Science.gov

Sample records for antioxidant response element

  1. The Nrf2-antioxidant response element pathway: a target for regulating energy metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that responds to oxidative stress by binding to the antioxidant response element (ARE) in the promoter of genes coding for antioxidant enzymes like NAD(P)H:quinone oxidoreductase 1 (NQO1) and proteins for glutathione synthesis. ...

  2. Activation of antioxidant response element (ARE)-dependent genes by roasted coffee extracts.

    PubMed

    Yazheng, Liu; Kitts, David D

    2012-09-01

    Coffee beans contain numerous bioactive components that exhibit antioxidant capacity when assessed using both chemical, cell free, and biological, cell-based model systems. However, the mechanisms underlying the antioxidant effects of coffee in biological systems are not totally understood and in some cases vary considerably from results obtained with simpler in vitro chemical assays. In the present study, the physicochemical characteristics and antioxidant activity of roasted and non-roasted coffee extracts were investigated in both cell free (ORAC(FL)) and cell-based systems. A profile of antioxidant gene expression in cultured human colon adenocarcinoma Caco-2 cells treated with both roasted and non-roasted coffee extracts, respectively, was investigated using Real-Time polymerase chain reaction (PCR) array technology. Results demonstrated that the mechanisms of the antioxidant activity associated with coffee constituents assessed by the ORAC(FL) assay were different to those observed using an intracellular oxidation assay with Caco-2 cells. Moreover, roasted coffee (both light and dark roasted) extracts produced both increased- and decreased-expressions of numerous genes that are involved in the management of oxidative stress via the antioxidant defence system. The selective and specific positive induction of antioxidant response element (ARE)-dependent genes, including gastrointestinal glutathione peroxidase (GPX2), sulfiredoxin (SRXN1), thioredoxin reductase 1 (TXNRD1), peroxiredoxin 1 (PRDX1), peroxiredoxin 4 (PDRX4) and peroxiredoxin 6 (PDRX6) were identified with the activation of the endogenous antioxidant defence system in Caco-2 cells. PMID:22699814

  3. Frequency Modulated Translocational Oscillations of Nrf2 Mediate the Antioxidant Response Element Cytoprotective Transcriptional Response

    PubMed Central

    Xue, Mingzhan; Momiji, Hiroshi; Rabbani, Naila; Barker, Guy; Bretschneider, Till; Shmygol, Anatoly; Rand, David A.

    2015-01-01

    Abstract Aims: Stress responsive signaling coordinated by nuclear factor erythroid 2-related factor 2 (Nrf2) provides an adaptive response for protection of cells against toxic insults, oxidative stress and metabolic dysfunction. Nrf2 regulates a battery of protective genes by binding to regulatory antioxidant response elements (AREs). The aim of this study was to examine how Nrf2 signals cell stress status and regulates transcription to maintain homeostasis. Results: In live cell microscopy we observed that Nrf2 undergoes autonomous translocational frequency-modulated oscillations between cytoplasm and nucleus. Oscillations occurred in quiescence and when cells were stimulated at physiological levels of activators, they decrease in period and amplitude and then evoke a cytoprotective transcriptional response. We propose a mechanism whereby oscillations are produced by negative feedback involving successive de-phosphorylation and phosphorylation steps. Nrf2 was inactivated in the nucleus and reactivated on return to the cytoplasm. Increased frequency of Nrf2 on return to the cytoplasm with increased reactivation or refresh-rate under stress conditions activated the transcriptional response mediating cytoprotective effects. The serine/threonine-protein phosphatase PGAM5, member of the Nrf2 interactome, was a key regulatory component. Innovation: We found that Nrf2 is activated in cells without change in total cellular Nrf2 protein concentration. Regulation of ARE-linked protective gene transcription occurs rather through translocational oscillations of Nrf2. We discovered cytoplasmic refresh rate of Nrf2 is important in maintaining and regulating the transcriptional response and links stress challenge to increased cytoplasmic surveillance. We found silencing and inhibition of PGAM5 provides potent activation of Nrf2. Conclusion: Frequency modulated translocational oscillations of Nrf2 mediate the ARE-linked cytoprotective transcriptional response. Antioxid. Redox

  4. Role of Nrf1 in antioxidant response element-mediated gene expression and beyond

    SciTech Connect

    Biswas, Madhurima; Chan, Jefferson Y.

    2010-04-01

    Oxidative stress plays an important part in the pathogenesis of a variety of diseases. The ability to mount an efficient response against the continuous threat posed by exogenous and endogenous oxidants is essential for cellular homeostasis and survival. Oxidative stress activates transcription of a variety of antioxidant genes through cis-acting sequence known as antioxidant response element (ARE). Members of the Cap-N-Collar family of transcription factors, including Nrf1 and Nrf2, that bind ARE have been identified. Nrf1 and Nrf2 are expressed in a wide range of tissues and cell types, and both bind the ARE as heterodimers with small Maf proteins. Numerous studies indicate a pivotal role of Nrf2 in ARE function. Herein, we review data derived from cell-based studies and knockout mice in an attempt to define the role and regulation of Nrf1 in oxidative stress response and other functions.

  5. Bisphenol A activates the Nrf1/2-antioxidant response element pathway in HEK 293 cells.

    PubMed

    Chepelev, Nikolai L; Enikanolaiye, Mutiat I; Chepelev, Leonid L; Almohaisen, Abdulrahman; Chen, Qixuan; Scoggan, Kylie A; Coughlan, Melanie C; Cao, Xu-Liang; Jin, Xiaolei; Willmore, William G

    2013-03-18

    Bisphenol A (BPA) is used in the production of polycarbonate plastics and epoxy resins for baby bottles, liners of canned food, and many other consumer products. Previously, BPA has been shown to reduce the activity of several antioxidant enzymes, which may contribute to oxidative stress. However, the underlying mechanism of the BPA-mediated effect upon antioxidant enzyme activity is unknown. Antioxidant and phase II metabolizing enzymes protect cells from oxidative stress and are transcriptionally activated by Nrf1 and Nrf2 factors through their cis-regulatory antioxidant response elements (AREs). In this work, we have assessed the effect of BPA on the Nrf1/2-ARE pathway in cultured human embryonic kidney (HEK) 293 cells. Surprisingly, glutathione and reactive oxygen species (ROS) assays revealed that BPA application created a more reduced intracellular environment in cultured HEK 293 cells. Furthermore, BPA increased the transactivation activity of ectopic Nrf1 and Nrf2 and increased the expression of ARE-target genes ho-1 and nqo1 at high (100-200 μM) BPA concentrations only. Our study suggests that BPA activates the Nrf1/2-ARE pathway at high (>10 μM) micromolar concentrations. PMID:23360430

  6. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    SciTech Connect

    Chen, Yanyan; Xue, Peng; Hou, Yongyong; Zhang, Hao; Zheng, Hongzhi; Zhou, Tong; Qu, Weidong; Teng, Weiping; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-12-15

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis.

  7. Profiling Environmental Chemicals in the Antioxidant Response Element Pathway using Quantitative High Throughput Screening (qHTS)

    EPA Science Inventory

    The antioxidant response element (ARE) signaling pathway plays an important role in the amelioration of oxidative stress, which can contribute to a number of diseases, including cancer. We screened 1408 NTP-provided substances in 1536-well qHTS format at concentrations ranging fr...

  8. Profiling Environmental Chemicals for Activity in the Antioxidant Response Element Signaling Pathway Using a High-Throughput Screening Approach

    EPA Science Inventory

    1 ABSTRACT 2 3 BACKGROUND: Oxidative stress has been implicated in the pathogenesis of a variety 4 of diseases ranging from cancer to neurodegeneration, highlighti.ng the need to identify 5 chemicals that can induce this effect. The antioxidant response element (ARE)...

  9. Identification of a functional antioxidant responsive element in the promoter of the Chinese hamster carbonyl reductase 3 (Chcr3) gene.

    PubMed

    Miura, Takeshi; Taketomi, Ayako; Nakabayashi, Toshikatsu; Nishinaka, Toru; Terada, Tomoyuki

    2015-07-01

    CHCR3, a member of the short-chain dehydrogenase/reductase superfamily, is a carbonyl reductase 3 enzyme in Chinese hamsters. Carbonyl reductase 3 in humans has been believed to involve the metabolism and/or pharmacokinetics of anthracycline drugs, and the mechanism underlying the gene regulation has been investigated. In this study, the nucleotide sequence of the Chcr3 promoter was originally determined, and its promoter activity was characterised. The proximal promoter region is TATA-less and GC-rich, similar to the promoter region of human carbonyl reductase 3. Cobalt stimulated the transcriptional activity of the Chcr3 gene. The results of a luciferase gene reporter assay demonstrated that cobalt-induced stimulation required an antioxidant responsive element. Forced expression of Nrf2, the transcription factor that binds to antioxidant responsive elements, enhanced the transcriptional activity of the Chcr3 gene. These results suggest that cobalt induces the expression of the Chcr3 gene via the Nrf2-antioxidant responsive element pathway. PMID:25677373

  10. Oxidative Stress Regulates CFTR Gene Expression in Human Airway Epithelial Cells through a Distal Antioxidant Response Element

    PubMed Central

    Zhang, Zhaolin; Leir, Shih-Hsing

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator gene (CFTR) expression in human airway epithelial cells involves the recruitment of distal cis-regulatory elements, which are associated with airway-selective DNase hypersensitive sites at −44 kb and −35 kb from the gene. The −35-kb site encompasses an enhancer that is regulated by the immune mediators interferon regulatory factor 1 and 2 and by nuclear factor Y. Here we investigate the −44-kb element, which also has enhancer activity in vitro in airway epithelial cells but is inactive in intestinal epithelial cells. This site contains an antioxidant response element (ARE) that plays a critical role in its function in airway cell lines and primary human bronchial epithelial cells. The natural antioxidant sulforaphane (SFN) induces nuclear translocation of nuclear factor, erythroid 2-like 2 (Nrf2), a transcription factor that regulates genes with AREs in their promoters, many of which are involved in response to injury. Under normal conditions, the −44-kb ARE is occupied by the repressor BTB and CNC homology 1, basic leucine zipper transcription factor (Bach1), and v-Maf avian musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) heterodimers. After 2 hours of SFN treatment, Nrf2 displaces these repressive factors and activates CFTR expression. Site-directed mutagenesis shows that both the ARE and an adjacent NF-κB binding site are required for activation of the –44-kb element in airway epithelial cells. Moreover, this element is functionally linked to the −35-kb enhancer in modulating CFTR expression in response to environmental stresses in the airway. PMID:25259561

  11. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome.

    PubMed

    Vriend, Jerry; Reiter, Russel J

    2015-02-01

    Both melatonin and proteasome inhibitors upregulate antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GP), hemoxygenase 1 (HO-1), and NADPH:quinone oxidoreductase (NQO1). Recent evidence suggests that the antioxidant action of both melatonin and proteasome inhibitors involves the Keap1-ARE (Keap1 antioxidant response element) pathway via the upregulation of Nrf2. Melatonin and proteasome inhibitors suppress the degradation of Nrf2 and also enhance its nuclear translocation. In the nucleus Nrf2, together with a cofactor, stimulates the transcription of antioxidant enzymes and detoxifying enzymes. The ligase (E3) complex (Keap1-Cul3-Rbx1) responsible for ubiquitinating Nrf2, prior to proteasomal degradation, also ubiquitinates IkB kinase and the antiapoptotic factor Bcl-2, and possibly additional proteins. In various systems, NF-κB, which is inhibited by IkBα, is downregulated by proteasome inhibitors as well as by melatonin. Similarly in leukemic cells, Bcl-2 is down-regulated by the proteasome inhibitor, bortezomib, and also by melatonin. Thus melatonin administration modulates the activity of three separate substrates of the Keap1-Cul3-Rbx1 ubiquitin ligase. These facts could be accounted for by the hypothesis that melatonin interacts with the ubiquitin ligase complex or, more likely, by the hypothesis that melatonin acts as a proteasome inhibitor. A recent study documented that melatonin acts as a proteasome inhibitor in cancer cells as well as inhibiting chymotrypsin-like activity in cell-free systems of these cells. Further studies, however, are needed to clarify the interaction of melatonin and the ubiquitin-proteasome system as they relate to oxidative stress. PMID:25528518

  12. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data

    PubMed Central

    Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao

    2015-01-01

    Background: Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. Objective: The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Methods: Quantitative structure–activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro–in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. Results: The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Conclusion: Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Citation: Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and

  13. Activation of antioxidant response element in mouse primary cortical cultures with sesquiterpene lactones isolated from Tanacetum parthenium

    PubMed Central

    Fischedick, Justin T; Standiford, Miranda; Johnson, Delinda A.; De Vos, Ric C.H.; Todorović, Slađana; Banjanac, Tijana; Verpoorte, Rob; Johnson, Jeffrey A.

    2012-01-01

    Tanacetum parthenium (Asteraceae) produces biologically active sesquiterpene lactones (SL). Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor known to activate a series of genes termed the antioxidant response element (ARE). Activation of the Nrf2/ARE may be useful for the treatment of neurodegenerative disease. In this study we isolated 11 sesquiterpene lactones from T. parthenium with centrifugal partition chromatography and semi-preparative HPLC. Compounds were screened in-vitro for their ability to activate the ARE on primary mouse cortical cultures as well as for their toxicity towards the cultures. All sesquiterpene lactones containing the α-methylene-γ-lactone moiety were able to activate the ARE although a number of compounds displayed significant cellular toxicity towards the cultures. The structure activity relationship of the sesquiterpene lactones indicate that the guaianolides isolated were more active and less toxic then the germacranolides. PMID:22923197

  14. Extract of Ziziphus jujuba Fruit (Jujube) Stimulates Expression of Enzymes Responsible for Heme Recycle via Anti-oxidant Response Element in Cultured Murine Macrophages.

    PubMed

    Chen, Jianping; Lam, Candy T W; Li, Zhonggui; Yao, Ping; Lin, Huangquan; Dong, Tina T X; Tsim, Karl W K

    2016-02-01

    Jujube, the fruit of Ziziphus jujuba Mill., is a functional food and commonly used as a health supplement worldwide. To study the beneficial role of jujube in heme iron recycling during erythrophagocytosis, the expression of heme oxygenase-1 (HO-1), biliverdin reductase A and B, and ferroportin were determined in jujube-treated cultured RAW 264.7 macrophages. Application of a chemically standardized jujube water extract in cultured RAW 264.7 cells for 24 h stimulated the expressions of HO-1, biliverdin reductase A, biliverdin reductase B, and ferroportin in a concentration-dependent manner, having the maximal responses from twofolds to threefolds. A plasmid containing anti-oxidant response element, a regulator for HO-1 transcription, was transfected into RAW 264.7 cells. Application of jujube water extract onto the transfected macrophages stimulated the anti-oxidant response element-mediated transcriptional activity by twofolds. These results supported the potential capacity of jujube by regulating expressions of heme iron recycling genes in cultured macrophages. PMID:26646685

  15. Effect of iron stress on Withania somnifera L.: antioxidant enzyme response and nutrient elemental uptake of in vitro grown plants.

    PubMed

    Rout, Jyoti Ranjan; Behera, Sadhana; Keshari, Nitin; Ram, Shidharth Sankar; Bhar, Subhajit; Chakraborty, Anindita; Sudarshan, Mathummal; Sahoo, Santi Lata

    2015-03-01

    In the present study the response of antioxidant enzyme activities and the level of expression of their corresponding genes on bioaccumulation of iron (Fe) were investigated. In vitro germinated Withania somnifera L. were grown in Murashige and Skoog's liquid medium with increasing concentrations (0, 25, 50, 100 and 200 µM) of FeSO4 for 7 and 14 days. Root and leaf tissues analyzed for catalase (CAT, EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1) and guaiacol peroxidase (GPX, EC 1.11.1.7), have shown an increase in content with respect to exposure time. Isoforms of CAT, SOD and GPX were separated using non-denaturing polyacrylamide gel electrophoresis and observed that the isoenzymes were greatly affected by higher concentrations of Fe. Reverse transcriptase polymerase chain reaction analysis performed by taking three pairs of genes of CAT (RsCat, Catalase1, Cat1) and SOD (SodCp, TaSOD1.2, MnSOD) to find out the differential expression of antioxidant genes under Fe excess. RsCat from CAT and MnSOD from SOD have exhibited high levels of gene expression under Fe stress, which was consistent with the changes of the activity assayed in solution after 7 days of treatment. Analysis by proton induced X-ray emission exhibited an increasing uptake of Fe in plants by suppressing and expressing of other nutrient elements. The results of the present study suggest that higher concentration of Fe causes disturbance in nutrient balance and induces oxidative stress in plant. PMID:25480472

  16. Immunohistochemical Study of Nrf2-Antioxidant Response Element as Indicator of Oxidative Stress Induced by Cadmium in Developing Rats

    PubMed Central

    Montes, Sergio; Juárez-Rebollar, Daniel; Nava-Ruíz, Concepción; Sánchez-García, Aurora; Heras-Romero, Yesica; Rios, Camilo; Méndez-Armenta, Marisela

    2015-01-01

    In developing animals, Cadmium (Cd) induces toxicity to many organs including brain. Reactive oxygen species (ROS) are often implicated in Cd-inducedtoxicity and it has been clearly demonstrated that oxidative stress interferes with the expression of genes as well as transcriptional factors such as Nrf2-dependent Antioxidant Response Element (Nrf2-ARE). Cd-generated oxidative stress and elevated Nrf2 activity have been reported in vitro and in situ cells. In this study we evaluated the morphological changes and the expression pattern of Nrf2 and correlated them with the Cd concentrations in different ages of developing rats in heart, lung, kidney, liver, and brain. The Cd content in different organs of rats treated with the metal was increased in all ages assayed. Comparatively, lower Cd brain levels were found in rats intoxicated at the age of 12 days, then pups treated at 5, 10, or 15 days old, at the same metal dose. No evident changes, as a consequence of cadmium exposure, were evident in the morphological analysis in any of the ages assayed. However, Nrf2-ARE immunoreactivity was observed in 15-day-old rats exposed to Cd. Our results support that fully developed blood-brain barrier is an important protector against Cd entrance to brain and that Nrf2 increased expression is a part of protective mechanism against cadmium-induced toxicity. PMID:26101558

  17. Transcriptional induction of the mouse metallothionein-I gene in hydrogen peroxide-treated Hepa cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements.

    PubMed Central

    Dalton, T; Palmiter, R D; Andrews, G K

    1994-01-01

    Synthesis of metallothionein-I (MT-I) and heme oxygenase mRNAs is rapidly and transiently induced by H2O2 in mouse hepatoma cells (Hepa) and this effect is blocked by catalase. Menadione, which generates free radicals, also induces these mRNAs. Deletion mutagenesis revealed that a region between -42 and -153 in the mouse MT-I promoter was essential for induction of a CAT reporter gene. A multimer of a 16 bp sequence (-101 to -86) that includes an antioxidant response element and overlapping adenovirus major late transcription factor binding site elevated basal expression and allowed induction by H2O2 when inserted upstream of a minimal promoter. However, deletion of this region (-100 to -89) from the intact MT-I promoter (-153) did not completely eliminate response. Multiple copies of a metal response element also permitted response to H2O2. These results suggest that induction of MT-I gene transcription by H2O2 is mediated by at least two different elements within the proximal MT-I gene promoter and suggest a previously undescribed function of the MRE. Induction of MT gene transcription by ROS and the subsequent scavenging of ROS by the MT peptide is reminiscent of the metal regulatory loop and is consistent with the hypothesized protective functions of MT. Images PMID:7800494

  18. Hepatic expression of heme oxygenase-1 and antioxidant response element-mediated genes following administration of ethinyl estradiol to rats

    SciTech Connect

    Morio, Lisa A.; Leone, Angelique; Sawant, Sharmilee P.; Nie, Alex Y.; Brandon Parker, J.; Taggart, Peter; Barron, Alfred M.; McMillian, Michael K. . E-mail: mmcmilli@prdus.jnj.com; Lord, Peter

    2006-11-01

    Heme oxygenase-1 (HO-1) is one of several enzymes induced by hepatotoxicants, and is thought to have an important protective role against cellular stress during liver inflammation and injury. The objective of the present study was to evaluate the role of HO-1 in estradiol-induced liver injury. A single dose of ethinyl estradiol (500 mg/kg, po) resulted in mild liver injury. Repeated administration of ethinyl estradiol (500 mg/kg/day for 4 days, po) resulted in no detectable liver injury or dysfunction. Using RT-PCR analysis, we demonstrate that HO-1 gene expression in whole liver tissue is elevated (> 20-fold) after the single dose of ethinyl estradiol. The number and intensity of HO-1 immunoreactive macrophages were increased after the single dose of ethinyl estradiol. HO-1 expression was undetectable in hepatic parenchymal cells from rats receiving Methocel control or a single dose of ethinyl estradiol, however cytosolic HO-1 immunoreactivity in these cells after repeated dosing of ethinyl estradiol was pronounced. The increases in HO-1 mRNA and HO-1 immunoreactivity following administration of a single dose of ethinyl estradiol suggested that this enzyme might be responsible for the observed protection of the liver during repeated dosing. To investigate the effect of HO-1 expression on ethinyl estradiol-induced hepatotoxicity, rats were pretreated with hemin (50 {mu}mol/kg, ip, a substrate and inducer of HO-1), with tin protoporphyrin IX (60 {mu}mol/kg, ip, an HO-1 inhibitor), or with gadolinium chloride (10 mg/kg, iv, an inhibitor/toxin of Kupffer cells) 24 h before ethinyl estradiol treatment. Pretreatment with modulators of HO-1 expression and activity had generally minimal effects on ethinyl estradiol-induced liver injury. These data suggest that HO-1 plays a limited role in antioxidant defense against ethinyl estradiol-induced oxidative stress and hepatotoxicity, and suggests that other coordinately induced enzymes are responsible for protection observed

  19. Caffeic acid phenethyl ester stimulates human antioxidant response element-mediated expression of the NAD(P)H:quinone oxidoreductase (NQO1) gene.

    PubMed

    Jaiswal, A K; Venugopal, R; Mucha, J; Carothers, A M; Grunberger, D

    1997-02-01

    Caffeic acid phenethyl ester (CAPE) is a phenolic antioxidant derived from the propolis of honeybee hives. CAPE was shown to inhibit the formation of intracellular hydrogen peroxide and oxidized bases in DNA of 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated HeLa cells and was also found to induce a redox change that correlated with differential growth effects in transformed cells but not the nontumorigenic parental ones. Mediated via the electrophile or human antioxidant response element (hARE), induction of the expression of NAD(P)H quinone oxidoreductase (NQO1) and glutathione S-transferase Ya subunit genes by certain phenolic antioxidants has been correlated with the chemopreventive properties of these agents. Here, we determined by Northern analysis that CAPE treatment of hepatoma cells stimulates NQO1 gene expression in cultured human hepatoma cells (HepG2), and we characterized the effects of CAPE treatment on the expression of a reporter gene either containing or lacking the hARE or carrying a mutant version of this element in rodent hepatoma (Hepa-1) transfectants. A dose-dependent transactivation of human hARE-mediated chloramphenicol acetyltransferase (cat) gene expression was observed upon treatments of the Hepa-1 transfectants with TPA, a known inducer, as well as with CAPE. The combined treatments resulted in an apparent additive stimulation of the reporter expression. To learn whether this activation of cat gene expression was effected by protein kinase C in CAPE-treated cells, a comparison was made of cat gene activity after addition of calphostin, a protein kinase C inhibitor. Calphostin reduced the cat gene induction by TPA but not by CAPE, suggesting that stimulation of gene expression in this system by these agents proceeds via distinct mechanisms. Band-shift experiments to examine binding of transactivator proteins from nuclear extracts of treated and untreated cells to a hARE DNA probe showed that TPA exposure increased the binding level

  20. Human antioxidant-response-element-mediated regulation of type 1 NAD(P)H:quinone oxidoreductase gene expression. Effect of sulfhydryl modifying agents.

    PubMed

    Li, Y; Jaiswal, A K

    1994-11-15

    Human antioxidant-response element (hARE) containing two copies of the AP1/AP1-like elements arranged as inverse repeat is known to mediate basal and beta-naphthoflavone-induced transcription of the type 1 NAD(P)H:quinone oxidoreductase (NQO1) gene. Band-shift assays revealed that beta-naphthoflavone increased binding of nuclear proteins at the hARE. Super shift assays identified Jun-D and c-Fos proteins in the band-shift complexes observed with control and beta-naphthoflavone-treated Hepa-1 nuclear extracts. Hepa-1 cells stably transformed with hARE-tk-chloramphenicol acetyl transferase (CAT) recombinant plasmid were used to demonstrate that, in addition to beta-naphthoflavone, a variety of antioxidants, tumor promoters and hydrogen peroxide (H2O2) also increased expression of hARE-mediated CAT gene. beta-naphthoflavone induction of the CAT gene expression in Hepa-1 cells was found insensitive to inhibitors of protein kinase C and tyrosine kinases. However, binding of regulatory proteins at the hARE and the CAT gene expression in Hepa-1 cells were increased by dithiothreitol, 2-mercaptoethanol and diamide. Treatment of the Hepa-1 cells with N-ethylmaleimide reduced binding of proteins at the hARE and interfered with expression and beta-naphthoflavone induction of the CAT gene. These results suggested a role of sulfhydryl modification of hARE binding (Jun and Fos) proteins which mediate basal and induced expression of the NQO1 gene. We also report that in-vitro-translated products of the proto-oncogenes, Jun and Fos, bind to the hARE in band-shift assays. The incubation of Jun and Fos proteins with small amounts of nuclear extract from dimethylsulfoxide-treated (control) or beta-naphthoflavone treated Hepa-1 cells prior to band-shift assays increased the binding of Jun and Fos proteins to the hARE. Interestingly, the increase in binding of Jun and Fos proteins to the hARE was more prominent with beta-naphthoflavone-treated nuclear extract as compared to the control

  1. Overactivation of the nuclear factor (erythroid-derived 2)-like 2-antioxidant response element pathway in hepatocytes decreases hepatic ischemia/reperfusion injury in mice.

    PubMed

    Lee, Lung-Yi; Harberg, Calvin; Matkowskyj, Kristina A; Cook, Shelly; Roenneburg, Drew; Werner, Sabine; Johnson, Jeffrey; Foley, David P

    2016-01-01

    Hepatic ischemia/reperfusion injury (IRI) is a critical component of hepatic surgery. Oxidative stress has long been implicated as a key player in IRI. In this study, we examine the cell-specific role of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-antioxidant response element pathway in warm hepatic IRI. Nrf2 knockout (KO) and wild-type (WT) animals and novel transgenic mice expressing a constitutively active nuclear factor (erythroid-derived 2)-like 2 (caNrf2) mutant in hepatocytes (AlbCre+/caNrf2+) and their littermate controls underwent partial hepatic ischemia or sham surgery. The animals were killed 6 hours after reperfusion, and their serum and tissue were collected for analysis. As compared to WT animals after ischemia/reperfusion (IR), Nrf2 KO mice had increased hepatocellular injury with increased serum alanine aminotransferase and aspartate aminotransferase, Suzuki score, apoptosis, an increased inflammatory infiltrate, and enhanced inflammatory cytokine expression. On the other hand, AlbCre+/caNrf2+ that underwent IR had significantly reduced serum transaminases, less necrosis on histology, and a less pronounced inflammatory infiltrate and inflammatory cytokine expression as compared to the littermate controls. However, there were no differences in apoptosis. Taken together, Nrf2 plays a critical role in our murine model of warm hepatic IRI, with Nrf2 deficiency exacerbating hepatic IRI and hepatocyte-specific Nrf2 overactivation providing protection against warm hepatic IRI. PMID:26285140

  2. Aged garlic extract enhances heme oxygenase-1 and glutamate-cysteine ligase modifier subunit expression via the nuclear factor erythroid 2-related factor 2-antioxidant response element signaling pathway in human endothelial cells.

    PubMed

    Hiramatsu, Kei; Tsuneyoshi, Tadamitsu; Ogawa, Takahiro; Morihara, Naoaki

    2016-02-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway defends cells against oxidative stress and regulates the cellular redox balance. Activation of this pathway induces a variety of antioxidant enzymes, resulting in the protection of our bodies against oxidative damage. It has been reported that aged garlic extract (AGE), a garlic preparation that is rich in water-soluble cysteinyl moieties, reduces oxidative stress and helps to ameliorate of cardiovascular, renal and hepatic diseases. We hypothesized that AGE enhances the expression of antioxidant enzymes via the Nrf2-ARE pathway in human umbilical vein endothelial cells in culture. Gene expression of antioxidant enzymes was measured using real-time polymerase chain reaction. Nuclear accumulation of Nrf2 and antioxidant enzymes expression were evaluated using western blotting analyses. We found that AGE promoted the accumulation of Nrf2 into the nucleus in a time- and dose-dependent manner and increased the gene expression and polypeptide level of heme oxygenase-1 (HO-1) and glutamate-cysteine ligase modifier subunit (GCLM). Moreover, the effect of AGE in elevating the gene expression of HO-1 and GCLM was found to be mediated via Nrf2 activation in human umbilical vein endothelial cells. Taken together, these observations suggest that AGE induces the expression of HO-1 and GCLM, which are antioxidant enzymes, via activation of the Nrf2-ARE signaling pathway. PMID:26507778

  3. Mangiferin activates Nrf2-antioxidant response element signaling without reducing the sensitivity to etoposide of human myeloid leukemia cells in vitro

    PubMed Central

    Zhang, Ben-ping; Zhao, Jie; Li, Shan-shan; Yang, Li-jing; Zeng, Ling-lan; Chen, Yan; Fang, Jun

    2014-01-01

    Aim: Mangiferin is glucosylxanthone extracted from plants of the Anacardiaceae and Gentianaceae families. The aim of this study was to investigate the effects of mangiferin on Nrf2-antioxidant response element (ARE) signaling and the sensitivity to etoposide of human myeloid leukemia cells in vitro. Methods: Human HL-60 myeloid leukemia cells and mononuclear human umbilical cord blood cells (MNCs) were examined. Nrf2 protein was detected using immunofluorescence staining and Western blotting. Binding of Nrf2 to ARE was examined with electrophoretic mobility shift assay. The level of NQO1 was assessed with real-time RT-PCR and Western blotting. DCFH-DA was used to evaluate intracellular ROS level. Cell proliferation and apoptosis were analyzed using MTT and flow cytometry, respectively. Results: Mangiferin (50 μmol/L) significantly increased Nrf2 protein accumulation in HL-60 cells, particularly in the nucleus. Mangiferin also enhanced the binding of Nrf2 to an ARE, significantly up-regulated NQO1 expression and reduced intracellular ROS in HL60 cells. Mangiferin alone dose-dependently inhibited the proliferation of HL-60 cells. Mangiferin (50 mol/L) did not attenuate etoposide-induced cytotoxicity in HL-60 cells, and combined treatment of mangiferin with low concentration of etoposide (0.8 μg/mL) even increased the cell inhibition rate. Nor did mangiferin change the rate of etoposide-induced apoptosis in HL-60 cells. In MNCs, mangiferin significantly relieved oxidative stress, but attenuated etoposide-induced cytotoxicity. Conclusion: Mangiferin is a novel Nrf2 activator that reduces oxidative stress and protects normal cells without reducing the sensitivity to etoposide of HL-60 leukemia cells in vitro. Mangiferin may be a potential chemotherapy adjuvant. PMID:24374812

  4. 5MeCDDO Blocks Metabolic Activation but not Progression of Breast, Intestine, and Tongue Cancers. Is Antioxidant Response Element a Prevention Target?

    PubMed

    Lubet, Ronald A; Townsend, Reid; Clapper, Margie L; Juliana, M Margaret; Steele, Vernon E; McCormick, David L; Grubbs, Clinton J

    2016-07-01

    The preventive efficacy of the triterpenoid 5MeCDDO was tested in two models of mammary cancer, the Min model of intestinal cancer, and a chemically induced model of head and neck cancer. In one model of mammary cancer, female Sprague-Dawley rats were administered MNU at 50 days of age, and 5MeCDDO (27 ppm) was administered in the diet beginning 5 days later for the duration of the study; 5MeCDDO was ineffective. In contrast, in a model examining initiation of mammary cancers by the procarcinogen dimethyl-benzanthracene, 5, 6-benzoflavone (500 ppm, an Ah receptor agonist) or 5MeCDDO (27 or 2.7 ppm) decreased tumor multiplicity by 90%, 80%, and 50%, respectively. This anti-initiating effect which is presumably mediated by altered metabolic activation parallels our observation that 5MeCDDO induced proteins of various antioxidant response element (ARE)-related phase II drug-metabolizing enzymes [e.g., GST Pi, AKR 7A3 (aflatoxicol), epoxide hydrolase, and quinone reductase] in the liver. 5MeCDDO tested in the 4-nitroquinoline-l-oxide (4-NQO) head and neck cancer model failed to decrease tumor incidence or invasiveness. In the Min mouse model of intestinal cancer, a high dose of 5MeCDDO (80 ppm) was weakly effective in reducing adenoma multiplicity [∼30% (P < 0.05)]; however, a lower dose was totally ineffective. These findings question whether measuring increased levels of certain ARE-related genes (e.g., quinone reductase, GST Pi), indicating decreased carcinogen activation are sufficient to imply general chemopreventive efficacy of a given agent or mixture. Cancer Prev Res; 9(7); 616-23. ©2016 AACR. PMID:27150634

  5. Senescence responsive transcriptional element

    DOEpatents

    Campisi, Judith; Testori, Alessandro

    1999-01-01

    Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.

  6. Senescence responsive transcriptional element

    SciTech Connect

    Campisi, J.; Testori, A.

    1999-10-12

    Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.

  7. Antioxidant Vitamins and Trace Elements in Critical Illness.

    PubMed

    Koekkoek, W A C Kristine; van Zanten, Arthur R H

    2016-08-01

    This comprehensive narrative review summarizes relevant antioxidant mechanisms, the antioxidant status, and effects of supplementation in critically ill patients for the most studied antioxidant vitamins A, C, and E and the enzyme cofactor trace elements selenium and zinc. Over the past 15 years, oxidative stress-mediated cell damage has been recognized to be fundamental to the pathophysiology of various critical illnesses such as acute respiratory distress syndrome, ischemia-reperfusion injury, and multiorgan dysfunction in sepsis. Related to these conditions, low plasma levels of antioxidant enzymes, vitamins, and trace elements have been frequently reported, and thus supplementation seems logical. However, low antioxidant plasma levels per se may not indicate low total body stores as critical illness may induce redistribution of antioxidants. Furthermore, low antioxidant levels may even be beneficial as pro-oxidants are essential in bacterial killing. The reviewed studies in critically ill patients show conflicting results. This may be due to different patient populations, study designs, timing, dosing regimens, and duration of the intervention and outcome measures evaluated. Therefore, at present, it remains unclear whether supplementation of antioxidant micronutrients has any clinical benefit in critically ill patients as some studies show clear benefits, whereas others demonstrate neutral outcomes and even harm. Combination therapy of antioxidants seems logical as they work in synergy and function as elements of the human antioxidant network. Further research should focus on defining the normal antioxidant status for critically ill patients and to study optimal supplement combinations either by nutrition enrichment or by enteral or parenteral pharmacological interventions. PMID:27312081

  8. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene.

    PubMed

    Venugopal, R; Jaiswal, A K

    1996-12-10

    Twenty-four base pairs of the human antioxidant response element (hARE) are required for high basal transcription of the NAD(P)H:quinone oxidoreductase1 (NQO1) gene and its induction in response to xenobiotics and antioxidants. hARE is a unique cis-element that contains one perfect and one imperfect AP1 element arranged as inverse repeats separated by 3 bp, followed by a "GC" box. We report here that Jun, Fos, Fra, and Nrf nuclear transcription factors bind to the hARE. Overexpression of cDNA derived combinations of the nuclear proteins Jun and Fos or Jun and Fra1 repressed hARE-mediated chloramphenicol acetyltransferase (CAT) gene expression in transfected human hepatoblastoma (Hep-G2) cells. Further experiments suggested that this repression was due to overexpression of c-Fos and Fra1, but not due to Jun proteins. The Jun (c-Jun, Jun-B, and Jun-D) proteins in all the possible combinations were more or less ineffective in repression or upregulation of hARE-mediated gene expression. Interestingly, overexpression of Nrf1 and Nrf2 individually in Hep-G2 and monkey kidney (COS1) cells significantly increased CAT gene expression from reporter plasmid hARE-thymidine kinase-CAT in transfected cells that were inducible by beta-naphthoflavone and teri-butyl hydroquinone. These results indicated that hARE-mediated expression of the NQO1 gene and its induction by xenobiotics and antioxidants are mediated by Nrf1 and Nrf2. The hARE-mediated basal expression, however, is repressed by overexpression of c-Fos and Fra1. PMID:8962164

  9. Vitamins, trace elements, and antioxidant status in dementia disorders.

    PubMed

    Tabet, N; Mantle, D; Walker, Z; Orrell, M

    2001-09-01

    Antioxidants, such as vitamins C and E, have been proposed for the treatment of dementia disorders. Although other vitamins and trace elements may also have antioxidant-enhancing activities, it is not known whether the overall antioxidant status in dementia patients is associated with the intake level of these vitamins and trace elements. In this study, we assessed the levels of vitamins and trace elements in the diet of patients with Alzheimer's disease (AD), vascular dementia (VaD), and dementia with Lewy bodies (DLB) and a group of carers, along with blood levels of total antioxidant capacity (TAC). Results show that the dietary intake was decreased for most measured vitamins and trace elements in severe AD, but not in other dementia groups. In addition, we found no significant difference in the levels of TAC between any of the dementia groups. There was, however, a significant correlationbetween intake of vitamin B1, vitamin B12, zinc, and selenium and blood levels of TAC in the VaD group, but not in the AD and DLB groups. Furthermore, no association was observed in any of the dementia groups between zinc and copper intake and Cu/Zn superoxide dismutase activity, or between dietary selenium intake and glutathione peroxidase activity. The activities of these two endogenous antioxidant enzymes do not seem to be influenced by intake levels of relevant substances. The data indicate that the influence of dietary vitamins and metal ions on the overall antioxidant status is limited to VaD patients only. Clinical trials are needed to ascertain the value of antioxidant supplementation in VaD patients. PMID:11768374

  10. Arsenic induces NAD(P)H-quinone oxidoreductase I by disrupting the Nrf2 x Keap1 x Cul3 complex and recruiting Nrf2 x Maf to the antioxidant response element enhancer.

    PubMed

    He, Xiaoqing; Chen, Michael G; Lin, Gary X; Ma, Qiang

    2006-08-18

    The ubiquitous toxic metalloid arsenic elicits pleiotropic adverse and adaptive responses in mammalian species. The biological targets of arsenic are largely unknown at present. We analyzed the signaling pathway for induction of detoxification gene NAD(P)H-quinone oxidoreductase (Nqo1) by arsenic. Genetic and biochemical evidence revealed that induction required cap 'n' collar basic leucine zipper transcription factor Nrf2 and the antioxidant response element (ARE) of Nqo1. Arsenic stabilized Nrf2 protein, extending the t(1/2) of Nrf2 from 21 to 200 min by inhibiting the Keap1 x Cul3-dependent ubiquitination and proteasomal turnover of Nrf2. Arsenic markedly inhibited the ubiquitination of Nrf2 but did not disrupt the Nrf2 x Keap1 x Cul3 association in the cytoplasm. In the nucleus, arsenic, but not phenolic antioxidant tert-butylhydroquinone, dissociated Nrf2 from Keap1 and Cul3 followed by dimerization of Nrf2 with a Maf protein (Maf G/Maf K). Chromatin immunoprecipitation demonstrated that Nrf2 and Maf associated with the endogenous Nqo1 ARE enhancer constitutively. Arsenic substantially increased the ARE occupancy by Nrf2 and Maf. In addition, Keap1 was shown to be ubiquitinated in the cytoplasm and deubiquitinated in the nucleus in the presence of arsenic without changing the protein level, implicating nuclear-cytoplasmic recycling of Keap1. Our data reveal that arsenic activates the Nrf2/Keap1 signaling pathway through a distinct mechanism from that by antioxidants and suggest an "on-switch" model of Nqo1 transcription in which the binding of Nrf2 x Maf to ARE controls both the basal and inducible expression of Nqo1. PMID:16785233

  11. Induction of activation of the antioxidant response element and stabilization of Nrf2 by 3-(3-pyridylmethylidene)-2-indolinone (PMID) confers protection against oxidative stress-induced cell death

    SciTech Connect

    Yao, Jia-Wei; Liu, Jing; Kong, Xiang-Zhen; Zhang, Shou-Guo; Wang, Xiao-Hui; Yu, Miao; Zhan, Yi-Qun; Li, Wei; Xu, Wang-Xiang; Tang, Liu-Jun; Ge, Chang-Hui; Wang, Lin; Li, Chang-Yan; Yang, Xiao-Ming

    2012-03-01

    The antioxidant response elements (ARE) are a cis-acting enhancer sequence located in regulatory regions of antioxidant and detoxifying genes. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a member of the Cap ‘n’ Collar family of transcription factors that binds to the ARE and regulates the transcription of specific ARE-containing genes. Under oxidative stress, Nrf2/ARE induction is fundamental to defense against reactive oxygen species (ROS) and serves as a key factor in the protection against toxic xenobiotics. 3-(3-Pyridylmethylidene)-2-Indolinone (PMID) is a derivative of 2-indolinone compounds which act as protein kinase inhibitors and show anti-tumor activity. However, the role of PMID in the oxidative stress remains unknown. In the present study, we showed that PMID induced the activation of ARE-mediated transcription, increased the DNA-binding activity of Nrf2 and then up-regulated the expression of antioxidant genes such as HO-1, SOD, and NQO1. The level of Nrf2 protein was increased in cells treated with PMID by a post-transcriptional mechanism. Under CHX treatment, the stability of Nrf2 protein was enhanced by PMID with decreased turnover rate. We showed that PMID reduced the ubiquitination of Nrf2 and disrupted the Cullin3 (Cul3)-Keap1 interaction. Furthermore, cells treated with PMID showed resistance to cytotoxicity by H{sub 2}O{sub 2} and pro-oxidant 6-OHDA. PMID also up-regulated the antioxidant level in BALB/c mice. Taken together, the compound PMID induces the ARE-mediated gene expression through stabilization of Nrf2 protein and activation of Nrf2/ARE pathway and protects against oxidative stress-mediated cell death. -- Highlights: ► PMID up-regulates ARE-mediated antioxidant gene expression in vitro and in vivo. ► PMID enhances the stabilization of Nrf2 protein, decreasing Nrf2 turnover rate. ► PMID disrupted the Cullin3 (Cul3)-Keap1 interaction. ► PMID protects against cell death induced by H{sub 2}O{sub 2} and pro-oxidant 6

  12. In Vivo Effect of Arsenic Trioxide on Keap1-p62-Nrf2 Signaling Pathway in Mouse Liver: Expression of Antioxidant Responsive Element-Driven Genes Related to Glutathione Metabolism

    PubMed Central

    Srivastava, Ritu; Sengupta, Archya; Mukherjee, Sandip; Chatterjee, Sarmishtha; Sudarshan, Muthammal; Chakraborty, Anindita; Bhattacharya, Shelley; Chattopadhyay, Ansuman

    2013-01-01

    Arsenic is a Group I human carcinogen, and chronic arsenic exposure through drinking water is a major threat to human population. Liver is one of the major organs for the detoxification of arsenic. The present study was carried out in mice in vivo after arsenic treatment through drinking water at different doses and time of exposure. Arsenic toxicity is found to be mediated by reactive oxygen species. Nuclear factor (erythroid-2 related) factor 2 (Nrf2)/Keap1 (Kelch-like ECH-associated protein 1)/ARE (antioxidant response element)—driven target gene system protects cells against oxidative stress and maintains cellular oxidative homeostasis. Our result showed 0.4 ppm, 2 ppm, and 4 ppm arsenic trioxide treatment through drinking water for 30 days and 90 days induced damages in the liver of Swiss albino mice as evidenced by histopathology, disturbances in liver function, induction of heat shock protein 70, modulation of trace elements, alteration in reduced glutathione level, glutathione-s-transferase and catalase activity, malondialdehyde production, and induction of apoptosis. Cellular Nrf2 protein level and mRNA level increased in all treatment groups. Keap1 protein as well as mRNA level decreased concomitantly in arsenic treated mice. Our study clearly indicates the important role of Nrf2 in activating ARE driven genes related to GSH metabolic pathway and also the adaptive response mechanisms in arsenic induced hepatotoxicity. PMID:27335833

  13. Ethanol Extract of Cirsium japonicum var. ussuriense Kitamura Exhibits the Activation of Nuclear Factor Erythroid 2-Related Factor 2-dependent Antioxidant Response Element and Protects Human Keratinocyte HaCaT Cells Against Oxidative DNA Damage

    PubMed Central

    Yoo, Ok-Kyung; Choi, Bu Young; Park, Jin-Oh; Lee, Ji-Won; Park, Byoung-Kwon; Joo, Chul Gue; Heo, Hyo-Jung; Keum, Young-Sam

    2016-01-01

    Keratinocytes are constantly exposed to extracellular insults, such as ultraviolet B, toxic chemicals and mechanical stress, all of which can facilitate the aging of keratinocytes via the generation of intracellular reactive oxygen species (ROS). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that plays a critical role in protecting keratinocytes against oxidants and xenobiotics by binding to the antioxidant response element (ARE), a cis-acting element existing in the promoter of most phase II cytoprotective genes. In the present study, we have attempted to find novel ethanol extract(s) of indigenous plants of Jeju island, Korea that can activate the Nrf2/ARE-dependent gene expression in human keratinocyte HaCaT cells. As a result, we identified that ethanol extract of Cirsium japonicum var. ussuriense Kitamura (ECJUK) elicited strong stimulatory effect on the ARE-dependent gene expression. Supporting this observation, we found that ECJUK induced the expression of Nrf2, hemoxygenase-1, and NAD(P)H:quinone oxidoreductase-1 and this event was correlated with Akt1 phosphorylation. We also found that ECJUK increased the intracellular reduced glutathione level and suppressed 12-O-tetradecanoylphorbol acetate-induced 8-hydroxyguanosine formation without affecting the overall viability. Collectively, our results provide evidence that ECJUK can protect against oxidative stress-mediated damages through the activation of Nrf2/ARE-dependent phase II cytoprotective gene expression. PMID:27051652

  14. Hawthorn (Crataegus oxyacantha L.) bark extract regulates antioxidant response element (ARE)-mediated enzyme expression via Nrf2 pathway activation in normal hepatocyte cell line.

    PubMed

    Krajka-Kuźniak, Violetta; Paluszczak, Jarosław; Oszmiański, Jan; Baer-Dubowska, Wanda

    2014-04-01

    Hawthorn (Crataegus oxyacantha L.), a plant used in traditional medicine, is a rich source of procyanidins which have been reported to exhibit antioxidant and anti-carcinogenic activity. In this study, we assessed the effect of hawthorn bark extract (HBE) on Nrf2 pathway activation in THLE-2 and HepG2 cells. Treatment with 1.1 µg/mL, 5.5 µg/mL and 11 µg/mL of HBE resulted in the translocation of Nrf2 from the cytosol to the nucleus in both cell lines; however, the accumulation of phosphorylated Nrf2 was observed only in THLE-2. Accordingly, treatment of cells with HBE was associated with an increase in the mRNA and protein level of such Nrf2-dependent genes as glutathione S-transferases (GSTA, GSTP, GSTM, GSTT), NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) (0.2-1.1-fold change, p < 0.05), however, only in normal THLE-2 hepatocytes. The induction of NQO1 correlated with an increased level of p53 (0.21-0.42-fold change, p < 0.05). These effects may be related to induction of phosphorylation of upstream ERK and JNK kinases. Collectively, the results suggest that the Nrf2/ARE pathway may play an important role in the regulation of procyanidin-mediated antioxidant/detoxifying effects in hepatocytes, and this may explain the hepatoprotective and chemopreventive properties of these phytochemicals. PMID:23843400

  15. Soy isoflavones increase quinone reductase in hepa-1c1c7 cells via estrogen receptor beta and nuclear factor erythroid 2-related factor 2 binding to the antioxidant response element.

    PubMed

    Froyen, Erik B; Steinberg, Francene M

    2011-09-01

    Soy protein and isoflavones (genistein and daidzein) have been demonstrated to increase quinone reductase (QR) activity, protein, and mRNA in animal and cell culture models. However, their mechanism of action has not been completely characterized. Additionally, it has not been determined if equol, a daidzein metabolite, can modulate QR activity and expression. Estrogen receptor beta (ERβ) is thought to be involved in stimulating QR gene transcription by anti-estrogens and phytoestrogens, along with nuclear factor erythroid 2-related factor 2 (Nrf2). This study tested the hypothesis that genistein, daidzein and equol increase quinone reductase activity, protein and mRNA via ERβ and Nrf2 binding to the QR antioxidant response element (ARE). QR expression and activity were determined using TaqMan polymerase chain reaction, protein immunoblots and activity assays. Molecular events were investigated using luciferase reporter gene assays and chromatin immunoprecipitation (ChIP). Hepa-1c1c7 cells were treated with control [0.1% (v:v) dimethyl sulfoxide (DMSO)]; 1 μmol/L β-naphthoflavone (positive control); 5 μmol/L resveratrol (ChIP positive control for ERβ binding) and 1, 5 and 25 μmol/L genistein, daidzein or equol. Treatment durations were 1 h (ChIP), 24 h (mRNA and luciferase assays) and 24 and 48 h (protein and activity). Genistein, daidzein and equol increased QR activity, protein and mRNA, with daidzein and equol having more of an impact at physiologic concentrations (1 and 5 μmol/L) compared to genistein. Furthermore, the study results demonstrate that genistein, daidzein and equol interact with the QR ARE and that daidzein and equol act via both ERβ and Nrf2 binding strongly to the QR ARE. PMID:21167702

  16. Critical Evaluation of Ayurvedic Plants for Stimulating Intrinsic Antioxidant Response

    PubMed Central

    Shukla, Sunil Dutt; Bhatnagar, Maheep; Khurana, Sukant

    2012-01-01

    Oxidative damage caused by free radicals plays an important role in the causation and progression of many diseases, including aging. Free-radical damage is countered by many mechanisms, including both active antioxidant enzymatic activity in our body and passive antioxidants. Antioxidant response of our body can accommodate increased oxidative damage in diseased states to a level but beyond that level, additional antioxidants are required to combat the increased stress. Apart from the regular dietary sources of antioxidants, many traditional herbal medicines demonstrate a potential to boost antioxidant activity. Rasayana chikitsa that deals with rejuvenation and revitalization is a branch of the Indian traditional medical system of ayurveda. We review some select herbs described in rasayana chikitsa that have been assessed by modern means for stimulating intrinsic antioxidant responses in humans. A critical evaluation of rasayana chikitsa will likely provide urgently needed, actual stimulants of our physiological antioxidant responses and not just more passive antioxidants to add to an already large catalog. PMID:22855669

  17. Antioxidant responses of wheat plants under stress.

    PubMed

    Caverzan, Andréia; Casassola, Alice; Brammer, Sandra Patussi

    2016-03-01

    Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals. PMID:27007891

  18. Antioxidant responses of wheat plants under stress

    PubMed Central

    Caverzan, Andréia; Casassola, Alice; Brammer, Sandra Patussi

    2016-01-01

    Abstract Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals. PMID:27007891

  19. Antioxidant responses and cellular adjustments to oxidative stress

    PubMed Central

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-01-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. PMID:26233704

  20. A systems biology perspective on Nrf2-mediated antioxidant response

    SciTech Connect

    Zhang Qiang; Pi Jingbo; Woods, Courtney G.; Andersen, Melvin E.

    2010-04-01

    Cells in vivo are constantly exposed to reactive oxygen species (ROS) generated endogenously and exogenously. To defend against the deleterious consequences of ROS, cells contain multiple antioxidant enzymes expressed in various cellular compartments to scavenge these toxic species. Under oxidative stresses, these antioxidant enzymes are upregulated to restore redox homeostasis. Such an adaptive response results from the activation of a redox-sensitive gene regulatory network mediated by nuclear factor E2-related factor 2. To more completely understand how the redox control system is designed by nature to meet homeostatic goals, we have examined the network from a systems perspective using engineering approaches. As with man-made control devices, the redox control system can be decomposed into distinct functional modules, including transducer, controller, actuator, and plant. Cells achieve specific performance objectives by utilizing nested feedback loops, feedforward control, and ultrasensitive signaling motifs, etc. Given that endogenously generated ROS are also used as signaling molecules, our analysis suggests a novel mode of action to explain oxidative stress-induced pathological conditions and diseases. Specifically, by adaptively upregulating antioxidant enzymes, oxidative stress may inadvertently attenuate ROS signals that mediate physiological processes, resulting in aberrations of cellular functions and adverse consequences. Lastly, by simultaneously considering the two competing cellular tasks-adaptive antioxidant defense and ROS signaling-we re-examine the premise that dietary antioxidant supplements is generally beneficial to human health. Our analysis highlights some possible adverse effects of these widely consumed antioxidants.

  1. Antioxidant defense response in the Hessian fly (Diptera: Cecidomyiidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbivorous insect species are constantly challenged with reactive oxygen species (ROS) generated from endogenous and exogenous sources. ROS produced within insects due to stress and prooxidant allelochemicals produced by host plants in response to herbivory require a complex mode of antioxidant def...

  2. Uncovering drug-responsive regulatory elements

    PubMed Central

    Luizon, Marcelo R; Ahituv, Nadav

    2016-01-01

    Nucleotide changes in gene regulatory elements can have a major effect on interindividual differences in drug response. For example, by reviewing all published pharmacogenomic genome-wide association studies, we show here that 96.4% of the associated single nucleotide polymorphisms reside in noncoding regions. We discuss how sequencing technologies are improving our ability to identify drug response-associated regulatory elements genome-wide and to annotate nucleotide variants within them. We highlight specific examples of how nucleotide changes in these elements can affect drug response and illustrate the techniques used to find them and functionally characterize them. Finally, we also discuss challenges in the field of drug-responsive regulatory elements that need to be considered in order to translate these findings into the clinic. PMID:26555224

  3. Antioxidants

    MedlinePlus

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  4. Nuclear responses in INTOR plasma stabilization elements

    NASA Astrophysics Data System (ADS)

    Gohar, Y.; Mattas, R. F.; Yang, S.; Wiffen, F. W.

    Nuclear responses in the plasma stabilization elements were studied in a parametric fashion as a part of the transient electromagnetics critical issue C of ETR/INTOR activity. The main responses are neutron fluence and radiation dose in the insulator material, induced resistively and atomic displacement in the conductor material, nuclear heating and life analysis for the elements. Copper and aluminum conductors with either MgAl2O4 or MgO insulating material were investigated. Radiation damage and life analysis for these elements were also discussed.

  5. Status of trace elements and antioxidants in premenopausal and postmenopausal phase of life: a comparative study

    PubMed Central

    Ansar, Sabah; Alhefdhi, Tayef; Aleem, Ansari M

    2015-01-01

    The aim of the study was to determine the extent of free radical damage in the form of oxidative stress, the antioxidant status and correlate with trace element levels in postmenopausal females as compared to premenopausal females. Participants between the ages of 30-60 years were recruited for the study and status of antioxidant enzymes and trace metals level was determined. The serum Calcium (Ca) levels after menopause was higher than that of the premenopausal group (P<0.001). The changes in copper (Cu) and Zinc (Zn) between the groups were not significant (p>0.05). In postmenopausal women, antioxidant enzymes like superoxide dismutase (SOD) and glutathione peroxidase (GPX), catalase (CAT) significantly decreased (P<0.001) in postmenopausal women showing oxidative stress in the cells. Concentrations of vitamin-C pointed out a significant decrease (P<0.05) in postmenopausal women when compared with premenopausal women. In conclusion. PMID:26770597

  6. Increased oxidative stress and impaired antioxidant response in Lafora disease.

    PubMed

    Romá-Mateo, Carlos; Aguado, Carmen; García-Giménez, José Luis; Ibáñez-Cabellos, José Santiago; Seco-Cervera, Marta; Pallardó, Federico V; Knecht, Erwin; Sanz, Pascual

    2014-10-01

    Lafora Disease (LD, OMIM 254780, ORPHA501) is a fatal neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in the vast majority of cases, by mutations in either EPM2A or EPM2B genes, encoding respectively laforin and malin. In the last years, several reports have revealed molecular details of these two proteins and have identified several processes affected in LD, but the pathophysiology of the disease still remains largely unknown. Since autophagy impairment has been reported as a characteristic treat in both Lafora disease cell and animal models, and as there is a link between autophagy and mitochondrial performance, we sought to determine if mitochondrial function could be altered in those models. Using fibroblasts from LD patients, deficient in laforin or malin, we found mitochondrial alterations, oxidative stress and a deficiency in antioxidant enzymes involved in the detoxification of reactive oxygen species (ROS). Similar results were obtained in brain tissue samples from transgenic mice deficient in either the EPM2A or EPM2B genes. Furthermore, in a proteomic analysis of brain tissue obtained from Epm2b-/- mice, we observed an increase in a modified form of peroxirredoxin-6, an antioxidant enzyme involved in other neurological pathologies, thus corroborating an alteration of the redox condition. These data support that oxidative stress produced by an increase in ROS production and an impairment of the antioxidant enzyme response to this stress play an important role in development of LD. PMID:26461389

  7. Nitric oxide, antioxidants and prooxidants in plant defence responses

    PubMed Central

    Groß, Felicitas; Durner, Jörg; Gaupels, Frank

    2013-01-01

    In plant cells the free radical nitric oxide (NO) interacts both with anti- as well as prooxidants. This review provides a short survey of the central roles of ascorbate and glutathione—the latter alone or in conjunction with S-nitrosoglutathione reductase—in controlling NO bioavailability. Other major topics include the regulation of antioxidant enzymes by NO and the interplay between NO and reactive oxygen species (ROS). Under stress conditions NO regulates antioxidant enzymes at the level of activity and gene expression, which can cause either enhancement or reduction of the cellular redox status. For instance chronic NO production during salt stress induced the antioxidant system thereby increasing salt tolerance in various plants. In contrast, rapid NO accumulation in response to strong stress stimuli was occasionally linked to inhibition of antioxidant enzymes and a subsequent rise in hydrogen peroxide levels. Moreover, during incompatible Arabidopsis thaliana-Pseudomonas syringae interactions ROS burst and cell death progression were shown to be terminated by S-nitrosylation-triggered inhibition of NADPH oxidases, further highlighting the multiple roles of NO during redox-signaling. In chemical reactions between NO and ROS reactive nitrogen species (RNS) arise with characteristics different from their precursors. Recently, peroxynitrite formed by the reaction of NO with superoxide has attracted much attention. We will describe putative functions of this molecule and other NO derivatives in plant cells. Non-symbiotic hemoglobins (nsHb) were proposed to act in NO degradation. Additionally, like other oxidases nsHb is also capable of catalyzing protein nitration through a nitrite- and hydrogen peroxide-dependent process. The physiological significance of the described findings under abiotic and biotic stress conditions will be discussed with a special emphasis on pathogen-induced programmed cell death (PCD). PMID:24198820

  8. Human mesangial cells resist glycoxidative stress through an antioxidant response.

    PubMed

    Nitti, Mariapaola; Furfaro, Anna Lisa; Patriarca, Stefania; Balbis, Emanuela; Domenicotti, Cinzia; Cottalasso, Damiano; Pronzato, Maria Adelaide; Marinari, Umberto Maria; Traverso, Nicola

    2011-02-01

    The generation of advanced glycation end-products (AGE), the interaction with their receptors, the generation of reactive oxygen species, and the modulation of intracellular redox equilibrium are believed to be the main factors causing alterations of mesangial cell physiology leading to diabetic nephropathy. Normal human primary mesangial cells were exposed to glycoxidative stress by culture in high glucose (HG) or treatment with AGE for up to 6 days. In both cases only a moderate generation of reactive oxygen species and production of HNE-protein adducts were induced while protein nitrotyrosination was not affected. Moreover, HG and AGE caused a significant antioxidant response, confirmed by the induction of heme oxygenase 1 and the consumption of vitamin E. Glutathione was decreased only by HG. Mesangial cell proliferation and viability were slightly affected by HG and AGE. Furthermore, both treatments failed to influence TGF-ß1 and MCP-1 secretion and to modulate RAGE and collagen IV expression. We believe that normal human mesangial cells can resist glycoxidative stress by the observed antioxidant response. These results support the concept that mesangial cells are only partly responsible for the onset and progression of diabetic nephropathy and that the role of other cell types, such as podocytes and endothelial cells, should be taken into consideration. PMID:21152865

  9. Tandem antioxidant enzymes confer synergistic protective responses in experimental filariasis.

    PubMed

    Prince, P R; Madhumathi, J; Anugraha, G; Jeyaprita, P J; Reddy, M V R; Kaliraj, P

    2014-12-01

    Helminth parasites use antioxidant defence strategies for survival during oxidative stress due to free radicals in the host. Accordingly, tissue-dwelling filarial parasites counteract host responses by releasing a number of antioxidants. Targeting these redox regulation proteins together, would facilitate effective parasite clearance. Here, we report the combined effect of protective immune responses trigged by recombinant Wuchereria bancrofti thioredoxin (WbTRX) and thioredoxin peroxidase (WbTPX) in an experimental filarial model. The expression of WbTRX and WbTPX in different stages of the parasite and their cross-reactivity were analysed by enzyme-linked immunosorbent assay (ELISA). The immunogenicity of recombinant proteins and their protective efficacy were studied in animal models when immunized in single or cocktail mode. The antigens showed cross-reactive epitopes and induced high humoral and cellular immune responses in mice. Further, parasite challenge against Brugia malayi L3 larvae in Mastomys coucha conferred significant protection of 57% and 62% against WbTRX and WbTPX respectively. The efficacy of L3 clearance was significantly higher (71%) (P <  0.001) when the antigens were immunized together, showing a synergistic effect in multiple-mode vaccination. Hence, the study suggests WbTRX and WbTPX to be attractive vaccine candidates when immunized together and provides a tandem block for parasite elimination in the control of lymphatic filariasis. PMID:23676147

  10. Dimerization Controls Marburg Virus VP24-dependent Modulation of Host Antioxidative Stress Responses.

    PubMed

    Johnson, Britney; Li, Jing; Adhikari, Jagat; Edwards, Megan R; Zhang, Hao; Schwarz, Toni; Leung, Daisy W; Basler, Christopher F; Gross, Michael L; Amarasinghe, Gaya K

    2016-08-28

    Marburg virus (MARV), a member of the Filoviridae family that also includes Ebola virus (EBOV), causes lethal hemorrhagic fever with case fatality rates that have exceeded 50% in some outbreaks. Within an infected cell, there are numerous host-viral interactions that contribute to the outcome of infection. Recent studies identified MARV protein 24 (mVP24) as a modulator of the host antioxidative responses, but the molecular mechanism remains unclear. Using a combination of biochemical and mass spectrometry studies, we show that mVP24 is a dimer in solution that directly binds to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) to regulate nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This interaction between Keap1 and mVP24 occurs through the Kelch interaction loop (K-Loop) of mVP24 leading to upregulation of antioxidant response element transcription, which is distinct from other Kelch binders that regulate Nrf2 activity. N-terminal truncations disrupt mVP24 dimerization, allowing monomeric mVP24 to bind Kelch with higher affinity and stimulate higher antioxidative stress response element (ARE) reporter activity. Mass spectrometry-based mapping of the interface revealed overlapping binding sites on Kelch for mVP24 and the Nrf2 proteins. Substitution of conserved cysteines, C209 and C210, to alanine in the mVP24 K-Loop abrogates Kelch binding and ARE activation. Our studies identify a shift in the monomer-dimer equilibrium of MARV VP24, driven by its interaction with Keap1 Kelch domain, as a critical determinant that modulates host responses to pathogenic Marburg viral infections. PMID:27497688

  11. Antioxidant value and element content in some tinctures used in medication.

    PubMed

    Szentmihályi, Klára; Varga, Ilona Szöllősi; Gergely, Anita; Rábai, Mária; Then, Mária

    2015-09-01

    Tinctures are almost the oldest medicines and their use is substantial in the medication nowadays as well. The antioxidant values by ferric reducing/antioxidant power (FRAP) method and element content by inductively coupled plasma optical emission spectrometry (ICP-OES) were investigated in some tinctures official in the VII. and VIII. Pharmacopoeia Hungarica. The highest FRAP values were found for volatile oil containing Tinctura Aurantii amari epicarpii et mesocarpii, Tinctura Amara and Tinctura Valerianae (764.54 ± 19.90; 757.37 ± 14.46; 826.40 ± 5.89 µmol l⁻¹, respectively). The correlations between the FRAP values and dilution with different alcohol content in Tinctura Chinae, Tinctura Ipecacuanhae normata and Tinctura Strychni were also investigated. Remarkable differences were found between the element concentrations in the different tinctures. The element contents in tinctures are not so high in absolute values nevertheless the presence of essential selenium, zinc, manganese and copper is important since they have key role in the antioxidant system. The common feature of the tinctures seems to be the lithium content. The Ca to Mg concentration ratio was found to be shifted towards magnesium in some of the tinctures that can show a higher Mg absorption which could affect against the proinflammatoric processes in the cases of gastrointestinal diseases. PMID:26344025

  12. A potential link among antioxidant enzymes, histopathology and trace elements in canine visceral leishmaniasis

    PubMed Central

    Souza, Carolina C; Barreto, Tatiane de O; da Silva, Sydnei M; Pinto, Aldair W J; Figueiredo, Maria M; Ferreira Rocha, Olguita G; Cangussú, Silvia D; Tafuri, Wagner L

    2014-01-01

    Canine visceral leishmaniasis (CVL) is a severe and fatal systemic chronic inflammatory disease. We investigated the alterations in, and potential associations among, antioxidant enzymes, trace elements and histopathology in CVL. Blood and tissue levels of Cu-Zn superoxide dismutase, catalase and glutathione peroxidase were measured in mixed-breed dogs naturally infected with Leishmania infantum chagasi, symptomatic (n = 19) and asymptomatic (n = 11). Serum levels of copper, iron, zinc, selenium and nitric oxide, and plasma lipid peroxidation were measured. Histological and morphometric analyses were conducted of lesions in liver, spleen and lymph nodes. We found lower blood catalase and glutathione peroxidase activity to be correlated with lower iron and selenium respectively. However, higher activity of Cu-Zn superoxide dismutase was not correlated with the increase in copper and decreased in zinc observed in infected animals compared to controls. Organ tissue was characterized by lower enzyme activity in infected dogs than in controls, but this was not correlated with trace elements. Lipid peroxidation was higher in symptomatic than in asymptomatic and control dogs and was associated with lesions such as chronic inflammatory reaction, congestion, haemosiderin and fibrosis. Systemic iron deposition was observed primarily in the symptomatic dogs showing a higher tissue parasite load. Dogs with symptomatic CVL displayed enhanced LPO and Fe tissue deposition associated with decreased levels of antioxidant enzymes. These results showed new points in the pathology of CVL and might open new treatment perspectives associated with antioxidants and the role of iron in the pathogenesis of CVL. PMID:24766461

  13. A potential link among antioxidant enzymes, histopathology and trace elements in canine visceral leishmaniasis.

    PubMed

    Souza, Carolina C; Barreto, Tatiane de O; da Silva, Sydnei M; Pinto, Aldair W J; Figueiredo, Maria M; Rocha, Olguita G Ferreira; Cangussú, Silvia D; Tafuri, Wagner L

    2014-08-01

    Canine visceral leishmaniasis (CVL) is a severe and fatal systemic chronic inflammatory disease. We investigated the alterations in, and potential associations among, antioxidant enzymes, trace elements and histopathology in CVL. Blood and tissue levels of Cu-Zn superoxide dismutase, catalase and glutathione peroxidase were measured in mixed-breed dogs naturally infected with Leishmania infantum chagasi, symptomatic (n = 19) and asymptomatic (n = 11). Serum levels of copper, iron, zinc, selenium and nitric oxide, and plasma lipid peroxidation were measured. Histological and morphometric analyses were conducted of lesions in liver, spleen and lymph nodes. We found lower blood catalase and glutathione peroxidase activity to be correlated with lower iron and selenium respectively. However, higher activity of Cu-Zn superoxide dismutase was not correlated with the increase in copper and decreased in zinc observed in infected animals compared to controls. Organ tissue was characterized by lower enzyme activity in infected dogs than in controls, but this was not correlated with trace elements. Lipid peroxidation was higher in symptomatic than in asymptomatic and control dogs and was associated with lesions such as chronic inflammatory reaction, congestion, haemosiderin and fibrosis. Systemic iron deposition was observed primarily in the symptomatic dogs showing a higher tissue parasite load. Dogs with symptomatic CVL displayed enhanced LPO and Fe tissue deposition associated with decreased levels of antioxidant enzymes. These results showed new points in the pathology of CVL and might open new treatment perspectives associated with antioxidants and the role of iron in the pathogenesis of CVL. PMID:24766461

  14. Imbalanced secondary mucosal antioxidant response in inflammatory bowel disease.

    PubMed

    Kruidenier, Laurens; Kuiper, Ineke; Van Duijn, Wim; Mieremet-Ooms, Marij A C; van Hogezand, Ruud A; Lamers, Cornelis B H W; Verspaget, Hein W

    2003-09-01

    cells that expressed CAT remained unchanged during inflammation and GPO was found in only a very low and constant number of epithelial cells. In addition, the inflamed epithelium displayed decreased expression of the hydroxyl radical (OH(*)) scavenger MT. In view of the high epithelial SOD levels in inflamed IBD epithelium, it is speculated that the efficient removal of excess H(2)O(2) is hampered in these cells, thereby increasing not only the risk of detrimental effects of H(2)O(2) directly, but also those of its extremely reactive derivatives such as OH(*). Taken together, the results suggest an imbalanced and inefficient endogenous antioxidant response in the intestinal mucosa of IBD patients, which may contribute to both the pathogenesis and the perpetuation of the inflammatory processes. PMID:12950013

  15. Finite element simulation of pipe dynamic response

    SciTech Connect

    Slagis, G.C.; Litton, R.W.

    1996-12-01

    Nonlinear finite element dynamic analyses of the response of a pipe span to controlled-displacement, sinusoidal vibration have been performed. The objective of this preliminary study is to compare strain and acceleration response data to those generated by Beaney in the Berkeley Nuclear Laboratories experiments. Results for an unpressurized, 5 Hz, carbon steel pipe are in good agreement with the experiments. Hence, it appears that analytical simulation will be useful to assess seismic margins. Recommendations for additional studies are provided. The analyses confirm the test results--dynamic response is greatly attenuated by material plasticity. Analytical strains and accelerations are about 30% higher than test data. There are several possible explanations for the differences. To assess the effect of frequency on response, the length of the pipe span was increased. Analysis of the longer, 2 Hz, pipe span shows significantly greater cyclic strains than the 5 Hz span at the same input excitation levels.

  16. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain.

    PubMed

    Liang, Chanjuan; Wang, Weimin

    2013-11-01

    Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress. PMID:23653318

  17. Mitochondrial gene expression, antioxidant responses, and histopathology after cadmium exposure.

    PubMed

    Al Kaddissi, Simone; Legeay, Alexia; Elia, Antonia Concetta; Gonzalez, Patrice; Floriani, Magali; Cavalie, Isabelle; Massabuau, Jean-Charles; Gilbin, Rodolphe; Simon, Olivier

    2014-08-01

    The present study investigates cadmium effects on the transcription of mitochondrial genes of Procambarus clarkii after acute (0.05, 0.5, and 5 mg Cd/L; 4-10 days) and chronic exposures (10 μg Cd/L; 30-60 days). Transcriptional responses of cox1, atp6, and 12S using quantitative real-time RT-PCR were assessed in gills and hepatopancreas. Additionally, the expression levels of genes involved in detoxification and/or oxidative stress responses [mt, sod(Mn)] and enzymatic activities of antioxidants (SOD, CAT, GPX, and GST) were analyzed. The histopathological effects in hepatopancreas of crayfish were evaluated by light microscopy. Relationships between endpoints at different levels of biological organization and Cd bioaccumulation were also examined. Cd induced high levels of bioaccumulation, which was followed by mitochondrial dysfunction and histological alterations in both experiments. Moreover, perturbations in the defence mechanisms against oxidative stress tended to increase with time. Results also showed that molecular responses can vary depending on the intensity and duration of the chemical stress applied to the organisms and that the study of mt gene expression levels seemed to be the best tool to assess Cd intoxication. PMID:23065898

  18. Antioxidants

    MedlinePlus

    ... carotene Lutein Lycopene Selenium Vitamin A Vitamin C Vitamin E Vegetables and fruits are rich sources of antioxidants. There is good ... eating a diet with lots of vegetables and fruits is healthy and lowers risks ... smokers. High doses of vitamin E may increase risks of prostate cancer and ...

  19. Benzo[a]pyrene affects Jurkat T cells in the activated state via the antioxidant response element dependent Nrf2 pathway leading to decreased IL-2 secretion and redirecting glutamine metabolism

    SciTech Connect

    Murugaiyan, Jayaseelan; Rockstroh, Maxie; Wagner, Juliane; Baumann, Sven; Schorsch, Katrin; Trump, Saskia; Lehmann, Irina; Bergen, Martin von; Tomm, Janina M.

    2013-06-15

    There is a clear evidence that environmental pollutants, such as benzo[a]pyrene (B[a]P), can have detrimental effects on the immune system, whereas the underlying mechanisms still remain elusive. Jurkat T cells share many properties with native T lymphocytes and therefore are an appropriate model to analyze the effects of environmental pollutants on T cells and their activation. Since environmental compounds frequently occur at low, not acute toxic concentrations, we analyzed the effects of two subtoxic concentrations, 50 nM and 5 μM, on non- and activated cells. B[a]P interferes directly with the stimulation process as proven by an altered IL-2 secretion. Furthermore, B[a]P exposure results in significant proteomic changes as shown by DIGE analysis. Pathway analysis revealed an involvement of the AhR independent Nrf2 pathway in the altered processes observed in unstimulated and stimulated cells. A participation of the Nrf2 pathway in the change of IL-2 secretion was confirmed by exposing cells to the Nrf2 activator tBHQ. tBHQ and 5 μM B[a]P caused similar alterations of IL-2 secretion and glutamine/glutamate metabolism. Moreover, the proteome changes in unstimulated cells point towards a modified regulation of the cytoskeleton and cellular stress response, which was proven by western blotting. Additionally, there is a strong evidence for alterations in metabolic pathways caused by B[a]P exposure in stimulated cells. Especially the glutamine/glutamate metabolism was indicated by proteome pathway analysis and validated by metabolite measurements. The detrimental effects were slightly enhanced in stimulated cells, suggesting that stimulated cells are more vulnerable to the environmental pollutant model compound B[a]P. - Highlights: • B[a]P affects the proteome of Jurkat T cells also at low concentrations. • Exposure to B[a]P (50 nM, 5 μM) did not change Jurkat T cell viability. • Both B[a]P concentrations altered the IL-2 secretion of stimulated cells.

  20. The level of elements and antioxidant activity of commercial dietary supplement formulations based on edible mushrooms.

    PubMed

    Stilinović, Nebojša; Škrbić, Biljana; Živančev, Jelena; Mrmoš, Nataša; Pavlović, Nebojša; Vukmirović, Saša

    2014-12-01

    Commercial preparations of Cordyceps sinensis, Ganoderma lucidum and Coprinus comatus mushroom marketed as healthy food supplements in Serbia were analyzed by atomic absorption spectrometry with a graphite furnace (GFAAS) for their element content. Antioxidant activity potential and total phenolics of the same mushrooms were determined. The element content of mushroom samples was in the range of 0.130-0.360 mg kg(-1) for lead (Pb), <0.03-0.46 mg kg(-1) for arsenic (As), 0.09-0.39 mg kg(-1) for cadmium (Cd), 98.14-989.18 mg kg(-1) for iron (Fe), 0.10-101.32 mg kg(-1) for nickel (Ni), 5.06-26.50 mg kg(-1) for copper (Cu), 0.20-0.70 mg kg(-1) for cobalt (Co), 1.74-136.33 mg kg(-1) for chromium (Cr) and 2.19-21.54 mg kg(-1) for manganese (Mn). In the tests for measuring the antioxidant activity, the methanolic extract of C. sinensis showed the best properties. The same was seen for the analysis of selected phenolic compounds; C. sinensis was found to have the highest content. Commercial preparations of C. sinensis and C. comatus can be considered to be safe and suitable food supplements included in well-balanced diets. PMID:25294630

  1. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis.

    PubMed

    Einor, D; Bonisoli-Alquati, A; Costantini, D; Mousseau, T A; Møller, A P

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and -0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. PMID:26851726

  2. Potential antioxidant response to coffee - A matter of genotype?

    PubMed

    Hassmann, Ute; Haupt, Larisa M; Smith, Robert A; Winkler, Swantje; Bytof, Gerhard; Lantz, Ingo; Griffiths, Lyn R; Marko, Doris

    2014-12-01

    In a human intervention study, coffee combining natural green coffee bean constituents and dark roast products was identified as a genotype-dependent inducer of the Nrf2/ARE pathway, significantly affecting Nrf2 gene expression and downstream GST1A1 and UGT1A1 gene transcription. The observed transcriptional changes correlated with the presence of specific Nrf2 genotypes suggesting their influence on both Nrf2 and subsequent ARE-dependent GST1A1 and UGT1A1 transcription. While the presence of the - 653 SNP seems to be advantageous, resulting in higher Nrf2, GST1A1 and UGT1A1 gene transcription following coffee consumption, in contrast, the presence of the - 651 SNP significantly down-regulated the response to the study coffee. Furthermore, the presence of the B/B genotype in GST1A1 along with the frequency of the [TA]6/6 and [TA]7/7 polymorphisms in UGT1A1 appeared to significantly increase sensitivity toward coffee-induced gene transcription. This data suggests that when examining the role of the Nrf2/ARE pathway in the regulation of antioxidative and chemopreventive phase II efficacy, individual genotypes should be included when considering the potency of bioactive food/food constituents and their therapeutic potential. PMID:25606436

  3. Potential antioxidant response to coffee — A matter of genotype?

    PubMed Central

    Hassmann, Ute; Haupt, Larisa M.; Smith, Robert A.; Winkler, Swantje; Bytof, Gerhard; Lantz, Ingo; Griffiths, Lyn R.; Marko, Doris

    2014-01-01

    In a human intervention study, coffee combining natural green coffee bean constituents and dark roast products was identified as a genotype-dependent inducer of the Nrf2/ARE pathway, significantly affecting Nrf2 gene expression and downstream GST1A1 and UGT1A1 gene transcription. The observed transcriptional changes correlated with the presence of specific Nrf2 genotypes suggesting their influence on both Nrf2 and subsequent ARE-dependent GST1A1 and UGT1A1 transcription. While the presence of the − 653 SNP seems to be advantageous, resulting in higher Nrf2, GST1A1 and UGT1A1 gene transcription following coffee consumption, in contrast, the presence of the − 651 SNP significantly down-regulated the response to the study coffee. Furthermore, the presence of the B/B genotype in GST1A1 along with the frequency of the [TA]6/6 and [TA]7/7 polymorphisms in UGT1A1 appeared to significantly increase sensitivity toward coffee-induced gene transcription. This data suggests that when examining the role of the Nrf2/ARE pathway in the regulation of antioxidative and chemopreventive phase II efficacy, individual genotypes should be included when considering the potency of bioactive food/food constituents and their therapeutic potential. PMID:25606436

  4. The status of antioxidants, malondialdehyde and some trace elements in serum of patients with breast cancer

    PubMed Central

    Sadati Zarrini, Azadeh; Moslemi, Dariush; Parsian, Hadi; Vessal, Mahmood; Mosapour, Abbas; Shirkhani Kelagari, Ziba

    2016-01-01

    Background: There are studies that indicated dyshomeostasis of oxidant/antioxidant and trace elements in breast cancer patients, but the data regarding the status of these parameters in various stages of breast cancer are limited. The aim of this study was to highlight the status of these biochemical factors in various stages of breast cancer. Methods: Fifty-eight breast cancers patients participated in this study and underwent staging work up for the assessment of disease stage. Serum total antioxidant capacity and lipid peroxidation were determined spectrophotometically. Glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) levels were analyzed by ELISA method. The serum level of Cu, Mn and Zn was measured by atomic absorption spectrophotometer. Student t-test and one-way analysis of variance (ANOVA) were used to compare group means. Results: All the patients included in the study classified as mild (stages I+II) and advanced stages (stages III+IV). Patients in advanced stage had lower serum antioxidant capacity and higher lipid peroxidation levels, but the differences were not statistically differet (P=0.690 and 0.666, respectively). Patients in advanced stage had higher, but not statistically different serum levels of CAT, GPX and SOD levels (p>0.05). Patients in both groups had to some extent similar serum Cu, Mn and Zn levels. Conclusion: There was no evidence of remarkable discrepancy in the status of analyzed factors in various stages of breast cancer. It seems that the severity of oxidative stress in different stages of breast cancer is similar to some extent. PMID:26958330

  5. Methylation of arginine by PRMT1 regulates Nrf2 transcriptional activity during the antioxidative response.

    PubMed

    Liu, Xin; Li, Hongyuan; Liu, Lingxia; Lu, Yang; Gao, Yanyan; Geng, Pengyu; Li, Xiaoxue; Huang, Baiqu; Zhang, Yu; Lu, Jun

    2016-08-01

    The cap 'n' collar (CNC) family of transcription factors play important roles in resistance of oxidative and electrophilic stresses. Among the CNC family members, NF-E2-related factor 2 (Nrf2) is critical for regulating the antioxidant and phase II enzymes through antioxidant response element (ARE)-mediated transactivation. The activity of Nrf2 is controlled by a variety of post-translational modifications, including phosphorylation, ubiquitination, acetylation and sumoylation. Here we demonstrate that the arginine methyltransferase-1 (PRMT1) methylates Nrf2 protein at a single residue of arginine 437, both in vitro and in vivo. Using the heme oxygenase-1 (HO-1) as a model of phase II enzyme gene, we found that methylation of Nrf2 by PRMT1 led to a moderate increase of its DNA-binding activity and transactivation, which subsequently protected cells against the tBHP-induced glutathione depletion and cell death. Collectively, our results define a novel modification of Nrf2, which operates as a fine-tuning mechanism for the transcriptional activity of Nrf2 under the oxidative stress. PMID:27183873

  6. Dimethyl fumarate modulation of immune and antioxidant responses: application to HIV therapy

    PubMed Central

    Gill, Alexander J.; Kolson, Dennis L.

    2013-01-01

    The persistence of chronic immune activation and oxidative stress in human immunodeficiency virus (HIV)-infected, antiretroviral drug-treated individuals are major obstacles to fully preventing HIV disease progression. The immune modulator and antioxidant dimethyl fumarate (DMF) is effective in treating immune-mediated diseases and it also has potential applications to limiting HIV disease progression. Among the relevant effects of DMF and its active metabolite monomethyl fumarate (MMF) are induction of a Th1 → Th2 lymphocyte shift, inhibition of pro-inflammatory cytokine signaling, inhibition of NF-κB nuclear translocation, inhibition of dendritic cell maturation, suppression of lymphocyte and endothelial cell adhesion molecule expression, and induction of the Nrf2-dependent antioxidant response element (ARE) and effector genes. Associated with these effects are reduced lymphocyte and monocyte infiltration into psoriatic skin lesions in humans and immune-mediated demyelinating brain lesions in rodents, which confirms potent systemic and central nervous system (CNS) effects. In addition, DMF and MMF limit HIV infection in macrophages in vitro, albeit by unknown mechanisms. Finally, DMF and MMF also suppress neurotoxin production from HIV-infected macrophages, which drives CNS neurodegeneration. Thus, DMF might protect against systemic and CNS complications in HIV infection through its effective suppression of immune activation, oxidative stress, HIV replication, and macrophage-associated neuronal injury. PMID:23971529

  7. ANTIOXIDANT SUPPLEMENTATION AND NASAL INFLAMMATORY RESPONSES AMONG YOUNG ASTHMATICS EXPOSED TO HIGH LEVELS OF OZONE

    EPA Science Inventory

    Background: Recent studies examining the inflammatory response in atopic asthma to ozone suggest a release of soluble mediators of inflammation factors that might be related to reactive oxygen species (ROS). Antioxidant could prove useful in subjects exposed to additional oxidati...

  8. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala).

    PubMed

    Habte-Tsion, Habte-Michael; Ren, Mingchun; Liu, Bo; Ge, Xianping; Xie, Jun; Chen, Ruli

    2016-04-01

    A 9-week feeding trial was conducted to investigate the effects of graded dietary threonine (Thr) levels (0.58-2.58%) on the hematological parameters, immune response, antioxidant status and hepatopancreatic gene expression of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream. For this purpose, 3 tanks were randomly arranged and assigned to each experimental diet. Fish were fed with their respective diet to apparent satiation 4 times daily. The results indicated that white blood cell, red blood cell and haemoglobin significantly responded to graded dietary Thr levels, while hematocrit didn't. Complement components (C3 and C4), total iron-binding capacity (TIBC), immunoglobulin M (IgM), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) increased with increasing dietary Thr levels up to 1.58-2.08% and thereafter tended to decrease. Dietary Thr regulated the gene expressions of Cu/Zn-SOD, Mn-SOD and CAT, GPx1, glutathione S-transferase mu (GST), nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein-70 (Hsp70), tumor necrosis factor-alpha (TNF-α), apolipoprotein A-I (ApoA1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and fructose-bisphosphate aldolase B (ALDOB); while the gene expression of peroxiredoxin II (PrxII) was not significantly modified by graded Thr levels. These genes are involved in different functions including antioxidant, immune, and defense responses, energy metabolism and protein synthesis. Therefore, this study could provide a new molecular tool for studies in fish immunonutrition and shed light on the regulatory mechanisms that dietary Thr improved the antioxidant and immune capacities of fish. PMID:26631806

  9. Evaluation of antioxidant activity, polyphenolic compounds, amino acids and mineral elements of representative genotypes of Lonicera edulis.

    PubMed

    Sochor, Jiri; Jurikova, Tunde; Pohanka, Miroslav; Skutkova, Helena; Baron, Mojmir; Tomaskova, Lenka; Balla, Stefan; Klejdus, Borivoj; Pokluda, Robert; Mlcek, Jiri; Trojakova, Zuzana; Saloun, Jan

    2014-01-01

    The aim of this study was to evaluate the bioactive substances in 19 berry cultivars of edible honeysuckle (Lonicera edulis). A statistical evaluation was used to determine the relationship between the content of selected bioactive substances and individual cultivars. Regarding mineral elements, the content of sodium was measured using potentiometry and spectrophotometry. The content of selected polyphenolic compounds with high antioxidant activity was determined by a HPLC-UV/ED method. The total amount of polyphenols was determined by the Folin-Ciocalteu method. The antioxidant activity was determined using five methods (DPPH, FRAP, ABTS, FR and DMPD) that differ in their principles. The content of 13 amino acids was determined by ion-exchange chromatography. The experimental results obtained for the different cultivars were evaluated and compared by statistical and bioinformatic methods. A unique feature of this study lies in the exhaustive analysis of the chosen parameters (amino acids, mineral elements, polyphenolic compounds and antioxidant activity) during one growing season. PMID:24853714

  10. Mallotus roxburghianus modulates antioxidant responses in pancreas of diabetic rats.

    PubMed

    Roy, V K; Chenkual, L; Gurusubramanian, G

    2016-03-01

    Mallotus roxburghianus has long been used by Mizo tribal people for the treatment of diabetes. Scientific validation at known doses may provide information about its safety and efficacy. Methanolic leaf extract of M. roxburghianus (MRME 100 and 400mg/kg) was tested in comparison with normal and alloxan diabetic rats for 28 days p.o. in terms of body and pancreatic weight, blood glucose level, antioxidant enzymes, expression of visfatin and PCNA, histopathology and histomorphometric measurements of pancreas. The results were evaluated statistically using ANOVA, correlation and regression and Principal component analysis (PCO). MRME (100 and 400mg/kg) treatment significantly (p<0.0001) decreased the body weight, blood glucose level, improved the mass and size of pancreas, elevated the levels of antioxidant enzymes and up regulate the expression of visfatin and PCNA. PCO analysis was good to fitness and prediction distinguishes the therapeutic effects of M. roxburghianus from the alloxan induced diabetic rats. MRME has significant role in protecting animals from alloxan-induced diabetic oxidative stress in pancreas and exhibited promising antihyperglycaemic and antioxidant activities along with significant reversal of disturbed antioxidant status and lipid peroxidative damage. Pancreatic architecture and physiology under diabetic oxidative stress have been significantly modulated by MRME and validated as a drug candidate for antidiabetic treatment. M. roxburghianus treatment restores the antioxidant enzyme system and rejuvenates the islets mass in alloxanized rat by accelerating visfatin and PCNA expression in pancreatic tissue. PMID:26764087

  11. Optimization of ultrasonic extraction of phenolic antioxidants from green tea using response surface methodology.

    PubMed

    Lee, Lan-Sook; Lee, Namhyouck; Kim, Young Ho; Lee, Chang-Ho; Hong, Sang Pil; Jeon, Yeo-Won; Kim, Young-Eon

    2013-01-01

    Response surface methodology (RSM) has been used to optimize the extraction conditions of antioxidants with relatively low caffeine content from green tea by using ultrasonic extraction. The predicted optimal conditions for the highest antioxidant activity and minimum caffeine level were found at 19.7% ethanol, 26.4 min extraction time, and 24.0 ° C extraction temperature. In the predicted optimal conditions, the experimental values were very close to the predicted values. Moreover, the ratio of (EGCg + ECg)/EGC was identified a major factor contributing to the antioxidant activity of green tea extracts. In this study, ultrasonic extraction showed that the ethanol concentration and extraction time used for antioxidant extraction could be remarkably reduced without a decrease in antioxidant activity compared to the conventional extraction conditions. PMID:24184822

  12. Nitrate, ascorbic acid, mineral and antioxidant activities of Cosmos caudatus in response to organic and mineral-based fertilizer rates.

    PubMed

    Hassan, Siti Aishah; Mijin, Salumiah; Yusoff, Umi Kalsom; Ding, Phebe; Wahab, Puteri Edaroyati Megat

    2012-01-01

    The source and quantity of nutrients available to plants can affect the quality of leafy herbs. A study was conducted to compare quality of Cosmos caudatus in response to rates of organic and mineral-based fertilizers. Organic based fertilizer GOBI (8% N:8% P₂O₅:8% K₂O) and inorganic fertilizer (15% N, 15% P₂O₅, 15% K₂O) were evaluated based on N element rates at 0, 30, 60, 90, 120 kg h⁻¹. Application of organic based fertilizer reduced nitrate, improved vitamin C, antioxidant activity as well as nitrogen and calcium nutrients content. Antioxidant activity and chlorophyll content were significantly higher with increased fertilizer application. Fertilization appeared to enhance vitamin C content, however for the maximum ascorbic acid content, regardless of fertilizer sources, plants did not require high amounts of fertilizer. PMID:22743588

  13. Influence of diet, vitamin, tea, trace elements and exogenous antioxidants on arsenic metabolism and toxicity.

    PubMed

    Yu, Haiyan; Liu, Su; Li, Mei; Wu, Bing

    2016-04-01

    Health risk of arsenic (As) has received increasing attention. Acute and chronic exposure to As could cause several detrimental effects on human health. As toxicity is closely related to its bioaccessibility and metabolism. In real environment, many factors, such as diet and nutrition, can influence As bioaccessibility, metabolism and toxicity. This paper mainly reviews the influences of diets and elements on As bioaccessibility, metabolism and toxicity and their underlying mechanisms to provide suggestions for future investigations. Vitamins, jaggery, fruit, tea, glutathione, N-acetylcysteine and zinc could reduce the As-induced toxicity by increasing antioxidative enzymes to antagonize oxidative stress caused by As and/or increasing As methylation. However, bean and betel nut could increase risk of skin lesions caused by As. Interestingly, high-fat diet, selenium and iron have incompatible effects on As bioaccessibility, metabolism and toxicity in different experimental conditions. Based on current literatures, the As methylation and As-induced oxidative damage might be two main ways that the diets and elements influence As toxicity. Combined application of in vitro human cell lines and gastrointestinal models might be useful tools to simultaneously characterize the changes in As bioaccessibility and toxicity in the future research. PMID:26169729

  14. Hepatic positive and negative antioxidant responses in zebrafish after intraperitoneal administration of toxic microcystin-LR.

    PubMed

    Hou, Jie; Li, Li; Xue, Ting; Long, Meng; Su, Yujing; Wu, Ning

    2015-02-01

    Microcystin-LR (MC-LR) is the most toxic and common among microcystins. In order to understand the possible molecular mechanisms of hepatic antioxidation and detoxification, the activities and transcriptional levels of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione S-transferases (GST), and glutathione (GSH) contents as well as histopathological changes were studied in the liver of female zebrafish injected intraperitoneally (i.p.) at doses of 50 and 200 μg MC-LR kg(-1) body weight (BW) respectively. In the low dose group (50 μg MC-LR kg(-1)), zebrafish displayed a little unease at the initial 1h post-injection (hpi), slight hepatic injury and quick recovery, and enhanced enzymatic activities and up-regulated gene expression of antioxidant enzymes. In contrast, high dose of MC-LR (200 μg MC-LR kg(-1)) resulted in uneasiness and frantic swimming, severe hepatic injury, and suppressed enzymatic activities and down-regulated gene expression of antioxidant enzymes. GSH depletion in both dose groups may be explained by enhanced antioxidant reactions and higher rates of MC conjugation, suggesting the crucial roles of GSH in both cellular antioxidant protection and MC-LR detoxification. This study demonstrated that administration of MC-LR caused a positive response in the low dose group but a negative response in the high dose group. Hepatic positive/negative responses in the low/high dose group might result from an increased/decreased synthesis of antioxidant enzymes at the molecular level, respectively. These results illustrated that antioxidant status played an important role in zebrafish protection against MC-LR-caused oxidative stress through regulating antioxidant enzyme gene expression and activities. PMID:25462319

  15. Responses of foliar antioxidative and photoprotective defence systems of trees to drought: a meta-analysis.

    PubMed

    Wujeska, Agnieszka; Bossinger, Gerd; Tausz, Michael

    2013-10-01

    Current climate change predictions hint to more frequent extreme weather events, including extended droughts, making better understanding of the impacts of water stress on trees even more important. At the individual plant level, stomatal closure as a result of water deficit leads to reduced CO2 availability in the leaf, which can lead to photo-oxidative stress. Photorespiration and the Mehler reaction can maintain electron transport rates under low internal CO2, but result in production of reactive oxygen species (ROS). If electron consumption is decreased, upstream photochemical processes can be affected and light energy is absorbed in excess of photochemical requirements. Trees evolved to cope with excess energy and elevated concentration of ROS by activating photoprotective and antioxidative defence systems. The meta-analysis we present here assessed responses of these defence systems reported in 50 studies. We found responses to vary depending on stress intensity, foliage type and habitat, and on whether experiments were done in the field or in controlled environments. In general, drought increased concentrations of antioxidants and photoprotective pigments. However, severe stress caused degradation of antioxidant concentrations and oxidation of antioxidant pools. Evergreen trees seemed to preferentially reinforce membrane-bound protection systems zeaxanthin and tocopherol, whereas deciduous species showed greater responses in water-soluble antioxidants ascorbic acid and glutathione. Trees and shrubs from arid versus humid habitats vary in their antioxidative and photoprotective defence responses. In field experiments, drought had greater effects on some defence compounds than under controlled conditions. PMID:24178981

  16. Antioxidant system responses in two co-occurring green-tide algae under stress conditions

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhao, Xinyu; Tang, Xuexi

    2016-01-01

    Green tides have occurred every year from 2007 to 2014 in the Yellow Sea. Ulva prolifera (Müller) J. Agardh has been identified as the bloom-forming alga, co-occurring with U. intestinalis. We observed distinct strategies for both algal species during green tides. U. prolifera exhibited a high abundance initially and then decreased dramatically, while U. intestinalis persisted throughout. The antioxidant system responses of these two macroalgae were compared in the late phase of a green tide (in-situ) and after laboratory acclimation. Lipid peroxidation and antioxidant system responses differed significantly between the two. Malondialdehyde and hydrogen peroxide contents increased significantly in-situ in U. prolifera, but not in U. intestinalis. In U. prolifera, we observed a significant decrease in total antioxidant ability (T-AOC), antioxidant enzymes (SOD and Apx), and non-enzyme antioxidants (GSH and AsA) in-situ. U. intestinalis showed the same pattern of T-AOC and SOD, but its Gpx, Apx, and GSH responses did not differ significantly. The results suggest that U. prolifera was more susceptible than U. intestinalis to the harsh environmental changes during the late phase of a Yellow Sea green tide. The boom and bust strategy exhibited by U. prolifera and the persistence of U. intestinalis can be explained by differences in enzyme activity and antioxidant systems.

  17. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo.

    PubMed

    Shih, Andy Y; Imbeault, Sophie; Barakauskas, Vilte; Erb, Heidi; Jiang, Lei; Li, Ping; Murphy, Timothy H

    2005-06-17

    NF-E2 related factor (Nrf2) controls a pleiotropic cellular defense, where multiple antioxidant/detoxification pathways are up-regulated in unison. Although small molecule inducers of Nrf2 activity have been reported to protect neurons in vitro, whether similar pathways can be accessed in vivo is not known. We have investigated whether in vivo toxicity of the mitochondrial complex II inhibitor 3-nitropropionic acid (3-NP) can be attenuated by constitutive and inducible Nrf2 activity. The absence of Nrf2 function in Nrf2(-/-) mice resulted in 3-NP hypersensitivity that became apparent with time and increasing dose, causing motor deficits and striatal lesions on a more rapid time scale than identically treated Nrf2(+/+) and Nrf2(+/-) controls. Striatal succinate dehydrogenase activity, the target of 3-NP, was inhibited to the same extent in all genotypes by a single acute dose of 3-NP, suggesting that brain concentrations of 3-NP were similar. Dietary supplementation with the Nrf2 inducer tert-butylhydroquinone attenuated 3-NP toxicity in Nrf2(+/-) mice, but not Nrf2(-/-), confirming the Nrf2-specific action of the inducer in vivo. Increased Nrf2 activity alone was sufficient to protect animals from 3-NP toxicity because intrastriatal adenovirus-mediated Nrf2 overexpression significantly reduced lesion size compared with green fluorescent protein overexpressing controls. In cultured astrocytes, 3-NP was found to increase Nrf2 activity leading to antioxidant response element-dependent gene expression providing a potential mechanism for the increased sensitivity of Nrf2(-/-) animals to 3-NP toxicity in vivo. We conclude that Nrf2 may underlie a feedback system limiting oxidative load during chronic metabolic stress. PMID:15840590

  18. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  19. Salinity induced changes in photosynthetic pigment and antioxidant responses in Sesuvium portulacastrum.

    PubMed

    Sivakumar, Thirumal; Panneerselvam, Rajaram

    2011-11-01

    The production of leaf and root antioxidant changes when exposed to saline conditions were investigated in the perennial halophyte Sesuvium portulacastrum L. Plants were grown with a nonsterilized soil and sterilized soil with 50 and 100% of sterilized seawater on 25, 55 and 85 Days After Planting (DAP). The plants were harvested on 30th, 60th and 90th DAP and used for analyzing the photosynthetic pigments, antioxidant enzyme activities viz., Superoxide dismutase (SOD; EC1.15.1.1) Ascorbate peroxidase (APX, EC 1.11.1.11) and non enzymatic antioxidant contents like ascorbic acid, alpha-tocopherol, reduced glutathione were determined. Plants exposed to salinity, either alone (SSW) sterilized seawater/unsterilized soil (USS) along with higher pigments, antioxidative enzymes and Na+ ions response. This tendency was generally more marked in SSW/USS plants when compared to SSW/SS plants. The concentration of SSW/SS was negatively correlated with the antioxidative capacity of the plant, either enzymatic or non enzymatic and K+ ions. These data suggest that the enhancement of the antioxidative response is of crucial significance for S. portulacastrum plants growing under saline conditions. PMID:22514886

  20. Thresholds in shock response across the elements

    NASA Astrophysics Data System (ADS)

    Bourne, F. L.; Bourne, N. K.; CMEC Team

    2015-06-01

    Compendia of shock data have been assembled across national laboratories across the world. Previous work has shown a threshold in behaviour for materials; the weak shock limit. This corresponds the stress state at which the shock is overdriven in a single front. The shock velocity-particle velocity data for elements and compounds has been systematically analysed to note discontinuities in the data. A range of materials show these features and the form of the discontinuity in each case is analysed. Some correspond to martensitic phase transformations as expected whilst others are more difficult to track down. Particular groups within the elements show characteristic forms according to groupings in the periodic table. The datasets are presented and trends are noted.

  1. Studies on the effects on growth and antioxidant responses of two marine microalgal species to uniconazole

    NASA Astrophysics Data System (ADS)

    Mei, Xueqiao; Zheng, Kang; Wang, Lingdong; Li, Yantuan

    2014-10-01

    Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase (SOD) and peroxidase (POD) enzymes that retard lipid peroxidation and membrane deterioration. These years much attention has been focused on the responses of antioxidant system in plants to uniconazole stress, but such studies on aquatic organism are very few. Moreover, no information is available on growth and antioxidant response in marine microalgae to uniconazole. In this paper, the growth and antioxidant responses of two marine microalgal species, Platymonas helgolandica and Pavlova viridis, at six uniconazole concentrations (0-15 mg L-1) were investigated. The results demonstrated that 3 mg L-1 uniconazole could increase significantly chlorophyll a and carbohydrate contents of P. helgolandica ( P < 0.05). Higher concentrations (≥12 mg L-1) of uniconazole could inhibit significantly the growth, dry weight, chlorophyll-a and carbohydrate contents of P. helgolandica and P. viridis ( P < 0.05). Uniconazole caused a significant increase in lipid peroxidation production (MDA) at higher concentrations (≥ 9 mg L-1). The activities of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) were enhanced remarkably at low concentrations of uniconazole. However, significant reduction of SOD and CAT activities was observed at higher concentrations of uniconazole.

  2. Polymer directed self-assembly of pH-responsive antioxidant nanoparticles.

    PubMed

    Tang, Christina; Amin, Devang; Messersmith, Phillip B; Anthony, John E; Prud'homme, Robert K

    2015-03-31

    We have developed pH-responsive, multifunctional nanoparticles based on encapsulation of an antioxidant, tannic acid (TA), using flash nanoprecipitation, a polymer directed self-assembly method. Formation of insoluble coordination complexes of tannic acid and iron during mixing drives nanoparticle assembly. Tuning the core material to polymer ratio, the size of the nanoparticles can be readily tuned between 50 and 265 nm. The resulting nanoparticle is pH-responsive, i.e., stable at pH 7.4 and soluble under acidic conditions due to the nature of the coordination complex. Further, the coordination complex can be coprecipitated with other hydrophobic materials such as therapeutics or imaging agents. For example, coprecipitation with a hydrophobic fluorescent dye creates fluorescent nanoparticles. In vitro, the nanoparticles have low cytotoxicity and show antioxidant activity. Therefore, these particles may facilitate intracellular delivery of antioxidants. PMID:25760226

  3. Polymer Directed Self-Assembly of pH-Responsive Antioxidant Nanoparticles

    PubMed Central

    Tang, Christina; Amin, Devang; Messersmith, Phillip B.; Anthony, John E.; Prud’homme, Robert K.

    2015-01-01

    We have developed pH-responsive, multifunctional nanoparticles based on encapsulation of an antioxidant, tannic acid (TA), using Flash NanoPrecipitation, a polymer directed self-assembly method. Formation of insoluble coordination complexes of tannic acid and iron during mixing drives nanoparticle assembly. Tuning the core material to polymer ratio, the size of the nanoparticles can be readily tuned between 50 and 265 nm. The resulting nanoparticle is pH-responsive, i.e. stable at pH 7.4 and soluble under acidic conditions due to the nature of the coordination complex. Further, the coordination complex can be coprecipitated with other hydrophobic materials such as therapeutics or imaging agents. For example, coprecipitation with a hydrophobic fluorescent dye creates fluorescent nanoparticles. In vitro, the nanoparticles have low cytotoxicity show antioxidant activity. Therefore, these particles may facilitate intracellular delivery of antioxidants. PMID:25760226

  4. Effect of chromium (VI) exposure on antioxidant defense status and trace element homeostasis in acute experiment in rat.

    PubMed

    Kotyzová, Dana; Hodková, Anna; Bludovská, Monika; Eybl, Vladislav

    2015-11-01

    Occupational exposure to hexavalent chromium (Cr(VI)) compounds is of concern in many Cr-related industries and their surrounding environment. Cr(VI) is a proven toxin and carcinogen. The Cr(VI) compounds are easily absorbed, can diffuse across cell membranes, and have strong oxidative potential. Despite intensive studies of Cr(VI) pro-oxidative effects, limited data exist on the influence of Cr(VI) on selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx)-important components of antioxidant defense system. This study investigates the effect of Cr(VI) exposure on antioxidant defense status, with focus on these selenoenzymes, and on trace element homeostasis in an acute experiment in rat. Male Wistar rats (130-140g) were assigned to two groups of 8 animals: I. control; and II. Cr(VI) treated. The animals in Cr(VI) group were administered a single dose of K2Cr2O7 (20 mg /kg, intraperitoneally (ip)). The control group received saline solution. After 24 h, the animals were sacrificed and the liver and kidneys were examined for lipid peroxidation (LP; thiobarbituric acid reactive substances (TBARS) concentration), the level of reduced glutathione (GSH) and the activities of GPx-1, TrxR-1, and glutathione reductase (GR). Samples of tissues were also used to estimate Cr accumulation and alterations in zinc, copper, and iron levels. The acute Cr(VI) exposure caused an increase in both hepatic and renal LP (by 70%, p < 0.01 and by 15%, p < 0.05, respectively), increased hepatic GSH level and GPx-1 activity, and decreased renal GPx-1 activity. The activity of GR was not changed. A significant inhibitory effect of Cr(VI) was found on TrxR-1 activity in both the liver and the kidneys. The ability of Cr(VI) to cause TrxR inhibition could contribute to its cytotoxic effects. Further investigation of oxidative responses in different in vivo models may enable the development of strategies to protect against Cr(VI) oxidative damage. PMID:23625905

  5. Fruit juice drinks prevent endogenous antioxidant response to high-fat meal ingestion.

    PubMed

    Miglio, Cristiana; Peluso, Ilaria; Raguzzini, Anna; Villaño, Deborah V; Cesqui, Eleonora; Catasta, Giovina; Toti, Elisabetta; Serafini, Mauro

    2014-01-28

    High-fat meals (HFM) induce metabolic stress, leading to the activation of protective mechanisms, including inflammation and endogenous antioxidant defences. In the present study, we investigated the effects of antioxidant-rich fruit juice drinks on the endogenous antioxidant response induced by HFM. In a double-blind, cross-over design (10 d washout), fourteen overweight volunteers were randomly assigned to one of the following interventions: HFM+500 ml placebo beverage (HFM-PB, free from fruit); HFM+500 ml antioxidant beverage 1 (HFM-AB1; apple, grape, blueberry and pomegranate juices and grape skin, grape seed and green tea extracts); HFM+500 ml antioxidant beverage 2 (HFM-AB2; pineapple, black currant and plum juices). HFM-PB consumption increased the plasma levels of thiols (SH) (4 h, P< 0·001) and uric acid (UA) (2 h, P< 0·01) and total radical-trapping antioxidant parameter (TRAP) (4 h, P< 0·01). Following the consumption of drinks, UA production was significantly reduced with respect to placebo beverage consumption 8 h after HFM-AB2 consumption (P< 0·05). SH levels were reduced 0·5 (P< 0·05), 1 (P< 0·05) and 2 h (P< 0·01) after HFM-AB1 consumption and 2, 4 and 8 h (P< 0·05) after HFM-AB2 consumption. Plasma TRAP (2 h, P< 0·001) and urinary ferric reducing antioxidant power (0-8 h, P< 0·01) were increased by HFM-AB1 consumption, the drink with the highest in vitro antioxidant capacity, but not by HFM-AB2 consumption. In urine, UA levels were significantly increased from basal levels after the consumption of HFM-PB and HFM-AB2. However, neither of the beverages increased the urinary excretion of UA with respect to the placebo beverage. In conclusion, the increase in UA and SH levels induced by HFM as part of an endogenous antioxidant response to postprandial stress can be prevented by the concomitant ingestion of antioxidant-rich fruit juice drinks. PMID:23930843

  6. Antioxidant response and related gene expression in aged oat seed

    PubMed Central

    Kong, Lingqi; Huo, Heqiang; Mao, Peisheng

    2015-01-01

    To evaluate deterioration of oat seeds during storage, we analyzed oxygen radicals, antioxidant enzyme activity, proline content, and gene transcript levels in oat seeds with different moisture contents (MCs; 4, 16, and 28% w/w) during storage for 0, 6, and 12 months (CK, LT-6, and LT-12 treatments, respectively) at 4°C. The germination percentage decreased significantly with higher seed MCs and longer storage duration. The concentrations of superoxide radical and hydrogen peroxide increased with seed MC increasing. The activities of catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) may have had a complementary or interacting role to scavenge reactive oxygen species. As the storage duration extended, the proline content decreased in seeds with 4 and 16% MC and increased in 28%. These findings suggest that proline played the main role in adaptation to oxidative stress in seeds with higher MC (28%), while antioxidant enzymes played the main role in seeds with lower MCs (4%, 16%). In the gene transcript analyses, SOD1 transcript levels were not consistent with total SOD activity. The transcript levels of APX1 and CAT1 showed similar trends to those of APX and CAT activity. The transcript levels of P5CS1, which encodes a proline biosynthetic enzyme, increased with seed MC increasing in CK. Compared with changing of proline content in seeds stored 12 months, PDH1 transcript levels showed the opposite trend and maintained the lower levels in seeds of 16 and 28% MCs. The transcript level of P5CS1 was significantly affected by MC, and PDH1 could improve stress resistance for seed aging and maintain seed vigor during long-term storage. PMID:25852711

  7. Prediction of nuclear hormone receptor response elements.

    PubMed

    Sandelin, Albin; Wasserman, Wyeth W

    2005-03-01

    The nuclear receptor (NR) class of transcription factors controls critical regulatory events in key developmental processes, homeostasis maintenance, and medically important diseases and conditions. Identification of the members of a regulon controlled by a NR could provide an accelerated understanding of development and disease. New bioinformatics methods for the analysis of regulatory sequences are required to address the complex properties associated with known regulatory elements targeted by the receptors because the standard methods for binding site prediction fail to reflect the diverse target site configurations. We have constructed a flexible Hidden Markov Model framework capable of predicting NHR binding sites. The model allows for variable spacing and orientation of half-sites. In a genome-scale analysis enabled by the model, we show that NRs in Fugu rubripes have a significant cross-regulatory potential. The model is implemented in a web interface, freely available for academic researchers, available at http://mordor.cgb.ki.se/NHR-scan. PMID:15563547

  8. Antioxidant responses to heat and light stress differ with habitat in a common reef coral

    NASA Astrophysics Data System (ADS)

    Hawkins, Thomas D.; Krueger, Thomas; Wilkinson, Shaun P.; Fisher, Paul L.; Davy, Simon K.

    2015-12-01

    Coral bleaching—the stress-induced collapse of the coral- Symbiodinium symbiosis—is a significant driver of worldwide coral reef degradation. Yet, not all corals are equally susceptible to bleaching, and we lack a clear understanding of the mechanisms underpinning their differential susceptibilities. Here, we focus on cellular redox regulation as a potential determinant of bleaching susceptibility in the reef coral Stylophora pistillata. Using slow heating (1 °C d-1) and altered irradiance, we induced bleaching in S. pistillata colonies sampled from two depths [5-8 m (shallow) and 15-18 m (deep)]. There was significant depth-dependent variability in the timing and extent of bleaching (loss of symbiont cells), as well as in host enzymatic antioxidant activity [specifically, superoxide dismutase and catalase (CAT)]. However, among the coral fragments that bleached, most did so without displaying any evidence of a host enzymatic antioxidant response. For example, both deep and shallow corals suffered significant symbiont loss at elevated temperature, but only deep colonies exposed to high temperature and high light displayed any up-regulation of host antioxidant enzyme activity (CAT). Surprisingly, this preceded the equivalent antioxidant responses of the symbiont, which raises questions about the source(s) of hydrogen peroxide in the symbiosis. Overall, changes in enzymatic antioxidant activity in the symbionts were driven primarily by irradiance rather than temperature, and responses were similar across depth groups. Taken together, our results suggest that in the absence of light stress, heating of 1 °C d-1 to 4 °C above ambient is not sufficient to induce a substantial oxidative challenge in S. pistillata. We provide some of the first evidence that regulation of coral enzymatic antioxidants can vary significantly depending on habitat, and, in terms of determining bleaching susceptibility, our results suggest a significant role for the host's differential

  9. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  10. S-allyl cysteine activates the Nrf2-dependent antioxidant response and protects neurons against ischemic injury in vitro and in vivo.

    PubMed

    Shi, Huanying; Jing, Xu; Wei, Xinbing; Perez, Ruth G; Ren, Manru; Zhang, Xiumei; Lou, Haiyan

    2015-04-01

    Stroke is a devastating clinical condition for which an effective neuroprotective treatment is currently unavailable. S-allyl cysteine (SAC), the most abundant organosulfur compound in aged garlic extract, has been reported to possess neuroprotective effects against stroke. However, the mechanisms underlying its beneficial effects remain poorly defined. The present study tests the hypothesis that SAC attenuates ischemic neuronal injury by activating the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent antioxidant response in both in vitro and in vivo models. Our findings demonstrate that SAC treatment resulted in an increase in Nrf2 protein levels and subsequent activation of antioxidant response element pathway genes in primary cultured neurons and mice. Exposure of primary neurons to SAC provided protection against oxygen and glucose deprivation-induced oxidative insults. In wild-type (Nrf2(+/+) ) mice, systemic administration of SAC attenuated middle cerebral artery occlusion-induced ischemic damage, a protective effect not observed in Nrf2 knockout (Nrf2(-/-) ) mice. Taken together, these findings provide the first evidence that activation of the Nrf2 antioxidant response by SAC is strongly associated with its neuroprotective effects against experimental stroke and suggest that targeting the Nrf2 pathway may provide therapeutic benefit for the treatment of stroke. The transcription factor Nrf2 is involved in cerebral ischemic disease and may be a promising target for the treatment of stroke. We provide novel evidence that SAC confers neuroprotection against ischemic stroke by activating the antioxidant Nrf2 signaling pathway. ARE, antioxidant response element; GCLC, glutathione cysteine ligase regulatory subunit; GCLM, glutathione cysteine ligase modulatory subunit; HO-1, heme oxygenase-1; JNK, c-Jun N-terminal kinase; Keap1, Kelch-like ECH-associated protein 1; Maf, musculoaponeurotic fibrosarcoma; Nrf2, nuclear factor erythroid-2-related factor 2

  11. Response of transposable elements to environmental stressors.

    PubMed

    Miousse, Isabelle R; Chalbot, Marie-Cecile G; Lumen, Annie; Ferguson, Alesia; Kavouras, Ilias G; Koturbash, Igor

    2015-01-01

    Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as "junk DNA," TEs are now well-accepted driving forces of evolution and critical regulators of the expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets for

  12. Transposable elements in response to environmental stressors&

    PubMed Central

    Miousse, Isabelle R.; Chalbot, Marie-Cecile G.; Lumen, Annie; Ferguson, Alesia; Kavouras, Ilias G.; Koturbash, Igor

    2015-01-01

    Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as “junk DNA,” TEs are now well-accepted driving forces of evolution and critical regulators the of expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets

  13. Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology.

    PubMed

    Amado, Isabel Rodríguez; Franco, Daniel; Sánchez, Marivel; Zapata, Carlos; Vázquez, José Antonio

    2014-12-15

    This study reports the optimised conditions (temperature, ethanol concentration and processing-time) for antioxidant extraction from potato peel (Agria variety) waste. At short extraction times (34 min), optimal yields of phenolic (TP) and flavonoid (Fv) compounds were reached at 89.9°C and ethanol concentrations of 71.2% and 38.6%, respectively. The main phenolic compounds identified in the extracts were chlorogenic (Cl) and ferulic (Fer) acids. A significant positive correlation was found between antioxidant activity and TP, Fv, Fer and Cl responses. Potato peel extracts were able to stabilize soybean oil under accelerated oxidation conditions, minimising peroxide, totox and p-anisidine indices. The production of hexanal and 2-hexenal in soybean oil samples was maximal for extracts obtained at intermediate temperatures and ethanol concentrations. Our results demonstrate potato peel waste is a good source of antioxidants able to effectively limit oil oxidation, while contributing to the revalorisation of these agrifood by-products. PMID:25038678

  14. Puerarin enhances adipocyte differentiation, adiponectin expression, and antioxidant response in 3T3-L1 cells.

    PubMed

    Lee, Ok-Hwan; Seo, Dong-Ho; Park, Cheon-Seok; Kim, Young-Cheul

    2010-01-01

    Puerarin, a major isoflavone glycoside from Kudzu root (Pueraria lobata), has been reported to exert antihyperglycemic and antioxidant effects and thus have pharmacological actions in the treatment of diabetes and cardiovascular diseases. We investigated the effects of puerarin on the changes of key gene expression associated with adipocyte differentiation and insulin sensitivity and link to cellular antioxidant response pathways. Puerarin treatment significantly enhanced differentiation of 3T3-L1 preadipocytes accompanying increased lipid accumulation and glucose-6-phosphate dehydrogenase (G6PDH) activity. At a molecular level, puerarin upregulated mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) and its target genes, an adipocyte-specific fatty acid binding protein (aP2) and GLUT4. Puerarin also caused a significant increase in mRNA level of adiponectin, an important insulin-sensitizing adipocytokine that is downregulated in insulin-resistant and diabetic states. In addition, treatment with puerarin was found to upregulate mRNA levels of G6PDH, glutathione reductase, and catalase, all of which are important for endogenous antioxidant responses. These data suggest that the hypoglycemic effects of puerarin can be attributed to the upregulation of PPARγ and its downstream target genes, GLUT4 and adiponectin expression, leading to increased glucose utilization. Puerarin may also be effective in preventing the rise of oxidative stress during adipocyte differentiation by increasing endogenous antioxidant responses. PMID:20806284

  15. EVALUATION OF ANTIOXIDANT DEFENSE RESPONSES TO LEAD STRESS IN HAPALOSIPHON FONTINALIS-339(1).

    PubMed

    Zutshi, Sunaina; Choudhary, Meenakshi; Bharat, Naveen; Abdin, Malik Zainul; Fatma, Tasneem

    2008-08-01

    Lead (Pb) is a heavy metal and a potentially hazardous environmental pollutant. In this study, the potential of lead to induce oxidative stress in biological systems was assessed using the cyanobacterium Hapalosiphon fontinalis-339 as model test organism. The impact of lead toxicity on the cellular antioxidant system and the biochemical modulations that result in generation of antioxidant defense responses were also studied. To determine the effect of Pb toxicity, the test organism was grown in the presence of various concentrations (0.05, 0.10, 0.20, 0.40, 0.80, 1.0, 1.20, and 1.25 mg · L(-1) ) of exogenous lead chloride (PbCl2 ), and its effects on growth were observed in terms of the change in chl content. There was a significant increase in metal uptake by the alga with a concomitant decrease in growth. Lead stress appeared to significantly up-regulate the levels of stress-related antioxidant enzymes-such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR)-while a decrease in catalase (CAT) levels was observed. In addition, the levels of nonenzymatic antioxidants, oxidized and total glutathione, were changed. Our results suggest the existence of a potent antioxidant defense machinery in H. fontinalis-339 and this organism can be employed to monitor lead toxicity in the environment. PMID:27041606

  16. Factors Affecting Antioxidant Response in Fish from a Long-term Mercury-Contaminated Reservoir.

    PubMed

    Sevcikova, M; Modra, H; Blahova, J; Dobsikova, R; Kalina, J; Zitka, O; Kizek, R; Svobodova, Z

    2015-11-01

    The objective of this work was to evaluate antioxidant defence and oxidative damage in organs (liver, gills, kidney, and brain) of five fish species (Aspius aspius, Esox lucius, Sander lucioperca, Abramis brama, Rutilus rutilus) from the long-term mercury-contaminated Skalka Reservoir in the Czech Republic. Special emphasis was placed on a comprehensive assessment of the factors that may affect the antioxidant response to mercury in fish. Antioxidant enzymes (glutathione reductase, glutathione peroxidase, and glutathione-S-transferase) did not significantly respond to mercury contamination. Levels of the analysed enzymes and oxidative damage to lipids were predominantly determined by a separate organ factor or species factor, or by the combination of both (p < 0.001). Levels of total glutathione and the reduced/oxidized glutathione ratio were influenced by mercury contamination in combination with their specific organ distribution (p < 0.001). Our results suggest that species and type of organ alone or in combination are more important factors than chronic exposure to mercury contamination with respect to effects on antioxidant defence in fish under field conditions. Our findings suggest that the main antioxidant defensive mechanism in fish from the studied long-term mercury contaminated site was the inter-tissue distribution of glutathione. PMID:26276034

  17. Extracellular-signal-regulated kinase 5 modulates the antioxidant response by transcriptionally controlling Sirtuin 1 expression in leukemic cells.

    PubMed

    Lopez-Royuela, Nuria; Rathore, Moeez G; Allende-Vega, Nerea; Annicotte, Jean-Sébastien; Fajas, Lluis; Ramachandran, Bindu; Gulick, Tod; Villalba, Martin

    2014-08-01

    Cancer cell metabolism differs from that of non-transformed cells in the same tissue. This specific metabolism gives tumor cells growing advantages besides the effect in increasing anabolism. One of these advantages is immune evasion mediated by a lower expression of the mayor histocompatibility complex class I molecules. The extracellular-signal-regulated kinase-5 regulates both mayor histocompatibility complex class I expression and metabolic activity. However, the mechanisms underlying are largely unknown. We show here that extracellular-signal-regulated kinase-5 regulates the transcription of the NADH(+)-dependent histone deacetylase silent mating type information regulation 2 homolog 1 (Sirtuin 1) in leukemic Jurkat T cells. This involves the activation of the transcription factor myocyte enhancer factor-2 and its binding to the sirt1 promoter. In addition, extracellular-signal-regulated kinase-5 is required for T cell receptor-induced and oxidative stress-induced full Sirtuin 1 expression. Extracellular-signal-regulated kinase-5 induces the expression of promoters containing the antioxidant response elements through a Sirtuin 1-dependent pathway. On the other hand, down modulation of extracellular-signal-regulated kinase-5 expression impairs the anti-oxidant response. Notably, the extracellular-signal-regulated kinase-5 inhibitor BIX02189 induces apoptosis in acute myeloid leukemia tumor cells without affecting T cells from healthy donors. Our results unveil a new pathway that modulates metabolism in tumor cells. This pathway represents a promising therapeutic target in cancers with deep metabolic layouts such as acute myeloid leukemia. PMID:24880091

  18. Antioxidant responses of Propylaea japonica (Coleoptera: Coccinellidae) exposed to high temperature stress.

    PubMed

    Zhang, Shize; Fu, Wenyan; Li, Ning; Zhang, Fan; Liu, Tong-Xian

    2015-02-01

    Temperature is one of the most important environmental factors, and is responsible for a variety of physiological stress responses in organisms. Induced thermal stress is associated with elevated reactive oxygen species (ROS) generation leading to oxidative damage. The ladybeetle, Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae), is considered a successful natural enemy because of its tolerance to high temperatures in arid and semi-arid areas in China. In this study, we investigated the effect of high temperatures (35, 37, 39, 41 and 43 °C) on the survival and activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidases (POD), glutathione-S-transferases (GST), and total antioxidant capacity (TAC) as well as malondialdehyde (MDA) concentrations in P. japonica adults. The results indicated that P. japonica adults could not survive at 43 °C. CAT, GST and TAC were significantly increased when compared to the control (25 °C), and this played an important role in the process of antioxidant response to thermal stress. SOD and POD activity, as well as MDA, did not differ significantly at 35 and 37 °C compared to the control; however, there were increased levels of SOD, POD and MDA when the temperature was above 37 °C. These results suggest that thermal stress leads to oxidative stress and antioxidant enzymes play important roles in reducing oxidative damage in P. japonica adults. This study represents the first comprehensive report on the antioxidant defense system in predaceous coccinellids (the third trophic level). The findings provide useful information for predicting population dynamics and understanding the potential for P. japonica as a natural enemy to control pest insects under varied environmental conditions. PMID:25614965

  19. Biopersistence of PEGylated Carbon Nanotubes Promotes a Delayed Antioxidant Response after Infusion into the Rat Hippocampus

    PubMed Central

    Dal Bosco, Lidiane; Weber, Gisele E.; Parfitt, Gustavo M.; Cordeiro, Arthur P.; Sahoo, Sangram K.; Fantini, Cristiano; Klosterhoff, Marta C.; Romano, Luis Alberto; Furtado, Clascídia A.; Santos, Adelina P.; Monserrat, José M.; Barros, Daniela M.

    2015-01-01

    Carbon nanotubes are promising nanomaterials for the diagnosis and treatment of brain disorders. However, the ability of these nanomaterials to cross cell membranes and interact with neural cells brings the need for the assessment of their potential adverse effects on the nervous system. This study aimed to investigate the biopersistence of single-walled carbon nanotubes functionalized with polyethylene glycol (SWCNT-PEG) directly infused into the rat hippocampus. Contextual fear conditioning, Y-maze and open field tasks were performed to evaluate the effects of SWCNT-PEG on memory and locomotor activity. The effects of SWCNT-PEG on oxidative stress and morphology of the hippocampus were assessed 1 and 7 days after infusion of the dispersions at 0.5, 1.0 and 2.1 mg/mL. Raman analysis of the hippocampal homogenates indicates the biopersistence of SWCNT-PEG in the hippocampus 7 days post-injection. The infusion of the dispersions had no effect on the acquisition or persistence of the contextual fear memory; likewise, the spatial recognition memory and locomotor activity were not affected by SWCNT-PEG. Histological examination revealed no remarkable morphological alterations after nanomaterial exposure. One day after the infusion, SWCNT-PEG dispersions at 0.5 and 1.0 mg/mL were able to decrease total antioxidant capacity without modifying the levels of reactive oxygen species or lipid hydroperoxides in the hippocampus. Moreover, SWCNT-PEG dispersions at all concentrations induced antioxidant defenses and reduced reactive oxygen species production in the hippocampus at 7 days post-injection. In this work, we found a time-dependent change in antioxidant defenses after the exposure to SWCNT-PEG. We hypothesized that the persistence of the nanomaterial in the tissue can induce an antioxidant response that might have provided resistance to an initial insult. Such antioxidant delayed response may constitute an adaptive response to the biopersistence of SWCNT-PEG in the

  20. An antioxidant response is involved in resistance of Giardia duodenalis to albendazole

    PubMed Central

    Argüello-García, Raúl; Cruz-Soto, Maricela; González-Trejo, Rolando; Paz-Maldonado, Luz María T.; Bazán-Tejeda, M. Luisa; Mendoza-Hernández, Guillermo; Ortega-Pierres, Guadalupe

    2015-01-01

    Albendazole (ABZ) is a therapeutic benzimidazole used to treat giardiasis that targets β-tubulin. However, the molecular bases of ABZ resistance in Giardia duodenalis are not understood because β-tubulin in ABZ-resistant clones lacks mutations explaining drug resistance. In previous work we compared ABZ-resistant (1.35, 8, and 250 μM) and ABZ-susceptible clones by proteomic analysis and eight proteins involved in energy metabolism, cytoskeleton dynamics, and antioxidant response were found as differentially expressed among the clones. Since ABZ is converted into sulphoxide (ABZ-SO) and sulphone (ABZ-SOO) metabolites we measured the levels of these metabolites, the antioxidant enzymes and free thiols in the susceptible and resistant clones. Production of reactive oxygen species (ROS) and levels of ABZ-SO/ABZ-SOO induced by ABZ were determined by fluorescein diacetate-based fluorescence and liquid chromatography respectively. The mRNA and protein levels of antioxidant enzymes (NADH oxidase, peroxiredoxin 1a, superoxide dismutase and flavodiiron protein) in these clones were determined by RT-PCR and proteomic analysis. The intracellular sulfhydryl (R-SH) pool was quantified using dinitrobenzoic acid. The results showed that ABZ induced ROS accumulation in the ABZ-susceptible Giardia cultures but not in the resistant ones whilst the accumulation of ABZ-SO and ABZ-SOO was lower in all ABZ-resistant cultures. Consistent with these findings, all the antioxidant enzymes detected and analyzed were upregulated in ABZ-resistant clones. Likewise the R-SH pool increased concomitantly to the degree of ABZ-resistance. These results indicate an association between accumulation of ABZ metabolites and a pro-oxidant effect of ABZ in Giardia-susceptible clones. Furthermore the antioxidant response involving ROS-metabolizing enzymes and intracellular free thiols in ABZ-resistant parasites suggest that this response may contribute to overcome the pro-oxidant cytotoxicity of ABZ. PMID

  1. Effect of antioxidant mineral elements supplementation in the treatment of hypertension in albino rats.

    PubMed

    Muhammad, S A; Bilbis, L S; Saidu, Y; Adamu, Y

    2012-01-01

    Oxidative stress has been implicated in various pathologies, including hypertension, atherosclerosis, diabetes, and chronic renal disease. The current work was designed with the aim of investigating the potentials of antioxidants copper, manganese, and zinc in the treatment of hypertension in Wistar rats. The rats were fed 8% NaCl diet for 5 weeks and treatment with supplements in the presence of the challenging agent for additional 4 weeks. The supplementation significantly decreased the blood pressure as compared with hypertensive control. The result also indicated significant decreased in the levels of total cholesterol, triglyceride, low-density lipoprotein cholesterol and very low-density lipoprotein cholesterol, malondialdehyde, insulin and increase in the high-density lipoprotein cholesterol, total antioxidant activities, and nitric oxide of the supplemented groups relative to the hypertensive control. The average percentage protection against atherogenesis indicated 47.13 ± 9.60% for all the supplemented groups. The mean arterial blood pressure showed significant positive correlation with glucose, total cholesterol, triglyceride, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, atherogenic index, insulin resistance and malondialdehyde while high density lipoprotein-cholesterol and total antioxidant activities showed negative correlation. The result therefore indicated strong relationship between oxidative stress and hypertension and underscores the role of antioxidant minerals in reducing oxidative stress, dyslipidemia, and insulin resistance associated with hypertension. PMID:22966412

  2. Effect of in ovo injection with selenium on immune and antioxidant responses during experimental necrotic enteritis in broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium (Se) is an essential component of several major metabolic pathways in the antioxidant enzymes activity and modulating immune system. This study was conducted to investigate the effects of in ovo injection of selenium (Se) on modulating the immune system and antioxidant responses in chickens...

  3. NFE2L2 variations reduce antioxidant response in patients with Parkinson disease

    PubMed Central

    Gui, YaXing; Zhang, LiShan; Lv, Wen; Zhang, WenMing; Zhao, JinJia; Hu, XingYue

    2016-01-01

    Oxidative stress has been recognized as a risk factor of Parkinson's disease (PD) development. We hypothesized that decreased function of the nuclear factor (erythroid-derived 2)-like 2 (NFE2L2)-antioxidant response element (ARE) pathway might predispose to Parkinsonism. A case-control study was performed between NFE2L2 Single Nucleotide Polymorphism (SNP) and PD in a cohort of 765 unrelated patients with diagnosis of PD and 489 matched normal individuals. We found that c.351T>A, D117E (P = 0.003, OR = 2.8) and c.351T>A, D117E (P = 0.012, OR = 1.9) were significantly associated with PD. The risk allele of both polymorphisms showed a high frequency in our PD sample (c.351A: 19.7% and c.423T: 7.8%). The association between both c.351T>A and c.423G>T and PD was further confirmed in an independent case-control cohort consisting of 210 individuals with PD and 148 normal controls. We further found that over expression of D117E and Q141H variants of NFE2L2 reduced target genes expression of Glutathione S-transferase Pi 1 (GSTP1), Glutathione S-transferase Mu 1 (GSTM1), and Heme oxygenase 1 (HO-1) genes. NFE2L2 D117E and Q141H impaired activation of ARE-driven transcriptional activity. Our findings indicate that NFE2L2 may play an important role in the pathogenesis of PD in Chinese populations. PMID:26887053

  4. Deficiency of glutathione transferase zeta causes oxidative stress and activation of antioxidant response pathways.

    PubMed

    Blackburn, Anneke C; Matthaei, Klaus I; Lim, Cindy; Taylor, Matthew C; Cappello, Jean Y; Hayes, John D; Anders, M W; Board, Philip G

    2006-02-01

    Glutathione S-transferase (GST) zeta (GSTZ1-1) plays a significant role in the catabolism of phenylalanine and tyrosine, and a deficiency of GSTZ1-1 results in the accumulation of maleylacetoacetate and its derivatives maleylacetone (MA) and succinylacetone. Induction of GST subunits was detected in the liver of Gstz1(-/-) mice by Western blotting with specific antisera and high-performance liquid chromatography analysis of glutathione affinity column-purified proteins. The greatest induction was observed in members of the mu class. Induction of NAD(P)H:quinone oxidoreductase 1 and the catalytic and modifier subunits of glutamate-cysteine ligase was also observed. Many of the enzymes that are induced in Gstz1(-/-) mice are regulated by antioxidant response elements that respond to oxidative stress via the Keap1/Nrf2 pathway. It is significant that diminished glutathione concentrations were also observed in the liver of Gstz1(-/-) mice, which supports the conclusion that under normal dietary conditions, the accumulation of electrophilic intermediates such as maleylacetoacetate and MA results in a high level of oxidative stress. Elevated GST activities in the livers of Gstz1(-/-) mice suggest that GSTZ1-1 deficiency may alter the metabolism of some drugs and xenobiotics. Gstz1(-/-) mice given acetaminophen demonstrated increased hepatotoxicity compared with wild-type mice. This toxicity may be attributed to the increased GST activity or the decreased hepatic concentrations of glutathione, or both. Patients with acquired deficiency of GSTZ1-1 caused by therapeutic exposure to dichloroacetic acid for the clinical treatment of lactic acidosis may be at increased risk of drug- and chemical-induced toxicity. PMID:16278372

  5. Diffractive micro-optical element with nonpoint response

    NASA Astrophysics Data System (ADS)

    Soifer, Victor A.; Golub, Michael A.

    1993-01-01

    Common-use diffractive lenses have microrelief zones in the form of simple rings that provide only an optical power but do not contain any image information. They have a point-image response under point-source illumination. We must use a more complicated non-point response to focus a light beam into different light marks, letter-type images as well as for optical pattern recognition. The current presentation describes computer generation of diffractive micro- optical elements with complicated curvilinear zones of a regular piecewise-smooth structure and grey-level or staircase phase microrelief. The manufacture of non-point response elements uses the steps of phase-transfer calculation and orthogonal-scan masks generation or lithographic glass etching. Ray-tracing method is shown to be applicable in this task. Several working samples of focusing optical elements generated by computer and photolithography are presented. Using the experimental results we discuss here such applications as laser branding.

  6. Over-expression of Nrf2 diminishes ethanol-induced oxidative stress and apoptosis in neural crest cells by inducing an antioxidant response

    PubMed Central

    Chen, Xiaopan; Liu, Jie; Chen, Shao-yu

    2013-01-01

    Nuclear factor erythroid 2-related factor (Nrf2) is a key transcription factor that regulates antioxidant defense in cells. In this study, we investigated whether over-expression of Nrf2 can prevent ethanol-induced oxidative stress and apoptosis in neural crest cells (NCCs). We found that transfection of NCCs with pcDNA3.1-Nrf2 resulted in statistically significant increases in the Nrf2 protein levels in control and ethanol-exposed NCCs as compared to the cells transfected with control vector. Luciferase reporter gene assay revealed that over-expression of Nrf2 significantly increased the antioxidant response element (ARE) promoter activity in NCCs. Nrf2 over-expression also increased the protein expression and activities of Nrf2 target antioxidants in NCCs. In addition, over-expression of Nrf2 significantly decreased ROS generation and diminished apoptosis in ethanol-exposed NCCs. These results demonstrate that over-expression of Nrf2 can confer protection against ethanol-induced oxidative stress and apoptosis in NCCs by the induction of an antioxidant response. PMID:23994065

  7. Antioxidant supplementation increases retinal responses and decreases refractive error changes in dogs.

    PubMed

    Wang, Wei; Hernandez, Jerome; Moore, Cecil; Jackson, Janet; Narfström, Kristina

    2016-01-01

    The objective of the study was to examine whether a nutritional antioxidant supplementation could improve visual function in healthy dogs as measured by electroretinography (ERG) and autorefraction. A total of twelve Beagles, 6 to 8 years of age, with normal eyes upon indirect ophthalmoscopy and slit lamp biomicroscopy, were age and sex matched and randomly assigned to receive a feeding regimen for 6 months with or without a daily antioxidant supplementation. Portable, mini-Ganzfeld ERG and a Welch Allyn hand-held autorefractor were used to test retinal response and refractive error in the dogs at baseline and at the end of the supplementation period. All ERG a-wave amplitudes obtained were increased in the treatment group compared with those of dogs in the control group, with significant improvements in the scotopic high and photopic single flash cone ERG responses (P < 0·05 for both). For the b-wave amplitudes, all responses were similarly increased, with significant improvements in responses for the scotopic high light intensity stimulation (P < 0·05), and for photopic single flash cone and 30 Hz flicker (P < 0·01 for both) recordings. Change in refractive error was significantly less in the treatment group compared with that of the control group during the 6-month study (P < 0·05). Compared with the control group, the antioxidant-supplemented group showed improvement to varying degrees for retinal function and significantly less decline in refractive error. Dogs, like humans, experience retinal and lens functional decline with age. Antioxidant supplementation as demonstrated may be beneficial and effective in the long-term preservation and improvement of various functions of the canine eye. PMID:27293555

  8. Loss of DJ-1 impairs antioxidant response by altered glutamine and serine metabolism.

    PubMed

    Meiser, J; Delcambre, S; Wegner, A; Jäger, C; Ghelfi, J; d'Herouel, A Fouquier; Dong, X; Weindl, D; Stautner, C; Nonnenmacher, Y; Michelucci, A; Popp, O; Giesert, F; Schildknecht, S; Krämer, L; Schneider, J G; Woitalla, D; Wurst, W; Skupin, A; Weisenhorn, D M Vogt; Krüger, R; Leist, M; Hiller, K

    2016-05-01

    The oncogene DJ-1 has been originally identified as a suppressor of PTEN. Further on, loss-of-function mutations have been described as a causative factor in Parkinson's disease (PD). DJ-1 has an important function in cellular antioxidant responses, but its role in central metabolism of neurons is still elusive. We applied stable isotope assisted metabolic profiling to investigate the effect of a functional loss of DJ-1 and show that DJ-1 deficient neuronal cells exhibit decreased glutamine influx and reduced serine biosynthesis. By providing precursors for GSH synthesis, these two metabolic pathways are important contributors to cellular antioxidant response. Down-regulation of these pathways, as a result of loss of DJ-1 leads to an impaired antioxidant response. Furthermore, DJ-1 deficient mouse microglia showed a weak but constitutive pro-inflammatory activation. The combined effects of altered central metabolism and constitutive activation of glia cells raise the susceptibility of dopaminergic neurons towards degeneration in patients harboring mutated DJ-1. Our work reveals metabolic alterations leading to increased cellular instability and identifies potential new intervention points that can further be studied in the light of novel translational medicine approaches. PMID:26836693

  9. Herbicidal and antioxidant responses of transgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase.

    PubMed

    Jung, Sunyo; Back, Kyoungwhan

    2005-05-01

    We analyzed the herbicidal and antioxidant defense responses of transgenic rice plants that overexpressed the Myxococcus xanthus protoporphyrinogen oxidase gene. Leaf squares of the wild-type incubated with oxyfluorfen were characterized by necrotic leaf lesions and increases in conductivity and malonyldialdehyde levels, whereas transgenic lines M4 and M7 did not show any change with up to 100 microM oxyfluorfen. The wild-type had decreased F(v)/F(m) and produced a high level of H(2)O(2) at 18 h after foliar application of oxyfluorfen, whereas transgenic lines M4 and M7 were unaffected. In response to oxyfluorfen, violaxanthin, beta-carotene, and chlorophylls (Chls) decreased in wild-type plants, whereas antheraxanthin and zeaxanthin increased. Only a slight decline in Chls was observed in transgenic lines at 48 h after oxyfluorfen treatment. Noticeable increases of cytosolic Cu/Zn-superoxide dismutase, peroxidase isozymes 1 and 2, and catalase were observed after at 48 h of oxyfluorfen treatment in the wild-type. Non-enzymatic antioxidants appeared to respond faster to oxyfluorfen-induced photodynamic stress than did enzymatic antioxidants. Protective responses for the detoxification of active oxygen species were induced to counteract photodynamic stress in oxyfluorfen-treated, wild-type plants. However, oxyfluorfen-treated, transgenic plants suffered less oxidative stress, confirming increased herbicidal resistance resulted from dual expression of M. xanthus Protox in chloroplasts and mitochondria. PMID:15890521

  10. Chemiluminescence response induced by mesenteric ischaemia/reperfusion: effect of antioxidative compounds ex vivo

    PubMed Central

    Nosál'ová, Viera; Sotníková, Ružena; Drábiková, Katarína; Fialová, Silvia; Košťálová, Daniela; Banášová, Silvia; Navarová, Jana

    2010-01-01

    Ischaemia and reperfusion (I/R) play an important role in human pathophysiology as they occur in many clinical conditions and are associated with high morbidity and mortality. Interruption of blood supply rapidly damages metabolically active tissues. Restoration of blood flow after a period of ischaemia may further worsen cell injury due to an increased formation of free radicals. The aim of our work was to assess macroscopically the extent of intestinal pathological changes caused by mesenteric I/R, and to study free radical production by luminol enhanced chemiluminescence (CL) of ileal samples. In further experiments, the antioxidative activity of the drugs tested was evaluated spectrophotometrically by the use of the DPPH radical. We studied the potential protective ex vivo effect of the plant origin compound arbutin as well as of the pyridoindole stobadine and its derivative SMe1EC2. I/R induced pronounced haemorrhagic intestinal injury accompanied by increase of myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGA) activity. Compared to sham operated (control) rats, there was only a slight increase of CL response after I/R, probably in association with neutrophil increase, indicated by enhanced MPO activity. All compounds significantly reduced the peak values of CL responses of the ileal samples ex vivo, thus reducing the I/R induced increase of free radical production. The antioxidants studied showed a similar inhibitory effect on the CL response influenced by mesenteric I/R. If proved in vivo, these compounds would represent potentially useful therapeutic antioxidants. PMID:21217883

  11. RBM45 Modulates the Antioxidant Response in Amyotrophic Lateral Sclerosis through Interactions with KEAP1

    PubMed Central

    Bakkar, Nadine; Kousari, Arianna; Kovalik, Tina; Li, Yang

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective loss of motor neurons. Various factors contribute to the disease, including RNA binding protein dysregulation and oxidative stress, but their exact role in pathogenic mechanisms remains unclear. We have recently linked another RNA binding protein, RBM45, to ALS via increased levels of protein in the cerebrospinal fluid of ALS patients and its localization to cytoplasmic inclusions in ALS motor neurons. Here we show RBM45 nuclear exit in ALS spinal cord motor neurons compared to controls, a phenotype recapitulated in vitro in motor neurons treated with oxidative stressors. We find that RBM45 binds and stabilizes KEAP1, the inhibitor of the antioxidant response transcription factor NRF2. ALS lumbar spinal cord lysates similarly show increased cytoplasmic binding of KEAP1 and RBM45. Binding of RBM45 to KEAP1 impedes the protective antioxidant response, thus contributing to oxidative stress-induced cellular toxicity. Our findings thus describe a novel link between a mislocalized RNA binding protein implicated in ALS (RBM45) and dysregulation of the neuroprotective antioxidant response seen in the disease. PMID:25939382

  12. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses

    PubMed Central

    Chaiprasongsuk, Anyamanee; Onkoksoong, Tasanee; Pluemsamran, Thanyawan; Limsaengurai, Saowalak; Panich, Uraiwan

    2015-01-01

    Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8 J/cm2) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. PMID:26765101

  13. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses.

    PubMed

    Chaiprasongsuk, Anyamanee; Onkoksoong, Tasanee; Pluemsamran, Thanyawan; Limsaengurai, Saowalak; Panich, Uraiwan

    2016-08-01

    Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8J/cm(2)) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. PMID:26765101

  14. Finite element simulation of impact response of wire mesh screens

    NASA Astrophysics Data System (ADS)

    Wang, Caizheng; Shankar, Krishna; Fien, Alan

    2015-09-01

    In this paper, the response of wire mesh screens to low velocity impact with blunt objects is investigated using finite element (FE) simulation. The woven wire mesh is modelled with homogeneous shell elements with equivalent smeared mechanical properties. The mechanical behaviour of the woven wire mesh was determined experimentally with tensile tests on steel wire mesh coupons to generate the data for the smeared shell material used in the FE. The effects of impacts with a low mass (4 kg) and a large mass (40 kg) providing the same impact energy are studied. The joint between the wire mesh screen and the aluminium frame surrounding it is modelled using contact elements with friction between the corresponding elements. Damage to the screen of different types compromising its structural integrity, such as mesh separation and pulling out from the surrounding frame is modelled. The FE simulation is validated with results of impact tests conducted on woven steel wire screen meshes.

  15. Antioxidants attenuate multiple phases of formalin-induced nociceptive response in mice.

    PubMed

    Hacimuftuoglu, A; Handy, C R; Goettl, V M; Lin, C G; Dane, S; Stephens, R L

    2006-10-16

    An emerging theme in the study of the pathophysiology of chronic and persistent pain is the role of pro-oxidant substances. Reactive oxygen species (ROS) have been implicated in contributing to and/or maintaining conditions of chronic pain. Recent pre-clinical reports suggest that antioxidants are effective analgesics in neuropathic and inflammatory pain models. The present study extends this work by examining the effect of three antioxidants on tissue injury-induced nociception. C57BL6 mice (20-25 g) were pretreated with either phenyl-N-tert-butylnitrone (PBN; 50 mg/kg, i.p.), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxy (TEMPOL; 200 or 50 mg/kg, i.p.), N-acetyl-L-cysteine (NAC; 200 or 100mg/kg, i.p.), or vehicle (0.5 ml/100 g), 5 min before intraplantar formalin (10%, 20 microl) injection. Nociceptive responding, indicated by licking or biting the affected hindlimb, was quantified for 30 min after formalin injection. Each drug was effective in attenuating two or more phases (acute, quiescent, and tonic) of the formalin response. To assess putative site of action, intrathecal TEMPOL (380 nmol/5 microl, i.t.) was given 5 min before intraplantar formalin. Intrathecal TEMPOL produced a 83% reduction in nociceptive responding in the tonic phase, but no significant attenuation of the acute phase response. To confirm that the antioxidant property of intrathecal TEMPOL was responsible for its analgesic effect on the formalin-induced pain response, intrathecal TEMPOL was coadministered with the free radical donor tert-butylhydroperoxide (tert-BuOOH). Tert-BuOOH coadminstration reversed the TEMPOL-induced analgesia in the tonic intraplantar formalin response reduction. The data suggest that pro-oxidant species may be important mediators of tissue injury-induced algesia in rodents, and that a spinal site of action is implicated in the tonic response. PMID:16919817

  16. Optimization of debittering of soybean antioxidant hydrolysates with β-cyclodextrins using response surface methodology.

    PubMed

    Hou, Lixia; Wang, Jinshui; Zhang, Duo

    2013-06-01

    Antioxidant hydrolysates from soybean have the potential as the new antioxidants, but the bitterness limites their application. A study on the debittering of the soybean antioxidant hydrolysates with β-cyclodextrins and the effects of the debittering conditions on the reducing power of the peptides was conducted using response surface methodology (RSM). The coefficient of determination, R (2) values for bitterness and reducing power were 0.883 and 0.902 respectively. Reducing power of the soybean hydrolysates varied curvilinearly with increase of temperature, mass fraction of β-cyclodextrin, and incubation time. The optimum conditions to obtain the hydrolysates with the minimum bitterness and the maximum reducing power were: temperature 38.50 °C, the mass fraction of β-cyclodextrin 2.00%, and incubation time 12 min, The resulting response functions under this conditions were the reducing power (OD700 nm) of 0.453 and bitterness of 0.290, which was under the threshold for the detection of bitterness taste. PMID:24425947

  17. Elements of a national emergency response system for nuclear accidents

    SciTech Connect

    Dickerson, M.H.

    1987-02-10

    The purpose of this paper is to suggest elements for a general emergency response system, employed at a national level, to detect, evaluate and assess the consequences of a radiological atmospheric release occurring within or outside of national boundaries. These elements are focused on the total aspect of emergency response ranging from providing an initial alarm to a total assessment of the environmental and health effects. Elements of the emergency response system are described in such a way that existing resources can be directly applied if appropriate; if not, newly developed or an expansion of existing resources can be employed. The major thrust of this paper is toward a philosophical discussion and general description of resources that would be required to implementation. If the major features of this proposal system are judged desirable for implementation, then the next level of detail can be added. The philosophy underlying this paper is preparedness - preparedness through planning, awareness and the application of technology. More specifically, it is establishment of reasonable guidelines including the definition of reference and protective action levels for public exposure to accidents involving nuclear material; education of the public, government officials and the news media; and the application of models and measurements coupled to computer systems to address a series of questions related to emergency planning, response and assessment. It is the role of a proven national emergency response system to provide reliable, quality-controlled information to decision makers for the management of environmental crises.

  18. Optimisation of Ultrasound-Assisted Extraction Conditions for Phenolic Content and Antioxidant Capacity from Euphorbia tirucalli Using Response Surface Methodology

    PubMed Central

    Vuong, Quan V.; Goldsmith, Chloe D.; Dang, Trung Thanh; Nguyen, Van Tang; Bhuyan, Deep Jyoti; Sadeqzadeh, Elham; Scarlett, Christopher J.; Bowyer, Michael C.

    2014-01-01

    Euphorbia tirucalli (E. tirucalli) is now widely distributed around the world and is well known as a source of traditional medicine in many countries. This study aimed to utilise response surface methodology (RSM) to optimise ultrasonic-assisted extraction (UAE) conditions for total phenolic compounds (TPC) and antioxidant capacity from E. tirucalli leaf. The results showed that ultrasonic temperature, time and power effected TPC and antioxidant capacity; however, the effects varied. Ultrasonic power had the strongest influence on TPC; whereas ultrasonic temperature had the greatest impact on antioxidant capacity. Ultrasonic time had the least impact on both TPC and antioxidant capacity. The optimum UAE conditions were determined to be 50 °C, 90 min. and 200 W. Under these conditions, the E. tirucalli leaf extract yielded 2.93 mg GAE/g FW of TPC and exhibited potent antioxidant capacity. These conditions can be utilised for further isolation and purification of phenolic compounds from E. tirucalli leaf. PMID:26785074

  19. Characterization and response of antioxidant systems in the tissues of the freshwater pond snail (Lymnaea stagnalis) during acute copper exposure.

    PubMed

    Atli, Gülüzar; Grosell, Martin

    2016-07-01

    The response of enzymatic (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPX and glutathione reductase, GR) and non-enzymatic responses (glutathione, GSH, oxidized glutathione, GSSG and GSH/GSSG) against acute Cu toxicity (2-90μg/mL for 48h) in different tissues of Lymnaea stagnalis were measured. Incubation conditions for enzymatic activity measurements were optimized for L. stagnalis tissues. Three examined tissues, the hepatopancreas, the foot muscle and the mantle, exhibited variable responses in antioxidant parameters as a function of Cu concentrations. The most responsive antioxidant enzymes were GPX and CAT while GR appeared less sensitive. In general antioxidant enzymes at higher Cu concentrations though GSH levels at lower Cu concentrations exhibited the greatest changes in hepatopancreas and foot muscle, respectively. All antioxidant enzymes except GR increased after exposure to the highest Cu concentration in mantle. Total and reduced GSH increased in hepatopancreas but decreased with GSH/GSSG ratios at all Cu concentrations in foot muscle. The present results show that antioxidants respond to acute Cu exposure at concentrations as low as 2μg Cu/L in adult L. stagnalis with variable responses in different tissues. Antioxidants both including enzymatic and non-enzymatic parameters may account, in part, for the high tolerance to acute metal exposure observed in adult L. stagnalis and could form suited biomarkers to evaluate the metal exposure and toxicity in aquatic environment even at relatively low level short term exposure. PMID:27108202

  20. Early antioxidative defence responses in the aquatic worms (Limnodrilus sp.) in Porsuk Creek in Eskisehir (Turkey).

    PubMed

    Oztetik, Elif; Cicek, Arzu; Arslan, Naime

    2013-07-01

    Certain oligochaeta specimens have been universally applied as bioindicators to reflect the organic and inorganic pollution in rivers and play a major role in the decomposition of pollutants. The aim of this study was to investigate the water quality in Porsuk Creek in Eskisehir (Turkey) through the specimens from two different species that belong to Limnodrilus genus, using their biomonitoring compatibilities for the accumulated trace element concentrations and to describe the applicability of antioxidative systems as biomarkers of pollution in Tubificinae. Therefore, some parameters that serve as biomarkers for antioxidative defence, total protein, glutathione (GSH) contents and glutathione S-transferase (GST) activities, were determined in Limnodrilus hoffmeisteri and Limnodrilus udekemianus. The study was completed with the chemical analysis of the trace elements from these specimens and also from the water samples. As a conclusion, the observed elevation in GSH levels and GST activities reflect the contribution of oxidative stress in toxicity mechanisms due to the accumulation of trace elements, and the study also suggests a general induction of detoxification metabolisms in the presence of several pollutants in benthic sediment-dwelling worms. According to the average value, the trace element levels for two species are as follows: Fe > Al > Zn > Mn > Pb > Cu > Ni > B > Cd = Cr = Hg. As Porsuk Creek is used for many purposes, such as irrigation, drinking water and fish production, discharges of all types of wastes should be under stringent control to avoid the unwanted health effects to its habitants and to humans. PMID:22514119

  1. Responses of Antioxidants to Paraquat in Pea Leaves (Relationships to Resistance).

    PubMed Central

    Donahue, J. L.; Okpodu, C. M.; Cramer, C. L.; Grabau, E. A.; Alscher, R. G.

    1997-01-01

    Differnential sensitivity to the oxidant paraquat was observed in pea (Pisum sativum L.) based on cultivar and leaf age. To assess contributions of inductive responses of the antioxidant enzymes in short-term resistance to oxidative damage, activities of glutathione reductase (GR), superoxide dismutase (SOD), and ascorbate peroxidase (APX) and transcript levels for plastidic GR, Cu,Zn SOD, and cytosolic APX were determined. Responses to paraquat exposure from three different leaf age classes of pea were studied. Resistance was correlated with leaf age, photosynthetic rates, enzyme activities, and pretreatment levels of plastid GR and plastid Cu,Zn SOD transcripts. In response to paraquat, small increases in activities of GR and APX were observed in the more resistant leaves. These changes were not reflected at the mRNA level for the plastidic GR or Cu,Zn SOD. Paraquat-mediated increases in cytosolic APX mRNA occurred in all leaf types, irrespective of resistance. Developmentally controlled mechanisms determining basal antioxidant enzyme activities, and not inductive responses, appear to be critical factors mediating short-term oxidative stress resistance. PMID:12223604

  2. Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus.

    PubMed

    Sidhu, Gagan Preet Singh; Singh, Harminder Pal; Batish, Daizy R; Kohli, Ravinder Kumar

    2016-08-01

    A screenhouse experiment was conducted to assay the effect of Lead (Pb) on oxidative status, antioxidative response and metal accumulation in Coronopus didymus after 6 weeks. Results revealed a good Pb tolerance and accumulation potential of C. didymus towards the increasing Pb concentrations (500, 900, 1800, 2900 mg kg(-1)) in soil. The content of Pb in roots and shoots elevated with higher Pb levels and reached a maximum of 3684.3 mg kg(-1) and 862.8 mg kg(-1) Pb dry weight, respectively, at 2900 mg kg(-1) treatment. Pb exposure stimulated electrolyte leakage, H2O2 level, MDA content and the activities of antioxidant machinery (SOD, CAT, APX, GPX and GR). However, at the highest Pb concentration, the activities of SOD and CAT declined. The H2O2 level and MDA content in roots increased significantly up to ∼500% and 213%, respectively, over the control, at 2900 mg kg(-1) Pb treatment. Likewise, concurrent findings were noticed in shoots of C. didymus, with the increasing Pb concentration. The present work suggests that C. didymus exhibited a good accumulation potential for Pb and can tolerate Pb-induced oxidative stress by an effective antioxidant defense mechanism. PMID:27214085

  3. Sulforaphane ameliorates the insulin responsiveness and the lipid profile but does not alter the antioxidant response in diabetic rats.

    PubMed

    de Souza, Carolina Guerini; da Motta, Leonardo Lisbôa; de Assis, Adriano Martimbianco; Rech, Anderson; Bruch, Ricardo; Klamt, Fábio; Souza, Diogo Onofre

    2016-04-20

    Diabetes is one of the most prevalent chronic non-communicable diseases and is characterized by hyperglycemia and increased oxidative stress. These two alterations are also responsible for the main diabetic complications: cardiovascular disease, retinopathy, nephropathy and peripheral neuropathy. Diabetes progression is governed by pancreatic β-cell failure, and recent studies showed that sulforaphane (SFN) might be able to prevent this change, preserving insulin production. Consequently, our goal was to test the effects of SFN on metabolic parameters related to diabetic complications and antioxidant defenses (superoxide dismutase, catalase and sulfhydryl groups) in the pancreas, liver and kidney of non-diabetic and diabetic rats. Male Wistar rats were treated with water or 0.5 mg kg(-1) SFN i.p. for 21 days after diabetes induction. In diabetic animals treated with SFN, the serum levels of total cholesterol, non-HDL cholesterol and triacylglycerols were similar to those of non-diabetic animals, and the insulin responsiveness was higher than that of the diabetic animals that did not receive the compound. No effect of SFN on the superoxide dismutase and catalase activity or sulfhydryl groups was observed in the pancreas, liver or kidney of the treated animals. We conclude that SFN ameliorates some features of clinical diabetic complications particularly the lipid profile and insulin responsiveness, but it does not modulate the antioxidant response induced by superoxide dismutase, catalase and sulfhydryl groups in the evaluated organs. PMID:27025193

  4. The Different Physiological and Antioxidative Responses of Zucchini and Cucumber to Sewage Sludge Application.

    PubMed

    Wyrwicka, Anna; Urbaniak, Magdalena

    2016-01-01

    The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity. PMID:27327659

  5. Salt tolerance is related to a specific antioxidant response in the halophyte cordgrass, Spartina densiflora

    NASA Astrophysics Data System (ADS)

    Canalejo, Antonio; Martínez-Domínguez, David; Córdoba, Francisco; Torronteras, Rafael

    2014-06-01

    Halophytes usually have a robust antioxidative defense system to alleviate oxidative damage during salt stress. Spartina densiflora is a colonizing halophyte cordgrass, native of South America, which has become a common species in salt marshes of northern hemisphere, where it is ousting indigenous species. This study addressed salinity stress in S. densiflora; the occurrence of oxidative stress and the possible involvement of the antioxidative system in its high salt tolerance were studied. Plants were evaluated at in situ conditions, in the laboratory during a 28 day-acclimation period (AP) in clean substrate irrigated with a control salt content of 4 g L-1 (68 mM) and during a subsequent 28 day-treatment period (TP) exposed to different NaCl concentrations: control (68 mM), 428 mM or 680 mM. In the in situ setting, the high leave Na+ content was accompanied by high levels of hydroperoxides and reduced levels of total chlorophyll and carotenes, which correlated with enhanced activation of antioxidant defense biomarkers as total ascorbic acid (AA) content and guaiacol peroxidase (POD: EC 1.11.1.7)), catalase (CAT: EC 1.11.1.6) and ascorbate peroxidase (APX: EC 1.11.1.11) activities. Throughout the AP, leave Na+ and oxidative stress markers decreased concomitantly and reached stable low levels. During the TP, dose and time-dependent accumulation of Na+ in high NaCl-treated plants was concurrent with a decrease in content of total chlorophyll and carotenes and with an increase in the levels of total AA and CAT and APX activities. In conclusion, as hypothesized, high salinity induces conditions of oxidative stress in S. densiflora, so that its salt tolerance appears to be related to the implementation of a specific antioxidant response. This may account for Spartina densiflora's successful adaptation to habitats with fluctuating salinity and favour its phytoremediation potential.

  6. The Different Physiological and Antioxidative Responses of Zucchini and Cucumber to Sewage Sludge Application

    PubMed Central

    Wyrwicka, Anna; Urbaniak, Magdalena

    2016-01-01

    The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity. PMID:27327659

  7. Alteration of antioxidant defense status precedes humoral immune response abnormalities in macrosomia

    PubMed Central

    Haddouche, Mustapha; Aribi, Mourad; Moulessehoul, Soraya; Smahi, Mohammed Chems-Eddine Ismet; Lammani, Mohammed; Benyoucef, Mohammed

    2011-01-01

    Summary Background This study aimed to investigate whether the anomalies affecting the antioxidant and humoral immune defenses could start at birth and to check whether the decrease in antioxidant defenses may precede the immune abnormalities in macrosomic newborns. Material/Methods Thirty macrosomic and 30 sex-matched control newborns were recruited for a retrospective case-control study at the Maghnia Maternity Hospital of Tlemcen Department (Algeria). Results The serum IgG levels were similar in both groups. However, plasma ORAC, albumin, vitamin E, SOD, CAT and GSH-Px levels were significantly decreased in macrosomic as compared to control newborns, yet no difference was observed after adjustment for weight. Additionally, serum concentrations of complement C3, MDA and XO were significantly higher in macrosomic as compared to controls before adjustment for weight. Moreover, macrosomia was significantly associated with high levels of complement C3 (OR=8, p=0.002); whereas no association with those of IgG was observed (OR<1, p>0.05). Furthermore, macrosomia was significantly associated with low levels of ORAC (OR=4.96, p=0.027), vitamin E (OR=4.5, p=0.018), SOD (OR=6.88, p=0.020) and CAT (OR=5.67, p=0.017), and with high levels of MDA (OR=10.29, p=0.005). Conclusions Abnormalities of the humoral defense system in excessive weight could be preceded by alterations of the anti-oxidative defense and by inflammatory response and activation of innate immunity at birth. Additionally, excessive weight could be a potential factor contributing to decreased anti-oxidative capacity and increased oxidative stress. PMID:22037745

  8. Hepatic antioxidative responses to PCDPSs and estimated short-term biotoxicity in freshwater fish.

    PubMed

    Li, Ying; Li, Mei; Shi, Jiaqi; Yang, Xi; Wang, Zunyao

    2012-09-15

    This study evaluated the short-term toxicity of polychlorinated diphenylsulfides (PCDPSs) in freshwater fish. Laboratory experiments were performed to determine the oxidative stress and antioxidative responses of 12 different types of PCDPSs in the liver of goldfish, Carassius auratus. Fish were injected with increasing concentrations (0.1, 1, 10, 100 μg/kg body weight for various PCDPSs and 1, 10, 100 mg/kg for diphenylsulfides (DPS)) of test compounds for 12h, with one group assigned as the control. We simultaneously evaluated the time-dependent effects of PCDPSs on the antioxidant defense system, using Tris-, Penta- and Hepta-CDPS. Fish were acutely injected with either 10 μg/kg of such PCDPSs or corn oil alone (control), and then liver samples were collected at 0.5, 1, 2, 3 and 5d for analysis of antioxidant content. Changes in the activities of superoxide dismutase (SOD), catalase (CAT), and in the levels of malondialdehyde (MDA) were detected, suggesting that PCDPSs exhibit potential biotoxicity. In addition, our data indicated that PCDPS toxicity varies with the degree of substitution and the position of substitution attached to two benzene rings, results that were also partly supported by the time-dependent effects elicited by the Tris-, Penta- and Hepta-CDPSs. In particular, our results indicate that Penta- and Hexa-CDPSs may act as highly toxic contaminants that exhibit striking enzymatic inhibitory activity. Furthermore, our results suggest that altered levels of antioxidant enzymes, including SOD and CAT, along with MDA, may serve as potential biomarkers of PCDPS contamination. PMID:22640874

  9. The response of antioxidant systems in Nostoc sphaeroides against UV-B radiation and the protective effects of exogenous antioxidants

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hu, Chunxiang; Li, Dunhai; Zhang, Delu; Li, Xiaoyan; Chen, Kun; Liu, Yongding

    UV radiation is one of many harmful factors found in space that are detrimental to organisms on earth in space exploration. In the present work, we examined the role of antioxidant system in Nostoc sphaeroides Kütz (Cyanobacterium) and the effects of exogenously applied antioxidant molecules on its photosynthetic rate under UV-B radiation. It was found that UV-B radiation promoted the activity of antioxidant system to protect photosystem II (PSII) and exogenously applied antioxidant: sodium nitroprusside (SNP) and N-acetylcysteine (NAC) had an obvious protection on PSII activity under UV-B radiation. The activity of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and content of MDA (malondialdehyde) and ASC (ascorbate) were improved by 0.5 mM and 1 mM SNP, but 0.1 mM SNP decreased the activity of antioxidant system. Addition of exogenous NAC decreased the activity of SOD, POD, CAT and the content MDA and ASC. In contrast, exogenously applied NAC increased GSH content. The results suggest that exogenous SNP and NAC may protect algae by different mechanisms: SNP may play double roles as both sources of reactive free radicals as well as ROS scavengers in mediating the protective role of PSII on algae under UV-B radiation. On the other hand, NAC functions as an antioxidant or precursor of glutathione, which could protect PSII directly from UV-B radiation.

  10. Antioxidative stress responses in the floating macrophyte Lemna minor L. with cylindrospermopsin exposure.

    PubMed

    Flores-Rojas, Nelida Cecilia; Esterhuizen-Londt, Maranda; Pflugmacher, Stephan

    2015-12-01

    Cylindrospermopsin toxicity and oxidative stress have been examined in aquatic animals, however, only a few studies with aquatic plants have been conducted focusing on the potential for bioaccumulation of cylindrospermopsin. The oxidative stress effects caused by cylindrospermopsin on macrophytes have not yet been specifically studied. The oxidative stress response of Lemna minor L. with exposure to cylindrospermopsin, was therefore tested in this study. The hydrogen peroxide concentration together with the activities of the antioxidant enzymes (catalase, peroxidase, glutathione reductase and glutathione S-transferase) were determined after 24h (hours) of exposure to varying concentrations (0.025, 0.25, 2.5 and 25μg/L) of cylindrospermopsin. Responses with longer exposure periods (48, 96, 168h) were tested only with exposure to 2.5 and 25μg/L cylindrospermopsin. Additionally, the content of the carotenoids was determined as a possible non-enzymatic antioxidant defence mechanism against cylindrospermopsin. The levels of hydrogen peroxide increased after 24h even at the lowest cylindrospermopsin exposure concentrations. Catalase showed the most representative antioxidant response observed after 24h and maintained its activity throughout the experiment. Catalase activity corresponded with the contents of hydrogen peroxide at 2.5 and 25μg/L cylindrospermopsin. The data suggest that glutathione S-transferase, glutathione reductase and the carotenoid content act together with catalase but are more sensitive to higher concentrations of cylindrospermopsin and after a longer exposure period (168h). The results indicate that cylindrospermopsin promotes oxidative stress in L. minor at concentrations of 2.5 and 25μg/L. However, L. minor has sufficient defence mechanisms in place against this cyanobacterial toxin. Even though L. minor exhibits the potential to managing and control cylindrospermopsin contamination in aquatic systems, further studies in tolerance limits to

  11. The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide.

    PubMed

    Obermeier, Michael; Schröder, Christian A; Helmreich, Brigitte; Schröder, Peter

    2015-12-01

    Lemna minor L., a widely used model plant for toxicity tests has raised interest for its application to phytoremediation due to its rapid growth and ubiquitous occurrence. In rural areas, the pollution of water bodies with heavy metals and agrochemicals poses a problem to surface water quality. Among problematic compounds, heavy metals (copper) and pesticides are frequently found in water bodies. To establish duckweed as a potential plant for phytoremediation, enzymatic and antioxidative stress responses of Lemna minor during exposure to copper and a chloroacetamide herbicide were investigated in laboratory studies. The present study aimed at evaluating growth and the antioxidative and glutathione-dependent enzyme activity of Lemna plants and its performance in a scenario for phytoremediation of copper and a chloroacetamide herbicide. Lemna minor was grown in Steinberg medium under controlled conditions. Plants were treated with CuSO4 (ion conc. 50 and 100 μg/L) and pethoxamide (1.25 and 2.5 μg/L). Measurements following published methods focused on plant growth, oxidative stress, and basic detoxification enzymes. Duckweed proved to survive treatment with the respective concentrations of both pollutants very well. Its growth was inhibited scarcely, and no visible symptoms occurred. On the cellular basis, accumulation of O2(-) and H2O2 were detected, as well as stress reactions of antioxidative enzymes. Duckweed detoxification potential for organic pollutants was high and increased significantly with incubation. Pethoxamide was found to be conjugated with glutathione. Copper was accumulated in the fronds at high levels, and transient oxidative defense reactions were triggered. This work confirms the significance of L. minor for the removal of copper from water and the conjugation of the selective herbicide pethoxamide. Both organic and inorganic xenobiotics induced different trends of enzymatic and antioxidative stress response. The strong increase of stress

  12. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes.

    PubMed

    Han, Kyu-Ho; Hashimoto, Naoto; Fukushima, Michihiro

    2016-01-01

    Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway. PMID:26755859

  13. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes

    PubMed Central

    Han, Kyu-Ho; Hashimoto, Naoto; Fukushima, Michihiro

    2016-01-01

    Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway. PMID:26755859

  14. Low cytotoxicity of inorganic nanotubes and fullerene-like nanostructures in human bronchial epithelial cells: relation to inflammatory gene induction and antioxidant response.

    PubMed

    Pardo, Michal; Shuster-Meiseles, Timor; Levin-Zaidman, Smadar; Rudich, Assaf; Rudich, Yinon

    2014-03-18

    The cytotoxicity of tungsten disulfide nano tubes (INT-WS2) and inorganic fullerene-like molybdenum disulfide (IF-MoS2) nanoparticles (NPs) used in industrial and medical applications was evaluated in comparison to standard environmental particulate matter. The IF-MoS2 and INT-WS2 reside in vesicles/inclusion bodies, suggestive of endocytic vesicles. In cells representing the respiratory, immune and metabolic systems, both IF-MoS2 and INT-WS2 NPs remained nontoxic compared to equivalent concentrations (up to 100 μg/mL in the medium) of silica dioxide (SiO2), diesel engine-derived and carbon black NPs, which induced cell death. Associating with this biocompatibility of IF-MoS2\\INT-WS2, we demonstrate in nontransformed human bronchial cells (NL-20) relative low induction of the pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α. Moreover, IF-MoS2 and INT-WS2 activated antioxidant response as measured by the antioxidant response element (ARE) using a luciferase reporter, and induced Nrf2-mediated Phase II detoxification genes. Collectively, our findings suggest that the lower cytotoxicity of IF-MoS2 and INT-WS2 NPs does not reflect general biological inertness. Rather, compared to other NP's, it likely results from decreased pro-inflammatory activation, but a comparable significant capacity to induce protective antioxidant/detoxification defense mechanisms. PMID:24533583

  15. Differential Responses of the Antioxidant System of Ametryn and Clomazone Tolerant Bacteria

    PubMed Central

    Peters, Leila Priscila; Carvalho, Giselle; Martins, Paula Fabiane; Dourado, Manuella Nóbrega; Vilhena, Milca Bartz; Pileggi, Marcos; Azevedo, Ricardo Antunes

    2014-01-01

    The herbicides ametryn and clomazone are widely used in sugarcane cultivation, and following microbial degradation are considered as soil and water contaminants. The exposure of microorganisms to pesticides can result in oxidative damage due to an increase in the production of reactive oxygen species (ROS). This study investigated the response of the antioxidant systems of two bacterial strains tolerant to the herbicides ametryn and clomazone. Bacteria were isolated from soil with a long history of ametryn and clomazone application. Comparative analyses based on 16S rRNA gene sequences revealed that strain CC07 is phylogenetically related to Pseudomonas aeruginosa and strain 4C07 to P. fulva. The two bacterial strains were grown for 14 h in the presence of separate and combined herbicides. Lipid peroxidation, reduced glutathione content (GSH) and antioxidant enzymes activities were evaluated. The overall results indicated that strain 4C07 formed an efficient mechanism to maintain the cellular redox balance by producing reactive oxygen species (ROS) and subsequently scavenging ROS in the presence of the herbicides. The growth of bacterium strain 4C07 was inhibited in the presence of clomazone alone, or in combination with ametryn, but increased glutathione reductase (GR) and glutathione S-transferase (GST) activities, and a higher GSH concentration were detected. Meanwhile, reduced superoxide dismutase (SOD), catalase (CAT) and GST activities and a lower concentration of GSH were detected in the bacterium strain CC07, which was able to achieve better growth in the presence of the herbicides. The results suggest that the two bacterial strains tolerate the ametryn and clomazone herbicides with distinctly different responses of the antioxidant systems. PMID:25380132

  16. Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria.

    PubMed

    Peters, Leila Priscila; Carvalho, Giselle; Martins, Paula Fabiane; Dourado, Manuella Nóbrega; Vilhena, Milca Bartz; Pileggi, Marcos; Azevedo, Ricardo Antunes

    2014-01-01

    The herbicides ametryn and clomazone are widely used in sugarcane cultivation, and following microbial degradation are considered as soil and water contaminants. The exposure of microorganisms to pesticides can result in oxidative damage due to an increase in the production of reactive oxygen species (ROS). This study investigated the response of the antioxidant systems of two bacterial strains tolerant to the herbicides ametryn and clomazone. Bacteria were isolated from soil with a long history of ametryn and clomazone application. Comparative analyses based on 16S rRNA gene sequences revealed that strain CC07 is phylogenetically related to Pseudomonas aeruginosa and strain 4C07 to P. fulva. The two bacterial strains were grown for 14 h in the presence of separate and combined herbicides. Lipid peroxidation, reduced glutathione content (GSH) and antioxidant enzymes activities were evaluated. The overall results indicated that strain 4C07 formed an efficient mechanism to maintain the cellular redox balance by producing reactive oxygen species (ROS) and subsequently scavenging ROS in the presence of the herbicides. The growth of bacterium strain 4C07 was inhibited in the presence of clomazone alone, or in combination with ametryn, but increased glutathione reductase (GR) and glutathione S-transferase (GST) activities, and a higher GSH concentration were detected. Meanwhile, reduced superoxide dismutase (SOD), catalase (CAT) and GST activities and a lower concentration of GSH were detected in the bacterium strain CC07, which was able to achieve better growth in the presence of the herbicides. The results suggest that the two bacterial strains tolerate the ametryn and clomazone herbicides with distinctly different responses of the antioxidant systems. PMID:25380132

  17. Decreased Total Antioxidant Activity in Major Depressive Disorder Patients Non-Responsive to Antidepressant Treatment

    PubMed Central

    Baek, Song-Eun; Lee, Gyoung-Ja; Rhee, Chang-Kyu; Rho, Dae-Young; Kim, Do-Hoon; Huh, Sun

    2016-01-01

    Objective This study aimed to evaluate the total antioxidant activity (TAA) in patients with major depressive disorder (MDD) and the effect of antidepressants on TAA using a novel potentiometric method. Methods Twenty-eight patients with MDD and thirty-one healthy controls were enrolled in this study. The control group comprised 31 healthy individuals matched for gender, drinking and smoking status. We assessed symptoms of depression using the Hamilton Depression Rating Scale (HAMD) and the Beck Depression Inventory (BDI). We measured TAA using potentiometry. All measurements were made at baseline and four and eight weeks later. Results There was a significant negative correlation between BDI scores and TAA. TAA was significantly lower in the MDD group than in controls. When the MDD group was subdivided into those who showed clinical response to antidepressant therapy (response group) and those who did not (non-response group), only the non-response group showed lower TAA, while the response group showed no significant difference to controls at baseline. After eight weeks of antidepressant treatment, TAA in both the response and non-response groups was similar, and there was no significant difference among the three groups. Conclusion These results suggest that the response to antidepressant treatment in MDD patients might be predicted by measuring TAA. PMID:27081384

  18. Spectral response of multi-element silicon detectors

    SciTech Connect

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K.

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  19. Antioxidative responses in zebrafish liver exposed to sublethal doses Aphanizomenon flos-aquae DC-1 aphantoxins.

    PubMed

    Zhang, De Lu; Liu, Si Yi; Zhang, Jing; Hu, Chun Xiang; Li, Dun Hai; Liu, Yong Ding

    2015-03-01

    Aphanizomenon flos-aquae secretes paralytic shellfish poisons (PSPs), termed aphantoxins, and endangers environmental and human health via eutrophication of water worldwide. Although the molecular mechanism of neuronal PSP toxicity has been well studied, several issues remain unresolved, notably the in vivo hepatic antioxidative responses to this neurotoxin. Aphantoxins extracted from a natural isolate of A. flos-aquae DC-1 were resolved by high performance liquid chromatography. The primary components were gonyautoxins 1 and 5 and neosaxitoxin. Zebrafish (Danio rerio) were treated intraperitoneally with either 5.3 or 7.61 (low and high doses, respectively) μg saxitoxin (STX) equivalents (eq)/kg of A. flos-aquae DC-1 aphantoxins. Antioxidative responses in zebrafish liver were examined at different timepoints 1-24h post-exposure. Aphantoxin administration significantly enhanced hepatic malondialdehyde (MDA) content 1-12h post-exposure, indicative of oxidative stress and lipid peroxidation. By contrast, levels of reduced glutathione (GSH) in zebrafish liver declined significantly after 3-24h exposure, suggesting that GSH participates in MDA metabolism. A significant upregulation of the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) was observed, suggesting that aphantoxins induce lipid peroxidation in zebrafish liver and are likely to be hepatotoxic. Hepatic levels of MDA and GSH, and of the three enzymes (SOD, CAT, and GPx), therefore provide potential biomarkers for studying environmental exposure to aphantoxins/PSPs from cyanobacterial blooms. PMID:25544652

  20. Variations in oxygen concentration cause differential antioxidant response and expression of related genes in Beauveria bassiana.

    PubMed

    Garza-López, Paul Misael; Suárez-Vergel, Gerardo; Hamdan-Partida, Aida; Loera, Octavio

    2015-04-01

    The entomopathogenic fungus Beauveria bassiana is widely used in pest biocontrol strategies. We evaluated both the antioxidant response mediated by compatible solutes, trehalose or mannitol, and the expression of related genes using oxygen pulses at three oxygen concentrations in solid state culture (SSC): normal atmosphere (21% O2), low oxygen (16% O2) and enriched oxygen (26% O2). Trehalose concentration decreased 75% after atmospheric modifications in the cultures, whereas mannitol synthesis was three-fold higher under the 16% O2 pulses relative to normal atmosphere (100 and 30 μg mannitol mg(-1) biomass, respectively). Confirming this result, expression of the mpd gene, coding for mannitol-1-P dehydrogenase (MPD), increased up to 1.4 times after O2 pulses. The expression of the bbrgs1 gene, encoding a regulatory G protein related to conidiation, was analysed to explain previously reported differences in conidial production. Surprisingly, expression of bbrgs1 decreased after atmospheric modification. Finally, principal component analysis (PCA) indicated that 83.39% of the variability in the data could be explained by two components. This analysis corroborated the positive correlation between mannitol concentration and mpd gene expression, as well as the negative correlation between conidial production and bbrgs1 gene expression. This study contributes to understanding of antioxidant and molecular response of B. bassiana induced under oxidant conditions. PMID:25813512

  1. Antioxidant enzymes activities of Burkholderia spp. strains-oxidative responses to Ni toxicity.

    PubMed

    Dourado, M N; Franco, M R; Peters, L P; Martins, P F; Souza, L A; Piotto, F A; Azevedo, R A

    2015-12-01

    Increased agriculture production associated with intense application of herbicides, pesticides, and fungicides leads to soil contamination worldwide. Nickel (Ni), due to its high mobility in soils and groundwater, constitutes one of the greatest problems in terms of environmental pollution. Metals, including Ni, in high concentrations are toxic to cells by imposing a condition of oxidative stress due to the induction of reactive oxygen species (ROS), which damage lipids, proteins, and DNA. This study aimed to characterize the Ni antioxidant response of two tolerant Burkholderia strains (one isolated from noncontaminated soil, SNMS32, and the other from contaminated soil, SCMS54), by measuring superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase (GST) activities. Ni accumulation and bacterial growth in the presence of the metal were also analyzed. The results showed that both strains exhibited different trends of Ni accumulation and distinct antioxidant enzymes responses. The strain from contaminated soil (SCMS54) exhibited a higher Ni biosorption and exhibited an increase in SOD and GST activities after 5 and 12 h of Ni exposure. The analysis of SOD, CAT, and GR by nondenaturing PAGE revealed the appearance of an extra isoenzyme in strain SCMS54 for each enzyme. The results suggest that the strain SCMS54 isolated from contaminated soil present more plasticity with potential to be used in soil and water bioremediation. PMID:26289332

  2. Maternal antioxidant blocks programmed cardiovascular and behavioural stress responses in adult mice

    PubMed Central

    ROGHAIR, Robert D.; WEMMIE, John A.; VOLK, Kenneth A.; SCHOLZ, Thomas D.; LAMB, Fred S.; SEGAR, Jeffrey L.

    2013-01-01

    Intra-uterine growth restriction is an independent risk factor for adult psychiatric and cardiovascular diseases. In humans, intra-uterine growth restriction is associated with increased placental and fetal oxidative stress, as well as down-regulation of placental 11β-HSD (11β-hydroxysteroid dehydrogenase). Decreased placental 11β-HSD activity increases fetal exposure to maternal glucocorticoids, further increasing fetal oxidative stress. To explore the developmental origins of co-morbid hypertension and anxiety disorders, we increased fetal glucocorticoid exposure by administering the 11β-HSD inhibitor CBX (carbenoxolone; 12 mg · kg−1 of body weight · day−1) during the final week of murine gestation. We hypothesized that maternal antioxidant (tempol throughout pregnancy) would block glucocorticoid-programmed anxiety, vascular dysfunction and hypertension. Anxiety-related behaviour (conditioned fear) and the haemodynamic response to stress were measured in adult mice. Maternal CBX administration significantly increased conditioned fear responses of adult females. Among the offspring of CBX-injected dams, maternal tempol markedly attenuated the behavioural and cardiovascular responses to psychological stress. Compared with offspring of undisturbed dams, male offspring of dams that received daily third trimester saline injections had increased stress-evoked pressure responses that were blocked by maternal tempol. In contrast, tempol did not block CBX-induced aortic dysfunction in female mice (measured by myography and lucigenin-enhanced chemiluminescence). We conclude that maternal stress and exaggerated fetal glucocorticoid exposure enhance sex-specific stress responses, as well as alterations in aortic reactivity. Because concurrent tempol attenuated conditioned fear and stress reactivity even among the offspring of saline-injected dams, we speculate that antenatal stressors programme offspring stress reactivity in a cycle that may be broken by antenatal

  3. Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology.

    PubMed

    Hammi, Khaoula Mkadmini; Jdey, Ahmed; Abdelly, Chedly; Majdoub, Hatem; Ksouri, Riadh

    2015-10-01

    The optimization of antioxidant extraction conditions from a ripe edible fruits of Zizyphus lotus (L.) with an ultrasound-assisted system was achieved by response surface methodology. The central composite rotatable design was employed for optimization of extraction parameters in terms of total phenolic content and antioxidant activities using 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and phosphomolybdenum assay. The optimum operating conditions for extraction were as follows: ethanol concentration, 50%; extraction time, 25 min; extraction temperature, 63°C and ratio of solvent to solid, 67 mL/g. Under these conditions, the obtained extract exhibited a high content of phenolic compounds (40.782 mg gallic acid equivalents/g dry matter) with significant antioxidant properties (the total antioxidant activity was 75.981 mg gallic acid equivalents/g dry matter and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity was 0.289 mg/mL). PMID:25872429

  4. Hormetic response triggers multifaceted anti-oxidant strategies in immature king penguins (Aptenodytes patagonicus).

    PubMed

    Rey, Benjamin; Dégletagne, Cyril; Bodennec, Jacques; Monternier, Pierre-Axel; Mortz, Mathieu; Roussel, Damien; Romestaing, Caroline; Rouanet, Jean-Louis; Tornos, Jeremy; Duchamp, Claude

    2016-08-01

    Repeated deep dives are highly pro-oxidative events for air-breathing aquatic foragers such as penguins. At fledging, the transition from a strictly terrestrial to a marine lifestyle may therefore trigger a complex set of anti-oxidant responses to prevent chronic oxidative stress in immature penguins but these processes are still undefined. By combining in vivo and in vitro approaches with transcriptome analysis, we investigated the adaptive responses of sea-acclimatized (SA) immature king penguins (Aptenodytes patagonicus) compared with pre-fledging never-immersed (NI) birds. In vivo, experimental immersion into cold water stimulated a higher thermogenic response in SA penguins than in NI birds, but both groups exhibited hypothermia, a condition favouring oxidative stress. In vitro, the pectoralis muscles of SA birds displayed increased oxidative capacity and mitochondrial protein abundance but unchanged reactive oxygen species (ROS) generation per g tissue because ROS production per mitochondria was reduced. The genes encoding oxidant-generating proteins were down-regulated in SA birds while mRNA abundance and activity of the main antioxidant enzymes were up-regulated. Genes encoding proteins involved in repair mechanisms of oxidized DNA or proteins and in degradation processes were also up-regulated in SA birds. Sea life also increased the degree of fatty acid unsaturation in muscle mitochondrial membranes resulting in higher intrinsic susceptibility to ROS. Oxidative damages to protein or DNA were reduced in SA birds. Repeated experimental immersions of NI penguins in cold-water partially mimicked the effects of acclimatization to marine life, modified the expression of fewer genes related to oxidative stress but in a similar way as in SA birds and increased oxidative damages to DNA. It is concluded that the multifaceted plasticity observed after marine life may be crucial to maintain redox homeostasis in active tissues subjected to high pro-oxidative pressure

  5. Antioxidant and oxidative stress related responses in the Mediterranean land snail Cantareus apertus exposed to the carbamate pesticide Carbaryl.

    PubMed

    Leomanni, A; Schettino, T; Calisi, A; Gorbi, S; Mezzelani, M; Regoli, F; Lionetto, M G

    2015-02-01

    The aim of the present work was to study the alterations of the antioxidant defenses and the overall susceptibility to oxidative stress of the terrestrial snail Cantareus apertus exposed to the carbamate pesticide Carbaryl at a low environmentally realistic concentration. The animals were exposed to Lactuca sativa soaked for 1h in 1μM Carbaryl. The temporal dynamics of the responses was assessed by measurements at 3, 7 and 14days of exposure. C. apertus exposed to Carbaryl activates a number of enzymatic antioxidant responses, represented by the early induction of catalase, glutathione peroxidase, glutathione reductase, followed by a delayed induction of superoxide dismutase. Concomitantly, a derangement of the total oxyradical scavenging of the tissues was observed, suggesting an overall impairment of the tissue capability to neutralize ROS probably resulting from the overall negative balance between enzymatic antioxidant defense capability and oxidative stress intensity. This negative balance exposed the animals to the risk of oxidative stress damages including genotoxic damage. Compared to acetylcholinesterase inhibition, the antioxidant responses developed to Carbaryl exposure at the low concentration utilized showed a greater percentage variation in exposed organisms. The results pointed out the high sensitivity of the antioxidant and oxidative stress related responses to Carbaryl exposure at an environmental realistic concentration, demonstrating their usefulness in environmental monitoring and risk assessment. The study highlights also the usefulness of the terrestrial snail C. apertus as potential bioindicator species for assessing the risk of pesticide environmental contamination. PMID:25451076

  6. Antioxidant response and carboxylate metabolism in Brassica rapa exposed to different external Zn, Ca, and Mg supply.

    PubMed

    Blasco, Begoña; Graham, Neil S; Broadley, Martin R

    2015-03-15

    Zinc (Zn), calcium (Ca), and magnesium (Mg) malnutrition are common deficiencies in many developed and developing countries, resulting in a widespread health problem. Biofortification of food crops is an agricultural strategy that can be used to increase the levels of these elements in the edible portions of crops. Deficiency or toxicity of these cations in soils reduces plant growth, crop yield, and the quality of plant foodstuff. The aim of this study was to investigate the effect of external Zn, Ca, and Mg supply on accumulation and distribution of this elements as well as antioxidant response and organic acid composition of Brassica rapa ssp. trilocularis line R-o-18. Plants were grown at low Zn (0.05 μM Zn) and high Zn (500 μM Zn), low Ca (0.4 mM) and high Ca (40 mM), and low Mg (0.2 mM), and high Mg (20 mM) to simulate deficiency and toxicity conditions. Larger shoot biomass reductions were observed under high Zn, Ca and Mg treatments, and superoxide dismutase (SOD), ascorbate peroxidase (APX), H2O2, malondialdehyde (MDA), and total ascorbate (AA) showed a marked increase in these treatments. Therefore, Brassica plants might be more sensitive to excess of these elements in the nutrient solution. The translocation factor (TF) and distribution coefficient (DC) values of Zn, Ca, and Mg indicated higher translocation and accumulation in deficient conditions. High biosynthesis and citrate content in Brassica plants may be associated mainly with a high-nutrient solution extraction ability of these plants. These results provide background data, which will be used to characterize TILLING mutants to study the effects of mutations in genes involved in regulating Zn, Ca, and Mg distribution and accumulation in plants. PMID:25544655

  7. Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants.

    PubMed

    Gratão, Priscila Lupino; Monteiro, Carolina Cristina; Tezotto, Tiago; Carvalho, Rogério Falleiros; Alves, Letícia Rodrigues; Peters, Leila Priscila; Azevedo, Ricardo Antunes

    2015-10-01

    Many aspects related to ROS modulation of signaling networks and biological processes that control stress responses still remain unanswered. For this purpose, the grafting technique may be a powerful tool to investigate stress signaling and specific responses between plant organs during stress. In order to gain new insights on the modulation of antioxidant stress responses mechanisms, gas-exchange measurements, lipid peroxidation, H2O2 content, proline, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX) and guaiacol peroxidase (GPOX) were analyzed in Micro-Tom grafted plants submitted to cadmium (Cd). The results observed revealed that higher amounts of Cd accumulated mainly in the roots and rootstocks when compared to leaves and scions. Macronutrients uptake (Ca, S, P and Mg) decreased in non-grafted plants, but differed among plant parts in all grafted plants. The results showed that the accumulation of proline observed in scions of grafted plants could be associated to the lower MDA contents in the scions of grafted plants. In the presence of Cd, non-grafted plants displayed increased CAT, GR, GPOX and APX activities for both tissues, whilst grafted plants revealed distinct trends that clearly indicate signaling responses from the rootstocks, allowing sufficient time to activate defense mechanisms in shoot. The information available concerning plants subjected to grafting can provide a better understanding of the mechanisms of Cd detoxification involving root-to-shoot signaling, opening new possibilities on strategies which can be used to manipulate heavy metal tolerance, since antioxidant systems are directly involved in such mechanism. PMID:26077192

  8. Response of Daphnia's Antioxidant System to Spatial Heterogeneity in Cyanobacteria Concentrations in a Lowland Reservoir

    PubMed Central

    Wojtal-Frankiewicz, Adrianna; Bernasińska, Joanna; Frankiewicz, Piotr; Gwoździński, Krzysztof; Jurczak, Tomasz

    2014-01-01

    Many species and clones of Daphnia inhabit ecosystems with permanent algal blooms, and they can develop tolerance to cyanobacterial toxins. In the current study, we examined the spatial differences in the response of Daphnia longispina to the toxic Microcystis aeruginosa in a lowland eutrophic dam reservoir between June (before blooms) and September (during blooms). The reservoir showed a distinct spatial pattern in cyanobacteria abundance resulting from the wind direction: the station closest to the dam was characterised by persistently high Microcystis biomass, whereas the upstream stations had a significantly lower biomass of Microcystis. Microcystin concentrations were closely correlated with the cyanobacteria abundance (r = 0.93). The density of daphniids did not differ among the stations. The main objective of this study was to investigate how the distribution of toxic Microcystis blooms affects the antioxidant system of Daphnia. We examined catalase (CAT) activity, the level of the low molecular weight antioxidant glutathione (GSH), glutathione S-transferase (GST) activity and oxidative stress parameters, such as lipid peroxidation (LPO). We found that the higher the abundance (and toxicity) of the cyanobacteria, the lower the values of the antioxidant parameters. The CAT activity and LPO level were always significantly lower at the station with the highest M. aeruginosa biomass, which indicated the low oxidative stress of D. longispina at the site with the potentially high toxic thread. However, the low concentration of GSH and the highest activity of GST indicated the occurrence of detoxification processes at this site. These results demonstrate that daphniids that have coexisted with a high biomass of toxic cyanobacteria have effective mechanisms that protect them against the toxic effects of microcystins. We also conclude that Daphnia's resistance capacity to Microcystis toxins may differ within an ecosystem, depending on the bloom's spatial

  9. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings.

    PubMed

    Srivastava, Rajneesh Kumar; Pandey, Poonam; Rajpoot, Ritika; Rani, Anjana; Dubey, R S

    2014-09-01

    Interactive effects of two heavy metal pollutants Cd and Pb in the growth medium were examined on their uptake, production of reactive oxygen species (ROS), induction of oxidative stress and antioxidative defence responses in Indica rice (Oryza sativa L.) seedlings. When rice seedlings in sand culture were exposed to 150 μM Cd (NO3)2 or 600 μM Pb (CH3COO)2 individually or in combination for 8-16 days, a significant reduction in root/shoot length, fresh weight, relative water content, photosynthetic pigments and increased production of ROS (O2˙- and H2O2) was observed. Both Cd and Pb were readily taken up by rice roots and localisation of absorbed metals was greater in roots than in shoots. When present together in the growth medium, uptake of both the metals Cd and Pb declined by 25-40%. Scanning electron microscope (SEM) imaging of leaf stomata revealed that Pb caused more distortion in the shape of guard cells than Cd. Dithizone staining of roots showed localisation of absorbed Cd on root hairs and epidermal cells. Both Cd and Pb caused increased lipid peroxidation, protein carbonylation, decline in protein thiol and increase in non-protein thiol. The level of reduced forms of non-enzymic antioxidants glutathione (GSH) and ascorbate (AsA) and their redox ratios (GSH/AsA) declined, whereas the activities of antioxidative enzymes superoxide dismutase (SOD) and guaiacol peroxidase (GPX) increased in metal treated seedlings compared to controls. In-gel activity staining also revealed increased intensities of SOD and GPX isoforms with metal treatments. Catalase (CAT) activity increased during early days (8 days) of metal exposure and declined by 16 days. Results suggest that oxidative stress is an important component in expression of Cd and Pb toxicities in rice, though uptake of both metals gets reduced considerably when present together in the medium. PMID:24482190

  10. Photochemical and antioxidative responses of the glume and flag leaf to seasonal senescence in wheat

    PubMed Central

    Kong, Lingan; Sun, Mingze; Xie, Yan; Wang, Fahong; Zhao, Zhendong

    2015-01-01

    The non-leaf photosynthetic organs have recently attracted much attention for the breeding and screening of varieties of cereal crops to achieve a high grain yield. However, the glume photosynthetic characteristics and responses to high temperature at the late stages of grain filling are not well known in winter wheat (Triticum aestivum L.). In the present study, an experiment was conducted to investigate the anatomy, chloroplast temporal changes, chlorophyll fluorescence, xanthophyll cycle and antioxidative defense system in glumes of field-grown wheat during grain filling compared with flag leaves. Observations using a light microscope revealed that the glumes developed a solid structural base for performing photosynthesis. Compared with the flag leaves, the glumes preserved a more integral ultrastructure, as observed under transmission electron microscopy, and had higher values of Fv/Fm and ΦPSII at the maturity stage. Further analysis of the chlorophyll fluorescence demonstrated that the glumes experienced high non-photochemical quenching (NPQ) at the late stages. Determination of the pool size of the xanthophyll cycle suggested that the (A+Z)/(V+A+Z) ratio was consistently higher in glumes than in flag leaves and that the V+A+Z content was considerably higher in glumes at the maturity stage. In addition, the glumes exhibited a higher antioxidant enzyme activity and a lower accumulation of reactive oxygen species. These results suggest that the glumes are photosynthetically active and senesce later than the flag leaves; the advantages may have been achieved by coordinated contributions of the structural features, higher NPQ levels, greater de-epoxidation of the xanthophyll cycle components and antioxidative defense metabolism. PMID:26052333

  11. Tissue-specific responses of oxidative stress biomarkers and antioxidant defenses in rainbow trout Oncorhynchus mykiss during a vaccination against furunculosis.

    PubMed

    Tkachenko, Halyna; Kurhaluk, Natalia; Grudniewska, Joanna; Andriichuk, Anastasiia

    2014-08-01

    The present study was conducted to evaluate the effects of vaccination against furunculosis on responses of oxidative stress and antioxidant defenses in rainbow trout Oncorhynchus mykiss muscle, gills, liver, and brain tissues. The oxidative stress markers (malondialdehyde and carbonyl derivatives of protein oxidative destruction levels), antioxidant defenses (superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase), and total antioxidant capacity in different tissues of rainbow trout were measured. Our data showed that exposure of trout to vaccine against furunculosis produced changes (either increase or decrease) in oxidative stress and antioxidant enzymes responses, and these responses showed marked organ differences, associated with tissue patterns. Our study demonstrated that vaccinated trout showed alteration in antioxidant defenses and oxidative stress responses, with higher severity in the liver, compared with other tissues. Our data also suggest that vaccination against furunculosis induced lipid peroxidation in gill and liver tissues. However, muscle and brain tissue are capable of restoring its pro- and antioxidant balance after vaccination. PMID:24599827

  12. Finite element cochlear models and their steady state response

    NASA Astrophysics Data System (ADS)

    Kagawa, Y.; Yamabuchi, T.; Watanabe, N.; Mizoguchi, T.

    1987-12-01

    Numerical cochlear models are constructed by means of a finite element approach and their frequency and spatial responses are calculated. The cochlea is modelled as a coupled fluid-membrane system, for which both two- and three-dimensional models are considered. The fluid in the scala canals is assumed to be incompressible and the basilar membrane is assumed to be a locally reactive impedance wall or a lossy elastic membrane. With the three-dimensional models, the effects are examined of the spiral configuration of the cochlea, of the presence of the lamina and the ligament that narrows the coupling area between the two fluid canals (scala vestibuli and scala tympani), and of the extended reaction of the basilar membrane which cannot be included in case of the two-dimensional models. The conclusion is that these effects on the cochlear response and the inherent mechanism governing the cochlear behaviour are found to be rather secondary.

  13. Optimization of pancreatic lipase inhibitory and antioxidant activities of Ilex paraguariensis by using response surface methodology.

    PubMed

    Oh, Kyung-Eon; Shin, Hyeji; Jeon, Young Ho; Jo, Yang Hee; Lee, Mi Kyeong; Lee, Ken S; Park, Byoungduck; Lee, Ki Yong

    2016-07-01

    Response surface methodology (RSM) using a Box-Behnken design was used to optimize the extraction conditions for obtaining pancreatic lipase inhibitory and antioxidant principles from Ilex paraguariensis leaves. Three influencing factors: extraction time (min), the liquid-solid ratio, and ethanol concentration (%, v/v) were investigated in the ultrasonic extraction process. Optimization of the extraction conditions to obtain a product with minimum PL activity, maximum antioxidant activity, and maximum yield was performed using RSM by focusing on the three target influencing factors. The optimum conditions were established as the ethanol concentration (54.8 %), liquid-solid ratio (35.4), and extraction time (70.0 min). Under these conditions, the 2,2-diphenyl-1-picrylhydrazyl scavenging activity, PL activity, extraction yield were 59.3 ± 3.5, 35.3 ± 3.0, and 34.4 ± 0.4 %, respectively, similar to the theoretical predicted values of 59.7, 35.2, and 34.3 %, respectively. PMID:27277165

  14. Physiological and antioxidant responses of two accessions of Arabidopsis thaliana in different light and temperature conditions.

    PubMed

    Szymańska, Renata; Nowicka, Beatrycze; Gabruk, Michał; Glińska, Sława; Michlewska, Sylwia; Dłużewska, Jolanta; Sawicka, Anna; Kruk, Jerzy; Laitinen, Roosa

    2015-06-01

    During their lifetime, plants need to adapt to a changing environment, including light and temperature. To understand how these factors influence plant growth, we investigated the physiological and antioxidant responses of two Arabidopsis accessions, Shahdara (Sha) from the Shahdara valley (Tajikistan, Central Asia) in a mountainous area and Lovvik-5 (Lov-5) from northern Sweden to different light and temperature conditions. These accessions originate from different latitudes and have different life strategies, both of which are known to be influenced by light and temperature. We showed that both accessions grew better in high-light and at a lower temperature (16°C) than in low light and at 23°C. Interestingly, Sha had a lower chlorophyll content but more efficient non-photochemical quenching than Lov-5. Sha, also showed a higher expression of vitamin E biosynthetic genes. We did not observe any difference in the antioxidant prenyllipid level under these conditions. Our results suggest that the mechanisms that keep the plastoquinone (PQ)-pool in more oxidized state could play a role in the adaptation of these accessions to their local climatic conditions. PMID:25214438

  15. Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury.

    PubMed

    Tao, Ge; Kahr, Peter C; Morikawa, Yuka; Zhang, Min; Rahmani, Mahdis; Heallen, Todd R; Li, Lele; Sun, Zhao; Olson, Eric N; Amendt, Brad A; Martin, James F

    2016-06-01

    Myocardial infarction results in compromised myocardial function and heart failure owing to insufficient cardiomyocyte self-renewal. Unlike many vertebrates, mammalian hearts have only a transient neonatal renewal capacity. Reactivating primitive reparative ability in the mature mammalian heart requires knowledge of the mechanisms that promote early heart repair. By testing an established Hippo-deficient heart regeneration mouse model for factors that promote renewal, here we show that the expression of Pitx2 is induced in injured, Hippo-deficient ventricles. Pitx2-deficient neonatal mouse hearts failed to repair after apex resection, whereas adult mouse cardiomyocytes with Pitx2 gain-of-function efficiently regenerated after myocardial infarction. Genomic analyses indicated that Pitx2 activated genes encoding electron transport chain components and reactive oxygen species scavengers. A subset of Pitx2 target genes was cooperatively regulated with the Hippo pathway effector Yap. Furthermore, Nrf2, a regulator of the antioxidant response, directly regulated the expression and subcellular localization of Pitx2. Pitx2 mutant myocardium had increased levels of reactive oxygen species, while antioxidant supplementation suppressed the Pitx2 loss-of-function phenotype. These findings reveal a genetic pathway activated by tissue damage that is essential for cardiac repair. PMID:27251288

  16. Inhibition of pro-inflammatory responses and antioxidant capacity of Mexican blackberry (Rubus spp.) extracts.

    PubMed

    Cuevas-Rodríguez, Edith O; Dia, Vermont P; Yousef, Gad G; García-Saucedo, Pedro A; López-Medina, José; Paredes-López, Octavio; Gonzalez de Mejia, Elvira; Lila, Mary Ann

    2010-09-01

    Total polyphenolic and anthocyanin- and proanthocyanidin-rich fractions from wild blackberry genotypes (WB-3, WB-7, WB-10, and WB-11), a domesticated noncommercial breeding line (UM-601), and a commercial cultivar (Tupy) were evaluated for inhibition of pro-inflammatory responses [nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression, cyclooxygenase-2 (COX-2) expression, and prostaglandin E2 (PGE2)] in RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS). At 50 microM [cyanidin-3-O-glucoside (C3G) or catechin equivalent], most fractions significantly (P<0.05) inhibited all markers. The anthocyanin-rich fraction from WB-10 and the proanthocyanidin-rich fraction from UM-601 exhibited the highest NO inhibitory activities (IC50=16.1 and 15.1 microM, respectively). Proanthocyanidin-rich fractions from the wild WB-10 showed the highest inhibition of iNOS expression (IC50=8.3 microM). Polyphenolic-rich fractions from WB-7 and UM-601 were potent inhibitors of COX-2 expression (IC50=19.1 and 19.3 microM C3G equivalent, respectively). For most of the extracts, antioxidant capacity was significantly correlated with NO inhibition. Wild genotypes of Mexican blackberries, as rich sources of polyphenolics that have both antioxidant and anti-inflammatory properties, showed particular promise for inclusion in plant improvement programs designed to develop new varieties with nutraceutical potential. PMID:20715775

  17. The immune responses and antioxidant status of Portunus trituberculatus individuals with different body weights.

    PubMed

    Ren, Xianyun; Yu, Xuan; Gao, Baoquan; Li, Jian; Liu, Ping

    2016-04-01

    Vibrio alginolyticus is a virulent pathogen that affects crab aquacultures. In the present study, the immune responses and antioxidant status of big and small (based on body weight and size) 80-, 100- and 120-day-old specimens of Portunus trituberculatus, challenged for 72 h with Vibrio alginolyticus, were studied. The total hemocyte count (THC), and phagocytic, prophenoloxidase and phenoloxidase activities, of the big individuals (BIs) were higher than those of the small individuals (SIs) (P < 0.05). The antioxidant status of the organisms showed a similar pattern: superoxide dismutase (SOD) activity and glutathione/oxidized glutathione (GSH/GSSG) in the cell-free hemolymph and hepatopancreases of the BIs were higher than in the SIs (P < 0.05). There were no significant differences in α2-macroglobulin (α2-M), antibacterial and bacteriolytic activities in the cell-free hemolymph, or glutathione peroxidase activity in the cell-free hemolymph or hepatopancreas between the BIs and SIs. The α2-M and crustin gene expression levels in the hemocytes, and SOD expression in the hemocytes and hepatopancreas, were also significantly higher in the BIs. The results suggest that, compared with the SIs, the BIs possessed a higher resistance to V. alginolyticus infection. PMID:26952172

  18. Optimization of a surfactant-free antioxidant formulation using response surface methodology.

    PubMed

    Almeida, Isabel F; Costa, Paulo C; Bahia, M Fernanda

    2014-01-01

    Topical application of natural antioxidants has proven to be effective in protecting the skin against ultraviolet radiation-mediated oxidative damage. In previous studies, a Castanea sativa leaf ethanol:water (7:3) extract exhibited scavenging activity against different reactive oxygen species that are thought to contribute to oxidative damage in the skin. Its stability was shown to be enhanced in the presence of glycerine, and therefore a glycerine-based formulation with Carbopol 940 and liquid paraffin (LP) was developed as base. In this work, the influence of the glycerine and LP contents on the textural properties of the topical base and on the antioxidant activity of the formulation with C. sativa extract was evaluated using response surface methodology after 30 d storage at 20 °C and 40 °C. The textural analysis was performed in a texturometer, by carrying out a spreadability test. Paretto charts showed that both glycerine and LP contents significantly influenced the textural properties of the formulations (p < 0.05). LP presented the major influence. DPPH scavenging activity was not related to any of the studied ingredients. These conclusions were valid both for 20 °C and 40 °C storage. This optimization study provided valuable information to support the development of a semisolid base for C. sativa extract leading to the conclusion that the selection of these ingredients contents can be guided exclusively by the desirable textural properties. PMID:23336810

  19. Transcriptional and antioxidative responses to endogenous polyunsaturated fatty acid accumulation in yeast.

    PubMed

    Andrisic, Luka; Collinson, Emma J; Tehlivets, Oksana; Perak, Eleonora; Zarkovic, Tomislav; Dawes, Ian W; Zarkovic, Neven; Cipak Gasparovic, Ana

    2015-01-01

    Pathophysiology of polyunsaturated fatty acids (PUFAs) is associated with aberrant lipid and oxygen metabolism. In particular, under oxidative stress, PUFAs are prone to autocatalytic degradation via peroxidation, leading to formation of reactive aldehydes with numerous potentially harmful effects. However, the pathological and compensatory mechanisms induced by lipid peroxidation are very complex and not sufficiently understood. In our study, we have used yeast capable of endogenous PUFA synthesis in order to understand the effects triggered by PUFA accumulation on cellular physiology of a eukaryotic organism. The mechanisms induced by PUFA accumulation in S. cerevisiae expressing Hevea brasiliensis Δ12-fatty acid desaturase include down-regulation of components of electron transport chain in mitochondria as well as up-regulation of pentose-phosphate pathway and fatty acid β-oxidation at the transcriptional level. Interestingly, while no changes were observed at the transcriptional level, activities of two important enzymatic antioxidants, catalase and glutathione-S-transferase, were altered in response to PUFA accumulation. Increased intracellular glutathione levels further suggest an endogenous oxidative stress and activation of antioxidative defense mechanisms under conditions of PUFA accumulation. Finally, our data suggest that PUFA in cell membrane causes metabolic changes which in turn lead to adaptation to endogenous oxidative stress. PMID:25280400

  20. Dynamics of rhizosphere properties and antioxidative responses in wheat (Triticum aestivum L.) under cadmium stress.

    PubMed

    Li, Yonghua; Wang, Li; Yang, Linsheng; Li, Hairong

    2014-04-01

    In this study, we performed a rhizobox experiment to examine the dynamic changes in the rhizosphere properties and antioxidant enzyme responses of Triticum aestivum L. under three levels of cadmium stress. A set of micro-techniques (i.e., Rhizobox and Rhizon SMS) were applied for the dynamically non-destructive collection of the rhizosphere soil solution to enable the observation at a high temporal resolution. The dynamics of soluble cadmium and dissolved organic carbon (DOC) in the rhizosphere soil solutions of the Triticum aestivum L. were characterised by the sequence week 0 after sowing (WAS0)<3 weeks after sowing (WAS3)<10 weeks after sowing (WAS10), whereas the soil solution pH was found to follow an opposite distribution pattern. Systematically, both superoxide dismutase (SOD) and catalase (CAT) activities in the leaves of the Triticum aestivum L. increased concomitantly with increasing cadmium levels (p>0.05) and growth duration (p<0.05), whilst ascorbate peroxidase (APX) activity was induced to an elevated level at moderate cadmium stress with a decrease at high cadmium stress (p>0.05). These results suggested the enhancement of DOC production and the greater antioxidant enzyme activities were two important protective mechanisms of Triticum aestivum L. under cadmium stress, whereas rhizosphere acidification might be an important mechanism for the mobilisation of soil cadmium. The results also revealed that plant-soil interactions strongly influence the soil solution chemistry in the rhizosphere of Triticum aestivum L., that, in turn, can stimulate chemical and biochemical responses in the plants. In most cases, these responses to cadmium stress were sensitive and might allow us to develop strategies for reducing the risks of the cadmium contamination to crop production. PMID:24580822

  1. Effect of Chronic Exposure to Prometryne on Oxidative Stress and Antioxidant Response in Red Swamp Crayfish (Procambarus clarkii)

    PubMed Central

    Stará, Alžběta; Kouba, Antonín; Velíšek, Josef

    2014-01-01

    The aim of the study was to investigate effects of the triazine herbicide prometryne on red swamp crayfish on the basis of oxidative stress, antioxidant indices in hepatopancreas and muscle, and histopathology of hepatopancreas. Crayfish were exposed to prometryne concentrations of 0.51 μg L−1, 0.144 mg L−1, and 1.144 mg L−1 for 11 and 25 days. Indices of oxidative stress (thiobarbituric acid reactive substances (TBARS)), and antioxidant parameters (superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR)) in crayfish muscle and hepatopancreas were measured. Chronic exposure to prometryne did not showed the impact of oxidative damage to cells. Changes activity of the antioxidant enzymes SOD, CAT, and GR were observed in all tested concentrations to prometryne for 11 and 25 days (P < 0.01) as compared with the control group. We did not see any differences in histopatological examination to hepatopancreas. Prolonged exposure of prometryne did not result in oxidative damage to cell lipids and proteins, but it led to changes in antioxidant activity in crayfish tissues. Changes in antioxidant systems were also observed in the environmental prometryne concentration of 0.51 μg L−1. The results suggest that antioxidant responses may have potential as biomarkers for monitoring residual triazine herbicides in aquatic environments. PMID:24757669

  2. Structural characteristic responses for finite element model updating of structures

    NASA Astrophysics Data System (ADS)

    Zhou, Linren; Wang, Lei; Ou, Jinping

    2014-04-01

    The field measurements of structures are very important to the structural finite element (FE) model updating because the errors and uncertainties of a FE model are corrected directly through closing the discrepancies between the analytical responses from FE model and the measurements from field testing of a structure. Usually, the accurate and reliable field measurements are very limited. Therefore, it is very important to make full use of the limited and valuable field measurements in structural model updating to achieve a best result with the lowest cost. In this paper, structural FE model updating is investigated in the point of view of solving a mathematical problem, and different amount and category of structural dynamic responses and static responses are considered as constraints to explore their effects on the updated results of different degree and types of structural damages. The numerical studies are carried out on a space truss. Accounting for the numerical results, some inherent phenomena and connections taking account of the updating parameters, output responses and the updated results are revealed and discussed. Some useful and practicable suggestions about using the field measurements for FE model updating are provided to achieve efficient and reliable results.

  3. Metalliferous and non-metalliferous populations of Viola tricolor represent similar mode of antioxidative response.

    PubMed

    Słomka, Aneta; Libik-Konieczny, Marta; Kuta, Elzbieta; Miszalski, Zbigniew

    2008-10-01

    Heavy metal-contaminated sites are excellent areas to examine the antioxidative machinery responsible for physiological adaptations of many plant species. Superoxide dismutase (SOD), guaiacol peroxide (GPX), ascorbate peroxide (APX), catalase (CAT) activity and hydrogen peroxide (H(2)O(2)) content were analyzed in leaves and roots of Viola tricolor (Viola) from contaminated soils ('Bukowno', 'Saturn', 'Warpie' heaps), and non-contaminated soil ('Zakopane meadow') to examine the level of oxidative stress and antioxidative response. In leaves, six isoforms of SOD were recognized. Roots possessed two additional bands, named manganese superoxide dismutase (MnSOD)-like form (MnSODI) and Cu/ZnSOD-like form (Cu/ZnSODIV). The H(2)O(2) content in leaves ranged from 554 to 5 098 micromol H(2)O(2)/gf.w. and was negatively correlated with CAT activity. The non-contaminated population was characterized by the lowest CAT activity combined with the highest H(2)O(2) concentration. Two isoforms of CAT, CAT-1 and CAT-2, were recognized in leaves of plants from non-contaminated and contaminated sites, respectively. In roots of individuals from two heaps ('Warpie' and 'Saturn'), two distinct bands for each CAT isoform were observed. A slower migrating band may be an aggregate, exhibiting CAT and MnSODs activities. Both peroxidases (APX and GPX) presented the same pattern of activity, depending on the organ, indicating that in leaves and roots APX and GPX were regulated in parallel. Differences in enzyme activities and H(2)O(2) content between plants from different contaminated sites were statistically significant, but were tightly maintained at a very similar level. Prolonged and permanent heavy metal stress evoked a very similar mode of antioxidative response in specimens of analyzed metalliferous populations not causing measurable oxidative stress. Thus, our results clearly indicate that V. tricolor is a taxon well adapted to heavy metal-contaminated soils, and that differences in

  4. Age specific responses to acute inhalation of diffusion flame soot particles: Cellular injury and the airway antioxidant response

    PubMed Central

    Van Winkle, Laura S.; Chan, Jackie K.W.; Anderson, Donald S.; Kumfer, Benjamin M.; Kennedy, Ian M.; Wexler, Anthony S; Wallis, Christopher; Abid, Aamir D.; Sutherland, Katherine M.; Fanucchi, Michelle V.

    2011-01-01

    Current studies of particulate matter (PM) are confounded by the fact that PM is a complex mixture of primary (crustal material, soot, metals) and secondary (nitrates, sulfates and organics formed in the atmosphere) compounds with considerable variance in composition by sources and location. We have developed a laboratory-based PM that is replicable, does not contain dust or metals and that can be used to study specific health effects of PM composition in animal models. We exposed both neonatal (7 days of age) and adult rats to a single 6-hr exposure of laboratory generated fine diffusion flame soot (DFP; 170 ug/m3), or filtered air. Pulmonary gene and protein expression as well as indicators of cytotoxicity were evaluated 24 hours after exposure. Although DFP exposure did not alter airway epithelial cell composition in either neonates or adults, increased LDH activity was found in the bronchoalveolar lavage fluid of neonates indicating an age-specific increase in susceptibility. In adults, 16 genes were differentially expressed as a result of DFP exposure while only 6 genes were altered in the airways of neonates. Glutamate cytsteine ligase protein was increased in abundance in both DFP exposed neonates and adults indicating an initiation of antioxidant responses involving the synthesis of glutathione. DFP significantly decreased catalase gene expression in adult airways, although catalase protein expression was increased by DFP in both neonates and adults. We conclude that key airway antioxidant enzymes undergo changes in expression in response to a moderate PM exposure that does not cause frank epithelial injury and that neonates have a different response pattern than adults. PMID:20961279

  5. Antioxidant Potential and In Situ Analysis of Major and Trace Element Determination of Ood-saleeb, a Known Unani Herbal Medicine by ICP-MS.

    PubMed

    Raish, Mohammad; Ahmad, Ajaz; Alkharfy, Khalid M; Al-Jenoobi, Fahad I; Al-Mohizea, Abdullah M; Mohsin, Kazi; Ahamad, Syed Rizwan; Ali, Naushad; Shakeel, Faiyaz

    2016-08-01

    The intention of the present research work was to investigate the antioxidant activity and trace element analysis of Ood-saleeb, a known herbal medicine. Preliminary screening of phytochemicals showed that the extract of Ood-saleeb had flavonoids and phenolics. The significant activities in all antioxidant assays were observed in the extract of Ood-saleeb in comparison with the standard antioxidant with respect to dose of Ood-saleeb. Incredible activities to scavenge reactive oxygen species were also observed by the extract of Ood-saleeb. The IC50 values of all factors were determined using ascorbic acid as a standard. The inductive coupled plasma-mass spectroscopy (ICP-MS) was employed for the estimation of trace elements in Ood-saleeb extract. The concentrations of up to 18 elements were detected successfully. Silicon was found in high concentration (85.3 μg/g) while lithium was in low concentration (3 ng/g). The trace elements in the sample were found at different percentage levels which play a key role in the treatment of diseases. PMID:26758866

  6. High-throughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death

    PubMed Central

    Fox, Jennifer T.; Sakamuru, Srilatha; Huang, Ruili; Teneva, Nedelina; Simmons, Steven O.; Xia, Menghang; Tice, Raymond R.; Austin, Christopher P.; Myung, Kyungjae

    2012-01-01

    Human ATAD5 is a biomarker for identifying genotoxic compounds because ATAD5 protein levels increase posttranscriptionally in response to DNA damage. We screened over 4,000 compounds with a cell-based quantitative high-throughput ATAD5-luciferase assay detecting genotoxic compounds. We identified 22 antioxidants, including resveratrol, genistein, and baicalein, that are currently used or investigated for the treatment of cardiovascular disease, type 2 diabetes, osteopenia, osteoporosis, and chronic hepatitis, as well as for antiaging. Treatment of dividing cells with these compounds induced DNA damage and resulted in cell death. Despite their genotoxic effects, resveratrol, genistein, and baicalein did not cause mutagenesis, which is a major side effect of conventional anticancer drugs. Furthermore, resveratrol and genistein killed multidrug-resistant cancer cells. We therefore propose that resveratrol, genistein, and baicalein are attractive candidates for improved chemotherapeutic agents. PMID:22431602

  7. Optimization of Preparation of Antioxidative Peptides from Pumpkin Seeds Using Response Surface Method

    PubMed Central

    Fan, Sanhong; Hu, Yanan; Li, Chen; Liu, Yanrong

    2014-01-01

    Protein isolates of pumpkin (Cucurbita pepo L) seeds were hydrolyzed by acid protease to prepare antioxidative peptides. The hydrolysis conditions were optimized through Box-Behnken experimental design combined with response surface method (RSM). The second-order model, developed for the DPPH radical scavenging activity of pumpkin seed hydrolysates, showed good fit with the experiment data with a high value of coefficient of determination (0.9918). The optimal hydrolysis conditions were determined as follows: hydrolyzing temperature 50°C, pH 2.5, enzyme amount 6000 U/g, substrate concentration 0.05 g/ml and hydrolyzing time 5 h. Under the above conditions, the scavenging activity of DPPH radical was as high as 92.82%. PMID:24637721

  8. Short term total sleep deprivation in the rat increases antioxidant responses in multiple brain regions without impairing spontaneous alternation behavior

    PubMed Central

    Ramanathan, Lalini; Hu, Shuxin; Frautschy, Sally A.; Siegel, Jerome M.

    2009-01-01

    Total sleep deprivation (TSD) induces a broad spectrum of cognitive, behavioral and cellular changes. We previously reported that long term (5–11 days) TSD in the rat, by the disk-over-water method, decreases the activity of the antioxidant enzyme superoxide dismutase (SOD) in the brainstem and hippocampus. To gain insight into the mechanisms causing cognitive impairment, here we explore the early associations between metabolic activity, antioxidant responses and working memory (one form of cognitive impairment). Specifically we investigated the impact of short term (6 h) TSD, by gentle handling, on the levels of the endogenous antioxidant, total glutathione (GSHt), and the activities of the antioxidative enzymes, SOD and glutathione peroxidase (GPx). Short term TSD had no significant impact on SOD activity, but increased GSHt levels in the rat cortex, brainstem and basal forebrain, and GPx activity in the rat hippocampus and cerebellum. We also observed increased activity of hexokinase, (HK), the rate limiting enzyme of glucose metabolism, in the rat cortex and hypothalamus. We further showed that 6h of TSD leads to increased exploratory behavior to a new environment, without impairing spontaneous alternation behavior (SAB) in the Y maze. We conclude that acute (6h) sleep loss may trigger compensatory mechanisms (like increased antioxidant responses) that prevent initial deterioration in working memory. PMID:19850085

  9. N6-isopentenyladenosine and analogs activate the NRF2-mediated antioxidant response

    PubMed Central

    Dassano, Alice; Mancuso, Mariateresa; Giardullo, Paola; Cecco, Loris De; Ciuffreda, Pierangela; Santaniello, Enzo; Saran, Anna; Dragani, Tommaso A.; Colombo, Francesca

    2014-01-01

    N6-isopentenyladenosine (i6A), a naturally occurring modified nucleoside, inhibits the proliferation of human tumor cell lines in vitro, but its mechanism of action remains unclear. Treatment of MCF7 human breast adenocarcinoma cells with i6A or with three synthetic analogs (allyl6A, benzyl6A, and butyl6A) inhibited growth and altered gene expression. About 60% of the genes that were differentially expressed in response to i6A treatment were also modulated by the analogs, and pathway enrichment analysis identified the NRF2-mediated oxidative stress response as being significantly modulated by all four compounds. Luciferase reporter gene assays in transfected MCF7 cells confirmed that i6A activates the transcription factor NRF2. Assays for cellular production of reactive oxygen species indicated that i6A and analogs had antioxidant effects, reducing basal levels and inhibiting the H2O2- or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced production in MCF7 or dHL-60 (HL-60 cells induced to differentiate along the neutrophilic lineage) cell lines, respectively. In vivo, topical application of i6A or benzyl6A to mouse ears prior to TPA stimulation lessened the inflammatory response and significantly reduced the number of infiltrating neutrophils. These results suggest that i6A and analogs trigger a cellular response against oxidative stress and open the possibility of i6A and benzyl6A being used as topical anti-inflammatory drugs. PMID:24688894

  10. Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max)

    SciTech Connect

    Gillespie, K.M.; Rogers, A.; Ainsworth, E. A.

    2011-01-31

    Soybeans (Glycine max Merr.) were grown at elevated carbon dioxide concentration ([CO{sub 2}]) or chronic elevated ozone concentration ([O{sub 3}]; 90 ppb), and then exposed to an acute O{sub 3} stress (200 ppb for 4 h) in order to test the hypothesis that the atmospheric environment alters the total antioxidant capacity of plants, and their capacity to respond to an acute oxidative stress. Total antioxidant metabolism, antioxidant enzyme activity, and antioxidant transcript abundance were characterized before, immediately after, and during recovery from the acute O{sub 3} treatment. Growth at chronic elevated [O{sub 3}] increased the total antioxidant capacity of plants, while growth at elevated [CO{sub 2}] decreased the total antioxidant capacity. Changes in total antioxidant capacity were matched by changes in ascorbate content, but not phenolic content. The growth environment significantly altered the pattern of antioxidant transcript and enzyme response to the acute O{sub 3} stress. Following the acute oxidative stress, there was an immediate transcriptional reprogramming that allowed for maintained or increased antioxidant enzyme activities in plants grown at elevated [O{sub 3}]. Growth at elevated [CO{sub 2}] appeared to increase the response of antioxidant enzymes to acute oxidative stress, but dampened and delayed the transcriptional response. These results provide evidence that the growth environment alters the antioxidant system, the immediate response to an acute oxidative stress, and the timing over which plants return to initial antioxidant levels. The results also indicate that future elevated [CO{sub 2}] and [O{sub 3}] will differentially affect the antioxidant system.

  11. Computation of Schenberg response function by using finite element modelling

    NASA Astrophysics Data System (ADS)

    Frajuca, C.; Bortoli, F. S.; Magalhaes, N. S.

    2016-05-01

    Schenberg is a detector of gravitational waves resonant mass type, with a central frequency of operation of 3200 Hz. Transducers located on the surface of the resonating sphere, according to a distribution half-dodecahedron, are used to monitor a strain amplitude. The development of mechanical impedance matchers that act by increasing the coupling of the transducers with the sphere is a major challenge because of the high frequency and small in size. The objective of this work is to study the Schenberg response function obtained by finite element modeling (FEM). Finnaly, the result is compared with the result of the simplified model for mass spring type system modeling verifying if that is suitable for the determination of sensitivity detector, as the conclusion the both modeling give the same results.

  12. LACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPS) IN RATS

    EPA Science Inventory

    2003 AAR PM Meeting
    Particulate Matter: Atmospheric Sciences,
    Exposure and the Fourth Colloquium on PM and Human Health

    LACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPs) IN RATS. JA Dye, LC Walsh, C...

  13. Oxidative Response and Antioxidative Mechanism in Germinating Soybean Seeds Exposed to Cadmium

    PubMed Central

    Yang, Shiyong; Xie, Jianchun; Li, Quanfa

    2012-01-01

    Seeds of soybean (Glycine max L.) exposed to 50 mg/L (Cd50), 100 mg/L (Cd100) and 200 mg/L (Cd200) cadmium solution for 24, 48, 72 and 96 h were examined with reference to Cd accumulation, oxidative stress and antioxidative responses. Soybean seeds accumulated Cd in an exposure time-and dosage-dependent manner. FRAP (ferric reducing ability of plasma) concentration, GSH/hGSH content, and GST activity showed a pronounced exposure time-dependent response. Cd100 enhanced FRAP concentration in germinating soybean seeds as compared to Cd50 treatment after 24 h exposure. Cd200 however increased statistically GST activities after 72 and 96 h exposure. Under all Cd dosages, GSH/hGSH concentrations were depressed with increasing exposure time. Reduction of GSH/hGSH content and concomitant increase of GST activity suggested a possible participation of GSH into GSH-Cd conjugates synthesis. MDA content is a potential biomarker for monitoring Cd phytotoxicity because it responds significantly to treatment dosage, exposure time and dosage × exposure time interaction. Increase of proline content may be a response to acute heavy metal toxicity in soybean seeds. PMID:23066399

  14. Biphasic dose-response of antioxidants in hypericin-induced photohemolysis.

    PubMed

    Martirosyan, Alina S; Vardapetyan, Hrachik R; Tiratsuyan, Susanna G; Hovhannisyan, Ashkhen A

    2011-09-01

    In the present paper the photodynamic effect of hypericin on superoxide dismutase activity and the possibility of reduction of hypericin phototoxicity by antioxidants were studied. It was shown an almost twice decrease in superoxide dismutase activity of red blood cells under the photosensitization by hypericin. The influence of antioxidants (ascorbic acid and quercetin) on hypericin photodynamic action has revealed that these antioxidants suppress or stimulate photohemolysis caused by hypericin. The photosensitization reaction realized by hypericin could be shifted from type II to type I or vice versa by manipulating the antioxidant concentration. Strengthening of photohemolysis by antioxidants in some concentrations indicates the switching of alternative mechanisms of hypericin photodynamic action and its complicated manner. Thus the selection of antioxidant concentrations is of extreme importance for changing the efficacy of photodynamic therapy with hypericin. PMID:21864803

  15. Increased antioxidant response and capability to produce ROS in hemocytes of Pinna nobilis L. exposed to anthropogenic activity.

    PubMed

    Sureda, Antoni; Natalotto, Antonino; Alvarez, Elvira; Deudero, Salud

    2013-10-01

    Environmental pollutants exert immunotoxical effects on aquatic organisms. The aim was to determine the antioxidant response, markers of oxidative damage and reactive oxygen species production in hemocytes of Pinna nobilis, the largest endemic bivalve in the Mediterranean Sea, under anthropogenic pressure. P. nobilis individuals were collected from two locations along Mallorca Island waters attending to different degree of human impact and the hemocytes were obtained. Specimens from the impacted area showed increased activities of the antioxidant enzymes - catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase -, myeloperoxidase activity and reduced glutathione levels. No differences in oxidative damage markers - malondiahdehyde and carbonyl index - were evidenced between the pristine and polluted areas. Hemocytes from the polluted area presented increased capability to generate reactive oxygen species and nitrite/nitrate when activated. In conclusion, the human activities primed hemocytes for oxidative burst and increased the antioxidant mechanism without evidence of oxidative damage. PMID:23871388

  16. Optimization of ultrasonic-assisted extraction of antioxidant compounds from Guava (Psidium guajava L.) leaves using response surface methodology

    PubMed Central

    Kong, Fansheng; Yu, Shujuan; Feng, Zeng; Wu, Xinlan

    2015-01-01

    Objective: To optimization of extraction of antioxidant compounds from guava (Psidium guajava L.) leaves and showed that the guava leaves are the potential source of antioxidant compounds. Materials and Methods: The bioactive polysaccharide compounds of guava leaves (P. guajava L.) were obtained using ultrasonic-assisted extraction. Extraction was carried out according to Box-Behnken central composite design, and independent variables were temperature (20–60°C), time (20–40 min) and power (200–350 W). The extraction process was optimized by using response surface methodology for the highest crude extraction yield of bioactive polysaccharide compounds. Results: The optimal conditions were identified as 55°C, 30 min, and 240 W. 1,1-diphenyl-2-picryl-hydrazyl and hydroxyl free radical scavenging were conducted. Conclusion: The results of quantification showed that the guava leaves are the potential source of antioxidant compounds. PMID:26246720

  17. Optimization protocol for the extraction of antioxidant components from Origanum vulgare leaves using response surface methodology.

    PubMed

    Majeed, Mudasir; Hussain, Abdullah I; Chatha, Shahzad A S; Khosa, Muhammad K K; Kamal, Ghulam Mustafa; Kamal, Mohammad A; Zhang, Xu; Liu, Maili

    2016-05-01

    In the present work, the response surface methodology (RSM) based on a central composite rotatable design (CCRD), was used to determine optimum conditions for the extraction of antioxidant compounds from Origanum vulgare leaves. Four process variables were evaluated at three levels (31 experimental designs): methanol (70%, 80%, and 90%), the solute:solvent ratio (1:5, 1:12.5, 1:20), the extraction time (4, 10, 16 h), and the solute particle size (20, 65, 110 micron). Using RSM, a quadratic polynomial equation was obtained by multiple regression analysis for predicting optimization of the extraction protocol. Analysis of variance (ANOVA) was applied and the significant effect of the factors and their interactions were tested at 95% confidence interval. The antioxidant extract (AE) yield was significantly influenced by solvent composition, solute to solvent ratio, and time. The maximum AE was obtained at methanol (70%), liquid solid ratio (20), time (16 h), and particle size (20 micron). Predicted values thus obtained were closer to the experimental value indicating suitability of the model. Run 25 (methanol:water 70:30; solute:solvent 1:20; extraction time 16 h and solute particle size 20) showed highest TP contents (18.75 mg/g of dry material, measured as gallic acid equivalents) and DPPH radical scavenging activity (IC50 5.04 μg/mL). Results of the present study indicated good correlation between TP contents and DPPH radical scavenging activity. Results of the study indicated that phenolic compounds are powerful scavengers of free radical as demonstrated by a good correlation between TP contents and DPPH radical scavenging activity. PMID:27081365

  18. Optimization protocol for the extraction of antioxidant components from Origanum vulgare leaves using response surface methodology

    PubMed Central

    Majeed, Mudasir; Hussain, Abdullah I.; Chatha, Shahzad A.S.; Khosa, Muhammad K.K.; Kamal, Ghulam Mustafa; Kamal, Mohammad A.; Zhang, Xu; Liu, Maili

    2015-01-01

    In the present work, the response surface methodology (RSM) based on a central composite rotatable design (CCRD), was used to determine optimum conditions for the extraction of antioxidant compounds from Origanum vulgare leaves. Four process variables were evaluated at three levels (31 experimental designs): methanol (70%, 80%, and 90%), the solute:solvent ratio (1:5, 1:12.5, 1:20), the extraction time (4, 10, 16 h), and the solute particle size (20, 65, 110 micron). Using RSM, a quadratic polynomial equation was obtained by multiple regression analysis for predicting optimization of the extraction protocol. Analysis of variance (ANOVA) was applied and the significant effect of the factors and their interactions were tested at 95% confidence interval. The antioxidant extract (AE) yield was significantly influenced by solvent composition, solute to solvent ratio, and time. The maximum AE was obtained at methanol (70%), liquid solid ratio (20), time (16 h), and particle size (20 micron). Predicted values thus obtained were closer to the experimental value indicating suitability of the model. Run 25 (methanol:water 70:30; solute:solvent 1:20; extraction time 16 h and solute particle size 20) showed highest TP contents (18.75 mg/g of dry material, measured as gallic acid equivalents) and DPPH radical scavenging activity (IC50 5.04 μg/mL). Results of the present study indicated good correlation between TP contents and DPPH radical scavenging activity. Results of the study indicated that phenolic compounds are powerful scavengers of free radical as demonstrated by a good correlation between TP contents and DPPH radical scavenging activity. PMID:27081365

  19. Salicylic acid induces differential antioxidant response in spring maize under high temperature stress.

    PubMed

    Khanna, Palak; Kaur, Kamaljit; Gupta, Anil K

    2016-06-01

    High temperature is one of the important stress factors that affect crops in tropical countries. Plants do evolve or adopt different mechanisms to overcome such stress for survival. It is an interesting subject and has attracted many researchers to work upon. Here, we studied the effect of salicylic acid (SA) on seedling growth and antioxidative defense system in two spring maize (Zea mays L.) genotypes viz., CML-32 (relatively heat tolerant) and LM-11 (relatively heat susceptible), under high temperature stress. High temperature induced greater reduction in dry biomass of LM-1 1 seedlings as compared to those of CML-32. There was a parallel increase in ascorbate peroxidase and glutathione reductase activities in the roots of CML-32 seedlings. However, the activities of catalase and superoxide dismutase decreased and the contents of H202, proline and malonaldialdehyde (MDA) increased in seedlings of both the genotypes. Application of SA (400 µM) led to increased dry biomass in heat stressed CML-32 seedlings. It improved the efficiency of Halliwell-Asada pathway in roots of CML-32 seedlings as was evidenced by the enhanced ascorbate peroxidase and glutathione reductase activities. The activities of catalase and superoxide dismutase increased in both the tissues of LM-11 seedlings, whereas in CML-32, it was only in shoots, after SA application. Peroxidase activity increased in SA treated seedlings of both the genotypes, though the increase was comparatively higher in CML-32. The contents of H₂O₂ and MDA decreased and that of proline increased in SA treated seedlings of both the genotypes, under stress conditions. It may be concluded that SA induced differential antioxidant response by upregulating Halliwell-Asada pathway in roots and attaining high POX activity in both the tissues of CML-32 seedlings, under high temperature stress. PMID:27468465

  20. Arbuscular mycorrhizal fungi alleviate oxidative stress induced by ADOR and enhance antioxidant responses of tomato plants.

    PubMed

    García-Sánchez, Mercedes; Palma, José Manuel; Ocampo, Juan Antonio; García-Romera, Inmaculada; Aranda, Elisabet

    2014-03-15

    The behaviour of tomato plants inoculated with arbuscular mycorrhizal (AM) fungi grown in the presence of aqueous extracts from dry olive residue (ADOR) was studied in order to understand how this symbiotic relationship helps plants to cope with oxidative stress caused by ADOR. The influence of AM symbiosis on plant growth and other physiological parameters was also studied. Tomato plants were inoculated with the AM fungus Funneliformis mosseae and were grown in the presence of ADOR bioremediated and non-bioremediated by Coriolopsis floccosa and Penicillium chrysogenum-10. The antioxidant response as well as parameters of oxidative damage were examined in roots and leaves. The data showed a significant increase in the biomass of AM plant growth in the presence of ADOR, regardless of whether it was bioremediated. The establishment and development of the symbiosis were negatively affected after plants were exposed to ADOR. No differences were observed in the relative water content (RWC) or PS II efficiency between non-AM and AM plants. The increase in the enzymatic activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and glutathione-S-transferase (GST; EC 2.5.1.18) were simultaneous to the reduction of MDA levels and H2O2 content in AM root growth in the presence of ADOR. Similar H2O2 levels were observed among non-AM and AM plants, although only AM plants showed reduced lipid peroxidation content, probably due to the involvement of antioxidant enzymes. The results highlight how the application of both bioremediated ADOR and AM fungi can alleviate the oxidative stress conditions, improving the growth and development of tomato plants. PMID:24594394

  1. Antioxidant responses in soybean and alfalfa plants grown in DDTs contaminated soils: Useful variables for selecting plants for soil phytoremediation?

    PubMed

    Mitton, Francesca M; Ribas Ferreira, Josencler L; Gonzalez, Mariana; Miglioranza, Karina S B; Monserrat, José M

    2016-06-01

    Phytoremediation is a low-cost alternative technology based on the use of plants to remove pollutants from the environment. Persistent organic pollutants such as DDTs with a long half-life in soils are attractive candidates for remediation. This study aimed to determine the potential of antioxidant response use in the evaluation of plants' tolerance for selecting species in phytoremediation purposes. Alfalfa and soybean plants were grown in DDT contaminated soils. After 60days, growth, protein content, antioxidant capacity, GST activity, concentration of proteic and non-proteic thiol groups, chlorophyll content and carotenoid content were measured in plant tissues. Results showed no effect on alfalfa or soybean photosynthetic pigments but different responses in the protein content, antioxidant capacity, GST activity and thiol groups on roots, stems and leaves, indicating that DDTs affected both species. Soybean showed higher susceptibility than alfalfa plants due to the lower antioxidant capacity and GST activity in leaves, in spite of having the lowest DDT accumulation. This study provides new insights into the role of oxidative stress as an important component of the plant's response to DDT exposure. PMID:27155479

  2. Antioxidant responses of citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae), exposed to thermal stress.

    PubMed

    Yang, Li-Hong; Huang, Hai; Wang, Jin-Jun

    2010-12-01

    Relatively low or high temperatures are responsible for a variety of physiological stress responses in insects and mites. Induced thermal stress was recently associated with increased reactive oxygen species (ROS) generation, which caused oxidative damage. In this study, we examined the time-related effect of the relatively low (0, 5, 10, and 15 °C) or high (32, 35, 38, and 41 °C) temperatures on the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidases (POX), and glutathione-S-transferase (GST), and the total antioxidant capacity (TEAC) of the citrus red mite, Panonychus citri (McGregor). The malondialdehyde (MDA) concentration, as a marker of lipid peroxidation in organisms, was also measured in the citrus red mite under thermal stress conditions. Results showed that SOD and GST activities were significantly increased and play an important role in the process of antioxidant response to thermal stress. Lipid peroxidation levels increased significantly (P<0.001) and changed in a time-dependent manner. CAT and POX activity, as well as TEAC, did not vary significantly and play a minor role to remove the ROS generation. These results suggest that thermal stress leads to oxidative stress and antioxidant enzymes play an important role in reducing oxidative damage in the citrus red mite. PMID:20709071

  3. In vitro antioxidant profiling of seabuckthorn varieties and their adaptogenic response to high altitude-induced stress

    NASA Astrophysics Data System (ADS)

    Sharma, Priyanka; Suryakumar, Geetha; Singh, Virendra; Misra, Kshipra; Singh, Shashi Bala

    2015-08-01

    In the past few years, seabuckthorn plants have gained special attention due to their ability to grow in the harshest of the environment. This adaptability may be contributed by various antioxidants present in the plants besides other morphological adaptation. As in vivo studies cannot be justified without in vitro studies, the present investigation carried out evaluation of both in vitro and in vivo antioxidant potentials of aqueous and alcoholic extracts of the leaves of Hippophae salicifolia (HS) and Hippophae rhamnoides mongolica (HRM) in comparison with Hippophae rhamnoides turkestanica (HRT). The results had clearly depicted that in vitro antioxidant potential of the extracts was responsible for the in vivo adaptogenic performance in animals during cold and hypoxia exposure under restraint stress. Total phenolic content (TPC), total flavonoid content (TFC), total protein content, and antioxidant potential were determined. For adaptogenic studies, rats with oral drug supplementation were exposed to Cold-hypoxia-restraint (C-H-R) stresses-induced hypothermia, as a measure of endurance. Aqueous extracts of HS showed maximum (99 %) resistance compared to HRT (81 %) and HRM (29 %). The levels of biochemical parameters such as malondialdehyde (MDA), reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD), glutathione (GSH/GSSG), and catalase (CAT) in blood samples also revealed that the aqueous leaf extract of HS has better antioxidant and adaptogenic potential compared to HRM.

  4. Optimization of extraction time and temperature on antioxidant activity of Schizophyllum commune aqueous extract using response surface methodology.

    PubMed

    Yim, Hip Seng; Chye, Fook Yee; Rao, Vigneswara; Low, Jia Yin; Matanjun, Patricia; How, Siew Eng; Ho, Chun Wai

    2013-04-01

    Central composite design of response surface methodology (RSM) was employed to optimize the extraction time (X 1 : 99.5-290.5 min) and temperature (X 2 : 30.1-54.9 °C) of Schizophyllum commune aqueous extract with high antioxidant activities and total phenolic content (TPC). Results indicated that the data were adequately fitted into four second-order polynomial models. The extraction time and temperature were found to have significant linear, quadratic and interaction effects on antioxidant activities and TPC. The optimal extraction time and temperature were: 290.5 min and 35.7 °C (DPPH(•) scavenging ability); 180.7 min and 41.7 °C (ABTS(•+) inhibition ability); 185.2 min and 42.4 °C (ferric reducing antioxidant power, FRAP); 290.5 min and 40.3 °C (TPC). These optimum conditions yielded 85.10%; 94.31%; 0.74 mM Fe(2+) equivalent/100 g; 635.76 mg gallic acid equivalent/100 g, respectively. The yields of antioxidant activities and TPC obtained experimentally were close to its predicted values. The establishment of such model provides a good experimental basis employing RSM for optimizing the extraction time and temperature on antioxidants from S. commune aqueous extract. PMID:24425917

  5. Effects of Palygorskite Inclusion on the Growth Performance, Meat Quality, Antioxidant Ability, and Mineral Element Content of Broilers.

    PubMed

    Cheng, Y F; Chen, Y P; Li, X H; Yang, W L; Wen, C; Zhou, Y M

    2016-09-01

    The present study was conducted to investigate different levels of palygorskite supplementation on the growth performance, meat quality, muscular oxidative status, and mineral element accumulation of broilers. One hundred ninety-two 1-day-old Arbor Acres broiler chicks were allocated to four dietary treatments with six replicates of eight chicks per replicate. Birds in the four treatments were given a basal diet supplemented with 0, 5, 10 and 20 g/kg palygorskite for 42 days, respectively. Compared with the control group, neither 5 g/kg nor 10 g/kg palygorskite inclusion affected growth performance of broilers during the 42-day study (P > 0.05). However, the highest level of palygorskite supplementation at 20 g/kg increased feed/gain ratio (F/G) of broilers (P < 0.001). Yellowness (P < 0.001) and redness (P = 0.003) of breast muscle and yellowness of leg muscle (P = 0.001) were decreased by palygorskite supplementation at the levels of 10 g/kg and especially 20 g/kg. In addition, redness of leg muscle was also reduced by the inclusion of 20 g/kg palygorskite (P = 0.009). In contrast, malonaldehyde (MDA) accumulation in the breast muscle was significantly increased by 20 g/kg palygorskite supplementation (P < 0.001). Supplementation of palygorskite at either 10 or 20 g/kg significantly decreased lead (Pb) accumulation in the breast (P = 0.001) or thigh (P = 0.045) and copper (Cu) accumulation in the breast (P = 0.022). In conclusion, growth performance, meat color, and antioxidant capacity of meat would reduce with the increasing level of palygorskite supplementation, whereas a higher level of palygorskite (10 or 20 g/kg) can alter mineral element accumulations in muscles as evidenced by reduced muscular Cu and Pb contents. PMID:26899316

  6. [Preliminary evaluation of the antioxidant trace elements in an Algerian patient with type 2 diabetes: special role of manganese and chromium].

    PubMed

    Harani, Hassiba; Otmane, Amel; Makrelouf, Mohamed; Ouadahi, Nacer; Abdi, Arezki; Berrah, Abdelkrim; Zenati, Akila; Alamir, Barkahoum; Koceir, Elhadj Ahmed

    2012-01-01

    In type 2 diabetes, the relationship between antioxidants and insuline-like trace elements is very complex during oxidative stress, being mediated by hyperglycemia, dyslipidemia and inflammation. We investigated the antioxidant status, particularly Mn and Cr on the diabetes metabolic control, and their interaction with the metabolic syndrome (MS) parameters. The study was undertaken on 278 Algerian diabetic subjects who were divided in 2 groups according to glycated hemoglobin (HbA(1c)) <7% or >7% value, attesting for a good or poor metabolic control of diabetes, respectively. The MS was defined according to NCEP-ATPIII. Insulin resistance was evaluated by HOMA-IR model. The plasma manganese concentrations was significantly increased in both diabetics groups, independently of metabolic control. However, chromium (Cr) seems to play a determinant action in metabolic control, as shown by better values of insulin resistance (HOMA-IR) and HbA(1c). The selenium status was positively correlated with glutathion peroxidase activity. Copper and zinc plasma levels in the diabetic patients were similar to those of control subjects. In conclusion, our results suggest that Mn play a crucial role in antioxidant capacity and we hypothesize that antioxidant defense is preserved in the cytosol (superoxide dismutase Cu/Zn -SOD), whereas it is impaired in mitochondria (Mn-SOD), which makes this cell organelle a true therapeutic target in diabetes. PMID:23207812

  7. Lettuce irrigated with contaminated water: Photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners.

    PubMed

    Bittencourt-Oliveira, Maria do Carmo; Cordeiro-Araújo, Micheline Kézia; Chia, Mathias Ahii; Arruda-Neto, João Dias de Toledo; de Oliveira, Ênio Tiago; dos Santos, Flávio

    2016-06-01

    The use of microcystins (MCs) contaminated water to irrigate crop plants represents a human health risk due to their bioaccumulation potential. In addition, MCs cause oxidative stress and negatively influence photosynthetic activities in plants. The present study was aimed at investigating the effect of MCs on photosynthetic parameters and antioxidative response of lettuce. Furthermore, the bioaccumulation factor (BAF) of total MCs, MC-LR and MC-RR in the vegetable after irrigation with contaminated water was determined. Lettuce crops were irrigated for 15 days with water containing cyanobacterial crude extracts (Microcystis aeruginosa) with MC-LR (0.0, 0.5, 2.0, 5.0 and 10.0 µg L(-1)), MC-RR (0.0, 0.15, 0.5, 1.5 and 3.0 µg L(-1)) and total MCs (0.0, 0.65, 2.5, 6.5 and 13.0 µg L(-1)). Increased net photosynthetic rate, stomatal conductance, leaf tissue transpiration and intercellular CO2 concentration were recorded in lettuce exposed to different MCs concentrations. Antioxidant response showed that glutathione S-transferase activity was down-regulated in the presence of MCs. On the other hand, superoxide dismutase, catalase and peroxidase activities were upregulated with increasing MCs concentrations. The bioaccumulation factor (BAF) of total MCs and MC-LR was highest at 6.50 and 5.00 µg L(-1), respectively, while for MC-RR, the highest BAF was recorded at 1.50 µg L(-1) concentration. The amount of total MCs, MC-LR and MC-RR bioacumulated in lettuce was highest at the highest exposure concentrations. However, at the lowest exposure concentration, there were no detectable levels of MC-LR, MC-RR and total MCs in lettuce. Thus, the bioaccumulation of MCs in lettuce varies according to the exposure concentration. In addition, the extent of physiological response of lettuce to the toxins relies on exposure concentrations. PMID:26896895

  8. Physiological and biochemical responses of Suaeda fruticosa to cadmium and copper stresses: growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels.

    PubMed

    Bankaji, I; Caçador, I; Sleimi, N

    2015-09-01

    Environmental pollution by trace metal elements (TMEs) is a serious problem worldwide, increasing in parallel with the development of human technology. The present research aimed to examine the response of halophytic species Suaeda fruticosa to oxidative stress posed by combined abiotic stresses. Plants have been grown for 1 month with an irrigation solution supplemented with 200 mM NaCl and 400 μM Cd(2+) or 400 μM Cu(2+). The level of glutathione (GSH), phytochelatins (PCs), and antioxidant enzyme activities [ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and catalase (CAT)] as well as lipid peroxidation was studied to see the stress exerted by the TME and the level of tolerance and detoxification strategy adopted by S. fruticosa. Relative growth rate (RGR) decreased under Cd(2+) stress in this species, whereas Cu(2+) did not have any impact on S. fruticosa performance. Cd(2+) or Cu(2+) enhanced malondialdehyde, suggesting reactive oxygen species-induced disruption of membrane integrity and oxidative stress in S. fruticosa. On the other hand, the activities of the antioxidant enzymes CAT, APX, and GPX diminished and mineral nutrition was disturbed by metal stress. S. fruticosa was able to synthesize PCs in response to TME toxicity. However, data indicate that GSH levels underwent a significant decrease in roots and leaves of S. fruticosa stressed by Cd(2+) or Cu(2+). The GSH depletion accompanied by the increase of phytochelatin concentration suggests the involvement of GSH in the synthesis of phytochelatins. PMID:25925143

  9. H2O2-responsive antioxidant polymeric nanoparticles as therapeutic agents for peripheral arterial disease.

    PubMed

    Kwon, Byeongsu; Kang, Changsun; Kim, Jinsub; Yoo, Donghyuck; Cho, Byung-Ryul; Kang, Peter M; Lee, Dongwon

    2016-09-25

    Peripheral artery disease (PAD) is a common circulatory disorder in which narrowed arteries limit blood flow to the lower extremity and affect millions of people worldwide. Therapeutic angiogenesis has emerged as a promising strategy to treat PAD patients because surgical intervention has been showing limited success. Leg muscles of PAD patients have significantly high level of ROS (reactive oxygen species) and the increased production of ROS is a key mechanism of initiation and progression of PAD. We have recently developed H2O2-responsive polymer PVAX, which is designed to rapidly scavenge H2O2 and release vanillyl alcohol with antioxidant and anti-inflammatory activity. In this study, we investigated the therapeutic efficacy of PVAX nanoparticles for PAD using a cell culture model and a mouse model of hindlimb ischemia. PVAX nanoparticles significantly enhanced the expression of angiogenic inducers such as vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule (PECAM)-1 in human umbilical vein endothelial cells (HUVEC). PVAX nanoparticles promoted revascularization and restoration of blood perfusion into ischemic tissues by upregulating angiogenic VEGF and PECAM-1. This work demonstrates that H2O2-responsive PVAX nanoparticles facilitate therapeutic angiogenesis and hold tremendous translational potential as therapeutic systems for ischemic diseases such as PAD. PMID:27521705

  10. Acute phase protein and antioxidant responses in dogs with experimental acute monocytic ehrlichiosis treated with rifampicin.

    PubMed

    Karnezi, Dimitra; Ceron, Jose J; Theodorou, Konstantina; Leontides, Leonidas; Siarkou, Victoria I; Martinez, Silvia; Tvarijonaviciute, Asta; Harrus, Shimon; Koutinas, Christos K; Pardali, Dimitra; Mylonakis, Mathios E

    2016-02-29

    There is currently lack of information on the changes of acute phase proteins (APP) and antioxidant markers and their clinical relevance as treatment response indicators in canine monocytic ehrlichiosis (CME). The objective of this study was to investigate the patterns of C-reactive protein (CRP), haptoglobin (Hp), ferritin and paraoxonase-1 (PON-1) during treatment of dogs with acute CME with rifampicin. Blood serum samples from ten Beagle dogs with experimental acute CME were retrospectively examined. Five dogs (Group A) were treated with rifampicin (10mg/Kg/24h), per os, for 3 weeks and 5 dogs (Group B) received no treatment (infected controls). Two Beagle dogs served as uninfected controls. Blood serum samples were serially examined prior to Ehrlichia canis inoculation and on post-inoculation days 14, 21, 28, 35 and 42. Significant changes of CRP, Hp, ferritin and PON-1 values were found in the majority of infected dogs. However, their concentrations did not differ between the two groups during the treatment observation period. The results of this study indicate that although several APP and PON-1 tend to significantly change in the majority of dogs with acute CME, they were of limited clinical relevance as treatment response indicators in this experimental setting. PMID:26854345

  11. Cysteine Sulfenylation Directs IRE-1 to Activate the SKN-1/Nrf2 Antioxidant Response.

    PubMed

    Hourihan, John M; Moronetti Mazzeo, Lorenza E; Fernández-Cárdenas, L Paulette; Blackwell, T Keith

    2016-08-18

    Emerging evidence suggests that many proteins may be regulated through cysteine modification, but the extent and functions of this signaling remain largely unclear. The endoplasmic reticulum (ER) transmembrane protein IRE-1 maintains ER homeostasis by initiating the unfolded protein response (UPR(ER)). Here we show in C. elegans and human cells that IRE-1 has a distinct redox-regulated function in cytoplasmic homeostasis. Reactive oxygen species (ROS) that are generated at the ER or by mitochondria sulfenylate a cysteine within the IRE-1 kinase activation loop. This inhibits the IRE-1-mediated UPR(ER) and initiates the p38/SKN-1(Nrf2) antioxidant response, thereby increasing stress resistance and lifespan. Many AGC-family kinases (AKT, p70S6K, PKC, ROCK1) seem to be regulated similarly. The data reveal that IRE-1 has an ancient function as a cytoplasmic sentinel that activates p38 and SKN-1(Nrf2) and indicate that cysteine modifications induced by ROS signals can direct proteins to adopt unexpected functions and may coordinate many cellular processes. PMID:27540856

  12. Antioxidant response to natural organic matter (NOM) exposure in three Baikalean amphipod species from contrasting habitats.

    PubMed

    Timofeyev, M A; Steinberg, C E W

    2006-10-01

    The aim of the present work is to comparatively evaluate the oxidative stress response on exposure to natural organic matter (NOM) in three amphipod (Crustacea, Amphipoda) species from different taxonomic groups and different habitats of Lake Baikal. Endemic species from Lake Baikal were used: the shallow-water dwelling Gmelinoides fasciatus (Dyb.), Pallasea cancelloides (Gerstf.), and the deep-layer inhabitant Ommatogammarus flavus (Dyb.). Three key enzymes, catalase (CAT), peroxidase (POD), and glutathione S-transferase (GST), were studied. The applied NOM from Lake Schwarzer (Germany) directly impacts the two littoral species which quickly respond. The response is characterized by a significant decrease of POD and an increase of CAT activities. GST activity remains stable or decreased slightly. In contrast to the littoral amphipods, the deep-layer inhabitant O. flavus showed no significant reaction to NOM exposure, probably due to decreased adaptive ability of this species. The stable environment of the Baikalean deep zones obviously does not provide triggers for the development of flexible antioxidant or general defense systems. PMID:16914340

  13. Morinda citrifolia leaf enhanced performance by improving angiogenesis, mitochondrial biogenesis, antioxidant, anti-inflammatory & stress responses.

    PubMed

    Mohamad Shalan, Nor Aijratul Asikin; Mustapha, Noordin M; Mohamed, Suhaila

    2016-12-01

    Morinda citrifolia fruit, (noni), enhanced performances in athletes and post-menopausal women in clinical studies. This report shows the edible noni leaves water extract enhances performance in a weight-loaded swimming animal model better than the fruit or standardized green tea extract. The 4weeks study showed the extract (containing scopoletin and epicatechin) progressively prolonged the time to exhaustion by threefold longer than the control, fruit or tea extract. The extract improved (i) the mammalian antioxidant responses (MDA, GSH and SOD2 levels), (ii) tissue nutrient (glucose) and metabolite (lactate) management, (iii) stress hormone (cortisol) regulation; (iv) neurotransmitter (dopamine, noradrenaline, serotonin) expressions, transporter or receptor levels, (v) anti-inflammatory (IL4 & IL10) responses; (v) skeletal muscle angiogenesis (VEGFA) and (v) energy and mitochondrial biogenesis (via PGC, UCP3, NRF2, AMPK, MAPK1, and CAMK4). The ergogenic extract helped delay fatigue by enhancing energy production, regulation and efficiency, which suggests benefits for physical activities and disease recovery. PMID:27374554

  14. Antioxidant airway responses following experimental exposure to wood smoke in man

    PubMed Central

    2010-01-01

    Background Biomass combustion contributes to the production of ambient particulate matter (PM) in rural environments as well as urban settings, but relatively little is known about the health effects of these emissions. The aim of this study was therefore to characterize airway responses in humans exposed to wood smoke PM under controlled conditions. Nineteen healthy volunteers were exposed to both wood smoke, at a particulate matter (PM2.5) concentration of 224 ± 22 μg/m3, and filtered air for three hours with intermittent exercise. The wood smoke was generated employing an experimental set-up with an adjustable wood pellet boiler system under incomplete combustion. Symptoms, lung function, and exhaled NO were measured over exposures, with bronchoscopy performed 24 h post-exposure for characterisation of airway inflammatory and antioxidant responses in airway lavages. Results Glutathione (GSH) concentrations were enhanced in bronchoalveolar lavage (BAL) after wood smoke exposure vs. air (p = 0.025), together with an increase in upper airway symptoms. Neither lung function, exhaled NO nor systemic nor airway inflammatory parameters in BAL and bronchial mucosal biopsies were significantly affected. Conclusions Exposure of healthy subjects to wood smoke, derived from an experimental wood pellet boiler operating under incomplete combustion conditions with PM emissions dominated by organic matter, caused an increase in mucosal symptoms and GSH in the alveolar respiratory tract lining fluids but no acute airway inflammatory responses. We contend that this response reflects a mobilisation of GSH to the air-lung interface, consistent with a protective adaptation to the investigated wood smoke exposure. PMID:20727160

  15. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products.

    PubMed Central

    Levonen, Anna-Liisa; Landar, Aimee; Ramachandran, Anup; Ceaser, Erin K; Dickinson, Dale A; Zanoni, Giuseppe; Morrow, Jason D; Darley-Usmar, Victor M

    2004-01-01

    The molecular mechanisms through which oxidized lipids and their electrophilic decomposition products mediate redox cell signalling is not well understood and may involve direct modification of signal-transduction proteins or the secondary production of reactive oxygen or nitrogen species in the cell. Critical in the adaptation of cells to oxidative stress, including exposure to subtoxic concentrations of oxidized lipids, is the transcriptional regulation of antioxidant enzymes, many of which are controlled by antioxidant-responsive elements (AREs), also known as electrophile-responsive elements. The central regulator of the ARE response is the transcription factor Nrf2 (NF-E2-related factor 2), which on stimulation dissociates from its cytoplasmic inhibitor Keap1, translocates to the nucleus and transactivates ARE-dependent genes. We hypothesized that electrophilic lipids are capable of activating ARE through thiol modification of Keap1 and we have tested this concept in an intact cell system using induction of glutathione synthesis by the cyclopentenone prostaglandin, 15-deoxy-Delta12,14-prostaglandin J2. On exposure to 15-deoxy-Delta12,14-prostaglandin J2, the dissociation of Nrf2 from Keap1 occurred and this was dependent on the modification of thiols in Keap1. This mechanism appears to encompass other electrophilic lipids, since 15-A(2t)-isoprostane and the lipid aldehyde 4-hydroxynonenal were also shown to modify Keap1 and activate ARE. We propose that activation of ARE through this mechanism will have a major impact on inflammatory situations such as atherosclerosis, in which both enzymic as well as non-enzymic formation of electrophilic lipid oxidation products are increased. PMID:14616092

  16. Anti-Oxidative Defences Are Modulated Differentially in Three Freshwater Teleosts in Response to Ammonia-Induced Oxidative Stress

    PubMed Central

    Giblen, Terri; Zinta, Gaurav; De Rop, Michelle; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2014-01-01

    Oxidative stress and the antioxidant response induced by high environmental ammonia (HEA) were investigated in the liver and gills of three freshwater teleosts differing in their sensitivities to ammonia. The highly ammonia-sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less ammonia sensitive cyprinid Cyprinus carpio (common carp) and the highly ammonia-resistant cyprinid Carassius auratus (goldfish) were exposed to 1 mM ammonia (as NH4HCO3) for 0 h (control), 3 h, 12 h, 24 h, 48 h, 84 h and 180 h. Results show that HEA exposure increased ammonia accumulation significantly in the liver of all the three fish species from 24 h–48 h onwards which was associated with an increment in oxidative stress, evidenced by elevation of xanthine oxidase activity and levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Unlike in trout, H2O2 and MDA accumulation in carp and goldfish liver was restored to control levels (84 h–180 h); which was accompanied by a concomitant increase in superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase activity and reduced ascorbate content. Many of these defence parameters remained unaffected in trout liver, while components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase) enhanced to a greater extent. The present findings suggest that trout rely mainly on glutathione dependent defensive mechanism while carp utilize SOD, CAT and ascorbate as anti-oxidative sentinels. Hepatic cells of goldfish appear to utilize each of these protective systems, and showed more effective anti-oxidative compensatory responses towards HEA than carp, while trout were least effective. The present work also indicates that HEA exposure resulted in a relatively mild oxidative stress in the gills of all three species. This probably explains the almost complete lack of anti-oxidative responses in branchial tissue. This research suggests that oxidative stress, as well as the antioxidant

  17. Vibration Response of Multi Storey Building Using Finite Element Modelling

    NASA Astrophysics Data System (ADS)

    Chik, T. N. T.; Zakaria, M. F.; Remali, M. A.; Yusoff, N. A.

    2016-07-01

    Interaction between building, type of foundation and the geotechnical parameter of ground may trigger a significant effect on the building. In general, stiffer foundations resulted in higher natural frequencies of the building-soil system and higher input frequencies are often associated with other ground. Usually, vibrations transmitted to the buildings by ground borne are often noticeable and can be felt. It might affect the building and become worse if the vibration level is not controlled. UTHM building is prone to the ground borne vibration due to closed distance from the main road, and the construction activities adjacent to the buildings. This paper investigates the natural frequency and vibration mode of multi storey office building with the presence of foundation system and comparison between both systems. Finite element modelling (FEM) package software of LUSAS is used to perform the vibration analysis of the building. The building is modelled based on the original plan with the foundation system on the structure model. The FEM results indicated that the structure which modelled with rigid base have high natural frequency compare to the structure with foundation system. These maybe due to soil structure interaction and also the damping of the system which related to the amount of energy dissipated through the foundation soil. Thus, this paper suggested that modelling with soil is necessary to demonstrate the soil influence towards vibration response to the structure.

  18. Mapping polycomb response elements at the Drosophilla melanogaster giant locus.

    PubMed

    Abed, Jumana AlHaj; Cheng, Connie L; Crowell, Chase R; Madigan, Laura L; Onwuegbuchu, Erica; Desai, Siddhi; Benes, Judith; Jones, Richard S

    2013-12-01

    Polycomb-group (PcG) proteins are highly conserved epigenetic transcriptional regulators. They are capable of either maintaining the transcriptional silence of target genes through many cell cycles or enabling a dynamic regulation of gene expression in stem cells. In Drosophila melanogaster, recruitment of PcG proteins to targets requires the presence of at least one polycomb response element (PRE). Although the sequence requirements for PREs are not well-defined, the presence of Pho, a PRE-binding PcG protein, is a very good PRE indicator. In this study, we identify two PRE-containing regions at the PcG target gene, giant, one at the promoter, and another approximately 6 kb upstream. PRE-containing fragments, which coincide with localized presence of Pho in chromatin immunoprecipitations, were shown to maintain restricted expression of a lacZ reporter gene in embryos and to cause pairing-sensitive silencing of the mini-white gene in eyes. Our results also reinforce previous observations that although PRE maintenance and pairing-sensitive silencing activities are closely linked, the sequence requirements for these functions are not identical. PMID:24170735

  19. Antioxidant responses in estuarine invertebrates exposed to repeated oil spills: Effects of frequency and dosage in a field manipulative experiment.

    PubMed

    Sandrini-Neto, Leonardo; Pereira, Letícia; Martins, César C; Silva de Assis, Helena C; Camus, Lionel; Lana, Paulo C

    2016-08-01

    We have experimentally investigated the effects of repeated diesel spills on the bivalve Anomalocardia brasiliana, the gastropod Neritina virginea and the polychaete Laeonereis culveri, by monitoring the responses of oxidative stress biomarkers in a subtropical estuary. Three frequencies of exposure events were compared against two dosages of oil in a factorial experiment with asymmetrical controls. Hypotheses were tested to distinguish between (i) the overall effect of oil spills, (ii) the effect of diesel dosage via different exposure regimes, and (iii) the effect of time since last spill. Antioxidant defense responses and oxidative damage in the bivalve A. brasiliana and the polychaete L. culveri were overall significantly affected by frequent oil spills compared to undisturbed controls. The main effects of diesel spills on both species were the induction of SOD and GST activities, a significant increase in LPO levels and a decrease in GSH concentration. N. virginea was particularly tolerant to oil exposure, with the exception of a significant GSH depletion. Overall, enzymatic activities and oxidative damage in A. brasiliana and L. culveri were induced by frequent low-dosage spills compared to infrequent high-dosage spills, although the opposite pattern was observed for N. virginea antioxidant responses. Antioxidant responses in A. brasiliana and L. culveri were not affected by timing of exposure events. However, our results revealed that N. virginea might have a delayed response to acute high-dosage exposure. Experimental in situ simulations of oil exposure events with varying frequencies and intensities provide a useful tool for detecting and quantifying environmental impacts. In general, antioxidant biomarkers were induced by frequent low-dosage exposures compared to infrequent high-dosage ones. The bivalve A. brasiliana and the polychaete L. culveri are more suitable sentinels due to their greater responsiveness to oil and also to their wider geographical

  20. Linking an α-Tocopherol Derivative to Cobalt(0) Nanomagnets: Magnetically Responsive Antioxidants with Superior Radical Trapping Activity and Reduced Cytotoxicity

    PubMed Central

    Viglianisi, Caterina; Di Pilla, Veronica; Menichetti, Stefano; Rotello, Vincent M.; Candiani, Gabriele; Malloggi, Chiara; Amorati, Riccardo

    2014-01-01

    Covalent attachment of a phenolic antioxidant analogue of α-tocopherol to graphite-coated magnetic cobalt nanoparticles (CoNPs) provided a novel magnetically responsive antioxidant capable of preventing the autoxidation of organic materials and showing a reduced toxicity toward human cells. PMID:24782361

  1. Optimization of Ultrasonic-Assisted Extraction of Flavonoid Compounds and Antioxidants from Alfalfa Using Response Surface Method.

    PubMed

    Jing, Chang-Liang; Dong, Xiao-Fang; Tong, Jian-Ming

    2015-01-01

    Ultrasonic-assisted extraction (UAE) was used to extract flavonoid-enriched antioxidants from alfalfa aerial part. Response surface methodology (RSM), based on a four-factor, five-level central composite design (CCD), was employed to obtain the optimal extraction parameters, in which the flavonoid content was maximum and the antioxidant activity of the extracts was strongest. Radical scavenging capacity of the extracts, which represents the amounts of antioxidants in alfalfa, was determined by using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. The results showed good fit with the proposed models for the total flavonoid extraction (R² = 0.9849), for the antioxidant extraction assayed by ABTS method (R² = 0.9764), and by DPPH method (R² = 0.9806). Optimized extraction conditions for total flavonoids was a ratio of liquid to solid of 57.16 mL/g, 62.33 °C, 57.08 min, and 52.14% ethanol. The optimal extraction parameters of extracts for the highest antioxidant activity by DPPH method was a ratio of liquid to solid 60.3 mL/g, 54.56 °C, 45.59 min, and 46.67% ethanol, and by ABTS assay was a ratio of liquid to solid 47.29 mL/g, 63.73 °C, 51.62 min, and 60% ethanol concentration. Our work offers optimal extraction conditions for total flavonoids and antioxidants from alfalfa. PMID:26343617

  2. Hyperactivity of the Ero1α Oxidase Elicits Endoplasmic Reticulum Stress but No Broad Antioxidant Response

    PubMed Central

    Hansen, Henning Gram; Schmidt, Jonas Damgård; Søltoft, Cecilie Lützen; Ramming, Thomas; Geertz-Hansen, Henrik Marcus; Christensen, Brian; Sørensen, Esben Skipper; Juncker, Agnieszka Sierakowska; Appenzeller-Herzog, Christian; Ellgaard, Lars

    2012-01-01

    Oxidizing equivalents for the process of oxidative protein folding in the endoplasmic reticulum (ER) of mammalian cells are mainly provided by the Ero1α oxidase. The molecular mechanisms that regulate Ero1α activity in order to harness its oxidative power are quite well understood. However, the overall cellular response to oxidative stress generated by Ero1α in the lumen of the mammalian ER is poorly characterized. Here we investigate the effects of overexpressing a hyperactive mutant (C104A/C131A) of Ero1α. We show that Ero1α hyperactivity leads to hyperoxidation of the ER oxidoreductase ERp57 and induces expression of two established unfolded protein response (UPR) targets, BiP (immunoglobulin-binding protein) and HERP (homocysteine-induced ER protein). These effects could be reverted or aggravated by N-acetylcysteine and buthionine sulfoximine, respectively. Because both agents manipulate the cellular glutathione redox buffer, we conclude that the observed effects of Ero1α-C104A/C131A overexpression are likely caused by an oxidative perturbation of the ER glutathione redox buffer. In accordance, we show that Ero1α hyperactivity affects cell viability when cellular glutathione levels are compromised. Using microarray analysis, we demonstrate that the cell reacts to the oxidative challenge caused by Ero1α hyperactivity by turning on the UPR. Moreover, this analysis allowed the identification of two new targets of the mammalian UPR, CRELD1 and c18orf45. Interestingly, a broad antioxidant response was not induced. Our findings suggest that the hyperoxidation generated by Ero1α-C104A/C131A is addressed in the ER lumen and is unlikely to exert oxidative injury throughout the cell. PMID:23027870

  3. Isoorientin induces Nrf2 pathway-driven antioxidant response through phosphatidylinositol 3-kinase signaling.

    PubMed

    Lim, Ju Hee; Park, Hae-Suk; Choi, Jung-Kap; Lee, Ik-Soo; Choi, Hyun Jin

    2007-12-01

    Because oxidative stress is involved in the pathogenesis of various chronic diseases and the aging process, antioxidants that can increase the intrinsic antioxidant potency are proposed as desirable therapeutic agents to counteract oxidative stress-related diseases. NF-E2-related factor-2 (Nrf2) is a transcription factor that regulates important antioxidant and phase II detoxification genes, and therefore, the molecule that regulates nuclear translocation of Nrf2 and the induction of antioxidative proteins is thought to be a promising candidate as a cytoprotective agent for oxidative stress. In the present study, we show that isoorientin (luteolin 6-C-beta-D-glucoside) obtained from the leaves of Sasa borealis upregulates and activates Nrf2, and has protective ability against oxidative damage caused by reactive oxygen intermediates in HepG2 cells. Isoorientin induces increase in the level of antioxidant enzyme proteins, especially NQO1, and the cytoprotective and antioxidative effects of isoorientin are PI3K/Akt pathway-dependent. Together with direct radical scavenging activity, the novel effect of isoorientin on the regulation of antioxidative gene expression provides attractive strategy to prevent diseases associated with oxidative stress and attenuate the progress of the diseases. PMID:18254247

  4. Induction of Antioxidant and Heat Shock Protein Responses During Torpor in the Gray Mouse Lemur, Microcebus murinus.

    PubMed

    Wu, Cheng-Wei; Biggar, Kyle K; Zhang, Jing; Tessier, Shannon N; Pifferi, Fabien; Perret, Martine; Storey, Kenneth B

    2015-04-01

    A natural tolerance of various environmental stresses is typically supported by various cytoprotective mechanisms that protect macromolecules and promote extended viability. Among these are antioxidant defenses that help to limit damage from reactive oxygen species and chaperones that help to minimize protein misfolding or unfolding under stress conditions. To understand the molecular mechanisms that act to protect cells during primate torpor, the present study characterizes antioxidant and heat shock protein (HSP) responses in various organs of control (aroused) and torpid gray mouse lemurs, Microcebus murinus. Protein expression of HSP70 and HSP90α was elevated to 1.26 and 1.49 fold, respectively, in brown adipose tissue during torpor as compared with control animals, whereas HSP60 in liver of torpid animals was 1.15 fold of that in control (P<0.05). Among antioxidant enzymes, protein levels of thioredoxin 1 were elevated to 2.19 fold in white adipose tissue during torpor, whereas Cu-Zn superoxide dismutase 1 levels rose to 1.1 fold in skeletal muscle (P<0.05). Additionally, total antioxidant capacity was increased to 1.6 fold in liver during torpor (P<0.05), while remaining unchanged in the five other tissues. Overall, our data suggest that antioxidant and HSP responses are modified in a tissue-specific manner during daily torpor in gray mouse lemurs. Furthermore, our data also show that cytoprotective strategies employed during primate torpor are distinct from the strategies in rodent hibernation as reported in previous studies. PMID:26092183

  5. Induction of Antioxidant and Heat Shock Protein Responses During Torpor in the Gray Mouse Lemur, Microcebus murinus

    PubMed Central

    Wu, Cheng-Wei; Biggar, Kyle K.; Zhang, Jing; Tessier, Shannon N.; Pifferi, Fabien; Perret, Martine; Storey, Kenneth B.

    2015-01-01

    A natural tolerance of various environmental stresses is typically supported by various cytoprotective mechanisms that protect macromolecules and promote extended viability. Among these are antioxidant defenses that help to limit damage from reactive oxygen species and chaperones that help to minimize protein misfolding or unfolding under stress conditions. To understand the molecular mechanisms that act to protect cells during primate torpor, the present study characterizes antioxidant and heat shock protein (HSP) responses in various organs of control (aroused) and torpid gray mouse lemurs, Microcebus murinus. Protein expression of HSP70 and HSP90α was elevated to 1.26 and 1.49 fold, respectively, in brown adipose tissue during torpor as compared with control animals, whereas HSP60 in liver of torpid animals was 1.15 fold of that in control (P < 0.05). Among antioxidant enzymes, protein levels of thioredoxin 1 were elevated to 2.19 fold in white adipose tissue during torpor, whereas Cu–Zn superoxide dismutase 1 levels rose to 1.1 fold in skeletal muscle (P < 0.05). Additionally, total antioxidant capacity was increased to 1.6 fold in liver during torpor (P < 0.05), while remaining unchanged in the five other tissues. Overall, our data suggest that antioxidant and HSP responses are modified in a tissue-specific manner during daily torpor in gray mouse lemurs. Furthermore, our data also show that cytoprotective strategies employed during primate torpor are distinct from the strategies in rodent hibernation as reported in previous studies. PMID:26092183

  6. Antioxidant responses of Annelids, Brassicaceae and Fabaceae to pollutants: a review.

    PubMed

    Bernard, F; Brulle, F; Dumez, S; Lemiere, S; Platel, A; Nesslany, F; Cuny, D; Deram, A; Vandenbulcke, F

    2015-04-01

    Pollutants, such as Metal Trace Elements (MTEs) and organic compounds (polycyclic aromatic hydrocarbons, pesticides), can impact DNA structure of living organisms and thus generate damage. For instance, cadmium is a well-known genotoxic and mechanisms explaining its clastogenicity are mainly indirect: inhibition of DNA repair mechanisms and/or induction of Reactive Oxygen Species (ROS). Animal or vegetal cells use antioxidant defense systems to protect themselves against ROS produced during oxidative stress. Because tolerance of organisms depends, at least partially, on their ability to cope with ROS, the mechanisms of production and management of ROS were investigated a lot in Ecotoxicology as markers of biotic and abiotic stress. This was mainly done through the measurement of enzyme activities The present Review focuses on 3 test species living in close contact with soil that are often used in soil ecotoxicology: the worm Eisenia fetida, and two plant species, Trifolium repens (white clover) and Brassica oleracea (cabbage). E. fetida is a soil-dwelling organism commonly used for biomonitoring. T. repens is a symbiotic plant species which forms root nodule with soil bacteria, while B. oleracea is a non-symbiotic plant. In literature, some oxidative stress enzyme activities have already been measured in those species but such analyses do not allow distinction between individual enzyme involvements in oxidative stress. Gene expression studies would allow this distinction at the transcriptomic level. A literature review and a data search in molecular database were carried out on the basis of keywords in Scopus, in PubMed and in Genbank™ for each species. Molecular data regarding E. fetida were already available in databases, but a lack of data regarding oxidative stress related genes was observed for T. repens and B. oleracea. By exploiting the conservation observed between species and using molecular biology techniques, we partially cloned missing candidates

  7. Extraction optimization for antioxidant phenolic compounds in red grape jam using ultrasound with a response surface methodology.

    PubMed

    Morelli, Lucíula Lemos Lima; Prado, Marcelo Alexandre

    2012-11-01

    Optimization of the extraction methodology for antioxidant phenolic compounds in red grape jam was performed with an ultrasound-assisted system. The antioxidant phenolic compounds were extracted and analyzed by determining the total phenolic content (Folin Ciocalteu), as well as by employing free radical DPPH() and the beta-carotene/linoleic acid system. To optimize the parameters of solvent concentration, time and extraction temperature, the experiments were carried out using the central composite rotatable design (CCRD) method. Using response surface methodology (RSM), the best combinations achieved were with 60% ethanol and water for 20min at 50°C. The optimized parameters for this method were compared to an extraction method that has been commonly noted in the literature, which used to be the standard method, and the results were expressed in the milligram equivalent of quercetin per gram of jam (mg E.Q/g Jam). With the new method, the antioxidant potential measured by DPPH(ⁱ) was 70% higher than that obtained with the standard extraction method, and the antioxidant potential measured using the beta-carotene/linoleic acid system was 65% higher. In addition, a significant decrease in the total analysis time was achieved (from 10h to 30min), when compared to the standard method. PMID:22512996

  8. Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability.

    PubMed

    Gallorini, Marialucia; Petzel, Christine; Bolay, Carola; Hiller, Karl-Anton; Cataldi, Amelia; Buchalla, Wolfgang; Krifka, Stephanie; Schweikl, Helmut

    2015-07-01

    Oxidative stress due to increased formation of reactive oxygen species (ROS) in target cells of dental resin monomers like 2-hydroxyethyl methacrylate (HEMA) is a major mechanism underlying the disturbance of vital cell functions including mineralization and differentiation, responses of the innate immune system, and the induction of cell death via apoptosis. Although a shift in the equilibrium between cell viability and apoptosis is related to the non-enzymatic antioxidant glutathione (GSH) in HEMA-exposed cells, the major mechanisms of adaptive antioxidant cell responses to maintain cellular redox homeostasis are still unknown. The present study provides insight into the induction of a communicating network of pathways under the control of the redox-sensitive transcription factor Nrf2, a major transcriptional activator of genes coding for enzymatic antioxidants. Here, oxidative stress was indicated by DCF fluorescence in cells after a short exposure (1 h) to HEMA, while DHR123 fluorescence significantly increased about 1.8-fold after a long exposure period (24 h) showing the formation of hydrogen peroxide (H2O2). The corresponding expression of Nrf2 was activated immediately after HEMA exposure (1 h) and remained constant up to 24 h. Nrf2-regulated expression of enzymes of the glutathione metabolism (glutathione peroxidase 1/2, glutathione reductase) decreased in HEMA-exposed cells as a result of GSH depletion, and superoxide dismutase expression was downregulated after H2O2 overproduction. However, the expression of Nrf2-controlled enzymatic antioxidants (catalase, peroxiredoxin, thioredoxin 1, thioredoxin reductase, heme oxygenase-1) and the NADPH-regenerating system (glucose 6-phosphate dehydrogenase, transaldolase) was increased. Phenolic tert-butylhydroquinone (tBHQ), a classic inducer of the Nrf2 pathway, reduced oxidative stress and protected cells from HEMA-induced cell death through a shift in the number of cells in necrosis to apoptosis. The

  9. Anti-oxidative stress response genes: bioinformatic analysis of their expression and relevance in multiple cancers

    PubMed Central

    Melino, Gerry; Knight, Richard A.

    2013-01-01

    Cells mount a transcriptional anti-oxidative stress (AOS) response program to scavenge reactive oxygen species (ROS) that arise from chemical, physical, and metabolic challenges. This protective program has been shown to reduce carcinogenesis triggered by chemical and physical insults. However, it is also hijacked by established cancers to thrive and proliferate within the hostile tumor microenvironment and to gain resistance against chemo- and radiotherapies. Therefore, targeting the AOS response proteins that are exploited by cancer cells is an attractive therapeutic strategy. In order to identify the AOS genes that are suspected to support cancer progression and resistance, we analyzed the expression patterns of 285 genes annotated for being involved in oxidative stress in 994 tumors and 353 normal tissues. Thereby we identified a signature of 116 genes that are highly overexpressed in multiple cancers while being only minimally expressed in normal tissues. To establish which of these genes are more likely to functionally drive cancer resistance and progression, we further identified those whose overexpression correlates with negative patient outcome in breast and lung carcinoma. Gene-set enrichment, gene ontology, network, and pathway analyses revealed that members of the thioredoxin and glutathione pathways are prominent components of this oncogenic signature and that activation of these pathways is common feature of many cancer entities. Interestingly, a large fraction of these AOS genes are downstream targets of the transcription factors NRF2, NF-kappaB, and FOXM1, and rely on NADPH for their enzymatic activities highlighting promising drug targets. We discuss these findings and propose therapeutic strategies that may be applied to overcome cancer resistance. PMID:24342878

  10. Effects of vitamin C and E supplementation on endogenous antioxidant systems and heat shock proteins in response to endurance training.

    PubMed

    Cumming, Kristoffer T; Raastad, Truls; Holden, Geir; Bastani, Nasser E; Schneeberger, Damaris; Paronetto, Maria Paola; Mercatelli, Neri; Ostgaard, Hege N; Ugelstad, Ingrid; Caporossi, Daniela; Blomhoff, Rune; Paulsen, Gøran

    2014-10-01

    Reactive oxygen and nitrogen species are important signal molecules for adaptations to training. Due to the antioxidant properties of vitamin C and E, supplementation has been shown to blunt adaptations to endurance training. In this study, we investigated the effects of vitamin C and E supplementation and endurance training on adaptations in endogenous antioxidants and heat shock proteins (HSP). Thirty seven males and females were randomly assigned to receive Vitamin C and E (C + E; C: 1000 mg, E: 235 mg daily) or placebo (PLA), and underwent endurance training for 11 weeks. After 5 weeks, a subgroup conducted a high intensity interval session to investigate acute stress responses. Muscle and blood samples were obtained to investigate changes in proteins and mRNA related to the antioxidant and HSP system. The acute response to the interval session revealed no effects of C + E supplementation on NFκB activation. However, higher stress responses to exercise in C + E group was indicated by larger translocation of HSPs and a more pronounced gene expression compared to PLA. Eleven weeks of endurance training decreased muscle GPx1, HSP27 and αB-crystallin, while mnSOD, HSP70 and GSH remained unchanged, with no influence of supplementation. Plasma GSH increased in both groups, while uric acid decreased in the C + E group only. Our results showed that C + E did not affect long-term training adaptations in the antioxidant- and HSP systems. However, the greater stress responses to exercise in the C + E group might indicate that long-term adaptations occurs through different mechanisms in the two groups. PMID:25293598

  11. Comparison of physiological and antioxidant responses of Anoda cristata and cotton to progressive drought

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simultaneous investigation of variables related to gas exchange, photochemistry and antioxidant defenses during water stress is crucial for understanding stress tolerance mechanisms and consequent success of both economically important plant species and their interfering counterparts. This study ev...

  12. Differential response of Arabidopsis leaves and roots to cadmium: glutathione-related chelating capacity vs antioxidant capacity.

    PubMed

    Jozefczak, Marijke; Keunen, Els; Schat, Henk; Bliek, Mattijs; Hernández, Luis E; Carleer, Robert; Remans, Tony; Bohler, Sacha; Vangronsveld, Jaco; Cuypers, Ann

    2014-10-01

    This study aims to uncover the spatiotemporal involvement of glutathione (GSH) in two major mechanisms of cadmium (Cd)-induced detoxification (i.e. chelation and antioxidative defence). A kinetic study was conducted on hydroponically grown Arabidopsis thaliana (L. Heyhn) to gain insight into the early events after exposure to Cd. Cadmium detoxification was investigated at different levels, including gene transcripts, enzyme activities and metabolite content. Data indicate a time-dependent response both within roots and between plant organs. Early on in roots, GSH was preferentially allocated to phytochelatin (PC) synthesis destined for Cd chelation. This led to decreased GSH levels, without alternative pathways activated to complement GSH's antioxidative functions. After one day however, multiple antioxidative pathways increased including superoxide dismutase (SOD), ascorbate (AsA) and catalase (CAT) to ensure efficient neutralization of Cd-induced reactive oxygen species (ROS). As a consequence of Cd retention and detoxification in roots, a delayed response occurred in leaves. Together with high leaf thiol contents and possibly signalling responses from the roots, the leaves were protected, allowing them sufficient time to activate their defence mechanisms. PMID:25049163

  13. Heterogeneous Porphyromonas gingivalis LPS modulates immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in human gingival fibroblasts.

    PubMed

    Herath, Thanuja D K; Darveau, Richard P; Seneviratne, Chaminda J; Wang, Cun-Yu; Wang, Yu; Jin, Lijian

    2016-01-01

    Periodontal (gum) disease is a highly prevalent infection and inflammation accounting for the majority of tooth loss in adult population worldwide. Porphyromonas gingivalis is a keystone periodontal pathogen and its lipopolysaccharide (PgLPS) acts as a major virulence attribute to the disease. Herein, we deciphered the overall host response of human gingival fibroblasts (HGFs) to two featured isoforms of tetra-acylated PgLPS1435/1449 and penta-acylated PgLPS1690 with reference to E. coli LPS through quantitative proteomics. This study unraveled differentially expressed novel biomarkers of immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs. PgLPS1690 greatly upregulated inflammatory proteins (e.g. cyclophilin, inducible nitric oxide synthase, annexins, galectin, cathepsins and heat shock proteins), whereas the anti-inflammatory proteins (e.g. Annexin A2 and Annexin A6) were significantly upregulated by PgLPS1435/1449. Interestingly, the antioxidants proteins such as mitochondrial manganese-containing superoxide dismutase and peroxiredoxin 5 were only upregulated by PgLPS1690. The cytoskeletal rearrangement-related proteins like myosin were differentially regulated by these PgLPS isoforms. The present study gives new insight into the biological properties of P. gingivalis LPS lipid A moiety that could critically modulate immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs, and thereby enhances our understanding of periodontal pathogenesis. PMID:27538450

  14. Differential coral bleaching-Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress.

    PubMed

    Krueger, Thomas; Hawkins, Thomas D; Becker, Susanne; Pontasch, Stefanie; Dove, Sophie; Hoegh-Guldberg, Ove; Leggat, William; Fisher, Paul L; Davy, Simon K

    2015-12-01

    Mass coral bleaching due to thermal stress represents a major threat to the integrity and functioning of coral reefs. Thermal thresholds vary, however, between corals, partly as a result of the specific type of endosymbiotic dinoflagellate (Symbiodinium sp.) they harbour. The production of reactive oxygen species (ROS) in corals under thermal and light stress has been recognised as one mechanism that can lead to cellular damage and the loss of their symbiont population (Oxidative Theory of Coral Bleaching). Here, we compared the response of symbiont and host enzymatic antioxidants in the coral species Acropora millepora and Montipora digitata at 28°C and 33°C. A. millepora at 33°C showed a decrease in photochemical efficiency of photosystem II (PSII) and increase in maximum midday excitation pressure on PSII, with subsequent bleaching (declining photosynthetic pigment and symbiont density). M. digitata exhibited no bleaching response and photochemical changes in its symbionts were minor. The symbiont antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and catalase peroxidase showed no significant upregulation to elevated temperatures in either coral, while only catalase was significantly elevated in both coral hosts at 33°C. Increased host catalase activity in the susceptible coral after 5days at 33°C was independent of antioxidant responses in the symbiont and preceded significant declines in PSII photochemical efficiencies. This finding suggests a potential decoupling of host redox mechanisms from symbiont photophysiology and raises questions about the importance of symbiont-derived ROS in initiating coral bleaching. PMID:26310104

  15. Heterogeneous Porphyromonas gingivalis LPS modulates immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in human gingival fibroblasts

    PubMed Central

    Herath, Thanuja D. K.; Darveau, Richard P.; Seneviratne, Chaminda J.; Wang, Cun-Yu; Wang, Yu; Jin, Lijian

    2016-01-01

    Periodontal (gum) disease is a highly prevalent infection and inflammation accounting for the majority of tooth loss in adult population worldwide. Porphyromonas gingivalis is a keystone periodontal pathogen and its lipopolysaccharide (PgLPS) acts as a major virulence attribute to the disease. Herein, we deciphered the overall host response of human gingival fibroblasts (HGFs) to two featured isoforms of tetra-acylated PgLPS1435/1449 and penta-acylated PgLPS1690 with reference to E. coli LPS through quantitative proteomics. This study unraveled differentially expressed novel biomarkers of immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs. PgLPS1690 greatly upregulated inflammatory proteins (e.g. cyclophilin, inducible nitric oxide synthase, annexins, galectin, cathepsins and heat shock proteins), whereas the anti-inflammatory proteins (e.g. Annexin A2 and Annexin A6) were significantly upregulated by PgLPS1435/1449. Interestingly, the antioxidants proteins such as mitochondrial manganese-containing superoxide dismutase and peroxiredoxin 5 were only upregulated by PgLPS1690. The cytoskeletal rearrangement-related proteins like myosin were differentially regulated by these PgLPS isoforms. The present study gives new insight into the biological properties of P. gingivalis LPS lipid A moiety that could critically modulate immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs, and thereby enhances our understanding of periodontal pathogenesis. PMID:27538450

  16. Antioxidative responses of Pseudomonas fluorescens YZ2 to simultaneous exposure of Zn and Cefradine.

    PubMed

    Xu, Yan-Bin; Xu, Jia-Xin; Chen, Jin-Liang; Huang, Lu; Zhou, Shao-Qi; Zhou, Yan; Wen, Li-Hua

    2015-10-01

    Binary pollution of both heavy metals and antibiotics has received increasing attentions for their joint effects of eco-toxicity and health hazards. To reveal the effects of mixtures of different pollutants on bacterial antioxidant response system, Pseudomonas fluorescens ZY2, a new strain isolated from swine wastewater, was chosen to determinate growth (bacterial density OD600), reactive oxygen species (ROS) concentration, protein concentration and superoxide dismutase (SOD) activity under exposure treatments of Zn, Cefradine or Zn + Cefradine. Bacterial densities of all the treatment groups increased significantly over the incubation time, but those containing pollutant addition were slightly lower than the control at different times of incubation. Both ROS concentration and SOD activity increased first and then decreased (p < 0.01) over time, which was opposite to the protein concentrations (p < 0.01), showing a much significant increase by Cefradine alone. With Zn concentration increasing from 40 to 160 mg/L, the intracellular SOD activity increased as a response to the improvement of ROS (p < 0.05), while the balance between ROS and SOD was broken down due to the disproportionate change of total SOD activity and ROS concentration, the bacterial densities therefore decreased for the weak resistance. With the combined treatment of Zn (200 mg/L) and Cefradine (1 mg/L), though the toxicity of Zn caused a much significant increase of ROS, the bacterial resistance was further improved showing a more significant increase of total SOD activity and the bacterial densities therefore increased bacterial growth. Zn concentration also affected the protein synthesis. Either single or binary stress induced the bacterial resistance by regulating SOD activity to eliminate ROS. All results of the bacterial oxidant stress, SOD response and protein synthesis in the combined treatment groups were more complicated than those in single treatment groups, which depended on the

  17. Early osmotic, antioxidant, ionic, and redox responses to salinity in leaves and roots of Indian mustard (Brassica juncea L.).

    PubMed

    Ranjit, Singh Laxmi; Manish, Pandey; Penna, Suprasanna

    2016-01-01

    Salt-stress-induced alterations in osmotic, ionic, and redox responses were studied in the early period of treatment (30 min to 5 days) in seedlings of Brassica juncea L. Roots and shoots under mild (50 mM) and severe (250 mM) NaCl stress were analyzed for growth, oxidative stress, osmolyte accumulation, antioxidant defense, and redox state. Growth reduction was less pronounced in the early time period of salt stress while oxidative damage increased linearly and in a sustained manner under severe stress up to 6 h. An early and transient reactive oxygen species (ROS) burst, as evidenced by superoxide and hydrogen peroxide level was observed, followed by activation of enzymatic antioxidant system (GPX, SOD, CAT, and GR) in both root and shoot. The enzymatic activity was not affected much under mild stress particularly at early phase; however, severe stress induced a significant increase in the activity of antioxidant enzymes. Root ascorbate was progressively accumulated, and its redox state maintained in the early time phase of treatment under mild stress while increase in root and shoot glutathione content was recorded under mild stress at 5 days when the active ascorbate pool decreased. While early period of salt stress showed significant Na(+) accumulation over control, plants subjected to mild stress measured less Na(+) accumulation up to 5 days compared to severely stressed plants. The results showed an early induction of differential responses to salt stress in roots and shoots of Brassica which include growth limitations, reduced relative water content, increased osmolytes, redox state, and antioxidant system, and a significant Na(+) increase. The results also indicate that roots and shoots may have distinct mechanisms of responses to salt stress. PMID:25786350

  18. Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males

    PubMed Central

    Özdemir, F; Çolak, R

    2015-01-01

    The relationship between oxidative stress and some exercise components of resistance exercise (e.g. intensity, exercise volume) has not been clearly defined. Additionally, the oxidative stress markers may respond differently in various conditions. This study aims to determine the effects of progressive intensity of resistance exercise (RE) on oxidative stress and antioxidants in trained and untrained men, and also to investigate the possible threshold intensity required to evoke oxidative stress. RE trained (N=8) and untrained (N=8) men performed the leg extension RE at progressive intensities standardized for total volume: 1x17 reps at 50% of one-repetition maximum (1RM); 1x14 reps at 60% of 1RM; 1x12 reps at 70% of 1RM; 2x5 reps at 80% of 1RM; and 3x3 reps at 90% of 1RM. Blood samples were drawn before (PRE) and immediately after each intensity, and after 30 minutes, 60 minutes and 24 hours following the RE. Lipid-hydroperoxide (LHP) significantly increased during the test and then decreased during the recovery in both groups (p<0.05); the POST-24 h LHP level was lower than PRE-LHP. Protein carbonyl (PCO) and superoxide dismutase (SOD) significantly increased (p<0.05); however, 8-hydroxy-2’-deoxyguanosine (8-OHdG) and glutathione (GSH) were not affected by the RE (p > 0.05). The results indicated that there was no significant training status x intensity interaction for examined variables (p > 0.05). Standardized volume of RE increased oxidative stress responses. Our study suggests that lower intensity (50%) is enough to increase LHP, whereas higher intensity (more than 80%) is required to evoke protein oxidation. PMID:26681835

  19. Differential Antioxidant Responses and Perturbed Porphyrin Biosynthesis after Exposure to Oxyfluorfen and Methyl Viologen in Oryza sativa.

    PubMed

    Pham, Nhi-Thi; Kim, Jin-Gil; Jung, Sunyo

    2015-01-01

    We compared antioxidant responses and regulation of porphyrin metabolism in rice plants treated with oxyfluorfen (OF) or methyl viologen (MV). Plants treated with MV exhibited not only greater increases in conductivity and malondialdehyde but also a greater decline in Fv/Fm, compared to plants treated with OF. MV-treated plants had greater increases in activities of superoxide dismutase (SOD) and catalase (CAT) as well as transcript levels of SODA and CATA than OF-treated plants after 28 h of the treatments, whereas increases in ascorbate peroxidase (APX) activity and transcript levels of APXA and APXB were greater in OF-treated plants. Both OF- and MV-treated plants resulted in not only down-regulation of most genes involved in porphyrin biosynthesis but also disappearance of Mg-porphyrins during the late stage of photooxidative stress. By contrast, up-regulation of heme oxygenase 2 (HO2) is possibly part of an efficient antioxidant response to compensate photooxidative damage in both treatments. Our data show that down-regulated biosynthesis and degradation dynamics of porphyrin intermediates have important roles in photoprotection of plants from perturbed porphyrin biosynthesis and photosynthetic electron transport. This study suggests that porphyrin scavenging as well as strong antioxidative activities are required for mitigating reactive oxygen species (ROS) production under photooxidative stress caused by OF and MV. PMID:26197316

  20. Involvement of the Antioxidant Effect and Anti-inflammatory Response in Butyrate-Inhibited Vascular Smooth Muscle Cell Proliferation

    PubMed Central

    Mathew, Omana P.; Ranganna, Kasturi; Milton, Shirlette G.

    2014-01-01

    Epigenetic mechanisms by altering the expression and, in turn, functions of target genes have potential to modify cellular processes that are characteristics of atherosclerosis, including inflammation, proliferation, migration and apoptosis/cell death. Butyrate, a natural epigenetic modifier and a histone deacetylase inhibitor (HDACi), is an inhibitor of vascular smooth muscle cell (VSMC) proliferation, a critical event in atherogenesis. Here, we examined whether glutathione peroxidases (GPxs), a family of antioxidant enzymes, are modulated by butyrate, contributing to its antiproliferation action on VSMC through the regulation of the inflammatory response by using western blotting, immunostaining methods and activity assay. Treatment of VSMC with butyrate not only upregulates glutathione peroxidase (GPx) 3 and GPx4, but also increases the overall catalytic activity of GPx supporting involvement of antioxidant effect in butyrate arrested VSMC proliferation. Moreover, analysis of the redox-sensitive NF-κB transcription factor system, the target of GPx, reveals that butyrate causes downregulation of IKKα, IKKβ, IkBα and NF-κBp65 expression and prevents NF-κBp65 phosphorylation at serine536 causing inhibition of the expression NF-κB target inflammatory genes, including inducible nitric oxide synthase, VCAM-1 and cyclooxygenase-2. Overall, these observations suggest a link between the antioxidant effect and anti-inflammatory response in butyrate-arrested VSMC proliferation, accentuating the atheroprotective and therapeutic potential of natural products, like butyrate, in vascular proliferative diseases. PMID:25390157

  1. Differential Antioxidant Responses and Perturbed Porphyrin Biosynthesis after Exposure to Oxyfluorfen and Methyl Viologen in Oryza sativa

    PubMed Central

    Pham, Nhi-Thi; Kim, Jin-Gil; Jung, Sunyo

    2015-01-01

    We compared antioxidant responses and regulation of porphyrin metabolism in rice plants treated with oxyfluorfen (OF) or methyl viologen (MV). Plants treated with MV exhibited not only greater increases in conductivity and malondialdehyde but also a greater decline in Fv/Fm, compared to plants treated with OF. MV-treated plants had greater increases in activities of superoxide dismutase (SOD) and catalase (CAT) as well as transcript levels of SODA and CATA than OF-treated plants after 28 h of the treatments, whereas increases in ascorbate peroxidase (APX) activity and transcript levels of APXA and APXB were greater in OF-treated plants. Both OF- and MV-treated plants resulted in not only down-regulation of most genes involved in porphyrin biosynthesis but also disappearance of Mg-porphyrins during the late stage of photooxidative stress. By contrast, up-regulation of heme oxygenase 2 (HO2) is possibly part of an efficient antioxidant response to compensate photooxidative damage in both treatments. Our data show that down-regulated biosynthesis and degradation dynamics of porphyrin intermediates have important roles in photoprotection of plants from perturbed porphyrin biosynthesis and photosynthetic electron transport. This study suggests that porphyrin scavenging as well as strong antioxidative activities are required for mitigating reactive oxygen species (ROS) production under photooxidative stress caused by OF and MV. PMID:26197316

  2. Tissue-specific antioxidant responses in pale chub (Zacco platypus) exposed to copper and benzo[a]pyrene.

    PubMed

    Kim, Woo-Keun; Park, June-Woo; Lim, Eun-Suk; Lee, Sung-Kyu; Kim, Jungkon; Kim, Sunmi; Lee, Sang-Woo; Choi, Kyungho; Jung, Jinho

    2014-05-01

    In this study, antioxidant responses including lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST), were evaluated in the liver, gill and muscle tissues of pale chub (Zacco platypus) exposed to copper (Cu) and benzo[a]pyrene (BaP). Cu exposure induced significant antioxidant responses in Z. platypus, particularly in the liver, whereas BaP exposure had a negligible effect. Following Cu exposure, both SOD and CAT activity increased in a concentration-dependent manner, showing significant correlations with malondialdehyde (MDA) levels as a measure of LPO (r = 0.646 and 0.663, respectively). SOD, CAT and GST mRNA levels were also enhanced following Cu exposure, except at 20 μg L(-1), although significant correlations with antioxidant enzyme activities were not found. The results of this study suggest that combined information on SOD and CAT activities together with LPO levels in the liver could be a useful indicator for assessing oxidative stress in freshwater fish. PMID:24477393

  3. Antioxidative and immunological responses in the haemolymph of wolf spider Xerolycosa nemoralis (Lycosidae) exposed to starvation and dimethoate.

    PubMed

    Stalmach, Monika; Wilczek, Grażyna; Homa, Joanna; Szulinska, Elżbieta

    2015-11-01

    The aim of this study was to assess the intensity of enzymatic antioxidative parameters [catalase (CAT), glutathione peroxidase (GSTPx), glutathione reductase (GR), total antioxidant capacity (TAC)] and percentage of high granularity cells as well as low to medium granularity cells in haemolymph of wolf spiders Xerolycosa nemoralis exposed to starvation and dimethoate under laboratory conditions. Only in starved males, haemolymph included a lower percentage of high granularity cells, accompanied by high activity of CAT and GSTPx, than in the control. Exposure of males to dimethoate increased CAT activity, after single application, and significantly enhanced GR activity, after five-time application. In females, five-time contact with dimethoate elevated the percentage of high granularity cells. As in comparison to females, male X. nemoralis were more sensitive to the applied stressing factors, it may be concluded that in natural conditions both food deficiency and chemical stress may diminish the immune response of their organisms. PMID:26301693

  4. [Responses of antioxidation system of Cynodon dactylon to recirculated landfill leachate irrigation].

    PubMed

    Wang, Ruyi; He, Pinjing; Shao, Liming; Zhang, Bin; Li, Guojian

    2005-05-01

    With pot experiment, this paper studied the membrane lipid peroxidation and the variations of antioxidation system in Cynodon dactylon under recirculated landfill leachate irrigation. The results showed that when irrigated with low dilution ratio (< 25%) leachate, the chlorophyll a/b ratio increased with increasing dilution ratio, membrane permeability and MDA and H2O2 contents were in adverse, and membrane lipid peroxidation was relatively weak. However, with the increasing leachate dilution ratio (> 25%), there existed an obvious negative fect on Cynodon dactylon, i.e., the chlorophyll a/b ratio decreased, while cell membrane permeability and MDA and H2O2 contents increased, which meant that the membrane lipid peroxidation was accelerated. The contents antioxidants AsA, GSH and Car also showed the similar trend, i.e., they increased with increasing leachate dilution ratio when irrigated with low dilution ratio leachate, but decreased under medium or high dilution ratio leachate irrigation. Among three test anti-oxidative enzymes, SOD and POD activities showed a similar change test antioxidants, and POD activity was more sensitive, while CAT activity was on the contrary. The contents test antioxidants and the activities of SOD and POD were negatively and significantly correlated to MDA content, indicating that they might play an important role in preventing Cynodon dactylon from cell membrane lipid peroxdation. PMID:16110675

  5. Boron influences immune and antioxidant responses by modulating hepatic superoxide dismutase activity under calcium deficit abiotic stress in Wistar rats.

    PubMed

    Bhasker, T Vijay; Gowda, N K S; Mondal, S; Krishnamoorthy, P; Pal, D T; Mor, A; Bhat, S Karthik; Pattanaik, A K

    2016-07-01

    The influence of Boron (B) supplementation on immune and antioxidant status of rats with or without abiotic stress induced by dietary calcium (Ca) restriction was studied in a feeding trial of 90 days. Wistar strain rats (3-4 wk age, n=84) were divided into 7 dietary groups (4 replicates of 3 each) viz., normal-calcium (100%) basal diet alone (NC, control) or supplemented with B at 5 (NCB-5), 10 (NCB-10), 20 (NCB-20) and 40ppm (NCB-40) levels; low-calcium (50%) basal diet alone (LC) or supplemented with 40ppm B (LCB-40). After 75 days of experimental feeding, rats were challenged with intraperitoneal injection of sheep RBCs to assess their humoral immunity. At the end of the trial, cell-mediated immunity was assessed as foot pad reaction to sheep RBCs injected into the hind leg paws. Eight rats from each group were sacrificed to collect blood for estimation of minerals and total antioxidant activity, and liver for superoxide dismutase gene expression analysis. Supplementation of graded levels of B (5, 10, 20 and 40ppm) as borax in NC diets significantly increased (P<0.01) the footpad thickness and serum total antioxidant activity, hepatic expression levels of both Cu-Zn SOD (SOD1) and Mn-SOD (SOD2) mRNAs. The erythrocytic SOD activity and humoral response did not differ significantly among the dietary groups. In Ca restricted groups, humoral immune response was significantly decreased (P<0.01) compared to control but increased (P<0.05) with 40ppm B supplementation. Serum levels of copper (Cu) and zinc (Zn) remained similar among the dietary groups, while the manganese (Mn) content was significantly decreased (P<0.01) with increased levels of dietary B. In conclusion, B supplementation increased the hepatic mRNA expression levels of both SOD isoenzymes, thereby improving the immune and antioxidant status. PMID:27259355

  6. Immune-associated parameters and antioxidative responses to cadmium in the freshwater crab Sinopotamon henanense.

    PubMed

    Zhou, Yanying; Dahms, Hans-Uwe; Dong, Feng; Jing, Weixing; Wang, Lan

    2016-07-01

    Cadmium (Cd) is a toxic heavy metal pollutant and is known to exert adverse effects in organisms. In this study, we examined immune-related and antioxidative parameters in crabs exposed to sublethal levels of Cd. The results showed that Cd exposure elicited a significant accumulation in hemolymph, a decrease in total hemocyte counts, and the production of reactive oxygen species (ROS). Cd treatment also upregulated activities of antioxidant enzymes including superoxide dismutase, catalase, and glutathione peroxidase in the hemocytes of crabs. Treatment with Cd further decreased the stability of lysosomal membranes in hemocytes and induced substantial changes of immune-related parameters including acid phosphatase and alkaline phosphatase. However, the activity of lysozyme varied weakly throughout the Cd treatment period. Our results suggest that Cd exposure caused immunomodulation, a potentially harmful immunity function and damage in the antioxidant system of Sinopotamon henanense. PMID:27057991

  7. The antioxidant response induced by Lonicera caerulaea berry extracts in animals bearing experimental solid tumors.

    PubMed

    Gruia, Maria Iuliana; Oprea, Eliza; Gruia, Ion; Negoita, Valentina; Farcasanu, Ileana Cornelia

    2008-01-01

    Lonicera caerulea is a species of bush native to the Kamchatka Peninsula (Russian Far East) whose berries have been extensively studied due to their potential high antioxidant activity. The aim of our work was to investigate the in vivo effects of the antioxidant action of Lonicera caerulea berry extracts on the dynamics of experimentally-induced tumors. Our data showed that aqueous Lonicera caerulaea extracts reduced the tumor volume when administered continuously during the tumor growth and development stages, but augmented the tumor growth when the administration of extracts started three weeks before tumor grafting. Prolonged administration of Lonicera caerulaea berry extracts induced the antioxidant defense mechanism in the tumor tissues, while surprisingly amplifying the peripheral oxidative stress. PMID:18560338

  8. Impact of tributyltin on antioxidant and DNA damage response in spermatozoa of freshwater prawn Macrobrachium rosenbergii.

    PubMed

    Rani, K Umaa; Musthafa, M Saiyad; War, Mehrajuddin; Al-Sadoon, Mohammad K; Paray, Bilal Ahmad; Shareef, T H Mohamed Ahadhu; Nawas, P Mohideen Askar

    2015-12-01

    Effects of tributyltin (TBT) on antioxidant [total superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR)] and DNA damage levels in the spermatozoa were studied and reported here for the first time in the freshwater prawn Macrobrachium rosenbergii. Three groups of (n = 10 in each group) fishes were exposed to three different nominal concentrations of TBT viz., 1, 2, and 4 mg L(-1) along with control group for 90 days. Significant decrease of antioxidant and increased DNA damage levels were seen at higher doses of 2 and 4 mg L(-1). In prawn, the antioxidant level plays a vital role in sperm protection, activation, differential functions related to the physiology, and reproductive behavior. This study serves as a biomonitoring tool to assess the TBT effects on reproductive behavior of aquatic biota. PMID:26296505

  9. Control of antioxidative response by the tumor suppressor protein PML through regulating Nrf2 activity

    PubMed Central

    Guo, Shuang; Cheng, Xiwen; Lim, Jun-Hee; Liu, Yu; Kao, Hung-Ying

    2014-01-01

    Oxidative stress is a consequence of an imbalance between reactive oxygen species (ROS) production and the ability of the cytoprotective system to detoxify the reactive intermediates. The tumor suppressor promyelocytic leukemia protein (PML) functions as a stress sensor. Loss of PML results in impaired mitochondrial complex II activity, increased ROS, and subsequent activation of nuclear factor erythroid 2–related factor 2 (Nrf2) antioxidative pathway. We also demonstrate that sulforaphane (SFN), an antioxidant, regulates Nrf2 activity by controlling abundance and subcellular distribution of PML and that PML is essential for SFN-mediated ROS increase, Nrf2 activation, antiproliferation, antimigration, and antiangiogenesis. Taking the results together, we have uncovered a novel antioxidative mechanism by which PML regulates cellular oxidant homeostasis by controlling complex II integrity and Nrf2 activity and identified PML as an indispensable mediator of SFN activity. PMID:24943846

  10. Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings.

    PubMed

    Chen, Guan-Qun; Ren, Li; Zhang, Jie; Reed, Barbara M; Zhang, Di; Shen, Xiao-Hui

    2015-02-01

    Plant recovery status after cryopreservation by vitrification had a negative relationship to the oxidative stress induced by reactive oxygen species (ROS). Arabidopsis thaliana seedlings germinated for 48 h or 72 h with different survival tolerances were examined at five steps of cryopreservation, to determine the role of ROS (O2(-), H2O2 and OH) and antioxidant systems (SOD, POD, CAT, AsA and GSH) in cryo-injury. In addition, the effects of the steps on membrane lipid peroxidation were studied using malondialdehyde (MDA) as an indicator. The results indicated that H2O2-induced oxidative stress at the steps of dehydration and rapid warming was the main cause of cryo-injury of 48-h seedlings (high survival rate) and 72-h seedlings (no survival). The H2O2 was mainly generated in cotyledons, shoot tips and roots of seedlings as indicated by Amplex Red staining. Low survival of 72-h seedlings was associated with severe membrane lipid peroxidation, which was caused by increased OH generation activity and decreased SOD activity. The antioxidant-related gene expression by qRT-PCR and physiological assays suggested that the antioxidant system of 48-h seedlings were activated by ROS, and they mounted a defense against oxidative stress. A high level of ROS led to the weakening of the antioxidant system of 72-h seedlings. Correlation analysis indicated that enhanced antioxidant enzymes activities contributed to the high survival rate of 48-h seedlings, which could reflect by cryopreservation of antioxidant mutant seedlings. This model system indicated that elevated CAT activity and AsA content were determinants of cryogenic stress tolerance, whose manipulation could improve the recovery of seedlings after cryopreservation. PMID:25489814

  11. Lipid peroxidation and antioxidant responses in zebrafish brain induced by Aphanizomenon flos-aquae DC-1 aphantoxins.

    PubMed

    Zhang, De Lu; Hu, Chun Xiang; Li, Dun Hai; Liu, Yong Ding

    2013-11-15

    Aphanizomenon flos-aquae is a cyanobacterium that is frequently encountered in eutrophic waters worldwide. It is source of neurotoxins known as aphantoxins or paralytic shellfish poisons (PSPs), which present a major threat to the environment and human health. The molecular mechanism of PSP action is known, however the in vivo effects of this neurotoxin on oxidative stress, lipid peroxidation and the antioxidant defense responses in zebrafish brain remain to be understood. Aphantoxins purified from a natural isolate of A. flos-aquae DC-1 were analyzed using high performance liquid chromatography. The major components of the toxins were gonyautoxins 1 and 5 (GTX1 and GTX5, 34.04% and 21.28%, respectively) and neosaxitoxin (neoSTX, 12.77%). Zebrafish (Danio rerio) were injected intraperitoneally with 7.73 μg/kg (low dose) and 11.13 μg/kg (high dose) of A. flos-aquae DC-1 aphantoxins. Oxidative stress, lipid peroxidation and antioxidant defense responses in the zebrafish brain were investigated at various timepoints at 1-24h post-exposure. Aphantoxin exposure was associated with significantly increased (>1-2 times) reactive oxygen species (ROS) and malondialdehyde (MDA) in zebrafish brain compared with the controls at 1-12h postexposure, suggestive of oxidative stress and lipid peroxidation. In contrast, reduced glutathione (GSH) levels in the zebrafish brain exposed to high or low doses of aphantoxins decreased by 44.88% and 41.33%, respectively, after 1-12h compared with the controls, suggesting that GSH participated in detoxification to ROS and MDA. Further analysis showed a significant increase in the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) compared with the controls, suggesting elimination of oxidative stress by the antioxidant response in zebrafish brain. All these changes were dose and time dependent. These results suggested that aphantoxins or PSPs increased ROS and MDA and decreased GSH in zebrafish brain

  12. Cis-element of the rice PDIL2-3 promoter is responsible for inducing the endoplasmic reticulum stress response.

    PubMed

    Takahashi, Hideyuki; Wang, Shuyi; Hayashi, Shimpei; Wakasa, Yuhya; Takaiwa, Fumio

    2014-05-01

    A protein disulfide isomerase (PDI) family oxidoreductase, PDIL2-3, is involved in endoplasmic reticulum (ER) stress responses in rice. We identified a critical cis-element required for induction of the ER stress response. The activation of PDIL2-3 in response to ER stress strongly depends on the IRE1-OsbZIP50 signaling pathway. PMID:24315532

  13. Optimization of Extraction Conditions for Maximal Phenolic, Flavonoid and Antioxidant Activity from Melaleuca bracteata Leaves Using the Response Surface Methodology.

    PubMed

    Hou, Wencheng; Zhang, Wei; Chen, Guode; Luo, Yanping

    2016-01-01

    Melaleuca bracteata is a yellow-leaved tree belonging to the Melaleuca genus. Species from this genus are known to be good sources of natural antioxidants, for example, the "tea tree oil" derived from M. alternifolia is used in food processing to extend the shelf life of products. In order to determine whether M. bracteata contains novel natural antioxidants, the components of M. bracteata ethanol extracts were analyzed by gas chromatography-mass spectrometry. Total phenolic and flavonoid contents were extracted and the antioxidant activities of the extracts evaluated. Single-factor experiments, central composite rotatable design (CCRD) and response surface methodology (RSM) were used to optimize the extraction conditions for total phenolic content (TPC) and total flavonoid content (TFC). Ferric reducing power (FRP) and 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH·) scavenging capacity were used as the evaluation indices of antioxidant activity. The results showed that the main components of M. bracteata ethanol extracts are methyl eugenol (86.86%) and trans-cinnamic acid methyl ester (6.41%). The single-factor experiments revealed that the ethanol concentration is the key factor determining the TPC, TFC, FRP and DPPH·scavenging capacity. RSM results indicated that the optimal condition of all four evaluation indices was achieved by extracting for 3.65 days at 53.26°C in 34.81% ethanol. Under these conditions, the TPC, TFC, FRP and DPPH·scavenging capacity reached values of 88.6 ± 1.3 mg GAE/g DW, 19.4 ± 0.2 mg RE/g DW, 2.37 ± 0.01 mM Fe2+/g DW and 86.0 ± 0.3%, respectively, which were higher than those of the positive control, methyl eugenol (FRP 0.97 ± 0.02 mM, DPPH·scavenging capacity 58.6 ± 0.7%) at comparable concentrations. Therefore, the extracts of M. bracteata leaves have higher antioxidant activity, which did not only attributed to the methyl eugenol. Further research could lead to the development of a potent new natural antioxidant. PMID

  14. The effects of prenatal methylmercury exposure on trace element and antioxidant levels in rats following 6-hydroxydopamine-induced neuronal insult.

    PubMed

    Mohamed Moosa, Zulfiah; Daniels, Willie M U; Mabandla, Musa V

    2014-06-01

    Methylmercury (MeHg) is a metal toxin found commonly in the environment. Studies have shown severe neurotoxic effects of MeHg poisoning especially during pregnancy where it crosses the foetoplacental and the blood brain barrier of the foetus leading to neurodevelopmental deficits in the offspring. These deficits may predispose offspring to neurodegenerative diseases later in life. In this study we investigated the effects of prenatal methylmercury exposure (2.5 mg/L in drinking water from GND 1-GND 21) on the trace element status in the brain of adolescent offspring (PND 28). Total antioxidant capacity (TAC) was measured in their blood plasma. In a separate group of animals that was also exposed prenatally to MeHg, 6-hydroydopamine (6-OHDA) was administered at PND 60 as a model of neuronal insult. Trace element and TAC levels were compared before and after 6-OHDA exposure. Prenatal MeHg treatment alone resulted in significantly higher concentrations of zinc, copper, manganese and selenium in the brain of offspring at PND 28 (p < 0.05), when compared to controls. In contrast, brain iron levels in MeHg-exposed adolescent offspring were significantly lower than their controls (p < 0.05). Following 6-OHDA exposure, the levels of iron, zinc, copper and manganese were increased compared to sham-lesioned offspring (p < 0.05). Prenatal MeHg exposure further increased these trace element levels thereby promoting toxicity (p < 0.05). Total antioxidant capacity was not significantly different in MeHg and control groups prior to lesion. However, following 6-OHDA administration, MeHg-exposed animals had a significantly lower TAC than that of controls (p < 0.05). Brain TAC levels were higher in adult male rats than in female rats during adolescence however male rats that had been exposed to MeHg in utero failed to show this increase at PND 74. Prenatal MeHg exposure results in trace element dyshomeostasis in the brain of offspring and reduces total

  15. Finite element model calibration using frequency responses with damping equalization

    NASA Astrophysics Data System (ADS)

    Abrahamsson, T. J. S.; Kammer, D. C.

    2015-10-01

    Model calibration is a cornerstone of the finite element verification and validation procedure, in which the credibility of the model is substantiated by positive comparison with test data. The calibration problem, in which the minimum deviation between finite element model data and experimental data is searched for, is normally characterized as being a large scale optimization problem with many model parameters to solve for and with deviation metrics that are nonlinear in these parameters. The calibrated parameters need to be found by iterative procedures, starting from initial estimates. Sometimes these procedures get trapped in local deviation function minima and do not converge to the globally optimal calibration solution that is searched for. The reason for such traps is often the multi-modality of the problem which causes eigenmode crossover problems in the iterative variation of parameter settings. This work presents a calibration formulation which gives a smooth deviation metric with a large radius of convergence to the global minimum. A damping equalization method is suggested to avoid the mode correlation and mode pairing problems that need to be solved in many other model updating procedures. By this method, the modal damping of a test data model and the finite element model is set to be the same fraction of critical modal damping. Mode pairing for mapping of experimentally found damping to the finite element model is thus not needed. The method is combined with model reduction for efficiency and employs the Levenberg-Marquardt minimizer with randomized starts to achieve the calibration solution. The performance of the calibration procedure, including a study of parameter bias and variance under noisy data conditions, is demonstrated by two numerical examples.

  16. Potential of Hydrocotyle vulgaris for phytoremediation of a textile dye: Inducing antioxidant response in roots and leaves.

    PubMed

    Vafaei, F; Movafeghi, A; Khataee, A R; Zarei, M; Salehi Lisar, S Y

    2013-07-01

    The potential of Hydrocotyle vulgaris as an aquatic plant species was evaluated for phytoremediation of C.I. Basic Red 46 (BR46) from nutrient solution. Under the optimized experimental conditions, BR46 was removed up to 95% from incubation medium by H. vulgaris. The ability of the plant in consecutive removal under long term repetitive experiments confirmed the biodegradation process. Accordingly, a number of produced intermediate compounds were identified. An artificial neural network (ANN) model was developed to predict the biodegradation efficiency. A predictive performance (R(2)=0.974) was obtained based on the network results. Interestingly, dye stress enhanced the activity of antioxidant enzymes including superoxide dismutase, peroxidase and catalase in H. vulgaris roots and leaves. Enzymatic responses found to be highly depended on the plant organ and dye concentration in the liquid medium. Overall, the increase in the activity of antioxidant enzymes was much higher in the roots than in the leaves. Nevertheless, no significant increase in the malondialdehyde (MDA) content was detected in both roots and leaves which reflects the high efficiency of antioxidant system in the elimination of reactive oxygen species. PMID:23660490

  17. Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress.

    PubMed

    Sánchez-Rodríguez, E; Romero, L; Ruiz, J M

    2016-01-15

    Polyamines, small aliphatic polycations, have been suggested to play key roles in a number of biological processes. In this paper, attempts were made to investigate the possibility of improving antioxidant response of tomato fruits in relation with endogenous free polyamines content. We studied the reactive oxygen species and polyamines content, and antioxidant and polyamine-biosynthesis enzyme activities in fruits of ungrafted and grafted tomato plants under moderate water stress. We used a drought-tolerant cultivar (Zarina) and drought-sensitive cultivar (Josefina) to obtain reciprocal graft, selfgraft and ungraft plants. Fruits contained higher endogenous polyamine content during the course of the experiment relative to the control, coupled with higher arginine decarboxylase and spermine synthase activities in Zarina ungrafted and ZarxJos. In these cultivars, tomato fruits showed a lower reactive oxygen species generation and higher catalase and superoxide dismutase activities, suggesting that a higher content in polyamines (especially spermine) exerted a positive effect on antioxidant systems. All of these data suggest that spermine leads to more effective reactive oxygen species scavenging (less tissue damage) in tomato fruits, which may function collectively to enhance dehydration tolerance. PMID:26687637

  18. Finite-element impact response of debonded composite turbine blades

    NASA Astrophysics Data System (ADS)

    Dey, Sudip; Karmakar, Amit

    2014-02-01

    This paper investigates on the transient behavior of debonded composite pretwisted rotating shallow conical shells which could be idealized as turbine blades subjected to low velocity normal impact using finite-element method. Lagrange's equation of motion is used to derive the dynamic equilibrium equation and the moderate rotational speeds are considered neglecting the Coriolis effect. An eight-noded isoparametric plate bending element is employed in the finite element formulation incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the impact parameters. The time-dependent equations are solved by using Newmark's time integration scheme. Parametric studies are performed to investigate the effects of triggering parameters like angle of twist, rotational speed, laminate configuration and location of debonding considering low velocity normal impact at the center of eight-layered graphite-epoxy composite cantilevered conical shells with bending stiff ([0o2/{±} 30o]s), torsion stiff ([45°/-45°/-45°/45°]s) and cross-ply ([0°/90°/0°/90°]s) laminate configurations.

  19. Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater.

    PubMed

    Dhir, Bhupinder; Sharmila, P; Pardha Saradhi, P; Nasim, Sekh Abdul

    2009-09-01

    Salvinia natans possess capacity to accumulate high concentrations of chromium (Cr). Studies were carried out to evaluate physiological efficiency and defensive potential of plant exposed to Cr-rich wastewater. Among photochemical reactions, photosystem I (PS I) and photosystem II (PS II) activity noted an increase in plants exposed to Cr-rich wastewater. Fluorescence ratio F(v)/F(m) depicted no alteration in plants exposed to Cr. The activity of ribulose-1,5-biphosphate carboxylase-oxygenase (Rubisco) noted a decline, while transthylakoidal pH gradient (DeltapH) (correlative of photophosphorylation) showed increase in plants exposed to Cr-rich wastewater. Plants lacked the ability to produce malondialdehyde, but possessed efficient enzymic and non-enzymic antioxidant defense mechanisms that played important role in curtailing oxidative stress. The activities of antioxidant enzymes showed alleviation in plants exposed to Cr-rich wastewater. The levels of cellular antioxidants noted decline suggesting a defensive role in protection against oxidative stress caused by Cr. The present findings suggest that Salvinia possess efficient antioxidant machinery that curtails oxidative stress caused by Cr-rich wastewater and protects photosynthetic machinery from damage. PMID:19409614

  20. Changes in the Heat Stress Response of Laying Hens Following Antioxidant Supplementation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat stress (HS) is a major contributor to mortality and other welfare issues in the poultry industry. The objective of this study was to determine the benefits of an antioxidant supplement during HS. One hundred and twenty White Leghorns at 32 wk of age were randomly transferred to two adjacent roo...

  1. Antioxidant therapeutic targets in COPD.

    PubMed

    Rahman, Irfan; Kilty, Iain

    2006-06-01

    Oxidative stress and chronic inflammation are important features in the pathogenesis of chronic obstructive pulmonary disease (COPD). Oxidative stress has important consequences for several elements of lung physiology and for the pathogenesis of COPD, including oxidative inactivation of antiproteases and surfactants, mucus hypersecretion, membrane lipid peroxidation, alveolar epithelial injury, remodeling of extracellular matrix, and apoptosis. Therefore, targeting oxidative stress with antioxidants or boosting the endogenous levels of antioxidants is likely to be beneficial in the treatment of COPD. Antioxidant and/or anti-inflammatory agents such as thiol molecules (glutathione and mucolytic drugs, such as N-acetyl-L-cysteine and N-acystelyn), dietary polyphenol (curcumin-diferuloylmethane, a principal component of turmeric), resveratrol (a flavanoid found in red wine), green tea (theophylline and epigallocatechin-3- gallate), ergothioneine (xanthine and peroxynitrite inhibitor), quercetin, erdosteine and carbocysteine lysine salt, have been reported to control NF-kappaB activation, regulation of glutathione biosynthesis genes, chromatin remodeling and hence inflammatory gene expression. Specific spin traps such as alpha-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), manganese (III) meso-tetrakis (N,N'-diethyl-1,3-imidazolium-2-yl) porphyrin (AEOL 10150 and AEOL 10113), and a SOD mimetic M40419 have also been reported to inhibit cigarette smoke-induced inflammatory responses in vivo. Since a variety of oxidants, free radicals and aldehydes are implicated in the pathogenesis of COPD it is possible that therapeutic administration of multiple antioxidants will be effective in the treatment of COPD. Various approaches to enhance lung antioxidant capacity and clinical trials of antioxidant compounds in COPD are discussed. PMID:16787173

  2. Evaluation of Oxidative Stress Response Related Genetic Variants, Pro-oxidants, Antioxidants and Prostate Cancer

    PubMed Central

    Lavender, Nicole; Hein, David W.; Brock, Guy; Kidd, La Creis R.

    2015-01-01

    Background Oxidative stress and detoxification mechanisms have been commonly studied in Prostate Cancer (PCa) due to their function in the detoxification of potentially damaging reactive oxygen species (ROS) and carcinogens. However, findings have been either inconsistent or inconclusive. These mixed findings may, in part, relate to failure to consider interactions among oxidative stress response related genetic variants along with pro- and antioxidant factors. Methods We examined the effects of 33 genetic and 26 environmental oxidative stress and defense factors on PCa risk and disease aggressiveness among 2,286 men from the Cancer Genetic Markers of Susceptibility project (1,175 cases, 1,111 controls). Single and joint effects were analyzed using a comprehensive statistical approach involving logistic regression, multi-dimensionality reduction, and entropy graphs. Results Inheritance of one CYP2C8 rs7909236 T or two SOD2 rs2758331 A alleles was linked to a 1.3- and 1.4-fold increase in risk of developing PCa, respectively (p-value = 0.006–0.013). Carriers of CYP1B1 rs1800440GG, CYP2C8 rs1058932TC and, NAT2 (rs1208GG, rs1390358CC, rs7832071TT) genotypes were associated with a 1.3 to 2.2-fold increase in aggressive PCa [p-value = 0.04–0.001, FDR 0.088–0.939]. We observed a 23% reduction in aggressive disease linked to inheritance of one or more NAT2 rs4646247 A alleles (p = 0.04, FDR = 0.405). Only three NAT2 sequence variants remained significant after adjusting for multiple hypotheses testing, namely NAT2 rs1208, rs1390358, and rs7832071. Lastly, there were no significant gene-environment or gene-gene interactions associated with PCa outcomes. Conclusions Variations in genes involved in oxidative stress and defense pathways may modify PCa. Our findings do not firmly support the role of oxidative stress genetic variants combined with lifestyle/environmental factors as modifiers of PCa and disease progression. However, additional multi-center studies poised

  3. Antioxidative responses in roots and shoots of creeping bentgrass under high temperature: effects of nitrogen and cytokinin.

    PubMed

    Wang, Kehua; Zhang, Xunzhong; Ervin, Erik

    2012-03-15

    It has been previously reported that either nitrogen (N) or cytokinin (CK) applications can alleviate heat stress injury on creeping bentgrass, with some studies reporting enhanced antioxidant metabolism being related to stress protection. The objective of this research was to investigate the simultaneous effects of CK and N on the antioxidant enzyme activity and isoforms of heat stressed creeping bentgrass. 'L-93' creeping bentgrass treated with three rates of CK (trans-zeatin riboside, tZR, 0, 10 and 100μM, designated by CK0, 10, and 100) and two nitrogen rates (2.5 and 7.5kgNha(-1) biweekly, low and high N) in a complete factorial arrangement was maintained in a 38/28°C (day/night) growth chamber for 28d and then harvested. Grass grown at high N (averaged across CK rates) had higher O(2)(-) production, H(2)O(2) concentration, and malondialdehyde content in roots. The activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and guaiacol peroxidase (POD) in roots were enhanced 19%, 22%, and 24%, respectively, by high N relative to low N. Twenty-eight days of heat stress resulted in either the development of new isoforms or enhanced isoform intensities of SOD, APX, and POD in roots compared to plant responses prior to heat stress. However, no apparent differences were observed across treatments. Both SOD and POD showed different isoform patterns between roots and shoots, suggesting the function of these isoforms could be tissue specific. Interestingly, no CK effects on these antioxidant parameters were found in this experiment. These results demonstrate the impacts of N on antioxidant metabolism of creeping bentgrass under heat stress with some differences between roots and shoots, but no simultaneous impacts of CK and N. PMID:22226339

  4. Antioxidant and oxidative stress responses of sojourners at high altitude in different climatic temperatures

    NASA Astrophysics Data System (ADS)

    Sinha, Sanchari; Singh, Som Nath; Saha, Mantu; Kain, T. C.; Tyagi, A. K.; Ray, Uday Sankar

    2010-01-01

    High altitude (HA) is a multi-stressor environment comprising hypobaric hypoxia and cold. Climatic temperature varies with seasonal variation at HA. The present study was undertaken to investigate the effect of ambient temperature on antioxidant profile among sojourners at HA. The study was conducted on sojourners exposed to an altitude of 4,560 m in two different seasons and categorized into two groups (SOJ 1, n = 63, ambient temp. at HA: -6º to +10ºC; SOJ 2, n = 81, ambient temp. at HA: 3º-22ºC). Blood was collected at sea level (SL) and after 4 weeks of HA exposure. Antioxidant enzymes showed significant upregulation in SOJ 2 at HA. In SOJ 1, superoxide dismutase and glutathione peroxidase showed significant upregulation but catalase and glutathione reductase showed significant decrease at HA. Non-enzymatic antioxidants showed significant reduction in SOJ 1 whereas a sustained antioxidant profile was observed in SOJ 2 at HA. Oxidative stress markers showed higher levels in SOJ 1 than SOJ 2 at HA. Differences observed between SOJ 1 and SOJ 2 at HA may be the consequence of different environmental temperatures. Cold stress was higher in SOJ 1 as evidenced from the significantly lower oral temperature in SOJ 1 as compared to SOJ 2. Cold- and hypoxia-induced increase in energy expenditure was significantly high in SOJ 1 than SOJ 2. To conclude, chronic exposure to hypoxia in moderate climatic temperature has a potential preconditioning effect on antioxidant system, but exposure to both cold and hypoxia causes greater oxidative stress due to altered metabolic rate.

  5. Glyphosate-based herbicide exposure causes antioxidant defence responses in the fruit fly Drosophila melanogaster.

    PubMed

    de Aguiar, Lais Mattos; Figueira, Fernanda Hernandes; Gottschalk, Marco Silva; da Rosa, Carlos Eduardo

    2016-01-01

    Glyphosate is a non-selective and post-emergent herbicide that affects plant growth. Animal exposure to this herbicide can lead to adverse effects, such as endocrine disruption, oxidative stress and behavioural disorders. Drosophilids have been utilized previously as an effective tool in toxicological tests. In the present study, the effects of a glyphosate-based herbicide (Roundup [Original]) were investigated regarding oxidative stress, the antioxidant defence system and acetylcholinesterase (AChE) activity in Drosophila melanogaster. Flies (of both genders) that were 1 to 3days old were exposed to different glyphosate concentrations (0.0mg/L=control, 1.0mg/L, 2.0mg/L, 5.0mg/L and 10.0mg/L) in the diet for 24h and 96h. After the exposure periods, reactive oxygen species (ROS) levels, antioxidant capacity against peroxyl radicals (ACAP) and lipid peroxidation (LPO) levels were quantified. In addition, the mRNA expression of antioxidant genes (i.e., keap1, sod, sod2, cat, irc, gclc, gclm, gss, trxt, trxr-1 and trxr-2) was evaluated via RT-PCR. Additionally, AChE activity was evaluated only after the 96h exposure period. The results indicated that Roundup exposure leads to a reduction in ROS levels in flies exposed for 96h. ACAP levels and gene expression of the antioxidant defence system exhibited an increase from 24h, while LPO did not show any significant alterations in both exposure periods. AChE activity was not affected following Roundup exposure. Our data suggest that Roundup exposure causes an early activation of the antioxidant defence system in D. melanogaster, and this can prevent subsequent damage caused by ROS. PMID:26980113

  6. Are diverse signalling pathways integrated in the regulation of arabidopsis antioxidant defence gene expression in response to excess excitation energy?

    PubMed Central

    Mullineaux, P; Ball, L; Escobar, C; Karpinska, B; Creissen, G; Karpinski, S

    2000-01-01

    When low-light-grown Arabidopsis rosettes are partially exposed to excess light (EL), the unexposed leaves become acclimated to excess excitation energy (EEE) and consequent photo-oxidative stress. This phenomenon, termed systemic acquired acclimation (SAA), is associated with redox changes in the proximity of photosystem II, changes in foliar H2O2 content and induction of antioxidant defences. The induction of extra-plastidial antioxidant systems is important in the protection of the chloroplast under EL conditions. A larger range of transcripts encoding different antioxidant defence enzymes may be induced in the systemically acclimated leaves and these include those encoded by the glutathione peroxidase (GPX2) and glutathione-S-transferase (GST) genes, which are also highly induced in the hypersensitive response and associated systemic acquired resistance (SAR) in incompatible plant-pathogen interactions. Furthermore, the expression of the SAR-inducible pathogenesis-related protein gene, PR2, is enhanced in SAA leaves. Wounded leaf tissue also shows enhanced systemic induction of a cytosolic ascorbate peroxidase gene (APX2) under EL conditions. These and other considerations, suggest H2O2 and other reactive oxygen species (ROS) could be the common factor in signalling pathways for diverse environmental stresses. These effects may be mediated by changes in the level and redox state of the cellular glutathione pool. Mutants with constitutive expression of a normally EL-inducible APX2 gene have much reduced levels of foliar glutathione. The expression of APX1 and APX3, encoding cytosolic and peroxisome-associated isoforms, respectively, are also under phytochrome-A-mediated control. The expression of these genes is tightly linked to the greening of plastids in etiolated seedlings. These data suggest that part of the developmental processes that bring about the acclimation of leaves to high light includes the configuration of antioxidant defences. Therefore, the

  7. Changes in ultrastructure and responses of antioxidant systems of algae (Dunaliella salina) during acclimation to enhanced ultraviolet-B radiation.

    PubMed

    Tian, Jiyuan; Yu, Juan

    2009-12-01

    Because of depletion of the stratospheric ozone layer, levels of solar ultraviolet-B (UV-B) radiation (280-315 nm), which penetrates the water column to an ecologically-significant depth, are increasing. In order to assess changes in ultrastructure and responses of antioxidant systems of algae during acclimation to enhanced ultraviolet-B radiation, Dunaliella salina was treated with higher dose of UV-B radiation (13.2 kJm(-2) d(-1) dose) in this study. As compared to the control panel (8.8 kJm(-2) d(-1)), the treatment D. salina had many changes in ultrastructures: (1) thylakoids became swelled, and some of them penetrated into the pyrenoid; (2) lipid globules accumulated; (3) the amounts of starch grains increased; (4) cristae of mitochondria disintegrated; (5) inclusions in vacuoles reduced; and (6) cisternae of Golgi dictyosomes became loose and swollen. Enhanced UV-B irradiation also induced different responses of the antioxidant systems in D. salina: (1) contents of TBARS (thiobarbituric acid reacting substance) and H(2)O(2) increased significantly (p<0.05); (2) levels of MAAs (mycosporine-like amino acids) increased at the beginning and subsequently decreased, and finally they leveled off at lower values; (3) there were not apparent variations for carotenoid contents, and contents of chlorophyll a presented a trend of initial increase and ultimate decrease; (4) both ascorbate and glutathione contents increased significantly (p<0.05); and (5) for the enzyme activities, POD activities increased remarkably (p<0.05), and SOD activities declined apparently (p<0.05), and CAT activity in D. salina had slight variations (p>0.05). In addition, growth curve displayed that enhanced UV-B radiation prominently inhibited increase of cell concentration when compared with control panel (p<0.05). Our results indicated that enhanced UV-B radiation caused ultrastructural changes of D. salina and induced different responses of antioxidant systems in D. salina. PMID:19818642

  8. Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM).

    PubMed

    Belwal, Tarun; Dhyani, Praveen; Bhatt, Indra D; Rawal, Ranbeer Singh; Pande, Veena

    2016-09-15

    This study for the first time designed to optimize the extraction of phenolic compounds and antioxidant potential of Berberis asiatica fruits using response surface methodology (RSM). Solvent selection was done based on the preliminary experiments and a five-factors-three-level, Central Composite Design (CCD). Extraction temperature (X1), sample to solvent ratio (X3) and solvent concentration (X5) significantly affect response variables. The quadratic model well fitted for all the responses. Under optimal extraction conditions, the dried fruit sample mixed with 80% methanol having 3.0 pH in a ratio of 1:50 and the mixture was heated at 80 °C for 30 min; the measured parameters was found in accordance with the predicted values. High Performance Liquid Chromatography (HPLC) analysis at optimized condition reveals 6 phenolic compounds. The results suggest that optimization of the extraction conditions is critical for accurate quantification of phenolics and antioxidants in Berberis asiatica fruits, which may further be utilized for industrial extraction procedure. PMID:27080887

  9. Stress in Phycomyces blakesleeanus by glucose starvation and acetate growth: response of the antioxidant system and reserve carbohydrates.

    PubMed

    Rúa, Javier; de Castro, Cristina; de Arriaga, Dolores; García-Armesto, María Rosario; Busto, Félix; del Valle, Pilar

    2014-01-01

    The objective of this study was to analyze the response of Phycomyces blakesleeanus to glucose starvation and acetate growth stress. At the onset of the exponential growth phase, the fungus shows a high tolerance to both stresses, being higher for the glucose starvation. In both stresses we have found higher activities of catalase and glutathione peroxidase, and a decrease of the pools of D-erythroascorbate (D-erythroascorbate+D-erythroascorbate monoglucoside) and glutathione (GSH+GSSG), while the intracellular GSH/GSSG redox balance becomes more reducing. Gallic acid was not detected under both stresses. Glycogen breakdown and the high levels of trehalose seem to be part of the stress response. Both stress, under the conditions of this study, seem to lead to a qualitatively similar response in P. blakesleeanus, with regard to the behavior of antioxidant system, the content of secondary metabolites and the role of the reserve carbohydrates. PMID:24556073

  10. Moral Responsibility: The Missing Element in Educational Leadership

    ERIC Educational Resources Information Center

    Vasillopulos, Christopher; Denney, Morgan

    2013-01-01

    We intend to deepen the understanding of leadership in general and educational leadership in particular by an analysis of Chester Barnard's (1938) concept of executive responsibility. By so doing we believe that we will reveal how an educational leader can foster the environment in which competent teachers can optimize their students' learning…