A potential link among antioxidant enzymes, histopathology and trace elements in canine visceral leishmaniasis.

    PubMed

    Souza, Carolina C; Barreto, Tatiane de O; da Silva, Sydnei M; Pinto, Aldair W J; Figueiredo, Maria M; Rocha, Olguita G Ferreira; Cangussú, Silvia D; Tafuri, Wagner L

    2014-08-01

    Canine visceral leishmaniasis (CVL) is a severe and fatal systemic chronic inflammatory disease. We investigated the alterations in, and potential associations among, antioxidant enzymes, trace elements and histopathology in CVL. Blood and tissue levels of Cu-Zn superoxide dismutase, catalase and glutathione peroxidase were measured in mixed-breed dogs naturally infected with Leishmania infantum chagasi, symptomatic (n = 19) and asymptomatic (n = 11). Serum levels of copper, iron, zinc, selenium and nitric oxide, and plasma lipid peroxidation were measured. Histological and morphometric analyses were conducted of lesions in liver, spleen and lymph nodes. We found lower blood catalase and glutathione peroxidase activity to be correlated with lower iron and selenium respectively. However, higher activity of Cu-Zn superoxide dismutase was not correlated with the increase in copper and decreased in zinc observed in infected animals compared to controls. Organ tissue was characterized by lower enzyme activity in infected dogs than in controls, but this was not correlated with trace elements. Lipid peroxidation was higher in symptomatic than in asymptomatic and control dogs and was associated with lesions such as chronic inflammatory reaction, congestion, haemosiderin and fibrosis. Systemic iron deposition was observed primarily in the symptomatic dogs showing a higher tissue parasite load. Dogs with symptomatic CVL displayed enhanced LPO and Fe tissue deposition associated with decreased levels of antioxidant enzymes. These results showed new points in the pathology of CVL and might open new treatment perspectives associated with antioxidants and the role of iron in the pathogenesis of CVL. PMID:24766461

  14. Imbalanced secondary mucosal antioxidant response in inflammatory bowel disease.

    PubMed

    Kruidenier, Laurens; Kuiper, Ineke; Van Duijn, Wim; Mieremet-Ooms, Marij A C; van Hogezand, Ruud A; Lamers, Cornelis B H W; Verspaget, Hein W

    2003-09-01

    cells that expressed CAT remained unchanged during inflammation and GPO was found in only a very low and constant number of epithelial cells. In addition, the inflamed epithelium displayed decreased expression of the hydroxyl radical (OH(*)) scavenger MT. In view of the high epithelial SOD levels in inflamed IBD epithelium, it is speculated that the efficient removal of excess H(2)O(2) is hampered in these cells, thereby increasing not only the risk of detrimental effects of H(2)O(2) directly, but also those of its extremely reactive derivatives such as OH(*). Taken together, the results suggest an imbalanced and inefficient endogenous antioxidant response in the intestinal mucosa of IBD patients, which may contribute to both the pathogenesis and the perpetuation of the inflammatory processes. PMID:12950013

  15. Finite element simulation of pipe dynamic response

    SciTech Connect

    Slagis, G.C.; Litton, R.W.

    1996-12-01

    Nonlinear finite element dynamic analyses of the response of a pipe span to controlled-displacement, sinusoidal vibration have been performed. The objective of this preliminary study is to compare strain and acceleration response data to those generated by Beaney in the Berkeley Nuclear Laboratories experiments. Results for an unpressurized, 5 Hz, carbon steel pipe are in good agreement with the experiments. Hence, it appears that analytical simulation will be useful to assess seismic margins. Recommendations for additional studies are provided. The analyses confirm the test results--dynamic response is greatly attenuated by material plasticity. Analytical strains and accelerations are about 30% higher than test data. There are several possible explanations for the differences. To assess the effect of frequency on response, the length of the pipe span was increased. Analysis of the longer, 2 Hz, pipe span shows significantly greater cyclic strains than the 5 Hz span at the same input excitation levels.

  16. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain.

    PubMed

    Liang, Chanjuan; Wang, Weimin

    2013-11-01

    Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress. PMID:23653318

  17. Mitochondrial gene expression, antioxidant responses, and histopathology after cadmium exposure.

    PubMed

    Al Kaddissi, Simone; Legeay, Alexia; Elia, Antonia Concetta; Gonzalez, Patrice; Floriani, Magali; Cavalie, Isabelle; Massabuau, Jean-Charles; Gilbin, Rodolphe; Simon, Olivier

    2014-08-01

    The present study investigates cadmium effects on the transcription of mitochondrial genes of Procambarus clarkii after acute (0.05, 0.5, and 5 mg Cd/L; 4-10 days) and chronic exposures (10 μg Cd/L; 30-60 days). Transcriptional responses of cox1, atp6, and 12S using quantitative real-time RT-PCR were assessed in gills and hepatopancreas. Additionally, the expression levels of genes involved in detoxification and/or oxidative stress responses [mt, sod(Mn)] and enzymatic activities of antioxidants (SOD, CAT, GPX, and GST) were analyzed. The histopathological effects in hepatopancreas of crayfish were evaluated by light microscopy. Relationships between endpoints at different levels of biological organization and Cd bioaccumulation were also examined. Cd induced high levels of bioaccumulation, which was followed by mitochondrial dysfunction and histological alterations in both experiments. Moreover, perturbations in the defence mechanisms against oxidative stress tended to increase with time. Results also showed that molecular responses can vary depending on the intensity and duration of the chemical stress applied to the organisms and that the study of mt gene expression levels seemed to be the best tool to assess Cd intoxication. PMID:23065898

  18. Antioxidants

    MedlinePlus

    ... carotene Lutein Lycopene Selenium Vitamin A Vitamin C Vitamin E Vegetables and fruits are rich sources of antioxidants. There is good ... eating a diet with lots of vegetables and fruits is healthy and lowers risks ... smokers. High doses of vitamin E may increase risks of prostate cancer and ...

  19. Benzo[a]pyrene affects Jurkat T cells in the activated state via the antioxidant response element dependent Nrf2 pathway leading to decreased IL-2 secretion and redirecting glutamine metabolism

    SciTech Connect

    Murugaiyan, Jayaseelan; Rockstroh, Maxie; Wagner, Juliane; Baumann, Sven; Schorsch, Katrin; Trump, Saskia; Lehmann, Irina; Bergen, Martin von; Tomm, Janina M.

    2013-06-15

    There is a clear evidence that environmental pollutants, such as benzo[a]pyrene (B[a]P), can have detrimental effects on the immune system, whereas the underlying mechanisms still remain elusive. Jurkat T cells share many properties with native T lymphocytes and therefore are an appropriate model to analyze the effects of environmental pollutants on T cells and their activation. Since environmental compounds frequently occur at low, not acute toxic concentrations, we analyzed the effects of two subtoxic concentrations, 50 nM and 5 μM, on non- and activated cells. B[a]P interferes directly with the stimulation process as proven by an altered IL-2 secretion. Furthermore, B[a]P exposure results in significant proteomic changes as shown by DIGE analysis. Pathway analysis revealed an involvement of the AhR independent Nrf2 pathway in the altered processes observed in unstimulated and stimulated cells. A participation of the Nrf2 pathway in the change of IL-2 secretion was confirmed by exposing cells to the Nrf2 activator tBHQ. tBHQ and 5 μM B[a]P caused similar alterations of IL-2 secretion and glutamine/glutamate metabolism. Moreover, the proteome changes in unstimulated cells point towards a modified regulation of the cytoskeleton and cellular stress response, which was proven by western blotting. Additionally, there is a strong evidence for alterations in metabolic pathways caused by B[a]P exposure in stimulated cells. Especially the glutamine/glutamate metabolism was indicated by proteome pathway analysis and validated by metabolite measurements. The detrimental effects were slightly enhanced in stimulated cells, suggesting that stimulated cells are more vulnerable to the environmental pollutant model compound B[a]P. - Highlights: • B[a]P affects the proteome of Jurkat T cells also at low concentrations. • Exposure to B[a]P (50 nM, 5 μM) did not change Jurkat T cell viability. • Both B[a]P concentrations altered the IL-2 secretion of stimulated cells.

  20. The level of elements and antioxidant activity of commercial dietary supplement formulations based on edible mushrooms.

    PubMed

    Stilinović, Nebojša; Škrbić, Biljana; Živančev, Jelena; Mrmoš, Nataša; Pavlović, Nebojša; Vukmirović, Saša

    2014-12-01

    Commercial preparations of Cordyceps sinensis, Ganoderma lucidum and Coprinus comatus mushroom marketed as healthy food supplements in Serbia were analyzed by atomic absorption spectrometry with a graphite furnace (GFAAS) for their element content. Antioxidant activity potential and total phenolics of the same mushrooms were determined. The element content of mushroom samples was in the range of 0.130-0.360 mg kg(-1) for lead (Pb), <0.03-0.46 mg kg(-1) for arsenic (As), 0.09-0.39 mg kg(-1) for cadmium (Cd), 98.14-989.18 mg kg(-1) for iron (Fe), 0.10-101.32 mg kg(-1) for nickel (Ni), 5.06-26.50 mg kg(-1) for copper (Cu), 0.20-0.70 mg kg(-1) for cobalt (Co), 1.74-136.33 mg kg(-1) for chromium (Cr) and 2.19-21.54 mg kg(-1) for manganese (Mn). In the tests for measuring the antioxidant activity, the methanolic extract of C. sinensis showed the best properties. The same was seen for the analysis of selected phenolic compounds; C. sinensis was found to have the highest content. Commercial preparations of C. sinensis and C. comatus can be considered to be safe and suitable food supplements included in well-balanced diets. PMID:25294630

  1. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis.

    PubMed

    Einor, D; Bonisoli-Alquati, A; Costantini, D; Mousseau, T A; Møller, A P

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and -0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. PMID:26851726

  2. Potential antioxidant response to coffee - A matter of genotype?

    PubMed

    Hassmann, Ute; Haupt, Larisa M; Smith, Robert A; Winkler, Swantje; Bytof, Gerhard; Lantz, Ingo; Griffiths, Lyn R; Marko, Doris

    2014-12-01

    In a human intervention study, coffee combining natural green coffee bean constituents and dark roast products was identified as a genotype-dependent inducer of the Nrf2/ARE pathway, significantly affecting Nrf2 gene expression and downstream GST1A1 and UGT1A1 gene transcription. The observed transcriptional changes correlated with the presence of specific Nrf2 genotypes suggesting their influence on both Nrf2 and subsequent ARE-dependent GST1A1 and UGT1A1 transcription. While the presence of the - 653 SNP seems to be advantageous, resulting in higher Nrf2, GST1A1 and UGT1A1 gene transcription following coffee consumption, in contrast, the presence of the - 651 SNP significantly down-regulated the response to the study coffee. Furthermore, the presence of the B/B genotype in GST1A1 along with the frequency of the [TA]6/6 and [TA]7/7 polymorphisms in UGT1A1 appeared to significantly increase sensitivity toward coffee-induced gene transcription. This data suggests that when examining the role of the Nrf2/ARE pathway in the regulation of antioxidative and chemopreventive phase II efficacy, individual genotypes should be included when considering the potency of bioactive food/food constituents and their therapeutic potential. PMID:25606436

  3. Potential antioxidant response to coffee — A matter of genotype?

    PubMed Central

    Hassmann, Ute; Haupt, Larisa M.; Smith, Robert A.; Winkler, Swantje; Bytof, Gerhard; Lantz, Ingo; Griffiths, Lyn R.; Marko, Doris

    2014-01-01

    In a human intervention study, coffee combining natural green coffee bean constituents and dark roast products was identified as a genotype-dependent inducer of the Nrf2/ARE pathway, significantly affecting Nrf2 gene expression and downstream GST1A1 and UGT1A1 gene transcription. The observed transcriptional changes correlated with the presence of specific Nrf2 genotypes suggesting their influence on both Nrf2 and subsequent ARE-dependent GST1A1 and UGT1A1 transcription. While the presence of the − 653 SNP seems to be advantageous, resulting in higher Nrf2, GST1A1 and UGT1A1 gene transcription following coffee consumption, in contrast, the presence of the − 651 SNP significantly down-regulated the response to the study coffee. Furthermore, the presence of the B/B genotype in GST1A1 along with the frequency of the [TA]6/6 and [TA]7/7 polymorphisms in UGT1A1 appeared to significantly increase sensitivity toward coffee-induced gene transcription. This data suggests that when examining the role of the Nrf2/ARE pathway in the regulation of antioxidative and chemopreventive phase II efficacy, individual genotypes should be included when considering the potency of bioactive food/food constituents and their therapeutic potential. PMID:25606436

  4. The status of antioxidants, malondialdehyde and some trace elements in serum of patients with breast cancer

    PubMed Central

    Sadati Zarrini, Azadeh; Moslemi, Dariush; Parsian, Hadi; Vessal, Mahmood; Mosapour, Abbas; Shirkhani Kelagari, Ziba

    2016-01-01

    Background: There are studies that indicated dyshomeostasis of oxidant/antioxidant and trace elements in breast cancer patients, but the data regarding the status of these parameters in various stages of breast cancer are limited. The aim of this study was to highlight the status of these biochemical factors in various stages of breast cancer. Methods: Fifty-eight breast cancers patients participated in this study and underwent staging work up for the assessment of disease stage. Serum total antioxidant capacity and lipid peroxidation were determined spectrophotometically. Glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) levels were analyzed by ELISA method. The serum level of Cu, Mn and Zn was measured by atomic absorption spectrophotometer. Student t-test and one-way analysis of variance (ANOVA) were used to compare group means. Results: All the patients included in the study classified as mild (stages I+II) and advanced stages (stages III+IV). Patients in advanced stage had lower serum antioxidant capacity and higher lipid peroxidation levels, but the differences were not statistically differet (P=0.690 and 0.666, respectively). Patients in advanced stage had higher, but not statistically different serum levels of CAT, GPX and SOD levels (p>0.05). Patients in both groups had to some extent similar serum Cu, Mn and Zn levels. Conclusion: There was no evidence of remarkable discrepancy in the status of analyzed factors in various stages of breast cancer. It seems that the severity of oxidative stress in different stages of breast cancer is similar to some extent. PMID:26958330

  5. Methylation of arginine by PRMT1 regulates Nrf2 transcriptional activity during the antioxidative response.

    PubMed

    Liu, Xin; Li, Hongyuan; Liu, Lingxia; Lu, Yang; Gao, Yanyan; Geng, Pengyu; Li, Xiaoxue; Huang, Baiqu; Zhang, Yu; Lu, Jun

    2016-08-01

    The cap 'n' collar (CNC) family of transcription factors play important roles in resistance of oxidative and electrophilic stresses. Among the CNC family members, NF-E2-related factor 2 (Nrf2) is critical for regulating the antioxidant and phase II enzymes through antioxidant response element (ARE)-mediated transactivation. The activity of Nrf2 is controlled by a variety of post-translational modifications, including phosphorylation, ubiquitination, acetylation and sumoylation. Here we demonstrate that the arginine methyltransferase-1 (PRMT1) methylates Nrf2 protein at a single residue of arginine 437, both in vitro and in vivo. Using the heme oxygenase-1 (HO-1) as a model of phase II enzyme gene, we found that methylation of Nrf2 by PRMT1 led to a moderate increase of its DNA-binding activity and transactivation, which subsequently protected cells against the tBHP-induced glutathione depletion and cell death. Collectively, our results define a novel modification of Nrf2, which operates as a fine-tuning mechanism for the transcriptional activity of Nrf2 under the oxidative stress. PMID:27183873

  6. Dimethyl fumarate modulation of immune and antioxidant responses: application to HIV therapy

    PubMed Central

    Gill, Alexander J.; Kolson, Dennis L.

    2013-01-01

    The persistence of chronic immune activation and oxidative stress in human immunodeficiency virus (HIV)-infected, antiretroviral drug-treated individuals are major obstacles to fully preventing HIV disease progression. The immune modulator and antioxidant dimethyl fumarate (DMF) is effective in treating immune-mediated diseases and it also has potential applications to limiting HIV disease progression. Among the relevant effects of DMF and its active metabolite monomethyl fumarate (MMF) are induction of a Th1 → Th2 lymphocyte shift, inhibition of pro-inflammatory cytokine signaling, inhibition of NF-κB nuclear translocation, inhibition of dendritic cell maturation, suppression of lymphocyte and endothelial cell adhesion molecule expression, and induction of the Nrf2-dependent antioxidant response element (ARE) and effector genes. Associated with these effects are reduced lymphocyte and monocyte infiltration into psoriatic skin lesions in humans and immune-mediated demyelinating brain lesions in rodents, which confirms potent systemic and central nervous system (CNS) effects. In addition, DMF and MMF limit HIV infection in macrophages in vitro, albeit by unknown mechanisms. Finally, DMF and MMF also suppress neurotoxin production from HIV-infected macrophages, which drives CNS neurodegeneration. Thus, DMF might protect against systemic and CNS complications in HIV infection through its effective suppression of immune activation, oxidative stress, HIV replication, and macrophage-associated neuronal injury. PMID:23971529

  7. ANTIOXIDANT SUPPLEMENTATION AND NASAL INFLAMMATORY RESPONSES AMONG YOUNG ASTHMATICS EXPOSED TO HIGH LEVELS OF OZONE

    EPA Science Inventory

    Background: Recent studies examining the inflammatory response in atopic asthma to ozone suggest a release of soluble mediators of inflammation factors that might be related to reactive oxygen species (ROS). Antioxidant could prove useful in subjects exposed to additional oxidati...

  8. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala).

    PubMed

    Habte-Tsion, Habte-Michael; Ren, Mingchun; Liu, Bo; Ge, Xianping; Xie, Jun; Chen, Ruli

    2016-04-01

    A 9-week feeding trial was conducted to investigate the effects of graded dietary threonine (Thr) levels (0.58-2.58%) on the hematological parameters, immune response, antioxidant status and hepatopancreatic gene expression of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream. For this purpose, 3 tanks were randomly arranged and assigned to each experimental diet. Fish were fed with their respective diet to apparent satiation 4 times daily. The results indicated that white blood cell, red blood cell and haemoglobin significantly responded to graded dietary Thr levels, while hematocrit didn't. Complement components (C3 and C4), total iron-binding capacity (TIBC), immunoglobulin M (IgM), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) increased with increasing dietary Thr levels up to 1.58-2.08% and thereafter tended to decrease. Dietary Thr regulated the gene expressions of Cu/Zn-SOD, Mn-SOD and CAT, GPx1, glutathione S-transferase mu (GST), nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein-70 (Hsp70), tumor necrosis factor-alpha (TNF-α), apolipoprotein A-I (ApoA1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and fructose-bisphosphate aldolase B (ALDOB); while the gene expression of peroxiredoxin II (PrxII) was not significantly modified by graded Thr levels. These genes are involved in different functions including antioxidant, immune, and defense responses, energy metabolism and protein synthesis. Therefore, this study could provide a new molecular tool for studies in fish immunonutrition and shed light on the regulatory mechanisms that dietary Thr improved the antioxidant and immune capacities of fish. PMID:26631806

  9. Evaluation of antioxidant activity, polyphenolic compounds, amino acids and mineral elements of representative genotypes of Lonicera edulis.

    PubMed

    Sochor, Jiri; Jurikova, Tunde; Pohanka, Miroslav; Skutkova, Helena; Baron, Mojmir; Tomaskova, Lenka; Balla, Stefan; Klejdus, Borivoj; Pokluda, Robert; Mlcek, Jiri; Trojakova, Zuzana; Saloun, Jan

    2014-01-01

    The aim of this study was to evaluate the bioactive substances in 19 berry cultivars of edible honeysuckle (Lonicera edulis). A statistical evaluation was used to determine the relationship between the content of selected bioactive substances and individual cultivars. Regarding mineral elements, the content of sodium was measured using potentiometry and spectrophotometry. The content of selected polyphenolic compounds with high antioxidant activity was determined by a HPLC-UV/ED method. The total amount of polyphenols was determined by the Folin-Ciocalteu method. The antioxidant activity was determined using five methods (DPPH, FRAP, ABTS, FR and DMPD) that differ in their principles. The content of 13 amino acids was determined by ion-exchange chromatography. The experimental results obtained for the different cultivars were evaluated and compared by statistical and bioinformatic methods. A unique feature of this study lies in the exhaustive analysis of the chosen parameters (amino acids, mineral elements, polyphenolic compounds and antioxidant activity) during one growing season. PMID:24853714

  10. Mallotus roxburghianus modulates antioxidant responses in pancreas of diabetic rats.

    PubMed

    Roy, V K; Chenkual, L; Gurusubramanian, G

    2016-03-01

    Mallotus roxburghianus has long been used by Mizo tribal people for the treatment of diabetes. Scientific validation at known doses may provide information about its safety and efficacy. Methanolic leaf extract of M. roxburghianus (MRME 100 and 400mg/kg) was tested in comparison with normal and alloxan diabetic rats for 28 days p.o. in terms of body and pancreatic weight, blood glucose level, antioxidant enzymes, expression of visfatin and PCNA, histopathology and histomorphometric measurements of pancreas. The results were evaluated statistically using ANOVA, correlation and regression and Principal component analysis (PCO). MRME (100 and 400mg/kg) treatment significantly (p<0.0001) decreased the body weight, blood glucose level, improved the mass and size of pancreas, elevated the levels of antioxidant enzymes and up regulate the expression of visfatin and PCNA. PCO analysis was good to fitness and prediction distinguishes the therapeutic effects of M. roxburghianus from the alloxan induced diabetic rats. MRME has significant role in protecting animals from alloxan-induced diabetic oxidative stress in pancreas and exhibited promising antihyperglycaemic and antioxidant activities along with significant reversal of disturbed antioxidant status and lipid peroxidative damage. Pancreatic architecture and physiology under diabetic oxidative stress have been significantly modulated by MRME and validated as a drug candidate for antidiabetic treatment. M. roxburghianus treatment restores the antioxidant enzyme system and rejuvenates the islets mass in alloxanized rat by accelerating visfatin and PCNA expression in pancreatic tissue. PMID:26764087

  11. Optimization of ultrasonic extraction of phenolic antioxidants from green tea using response surface methodology.

    PubMed

    Lee, Lan-Sook; Lee, Namhyouck; Kim, Young Ho; Lee, Chang-Ho; Hong, Sang Pil; Jeon, Yeo-Won; Kim, Young-Eon

    2013-01-01

    Response surface methodology (RSM) has been used to optimize the extraction conditions of antioxidants with relatively low caffeine content from green tea by using ultrasonic extraction. The predicted optimal conditions for the highest antioxidant activity and minimum caffeine level were found at 19.7% ethanol, 26.4 min extraction time, and 24.0 ° C extraction temperature. In the predicted optimal conditions, the experimental values were very close to the predicted values. Moreover, the ratio of (EGCg + ECg)/EGC was identified a major factor contributing to the antioxidant activity of green tea extracts. In this study, ultrasonic extraction showed that the ethanol concentration and extraction time used for antioxidant extraction could be remarkably reduced without a decrease in antioxidant activity compared to the conventional extraction conditions. PMID:24184822

  12. Influence of diet, vitamin, tea, trace elements and exogenous antioxidants on arsenic metabolism and toxicity.

    PubMed

    Yu, Haiyan; Liu, Su; Li, Mei; Wu, Bing

    2016-04-01

    Health risk of arsenic (As) has received increasing attention. Acute and chronic exposure to As could cause several detrimental effects on human health. As toxicity is closely related to its bioaccessibility and metabolism. In real environment, many factors, such as diet and nutrition, can influence As bioaccessibility, metabolism and toxicity. This paper mainly reviews the influences of diets and elements on As bioaccessibility, metabolism and toxicity and their underlying mechanisms to provide suggestions for future investigations. Vitamins, jaggery, fruit, tea, glutathione, N-acetylcysteine and zinc could reduce the As-induced toxicity by increasing antioxidative enzymes to antagonize oxidative stress caused by As and/or increasing As methylation. However, bean and betel nut could increase risk of skin lesions caused by As. Interestingly, high-fat diet, selenium and iron have incompatible effects on As bioaccessibility, metabolism and toxicity in different experimental conditions. Based on current literatures, the As methylation and As-induced oxidative damage might be two main ways that the diets and elements influence As toxicity. Combined application of in vitro human cell lines and gastrointestinal models might be useful tools to simultaneously characterize the changes in As bioaccessibility and toxicity in the future research. PMID:26169729

  13. Nitrate, ascorbic acid, mineral and antioxidant activities of Cosmos caudatus in response to organic and mineral-based fertilizer rates.

    PubMed

    Hassan, Siti Aishah; Mijin, Salumiah; Yusoff, Umi Kalsom; Ding, Phebe; Wahab, Puteri Edaroyati Megat

    2012-01-01

    The source and quantity of nutrients available to plants can affect the quality of leafy herbs. A study was conducted to compare quality of Cosmos caudatus in response to rates of organic and mineral-based fertilizers. Organic based fertilizer GOBI (8% N:8% P₂O₅:8% K₂O) and inorganic fertilizer (15% N, 15% P₂O₅, 15% K₂O) were evaluated based on N element rates at 0, 30, 60, 90, 120 kg h⁻¹. Application of organic based fertilizer reduced nitrate, improved vitamin C, antioxidant activity as well as nitrogen and calcium nutrients content. Antioxidant activity and chlorophyll content were significantly higher with increased fertilizer application. Fertilization appeared to enhance vitamin C content, however for the maximum ascorbic acid content, regardless of fertilizer sources, plants did not require high amounts of fertilizer. PMID:22743588

  14. Hepatic positive and negative antioxidant responses in zebrafish after intraperitoneal administration of toxic microcystin-LR.

    PubMed

    Hou, Jie; Li, Li; Xue, Ting; Long, Meng; Su, Yujing; Wu, Ning

    2015-02-01

    Microcystin-LR (MC-LR) is the most toxic and common among microcystins. In order to understand the possible molecular mechanisms of hepatic antioxidation and detoxification, the activities and transcriptional levels of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione S-transferases (GST), and glutathione (GSH) contents as well as histopathological changes were studied in the liver of female zebrafish injected intraperitoneally (i.p.) at doses of 50 and 200 μg MC-LR kg(-1) body weight (BW) respectively. In the low dose group (50 μg MC-LR kg(-1)), zebrafish displayed a little unease at the initial 1h post-injection (hpi), slight hepatic injury and quick recovery, and enhanced enzymatic activities and up-regulated gene expression of antioxidant enzymes. In contrast, high dose of MC-LR (200 μg MC-LR kg(-1)) resulted in uneasiness and frantic swimming, severe hepatic injury, and suppressed enzymatic activities and down-regulated gene expression of antioxidant enzymes. GSH depletion in both dose groups may be explained by enhanced antioxidant reactions and higher rates of MC conjugation, suggesting the crucial roles of GSH in both cellular antioxidant protection and MC-LR detoxification. This study demonstrated that administration of MC-LR caused a positive response in the low dose group but a negative response in the high dose group. Hepatic positive/negative responses in the low/high dose group might result from an increased/decreased synthesis of antioxidant enzymes at the molecular level, respectively. These results illustrated that antioxidant status played an important role in zebrafish protection against MC-LR-caused oxidative stress through regulating antioxidant enzyme gene expression and activities. PMID:25462319

  15. Responses of foliar antioxidative and photoprotective defence systems of trees to drought: a meta-analysis.

    PubMed

    Wujeska, Agnieszka; Bossinger, Gerd; Tausz, Michael

    2013-10-01

    Current climate change predictions hint to more frequent extreme weather events, including extended droughts, making better understanding of the impacts of water stress on trees even more important. At the individual plant level, stomatal closure as a result of water deficit leads to reduced CO2 availability in the leaf, which can lead to photo-oxidative stress. Photorespiration and the Mehler reaction can maintain electron transport rates under low internal CO2, but result in production of reactive oxygen species (ROS). If electron consumption is decreased, upstream photochemical processes can be affected and light energy is absorbed in excess of photochemical requirements. Trees evolved to cope with excess energy and elevated concentration of ROS by activating photoprotective and antioxidative defence systems. The meta-analysis we present here assessed responses of these defence systems reported in 50 studies. We found responses to vary depending on stress intensity, foliage type and habitat, and on whether experiments were done in the field or in controlled environments. In general, drought increased concentrations of antioxidants and photoprotective pigments. However, severe stress caused degradation of antioxidant concentrations and oxidation of antioxidant pools. Evergreen trees seemed to preferentially reinforce membrane-bound protection systems zeaxanthin and tocopherol, whereas deciduous species showed greater responses in water-soluble antioxidants ascorbic acid and glutathione. Trees and shrubs from arid versus humid habitats vary in their antioxidative and photoprotective defence responses. In field experiments, drought had greater effects on some defence compounds than under controlled conditions. PMID:24178981

  16. Antioxidant system responses in two co-occurring green-tide algae under stress conditions

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhao, Xinyu; Tang, Xuexi

    2016-01-01

    Green tides have occurred every year from 2007 to 2014 in the Yellow Sea. Ulva prolifera (Müller) J. Agardh has been identified as the bloom-forming alga, co-occurring with U. intestinalis. We observed distinct strategies for both algal species during green tides. U. prolifera exhibited a high abundance initially and then decreased dramatically, while U. intestinalis persisted throughout. The antioxidant system responses of these two macroalgae were compared in the late phase of a green tide (in-situ) and after laboratory acclimation. Lipid peroxidation and antioxidant system responses differed significantly between the two. Malondialdehyde and hydrogen peroxide contents increased significantly in-situ in U. prolifera, but not in U. intestinalis. In U. prolifera, we observed a significant decrease in total antioxidant ability (T-AOC), antioxidant enzymes (SOD and Apx), and non-enzyme antioxidants (GSH and AsA) in-situ. U. intestinalis showed the same pattern of T-AOC and SOD, but its Gpx, Apx, and GSH responses did not differ significantly. The results suggest that U. prolifera was more susceptible than U. intestinalis to the harsh environmental changes during the late phase of a Yellow Sea green tide. The boom and bust strategy exhibited by U. prolifera and the persistence of U. intestinalis can be explained by differences in enzyme activity and antioxidant systems.

  17. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo.

    PubMed

    Shih, Andy Y; Imbeault, Sophie; Barakauskas, Vilte; Erb, Heidi; Jiang, Lei; Li, Ping; Murphy, Timothy H

    2005-06-17

    NF-E2 related factor (Nrf2) controls a pleiotropic cellular defense, where multiple antioxidant/detoxification pathways are up-regulated in unison. Although small molecule inducers of Nrf2 activity have been reported to protect neurons in vitro, whether similar pathways can be accessed in vivo is not known. We have investigated whether in vivo toxicity of the mitochondrial complex II inhibitor 3-nitropropionic acid (3-NP) can be attenuated by constitutive and inducible Nrf2 activity. The absence of Nrf2 function in Nrf2(-/-) mice resulted in 3-NP hypersensitivity that became apparent with time and increasing dose, causing motor deficits and striatal lesions on a more rapid time scale than identically treated Nrf2(+/+) and Nrf2(+/-) controls. Striatal succinate dehydrogenase activity, the target of 3-NP, was inhibited to the same extent in all genotypes by a single acute dose of 3-NP, suggesting that brain concentrations of 3-NP were similar. Dietary supplementation with the Nrf2 inducer tert-butylhydroquinone attenuated 3-NP toxicity in Nrf2(+/-) mice, but not Nrf2(-/-), confirming the Nrf2-specific action of the inducer in vivo. Increased Nrf2 activity alone was sufficient to protect animals from 3-NP toxicity because intrastriatal adenovirus-mediated Nrf2 overexpression significantly reduced lesion size compared with green fluorescent protein overexpressing controls. In cultured astrocytes, 3-NP was found to increase Nrf2 activity leading to antioxidant response element-dependent gene expression providing a potential mechanism for the increased sensitivity of Nrf2(-/-) animals to 3-NP toxicity in vivo. We conclude that Nrf2 may underlie a feedback system limiting oxidative load during chronic metabolic stress. PMID:15840590

  18. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  19. Salinity induced changes in photosynthetic pigment and antioxidant responses in Sesuvium portulacastrum.

    PubMed

    Sivakumar, Thirumal; Panneerselvam, Rajaram

    2011-11-01

    The production of leaf and root antioxidant changes when exposed to saline conditions were investigated in the perennial halophyte Sesuvium portulacastrum L. Plants were grown with a nonsterilized soil and sterilized soil with 50 and 100% of sterilized seawater on 25, 55 and 85 Days After Planting (DAP). The plants were harvested on 30th, 60th and 90th DAP and used for analyzing the photosynthetic pigments, antioxidant enzyme activities viz., Superoxide dismutase (SOD; EC1.15.1.1) Ascorbate peroxidase (APX, EC 1.11.1.11) and non enzymatic antioxidant contents like ascorbic acid, alpha-tocopherol, reduced glutathione were determined. Plants exposed to salinity, either alone (SSW) sterilized seawater/unsterilized soil (USS) along with higher pigments, antioxidative enzymes and Na+ ions response. This tendency was generally more marked in SSW/USS plants when compared to SSW/SS plants. The concentration of SSW/SS was negatively correlated with the antioxidative capacity of the plant, either enzymatic or non enzymatic and K+ ions. These data suggest that the enhancement of the antioxidative response is of crucial significance for S. portulacastrum plants growing under saline conditions. PMID:22514886

  20. Thresholds in shock response across the elements

    NASA Astrophysics Data System (ADS)

    Bourne, F. L.; Bourne, N. K.; CMEC Team

    2015-06-01

    Compendia of shock data have been assembled across national laboratories across the world. Previous work has shown a threshold in behaviour for materials; the weak shock limit. This corresponds the stress state at which the shock is overdriven in a single front. The shock velocity-particle velocity data for elements and compounds has been systematically analysed to note discontinuities in the data. A range of materials show these features and the form of the discontinuity in each case is analysed. Some correspond to martensitic phase transformations as expected whilst others are more difficult to track down. Particular groups within the elements show characteristic forms according to groupings in the periodic table. The datasets are presented and trends are noted.

  1. Studies on the effects on growth and antioxidant responses of two marine microalgal species to uniconazole

    NASA Astrophysics Data System (ADS)

    Mei, Xueqiao; Zheng, Kang; Wang, Lingdong; Li, Yantuan

    2014-10-01

    Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase (SOD) and peroxidase (POD) enzymes that retard lipid peroxidation and membrane deterioration. These years much attention has been focused on the responses of antioxidant system in plants to uniconazole stress, but such studies on aquatic organism are very few. Moreover, no information is available on growth and antioxidant response in marine microalgae to uniconazole. In this paper, the growth and antioxidant responses of two marine microalgal species, Platymonas helgolandica and Pavlova viridis, at six uniconazole concentrations (0-15 mg L-1) were investigated. The results demonstrated that 3 mg L-1 uniconazole could increase significantly chlorophyll a and carbohydrate contents of P. helgolandica ( P < 0.05). Higher concentrations (≥12 mg L-1) of uniconazole could inhibit significantly the growth, dry weight, chlorophyll-a and carbohydrate contents of P. helgolandica and P. viridis ( P < 0.05). Uniconazole caused a significant increase in lipid peroxidation production (MDA) at higher concentrations (≥ 9 mg L-1). The activities of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) were enhanced remarkably at low concentrations of uniconazole. However, significant reduction of SOD and CAT activities was observed at higher concentrations of uniconazole.

  2. Polymer directed self-assembly of pH-responsive antioxidant nanoparticles.

    PubMed

    Tang, Christina; Amin, Devang; Messersmith, Phillip B; Anthony, John E; Prud'homme, Robert K

    2015-03-31

    We have developed pH-responsive, multifunctional nanoparticles based on encapsulation of an antioxidant, tannic acid (TA), using flash nanoprecipitation, a polymer directed self-assembly method. Formation of insoluble coordination complexes of tannic acid and iron during mixing drives nanoparticle assembly. Tuning the core material to polymer ratio, the size of the nanoparticles can be readily tuned between 50 and 265 nm. The resulting nanoparticle is pH-responsive, i.e., stable at pH 7.4 and soluble under acidic conditions due to the nature of the coordination complex. Further, the coordination complex can be coprecipitated with other hydrophobic materials such as therapeutics or imaging agents. For example, coprecipitation with a hydrophobic fluorescent dye creates fluorescent nanoparticles. In vitro, the nanoparticles have low cytotoxicity and show antioxidant activity. Therefore, these particles may facilitate intracellular delivery of antioxidants. PMID:25760226

  3. Polymer Directed Self-Assembly of pH-Responsive Antioxidant Nanoparticles

    PubMed Central

    Tang, Christina; Amin, Devang; Messersmith, Phillip B.; Anthony, John E.; Prud’homme, Robert K.

    2015-01-01

    We have developed pH-responsive, multifunctional nanoparticles based on encapsulation of an antioxidant, tannic acid (TA), using Flash NanoPrecipitation, a polymer directed self-assembly method. Formation of insoluble coordination complexes of tannic acid and iron during mixing drives nanoparticle assembly. Tuning the core material to polymer ratio, the size of the nanoparticles can be readily tuned between 50 and 265 nm. The resulting nanoparticle is pH-responsive, i.e. stable at pH 7.4 and soluble under acidic conditions due to the nature of the coordination complex. Further, the coordination complex can be coprecipitated with other hydrophobic materials such as therapeutics or imaging agents. For example, coprecipitation with a hydrophobic fluorescent dye creates fluorescent nanoparticles. In vitro, the nanoparticles have low cytotoxicity show antioxidant activity. Therefore, these particles may facilitate intracellular delivery of antioxidants. PMID:25760226

  4. Effect of chromium (VI) exposure on antioxidant defense status and trace element homeostasis in acute experiment in rat.

    PubMed

    Kotyzová, Dana; Hodková, Anna; Bludovská, Monika; Eybl, Vladislav

    2015-11-01

    Occupational exposure to hexavalent chromium (Cr(VI)) compounds is of concern in many Cr-related industries and their surrounding environment. Cr(VI) is a proven toxin and carcinogen. The Cr(VI) compounds are easily absorbed, can diffuse across cell membranes, and have strong oxidative potential. Despite intensive studies of Cr(VI) pro-oxidative effects, limited data exist on the influence of Cr(VI) on selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx)-important components of antioxidant defense system. This study investigates the effect of Cr(VI) exposure on antioxidant defense status, with focus on these selenoenzymes, and on trace element homeostasis in an acute experiment in rat. Male Wistar rats (130-140g) were assigned to two groups of 8 animals: I. control; and II. Cr(VI) treated. The animals in Cr(VI) group were administered a single dose of K2Cr2O7 (20 mg /kg, intraperitoneally (ip)). The control group received saline solution. After 24 h, the animals were sacrificed and the liver and kidneys were examined for lipid peroxidation (LP; thiobarbituric acid reactive substances (TBARS) concentration), the level of reduced glutathione (GSH) and the activities of GPx-1, TrxR-1, and glutathione reductase (GR). Samples of tissues were also used to estimate Cr accumulation and alterations in zinc, copper, and iron levels. The acute Cr(VI) exposure caused an increase in both hepatic and renal LP (by 70%, p < 0.01 and by 15%, p < 0.05, respectively), increased hepatic GSH level and GPx-1 activity, and decreased renal GPx-1 activity. The activity of GR was not changed. A significant inhibitory effect of Cr(VI) was found on TrxR-1 activity in both the liver and the kidneys. The ability of Cr(VI) to cause TrxR inhibition could contribute to its cytotoxic effects. Further investigation of oxidative responses in different in vivo models may enable the development of strategies to protect against Cr(VI) oxidative damage. PMID:23625905

  5. Fruit juice drinks prevent endogenous antioxidant response to high-fat meal ingestion.

    PubMed

    Miglio, Cristiana; Peluso, Ilaria; Raguzzini, Anna; Villaño, Deborah V; Cesqui, Eleonora; Catasta, Giovina; Toti, Elisabetta; Serafini, Mauro

    2014-01-28

    High-fat meals (HFM) induce metabolic stress, leading to the activation of protective mechanisms, including inflammation and endogenous antioxidant defences. In the present study, we investigated the effects of antioxidant-rich fruit juice drinks on the endogenous antioxidant response induced by HFM. In a double-blind, cross-over design (10 d washout), fourteen overweight volunteers were randomly assigned to one of the following interventions: HFM+500 ml placebo beverage (HFM-PB, free from fruit); HFM+500 ml antioxidant beverage 1 (HFM-AB1; apple, grape, blueberry and pomegranate juices and grape skin, grape seed and green tea extracts); HFM+500 ml antioxidant beverage 2 (HFM-AB2; pineapple, black currant and plum juices). HFM-PB consumption increased the plasma levels of thiols (SH) (4 h, P< 0·001) and uric acid (UA) (2 h, P< 0·01) and total radical-trapping antioxidant parameter (TRAP) (4 h, P< 0·01). Following the consumption of drinks, UA production was significantly reduced with respect to placebo beverage consumption 8 h after HFM-AB2 consumption (P< 0·05). SH levels were reduced 0·5 (P< 0·05), 1 (P< 0·05) and 2 h (P< 0·01) after HFM-AB1 consumption and 2, 4 and 8 h (P< 0·05) after HFM-AB2 consumption. Plasma TRAP (2 h, P< 0·001) and urinary ferric reducing antioxidant power (0-8 h, P< 0·01) were increased by HFM-AB1 consumption, the drink with the highest in vitro antioxidant capacity, but not by HFM-AB2 consumption. In urine, UA levels were significantly increased from basal levels after the consumption of HFM-PB and HFM-AB2. However, neither of the beverages increased the urinary excretion of UA with respect to the placebo beverage. In conclusion, the increase in UA and SH levels induced by HFM as part of an endogenous antioxidant response to postprandial stress can be prevented by the concomitant ingestion of antioxidant-rich fruit juice drinks. PMID:23930843

  6. Antioxidant response and related gene expression in aged oat seed

    PubMed Central

    Kong, Lingqi; Huo, Heqiang; Mao, Peisheng

    2015-01-01

    To evaluate deterioration of oat seeds during storage, we analyzed oxygen radicals, antioxidant enzyme activity, proline content, and gene transcript levels in oat seeds with different moisture contents (MCs; 4, 16, and 28% w/w) during storage for 0, 6, and 12 months (CK, LT-6, and LT-12 treatments, respectively) at 4°C. The germination percentage decreased significantly with higher seed MCs and longer storage duration. The concentrations of superoxide radical and hydrogen peroxide increased with seed MC increasing. The activities of catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) may have had a complementary or interacting role to scavenge reactive oxygen species. As the storage duration extended, the proline content decreased in seeds with 4 and 16% MC and increased in 28%. These findings suggest that proline played the main role in adaptation to oxidative stress in seeds with higher MC (28%), while antioxidant enzymes played the main role in seeds with lower MCs (4%, 16%). In the gene transcript analyses, SOD1 transcript levels were not consistent with total SOD activity. The transcript levels of APX1 and CAT1 showed similar trends to those of APX and CAT activity. The transcript levels of P5CS1, which encodes a proline biosynthetic enzyme, increased with seed MC increasing in CK. Compared with changing of proline content in seeds stored 12 months, PDH1 transcript levels showed the opposite trend and maintained the lower levels in seeds of 16 and 28% MCs. The transcript level of P5CS1 was significantly affected by MC, and PDH1 could improve stress resistance for seed aging and maintain seed vigor during long-term storage. PMID:25852711

  7. Prediction of nuclear hormone receptor response elements.

    PubMed

    Sandelin, Albin; Wasserman, Wyeth W

    2005-03-01

    The nuclear receptor (NR) class of transcription factors controls critical regulatory events in key developmental processes, homeostasis maintenance, and medically important diseases and conditions. Identification of the members of a regulon controlled by a NR could provide an accelerated understanding of development and disease. New bioinformatics methods for the analysis of regulatory sequences are required to address the complex properties associated with known regulatory elements targeted by the receptors because the standard methods for binding site prediction fail to reflect the diverse target site configurations. We have constructed a flexible Hidden Markov Model framework capable of predicting NHR binding sites. The model allows for variable spacing and orientation of half-sites. In a genome-scale analysis enabled by the model, we show that NRs in Fugu rubripes have a significant cross-regulatory potential. The model is implemented in a web interface, freely available for academic researchers, available at http://mordor.cgb.ki.se/NHR-scan. PMID:15563547

  8. Antioxidant responses to heat and light stress differ with habitat in a common reef coral

    NASA Astrophysics Data System (ADS)

    Hawkins, Thomas D.; Krueger, Thomas; Wilkinson, Shaun P.; Fisher, Paul L.; Davy, Simon K.

    2015-12-01

    Coral bleaching—the stress-induced collapse of the coral- Symbiodinium symbiosis—is a significant driver of worldwide coral reef degradation. Yet, not all corals are equally susceptible to bleaching, and we lack a clear understanding of the mechanisms underpinning their differential susceptibilities. Here, we focus on cellular redox regulation as a potential determinant of bleaching susceptibility in the reef coral Stylophora pistillata. Using slow heating (1 °C d-1) and altered irradiance, we induced bleaching in S. pistillata colonies sampled from two depths [5-8 m (shallow) and 15-18 m (deep)]. There was significant depth-dependent variability in the timing and extent of bleaching (loss of symbiont cells), as well as in host enzymatic antioxidant activity [specifically, superoxide dismutase and catalase (CAT)]. However, among the coral fragments that bleached, most did so without displaying any evidence of a host enzymatic antioxidant response. For example, both deep and shallow corals suffered significant symbiont loss at elevated temperature, but only deep colonies exposed to high temperature and high light displayed any up-regulation of host antioxidant enzyme activity (CAT). Surprisingly, this preceded the equivalent antioxidant responses of the symbiont, which raises questions about the source(s) of hydrogen peroxide in the symbiosis. Overall, changes in enzymatic antioxidant activity in the symbionts were driven primarily by irradiance rather than temperature, and responses were similar across depth groups. Taken together, our results suggest that in the absence of light stress, heating of 1 °C d-1 to 4 °C above ambient is not sufficient to induce a substantial oxidative challenge in S. pistillata. We provide some of the first evidence that regulation of coral enzymatic antioxidants can vary significantly depending on habitat, and, in terms of determining bleaching susceptibility, our results suggest a significant role for the host's differential

  9. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  10. S-allyl cysteine activates the Nrf2-dependent antioxidant response and protects neurons against ischemic injury in vitro and in vivo.

    PubMed

    Shi, Huanying; Jing, Xu; Wei, Xinbing; Perez, Ruth G; Ren, Manru; Zhang, Xiumei; Lou, Haiyan

    2015-04-01

    Stroke is a devastating clinical condition for which an effective neuroprotective treatment is currently unavailable. S-allyl cysteine (SAC), the most abundant organosulfur compound in aged garlic extract, has been reported to possess neuroprotective effects against stroke. However, the mechanisms underlying its beneficial effects remain poorly defined. The present study tests the hypothesis that SAC attenuates ischemic neuronal injury by activating the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent antioxidant response in both in vitro and in vivo models. Our findings demonstrate that SAC treatment resulted in an increase in Nrf2 protein levels and subsequent activation of antioxidant response element pathway genes in primary cultured neurons and mice. Exposure of primary neurons to SAC provided protection against oxygen and glucose deprivation-induced oxidative insults. In wild-type (Nrf2(+/+) ) mice, systemic administration of SAC attenuated middle cerebral artery occlusion-induced ischemic damage, a protective effect not observed in Nrf2 knockout (Nrf2(-/-) ) mice. Taken together, these findings provide the first evidence that activation of the Nrf2 antioxidant response by SAC is strongly associated with its neuroprotective effects against experimental stroke and suggest that targeting the Nrf2 pathway may provide therapeutic benefit for the treatment of stroke. The transcription factor Nrf2 is involved in cerebral ischemic disease and may be a promising target for the treatment of stroke. We provide novel evidence that SAC confers neuroprotection against ischemic stroke by activating the antioxidant Nrf2 signaling pathway. ARE, antioxidant response element; GCLC, glutathione cysteine ligase regulatory subunit; GCLM, glutathione cysteine ligase modulatory subunit; HO-1, heme oxygenase-1; JNK, c-Jun N-terminal kinase; Keap1, Kelch-like ECH-associated protein 1; Maf, musculoaponeurotic fibrosarcoma; Nrf2, nuclear factor erythroid-2-related factor 2

  11. Transposable elements in response to environmental stressors&

    PubMed Central

    Miousse, Isabelle R.; Chalbot, Marie-Cecile G.; Lumen, Annie; Ferguson, Alesia; Kavouras, Ilias G.; Koturbash, Igor

    2015-01-01

    Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as “junk DNA,” TEs are now well-accepted driving forces of evolution and critical regulators the of expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets

  12. Response of transposable elements to environmental stressors.

    PubMed

    Miousse, Isabelle R; Chalbot, Marie-Cecile G; Lumen, Annie; Ferguson, Alesia; Kavouras, Ilias G; Koturbash, Igor

    2015-01-01

    Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as "junk DNA," TEs are now well-accepted driving forces of evolution and critical regulators of the expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets for

  13. Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology.

    PubMed

    Amado, Isabel Rodríguez; Franco, Daniel; Sánchez, Marivel; Zapata, Carlos; Vázquez, José Antonio

    2014-12-15

    This study reports the optimised conditions (temperature, ethanol concentration and processing-time) for antioxidant extraction from potato peel (Agria variety) waste. At short extraction times (34 min), optimal yields of phenolic (TP) and flavonoid (Fv) compounds were reached at 89.9°C and ethanol concentrations of 71.2% and 38.6%, respectively. The main phenolic compounds identified in the extracts were chlorogenic (Cl) and ferulic (Fer) acids. A significant positive correlation was found between antioxidant activity and TP, Fv, Fer and Cl responses. Potato peel extracts were able to stabilize soybean oil under accelerated oxidation conditions, minimising peroxide, totox and p-anisidine indices. The production of hexanal and 2-hexenal in soybean oil samples was maximal for extracts obtained at intermediate temperatures and ethanol concentrations. Our results demonstrate potato peel waste is a good source of antioxidants able to effectively limit oil oxidation, while contributing to the revalorisation of these agrifood by-products. PMID:25038678

  14. Puerarin enhances adipocyte differentiation, adiponectin expression, and antioxidant response in 3T3-L1 cells.

    PubMed

    Lee, Ok-Hwan; Seo, Dong-Ho; Park, Cheon-Seok; Kim, Young-Cheul

    2010-01-01

    Puerarin, a major isoflavone glycoside from Kudzu root (Pueraria lobata), has been reported to exert antihyperglycemic and antioxidant effects and thus have pharmacological actions in the treatment of diabetes and cardiovascular diseases. We investigated the effects of puerarin on the changes of key gene expression associated with adipocyte differentiation and insulin sensitivity and link to cellular antioxidant response pathways. Puerarin treatment significantly enhanced differentiation of 3T3-L1 preadipocytes accompanying increased lipid accumulation and glucose-6-phosphate dehydrogenase (G6PDH) activity. At a molecular level, puerarin upregulated mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) and its target genes, an adipocyte-specific fatty acid binding protein (aP2) and GLUT4. Puerarin also caused a significant increase in mRNA level of adiponectin, an important insulin-sensitizing adipocytokine that is downregulated in insulin-resistant and diabetic states. In addition, treatment with puerarin was found to upregulate mRNA levels of G6PDH, glutathione reductase, and catalase, all of which are important for endogenous antioxidant responses. These data suggest that the hypoglycemic effects of puerarin can be attributed to the upregulation of PPARγ and its downstream target genes, GLUT4 and adiponectin expression, leading to increased glucose utilization. Puerarin may also be effective in preventing the rise of oxidative stress during adipocyte differentiation by increasing endogenous antioxidant responses. PMID:20806284

  15. Factors Affecting Antioxidant Response in Fish from a Long-term Mercury-Contaminated Reservoir.

    PubMed

    Sevcikova, M; Modra, H; Blahova, J; Dobsikova, R; Kalina, J; Zitka, O; Kizek, R; Svobodova, Z

    2015-11-01

    The objective of this work was to evaluate antioxidant defence and oxidative damage in organs (liver, gills, kidney, and brain) of five fish species (Aspius aspius, Esox lucius, Sander lucioperca, Abramis brama, Rutilus rutilus) from the long-term mercury-contaminated Skalka Reservoir in the Czech Republic. Special emphasis was placed on a comprehensive assessment of the factors that may affect the antioxidant response to mercury in fish. Antioxidant enzymes (glutathione reductase, glutathione peroxidase, and glutathione-S-transferase) did not significantly respond to mercury contamination. Levels of the analysed enzymes and oxidative damage to lipids were predominantly determined by a separate organ factor or species factor, or by the combination of both (p < 0.001). Levels of total glutathione and the reduced/oxidized glutathione ratio were influenced by mercury contamination in combination with their specific organ distribution (p < 0.001). Our results suggest that species and type of organ alone or in combination are more important factors than chronic exposure to mercury contamination with respect to effects on antioxidant defence in fish under field conditions. Our findings suggest that the main antioxidant defensive mechanism in fish from the studied long-term mercury contaminated site was the inter-tissue distribution of glutathione. PMID:26276034

  16. EVALUATION OF ANTIOXIDANT DEFENSE RESPONSES TO LEAD STRESS IN HAPALOSIPHON FONTINALIS-339(1).

    PubMed

    Zutshi, Sunaina; Choudhary, Meenakshi; Bharat, Naveen; Abdin, Malik Zainul; Fatma, Tasneem

    2008-08-01

    Lead (Pb) is a heavy metal and a potentially hazardous environmental pollutant. In this study, the potential of lead to induce oxidative stress in biological systems was assessed using the cyanobacterium Hapalosiphon fontinalis-339 as model test organism. The impact of lead toxicity on the cellular antioxidant system and the biochemical modulations that result in generation of antioxidant defense responses were also studied. To determine the effect of Pb toxicity, the test organism was grown in the presence of various concentrations (0.05, 0.10, 0.20, 0.40, 0.80, 1.0, 1.20, and 1.25 mg · L(-1) ) of exogenous lead chloride (PbCl2 ), and its effects on growth were observed in terms of the change in chl content. There was a significant increase in metal uptake by the alga with a concomitant decrease in growth. Lead stress appeared to significantly up-regulate the levels of stress-related antioxidant enzymes-such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR)-while a decrease in catalase (CAT) levels was observed. In addition, the levels of nonenzymatic antioxidants, oxidized and total glutathione, were changed. Our results suggest the existence of a potent antioxidant defense machinery in H. fontinalis-339 and this organism can be employed to monitor lead toxicity in the environment. PMID:27041606

  17. Extracellular-signal-regulated kinase 5 modulates the antioxidant response by transcriptionally controlling Sirtuin 1 expression in leukemic cells.

    PubMed

    Lopez-Royuela, Nuria; Rathore, Moeez G; Allende-Vega, Nerea; Annicotte, Jean-Sébastien; Fajas, Lluis; Ramachandran, Bindu; Gulick, Tod; Villalba, Martin

    2014-08-01

    Cancer cell metabolism differs from that of non-transformed cells in the same tissue. This specific metabolism gives tumor cells growing advantages besides the effect in increasing anabolism. One of these advantages is immune evasion mediated by a lower expression of the mayor histocompatibility complex class I molecules. The extracellular-signal-regulated kinase-5 regulates both mayor histocompatibility complex class I expression and metabolic activity. However, the mechanisms underlying are largely unknown. We show here that extracellular-signal-regulated kinase-5 regulates the transcription of the NADH(+)-dependent histone deacetylase silent mating type information regulation 2 homolog 1 (Sirtuin 1) in leukemic Jurkat T cells. This involves the activation of the transcription factor myocyte enhancer factor-2 and its binding to the sirt1 promoter. In addition, extracellular-signal-regulated kinase-5 is required for T cell receptor-induced and oxidative stress-induced full Sirtuin 1 expression. Extracellular-signal-regulated kinase-5 induces the expression of promoters containing the antioxidant response elements through a Sirtuin 1-dependent pathway. On the other hand, down modulation of extracellular-signal-regulated kinase-5 expression impairs the anti-oxidant response. Notably, the extracellular-signal-regulated kinase-5 inhibitor BIX02189 induces apoptosis in acute myeloid leukemia tumor cells without affecting T cells from healthy donors. Our results unveil a new pathway that modulates metabolism in tumor cells. This pathway represents a promising therapeutic target in cancers with deep metabolic layouts such as acute myeloid leukemia. PMID:24880091

  18. Biopersistence of PEGylated Carbon Nanotubes Promotes a Delayed Antioxidant Response after Infusion into the Rat Hippocampus

    PubMed Central

    Dal Bosco, Lidiane; Weber, Gisele E.; Parfitt, Gustavo M.; Cordeiro, Arthur P.; Sahoo, Sangram K.; Fantini, Cristiano; Klosterhoff, Marta C.; Romano, Luis Alberto; Furtado, Clascídia A.; Santos, Adelina P.; Monserrat, José M.; Barros, Daniela M.

    2015-01-01

    Carbon nanotubes are promising nanomaterials for the diagnosis and treatment of brain disorders. However, the ability of these nanomaterials to cross cell membranes and interact with neural cells brings the need for the assessment of their potential adverse effects on the nervous system. This study aimed to investigate the biopersistence of single-walled carbon nanotubes functionalized with polyethylene glycol (SWCNT-PEG) directly infused into the rat hippocampus. Contextual fear conditioning, Y-maze and open field tasks were performed to evaluate the effects of SWCNT-PEG on memory and locomotor activity. The effects of SWCNT-PEG on oxidative stress and morphology of the hippocampus were assessed 1 and 7 days after infusion of the dispersions at 0.5, 1.0 and 2.1 mg/mL. Raman analysis of the hippocampal homogenates indicates the biopersistence of SWCNT-PEG in the hippocampus 7 days post-injection. The infusion of the dispersions had no effect on the acquisition or persistence of the contextual fear memory; likewise, the spatial recognition memory and locomotor activity were not affected by SWCNT-PEG. Histological examination revealed no remarkable morphological alterations after nanomaterial exposure. One day after the infusion, SWCNT-PEG dispersions at 0.5 and 1.0 mg/mL were able to decrease total antioxidant capacity without modifying the levels of reactive oxygen species or lipid hydroperoxides in the hippocampus. Moreover, SWCNT-PEG dispersions at all concentrations induced antioxidant defenses and reduced reactive oxygen species production in the hippocampus at 7 days post-injection. In this work, we found a time-dependent change in antioxidant defenses after the exposure to SWCNT-PEG. We hypothesized that the persistence of the nanomaterial in the tissue can induce an antioxidant response that might have provided resistance to an initial insult. Such antioxidant delayed response may constitute an adaptive response to the biopersistence of SWCNT-PEG in the

  19. Antioxidant responses of Propylaea japonica (Coleoptera: Coccinellidae) exposed to high temperature stress.

    PubMed

    Zhang, Shize; Fu, Wenyan; Li, Ning; Zhang, Fan; Liu, Tong-Xian

    2015-02-01

    Temperature is one of the most important environmental factors, and is responsible for a variety of physiological stress responses in organisms. Induced thermal stress is associated with elevated reactive oxygen species (ROS) generation leading to oxidative damage. The ladybeetle, Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae), is considered a successful natural enemy because of its tolerance to high temperatures in arid and semi-arid areas in China. In this study, we investigated the effect of high temperatures (35, 37, 39, 41 and 43 °C) on the survival and activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidases (POD), glutathione-S-transferases (GST), and total antioxidant capacity (TAC) as well as malondialdehyde (MDA) concentrations in P. japonica adults. The results indicated that P. japonica adults could not survive at 43 °C. CAT, GST and TAC were significantly increased when compared to the control (25 °C), and this played an important role in the process of antioxidant response to thermal stress. SOD and POD activity, as well as MDA, did not differ significantly at 35 and 37 °C compared to the control; however, there were increased levels of SOD, POD and MDA when the temperature was above 37 °C. These results suggest that thermal stress leads to oxidative stress and antioxidant enzymes play important roles in reducing oxidative damage in P. japonica adults. This study represents the first comprehensive report on the antioxidant defense system in predaceous coccinellids (the third trophic level). The findings provide useful information for predicting population dynamics and understanding the potential for P. japonica as a natural enemy to control pest insects under varied environmental conditions. PMID:25614965

  20. An antioxidant response is involved in resistance of Giardia duodenalis to albendazole

    PubMed Central

    Argüello-García, Raúl; Cruz-Soto, Maricela; González-Trejo, Rolando; Paz-Maldonado, Luz María T.; Bazán-Tejeda, M. Luisa; Mendoza-Hernández, Guillermo; Ortega-Pierres, Guadalupe

    2015-01-01

    Albendazole (ABZ) is a therapeutic benzimidazole used to treat giardiasis that targets β-tubulin. However, the molecular bases of ABZ resistance in Giardia duodenalis are not understood because β-tubulin in ABZ-resistant clones lacks mutations explaining drug resistance. In previous work we compared ABZ-resistant (1.35, 8, and 250 μM) and ABZ-susceptible clones by proteomic analysis and eight proteins involved in energy metabolism, cytoskeleton dynamics, and antioxidant response were found as differentially expressed among the clones. Since ABZ is converted into sulphoxide (ABZ-SO) and sulphone (ABZ-SOO) metabolites we measured the levels of these metabolites, the antioxidant enzymes and free thiols in the susceptible and resistant clones. Production of reactive oxygen species (ROS) and levels of ABZ-SO/ABZ-SOO induced by ABZ were determined by fluorescein diacetate-based fluorescence and liquid chromatography respectively. The mRNA and protein levels of antioxidant enzymes (NADH oxidase, peroxiredoxin 1a, superoxide dismutase and flavodiiron protein) in these clones were determined by RT-PCR and proteomic analysis. The intracellular sulfhydryl (R-SH) pool was quantified using dinitrobenzoic acid. The results showed that ABZ induced ROS accumulation in the ABZ-susceptible Giardia cultures but not in the resistant ones whilst the accumulation of ABZ-SO and ABZ-SOO was lower in all ABZ-resistant cultures. Consistent with these findings, all the antioxidant enzymes detected and analyzed were upregulated in ABZ-resistant clones. Likewise the R-SH pool increased concomitantly to the degree of ABZ-resistance. These results indicate an association between accumulation of ABZ metabolites and a pro-oxidant effect of ABZ in Giardia-susceptible clones. Furthermore the antioxidant response involving ROS-metabolizing enzymes and intracellular free thiols in ABZ-resistant parasites suggest that this response may contribute to overcome the pro-oxidant cytotoxicity of ABZ. PMID

  1. Effect of antioxidant mineral elements supplementation in the treatment of hypertension in albino rats.

    PubMed

    Muhammad, S A; Bilbis, L S; Saidu, Y; Adamu, Y

    2012-01-01

    Oxidative stress has been implicated in various pathologies, including hypertension, atherosclerosis, diabetes, and chronic renal disease. The current work was designed with the aim of investigating the potentials of antioxidants copper, manganese, and zinc in the treatment of hypertension in Wistar rats. The rats were fed 8% NaCl diet for 5 weeks and treatment with supplements in the presence of the challenging agent for additional 4 weeks. The supplementation significantly decreased the blood pressure as compared with hypertensive control. The result also indicated significant decreased in the levels of total cholesterol, triglyceride, low-density lipoprotein cholesterol and very low-density lipoprotein cholesterol, malondialdehyde, insulin and increase in the high-density lipoprotein cholesterol, total antioxidant activities, and nitric oxide of the supplemented groups relative to the hypertensive control. The average percentage protection against atherogenesis indicated 47.13 ± 9.60% for all the supplemented groups. The mean arterial blood pressure showed significant positive correlation with glucose, total cholesterol, triglyceride, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, atherogenic index, insulin resistance and malondialdehyde while high density lipoprotein-cholesterol and total antioxidant activities showed negative correlation. The result therefore indicated strong relationship between oxidative stress and hypertension and underscores the role of antioxidant minerals in reducing oxidative stress, dyslipidemia, and insulin resistance associated with hypertension. PMID:22966412

  2. Effect of in ovo injection with selenium on immune and antioxidant responses during experimental necrotic enteritis in broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium (Se) is an essential component of several major metabolic pathways in the antioxidant enzymes activity and modulating immune system. This study was conducted to investigate the effects of in ovo injection of selenium (Se) on modulating the immune system and antioxidant responses in chickens...

  3. NFE2L2 variations reduce antioxidant response in patients with Parkinson disease

    PubMed Central

    Gui, YaXing; Zhang, LiShan; Lv, Wen; Zhang, WenMing; Zhao, JinJia; Hu, XingYue

    2016-01-01

    Oxidative stress has been recognized as a risk factor of Parkinson's disease (PD) development. We hypothesized that decreased function of the nuclear factor (erythroid-derived 2)-like 2 (NFE2L2)-antioxidant response element (ARE) pathway might predispose to Parkinsonism. A case-control study was performed between NFE2L2 Single Nucleotide Polymorphism (SNP) and PD in a cohort of 765 unrelated patients with diagnosis of PD and 489 matched normal individuals. We found that c.351T>A, D117E (P = 0.003, OR = 2.8) and c.351T>A, D117E (P = 0.012, OR = 1.9) were significantly associated with PD. The risk allele of both polymorphisms showed a high frequency in our PD sample (c.351A: 19.7% and c.423T: 7.8%). The association between both c.351T>A and c.423G>T and PD was further confirmed in an independent case-control cohort consisting of 210 individuals with PD and 148 normal controls. We further found that over expression of D117E and Q141H variants of NFE2L2 reduced target genes expression of Glutathione S-transferase Pi 1 (GSTP1), Glutathione S-transferase Mu 1 (GSTM1), and Heme oxygenase 1 (HO-1) genes. NFE2L2 D117E and Q141H impaired activation of ARE-driven transcriptional activity. Our findings indicate that NFE2L2 may play an important role in the pathogenesis of PD in Chinese populations. PMID:26887053

  4. Deficiency of glutathione transferase zeta causes oxidative stress and activation of antioxidant response pathways.

    PubMed

    Blackburn, Anneke C; Matthaei, Klaus I; Lim, Cindy; Taylor, Matthew C; Cappello, Jean Y; Hayes, John D; Anders, M W; Board, Philip G

    2006-02-01

    Glutathione S-transferase (GST) zeta (GSTZ1-1) plays a significant role in the catabolism of phenylalanine and tyrosine, and a deficiency of GSTZ1-1 results in the accumulation of maleylacetoacetate and its derivatives maleylacetone (MA) and succinylacetone. Induction of GST subunits was detected in the liver of Gstz1(-/-) mice by Western blotting with specific antisera and high-performance liquid chromatography analysis of glutathione affinity column-purified proteins. The greatest induction was observed in members of the mu class. Induction of NAD(P)H:quinone oxidoreductase 1 and the catalytic and modifier subunits of glutamate-cysteine ligase was also observed. Many of the enzymes that are induced in Gstz1(-/-) mice are regulated by antioxidant response elements that respond to oxidative stress via the Keap1/Nrf2 pathway. It is significant that diminished glutathione concentrations were also observed in the liver of Gstz1(-/-) mice, which supports the conclusion that under normal dietary conditions, the accumulation of electrophilic intermediates such as maleylacetoacetate and MA results in a high level of oxidative stress. Elevated GST activities in the livers of Gstz1(-/-) mice suggest that GSTZ1-1 deficiency may alter the metabolism of some drugs and xenobiotics. Gstz1(-/-) mice given acetaminophen demonstrated increased hepatotoxicity compared with wild-type mice. This toxicity may be attributed to the increased GST activity or the decreased hepatic concentrations of glutathione, or both. Patients with acquired deficiency of GSTZ1-1 caused by therapeutic exposure to dichloroacetic acid for the clinical treatment of lactic acidosis may be at increased risk of drug- and chemical-induced toxicity. PMID:16278372

  5. Diffractive micro-optical element with nonpoint response

    NASA Astrophysics Data System (ADS)

    Soifer, Victor A.; Golub, Michael A.

    1993-01-01

    Common-use diffractive lenses have microrelief zones in the form of simple rings that provide only an optical power but do not contain any image information. They have a point-image response under point-source illumination. We must use a more complicated non-point response to focus a light beam into different light marks, letter-type images as well as for optical pattern recognition. The current presentation describes computer generation of diffractive micro- optical elements with complicated curvilinear zones of a regular piecewise-smooth structure and grey-level or staircase phase microrelief. The manufacture of non-point response elements uses the steps of phase-transfer calculation and orthogonal-scan masks generation or lithographic glass etching. Ray-tracing method is shown to be applicable in this task. Several working samples of focusing optical elements generated by computer and photolithography are presented. Using the experimental results we discuss here such applications as laser branding.

  6. Over-expression of Nrf2 diminishes ethanol-induced oxidative stress and apoptosis in neural crest cells by inducing an antioxidant response

    PubMed Central

    Chen, Xiaopan; Liu, Jie; Chen, Shao-yu

    2013-01-01

    Nuclear factor erythroid 2-related factor (Nrf2) is a key transcription factor that regulates antioxidant defense in cells. In this study, we investigated whether over-expression of Nrf2 can prevent ethanol-induced oxidative stress and apoptosis in neural crest cells (NCCs). We found that transfection of NCCs with pcDNA3.1-Nrf2 resulted in statistically significant increases in the Nrf2 protein levels in control and ethanol-exposed NCCs as compared to the cells transfected with control vector. Luciferase reporter gene assay revealed that over-expression of Nrf2 significantly increased the antioxidant response element (ARE) promoter activity in NCCs. Nrf2 over-expression also increased the protein expression and activities of Nrf2 target antioxidants in NCCs. In addition, over-expression of Nrf2 significantly decreased ROS generation and diminished apoptosis in ethanol-exposed NCCs. These results demonstrate that over-expression of Nrf2 can confer protection against ethanol-induced oxidative stress and apoptosis in NCCs by the induction of an antioxidant response. PMID:23994065

  7. Antioxidant supplementation increases retinal responses and decreases refractive error changes in dogs.

    PubMed

    Wang, Wei; Hernandez, Jerome; Moore, Cecil; Jackson, Janet; Narfström, Kristina

    2016-01-01

    The objective of the study was to examine whether a nutritional antioxidant supplementation could improve visual function in healthy dogs as measured by electroretinography (ERG) and autorefraction. A total of twelve Beagles, 6 to 8 years of age, with normal eyes upon indirect ophthalmoscopy and slit lamp biomicroscopy, were age and sex matched and randomly assigned to receive a feeding regimen for 6 months with or without a daily antioxidant supplementation. Portable, mini-Ganzfeld ERG and a Welch Allyn hand-held autorefractor were used to test retinal response and refractive error in the dogs at baseline and at the end of the supplementation period. All ERG a-wave amplitudes obtained were increased in the treatment group compared with those of dogs in the control group, with significant improvements in the scotopic high and photopic single flash cone ERG responses (P < 0·05 for both). For the b-wave amplitudes, all responses were similarly increased, with significant improvements in responses for the scotopic high light intensity stimulation (P < 0·05), and for photopic single flash cone and 30 Hz flicker (P < 0·01 for both) recordings. Change in refractive error was significantly less in the treatment group compared with that of the control group during the 6-month study (P < 0·05). Compared with the control group, the antioxidant-supplemented group showed improvement to varying degrees for retinal function and significantly less decline in refractive error. Dogs, like humans, experience retinal and lens functional decline with age. Antioxidant supplementation as demonstrated may be beneficial and effective in the long-term preservation and improvement of various functions of the canine eye. PMID:27293555

  8. Loss of DJ-1 impairs antioxidant response by altered glutamine and serine metabolism.

    PubMed

    Meiser, J; Delcambre, S; Wegner, A; Jäger, C; Ghelfi, J; d'Herouel, A Fouquier; Dong, X; Weindl, D; Stautner, C; Nonnenmacher, Y; Michelucci, A; Popp, O; Giesert, F; Schildknecht, S; Krämer, L; Schneider, J G; Woitalla, D; Wurst, W; Skupin, A; Weisenhorn, D M Vogt; Krüger, R; Leist, M; Hiller, K

    2016-05-01

    The oncogene DJ-1 has been originally identified as a suppressor of PTEN. Further on, loss-of-function mutations have been described as a causative factor in Parkinson's disease (PD). DJ-1 has an important function in cellular antioxidant responses, but its role in central metabolism of neurons is still elusive. We applied stable isotope assisted metabolic profiling to investigate the effect of a functional loss of DJ-1 and show that DJ-1 deficient neuronal cells exhibit decreased glutamine influx and reduced serine biosynthesis. By providing precursors for GSH synthesis, these two metabolic pathways are important contributors to cellular antioxidant response. Down-regulation of these pathways, as a result of loss of DJ-1 leads to an impaired antioxidant response. Furthermore, DJ-1 deficient mouse microglia showed a weak but constitutive pro-inflammatory activation. The combined effects of altered central metabolism and constitutive activation of glia cells raise the susceptibility of dopaminergic neurons towards degeneration in patients harboring mutated DJ-1. Our work reveals metabolic alterations leading to increased cellular instability and identifies potential new intervention points that can further be studied in the light of novel translational medicine approaches. PMID:26836693

  9. Herbicidal and antioxidant responses of transgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase.

    PubMed

    Jung, Sunyo; Back, Kyoungwhan

    2005-05-01

    We analyzed the herbicidal and antioxidant defense responses of transgenic rice plants that overexpressed the Myxococcus xanthus protoporphyrinogen oxidase gene. Leaf squares of the wild-type incubated with oxyfluorfen were characterized by necrotic leaf lesions and increases in conductivity and malonyldialdehyde levels, whereas transgenic lines M4 and M7 did not show any change with up to 100 microM oxyfluorfen. The wild-type had decreased F(v)/F(m) and produced a high level of H(2)O(2) at 18 h after foliar application of oxyfluorfen, whereas transgenic lines M4 and M7 were unaffected. In response to oxyfluorfen, violaxanthin, beta-carotene, and chlorophylls (Chls) decreased in wild-type plants, whereas antheraxanthin and zeaxanthin increased. Only a slight decline in Chls was observed in transgenic lines at 48 h after oxyfluorfen treatment. Noticeable increases of cytosolic Cu/Zn-superoxide dismutase, peroxidase isozymes 1 and 2, and catalase were observed after at 48 h of oxyfluorfen treatment in the wild-type. Non-enzymatic antioxidants appeared to respond faster to oxyfluorfen-induced photodynamic stress than did enzymatic antioxidants. Protective responses for the detoxification of active oxygen species were induced to counteract photodynamic stress in oxyfluorfen-treated, wild-type plants. However, oxyfluorfen-treated, transgenic plants suffered less oxidative stress, confirming increased herbicidal resistance resulted from dual expression of M. xanthus Protox in chloroplasts and mitochondria. PMID:15890521

  10. RBM45 Modulates the Antioxidant Response in Amyotrophic Lateral Sclerosis through Interactions with KEAP1

    PubMed Central

    Bakkar, Nadine; Kousari, Arianna; Kovalik, Tina; Li, Yang

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective loss of motor neurons. Various factors contribute to the disease, including RNA binding protein dysregulation and oxidative stress, but their exact role in pathogenic mechanisms remains unclear. We have recently linked another RNA binding protein, RBM45, to ALS via increased levels of protein in the cerebrospinal fluid of ALS patients and its localization to cytoplasmic inclusions in ALS motor neurons. Here we show RBM45 nuclear exit in ALS spinal cord motor neurons compared to controls, a phenotype recapitulated in vitro in motor neurons treated with oxidative stressors. We find that RBM45 binds and stabilizes KEAP1, the inhibitor of the antioxidant response transcription factor NRF2. ALS lumbar spinal cord lysates similarly show increased cytoplasmic binding of KEAP1 and RBM45. Binding of RBM45 to KEAP1 impedes the protective antioxidant response, thus contributing to oxidative stress-induced cellular toxicity. Our findings thus describe a novel link between a mislocalized RNA binding protein implicated in ALS (RBM45) and dysregulation of the neuroprotective antioxidant response seen in the disease. PMID:25939382

  11. Chemiluminescence response induced by mesenteric ischaemia/reperfusion: effect of antioxidative compounds ex vivo

    PubMed Central

    Nosál'ová, Viera; Sotníková, Ružena; Drábiková, Katarína; Fialová, Silvia; Košťálová, Daniela; Banášová, Silvia; Navarová, Jana

    2010-01-01

    Ischaemia and reperfusion (I/R) play an important role in human pathophysiology as they occur in many clinical conditions and are associated with high morbidity and mortality. Interruption of blood supply rapidly damages metabolically active tissues. Restoration of blood flow after a period of ischaemia may further worsen cell injury due to an increased formation of free radicals. The aim of our work was to assess macroscopically the extent of intestinal pathological changes caused by mesenteric I/R, and to study free radical production by luminol enhanced chemiluminescence (CL) of ileal samples. In further experiments, the antioxidative activity of the drugs tested was evaluated spectrophotometrically by the use of the DPPH radical. We studied the potential protective ex vivo effect of the plant origin compound arbutin as well as of the pyridoindole stobadine and its derivative SMe1EC2. I/R induced pronounced haemorrhagic intestinal injury accompanied by increase of myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGA) activity. Compared to sham operated (control) rats, there was only a slight increase of CL response after I/R, probably in association with neutrophil increase, indicated by enhanced MPO activity. All compounds significantly reduced the peak values of CL responses of the ileal samples ex vivo, thus reducing the I/R induced increase of free radical production. The antioxidants studied showed a similar inhibitory effect on the CL response influenced by mesenteric I/R. If proved in vivo, these compounds would represent potentially useful therapeutic antioxidants. PMID:21217883

  12. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses

    PubMed Central

    Chaiprasongsuk, Anyamanee; Onkoksoong, Tasanee; Pluemsamran, Thanyawan; Limsaengurai, Saowalak; Panich, Uraiwan

    2015-01-01

    Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8 J/cm2) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. PMID:26765101

  13. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses.

    PubMed

    Chaiprasongsuk, Anyamanee; Onkoksoong, Tasanee; Pluemsamran, Thanyawan; Limsaengurai, Saowalak; Panich, Uraiwan

    2016-08-01

    Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8J/cm(2)) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. PMID:26765101

  14. Finite element simulation of impact response of wire mesh screens

    NASA Astrophysics Data System (ADS)

    Wang, Caizheng; Shankar, Krishna; Fien, Alan

    2015-09-01

    In this paper, the response of wire mesh screens to low velocity impact with blunt objects is investigated using finite element (FE) simulation. The woven wire mesh is modelled with homogeneous shell elements with equivalent smeared mechanical properties. The mechanical behaviour of the woven wire mesh was determined experimentally with tensile tests on steel wire mesh coupons to generate the data for the smeared shell material used in the FE. The effects of impacts with a low mass (4 kg) and a large mass (40 kg) providing the same impact energy are studied. The joint between the wire mesh screen and the aluminium frame surrounding it is modelled using contact elements with friction between the corresponding elements. Damage to the screen of different types compromising its structural integrity, such as mesh separation and pulling out from the surrounding frame is modelled. The FE simulation is validated with results of impact tests conducted on woven steel wire screen meshes.

  15. Antioxidants attenuate multiple phases of formalin-induced nociceptive response in mice.

    PubMed

    Hacimuftuoglu, A; Handy, C R; Goettl, V M; Lin, C G; Dane, S; Stephens, R L

    2006-10-16

    An emerging theme in the study of the pathophysiology of chronic and persistent pain is the role of pro-oxidant substances. Reactive oxygen species (ROS) have been implicated in contributing to and/or maintaining conditions of chronic pain. Recent pre-clinical reports suggest that antioxidants are effective analgesics in neuropathic and inflammatory pain models. The present study extends this work by examining the effect of three antioxidants on tissue injury-induced nociception. C57BL6 mice (20-25 g) were pretreated with either phenyl-N-tert-butylnitrone (PBN; 50 mg/kg, i.p.), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxy (TEMPOL; 200 or 50 mg/kg, i.p.), N-acetyl-L-cysteine (NAC; 200 or 100mg/kg, i.p.), or vehicle (0.5 ml/100 g), 5 min before intraplantar formalin (10%, 20 microl) injection. Nociceptive responding, indicated by licking or biting the affected hindlimb, was quantified for 30 min after formalin injection. Each drug was effective in attenuating two or more phases (acute, quiescent, and tonic) of the formalin response. To assess putative site of action, intrathecal TEMPOL (380 nmol/5 microl, i.t.) was given 5 min before intraplantar formalin. Intrathecal TEMPOL produced a 83% reduction in nociceptive responding in the tonic phase, but no significant attenuation of the acute phase response. To confirm that the antioxidant property of intrathecal TEMPOL was responsible for its analgesic effect on the formalin-induced pain response, intrathecal TEMPOL was coadministered with the free radical donor tert-butylhydroperoxide (tert-BuOOH). Tert-BuOOH coadminstration reversed the TEMPOL-induced analgesia in the tonic intraplantar formalin response reduction. The data suggest that pro-oxidant species may be important mediators of tissue injury-induced algesia in rodents, and that a spinal site of action is implicated in the tonic response. PMID:16919817

  16. Optimization of debittering of soybean antioxidant hydrolysates with β-cyclodextrins using response surface methodology.

    PubMed

    Hou, Lixia; Wang, Jinshui; Zhang, Duo

    2013-06-01

    Antioxidant hydrolysates from soybean have the potential as the new antioxidants, but the bitterness limites their application. A study on the debittering of the soybean antioxidant hydrolysates with β-cyclodextrins and the effects of the debittering conditions on the reducing power of the peptides was conducted using response surface methodology (RSM). The coefficient of determination, R (2) values for bitterness and reducing power were 0.883 and 0.902 respectively. Reducing power of the soybean hydrolysates varied curvilinearly with increase of temperature, mass fraction of β-cyclodextrin, and incubation time. The optimum conditions to obtain the hydrolysates with the minimum bitterness and the maximum reducing power were: temperature 38.50 °C, the mass fraction of β-cyclodextrin 2.00%, and incubation time 12 min, The resulting response functions under this conditions were the reducing power (OD700 nm) of 0.453 and bitterness of 0.290, which was under the threshold for the detection of bitterness taste. PMID:24425947

  17. Elements of a national emergency response system for nuclear accidents

    SciTech Connect

    Dickerson, M.H.

    1987-02-10

    The purpose of this paper is to suggest elements for a general emergency response system, employed at a national level, to detect, evaluate and assess the consequences of a radiological atmospheric release occurring within or outside of national boundaries. These elements are focused on the total aspect of emergency response ranging from providing an initial alarm to a total assessment of the environmental and health effects. Elements of the emergency response system are described in such a way that existing resources can be directly applied if appropriate; if not, newly developed or an expansion of existing resources can be employed. The major thrust of this paper is toward a philosophical discussion and general description of resources that would be required to implementation. If the major features of this proposal system are judged desirable for implementation, then the next level of detail can be added. The philosophy underlying this paper is preparedness - preparedness through planning, awareness and the application of technology. More specifically, it is establishment of reasonable guidelines including the definition of reference and protective action levels for public exposure to accidents involving nuclear material; education of the public, government officials and the news media; and the application of models and measurements coupled to computer systems to address a series of questions related to emergency planning, response and assessment. It is the role of a proven national emergency response system to provide reliable, quality-controlled information to decision makers for the management of environmental crises.

  18. Optimisation of Ultrasound-Assisted Extraction Conditions for Phenolic Content and Antioxidant Capacity from Euphorbia tirucalli Using Response Surface Methodology

    PubMed Central

    Vuong, Quan V.; Goldsmith, Chloe D.; Dang, Trung Thanh; Nguyen, Van Tang; Bhuyan, Deep Jyoti; Sadeqzadeh, Elham; Scarlett, Christopher J.; Bowyer, Michael C.

    2014-01-01

    Euphorbia tirucalli (E. tirucalli) is now widely distributed around the world and is well known as a source of traditional medicine in many countries. This study aimed to utilise response surface methodology (RSM) to optimise ultrasonic-assisted extraction (UAE) conditions for total phenolic compounds (TPC) and antioxidant capacity from E. tirucalli leaf. The results showed that ultrasonic temperature, time and power effected TPC and antioxidant capacity; however, the effects varied. Ultrasonic power had the strongest influence on TPC; whereas ultrasonic temperature had the greatest impact on antioxidant capacity. Ultrasonic time had the least impact on both TPC and antioxidant capacity. The optimum UAE conditions were determined to be 50 °C, 90 min. and 200 W. Under these conditions, the E. tirucalli leaf extract yielded 2.93 mg GAE/g FW of TPC and exhibited potent antioxidant capacity. These conditions can be utilised for further isolation and purification of phenolic compounds from E. tirucalli leaf. PMID:26785074

  19. Characterization and response of antioxidant systems in the tissues of the freshwater pond snail (Lymnaea stagnalis) during acute copper exposure.

    PubMed

    Atli, Gülüzar; Grosell, Martin

    2016-07-01

    The response of enzymatic (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPX and glutathione reductase, GR) and non-enzymatic responses (glutathione, GSH, oxidized glutathione, GSSG and GSH/GSSG) against acute Cu toxicity (2-90μg/mL for 48h) in different tissues of Lymnaea stagnalis were measured. Incubation conditions for enzymatic activity measurements were optimized for L. stagnalis tissues. Three examined tissues, the hepatopancreas, the foot muscle and the mantle, exhibited variable responses in antioxidant parameters as a function of Cu concentrations. The most responsive antioxidant enzymes were GPX and CAT while GR appeared less sensitive. In general antioxidant enzymes at higher Cu concentrations though GSH levels at lower Cu concentrations exhibited the greatest changes in hepatopancreas and foot muscle, respectively. All antioxidant enzymes except GR increased after exposure to the highest Cu concentration in mantle. Total and reduced GSH increased in hepatopancreas but decreased with GSH/GSSG ratios at all Cu concentrations in foot muscle. The present results show that antioxidants respond to acute Cu exposure at concentrations as low as 2μg Cu/L in adult L. stagnalis with variable responses in different tissues. Antioxidants both including enzymatic and non-enzymatic parameters may account, in part, for the high tolerance to acute metal exposure observed in adult L. stagnalis and could form suited biomarkers to evaluate the metal exposure and toxicity in aquatic environment even at relatively low level short term exposure. PMID:27108202

  20. Early antioxidative defence responses in the aquatic worms (Limnodrilus sp.) in Porsuk Creek in Eskisehir (Turkey).

    PubMed

    Oztetik, Elif; Cicek, Arzu; Arslan, Naime

    2013-07-01

    Certain oligochaeta specimens have been universally applied as bioindicators to reflect the organic and inorganic pollution in rivers and play a major role in the decomposition of pollutants. The aim of this study was to investigate the water quality in Porsuk Creek in Eskisehir (Turkey) through the specimens from two different species that belong to Limnodrilus genus, using their biomonitoring compatibilities for the accumulated trace element concentrations and to describe the applicability of antioxidative systems as biomarkers of pollution in Tubificinae. Therefore, some parameters that serve as biomarkers for antioxidative defence, total protein, glutathione (GSH) contents and glutathione S-transferase (GST) activities, were determined in Limnodrilus hoffmeisteri and Limnodrilus udekemianus. The study was completed with the chemical analysis of the trace elements from these specimens and also from the water samples. As a conclusion, the observed elevation in GSH levels and GST activities reflect the contribution of oxidative stress in toxicity mechanisms due to the accumulation of trace elements, and the study also suggests a general induction of detoxification metabolisms in the presence of several pollutants in benthic sediment-dwelling worms. According to the average value, the trace element levels for two species are as follows: Fe > Al > Zn > Mn > Pb > Cu > Ni > B > Cd = Cr = Hg. As Porsuk Creek is used for many purposes, such as irrigation, drinking water and fish production, discharges of all types of wastes should be under stringent control to avoid the unwanted health effects to its habitants and to humans. PMID:22514119

  1. Responses of Antioxidants to Paraquat in Pea Leaves (Relationships to Resistance).

    PubMed Central

    Donahue, J. L.; Okpodu, C. M.; Cramer, C. L.; Grabau, E. A.; Alscher, R. G.

    1997-01-01

    Differnential sensitivity to the oxidant paraquat was observed in pea (Pisum sativum L.) based on cultivar and leaf age. To assess contributions of inductive responses of the antioxidant enzymes in short-term resistance to oxidative damage, activities of glutathione reductase (GR), superoxide dismutase (SOD), and ascorbate peroxidase (APX) and transcript levels for plastidic GR, Cu,Zn SOD, and cytosolic APX were determined. Responses to paraquat exposure from three different leaf age classes of pea were studied. Resistance was correlated with leaf age, photosynthetic rates, enzyme activities, and pretreatment levels of plastid GR and plastid Cu,Zn SOD transcripts. In response to paraquat, small increases in activities of GR and APX were observed in the more resistant leaves. These changes were not reflected at the mRNA level for the plastidic GR or Cu,Zn SOD. Paraquat-mediated increases in cytosolic APX mRNA occurred in all leaf types, irrespective of resistance. Developmentally controlled mechanisms determining basal antioxidant enzyme activities, and not inductive responses, appear to be critical factors mediating short-term oxidative stress resistance. PMID:12223604

  2. Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus.

    PubMed

    Sidhu, Gagan Preet Singh; Singh, Harminder Pal; Batish, Daizy R; Kohli, Ravinder Kumar

    2016-08-01

    A screenhouse experiment was conducted to assay the effect of Lead (Pb) on oxidative status, antioxidative response and metal accumulation in Coronopus didymus after 6 weeks. Results revealed a good Pb tolerance and accumulation potential of C. didymus towards the increasing Pb concentrations (500, 900, 1800, 2900 mg kg(-1)) in soil. The content of Pb in roots and shoots elevated with higher Pb levels and reached a maximum of 3684.3 mg kg(-1) and 862.8 mg kg(-1) Pb dry weight, respectively, at 2900 mg kg(-1) treatment. Pb exposure stimulated electrolyte leakage, H2O2 level, MDA content and the activities of antioxidant machinery (SOD, CAT, APX, GPX and GR). However, at the highest Pb concentration, the activities of SOD and CAT declined. The H2O2 level and MDA content in roots increased significantly up to ∼500% and 213%, respectively, over the control, at 2900 mg kg(-1) Pb treatment. Likewise, concurrent findings were noticed in shoots of C. didymus, with the increasing Pb concentration. The present work suggests that C. didymus exhibited a good accumulation potential for Pb and can tolerate Pb-induced oxidative stress by an effective antioxidant defense mechanism. PMID:27214085

  3. Sulforaphane ameliorates the insulin responsiveness and the lipid profile but does not alter the antioxidant response in diabetic rats.

    PubMed

    de Souza, Carolina Guerini; da Motta, Leonardo Lisbôa; de Assis, Adriano Martimbianco; Rech, Anderson; Bruch, Ricardo; Klamt, Fábio; Souza, Diogo Onofre

    2016-04-20

    Diabetes is one of the most prevalent chronic non-communicable diseases and is characterized by hyperglycemia and increased oxidative stress. These two alterations are also responsible for the main diabetic complications: cardiovascular disease, retinopathy, nephropathy and peripheral neuropathy. Diabetes progression is governed by pancreatic β-cell failure, and recent studies showed that sulforaphane (SFN) might be able to prevent this change, preserving insulin production. Consequently, our goal was to test the effects of SFN on metabolic parameters related to diabetic complications and antioxidant defenses (superoxide dismutase, catalase and sulfhydryl groups) in the pancreas, liver and kidney of non-diabetic and diabetic rats. Male Wistar rats were treated with water or 0.5 mg kg(-1) SFN i.p. for 21 days after diabetes induction. In diabetic animals treated with SFN, the serum levels of total cholesterol, non-HDL cholesterol and triacylglycerols were similar to those of non-diabetic animals, and the insulin responsiveness was higher than that of the diabetic animals that did not receive the compound. No effect of SFN on the superoxide dismutase and catalase activity or sulfhydryl groups was observed in the pancreas, liver or kidney of the treated animals. We conclude that SFN ameliorates some features of clinical diabetic complications particularly the lipid profile and insulin responsiveness, but it does not modulate the antioxidant response induced by superoxide dismutase, catalase and sulfhydryl groups in the evaluated organs. PMID:27025193

  4. The Different Physiological and Antioxidative Responses of Zucchini and Cucumber to Sewage Sludge Application

    PubMed Central

    Wyrwicka, Anna; Urbaniak, Magdalena

    2016-01-01

    The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity. PMID:27327659

  5. Alteration of antioxidant defense status precedes humoral immune response abnormalities in macrosomia

    PubMed Central

    Haddouche, Mustapha; Aribi, Mourad; Moulessehoul, Soraya; Smahi, Mohammed Chems-Eddine Ismet; Lammani, Mohammed; Benyoucef, Mohammed

    2011-01-01

    Summary Background This study aimed to investigate whether the anomalies affecting the antioxidant and humoral immune defenses could start at birth and to check whether the decrease in antioxidant defenses may precede the immune abnormalities in macrosomic newborns. Material/Methods Thirty macrosomic and 30 sex-matched control newborns were recruited for a retrospective case-control study at the Maghnia Maternity Hospital of Tlemcen Department (Algeria). Results The serum IgG levels were similar in both groups. However, plasma ORAC, albumin, vitamin E, SOD, CAT and GSH-Px levels were significantly decreased in macrosomic as compared to control newborns, yet no difference was observed after adjustment for weight. Additionally, serum concentrations of complement C3, MDA and XO were significantly higher in macrosomic as compared to controls before adjustment for weight. Moreover, macrosomia was significantly associated with high levels of complement C3 (OR=8, p=0.002); whereas no association with those of IgG was observed (OR<1, p>0.05). Furthermore, macrosomia was significantly associated with low levels of ORAC (OR=4.96, p=0.027), vitamin E (OR=4.5, p=0.018), SOD (OR=6.88, p=0.020) and CAT (OR=5.67, p=0.017), and with high levels of MDA (OR=10.29, p=0.005). Conclusions Abnormalities of the humoral defense system in excessive weight could be preceded by alterations of the anti-oxidative defense and by inflammatory response and activation of innate immunity at birth. Additionally, excessive weight could be a potential factor contributing to decreased anti-oxidative capacity and increased oxidative stress. PMID:22037745

  6. The Different Physiological and Antioxidative Responses of Zucchini and Cucumber to Sewage Sludge Application.

    PubMed

    Wyrwicka, Anna; Urbaniak, Magdalena

    2016-01-01

    The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity. PMID:27327659

  7. Salt tolerance is related to a specific antioxidant response in the halophyte cordgrass, Spartina densiflora

    NASA Astrophysics Data System (ADS)

    Canalejo, Antonio; Martínez-Domínguez, David; Córdoba, Francisco; Torronteras, Rafael

    2014-06-01

    Halophytes usually have a robust antioxidative defense system to alleviate oxidative damage during salt stress. Spartina densiflora is a colonizing halophyte cordgrass, native of South America, which has become a common species in salt marshes of northern hemisphere, where it is ousting indigenous species. This study addressed salinity stress in S. densiflora; the occurrence of oxidative stress and the possible involvement of the antioxidative system in its high salt tolerance were studied. Plants were evaluated at in situ conditions, in the laboratory during a 28 day-acclimation period (AP) in clean substrate irrigated with a control salt content of 4 g L-1 (68 mM) and during a subsequent 28 day-treatment period (TP) exposed to different NaCl concentrations: control (68 mM), 428 mM or 680 mM. In the in situ setting, the high leave Na+ content was accompanied by high levels of hydroperoxides and reduced levels of total chlorophyll and carotenes, which correlated with enhanced activation of antioxidant defense biomarkers as total ascorbic acid (AA) content and guaiacol peroxidase (POD: EC 1.11.1.7)), catalase (CAT: EC 1.11.1.6) and ascorbate peroxidase (APX: EC 1.11.1.11) activities. Throughout the AP, leave Na+ and oxidative stress markers decreased concomitantly and reached stable low levels. During the TP, dose and time-dependent accumulation of Na+ in high NaCl-treated plants was concurrent with a decrease in content of total chlorophyll and carotenes and with an increase in the levels of total AA and CAT and APX activities. In conclusion, as hypothesized, high salinity induces conditions of oxidative stress in S. densiflora, so that its salt tolerance appears to be related to the implementation of a specific antioxidant response. This may account for Spartina densiflora's successful adaptation to habitats with fluctuating salinity and favour its phytoremediation potential.

  8. Hepatic antioxidative responses to PCDPSs and estimated short-term biotoxicity in freshwater fish.

    PubMed

    Li, Ying; Li, Mei; Shi, Jiaqi; Yang, Xi; Wang, Zunyao

    2012-09-15

    This study evaluated the short-term toxicity of polychlorinated diphenylsulfides (PCDPSs) in freshwater fish. Laboratory experiments were performed to determine the oxidative stress and antioxidative responses of 12 different types of PCDPSs in the liver of goldfish, Carassius auratus. Fish were injected with increasing concentrations (0.1, 1, 10, 100 μg/kg body weight for various PCDPSs and 1, 10, 100 mg/kg for diphenylsulfides (DPS)) of test compounds for 12h, with one group assigned as the control. We simultaneously evaluated the time-dependent effects of PCDPSs on the antioxidant defense system, using Tris-, Penta- and Hepta-CDPS. Fish were acutely injected with either 10 μg/kg of such PCDPSs or corn oil alone (control), and then liver samples were collected at 0.5, 1, 2, 3 and 5d for analysis of antioxidant content. Changes in the activities of superoxide dismutase (SOD), catalase (CAT), and in the levels of malondialdehyde (MDA) were detected, suggesting that PCDPSs exhibit potential biotoxicity. In addition, our data indicated that PCDPS toxicity varies with the degree of substitution and the position of substitution attached to two benzene rings, results that were also partly supported by the time-dependent effects elicited by the Tris-, Penta- and Hepta-CDPSs. In particular, our results indicate that Penta- and Hexa-CDPSs may act as highly toxic contaminants that exhibit striking enzymatic inhibitory activity. Furthermore, our results suggest that altered levels of antioxidant enzymes, including SOD and CAT, along with MDA, may serve as potential biomarkers of PCDPS contamination. PMID:22640874

  9. The response of antioxidant systems in Nostoc sphaeroides against UV-B radiation and the protective effects of exogenous antioxidants

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hu, Chunxiang; Li, Dunhai; Zhang, Delu; Li, Xiaoyan; Chen, Kun; Liu, Yongding

    UV radiation is one of many harmful factors found in space that are detrimental to organisms on earth in space exploration. In the present work, we examined the role of antioxidant system in Nostoc sphaeroides Kütz (Cyanobacterium) and the effects of exogenously applied antioxidant molecules on its photosynthetic rate under UV-B radiation. It was found that UV-B radiation promoted the activity of antioxidant system to protect photosystem II (PSII) and exogenously applied antioxidant: sodium nitroprusside (SNP) and N-acetylcysteine (NAC) had an obvious protection on PSII activity under UV-B radiation. The activity of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and content of MDA (malondialdehyde) and ASC (ascorbate) were improved by 0.5 mM and 1 mM SNP, but 0.1 mM SNP decreased the activity of antioxidant system. Addition of exogenous NAC decreased the activity of SOD, POD, CAT and the content MDA and ASC. In contrast, exogenously applied NAC increased GSH content. The results suggest that exogenous SNP and NAC may protect algae by different mechanisms: SNP may play double roles as both sources of reactive free radicals as well as ROS scavengers in mediating the protective role of PSII on algae under UV-B radiation. On the other hand, NAC functions as an antioxidant or precursor of glutathione, which could protect PSII directly from UV-B radiation.

  10. Antioxidative stress responses in the floating macrophyte Lemna minor L. with cylindrospermopsin exposure.

    PubMed

    Flores-Rojas, Nelida Cecilia; Esterhuizen-Londt, Maranda; Pflugmacher, Stephan

    2015-12-01

    Cylindrospermopsin toxicity and oxidative stress have been examined in aquatic animals, however, only a few studies with aquatic plants have been conducted focusing on the potential for bioaccumulation of cylindrospermopsin. The oxidative stress effects caused by cylindrospermopsin on macrophytes have not yet been specifically studied. The oxidative stress response of Lemna minor L. with exposure to cylindrospermopsin, was therefore tested in this study. The hydrogen peroxide concentration together with the activities of the antioxidant enzymes (catalase, peroxidase, glutathione reductase and glutathione S-transferase) were determined after 24h (hours) of exposure to varying concentrations (0.025, 0.25, 2.5 and 25μg/L) of cylindrospermopsin. Responses with longer exposure periods (48, 96, 168h) were tested only with exposure to 2.5 and 25μg/L cylindrospermopsin. Additionally, the content of the carotenoids was determined as a possible non-enzymatic antioxidant defence mechanism against cylindrospermopsin. The levels of hydrogen peroxide increased after 24h even at the lowest cylindrospermopsin exposure concentrations. Catalase showed the most representative antioxidant response observed after 24h and maintained its activity throughout the experiment. Catalase activity corresponded with the contents of hydrogen peroxide at 2.5 and 25μg/L cylindrospermopsin. The data suggest that glutathione S-transferase, glutathione reductase and the carotenoid content act together with catalase but are more sensitive to higher concentrations of cylindrospermopsin and after a longer exposure period (168h). The results indicate that cylindrospermopsin promotes oxidative stress in L. minor at concentrations of 2.5 and 25μg/L. However, L. minor has sufficient defence mechanisms in place against this cyanobacterial toxin. Even though L. minor exhibits the potential to managing and control cylindrospermopsin contamination in aquatic systems, further studies in tolerance limits to

  11. The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide.

    PubMed

    Obermeier, Michael; Schröder, Christian A; Helmreich, Brigitte; Schröder, Peter

    2015-12-01

    Lemna minor L., a widely used model plant for toxicity tests has raised interest for its application to phytoremediation due to its rapid growth and ubiquitous occurrence. In rural areas, the pollution of water bodies with heavy metals and agrochemicals poses a problem to surface water quality. Among problematic compounds, heavy metals (copper) and pesticides are frequently found in water bodies. To establish duckweed as a potential plant for phytoremediation, enzymatic and antioxidative stress responses of Lemna minor during exposure to copper and a chloroacetamide herbicide were investigated in laboratory studies. The present study aimed at evaluating growth and the antioxidative and glutathione-dependent enzyme activity of Lemna plants and its performance in a scenario for phytoremediation of copper and a chloroacetamide herbicide. Lemna minor was grown in Steinberg medium under controlled conditions. Plants were treated with CuSO4 (ion conc. 50 and 100 μg/L) and pethoxamide (1.25 and 2.5 μg/L). Measurements following published methods focused on plant growth, oxidative stress, and basic detoxification enzymes. Duckweed proved to survive treatment with the respective concentrations of both pollutants very well. Its growth was inhibited scarcely, and no visible symptoms occurred. On the cellular basis, accumulation of O2(-) and H2O2 were detected, as well as stress reactions of antioxidative enzymes. Duckweed detoxification potential for organic pollutants was high and increased significantly with incubation. Pethoxamide was found to be conjugated with glutathione. Copper was accumulated in the fronds at high levels, and transient oxidative defense reactions were triggered. This work confirms the significance of L. minor for the removal of copper from water and the conjugation of the selective herbicide pethoxamide. Both organic and inorganic xenobiotics induced different trends of enzymatic and antioxidative stress response. The strong increase of stress

  12. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes.

    PubMed

    Han, Kyu-Ho; Hashimoto, Naoto; Fukushima, Michihiro

    2016-01-01

    Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway. PMID:26755859

  13. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes

    PubMed Central

    Han, Kyu-Ho; Hashimoto, Naoto; Fukushima, Michihiro

    2016-01-01

    Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway. PMID:26755859

  14. Low cytotoxicity of inorganic nanotubes and fullerene-like nanostructures in human bronchial epithelial cells: relation to inflammatory gene induction and antioxidant response.

    PubMed

    Pardo, Michal; Shuster-Meiseles, Timor; Levin-Zaidman, Smadar; Rudich, Assaf; Rudich, Yinon

    2014-03-18

    The cytotoxicity of tungsten disulfide nano tubes (INT-WS2) and inorganic fullerene-like molybdenum disulfide (IF-MoS2) nanoparticles (NPs) used in industrial and medical applications was evaluated in comparison to standard environmental particulate matter. The IF-MoS2 and INT-WS2 reside in vesicles/inclusion bodies, suggestive of endocytic vesicles. In cells representing the respiratory, immune and metabolic systems, both IF-MoS2 and INT-WS2 NPs remained nontoxic compared to equivalent concentrations (up to 100 μg/mL in the medium) of silica dioxide (SiO2), diesel engine-derived and carbon black NPs, which induced cell death. Associating with this biocompatibility of IF-MoS2\\INT-WS2, we demonstrate in nontransformed human bronchial cells (NL-20) relative low induction of the pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α. Moreover, IF-MoS2 and INT-WS2 activated antioxidant response as measured by the antioxidant response element (ARE) using a luciferase reporter, and induced Nrf2-mediated Phase II detoxification genes. Collectively, our findings suggest that the lower cytotoxicity of IF-MoS2 and INT-WS2 NPs does not reflect general biological inertness. Rather, compared to other NP's, it likely results from decreased pro-inflammatory activation, but a comparable significant capacity to induce protective antioxidant/detoxification defense mechanisms. PMID:24533583

  15. Differential Responses of the Antioxidant System of Ametryn and Clomazone Tolerant Bacteria

    PubMed Central

    Peters, Leila Priscila; Carvalho, Giselle; Martins, Paula Fabiane; Dourado, Manuella Nóbrega; Vilhena, Milca Bartz; Pileggi, Marcos; Azevedo, Ricardo Antunes

    2014-01-01

    The herbicides ametryn and clomazone are widely used in sugarcane cultivation, and following microbial degradation are considered as soil and water contaminants. The exposure of microorganisms to pesticides can result in oxidative damage due to an increase in the production of reactive oxygen species (ROS). This study investigated the response of the antioxidant systems of two bacterial strains tolerant to the herbicides ametryn and clomazone. Bacteria were isolated from soil with a long history of ametryn and clomazone application. Comparative analyses based on 16S rRNA gene sequences revealed that strain CC07 is phylogenetically related to Pseudomonas aeruginosa and strain 4C07 to P. fulva. The two bacterial strains were grown for 14 h in the presence of separate and combined herbicides. Lipid peroxidation, reduced glutathione content (GSH) and antioxidant enzymes activities were evaluated. The overall results indicated that strain 4C07 formed an efficient mechanism to maintain the cellular redox balance by producing reactive oxygen species (ROS) and subsequently scavenging ROS in the presence of the herbicides. The growth of bacterium strain 4C07 was inhibited in the presence of clomazone alone, or in combination with ametryn, but increased glutathione reductase (GR) and glutathione S-transferase (GST) activities, and a higher GSH concentration were detected. Meanwhile, reduced superoxide dismutase (SOD), catalase (CAT) and GST activities and a lower concentration of GSH were detected in the bacterium strain CC07, which was able to achieve better growth in the presence of the herbicides. The results suggest that the two bacterial strains tolerate the ametryn and clomazone herbicides with distinctly different responses of the antioxidant systems. PMID:25380132

  16. Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria.

    PubMed

    Peters, Leila Priscila; Carvalho, Giselle; Martins, Paula Fabiane; Dourado, Manuella Nóbrega; Vilhena, Milca Bartz; Pileggi, Marcos; Azevedo, Ricardo Antunes

    2014-01-01

    The herbicides ametryn and clomazone are widely used in sugarcane cultivation, and following microbial degradation are considered as soil and water contaminants. The exposure of microorganisms to pesticides can result in oxidative damage due to an increase in the production of reactive oxygen species (ROS). This study investigated the response of the antioxidant systems of two bacterial strains tolerant to the herbicides ametryn and clomazone. Bacteria were isolated from soil with a long history of ametryn and clomazone application. Comparative analyses based on 16S rRNA gene sequences revealed that strain CC07 is phylogenetically related to Pseudomonas aeruginosa and strain 4C07 to P. fulva. The two bacterial strains were grown for 14 h in the presence of separate and combined herbicides. Lipid peroxidation, reduced glutathione content (GSH) and antioxidant enzymes activities were evaluated. The overall results indicated that strain 4C07 formed an efficient mechanism to maintain the cellular redox balance by producing reactive oxygen species (ROS) and subsequently scavenging ROS in the presence of the herbicides. The growth of bacterium strain 4C07 was inhibited in the presence of clomazone alone, or in combination with ametryn, but increased glutathione reductase (GR) and glutathione S-transferase (GST) activities, and a higher GSH concentration were detected. Meanwhile, reduced superoxide dismutase (SOD), catalase (CAT) and GST activities and a lower concentration of GSH were detected in the bacterium strain CC07, which was able to achieve better growth in the presence of the herbicides. The results suggest that the two bacterial strains tolerate the ametryn and clomazone herbicides with distinctly different responses of the antioxidant systems. PMID:25380132

  17. Decreased Total Antioxidant Activity in Major Depressive Disorder Patients Non-Responsive to Antidepressant Treatment

    PubMed Central

    Baek, Song-Eun; Lee, Gyoung-Ja; Rhee, Chang-Kyu; Rho, Dae-Young; Kim, Do-Hoon; Huh, Sun

    2016-01-01

    Objective This study aimed to evaluate the total antioxidant activity (TAA) in patients with major depressive disorder (MDD) and the effect of antidepressants on TAA using a novel potentiometric method. Methods Twenty-eight patients with MDD and thirty-one healthy controls were enrolled in this study. The control group comprised 31 healthy individuals matched for gender, drinking and smoking status. We assessed symptoms of depression using the Hamilton Depression Rating Scale (HAMD) and the Beck Depression Inventory (BDI). We measured TAA using potentiometry. All measurements were made at baseline and four and eight weeks later. Results There was a significant negative correlation between BDI scores and TAA. TAA was significantly lower in the MDD group than in controls. When the MDD group was subdivided into those who showed clinical response to antidepressant therapy (response group) and those who did not (non-response group), only the non-response group showed lower TAA, while the response group showed no significant difference to controls at baseline. After eight weeks of antidepressant treatment, TAA in both the response and non-response groups was similar, and there was no significant difference among the three groups. Conclusion These results suggest that the response to antidepressant treatment in MDD patients might be predicted by measuring TAA. PMID:27081384

  18. Spectral response of multi-element silicon detectors

    SciTech Connect

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K.

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  19. Variations in oxygen concentration cause differential antioxidant response and expression of related genes in Beauveria bassiana.

    PubMed

    Garza-López, Paul Misael; Suárez-Vergel, Gerardo; Hamdan-Partida, Aida; Loera, Octavio

    2015-04-01

    The entomopathogenic fungus Beauveria bassiana is widely used in pest biocontrol strategies. We evaluated both the antioxidant response mediated by compatible solutes, trehalose or mannitol, and the expression of related genes using oxygen pulses at three oxygen concentrations in solid state culture (SSC): normal atmosphere (21% O2), low oxygen (16% O2) and enriched oxygen (26% O2). Trehalose concentration decreased 75% after atmospheric modifications in the cultures, whereas mannitol synthesis was three-fold higher under the 16% O2 pulses relative to normal atmosphere (100 and 30 μg mannitol mg(-1) biomass, respectively). Confirming this result, expression of the mpd gene, coding for mannitol-1-P dehydrogenase (MPD), increased up to 1.4 times after O2 pulses. The expression of the bbrgs1 gene, encoding a regulatory G protein related to conidiation, was analysed to explain previously reported differences in conidial production. Surprisingly, expression of bbrgs1 decreased after atmospheric modification. Finally, principal component analysis (PCA) indicated that 83.39% of the variability in the data could be explained by two components. This analysis corroborated the positive correlation between mannitol concentration and mpd gene expression, as well as the negative correlation between conidial production and bbrgs1 gene expression. This study contributes to understanding of antioxidant and molecular response of B. bassiana induced under oxidant conditions. PMID:25813512

  20. Antioxidative responses in zebrafish liver exposed to sublethal doses Aphanizomenon flos-aquae DC-1 aphantoxins.

    PubMed

    Zhang, De Lu; Liu, Si Yi; Zhang, Jing; Hu, Chun Xiang; Li, Dun Hai; Liu, Yong Ding

    2015-03-01

    Aphanizomenon flos-aquae secretes paralytic shellfish poisons (PSPs), termed aphantoxins, and endangers environmental and human health via eutrophication of water worldwide. Although the molecular mechanism of neuronal PSP toxicity has been well studied, several issues remain unresolved, notably the in vivo hepatic antioxidative responses to this neurotoxin. Aphantoxins extracted from a natural isolate of A. flos-aquae DC-1 were resolved by high performance liquid chromatography. The primary components were gonyautoxins 1 and 5 and neosaxitoxin. Zebrafish (Danio rerio) were treated intraperitoneally with either 5.3 or 7.61 (low and high doses, respectively) μg saxitoxin (STX) equivalents (eq)/kg of A. flos-aquae DC-1 aphantoxins. Antioxidative responses in zebrafish liver were examined at different timepoints 1-24h post-exposure. Aphantoxin administration significantly enhanced hepatic malondialdehyde (MDA) content 1-12h post-exposure, indicative of oxidative stress and lipid peroxidation. By contrast, levels of reduced glutathione (GSH) in zebrafish liver declined significantly after 3-24h exposure, suggesting that GSH participates in MDA metabolism. A significant upregulation of the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) was observed, suggesting that aphantoxins induce lipid peroxidation in zebrafish liver and are likely to be hepatotoxic. Hepatic levels of MDA and GSH, and of the three enzymes (SOD, CAT, and GPx), therefore provide potential biomarkers for studying environmental exposure to aphantoxins/PSPs from cyanobacterial blooms. PMID:25544652

  1. Antioxidant enzymes activities of Burkholderia spp. strains-oxidative responses to Ni toxicity.

    PubMed

    Dourado, M N; Franco, M R; Peters, L P; Martins, P F; Souza, L A; Piotto, F A; Azevedo, R A

    2015-12-01

    Increased agriculture production associated with intense application of herbicides, pesticides, and fungicides leads to soil contamination worldwide. Nickel (Ni), due to its high mobility in soils and groundwater, constitutes one of the greatest problems in terms of environmental pollution. Metals, including Ni, in high concentrations are toxic to cells by imposing a condition of oxidative stress due to the induction of reactive oxygen species (ROS), which damage lipids, proteins, and DNA. This study aimed to characterize the Ni antioxidant response of two tolerant Burkholderia strains (one isolated from noncontaminated soil, SNMS32, and the other from contaminated soil, SCMS54), by measuring superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase (GST) activities. Ni accumulation and bacterial growth in the presence of the metal were also analyzed. The results showed that both strains exhibited different trends of Ni accumulation and distinct antioxidant enzymes responses. The strain from contaminated soil (SCMS54) exhibited a higher Ni biosorption and exhibited an increase in SOD and GST activities after 5 and 12 h of Ni exposure. The analysis of SOD, CAT, and GR by nondenaturing PAGE revealed the appearance of an extra isoenzyme in strain SCMS54 for each enzyme. The results suggest that the strain SCMS54 isolated from contaminated soil present more plasticity with potential to be used in soil and water bioremediation. PMID:26289332

  2. Maternal antioxidant blocks programmed cardiovascular and behavioural stress responses in adult mice

    PubMed Central

    ROGHAIR, Robert D.; WEMMIE, John A.; VOLK, Kenneth A.; SCHOLZ, Thomas D.; LAMB, Fred S.; SEGAR, Jeffrey L.

    2013-01-01

    Intra-uterine growth restriction is an independent risk factor for adult psychiatric and cardiovascular diseases. In humans, intra-uterine growth restriction is associated with increased placental and fetal oxidative stress, as well as down-regulation of placental 11β-HSD (11β-hydroxysteroid dehydrogenase). Decreased placental 11β-HSD activity increases fetal exposure to maternal glucocorticoids, further increasing fetal oxidative stress. To explore the developmental origins of co-morbid hypertension and anxiety disorders, we increased fetal glucocorticoid exposure by administering the 11β-HSD inhibitor CBX (carbenoxolone; 12 mg · kg−1 of body weight · day−1) during the final week of murine gestation. We hypothesized that maternal antioxidant (tempol throughout pregnancy) would block glucocorticoid-programmed anxiety, vascular dysfunction and hypertension. Anxiety-related behaviour (conditioned fear) and the haemodynamic response to stress were measured in adult mice. Maternal CBX administration significantly increased conditioned fear responses of adult females. Among the offspring of CBX-injected dams, maternal tempol markedly attenuated the behavioural and cardiovascular responses to psychological stress. Compared with offspring of undisturbed dams, male offspring of dams that received daily third trimester saline injections had increased stress-evoked pressure responses that were blocked by maternal tempol. In contrast, tempol did not block CBX-induced aortic dysfunction in female mice (measured by myography and lucigenin-enhanced chemiluminescence). We conclude that maternal stress and exaggerated fetal glucocorticoid exposure enhance sex-specific stress responses, as well as alterations in aortic reactivity. Because concurrent tempol attenuated conditioned fear and stress reactivity even among the offspring of saline-injected dams, we speculate that antenatal stressors programme offspring stress reactivity in a cycle that may be broken by antenatal

  3. Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology.

    PubMed

    Hammi, Khaoula Mkadmini; Jdey, Ahmed; Abdelly, Chedly; Majdoub, Hatem; Ksouri, Riadh

    2015-10-01

    The optimization of antioxidant extraction conditions from a ripe edible fruits of Zizyphus lotus (L.) with an ultrasound-assisted system was achieved by response surface methodology. The central composite rotatable design was employed for optimization of extraction parameters in terms of total phenolic content and antioxidant activities using 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and phosphomolybdenum assay. The optimum operating conditions for extraction were as follows: ethanol concentration, 50%; extraction time, 25 min; extraction temperature, 63°C and ratio of solvent to solid, 67 mL/g. Under these conditions, the obtained extract exhibited a high content of phenolic compounds (40.782 mg gallic acid equivalents/g dry matter) with significant antioxidant properties (the total antioxidant activity was 75.981 mg gallic acid equivalents/g dry matter and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity was 0.289 mg/mL). PMID:25872429

  4. Hormetic response triggers multifaceted anti-oxidant strategies in immature king penguins (Aptenodytes patagonicus).

    PubMed

    Rey, Benjamin; Dégletagne, Cyril; Bodennec, Jacques; Monternier, Pierre-Axel; Mortz, Mathieu; Roussel, Damien; Romestaing, Caroline; Rouanet, Jean-Louis; Tornos, Jeremy; Duchamp, Claude

    2016-08-01

    Repeated deep dives are highly pro-oxidative events for air-breathing aquatic foragers such as penguins. At fledging, the transition from a strictly terrestrial to a marine lifestyle may therefore trigger a complex set of anti-oxidant responses to prevent chronic oxidative stress in immature penguins but these processes are still undefined. By combining in vivo and in vitro approaches with transcriptome analysis, we investigated the adaptive responses of sea-acclimatized (SA) immature king penguins (Aptenodytes patagonicus) compared with pre-fledging never-immersed (NI) birds. In vivo, experimental immersion into cold water stimulated a higher thermogenic response in SA penguins than in NI birds, but both groups exhibited hypothermia, a condition favouring oxidative stress. In vitro, the pectoralis muscles of SA birds displayed increased oxidative capacity and mitochondrial protein abundance but unchanged reactive oxygen species (ROS) generation per g tissue because ROS production per mitochondria was reduced. The genes encoding oxidant-generating proteins were down-regulated in SA birds while mRNA abundance and activity of the main antioxidant enzymes were up-regulated. Genes encoding proteins involved in repair mechanisms of oxidized DNA or proteins and in degradation processes were also up-regulated in SA birds. Sea life also increased the degree of fatty acid unsaturation in muscle mitochondrial membranes resulting in higher intrinsic susceptibility to ROS. Oxidative damages to protein or DNA were reduced in SA birds. Repeated experimental immersions of NI penguins in cold-water partially mimicked the effects of acclimatization to marine life, modified the expression of fewer genes related to oxidative stress but in a similar way as in SA birds and increased oxidative damages to DNA. It is concluded that the multifaceted plasticity observed after marine life may be crucial to maintain redox homeostasis in active tissues subjected to high pro-oxidative pressure

  5. Antioxidant and oxidative stress related responses in the Mediterranean land snail Cantareus apertus exposed to the carbamate pesticide Carbaryl.

    PubMed

    Leomanni, A; Schettino, T; Calisi, A; Gorbi, S; Mezzelani, M; Regoli, F; Lionetto, M G

    2015-02-01

    The aim of the present work was to study the alterations of the antioxidant defenses and the overall susceptibility to oxidative stress of the terrestrial snail Cantareus apertus exposed to the carbamate pesticide Carbaryl at a low environmentally realistic concentration. The animals were exposed to Lactuca sativa soaked for 1h in 1μM Carbaryl. The temporal dynamics of the responses was assessed by measurements at 3, 7 and 14days of exposure. C. apertus exposed to Carbaryl activates a number of enzymatic antioxidant responses, represented by the early induction of catalase, glutathione peroxidase, glutathione reductase, followed by a delayed induction of superoxide dismutase. Concomitantly, a derangement of the total oxyradical scavenging of the tissues was observed, suggesting an overall impairment of the tissue capability to neutralize ROS probably resulting from the overall negative balance between enzymatic antioxidant defense capability and oxidative stress intensity. This negative balance exposed the animals to the risk of oxidative stress damages including genotoxic damage. Compared to acetylcholinesterase inhibition, the antioxidant responses developed to Carbaryl exposure at the low concentration utilized showed a greater percentage variation in exposed organisms. The results pointed out the high sensitivity of the antioxidant and oxidative stress related responses to Carbaryl exposure at an environmental realistic concentration, demonstrating their usefulness in environmental monitoring and risk assessment. The study highlights also the usefulness of the terrestrial snail C. apertus as potential bioindicator species for assessing the risk of pesticide environmental contamination. PMID:25451076

  6. Antioxidant response and carboxylate metabolism in Brassica rapa exposed to different external Zn, Ca, and Mg supply.

    PubMed

    Blasco, Begoña; Graham, Neil S; Broadley, Martin R

    2015-03-15

    Zinc (Zn), calcium (Ca), and magnesium (Mg) malnutrition are common deficiencies in many developed and developing countries, resulting in a widespread health problem. Biofortification of food crops is an agricultural strategy that can be used to increase the levels of these elements in the edible portions of crops. Deficiency or toxicity of these cations in soils reduces plant growth, crop yield, and the quality of plant foodstuff. The aim of this study was to investigate the effect of external Zn, Ca, and Mg supply on accumulation and distribution of this elements as well as antioxidant response and organic acid composition of Brassica rapa ssp. trilocularis line R-o-18. Plants were grown at low Zn (0.05 μM Zn) and high Zn (500 μM Zn), low Ca (0.4 mM) and high Ca (40 mM), and low Mg (0.2 mM), and high Mg (20 mM) to simulate deficiency and toxicity conditions. Larger shoot biomass reductions were observed under high Zn, Ca and Mg treatments, and superoxide dismutase (SOD), ascorbate peroxidase (APX), H2O2, malondialdehyde (MDA), and total ascorbate (AA) showed a marked increase in these treatments. Therefore, Brassica plants might be more sensitive to excess of these elements in the nutrient solution. The translocation factor (TF) and distribution coefficient (DC) values of Zn, Ca, and Mg indicated higher translocation and accumulation in deficient conditions. High biosynthesis and citrate content in Brassica plants may be associated mainly with a high-nutrient solution extraction ability of these plants. These results provide background data, which will be used to characterize TILLING mutants to study the effects of mutations in genes involved in regulating Zn, Ca, and Mg distribution and accumulation in plants. PMID:25544655

  7. Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants.

    PubMed

    Gratão, Priscila Lupino; Monteiro, Carolina Cristina; Tezotto, Tiago; Carvalho, Rogério Falleiros; Alves, Letícia Rodrigues; Peters, Leila Priscila; Azevedo, Ricardo Antunes

    2015-10-01

    Many aspects related to ROS modulation of signaling networks and biological processes that control stress responses still remain unanswered. For this purpose, the grafting technique may be a powerful tool to investigate stress signaling and specific responses between plant organs during stress. In order to gain new insights on the modulation of antioxidant stress responses mechanisms, gas-exchange measurements, lipid peroxidation, H2O2 content, proline, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX) and guaiacol peroxidase (GPOX) were analyzed in Micro-Tom grafted plants submitted to cadmium (Cd). The results observed revealed that higher amounts of Cd accumulated mainly in the roots and rootstocks when compared to leaves and scions. Macronutrients uptake (Ca, S, P and Mg) decreased in non-grafted plants, but differed among plant parts in all grafted plants. The results showed that the accumulation of proline observed in scions of grafted plants could be associated to the lower MDA contents in the scions of grafted plants. In the presence of Cd, non-grafted plants displayed increased CAT, GR, GPOX and APX activities for both tissues, whilst grafted plants revealed distinct trends that clearly indicate signaling responses from the rootstocks, allowing sufficient time to activate defense mechanisms in shoot. The information available concerning plants subjected to grafting can provide a better understanding of the mechanisms of Cd detoxification involving root-to-shoot signaling, opening new possibilities on strategies which can be used to manipulate heavy metal tolerance, since antioxidant systems are directly involved in such mechanism. PMID:26077192

  8. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings.

    PubMed

    Srivastava, Rajneesh Kumar; Pandey, Poonam; Rajpoot, Ritika; Rani, Anjana; Dubey, R S

    2014-09-01

    Interactive effects of two heavy metal pollutants Cd and Pb in the growth medium were examined on their uptake, production of reactive oxygen species (ROS), induction of oxidative stress and antioxidative defence responses in Indica rice (Oryza sativa L.) seedlings. When rice seedlings in sand culture were exposed to 150 μM Cd (NO3)2 or 600 μM Pb (CH3COO)2 individually or in combination for 8-16 days, a significant reduction in root/shoot length, fresh weight, relative water content, photosynthetic pigments and increased production of ROS (O2˙- and H2O2) was observed. Both Cd and Pb were readily taken up by rice roots and localisation of absorbed metals was greater in roots than in shoots. When present together in the growth medium, uptake of both the metals Cd and Pb declined by 25-40%. Scanning electron microscope (SEM) imaging of leaf stomata revealed that Pb caused more distortion in the shape of guard cells than Cd. Dithizone staining of roots showed localisation of absorbed Cd on root hairs and epidermal cells. Both Cd and Pb caused increased lipid peroxidation, protein carbonylation, decline in protein thiol and increase in non-protein thiol. The level of reduced forms of non-enzymic antioxidants glutathione (GSH) and ascorbate (AsA) and their redox ratios (GSH/AsA) declined, whereas the activities of antioxidative enzymes superoxide dismutase (SOD) and guaiacol peroxidase (GPX) increased in metal treated seedlings compared to controls. In-gel activity staining also revealed increased intensities of SOD and GPX isoforms with metal treatments. Catalase (CAT) activity increased during early days (8 days) of metal exposure and declined by 16 days. Results suggest that oxidative stress is an important component in expression of Cd and Pb toxicities in rice, though uptake of both metals gets reduced considerably when present together in the medium. PMID:24482190

  9. Photochemical and antioxidative responses of the glume and flag leaf to seasonal senescence in wheat

    PubMed Central

    Kong, Lingan; Sun, Mingze; Xie, Yan; Wang, Fahong; Zhao, Zhendong

    2015-01-01

    The non-leaf photosynthetic organs have recently attracted much attention for the breeding and screening of varieties of cereal crops to achieve a high grain yield. However, the glume photosynthetic characteristics and responses to high temperature at the late stages of grain filling are not well known in winter wheat (Triticum aestivum L.). In the present study, an experiment was conducted to investigate the anatomy, chloroplast temporal changes, chlorophyll fluorescence, xanthophyll cycle and antioxidative defense system in glumes of field-grown wheat during grain filling compared with flag leaves. Observations using a light microscope revealed that the glumes developed a solid structural base for performing photosynthesis. Compared with the flag leaves, the glumes preserved a more integral ultrastructure, as observed under transmission electron microscopy, and had higher values of Fv/Fm and ΦPSII at the maturity stage. Further analysis of the chlorophyll fluorescence demonstrated that the glumes experienced high non-photochemical quenching (NPQ) at the late stages. Determination of the pool size of the xanthophyll cycle suggested that the (A+Z)/(V+A+Z) ratio was consistently higher in glumes than in flag leaves and that the V+A+Z content was considerably higher in glumes at the maturity stage. In addition, the glumes exhibited a higher antioxidant enzyme activity and a lower accumulation of reactive oxygen species. These results suggest that the glumes are photosynthetically active and senesce later than the flag leaves; the advantages may have been achieved by coordinated contributions of the structural features, higher NPQ levels, greater de-epoxidation of the xanthophyll cycle components and antioxidative defense metabolism. PMID:26052333

  10. Response of Daphnia's Antioxidant System to Spatial Heterogeneity in Cyanobacteria Concentrations in a Lowland Reservoir

    PubMed Central

    Wojtal-Frankiewicz, Adrianna; Bernasińska, Joanna; Frankiewicz, Piotr; Gwoździński, Krzysztof; Jurczak, Tomasz

    2014-01-01

    Many species and clones of Daphnia inhabit ecosystems with permanent algal blooms, and they can develop tolerance to cyanobacterial toxins. In the current study, we examined the spatial differences in the response of Daphnia longispina to the toxic Microcystis aeruginosa in a lowland eutrophic dam reservoir between June (before blooms) and September (during blooms). The reservoir showed a distinct spatial pattern in cyanobacteria abundance resulting from the wind direction: the station closest to the dam was characterised by persistently high Microcystis biomass, whereas the upstream stations had a significantly lower biomass of Microcystis. Microcystin concentrations were closely correlated with the cyanobacteria abundance (r = 0.93). The density of daphniids did not differ among the stations. The main objective of this study was to investigate how the distribution of toxic Microcystis blooms affects the antioxidant system of Daphnia. We examined catalase (CAT) activity, the level of the low molecular weight antioxidant glutathione (GSH), glutathione S-transferase (GST) activity and oxidative stress parameters, such as lipid peroxidation (LPO). We found that the higher the abundance (and toxicity) of the cyanobacteria, the lower the values of the antioxidant parameters. The CAT activity and LPO level were always significantly lower at the station with the highest M. aeruginosa biomass, which indicated the low oxidative stress of D. longispina at the site with the potentially high toxic thread. However, the low concentration of GSH and the highest activity of GST indicated the occurrence of detoxification processes at this site. These results demonstrate that daphniids that have coexisted with a high biomass of toxic cyanobacteria have effective mechanisms that protect them against the toxic effects of microcystins. We also conclude that Daphnia's resistance capacity to Microcystis toxins may differ within an ecosystem, depending on the bloom's spatial

  11. Tissue-specific responses of oxidative stress biomarkers and antioxidant defenses in rainbow trout Oncorhynchus mykiss during a vaccination against furunculosis.

    PubMed

    Tkachenko, Halyna; Kurhaluk, Natalia; Grudniewska, Joanna; Andriichuk, Anastasiia

    2014-08-01

    The present study was conducted to evaluate the effects of vaccination against furunculosis on responses of oxidative stress and antioxidant defenses in rainbow trout Oncorhynchus mykiss muscle, gills, liver, and brain tissues. The oxidative stress markers (malondialdehyde and carbonyl derivatives of protein oxidative destruction levels), antioxidant defenses (superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase), and total antioxidant capacity in different tissues of rainbow trout were measured. Our data showed that exposure of trout to vaccine against furunculosis produced changes (either increase or decrease) in oxidative stress and antioxidant enzymes responses, and these responses showed marked organ differences, associated with tissue patterns. Our study demonstrated that vaccinated trout showed alteration in antioxidant defenses and oxidative stress responses, with higher severity in the liver, compared with other tissues. Our data also suggest that vaccination against furunculosis induced lipid peroxidation in gill and liver tissues. However, muscle and brain tissue are capable of restoring its pro- and antioxidant balance after vaccination. PMID:24599827

  12. Finite element cochlear models and their steady state response

    NASA Astrophysics Data System (ADS)

    Kagawa, Y.; Yamabuchi, T.; Watanabe, N.; Mizoguchi, T.

    1987-12-01

    Numerical cochlear models are constructed by means of a finite element approach and their frequency and spatial responses are calculated. The cochlea is modelled as a coupled fluid-membrane system, for which both two- and three-dimensional models are considered. The fluid in the scala canals is assumed to be incompressible and the basilar membrane is assumed to be a locally reactive impedance wall or a lossy elastic membrane. With the three-dimensional models, the effects are examined of the spiral configuration of the cochlea, of the presence of the lamina and the ligament that narrows the coupling area between the two fluid canals (scala vestibuli and scala tympani), and of the extended reaction of the basilar membrane which cannot be included in case of the two-dimensional models. The conclusion is that these effects on the cochlear response and the inherent mechanism governing the cochlear behaviour are found to be rather secondary.

  13. The immune responses and antioxidant status of Portunus trituberculatus individuals with different body weights.

    PubMed

    Ren, Xianyun; Yu, Xuan; Gao, Baoquan; Li, Jian; Liu, Ping

    2016-04-01

    Vibrio alginolyticus is a virulent pathogen that affects crab aquacultures. In the present study, the immune responses and antioxidant status of big and small (based on body weight and size) 80-, 100- and 120-day-old specimens of Portunus trituberculatus, challenged for 72 h with Vibrio alginolyticus, were studied. The total hemocyte count (THC), and phagocytic, prophenoloxidase and phenoloxidase activities, of the big individuals (BIs) were higher than those of the small individuals (SIs) (P < 0.05). The antioxidant status of the organisms showed a similar pattern: superoxide dismutase (SOD) activity and glutathione/oxidized glutathione (GSH/GSSG) in the cell-free hemolymph and hepatopancreases of the BIs were higher than in the SIs (P < 0.05). There were no significant differences in α2-macroglobulin (α2-M), antibacterial and bacteriolytic activities in the cell-free hemolymph, or glutathione peroxidase activity in the cell-free hemolymph or hepatopancreas between the BIs and SIs. The α2-M and crustin gene expression levels in the hemocytes, and SOD expression in the hemocytes and hepatopancreas, were also significantly higher in the BIs. The results suggest that, compared with the SIs, the BIs possessed a higher resistance to V. alginolyticus infection. PMID:26952172

  14. Physiological and antioxidant responses of two accessions of Arabidopsis thaliana in different light and temperature conditions.

    PubMed

    Szymańska, Renata; Nowicka, Beatrycze; Gabruk, Michał; Glińska, Sława; Michlewska, Sylwia; Dłużewska, Jolanta; Sawicka, Anna; Kruk, Jerzy; Laitinen, Roosa

    2015-06-01

    During their lifetime, plants need to adapt to a changing environment, including light and temperature. To understand how these factors influence plant growth, we investigated the physiological and antioxidant responses of two Arabidopsis accessions, Shahdara (Sha) from the Shahdara valley (Tajikistan, Central Asia) in a mountainous area and Lovvik-5 (Lov-5) from northern Sweden to different light and temperature conditions. These accessions originate from different latitudes and have different life strategies, both of which are known to be influenced by light and temperature. We showed that both accessions grew better in high-light and at a lower temperature (16°C) than in low light and at 23°C. Interestingly, Sha had a lower chlorophyll content but more efficient non-photochemical quenching than Lov-5. Sha, also showed a higher expression of vitamin E biosynthetic genes. We did not observe any difference in the antioxidant prenyllipid level under these conditions. Our results suggest that the mechanisms that keep the plastoquinone (PQ)-pool in more oxidized state could play a role in the adaptation of these accessions to their local climatic conditions. PMID:25214438

  15. Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury.

    PubMed

    Tao, Ge; Kahr, Peter C; Morikawa, Yuka; Zhang, Min; Rahmani, Mahdis; Heallen, Todd R; Li, Lele; Sun, Zhao; Olson, Eric N; Amendt, Brad A; Martin, James F

    2016-06-01

    Myocardial infarction results in compromised myocardial function and heart failure owing to insufficient cardiomyocyte self-renewal. Unlike many vertebrates, mammalian hearts have only a transient neonatal renewal capacity. Reactivating primitive reparative ability in the mature mammalian heart requires knowledge of the mechanisms that promote early heart repair. By testing an established Hippo-deficient heart regeneration mouse model for factors that promote renewal, here we show that the expression of Pitx2 is induced in injured, Hippo-deficient ventricles. Pitx2-deficient neonatal mouse hearts failed to repair after apex resection, whereas adult mouse cardiomyocytes with Pitx2 gain-of-function efficiently regenerated after myocardial infarction. Genomic analyses indicated that Pitx2 activated genes encoding electron transport chain components and reactive oxygen species scavengers. A subset of Pitx2 target genes was cooperatively regulated with the Hippo pathway effector Yap. Furthermore, Nrf2, a regulator of the antioxidant response, directly regulated the expression and subcellular localization of Pitx2. Pitx2 mutant myocardium had increased levels of reactive oxygen species, while antioxidant supplementation suppressed the Pitx2 loss-of-function phenotype. These findings reveal a genetic pathway activated by tissue damage that is essential for cardiac repair. PMID:27251288

  16. Inhibition of pro-inflammatory responses and antioxidant capacity of Mexican blackberry (Rubus spp.) extracts.

    PubMed

    Cuevas-Rodríguez, Edith O; Dia, Vermont P; Yousef, Gad G; García-Saucedo, Pedro A; López-Medina, José; Paredes-López, Octavio; Gonzalez de Mejia, Elvira; Lila, Mary Ann

    2010-09-01

    Total polyphenolic and anthocyanin- and proanthocyanidin-rich fractions from wild blackberry genotypes (WB-3, WB-7, WB-10, and WB-11), a domesticated noncommercial breeding line (UM-601), and a commercial cultivar (Tupy) were evaluated for inhibition of pro-inflammatory responses [nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression, cyclooxygenase-2 (COX-2) expression, and prostaglandin E2 (PGE2)] in RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS). At 50 microM [cyanidin-3-O-glucoside (C3G) or catechin equivalent], most fractions significantly (P<0.05) inhibited all markers. The anthocyanin-rich fraction from WB-10 and the proanthocyanidin-rich fraction from UM-601 exhibited the highest NO inhibitory activities (IC50=16.1 and 15.1 microM, respectively). Proanthocyanidin-rich fractions from the wild WB-10 showed the highest inhibition of iNOS expression (IC50=8.3 microM). Polyphenolic-rich fractions from WB-7 and UM-601 were potent inhibitors of COX-2 expression (IC50=19.1 and 19.3 microM C3G equivalent, respectively). For most of the extracts, antioxidant capacity was significantly correlated with NO inhibition. Wild genotypes of Mexican blackberries, as rich sources of polyphenolics that have both antioxidant and anti-inflammatory properties, showed particular promise for inclusion in plant improvement programs designed to develop new varieties with nutraceutical potential. PMID:20715775

  17. Optimization of a surfactant-free antioxidant formulation using response surface methodology.

    PubMed

    Almeida, Isabel F; Costa, Paulo C; Bahia, M Fernanda

    2014-01-01

    Topical application of natural antioxidants has proven to be effective in protecting the skin against ultraviolet radiation-mediated oxidative damage. In previous studies, a Castanea sativa leaf ethanol:water (7:3) extract exhibited scavenging activity against different reactive oxygen species that are thought to contribute to oxidative damage in the skin. Its stability was shown to be enhanced in the presence of glycerine, and therefore a glycerine-based formulation with Carbopol 940 and liquid paraffin (LP) was developed as base. In this work, the influence of the glycerine and LP contents on the textural properties of the topical base and on the antioxidant activity of the formulation with C. sativa extract was evaluated using response surface methodology after 30 d storage at 20 °C and 40 °C. The textural analysis was performed in a texturometer, by carrying out a spreadability test. Paretto charts showed that both glycerine and LP contents significantly influenced the textural properties of the formulations (p < 0.05). LP presented the major influence. DPPH scavenging activity was not related to any of the studied ingredients. These conclusions were valid both for 20 °C and 40 °C storage. This optimization study provided valuable information to support the development of a semisolid base for C. sativa extract leading to the conclusion that the selection of these ingredients contents can be guided exclusively by the desirable textural properties. PMID:23336810

  18. Optimization of pancreatic lipase inhibitory and antioxidant activities of Ilex paraguariensis by using response surface methodology.

    PubMed

    Oh, Kyung-Eon; Shin, Hyeji; Jeon, Young Ho; Jo, Yang Hee; Lee, Mi Kyeong; Lee, Ken S; Park, Byoungduck; Lee, Ki Yong

    2016-07-01

    Response surface methodology (RSM) using a Box-Behnken design was used to optimize the extraction conditions for obtaining pancreatic lipase inhibitory and antioxidant principles from Ilex paraguariensis leaves. Three influencing factors: extraction time (min), the liquid-solid ratio, and ethanol concentration (%, v/v) were investigated in the ultrasonic extraction process. Optimization of the extraction conditions to obtain a product with minimum PL activity, maximum antioxidant activity, and maximum yield was performed using RSM by focusing on the three target influencing factors. The optimum conditions were established as the ethanol concentration (54.8 %), liquid-solid ratio (35.4), and extraction time (70.0 min). Under these conditions, the 2,2-diphenyl-1-picrylhydrazyl scavenging activity, PL activity, extraction yield were 59.3 ± 3.5, 35.3 ± 3.0, and 34.4 ± 0.4 %, respectively, similar to the theoretical predicted values of 59.7, 35.2, and 34.3 %, respectively. PMID:27277165

  19. Transcriptional and antioxidative responses to endogenous polyunsaturated fatty acid accumulation in yeast.

    PubMed

    Andrisic, Luka; Collinson, Emma J; Tehlivets, Oksana; Perak, Eleonora; Zarkovic, Tomislav; Dawes, Ian W; Zarkovic, Neven; Cipak Gasparovic, Ana

    2015-01-01

    Pathophysiology of polyunsaturated fatty acids (PUFAs) is associated with aberrant lipid and oxygen metabolism. In particular, under oxidative stress, PUFAs are prone to autocatalytic degradation via peroxidation, leading to formation of reactive aldehydes with numerous potentially harmful effects. However, the pathological and compensatory mechanisms induced by lipid peroxidation are very complex and not sufficiently understood. In our study, we have used yeast capable of endogenous PUFA synthesis in order to understand the effects triggered by PUFA accumulation on cellular physiology of a eukaryotic organism. The mechanisms induced by PUFA accumulation in S. cerevisiae expressing Hevea brasiliensis Δ12-fatty acid desaturase include down-regulation of components of electron transport chain in mitochondria as well as up-regulation of pentose-phosphate pathway and fatty acid β-oxidation at the transcriptional level. Interestingly, while no changes were observed at the transcriptional level, activities of two important enzymatic antioxidants, catalase and glutathione-S-transferase, were altered in response to PUFA accumulation. Increased intracellular glutathione levels further suggest an endogenous oxidative stress and activation of antioxidative defense mechanisms under conditions of PUFA accumulation. Finally, our data suggest that PUFA in cell membrane causes metabolic changes which in turn lead to adaptation to endogenous oxidative stress. PMID:25280400

  20. Dynamics of rhizosphere properties and antioxidative responses in wheat (Triticum aestivum L.) under cadmium stress.

    PubMed

    Li, Yonghua; Wang, Li; Yang, Linsheng; Li, Hairong

    2014-04-01

    In this study, we performed a rhizobox experiment to examine the dynamic changes in the rhizosphere properties and antioxidant enzyme responses of Triticum aestivum L. under three levels of cadmium stress. A set of micro-techniques (i.e., Rhizobox and Rhizon SMS) were applied for the dynamically non-destructive collection of the rhizosphere soil solution to enable the observation at a high temporal resolution. The dynamics of soluble cadmium and dissolved organic carbon (DOC) in the rhizosphere soil solutions of the Triticum aestivum L. were characterised by the sequence week 0 after sowing (WAS0)<3 weeks after sowing (WAS3)<10 weeks after sowing (WAS10), whereas the soil solution pH was found to follow an opposite distribution pattern. Systematically, both superoxide dismutase (SOD) and catalase (CAT) activities in the leaves of the Triticum aestivum L. increased concomitantly with increasing cadmium levels (p>0.05) and growth duration (p<0.05), whilst ascorbate peroxidase (APX) activity was induced to an elevated level at moderate cadmium stress with a decrease at high cadmium stress (p>0.05). These results suggested the enhancement of DOC production and the greater antioxidant enzyme activities were two important protective mechanisms of Triticum aestivum L. under cadmium stress, whereas rhizosphere acidification might be an important mechanism for the mobilisation of soil cadmium. The results also revealed that plant-soil interactions strongly influence the soil solution chemistry in the rhizosphere of Triticum aestivum L., that, in turn, can stimulate chemical and biochemical responses in the plants. In most cases, these responses to cadmium stress were sensitive and might allow us to develop strategies for reducing the risks of the cadmium contamination to crop production. PMID:24580822

  1. Effect of Chronic Exposure to Prometryne on Oxidative Stress and Antioxidant Response in Red Swamp Crayfish (Procambarus clarkii)

    PubMed Central

    Stará, Alžběta; Kouba, Antonín; Velíšek, Josef

    2014-01-01

    The aim of the study was to investigate effects of the triazine herbicide prometryne on red swamp crayfish on the basis of oxidative stress, antioxidant indices in hepatopancreas and muscle, and histopathology of hepatopancreas. Crayfish were exposed to prometryne concentrations of 0.51 μg L−1, 0.144 mg L−1, and 1.144 mg L−1 for 11 and 25 days. Indices of oxidative stress (thiobarbituric acid reactive substances (TBARS)), and antioxidant parameters (superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR)) in crayfish muscle and hepatopancreas were measured. Chronic exposure to prometryne did not showed the impact of oxidative damage to cells. Changes activity of the antioxidant enzymes SOD, CAT, and GR were observed in all tested concentrations to prometryne for 11 and 25 days (P < 0.01) as compared with the control group. We did not see any differences in histopatological examination to hepatopancreas. Prolonged exposure of prometryne did not result in oxidative damage to cell lipids and proteins, but it led to changes in antioxidant activity in crayfish tissues. Changes in antioxidant systems were also observed in the environmental prometryne concentration of 0.51 μg L−1. The results suggest that antioxidant responses may have potential as biomarkers for monitoring residual triazine herbicides in aquatic environments. PMID:24757669

  2. Structural characteristic responses for finite element model updating of structures

    NASA Astrophysics Data System (ADS)

    Zhou, Linren; Wang, Lei; Ou, Jinping

    2014-04-01

    The field measurements of structures are very important to the structural finite element (FE) model updating because the errors and uncertainties of a FE model are corrected directly through closing the discrepancies between the analytical responses from FE model and the measurements from field testing of a structure. Usually, the accurate and reliable field measurements are very limited. Therefore, it is very important to make full use of the limited and valuable field measurements in structural model updating to achieve a best result with the lowest cost. In this paper, structural FE model updating is investigated in the point of view of solving a mathematical problem, and different amount and category of structural dynamic responses and static responses are considered as constraints to explore their effects on the updated results of different degree and types of structural damages. The numerical studies are carried out on a space truss. Accounting for the numerical results, some inherent phenomena and connections taking account of the updating parameters, output responses and the updated results are revealed and discussed. Some useful and practicable suggestions about using the field measurements for FE model updating are provided to achieve efficient and reliable results.

  3. Metalliferous and non-metalliferous populations of Viola tricolor represent similar mode of antioxidative response.

    PubMed

    Słomka, Aneta; Libik-Konieczny, Marta; Kuta, Elzbieta; Miszalski, Zbigniew

    2008-10-01

    Heavy metal-contaminated sites are excellent areas to examine the antioxidative machinery responsible for physiological adaptations of many plant species. Superoxide dismutase (SOD), guaiacol peroxide (GPX), ascorbate peroxide (APX), catalase (CAT) activity and hydrogen peroxide (H(2)O(2)) content were analyzed in leaves and roots of Viola tricolor (Viola) from contaminated soils ('Bukowno', 'Saturn', 'Warpie' heaps), and non-contaminated soil ('Zakopane meadow') to examine the level of oxidative stress and antioxidative response. In leaves, six isoforms of SOD were recognized. Roots possessed two additional bands, named manganese superoxide dismutase (MnSOD)-like form (MnSODI) and Cu/ZnSOD-like form (Cu/ZnSODIV). The H(2)O(2) content in leaves ranged from 554 to 5 098 micromol H(2)O(2)/gf.w. and was negatively correlated with CAT activity. The non-contaminated population was characterized by the lowest CAT activity combined with the highest H(2)O(2) concentration. Two isoforms of CAT, CAT-1 and CAT-2, were recognized in leaves of plants from non-contaminated and contaminated sites, respectively. In roots of individuals from two heaps ('Warpie' and 'Saturn'), two distinct bands for each CAT isoform were observed. A slower migrating band may be an aggregate, exhibiting CAT and MnSODs activities. Both peroxidases (APX and GPX) presented the same pattern of activity, depending on the organ, indicating that in leaves and roots APX and GPX were regulated in parallel. Differences in enzyme activities and H(2)O(2) content between plants from different contaminated sites were statistically significant, but were tightly maintained at a very similar level. Prolonged and permanent heavy metal stress evoked a very similar mode of antioxidative response in specimens of analyzed metalliferous populations not causing measurable oxidative stress. Thus, our results clearly indicate that V. tricolor is a taxon well adapted to heavy metal-contaminated soils, and that differences in

  4. Age specific responses to acute inhalation of diffusion flame soot particles: Cellular injury and the airway antioxidant response

    PubMed Central

    Van Winkle, Laura S.; Chan, Jackie K.W.; Anderson, Donald S.; Kumfer, Benjamin M.; Kennedy, Ian M.; Wexler, Anthony S; Wallis, Christopher; Abid, Aamir D.; Sutherland, Katherine M.; Fanucchi, Michelle V.

    2011-01-01

    Current studies of particulate matter (PM) are confounded by the fact that PM is a complex mixture of primary (crustal material, soot, metals) and secondary (nitrates, sulfates and organics formed in the atmosphere) compounds with considerable variance in composition by sources and location. We have developed a laboratory-based PM that is replicable, does not contain dust or metals and that can be used to study specific health effects of PM composition in animal models. We exposed both neonatal (7 days of age) and adult rats to a single 6-hr exposure of laboratory generated fine diffusion flame soot (DFP; 170 ug/m3), or filtered air. Pulmonary gene and protein expression as well as indicators of cytotoxicity were evaluated 24 hours after exposure. Although DFP exposure did not alter airway epithelial cell composition in either neonates or adults, increased LDH activity was found in the bronchoalveolar lavage fluid of neonates indicating an age-specific increase in susceptibility. In adults, 16 genes were differentially expressed as a result of DFP exposure while only 6 genes were altered in the airways of neonates. Glutamate cytsteine ligase protein was increased in abundance in both DFP exposed neonates and adults indicating an initiation of antioxidant responses involving the synthesis of glutathione. DFP significantly decreased catalase gene expression in adult airways, although catalase protein expression was increased by DFP in both neonates and adults. We conclude that key airway antioxidant enzymes undergo changes in expression in response to a moderate PM exposure that does not cause frank epithelial injury and that neonates have a different response pattern than adults. PMID:20961279

  5. Antioxidant Potential and In Situ Analysis of Major and Trace Element Determination of Ood-saleeb, a Known Unani Herbal Medicine by ICP-MS.

    PubMed

    Raish, Mohammad; Ahmad, Ajaz; Alkharfy, Khalid M; Al-Jenoobi, Fahad I; Al-Mohizea, Abdullah M; Mohsin, Kazi; Ahamad, Syed Rizwan; Ali, Naushad; Shakeel, Faiyaz

    2016-08-01

    The intention of the present research work was to investigate the antioxidant activity and trace element analysis of Ood-saleeb, a known herbal medicine. Preliminary screening of phytochemicals showed that the extract of Ood-saleeb had flavonoids and phenolics. The significant activities in all antioxidant assays were observed in the extract of Ood-saleeb in comparison with the standard antioxidant with respect to dose of Ood-saleeb. Incredible activities to scavenge reactive oxygen species were also observed by the extract of Ood-saleeb. The IC50 values of all factors were determined using ascorbic acid as a standard. The inductive coupled plasma-mass spectroscopy (ICP-MS) was employed for the estimation of trace elements in Ood-saleeb extract. The concentrations of up to 18 elements were detected successfully. Silicon was found in high concentration (85.3 μg/g) while lithium was in low concentration (3 ng/g). The trace elements in the sample were found at different percentage levels which play a key role in the treatment of diseases. PMID:26758866

  6. Optimization of Preparation of Antioxidative Peptides from Pumpkin Seeds Using Response Surface Method

    PubMed Central

    Fan, Sanhong; Hu, Yanan; Li, Chen; Liu, Yanrong

    2014-01-01

    Protein isolates of pumpkin (Cucurbita pepo L) seeds were hydrolyzed by acid protease to prepare antioxidative peptides. The hydrolysis conditions were optimized through Box-Behnken experimental design combined with response surface method (RSM). The second-order model, developed for the DPPH radical scavenging activity of pumpkin seed hydrolysates, showed good fit with the experiment data with a high value of coefficient of determination (0.9918). The optimal hydrolysis conditions were determined as follows: hydrolyzing temperature 50°C, pH 2.5, enzyme amount 6000 U/g, substrate concentration 0.05 g/ml and hydrolyzing time 5 h. Under the above conditions, the scavenging activity of DPPH radical was as high as 92.82%. PMID:24637721

  7. High-throughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death

    PubMed Central

    Fox, Jennifer T.; Sakamuru, Srilatha; Huang, Ruili; Teneva, Nedelina; Simmons, Steven O.; Xia, Menghang; Tice, Raymond R.; Austin, Christopher P.; Myung, Kyungjae

    2012-01-01

    Human ATAD5 is a biomarker for identifying genotoxic compounds because ATAD5 protein levels increase posttranscriptionally in response to DNA damage. We screened over 4,000 compounds with a cell-based quantitative high-throughput ATAD5-luciferase assay detecting genotoxic compounds. We identified 22 antioxidants, including resveratrol, genistein, and baicalein, that are currently used or investigated for the treatment of cardiovascular disease, type 2 diabetes, osteopenia, osteoporosis, and chronic hepatitis, as well as for antiaging. Treatment of dividing cells with these compounds induced DNA damage and resulted in cell death. Despite their genotoxic effects, resveratrol, genistein, and baicalein did not cause mutagenesis, which is a major side effect of conventional anticancer drugs. Furthermore, resveratrol and genistein killed multidrug-resistant cancer cells. We therefore propose that resveratrol, genistein, and baicalein are attractive candidates for improved chemotherapeutic agents. PMID:22431602

  8. N6-isopentenyladenosine and analogs activate the NRF2-mediated antioxidant response

    PubMed Central

    Dassano, Alice; Mancuso, Mariateresa; Giardullo, Paola; Cecco, Loris De; Ciuffreda, Pierangela; Santaniello, Enzo; Saran, Anna; Dragani, Tommaso A.; Colombo, Francesca

    2014-01-01

    N6-isopentenyladenosine (i6A), a naturally occurring modified nucleoside, inhibits the proliferation of human tumor cell lines in vitro, but its mechanism of action remains unclear. Treatment of MCF7 human breast adenocarcinoma cells with i6A or with three synthetic analogs (allyl6A, benzyl6A, and butyl6A) inhibited growth and altered gene expression. About 60% of the genes that were differentially expressed in response to i6A treatment were also modulated by the analogs, and pathway enrichment analysis identified the NRF2-mediated oxidative stress response as being significantly modulated by all four compounds. Luciferase reporter gene assays in transfected MCF7 cells confirmed that i6A activates the transcription factor NRF2. Assays for cellular production of reactive oxygen species indicated that i6A and analogs had antioxidant effects, reducing basal levels and inhibiting the H2O2- or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced production in MCF7 or dHL-60 (HL-60 cells induced to differentiate along the neutrophilic lineage) cell lines, respectively. In vivo, topical application of i6A or benzyl6A to mouse ears prior to TPA stimulation lessened the inflammatory response and significantly reduced the number of infiltrating neutrophils. These results suggest that i6A and analogs trigger a cellular response against oxidative stress and open the possibility of i6A and benzyl6A being used as topical anti-inflammatory drugs. PMID:24688894

  9. Short term total sleep deprivation in the rat increases antioxidant responses in multiple brain regions without impairing spontaneous alternation behavior

    PubMed Central

    Ramanathan, Lalini; Hu, Shuxin; Frautschy, Sally A.; Siegel, Jerome M.

    2009-01-01

    Total sleep deprivation (TSD) induces a broad spectrum of cognitive, behavioral and cellular changes. We previously reported that long term (5–11 days) TSD in the rat, by the disk-over-water method, decreases the activity of the antioxidant enzyme superoxide dismutase (SOD) in the brainstem and hippocampus. To gain insight into the mechanisms causing cognitive impairment, here we explore the early associations between metabolic activity, antioxidant responses and working memory (one form of cognitive impairment). Specifically we investigated the impact of short term (6 h) TSD, by gentle handling, on the levels of the endogenous antioxidant, total glutathione (GSHt), and the activities of the antioxidative enzymes, SOD and glutathione peroxidase (GPx). Short term TSD had no significant impact on SOD activity, but increased GSHt levels in the rat cortex, brainstem and basal forebrain, and GPx activity in the rat hippocampus and cerebellum. We also observed increased activity of hexokinase, (HK), the rate limiting enzyme of glucose metabolism, in the rat cortex and hypothalamus. We further showed that 6h of TSD leads to increased exploratory behavior to a new environment, without impairing spontaneous alternation behavior (SAB) in the Y maze. We conclude that acute (6h) sleep loss may trigger compensatory mechanisms (like increased antioxidant responses) that prevent initial deterioration in working memory. PMID:19850085

  10. Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max)

    SciTech Connect

    Gillespie, K.M.; Rogers, A.; Ainsworth, E. A.

    2011-01-31

    Soybeans (Glycine max Merr.) were grown at elevated carbon dioxide concentration ([CO{sub 2}]) or chronic elevated ozone concentration ([O{sub 3}]; 90 ppb), and then exposed to an acute O{sub 3} stress (200 ppb for 4 h) in order to test the hypothesis that the atmospheric environment alters the total antioxidant capacity of plants, and their capacity to respond to an acute oxidative stress. Total antioxidant metabolism, antioxidant enzyme activity, and antioxidant transcript abundance were characterized before, immediately after, and during recovery from the acute O{sub 3} treatment. Growth at chronic elevated [O{sub 3}] increased the total antioxidant capacity of plants, while growth at elevated [CO{sub 2}] decreased the total antioxidant capacity. Changes in total antioxidant capacity were matched by changes in ascorbate content, but not phenolic content. The growth environment significantly altered the pattern of antioxidant transcript and enzyme response to the acute O{sub 3} stress. Following the acute oxidative stress, there was an immediate transcriptional reprogramming that allowed for maintained or increased antioxidant enzyme activities in plants grown at elevated [O{sub 3}]. Growth at elevated [CO{sub 2}] appeared to increase the response of antioxidant enzymes to acute oxidative stress, but dampened and delayed the transcriptional response. These results provide evidence that the growth environment alters the antioxidant system, the immediate response to an acute oxidative stress, and the timing over which plants return to initial antioxidant levels. The results also indicate that future elevated [CO{sub 2}] and [O{sub 3}] will differentially affect the antioxidant system.

  11. Computation of Schenberg response function by using finite element modelling

    NASA Astrophysics Data System (ADS)

    Frajuca, C.; Bortoli, F. S.; Magalhaes, N. S.

    2016-05-01

    Schenberg is a detector of gravitational waves resonant mass type, with a central frequency of operation of 3200 Hz. Transducers located on the surface of the resonating sphere, according to a distribution half-dodecahedron, are used to monitor a strain amplitude. The development of mechanical impedance matchers that act by increasing the coupling of the transducers with the sphere is a major challenge because of the high frequency and small in size. The objective of this work is to study the Schenberg response function obtained by finite element modeling (FEM). Finnaly, the result is compared with the result of the simplified model for mass spring type system modeling verifying if that is suitable for the determination of sensitivity detector, as the conclusion the both modeling give the same results.

  12. LACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPS) IN RATS

    EPA Science Inventory

    2003 AAR PM Meeting
    Particulate Matter: Atmospheric Sciences,
    Exposure and the Fourth Colloquium on PM and Human Health

    LACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPs) IN RATS. JA Dye, LC Walsh, C...

  13. Oxidative Response and Antioxidative Mechanism in Germinating Soybean Seeds Exposed to Cadmium

    PubMed Central

    Yang, Shiyong; Xie, Jianchun; Li, Quanfa

    2012-01-01

    Seeds of soybean (Glycine max L.) exposed to 50 mg/L (Cd50), 100 mg/L (Cd100) and 200 mg/L (Cd200) cadmium solution for 24, 48, 72 and 96 h were examined with reference to Cd accumulation, oxidative stress and antioxidative responses. Soybean seeds accumulated Cd in an exposure time-and dosage-dependent manner. FRAP (ferric reducing ability of plasma) concentration, GSH/hGSH content, and GST activity showed a pronounced exposure time-dependent response. Cd100 enhanced FRAP concentration in germinating soybean seeds as compared to Cd50 treatment after 24 h exposure. Cd200 however increased statistically GST activities after 72 and 96 h exposure. Under all Cd dosages, GSH/hGSH concentrations were depressed with increasing exposure time. Reduction of GSH/hGSH content and concomitant increase of GST activity suggested a possible participation of GSH into GSH-Cd conjugates synthesis. MDA content is a potential biomarker for monitoring Cd phytotoxicity because it responds significantly to treatment dosage, exposure time and dosage × exposure time interaction. Increase of proline content may be a response to acute heavy metal toxicity in soybean seeds. PMID:23066399

  14. Biphasic dose-response of antioxidants in hypericin-induced photohemolysis.

    PubMed

    Martirosyan, Alina S; Vardapetyan, Hrachik R; Tiratsuyan, Susanna G; Hovhannisyan, Ashkhen A

    2011-09-01

    In the present paper the photodynamic effect of hypericin on superoxide dismutase activity and the possibility of reduction of hypericin phototoxicity by antioxidants were studied. It was shown an almost twice decrease in superoxide dismutase activity of red blood cells under the photosensitization by hypericin. The influence of antioxidants (ascorbic acid and quercetin) on hypericin photodynamic action has revealed that these antioxidants suppress or stimulate photohemolysis caused by hypericin. The photosensitization reaction realized by hypericin could be shifted from type II to type I or vice versa by manipulating the antioxidant concentration. Strengthening of photohemolysis by antioxidants in some concentrations indicates the switching of alternative mechanisms of hypericin photodynamic action and its complicated manner. Thus the selection of antioxidant concentrations is of extreme importance for changing the efficacy of photodynamic therapy with hypericin. PMID:21864803

  15. Increased antioxidant response and capability to produce ROS in hemocytes of Pinna nobilis L. exposed to anthropogenic activity.

    PubMed

    Sureda, Antoni; Natalotto, Antonino; Alvarez, Elvira; Deudero, Salud

    2013-10-01

    Environmental pollutants exert immunotoxical effects on aquatic organisms. The aim was to determine the antioxidant response, markers of oxidative damage and reactive oxygen species production in hemocytes of Pinna nobilis, the largest endemic bivalve in the Mediterranean Sea, under anthropogenic pressure. P. nobilis individuals were collected from two locations along Mallorca Island waters attending to different degree of human impact and the hemocytes were obtained. Specimens from the impacted area showed increased activities of the antioxidant enzymes - catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase -, myeloperoxidase activity and reduced glutathione levels. No differences in oxidative damage markers - malondiahdehyde and carbonyl index - were evidenced between the pristine and polluted areas. Hemocytes from the polluted area presented increased capability to generate reactive oxygen species and nitrite/nitrate when activated. In conclusion, the human activities primed hemocytes for oxidative burst and increased the antioxidant mechanism without evidence of oxidative damage. PMID:23871388

  16. Optimization of ultrasonic-assisted extraction of antioxidant compounds from Guava (Psidium guajava L.) leaves using response surface methodology

    PubMed Central

    Kong, Fansheng; Yu, Shujuan; Feng, Zeng; Wu, Xinlan

    2015-01-01

    Objective: To optimization of extraction of antioxidant compounds from guava (Psidium guajava L.) leaves and showed that the guava leaves are the potential source of antioxidant compounds. Materials and Methods: The bioactive polysaccharide compounds of guava leaves (P. guajava L.) were obtained using ultrasonic-assisted extraction. Extraction was carried out according to Box-Behnken central composite design, and independent variables were temperature (20–60°C), time (20–40 min) and power (200–350 W). The extraction process was optimized by using response surface methodology for the highest crude extraction yield of bioactive polysaccharide compounds. Results: The optimal conditions were identified as 55°C, 30 min, and 240 W. 1,1-diphenyl-2-picryl-hydrazyl and hydroxyl free radical scavenging were conducted. Conclusion: The results of quantification showed that the guava leaves are the potential source of antioxidant compounds. PMID:26246720

  17. Salicylic acid induces differential antioxidant response in spring maize under high temperature stress.

    PubMed

    Khanna, Palak; Kaur, Kamaljit; Gupta, Anil K

    2016-06-01

    High temperature is one of the important stress factors that affect crops in tropical countries. Plants do evolve or adopt different mechanisms to overcome such stress for survival. It is an interesting subject and has attracted many researchers to work upon. Here, we studied the effect of salicylic acid (SA) on seedling growth and antioxidative defense system in two spring maize (Zea mays L.) genotypes viz., CML-32 (relatively heat tolerant) and LM-11 (relatively heat susceptible), under high temperature stress. High temperature induced greater reduction in dry biomass of LM-1 1 seedlings as compared to those of CML-32. There was a parallel increase in ascorbate peroxidase and glutathione reductase activities in the roots of CML-32 seedlings. However, the activities of catalase and superoxide dismutase decreased and the contents of H202, proline and malonaldialdehyde (MDA) increased in seedlings of both the genotypes. Application of SA (400 µM) led to increased dry biomass in heat stressed CML-32 seedlings. It improved the efficiency of Halliwell-Asada pathway in roots of CML-32 seedlings as was evidenced by the enhanced ascorbate peroxidase and glutathione reductase activities. The activities of catalase and superoxide dismutase increased in both the tissues of LM-11 seedlings, whereas in CML-32, it was only in shoots, after SA application. Peroxidase activity increased in SA treated seedlings of both the genotypes, though the increase was comparatively higher in CML-32. The contents of H₂O₂ and MDA decreased and that of proline increased in SA treated seedlings of both the genotypes, under stress conditions. It may be concluded that SA induced differential antioxidant response by upregulating Halliwell-Asada pathway in roots and attaining high POX activity in both the tissues of CML-32 seedlings, under high temperature stress. PMID:27468465

  18. Optimization protocol for the extraction of antioxidant components from Origanum vulgare leaves using response surface methodology.

    PubMed

    Majeed, Mudasir; Hussain, Abdullah I; Chatha, Shahzad A S; Khosa, Muhammad K K; Kamal, Ghulam Mustafa; Kamal, Mohammad A; Zhang, Xu; Liu, Maili

    2016-05-01

    In the present work, the response surface methodology (RSM) based on a central composite rotatable design (CCRD), was used to determine optimum conditions for the extraction of antioxidant compounds from Origanum vulgare leaves. Four process variables were evaluated at three levels (31 experimental designs): methanol (70%, 80%, and 90%), the solute:solvent ratio (1:5, 1:12.5, 1:20), the extraction time (4, 10, 16 h), and the solute particle size (20, 65, 110 micron). Using RSM, a quadratic polynomial equation was obtained by multiple regression analysis for predicting optimization of the extraction protocol. Analysis of variance (ANOVA) was applied and the significant effect of the factors and their interactions were tested at 95% confidence interval. The antioxidant extract (AE) yield was significantly influenced by solvent composition, solute to solvent ratio, and time. The maximum AE was obtained at methanol (70%), liquid solid ratio (20), time (16 h), and particle size (20 micron). Predicted values thus obtained were closer to the experimental value indicating suitability of the model. Run 25 (methanol:water 70:30; solute:solvent 1:20; extraction time 16 h and solute particle size 20) showed highest TP contents (18.75 mg/g of dry material, measured as gallic acid equivalents) and DPPH radical scavenging activity (IC50 5.04 μg/mL). Results of the present study indicated good correlation between TP contents and DPPH radical scavenging activity. Results of the study indicated that phenolic compounds are powerful scavengers of free radical as demonstrated by a good correlation between TP contents and DPPH radical scavenging activity. PMID:27081365

  19. Optimization protocol for the extraction of antioxidant components from Origanum vulgare leaves using response surface methodology

    PubMed Central

    Majeed, Mudasir; Hussain, Abdullah I.; Chatha, Shahzad A.S.; Khosa, Muhammad K.K.; Kamal, Ghulam Mustafa; Kamal, Mohammad A.; Zhang, Xu; Liu, Maili

    2015-01-01

    In the present work, the response surface methodology (RSM) based on a central composite rotatable design (CCRD), was used to determine optimum conditions for the extraction of antioxidant compounds from Origanum vulgare leaves. Four process variables were evaluated at three levels (31 experimental designs): methanol (70%, 80%, and 90%), the solute:solvent ratio (1:5, 1:12.5, 1:20), the extraction time (4, 10, 16 h), and the solute particle size (20, 65, 110 micron). Using RSM, a quadratic polynomial equation was obtained by multiple regression analysis for predicting optimization of the extraction protocol. Analysis of variance (ANOVA) was applied and the significant effect of the factors and their interactions were tested at 95% confidence interval. The antioxidant extract (AE) yield was significantly influenced by solvent composition, solute to solvent ratio, and time. The maximum AE was obtained at methanol (70%), liquid solid ratio (20), time (16 h), and particle size (20 micron). Predicted values thus obtained were closer to the experimental value indicating suitability of the model. Run 25 (methanol:water 70:30; solute:solvent 1:20; extraction time 16 h and solute particle size 20) showed highest TP contents (18.75 mg/g of dry material, measured as gallic acid equivalents) and DPPH radical scavenging activity (IC50 5.04 μg/mL). Results of the present study indicated good correlation between TP contents and DPPH radical scavenging activity. Results of the study indicated that phenolic compounds are powerful scavengers of free radical as demonstrated by a good correlation between TP contents and DPPH radical scavenging activity. PMID:27081365

  20. Arbuscular mycorrhizal fungi alleviate oxidative stress induced by ADOR and enhance antioxidant responses of tomato plants.

    PubMed

    García-Sánchez, Mercedes; Palma, José Manuel; Ocampo, Juan Antonio; García-Romera, Inmaculada; Aranda, Elisabet

    2014-03-15

    The behaviour of tomato plants inoculated with arbuscular mycorrhizal (AM) fungi grown in the presence of aqueous extracts from dry olive residue (ADOR) was studied in order to understand how this symbiotic relationship helps plants to cope with oxidative stress caused by ADOR. The influence of AM symbiosis on plant growth and other physiological parameters was also studied. Tomato plants were inoculated with the AM fungus Funneliformis mosseae and were grown in the presence of ADOR bioremediated and non-bioremediated by Coriolopsis floccosa and Penicillium chrysogenum-10. The antioxidant response as well as parameters of oxidative damage were examined in roots and leaves. The data showed a significant increase in the biomass of AM plant growth in the presence of ADOR, regardless of whether it was bioremediated. The establishment and development of the symbiosis were negatively affected after plants were exposed to ADOR. No differences were observed in the relative water content (RWC) or PS II efficiency between non-AM and AM plants. The increase in the enzymatic activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and glutathione-S-transferase (GST; EC 2.5.1.18) were simultaneous to the reduction of MDA levels and H2O2 content in AM root growth in the presence of ADOR. Similar H2O2 levels were observed among non-AM and AM plants, although only AM plants showed reduced lipid peroxidation content, probably due to the involvement of antioxidant enzymes. The results highlight how the application of both bioremediated ADOR and AM fungi can alleviate the oxidative stress conditions, improving the growth and development of tomato plants. PMID:24594394

  1. Antioxidant responses in soybean and alfalfa plants grown in DDTs contaminated soils: Useful variables for selecting plants for soil phytoremediation?

    PubMed

    Mitton, Francesca M; Ribas Ferreira, Josencler L; Gonzalez, Mariana; Miglioranza, Karina S B; Monserrat, José M

    2016-06-01

    Phytoremediation is a low-cost alternative technology based on the use of plants to remove pollutants from the environment. Persistent organic pollutants such as DDTs with a long half-life in soils are attractive candidates for remediation. This study aimed to determine the potential of antioxidant response use in the evaluation of plants' tolerance for selecting species in phytoremediation purposes. Alfalfa and soybean plants were grown in DDT contaminated soils. After 60days, growth, protein content, antioxidant capacity, GST activity, concentration of proteic and non-proteic thiol groups, chlorophyll content and carotenoid content were measured in plant tissues. Results showed no effect on alfalfa or soybean photosynthetic pigments but different responses in the protein content, antioxidant capacity, GST activity and thiol groups on roots, stems and leaves, indicating that DDTs affected both species. Soybean showed higher susceptibility than alfalfa plants due to the lower antioxidant capacity and GST activity in leaves, in spite of having the lowest DDT accumulation. This study provides new insights into the role of oxidative stress as an important component of the plant's response to DDT exposure. PMID:27155479

  2. Antioxidant responses of citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae), exposed to thermal stress.

    PubMed

    Yang, Li-Hong; Huang, Hai; Wang, Jin-Jun

    2010-12-01

    Relatively low or high temperatures are responsible for a variety of physiological stress responses in insects and mites. Induced thermal stress was recently associated with increased reactive oxygen species (ROS) generation, which caused oxidative damage. In this study, we examined the time-related effect of the relatively low (0, 5, 10, and 15 °C) or high (32, 35, 38, and 41 °C) temperatures on the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidases (POX), and glutathione-S-transferase (GST), and the total antioxidant capacity (TEAC) of the citrus red mite, Panonychus citri (McGregor). The malondialdehyde (MDA) concentration, as a marker of lipid peroxidation in organisms, was also measured in the citrus red mite under thermal stress conditions. Results showed that SOD and GST activities were significantly increased and play an important role in the process of antioxidant response to thermal stress. Lipid peroxidation levels increased significantly (P<0.001) and changed in a time-dependent manner. CAT and POX activity, as well as TEAC, did not vary significantly and play a minor role to remove the ROS generation. These results suggest that thermal stress leads to oxidative stress and antioxidant enzymes play an important role in reducing oxidative damage in the citrus red mite. PMID:20709071

  3. In vitro antioxidant profiling of seabuckthorn varieties and their adaptogenic response to high altitude-induced stress

    NASA Astrophysics Data System (ADS)

    Sharma, Priyanka; Suryakumar, Geetha; Singh, Virendra; Misra, Kshipra; Singh, Shashi Bala

    2015-08-01

    In the past few years, seabuckthorn plants have gained special attention due to their ability to grow in the harshest of the environment. This adaptability may be contributed by various antioxidants present in the plants besides other morphological adaptation. As in vivo studies cannot be justified without in vitro studies, the present investigation carried out evaluation of both in vitro and in vivo antioxidant potentials of aqueous and alcoholic extracts of the leaves of Hippophae salicifolia (HS) and Hippophae rhamnoides mongolica (HRM) in comparison with Hippophae rhamnoides turkestanica (HRT). The results had clearly depicted that in vitro antioxidant potential of the extracts was responsible for the in vivo adaptogenic performance in animals during cold and hypoxia exposure under restraint stress. Total phenolic content (TPC), total flavonoid content (TFC), total protein content, and antioxidant potential were determined. For adaptogenic studies, rats with oral drug supplementation were exposed to Cold-hypoxia-restraint (C-H-R) stresses-induced hypothermia, as a measure of endurance. Aqueous extracts of HS showed maximum (99 %) resistance compared to HRT (81 %) and HRM (29 %). The levels of biochemical parameters such as malondialdehyde (MDA), reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD), glutathione (GSH/GSSG), and catalase (CAT) in blood samples also revealed that the aqueous leaf extract of HS has better antioxidant and adaptogenic potential compared to HRM.

  4. Optimization of extraction time and temperature on antioxidant activity of Schizophyllum commune aqueous extract using response surface methodology.

    PubMed

    Yim, Hip Seng; Chye, Fook Yee; Rao, Vigneswara; Low, Jia Yin; Matanjun, Patricia; How, Siew Eng; Ho, Chun Wai

    2013-04-01

    Central composite design of response surface methodology (RSM) was employed to optimize the extraction time (X 1 : 99.5-290.5 min) and temperature (X 2 : 30.1-54.9 °C) of Schizophyllum commune aqueous extract with high antioxidant activities and total phenolic content (TPC). Results indicated that the data were adequately fitted into four second-order polynomial models. The extraction time and temperature were found to have significant linear, quadratic and interaction effects on antioxidant activities and TPC. The optimal extraction time and temperature were: 290.5 min and 35.7 °C (DPPH(•) scavenging ability); 180.7 min and 41.7 °C (ABTS(•+) inhibition ability); 185.2 min and 42.4 °C (ferric reducing antioxidant power, FRAP); 290.5 min and 40.3 °C (TPC). These optimum conditions yielded 85.10%; 94.31%; 0.74 mM Fe(2+) equivalent/100 g; 635.76 mg gallic acid equivalent/100 g, respectively. The yields of antioxidant activities and TPC obtained experimentally were close to its predicted values. The establishment of such model provides a good experimental basis employing RSM for optimizing the extraction time and temperature on antioxidants from S. commune aqueous extract. PMID:24425917

  5. Effects of Palygorskite Inclusion on the Growth Performance, Meat Quality, Antioxidant Ability, and Mineral Element Content of Broilers.

    PubMed

    Cheng, Y F; Chen, Y P; Li, X H; Yang, W L; Wen, C; Zhou, Y M

    2016-09-01

    The present study was conducted to investigate different levels of palygorskite supplementation on the growth performance, meat quality, muscular oxidative status, and mineral element accumulation of broilers. One hundred ninety-two 1-day-old Arbor Acres broiler chicks were allocated to four dietary treatments with six replicates of eight chicks per replicate. Birds in the four treatments were given a basal diet supplemented with 0, 5, 10 and 20 g/kg palygorskite for 42 days, respectively. Compared with the control group, neither 5 g/kg nor 10 g/kg palygorskite inclusion affected growth performance of broilers during the 42-day study (P > 0.05). However, the highest level of palygorskite supplementation at 20 g/kg increased feed/gain ratio (F/G) of broilers (P < 0.001). Yellowness (P < 0.001) and redness (P = 0.003) of breast muscle and yellowness of leg muscle (P = 0.001) were decreased by palygorskite supplementation at the levels of 10 g/kg and especially 20 g/kg. In addition, redness of leg muscle was also reduced by the inclusion of 20 g/kg palygorskite (P = 0.009). In contrast, malonaldehyde (MDA) accumulation in the breast muscle was significantly increased by 20 g/kg palygorskite supplementation (P < 0.001). Supplementation of palygorskite at either 10 or 20 g/kg significantly decreased lead (Pb) accumulation in the breast (P = 0.001) or thigh (P = 0.045) and copper (Cu) accumulation in the breast (P = 0.022). In conclusion, growth performance, meat color, and antioxidant capacity of meat would reduce with the increasing level of palygorskite supplementation, whereas a higher level of palygorskite (10 or 20 g/kg) can alter mineral element accumulations in muscles as evidenced by reduced muscular Cu and Pb contents. PMID:26899316

  6. [Preliminary evaluation of the antioxidant trace elements in an Algerian patient with type 2 diabetes: special role of manganese and chromium].

    PubMed

    Harani, Hassiba; Otmane, Amel; Makrelouf, Mohamed; Ouadahi, Nacer; Abdi, Arezki; Berrah, Abdelkrim; Zenati, Akila; Alamir, Barkahoum; Koceir, Elhadj Ahmed

    2012-01-01

    In type 2 diabetes, the relationship between antioxidants and insuline-like trace elements is very complex during oxidative stress, being mediated by hyperglycemia, dyslipidemia and inflammation. We investigated the antioxidant status, particularly Mn and Cr on the diabetes metabolic control, and their interaction with the metabolic syndrome (MS) parameters. The study was undertaken on 278 Algerian diabetic subjects who were divided in 2 groups according to glycated hemoglobin (HbA(1c)) <7% or >7% value, attesting for a good or poor metabolic control of diabetes, respectively. The MS was defined according to NCEP-ATPIII. Insulin resistance was evaluated by HOMA-IR model. The plasma manganese concentrations was significantly increased in both diabetics groups, independently of metabolic control. However, chromium (Cr) seems to play a determinant action in metabolic control, as shown by better values of insulin resistance (HOMA-IR) and HbA(1c). The selenium status was positively correlated with glutathion peroxidase activity. Copper and zinc plasma levels in the diabetic patients were similar to those of control subjects. In conclusion, our results suggest that Mn play a crucial role in antioxidant capacity and we hypothesize that antioxidant defense is preserved in the cytosol (superoxide dismutase Cu/Zn -SOD), whereas it is impaired in mitochondria (Mn-SOD), which makes this cell organelle a true therapeutic target in diabetes. PMID:23207812

  7. Lettuce irrigated with contaminated water: Photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners.

    PubMed

    Bittencourt-Oliveira, Maria do Carmo; Cordeiro-Araújo, Micheline Kézia; Chia, Mathias Ahii; Arruda-Neto, João Dias de Toledo; de Oliveira, Ênio Tiago; dos Santos, Flávio

    2016-06-01

    The use of microcystins (MCs) contaminated water to irrigate crop plants represents a human health risk due to their bioaccumulation potential. In addition, MCs cause oxidative stress and negatively influence photosynthetic activities in plants. The present study was aimed at investigating the effect of MCs on photosynthetic parameters and antioxidative response of lettuce. Furthermore, the bioaccumulation factor (BAF) of total MCs, MC-LR and MC-RR in the vegetable after irrigation with contaminated water was determined. Lettuce crops were irrigated for 15 days with water containing cyanobacterial crude extracts (Microcystis aeruginosa) with MC-LR (0.0, 0.5, 2.0, 5.0 and 10.0 µg L(-1)), MC-RR (0.0, 0.15, 0.5, 1.5 and 3.0 µg L(-1)) and total MCs (0.0, 0.65, 2.5, 6.5 and 13.0 µg L(-1)). Increased net photosynthetic rate, stomatal conductance, leaf tissue transpiration and intercellular CO2 concentration were recorded in lettuce exposed to different MCs concentrations. Antioxidant response showed that glutathione S-transferase activity was down-regulated in the presence of MCs. On the other hand, superoxide dismutase, catalase and peroxidase activities were upregulated with increasing MCs concentrations. The bioaccumulation factor (BAF) of total MCs and MC-LR was highest at 6.50 and 5.00 µg L(-1), respectively, while for MC-RR, the highest BAF was recorded at 1.50 µg L(-1) concentration. The amount of total MCs, MC-LR and MC-RR bioacumulated in lettuce was highest at the highest exposure concentrations. However, at the lowest exposure concentration, there were no detectable levels of MC-LR, MC-RR and total MCs in lettuce. Thus, the bioaccumulation of MCs in lettuce varies according to the exposure concentration. In addition, the extent of physiological response of lettuce to the toxins relies on exposure concentrations. PMID:26896895

  8. Physiological and biochemical responses of Suaeda fruticosa to cadmium and copper stresses: growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels.

    PubMed

    Bankaji, I; Caçador, I; Sleimi, N

    2015-09-01

    Environmental pollution by trace metal elements (TMEs) is a serious problem worldwide, increasing in parallel with the development of human technology. The present research aimed to examine the response of halophytic species Suaeda fruticosa to oxidative stress posed by combined abiotic stresses. Plants have been grown for 1 month with an irrigation solution supplemented with 200 mM NaCl and 400 μM Cd(2+) or 400 μM Cu(2+). The level of glutathione (GSH), phytochelatins (PCs), and antioxidant enzyme activities [ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and catalase (CAT)] as well as lipid peroxidation was studied to see the stress exerted by the TME and the level of tolerance and detoxification strategy adopted by S. fruticosa. Relative growth rate (RGR) decreased under Cd(2+) stress in this species, whereas Cu(2+) did not have any impact on S. fruticosa performance. Cd(2+) or Cu(2+) enhanced malondialdehyde, suggesting reactive oxygen species-induced disruption of membrane integrity and oxidative stress in S. fruticosa. On the other hand, the activities of the antioxidant enzymes CAT, APX, and GPX diminished and mineral nutrition was disturbed by metal stress. S. fruticosa was able to synthesize PCs in response to TME toxicity. However, data indicate that GSH levels underwent a significant decrease in roots and leaves of S. fruticosa stressed by Cd(2+) or Cu(2+). The GSH depletion accompanied by the increase of phytochelatin concentration suggests the involvement of GSH in the synthesis of phytochelatins. PMID:25925143

  9. Cysteine Sulfenylation Directs IRE-1 to Activate the SKN-1/Nrf2 Antioxidant Response.

    PubMed

    Hourihan, John M; Moronetti Mazzeo, Lorenza E; Fernández-Cárdenas, L Paulette; Blackwell, T Keith

    2016-08-18

    Emerging evidence suggests that many proteins may be regulated through cysteine modification, but the extent and functions of this signaling remain largely unclear. The endoplasmic reticulum (ER) transmembrane protein IRE-1 maintains ER homeostasis by initiating the unfolded protein response (UPR(ER)). Here we show in C. elegans and human cells that IRE-1 has a distinct redox-regulated function in cytoplasmic homeostasis. Reactive oxygen species (ROS) that are generated at the ER or by mitochondria sulfenylate a cysteine within the IRE-1 kinase activation loop. This inhibits the IRE-1-mediated UPR(ER) and initiates the p38/SKN-1(Nrf2) antioxidant response, thereby increasing stress resistance and lifespan. Many AGC-family kinases (AKT, p70S6K, PKC, ROCK1) seem to be regulated similarly. The data reveal that IRE-1 has an ancient function as a cytoplasmic sentinel that activates p38 and SKN-1(Nrf2) and indicate that cysteine modifications induced by ROS signals can direct proteins to adopt unexpected functions and may coordinate many cellular processes. PMID:27540856

  10. Antioxidant response to natural organic matter (NOM) exposure in three Baikalean amphipod species from contrasting habitats.

    PubMed

    Timofeyev, M A; Steinberg, C E W

    2006-10-01

    The aim of the present work is to comparatively evaluate the oxidative stress response on exposure to natural organic matter (NOM) in three amphipod (Crustacea, Amphipoda) species from different taxonomic groups and different habitats of Lake Baikal. Endemic species from Lake Baikal were used: the shallow-water dwelling Gmelinoides fasciatus (Dyb.), Pallasea cancelloides (Gerstf.), and the deep-layer inhabitant Ommatogammarus flavus (Dyb.). Three key enzymes, catalase (CAT), peroxidase (POD), and glutathione S-transferase (GST), were studied. The applied NOM from Lake Schwarzer (Germany) directly impacts the two littoral species which quickly respond. The response is characterized by a significant decrease of POD and an increase of CAT activities. GST activity remains stable or decreased slightly. In contrast to the littoral amphipods, the deep-layer inhabitant O. flavus showed no significant reaction to NOM exposure, probably due to decreased adaptive ability of this species. The stable environment of the Baikalean deep zones obviously does not provide triggers for the development of flexible antioxidant or general defense systems. PMID:16914340

  11. H2O2-responsive antioxidant polymeric nanoparticles as therapeutic agents for peripheral arterial disease.

    PubMed

    Kwon, Byeongsu; Kang, Changsun; Kim, Jinsub; Yoo, Donghyuck; Cho, Byung-Ryul; Kang, Peter M; Lee, Dongwon

    2016-09-25

    Peripheral artery disease (PAD) is a common circulatory disorder in which narrowed arteries limit blood flow to the lower extremity and affect millions of people worldwide. Therapeutic angiogenesis has emerged as a promising strategy to treat PAD patients because surgical intervention has been showing limited success. Leg muscles of PAD patients have significantly high level of ROS (reactive oxygen species) and the increased production of ROS is a key mechanism of initiation and progression of PAD. We have recently developed H2O2-responsive polymer PVAX, which is designed to rapidly scavenge H2O2 and release vanillyl alcohol with antioxidant and anti-inflammatory activity. In this study, we investigated the therapeutic efficacy of PVAX nanoparticles for PAD using a cell culture model and a mouse model of hindlimb ischemia. PVAX nanoparticles significantly enhanced the expression of angiogenic inducers such as vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule (PECAM)-1 in human umbilical vein endothelial cells (HUVEC). PVAX nanoparticles promoted revascularization and restoration of blood perfusion into ischemic tissues by upregulating angiogenic VEGF and PECAM-1. This work demonstrates that H2O2-responsive PVAX nanoparticles facilitate therapeutic angiogenesis and hold tremendous translational potential as therapeutic systems for ischemic diseases such as PAD. PMID:27521705

  12. Acute phase protein and antioxidant responses in dogs with experimental acute monocytic ehrlichiosis treated with rifampicin.

    PubMed

    Karnezi, Dimitra; Ceron, Jose J; Theodorou, Konstantina; Leontides, Leonidas; Siarkou, Victoria I; Martinez, Silvia; Tvarijonaviciute, Asta; Harrus, Shimon; Koutinas, Christos K; Pardali, Dimitra; Mylonakis, Mathios E

    2016-02-29

    There is currently lack of information on the changes of acute phase proteins (APP) and antioxidant markers and their clinical relevance as treatment response indicators in canine monocytic ehrlichiosis (CME). The objective of this study was to investigate the patterns of C-reactive protein (CRP), haptoglobin (Hp), ferritin and paraoxonase-1 (PON-1) during treatment of dogs with acute CME with rifampicin. Blood serum samples from ten Beagle dogs with experimental acute CME were retrospectively examined. Five dogs (Group A) were treated with rifampicin (10mg/Kg/24h), per os, for 3 weeks and 5 dogs (Group B) received no treatment (infected controls). Two Beagle dogs served as uninfected controls. Blood serum samples were serially examined prior to Ehrlichia canis inoculation and on post-inoculation days 14, 21, 28, 35 and 42. Significant changes of CRP, Hp, ferritin and PON-1 values were found in the majority of infected dogs. However, their concentrations did not differ between the two groups during the treatment observation period. The results of this study indicate that although several APP and PON-1 tend to significantly change in the majority of dogs with acute CME, they were of limited clinical relevance as treatment response indicators in this experimental setting. PMID:26854345

  13. Morinda citrifolia leaf enhanced performance by improving angiogenesis, mitochondrial biogenesis, antioxidant, anti-inflammatory & stress responses.

    PubMed

    Mohamad Shalan, Nor Aijratul Asikin; Mustapha, Noordin M; Mohamed, Suhaila

    2016-12-01

    Morinda citrifolia fruit, (noni), enhanced performances in athletes and post-menopausal women in clinical studies. This report shows the edible noni leaves water extract enhances performance in a weight-loaded swimming animal model better than the fruit or standardized green tea extract. The 4weeks study showed the extract (containing scopoletin and epicatechin) progressively prolonged the time to exhaustion by threefold longer than the control, fruit or tea extract. The extract improved (i) the mammalian antioxidant responses (MDA, GSH and SOD2 levels), (ii) tissue nutrient (glucose) and metabolite (lactate) management, (iii) stress hormone (cortisol) regulation; (iv) neurotransmitter (dopamine, noradrenaline, serotonin) expressions, transporter or receptor levels, (v) anti-inflammatory (IL4 & IL10) responses; (v) skeletal muscle angiogenesis (VEGFA) and (v) energy and mitochondrial biogenesis (via PGC, UCP3, NRF2, AMPK, MAPK1, and CAMK4). The ergogenic extract helped delay fatigue by enhancing energy production, regulation and efficiency, which suggests benefits for physical activities and disease recovery. PMID:27374554

  14. Antioxidant airway responses following experimental exposure to wood smoke in man

    PubMed Central

    2010-01-01

    Background Biomass combustion contributes to the production of ambient particulate matter (PM) in rural environments as well as urban settings, but relatively little is known about the health effects of these emissions. The aim of this study was therefore to characterize airway responses in humans exposed to wood smoke PM under controlled conditions. Nineteen healthy volunteers were exposed to both wood smoke, at a particulate matter (PM2.5) concentration of 224 ± 22 μg/m3, and filtered air for three hours with intermittent exercise. The wood smoke was generated employing an experimental set-up with an adjustable wood pellet boiler system under incomplete combustion. Symptoms, lung function, and exhaled NO were measured over exposures, with bronchoscopy performed 24 h post-exposure for characterisation of airway inflammatory and antioxidant responses in airway lavages. Results Glutathione (GSH) concentrations were enhanced in bronchoalveolar lavage (BAL) after wood smoke exposure vs. air (p = 0.025), together with an increase in upper airway symptoms. Neither lung function, exhaled NO nor systemic nor airway inflammatory parameters in BAL and bronchial mucosal biopsies were significantly affected. Conclusions Exposure of healthy subjects to wood smoke, derived from an experimental wood pellet boiler operating under incomplete combustion conditions with PM emissions dominated by organic matter, caused an increase in mucosal symptoms and GSH in the alveolar respiratory tract lining fluids but no acute airway inflammatory responses. We contend that this response reflects a mobilisation of GSH to the air-lung interface, consistent with a protective adaptation to the investigated wood smoke exposure. PMID:20727160

  15. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products.

    PubMed Central

    Levonen, Anna-Liisa; Landar, Aimee; Ramachandran, Anup; Ceaser, Erin K; Dickinson, Dale A; Zanoni, Giuseppe; Morrow, Jason D; Darley-Usmar, Victor M

    2004-01-01

    The molecular mechanisms through which oxidized lipids and their electrophilic decomposition products mediate redox cell signalling is not well understood and may involve direct modification of signal-transduction proteins or the secondary production of reactive oxygen or nitrogen species in the cell. Critical in the adaptation of cells to oxidative stress, including exposure to subtoxic concentrations of oxidized lipids, is the transcriptional regulation of antioxidant enzymes, many of which are controlled by antioxidant-responsive elements (AREs), also known as electrophile-responsive elements. The central regulator of the ARE response is the transcription factor Nrf2 (NF-E2-related factor 2), which on stimulation dissociates from its cytoplasmic inhibitor Keap1, translocates to the nucleus and transactivates ARE-dependent genes. We hypothesized that electrophilic lipids are capable of activating ARE through thiol modification of Keap1 and we have tested this concept in an intact cell system using induction of glutathione synthesis by the cyclopentenone prostaglandin, 15-deoxy-Delta12,14-prostaglandin J2. On exposure to 15-deoxy-Delta12,14-prostaglandin J2, the dissociation of Nrf2 from Keap1 occurred and this was dependent on the modification of thiols in Keap1. This mechanism appears to encompass other electrophilic lipids, since 15-A(2t)-isoprostane and the lipid aldehyde 4-hydroxynonenal were also shown to modify Keap1 and activate ARE. We propose that activation of ARE through this mechanism will have a major impact on inflammatory situations such as atherosclerosis, in which both enzymic as well as non-enzymic formation of electrophilic lipid oxidation products are increased. PMID:14616092

  16. Anti-Oxidative Defences Are Modulated Differentially in Three Freshwater Teleosts in Response to Ammonia-Induced Oxidative Stress

    PubMed Central

    Giblen, Terri; Zinta, Gaurav; De Rop, Michelle; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2014-01-01

    Oxidative stress and the antioxidant response induced by high environmental ammonia (HEA) were investigated in the liver and gills of three freshwater teleosts differing in their sensitivities to ammonia. The highly ammonia-sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less ammonia sensitive cyprinid Cyprinus carpio (common carp) and the highly ammonia-resistant cyprinid Carassius auratus (goldfish) were exposed to 1 mM ammonia (as NH4HCO3) for 0 h (control), 3 h, 12 h, 24 h, 48 h, 84 h and 180 h. Results show that HEA exposure increased ammonia accumulation significantly in the liver of all the three fish species from 24 h–48 h onwards which was associated with an increment in oxidative stress, evidenced by elevation of xanthine oxidase activity and levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Unlike in trout, H2O2 and MDA accumulation in carp and goldfish liver was restored to control levels (84 h–180 h); which was accompanied by a concomitant increase in superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase activity and reduced ascorbate content. Many of these defence parameters remained unaffected in trout liver, while components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase) enhanced to a greater extent. The present findings suggest that trout rely mainly on glutathione dependent defensive mechanism while carp utilize SOD, CAT and ascorbate as anti-oxidative sentinels. Hepatic cells of goldfish appear to utilize each of these protective systems, and showed more effective anti-oxidative compensatory responses towards HEA than carp, while trout were least effective. The present work also indicates that HEA exposure resulted in a relatively mild oxidative stress in the gills of all three species. This probably explains the almost complete lack of anti-oxidative responses in branchial tissue. This research suggests that oxidative stress, as well as the antioxidant

  17. Vibration Response of Multi Storey Building Using Finite Element Modelling

    NASA Astrophysics Data System (ADS)

    Chik, T. N. T.; Zakaria, M. F.; Remali, M. A.; Yusoff, N. A.

    2016-07-01

    Interaction between building, type of foundation and the geotechnical parameter of ground may trigger a significant effect on the building. In general, stiffer foundations resulted in higher natural frequencies of the building-soil system and higher input frequencies are often associated with other ground. Usually, vibrations transmitted to the buildings by ground borne are often noticeable and can be felt. It might affect the building and become worse if the vibration level is not controlled. UTHM building is prone to the ground borne vibration due to closed distance from the main road, and the construction activities adjacent to the buildings. This paper investigates the natural frequency and vibration mode of multi storey office building with the presence of foundation system and comparison between both systems. Finite element modelling (FEM) package software of LUSAS is used to perform the vibration analysis of the building. The building is modelled based on the original plan with the foundation system on the structure model. The FEM results indicated that the structure which modelled with rigid base have high natural frequency compare to the structure with foundation system. These maybe due to soil structure interaction and also the damping of the system which related to the amount of energy dissipated through the foundation soil. Thus, this paper suggested that modelling with soil is necessary to demonstrate the soil influence towards vibration response to the structure.

  18. Mapping polycomb response elements at the Drosophilla melanogaster giant locus.

    PubMed

    Abed, Jumana AlHaj; Cheng, Connie L; Crowell, Chase R; Madigan, Laura L; Onwuegbuchu, Erica; Desai, Siddhi; Benes, Judith; Jones, Richard S

    2013-12-01

    Polycomb-group (PcG) proteins are highly conserved epigenetic transcriptional regulators. They are capable of either maintaining the transcriptional silence of target genes through many cell cycles or enabling a dynamic regulation of gene expression in stem cells. In Drosophila melanogaster, recruitment of PcG proteins to targets requires the presence of at least one polycomb response element (PRE). Although the sequence requirements for PREs are not well-defined, the presence of Pho, a PRE-binding PcG protein, is a very good PRE indicator. In this study, we identify two PRE-containing regions at the PcG target gene, giant, one at the promoter, and another approximately 6 kb upstream. PRE-containing fragments, which coincide with localized presence of Pho in chromatin immunoprecipitations, were shown to maintain restricted expression of a lacZ reporter gene in embryos and to cause pairing-sensitive silencing of the mini-white gene in eyes. Our results also reinforce previous observations that although PRE maintenance and pairing-sensitive silencing activities are closely linked, the sequence requirements for these functions are not identical. PMID:24170735

  19. Antioxidant responses in estuarine invertebrates exposed to repeated oil spills: Effects of frequency and dosage in a field manipulative experiment.

    PubMed

    Sandrini-Neto, Leonardo; Pereira, Letícia; Martins, César C; Silva de Assis, Helena C; Camus, Lionel; Lana, Paulo C

    2016-08-01

    We have experimentally investigated the effects of repeated diesel spills on the bivalve Anomalocardia brasiliana, the gastropod Neritina virginea and the polychaete Laeonereis culveri, by monitoring the responses of oxidative stress biomarkers in a subtropical estuary. Three frequencies of exposure events were compared against two dosages of oil in a factorial experiment with asymmetrical controls. Hypotheses were tested to distinguish between (i) the overall effect of oil spills, (ii) the effect of diesel dosage via different exposure regimes, and (iii) the effect of time since last spill. Antioxidant defense responses and oxidative damage in the bivalve A. brasiliana and the polychaete L. culveri were overall significantly affected by frequent oil spills compared to undisturbed controls. The main effects of diesel spills on both species were the induction of SOD and GST activities, a significant increase in LPO levels and a decrease in GSH concentration. N. virginea was particularly tolerant to oil exposure, with the exception of a significant GSH depletion. Overall, enzymatic activities and oxidative damage in A. brasiliana and L. culveri were induced by frequent low-dosage spills compared to infrequent high-dosage spills, although the opposite pattern was observed for N. virginea antioxidant responses. Antioxidant responses in A. brasiliana and L. culveri were not affected by timing of exposure events. However, our results revealed that N. virginea might have a delayed response to acute high-dosage exposure. Experimental in situ simulations of oil exposure events with varying frequencies and intensities provide a useful tool for detecting and quantifying environmental impacts. In general, antioxidant biomarkers were induced by frequent low-dosage exposures compared to infrequent high-dosage ones. The bivalve A. brasiliana and the polychaete L. culveri are more suitable sentinels due to their greater responsiveness to oil and also to their wider geographical

  20. Linking an α-Tocopherol Derivative to Cobalt(0) Nanomagnets: Magnetically Responsive Antioxidants with Superior Radical Trapping Activity and Reduced Cytotoxicity

    PubMed Central

    Viglianisi, Caterina; Di Pilla, Veronica; Menichetti, Stefano; Rotello, Vincent M.; Candiani, Gabriele; Malloggi, Chiara; Amorati, Riccardo

    2014-01-01

    Covalent attachment of a phenolic antioxidant analogue of α-tocopherol to graphite-coated magnetic cobalt nanoparticles (CoNPs) provided a novel magnetically responsive antioxidant capable of preventing the autoxidation of organic materials and showing a reduced toxicity toward human cells. PMID:24782361

  1. Optimization of Ultrasonic-Assisted Extraction of Flavonoid Compounds and Antioxidants from Alfalfa Using Response Surface Method.

    PubMed

    Jing, Chang-Liang; Dong, Xiao-Fang; Tong, Jian-Ming

    2015-01-01

    Ultrasonic-assisted extraction (UAE) was used to extract flavonoid-enriched antioxidants from alfalfa aerial part. Response surface methodology (RSM), based on a four-factor, five-level central composite design (CCD), was employed to obtain the optimal extraction parameters, in which the flavonoid content was maximum and the antioxidant activity of the extracts was strongest. Radical scavenging capacity of the extracts, which represents the amounts of antioxidants in alfalfa, was determined by using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. The results showed good fit with the proposed models for the total flavonoid extraction (R² = 0.9849), for the antioxidant extraction assayed by ABTS method (R² = 0.9764), and by DPPH method (R² = 0.9806). Optimized extraction conditions for total flavonoids was a ratio of liquid to solid of 57.16 mL/g, 62.33 °C, 57.08 min, and 52.14% ethanol. The optimal extraction parameters of extracts for the highest antioxidant activity by DPPH method was a ratio of liquid to solid 60.3 mL/g, 54.56 °C, 45.59 min, and 46.67% ethanol, and by ABTS assay was a ratio of liquid to solid 47.29 mL/g, 63.73 °C, 51.62 min, and 60% ethanol concentration. Our work offers optimal extraction conditions for total flavonoids and antioxidants from alfalfa. PMID:26343617

  2. Hyperactivity of the Ero1α Oxidase Elicits Endoplasmic Reticulum Stress but No Broad Antioxidant Response

    PubMed Central

    Hansen, Henning Gram; Schmidt, Jonas Damgård; Søltoft, Cecilie Lützen; Ramming, Thomas; Geertz-Hansen, Henrik Marcus; Christensen, Brian; Sørensen, Esben Skipper; Juncker, Agnieszka Sierakowska; Appenzeller-Herzog, Christian; Ellgaard, Lars

    2012-01-01

    Oxidizing equivalents for the process of oxidative protein folding in the endoplasmic reticulum (ER) of mammalian cells are mainly provided by the Ero1α oxidase. The molecular mechanisms that regulate Ero1α activity in order to harness its oxidative power are quite well understood. However, the overall cellular response to oxidative stress generated by Ero1α in the lumen of the mammalian ER is poorly characterized. Here we investigate the effects of overexpressing a hyperactive mutant (C104A/C131A) of Ero1α. We show that Ero1α hyperactivity leads to hyperoxidation of the ER oxidoreductase ERp57 and induces expression of two established unfolded protein response (UPR) targets, BiP (immunoglobulin-binding protein) and HERP (homocysteine-induced ER protein). These effects could be reverted or aggravated by N-acetylcysteine and buthionine sulfoximine, respectively. Because both agents manipulate the cellular glutathione redox buffer, we conclude that the observed effects of Ero1α-C104A/C131A overexpression are likely caused by an oxidative perturbation of the ER glutathione redox buffer. In accordance, we show that Ero1α hyperactivity affects cell viability when cellular glutathione levels are compromised. Using microarray analysis, we demonstrate that the cell reacts to the oxidative challenge caused by Ero1α hyperactivity by turning on the UPR. Moreover, this analysis allowed the identification of two new targets of the mammalian UPR, CRELD1 and c18orf45. Interestingly, a broad antioxidant response was not induced. Our findings suggest that the hyperoxidation generated by Ero1α-C104A/C131A is addressed in the ER lumen and is unlikely to exert oxidative injury throughout the cell. PMID:23027870

  3. Isoorientin induces Nrf2 pathway-driven antioxidant response through phosphatidylinositol 3-kinase signaling.

    PubMed

    Lim, Ju Hee; Park, Hae-Suk; Choi, Jung-Kap; Lee, Ik-Soo; Choi, Hyun Jin

    2007-12-01

    Because oxidative stress is involved in the pathogenesis of various chronic diseases and the aging process, antioxidants that can increase the intrinsic antioxidant potency are proposed as desirable therapeutic agents to counteract oxidative stress-related diseases. NF-E2-related factor-2 (Nrf2) is a transcription factor that regulates important antioxidant and phase II detoxification genes, and therefore, the molecule that regulates nuclear translocation of Nrf2 and the induction of antioxidative proteins is thought to be a promising candidate as a cytoprotective agent for oxidative stress. In the present study, we show that isoorientin (luteolin 6-C-beta-D-glucoside) obtained from the leaves of Sasa borealis upregulates and activates Nrf2, and has protective ability against oxidative damage caused by reactive oxygen intermediates in HepG2 cells. Isoorientin induces increase in the level of antioxidant enzyme proteins, especially NQO1, and the cytoprotective and antioxidative effects of isoorientin are PI3K/Akt pathway-dependent. Together with direct radical scavenging activity, the novel effect of isoorientin on the regulation of antioxidative gene expression provides attractive strategy to prevent diseases associated with oxidative stress and attenuate the progress of the diseases. PMID:18254247

  4. Antioxidant responses of Annelids, Brassicaceae and Fabaceae to pollutants: a review.

    PubMed

    Bernard, F; Brulle, F; Dumez, S; Lemiere, S; Platel, A; Nesslany, F; Cuny, D; Deram, A; Vandenbulcke, F

    2015-04-01

    Pollutants, such as Metal Trace Elements (MTEs) and organic compounds (polycyclic aromatic hydrocarbons, pesticides), can impact DNA structure of living organisms and thus generate damage. For instance, cadmium is a well-known genotoxic and mechanisms explaining its clastogenicity are mainly indirect: inhibition of DNA repair mechanisms and/or induction of Reactive Oxygen Species (ROS). Animal or vegetal cells use antioxidant defense systems to protect themselves against ROS produced during oxidative stress. Because tolerance of organisms depends, at least partially, on their ability to cope with ROS, the mechanisms of production and management of ROS were investigated a lot in Ecotoxicology as markers of biotic and abiotic stress. This was mainly done through the measurement of enzyme activities The present Review focuses on 3 test species living in close contact with soil that are often used in soil ecotoxicology: the worm Eisenia fetida, and two plant species, Trifolium repens (white clover) and Brassica oleracea (cabbage). E. fetida is a soil-dwelling organism commonly used for biomonitoring. T. repens is a symbiotic plant species which forms root nodule with soil bacteria, while B. oleracea is a non-symbiotic plant. In literature, some oxidative stress enzyme activities have already been measured in those species but such analyses do not allow distinction between individual enzyme involvements in oxidative stress. Gene expression studies would allow this distinction at the transcriptomic level. A literature review and a data search in molecular database were carried out on the basis of keywords in Scopus, in PubMed and in Genbank™ for each species. Molecular data regarding E. fetida were already available in databases, but a lack of data regarding oxidative stress related genes was observed for T. repens and B. oleracea. By exploiting the conservation observed between species and using molecular biology techniques, we partially cloned missing candidates

  5. Induction of Antioxidant and Heat Shock Protein Responses During Torpor in the Gray Mouse Lemur, Microcebus murinus.

    PubMed

    Wu, Cheng-Wei; Biggar, Kyle K; Zhang, Jing; Tessier, Shannon N; Pifferi, Fabien; Perret, Martine; Storey, Kenneth B

    2015-04-01

    A natural tolerance of various environmental stresses is typically supported by various cytoprotective mechanisms that protect macromolecules and promote extended viability. Among these are antioxidant defenses that help to limit damage from reactive oxygen species and chaperones that help to minimize protein misfolding or unfolding under stress conditions. To understand the molecular mechanisms that act to protect cells during primate torpor, the present study characterizes antioxidant and heat shock protein (HSP) responses in various organs of control (aroused) and torpid gray mouse lemurs, Microcebus murinus. Protein expression of HSP70 and HSP90α was elevated to 1.26 and 1.49 fold, respectively, in brown adipose tissue during torpor as compared with control animals, whereas HSP60 in liver of torpid animals was 1.15 fold of that in control (P<0.05). Among antioxidant enzymes, protein levels of thioredoxin 1 were elevated to 2.19 fold in white adipose tissue during torpor, whereas Cu-Zn superoxide dismutase 1 levels rose to 1.1 fold in skeletal muscle (P<0.05). Additionally, total antioxidant capacity was increased to 1.6 fold in liver during torpor (P<0.05), while remaining unchanged in the five other tissues. Overall, our data suggest that antioxidant and HSP responses are modified in a tissue-specific manner during daily torpor in gray mouse lemurs. Furthermore, our data also show that cytoprotective strategies employed during primate torpor are distinct from the strategies in rodent hibernation as reported in previous studies. PMID:26092183

  6. Induction of Antioxidant and Heat Shock Protein Responses During Torpor in the Gray Mouse Lemur, Microcebus murinus

    PubMed Central

    Wu, Cheng-Wei; Biggar, Kyle K.; Zhang, Jing; Tessier, Shannon N.; Pifferi, Fabien; Perret, Martine; Storey, Kenneth B.

    2015-01-01

    A natural tolerance of various environmental stresses is typically supported by various cytoprotective mechanisms that protect macromolecules and promote extended viability. Among these are antioxidant defenses that help to limit damage from reactive oxygen species and chaperones that help to minimize protein misfolding or unfolding under stress conditions. To understand the molecular mechanisms that act to protect cells during primate torpor, the present study characterizes antioxidant and heat shock protein (HSP) responses in various organs of control (aroused) and torpid gray mouse lemurs, Microcebus murinus. Protein expression of HSP70 and HSP90α was elevated to 1.26 and 1.49 fold, respectively, in brown adipose tissue during torpor as compared with control animals, whereas HSP60 in liver of torpid animals was 1.15 fold of that in control (P < 0.05). Among antioxidant enzymes, protein levels of thioredoxin 1 were elevated to 2.19 fold in white adipose tissue during torpor, whereas Cu–Zn superoxide dismutase 1 levels rose to 1.1 fold in skeletal muscle (P < 0.05). Additionally, total antioxidant capacity was increased to 1.6 fold in liver during torpor (P < 0.05), while remaining unchanged in the five other tissues. Overall, our data suggest that antioxidant and HSP responses are modified in a tissue-specific manner during daily torpor in gray mouse lemurs. Furthermore, our data also show that cytoprotective strategies employed during primate torpor are distinct from the strategies in rodent hibernation as reported in previous studies. PMID:26092183

  7. Extraction optimization for antioxidant phenolic compounds in red grape jam using ultrasound with a response surface methodology.

    PubMed

    Morelli, Lucíula Lemos Lima; Prado, Marcelo Alexandre

    2012-11-01

    Optimization of the extraction methodology for antioxidant phenolic compounds in red grape jam was performed with an ultrasound-assisted system. The antioxidant phenolic compounds were extracted and analyzed by determining the total phenolic content (Folin Ciocalteu), as well as by employing free radical DPPH() and the beta-carotene/linoleic acid system. To optimize the parameters of solvent concentration, time and extraction temperature, the experiments were carried out using the central composite rotatable design (CCRD) method. Using response surface methodology (RSM), the best combinations achieved were with 60% ethanol and water for 20min at 50°C. The optimized parameters for this method were compared to an extraction method that has been commonly noted in the literature, which used to be the standard method, and the results were expressed in the milligram equivalent of quercetin per gram of jam (mg E.Q/g Jam). With the new method, the antioxidant potential measured by DPPH(ⁱ) was 70% higher than that obtained with the standard extraction method, and the antioxidant potential measured using the beta-carotene/linoleic acid system was 65% higher. In addition, a significant decrease in the total analysis time was achieved (from 10h to 30min), when compared to the standard method. PMID:22512996

  8. Anti-oxidative stress response genes: bioinformatic analysis of their expression and relevance in multiple cancers

    PubMed Central

    Melino, Gerry; Knight, Richard A.

    2013-01-01

    Cells mount a transcriptional anti-oxidative stress (AOS) response program to scavenge reactive oxygen species (ROS) that arise from chemical, physical, and metabolic challenges. This protective program has been shown to reduce carcinogenesis triggered by chemical and physical insults. However, it is also hijacked by established cancers to thrive and proliferate within the hostile tumor microenvironment and to gain resistance against chemo- and radiotherapies. Therefore, targeting the AOS response proteins that are exploited by cancer cells is an attractive therapeutic strategy. In order to identify the AOS genes that are suspected to support cancer progression and resistance, we analyzed the expression patterns of 285 genes annotated for being involved in oxidative stress in 994 tumors and 353 normal tissues. Thereby we identified a signature of 116 genes that are highly overexpressed in multiple cancers while being only minimally expressed in normal tissues. To establish which of these genes are more likely to functionally drive cancer resistance and progression, we further identified those whose overexpression correlates with negative patient outcome in breast and lung carcinoma. Gene-set enrichment, gene ontology, network, and pathway analyses revealed that members of the thioredoxin and glutathione pathways are prominent components of this oncogenic signature and that activation of these pathways is common feature of many cancer entities. Interestingly, a large fraction of these AOS genes are downstream targets of the transcription factors NRF2, NF-kappaB, and FOXM1, and rely on NADPH for their enzymatic activities highlighting promising drug targets. We discuss these findings and propose therapeutic strategies that may be applied to overcome cancer resistance. PMID:24342878

  9. Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability.

    PubMed

    Gallorini, Marialucia; Petzel, Christine; Bolay, Carola; Hiller, Karl-Anton; Cataldi, Amelia; Buchalla, Wolfgang; Krifka, Stephanie; Schweikl, Helmut

    2015-07-01

    Oxidative stress due to increased formation of reactive oxygen species (ROS) in target cells of dental resin monomers like 2-hydroxyethyl methacrylate (HEMA) is a major mechanism underlying the disturbance of vital cell functions including mineralization and differentiation, responses of the innate immune system, and the induction of cell death via apoptosis. Although a shift in the equilibrium between cell viability and apoptosis is related to the non-enzymatic antioxidant glutathione (GSH) in HEMA-exposed cells, the major mechanisms of adaptive antioxidant cell responses to maintain cellular redox homeostasis are still unknown. The present study provides insight into the induction of a communicating network of pathways under the control of the redox-sensitive transcription factor Nrf2, a major transcriptional activator of genes coding for enzymatic antioxidants. Here, oxidative stress was indicated by DCF fluorescence in cells after a short exposure (1 h) to HEMA, while DHR123 fluorescence significantly increased about 1.8-fold after a long exposure period (24 h) showing the formation of hydrogen peroxide (H2O2). The corresponding expression of Nrf2 was activated immediately after HEMA exposure (1 h) and remained constant up to 24 h. Nrf2-regulated expression of enzymes of the glutathione metabolism (glutathione peroxidase 1/2, glutathione reductase) decreased in HEMA-exposed cells as a result of GSH depletion, and superoxide dismutase expression was downregulated after H2O2 overproduction. However, the expression of Nrf2-controlled enzymatic antioxidants (catalase, peroxiredoxin, thioredoxin 1, thioredoxin reductase, heme oxygenase-1) and the NADPH-regenerating system (glucose 6-phosphate dehydrogenase, transaldolase) was increased. Phenolic tert-butylhydroquinone (tBHQ), a classic inducer of the Nrf2 pathway, reduced oxidative stress and protected cells from HEMA-induced cell death through a shift in the number of cells in necrosis to apoptosis. The

  10. Effects of vitamin C and E supplementation on endogenous antioxidant systems and heat shock proteins in response to endurance training.

    PubMed

    Cumming, Kristoffer T; Raastad, Truls; Holden, Geir; Bastani, Nasser E; Schneeberger, Damaris; Paronetto, Maria Paola; Mercatelli, Neri; Ostgaard, Hege N; Ugelstad, Ingrid; Caporossi, Daniela; Blomhoff, Rune; Paulsen, Gøran

    2014-10-01

    Reactive oxygen and nitrogen species are important signal molecules for adaptations to training. Due to the antioxidant properties of vitamin C and E, supplementation has been shown to blunt adaptations to endurance training. In this study, we investigated the effects of vitamin C and E supplementation and endurance training on adaptations in endogenous antioxidants and heat shock proteins (HSP). Thirty seven males and females were randomly assigned to receive Vitamin C and E (C + E; C: 1000 mg, E: 235 mg daily) or placebo (PLA), and underwent endurance training for 11 weeks. After 5 weeks, a subgroup conducted a high intensity interval session to investigate acute stress responses. Muscle and blood samples were obtained to investigate changes in proteins and mRNA related to the antioxidant and HSP system. The acute response to the interval session revealed no effects of C + E supplementation on NFκB activation. However, higher stress responses to exercise in C + E group was indicated by larger translocation of HSPs and a more pronounced gene expression compared to PLA. Eleven weeks of endurance training decreased muscle GPx1, HSP27 and αB-crystallin, while mnSOD, HSP70 and GSH remained unchanged, with no influence of supplementation. Plasma GSH increased in both groups, while uric acid decreased in the C + E group only. Our results showed that C + E did not affect long-term training adaptations in the antioxidant- and HSP systems. However, the greater stress responses to exercise in the C + E group might indicate that long-term adaptations occurs through different mechanisms in the two groups. PMID:25293598

  11. Comparison of physiological and antioxidant responses of Anoda cristata and cotton to progressive drought

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simultaneous investigation of variables related to gas exchange, photochemistry and antioxidant defenses during water stress is crucial for understanding stress tolerance mechanisms and consequent success of both economically important plant species and their interfering counterparts. This study ev...

  12. Differential response of Arabidopsis leaves and roots to cadmium: glutathione-related chelating capacity vs antioxidant capacity.

    PubMed

    Jozefczak, Marijke; Keunen, Els; Schat, Henk; Bliek, Mattijs; Hernández, Luis E; Carleer, Robert; Remans, Tony; Bohler, Sacha; Vangronsveld, Jaco; Cuypers, Ann

    2014-10-01

    This study aims to uncover the spatiotemporal involvement of glutathione (GSH) in two major mechanisms of cadmium (Cd)-induced detoxification (i.e. chelation and antioxidative defence). A kinetic study was conducted on hydroponically grown Arabidopsis thaliana (L. Heyhn) to gain insight into the early events after exposure to Cd. Cadmium detoxification was investigated at different levels, including gene transcripts, enzyme activities and metabolite content. Data indicate a time-dependent response both within roots and between plant organs. Early on in roots, GSH was preferentially allocated to phytochelatin (PC) synthesis destined for Cd chelation. This led to decreased GSH levels, without alternative pathways activated to complement GSH's antioxidative functions. After one day however, multiple antioxidative pathways increased including superoxide dismutase (SOD), ascorbate (AsA) and catalase (CAT) to ensure efficient neutralization of Cd-induced reactive oxygen species (ROS). As a consequence of Cd retention and detoxification in roots, a delayed response occurred in leaves. Together with high leaf thiol contents and possibly signalling responses from the roots, the leaves were protected, allowing them sufficient time to activate their defence mechanisms. PMID:25049163

  13. Differential coral bleaching-Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress.

    PubMed

    Krueger, Thomas; Hawkins, Thomas D; Becker, Susanne; Pontasch, Stefanie; Dove, Sophie; Hoegh-Guldberg, Ove; Leggat, William; Fisher, Paul L; Davy, Simon K

    2015-12-01

    Mass coral bleaching due to thermal stress represents a major threat to the integrity and functioning of coral reefs. Thermal thresholds vary, however, between corals, partly as a result of the specific type of endosymbiotic dinoflagellate (Symbiodinium sp.) they harbour. The production of reactive oxygen species (ROS) in corals under thermal and light stress has been recognised as one mechanism that can lead to cellular damage and the loss of their symbiont population (Oxidative Theory of Coral Bleaching). Here, we compared the response of symbiont and host enzymatic antioxidants in the coral species Acropora millepora and Montipora digitata at 28°C and 33°C. A. millepora at 33°C showed a decrease in photochemical efficiency of photosystem II (PSII) and increase in maximum midday excitation pressure on PSII, with subsequent bleaching (declining photosynthetic pigment and symbiont density). M. digitata exhibited no bleaching response and photochemical changes in its symbionts were minor. The symbiont antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and catalase peroxidase showed no significant upregulation to elevated temperatures in either coral, while only catalase was significantly elevated in both coral hosts at 33°C. Increased host catalase activity in the susceptible coral after 5days at 33°C was independent of antioxidant responses in the symbiont and preceded significant declines in PSII photochemical efficiencies. This finding suggests a potential decoupling of host redox mechanisms from symbiont photophysiology and raises questions about the importance of symbiont-derived ROS in initiating coral bleaching. PMID:26310104

  14. Heterogeneous Porphyromonas gingivalis LPS modulates immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in human gingival fibroblasts

    PubMed Central

    Herath, Thanuja D. K.; Darveau, Richard P.; Seneviratne, Chaminda J.; Wang, Cun-Yu; Wang, Yu; Jin, Lijian

    2016-01-01

    Periodontal (gum) disease is a highly prevalent infection and inflammation accounting for the majority of tooth loss in adult population worldwide. Porphyromonas gingivalis is a keystone periodontal pathogen and its lipopolysaccharide (PgLPS) acts as a major virulence attribute to the disease. Herein, we deciphered the overall host response of human gingival fibroblasts (HGFs) to two featured isoforms of tetra-acylated PgLPS1435/1449 and penta-acylated PgLPS1690 with reference to E. coli LPS through quantitative proteomics. This study unraveled differentially expressed novel biomarkers of immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs. PgLPS1690 greatly upregulated inflammatory proteins (e.g. cyclophilin, inducible nitric oxide synthase, annexins, galectin, cathepsins and heat shock proteins), whereas the anti-inflammatory proteins (e.g. Annexin A2 and Annexin A6) were significantly upregulated by PgLPS1435/1449. Interestingly, the antioxidants proteins such as mitochondrial manganese-containing superoxide dismutase and peroxiredoxin 5 were only upregulated by PgLPS1690. The cytoskeletal rearrangement-related proteins like myosin were differentially regulated by these PgLPS isoforms. The present study gives new insight into the biological properties of P. gingivalis LPS lipid A moiety that could critically modulate immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs, and thereby enhances our understanding of periodontal pathogenesis. PMID:27538450

  15. Heterogeneous Porphyromonas gingivalis LPS modulates immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in human gingival fibroblasts.

    PubMed

    Herath, Thanuja D K; Darveau, Richard P; Seneviratne, Chaminda J; Wang, Cun-Yu; Wang, Yu; Jin, Lijian

    2016-01-01

    Periodontal (gum) disease is a highly prevalent infection and inflammation accounting for the majority of tooth loss in adult population worldwide. Porphyromonas gingivalis is a keystone periodontal pathogen and its lipopolysaccharide (PgLPS) acts as a major virulence attribute to the disease. Herein, we deciphered the overall host response of human gingival fibroblasts (HGFs) to two featured isoforms of tetra-acylated PgLPS1435/1449 and penta-acylated PgLPS1690 with reference to E. coli LPS through quantitative proteomics. This study unraveled differentially expressed novel biomarkers of immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs. PgLPS1690 greatly upregulated inflammatory proteins (e.g. cyclophilin, inducible nitric oxide synthase, annexins, galectin, cathepsins and heat shock proteins), whereas the anti-inflammatory proteins (e.g. Annexin A2 and Annexin A6) were significantly upregulated by PgLPS1435/1449. Interestingly, the antioxidants proteins such as mitochondrial manganese-containing superoxide dismutase and peroxiredoxin 5 were only upregulated by PgLPS1690. The cytoskeletal rearrangement-related proteins like myosin were differentially regulated by these PgLPS isoforms. The present study gives new insight into the biological properties of P. gingivalis LPS lipid A moiety that could critically modulate immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs, and thereby enhances our understanding of periodontal pathogenesis. PMID:27538450

  16. Antioxidative responses of Pseudomonas fluorescens YZ2 to simultaneous exposure of Zn and Cefradine.

    PubMed

    Xu, Yan-Bin; Xu, Jia-Xin; Chen, Jin-Liang; Huang, Lu; Zhou, Shao-Qi; Zhou, Yan; Wen, Li-Hua

    2015-10-01

    Binary pollution of both heavy metals and antibiotics has received increasing attentions for their joint effects of eco-toxicity and health hazards. To reveal the effects of mixtures of different pollutants on bacterial antioxidant response system, Pseudomonas fluorescens ZY2, a new strain isolated from swine wastewater, was chosen to determinate growth (bacterial density OD600), reactive oxygen species (ROS) concentration, protein concentration and superoxide dismutase (SOD) activity under exposure treatments of Zn, Cefradine or Zn + Cefradine. Bacterial densities of all the treatment groups increased significantly over the incubation time, but those containing pollutant addition were slightly lower than the control at different times of incubation. Both ROS concentration and SOD activity increased first and then decreased (p < 0.01) over time, which was opposite to the protein concentrations (p < 0.01), showing a much significant increase by Cefradine alone. With Zn concentration increasing from 40 to 160 mg/L, the intracellular SOD activity increased as a response to the improvement of ROS (p < 0.05), while the balance between ROS and SOD was broken down due to the disproportionate change of total SOD activity and ROS concentration, the bacterial densities therefore decreased for the weak resistance. With the combined treatment of Zn (200 mg/L) and Cefradine (1 mg/L), though the toxicity of Zn caused a much significant increase of ROS, the bacterial resistance was further improved showing a more significant increase of total SOD activity and the bacterial densities therefore increased bacterial growth. Zn concentration also affected the protein synthesis. Either single or binary stress induced the bacterial resistance by regulating SOD activity to eliminate ROS. All results of the bacterial oxidant stress, SOD response and protein synthesis in the combined treatment groups were more complicated than those in single treatment groups, which depended on the

  17. Early osmotic, antioxidant, ionic, and redox responses to salinity in leaves and roots of Indian mustard (Brassica juncea L.).

    PubMed

    Ranjit, Singh Laxmi; Manish, Pandey; Penna, Suprasanna

    2016-01-01

    Salt-stress-induced alterations in osmotic, ionic, and redox responses were studied in the early period of treatment (30 min to 5 days) in seedlings of Brassica juncea L. Roots and shoots under mild (50 mM) and severe (250 mM) NaCl stress were analyzed for growth, oxidative stress, osmolyte accumulation, antioxidant defense, and redox state. Growth reduction was less pronounced in the early time period of salt stress while oxidative damage increased linearly and in a sustained manner under severe stress up to 6 h. An early and transient reactive oxygen species (ROS) burst, as evidenced by superoxide and hydrogen peroxide level was observed, followed by activation of enzymatic antioxidant system (GPX, SOD, CAT, and GR) in both root and shoot. The enzymatic activity was not affected much under mild stress particularly at early phase; however, severe stress induced a significant increase in the activity of antioxidant enzymes. Root ascorbate was progressively accumulated, and its redox state maintained in the early time phase of treatment under mild stress while increase in root and shoot glutathione content was recorded under mild stress at 5 days when the active ascorbate pool decreased. While early period of salt stress showed significant Na(+) accumulation over control, plants subjected to mild stress measured less Na(+) accumulation up to 5 days compared to severely stressed plants. The results showed an early induction of differential responses to salt stress in roots and shoots of Brassica which include growth limitations, reduced relative water content, increased osmolytes, redox state, and antioxidant system, and a significant Na(+) increase. The results also indicate that roots and shoots may have distinct mechanisms of responses to salt stress. PMID:25786350

  18. Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males

    PubMed Central

    Özdemir, F; Çolak, R

    2015-01-01

    The relationship between oxidative stress and some exercise components of resistance exercise (e.g. intensity, exercise volume) has not been clearly defined. Additionally, the oxidative stress markers may respond differently in various conditions. This study aims to determine the effects of progressive intensity of resistance exercise (RE) on oxidative stress and antioxidants in trained and untrained men, and also to investigate the possible threshold intensity required to evoke oxidative stress. RE trained (N=8) and untrained (N=8) men performed the leg extension RE at progressive intensities standardized for total volume: 1x17 reps at 50% of one-repetition maximum (1RM); 1x14 reps at 60% of 1RM; 1x12 reps at 70% of 1RM; 2x5 reps at 80% of 1RM; and 3x3 reps at 90% of 1RM. Blood samples were drawn before (PRE) and immediately after each intensity, and after 30 minutes, 60 minutes and 24 hours following the RE. Lipid-hydroperoxide (LHP) significantly increased during the test and then decreased during the recovery in both groups (p<0.05); the POST-24 h LHP level was lower than PRE-LHP. Protein carbonyl (PCO) and superoxide dismutase (SOD) significantly increased (p<0.05); however, 8-hydroxy-2’-deoxyguanosine (8-OHdG) and glutathione (GSH) were not affected by the RE (p > 0.05). The results indicated that there was no significant training status x intensity interaction for examined variables (p > 0.05). Standardized volume of RE increased oxidative stress responses. Our study suggests that lower intensity (50%) is enough to increase LHP, whereas higher intensity (more than 80%) is required to evoke protein oxidation. PMID:26681835

  19. Involvement of the Antioxidant Effect and Anti-inflammatory Response in Butyrate-Inhibited Vascular Smooth Muscle Cell Proliferation

    PubMed Central

    Mathew, Omana P.; Ranganna, Kasturi; Milton, Shirlette G.

    2014-01-01

    Epigenetic mechanisms by altering the expression and, in turn, functions of target genes have potential to modify cellular processes that are characteristics of atherosclerosis, including inflammation, proliferation, migration and apoptosis/cell death. Butyrate, a natural epigenetic modifier and a histone deacetylase inhibitor (HDACi), is an inhibitor of vascular smooth muscle cell (VSMC) proliferation, a critical event in atherogenesis. Here, we examined whether glutathione peroxidases (GPxs), a family of antioxidant enzymes, are modulated by butyrate, contributing to its antiproliferation action on VSMC through the regulation of the inflammatory response by using western blotting, immunostaining methods and activity assay. Treatment of VSMC with butyrate not only upregulates glutathione peroxidase (GPx) 3 and GPx4, but also increases the overall catalytic activity of GPx supporting involvement of antioxidant effect in butyrate arrested VSMC proliferation. Moreover, analysis of the redox-sensitive NF-κB transcription factor system, the target of GPx, reveals that butyrate causes downregulation of IKKα, IKKβ, IkBα and NF-κBp65 expression and prevents NF-κBp65 phosphorylation at serine536 causing inhibition of the expression NF-κB target inflammatory genes, including inducible nitric oxide synthase, VCAM-1 and cyclooxygenase-2. Overall, these observations suggest a link between the antioxidant effect and anti-inflammatory response in butyrate-arrested VSMC proliferation, accentuating the atheroprotective and therapeutic potential of natural products, like butyrate, in vascular proliferative diseases. PMID:25390157

  20. Differential Antioxidant Responses and Perturbed Porphyrin Biosynthesis after Exposure to Oxyfluorfen and Methyl Viologen in Oryza sativa.

    PubMed

    Pham, Nhi-Thi; Kim, Jin-Gil; Jung, Sunyo

    2015-01-01

    We compared antioxidant responses and regulation of porphyrin metabolism in rice plants treated with oxyfluorfen (OF) or methyl viologen (MV). Plants treated with MV exhibited not only greater increases in conductivity and malondialdehyde but also a greater decline in Fv/Fm, compared to plants treated with OF. MV-treated plants had greater increases in activities of superoxide dismutase (SOD) and catalase (CAT) as well as transcript levels of SODA and CATA than OF-treated plants after 28 h of the treatments, whereas increases in ascorbate peroxidase (APX) activity and transcript levels of APXA and APXB were greater in OF-treated plants. Both OF- and MV-treated plants resulted in not only down-regulation of most genes involved in porphyrin biosynthesis but also disappearance of Mg-porphyrins during the late stage of photooxidative stress. By contrast, up-regulation of heme oxygenase 2 (HO2) is possibly part of an efficient antioxidant response to compensate photooxidative damage in both treatments. Our data show that down-regulated biosynthesis and degradation dynamics of porphyrin intermediates have important roles in photoprotection of plants from perturbed porphyrin biosynthesis and photosynthetic electron transport. This study suggests that porphyrin scavenging as well as strong antioxidative activities are required for mitigating reactive oxygen species (ROS) production under photooxidative stress caused by OF and MV. PMID:26197316

  1. Differential Antioxidant Responses and Perturbed Porphyrin Biosynthesis after Exposure to Oxyfluorfen and Methyl Viologen in Oryza sativa

    PubMed Central

    Pham, Nhi-Thi; Kim, Jin-Gil; Jung, Sunyo

    2015-01-01

    We compared antioxidant responses and regulation of porphyrin metabolism in rice plants treated with oxyfluorfen (OF) or methyl viologen (MV). Plants treated with MV exhibited not only greater increases in conductivity and malondialdehyde but also a greater decline in Fv/Fm, compared to plants treated with OF. MV-treated plants had greater increases in activities of superoxide dismutase (SOD) and catalase (CAT) as well as transcript levels of SODA and CATA than OF-treated plants after 28 h of the treatments, whereas increases in ascorbate peroxidase (APX) activity and transcript levels of APXA and APXB were greater in OF-treated plants. Both OF- and MV-treated plants resulted in not only down-regulation of most genes involved in porphyrin biosynthesis but also disappearance of Mg-porphyrins during the late stage of photooxidative stress. By contrast, up-regulation of heme oxygenase 2 (HO2) is possibly part of an efficient antioxidant response to compensate photooxidative damage in both treatments. Our data show that down-regulated biosynthesis and degradation dynamics of porphyrin intermediates have important roles in photoprotection of plants from perturbed porphyrin biosynthesis and photosynthetic electron transport. This study suggests that porphyrin scavenging as well as strong antioxidative activities are required for mitigating reactive oxygen species (ROS) production under photooxidative stress caused by OF and MV. PMID:26197316

  2. Tissue-specific antioxidant responses in pale chub (Zacco platypus) exposed to copper and benzo[a]pyrene.

    PubMed

    Kim, Woo-Keun; Park, June-Woo; Lim, Eun-Suk; Lee, Sung-Kyu; Kim, Jungkon; Kim, Sunmi; Lee, Sang-Woo; Choi, Kyungho; Jung, Jinho

    2014-05-01

    In this study, antioxidant responses including lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST), were evaluated in the liver, gill and muscle tissues of pale chub (Zacco platypus) exposed to copper (Cu) and benzo[a]pyrene (BaP). Cu exposure induced significant antioxidant responses in Z. platypus, particularly in the liver, whereas BaP exposure had a negligible effect. Following Cu exposure, both SOD and CAT activity increased in a concentration-dependent manner, showing significant correlations with malondialdehyde (MDA) levels as a measure of LPO (r = 0.646 and 0.663, respectively). SOD, CAT and GST mRNA levels were also enhanced following Cu exposure, except at 20 μg L(-1), although significant correlations with antioxidant enzyme activities were not found. The results of this study suggest that combined information on SOD and CAT activities together with LPO levels in the liver could be a useful indicator for assessing oxidative stress in freshwater fish. PMID:24477393

  3. Antioxidative and immunological responses in the haemolymph of wolf spider Xerolycosa nemoralis (Lycosidae) exposed to starvation and dimethoate.

    PubMed

    Stalmach, Monika; Wilczek, Grażyna; Homa, Joanna; Szulinska, Elżbieta

    2015-11-01

    The aim of this study was to assess the intensity of enzymatic antioxidative parameters [catalase (CAT), glutathione peroxidase (GSTPx), glutathione reductase (GR), total antioxidant capacity (TAC)] and percentage of high granularity cells as well as low to medium granularity cells in haemolymph of wolf spiders Xerolycosa nemoralis exposed to starvation and dimethoate under laboratory conditions. Only in starved males, haemolymph included a lower percentage of high granularity cells, accompanied by high activity of CAT and GSTPx, than in the control. Exposure of males to dimethoate increased CAT activity, after single application, and significantly enhanced GR activity, after five-time application. In females, five-time contact with dimethoate elevated the percentage of high granularity cells. As in comparison to females, male X. nemoralis were more sensitive to the applied stressing factors, it may be concluded that in natural conditions both food deficiency and chemical stress may diminish the immune response of their organisms. PMID:26301693

  4. [Responses of antioxidation system of Cynodon dactylon to recirculated landfill leachate irrigation].

    PubMed

    Wang, Ruyi; He, Pinjing; Shao, Liming; Zhang, Bin; Li, Guojian

    2005-05-01

    With pot experiment, this paper studied the membrane lipid peroxidation and the variations of antioxidation system in Cynodon dactylon under recirculated landfill leachate irrigation. The results showed that when irrigated with low dilution ratio (< 25%) leachate, the chlorophyll a/b ratio increased with increasing dilution ratio, membrane permeability and MDA and H2O2 contents were in adverse, and membrane lipid peroxidation was relatively weak. However, with the increasing leachate dilution ratio (> 25%), there existed an obvious negative fect on Cynodon dactylon, i.e., the chlorophyll a/b ratio decreased, while cell membrane permeability and MDA and H2O2 contents increased, which meant that the membrane lipid peroxidation was accelerated. The contents antioxidants AsA, GSH and Car also showed the similar trend, i.e., they increased with increasing leachate dilution ratio when irrigated with low dilution ratio leachate, but decreased under medium or high dilution ratio leachate irrigation. Among three test anti-oxidative enzymes, SOD and POD activities showed a similar change test antioxidants, and POD activity was more sensitive, while CAT activity was on the contrary. The contents test antioxidants and the activities of SOD and POD were negatively and significantly correlated to MDA content, indicating that they might play an important role in preventing Cynodon dactylon from cell membrane lipid peroxdation. PMID:16110675

  5. Boron influences immune and antioxidant responses by modulating hepatic superoxide dismutase activity under calcium deficit abiotic stress in Wistar rats.

    PubMed

    Bhasker, T Vijay; Gowda, N K S; Mondal, S; Krishnamoorthy, P; Pal, D T; Mor, A; Bhat, S Karthik; Pattanaik, A K

    2016-07-01

    The influence of Boron (B) supplementation on immune and antioxidant status of rats with or without abiotic stress induced by dietary calcium (Ca) restriction was studied in a feeding trial of 90 days. Wistar strain rats (3-4 wk age, n=84) were divided into 7 dietary groups (4 replicates of 3 each) viz., normal-calcium (100%) basal diet alone (NC, control) or supplemented with B at 5 (NCB-5), 10 (NCB-10), 20 (NCB-20) and 40ppm (NCB-40) levels; low-calcium (50%) basal diet alone (LC) or supplemented with 40ppm B (LCB-40). After 75 days of experimental feeding, rats were challenged with intraperitoneal injection of sheep RBCs to assess their humoral immunity. At the end of the trial, cell-mediated immunity was assessed as foot pad reaction to sheep RBCs injected into the hind leg paws. Eight rats from each group were sacrificed to collect blood for estimation of minerals and total antioxidant activity, and liver for superoxide dismutase gene expression analysis. Supplementation of graded levels of B (5, 10, 20 and 40ppm) as borax in NC diets significantly increased (P<0.01) the footpad thickness and serum total antioxidant activity, hepatic expression levels of both Cu-Zn SOD (SOD1) and Mn-SOD (SOD2) mRNAs. The erythrocytic SOD activity and humoral response did not differ significantly among the dietary groups. In Ca restricted groups, humoral immune response was significantly decreased (P<0.01) compared to control but increased (P<0.05) with 40ppm B supplementation. Serum levels of copper (Cu) and zinc (Zn) remained similar among the dietary groups, while the manganese (Mn) content was significantly decreased (P<0.01) with increased levels of dietary B. In conclusion, B supplementation increased the hepatic mRNA expression levels of both SOD isoenzymes, thereby improving the immune and antioxidant status. PMID:27259355

  6. Immune-associated parameters and antioxidative responses to cadmium in the freshwater crab Sinopotamon henanense.

    PubMed

    Zhou, Yanying; Dahms, Hans-Uwe; Dong, Feng; Jing, Weixing; Wang, Lan

    2016-07-01

    Cadmium (Cd) is a toxic heavy metal pollutant and is known to exert adverse effects in organisms. In this study, we examined immune-related and antioxidative parameters in crabs exposed to sublethal levels of Cd. The results showed that Cd exposure elicited a significant accumulation in hemolymph, a decrease in total hemocyte counts, and the production of reactive oxygen species (ROS). Cd treatment also upregulated activities of antioxidant enzymes including superoxide dismutase, catalase, and glutathione peroxidase in the hemocytes of crabs. Treatment with Cd further decreased the stability of lysosomal membranes in hemocytes and induced substantial changes of immune-related parameters including acid phosphatase and alkaline phosphatase. However, the activity of lysozyme varied weakly throughout the Cd treatment period. Our results suggest that Cd exposure caused immunomodulation, a potentially harmful immunity function and damage in the antioxidant system of Sinopotamon henanense. PMID:27057991

  7. The antioxidant response induced by Lonicera caerulaea berry extracts in animals bearing experimental solid tumors.

    PubMed

    Gruia, Maria Iuliana; Oprea, Eliza; Gruia, Ion; Negoita, Valentina; Farcasanu, Ileana Cornelia

    2008-01-01

    Lonicera caerulea is a species of bush native to the Kamchatka Peninsula (Russian Far East) whose berries have been extensively studied due to their potential high antioxidant activity. The aim of our work was to investigate the in vivo effects of the antioxidant action of Lonicera caerulea berry extracts on the dynamics of experimentally-induced tumors. Our data showed that aqueous Lonicera caerulaea extracts reduced the tumor volume when administered continuously during the tumor growth and development stages, but augmented the tumor growth when the administration of extracts started three weeks before tumor grafting. Prolonged administration of Lonicera caerulaea berry extracts induced the antioxidant defense mechanism in the tumor tissues, while surprisingly amplifying the peripheral oxidative stress. PMID:18560338

  8. Control of antioxidative response by the tumor suppressor protein PML through regulating Nrf2 activity

    PubMed Central

    Guo, Shuang; Cheng, Xiwen; Lim, Jun-Hee; Liu, Yu; Kao, Hung-Ying

    2014-01-01

    Oxidative stress is a consequence of an imbalance between reactive oxygen species (ROS) production and the ability of the cytoprotective system to detoxify the reactive intermediates. The tumor suppressor promyelocytic leukemia protein (PML) functions as a stress sensor. Loss of PML results in impaired mitochondrial complex II activity, increased ROS, and subsequent activation of nuclear factor erythroid 2–related factor 2 (Nrf2) antioxidative pathway. We also demonstrate that sulforaphane (SFN), an antioxidant, regulates Nrf2 activity by controlling abundance and subcellular distribution of PML and that PML is essential for SFN-mediated ROS increase, Nrf2 activation, antiproliferation, antimigration, and antiangiogenesis. Taking the results together, we have uncovered a novel antioxidative mechanism by which PML regulates cellular oxidant homeostasis by controlling complex II integrity and Nrf2 activity and identified PML as an indispensable mediator of SFN activity. PMID:24943846

  9. Impact of tributyltin on antioxidant and DNA damage response in spermatozoa of freshwater prawn Macrobrachium rosenbergii.

    PubMed

    Rani, K Umaa; Musthafa, M Saiyad; War, Mehrajuddin; Al-Sadoon, Mohammad K; Paray, Bilal Ahmad; Shareef, T H Mohamed Ahadhu; Nawas, P Mohideen Askar

    2015-12-01

    Effects of tributyltin (TBT) on antioxidant [total superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR)] and DNA damage levels in the spermatozoa were studied and reported here for the first time in the freshwater prawn Macrobrachium rosenbergii. Three groups of (n = 10 in each group) fishes were exposed to three different nominal concentrations of TBT viz., 1, 2, and 4 mg L(-1) along with control group for 90 days. Significant decrease of antioxidant and increased DNA damage levels were seen at higher doses of 2 and 4 mg L(-1). In prawn, the antioxidant level plays a vital role in sperm protection, activation, differential functions related to the physiology, and reproductive behavior. This study serves as a biomonitoring tool to assess the TBT effects on reproductive behavior of aquatic biota. PMID:26296505

  10. Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings.

    PubMed

    Chen, Guan-Qun; Ren, Li; Zhang, Jie; Reed, Barbara M; Zhang, Di; Shen, Xiao-Hui

    2015-02-01

    Plant recovery status after cryopreservation by vitrification had a negative relationship to the oxidative stress induced by reactive oxygen species (ROS). Arabidopsis thaliana seedlings germinated for 48 h or 72 h with different survival tolerances were examined at five steps of cryopreservation, to determine the role of ROS (O2(-), H2O2 and OH) and antioxidant systems (SOD, POD, CAT, AsA and GSH) in cryo-injury. In addition, the effects of the steps on membrane lipid peroxidation were studied using malondialdehyde (MDA) as an indicator. The results indicated that H2O2-induced oxidative stress at the steps of dehydration and rapid warming was the main cause of cryo-injury of 48-h seedlings (high survival rate) and 72-h seedlings (no survival). The H2O2 was mainly generated in cotyledons, shoot tips and roots of seedlings as indicated by Amplex Red staining. Low survival of 72-h seedlings was associated with severe membrane lipid peroxidation, which was caused by increased OH generation activity and decreased SOD activity. The antioxidant-related gene expression by qRT-PCR and physiological assays suggested that the antioxidant system of 48-h seedlings were activated by ROS, and they mounted a defense against oxidative stress. A high level of ROS led to the weakening of the antioxidant system of 72-h seedlings. Correlation analysis indicated that enhanced antioxidant enzymes activities contributed to the high survival rate of 48-h seedlings, which could reflect by cryopreservation of antioxidant mutant seedlings. This model system indicated that elevated CAT activity and AsA content were determinants of cryogenic stress tolerance, whose manipulation could improve the recovery of seedlings after cryopreservation. PMID:25489814

  11. Lipid peroxidation and antioxidant responses in zebrafish brain induced by Aphanizomenon flos-aquae DC-1 aphantoxins.

    PubMed

    Zhang, De Lu; Hu, Chun Xiang; Li, Dun Hai; Liu, Yong Ding

    2013-11-15

    Aphanizomenon flos-aquae is a cyanobacterium that is frequently encountered in eutrophic waters worldwide. It is source of neurotoxins known as aphantoxins or paralytic shellfish poisons (PSPs), which present a major threat to the environment and human health. The molecular mechanism of PSP action is known, however the in vivo effects of this neurotoxin on oxidative stress, lipid peroxidation and the antioxidant defense responses in zebrafish brain remain to be understood. Aphantoxins purified from a natural isolate of A. flos-aquae DC-1 were analyzed using high performance liquid chromatography. The major components of the toxins were gonyautoxins 1 and 5 (GTX1 and GTX5, 34.04% and 21.28%, respectively) and neosaxitoxin (neoSTX, 12.77%). Zebrafish (Danio rerio) were injected intraperitoneally with 7.73 μg/kg (low dose) and 11.13 μg/kg (high dose) of A. flos-aquae DC-1 aphantoxins. Oxidative stress, lipid peroxidation and antioxidant defense responses in the zebrafish brain were investigated at various timepoints at 1-24h post-exposure. Aphantoxin exposure was associated with significantly increased (>1-2 times) reactive oxygen species (ROS) and malondialdehyde (MDA) in zebrafish brain compared with the controls at 1-12h postexposure, suggestive of oxidative stress and lipid peroxidation. In contrast, reduced glutathione (GSH) levels in the zebrafish brain exposed to high or low doses of aphantoxins decreased by 44.88% and 41.33%, respectively, after 1-12h compared with the controls, suggesting that GSH participated in detoxification to ROS and MDA. Further analysis showed a significant increase in the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) compared with the controls, suggesting elimination of oxidative stress by the antioxidant response in zebrafish brain. All these changes were dose and time dependent. These results suggested that aphantoxins or PSPs increased ROS and MDA and decreased GSH in zebrafish brain

  12. Cis-element of the rice PDIL2-3 promoter is responsible for inducing the endoplasmic reticulum stress response.

    PubMed

    Takahashi, Hideyuki; Wang, Shuyi; Hayashi, Shimpei; Wakasa, Yuhya; Takaiwa, Fumio

    2014-05-01

    A protein disulfide isomerase (PDI) family oxidoreductase, PDIL2-3, is involved in endoplasmic reticulum (ER) stress responses in rice. We identified a critical cis-element required for induction of the ER stress response. The activation of PDIL2-3 in response to ER stress strongly depends on the IRE1-OsbZIP50 signaling pathway. PMID:24315532

  13. Optimization of Extraction Conditions for Maximal Phenolic, Flavonoid and Antioxidant Activity from Melaleuca bracteata Leaves Using the Response Surface Methodology.

    PubMed

    Hou, Wencheng; Zhang, Wei; Chen, Guode; Luo, Yanping

    2016-01-01

    Melaleuca bracteata is a yellow-leaved tree belonging to the Melaleuca genus. Species from this genus are known to be good sources of natural antioxidants, for example, the "tea tree oil" derived from M. alternifolia is used in food processing to extend the shelf life of products. In order to determine whether M. bracteata contains novel natural antioxidants, the components of M. bracteata ethanol extracts were analyzed by gas chromatography-mass spectrometry. Total phenolic and flavonoid contents were extracted and the antioxidant activities of the extracts evaluated. Single-factor experiments, central composite rotatable design (CCRD) and response surface methodology (RSM) were used to optimize the extraction conditions for total phenolic content (TPC) and total flavonoid content (TFC). Ferric reducing power (FRP) and 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH·) scavenging capacity were used as the evaluation indices of antioxidant activity. The results showed that the main components of M. bracteata ethanol extracts are methyl eugenol (86.86%) and trans-cinnamic acid methyl ester (6.41%). The single-factor experiments revealed that the ethanol concentration is the key factor determining the TPC, TFC, FRP and DPPH·scavenging capacity. RSM results indicated that the optimal condition of all four evaluation indices was achieved by extracting for 3.65 days at 53.26°C in 34.81% ethanol. Under these conditions, the TPC, TFC, FRP and DPPH·scavenging capacity reached values of 88.6 ± 1.3 mg GAE/g DW, 19.4 ± 0.2 mg RE/g DW, 2.37 ± 0.01 mM Fe2+/g DW and 86.0 ± 0.3%, respectively, which were higher than those of the positive control, methyl eugenol (FRP 0.97 ± 0.02 mM, DPPH·scavenging capacity 58.6 ± 0.7%) at comparable concentrations. Therefore, the extracts of M. bracteata leaves have higher antioxidant activity, which did not only attributed to the methyl eugenol. Further research could lead to the development of a potent new natural antioxidant. PMID

  14. The effects of prenatal methylmercury exposure on trace element and antioxidant levels in rats following 6-hydroxydopamine-induced neuronal insult.

    PubMed

    Mohamed Moosa, Zulfiah; Daniels, Willie M U; Mabandla, Musa V

    2014-06-01

    Methylmercury (MeHg) is a metal toxin found commonly in the environment. Studies have shown severe neurotoxic effects of MeHg poisoning especially during pregnancy where it crosses the foetoplacental and the blood brain barrier of the foetus leading to neurodevelopmental deficits in the offspring. These deficits may predispose offspring to neurodegenerative diseases later in life. In this study we investigated the effects of prenatal methylmercury exposure (2.5 mg/L in drinking water from GND 1-GND 21) on the trace element status in the brain of adolescent offspring (PND 28). Total antioxidant capacity (TAC) was measured in their blood plasma. In a separate group of animals that was also exposed prenatally to MeHg, 6-hydroydopamine (6-OHDA) was administered at PND 60 as a model of neuronal insult. Trace element and TAC levels were compared before and after 6-OHDA exposure. Prenatal MeHg treatment alone resulted in significantly higher concentrations of zinc, copper, manganese and selenium in the brain of offspring at PND 28 (p < 0.05), when compared to controls. In contrast, brain iron levels in MeHg-exposed adolescent offspring were significantly lower than their controls (p < 0.05). Following 6-OHDA exposure, the levels of iron, zinc, copper and manganese were increased compared to sham-lesioned offspring (p < 0.05). Prenatal MeHg exposure further increased these trace element levels thereby promoting toxicity (p < 0.05). Total antioxidant capacity was not significantly different in MeHg and control groups prior to lesion. However, following 6-OHDA administration, MeHg-exposed animals had a significantly lower TAC than that of controls (p < 0.05). Brain TAC levels were higher in adult male rats than in female rats during adolescence however male rats that had been exposed to MeHg in utero failed to show this increase at PND 74. Prenatal MeHg exposure results in trace element dyshomeostasis in the brain of offspring and reduces total

  15. Finite element model calibration using frequency responses with damping equalization

    NASA Astrophysics Data System (ADS)

    Abrahamsson, T. J. S.; Kammer, D. C.

    2015-10-01

    Model calibration is a cornerstone of the finite element verification and validation procedure, in which the credibility of the model is substantiated by positive comparison with test data. The calibration problem, in which the minimum deviation between finite element model data and experimental data is searched for, is normally characterized as being a large scale optimization problem with many model parameters to solve for and with deviation metrics that are nonlinear in these parameters. The calibrated parameters need to be found by iterative procedures, starting from initial estimates. Sometimes these procedures get trapped in local deviation function minima and do not converge to the globally optimal calibration solution that is searched for. The reason for such traps is often the multi-modality of the problem which causes eigenmode crossover problems in the iterative variation of parameter settings. This work presents a calibration formulation which gives a smooth deviation metric with a large radius of convergence to the global minimum. A damping equalization method is suggested to avoid the mode correlation and mode pairing problems that need to be solved in many other model updating procedures. By this method, the modal damping of a test data model and the finite element model is set to be the same fraction of critical modal damping. Mode pairing for mapping of experimentally found damping to the finite element model is thus not needed. The method is combined with model reduction for efficiency and employs the Levenberg-Marquardt minimizer with randomized starts to achieve the calibration solution. The performance of the calibration procedure, including a study of parameter bias and variance under noisy data conditions, is demonstrated by two numerical examples.

  16. Finite-element impact response of debonded composite turbine blades

    NASA Astrophysics Data System (ADS)

    Dey, Sudip; Karmakar, Amit

    2014-02-01

    This paper investigates on the transient behavior of debonded composite pretwisted rotating shallow conical shells which could be idealized as turbine blades subjected to low velocity normal impact using finite-element method. Lagrange's equation of motion is used to derive the dynamic equilibrium equation and the moderate rotational speeds are considered neglecting the Coriolis effect. An eight-noded isoparametric plate bending element is employed in the finite element formulation incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the impact parameters. The time-dependent equations are solved by using Newmark's time integration scheme. Parametric studies are performed to investigate the effects of triggering parameters like angle of twist, rotational speed, laminate configuration and location of debonding considering low velocity normal impact at the center of eight-layered graphite-epoxy composite cantilevered conical shells with bending stiff ([0o2/{±} 30o]s), torsion stiff ([45°/-45°/-45°/45°]s) and cross-ply ([0°/90°/0°/90°]s) laminate configurations.

  17. Potential of Hydrocotyle vulgaris for phytoremediation of a textile dye: Inducing antioxidant response in roots and leaves.

    PubMed

    Vafaei, F; Movafeghi, A; Khataee, A R; Zarei, M; Salehi Lisar, S Y

    2013-07-01

    The potential of Hydrocotyle vulgaris as an aquatic plant species was evaluated for phytoremediation of C.I. Basic Red 46 (BR46) from nutrient solution. Under the optimized experimental conditions, BR46 was removed up to 95% from incubation medium by H. vulgaris. The ability of the plant in consecutive removal under long term repetitive experiments confirmed the biodegradation process. Accordingly, a number of produced intermediate compounds were identified. An artificial neural network (ANN) model was developed to predict the biodegradation efficiency. A predictive performance (R(2)=0.974) was obtained based on the network results. Interestingly, dye stress enhanced the activity of antioxidant enzymes including superoxide dismutase, peroxidase and catalase in H. vulgaris roots and leaves. Enzymatic responses found to be highly depended on the plant organ and dye concentration in the liquid medium. Overall, the increase in the activity of antioxidant enzymes was much higher in the roots than in the leaves. Nevertheless, no significant increase in the malondialdehyde (MDA) content was detected in both roots and leaves which reflects the high efficiency of antioxidant system in the elimination of reactive oxygen species. PMID:23660490

  18. Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress.

    PubMed

    Sánchez-Rodríguez, E; Romero, L; Ruiz, J M

    2016-01-15

    Polyamines, small aliphatic polycations, have been suggested to play key roles in a number of biological processes. In this paper, attempts were made to investigate the possibility of improving antioxidant response of tomato fruits in relation with endogenous free polyamines content. We studied the reactive oxygen species and polyamines content, and antioxidant and polyamine-biosynthesis enzyme activities in fruits of ungrafted and grafted tomato plants under moderate water stress. We used a drought-tolerant cultivar (Zarina) and drought-sensitive cultivar (Josefina) to obtain reciprocal graft, selfgraft and ungraft plants. Fruits contained higher endogenous polyamine content during the course of the experiment relative to the control, coupled with higher arginine decarboxylase and spermine synthase activities in Zarina ungrafted and ZarxJos. In these cultivars, tomato fruits showed a lower reactive oxygen species generation and higher catalase and superoxide dismutase activities, suggesting that a higher content in polyamines (especially spermine) exerted a positive effect on antioxidant systems. All of these data suggest that spermine leads to more effective reactive oxygen species scavenging (less tissue damage) in tomato fruits, which may function collectively to enhance dehydration tolerance. PMID:26687637

  19. Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater.

    PubMed

    Dhir, Bhupinder; Sharmila, P; Pardha Saradhi, P; Nasim, Sekh Abdul

    2009-09-01

    Salvinia natans possess capacity to accumulate high concentrations of chromium (Cr). Studies were carried out to evaluate physiological efficiency and defensive potential of plant exposed to Cr-rich wastewater. Among photochemical reactions, photosystem I (PS I) and photosystem II (PS II) activity noted an increase in plants exposed to Cr-rich wastewater. Fluorescence ratio F(v)/F(m) depicted no alteration in plants exposed to Cr. The activity of ribulose-1,5-biphosphate carboxylase-oxygenase (Rubisco) noted a decline, while transthylakoidal pH gradient (DeltapH) (correlative of photophosphorylation) showed increase in plants exposed to Cr-rich wastewater. Plants lacked the ability to produce malondialdehyde, but possessed efficient enzymic and non-enzymic antioxidant defense mechanisms that played important role in curtailing oxidative stress. The activities of antioxidant enzymes showed alleviation in plants exposed to Cr-rich wastewater. The levels of cellular antioxidants noted decline suggesting a defensive role in protection against oxidative stress caused by Cr. The present findings suggest that Salvinia possess efficient antioxidant machinery that curtails oxidative stress caused by Cr-rich wastewater and protects photosynthetic machinery from damage. PMID:19409614

  20. Changes in the Heat Stress Response of Laying Hens Following Antioxidant Supplementation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat stress (HS) is a major contributor to mortality and other welfare issues in the poultry industry. The objective of this study was to determine the benefits of an antioxidant supplement during HS. One hundred and twenty White Leghorns at 32 wk of age were randomly transferred to two adjacent roo...

  1. Antioxidant therapeutic targets in COPD.

    PubMed

    Rahman, Irfan; Kilty, Iain

    2006-06-01

    Oxidative stress and chronic inflammation are important features in the pathogenesis of chronic obstructive pulmonary disease (COPD). Oxidative stress has important consequences for several elements of lung physiology and for the pathogenesis of COPD, including oxidative inactivation of antiproteases and surfactants, mucus hypersecretion, membrane lipid peroxidation, alveolar epithelial injury, remodeling of extracellular matrix, and apoptosis. Therefore, targeting oxidative stress with antioxidants or boosting the endogenous levels of antioxidants is likely to be beneficial in the treatment of COPD. Antioxidant and/or anti-inflammatory agents such as thiol molecules (glutathione and mucolytic drugs, such as N-acetyl-L-cysteine and N-acystelyn), dietary polyphenol (curcumin-diferuloylmethane, a principal component of turmeric), resveratrol (a flavanoid found in red wine), green tea (theophylline and epigallocatechin-3- gallate), ergothioneine (xanthine and peroxynitrite inhibitor), quercetin, erdosteine and carbocysteine lysine salt, have been reported to control NF-kappaB activation, regulation of glutathione biosynthesis genes, chromatin remodeling and hence inflammatory gene expression. Specific spin traps such as alpha-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), manganese (III) meso-tetrakis (N,N'-diethyl-1,3-imidazolium-2-yl) porphyrin (AEOL 10150 and AEOL 10113), and a SOD mimetic M40419 have also been reported to inhibit cigarette smoke-induced inflammatory responses in vivo. Since a variety of oxidants, free radicals and aldehydes are implicated in the pathogenesis of COPD it is possible that therapeutic administration of multiple antioxidants will be effective in the treatment of COPD. Various approaches to enhance lung antioxidant capacity and clinical trials of antioxidant compounds in COPD are discussed. PMID:16787173

  2. Evaluation of Oxidative Stress Response Related Genetic Variants, Pro-oxidants, Antioxidants and Prostate Cancer

    PubMed Central

    Lavender, Nicole; Hein, David W.; Brock, Guy; Kidd, La Creis R.

    2015-01-01

    Background Oxidative stress and detoxification mechanisms have been commonly studied in Prostate Cancer (PCa) due to their function in the detoxification of potentially damaging reactive oxygen species (ROS) and carcinogens. However, findings have been either inconsistent or inconclusive. These mixed findings may, in part, relate to failure to consider interactions among oxidative stress response related genetic variants along with pro- and antioxidant factors. Methods We examined the effects of 33 genetic and 26 environmental oxidative stress and defense factors on PCa risk and disease aggressiveness among 2,286 men from the Cancer Genetic Markers of Susceptibility project (1,175 cases, 1,111 controls). Single and joint effects were analyzed using a comprehensive statistical approach involving logistic regression, multi-dimensionality reduction, and entropy graphs. Results Inheritance of one CYP2C8 rs7909236 T or two SOD2 rs2758331 A alleles was linked to a 1.3- and 1.4-fold increase in risk of developing PCa, respectively (p-value = 0.006–0.013). Carriers of CYP1B1 rs1800440GG, CYP2C8 rs1058932TC and, NAT2 (rs1208GG, rs1390358CC, rs7832071TT) genotypes were associated with a 1.3 to 2.2-fold increase in aggressive PCa [p-value = 0.04–0.001, FDR 0.088–0.939]. We observed a 23% reduction in aggressive disease linked to inheritance of one or more NAT2 rs4646247 A alleles (p = 0.04, FDR = 0.405). Only three NAT2 sequence variants remained significant after adjusting for multiple hypotheses testing, namely NAT2 rs1208, rs1390358, and rs7832071. Lastly, there were no significant gene-environment or gene-gene interactions associated with PCa outcomes. Conclusions Variations in genes involved in oxidative stress and defense pathways may modify PCa. Our findings do not firmly support the role of oxidative stress genetic variants combined with lifestyle/environmental factors as modifiers of PCa and disease progression. However, additional multi-center studies poised

  3. Antioxidative responses in roots and shoots of creeping bentgrass under high temperature: effects of nitrogen and cytokinin.

    PubMed

    Wang, Kehua; Zhang, Xunzhong; Ervin, Erik

    2012-03-15

    It has been previously reported that either nitrogen (N) or cytokinin (CK) applications can alleviate heat stress injury on creeping bentgrass, with some studies reporting enhanced antioxidant metabolism being related to stress protection. The objective of this research was to investigate the simultaneous effects of CK and N on the antioxidant enzyme activity and isoforms of heat stressed creeping bentgrass. 'L-93' creeping bentgrass treated with three rates of CK (trans-zeatin riboside, tZR, 0, 10 and 100μM, designated by CK0, 10, and 100) and two nitrogen rates (2.5 and 7.5kgNha(-1) biweekly, low and high N) in a complete factorial arrangement was maintained in a 38/28°C (day/night) growth chamber for 28d and then harvested. Grass grown at high N (averaged across CK rates) had higher O(2)(-) production, H(2)O(2) concentration, and malondialdehyde content in roots. The activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and guaiacol peroxidase (POD) in roots were enhanced 19%, 22%, and 24%, respectively, by high N relative to low N. Twenty-eight days of heat stress resulted in either the development of new isoforms or enhanced isoform intensities of SOD, APX, and POD in roots compared to plant responses prior to heat stress. However, no apparent differences were observed across treatments. Both SOD and POD showed different isoform patterns between roots and shoots, suggesting the function of these isoforms could be tissue specific. Interestingly, no CK effects on these antioxidant parameters were found in this experiment. These results demonstrate the impacts of N on antioxidant metabolism of creeping bentgrass under heat stress with some differences between roots and shoots, but no simultaneous impacts of CK and N. PMID:22226339

  4. Glyphosate-based herbicide exposure causes antioxidant defence responses in the fruit fly Drosophila melanogaster.

    PubMed

    de Aguiar, Lais Mattos; Figueira, Fernanda Hernandes; Gottschalk, Marco Silva; da Rosa, Carlos Eduardo

    2016-01-01

    Glyphosate is a non-selective and post-emergent herbicide that affects plant growth. Animal exposure to this herbicide can lead to adverse effects, such as endocrine disruption, oxidative stress and behavioural disorders. Drosophilids have been utilized previously as an effective tool in toxicological tests. In the present study, the effects of a glyphosate-based herbicide (Roundup [Original]) were investigated regarding oxidative stress, the antioxidant defence system and acetylcholinesterase (AChE) activity in Drosophila melanogaster. Flies (of both genders) that were 1 to 3days old were exposed to different glyphosate concentrations (0.0mg/L=control, 1.0mg/L, 2.0mg/L, 5.0mg/L and 10.0mg/L) in the diet for 24h and 96h. After the exposure periods, reactive oxygen species (ROS) levels, antioxidant capacity against peroxyl radicals (ACAP) and lipid peroxidation (LPO) levels were quantified. In addition, the mRNA expression of antioxidant genes (i.e., keap1, sod, sod2, cat, irc, gclc, gclm, gss, trxt, trxr-1 and trxr-2) was evaluated via RT-PCR. Additionally, AChE activity was evaluated only after the 96h exposure period. The results indicated that Roundup exposure leads to a reduction in ROS levels in flies exposed for 96h. ACAP levels and gene expression of the antioxidant defence system exhibited an increase from 24h, while LPO did not show any significant alterations in both exposure periods. AChE activity was not affected following Roundup exposure. Our data suggest that Roundup exposure causes an early activation of the antioxidant defence system in D. melanogaster, and this can prevent subsequent damage caused by ROS. PMID:26980113

  5. Antioxidant and oxidative stress responses of sojourners at high altitude in different climatic temperatures

    NASA Astrophysics Data System (ADS)

    Sinha, Sanchari; Singh, Som Nath; Saha, Mantu; Kain, T. C.; Tyagi, A. K.; Ray, Uday Sankar

    2010-01-01

    High altitude (HA) is a multi-stressor environment comprising hypobaric hypoxia and cold. Climatic temperature varies with seasonal variation at HA. The present study was undertaken to investigate the effect of ambient temperature on antioxidant profile among sojourners at HA. The study was conducted on sojourners exposed to an altitude of 4,560 m in two different seasons and categorized into two groups (SOJ 1, n = 63, ambient temp. at HA: -6º to +10ºC; SOJ 2, n = 81, ambient temp. at HA: 3º-22ºC). Blood was collected at sea level (SL) and after 4 weeks of HA exposure. Antioxidant enzymes showed significant upregulation in SOJ 2 at HA. In SOJ 1, superoxide dismutase and glutathione peroxidase showed significant upregulation but catalase and glutathione reductase showed significant decrease at HA. Non-enzymatic antioxidants showed significant reduction in SOJ 1 whereas a sustained antioxidant profile was observed in SOJ 2 at HA. Oxidative stress markers showed higher levels in SOJ 1 than SOJ 2 at HA. Differences observed between SOJ 1 and SOJ 2 at HA may be the consequence of different environmental temperatures. Cold stress was higher in SOJ 1 as evidenced from the significantly lower oral temperature in SOJ 1 as compared to SOJ 2. Cold- and hypoxia-induced increase in energy expenditure was significantly high in SOJ 1 than SOJ 2. To conclude, chronic exposure to hypoxia in moderate climatic temperature has a potential preconditioning effect on antioxidant system, but exposure to both cold and hypoxia causes greater oxidative stress due to altered metabolic rate.

  6. Are diverse signalling pathways integrated in the regulation of arabidopsis antioxidant defence gene expression in response to excess excitation energy?

    PubMed Central

    Mullineaux, P; Ball, L; Escobar, C; Karpinska, B; Creissen, G; Karpinski, S

    2000-01-01

    When low-light-grown Arabidopsis rosettes are partially exposed to excess light (EL), the unexposed leaves become acclimated to excess excitation energy (EEE) and consequent photo-oxidative stress. This phenomenon, termed systemic acquired acclimation (SAA), is associated with redox changes in the proximity of photosystem II, changes in foliar H2O2 content and induction of antioxidant defences. The induction of extra-plastidial antioxidant systems is important in the protection of the chloroplast under EL conditions. A larger range of transcripts encoding different antioxidant defence enzymes may be induced in the systemically acclimated leaves and these include those encoded by the glutathione peroxidase (GPX2) and glutathione-S-transferase (GST) genes, which are also highly induced in the hypersensitive response and associated systemic acquired resistance (SAR) in incompatible plant-pathogen interactions. Furthermore, the expression of the SAR-inducible pathogenesis-related protein gene, PR2, is enhanced in SAA leaves. Wounded leaf tissue also shows enhanced systemic induction of a cytosolic ascorbate peroxidase gene (APX2) under EL conditions. These and other considerations, suggest H2O2 and other reactive oxygen species (ROS) could be the common factor in signalling pathways for diverse environmental stresses. These effects may be mediated by changes in the level and redox state of the cellular glutathione pool. Mutants with constitutive expression of a normally EL-inducible APX2 gene have much reduced levels of foliar glutathione. The expression of APX1 and APX3, encoding cytosolic and peroxisome-associated isoforms, respectively, are also under phytochrome-A-mediated control. The expression of these genes is tightly linked to the greening of plastids in etiolated seedlings. These data suggest that part of the developmental processes that bring about the acclimation of leaves to high light includes the configuration of antioxidant defences. Therefore, the

  7. Changes in ultrastructure and responses of antioxidant systems of algae (Dunaliella salina) during acclimation to enhanced ultraviolet-B radiation.

    PubMed

    Tian, Jiyuan; Yu, Juan

    2009-12-01

    Because of depletion of the stratospheric ozone layer, levels of solar ultraviolet-B (UV-B) radiation (280-315 nm), which penetrates the water column to an ecologically-significant depth, are increasing. In order to assess changes in ultrastructure and responses of antioxidant systems of algae during acclimation to enhanced ultraviolet-B radiation, Dunaliella salina was treated with higher dose of UV-B radiation (13.2 kJm(-2) d(-1) dose) in this study. As compared to the control panel (8.8 kJm(-2) d(-1)), the treatment D. salina had many changes in ultrastructures: (1) thylakoids became swelled, and some of them penetrated into the pyrenoid; (2) lipid globules accumulated; (3) the amounts of starch grains increased; (4) cristae of mitochondria disintegrated; (5) inclusions in vacuoles reduced; and (6) cisternae of Golgi dictyosomes became loose and swollen. Enhanced UV-B irradiation also induced different responses of the antioxidant systems in D. salina: (1) contents of TBARS (thiobarbituric acid reacting substance) and H(2)O(2) increased significantly (p<0.05); (2) levels of MAAs (mycosporine-like amino acids) increased at the beginning and subsequently decreased, and finally they leveled off at lower values; (3) there were not apparent variations for carotenoid contents, and contents of chlorophyll a presented a trend of initial increase and ultimate decrease; (4) both ascorbate and glutathione contents increased significantly (p<0.05); and (5) for the enzyme activities, POD activities increased remarkably (p<0.05), and SOD activities declined apparently (p<0.05), and CAT activity in D. salina had slight variations (p>0.05). In addition, growth curve displayed that enhanced UV-B radiation prominently inhibited increase of cell concentration when compared with control panel (p<0.05). Our results indicated that enhanced UV-B radiation caused ultrastructural changes of D. salina and induced different responses of antioxidant systems in D. salina. PMID:19818642

  8. Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM).

    PubMed

    Belwal, Tarun; Dhyani, Praveen; Bhatt, Indra D; Rawal, Ranbeer Singh; Pande, Veena

    2016-09-15

    This study for the first time designed to optimize the extraction of phenolic compounds and antioxidant potential of Berberis asiatica fruits using response surface methodology (RSM). Solvent selection was done based on the preliminary experiments and a five-factors-three-level, Central Composite Design (CCD). Extraction temperature (X1), sample to solvent ratio (X3) and solvent concentration (X5) significantly affect response variables. The quadratic model well fitted for all the responses. Under optimal extraction conditions, the dried fruit sample mixed with 80% methanol having 3.0 pH in a ratio of 1:50 and the mixture was heated at 80 °C for 30 min; the measured parameters was found in accordance with the predicted values. High Performance Liquid Chromatography (HPLC) analysis at optimized condition reveals 6 phenolic compounds. The results suggest that optimization of the extraction conditions is critical for accurate quantification of phenolics and antioxidants in Berberis asiatica fruits, which may further be utilized for industrial extraction procedure. PMID:27080887

  9. Stress in Phycomyces blakesleeanus by glucose starvation and acetate growth: response of the antioxidant system and reserve carbohydrates.

    PubMed

    Rúa, Javier; de Castro, Cristina; de Arriaga, Dolores; García-Armesto, María Rosario; Busto, Félix; del Valle, Pilar

    2014-01-01

    The objective of this study was to analyze the response of Phycomyces blakesleeanus to glucose starvation and acetate growth stress. At the onset of the exponential growth phase, the fungus shows a high tolerance to both stresses, being higher for the glucose starvation. In both stresses we have found higher activities of catalase and glutathione peroxidase, and a decrease of the pools of D-erythroascorbate (D-erythroascorbate+D-erythroascorbate monoglucoside) and glutathione (GSH+GSSG), while the intracellular GSH/GSSG redox balance becomes more reducing. Gallic acid was not detected under both stresses. Glycogen breakdown and the high levels of trehalose seem to be part of the stress response. Both stress, under the conditions of this study, seem to lead to a qualitatively similar response in P. blakesleeanus, with regard to the behavior of antioxidant system, the content of secondary metabolites and the role of the reserve carbohydrates. PMID:24556073

  10. Moral Responsibility: The Missing Element in Educational Leadership

    ERIC Educational Resources Information Center

    Vasillopulos, Christopher; Denney, Morgan

    2013-01-01

    We intend to deepen the understanding of leadership in general and educational leadership in particular by an analysis of Chester Barnard's (1938) concept of executive responsibility. By so doing we believe that we will reveal how an educational leader can foster the environment in which competent teachers can optimize their students' learning…

  11. Implications of Chronic Daily Anti-Oxidant Administration on the Inflammatory Response to Intracortical Microelectrodes

    PubMed Central

    Potter-Baker, Kelsey A.; Stewart, Wade G.; Tomaszewski, William H.; Wong, Chun T.; Meador, William D.; Ziats, Nicholas P.; Capadona, Jeffrey R.

    2015-01-01

    Objective Oxidative stress events have been implicated to occur and facilitate multiple failure modes of intracortical microelectrodes. The goal of the present study was to evaluate the ability of a sustained concentration of an anti-oxidant and to reduce oxidative stress-mediated neurodegeneration for the application of intracortical microelectrodes. Approach Non-functional microelectrodes were implanted into the cortex of male Sprague Dawley rats for up to sixteen weeks. Half of the animals received a daily intraperitoneal injection of the natural anti-oxidant resveratrol, at 30 mg/kg. The study was designed to investigate the biodistribution of the resveratrol, and the effects on neuroinflammation/neuroprotection following device implantation. Main Results Daily maintenance of a sustained range of resveratrol throughout the implantation period resulted in fewer degenerating neurons in comparison to control animals at both two and sixteen weeks post implantation. Initial and chronic improvements in neuronal viability in resveratrol-dosed animals were correlated with significant reductions in local superoxide anion accumulation around the implanted device at two weeks after implantation. Controls, receiving only saline injections, were also found to have reduced amounts of accumulated superoxide anion locally and less neurodegeneration than controls at sixteen weeks post-implantation. Despite observed benefits, thread-like adhesions were found between the liver and diaphragm in resveratrol-dosed animals. Significance Overall, our chronic daily anti-oxidant dosing scheme resulted in improvements in neuronal viability surrounding implanted microelectrodes, which could result in improved device performance. However, due to the discovery of thread-like adhesions, further work is still required to optimize a chronic anti-oxidant dosing regime for the application of intracortical microelectrodes. PMID:26015427

  12. Implications of chronic daily anti-oxidant administration on the inflammatory response to intracortical microelectrodes

    NASA Astrophysics Data System (ADS)

    Potter-Baker, Kelsey A.; Stewart, Wade G.; Tomaszewski, William H.; Wong, Chun T.; Meador, William D.; Ziats, Nicholas P.; Capadona, Jeffrey R.

    2015-08-01

    Objective. Oxidative stress events have been implicated to occur and facilitate multiple failure modes of intracortical microelectrodes. The goal of the present study was to evaluate the ability of a sustained concentration of an anti-oxidant and to reduce oxidative stress-mediated neurodegeneration for the application of intracortical microelectrodes. Approach. Non-functional microelectrodes were implanted into the cortex of male Sprague Dawley rats for up to sixteen weeks. Half of the animals received a daily intraperitoneal injection of the natural anti-oxidant resveratrol, at 30 mg kg-1. The study was designed to investigate the biodistribution of the resveratrol, and the effects on neuroinflammation/neuroprotection following device implantation. Main results. Daily maintenance of a sustained range of resveratrol throughout the implantation period resulted in fewer degenerating neurons in comparison to control animals at both two and sixteen weeks post implantation. Initial and chronic improvements in neuronal viability in resveratrol-dosed animals were correlated with significant reductions in local superoxide anion accumulation around the implanted device at two weeks after implantation. Controls, receiving only saline injections, were also found to have reduced amounts of accumulated superoxide anion locally and less neurodegeneration than controls at sixteen weeks post-implantation. Despite observed benefits, thread-like adhesions were found between the liver and diaphragm in resveratrol-dosed animals. Significance. Overall, our chronic daily anti-oxidant dosing scheme resulted in improvements in neuronal viability surrounding implanted microelectrodes, which could result in improved device performance. However, due to the discovery of thread-like adhesions, further work is still required to optimize a chronic anti-oxidant dosing regime for the application of intracortical microelectrodes.

  13. Nicotine mediates expression of genes related to antioxidant capacity and oxidative stress response in HIV-1 transgenic rat brain.

    PubMed

    Song, Guohua; Nesil, Tanseli; Cao, Junran; Yang, Zhongli; Chang, Sulie L; Li, Ming D

    2016-02-01

    Oxidative stress plays an important role in the progression of HIV-1 infection. Nicotine can either protect neurons from neurodegeneration or induce oxidative stress, depending on its dose and degree of oxidative stress impairment. However, the relationship between nicotine and oxidative stress in the HIV-1-infected individuals remains largely unknown. The purpose of this study was to determine the effect of nicotine on expression of genes related to the glutathione (GSH)-centered antioxidant system and oxidative stress in the nucleus accumbens (NAc) and ventral tegmental area (VTA) of HIV-1 transgenic (HIV-1Tg) and F344 control rats. Adult HIV-1Tg and F344 rats received nicotine (0.4 mg/kg, base, s.c.) or saline injections once per day for 27 days. At the end of treatment, various brain regions including the NAc and VTA were collected from each rat. Following total RNA extraction and complementary DNA (cDNA) synthesis of each sample, quantitative reverse transcription PCR (RT-PCR) analysis was performed for 43 oxidative-stress-related genes. Compared with F344 control rats, HIV-1Tg rats showed a significant downregulation of genes involved in ATPase and cyctochrome oxidase at the messenger RNA (mRNA) level in both regions. Further, we found a significant downregulation of Gstm5 in the NAc and upregulation of Cox1, Cox3, and Gsta6 in the VTA of HIV-1Tg rats. HIV-1Tg rats showed brain-region-specific responses to chronic nicotine treatment. This response resulted in a change in the expression of genes involved in antioxidant mechanisms including the downregulation of genes such as Atp5h, Calml1, Gpx7, Gstm5, Gsr, and Gsta6 and upregulation of Sod1 in the NAc, as well as downregulation of genes like Cox5a, Gpx4, Gpx6, Gpx7, Gstm5, and Sod1 in the VTA of HIV-1Tg rats. Together, we conclude that chronic nicotine treatment has a dual effect on the antioxidant defense system and oxidative-stress-induced apoptosis signaling in HIV-1Tg rats. These findings suggest that

  14. Bentazon triggers the promotion of oxidative damage in the Portuguese ricefield cyanobacterium Anabaena cylindrica: response of the antioxidant system.

    PubMed

    Galhano, Victor; Peixoto, Francisco; Gomes-Laranjo, José

    2010-10-01

    Rice fields are frequently exposed to environmental contamination by herbicides and cyanobacteria, as primary producers of these aquatic ecosystems, are adversely affected. Anabaena cylindrica is a cyanobacterium with a significantly widespread occurrence in Portuguese rice fields. This strain was studied throughout 72 h in laboratory conditions for its stress responses to sublethal concentrations (0.75-2 mM) of bentazon, a selective postemergence herbicide recommended for integrated weed management in rice, with special reference to oxidative stress, role of proline and intracellular antioxidant enzymes in herbicide-induced free radicals detoxification. Activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione S-transferase (GST) increased in a time- and herbicide dose-response manner and were higher than those in the control samples after 72 h. A time- and concentration-dependent increase of malondialdehyde (MDA) levels and the enhanced cell membrane leakage following bentazon exposure are indicative of lipid peroxidation, free radicals formation, and oxidative damage, while increased amounts of SOD, CAT, APX, GST, and proline indicated their involvement in free radical scavenging mechanisms. The appreciable decline in the reduced glutathione (GSH) pool after 72 h at higher bentazon concentrations could be explained by the reduction of the NADPH-dependent glutathione reductase (GR) activity. The obtained results suggested that the alterations of antioxidant systems in A. cylindrica might be useful biomarkers of bentazon exposure. As the toxic mechanism of bentazon is a complex phenomenon, this study also adds relevant findings to explain the oxidative stress pathways of bentazon promoting oxidative stress in cyanobacteria. PMID:20549627

  15. Characterization of the nutraceutical quality and antioxidant activity in bell pepper in response to grafting.

    PubMed

    Chávez-Mendoza, Celia; Sánchez, Esteban; Carvajal-Millán, Elizabeth; Muñoz-Márquez, Ezequiel; Guevara-Aguilar, Alexandro

    2013-01-01

    The grafting of fruits and vegetables influences fruit quality. The aim of the present work was to assess the effect of the rootstock and the scion on the antioxidant activity and the content in vitamin C, total phenols, lycopene and β-carotene of bell pepper. The cultivars Fascinato and Jeanette were used as scion and Terrano was used as rootstock. Four harvests in the production cycle of the vegetable were analyzed in a cultivation system under shading nets. The results indicate statistical differences in the content of these bioactive compounds between the varieties, between grafting and not grafting and between sampling dates (p ≤ 0.05). The vitamin C content, β-carotene, and antioxidant capacity proved significantly higher in Fascinato than in Janette. On average, grafting increased β-carotene and vitamin C concentrations and improved the antioxidant capacity, but had no influence on the total phenol or lycopene contents. It is concluded that grafting to the rootstock Terrano improves the nutritional quality of the fruit produced in both varieties of bell pepper studied. PMID:24352022

  16. Isolation and identification of compounds responsible for antioxidant capacity of Euryale ferox seeds.

    PubMed

    Song, Chang-Wei; Wang, Shu-Mei; Zhou, Li-Li; Hou, Fan-Fan; Wang, Kai-Jin; Han, Quan-Bin; Li, Ning; Cheng, Yong-Xian

    2011-02-23

    Euryale ferox seed is consumed medicinally or for food in China. The present study revealed it to contain significant antioxidant activity, which may be associated with its medical applications as a proteinuria inhibitor of diabetic nephropathy. This study resulted in the identification of 3 new sesquineolignans, named euryalins A-C (1-3), and 16 known compounds, which were all first isolated from this plant apart from 5,7,4-trihydroxy-flavanone. The antioxidant potential of the partial isolates was evaluated using the DPPH radical scavenging assay and mesangial cellular assay. Compounds 2, rel-(2α,3β)-7-O-methylcedrusin (4), syringylglycerol-8-O-4-(sinapyl alcohol) ether (5), and (+)-syringaresinol (7) were found to be most active on DPPH assay, whereas compounds 2, 4, 7, (1R,2R,5R,6S)-2-(3,4-dimethoxyphenyl)-6-(3,4-dihydroxyphenyl)-3,7-dioxabicyclo[3.3.0]octane, and buddlenol E could significantly inhibit high glucose-stimulated reactive oxygen species production in mesangial cells. The results suggested that E. ferox seed could be considered as an excellent source of natural antioxidants and is useful in the prevention of diabetic nephropathy. PMID:21280632

  17. Divergences in hormonal and enzymatic antioxidant responses of two Chicory ecotypes to salt stress.

    PubMed

    Ghanaatiyan, Kimiya; Sadeghi, Hossein

    2015-06-15

    To evaluate the effect of salt stress on seed germination, early growth, antioxidant enzymes activity and ABA content of chicory ecotypes (Cichorium intybus) a factorial experiment was conducted at College of Agriculture, Shiraz University in 2014 based on completely randomized design with four replications. The treatments comprised five salinity levels (tapwater, 3, 6, 9, 12 dS m(-1)) of sodium chloride on Shirazi-black and white chicory ecotypes. The results showed that germination characteristics and primary seedling growth were decreased in both ecotypes with increasing in salinity severity. The effects of salinity on radicle and plumule length as well as seedling weight were the same as its effects on seed germination. The effect of salt stress on antioxidant enzymes activity (especially catalase) and ABA content were significant which they were enhanced with increasing salinity level; Black ecotype performs better than the white one under high salinity, as indicated by a lower decreasing in germination characteristics and primary growth and higher antioxidant enzymes activity as well as ABA content. These facts should be taken into consideration in the economic cultivation of this valuable horticultural and medicinal plant and this data would be useful for the crop breeding projects. PMID:26075934

  18. Response of antioxidant defences to Zn stress in three duckweed species.

    PubMed

    Uruç Parlak, Kadiriye; Demirezen Yilmaz, Dilek

    2012-11-01

    In the plants, Lemna gibba, Lemna minor and Spirodela polyrrhiza L., the effect of different concentrations of zinc (0.01, 0.05, 0.1, 0.5 and 1.5mgL(-1) Zn) applied for four day was assessed by measuring changes in the chlorophyll, protein, malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) and guiacolperoxidase (GPX) activity of the plants. According to results, Zn contents in plants increased with increasing Zn supply levels. The level of photosynthetic pigments and soluble proteins reduced only upon exposure to high Zn concentrations. At the same time, the level of malondialdehyde (MDA) increased with increasing Zn concentration. These results suggested an alleviation of stress that was possibly the result of antioxidants such as catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) as well as guaiacol peroxidise (GPOX), which increased linearly with increasing Zn levels. Cellular antioxidant levels showed an increase suggesting a defensive mechanism to preserve against oxidative stress given rise to by Zn. Besides, the proline amount in L. gibba, L. minor and S. polyrrhiza increased with increasing zinc levels. These conclusions proposed that L. gibba, L. minor and S. polyrrhiza are supplied with an efficient antioxidant mechanism against Zn-induced oxidative stress which saves the plant's photosynthetic machinery from damage. It is concluded that higher zinc levels cause oxidative stress in L. gibba, L. minor and S. polyrrhiza cells and may reason membrane damage through production of ROS and interferes with chlorophyll metabolism. PMID:23009815

  19. Design of responsive materials using topologically interlocked elements

    NASA Astrophysics Data System (ADS)

    Molotnikov, A.; Gerbrand, R.; Qi, Y.; Simon, G. P.; Estrin, Y.

    2015-02-01

    In this work we present a novel approach to designing responsive structures by segmentation of monolithic plates into an assembly of topologically interlocked building blocks. The particular example considered is an assembly of interlocking osteomorphic blocks. The results of this study demonstrate that the constraining force, which is required to hold the blocks together, can be viewed as a design parameter that governs the bending stiffness and the load bearing capacity of the segmented structure. In the case where the constraining forces are provided laterally using an external frame, the maximum load the assembly can sustain and its stiffness increase linearly with the magnitude of the lateral load applied. Furthermore, we show that the segmented plate with integrated shape memory wires employed as tensioning cables can act as a smart structure that changes its flexural stiffness and load bearing capacity in response to external stimuli, such as heat generated by the switching on and off an electric current.

  20. Antioxidant Responses in Relation to Persistent Organic Pollutants and Metals in a Low- and a High-Exposure Population of Seabirds.

    PubMed

    Fenstad, Anette A; Moody, A John; Öst, Markus; Jaatinen, Kim; Bustnes, Jan O; Moe, Børge; Hanssen, Sveinn A; Gabrielsen, Kristin M; Herzke, Dorte; Lierhagen, Syverin; Jenssen, Bjørn M; Krøkje, Åse

    2016-05-01

    Oxidative stress occurs when there is an imbalance between the production of reactive oxygen species (ROS) and antioxidant defense. Exposure to pollutants may increase ROS and affect antioxidant levels, and the resulting oxidative stress may negatively affect both reproduction and survival. We measured concentrations of 18 persistent organic pollutants (POPs) and 9 toxic elements in blood, as well as total antioxidant capacity (TAC), total glutathione (tGSH), and carotenoids in plasma of Baltic and Arctic female common eiders (Somateria mollissima) (N = 54) at the end of their incubation-related fasting. The more polluted Baltic population had higher TAC and tGSH concentrations compared to the Arctic population. Carotenoid levels did not differ between populations. The effect of mixtures of pollutants on the antioxidants was assessed, and the summed molar blood concentrations of 14 POPs were positively related to TAC. There was no significant relationship between the analyzed pollutants and tGSH concentrations. The adaptive improvement of the antioxidant defense system in the Baltic population may be a consequence of increased oxidative stress. However, both increased oxidative stress and energy allocation toward antioxidant defense may have adverse consequences for Baltic eiders at the incubation stage, when energy resources reach an annual minimum due to incubation-related fasting. PMID:27050285

  1. A High Antioxidant Spice Blend Attenuates Postprandial Insulin and Triglyceride Responses and Increases Some Plasma Measures of Antioxidant Activity in Healthy, Overweight Men123

    PubMed Central

    Skulas-Ray, Ann C.; Kris-Etherton, Penny M.; Teeter, Danette L.; Chen, C-Y. Oliver; Vanden Heuvel, John P.; West, Sheila G.

    2011-01-01

    There is much interest in the potential of dietary antioxidants to attenuate in vivo oxidative stress, but little characterization of the time course of plasma effects exists. Culinary spices have demonstrated potent in vitro antioxidant properties. The objective of this study was to examine whether adding 14 g of a high antioxidant spice blend to a 5060-kJ (1200 kcal) meal exerted significant postprandial effects on markers of plasma antioxidant status and metabolism. Healthy overweight men (n = 6) consumed a control and spiced meal in a randomized crossover design with 1 wk between testing sessions. Blood was sampled prior to the meal and at 30-min intervals for 3.5 h (total of 8 samples). Mixed linear models demonstrated a treatment × time interaction (P < 0.05) for insulin and TG, corresponding with 21 and 31% reductions in postprandial levels with the spiced meal, respectively. Adding spices to the meal significantly increased the ferric reducing antioxidant power, such that postprandial increases following the spiced meal were 2-fold greater than after the control meal (P = 0.009). The hydrophilic oxygen radical absorbance capacity (ORAC) of plasma also was increased by spices (P = 0.02). There were no treatment differences in glucose, total thiols, lipophilic ORAC, or total ORAC. The incorporation of spices into the diet may help normalize postprandial insulin and TG and enhance antioxidant defenses. PMID:21697300

  2. 33 CFR Appendix C to Part 155 - Training Elements for Oil Spill Response Plans

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Training Elements for Oil Spill.... 155, App. C Appendix C to Part 155—Training Elements for Oil Spill Response Plans 1. General 1.1The... capabilities of the contracted oil spill removal organizations and the procedures to notify and activate...

  3. 33 CFR Appendix C to Part 155 - Training Elements for Oil Spill Response Plans

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Training Elements for Oil Spill.... 155, App. C Appendix C to Part 155—Training Elements for Oil Spill Response Plans 1. General 1.1The... capabilities of the contracted oil spill removal organizations and the procedures to notify and activate...

  4. 33 CFR Appendix C to Part 155 - Training Elements for Oil Spill Response Plans

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Training Elements for Oil Spill.... 155, App. C Appendix C to Part 155—Training Elements for Oil Spill Response Plans 1. General 1.1The... capabilities of the contracted oil spill removal organizations and the procedures to notify and activate...

  5. 33 CFR Appendix C to Part 155 - Training Elements for Oil Spill Response Plans

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Training Elements for Oil Spill.... 155, App. C Appendix C to Part 155—Training Elements for Oil Spill Response Plans 1. General 1.1The... capabilities of the contracted oil spill removal organizations and the procedures to notify and activate...

  6. 33 CFR Appendix C to Part 155 - Training Elements for Oil Spill Response Plans

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Training Elements for Oil Spill.... 155, App. C Appendix C to Part 155—Training Elements for Oil Spill Response Plans 1. General 1.1The... capabilities of the contracted oil spill removal organizations and the procedures to notify and activate...

  7. Analysis of the antioxidant response of Nicotiana benthamiana to infection with two strains of Pepper mild mottle virus

    PubMed Central

    Hakmaoui, A.; Pérez-Bueno, M. L.; Barón, M.

    2012-01-01

    The present study was carried out to investigate the role of reactive oxygen species (ROS) metabolism in symptom development and pathogenesis in Nicotiana benthamiana plants upon infection with two strains of Pepper mild mottle virus, the Italian (PMMoV-I) and the Spanish (PMMoV-S) strains. In this host, it has been shown that PMMoV-I is less virulent and plants show the capability to recover 21 d after inoculation. Analyses of oxidative stress biomarkers, ROS-scavenging enzyme activities, and antioxidant compounds were conducted in plants at different post-infection times. Only PMMoV-I stimulated a defence response through: (i) up-regulation of different superoxide dismutase isozymes; (ii) maintenance of adequate levels of three peroxiredoxins (2-Cys Prx, Prx IIC, and Prx IIF); and (iii) adjustments in the glutathione pool to maintain the total glutathione content. Moreover, there was an increase in the level of oxidized glutathione and ascorbate in the recovery phase of PMMoV-I-infected plants. The antioxidant response and the extent of oxidative stress in N. benthamiana plants correlates to: (i) the severity of the symptoms elicited by either strain of PMMoV; and (ii) the high capacity of PMMoV-I-infected plants for symptom recovery and delayed senescence, compared with PMMoV-S-infected plants. PMID:22915745

  8. Acute toxicity of carbamazepine to juvenile rainbow trout (Oncorhynchus mykiss): effects on antioxidant responses, hematological parameters and hepatic EROD.

    PubMed

    Li, Zhi-Hua; Zlabek, Vladimir; Velisek, Josef; Grabic, Roman; Machova, Jana; Kolarova, Jitka; Li, Ping; Randak, Tomas

    2011-03-01

    Awareness of residual pharmaceutically active compounds (PhACs) in the aquatic environment is growing as investigations into these pollutants are increasing and analytical detection techniques are improving. However, the toxicological effects of PhACs have not been adequately researched. In this study, the toxic effects of carbamazepine (CBZ), an anticonvulsant drug commonly present in surface and groundwater, was studied in juvenile rainbow trout, Oncorhynchus mykiss, by acute semi-static bioassay. Blood parameters, liver xenobiotic-metabolizing response and tissue antioxidant status were evaluated. Compared to the control group, fish exposed to CBZ (96 h LC50) showed significantly higher Er, Hb, MCHC, monocytes, neutrophil granulocytes and plasma enzymes activity, and significantly lower MCV and lymphocytes. CF and HSI were not significantly different among groups such as hepatic EROD. SOD, CAT, GPx and GR activity was significantly higher in liver of experimental groups, but decreased significantly in brain and gill. In general, antioxidant enzyme activity in intestine and muscle was less evident than in liver. Oxidative stress indices (levels of LPO and CP) were significantly higher in gill and brain, despite a trend to increased values were manifested in the remaining tissues. In short, CBZ-induced stress responses in different tissues were reflected in the oxidant stress indices and hematological parameters. However, before those parameters are used as special biomarkers for monitoring residual pharmaceuticals in aquatic environment, more detailed experiments in laboratory need to be performed in the future. PMID:20971511

  9. Hepatic and Nephric NRF2 Pathway Up-Regulation, an Early Antioxidant Response, in Acute Arsenic-Exposed Mice

    PubMed Central

    Li, Jinlong; Duan, Xiaoxu; Dong, Dandan; Zhang, Yang; Li, Wei; Zhao, Lu; Nie, Huifang; Sun, Guifan; Li, Bing

    2015-01-01

    Inorganic arsenic (iAs), a proven human carcinogen, damages biological systems through multiple mechanisms, one of them being reactive oxygen species (ROS) production. NRF2 is a redox-sensitive transcription factor that positively regulates the genes of encoding antioxidant and detoxification enzymes to neutralize ROS. Although NRF2 pathway activation by iAs has been reported in various cell types, however, the experimental data in vivo are very limited and not fully elucidated in humans. The present investigation aimed to explore the hepatic and nephric NRF2 pathway upregulation in acute arsenic-exposed mice in vivo. Our results showed 10 mg/kg NaAsO2 elevated the NRF2 protein and increased the transcription of Nrf2 mRNA, as well as up-regulated NRF2 downstream targets HO-1, GST and GCLC time- and dose-dependently both in the liver and kidney. Acute NaAsO2 exposure also resulted in obvious imbalance of oxidative redox status represented by the increase of GSH and MDA, and the decrease of T-AOC. The present investigation reveals that hepatic and nephric NRF2 pathway expression is an early antioxidant defensive response upon iAs exposure. A better knowledge about the NRF2 pathway involvment in the cellular response against arsenic could help improve the strategies for reducing the cellular toxicity related to this metalloid. PMID:26473898

  10. The Cinnamon-derived Dietary Factor Cinnamic Aldehyde Activates the Nrf2-dependent Antioxidant Response in Human Epithelial Colon Cells

    PubMed Central

    Wondrak, Georg T.; Villeneuve, Nicole F.; Lamore, Sarah D.; Bause, Alexandra S.; Jiang, Tao; Zhang, Donna D.

    2011-01-01

    Colorectal cancer (CRC) is a major cause of tumor-related morbidity and mortality worldwide. Recent research suggests that pharmacological intervention using dietary factors that activate the redox sensitive Nrf2/Keap1-ARE signaling pathway may represent a promising strategy for chemoprevention of human cancer including CRC. In our search for dietary Nrf2 activators with potential chemopreventive activity targeting CRC, we have focused our studies on trans-cinnamic aldehyde (cinnamaldeyde, CA), the key flavor compound in cinnamon essential oil. Here we demonstrate that CA and an ethanolic extract (CE) prepared from Cinnamomum cassia bark, standardized for CA content by GC-MS analysis, display equipotent activity as inducers of Nrf2 transcriptional activity. In human colon cancer cells (HCT116, HT29) and non-immortalized primary fetal colon cells (FHC), CA- and CE-treatment upregulated cellular protein levels of Nrf2 and established Nrf2 targets involved in the antioxidant response including heme oxygenase 1 (HO-1) and γ-glutamylcysteine synthetase (γ-GCS, catalytic subunit). CA- and CE-pretreatment strongly upregulated cellular glutathione levels and protected HCT116 cells against hydrogen peroxide-induced genotoxicity and arsenic-induced oxidative insult. Taken together our data demonstrate that the cinnamon-derived food factor CA is a potent activator of the Nrf2-orchestrated antioxidant response in cultured human epithelial colon cells. CA may therefore represent an underappreciated chemopreventive dietary factor targeting colorectal carcinogenesis. PMID:20657484

  11. Response of antioxidative enzymes to arsenic-induced phytotoxicity in leaves of a medicinal daisy, Wedelia chinensis Merrill

    PubMed Central

    Talukdar, Tulika; Talukdar, Dibyendu

    2013-01-01

    Background: Wedelia chinensis Merrill (Asteraceae) is a medicinally important herb, grown abundantly in soils contaminated with heavy metals, including toxic metalloid arsenic (As). The leaves have immense significance in treatment of various ailments. Objective: The present study was undertaken to ascertain whether the edible/usable parts experience oxidative stress in the form of membrane damage during As exposure or not. Materials and Methods: Responses of seven antioxidant enzymes were studied in leaves under 20 mg/L of As treatment in pot experiment. Results: When compared to control, activities of superoxide dismutase, monodehydroascorbatereductase, dehydroascorbatereductase, glutathione reductase, and gluathione peroxidase had increased, while the catalase level reduced and ascorbate peroxidase activity changed non-significantly in As-treated seedlings. This suggested overall positive response of antioxidant enzymes to As-induced oxidative stress. Although hydrogen peroxide content increased, level of lipid peroxidation and magnitude of membrane damage was quite normal, leading to normal growth (dry weight of shoot) of plant under Astreatment. Conclusion: W.chinensis is tolerant of As-toxicity, and thus, can be grown in As-contaminated zones. PMID:24082737

  12. Responses of antioxidant defense system to polyfluorinated dibenzo-p-dioxins (PFDDs) exposure in liver of freshwater fish Carassius auratus.

    PubMed

    Li, Chenguang; Qin, Li; Qu, Ruijuan; Sun, Ping; Wang, Zunyao

    2016-04-01

    In this study, we evaluated the toxicity of ten polyfluorinated dibenzo-p-dioxins (PFDDs) congeners to freshwater fish Carassius auratus, by determining the antioxidative responses and lipid peroxidation in the liver after the fish were injected with two different concentrations (10 and 100 µmol/kg) of individual PFDDs for 3 and 14 days. The results showed that oxidative stress was obviously induced in some PFDDs-treated groups, as implied by the significantly inhibited antioxidants levels (superoxide dismutase, catalase, reduced glutathione, and glutathione S-transferase) and elevated malondialdehyde content. In addition, the oxidative stress inducing ability was variable for different PFDDs congeners, which was related with the substitution number and position of fluorine atom. Based on the calculated integrated biomarker response (IBR) values, the toxicity was ranked as 2,3,7,8-FDD>Octa-FDD>1,2,3,4,7-FDD>1,3,6,8-FDD>1,2,3,4,6,7-FDD>1,2,6,7-FDD>1,2,7-FDD>DD>2,7-FDD>2-FDD. This study can enhance the general understanding of the PFDDs induced oxidative stress in aquatic organisms. PMID:26761781

  13. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants.

    PubMed

    Xu, Zhenzhu; Jiang, Yanling; Zhou, Guangsheng

    2015-01-01

    It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development. PMID:26442017

  14. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants

    PubMed Central

    Xu, Zhenzhu; Jiang, Yanling; Zhou, Guangsheng

    2015-01-01

    It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development. PMID:26442017

  15. Light history modulates antioxidant and photosynthetic responses of biofilms to both natural (light) and chemical (herbicides) stressors.

    PubMed

    Bonnineau, Chloé; Sague, Irene Gallardo; Urrea, Gemma; Guasch, Helena

    2012-05-01

    In multiple stress situations, the co-occurrence of environmental and chemical factors can influence organisms' ability to cope with toxicity. In this context, the influence of light adaptation on the response of freshwater biofilms to sudden light changes or to herbicides exposure was investigated by determining various parameters: diatom community composition, photosynthetic parameters, chlorophyll a content, antioxidant enzyme activities. Biofilms were grown in microcosms under sub-optimal, saturating, and high light intensities and showed already described characteristics of shade/light adaptation (community structure, photosynthetic adaptation, etc.). Light history modulated antioxidant and photosynthetic responses of biofilms to the stress caused by short-term exposure to sudden light changes or to herbicides. First biofilms adapted to sub-optimal light intensity (shade-adapted) were found to be more sensitive to an increase in light intensity than high-light adapted ones to a reduction in light intensity. Second, while light history influenced biofilms' response to glyphosate, it had little influence on biofilms' response to copper and none on its response to oxyfluorfen. Indeed glyphosate exposure led to a stronger decrease in photosynthetic efficiency of shade-adapted biofilms (EC(50) = 11.7 mg L(-1)) than of high-light adapted communities (EC(50) = 35.6 mg L(-1)). Copper exposure led to an activation of ascorbate peroxidase (APX) in biofilms adapted to sub-optimal and saturating light intensity while the protein content decreased in all biofilms exposed to copper. Oxyfluorfen toxicity was independent of light history provoking an increase in APX activity. In conclusion this study showed that both previous exposure to contaminants and physical habitat characteristics might influence community tolerance to disturbances strongly. PMID:22407402

  16. Dietary supplementation of milk fermented with probiotic Lactobacillus fermentum enhances systemic immune response and antioxidant capacity in aging mice.

    PubMed

    Sharma, Rohit; Kapila, Rajeev; Kapasiya, Meena; Saliganti, Vamshi; Dass, Gulshan; Kapila, Suman

    2014-11-01

    Although probiotics are known to enhance the host immune response, their roles in modulating immunosenescence, resisting infection, and improving redox homeostasis during aging remain unclear. Therefore, the present study was devised in aging mice to assess the antiimmunosenescence potential from the consumption of milk that is fermented with probiotic Lactobacillus fermentum MTCC 5898 (LF). We hypothesized that probiotic supplementation would boost immunity, improve antioxidant capacity, and resist severity of pathogenic infection in aging mice. To test this hypothesis, during a trial period of 2 months, 16-month-old male Swiss mice were kept on 3 experimental diets: basal diet (BD), BD supplemented with skim milk, and BD supplemented with probiotic LF-fermented milk. A concurrent analysis of several immunosenescence markers that include neutrophil functions, interleukins profile, inflammation and antibody responses in the intestine as well as analysis of antioxidant enzymes in the liver and red blood cells was performed. Neutrophil respiratory burst enzymes and phagocytosis increased significantly in probiotic LF-fed groups, whereas no exacerbation in plasma levels of monocyte chemotactic protein 1 and tumor necrosis factor α was observed. Splenocytes registered increased interferon-γ but decreased interleukin 4 and interleukin 10 production, whereas humoral antibodies registered decreases in immunoglobulin G1 (IgG1)/IgG2a ratio and IgE levels in the probiotic-fed groups. Antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) in LF-fed groups showed increased activities, which were more pronounced in the liver than in red blood cell. An Escherichia coli-based infection model in aging mice was also designed to validate the protective attributes of LF. Administration of probiotic LF significantly reduced E coli population in organs (intestine, liver, spleen, and peritoneal fluid), as compared with control groups, by enhancing E coli

  17. Hormone response element binding proteins: novel regulators of vitamin D and estrogen signaling

    PubMed Central

    Lisse, Thomas S.; Hewison, Martin; Adams, John S.

    2011-01-01

    Insights from vitamin D-resistant New World primates and their human homologues as models of natural and pathological insensitivity to sterol/steroid action have uncovered a family of novel intracellular vitamin D and estrogen regulatory proteins involved in hormone action. The proteins, known as “vitamin D or estrogen response element-binding proteins”, behave as potent cis-acting, transdominant regulators to inhibit steroid receptor binding to DNA response elements and is responsible for vitamin D and estrogen resistances. This set of interactors belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family of previously known pre-mRNA-interacting proteins. This review provides new insights into the mechanism by which these novel regulators of signaling and metabolism can act to regulate responses to vitamin D and estrogen. In addition the review also describes other molecules that are known to influence nuclear receptor signaling through interaction with hormone response elements. PMID:21236284

  18. The use of antioxidant enzymes in freshwater biofilms: temporal variability vs. toxicological responses.

    PubMed

    Bonnineau, Chloé; Tlili, Ahmed; Faggiano, Leslie; Montuelle, Bernard; Guasch, Helena

    2013-07-15

    This study aims to investigate the potential of antioxidant enzyme activities (AEA) as biomarkers of oxidative stress in freshwater biofilms. Therefore, biofilms were grown in channels for 38 days and then exposed to different concentrations (0-150 μg L(-1)) of the herbicide oxyfluorfen for 5 more weeks. Under control conditions, the AEA of biofilms were found to change throughout time with a significant increase in ascorbate peroxidase (APX) activity during the exponential growth and a more important role of catalase (CAT) and glutathione reductase (GR) activities during the slow growth phase. Chronic exposure to oxyfluorfen led to slight variations in AEA, however, the ranges of variability of AEA in controls and exposed communities were similar, highlighting the difficulty of a direct interpretation of AEA values. After 5 weeks of exposure to oxyfluorfen, no clear effects were observed on chl-a concentration or on the composition of other pigments suggesting that algal group composition was not affected. Eukaryotic communities were structured clearly by toxicant concentration and both eukaryotic and bacterial richness were reduced in communities exposed to the highest concentration. In addition, during acute exposure tests performed at the end of the chronic exposure, biofilms chronically exposed to 75 and 150 μg L(-1) oxyfluorfen showed a higher CAT activity than controls. Chronic exposure to oxyfluorfen provoked then structural changes but also functional changes in the capacity of biofilm CAT activity to respond to a sudden increase in concentration, suggesting a selection of species with higher antioxidant capacity. This study highlighted the difficulty of interpretation of AEA values due to their temporal variation and to the absence of absolute threshold value indicative of oxidative stress induced by contaminants. Nevertheless, the determination of AEA pattern throughout acute exposure test is of high interest to compare oxidative stress levels

  19. Antioxidant response of Stevia rebaudiana B. to polyethylene glycol and paclobutrazol treatments under in vitro culture.

    PubMed

    Hajihashemi, Shokoofeh; Ehsanpour, Ali Akbar

    2014-04-01

    This investigation was carried out with the aim of determining the effect of paclobutrazol (PBZ) (0 and 2 mg l(-1)) and polyethylene glycol (PEG) (0, 2, 4 and 6 % w/v of PEG 6000) treatments on antioxidant system of Stevia rebaudiana Bertoni under in vitro condition. Analysis of data showed that PEG treatment significantly increased hydrogen peroxide (H2O2) and phenolic contents, while PBZ treatment limited the effect of PEG on them. Our data revealed that PEG treatment significantly increased total antioxidant capacity, catalase (CAT), ascorbate peroxidase (APX), polyphenol oxidase (PPO) and peroxidase (POD) activity, while it inversely decreased glutathione reductase (GR) activity. The superoxide dismutase (SOD) activity was not affected by PEG treatment. PBZ treatment induced significantly higher levels of CAT and GR activity and lower levels of SOD activity in PEG-treated plants. PBZ in combination with PEG resulted in no significant difference on APX activity with PEG treatment alone. PBZ treatment prevented the effect of PEG on the PPO activity. PEG (with or without PBZ) treatment increased the ascorbate pool, whereas total glutathione level was not affected by PEG. Our finding indicated that PBZ reduced the negative effect of PEG treatment by quenching H2O2 accumulation and increasing the CAT activity. Collectively, the antioxidant capacity of S. rebaudiana in PEG treatment condition was associated with active enzymatic and non-enzymatic defence systems which partly could be improved by the PBZ treatment. In addition, a higher accumulation of phenolic compounds leads to a more potent reactive oxygen species scavenging activity in S. rebaudiana. PMID:24604127

  20. Response mechanisms of antioxidants in bryophyte (Hypnum plumaeforme) under the stress of single or combined Pb and/or Ni.

    PubMed

    Sun, Shou-Qin; He, Ming; Cao, Tong; Zhang, You-Chi; Han, Wei

    2009-02-01

    The short-term responses and mechanisms of antioxidants in moss Hypnum plumaeforme subjected to single or combined Pb and/or Ni stress has been revealed in this study, in order to clarify (1) the relationship between the stress intensity and antioxidant fluctuation, (2) the difference between single and combined stress, and (3) the possibility of biomonitoring by the application of antioxidant fluctuation under stress. The results showed that the stress induced dose dependent formation of reactive oxygen species (ROS) and subsequent lipid peroxidation. Total chlorophyll (Chl) content and superoxide dismutase (SOD) activity were initiated under lower stress but were inhibited under higher stress. Both single and combined stress decreased catalase (CAT) activity but increased peroxidase (POD) activity, indicating POD in the moss played an important role in resisting the oxidative stress induced by Pb and Ni. The accumulation of (.)O2(-) and H2O2 in H. plumaeforme was respectively related to the low activity of SOD and the decreased activity of CAT. The study indicated that Pb and Ni had synergistic effect in inducing the oxidative stress in moss H. plumaeforme, especially under the combination of high concentration of Ni (0.1, 1.0 mM) and Pb. POD and CAT activity, as well as H2O2 and MDA content, which increased or decreased regularly with a dose dependent under Pb and Ni stress, could be used as an effective indicator in moss biomonitoring, especially in the case of light pollution caused by heavy metals without the changes in the appearance of mosses. PMID:18274872

  1. Antioxidative responses in females and males of the spider Xerolycosa nemoralis (Lycosidae) exposed to natural and anthropogenic stressors.

    PubMed

    Wilczek, Grażyna; Babczyńska, Agnieszka; Wilczek, Piotr

    2013-03-01

    The aim of this study was to assess the intensity of enzymatic antioxidative parameters [i.e., superoxide dismutase (SOD), catalase (CAT), and the glutathione peroxidases each selene dependent, GPOX or selene independent, including GSTPx, glutathione S-transferase, and GST] and non-enzymatic antioxidative parameters [i.e., glutathione total (GSH-t), the heat shock proteins of Hsp70, and metallothioneins (Mt)] in the midgut glands of female and male wolf spiders Xerolycosa nemoralis (Lycosidae) exposed to natural stressors (i.e., heat shock and starvation) and anthropogenic stressors (i.e., the organophosphorous pesticide dimethoate) under laboratory conditions. The spiders were collected from two differentially polluted sites both localized in southern Poland: Olkusz, which is heavily polluted with metals, and Pilica, the reference site. In response to the stressing factors, increases in Hsp70 levels, in the concentrations of total glutathione and in the activity levels of glutathione-dependent enzymes (GPOX, GSTPx, and GST) were found in the midgut glands of males. In the females, high levels of activity of CAT and SOD were revealed, as well as an increased percentage of Mt-positive cells. Preexposed females, in comparison to the individuals from the reference site, responded with increased SOD activity, irrespective of the stressing factor. In contrast, the changes in the antioxidative parameters in the midgut glands of male X. nemoralis seem to reflect a short-term reaction to the applied stressors and do not confirm the effects of long-term selection in a polluted environment. PMID:23099032

  2. Antioxidant enzyme activities of Microcystis aeruginosa in response to nonylphenols and degradation of nonylphenols by M. aeruginosa.

    PubMed

    Wang, Jingxian; Xie, Ping

    2007-10-01

    The aim of this study was to examine the effects of chemical nonylphenols (NPs) on the antioxidant system of Microcystis aeruginosa strains. The degradation and sorption of NPs by M. aeruginosa were also evaluated. High concentrations of NPs (1 and 2 mg/l) were found to cause increases in superoxidase dismutase (SOD) and glutathione-S-transferase (GST) activities and in glutathione (GSH) levels. These results suggest that toxic stress manifested by elevated SOD and GST levels and GSH contents may be responsible for the toxicity of NPs to M. aeruginosa and that the algal cells could improve their antioxidant and detoxification ability through the enhancement of enzymatic and nonenzymatic prevention substances. The observed elevations in GSH levels and GST activities were relatively higher than those in SOD activities, indicating that GSH and GST contributed more in eliminating toxic effects than SOD. Low concentrations of NPs (0.05-0.2 mg/l) enhanced cell growth and decreased GST activity in algal cells of M. aeruginosa, suggesting that NPs may have acted as a protecting factor, such as an antioxidant. The larger portion of the NPs (>60%) disappeared after 12 days of incubation, indicating the strong ability of M. aeruginosa to degrade the moderate persistent NP compounds. The sorption ratio of M. aeruginosa after a 12-day exposure to low nominal concentrations of NPs (0.02-0.5 mg/l) was relatively high (>30%). The fact that M. aeruginosa effectively resisted the toxic effects of NPs and strongly degraded these pollutants indicate that M. aeruginosa cells have a strong ability to adapt to variations in environmental conditions and that low and moderate concentrations of organic compounds may favor its survival. Further studies are needed to provide detailed information on the fate of persistent organic pollutants and the survival of algae and to determine the possible role of organic pollutants in the occurrence of water blooms in eutrophic lakes. PMID:17342429

  3. Evaluation of antioxidant properties, elemental and phenolic contents composition of wild nettle (Urtica dioica L.) from Tunceli in Turkey.

    PubMed

    Yildirim, N C; Turkoglu, S; Ince, O K; Ince, M

    2013-01-01

    Wild nettle (Urtica dioica L.) types were sampled from different geographical regions in Tunceli (Turkey) to determine their mineral, vitamin, phenolic contents and their antioxidant properties. The total phenol varied from 37.419 ± 0.380 to 19.182 ± 1.00 mg of GAEs g(-1) of dry nettle. The highest radical scavenging effect was observed in Mazgirt parting of the ways 7.5 km with 33.70 ± 0.849 mg mL(-1). The highest reducing power was observed in the nettles from Mazgirt parting of the ways 7.5 km. Among the various macronutrients estimated in the plant samples, potassium was present in the highest quantity followed by calcium and phosphate. Kaempferol and resveratrol were not determined in some nettle samples but rutin levels were determined in all samples. Vitamin A concentrations were ranged between 13.64 ± 1.90 and 5.74 ± 1.00 (mg kg(-1) dry weight). These results show that Urtica dioica L. collected from Tunceli in Turkey could be considered as a natural alternative source for food, pharmacology and medicine sectors. PMID:24199953

  4. Sulforaphane protects against ethanol-induced oxidative stress and apoptosis in neural crest cells by the induction of Nrf2-mediated antioxidant response

    PubMed Central

    Chen, X; Liu, J; Chen, S-Y

    2013-01-01

    Background and Purpose Nuclear factor erythroid 2-related factor (Nrf2) is a transcription factor that up-regulates a diverse array of antioxidant genes and protects cells from oxidative damage. This study is designed to determine whether D-L-sulforaphane (SFN) can protect neural crest cells (NCCs), an ethanol-sensitive cell population implicated in fetal alcohol spectrum disorders, against ethanol-induced apoptosis and whether protective effects of SFN are mediated by the induction of Nrf2-mediated antioxidant response. Experimental Approach Control, SFN-treated or Nrf2-siRNA transfected NCCs were exposed to ethanol. Nrf2 activation, the expression and activities of Nrf2 downstream antioxidant proteins, reactive oxygen species generation and apoptosis were determined in control and ethanol-exposed NCCs. Key Results Exposure of NCCs to SFN alone significantly increased Nrf2 activation and the expression of Nrf2 downstream antioxidants as well as the activities of the antioxidant enzymes. Treatment of NCCs with SFN along with ethanol significantly decreased ethanol-induced oxidative stress and apoptosis. In contrast, knockdown of Nrf2 by siRNA significantly increased the sensitivity of NCCs to ethanol-induced oxidative stress and apoptosis. Suppression of Nrf2 signalling in NCCs also significantly diminished SFN-mediated antioxidant response and abolished the protective effects of SFN on ethanol-induced oxidative stress and apoptosis. Conclusions and Implications These results demonstrated that Nrf2-mediated antioxidant response plays an important role in the susceptibility of NCCs to ethanol-induced oxidative stress and apoptosis and that the protection of SFN against ethanol-induced oxidative stress and apoptosis in NCCs is mediated by the induction of Nrf2 signalling. PMID:23425096

  5. Antioxidative responses during germination in quinoa grown in vitamin B-rich medium.

    PubMed

    Pitzschke, Andrea; Fraundorfer, Anna; Guggemos, Michael; Fuchs, Norbert

    2015-05-01

    Synthetic vitamin preparations have grown in popularity to combat health risks associated with an imbalanced diet, poor exercise and stress. In terms of bioavailability and diversity, they lack behind vitamins naturally occurring in plants. Solutions to obtain plant-derived vitamins at a larger scale are highly desirable. B vitamins act as precursors of enzymatic cofactors, thereby regulating important metabolic processes both in animals and plants. Because during plant germination, the vitamin content and micronutrient availability increase, sprouts are generally considered a healthier food as compared to dry grains. Germination only occurs if a plant's antioxidant machinery is sufficiently activated to cope with oxidative stress. Seeds of quinoa, an edible gluten-free plant naturally rich in minerals, germinate readily in a solution containing the eight B vitamins. We studied biochemical changes during quinoa germination, with a focus on nutritionally relevant characteristics. The results are considered from a nutritional and plant physiological perspective. Germination of quinoa in vitamin-rich medium is a promising strategy to enhance the nutritional value of this matrix. Additional health-beneficial effects indirectly resulting from the vitamin treatment include elevated levels of the multi-functional amino acid proline and a higher antioxidant capacity. Plant biomolecules can be better protected from oxidative damage in vivo. PMID:25987999

  6. Antioxidant status of erythrocytes and their response to oxidative challenge in humans with argemone oil poisoning

    SciTech Connect

    Babu, Challagundla K.; Khanna, Subhash K.; Das, Mukul

    2008-08-01

    Oxidative damage of biomolecules and antioxidant status in erythrocytes of humans from an outbreak of argemone oil (AO) poisoning in Kannauj (India) and AO intoxicated experimental animals was investigated. Erythrocytes of the dropsy patients and AO treated rats were found to be more susceptible to 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) induced peroxidative stress. Significant decrease in RBC glutathione (GSH) levels (46, 63%) with concomitant enhancement in oxidized glutathione (172, 154%) levels was noticed in patients and AO intoxicated animals. Further, depletion of glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G-6-PDH) and glutathione-S-transferase (GST) (42-52%) was observed in dropsy patients. Oxidation of erythrocyte membrane lipids and proteins was increased (120-144%) in patients and AO treated animals (112-137%) along with 8-OHdG levels in whole blood (180%) of dropsy patients. A significant reduction in {alpha}-tocopherol content (68%) was noticed in erythrocytes of dropsy patients and hepatic, plasma and RBCs of AO treated rats (59-70%) thereby indicating the diminished antioxidant potential to scavenge free radicals or the limited transport of {alpha}-tocopherol from liver to RBCs leading to enhanced oxidation of lipids and proteins in erythrocytes. These studies implicate an important role of erythrocyte degradation in production of anemia and breathlessness in epidemic dropsy.

  7. Antioxidative responses during germination in quinoa grown in vitamin B-rich medium

    PubMed Central

    Pitzschke, Andrea; Fraundorfer, Anna; Guggemos, Michael; Fuchs, Norbert

    2015-01-01

    Synthetic vitamin preparations have grown in popularity to combat health risks associated with an imbalanced diet, poor exercise and stress. In terms of bioavailability and diversity, they lack behind vitamins naturally occurring in plants. Solutions to obtain plant-derived vitamins at a larger scale are highly desirable. B vitamins act as precursors of enzymatic cofactors, thereby regulating important metabolic processes both in animals and plants. Because during plant germination, the vitamin content and micronutrient availability increase, sprouts are generally considered a healthier food as compared to dry grains. Germination only occurs if a plant′s antioxidant machinery is sufficiently activated to cope with oxidative stress. Seeds of quinoa, an edible gluten-free plant naturally rich in minerals, germinate readily in a solution containing the eight B vitamins. We studied biochemical changes during quinoa germination, with a focus on nutritionally relevant characteristics. The results are considered from a nutritional and plant physiological perspective. Germination of quinoa in vitamin-rich medium is a promising strategy to enhance the nutritional value of this matrix. Additional health-beneficial effects indirectly resulting from the vitamin treatment include elevated levels of the multi-functional amino acid proline and a higher antioxidant capacity. Plant biomolecules can be better protected from oxidative damage in vivo. PMID:25987999

  8. Metallothioneins induction and antioxidative response in aquatic worms Tubifex tubifex (Oligochaeta, Tubificidae) exposed to copper.

    PubMed

    Mosleh, Yahia Y; Paris-Palacios, Séverine; Biagianti-Risbourg, Sylvie

    2006-06-01

    Metallothioneins (MTs), are low molecular weight proteins, mainly implicated in metal ion detoxification. Increase in MT contents is considered as a specific biomarker of metal exposure. Recently it has been demonstrated that MTs participate in several cellular functions such as regulation of growth, and antioxidative defences. Tubifex tubifex were exposed to different copper concentrations (50, 100, and 200 microgl(-1)) for 7 and 15 days. MT levels in exposed worms increased significantly (p<0.05) after 7 and 15 days of exposure to different concentrations of copper (maximum +208% for 100 microgl(-1) after 7 days of exposure). Also important perturbation in metal-metallothionein content occurred, along with an increase in total soluble protein content in all treated worms after 7 and 15 days (max. +88.49%). Catalase activities (CAT) in Cu treated-worms were significantly increased, and demonstrated a development of antioxidative defenses. Additionally a reduction of gulathione-S-transferase (GST) was observed in all treated worms after 7 days of exposure to Cu (max. -44.42%). The high induction of MTs observed during T. tubifex exposure to Cu make them potentially useful biomarkers to monitor metal pollution. PMID:16330073

  9. Biochemical composition and antioxidant activities of Arthrospira (Spirulina) platensis in response to gamma irradiation.

    PubMed

    Shabana, Effat Fahmy; Gabr, Mahmoud Ali; Moussa, Helal Ragab; El-Shaer, Enas Ali; Ismaiel, Mostafa M S

    2017-01-01

    Arthrospira (Spirulina) platensis is a blue-green alga, rich with bioactive components and nutrients. To evaluate effect of gamma irradiation, A. platensis was exposed to different doses of 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5kGy. The data showed that the phenolic and proline contents significantly increased with the increase of gamma irradiation doses up to 2.0kGy, above which a reduction was observed. The soluble proteins and malondialdehyde (MDA) contents were stimulated by all tested irradiation doses. Furthermore, the vitamins (A, K and B group) and mineral contents (N, P, Na, K, Ca, Mg and Fe) were stimulated by the irradiation doses compared with the control. The activities of some N-assimilating and antioxidant enzymes were significantly increased with the irradiation doses up to 2.0kGy. This study suggests the possible use of gamma irradiation as a stimulatory agent to raise the nutritive value and antioxidant activity of A. platensis. PMID:27507509

  10. [Effects of exogenous EBR and NO signal on antioxidant system and low response gene expression under cold stress on maize embryo].

    PubMed

    Ma, Jin-hu; Xing, Guo-fang; Yang, Xiao-huan; Wang, Yu-guo; Du, Hui-ling

    2015-05-01

    In this study, Xianyu 335, a maize hybrid, was used to investigate the effects of 24-Epibrassinolide (EBR, a synthetic BR) on antioxidant capacity and low-temperature response gene expression in maize embryo germination under low temperature (LT) stress. The germination rate of maize seeds under LT stress was not affected by EBR, but the seed activity index and seedling growth were improved. EBR increased the activities of some antioxidative enzymes including SOD, POD, CAT and GR, and the contents of non-enzymatic antioxidants, such as GSH and proline, and induced the accumulation of nitric oxide (NO). NO scavenging c-PTIO and NOS inhibitor L- NAME decreased but NO donor SNP increased the enzyme activities of CAT and POD, and the content of proline, indicating NO mediated the EBR-induced antioxidant capacity. The gene expression pattern analysis showed that the expression of P5CS1, CBF1, CBF3 and COR15a was induced by LT stress, and further increased by EBR treatment in maize embryo, while their expression was suppressed by c-PTIO and L-NAME, and improved by SNP, which implied LT-responsed genes were regulated by NO. These results demonstrated that NO was involved in the EBR-induced LT tolerance in maize embryo by modulating the antioxidative capacity and the expression of LT-responsive genes. PMID:26571659

  11. Response of antioxidant enzymes, ascorbate and glutathione metabolism towards cadmium in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii H.

    PubMed

    Jin, Xiaofen; Yang, Xiaoe; Mahmood, Qaisar; Islam, Ejazul; Liu, Dan; Li, Hong

    2008-08-01

    Hydroponics studies were conducted to investigate the antioxidant adaptations, ascorbate and glutathione metabolism in hyperaccumulating ecotype of Sedum alfredii (HE) exposed to high Cd environment, when compared with its nonhyperaccumulating ecotype (NHE). Exposure to Cd induced a burst of oxidative stress in both ecotypes which was evident by the sharp increase in hydrogen peroxide (H(2)O(2)) contents and lipid peroxidation. Buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, did not affect H(2)O(2) concentrations as well as growth of both ecotypes in the absence of Cd. However, compared with Cd application alone, BSO combined with Cd treatment caused a substantial augmentation of H(2)O(2) accumulation accompanied by a reduction in Cd concentrations in roots and leaves of HE at the end of treatment, which may rule out the possibility that GSH biosynthesis may play an important role as a signal of the stress regulation. No efficient and superior enzymatic antioxidant defense mechanisms against Cd-imposed oxidative stress existed in both NHE and HE, but the essential nonenzymatic components like ascorbic acid (AsA) and GSH played a prominent role in tolerance against Cd. Cadmium stimulated a notable rise in AsA concentration in both ecotypes soon after the application of treatment. A preferential Cd-stress response in HE was suggested to changes in the GSH pool, where acclimation was marked by increased GSH concentrations. PMID:18214940

  12. Sensitivity and Antioxidant Response of Chlorella sp. MM3 to Used Engine Oil and Its Water Accommodated Fraction.

    PubMed

    Ramadass, Kavitha; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi

    2016-07-01

    We exposed the microalgal strain, Chlorella sp. MM3, to unused or used engine oil, or their water accommodated fractions (WAFs) to determine growth inhibition and response of antioxidant enzymes. Oil type and oil concentration greatly affected the microalgal growth. Used oil at 0.04 % (0.4 g L(-1)) resulted in 50 % inhibition in algal growth, measured in terms of chlorophyll-a, while the corresponding concentration of unused oil was nontoxic. Similarly, used oil WAF showed significant toxicity to the algal growth at 10 % level, whereas WAF from unused oil was nontoxic even at 100 % concentration. Peroxidase enzyme in the microalga significantly increased with used oil at concentrations above 0.04 g L(-1) whereas the induction of superoxide dismutase and catalase was apparent only at 0.06 g L(-1). Activities of the antioxidant enzymes increased significantly when the microalga was exposed to 75 and 100 % WAF obtained from used oil. The used oil toxicity on microalga could be due to the presence of toxic soluble mono- and polyaromatic compounds, heavy metals, and other compounds attained by the oil during its use in the motor engines. PMID:27174464

  13. ROS-Responsive Microspheres for On Demand Antioxidant Therapy in a Model of Diabetic Peripheral Arterial Disease

    PubMed Central

    Poole, KM; Nelson, CE; Joshi, RV; Martin, JR; Gupta, MK; Haws, SC; Kavanaugh, TE; Skala, MC; Duvall, CL

    2014-01-01

    A new microparticle-based delivery system was synthesized from reactive oxygen species (ROS)-responsive poly(propylene sulfide) (PPS) and tested for “on demand” antioxidant therapy. PPS is hydrophobic but undergoes a phase change to become hydrophilic upon oxidation and thus provides a useful platform for ROS-demanded drug release. This platform was tested for delivery of the promising anti-inflammatory and antioxidant therapeutic molecule curcumin, which is currently limited in use in its free form due to poor pharmacokinetic properties. PPS microspheres efficiently encapsulated curcumin through oil-in-water emulsion and provided sustained, on demand release that was modulated in vitro by hydrogen peroxide concentration. The cytocompatible, curcumin-loaded microspheres preferentially targeted and scavenged intracellular ROS in activated macrophages, reduced in vitro cell death in the presence of cytotoxic levels of ROS, and decreased tissue-level ROS in vivo in the diabetic mouse hind limb ischemia model of peripheral arterial disease. Interestingly, due to the ROS scavenging behavior of PPS, the blank microparticles also showed inherent therapeutic properties that were synergistic with the effects of curcumin in these assays. Functionally, local delivery of curcumin-PPS microspheres accelerated recovery from hind limb ischemia in diabetic mice, as demonstrated using non-invasive imaging techniques. This work demonstrates the potential for PPS microspheres as a generalizable vehicle for ROS-demanded drug release and establishes the utility of this platform for improving local curcumin bioavailability for treatment of chronic inflammatory diseases. PMID:25522975

  14. Optimization of infrared-assisted extraction of Bletilla striata polysaccharides based on response surface methodology and their antioxidant activities.

    PubMed

    Qu, Yan; Li, Chunxue; Zhang, Chen; Zeng, Rui; Fu, Chaomei

    2016-09-01

    Bletilla striata polysaccharides (BSP) have attracted extensive research interest due to their potential medical application. Herein, infrared-assisted technique is employed for the first time to extract BSP from B. striata (Thunb.) Reichb.f. based on a Box-Behnken design (BBD) and response surface methodology, with the optimum extraction parameters as follows: 75°C extraction temperature, 2.5h extraction time; and water to solid ratio (53ml/g). Based on it, 43.95±0.26% yield of crude BSP was obtained. Subsequently, crude BSP was further decolorized, deproteinized, freeze-dried, and purified by a DEAE-52 cellulose column. Furthermore, the micro-structure and a triple-helical structure of BSP were characterized. Fourier transform infrared spectra confirmed its polysaccharide characterization via typical peaks. In addition, the significant in vitro antioxidant profiles of BSP were demonstrated by superoxide anion radical-scavenging assay, hydroxyl radical scavenging assay, DPPH free radical scavenging activity and chelation of ferrous ions. Taken together, this study provide an efficient extraction technique for BSP as a promising natural antioxidant. PMID:27185148

  15. Chronic hyperbaric oxygen treatment elicits an anti-oxidant response and attenuates atherosclerosis in apoE knockout mice.

    PubMed

    Kudchodkar, Bhalchandra J; Pierce, Anson; Dory, Ladislav

    2007-07-01

    We previously demonstrated that hyperbaric oxygen (HBO) treatment inhibits diet-induced atherosclerosis in New Zealand White rabbits. In the present study we investigate the mechanisms that might be involved in the athero-protective effect of HBO treatment in a well-accepted model of atherosclerosis, the apoE knockout (KO) mouse. We examine the effects of daily HBO treatment (for 5 and 10 weeks) on the components of the anti-oxidant defense mechanism and the redox state in blood, liver and aortic tissues and compare them to those of untreated apoE KO mice. HBO treatment results in a significant reduction of aortic cholesterol content and decreased fatty streak formation. These changes are accompanied by a significant reduction of autoantibodies against oxidatively modified LDL and profound changes in the redox state of the liver and aortic tissues. A 10-week treatment significantly reduces hepatic levels of TBARS and oxidized glutathione, while significantly increases the levels of reduced glutathione, glutathione reductase (GR), transferase, Se-dependent glutathione peroxidase and catalase (CAT). The effects of HBO treatment are similar in the aortic tissues. These observations provide evidence that HBO treatment has a powerful effect on the redox state of relevant tissues and produces an environment that inhibits oxidation. The anti-oxidant response may be the key to the anti-atherogenic effect of HBO treatment. PMID:16973170

  16. Effect of pH and temperature on antioxidant responses of the thick shell mussel Mytilus coruscus.

    PubMed

    Hu, Menghong; Li, Lisha; Sui, Yanming; Li, Jiale; Wang, Youji; Lu, Weiqun; Dupont, Sam

    2015-10-01

    This study evaluated the combined effects of seawater pH decrease and temperature increase on the activity of antioxidant enzymes in the thick shell mussel Mytilus coruscus, an ecological and economic bivalve species widely distributed along the East China Sea. Mussels were exposed to three pH levels (8.1, 7.7 and 7.3) and two temperatures (25 °C and 30 °C) for 14 days. Activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione (GSH), acid phosphatase (ACP), alkaline phosphatase (AKP) and glutamic-pyruvic transaminase (GPT) were measured in gills and digestive glands after 1, 3, 7 and 14 days of exposure. All enzymatic activities were significantly impacted by pH, temperature. Enzymatic activities at the high temperature were significantly higher than those at the low temperature, and the mussels exposed to pH 7.3 showed significantly higher activities than those under higher pH condition for all enzymes except ACP. There was no interaction between temperature and pH in two third of the measured activities suggesting similar mode of action for both drivers. Interaction was only consistently significant for GPX. PCA revealed positive relationships between the measured biochemical indicators in both gills and digestive glands. Overall, our results suggest that decreased pH and increased temperature induce a similar anti-oxidative response in the thick shell mussel. PMID:26235981

  17. Responses of growth, antioxidants and gene expression in smooth cordgrass (Spartina alterniflora) to various levels of salinity.

    PubMed

    Courtney, Abigail J; Xu, Jichen; Xu, Yan

    2016-02-01

    Salinity is a major environmental factor limiting the productivity and quality of crop plants. While most cereal crops are salt-sensitive, several halophytic grasses are able to maintain their growth under saline conditions. Elucidating the mechanisms for salinity responses in halophytic grasses would contribute to the breeding of salt-tolerant cereal and turf species belonging to the Poaceae family. Smooth cordgrass (Spartina alterniflora) is a dominant native halophytic grass in the Hackensack Meadowlands, the coastal salt marshes located in northeastern New Jersey. The goals of this study were to examine the growth pattern of S. alterniflora in a salinity gradient and identify an optimal range of salinity for its maximal growth. The regulation of its antioxidant system and gene expression under supraoptimal salinity conditions was also investigated. Our results showed that a salinity of 4 parts per thousand (ppt) (68 mM) was most favorable for the growth of S. alterniflora, followed by a non-salt environment. S. alterniflora responded to salts in the environment by regulating antioxidant enzyme activities and the expression of stress-induced proteins such as ALDH, HVA22 and PEPC. The plant may tolerate salinity up to the concentration of sea water, but any salinity above 12 ppt retarded its growth and altered the expression of genes encoding critical proteins. PMID:26760954

  18. Regional Variations of Antioxidant Capacity and Oxidative Stress Responses in HIV-1 Transgenic Rats With and Without Methamphetamine Administration

    PubMed Central

    Pang, Xiaosha; Panee, Jun; Liu, Xiangqian; Berry, Marla J.; Chang, Sulie L.; Chang, Linda

    2013-01-01

    HIV infection and methamphetamine (Meth) abuse both may lead to oxidative stress. This study used HIV-1 transgenic (HIV-1Tg) rats to investigate the independent and combined effects of HIV viral protein expression and low dose repeated Meth exposure on the glutathione (GSH)-centered antioxidant system and oxidative stress in the brain. Total GSH content, gene expression and/or enzymatic activities of glutamylcysteine synthetase (GCS), gamma-glutamyltransferase (GGT), glutathione reductase (GR), glutathione peroxidase (GPx), glutaredoxin (Glrx), and glutathione-s-transferase (GST) were measured. The protein expression of cystine transporter (xCT) and oxidative stress marker 4-hydroxynonenal (HNE) were also analyzed. Brain regions studied include thalamus, frontal and remainder cortex, striatum, cerebellum and hippocampus. HIV-1Tg rats and Meth exposure showed highly regional specific responses. In the F344 rats, the thalamus had the highest baseline GSH concentration and potentially higher GSH recycle rate. HIV-1Tg rats showed high transcriptional responses to GSH depletion in the thalamus. Both HIV-1Tg and Meth resulted in decreased GR activity in thalamus, and decreased Glrx activity in frontal cortex. However, the increased GR and Glrx activities synergized with increased GSH concentration, which might have partially prevented Meth-induced oxidative stress in striatum. Interactive effects between Meth and HIV-1Tg were observed in thalamus on the activities of GCS and GGT, and in thalamus and frontal cortex on Glrx activity and xCT protein expression. Findings suggest that HIV viral protein and low dose repeated Meth exposure have separate and combined effects on the brain’s antioxidant capacity and the oxidative stress response that are regional specific. PMID:23546885

  19. Vibration response mechanism of faulty outer race rolling element bearings for quantitative analysis

    NASA Astrophysics Data System (ADS)

    Cui, Lingli; Zhang, Yu; Zhang, Feibin; Zhang, Jianyu; Lee, Seungchul

    2016-03-01

    For the quantitative fault diagnosis of rolling element bearings, a nonlinear vibration model for fault severity assessment of rolling element bearings is established in this study. The outer race defect size parameter is introduced into the dynamic model, and vibration response signals of rolling element bearings under different fault sizes are simulated. The signals are analyzed quantitatively to observe the relationship between vibration responses and fault sizes. The impact points when the ball rolls onto and away from the defect are identified from the vibration response signals. Next, the impact characteristic that reflects the fault severity in rolling element bearings is obtained from the time interval between two impact points. When the width of the bearing fault is small, the signals are presented as clear single impact. The signals gradually become double impacts with increasing size of defects. The vibration signals of a rolling element bearings test rig are measured for different outer race fault sizes. The experimental results agree well with the results from simulations. These results are useful for understanding the vibration response mechanism of rolling element bearings under various degrees of fault severity.

  20. Uterine deletion of Trp53 compromises antioxidant responses in the mouse decidua.

    PubMed

    Burnum, Kristin E; Hirota, Yasushi; Baker, Erin S; Yoshie, Mikihiro; Ibrahim, Yehia M; Monroe, Matthew E; Anderson, Gordon A; Smith, Richard D; Daikoku, Takiko; Dey, Sudhansu K

    2012-09-01

    Preterm birth is a global health issue impacting millions of mothers and babies. However, the etiology of preterm birth is not clearly understood. Our recent finding that premature decidual senescence with terminal differentiation is a cause of preterm birth in mice with uterine Trp53 deletion, encoding p53 protein, led us to explore other potential factors that are related to preterm birth. Using proteomics approaches, here, we show that 183 candidate proteins show significant changes in deciduae with Trp53 deletion as compared with normal deciduae. Functional categorization of these proteins unveiled new pathways that are influenced by p53. In particular, down-regulation of a cluster of antioxidant enzymes in p53-deficient deciduae suggests that increased oxidative stress could be one cause of preterm birth in mice harboring uterine deletion of Trp53. PMID:22759378

  1. Uterine Deletion of Trp53 Compromises Antioxidant Responses in the Mouse Decidua

    PubMed Central

    Burnum, Kristin E.; Hirota, Yasushi; Baker, Erin S.; Yoshie, Mikihiro; Ibrahim, Yehia M.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Daikoku, Takiko

    2012-01-01

    Preterm birth is a global health issue impacting millions of mothers and babies. However, the etiology of preterm birth is not clearly understood. Our recent finding that premature decidual senescence with terminal differentiation is a cause of preterm birth in mice with uterine Trp53 deletion, encoding p53 protein, led us to explore other potential factors that are related to preterm birth. Using proteomics approaches, here, we show that 183 candidate proteins show significant changes in deciduae with Trp53 deletion as compared with normal deciduae. Functional categorization of these proteins unveiled new pathways that are influenced by p53. In particular, down-regulation of a cluster of antioxidant enzymes in p53-deficient deciduae suggests that increased oxidative stress could be one cause of preterm birth in mice harboring uterine deletion of Trp53. PMID:22759378

  2. The antioxidative response system in Glycine max (L.) Merr. exposed to Deltamethrin, a synthetic pyrethroid insecticide.

    PubMed

    Bashir, Fozia; Mahmooduzzafar; Siddiqi, T O; Iqbal, Muhammad

    2007-05-01

    Forty-five-day-old plants of Glycine max (soybean) were exposed to several Deltamethrin (synthetic pyrethroid insecticide) concentrations (0.00%, 0.05%, 0.10%, 0.15% and 0.20%) through foliar spray in the field conditions. In the treated plants, as observed at the pre-flowering (10 DAT), flowering (45 DAT) and post-flowering (70 DAT) stages, lipid peroxidation, proline content and total glutathione content increased, whereas the total ascorbate content decreased, as compared with the control. Among the enzymatic antioxidants, activity of superoxide dismutase, ascorbate peroxidase and glutathione reductase increased significantly whereas that of catalase declined markedly in relation to increasing concentration of Deltamethrin applied. The changes observed were dose-dependent, showing a strong correlation with the degree of treatment. PMID:17055627

  3. Uterine deletion of Trp53 compromises antioxidant responses in mouse decidua

    SciTech Connect

    Burnum, Kristin E.; Hirota, Yasushi; Baker, Erin Shammel; Yoshie, Mikihiro; Ibrahim, Yehia M.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Daikoku, Takiko; Dey, Sudhansu K.

    2012-09-01

    Preterm birth is a global health issue impacting both mothers and children. However, the etiology of preterm birth is not clearly understood. From our recent finding that premature decidual senescence with terminal differentiation is a cause of preterm birth in mice with uterine Trp53 deletion, encoding p53 protein, led us to explore other potential factors that are related to preterm birth. Utilizing proteomics approaches, here we show that 183 candidate proteins cause significant changes in decidua with Trp53 deletion as compared to normal decidua. Functional categorization of these proteins unveiled new pathways that are influenced by p53. In particular, downregulation of a cluster of antioxidant proteins in p53 deficient decidua suggests that increased oxidative stress could be one cause of preterm birth in mice with uterine deletion of Trp53.

  4. Role of oxidative stress in disrupting the function of negative glucocorticoid response element in daily amphetamine-treated rats.

    PubMed

    Chu, Shu-Chen; Yu, Ching-Han; Chen, Pei-Ni; Hsieh, Yih-Shou; Kuo, Dong-Yih

    2016-09-01

    Amphetamine (AMPH)-induced appetite suppression is associated with changes in hypothalamic reactive oxygen species (ROS), antioxidants, neuropeptides, and plasma glucocorticoid. This study explored whether ROS and glucocorticoid response element (GRE), which is the promoter site of corticotropin-releasing hormone (CRH) gene, participated in neuropeptides-mediated appetite control. Rats were treated daily with AMPH for four days, and changes in food intake, plasma glucocorticoid and expression levels of hypothalamic neuropeptide Y (NPY), proopiomelanocortin (POMC), superoxide dismutase (SOD), CRH, and glucocorticoid receptor (GR) were examined and compared. Results showed that food intake decreased and NPY gene down-regulated, while POMC, SOD, and CRH gene up-regulated during AMPH treatment. GR and GRE-DNA bindings were disrupted on Day 1 and Day 2 when glucocorticoid levels were still high. Pretreatment with GR inhibitor or ROS scavenger modulated mRNA levels in NPY, POMC, SOD and CRH in AMPH-treated rats. We suggest that disruptions of negative GRE (nGRE) on Day 1 and Day 2 are associated with an increase in oxidative stress during the regulation of NPY/POMC-mediated appetite control in AMPH-treated rats. These results advance the understanding of molecular mechanism in regulating AMPH-mediated appetite suppression. PMID:27235634

  5. Comparative biochemical responses and antioxidant activities of the rabbit urinary bladder to whole grapes versus resveratrol.

    PubMed

    Francis, Johdi-Ann; Leggett, Robert E; Schuler, Catherine; Levin, Robert M

    2015-12-01

    The objective of this study is to compare the antioxidant activity of a whole-grape suspension with the antioxidant activity or pure resveratrol on the effect of hydrogen peroxide (H2O2) on malondialdehyde (MDA) generation, choline acetyltransferase (ChAT) activity, calcium ATPase activity, and sarcoendoplasmic reticular ATPase (SERCA) of the male rabbit urinary bladder. MDA was used as a model for the effect of H2O2 on lipid peroxidation. ChAT, SERCA, and calcium ATPase were evaluated based on their importance in urinary bladder physiology and pathology. Four male rabbit bladders were used. Each bladder was separated into muscle and mucosa, frozen under liquid nitrogen and stored at -80 °C for biochemical evaluation. The effect of H2O2 on the enzymes listed above was determined in the presence and absence of either resveratrol or a whole-grape suspension. (1) Resveratrol was significantly more effective than the grape suspension at protecting the bladder muscle and mucosa against peroxidation as quantitated by MDA formation. (2) The grape suspension was significantly more effective at protecting ChAT activity against oxidative stress of the muscle than resveratrol. (3) Neither the grape suspension nor resveratrol were particularly effective at protecting the bladder muscle or mucosa calcium ATPase or SERCA against oxidative stress. (4) ChAT was significantly more sensitive to oxidative stress than either calcium ATPase or SERCA. These data support the idea that the grape suspension protects the mitochondria and nerve terminals to a significantly greater degree than resveratrol which suggests that the activities of the grape suspension are due to the combination of active components found in the grape suspension and not just resveratrol alone. PMID:26354548

  6. Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F.

    PubMed

    Qiu, Rong-Liang; Zhao, Xuan; Tang, Ye-Tao; Yu, Fang-Ming; Hu, Peng-Jie

    2008-12-01

    A hydroponic experiment was carried out to study the effect of cadmium (Cd) on growth, Cd accumulation, lipid peroxidation, reactive oxygen species (ROS) content and antioxidative enzymes in leaves and roots of Arabis paniculata F., a new Cd hyperaccumuator found in China. The results showed that 22-89 microM Cd in solution enhanced the growth of A. paniculata after three weeks, with 21-27% biomass increase compared to the control. Cd concentrations in shoots and roots increased with increasing Cd supply levels, and reached a maximum of 1662 and 8670 mg kg(-1) Cd dry weight at 178 microM Cd treatment, respectively. In roots, 22-89 microM Cd reduced the content of malondialdehyde (MDA), superoxide (O(2)(-1)) and H(2)O(2) as well as the activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR). In leaves, the contents of MDA, O(2)(-1) and H(2)O(2) remained unaffected by 22-89 microM Cd, while 178 microM Cd treatment significantly increased the MDA content, 69.5% higher than that of the control; generally, the activities of SOD, catalase (CAT), GPX and APX showed an increasing pattern with increasing Cd supply levels. Our present work concluded that A. paniculata has a great capability of Cd tolerance and accumulation. Moderate Cd treatment (22-89 microM Cd) alleviated the oxidative stress in roots, while higher level of Cd addition (178 microM) could cause an increasing generation of ROS, which was effectively scavenged by the antioxidative system. PMID:18992910

  7. The carvacrol ameliorates acute pancreatitis-induced liver injury via antioxidant response.

    PubMed

    Bakır, Murat; Geyikoglu, Fatime; Colak, Suat; Turkez, Hasan; Bakır, Tulay Ozhan; Hosseinigouzdagani, Mirkhalil

    2016-08-01

    Acute pancreatitis (AP) may cause significant persistent multi-organ dysfunction. Carvacrol (CAR) possesses a variety of biological and pharmacological properties. The aim of the present study was to analyze the hepatic protection of CAR on AP induced by cerulein and to explore the underlying mechanism using in vivo studies. The rats were randomized into groups to receive (1) no therapy; (2) 50 µg/kg cerulein at 1-h intervals by four intraperitoneal injection (i.p.); (3) 50, 100 and 200 mg/kg CAR by one i.p.; and (4) cerulein + CAR after 2 h of cerulein injection. 12 h later, serum was provided to assess the blood AST, ALT and LDH values. Also, liver tissues were obtained for histological and biochemical measurements. Liver oxidative stress markers were evaluated by changes in the amount of lipid peroxides measured as MDA and changes in tissue antioxidant enzyme levels, SOD, CAT and GSH-Px. Histopathological examination was performed using scoring systems. Oxidative damage to DNA was quantitated in studied tissues of experimental animals by measuring the increase in 8-hydroxydeoxyguanosine (8-OHdG) formations. We found that the increasing doses of CAR decreased pancreatitis-induced MDA and 8-OH-dG levels. Moreover, the liver SOD, CAT and GSH-Px activities in the AP + CAR group were higher than that of the rats in the AP group. In the treatment groups, AST, ALT and LDH were reduced. Besides, necrosis, coagulation and inflammation in the liver were alleviated (p < 0.05). We suggest that CAR could be a safe and potent new drug candidate for treating AP through its antioxidative mechanism of action for the treatment of a wide range of disorders related to hepatic dysfunction. PMID:26350272

  8. Responses of bovine lymphocytes to heat shock as modified by breed and antioxidant status.

    PubMed

    Kamwanja, L A; Chase, C C; Gutierrez, J A; Guerriero, V; Olson, T A; Hammond, A C; Hansen, P J

    1994-02-01

    We tested whether resistance of lymphocytes to heat stress is modified by breed, intracellular glutathione content, and extracellular antioxidants. In the first experiment, lymphocytes from Angus (Bos taurus, non-heat-tolerant), Brahman (B. indicus, heat-tolerant), and Senepol (B. taurus, heat-tolerant) heifers (12 heifers per breed) were cultured at 45 degrees C for 3 h to evaluate thermal killing, at 42 degrees C for 12 h in a 60-h phytohemagglutinin-induced proliferation test, and at 42 degrees C for 1 h to measure induction of heat shock protein 70 (HSP70). Killing at 45 degrees C was affected by breed x temperature (P < .01); the decrease in viability caused by a temperature of 45 degrees C was greater for Angus than for Brahman or Senepol. For phytohemagglutinin-stimulated lymphocytes, heating to 42 degrees C reduced [3H]thymidine incorporation equally for all breeds. Viability at the end of culture was affected (P < .001) by a breed x temperature interaction because the decrease in viability caused by culture at 42 degrees C was greatest for lymphocytes from Angus heifers. Heat shock for 1 h at 42 degrees C caused a two- to threefold increase in intracellular concentrations of HSP70, but there was no interaction of temperature with breed. In another experiment (with lymphocytes harvested from three Holstein cows), buthionine sulfoximine, a glutathione synthesis inhibitor, inhibited (P < .01) proliferation of phytohemagglutinin-stimulated lymphocytes at 38.5 and 42 degrees C. Addition of the antioxidants glutathione or thioredoxin to culture did not reduce the effects of heating to 42 degrees C on proliferation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8157528

  9. Conserved enhancer and silencer elements responsible for differential Adh transcription in Drosophila cell lines.

    PubMed Central

    Ayer, S; Benyajati, C

    1990-01-01

    The distal promoter of Adh is differentially expressed in Drosophila tissue culture cell lines. After transfection with an exogenous Adh gene, there was a specific increase in distal alcohol dehydrogenase (ADH) transcripts in ADH-expressing (ADH+) cells above the levels observed in transfected ADH-nonexpressing (ADH-) cells. We used deletion mutations and a comparative transient-expression assay to identify the cis-acting elements responsible for enhanced Adh distal transcription in ADH+ cells. DNA sequences controlling high levels of distal transcription were localized to a 15-base-pair (bp) region nearly 500 bp upstream of the distal RNA start site. In addition, a 61-bp negative cis-acting element was found upstream from and adjacent to the enhancer. When this silencer element was deleted, distal transcription increased only in the ADH+ cell line. These distant upstream elements must interact with the promoter elements, the Adf-1-binding site and the TATA box, as they only influenced transcription when at least one of these two positive distal promoter elements was present. Internal deletions targeted to the Adf-1-binding site or the TATA box reduced transcription in both cell types but did not affect the transcription initiation site. Distal transcription in transfected ADH- cells appears to be controlled primarily through these promoter elements and does not involve the upstream regulatory elements. Evolutionary conservation in distantly related Drosophila species suggests the importance of these upstream elements in correct developmental and tissue-specific expression of ADH. Images PMID:1694013

  10. Genetic Ablation of Nrf2/Antioxidant Response Pathway in Alexander Disease Mice Reduces Hippocampal Gliosis but Does Not Impact Survival

    PubMed Central

    Hagemann, Tracy L.; Jobe, Emily M.; Messing, Albee

    2012-01-01

    In Alexander disease (AxD) the presence of mutant glial fibrillary acidic protein (GFAP), the major intermediate filament of astrocytes, triggers protein aggregation, with marked induction of a stress response mediated by the transcription factor, Nrf2. To clarify the role of Nrf2 in AxD, we have crossed Gfap mutant and transgenic mouse models into an Nrf2 null background. Deletion of Nrf2 eliminates the phase II stress response normally present in mouse models of AxD, but causes no change in body weight or lifespan, even in a severe lethal model. AxD astrocytes without Nrf2 retain features of reactivity, such as expression of the endothelin-B receptor, but have lower Gfap levels, a decrease in p62 protein and reduced iron accumulation, particularly in hippocampus. Microglial activation, indicated by Iba1 expression, is also diminished. Although the Nrf2 response is generally considered beneficial, these results show that in the context of AxD, loss of the antioxidant pathway has no obvious negative effects, while actually decreasing Gfap accumulation and pathology. Given the attention Nrf2 is receiving as a potential therapeutic target in AxD and other neurodegenerative diseases, it will be interesting to see whether induction of Nrf2, beyond the endogenous response, is beneficial or not in these same models. PMID:22693571

  11. Pharmacokinetics and pharmacodynamics of phase II drug metabolizing/antioxidant enzymes gene response by anticancer agent sulforaphane in rat lymphocytes.

    PubMed

    Wang, Hu; Khor, Tin Oo; Yang, Qian; Huang, Ying; Wu, Tien-Yuan; Saw, Constance Lay-Lay; Lin, Wen; Androulakis, Ioannis P; Kong, Ah-Ng Tony

    2012-10-01

    This study assesses the pharmacokinetics (PK) and pharmacodynamics (PD) of Nrf2-mediated increased expression of phase II drug metabolizing enzymes (DME) and antioxidant enzymes which represents an important component of cancer chemoprevention in rat lymphocytes following intravenous (iv) administration of an anticancer phytochemical sulforaphane (SFN). SFN was administered intravenously to four groups of male Sprague-Dawley JVC rats each group comprising four animals. Blood samples were drawn at selected time points. Plasma were obtained from half of each of the blood samples and analyzed using a validated LC-MS/MS method. Lymphocytes were collected from the remaining blood samples using Ficoll-Paque Plus centrifuge medium. Lymphocyte RNAs were extracted and converted to cDNA, quantitative real-time PCR analyses were performed, and fold changes were calculated against those at time zero for the relative expression of Nrf2-target genes of phase II DME/antioxidant enzymes. PK-PD modeling was conducted based on Jusko's indirect response model (IDR) using GastroPlus and bootstrap method. SFN plasma concentration declined biexponentially and the pharmacokinetic parameters were generated. Rat lymphocyte mRNA expression levels showed no change for GSTM1, SOD, NF-κB, UGT1A1, or UGT1A6. Moderate increases (2-5-fold) over the time zero were seen for HO-1, Nrf2, and NQO1, and significant increases (>5-fold) for GSTT1, GPx1, and Maf. PK-PD analyses using GastroPlus and the bootstrap method provided reasonable fitting for the PK and PD profiles and parameter estimates. Our present study shows that SFN could induce Nrf2-mediated phase II DME/antioxidant mRNA expression for NQO1, GSTT1, Nrf2, GPx, Maf, and HO-1 in rat lymphocytes after iv administration, suggesting that Nrf2-mediated mRNA expression in lymphocytes may serve as surrogate biomarkers. The PK-PD IDR model simultaneously linking the plasma concentrations of SFN and the PD response of lymphocyte mRNA expression is

  12. Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange

    PubMed Central

    Huang, Yong-Ming; Srivastava, A. K.; Zou, Ying-Ning; Ni, Qiu-Dan; Han, Yu; Wu, Qiang-Sheng

    2014-01-01

    Trifoliate orange [Poncirus trifoliata (L) Raf.] is considered highly arbuscular mycorrhizal (AM) dependent for growth responses through a series of signal transductions in form of various physiological responses. The proposed study was carried out to evaluate the effect of an AM fungus (Funneliformis mosseae) on growth, antioxidant enzyme (catalase, CAT; superoxide dismutase, SOD) activities, leaf relative water content (RWC), calmodulin (CaM), superoxide anion (O2•−), and hydrogen peroxide (H2O2) concentrations in leaves of the plants exposed to both well-watered (WW) and drought stress (DS) conditions. A 58-day of DS significantly decreased mycorrhizal colonization by 60% than WW. Compared to non-AM seedlings, AM seedlings displayed significantly higher shoot morphological properties (plant height, stem diameter, and leaf number), biomass production (shoot and root fresh weight) and leaf RWC, regardless of soil water status. AM inoculation significantly increased CaM and soluble protein concentrations and CAT activity, whereas significantly decreased O2•− and H2O2 concentration under both WW and DS conditions. The AM seedlings also exhibited significantly higher Cu/Zn-SOD and Mn-SOD activities than the non-AM seedlings under DS but not under WW, which are triggered by higher CaM levels in AM plants on the basis of correlation studies. Further, the negative correlation of Cu/Zn-SOD and Mn-SOD activities with O2•− and H2O2 concentration showed the DS-induced ROS scavenging ability of CaM mediated SODs under mycorrhization. Our results demonstrated that AM-inoculation elevated the synthesis of CaM in leaves and up-regulated activities of the antioxidant enzymes, thereby, repairing the possible oxidative damage to plants by lowering the ROS accumulation under DS condition. PMID:25538696

  13. Antioxidant responses to azinphos methyl and carbaryl during the embryonic development of the toad Rhinella (Bufo) arenarum Hensel.

    PubMed

    Ferrari, Ana; Lascano, Cecilia I; Anguiano, Olga L; D'Angelo, Ana M Pechen de; Venturino, Andrés

    2009-06-01

    Amphibian embryos are naturally exposed to prooxidant conditions throughout their development. Environmental exposure to contaminants may affect their capacity to respond to challenging conditions, to progress in a normal ontogenesis, and finally to survive and succeed in completing metamorphosis. We studied the effects of the exposure to two anticholinesterase agents, the carbamate carbaryl and the organophosphate azinphos methyl, on the antioxidant defenses of developing embryos of the toad Rhinella (Bufo) arenarum. Reduced glutathione (GSH) levels were increased early by carbaryl, but were decreased by both pesticides at the end of embryonic development. The GSH-dependent enzymes glutathione reductase and glutathione peroxidases showed oscillating activity patterns that could be attributed to an induction of activity in response to oxidative stress and inactivation by excess of reactive oxygen species. Glutathione-S-transferases, which may participate in the conjugation of lipid peroxide products in addition to pesticide detoxification, showed an increase of activity at the beginning and at the end of development. Catalase also showed variations in the activity suggesting, successively, induction and inactivation in response to pesticide exposure-induced oxidative stress. Superoxide dismutase activity was increased by carbaryl and transiently decreased by azinphos methyl exposure. Judging from the depletion in GSH levels and glutathione reductase inhibition at the end of embryonic development, the oxidative stress caused by azinphos methyl seemed to be greater than that caused by carbaryl, which might be in turn related with a higher number of developmental alterations caused by the organophosphate. GSH content is a good biomarker of oxidative stress in the developing embryos exposed to pesticides. The antioxidant enzymes are in turn revealing the balance between their protective capacity and the oxidative damage to the enzyme molecules, decreasing their

  14. Accumulation of heavy metals and antioxidant responses in Pinus sylvestris L. needles in polluted and non-polluted sites.

    PubMed

    Kandziora-Ciupa, Marta; Ciepał, Ryszard; Nadgórska-Socha, Aleksandra; Barczyk, Gabriela

    2016-07-01

    The purpose of this study was to determine the concentrations of heavy metals (cadmium, iron, manganese, lead and zinc) in current-year, 1-year old and 2-year old needles of Pinus sylvestris L. Trees were from three heavily polluted (immediate vicinity of zinc smelter, iron smelter and power plant) and three relatively clean sites (nature reserve, ecologically clean site and unprotected natural forest community) in southern Poland. Analysis also concerned the antioxidant response and contents of protein, proline, total glutathione, non-protein thiols and activity of guaiacol peroxidase (GPX) in the needles. Generally, in pine needles from the polluted sites, the concentrations of the metals were higher and increased with the age of needles, and in most cases, antioxidant responses also were elevated. The highest levels of Cd, Pb and Zn were found in 2-year old pine needles collected near the polluted zinc smelter (respectively: 6.15, 256.49, 393.5 mg kg(-1)), Fe in 2-year old pine needles in the vicinity of the iron smelter (206.82 mg kg(-1)) and Mn in 2-year old needles at the ecologically clean site (180.32 mg kg(-1)). Positive correlations were found between Fe, Mn and Pb and the content of proteins and NPTs, between Cd and non-protein -SH groups, and between Zn and proline levels. The activity of GPX increased under the influence of Mn, while glutathione levels tended to decrease as Mn levels rose. The data obtained show that the levels of protein and non-protein -SH groups may be useful in biological monitoring, and that these ecophysiological parameters seem to be good evidence of elevated oxidative stress caused by heavy metals. PMID:27033856

  15. Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange.

    PubMed

    Huang, Yong-Ming; Srivastava, A K; Zou, Ying-Ning; Ni, Qiu-Dan; Han, Yu; Wu, Qiang-Sheng

    2014-01-01

    Trifoliate orange [Poncirus trifoliata (L) Raf.] is considered highly arbuscular mycorrhizal (AM) dependent for growth responses through a series of signal transductions in form of various physiological responses. The proposed study was carried out to evaluate the effect of an AM fungus (Funneliformis mosseae) on growth, antioxidant enzyme (catalase, CAT; superoxide dismutase, SOD) activities, leaf relative water content (RWC), calmodulin (CaM), superoxide anion ([Formula: see text]), and hydrogen peroxide (H2O2) concentrations in leaves of the plants exposed to both well-watered (WW) and drought stress (DS) conditions. A 58-day of DS significantly decreased mycorrhizal colonization by 60% than WW. Compared to non-AM seedlings, AM seedlings displayed significantly higher shoot morphological properties (plant height, stem diameter, and leaf number), biomass production (shoot and root fresh weight) and leaf RWC, regardless of soil water status. AM inoculation significantly increased CaM and soluble protein concentrations and CAT activity, whereas significantly decreased [Formula: see text] and H2O2 concentration under both WW and DS conditions. The AM seedlings also exhibited significantly higher Cu/Zn-SOD and Mn-SOD activities than the non-AM seedlings under DS but not under WW, which are triggered by higher CaM levels in AM plants on the basis of correlation studies. Further, the negative correlation of Cu/Zn-SOD and Mn-SOD activities with [Formula: see text] and H2O2 concentration showed the DS-induced ROS scavenging ability of CaM mediated SODs under mycorrhization. Our results demonstrated that AM-inoculation elevated the synthesis of CaM in leaves and up-regulated activities of the antioxidant enzymes, thereby, repairing the possible oxidative damage to plants by lowering the ROS accumulation under DS condition. PMID:25538696

  16. Lung antioxidant and cytokine responses to coarse and fine particulate matter from the great California wildfires of 2008.

    PubMed

    Wegesser, Teresa C; Franzi, Lisa M; Mitloehner, Frank M; Eiguren-Fernandez, Arantza; Last, Jerold A

    2010-06-01

    The authors have previously demonstrated that wildfire-derived coarse or fine particulate matter (PM) intratracheally instilled into lungs of mice induce a strong inflammatory response. In the current study, the authors demonstrate that wildfire PM simultaneously cause major increases in oxidative stress in the mouse lungs as measured by decreased antioxidant content of the lung lavage supernatant fluid 6 and 24 h after PM administration. Concentrations of neutrophil chemokines/cytokines and of tumor necrosis factor (TNF)-alpha were elevated in the lung lavage fluid obtained 6 and 24 h after PM instillation, consistent with the strong neutrophilic inflammatory response observed in the lungs 24 h after PM administration, suggesting a relationship between the proinflammatory activity of the PM and the measured level of antioxidant capacity in the lung lavage fluid. Chemical analysis shows relatively low levels of polycyclic aromatic hydrocarbons compared to published results from typical urban PM. Coarse PM fraction is more active (proinflammatory activity and oxidative stress) on an equal-dose basis than the fine PM despite its lower content of polycyclic aromatic hydrocarbons. There does not seem to be any correlation between the content of any specific polycyclic aromatic hydrocarbon (or of total polycyclic aromatic hydrocarbon content) in the PM fraction and its toxicity. However, the concentrations of the oxidation products of phenanthrene and anthracene, phenanthraquinone and anthraquinone, were several-fold higher in the coarse PM than the fine fraction, suggesting a significant role for atmospheric photochemistry in the formation of secondary pollutants in the wildfire PM and the possibility that such secondary pollutants could be significant sources of toxicity in the wildfire PM. PMID:20388000

  17. Implementation of structural response sensitivity calculations in a large-scale finite-element analysis system

    NASA Technical Reports Server (NTRS)

    Giles, G. L.; Rogers, J. L., Jr.

    1982-01-01

    The implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calclating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of the system are also discussed.

  18. Regulatory elements responsible for inducible expression of the granulocyte colony-stimulating factor gene in macrophages.

    PubMed Central

    Nishizawa, M; Nagata, S

    1990-01-01

    Granulocyte colony-stimulating factor (G-CSF) plays an essential role in granulopoiesis during bacterial infection. Macrophages produce G-CSF in response to bacterial endotoxins such as lipopolysaccharide (LPS). To elucidate the mechanism of the induction of G-CSF gene in macrophages or macrophage-monocytes, we have examined regulatory cis elements in the promoter of mouse G-CSF gene. Analyses of linker-scanning and internal deletion mutants of the G-CSF promoter by the chloramphenicol acetyltransferase assay have indicated that at least three regulatory elements are indispensable for the LPS-induced expression of the G-CSF gene in macrophages. When one of the three elements was reiterated and placed upstream of the TATA box of the G-CSF promoter, it mediated inducibility as a tissue-specific and orientation-independent enhancer. Although this element contains a conserved NF-kappa B-like binding site, the gel retardation assay and DNA footprint analysis with nuclear extracts from macrophage cell lines demonstrated that nuclear proteins bind to the DNA sequence downstream of the NF-kappa B-like element, but not to the conserved element itself. The DNA sequence of the binding site was found to have some similarities to the LPS-responsive element which was recently identified in the promoter of the mouse class II major histocompatibility gene. Images PMID:1691438

  19. Response of removable epoxy foam exposed to fire using an element death model.

    SciTech Connect

    Hobbs, Michael L.

    2004-09-01

    Response of removable epoxy foam (REF) to high heat fluxes is described using a decomposition chemistry model [1] in conjunction with a finite element heat conduction code [2] that supports chemical kinetics and dynamic radiation enclosures. The chemistry model [1] describes the temporal transformation of virgin foam into carbonaceous residue by considering breakdown of the foam polymer structure, desorption of gases not associated with the foam polymer, mass transport of decomposition products from the reaction site to the bulk gas, and phase equilibrium. The finite element foam response model considers the spatial behavior of the foam by using measured and predicted thermophysical properties in combination with the decomposition chemistry model. Foam elements are removed from the computational domain when the condensed mass fractions of the foam elements are close to zero. Element removal, referred to as element death, creates a space within the metal confinement causing radiation to be the dominant mode of heat transfer between the surface of the remaining foam elements and the interior walls of the confining metal skin. Predictions were compared to front locations extrapolated from radiographs of foam cylinders enclosed in metal containers that were heated with quartz lamps [3,4]. The effects of the maximum temperature of the metal container, density of the foam, the foam orientation, venting of the decomposition products, pressurization of the metal container, and the presence or absence of embedded components are discussed.

  20. Antioxidant Response of Osteoblasts to Doxycycline in an Inflammatory Model Induced by C-reactive Protein and Interleukin-6

    PubMed Central

    Tilakaratne, A.; Soory, Mena

    2014-01-01

    Objectives : Investigation of osteoblastic responses to oxidative stress, induced by C-reactive protein (CRP) and IL-6 and ameliorating effects of doxycycline (Dox); using assays for 5-alpha dihydrotestosterone (DHT) as an antioxidant marker of healing. IL-6 and CRP are risk markers of periodontitis and prevalent comorbidities in periodontitis subjects. Methods : Confluent monolayer cultures of osteoblasts were incubated with radiolabelled testosterone (14C-T) as substrate, in the presence or absence (Control) of pre-determined optimal concentrations of CRP, IL-6, Dox; alone and in combination (n=8) for 24h in MEM. The eluent was solvent-extracted for steroid metabolites. They were separated using TLC in a benzene/ acetone solvent system 4:1 v/v; and quantified using radioisotope scanning. The identity of formed metabolites was confirmed using the mobility of cold standards added to the samples and disclosed in iodine. Further confirmation of the authenticity of DHT was carried out by combined gas chromatrography-mass spectrometry, after derivatization to pentafluorobenzyloxime trimethyl silyl ether. Results : The yields of DHT from 14C-testosterone showed 2-fold and 1.8-fold- inhibition in response to IL-6 and CRP respectively and 28% stimulation in response to Dox, via the 5-alpha reductase pathway. The combination of IL-6 + CRP showed a 2-fold reduction in the yields of DHT, elevated to control values when combined with Dox (n=8; p<0.001). Yields of 4-androstenedione showed an inverse relationship to those of DHT, in response to the agents tested, in keeping with the 17-beta hydroxysteroid dehydrogenase pathway. Conclusions : Inhibition of DHT synthesis in osteoblasts by IL-6 and CRP was overcome by doxycycline. Oxidative actions of IL-6 and CRP; and antioxidant actions of Dox are reinforced by the metabolic yields of DHT in response to agents tested. Using a novel metabolically active model allows closer extrapolation to in vivo conditions; in the context of

  1. Antioxidant Expression Response to Free Radicals in Active Men and Women Fallowing to a Session Incremental Exercise; Numerical Relationship Between Antioxidants and Free Radicals

    PubMed Central

    Baghaiee, Behrouz; Aliparasti, Mohammad Reza; Almasi, Shohreh; Siahkuhian, Marefat; Baradaran, Behzad

    2016-01-01

    Background Energy production is a necessary process to continue physical activities, and exercise is associated with more oxygen consumption and increase of oxidative stress. what seems important is the numerical relationship between antioxidant and free radicals. Although the activity of some enzymes increases with physical activities, but it is possible that gene expression of this enzyme is not changed during exercise. Objectives The aim of the present study is to investigate the antioxidant enzymes gene expression and changes in malondialdehyde (MDA) and total antioxidant capacity (TAC) levels in men and women affected by a session of incremental exercise and to carefully and numerically assess the relationship between MDA changes and gene expression and activity of antioxidant enzymes. Materials and Methods 12 active men and 12 active women (21 - 24 years old) participated voluntarily in this study. Peripheral blood samples were taken from the subjects in three phases, before and after graduated exercise test (GXT) and 3 hours later (recovery). Results The gene expression of manganese superoxide dismutase (MnSOD) enzyme increased significantly in women in the recovery phase (P < 0.05). Catalase gene expression significantly increased in men in both phases (immediately & recovery) (P < 0.05). But the changes in active women were only significant immediately after the exercise. TAC levels increased significantly in men in the recovery phase and in active women immediately after the exercise (P < 0.05). MDA activity also increased significantly in men in both phases (P < 0.05). However, in women the increase was significant only in the recovery phase (P < 0.05). There was a reverse relationship between changes in MnSOD and copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) levels and MDA in men (P < 0.05). In active women there was also a significant relationship between changes in MDA and gene expression of Cu/ZnSOD and TAC (P < 0.05). Conclusions The

  2. High Salinity Induces Different Oxidative Stress and Antioxidant Responses in Maize Seedlings Organs

    PubMed Central

    AbdElgawad, Hamada; Zinta, Gaurav; Hegab, Momtaz M.; Pandey, Renu; Asard, Han; Abuelsoud, Walid

    2016-01-01

    Salinity negatively affects plant growth and causes significant crop yield losses world-wide. Maize is an economically important cereal crop affected by high salinity. In this study, maize seedlings were subjected to 75 mM and 150 mM NaCl, to emulate high soil salinity. Roots, mature leaves (basal leaf-pair 1,2) and young leaves (distal leaf-pair 3,4) were harvested after 3 weeks of sowing. Roots showed the highest reduction in biomass, followed by mature and young leaves in the salt-stressed plants. Concomitant with the pattern of growth reduction, roots accumulated the highest levels of Na+ followed by mature and young leaves. High salinity induced oxidative stress in the roots and mature leaves, but to a lesser extent in younger leaves. The younger leaves showed increased electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2) concentrations only at 150 mM NaCl. Total antioxidant capacity (TAC) and polyphenol content increased with the increase in salinity levels in roots and mature leaves, but showed no changes in the young leaves. Under salinity stress, reduced ascorbate (ASC) and glutathione (GSH) content increased in roots, while total tocopherol levels increased specifically in the shoot tissues. Similarly, redox changes estimated by the ratio of redox couples (ASC/total ascorbate and GSH/total glutathione) showed significant decreases in the roots. Activities of enzymatic antioxidants, catalase (CAT, EC 1.11.1.6) and dehydroascorbate reductase (DHAR, EC 1.8.5.1), increased in all organs of salt-treated plants, while superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione-s-transferase (GST, EC 2.5.1.18) and glutathione reductase (GR, EC 1.6.4.2) increased specifically in the roots. Overall, these results suggest that Na+ is retained and detoxified mainly in roots, and less stress impact is observed in mature and younger leaves. This study also indicates a possible role of ROS in the systemic

  3. Effects of diphenyl diselenide on growth, oxidative damage, and antioxidant response in silver catfish.

    PubMed

    Menezes, Charlene; Marins, Aline; Murussi, Camila; Pretto, Alexandra; Leitemperger, Jossiele; Loro, Vania Lucia

    2016-01-15

    The aim of this study was to evaluate the effects of dietary diphenyl diselenide [(PhSe)2] at different concentrations (1.5, 3.0, and 5.0 mg/kg) on growth, oxidative damage and antioxidant parameters in silver catfish after 30 and 60 days. Fish fed with 5.0 mg/kg of (PhSe)2 experienced a significant decrease in weight, length, and condition factor after 30 days and these parameters increased after 60 days. Thiobarbituric acid reactive substances (TBARS) and protein carbonyl (PC) decreased in the liver of silver catfish supplemented with (PhSe)2 after 30 days at all concentrations, while after 60 days these parameters decreased in liver, gills, brain, and muscle. Supplementation with (PhSe)2 induced a decrease in catalase (CAT) activity from liver only after 60 days of feeding. Superoxide dismutase (SOD) decreased at 5.0 mg/kg after 30 and 60 days and glutathione peroxidase (GPx) was enhanced at 1.5 and 3.0 mg/kg after 30 and 60 days. Silver catfish supplemented for 30 days showed a significant increase in liver glutathione S-transferase (GST) at 3.0 mg/kg, while after 60 days GST activity increased in liver at 1.5, 3.0, and 5.0 mg/kg and in gills at 3.0 and 5.0 mg/kg of (PhSe)2. After 30 days, non-protein thiols (NPSH) did not change, while after 60 days NPSH increased in liver, gills, brain, and muscle. In addition, ascorbic acid (AA) levels after 30 days increased in liver at three concentrations and in gills and muscle at 1.5 mg/kg, while after 60 days, AA increased at all concentrations in all and tissues tested. Thus, diet supplemented with (PhSe)2 for 60 days could be more effective for silver catfish. Although the concentration of 5.0 mg/kg showed decreased growth parameters, concentrations of 1.5 and 3.0 mg/kg, in general, decreased oxidative damage and increased antioxidant defenses. PMID:26520260

  4. High Salinity Induces Different Oxidative Stress and Antioxidant Responses in Maize Seedlings Organs.

    PubMed

    AbdElgawad, Hamada; Zinta, Gaurav; Hegab, Momtaz M; Pandey, Renu; Asard, Han; Abuelsoud, Walid

    2016-01-01

    Salinity negatively affects plant growth and causes significant crop yield losses world-wide. Maize is an economically important cereal crop affected by high salinity. In this study, maize seedlings were subjected to 75 mM and 150 mM NaCl, to emulate high soil salinity. Roots, mature leaves (basal leaf-pair 1,2) and young leaves (distal leaf-pair 3,4) were harvested after 3 weeks of sowing. Roots showed the highest reduction in biomass, followed by mature and young leaves in the salt-stressed plants. Concomitant with the pattern of growth reduction, roots accumulated the highest levels of Na(+) followed by mature and young leaves. High salinity induced oxidative stress in the roots and mature leaves, but to a lesser extent in younger leaves. The younger leaves showed increased electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2) concentrations only at 150 mM NaCl. Total antioxidant capacity (TAC) and polyphenol content increased with the increase in salinity levels in roots and mature leaves, but showed no changes in the young leaves. Under salinity stress, reduced ascorbate (ASC) and glutathione (GSH) content increased in roots, while total tocopherol levels increased specifically in the shoot tissues. Similarly, redox changes estimated by the ratio of redox couples (ASC/total ascorbate and GSH/total glutathione) showed significant decreases in the roots. Activities of enzymatic antioxidants, catalase (CAT, EC 1.11.1.6) and dehydroascorbate reductase (DHAR, EC 1.8.5.1), increased in all organs of salt-treated plants, while superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione-s-transferase (GST, EC 2.5.1.18) and glutathione reductase (GR, EC 1.6.4.2) increased specifically in the roots. Overall, these results suggest that Na(+) is retained and detoxified mainly in roots, and less stress impact is observed in mature and younger leaves. This study also indicates a possible role of ROS in the systemic

  5. Antioxidants Abrogate Alpha-Tocopherylquinone-Mediated Down-Regulation of the Androgen Receptor in Androgen-Responsive Prostate Cancer Cells

    PubMed Central

    Fajardo, Alexandra M.; MacKenzie, Debra A.; Olguin, Sarah L.; Scariano, John K.; Rabinowitz, Ian; Thompson, Todd A.

    2016-01-01

    Tocopherylquinone (TQ), the oxidation product of alpha-tocopherol (AT), is a bioactive molecule with distinct properties from AT. In this study, AT and TQ are investigated for their comparative effects on growth and androgenic activity in prostate cancer cells. TQ potently inhibited the growth of androgen-responsive prostate cancer cell lines (e.g., LAPC4 and LNCaP cells), whereas the growth of androgen-independent prostate cancer cells (e.g., DU145 cells) was not affected by TQ. Due to the growth inhibitory effects induced by TQ on androgen-responsive cells, the anti-androgenic properties of TQ were examined. TQ inhibited the androgen-induced activation of an androgen-responsive reporter and inhibited the release of prostate specific antigen from LNCaP cells. TQ pretreatment was also found to inhibit AR activation as measured using the Multifunctional Androgen Receptor Screening assay. Furthermore, TQ decreased androgen-responsive gene expression, including TM4SF1, KLK2, and PSA over 5-fold, whereas AT did not affect the expression of androgen-responsive genes. Of importance, the antiandrogenic effects of TQ on prostate cancer cells were found to result from androgen receptor protein down-regulation produced by TQ that was not observed with AT treatment. Moreover, none of the androgenic endpoints assessed were affected by AT. The down-regulation of androgen receptor protein by TQ was abrogated by co-treatment with antioxidants. Overall, the biological actions of TQ were found to be distinct from AT, where TQ was found to be a potent inhibitor of cell growth and androgenic activity in androgen-responsive prostate cancer cells. PMID:26986969

  6. Evolutionary Plasticity of Polycomb/Trithorax Response Elements in Drosophila Species

    PubMed Central

    Altmutter, Christina; Paro, Renato; Rehmsmeier, Marc

    2008-01-01

    cis-Regulatory DNA elements contain multiple binding sites for activators and repressors of transcription. Among these elements are enhancers, which establish gene expression states, and Polycomb/Trithorax response elements (PREs), which take over from enhancers and maintain transcription states of several hundred developmentally important genes. PREs are essential to the correct identities of both stem cells and differentiated cells. Evolutionary differences in cis-regulatory elements are a rich source of phenotypic diversity, and functional binding sites within regulatory elements turn over rapidly in evolution. However, more radical evolutionary changes that go beyond motif turnover have been difficult to assess. We used a combination of genome-wide bioinformatic prediction and experimental validation at specific loci, to evaluate PRE evolution across four Drosophila species. Our results show that PRE evolution is extraordinarily dynamic. First, we show that the numbers of PREs differ dramatically between species. Second, we demonstrate that functional binding sites within PREs at conserved positions turn over rapidly in evolution, as has been observed for enhancer elements. Finally, although it is theoretically possible that new elements can arise out of nonfunctional sequence, evidence that they do so is lacking. We show here that functional PREs are found at nonorthologous sites in conserved gene loci. By demonstrating that PRE evolution is not limited to the adaptation of preexisting elements, these findings document a novel dimension of cis-regulatory evolution. PMID:18959483

  7. Biodegradation of shrimp biowaste by marine Exiguobacterium sp. CFR26M and concomitant production of extracellular protease and antioxidant materials: production and process optimization by response surface methodology.

    PubMed

    Anil Kumar, P K; Suresh, P V

    2014-04-01

    Twelve marine bacterial cultures were screened for extracellular protease activity, and the bacterium CFR26M which exhibited the highest activity on caseinate agar plate was identified as an Exiguobacterium sp. Significant amount of extracellular protease (5.9 ± 0.3 U/ml) and antioxidant materials, measured as 2,2'-diphenyl picrylhydrazyl (DPPH) radical scavenging activity (44.4 ± 0.5 %), was produced by CFR26M in submerged fermentation using a shrimp biowaste medium. Response surface methodology (RSM) was employed to optimize the process variables for maximum production of protease and antioxidant materials by CFR26M. Among the seven variables screened by two-level 2**(7-2) fractional factorial design, the concentration of shrimp biowaste, sugar, and phosphate was found to be significant (p ≤ 0.05). The optimum levels of these variables were determined by employing the central composite design (CCD) of RSM. The coefficient of determination (R (2)) values of 0.9039 and 0.8924 for protease and antioxidant, respectively, indicates the accuracy of the CCD models. The optimum levels of shrimp biowaste, sugar, and phosphate were 21.2, 10.5, and 2.3 % (w/v) for production of protease and 28.8, 12, and 0.32 % (w/v) for production of antioxidant material, respectively. The concentration of shrimp biowaste, sugar, and phosphate had linear and quadratic effect on both protease and antioxidant productions. RSM optimization yielded 6.3-fold increases in protease activity and 1.6-fold in antioxidant material production. The crude protease of CFR26M had a maximum activity at 32 ± 2 °C with pH 7.6. This is the first report on the use of marine Exiguobacterium sp. for concomitant production of protease and antioxidant materials from shrimp biowaste. PMID:24057170

  8. A consensus insulin response element is activated by an Ets-related transcription factor.

    PubMed

    Jacob, K K; Ouyang, L; Stanley, F M

    1995-11-17

    Insulin increases expression of somatostatin-chloramphenicol acetyltransferase (CAT) constructs 10-fold and thymidine kinase-CAT constructs 5-fold in GH4 cells. These responses are similar to our previously reported data on insulin-increased prolactin-CAT expression. They are also observed in HeLa cells and are thus not cell type specific. The evidence suggests that the insulin responsiveness of these genes is mediated by an Ets-related transcription factor. First, linker-scanning mutations and/or deletions of the prolactin, somatostatin, and thymidine kinase promoters suggest that their insulin responsiveness is mediated by the sequence CGGA. This sequence is identical with the response element of the Ets-related transcription factors. Second, CGGA-containing sequences placed at -88 in the delta MTV-CAT reporter plasmid conferred insulin responsiveness to the mammary tumor virus promoter. Third, expression of the DNA-binding domain of c-Ets-2, which acts by blocking effects mediated by Ets-related transcription factors, inhibits the response of these promoters to insulin. Finally, the Ets-related proteins Sap and Elk-1 bind to the prolactin, somatostatin, and thymidine kinase insulin-response elements. An Ets-like element was found in all insulin-sensitive promoters examined and may serve a similar function in those promoters. PMID:7499246

  9. Toxicological effects of carbosulfan in rats: Antioxidant, enzymological, biochemical, and hematological responses.

    PubMed

    Nwani, Christopher Didigwu; Agrawal, Narottam Das; Raghuvanshi, Suchita; Jaswal, Amita; Shrivastava, Sadhana; Sinha, Neelu; Onyishi, Grace; Shukla, Sangeeta

    2016-07-01

    Carbosulfan is often used in agriculture for pest control on crops and for treatment against pyrethroid-resistant mosquitoes. This study investigated the impact of carbosulfan on oxidative stress markers, antioxidant defense, hematological, biochemical, and enzymological parameters in Sprague Dawley rats. Rats were orally administered carbosulfan doses of 1.02 to 10.20 mg/kg body weight daily; after 96 h, blood samples were taken, and the liver, kidney, and brain were dissected out for study. Results indicate that carbosulfan significantly increased the levels of lipid peroxidation and suppressed the activity of reduced glutathione, glutathione reductase, catalase, glucose-6-phosphate dehydrogenase, and adenosine triphosphatase. A mixed trend was observed in the activity of superoxide dismutase, while an increase was observed in the levels of serum uric acid, urea, aspartate aminotransferase, and alanine aminotransferase. Hemoglobin and albumin levels decreased but no significant differences were observed in creatinine and bilirubin levels. Future studies should include a more detailed analysis of the effects of chronic carbosulfan exposure on these biomarkers to further assess the impact of the pesticide on mammalian models. PMID:25564597

  10. Temperature affects Hg-induced antioxidant responses in Chinese rare minnow Gobiocypris rarus larvae in vitro.

    PubMed

    Li, Zhi-Hua; Li, Ping; Chen, Lu

    2014-12-01

    The effect of temperature on HgCl2 (Hg(2+))-induced oxidative stress to Chinese rare minnow (Gobiocypris rarus) was evaluated in vitro. Malondialdehyde (MDA) content and superoxide dismutase, catalase and glutathione peroxidase activities were determined in whole body homogenates incubated with 0.1 mg/L Hg(2+) at 15, 25 and 35°C for 60 min. The result showed that oxidative stress was at a normal level in the Hg(2+) + NT (0.1 mg/L Hg(2+) and normal temperature, 25°C) and Hg(2+) + LT (0.1 mg/L Hg(2+) and low temperature, 15°C) groups, but a significant induction in oxidative stress occurred in the Hg(2+) + HT (35°C) group. This was reflected by an increased level of MDA and decreased activities of the antioxidant enzymes. The results suggest that higher temperature enhances heavy metal toxicity in aquatic systems, which should be given more attention in the future. PMID:25323039

  11. Antioxidant enzyme level response to prooxidant allelochemicals in larvae of the southern armyworm moth, Spodoptera eridania.

    PubMed

    Pritsos, C A; Ahmad, S; Elliott, A J; Pardini, R S

    1990-01-01

    Larvae of the southern armyworm, Spodoptera eridania, are highly polyphagous feeders which frequently encounter and feed upon plants containing high levels of prooxidant allelochemicals. While ingestion of moderate quantities of prooxidants can be tolerated by these larvae, ingestion of larger quantities can result in toxicity. Studies were conducted to assess the role of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) in the protection of S. eridania against redox active prooxidant plant allelochemicals. Dietary exposure of mid-fifth-instar larvae to either quercetin (a flavonoid) or xanthotoxin (a photoactive furanocoumarin), which generate superoxide radical, and singlet oxygen, respectively, resulted in an increase in SOD levels. CAT levels increased in all groups of S. eridania including control insects. This may have been due to the sudden exposure to food following an extended fast of 18 h (to insure that larvae would not reject the diet because of the prooxidants' bitter taste) with an eventual lowering of CAT values with time. GR activities did not significantly change except for a slight inhibition at the highest prooxidant concentrations used at 12-h post-ingestion. The data from these studies suggest that SOD responds to prooxidant challenges in these insects and together with CAT and GR contributes to the insect's defense against potentially toxic prooxidant compounds. PMID:2161387

  12. Ultraviolet-B light induced oxidative stress: effects on antioxidant response of Spodoptera litura.

    PubMed

    Karthi, Sengodan; Sankari, R; Shivakumar, Muthugounder S

    2014-06-01

    Ultraviolet light (UV-B), which emits radiation in the range of 280-315 nm, has been used worldwide in light trapping of insect pests. In this article, we test the hypothesis that one of the duration of UV-B exposure has a differential impact on oxidative stress marker enzymes in Spodoptera litura. Effect of UV-B exposure on total protein and antioxidant activities of superoxide dismutase (SOD), catalase (CAT), peroxidases (POX) and glutathione-S-transferase (GST) were investigated in S. litura. The adults were exposed to UV-B light for various time periods (0, 30, 60, 90 and 120 min). We found that exposure to UV-B light for 30 and 60 min resulted in increased activities of POX. When the exposure time lasted for 60 and 90 min, the activities of SOD remained significantly higher than the control. However, the POX, CAT and GST activity decreased to control levels at 90 and 120 min. whereas relatively long duration exposure activates the xenobiotics detoxifying enzymes like GST and POX and CAT enzymes. Longer UV-B exposure may interfere with pesticide detoxification mechanism in insects, making them more susceptible to insecticides. PMID:24792567

  13. Response of ultraviolet-B and nickel on pigments, metabolites and antioxidants of Pisum sativum L.

    PubMed

    Singh, Suruchi; Mishra, Shweta; Kumari, Rima; Agrawal, S B

    2009-09-01

    Ultraviolet radiation (UV) though harmful but is an important and unavoidable component of terrestrial ecosystem to which plants have been exposed since their migration from aquatic to land habitat. Incoming UV-B radiation and heavy metals abundance in contaminated soils are significant environmental threat affecting metabolic functions of plants through generation of reactive oxygen species. Plants have evolved mechanisms to counteract these reactive radicals and to repair the damage caused by UV-B and heavy metals. This study describes the impact of supplemental UV-B (sUV-B) and nickel (Ni) singly and in combination on photosynthetic pigments, flavonoids, enzymatic and non-enzymatic antioxidants, metabolites and lipid peroxidation of Pisum sativum L. (pea) plants. Compared to the controls, both the stresses individually and in combination led to reductions in photosynthetic pigments, ascorbic acid, protein and catalase (CAT) activity whereas a reverse trend was observed for flavonoids, phenol, proline and thiol contents, superoxide dismutase (SOD) and peroxidase (POX) activities and lipid peroxidation (LPO). However, flavonoids increased significantly under individual exposure of sUV-B as compared to other treatments. An increase of LPO by 81% indicated the generation of reactive oxygen species under both the stress conditions. sUV-B and Ni in combination acted synergistically with stimulation of CAT activity by 51.6%, additively on SOD activity with increase of 16.4%, while other parameters showed antagonistic action of both the stresses. PMID:20136048

  14. Sodium tungstate induced neurological alterations in rat brain regions and their response to antioxidants.

    PubMed

    Sachdeva, Sherry; Pant, Satish C; Kushwaha, Pramod; Bhargava, Rakesh; Flora, Swaran J S

    2015-08-01

    Tungsten, recognized recently as an environmental contaminant, is being used in arms and ammunitions as substitute to depleted uranium. We studied the effects of sodium tungstate on oxidative stress, few selected neurological variables like acetylcholinesterase, biogenic amines in rat brain regions (cerebral cortex, hippocampus and cerebellum) and their prevention following co-administration of N-acetylcysteine (NAC), naringenin and quercetin. Animals were sub-chronically exposed to sodium tungstate (100 ppm in drinking water) and orally co-supplemented with different antioxidants (0.30 mM) for three months. Sodium tungstate significantly decreased the activity of acetylcholinesterase, dopamine, nor-epinephrine and 5-hydroxytryptamine levels while it increased monoamine oxidase activity in different brain regions. Tungstate exposure produced a significant increase in biochemical variables indicative of oxidative stress while, neurological alterations were more pronounced in the cerebral cortex compared to other regions. Co-administration of NAC and flavonoids with sodium tungstate significantly restored glutathione, prevented changes in the brain biogenic amines, reactive oxygen species (ROS) and TBARS levels in the different brain regions. The protection was more prominent in the animals co-administered with NAC. We can thus conclude that sodium tungstate induced brain oxidative stress and the alterations in some neurological variables can effectively be reduced by co-supplementation of NAC. PMID:25983264

  15. Antioxidative responses of the tissues of two wild populations of Pelophylax kl. esculentus frogs to heavy metal pollution.

    PubMed

    Prokić, Marko D; Borković-Mitić, Slavica S; Krizmanić, Imre I; Mutić, Jelena J; Vukojević, Vesna; Nasia, Mohammed; Gavrić, Jelena P; Despotović, Svetlana G; Gavrilović, Branka R; Radovanović, Tijana B; Pavlović, Slađan Z; Saičić, Zorica S

    2016-06-01

    on the results in this study, we concluded that increased concentrations of heavy metals in frog tissues can alter the AOS, which leads to higher concentrations of GSH and SH groups and lower activities of antioxidative enzymes. The response of the AOS to metal pollutants allowed us to make a distinction between different frog tissues, and to conclude that the liver and skin are more suitable for assessing metal-induced oxidative stress in frogs than muscle. PMID:26874985

  16. Molecular analysis of UAS(E), a cis element containing stress response elements responsible for ethanol induction of the KlADH4 gene of Kluyveromyces lactis.

    PubMed

    Mazzoni, C; Santori, F; Saliola, M; Falcone, C

    2000-01-01

    KlADH4 is a gene of Kluyveromyces lactis encoding a mitochondrial alcohol dehydrogenase activity, which is specifically induced by ethanol and insensitive to glucose repression. In this work, we report the molecular analysis of UAS(E), an element of the KlADH4 promoter which is essential for the induction of KlADH4 in the presence of ethanol. UAS(E) contains five stress response elements (STREs), which have been found in many genes of Saccharomyces cerevisiae involved in the response of cells to conditions of stress. Whereas KlADH4 is not responsive to stress conditions, the STREs present in UAS(E) seem to play a key role in the induction of the gene by ethanol, a situation that has not been observed in the related yeast S. cerevisiae. Gel retardation experiments showed that STREs in the KlADH4 promoter can bind factor(s) under non-inducing conditions. Moreover, we observed that the RAP1 binding site present in UAS(E) binds KlRap1p. PMID:10724480

  17. Active muscle response using feedback control of a finite element human arm model.

    PubMed

    Östh, Jonas; Brolin, Karin; Happee, Riender

    2012-01-01

    Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response was implemented using feedback control of a nonlinear muscle model in the right upper extremity of a finite element (FE) HBM. Hill-type line muscle elements were added, and the active and passive properties were assessed. Volunteer tests with low impact loading resulting in elbow flexion motions were performed. Simulations of posture maintenance in a gravity field and the volunteer tests were successfully conducted. It was concluded that feedback control of a nonlinear musculoskeletal model can be used to obtain posture maintenance and human-like reflexive responses in an FE HBM. PMID:21294008

  18. Anti-oxidative and inflammatory responses induced by fly ash particles and carbon black in lung epithelial cells.

    PubMed

    Diabaté, Silvia; Bergfeldt, Britta; Plaumann, Diana; Ubel, Caroline; Weiss, Carsten

    2011-12-01

    Combustion-derived nanoparticles as constituents of ambient particulate matter have been shown to induce adverse health effects due to inhalation. However, the components inducing these effects as well as the biological mechanisms are still not fully understood. The fine fraction of fly ash particles collected from the electrostatic precipitator of a municipal solid waste incinerator was taken as an example for real particles with complex composition released into the atmosphere to study the mechanism of early biological responses of BEAS-2B human lung epithelial cells. The studies include the effects of the water-soluble and -insoluble fractions of the fly ash and the well-studied carbon black nanoparticles were used as a reference. Fly ash induced reactive oxygen species (ROS) and increased the total cellular glutathione (tGSH) content. Carbon black also induced ROS generation; however, in contrast to the fly ash, it decreased the intracellular tGSH. The fly ash-induced oxidative stress was correlated with induction of the anti-oxidant enzyme heme oxygenase-1 and increase of the redox-sensitive transcription factor Nrf2. Carbon black was not able to induce HO-1. ROS generation, tGSH increase and HO-1 induction were only induced by the insoluble fraction of the fly ash, not by the water-soluble fraction. ROS generation and HO-1 induction were markedly inhibited by pre-incubation of the cells with the anti-oxidant N-acetyl cysteine which confirmed the involvement of oxidative stress. Both effects were also reduced by the metal chelator deferoxamine indicating a contribution of bioavailable transition metals. In summary, both fly ash and carbon black induce ROS but only fly ash induced an increase of intracellular tGSH and HO-1 production. Bioavailable transition metals in the solid water-insoluble matrix of the fly ash mostly contribute to the effects. PMID:21626191

  19. Response of the physiological parameters of mango fruit (transpiration, water relations and antioxidant system) to its light and temperature environment.

    PubMed

    Léchaudel, Mathieu; Lopez-Lauri, Félicie; Vidal, Véronique; Sallanon, Huguette; Joas, Jacques

    2013-04-15

    Depending on the position of the fruit in the tree, mango fruit may be exposed to high temperature and intense light conditions that may lead to metabolic and physiological disorders and affect yield and quality. The present study aimed to determine how mango fruit adapted its functioning in terms of fruit water relations, epicarp characteristics and the antioxidant defence system in peel, to environmental conditions. The effect of contrasted temperature and light conditions was evaluated under natural solar radiation and temperature by comparing well-exposed and shaded fruit at three stages of fruit development. The sun-exposed and shaded peels of the two sides of the well-exposed fruit were also compared. Depending on fruit position within the canopy and on the side of a well-exposed fruit, the temperature gradient over a day affected fruit characteristics such as transpiration, as revealed by the water potential gradient as a function of the treatments, and led to a significant decrease in water conductance for well-exposed fruits compared to fruits within the canopy. Changes in cuticle thickness according to fruit position were consistent with those of fruit water conductance. Osmotic potential was also affected by climatic environment and harvest stage. Environmental conditions that induced water stress and greater light exposure, like on the sunny side of well-exposed fruit, increased the hydrogen peroxide, malondialdehyde and total and reduced ascorbate contents, as well as SOD, APX and MDHAR activities, regardless of the maturity stage. The lowest values were measured in the peel of the shaded fruit, that of the shaded side of well-exposed fruit being intermediate. Mango fruits exposed to water-stress-induced conditions during growth adapt their functioning by reducing their transpiration. Moreover, oxidative stress was limited as a consequence of the increase in antioxidant content and enzyme activities. This adaptive response of mango fruit to its

  20. Responses of growth inhibition and antioxidant gene expression in earthworms (Eisenia fetida) exposed to tetrabromobisphenol A, hexabromocyclododecane and decabromodiphenyl ether.

    PubMed

    Shi, Ya-juan; Xu, Xiang-bo; Zheng, Xiao-qi; Lu, Yong-long

    2015-01-01

    Tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCD) and decabromodiphenyl ether (BDE 209), suspected ubiquitous contaminants, account for the largest volume of brominated flame retardants (BFRs) since penta-BDE and octa-BDE have been phased out globally. In this paper, the growth inhibition and gene transcript levels of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT)) and the stress-response gene involved in the prevention of oxidative stress (Hsp70) of earthworms (Eisenia fetida) exposed to TBBPA, HBCD and BDE 209 were measured to identify the toxicity effects of selected BFRs on earthworms. The growth of earthworms treated by TBBPA at 200 and 400 mg/kg dw were inhibited at rate of 13.7% and 22.0% respectively, while there was no significant growth inhibition by HBCD and BDE 209. A significant (P<0.01) up-regulation of SOD expression level was observed in earthworms exposed to TBBPA at 50 mg/kg dw (1.77-fold) and to HBCD at 400 mg/kg dw (2.06-fold). The transcript level of Hsp70 gene was significantly up-regulated (P<0.01) when earthworms exposed to TBBPA at concentration of 50-200 mg/kg (2.16-2.19-fold) and HBCD at 400 mg/kg (2.61-fold). No significant variation of CAT gene expression in all the BFRs treatments was observed, neither does all the target gene expression level exposed to BDE 209. Assessed by growth inhibition and the changes at mRNA levels of encoding genes in earthworms, TBBPA showed the greatest toxicity, followed by HBCD and BDE 209, consistent with trends in molecular properties. The results help to understand the molecular mechanism of antioxidant defense. PMID:26117064

  1. Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress.

    PubMed

    Lee, Min Hee; Cho, Eun Ju; Wi, Seung Gon; Bae, Hyoungwoo; Kim, Ji Eun; Cho, Jae-Young; Lee, Sungbeom; Kim, Jin-Hong; Chung, Byung Yeoup

    2013-09-01

    Salinization plays a primary role in soil degradation and reduced agricultural productivity. We observed that salt stress reversed photosynthesis and reactive oxygen scavenging responses in leaves or roots of two rice cultivars, a salt-tolerant cultivar Pokkali and a salt-sensitive cultivar IR-29. Salt treatment (100 mM NaCl) on IR-29 decreased the maximum photochemical efficiency (Fv/Fm) and the photochemical quenching coefficient (qP), thereby inhibiting photosynthetic activity. By contrast, the salt treatment on Pokkali had the converse effect on Fv/Fm and qP, while increasing the nonphotochemical quenching coefficient (NPQ), thereby favoring photosynthetic activity. Notably, chloroplast or root cells in Pokkali maintained their ultrastructures largely intact under the salt stress, but, IR-29 showed severe disintegration of existing grana stacks, increase of plastoglobuli, and swelling of thylakoidal membranes in addition to collapsed vascular region in adventitious roots. Pokkali is known to have higher hydrogen peroxide (H2O2)-scavenging enzyme activities in non-treated seedlings, including ascorbate peroxidase, catalase, and peroxidase activities. However, these enzymatic activities were induced to a greater extent in IR-29 by the salt stress. While the level of endogenous H2O2 was lower in Pokkali than in IR-29, it was reversed upon the salt treatment. Nevertheless, the decreased amount of H2O2 in IR-29 upon the salt stress didn't result in a high scavenging activity of total cell extracts for H2O2, as well as O2(·-) and (·)OH species. The present study suggests that the tolerance to the moderate salinity in Pokkali derives largely from the constitutively maintained antioxidant enzymatic activities as well as the induced antioxidant enzyme system. PMID:23811121

  2. Antihyperglycemic potentials of a threatened plant, Helonias dioica: antioxidative stress responses and the signaling cascade.

    PubMed

    Chakraborty, Debrup; Samadder, Asmita; Dutta, Suman; Khuda-Bukhsh, Anisur Rahman

    2012-01-01

    Helonias dioica (HD) is a threatened species of herb growing in North America. It is used as a traditional medicine for treating various ailments particularly related to reproductive issues. The root is reported to contain approximately 10% of a saponin (chamaelirin; C(36)H(62)O(18)) apart from certain other fatty acids. As saponins are known to have hypoglycemic effects, we suspected its possible antihyperglycemic potentials. We injected intraperitoneally alloxan (ALX) at the dose of 200 mg/kg body weight (bw) to induce hyperglycemia in mice and tested possible hypoglycemic effects of HD in vivo by deploying two doses (100 and 200 mg/kg bw, respectively). We also tested its effects on the isolated pancreatic islets cells in vitro. We used various standard protocols like reactive oxygen species (ROS) generation and DNA damage, activities of biomarkers like catalase (CAT), superoxide dismutase (SOD), lipid peroxidase (LPO), reduced glutathione (GSH) of the pancreas tissue and glucokinase and glycogen content of the liver of hyperglycemic mice. With a mechanistic approach, we also tracked down the possible signaling pathway involved. We found an elevated level of ROS generation, LPO and overexpression of inducible nitric oxide synthase (iNOS), tumor necrosis factor α (TNF-α), p38 Map kinase (p38 MAPK), nuclear factor (NF)-κβ, interferon gamma (IFN-γ), cytochrome c, caspase 3, poly [ADP ribose] polymerase (PARP) and cyclo oxygenase 2 (COX2) in ALX-induced diabetic mouse. Treatment of hyperglycemic mice with both the doses of HD showed a significant decrease with respect to all these parameters of study. Thus, our results suggest that HD prevents ALX-induced islet cell damage and possesses antihyperglycemic and antioxidative potentials. PMID:22169161

  3. Antioxidative and cytoprotective response elicited by molybdenum nanoparticles in human cells.

    PubMed

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alshamsan, Aws; Khan, M A Majeed; Alrokayan, Salman A

    2015-11-01

    Nanotechnology based therapeutics can offer an alternative platform in a wide variety of biomedical applications. Here we report novel cytotoxicity preventive potential of molybdenum nanoparticles (Mo NPs) in human breast (MCF-7) and fibrosarcoma (HT-1080) cells compromised with oxidant exposure. Physicochemical properties such as size, crystallinity, purity and band gap (an optical characteristic) of Mo NPs were characterized respectively by field emission transmission electron microscopy (FETEM), X-ray diffraction (XRD), energy dispersive spectrum (EDS) and UV-vis absorption spectroscopy. The average size of crystalline Mo NPs was found to be 35 nm with a band gap of 1.4 eV. Potential cytotoxicity of Mo NPs was evaluated by a battery of cell viability and oxidative stress parameters. Cell viability and oxidative stress data suggested Mo NPs to be reasonably non-cytotoxic. Cytotoxic preventive and GSH restoring potential of Mo NPs was determined against cytotoxicity and oxidative stress induced by H2O2 (and ZnO NPs) in two cells. Mo NPs significantly increased GSH level in MCF-7 and HT-1080 cells, an activity that was comparable to antioxidant N-acetyl cysteine (NAC). GSH level was increased 1.56 times in MCF-7 cells and 1.25 times in HT-1080 cells by 100 μg/ml of Mo NPs relative to control cells in 24 h. End-point data clearly suggest that Mo NPs significantly protected cells against cytotoxicity induced by H2O2 and ZnO (NPs) (p<0.05). Our study warrants further investigation about Mo NPs that could be exploited in myriads of nanotechnology applications. PMID:26196721

  4. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and hypoxia.

    PubMed

    Hu, Menghong; Wu, Fangli; Yuan, Mingzhe; Li, Qiongzhen; Gu, Yedan; Wang, Youji; Liu, Qigen

    2015-11-01

    Bloom forming algae and hypoxia are considered to be two main co-occurred stressors associated with eutrophication. The aim of this study was to evaluate the interactive effects of harmful algae Microcystis aeruginosa and hypoxia on an ecologically important mussel species inhabiting lakes and reservoirs, the triangle sail mussel Hyriopsis cumingii, which is generally considered as a bio-management tool for eutrophication. A set of antioxidant enzymes involved in immune defence mechanisms and detoxification processes, i.e. glutathione-S-transferases (GST), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), lysozyme (LZM) in mussel haemolymph were analyzed during 14days exposure along with 7days depuration duration period. GST, GSH, SOD, GPX and LZM were elevated by toxic M. aeruginosa exposure, while CAT activities were inhibited by such exposure. Hypoxia influenced the immune mechanisms through the activation of GSH and GPX, and the inhibition of SOD, CAT, and LZM activities. Meanwhile, some interactive effects of M. aeruginosa, hypoxia and time were observed. Independently of the presence or absence of hypoxia, toxic algal exposure generally increased the five tested enzyme activities of haemolymph, except CAT. Although half of microcystin could be eliminated after 7days depuration, toxic M. aeruginosa or hypoxia exposure history showed some latent effects on most parameters. These results revealed that toxic algae play an important role on haemolymph parameters alterations and its toxic effects could be affected by hypoxia. Although the microcystin depuration rate of H. cumingii is quick, toxic M. aeruginosa and/or hypoxia exposure history influenced its immunological mechanism recovery. PMID:26318116

  5. The effects of resveratrol and selected metabolites on the radiation and antioxidant response

    PubMed Central

    Saito, Keita; DeGraff, William; Sowers, Anastasia L.; Thetford, Angela; Cook, John A.; Krishna, Murali C.; Mitchell, James B.

    2011-01-01

    Excess reactive oxygen species (ROS) generated from ionizing radiation (IR) or endogenous sources like cellular respiration and inflammation produce cytotoxic effects that can lead to carcinogenesis. Resveratrol (RSV), a polyphenol with antioxidant and anticarcinogenic capabilities, has shown promise as a potential radiation modifier. The present study focuses on examining the effects of RSV or RSV metabolites as a radiation modifier in normal tissue. RSV or a RSV metabolite, piceatannol (PIC) did not protect human lung fibroblasts (1522) from the radiation-induced cell killing. Likewise, neither RSV nor PIC afforded protection against lethal total body IR in C3H mice. Additional research has shown protection in cells against hydrogen peroxide when treated with RSV. Therefore, clonogenic survival was measured in 1522 cells with RSV and RSV metabolites. Only the RSV derivative, piceatannol (PIC), showed protection against hydrogen peroxide mediated cytotoxicity; whereas, RSV enhanced hydrogen peroxide sensitivity at a 50 µM concentration; the remaining metabolites evaluated had little to no effect on survival. PIC also showed enhancement to peroxide exposure at a higher concentration (150 µM). A potential mechanism for RSV-induced sensitivity to peroxides could be its ability to block 1522 cells in the S-phase, which is most sensitive to hydrogen peroxide treatment. In addition, both RSV and PIC can be oxidized to phenoxyl radicals and quinones, which may exert cytotoxic effects. These cytotoxic effects were abolished when HBED, a metal chelator, was added. Taken together RSV and many of its metabolic derivatives are not effective as chemical radioprotectors and should not be considered for clinical use. PMID:22024758

  6. Response of hot element flush wall gauges in oscillating laminar flow

    NASA Technical Reports Server (NTRS)

    Giddings, T. A.; Cook, W. J.

    1986-01-01

    The time dependent response characteristics of flush-mounted hot element gauges used as instruments to measure wall shear stress in unsteady periodic air flows were investigated. The study was initiated because anomalous results were obtained from the gauges in oscillating turbulent flows for the phase relation of the wall shear stress variation, indicating possible gauge response problems. Flat plate laminar oscillating turbulent flows characterized by a mean free stream velocity with a superposed sinusoidal variation were performed. Laminar rather than turbulent flows were studied, because a numerical solution for the phase angle between the free stream velocity and the wall shear stress variation that is known to be correct can be obtained. The focus is on comparing the phase angle indicated by the hot element gauges with corresponding numerical prediction for the phase angle, since agreement would indicate that the hot element gauges faithfully follow the true wall shear stress variation.

  7. Are collapsars responsible for some r-process elements? How could we tell?

    SciTech Connect

    Pruet, J

    2004-04-05

    We consider the possibility that supernovae which form hyper-accreting black holes might be responsible for synthesis of r-process elements with mass A {approx}< 130. Calculations are presented which show that these elements are naturally synthesized in neutron-rich magnetically-dominated bubbles born in the inner regions of a black hole accretion disk. Simple considerations suggest that the total mass ejected in the form of these bubbles is about that needed to account for the entire galactic inventory of the 2nd-peak r-process elements. We also argue that if collapsars are responsible for, e.g., Ag synthesis, then Ag abundances should be correlated with Sc and/or Zn abundances in metal-poor stars.

  8. Pounding Effects on the Earthquake Response of Adjacent Reinforced Concrete Structures Strengthened by Cable Elements

    NASA Astrophysics Data System (ADS)

    Liolios, Angelos; Liolios, Asterios; Hatzigeorgiou, George; Radev, Stefan

    2014-06-01

    A numerical approach for estimating the effects of pounding (seismic interaction) on the response of adjacent Civil Engineering structures is presented. Emphasis is given to reinforced concrete (RC) frames of existing buildings which are seismically strengthened by cable-elements. A double discretization, in space by the Finite Element Method and in time by a direct incremental approach is used. The unilateral behaviours of both, the cable-elements and the interfaces contact-constraints, are taken strictly into account and result to inequality constitutive conditions. So, in each time-step, a non-convex linear complementarity problem is solved. It is found that pounding and cable strengthening have significant effects on the earthquake response and, hence, on the seismic upgrading of existing adjacent RC structures.

  9. Functional Response of NiTi Elements for Smart Micro-actuation Applications

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Nespoli, A.; Previtali, B.; Villa, E.; Tuissi, A.

    2014-07-01

    Shape memory alloys (SMAs) can be considered a good candidate for actuation applications in the current micro-technology field. In the micro-scale, the temporal response of the SMA actuators can be improved, because of faster cooling during the austenite-martensite transformation. One of the most investigated geometries for this purpose has been the snake-like arrangement, which allows high strokes with considerable forces to be obtained. In this work, SMA elements for micro-actuators were patterned by laser machining in a snake-like shape. Subsequent surface chemical etching was adopted to improve the functional properties of the micro-elements. Calorimetric analysis and thermo-mechanical response of 90 μm thick SMA elements were reported for the evaluation of their functional performances. Moreover, the effect of post-thermal treatment and grain orientation were also evaluated on the final performances.

  10. General frequency response program calculates frequency response of system, open at any specified element

    NASA Technical Reports Server (NTRS)

    Prosch, J.

    1967-01-01

    The general frequency response program provides the frequency response of any linear feedback control system including the open loop control system. The system characteristic matrix, obtained from the Laplace transformations of the dynamic and control equations, is input to the program. A variety of outputs are available.

  11. Synergistic action of thermoresponsive and hygroresponsive elements elicits rapid and directional response of a bilayer actuator.

    PubMed

    Zhang, Lidong; Desta, Israel; Naumov, Panče

    2016-05-21

    A bilayer actuator composed of thermoresponsive and thermo/hygroresponsive elements is developed, which undergoes fast, directional and autonomous curling with a speed of up to 0.7 m s(-1) and recovers its shape by hydration. In situ tensile testing of the thermal response of individual layers provided insights into the mechanism of actuation of thermo/hygromorphic bilayers. PMID:26997588

  12. Investigating the functionality of an OCT4-short response element in human induced pluripotent stem cells

    PubMed Central

    Vega-Crespo, Agustin; Truong, Brian; Hermann, Kip J; Awe, Jason P; Chang, Katherine M; Lee, Patrick C; Schoenberg, Benjamen E; Wu, Lily; Byrne, James A; Lipshutz, Gerald S

    2016-01-01

    Pluripotent stem cells offer great therapeutic promise for personalized treatment platforms for numerous injuries, disorders, and diseases. Octamer-binding transcription factor 4 (OCT4) is a key regulatory gene maintaining pluripotency and self-renewal of mammalian cells. With site-specific integration for gene correction in cellular therapeutics, use of the OCT4 promoter may have advantages when expressing a suicide gene if pluripotency remains. However, the human OCT4 promoter region is 4 kb in size, limiting the capacity of therapeutic genes and other regulatory components for viral vectors, and decreasing the efficiency of homologous recombination. The purpose of this investigation was to characterize the functionality of a novel 967bp OCT4-short response element during pluripotency and to examine the OCT4 titer-dependent response during differentiation to human derivatives not expressing OCT4. Our findings demonstrate that the OCT4-short response element is active in pluripotency and this activity is in high correlation with transgene expression in vitro, and the OCT4-short response element is inactivated when pluripotent cells differentiate. These studies demonstrate that this shortened OCT4 regulatory element is functional and may be useful as part of an optimized safety component in a site-specific gene transferring system that could be used as an efficient and clinically applicable safety platform for gene transfer in cellular therapeutics. PMID:27500178

  13. Functional analysis of the stress response element and its role in the multistress response of Saccharomyces cerevisiae.

    PubMed

    Treger, J M; Magee, T R; McEntee, K

    1998-02-01

    The DDR2 gene of Saccharomyces cerevisiae is a multistress response gene whose transcription is rapidly and strongly induced by a diverse array of xenobiotic agents, and environmental and physiological conditions. The multistress response of this gene requires the pentanucleotide, 5' CCCCT, (C4T;STRE (STress Response Element)) and the zinc-finger transcription factors, Msn2p and Msn4p. A 51bp oligonucleotide (oligo 31/32) containing two STREs from the DDR2 promoter region was previously shown to direct heat shock activation of a lacZ reporter gene. In this work we demonstrate that the same element conferred a complete multistress response to an E. coli galK reporter gene introduced into yeast cells. A variant oligonucleotide in which both the STRE spacing and neighboring sequences were altered responded to the same spectrum of stresses, while substitution of nucleotides within the pentanucleotide completely abolished the multistress response. These results directly demonstrate that STREs are not only necessary but are sufficient for mediating a transcriptional response to a surprisingly diverse set of environmental and physiological conditions. PMID:9473471

  14. Responses of trace elements to aerobic maximal exercise in elite sportsmen.

    PubMed

    Otag, Aynur; Hazar, Muhsin; Otag, Ilhan; Gürkan, Alper Cenk; Okan, Ilyas

    2014-05-01

    Trace elements are chemical elements needed in minute quantities for the proper growth, development, and physiology of the organism. In biochemistry, a trace element is also referred to as a micronutrient. Trace elements, such as nickel, cadmium, aluminum, silver, chromium, molybdenum, germanium, tin, titanium, tungsten, scandium, are found naturally in the environment and human exposure derives from a variety of sources, including air, drinking water and food. The Purpose of this study was investigated the effect of aerobic maximal intensity endurance exercise on serum trace elements as well-trained individuals of 28 wrestlers (age (year) 19.64±1.13, weight (Kg) 70.07 ± 15.69, height (cm) 176.97 ± 6.69) during and after a 2000 meter Ergometer test protocol was used to perform aerobic (75 %) maximal endurance exercise. Trace element serum levels were analyzed from blood samples taken before, immediately after and one hour after the exercise. While an increase was detected in Chromium (Cr), Nickel (Ni), Molybdenum (Mo) and Titanium (Ti) serum levels immediately after the exercise, a decrease was detected in Aluminum (Al), Scandium (Sc) and Tungsten (W) serum levels. Except for aluminum, the trace elements we worked on showed statistically meaningful responses (P < 0.05 and P < 0.001). According to the responses of trace elements to the exercise showed us the selection and application of the convenient sport is important not only in terms of sportsman performance but also in terms of future healthy life plans and clinically. PMID:24762350

  15. Responses of Trace Elements to Aerobic Maximal Exercise in Elite Sportsmen

    PubMed Central

    OTAĞ, Aynur; HAZAR, Muhsin; OTAĞ, İlhan; Gürkan, Alper Cenk; Okan, İlyas

    2014-01-01

    Trace elements are chemical elements needed in minute quantities for the proper growth, development, and physiology of the organism. In biochemistry, a trace element is also referred to as a micronutrient. Trace elements, such as nickel, cadmium, aluminum, silver, chromium, molybdenum, germanium, tin, titanium, tungsten, scandium, are found naturally in the environment and human exposure derives from a variety of sources, including air, drinking water and food. The Purpose of this study was investigated the effect of aerobic maximal intensity endurance exercise on serum trace elements as well-trained individuals of 28 wrestlers (age (year) 19.64±1.13, weight (Kg) 70.07 ± 15.69, height (cm) 176.97 ± 6.69) during and after a 2000 meter Ergometer test protocol was used to perform aerobic (75 %) maximal endurance exercise. Trace element serum levels were analyzed from blood samples taken before, immediately after and one hour after the exercise. While an increase was detected in Chromium (Cr), Nickel (Ni), Molybdenum (Mo) and Titanium (Ti) serum levels immediately after the exercise, a decrease was detected in Aluminum (Al), Scandium (Sc) and Tungsten (W) serum levels. Except for aluminum, the trace elements we worked on showed statistically meaningful responses (P<0.05 and P<0.001). According to the responses of trace elements to the exercise showed us the selection and application of the convenient sport is important not only in terms of sportsman performance but also in terms of future healthy life plans and clinically. PMID:24762350

  16. Chronic stress differentially affects antioxidant enzymes and modifies the acute stress response in liver of Wistar rats.

    PubMed

    Djordjevic, J; Djordjevic, A; Adzic, M; Niciforovic, A; Radojcic, M B

    2010-01-01

    Clinical reports suggest close interactions between stressors, particularly those of long duration, and liver diseases, such as hepatic inflammation, that is proposed to occur via reactive oxygen species. In the present study we have used 21-day social isolation of male Wistar rats as a model of chronic stress to investigate protein expression/activity of liver antioxidant enzymes: superoxide dismutases (SODs), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GLR), and protein expression of their upstream regulators: glucocorticoid receptor (GR) and nuclear factor kappa B (NFkB). We have also characterized these parameters in either naive or chronically stressed animals that were challenged by 30-min acute immobilization. We found that chronic isolation caused decrease in serum corticosterone (CORT) and blood glucose (GLU), increase in NFkB signaling, and disproportion between CuZnSOD, peroxidases (CAT, GPx) and GLR, thus promoting H2O2 accumulation and prooxidative state in liver. The overall results suggested that chronic stress exaggerated responsiveness to subsequent stressor at the level of CORT and GLU, and potentiated GLR response, but compromised the restoration of oxido-reductive balance due to irreversible alterations in MnSOD and GPx. PMID:20406049

  17. Regulation of expression of the stress response gene, Osp94: identification of the tonicity response element and intracellular signalling pathways.

    PubMed Central

    Kojima, Ryoji; Randall, Jeffrey D; Ito, Eri; Manshio, Hiroyuki; Suzuki, Yoshio; Gullans, Steven R

    2004-01-01

    Osp94 (osmotic stress protein of 94 kDa) is known to be up-regulated by hypertonic and heat-shock stresses in mouse renal inner medullary collecting duct (mIMCD3) cells. To investigate the molecular mechanism of transcriptional regulation of the Osp94 gene under these stresses, we cloned and characterized the 5'-flanking region of the gene. Sequence analysis of the proximal 4 kb 5'-flanking region revealed a TATA-less G/C-rich promoter region containing a cluster of Sp1 sites. We also identified upstream sequence motifs similar to the consensus TonE/ORE (tonicity-response element/osmotic response element) as well as the consensus HSE (heat-shock element). Luciferase activities in cells transfected with reporter constructs containing a TonE/ORE-like element (Osp94-TonE; 5'-TGGAAAGGACCAG-3') and HSE enhanced reporter gene expression under hypertonic stress and heat-shock stress respectively. Electrophoretic gel mobility-shift assay showed a slowly migrating band binding to the Osp94-TonE probe, probably representing binding of TonEBP (TonE binding protein) to this enhancer element. Furthermore, treatment of mIMCD3 cells with MAPK (mitogen-activated protein kinase) inhibitors (SB203580, PD98059, U0126 and SP600125) and a proteasome inhibitor (MG132) suppressed the increase in Osp94 gene expression caused by hypertonic NaCl. These results indicate that the 5'-flanking region of Osp94 gene contains a hypertonicity sensitive cis -acting element, Osp94-TonE, which is distinct from a functional HSE. Furthermore, the MAPK and proteasome systems appear to be, at least in part, involved in hypertonic-stressmediated regulation of Osp94 through Osp94-TonE. PMID:15018608

  18. Ozone-induced lung function decrements do not correlate with early airway inflammatory or antioxidant responses.

    PubMed

    Blomberg, A; Mudway, I S; Nordenhäll, C; Hedenström, H; Kelly, F J; Frew, A J; Holgate, S T; Sandström, T

    1999-06-01

    This study sought to clarify the early events occurring within the airways of healthy human subjects performing moderate intermittent exercise following ozone challenge. Thirteen healthy nonsmoking subjects were exposed in a single blinded, crossover control fashion to 0.2 parts per million (ppm) O3 and filtered air for 2 h, using a standard intermittent exercise and rest protocol. Lung function was assessed pre- and immediately post-exposure. Bronchoscopy was performed with endobronchial mucosal biopsies, bronchial wash (BW) and bronchoalveolar lavage (BAL) 1.5 h after the end of the exposure period. Respiratory tract lining fluid (RTLF) redox status was assessed by measuring a range of antioxidants and oxidative damage markers in BW and BAL fluid samples. There was a significant upregulation after O3 exposure in the expression of vascular endothelial P-selectin (p<0.005) and intercellular adhesion molecule-1 (p<0.005). This was associated with a 2-fold increase in submucosal mast cells (p<0.005) in biopsy samples, without evidence of neutrophilic inflammation, and a decrease in BAL fluid macrophage numbers (1.6-fold, p<0.005), with an activation of the remaining macrophage subset (2.5-fold increase in % human leukocyte antigen (HLA)-DR+ cells, p<0.005). In addition, exposure led to a 4.5-fold and 3.1-fold increase of reduced glutathione (GSH) concentrations, in BW and BAL fluid respectively (p<0.05), with alterations in urate and alpha-tocopherol plasma/RTLF partitioning ratios (p<0.05). Spirometry showed reductions in forced vital capacity (p<0.05) and forced expiratory volume in one second (p<0.01), with evidence of small airway narrowing using forced expiratory flow values (p<0.005). Evidence was found of O3-induced early adhesion molecule upregulation, increased submucosal mast cell numbers and alterations to the respiratory tract lining fluid redox status. No clear relationship was demonstrable between changes in these early markers and the lung function

  19. Comparison of Finite Element Non-Linear Beam Random Response with Experimental Results

    NASA Astrophysics Data System (ADS)

    Chen, R. R.; Mei, C.; Wolfe, HF

    1996-09-01

    A finite element formulation combined with the equivalent linearization technique and normal mode method is developed for the non-linear random response of beams subjected to acoustic and thermal loads applied simultaneously. To validate the present formulation and solution procedure, results are compared with the classical continuum solution and the Fokker-Planck-Kolmogorov equation solution. Comparison is also made with experimental data for a pre-stretched clamped beam. Random responses of thermally buckled simply supported beam, clamped beam and simply supported-clamped beam are presented. The comparison of the present simultaneously loaded response with the existing sequentially loaded results shows a significant difference between them.

  20. Infrasound-array-element frequency response: in-situ measurement and modeling

    NASA Astrophysics Data System (ADS)

    Gabrielson, T.

    2011-12-01

    Most array elements at the infrasound stations of the International Monitoring System use some variant of a multiple-inlet pipe system for wind-noise suppression. These pipe systems have a significant impact on the overall frequency response of the element. The spatial distribution of acoustic inlets introduces a response dependence that is a function of frequency and of vertical and horizontal arrival angle; the system of inlets, pipes, and summing junctions further shapes that response as the signal is ducted to the transducer. In-situ measurements, using a co-located reference microphone, can determine the overall frequency response and diagnose problems with the system. As of July 2011, the in-situ frequency responses for 25 individual elements at 6 operational stations (I10, I53, I55, I56, I57, and I99) have been measured. In support of these measurements, a fully thermo-viscous model for the acoustics of these multiple-inlet pipe systems has been developed. In addition to measurements at operational stations, comparative analyses have been done on experimental systems: a multiple-inlet radial-pipe system with varying inlet hole size; a one-quarter scale model of a 70-meter rosette system; and vertical directionality of a small rosette system using aircraft flyovers. [Funded by the US Army Space and Missile Defense Command

  1. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state.

    PubMed

    Kurutas, Ergul Belge

    2016-01-01

    Remarkable interest has risen in the idea that oxidative/nitrosative stress is mediated in the etiology of numerous human diseases. Oxidative/Nitrosative stress is the result of an disequilibrium in oxidant/antioxidant which reveals from continuous increase of Reactive Oxygen and Reactive Nitrogen Species production. The aim of this review is to emphasize with current information the importance of antioxidants which play the role in cellular responce against oxidative/nitrosative stress, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue. Products of lipid peroxidation have commonly been used as biomarkers of oxidative/nitrosative stress damage. Lipid peroxidation generates a variety of relatively stable decomposition end products, mainly α, β-unsaturated reactive aldehydes, such as malondialdehyde, 4-hydroxy-2-nonenal, 2-propenal (acrolein) and isoprostanes, which can be measured in plasma and urine as an indirect index of oxidative/nitrosative stress. Antioxidants are exogenous or endogenous molecules that mitigate any form of oxidative/nitrosative stress or its consequences. They may act from directly scavenging free radicals to increasing antioxidative defences. Antioxidant deficiencies can develop as a result of decreased antioxidant intake, synthesis of endogenous enzymes or increased antioxidant utilization. Antioxidant supplementation has become an increasingly popular practice to maintain optimal body function. However, antoxidants exhibit pro-oxidant activity depending on the specific set of conditions. Of particular importance are their dosage and redox conditions in the cell. PMID:27456681

  2. Finite-element simulation of transient heat response in ultrasonic transducers.

    PubMed

    Ando, E; Kagawa, Y

    1992-01-01

    The application of the finite-element method to a transient heat response problem in electrostrictive ultrasonic transducers during their pulsed operation is described. The temperature and thermal stress distribution are of practical importance for the design of the ultrasonic transducers when they are operated at intense levels. Mechanical vibratory loss is responsible for heat in the elastic parts, while dielectric loss is responsible in the ferroelectric parts. A finite-element computer model is proposed for the temperature change evaluation in the transducers with time. Natural and forced cooling convection and heat radiation from the transducers' boundaries are included. Simulation is made for Langevin-type transducer models, for which comparison is made with experimental data. PMID:18267653

  3. Hypoxia depresses CYP1A induction and enhances DNA damage, but has minimal effects on antioxidant responses in sheepshead minnow (Cyprinodon variegatus) larvae exposed to dispersed crude oil.

    PubMed

    Dasgupta, Subham; DiGiulio, Richard T; Drollette, Brian D; L Plata, Desire; Brownawell, Bruce J; McElroy, Anne E

    2016-08-01

    The growing incidence of hypoxic regions in coastal areas receiving high volumes of anthropogenic discharges requires more focused risk assessment of multiple stressors. One area needing further study is the combined effect of hypoxia and oil exposure. This study examined the short-term sublethal effects of co-exposure to hypoxia and water accommodated fractions (WAF) and chemically enhanced WAFs (CEWAFs) of Southern Louisiana Crude oil on detoxification, antioxidant defenses and genotoxicity in early life stage sheepshead minnow (Cyprinodon variegatus). CYP1A induction (evaluated by measuring EROD activity), activity of a number of key antioxidant enzymes (GST, GR, GPx, SOD, CAT, and GCL), levels of antioxidants (tGSH, GSH, and GSSG), evidence of lipid peroxidation (evaluated using the TBARS assay), and DNA damage (evaluated using the comet assay) provided a broad assessment of responses. Contaminant detoxification pathways induced by oil exposure were inhibited by co-exposure to hypoxia, indicating a maladaptive response. The interactive effects of oil and hypoxia on antioxidant defenses were mixed, but generally indicated less pronounced alterations, with significant increases in lipid peroxidation not observed. Hypoxia significantly enhanced DNA damage induced by oil exposure indicating the potential for significant deleterious effects post exposure. This study demonstrates the importance of considering hypoxia as an enhanced risk factor in assessing the effects of contaminants in areas where seasonal hypoxia may be prevalent. PMID:27315012

  4. The role of antioxidant responses on the tolerance range of extreme halophyte Salsola crassa grown under toxic salt concentrations.

    PubMed

    Yildiztugay, Evren; Ozfidan-Konakci, Ceyda; Kucukoduk, Mustafa

    2014-12-01

    Salsola crassa (Amaranthaceae) is an annual halophytic species and naturally grows in arid soils that are toxic to most plants. In order to study the effects of salinity on their antioxidant system and to determine the tolerance range against salt stress, S. crassa seeds were grown with different concentrations of NaCl (0, 250, 500, 750, 1000, 1250 and 1500mM) for short (15d) and long-term (30d). Results showed that growth (RGR), water content (RWC) and osmotic potential (ΨΠ) decreased and, proline content (Pro) increased at prolonged salt treatment. Unlike K(+) and Ca(2+) contents, S. crassa highly accumulated Na(+) and Cl(-) contents. Chlorophyll fluorescence (Fv/Fm) only decreased in response to 1500mM NaCl at 30d. No salt stimulation of superoxide anion radical (O2(•-)) content was observed in plants treated with the range of 0-500mM NaCl during the experimental period. NaCl increased superoxide dismutase (SOD) activity depending on intensities of Mn-SOD and Fe-SOD isozymes except in 1500mM NaCl-treated plants at 30d. In contrast to catalase (CAT), peroxidase (POX) activity increased throughout the experiment. Also, salinity caused an increase in glutathione reductase (GR) and glutathione peroxidase (GPX) and decreased in ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) at 15d. Both total ascorbate (tAsA) and glutathione (tGlut) contents significantly increased in treated plants with 1000-1500mM NaCl at 15d. After 0-1000mM NaCl stress, H2O2 and TBARS contents were similar to control groups at 15d, which were consistent with the increased antioxidant activity (POX, GR and GPX). However, H2O2 content was more pronounced at 30d. Therefore, S. crassa exhibited inductions in lipid peroxidation (TBARS content) in response to extreme salt concentrations. These results suggest that S. crassa is tolerant to salt-induced damage at short-term treatments as well as extreme salt concentrations. PMID:25193881

  5. The MYC 3' Wnt-Responsive Element Drives Oncogenic MYC Expression in Human Colorectal Cancer Cells.

    PubMed

    Rennoll, Sherri A; Eshelman, Melanie A; Raup-Konsavage, Wesley M; Kawasawa, Yuka Imamura; Yochum, Gregory S

    2016-01-01

    Mutations in components of the Wnt/β-catenin signaling pathway drive colorectal cancer (CRC) by deregulating expression of downstream target genes including the c-MYC proto-oncogene (MYC). The critical regulatory DNA enhancer elements that control oncogenic MYC expression in CRC have yet to be fully elucidated. In previous reports, we correlated T-cell factor (TCF) and β-catenin binding to the MYC 3' Wnt responsive DNA element (MYC 3' WRE) with MYC expression in HCT116 cells. Here we used CRISPR/Cas9 to determine whether this element is a critical driver of MYC. We isolated a clonal population of cells that contained a deletion of a single TCF binding element (TBE) within the MYC 3' WRE. This deletion reduced TCF/β-catenin binding to this regulatory element and decreased MYC expression. Using RNA-Seq analysis, we found altered expression of genes that regulate metabolic processes, many of which are known MYC target genes. We found that 3' WRE-Mut cells displayed a reduced proliferative capacity, diminished clonogenic growth, and a decreased potential to form tumors in vivo. These findings indicate that the MYC 3' WRE is a critical driver of oncogenic MYC expression and suggest that this element may serve as a therapeutic target for CRC. PMID:27223305

  6. Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials

    PubMed Central

    Zhao, Nan; Zhu, Donghui

    2016-01-01

    Biodegradable tailored magnesium (Mg) alloys are some of the most promising scaffolds for cardiovascular stents. During the course of degradation after implantation, all the alloying elements in the scaffold will be released to the surrounding vascular tissues. However, fundamental questions regarding the toxicity of alloying elements towards vascular cells, the maximum amount of each element that could be used in alloy design, or how each of the alloying elements affects vascular cellular activity and gene expression, are still not fully answered. This work systematically addressed these questions by revealing how application of different alloying elements commonly used in Mg stent materials influences several indices of human endothelial cell health, i.e., viability, proliferations, cytoskeletal reorganizations, migration, and the gene expression profile. The overall cell viability and proliferation showed a decreasing trend with increasing concentrations of the ions, and the half maximal effective concentrations (EC50) for each element were determined. When applied at a low concentration of around 10 mM, Mg had no adverse effects but improved cell proliferation and migration instead. Mg ions also altered endothelial gene expression significantly in a dose dependent manner. Most of the changed genes are related to angiogenesis and the cell adhesion signaling pathways. Findings from this work provide useful information on maximum safe doses of these ions for endothelial cells, endothelial responses towards these metal ions, and some guidance for future Mg stent design. PMID:25363018

  7. A finite element large deflection random response analysis of beams and plates subjected to acoustic loading

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Chiang, C. K.

    1987-01-01

    A finite element formulation is presented for the analysis of beams and rectangular plates undergoing large deflections subjected to Gaussian white noise excitations. Single-mode response is assumed in the present formulation. Root-mean-square (RMS) maximum deflections for simply supported and clamped beams and plates at various sound spectrum levels are obtained and compared with solutions using the Fokker-Planck-Kolmogorov equation and the equivalent linearization methods. RMS maximum stains and equivalent linear frequencies are compared with the equivalent linearization results for assessment of the accuracy of the finite element method.

  8. Polycomb/Trithorax response elements and epigenetic memory of cell identity.

    PubMed

    Ringrose, Leonie; Paro, Renato

    2007-01-01

    Polycomb/Trithorax group response elements (PRE/TREs) are fascinating chromosomal pieces. Just a few hundred base pairs long, these elements can remember and maintain the active or silent transcriptional state of their associated genes for many cell generations, long after the initial determining activators and repressors have disappeared. Recently, substantial progress has been made towards understanding the nuts and bolts of PRE/TRE function at the molecular level and in experimentally mapping PRE/TRE sites across whole genomes. Here we examine the insights, controversies and new questions that have been generated by this recent flood of data. PMID:17185323

  9. Antenatal Antioxidant Prevents Nicotine-Mediated Hypertensive Response in Rat Adult Offspring.

    PubMed

    Xiao, DaLiao; Huang, Xiaohui; Li, Yong; Dasgupta, Chiranjib; Wang, Lei; Zhang, Lubo

    2015-09-01

    Previous studies have demonstrated that perinatal nicotine exposure increased blood pressure (BP) in adult offspring. However, the underlying mechanisms were unclear. The present study tested the hypothesis that perinatal nicotine-induced programming of hypertensive response is mediated by enhanced reactive oxygen species (ROS) in the vasculature. Nicotine was administered to pregnant rats via subcutaneous osmotic mini-pumps from Day 4 of gestation to Day 10 after birth, in the absence or presence of the ROS inhibitor N-acetyl-cysteine (NAC) in the drinking water. Experiments were conducted in 8-mo-old male offspring. Perinatal nicotine treatment resulted in a significant increase in arterial ROS production in offspring, which was abrogated by NAC. Angiotensin II (Ang II)-induced BP responses were significantly higher in nicotine-treated group than in saline-treated control group, and NAC treatment blocked the nicotine-induced increase in BP response. Consistent with that, the nicotine treatment significantly increased both Ang II-induced and phorbol [12, 13]-dibutyrate (PDBu, a Prkc activator)-induced arterial contractions in adult offspring, which were blocked by NAC treatment. In addition, perinatal nicotine treatment significantly attenuated acetylcholine-induced arterial relaxation in offspring, which was also inhibited by NAC treatment. Results demonstrate that inhibition of ROS blocks the nicotine-induced increase in arterial reactivity and BP response to vasoconstrictors in adult offspring, suggesting a key role for increased oxidative stress in nicotine-induced developmental programming of hypertensive phenotype in male offspring. PMID:26224008

  10. Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Agashe, Vinayak; Vijayakar, Sandeep M.

    2000-01-01

    The dynamic response of a helicopter planetary gear system is examined over a wide range of operating speeds and torques. The analysis tool is a unique, semianalytical finite element formulation that admits precise representation of the tooth geometry and contact forces that are crucial in gear dynamics. Importantly, no a priori specification of static transmission error excitation or mesh frequency variation is required; the dynamic contact forces are evaluated internally at each time step. The calculated response shows classical resonances when a harmonic of mesh frequency coincides with a natural frequency. However, peculiar behavior occurs where resonances expected to be excited at a given speed are absent. This absence of particular modes is explained by analytical relationships that depend on the planetary configuration and mesh frequency harmonic. The torque sensitivity of the dynamic response is examined and compared to static analyses. Rotation mode response is shown to be more sensitive to input torque than translational mode response.

  11. Elemental responses to subduction-zone metamorphism: Constraints from the North Qilian Mountain, NW China

    NASA Astrophysics Data System (ADS)

    Xiao, Yuanyuan; Niu, Yaoling; Song, Shuguang; Davidson, Jon; Liu, Xiaoming

    2013-02-01

    Subduction zone metamorphism (SZM) and behaviors of chemical elements in response to this process are important for both arc magmatism and mantle compositional heterogeneity. In this paper, we report the results of our petrographic and geochemical studies on blueschist and eclogite facies rocks of sedimentary and basaltic protoliths from two metamorphic sub-belts with different metamorphic histories in the North Qilian Mountain, Northwest China. The protolith of low-grade blueschists is basaltic in composition and is most likely produced in a back-arc setting, while the protoliths of high-grade blueschists/eclogites geochemically resemble the present-day normal and enriched mid-oceanic ridge basalts plus some volcanic arc rocks. The meta-sedimentary rocks, including meta-graywacke, meta-pelite, meta-chert and marble, show geochemical similarity to global oceanic (subducted) sediments. Assuming that high field strength elements (HFSEs) are relatively immobile, the correlated variations of rare earth elements (REEs) and Th with HFSEs suggest that all these elements are probably also immobile, whereas Pb and Sr are mobile in rocks of both basaltic and sedimentary protoliths during SZM. Ba, Cs and Rb are immobile in rocks of sedimentary protoliths and mobile in rocks of basaltic protolith. The apparent mobility of U in rocks of basaltic protolith may be inherited from seafloor alterations rather than caused by SZM. On the basis of in situ mineral compositional analysis (both major and trace elements), the most significant trace element storage minerals in these subduction-zone metamorphic rocks are: lawsonite, pumpellyite, apatite, garnet and epidote group minerals for REEs, white micas (both phengite and paragonite) for large ion lithophile elements, rutile and titanite for HFSEs. The presence and stability of these minerals exert the primary controls on the geochemical behaviors of most of these elements during SZM. The immobility of REEs, Th and U owing to their

  12. Finite element model updating of a RC building considering seismic response trends

    NASA Astrophysics Data System (ADS)

    Butt, F.; Omenzetter, P.

    2013-04-01

    This paper presents a study on the seismic response trends evaluation and finite element model updating of a reinforced concrete building monitored for a period of more than two years. The three story reinforced concrete building is instrumented with five tri-axial accelerometers and a free-field tri-axial accelerometer. The time domain N4SID system identification technique was used to obtain the frequencies and damping ratios considering flexible base models taking into account the soil-structure-interaction using 50 earthquakes. Trends of variation of seismic response were developed by correlating the peak response acceleration at the roof level with identified frequencies and damping ratios. A general trend of decreasing frequencies was observed with increased level of shaking. To simulate the varying behavior of the building with response levels, a series of three dimensional finite element models were calibrated considering several points on the developed frequency-response amplitude trend lines as targets for updating. To incorporate real in-situ conditions, soil underneath the foundation and around the building was modeled using spring elements and nonstructural components (claddings and partitions) were also included. Sensitivity based model updating technique was applied taking into account concrete, soil and cladding stiffness as updating parameters. It was concluded from the investigation that knowledge of the variation of seismic response of buildings is necessary to better understand their behavior during earthquakes, and also that the participation of soil and non-structural components is significant towards the seismic response of the building and these should be considered in models to simulate the real behavior.

  13. Subcellular distribution, modulation of antioxidant and stress-related genes response to arsenic in Brassica napus L.

    PubMed

    Farooq, Muhammad A; Gill, Rafaqat A; Ali, Basharat; Wang, Jian; Islam, Faisal; Ali, Shafaqat; Zhou, Weijun

    2016-03-01

    Arsenic (As) is an environmental toxin pollutant that affects the numerous physiological processes of plants. In present study, two Brassica napus L. cultivars were subjected to various concentrations (0, 50, 100, and 200 µM) of As for 14 days, plants were examined for As subcellular distribution, photosynthesis parameters, oxidative stress, and ultrastructural changes under As-stress. Differential fraction analysis showed that significant amount of As was accumulated in the cell wall as compared to other organelles. Decline in photosynthetic efficiency under As stress was observed in term of reduced pigment contents and gas exchange parameters. Differential responses of antioxidants at both enzymatic and gene levels to higher As stress were more pronounced in cultivar ZS 758 as compared to Zheda 622. The qRT-PCR analysis showed that heat shock protein 90 (Hsp90) and metallothionein were over-expressed in As stressed B. napus plants. Disorganization of cell structure and the damages in different organelles were some of the obvious variations in cultivar Zheda 622 as compared to ZS 758. PMID:26597736

  14. Response of antioxidative enzymes and apoplastic bypass transport in Thlaspi caerulescens and Raphanus sativus to cadmium stress.

    PubMed

    Benzarti, Saoussen; Hamdi, Helmi; Mohri, Shino; Ono, Yoshiro

    2010-01-01

    A hydroponics experiment using hyperaccumulator Thlaspi caerulescens (alpine pennycress) and non-specific accumulator Raphanus sativus (common radish) was conducted to investigate the short-term effect of increasing Cd concentrations (0, 25, 50, 75, 100 microM) on metal uptake, chlorophyll content, antioxidative enzymes, and apoplastic bypass flow. As expected, T. caerulescens generally showed better resistance to metal stress, which was reflected by higher Cd accumulation within plant tissues with no signs of chlorosis, or wilt. Glutathione reductase (GR) and superoxide dismutase (SOD) activities in fresh leaves were monitored as the plant metal-detoxifying response. In general, both plant species exhibited an increase trend of GR activity before declining at 100 microM likely due to excessive levels of phytotoxic Cd. SOD activity exhibited almost a similar variation pattern to GR and decreased also at 100 microM Cd. For both plant species, fluorescent PTS uptake (8-hydroxy-1,3,6-pyrenetrisulphonic acid) increased significantly with metal level in exposure solutions indicating that Cd has a comparable effect to drought or salinity in terms of the gain of relative importance in apoplastic bypass transport under such stress conditions. PMID:21166344

  15. Effects of Polysaccharide Elicitors on Secondary Metabolite Production and Antioxidant Response in Hypericum perforatum L. Shoot Cultures

    PubMed Central

    Gadzovska Simic, Sonja; Maury, Stéphane; Delaunay, Alain; Joseph, Claude; Hagège, Daniel

    2014-01-01

    The effects of polysaccharide elicitors such as chitin, pectin, and dextran on the production of phenylpropanoids (phenolics and flavonoids) and naphtodianthrones (hypericin and pseudohypericin) in Hypericum perforatum shoot cultures were studied. Nonenzymatic antioxidant properties (NEAOP) and peroxidase (POD) activity were also observed in shoot extracts. The activities of phenylalanine ammonia lyase (PAL) and chalcone-flavanone isomerase (CHFI) were monitored to estimate channeling in phenylpropanoid/flavonoid pathways of elicited shoot cultures. A significant suppression of the production of total phenolics and flavonoids was observed in elicited shoots from day 14 to day 21 of postelicitation. This inhibition of phenylpropanoid production was probably due to the decrease in CHFI activity in elicited shoots. Pectin and dextran promoted accumulation of naphtodianthrones, particularly pseudohypericin, within 21 days of postelicitation. The enhanced accumulation of naphtodianthrones was positively correlated with an increase of PAL activity in elicited shoots. All tested elicitors induced NEAOP at day 7, while chitin and pectin showed increase in POD activity within the entire period of postelicitation. The POD activity was in significantly positive correlation with flavonoid and hypericin contents, suggesting a strong perturbation of the cell redox system and activation of defense responses in polysaccharide-elicited H. perforatum shoot cultures. PMID:25574489

  16. Antioxidant Systems from Pepper (Capsicum annuum L.): Involvement in the Response to Temperature Changes in Ripe Fruits

    PubMed Central

    Mateos, Rosa M.; Jiménez, Ana; Román, Paloma; Romojaro, Félix; Bacarizo, Sierra; Leterrier, Marina; Gómez, Manuel; Sevilla, Francisca; del Río, Luis A.; Corpas, Francisco J.; Palma, José M.

    2013-01-01

    Sweet pepper is susceptible to changes in the environmental conditions, especially temperatures below 15 °C. In this work, two sets of pepper fruits (Capsicum annuum L.) which underwent distinct temperature profiles in planta were investigated. Accordingly, two harvesting times corresponding to each set were established: Harvest 1, whose fruits developed and ripened at 14.9 °C as average temperature; and Harvest 2, with average temperature of 12.4 °C. The oxidative metabolism was analyzed in all fruits. Although total ascorbate content did not vary between Harvests, a shift from the reduced to the oxidized form (dehydroascorbate), accompanied by a higher ascorbate peroxidase activity, was observed in Harvest 2 with respect to Harvest 1. Moreover, a decrease of the ascorbate-generating enzymatic system, the γ-galactono-lactone dehydrogenase, was found at Harvest 2. The activity values of the NADP-dependent dehydrogenases analyzed seem to indicate that a lower NADPH synthesis may occur in fruits which underwent lower temperature conditions. In spite of the important changes observed in the oxidative metabolism in fruits subjected to lower temperature, no oxidative stress appears to occur, as indicated by the lipid peroxidation and protein oxidation profiles. Thus, the antioxidative systems of pepper fruits seem to be involved in the response against temperature changes. PMID:23644886

  17. Optimization extraction of polysaccharide from Tunisian Zizyphus lotus fruit by response surface methodology: Composition and antioxidant activity.

    PubMed

    Mkadmini Hammi, Khaoula; Hammami, Majdi; Rihouey, Christophe; Le Cerf, Didier; Ksouri, Riadh; Majdoub, Hatem

    2016-12-01

    Response surface methodology using a Box-Behnken design was employed to optimize extraction temperature, extraction time and ratio of water to material to obtain a maximum polysaccharide yield with high uronic acid content and antioxidant property from edible Zizyphus lotus fruit. The optimal conditions were: extraction time of 3h 15min, extraction temperature of 91.2°C and water to solid ratio of 39mL/g. Under these conditions, the experimental extraction yield, uronic acid content and 2,2-diphenyl-1-picrylhydrazyl scavenging ability (IC50) were 18.88%, 41.89 and 0.518mg/mL, respectively. Chemical analysis revealed that the extract was composed of 97.92% carbohydrate of which 41.89% is uronic acid. The extracted polysaccharides, with an average molecular weight of 2720kDa, are composed of arabinose, rhamnose, glucose, fructose, galactose and xylose. Moreover, the polysaccharides exhibited a significant reducing power and anti-lipid peroxidation activities. PMID:27374558

  18. Influence of environmental related concentrations of heavy metals on motility parameters and antioxidant responses in sturgeon sperm.

    PubMed

    Li, Zhi-Hua; Li, Ping; Dzyuba, Borys; Randak, Tomas

    2010-12-01

    The effects of heavy metals (Cd, Cr and Cd+Cr) on the motility parameters and oxidative stress of sterlet (Acipenser ruthenus) sperm were investigated in vitro. Sturgeon sperm were exposed for 2h to heavy metals at environmental related concentrations (0.1mgL(-1) Cr, 0.001mgL(-1) Cd, 0.1mgL(-1) Cr+0.001mgL(-1) Cd) and higher concentrations (5.0mgL(-1) Cr, 0.05mgL(-1) Cd, 5.0mgL(-1) Cr+0.05mgL(-1) Cd). Results revealed that environmental concentrations of heavy metals had no significant influence on motility parameters and antioxidant responses indices in sturgeon sperm, except for LPO level and SOD activity. But higher concentrations of these metals induced oxidative tress in sturgeon sperm in vitro, associated with sperm motility parameters inhibition. Our results suggest that using of sperm in vitro assays may provide a novel and efficiently means for evaluating the effects of residual heavy metals in aquatic environment on sturgeon. PMID:20836996

  19. The Effects of Cadmium Exposure on Fitness-Related Traits and Antioxidant Responses in the Wolf Spider, Pardosa pseudoannulata.

    PubMed

    Li, Chang-Chun; Li, Guo-Yuan; Yun, Yue-Li; Chen, Jian; Zhang, Zeng-Tao; Peng, Yu

    2016-07-01

    The objective of the present study was to assess the ecotoxicological responses of Pardosa pseudoannulata to a common environmental pollutant, cadmium. Third-instar spiderlings and adult spiders were exposed to sublethal concentrations of CdCl2 solution in their drinking water. The Cd content in P. pseudoannulata adults increased significantly with the number of days of exposure to a 0.2 mM CdCl2 solution, when exposed to 2 mM CdCl2 solution, the Cd content in the spiders increased sharply in the first two (male) or three (female) weeks, and then no significant changes were recorded following with the next three (male) or two (female) weeks exposure. Exposure of spiders to Cd contaminated drinking water resulted in reduced body mass, delayed development, fewer eggs and increased mortality. Significantly higher activities of superoxide dismutase, catalase and glutathione-S-transferase were recorded in the spiders after 7 day exposure to 0.2 mM CdCl2 solution. However, longer-term exposures or increased Cd concentrations did not result in significantly higher antioxidant enzyme activity relative to control treatment. PMID:27194251

  20. Response of hot element wall shear stress gages in laminar oscillating flows

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Murphy, J. D.; Giddings, T. A.

    1986-01-01

    An experimental investigation of the time-dependent response of hot element wall shear stress gages in unsteady periodic air flows is reported. The study has focused on wall shear stress in laminar oscillating flows produced on a flat plate by a free stream velocity composed of a mean component and a superposed sinusoidal variation. Two types of hot element gages, platinum film and flush wire, were tested for values of reduced frequency ranging from 0.14 to 2.36. Values of the phase angle of the wall shear stress variation relative to the free stream velocity, as indicated by the hot element gages, are compared with numerical prediction. The comparisons show that the gages indicate a wall shear stress variation that lags the true variation, and that the gages will also not indicate the correct wall shear stress variation in periodic turbulent flows.

  1. The quest for mammalian Polycomb response elements: are we there yet?

    PubMed

    Bauer, Moritz; Trupke, Johanna; Ringrose, Leonie

    2016-06-01

    A long-standing mystery in the field of Polycomb and Trithorax regulation is how these proteins, which are highly conserved between flies and mammals, can regulate several hundred equally highly conserved target genes, but recognise these targets via cis-regulatory elements that appear to show no conservation in their DNA sequence. These elements, termed Polycomb/Trithorax response elements (PRE/TREs or PREs), are relatively well characterised in flies, but their mammalian counterparts have proved to be extremely difficult to identify. Recent progress in this endeavour has generated a wealth of data and raised several intriguing questions. Here, we ask why and to what extent mammalian PREs are so different to those of the fly. We review recent advances, evaluate current models and identify open questions in the quest for mammalian PREs. PMID:26453572

  2. Amplification of Distant Estrogen Response Elements Deregulates Target Genes Associated with Tamoxifen Resistance in Breast Cancer

    PubMed Central

    Hsu, Pei-Yin; Hsu, Hang-Kai; Lan, Xun; Juan, Liran; Yan, Pearlly S.; Labanowska, Jadwiga; Heerema, Nyla; Hsiao, Tzu-Hung; Chiu, Yu-Chiao; Chen, Yidong; Liu, Yunlong; Li, Lang; Li, Rong; Thompson, Ian M.; Nephew, Kenneth P.; Sharp, Zelton D.; Kirma, Nameer B.; Jin, Victor X.; Huang, Tim H.-M.

    2013-01-01

    SUMMARY A causal role of gene amplification in tumorigenesis is well-known, while amplification of DNA regulatory elements as an oncogenic driver remains unclear. In this study, we integrated next-generation sequencing approaches to map distant estrogen response elements (DEREs) that remotely control transcription of target genes through chromatin proximity. Two densely mapped DERE regions located on chromosomes 17q23 and 20q13 were frequently amplified in ERα-positive luminal breast cancer. These aberrantly amplified DEREs deregulated target gene expression potentially linked to cancer development and tamoxifen resistance. Progressive accumulation of DERE copies was observed in normal breast progenitor cells chronically exposed to estrogenic chemicals. These findings may extend to other DNA regulatory elements, the amplification of which can profoundly alter target transcriptome during tumorigenesis. PMID:23948299

  3. Nrf2-Inducing Anti-Oxidation Stress Response in the Rat Liver - New Beneficial Effect of Lansoprazole

    PubMed Central

    Yamashita, Yasunobu; Ueyama, Takashi; Nishi, Toshio; Yamamoto, Yuta; Kawakoshi, Akatsuki; Sunami, Shogo; Iguchi, Mikitaka; Tamai, Hideyuki; Ueda, Kazuki; Ito, Takao; Tsuruo, Yoshihiro; Ichinose, Masao

    2014-01-01

    Lansoprazole is a potent anti-gastric ulcer drug that inhibits gastric proton pump activity. We identified a novel function for lansoprazole, as an inducer of anti-oxidative stress responses in the liver. Gastric administration of lansoprazole (10–100 mg/kg) to male Wistar rats produced a dose-dependent increase in hepatic mRNA levels of nuclear factor, erythroid-derived 2, -like 2 (Nrf2), a redox-sensitive transcription factor, at 3 h and Nrf2 immunoreactivity (IR) in whole hepatic lysates at 6 h. Conversely, the levels of Kelch-like ECH-associated protein (Keap1), which sequesters Nrf2 in the cytoplasm under un-stimulated conditions, were unchanged. Translocation of Nrf2 into the nuclei of hepatocytes was observed using western blotting and immunohistochemistry. Expression of mRNAs for Nrf2-dependent antioxidant and phase II enzymes, such as heme oxygenase 1 (HO-1), NAD (P) H dehydrogenase, quinone 1 (Nqo1), glutathione S-transferase A2 (Gsta2), UDP glucuronosyltransferase 1 family polypeptide A6 (Ugt1a6), were dose-dependently up-regulated at 3 h. Furthermore, the levels of HO-1 IR were dose-dependently increased in hepatocytes at 6 h. Subcutaneous administration of lansoprazole (30 mg/kg/day) for 7 successive days resulted in up-regulation and nuclear translocation of Nrf2 IR in hepatocytes and up-regulation of HO-1 IR in the liver. Pretreatment with lansoprazole attenuated thioacetamide (500 mg/kg)-induced acute hepatic damage via both HO-1-dependent and -independent pathways. Up-stream networks related to Nrf2 expression were investigated using microarray analysis, followed by data mining with Ingenuity Pathway Analysis. Up-regulation of the aryl hydrocarbon receptor (AhR)-cytochrome P450, family 1, subfamily a, polypeptide 1 (Cyp1a1) pathway was associated with up-regulation of Nrf2 mRNA. In conclusion, lansoprazole might have an alternative indication in the prevention and treatment of oxidative hepatic damage through the induction of both phase I and

  4. Mineral elements of subtropical tree seedlings in response to elevated carbon dioxide and nitrogen addition.

    PubMed

    Huang, Wenjuan; Zhou, Guoyi; Liu, Juxiu; Zhang, Deqiang; Liu, Shizhong; Chu, Guowei; Fang, Xiong

    2015-01-01

    Mineral elements in plants have been strongly affected by increased atmospheric carbon dioxide (CO2) concentrations and nitrogen (N) deposition due to human activities. However, such understanding is largely limited to N and phosphorus in grassland. Using open-top chambers, we examined the concentrations of potassium (K), calcium (Ca), magnesium (Mg), aluminum (Al), copper (Cu) and manganese (Mn) in the leaves and roots of the seedlings of five subtropical tree species in response to elevated CO2 (ca. 700 μmol CO2 mol(-1)) and N addition (100 kg N ha(-1) yr(-1)) from 2005 to 2009. These mineral elements in the roots responded more strongly to elevated CO2 and N addition than those in the leaves. Elevated CO2 did not consistently decrease the concentrations of plant mineral elements, with increases in K, Al, Cu and Mn in some tree species. N addition decreased K and had no influence on Cu in the five tree species. Given the shifts in plant mineral elements, Schima superba and Castanopsis hystrix were less responsive to elevated CO2 and N addition alone, respectively. Our results indicate that plant stoichiometry would be altered by increasing CO2 and N deposition, and K would likely become a limiting nutrient under increasing N deposition in subtropics. PMID:25794046

  5. Effects of friction on the unconfined compressive response of articular cartilage: a finite element analysis.

    PubMed

    Spilker, R L; Suh, J K; Mow, V C

    1990-05-01

    A finite element analysis is used to study a previously unresolved issue of the effects of platen-specimen friction on the response of the unconfined compression test; effects of platen permeability are also determined. The finite element formulation is based on the linear KLM biphasic model for articular cartilage and other hydrated soft tissues. A Galerkin weighted residual method is applied to both the solid phase and the fluid phase, and the continuity equation for the intrinsically incompressible binary mixture is introduced via a penalty method. The solid phase displacements and fluid phase velocities are interpolated for each element in terms of unknown nodal values, producing a system of first order differential equations which are solved using a standard numerical finite difference technique. An axisymmetric element of quadrilateral cross-section is developed and applied to the mechanical test problem of a cylindrical specimen of soft tissue in unconfined compression. These studies show that interfacial friction plays a major role in the unconfined compression response of articular cartilage specimens with small thickness to diameter ratios. PMID:2345443

  6. Mineral Elements of Subtropical Tree Seedlings in Response to Elevated Carbon Dioxide and Nitrogen Addition

    PubMed Central

    Huang, Wenjuan; Zhou, Guoyi; Liu, Juxiu; Zhang, Deqiang; Liu, Shizhong; Chu, Guowei; Fang, Xiong

    2015-01-01

    Mineral elements in plants have been strongly affected by increased atmospheric carbon dioxide (CO2) concentrations and nitrogen (N) deposition due to human activities. However, such understanding is largely limited to N and phosphorus in grassland. Using open-top chambers, we examined the concentrations of potassium (K), calcium (Ca), magnesium (Mg), aluminum (Al), copper (Cu) and manganese (Mn) in the leaves and roots of the seedlings of five subtropical tree species in response to elevated CO2 (ca. 700 μmol CO2 mol-1) and N addition (100 kg N ha-1 yr-1) from 2005 to 2009. These mineral elements in the roots responded more strongly to elevated CO2 and N addition than those in the leaves. Elevated CO2 did not consistently decrease the concentrations of plant mineral elements, with increases in K, Al, Cu and Mn in some tree species. N addition decreased K and had no influence on Cu in the five tree species. Given the shifts in plant mineral elements, Schima superba and Castanopsis hystrix were less responsive to elevated CO2 and N addition alone, respectively. Our results indicate that plant stoichiometry would be altered by increasing CO2 and N deposition, and K would likely become a limiting nutrient under increasing N deposition in subtropics. PMID:25794046

  7. Finite-element simulation of transient heat response in ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Ando, Ei'ichi; Kagawa, Yukio

    1992-05-01

    The application of the finite-element method to a transient heat response problem in electrostrictive ultrasonic transducers during their pulsed operation is described. The temperature and thermal stress distribution are of practical importance for the design of the ultrasonic transducers when they are operated at intense levels. Mechanical vibratory loss is responsible for heat in the elastic parts while dielectric loss in the ferroelectric parts. A finite-element computer model is proposed for the temperature change evaluation in the transducers with time. Natural and forced cooling convection and heat radiation from the transducers' boundaries are included. Simulation is made for Langevin-type transducer models, for which comparison is made with experimental data.

  8. Mechanical Stress Induces Biotic and Abiotic Stress Responses via a Novel cis-Element

    PubMed Central

    Walley, Justin W; Coughlan, Sean; Hudson, Matthew E; Covington, Michael F; Kaspi, Roy; Banu, Gopalan; Harmer, Stacey L; Dehesh, Katayoon

    2007-01-01

    Plants are continuously exposed to a myriad of abiotic and biotic stresses. However, the molecular mechanisms by which these stress signals are perceived and transduced are poorly understood. To begin to identify primary stress signal transduction components, we have focused on genes that respond rapidly (within 5 min) to stress signals. Because it has been hypothesized that detection of physical stress is a mechanism common to mounting a response against a broad range of environmental stresses, we have utilized mechanical wounding as the stress stimulus and performed whole genome microarray analysis of Arabidopsis thaliana leaf tissue. This led to the identification of a number of rapid wound responsive (RWR) genes. Comparison of RWR genes with published abiotic and biotic stress microarray datasets demonstrates a large overlap across a wide range of environmental stresses. Interestingly, RWR genes also exhibit a striking level and pattern of circadian regulation, with induced and repressed genes displaying antiphasic rhythms. Using bioinformatic analysis, we identified a novel motif overrepresented in the promoters of RWR genes, herein designated as the Rapid Stress Response Element (RSRE). We demonstrate in transgenic plants that multimerized RSREs are sufficient to confer a rapid response to both biotic and abiotic stresses in vivo, thereby establishing the functional involvement of this motif in primary transcriptional stress responses. Collectively, our data provide evidence for a novel cis-element that is distributed across the promoters of an array of diverse stress-responsive genes, poised to respond immediately and coordinately to stress signals. This structure suggests that plants may have a transcriptional network resembling the general stress signaling pathway in yeast and that the RSRE element may provide the key to this coordinate regulation. PMID:17953483

  9. Growth and antioxidant response of Brassica rapa var. rapa L. (turnip) irrigated with different compositions of paper and board mill (PBM) effluent.

    PubMed

    Iqbal, Shahid; Younas, Umer; Chan, Kim Wei; Saeed, Zohaib; Shaheen, Muhammad Ashraf; Akhtar, Naeem; Majeed, Abdul

    2013-05-01

    Current study presents the effect of irrigation with different compositions (0%, 20%, 40%, 60%, 80% and 100%) of PBM effluent on growth and antioxidant potential of Brassica rapa var. rapa L. plants. Seeds were exposed to different PBM effluent compositions, which resulted in significant decrease in their germination potential with elevated delay index. Significant changes in growth parameters (plant height, number of leaves and leaf area) were recorded for turnip plants at regular intervals (25, 50 and 75 d) as function of PBM effluent proportion. Response of biochemical and antioxidant constituents in different parts of turnip, against stress induced by PBM effluent, was assessed by estimating the contents of chlorophyll (a+b), carotenoids, protein, phenolics, flavonoids, ascorbic acid and malondialdehyde. Antioxidant activity was evaluated by measuring DPPH radical scavenging potential. The results of this study suggest that the impact of PBM effluent irrigation is dependent on concentration of effluent in irrigation mixture and is very clear on plant growth and antioxidant attributes. Maximum benefits were secured at 40% PBM effluent to irrigate turnip plants till maturity while higher concentrations were found useful for shorter period (25-50 d). PMID:23507497

  10. Photosynthetic and antioxidant responses of Liquidambar formosana and Schima superba seedlings to sulfuric-rich and nitric-rich simulated acid rain.

    PubMed

    Chen, Juan; Wang, Wen-Hua; Liu, Ting-Wu; Wu, Fei-Hua; Zheng, Hai-Lei

    2013-03-01

    To study whether differential responses occur in photosynthesis and antioxidant system for seedlings of Liquidambar formosana, an acid rain (AR)-sensitive tree species and Schima superba, an AR-tolerant tree species treated with three types of pH 3.0 simulated AR (SiAR) including sulfuric-rich (S-SiAR), nitric-rich (N-SiAR), sulfate and nitrate mixed (SN-SiAR), we investigated the changes of leaf necrosis, chlorophyll content, soluble protein and proline content, photosynthesis and chlorophyll fluorescence characteristics, reactive oxygen species production, membrane lipid peroxidation, small molecular antioxidant content, antioxidant enzyme activities and related protein expressions. Our results showed that SiAR significantly caused leaf necrosis, inhibited photosynthesis, induced superoxide radical and hydrogen peroxide generation, aggravated membrane lipid peroxidation, changed antioxidant enzyme activities, modified related protein expressions such as Cu/Zn superoxide dismutase (SOD), l-ascorbate peroxidase (APX, EC 1. 11. 1. 11), glutathione S transferase (GST, EC 2. 5. 1. 18) and Rubisco large subunit (RuBISCO LSU), altered non-protein thiols (NPT) and glutathione (GSH) content in leaves of L. formosana and S. superba. Taken together, we concluded that the damages caused by SiAR in L. formosana were more severe and suffered from more negative impacts than in S. superba. S-SiAR induced more serious damages for the plants than did SN-SiAR and N-SiAR. PMID:23353765

  11. Oxidative and antioxidative responses in the wheat-Azospirillum brasilense interaction.

    PubMed

    Méndez-Gómez, Manuel; Castro-Mercado, Elda; Alexandre, Gladys; García-Pineda, Ernesto

    2016-03-01

    Azospirillum is a plant growth-promoting rhizobacteria (PGPR) able to enhance the growth of wheat. The aim of this study was to test the effect of Azospirillum brasilense cell wall components on superoxide (O2·(-)) production in wheat roots and the effect of oxidative stress on A. brasilense viability. We found that inoculation with A. brasilense reduced O2·(-) levels by approx. 30 % in wheat roots. Inoculation of wheat with papain-treated A. brasilense, a Cys protease, notably increased O2·(-) production in all root tissues, as was observed by the nitro blue tetrazolium (NBT) reduction. However, a 24-h treatment with rhizobacteria lipopolysaccharides (50 and 100 μg/mL) alone did not affect the pattern of O2·(-) production. Analysis of the effect of plant cell wall components on A. brasilense oxidative enzyme activity showed no changes in catalase activity but a decrease in superoxide dismutase activity in response to polygalacturonic acid treatment. Furthermore, A. brasilense growth was only affected by high concentrations of H2O2 or paraquat, but not by sodium nitroprusside. Our results suggest that rhizobacterial cell wall components play an important role in controlling plant cell responses and developing tolerance of A. brasilense to oxidative stress produced by the plant. PMID:25952083

  12. Antioxidant responses and renal crystal formation in rainbow trout treated with melamine administered individually or in combination with cyanuric acid.

    PubMed

    Pacini, Nicole; Prearo, Marino; Abete, Maria Cesarina; Brizio, Paola; Dörr, Ambrosius Josef Martin; Reimschuessel, Renate; Andersen, Wendy; Gasco, Laura; Righetti, Marzia; Elia, Antonia Concetta

    2013-01-01

    In 2007 and 2008, renal stone formation and kidney damage in human infants were linked to consumption of melamine (MEL)-contaminated infant formula, as well as renal failure and death in pets due to pet food containing both MEL and cyanuric acid (CYA). The aim of this study was to examine the effects of MEL and CYA administered individually or in combination on concentrations of certain metabolites and enzyme activities that serve as markers for oxidative stress in kidney and liver of rainbow trout. In addition, the levels of muscle MEL and renal crystal formation were determined. Trout were fed MEL and/or CYA for 8 wk at 250, 500, or 1000 mg of each compound/kg in feed. Fish muscle residues of MEL exhibited a dose-response relationship. Coexposure of trout to MEL and CYA at the highest dose led to lower MEL residue concentrations in muscle compared to exposure to MEL alone. Renal MEL-CYA complexes were found in kidneys of fish treated with combined MEL and CYA. A dose response was evident with respect to both (1) number of trout displaying renal crystals and (2) number of crystals per fish. Changes in concentration of antioxidant parameters, such as glutathione, superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase, were recorded in both tissues of MEL- and CYA-dosed trout. Lipid peroxidation was more pronounced in kidney than liver. Therefore, feed contaminated with both MEL and CYA could be problematic for fish, as MEL administered to trout, individually or in combination with CYA, may facilitate the onset of oxidative damage in trout. PMID:23721584

  13. Amifostine Induces Antioxidant Enzymatic Activities in Normal Tissues and a Transplantable Tumor That Can Affect Radiation Response

    SciTech Connect

    Grdina, David J. Murley, Jeffrey S.; Kataoka, Yasushi; Baker, Kenneth L.; Kunnavakkam, Rangesh; Coleman, Mitchell C.; Spitz, Douglas R.

    2009-03-01

    Purpose: To determine whether amifostine can induce elevated manganese superoxide dismutase (SOD2) in murine tissues and a transplantable SA-NH tumor, resulting in a delayed tumor cell radioprotective effect. Methods and Materials: SA-NH tumor-bearing C3H mice were treated with a single 400 mg/kg or three daily 50 mg/kg doses of amifostine administered intraperitoneally. At selected time intervals after the last injection, the heart, liver, lung, pancreas, small intestine, spleen, and SA-NH tumor were removed and analyzed for SOD2, catalase, and glutathione peroxidase (GPx) enzymatic activity. The effect of elevated SOD2 enzymatic activity on the radiation response of SA-NH cells was determined. Results: SOD2 activity was significantly elevated in selected tissues and a tumor 24 h after amifostine treatment. Catalase and GPx activities remained unchanged except for significant elevations in the spleen. GPx was also elevated in the pancreas. SA-NH tumor cells exhibited a twofold elevation in SOD2 activity and a 27% elevation in radiation resistance. Amifostine administered in three daily fractions of 50 mg/kg each also resulted in significant elevations of these antioxidant enzymes. Conclusions: Amifostine can induce a delayed radioprotective effect that correlates with elevated levels of SOD2 activity in SA-NH tumor. If limited to normal tissues, this delayed radioprotective effect offers an additional potential for overall radiation protection. However, amifostine-induced elevation of SOD2 activity in tumors could have an unanticipated deleterious effect on tumor responses to fractionated radiation therapy, given that the radioprotector is administered daily just before each 2-Gy fractionated dose.

  14. Antioxidant and photosystem II responses contribute to explain the drought-heat contrasting tolerance of two forage legumes.

    PubMed

    Signorelli, Santiago; Casaretto, Esteban; Sainz, Martha; Díaz, Pedro; Monza, Jorge; Borsani, Omar

    2013-09-01

    Identification of metabolic targets of environmental stress factors is critical to improve the stress tolerance of plants. Studying the biochemical and physiological responses of plants with different capacities to deal with stress is a valid approach to reach this objective. Lotus corniculatus (lotus) and Trifolium pratense (clover) are legumes with contrasting summer stress tolerances. In stress conditions, which are defined as drought, heat or a combination of both, we found that differential biochemical responses of leaves explain these behaviours. Lotus and clover showed differences in water loss control, proline accumulation and antioxidant enzymatic capacity. Drought and/or heat stress induced a large accumulation of proline in the tolerant species (lotus), whereas heat stress did not cause proline accumulation in the sensitive species (clover). In lotus, Mn-SOD and Fe-SOD were induced by drought, but in clover, the SOD-isoform profile was not affected by stress. Moreover, lotus has more SOD-isoforms and a higher total SOD activity than clover. The functionality and electrophoretic profile of photosystem II (PSII) proteins under stress also exhibited differences between the two species. In lotus, PSII activity was drastically affected by combined stress and, interestingly, was correlated with D2 protein degradation. Possible implications of this event as an adaption mechanism in tolerant species are discussed. We conclude that the stress-tolerant capability of lotus is related to its ability to respond to oxidative damage and adaption of the photosynthetic machinery. This reveals that these two aspects should be included in the evaluation of the tolerance of species to stress conditions. PMID:23792824

  15. Green tea polyphenol (−)-epigallocatechin-3-gallate triggered hepatotoxicity in mice: Responses of major antioxidant enzymes and the Nrf2 rescue pathway

    SciTech Connect

    Wang, Dongxu; Wang, Yijun; Wan, Xiaochun; Yang, Chung S.; Zhang, Jinsong

    2015-02-15

    (−)-Epigallocatechin-3-gallate (EGCG), a constituent of green tea, has been suggested to have numerous health-promoting effects. On the other hand, high-dose EGCG is able to evoke hepatotoxicity. In the present study, we elucidated the responses of hepatic major antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2) rescue pathway to high-dose levels of EGCG in Kunming mice. At a non-lethal toxic dose (75 mg/kg, i.p.), repeated EGCG treatments markedly decreased the levels of superoxide dismutase, catalase, and glutathione peroxidase. As a rescue response, the nuclear distribution of Nrf2 was significantly increased; a battery of Nrf2-target genes, including heme oxygenase 1 (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and those involved in glutathione and thioredoxin systems, were all up-regulated. At the maximum tolerated dose (45 mg/kg, i.p.), repeated EGCG treatments did not disturb the major antioxidant defense. Among the above-mentioned genes, only HO1, NQO1, and GST genes were significantly but modestly up-regulated, suggesting a comprehensive and extensive activation of Nrf2-target genes principally occurs at toxic levels of EGCG. At a lethal dose (200 mg/kg, i.p.), a single EGCG treatment dramatically decreased not only the major antioxidant defense but also the Nrf2-target genes, demonstrating that toxic levels of EGCG are able to cause a biphasic response of Nrf2. Overall, the mechanism of EGCG-triggered hepatotoxicity involves suppression of major antioxidant enzymes, and the Nrf2 rescue pathway plays a vital role for counteracting EGCG toxicity. - Highlights: • EGCG at maximum tolerated dose does not disturb hepatic major antioxidant defense. • EGCG at maximum tolerated dose modestly upregulates hepatic Nrf2 target genes. • EGCG at toxic dose suppresses hepatic major antioxidant enzymes. • EGCG at non-lethal toxic dose pronouncedly activates hepatic Nrf2 rescue response. • EGCG at

  16. Verification of Advective Bar Elements Implemented in the Aria Thermal Response Code.

    SciTech Connect

    Mills, Brantley

    2016-01-01

    A verification effort was undertaken to evaluate the implementation of the new advective bar capability in the Aria thermal response code. Several approaches to the verification process were taken : a mesh refinement study to demonstrate solution convergence in the fluid and the solid, visually examining the mapping of the advective bar element nodes to the surrounding surfaces, and a comparison of solutions produced using the advective bars for simple geometries with solutions from commercial CFD software . The mesh refinement study has shown solution convergence for simple pipe flow in both temperature and velocity . Guidelines were provided to achieve appropriate meshes between the advective bar elements and the surrounding volume. Simulations of pipe flow using advective bars elements in Aria have been compared to simulations using the commercial CFD software ANSYS Fluent (r) and provided comparable solutions in temperature and velocity supporting proper implementation of the new capability. Verification of Advective Bar Elements iv Acknowledgements A special thanks goes to Dean Dobranich for his guidance and expertise through all stages of this effort . His advice and feedback was instrumental to its completion. Thanks also goes to Sam Subia and Tolu Okusanya for helping to plan many of the verification activities performed in this document. Thank you to Sam, Justin Lamb and Victor Brunini for their assistance in resolving issues encountered with running the advective bar element model. Finally, thanks goes to Dean, Sam, and Adam Hetzler for reviewing the document and providing very valuable comments.

  17. Simulation of the ultrasonic array response from real branched cracks using an efficient finite element method

    SciTech Connect

    Felice, Maria V.; Velichko, Alexander; Wilcox, Paul D.; Barden, Tim J.; Dunhill, Tony K.

    2014-02-18

    A hybrid model to simulate the ultrasonic array response from stress corrosion cracks is presented. These cracks are branched and difficult to detect so the model is required to enable optimization of an array design. An efficient frequency-domain finite element method is described and selected to simulate the ultrasonic scattering. Experimental validation results are presented, followed by an example of the simulated ultrasonic array response from a real stress corrosion crack whose geometry is obtained from an X-ray Computed Tomography image. A simulation-assisted array design methodology, which includes the model and use of real crack geometries, is proposed.

  18. Finite element nonlinear random response of beams to acoustic and thermal loads applied simultaneously

    NASA Astrophysics Data System (ADS)

    Chen, Ruixi; Mei, Chuh

    1993-04-01

    A finite element formulation combined with the equivalent linearization technique and the normal mode method is developed for the study of nonlinear random response of beams subjected to simultaneously applied acoustic and thermal loads. Examples include thermally buckled random response of simply supported beam, clamped-clamped beam and simply supported-clamped beam. To compare and validate the present formulation, results are compared with the solutions from existing sequential load method, and significant difference has been found. Results by classical continuum solution and the solution of Fokker-Planck-Kolmogorov equation are also derived and obtained for comparison.

  19. Effect of randomness on multi-frequency aeroelastic responses resolved by Unsteady Adaptive Stochastic Finite Elements

    SciTech Connect

    Witteveen, Jeroen A.S. Bijl, Hester

    2009-10-01

    The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.

  20. Isolation of transcription factors binding auxin response elements using a yeast one-hybrid system.

    PubMed

    Qi, Mei; Huang, Meijuan; Chen, Fan

    2002-04-01

    Plant hormones play an important role during higher plant embryogenesis. Auxin is central to the development of vascular tissues, formation of lateral and adventitious roots, control of apical dominance, and tropic responses. Auxin response element (AuxRE), present in the promoters of many auxin-induced genes, can confer auxin responsiveness. Using carrot somatic embryo under specific developmental phase, a cDNA expression library was constructed. Several plasmids were recombined containing the tetramer of AuxRE as a bait. After screening by a yeast one-hy-brid system, one positive clone was confirmed and characterized. Electrophoretic mobility shift assay showed that AxRF1 protein expressed in yeast cell could bind AuxRE in vitro. It suggests that AxRF1 participates in regulation of the expression of auxin responsive gene during carrot somatic embryogenesis. PMID:18763077

  1. On estimating frequency response function envelopes using the spectral element method and fuzzy sets

    NASA Astrophysics Data System (ADS)

    Nunes, R. F.; Klimke, A.; Arruda, J. R. F.

    2006-04-01

    The influence of uncertain input data on response spectra of dynamic structures is considered. Traditionally, frequency response analyses are based on finite or boundary element models of the objective structure. In the case of the mid-frequency range problem, however, a very fine mesh is required to correctly approximate the frequency response. This is particularly problematic in uncertainty modeling where the computational effort is usually increased significantly by the need for multiple runs (e.g. when conducting a Monte Carlo analysis) to achieve reliable results. In this paper, the spectral element method, combined with a fuzzy set-based uncertainty modeling approach, is presented as an appealing alternative, provided that the models are simple enough to yield a spectral element representation. To conduct the fuzzy analysis part, three different implementations of the extension principle of fuzzy arithmetic are applied and compared. The suitability of each method depends on the number of uncertain parameters, the problem characteristics, and the required accuracy of the results. The performance of the proposed approach is illustrated by two test problems, a simple coupled rod and a reinforced plate model. To verify the fuzzy-valued results, a Monte Carlo simulation has also been included.

  2. A Novel Peroxisome Proliferator Response Element Modulates Hepatic Low Density Lipoprotein Receptor Gene Transcription in Response to PPARδ Activation

    PubMed Central

    Shende, Vikram R.; Singh, Amar Bahadur; Liu, Jingwen

    2016-01-01

    The hepatic expression of LDLR gene is regulated primarily at the transcriptional level by a sterol-regulatory element (SRE) in its proximal promoter region which is the site of action of SRE-binding protein 2 (SREBP2). However whether additional cis-regulatory elements contribute to LDLR transcription has not been fully explored. We investigated the function of a putative PPAR-response element (PPRE) sequence motif located at −768 to −752 bases upstream of the transcription start site of human LDLR gene in response to PPARδ activation. Promoter luciferase reporter analyses showed that treating HepG2 cells with PPARδ agonist L165041 markedly increased the activity of a full-length LDLR promoter construct (pLDLR-1192) without any effects on the shorter promoter reporter pLDLR-234 that contains only the core regulatory elements SRE-1 and SP1 sites. Importantly, mutation of the PPRE sequence greatly attenuated the induction of the full-length LDLR promoter activity by L165041 without affecting rosuvastatin mediated transactivation. Electrophoretic mobility shift and chromatin immunoprecipitation assays further confirmed the binding of PPARδ to the LDLR-PPRE site. Treating HepG2 cells with L165041 elevated the mRNA and protein expressions of LDLR without affecting the LDLR mRNA decay rate. The induction of LDLR expression by PPARδ agonist was further observed in liver tissue of mice and hamsters treated with L165041. Altogether, our studies identify a novel PPRE-mediated regulatory mechanism for LDLR transcription and suggest that combined treatment of statin with PPARδ agonists may have advantageous effects on LDLR expression. PMID:26443862

  3. Rearing effect of biofloc on antioxidant and antimicrobial transcriptional response in Litopenaeus stylirostris shrimp facing an experimental sub-lethal hydrogen peroxide stress.

    PubMed

    Cardona, Emilie; Saulnier, Denis; Lorgeoux, Bénédicte; Chim, Liet; Gueguen, Yannick

    2015-08-01

    This study compares the antioxidant and antimicrobial transcriptional expression of blue shrimps reared according to two different systems, BioFloc Technology (BFT) and Clear sea Water (CW) and their differential responses when facing an experimental sublethal hydrogen peroxide stress. After 30 days of rearing, juvenile shrimps were exposed to H2O2 stress at a concentration of 30 ppm during 6 h. The oxidative stress caused by H2O2 was examined in the digestive glands of the shrimp, in which antioxidant enzyme (AOE) and antimicrobial peptide (AMP) gene expression were analysed by quantitative real-time PCR. Results showed that rearing conditions did not affect the expression of genes encoding AOEs or AMPs. However, H2O2 stress induced a differential response in expression between shrimps from the two rearing treatments (BFT and CW). Comparative analysis of the expression profiles indicates that catalase transcripts were significantly upregulated by H2O2 stress for BFT shrimps while no change was observed for CW shrimps. In contrast, H2O2 caused down-regulation of superoxide dismutase and glutathione transferase transcripts and of the three AMP transcripts studied (penaeidin 2 and 3, and crustin) for CW shrimps, while no effect was observed on BFT shrimp transcript levels. These results suggested that BFT shrimps maintained antioxidant and AMP responses after stress and therefore can effectively protect their cells against oxidative stress, while CW shrimp immune competence seems to decrease after stress. PMID:26052010

  4. Differential responses of stress proteins, antioxidant enzymes, and photosynthetic efficiency to physiological stresses in the Florida red tide dinoflagellate, Karenia brevis.

    PubMed

    Miller-Morey, Jeanine S; Van Dolah, Frances M

    2004-08-01

    This study identifies stress proteins and antioxidant enzymes that may play a role in the survival strategies of the Florida red tide dinoflagellate, Karenia brevis. Heat shock protein 60 (Hsp 60), mitochondrial small heat shock protein (mitosHsp), chloroplastic small heat shock protein (chlsHsp), Mn superoxide dismutase (SOD), and Fe SOD were first identified by Western blotting. The induction of these proteins in laboratory cultures in response to elevated temperatures, hydrogen peroxide, lead, or elevated light intensities was next assessed. In parallel, F(V)/F(M), a measurement of photosynthetic efficiency and common proxy of cellular stress, was determined. Hsp 60, Fe SOD, and Mn SOD were induced following exposure to elevated temperatures, hydrogen peroxide, or lead. MitosHsp responded only to heat, whereas chlsHsp responded only to H(2)O(2)-induced stress. The expression of stress proteins and antioxidant enzymes appears to be a more sensitive indicator of heat or chemically induced stresses than F(V)/F(M). However, F(V)/F(M) decreased significantly in response to elevated light intensities that did not induce the expression of stress proteins. These results identify for the first time stress proteins and antioxidant enzymes in K. brevis, provide evidence for differential sensitivity of cellular organelles to various sources of stress, and confirm the presence of conserved stress responses observed across phyla in a dinoflagellate. PMID:15536057

  5. Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace

    NASA Astrophysics Data System (ADS)

    Hosseini-Vashan, S. J.; Golian, A.; Yaghobfar, A.

    2016-08-01

    A study was conducted to investigate the effects of supplementation of dried tomato pomace (DTP) on growth performance, relative weights of viscera, serum biological parameters, antioxidant status, immune response, and bone composition of broilers exposed to a high ambient temperature. A total of 352 one-day-old male broiler chickens were randomly divided into four groups consisting of four replicates with 22 birds each. One group was reared under the thermoneutral zone and fed a corn-soybean meal basal diet. The other three groups were subjected to a cyclic heat stress from 29 to 42 days of age (34 ± 1 °C, 55 % RH, 5 h/day). These birds were fed corn-soybean meal basal diet or the same diet supplemented with 3 % DTP (420 mg lycopene/kg diet) or 5 % (708 mg lycopene/kg diet) of DTP. Blood samples were collected on days 28 and 42, and the birds were slaughtered at the same times. Supplementation of 5 % of DTP increased body weight and production index and decreased feed conversion ratio during 1-28 days of age. On day 28, the broilers supplemented with 5 % DTP had lower serum triglycerides and higher high-density lipoprotein (HDL) cholesterol concentration than those on the other dietary treatments. The activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD) were higher and the concentration of malondialdehyde (MDA) was lower in the broilers fed 5 % TP than those of the broilers fed other diets at 28 days of age. The effects of heat stress (HS) were impaired body weight, enhanced serum activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lipase, and MDA concentration while reducing the activities of GPx and SOD. Dried tomato pomace supplementation did not influence growth performance under HS but ameliorated the negative effects of HS on the serum enzyme activities, GPx activity, and lipid peroxidation. Heat stress did not change the relative weights of the lymphoid organs but reduced the total and IgG titers

  6. Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace

    NASA Astrophysics Data System (ADS)

    Hosseini-Vashan, S. J.; Golian, A.; Yaghobfar, A.

    2015-11-01

    A study was conducted to investigate the effects of supplementation of dried tomato pomace (DTP) on growth performance, relative weights of viscera, serum biological parameters, antioxidant status, immune response, and bone composition of broilers exposed to a high ambient temperature. A total of 352 one-day-old male broiler chickens were randomly divided into four groups consisting of four replicates with 22 birds each. One group was reared under the thermoneutral zone and fed a corn-soybean meal basal diet. The other three groups were subjected to a cyclic heat stress from 29 to 42 days of age (34 ± 1 °C, 55 % RH, 5 h/day). These birds were fed corn-soybean meal basal diet or the same diet supplemented with 3 % DTP (420 mg lycopene/kg diet) or 5 % (708 mg lycopene/kg diet) of DTP. Blood samples were collected on days 28 and 42, and the birds were slaughtered at the same times. Supplementation of 5 % of DTP increased body weight and production index and decreased feed conversion ratio during 1-28 days of age. On day 28, the broilers supplemented with 5 % DTP had lower serum triglycerides and higher high-density lipoprotein (HDL) cholesterol concentration than those on the other dietary treatments. The activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD) were higher and the concentration of malondialdehyde (MDA) was lower in the broilers fed 5 % TP than those of the broilers fed other diets at 28 days of age. The effects of heat stress (HS) were impaired body weight, enhanced serum activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lipase, and MDA concentration while reducing the activities of GPx and SOD. Dried tomato pomace supplementation did not influence growth performance under HS but ameliorated the negative effects of HS on the serum enzyme activities, GPx activity, and lipid peroxidation. Heat stress did not change the relative weights of the lymphoid organs but reduced the total and IgG titers

  7. Equivalent Dynamic Stiffness Mapping technique for identifying nonlinear structural elements from frequency response functions

    NASA Astrophysics Data System (ADS)

    Wang, X.; Zheng, G. T.

    2016-02-01

    A simple and general Equivalent Dynamic Stiffness Mapping technique is proposed for identifying the parameters or the mathematical model of a nonlinear structural element with steady-state primary harmonic frequency response functions (FRFs). The Equivalent Dynamic Stiffness is defined as the complex ratio between the internal force and the displacement response of unknown element. Obtained with the test data of responses' frequencies and amplitudes, the real and imaginary part of Equivalent Dynamic Stiffness are plotted as discrete points in a three dimensional space over the displacement amplitude and the frequency, which are called the real and the imaginary Equivalent Dynamic Stiffness map, respectively. These points will form a repeatable surface as the Equivalent Dynamic stiffness is only a function of the corresponding data as derived in the paper. The mathematical model of the unknown element can then be obtained by surface-fitting these points with special functions selected by priori knowledge of the nonlinear type or with ordinary polynomials if the type of nonlinearity is not pre-known. An important merit of this technique is its capability of dealing with strong nonlinearities owning complicated frequency response behaviors such as jumps and breaks in resonance curves. In addition, this technique could also greatly simplify the test procedure. Besides there is no need to pre-identify the underlying linear parameters, the method uses the measured data of excitation forces and responses without requiring a strict control of the excitation force during the test. The proposed technique is demonstrated and validated with four classical single-degree-of-freedom (SDOF) numerical examples and one experimental example. An application of this technique for identification of nonlinearity from multiple-degree-of-freedom (MDOF) systems is also illustrated.

  8. Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen*

    PubMed Central

    Zhuang, Yong-liang; Zhao, Xue; Li, Ba-fang

    2009-01-01

    To optimize the hydrolysis conditions to prepare hydrolysates of jellyfish umbrella collagen with the highest hydroxyl radical scavenging activity, collagen extracted from jellyfish umbrella was hydrolyzed with trypsin, and response surface methodology (RSM) was applied. The optimum conditions obtained from experiments were pH 7.75, temperature (T) 48.77 °C, and enzyme-to-substrate ratio ([E]/[S]) 3.50%. The analysis of variance in RSM showed that pH and [E]/[S] were important factors that significantly affected the process (P<0.05 and P<0.01, respectively). The hydrolysates of jellyfish umbrella collagen were fractionated by high performance liquid chromatography (HPLC), and three fractions (HF-1>3000 Da, 1000 Da

  9. Antioxidant Responses of Vallisneria asiatica to Eutrophic Sediments in Lake Taihu, China.

    PubMed

    Kang, Caixia; Kuba, Takahiro; Hao, Aimin; Iseri, Yasushi

    2015-08-01

    Three kinds of representative sediments were obtained from a macrophyte-dominated bay (East Lake Taihu) and two algae-dominated regions (Western Lake Taihu and Meiliang Bay). Physiological responses of Vallisneria asiatica to these sediments were compared. Results from 20 days exposures showed no obvious differences in malondialdehyde (MDA) in roots, while the MDA content in leaves of plants exposed to Western Lake Taihu sediment was significantly (p<0.05) higher than those exposed to the other two sediments. In comparison to the other two sediments, plants exposed to Western Lake Taihu sediment showed significantly lower (p<0.05) superoxide dismutase in roots and leaves on the 10th and 40th day. On the 40th day, root catalase (CAT) activities in V. asiatica from Western Lake Taihu and Meiliang Bay sediments were lower than that from East Lake Taihu sediment, while leaf CAT activity in V. asiatica from Western Lake Taihu sediment was higher than that from East Lake Taihu sediment (p<0.05). Western Lake Taihu sediment caused more serious oxidative stress in V. asiatica than East Lake Taihu sediment. Results indicated eutrophic sediment was a contributing factor in the disappearance of V. asiatica in Western Lake Taihu. PMID:26070371

  10. Trace element concentrations and bioindicator responses in tree swallows from northwestern Minnesota

    USGS Publications Warehouse

    Custer, Christine M.; Custer, T.W.; Warburton, D.; Hoffman, D.J.; Bickham, J.W.; Matson, C.W.

    2006-01-01

    Abstract Extremely high concentrations of cadmium (3.5 ug/g dry wgt.) and elevated concentrations of chromium (>10 ug/g dry wgt.) and mercury (1.6 ug/g dry wgt.) were reported in waterbird tissues at Agassiz National Wildlife Refuge in northwestern Minnesota in 1994. Tree swallows (Tachycineta bicolor) were studied during 1998-2001 at three drainages into the Refuge, two pools on the Refuge, and at a nearby reference location to document whether high levels of contaminants were still present, and if so to quantify the source and severity of the contamination. Trace elements were measured in tree swallow eggs, livers, and diet. Reproductive success and bioindicator responses were monitored. In 2000, water was drawn down on Agassiz Pool, one of the main pools on the Refuge. This presented an opportunity to evaluate the response of trace element concentrations in the diet and tissues of tree swallows after reflooding. High concentrations of trace elements were not detected in swallow tissues, nor were there differences among locations. Less than 20% of swallow samples had detectable concentrations of cadmium or chromium. Mercury concentrations were low and averaged <0.25 ug/g dry wgt. in swallow tissues. Trace elements, including mercury, did not increase in tree swallows following the 2000 drawdown at Agassiz Pool. Hatching success and survival of nestlings to 12 days-of-age for tree swallows on the Refuge were similar to the national average and consistent with background trace element concentrations. Bioindicator measurements were within the normal ranges as well.

  11. Trace element concentrations and bioindicator responses in tree swallows from northwestern Minnesota.

    PubMed

    Custer, Christine M; Custer, Thomas W; Warburton, David; Hoffman, David J; Bickham, John W; Matson, Cole W

    2006-07-01

    Extremely high concentrations of cadmium (3.5 microg/g dry wgt.) and elevated concentrations of chromium (>10 microg/g dry wgt.) and mercury (1.6 microg/g dry wgt.) were reported in waterbird tissues at Agassiz National Wildlife Refuge in northwestern Minnesota in 1994. Tree swallows (Tachycineta bicolor) were studied during 1998-2001 at three drainages into the Refuge, two pools on the Refuge, and at a nearby reference location to document whether high levels of contaminants were still present, and if so to quantify the source and severity of the contamination. Trace elements were measured in tree swallow eggs, livers, and diet. Reproductive success and bioindicator responses were monitored. In 2000, water was drawn down on Agassiz Pool, one of the main pools on the Refuge. This presented an opportunity to evaluate the response of trace element concentrations in the diet and tissues of tree swallows after reflooding. High concentrations of trace elements were not detected in swallow tissues, nor were there differences among locations. Less than 20% of swallow samples had detectable concentrations of cadmium or chromium. Mercury concentrations were low and averaged <0.25 microg/g dry wgt. in swallow tissues. Trace elements, including mercury, did not increase in tree swallows following the 2000 drawdown at Agassiz Pool. Hatching success and survival of nestlings to 12 days-of-age for tree swallows on the Refuge were similar to the national average and consistent with background trace element concentrations. Bioindicator measurements were within the normal ranges as well. PMID:16897545

  12. Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants.

    PubMed

    Ikbal, Fatima Ezzohra; Hernández, José Antonio; Barba-Espín, Gregorio; Koussa, Tayeb; Aziz, Aziz; Faize, Mohamed; Diaz-Vivancos, Pedro

    2014-06-15

    The possible involvement of polyamines in the salt stress adaptation was investigated in grapevine (Vitis vinifera L.) plantlets focusing on photosynthesis and oxidative metabolism. Salt stress resulted in the deterioration of plant growth and photosynthesis, and treatment of plantlets with methylglyoxal-bis(guanylhydrazone) (MGBG), a S-adenosylmethionine decarboxylase (SAMDC) inhibitor, enhanced the salt stress effect. A decrease in PSII quantum yield (Fv/Fm), effective PSII quantum yield (Y(II)) and coefficient of photochemical quenching (qP) as well as increases in non-photochemical quenching (NPQ) and its coefficient (qN) was observed by these treatments. Salt and/or MGBG treatments also triggered an increase in lipid peroxidation and reactive oxygen species (ROS) accumulation as well as an increase of superoxide dismutase (SOD) and peroxidase (POX) activities, but not ascorbate peroxidase (APX) activity. Salt stress also resulted in an accumulation of oxidized ascorbate (DHA) and a decrease in reduced glutathione. MGBG alone or in combination with salt stress increased monodehydroascorbate reductase (MDHAR), SOD and POX activities and surprisingly no accumulation of DHA was noticed following treatment with MGBG. These salt-induced responses correlated with the maintaining of high level of free and conjugated spermidine and spermine, whereas a reduction of agmatine and putrescine levels was observed, which seemed to be amplified by the MGBG treatment. These results suggest that maintaining polyamine biosynthesis through the enhanced SAMDC activity in grapevine leaf tissues under salt stress conditions could contribute to the enhanced ROS scavenging activity and a protection of photosynthetic apparatus from oxidative damages. PMID:24877669

  13. The 2004 Ultrasonic Benchmark Problem - SDH Response Under Oblique Incidence: Measurements and Patch Element Model Calculations

    SciTech Connect

    Krishnamurthy, C. V.; Shankar, M.; Vardhan, J. Vishnu; Balasubramaniam, Krishnan

    2006-03-06

    The 2004 ultrasonic benchmark problem requires models to predict, given a reference pulse waveform, the pulse echo response of cylindrical voids of various radii located in an elastic solid for various incidence angles of a transducer immersed in water. We present the results of calculations based on the patch element model, recently developed at CNDE, to determine the response of an SDH in aluminum for specific oblique incidence angles. Patch element model calculations for a scan across the SDH, involving a range of oblique incidence angles, are also presented. Measured pulse-echo scans involving the SDH response under oblique incidence conditions are reported. In addition, through transmission measurements involving a pinducer as a receiver and an immersion planar probe as a transmitter under oblique incidence conditions are also reported in a defect-free Aluminum block. These pinducer-based measurements on a defect-free block are utilised to characterize the fields at the chosen depth. Comparisons are made between predictions and measurements for the pulse-echo response of a SDH.

  14. Transient Response of Rotor on Rolling-Element Bearings with Clearance

    NASA Technical Reports Server (NTRS)

    Fleming, David P.; Murphy, Brian T.; Sawicki, Jerzy T.; Poplawski, J. V.

    2006-01-01

    Internal clearance in rolling element bearings is usually present to allow for radial and axial growth of the rotor-bearing system and to accommodate bearing fit-up. The presence of this clearance also introduces a "dead band" into the load-deflection behavior of the bearing. Previous studies demonstrated that the presence of dead band clearance might have a significant effect on synchronous rotor response. In this work, the authors investigate transient response of a rotor supported on rolling element bearings with internal clearance. In addition, the stiffness of the bearings varies nonlinearly with bearing deflection and with speed. Bearing properties were accurately calculated with a state of the art rolling bearing analysis code. The subsequent rotordynamics analysis shows that for rapid acceleration rates the maximum response amplitude may be less than predicted by steady-state analysis. The presence of clearance may shift the critical speed location to lower speed values. The rotor vibration response exhibits subharmonic components which are more prominent with bearing clearance.

  15. Withania somnifera and Its Withanolides Attenuate Oxidative and Inflammatory Responses and Up-Regulate Antioxidant Responses in BV-2 Microglial Cells.

    PubMed

    Sun, Grace Y; Li, Runting; Cui, Jiankun; Hannink, Mark; Gu, Zezong; Fritsche, Kevin L; Lubahn, Dennis B; Simonyi, Agnes

    2016-09-01

    Withania somnifera (L.) Dunal, commonly known as Ashwagandha, has been used in Ayurvedic medicine for promoting health and quality of life. Recent clinical trials together with experimental studies indicated significant neuroprotective effects of Ashwagandha and its constituents. This study is aimed to investigate anti-inflammatory and anti-oxidative properties of this botanical and its two withanolide constituents, namely, Withaferin A and Withanolide A, using the murine immortalized BV-2 microglial cells. Ashwagandha extracts not only effectively inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and reactive oxygen species (ROS) production in BV-2 cells, but also stimulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway, leading to induction of heme oxygenase-1 (HO-1), both in the presence and absence of LPS. Although the withanolides were also capable of inhibiting LPS-induced NO production and stimulating Nrf2/HO-1 pathway, Withaferin A was tenfold more effective than Withanolide A. In serum-free culture, LPS can also induce production of long thin processes (filopodia) between 4 and 8 h in BV-2 cells. This morphological change was significantly suppressed by Ashwagandha and both withanolides at concentrations for suppressing LPS-induced NO production. Taken together, these results suggest an immunomodulatory role for Ashwagandha and its withanolides, and their ability to suppress oxidative and inflammatory responses in microglial cells by simultaneously down-regulating the NF-kB and upregulating the Nrf2 pathways. PMID:27209361

  16. Genomic Regulation of the Response of an Agroecosystem to Elements of Global Change

    SciTech Connect

    DeLucia, Evan, H.

    2011-06-03

    This document outlines some of the major accomplishments from this project: (1) New tools for analyzing and visualizing microarray data from soybean gene expression experiments; (2) Physiological, biochemical, and gene array evidence that acclimation of carbon metabolism to elevated CO{sub 2} is governed in significant part by changes in gene expression associated with respiratory metabolism; (3) Increased carbon assimilation in soybeans grown at elevated CO{sub 2} altered pools of carbohydrates and transcripts that control growth and expansion of young leaves; (4) Growth at elevated CO{sub 2} increases the abundance of transcripts controlling cell wall polysaccharide synthesis but not transcripts controlling lignin synthesis; (5) The total antioxidant capacity of soybeans varies among cultivars and in response to atmospheric change; (6) Accelerated leaf senescence at elevated O{sub 3} coincides with reduced abundance of transcripts controlling protein synthesis; (7) Growth under elevated CO{sub 2} increases the susceptibility of soybean to insect herbivores by increasing insect lifespan and fecundity through altered leaf chemistry and by defeating molecular induction of plant defenses; (8) Exposure to elevated CO{sub 2} and O{sub 3} alters flavonoid metabolism in soybean; (9) Exposure to elevated CO{sub 2} or O{sub 3} conferred resistance to soybean mosaic virus by cross inducing defense- and stress-related signaling pathways; and (10) Exposure to elevated CO{sub 2} accelerates decomposition by changing chemical and biotic properties of the soil.

  17. The effects of arsenic and seawater acidification on antioxidant and biomineralization responses in two closely related Crassostrea species.

    PubMed

    Moreira, Anthony; Figueira, Etelvina; Soares, Amadeu M V M; Freitas, Rosa

    2016-03-01

    Ocean acidification processes are major threats to marine calcifying organisms, mostly affecting biomineralization related processes. Abiotic stressors acting on marine systems do not act alone, rather in a combination of multiple stressors, especially in coastal habitats such as estuaries, where anthropogenic and environmental pressures are high. Arsenic (As) is a widely distributed contaminant worldwide and its toxicity has been studied on a variety of organisms. However, the effect of low pH on the toxicity of As on marine organisms is unknown. Here, we studied the combined effects of ocean acidification and As exposure on two closely related oyster species (Crassostrea angulata and Crassostrea gigas), by use of a biochemical approach. Oxidative stress related parameters were studied along with the assessment of biomineralization enzymes activity after 28days of exposure. Results showed that both species were sensitive to all tested conditions (low pH, As and pH+As), showing enhancement of antioxidant and biotransformation defenses and impairment of biomineralization processes. Glutathione S-transferases (GSTs) activity were significantly higher in oysters exposed to As, showing activation of detoxification mechanisms, and a lower GSTs activity was observed in low pH+As condition, indicating an impact on the oysters capacity to detoxify As in a low pH scenario. Carbonic anhydrase (CA) activity was significantly lower in all tested conditions, showing to be affected by both As and low pH, whereas the combined effect of low pH+As was not different from the effect of low pH alone. Multivariate analysis of biochemical data allowed for the comparison of both species performance, showing a clear distinction of response in both species. C. gigas presented overall higher enzymatic activity (GSTs; superoxide dismutase; catalase; CA and acid phosphatase) and higher cytosolic GSH content in As exposed oysters than C. angulata. Results obtained indicate a higher tolerance

  18. Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Laub, Bernard; Braun, Robert D.

    2011-01-01

    The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.

  19. Antioxidants in Translational Medicine

    PubMed Central

    Schmidt, Harald H.H.W.; Stocker, Roland; Vollbracht, Claudia; Paulsen, Gøran; Riley, Dennis

    2015-01-01

    Abstract Significance: It is generally accepted that reactive oxygen species (ROS) scavenging molecules or antioxidants exert health-promoting effects and thus their consumption as food additives and nutraceuticals has been greatly encouraged. Antioxidants may be beneficial in situations of subclinical deficiency and increased demand or acutely upon high-dose infusion. However, to date, there is little clinical evidence for the long-term benefit of most antioxidants. Alarmingly, recent evidence points even to health risks, in particular for supplements of lipophilic antioxidants. Recent Advances: The biological impact of ROS depends not only on their quantities but also on their chemical nature, (sub)cellular and tissue location, and the rates of their formation and degradation. Moreover, ROS serve important physiological functions; thus, inappropriate removal of ROS may cause paradoxical reductive stress and thereby induce or promote disease. Critical Issues: Any recommendation on antioxidants must be based on solid clinical evidence and patient-relevant outcomes rather than surrogate parameters. Future Directions: Such evidence-based use may include site-directed application, time-limited high dosing, (functional) pharmacological repair of oxidized biomolecules, and triggers of endogenous antioxidant response systems. Ideally, these approaches need guidance by patient stratification through predictive biomarkers and possibly imaging modalities. Antioxid. Redox Signal. 23, 1130–1143. PMID:26154592

  20. Redox regulation of cAMP-responsive element-binding protein and induction of manganous superoxide dismutase in nerve growth factor-dependent cell survival.

    PubMed

    Bedogni, Barbara; Pani, Giovambattista; Colavitti, Renata; Riccio, Antonella; Borrello, Silvia; Murphy, Mike; Smith, Robin; Eboli, Maria Luisa; Galeotti, Tommaso

    2003-05-01

    Reactive oxygen species (ROS) act as both signaling molecules and mediators of cell damage in the nervous system and are implicated in the pathogenesis of neurodegenerative diseases. Neurotrophic factors such as the nerve-derived growth factor (NGF) support neuronal survival during development and promote regeneration after neuronal injury through the activation of intracellular signals whose molecular effectors and downstream targets are still largely unknown. Here we present evidence that early oxidative signals initiated by NGF in PC12 cells, an NGF-responsive cell line, play a critical role in preventing apoptosis induced by serum deprivation. This redox-signaling cascade involves phosphatidylinositol 3-kinase, the small GTPase Rac-1, and the transcription factor cAMP-responsive element-binding protein (CREB), a molecule essential to promote NGF-dependent survival. We found that ROS are necessary for NGF-dependent phosphorylation of CREB, an event directly correlated with CREB activity, whereas hydrogen peroxide induces a robust CREB phosphorylation. Cells exposed to NGF show a late decrease in the intracellular content of ROS when compared with untreated cells and increased expression of the mitochondrial antioxidant enzyme manganese superoxide dismutase, a general inhibitor of cell death. Accordingly, serum deprivation-induced apoptosis was selectively inhibited by low concentrations of the mitochondrially targeted antioxidant Mito Q (mitoquinol/mitoquinone). Taken together, these data demonstrate that the oxidant-dependent activation of CREB is a component of NGF survival signaling in PC12 cells and outline an intriguing circuitry by which a cytosolic redox cascade promotes cell survival at least in part by increasing mitochondrial resistance to oxidative stress. PMID:12609977

  1. Analysis of Resonance Response Performance of C-Band Antenna Using Parasitic Element

    PubMed Central

    Islam, M. T.; Misran, N.; Mandeep, J. S.

    2014-01-01

    Analysis of the resonance response improvement of a planar C-band (4–8 GHz) antenna is proposed using parasitic element method. This parasitic element based method is validated for change in the active and parasitic antenna elements. A novel dual-band antenna for C-band application covering 5.7 GHz and 7.6 GHz is designed and fabricated. The antenna is composed of circular parasitic element with unequal microstrip lines at both sides and a rectangular partial ground plane. A fractional bandwidth of 13.5% has been achieved from 5.5 GHz to 6.3 GHz (WLAN band) for the lower band. The upper band covers from 7.1 GHz to 8 GHz with a fractional bandwidth of 12%. A gain of 6.4 dBi is achieved at the lower frequency and 4 dBi is achieved at the upper frequency. The VSWR of the antenna is less than 2 at the resonance frequency. PMID:24895643

  2. Analysis of resonance response performance of C-band antenna using parasitic element.

    PubMed

    Zaman, M R; Islam, M T; Misran, N; Mandeep, J S

    2014-01-01

    Analysis of the resonance response improvement of a planar C-band (4-8 GHz) antenna is proposed using parasitic element method. This parasitic element based method is validated for change in the active and parasitic antenna elements. A novel dual-band antenna for C-band application covering 5.7 GHz and 7.6 GHz is designed and fabricated. The antenna is composed of circular parasitic element with unequal microstrip lines at both sides and a rectangular partial ground plane. A fractional bandwidth of 13.5% has been achieved from 5.5 GHz to 6.3 GHz (WLAN band) for the lower band. The upper band covers from 7.1 GHz to 8 GHz with a fractional bandwidth of 12%. A gain of 6.4 dBi is achieved at the lower frequency and 4 dBi is achieved at the upper frequency. The VSWR of the antenna is less than 2 at the resonance frequency. PMID:24895643

  3. Antioxidant and gene expression responses of Eisenia fetida following repeated exposure to BDE209 and Pb in a soil-earthworm system.

    PubMed

    Hu, Shuangqing; Zhang, Wei; Li, Jing; Lin, Kuangfei; Ji, Rong

    2016-06-15

    This study first adopted repeated treatment model to investigate stress responses in earthworms (Eisenia fetida) following exposure to decabromodiphenyl ether (BDE209) and lead (Pb), which are the mainly co-existed contaminants at e-waste recycling sites. We evaluated the impacts of BDE209-Pb on antioxidative enzyme (superoxide dismutase, SOD; catalase, CAT) activities, malondialdehyde (MDA) contents and transcriptional levels of three target genes (SOD, CAT and Hsp70), and further explored the relationships among these biomarkers. Results demonstrated that almost all the parameters were generally induced and the responses followed certain dose-effect relationships. Compared to the controls, a significant (P<0.05) up-regulation trend of expression levels of the three genes could be clearly observed after 14days incubation. Additionally, there existed good correlations between target genes expression levels and antioxidant enzyme activities (R>0.64). The observations could provide important information of ecotoxicological effects of BDE209-Pb in a soil-earthworm system as well as the mechanism of antioxidant defense. PMID:26971217

  4. Modulation of liver function, antioxidant responses, insulin resistance and glucose transport by Oroxylum indicum stem bark in STZ induced diabetic rats.

    PubMed

    Singh, Jyotsna; Kakkar, Poonam

    2013-12-01

    A decoction of stem bark of Oroxylum indicum Vent. (OI) is taken (2-3 times/day) by the tribal people of Sikkim, India to treat diabetes but scientific validation of its overall potential is lacking. Present study was aimed to assess in vitro antihyperglycemic activity of standardized OI extract using inhibition of α-glucosidase, BSA glycation and enhancement of insulin sensitivity. Antidiabetic and antioxidant modulatory effects of OI extract along with the blood biomarkers of toxic response were studied in streptozotocin (STZ) induced diabetic rats. In vitro analysis showed strong antioxidant capacity of OI -and potential to inhibit BSA glycation and α-glucosidase activity which was comparable to standard counterparts. Extract also improved insulin sensitivity in mature 3T3-L1 adipocytes. In vivo effects of OI extract (oral 250 mg/kg b.wt.) on STZ induced type II diabetic rats normalized the antioxidant status (p≤0.01). Analysis of blood biomarkers of toxic response indicated its safety. Lowering of total cholesterol and HDL levels (p≤0.05) and restoration of glycated Hb (p≤0.01) were also found in OI treated diabetic rats. HOMA-IR, QUICKI analysis along with area under the curve analysis showed the capacity of OI extract to enhance the insulin sensitivity significantly (p≤0.01) which was confirmed by increased GLUT-4 translocation in skeletal muscles. PMID:24140466

  5. Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors.

    PubMed

    Randhir, Reena; Lin, Yuan-Tong; Shetty, Kalidas

    2004-01-01

    The phenylpropanoid pathway (PPP) was stimulated in fenugreek sprouts through the pentose phosphate and shikimate pathway, by natural elicitors such as Fish Protein Hydrolysates (FPH), Lactoferrin (LF) and Oregano Extract (OE). Among treatments 0.5 ml/L FPH elicited fenugreek sprouts had the highest phenolic content of 0.75 mg/g FW on day 3 of germination which was approximately 25 % higher than control on the same day. The antioxidant activity estimated by beta-carotene assay was highest for LF and OE elicited sprouts on day 2 and 4, respectively with an antioxidant protection factor (APF) of 1.47 for both. In all treatments and control, higher antioxidant activity was observed during early germination, which correlates to higher phenolic content, suggesting that initially phenolics are antioxidant in nature. This increased activity also correlates with high guaiacol peroxidase (GPX) activity indicating that the polymerized phenolics required for lignification with growth have antioxidant function. The antioxidant activity as estimated by beta-carotene and 1,1,-diphenyl-2-picryl hydrazyl (DPPH) assays indicate that fenugreek sprout extract can quench the superoxide free radical and also possibly scavenge the hydrogen peroxide generated in the reaction mix. OE elicited the highest levo dihydroxy phenylalanine (L-DOPA) synthesis of 1.59 mg/g FW, followed by FPH with 1.56 mg/g FW and LF 1.5 mg/g FW all on day 2 which was 24.5%, 23 % and 20 % higher than control, respectively. Higher L-DOPA content was observed in the elicited fenugreek sprouts during early germination, correlating to high phenolics and antioxidant activity, suggesting that L-DOPA also contributes to the high antioxidant activity. The glucose-6-phosphate dehydrogenase (G6PDH) activity was higher during early germination (day 1-4) and gradually decreased during later stages (day 5-8) for all treatments and control. The early increase is possibly due to the carbohydrate mobilization from the cotyledons

  6. Identification of peroxisome-proliferator responsive element in the mouse HSL gene

    SciTech Connect

    Yajima, Hiroaki . E-mail: hyajima@kirin.co.jp; Kobayashi, Yumie; Kanaya, Tomoka; Horino, Yoko

    2007-01-12

    Hormone-sensitive lipase (HSL) catalyzes the rate-limiting step of lipolysis in adipose tissue. Several studies suggest that protein phosphorylation regulates the HSL enzymatic activity. On the other hand, the precise mechanism of the transcriptional regulation of the HSL gene remains to be elucidated. Here, we identified a functional peroxisome-proliferator responsive element (PPRE) in the mouse HSL promoter by reporter assay in CV-1 cells using serial deletion and point mutants of the 5'-flanking region. Chromatin immunoprecipitation (ChIP) analysis revealed that both peroxisome-proliferator activated receptor (PPAR{gamma}) and retinoid X receptor (RXR{alpha}) interacted with the region. Binding of the PPAR{gamma}/RXR{alpha} heterodimer to the PPRE sequence was also confirmed by electrophoretic mobility shift assay. These results indicate that the HSL gene is transcriptionally regulated by PPAR{gamma}/RXR{alpha} heterodimer, and suggest that a cis-acting element regulates the HSL gene expression.

  7. Three-Dimensional Finite Element Ablative Thermal Response and Thermostructural Design of Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Braun, Robert D.

    2011-01-01

    A finite element ablation and thermal response program is presented for simulation of three-dimensional transient thermostructural analysis. The three-dimensional governing differential equations and finite element formulation are summarized. A novel probabilistic design methodology for thermal protection systems is presented. The design methodology is an eight step process beginning with a parameter sensitivity study and is followed by a deterministic analysis whereby an optimum design can determined. The design process concludes with a Monte Carlo simulation where the probabilities of exceeding design specifications are estimated. The design methodology is demonstrated by applying the methodology to the carbon phenolic compression pads of the Crew Exploration Vehicle. The maximum allowed values of bondline temperature and tensile stress are used as the design specifications in this study.

  8. Suppression of the Nrf2-Dependent Antioxidant Response by Glucocorticoids and 11β-HSD1-Mediated Glucocorticoid Activation in Hepatic Cells

    PubMed Central

    Kratschmar, Denise V.; Calabrese, Diego; Walsh, Jo; Lister, Adam; Birk, Julia; Appenzeller-Herzog, Christian; Moulin, Pierre; Goldring, Chris E.; Odermatt, Alex

    2012-01-01

    Background Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key transcription factor regulating a plethora of detoxifying enzymes and antioxidant genes involved in drug metabolism and defence against oxidative stress. The glucocorticoid receptor (GR) is a ligand-induced transcription factor involved in the regulation of energy supply for metabolic needs to cope with various stressors. GR activity is controlled by glucocorticoids, which are synthesized in the adrenal glands and regenerated mainly in the liver from inactive cortisone by 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1). Methods and Principal Findings Using transfected HEK-293 cells and hepatic H4IIE cells we show that glucocorticoids, activated by 11β-HSD1 and acting through GR, suppress the Nrf2-dependent antioxidant response. The expression of the marker genes NQO1, HMOX1 and GST2A was suppressed upon treatment of 11β-HSD1 expressing cells with cortisone, an effect that was reversed by 11β-HSD1 inhibitors. Furthermore, our results demonstrate that elevated glucocorticoids lowered the ability of cells to detoxify H2O2. Moreover, a comparison of gene expression in male and female rats revealed an opposite sexual dimorphism with an inverse relationship between 11β-HSD1 and Nrf2 target gene expression. Conclusions The results demonstrate a suppression of the cellular antioxidant defence capacity by glucocorticoids and suggest that elevated 11β-HSD1 activity may lead to impaired Nrf2-dependent antioxidant response. The gender-specific differences in hepatic expression levels of 11β-HSD1 and Nrf2 target genes and the impact of pharmacological inhibition of 11β-HSD1 on improving cellular capacity to cope with oxidative stress warrants further studies in vivo. PMID:22606287

  9. Antioxidant and photoprotective responses to elevated CO(2) and heat stress during holm oak regeneration by resprouting, evaluated with NIRS (near-infrared reflectance spectroscopy).

    PubMed

    Pintó-Marijuan, M; Joffre, R; Casals, I; De Agazio, M; Zacchini, M; García-Plazaola, J-I; Esteban, R; Aranda, X; Guàrdia, M; Fleck, I

    2013-01-01

    Photosynthetic, photoprotective and antioxidant responses during high temperature stress were determined in leaves of evergreen holm oak (Quercus ilex L.), the main species in Mediterranean forests, during resprouting under elevated CO(2) (750 μl·l(-1) ). Leaf chemicals, chloroplast pigments and non-enzymatic antioxidants were quantified in a single measurement using NIRS (near-infrared spectroscopy), a rapid and suitable method for ecophysiological purposes. Resprouts from plants grown under elevated CO(2) (RE) showed photosynthetic down-regulation, higher starch content and lower stomatal conductance, but similar stomatal density, than plants grown under current CO(2) concentrations (350 μl·l(-1) ) (RA). The photosynthetic sink reduction and need for more antioxidants and photoprotection in RE were reflected in an increased concentration of ascorbate (Asc) and phenolic compounds and in the contribution of the xanthophyll (Z/VAZ) and lutein epoxide cycles to excess energy dissipation as heat, and also reflected in chlorophyll fluorescence measurements. CO(2) assimilation parameters were stable from 25 to 35 °C in RE and RA, declining thereafter in RA in spite of a 2.3 °C lower leaf temperature. RE showed a more marked decline in photorespiration above 35 °C and less sensitive stomatal responses to high temperature stress than RA. During heat stress, RE had higher Asc, Z/VAZ and phenolics content, together with delayed enhancement of chloroplast lipophilic antioxidant compounds (carotenes and tocopherols). The high contribution of photoprotective systems and high temperature tolerance in resprouts developed under elevated CO(2) would mitigate the effect of photosynthesis acclimation during the regeneration of Q. ilex plants under climate change. PMID:22243620

  10. Antioxidant measurements.

    PubMed

    Somogyi, Anikó; Rosta, Klára; Pusztai, Péter; Tulassay, Zsolt; Nagy, Géza

    2007-04-01

    Chemical reactions, including oxidation and reduction of molecules, occur in every cell. These reactions can lead to the production of free radicals. Free radicals react with organic substrates such as lipids, proteins, and DNA. Through oxidation free radicals cause damage to these molecules, disturbing their normal function, and may therefore contribute to a variety of diseases. The anti-oxidation system, which consists of enzymatic antioxidants and non-enzymatic antioxidants, defends against oxidative stress. The aim of this review is to summarize general aspects of methods to measure the antioxidant defence system all in one (total antioxidant capacity) and discuss a number of methods which are currently used for detection of antioxidant properties. PMID:17395989

  11. Natural antioxidants.

    PubMed

    Berson, Diane S

    2008-07-01

    The constant exposure of the skin to oxidative stress results in damage to cellular DNA and cell membrane lipids and proteins. To combat this problem, the skin contains a number of antioxidants that protect against oxidative injury. However, these cutaneous antioxidants can be depleted by sun exposure and environmental insults, resulting in an overload of oxidation products. Thus, topical antioxidants that replenish the antioxidant capacity of the skin have the potential to prevent oxidative damage. A number of natural antioxidant ingredients also have anti-inflammatory properties, and can be used in the treatment of oxidative damage such as photoaging and perhaps even skin cancer. This article summarizes the active components, pharmacologic properties, and clinical effectiveness of a number of natural antioxidant ingredients including soy, feverfew, mushroom extracts, teas, Coffea arabica (CoffeeBerry), Pinus pinaster (Pycnogenol), and Polypodium leucotomos. Recent clinical trials suggest that these compounds have promising efficacy in the topical treatment of oxidative stress-induced dermatoses. PMID:18681153

  12. Stress, antioxidant defence and mucosal immune responses of the large yellow croaker Pseudosciaena crocea challenged with Cryptocaryon irritans.

    PubMed

    Yin, Fei; Gong, Hui; Ke, Qiaozhen; Li, Anxing

    2015-11-01

    To clarify the effects of a Cryptocaryon irritans infection on the stress, antioxidant and mucosal immune response of the large yellow croaker Pseudosciaena crocea, this study utilized C. irritans at dose of 12,000 (group I); 24,000 (group II); and 36,000 (group III) theronts/fish to infect large yellow croaker weighing 100 ± 10 g. The food intake, survival and relative infection intensity (RII); levels of reactive oxygen species (ROS), malondialdehyde (MDA) and vitamin C (VC), activities of super oxide dismutase (SOD) and catalase (CAT) in liver; variation patterns of lysozyme (LZM), alkaline phosphatase (AKP), complement component 3 (C3) and immunoglobulin M (IgM) levels in the body surface mucus at different time points after infection were compared. These results showed that with the increase of the infection dose and the passage of time, the food intake and survival of the fish gradually decreased. The final survival of the control group (0 theronts/fish), group I, group II, and group III was 100, 100, 96.67 ± 5.77, and 48.33 ± 7.64. Group I, II, and III stopped feeding respectively on the third, third and second days after infection. RII increased significantly with increased infection dose. The RII of the control group, group I, group II, and group III was 0, 0.73 ± 0.06, 1.30 ± 0.26, and 1.84 ± 0.02. With the infection dose increased, ROS contents showed an overall upward trend; MDA contents of the group I, group II and group III did not show significant changes at any timepoint compared with the control group; Activities of SOD and CAT and the overall VC levels in the liver of P. crocea dropped; LZM activity showed an overall upward trend; AKP activity increased first then dropped at each timepoint with its highest level appearing at group II; Complement C3 and IgM levels in body surface mucus were significantly increased. In conclusion, P. crocea has a strong ability to resist oxidative stress caused by the infection of C. irritans. The body surface

  13. Altered Response Hierarchy and Increased T-Cell Breadth upon HIV-1 Conserved Element DNA Vaccination in Macaques

    PubMed Central

    Kulkarni, Viraj; Valentin, Antonio; Rosati, Margherita; Alicea, Candido; Singh, Ashish K.; Jalah, Rashmi; Broderick, Kate E.; Sardesai, Niranjan Y.; Le Gall, Sylvie; Mothe, Beatriz; Brander, Christian; Rolland, Morgane; Mullins, James I.; Pavlakis, George N.; Felber, Barbara K.

    2014-01-01

    HIV sequence diversity and potential decoy epitopes are hurdles in the development of an effective AIDS vaccine. A DNA vaccine candidate comprising of highly conserved p24gag elements (CE) induced robust immunity in all 10 vaccinated macaques, whereas full-length gag DNA vaccination elicited responses to these conserved elements in only 5 of 11 animals, targeting fewer CE per animal. Importantly, boosting CE-primed macaques with DNA expressing full-length p55gag increased both magnitude of CE responses and breadth of Gag immunity, demonstrating alteration of the hierarchy of epitope recognition in the presence of pre-existing CE-specific responses. Inclusion of a conserved element immunogen provides a novel and effective strategy to broaden responses against highly diverse pathogens by avoiding decoy epitopes, while focusing responses to critical viral elements for which few escape pathways exist. PMID:24465991

  14. Altered response hierarchy and increased T-cell breadth upon HIV-1 conserved element DNA vaccination in macaques.

    PubMed

    Kulkarni, Viraj; Valentin, Antonio; Rosati, Margherita; Alicea, Candido; Singh, Ashish K; Jalah, Rashmi; Broderick, Kate E; Sardesai, Niranjan Y; Le Gall, Sylvie; Mothe, Beatriz; Brander, Christian; Rolland, Morgane; Mullins, James I; Pavlakis, George N; Felber, Barbara K

    2014-01-01

    HIV sequence diversity and potential decoy epitopes are hurdles in the development of an effective AIDS vaccine. A DNA vaccine candidate comprising of highly conserved p24(gag) elements (CE) induced robust immunity in all 10 vaccinated macaques, whereas full-length gag DNA vaccination elicited responses to these conserved elements in only 5 of 11 animals, targeting fewer CE per animal. Importantly, boosting CE-primed macaques with DNA expressing full-length p55(gag) increased both magnitude of CE responses and breadth of Gag immunity, demonstrating alteration of the hierarchy of epitope recognition in the presence of pre-existing CE-specific responses. Inclusion of a conserved element immunogen provides a novel and effective strategy to broaden responses against highly diverse pathogens by avoiding decoy epitopes, while focusing responses to critical viral elements for which few escape pathways exist. PMID:24465991

  15. Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene.

    PubMed Central

    Dolferus, R; Jacobs, M; Peacock, W J; Dennis, E S

    1994-01-01

    The Adh (alcohol dehydrogenase, EC 1.1.1.1.) gene from Arabidopsis thaliana (L.) Heynh. can be induced by dehydration and cold, as well as by hypoxia. A 1-kb promoter fragment (CADH: -964 to +53) is sufficient to confer the stress induction and tissue-specific developmental expression characteristics of the Adh gene to a beta-glucuronidase reporter gene. Deletion mapping of the 5' end and site-specific mutagenesis identified four regions of the promoter essential for expression under the three stress conditions. Some sequence elements are important for response to all three stress treatments, whereas others are stress specific. The most critical region essential for expression of the Arabidopsis Adh promoter under all three environmental stresses (region IV: -172 to -141) contains sequences homologous to the GT motif (-160 to -152) and the GC motif (-147 to -144) of the maize Adh1 anaerobic responsive element. Region III (-235 to -172) contains two regions shown by R.J. Ferl and B.H. Laughner ([1989] Plant Mol Biol 12: 357-366) to bind regulatory proteins; mutation of the G-box-1 region (5'-CCACGTGG-3', -216 to -209) does not affect expression under uninduced or hypoxic conditions, but significantly reduces induction by cold stress and, to a lesser extent, by dehydration stress. Mutation of the other G-box-like sequence (G-box-2: 5'-CCAAGTGG-3', -193 to -182) does not change hypoxic response and affects cold and dehydration stress only slightly. G-box-2 mutations also promote high levels of expression under uninduced conditions. Deletion of region I (-964 to -510) results in increased expression under uninduced and all stress conditions, suggesting that this region contains a repressor binding site. Region II (-510 to -384) contains a positive regulatory element and is necessary for high expression levels under all treatments. PMID:7972489

  16. Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress

    PubMed Central

    Makarevitch, Irina; Waters, Amanda J.; West, Patrick T.; Stitzer, Michelle; Hirsch, Candice N.; Ross-Ibarra, Jeffrey; Springer, Nathan M.

    2015-01-01

    Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as “junk” DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize. PMID:25569788

  17. Identification and characterization of the retinoic acid response elements in the human RIG1 gene promoter

    SciTech Connect

    Jiang, S.-Y.; Wu, M.-S.; Chen, L.-M.; Hung, M.-W.; Lin, H.-E.; Chang, G.-G.; Chang, T.-C. . E-mail: tcchang@ndmctsgh.edu.tw

    2005-06-03

    The expression of retinoic acid-induced gene 1 (RIG1), a class II tumor suppressor gene, is induced in cells treated with retinoids. RIG1 has been shown to express ubiquitously and the increased expression of this gene appears to suppress cell proliferation. Recent studies also demonstrated that this gene may play an important role in cell differentiation and the progression of cancer. In spite of the remarkable regulatory role of this protein, the molecular mechanism of RIG1 expression induced by retinoids remains to be clarified. The present study was designed to study the molecular mechanism underlying the all-trans retinoic acid (atRA)-mediated induction of RIG1 gene expression. Polymerase chain reaction was used to generate a total of 10 luciferase constructs that contain various fragments of the RIG1 5'-genomic region. These constructs were then transfected into human gastric cancer SC-M1 and breast cancer T47D cells for transactivation analysis. atRA exhibited a significant induction in luciferase activity only through the -4910/-5509 fragment of the 5'-genomic region of RIG1 gene relative to the translation initiation site. Further analysis of this promoter fragment indicated that the primary atRA response region is located in between -5048 and -5403 of the RIG1 gene. Within this region, a direct repeat sequence with five nucleotide spacing, 5'-TGACCTctattTGCCCT-3' (DR5, -5243/-5259), and an inverted repeat sequence with six nucleotide spacing, 5'-AGGCCAtggtaaTGGCCT-3' (IR6, -5323/-5340), were identified. Deletion and mutation of the DR5, but not the IR6 element, abolished the atRA-mediated activity. Electrophoretic mobility shift assays with nuclear extract from atRA-treated cells indicated the binding of retinoic acid receptor (RAR) and retinoid X receptor (RXR) heterodimers specifically to this response element. In addition to the functional DR5, the region contains many other potential sequence elements that are required to maximize the at

  18. A finite element large deflection random response of a pipe containing fluid flow

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.

    1991-01-01

    A finite element approach is developed for beam type pipes undergoing large deflections subjected to random loadings. The influence of fluid velocity on the random response is investigated. The root-mean-square (rms) deflections and frequencies for different sound spectrum level values are determined for pipes with both ends either simply supported or clamped. The required number of modes to achieve accurate rms deflections is studied. The prediction of fatigue life is then based on the maximum rms stress. This analytical investigation will help to broaden the basic understanding of the role of fluid flow within structures subjected to random excitations.

  19. Integration of growth factor signals at the c-fos serum response element.

    PubMed

    Price, M A; Hill, C; Treisman, R

    1996-04-29

    A transcription factor ternary complex composed of serum response factor (SRF) and a second factor, ternary complex factor (TCF), mediates the response of the c-fos Serum Response Element to growth factors and mitogens. In NIH3T3 fibroblasts, TCF binding is required for transcriptional activation by the SRE in response to activation of the Ras-Raf-ERK pathway. We compared the properties of three members of the TCF family, Elk-1, SAP-1 and SAP-2 (ERP/NET). Although all the proteins contain sequences required for ternary complex formation with SRF, only Elk-1 and SAP-1 appear to interact with the c-fos SRE efficiently in vivo. Each TCF contains a C-terminal activation domain capable of transcriptional activation in response to activation of the Ras-Raf-ERK pathway, and this is dependent on the integrity of S/T-P motifs conserved between all the TCF family members. In contrast, activation of the SRE by whole serum and the mitogenic phospholipid LPA requires SRF binding alone. Constitutively activated members of the Rho subfamily of Ras-like GTPases are also capable of inducing activation of the SRE in the absence of TCF; unlike activated Ras itself, these proteins do not activate the TCFs in NIH3T3 cells. At the SRE, SRF- and TCF-linked signalling pathways act synergistically to potentiate transcription. PMID:8735278

  20. Dimethyl fumarate, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and macrophage-mediated neurotoxicity; a novel candidate for HIV-neuroprotection1

    PubMed Central

    Cross, Stephanie A.; Cook, Denise R.; Chi, Anthony W.S.; Vance, Patricia J.; Kolson, Lorraine L.; Wong, Bethany J.; Jordan-Sciutto, Kelly L.; Kolson, Dennis L.

    2011-01-01

    Despite antiretroviral therapy (ART), HIV infection promotes cognitive dysfunction and neurodegeneration through persistent inflammation and neurotoxin release from infected and/or activated macrophages/microglia. Furthermore, inflammation and immune activation within both the central nervous system (CNS) and periphery correlate with disease progression and morbidity in ART-treated individuals. Accordingly, drugs targeting these pathological processes in the CNS and systemic compartments are needed for effective, adjunctive therapy. Using our in vitro model of HIV-mediated neurotoxicity, in which HIV infected monocyte-derived macrophages (MDM) release excitatory neurotoxins, we show that HIV infection dysregulates the macrophage antioxidant response and reduces levels of heme oxygenase-1 (HO-1). Furthermore, restoration of HO-1 expression in HIV-infected MDM reduces neurotoxin release without altering HIV replication. Given these novel observations, we have identified dimethyl fumarate (DMF), used to treat psoriasis and showing promising results in clinical trials for multiple sclerosis, as a potential neuroprotectant and HIV disease-modifying agent. DMF, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and neurotoxin release. Two distinct mechanisms are proposed; inhibition of NF-κB nuclear translocation and signaling, which could contribute to the suppression of HIV replication, and induction of HO-1, which is associated with decreased neurotoxin release. Finally, we found that DMF attenuates CCL2-induced monocyte chemotaxis, suggesting that DMF could decrease recruitment of activated monocytes to the CNS in response to inflammatory mediators. We propose that dysregulation of the antioxidant response during HIV infection drives macrophage-mediated neurotoxicity and that DMF could serve as an adjunctive neuroprotectant and HIV disease modifier in ART-treated individuals. PMID:21976775

  1. Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace.

    PubMed

    Hosseini-Vashan, S J; Golian, A; Yaghobfar, A

    2016-08-01

    A study was conducted to investigate the effects of supplementation of dried tomato pomace (DTP) on growth performance, relative weights of viscera, serum biological parameters, antioxidant status, immune response, and bone composition of broilers exposed to a high ambient temperature. A total of 352 one-day-old male broiler chickens were randomly divided into four groups consisting of four replicates with 22 birds each. One group was reared under the thermoneutral zone and fed a corn-soybean meal basal diet. The other three groups were subjected to a cyclic heat stress from 29 to 42 days of age (34 ± 1 °C, 55 % RH, 5 h/day). These birds were fed corn-soybean meal basal diet or the same diet supplemented with 3 % DTP (420 mg lycopene/kg diet) or 5 % (708 mg lycopene/kg diet) of DTP. Blood samples were collected on days 28 and 42, and the birds were slaughtered at the same times. Supplementation of 5 % of DTP increased body weight and production index and decreased feed conversion ratio during 1-28 days of age. On day 28, the broilers supplemented with 5 % DTP had lower serum triglycerides and higher high-density lipoprotein (HDL) cholesterol concentration than those on the other dietary treatments. The activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD) were higher and the concentration of malondialdehyde (MDA) was lower in the broilers fed 5 % TP than those of the broilers fed other diets at 28 days of age. The effects of heat stress (HS) were impaired body weight, enhanced serum activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lipase, and MDA concentration while reducing the activities of GPx and SOD. Dried tomato pomace supplementation did not influence growth performance under HS but ameliorated the negative effects of HS on the serum enzyme activities, GPx activity, and lipid peroxidation. Heat stress did not change the relative weights of the lymphoid organs but reduced the

  2. Blast response of curved carbon/epoxy composite panels: Experimental study and finite-element analysis

    NASA Astrophysics Data System (ADS)

    Phadnis, V. A.; Kumar, P.; Shukla, A.; Roy, A.; Silberschmidt, V. V.

    2013-07-01

    Experimental and numerical studies were conducted to understand the effect of plate curvature on blast response of carbon/epoxy composite panels. A shock-tube system was utilized to impart controlled shock loading to quasi-isotropic composite panels with differing range of radii of curvatures. A 3D Digital Image Correlation (DIC) technique coupled with high-speed photography was used to obtain out-of-plane deflection and velocity, as well as in-plane strain on the back face of the panels. Macroscopic post-mortem analysis was performed to compare yielding and deformation in these panels. A dynamic computational simulation that integrates fluid-structure interaction was conducted to evaluate the panel response in general purpose finite-element software ABAQUS/Explicit. The obtained numerical results were compared to the experimental data and showed a good correlation.

  3. Antioxidant Properties of Whole Body Periodic Acceleration (pGz)

    PubMed Central

    Kurlansky, Paul; Altamirano, Francisco; Lopez, Jose R.

    2015-01-01

    The recognition that oxidative stress is a major component of several chronic diseases has engendered numerous trials of antioxidant therapies with minimal or no direct benefits. Nanomolar quantities of nitric oxide released into the circulation by pharmacologic stimulation of eNOS have antioxidant properties but physiologic stimulation as through increased pulsatile shear stress of the endothelium has not been assessed. The present study utilized a non-invasive technology, periodic acceleration (pGz) that increases pulsatile shear stress such that upregulation of cardiac eNOS occurs, We assessed its efficacy in normal mice and mouse models with high levels of oxidative stress, e.g. Diabetes type 1 and mdx (Duchene Muscular Dystrophy). pGz increased protein expression and upregulated eNOS in hearts. Application of pGz was associated with significantly increased expression of endogenous antioxidants (Glutathioneperoxidase-1(GPX-1), Catalase (CAT), Superoxide, Superoxide Dismutase 1(SOD1). This led to an increase of total cardiac antioxidant capacity along with an increase in the antioxidant response element transcription factor Nrf2 translocation to the nucleus. pGz decreased reactive oxygen species in both mice models of oxidative stress. Thus, pGz is a novel non-pharmacologic method to harness endogenous antioxidant capacity. PMID:26133377

  4. Antioxidant Properties of Whole Body Periodic Acceleration (pGz).

    PubMed

    Uryash, Arkady; Bassuk, Jorge; Kurlansky, Paul; Altamirano, Francisco; Lopez, Jose R; Adams, Jose A

    2015-01-01

    The recognition that oxidative stress is a major component of several chronic diseases has engendered numerous trials of antioxidant therapies with minimal or no direct benefits. Nanomolar quantities of nitric oxide released into the circulation by pharmacologic stimulation of eNOS have antioxidant properties but physiologic stimulation as through increased pulsatile shear stress of the endothelium has not been assessed. The present study utilized a non-invasive technology, periodic acceleration (pGz) that increases pulsatile shear stress such that upregulation of cardiac eNOS occurs, We assessed its efficacy in normal mice and mouse models with high levels of oxidative stress, e.g. Diabetes type 1 and mdx (Duchene Muscular Dystrophy). pGz increased protein expression and upregulated eNOS in hearts. Application of pGz was associated with significantly increased expression of endogenous antioxidants (Glutathioneperoxidase-1(GPX-1), Catalase (CAT), Superoxide, Superoxide Dismutase 1(SOD1). This led to an increase of total cardiac antioxidant capacity along with an increase in the antioxidant response element transcription factor Nrf2 translocation to the nucleus. pGz decreased reactive oxygen species in both mice models of oxidative stress. Thus, pGz is a novel non-pharmacologic method to harness endogenous antioxidant capacity. PMID:26133377

  5. Respiratory Viral Infections and Subversion of Cellular Antioxidant Defenses

    PubMed Central

    Komaravelli, Narayana; Casola, Antonella

    2014-01-01

    Reactive oxygen species (ROS) formation is part of normal cellular aerobic metabolism, due to respiration and oxidation of nutrients in order to generate energy. Low levels of ROS are involved in cellular signaling and are well controlled by the cellular antioxidant defense system. Elevated levels of ROS generation due to pollutants, toxins and radiation exposure, as well as infections, are associated with oxidative stress causing cellular damage. Several respiratory viruses, including respiratory syncytial virus (RSV), human metapneumovirus (hMPV) and influenza, induce increased ROS formation, both intracellularly and as a result of increased inflammatory cell recruitment at the site of infection. They also reduce antioxidant enzyme (AOE) levels and/or activity, leading to unbalanced oxidative-antioxidant status and subsequent oxidative cell damage. Expression of several AOE is controlled by the activation of the nuclear transcription factor NF-E2-related factor 2 (Nrf2), through binding to the antioxidant responsive element (ARE) present in the AOE gene promoters. While exposure to several pro-oxidant stimuli usually leads to Nrf2 activation and upregulation of AOE expression, respiratory viral infections are associated with inhibition of AOE expression/activity, which in the case of RSV and hMPV is associated with reduced Nrf2 nuclear localization, decreased cellular levels and reduced ARE-dependent gene transcription. Therefore, administration of antioxidant mimetics or Nrf2 inducers represents potential viable therapeutic approaches to viral-induced diseases, such as respiratory infections and other infections associated with decreased cellular antioxidant capacity. PMID:25584194

  6. A novel hepatitis B virus (HBV) genetic element with Rev response element-like properties that is essential for expression of HBV gene products.

    PubMed Central

    Huang, J; Liang, T J

    1993-01-01

    Many viruses possess complex mechanisms involving multiple gene products and cis-regulatory elements in order to achieve a fine control of their gene expression at both transcriptional and posttranscriptional levels. Hepatitis B virus (HBV) and retroviruses share many structural and functional similarities. In this study, by genetic and biochemical analyses, we have demonstrated the existence of a novel genetic element within the HBV genome which is essential for high-level expression of viral gene products. This element is located 3' to the envelope coding region. We have shown that this genetic element is cis acting at the posttranscriptional level and that its function is exerted at the level of RNA processing as part of transcribed sequences. This RNA element is also functional in the context of a heterologous gene. Similar to the function of Rev-Rev response element interaction of human immunodeficiency virus type 1, this element appears to inhibit the splicing process and facilitate the transport and utilization of HBV transcripts. Images PMID:8246965

  7. Multi-response optimisation of the extraction solvent system for phenolics and antioxidant activities from fermented soy flour using a simplex-centroid design.

    PubMed

    Handa, Cíntia Ladeira; de Lima, Fernando Sanches; Guelfi, Marcela Fernanda Geton; Georgetti, Sandra Regina; Ida, Elza Iouko

    2016-04-15

    A simplex-centroid design comprising three solvents (water, ethanol and methanol) was used to optimise the extraction mixture for phenolics and antioxidant activities from defatted soy flour fermented with Monascus purpureus or Aspergillus oryzae. Total phenolics were more efficiently extracted using only water for both samples. The highest antioxidant activities by the DPPH and ABTS methods were obtained using extraction mixtures containing at least 75 wt% water. Specific water:ethanol:methanol ratios promoted the joint optimisation of the total phenolic and isoflavone contents as well as antioxidant activities: 0.5:0.375:0.125 (wt/wt/wt) and 0.5:0.3:0.2 (wt/wt/wt) from defatted soy flour fermented with M. purpureus or A. oryzae, respectively. However, a water:ethanol ratio of 0.5:0.5 (wt/wt) was deemed optimal because it is comprised of green solvents and yielded results that were greater than 90% of the multi-response maximum values. Both the solvents and the sample matrix strongly influenced the extractability of total phenolics and isoflavones. PMID:26616938

  8. Nutrient composition, forage parameters, and antioxidant capacity of alfalfa (Medicago sativa, L.) in response to saline irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although alfalfa is moderately tolerant of salinity, the effects of salinity on nutrient composition and forage parameters are poorly understood. In addition, there are no data on the effect of salinity on the antioxidant capacity of alfalfa. We evaluated four non-dormant, salinity-tolerant commerci...

  9. Transcript levels of antioxidative genes and oxygen radical scavenging enzyme activities in chilled zucchini squash in response to superatmospheric oxygen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transcript levels of antioxidative genes including Mn-superoxide dismutase (Mn-SOD), Cu/Zn SOD, ascorbate peroxidise (APX), and catalase (CAT) do not vary significantly during storage at 5 °C with high oxygen treatment in freshly harvested zucchini squash (Cucurbita pepo L. cv. Elite). However, ...

  10. The role of antioxidant enzymes in adaptive responses to sheath blight infestation under different fertilization rates and hill densities.

    PubMed

    Wu, Wei; Wan, Xuejie; Shah, Farooq; Fahad, Shah; Huang, Jianliang

    2014-01-01

    Sheath blight of rice, caused by Rhizoctonia solani, is one of the most devastating rice diseases worldwide. No rice cultivar has been found to be completely resistant to this fungus. Identifying antioxidant enzymes activities (activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)) and malondialdehyde content (MDA) responding to sheath blight infestation is imperative to understand the defensive mechanism systems of rice. In the present study, two inoculation methods (toothpick and agar block method) were tested in double-season rice. Toothpick method had greater lesion length than agar block method in late season. A higher MDA content was found under toothpick method compared with agar block method, which led to greater POD and SOD activities. Dense planting caused higher lesion length resulting in a higher MDA content, which also subsequently stimulated higher POD and SOD activity. Sheath blight severity was significantly related to the activity of antioxidant enzyme during both seasons. The present study implies that rice plants possess a system of antioxidant protective enzymes which helps them in adaptation to sheath blight infection stresses. Several agronomic practices, such as rational use of fertilizers and optimum planting density, involved in regulating antioxidant protective enzyme systems can be regarded as promising strategy to suppress the sheath blight development. PMID:25136671

  11. Pulmonary function response and effects of antioxidant genetic polymorphisms in healthy young adults exposed to low concentration ozone.

    EPA Science Inventory

    Rational: Ozone is known to induce a variety of pulmonary effects including decrement of spirometric lung function and inflammatory reaction, and antioxidant genes are known to play an important role in modulating the effects. It is unclear, however, if such effects may occur at...

  12. Receptors bound to antiprogestin from abortive complexes with hormone responsive elements.

    PubMed

    Guiochon-Mantel, A; Loosfelt, H; Ragot, T; Bailly, A; Atger, M; Misrahi, M; Perricaudet, M; Milgrom, E

    1988-12-15

    The mechanism of action of antisteroids is not understood and explanations of their antagonistic activity have been sought at all levels of hormone action. It has been proposed that antisteroids, after binding to receptor, trap it into a non-activated (non DNA-binding) form possibly through interaction with a heat-shock protein of relative molecular mass (Mr) 90,000 (90 K), or that the antisteroids provoke binding of receptor to nonspecific DNA sites but not to hormone responsive elements (HREs), or that the antisteroid-receptor complexes can bind to HREs but form abortive complexes that fail to regulate transcription. We have constructed a deleted cDNA encoding a mutant form of rabbit progesterone receptor which exhibits constitutive activity, that is, binds to HREs in the absence of hormone and thus bypasses the first two steps discussed above. Co-transfection experiments allowed the expression of both constitutive and wild-type receptors in the same recipient cells. Antiprogestin RU486-wild-type receptor complexes completely suppressed the activity of the constitutive receptor on a reporter gene, showing that the inhibition is at the level of their common responsive elements. PMID:3200320

  13. Identification of a Novel Endoplasmic Reticulum Stress Response Element Regulated by XBP1*

    PubMed Central

    Misiewicz, Michael; Déry, Marc-André; Foveau, Bénédicte; Jodoin, Julie; Ruths, Derek; LeBlanc, Andréa C.

    2013-01-01

    Understanding the regulatory mechanisms mediating PRNP gene expression is highly relevant to elucidating normal cellular prion protein (PrP) function(s) and the transmissibility of prion protein neurodegenerative diseases. Here, luciferase reporter assays showed that an endoplasmic reticulum stress element (ERSE)-like element, CCAAT-N26-CCACG in the human PRNP promoter, is regulated by ER stress and X-box-binding protein 1 (XBP1) but not by activating transcription factor 6 α (ATF6α). Bioinformatics identified the ERSE-26 motif in 37 other human genes in the absence of canonical ERSE sites except for three genes. Several of these genes are associated with a synaptic function or are involved in oxidative stress. Brefeldin A, tunicamycin, and thapsigargin ER stressors induced gene expression of PRNP and four randomly chosen ERSE-26-containing genes, ERLEC1, GADD45B, SESN2, and SLC38A5, in primary human neuron cultures or in the breast carcinoma MCF-7 cell line, although the level of the response depends on the gene analyzed, the genetic background of the cells, the cell type, and the ER stressor. Overexpression of XBP1 increased, whereas siRNA knockdown of XBP1 considerably reduced, PRNP and ERLEC1 mRNA levels in MCF-7 cells. Taken together, these results identify a novel ER stress regulator, which implicates the ER stress response in previously unrecognized cellular functions. PMID:23737521

  14. Mineralocorticoid receptor interaction with SP1 generates a new response element for pathophysiologically relevant gene expression

    PubMed Central

    Meinel, Sandra; Ruhs, Stefanie; Schumann, Katja; Strätz, Nicole; Trenkmann, Kay; Schreier, Barbara; Grosse, Ivo; Keilwagen, Jens; Gekle, Michael; Grossmann, Claudia

    2013-01-01

    The mineralocorticoid receptor (MR) is a ligand-induced transcription factor belonging to the steroid receptor family and involved in water-electrolyte homeostasis, blood pressure regulation, inflammation and fibrosis in the renocardiovascular system. The MR shares a common hormone-response-element with the glucocorticoid receptor but nevertheless elicits MR-specific effects including enhanced epidermal growth factor receptor (EGFR) expression via unknown mechanisms. The EGFR is a receptor tyrosine kinase that leads to activation of MAP kinases, but that can also function as a signal transducer for other signaling pathways. In the present study, we mechanistically investigate the interaction between a newly discovered MR- but not glucocorticoid receptor- responsive-element (=MRE1) of the EGFR promoter, specificity protein 1 (SP1) and MR to gain general insights into MR-specificity. Biological relevance of the interaction for EGFR expression and consequently for different signaling pathways in general is demonstrated in human, rat and murine vascular smooth muscle cells and cells of EGFR knockout mice. A genome-wide promoter search for identical binding regions followed by quantitative PCR validation suggests that the identified MR-SP1–MRE1 interaction might be applicable to other genes. Overall, a novel principle of MR-specific gene expression is explored that applies to the pathophysiologically relevant expression of the EGFR and potentially also to other genes. PMID:23821666