Science.gov

Sample records for ap-1 homolog bzlf1

  1. The AP-1 transcription factor homolog Pf-AP-1 activates transcription of multiple biomineral proteins and potentially participates in Pinctada fucata biomineralization

    PubMed Central

    Zheng, Xiangnan; Cheng, Minzhang; Xiang, Liang; Liang, Jian; Xie, Liping; Zhang, Rongqing

    2015-01-01

    Activator protein-1 (AP-1) is an important bZIP transcription factor that regulates a series of physiological processes by specifically activating transcription of several genes, and one of its well-chartered functions in mammals is participating in bone mineralization. We isolated and cloned the complete cDNA of a Jun/AP-1 homolog from Pinctada fucata and called it Pf-AP-1. Pf-AP-1 had a highly conserved bZIP region and phosphorylation sites compared with those from mammals. A tissue distribution analysis showed that Pf-AP-1 was ubiquitously expressed in P. fucata and the mRNA level of Pf-AP-1 is extremely high in mantle. Pf-AP-1 expression was positively associated with multiple biomineral proteins in the mantle. The luciferase reporter assay in a mammalian cell line showed that Pf-AP-1 significantly up-regulates the transcriptional activity of the promoters of KRMP, Pearlin, and Prisilkin39. Inhibiting the activity of Pf-AP-1 depressed the expression of multiple matrix proteins. Pf-AP-1 showed a unique expression pattern during shell regeneration and pearl sac development, which was similar to the pattern observed for biomineral proteins. These results suggest that the Pf-AP-1 AP-1 homolog is an important transcription factor that regulates transcription of several biomineral proteins simultaneously and plays a role in P. fucata biomineralization, particularly during pearl and shell formation. PMID:26404494

  2. BZLF1 governs CpG-methylated chromatin of Epstein-Barr Virus reversing epigenetic repression.

    PubMed

    Woellmer, Anne; Arteaga-Salas, Jose M; Hammerschmidt, Wolfgang

    2012-09-01

    Epigenetic mechanisms are essential for the regulation of all genes in mammalian cells but transcriptional repression including DNA methylation are also major epigenetic mechanisms of defense inactivating potentially harmful pathogens. Epstein-Barr Virus (EBV), however, has evolved to take advantage of CpG methylated DNA to regulate its own biphasic life cycle. We show here that latent EBV DNA has an extreme composition of methylated CpG dinucleotides with a bimodal distribution of unmethylated or fully methylated DNA at active latent genes or completely repressed lytic promoters, respectively. We find this scenario confirmed in primary EBV-infected memory B cells in vivo. Extensive CpG methylation of EBV's DNA argues for a very restricted gene expression during latency. Above-average nucleosomal occupancy, repressive histone marks, and Polycomb-mediated epigenetic silencing further shield early lytic promoters from activation during latency. The very tight repression of viral lytic genes must be overcome when latent EBV enters its lytic phase and supports de novo virus synthesis in infected cells. The EBV-encoded and AP-1 related transcription factor BZLF1 overturns latency and initiates virus synthesis in latently infected cells. Paradoxically, BZLF1 preferentially binds to CpG-methylated motifs in key viral promoters for their activation. Upon BZLF1 binding, we find nucleosomes removed, Polycomb repression lost, and RNA polymerase II recruited to the activated early promoters promoting efficient lytic viral gene expression. Surprisingly, DNA methylation is maintained throughout this phase of viral reactivation and is no hindrance to active transcription of extensively CpG methylated viral genes as thought previously. Thus, we identify BZLF1 as a pioneer factor that reverses epigenetic silencing of viral DNA to allow escape from latency and report on a new paradigm of gene regulation. PMID:22969425

  3. Promotion of RAD51-Mediated Homologous DNA Pairing by the RAD51AP1-UAF1 Complex.

    PubMed

    Liang, Fengshan; Longerich, Simonne; Miller, Adam S; Tang, Caroline; Buzovetsky, Olga; Xiong, Yong; Maranon, David G; Wiese, Claudia; Kupfer, Gary M; Sung, Patrick

    2016-06-01

    The UAF1-USP1 complex deubiquitinates FANCD2 during execution of the Fanconi anemia DNA damage response pathway. As such, UAF1 depletion results in persistent FANCD2 ubiquitination and DNA damage hypersensitivity. UAF1-deficient cells are also impaired for DNA repair by homologous recombination. Herein, we show that UAF1 binds DNA and forms a dimeric complex with RAD51AP1, an accessory factor of the RAD51 recombinase, and a trimeric complex with RAD51 through RAD51AP1. Two small ubiquitin-like modifier (SUMO)-like domains in UAF1 and a SUMO-interacting motif in RAD51AP1 mediate complex formation. Importantly, UAF1 enhances RAD51-mediated homologous DNA pairing in a manner that is dependent on complex formation with RAD51AP1 but independent of USP1. Mechanistically, RAD51AP1-UAF1 co-operates with RAD51 to assemble the synaptic complex, a critical nucleoprotein intermediate in homologous recombination, and cellular studies reveal the biological significance of the RAD51AP1-UAF1 protein complex. Our findings provide insights into an apparently USP1-independent role of UAF1 in genome maintenance. PMID:27239033

  4. Promotion of Homologous Recombination and Genomic Stability by RAD51AP1 via RAD51 Recombinase Enhancement

    PubMed Central

    Wiese, Claudia; Dray, Eloïse; Groesser, Torsten; Filippo, Joseph San; Shi, Idina; Collins, David W.; Tsai, Miaw-Sheue; Williams, Gareth; Rydberg, Bjorn; Sung, Patrick; Schild, David

    2007-01-01

    Summary Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand pairing step in HR. RAD51AP1 (RAD51 Associated Protein 1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress, and RAD51AP1 is epistatic to the HR protein XRCC3. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA damaging treatment. Purified RAD51AP1 binds both dsDNA and a D-loop structure, and, only when able to interact with RAD51, greatly stimulates the RAD51-mediated D-loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement. PMID:17996711

  5. Promotion of Homologous Recombination and Genomic Stability byRAD51AP1 via RAD51 Recombinase Enhancement

    SciTech Connect

    Wiese, Claudia; Dray, Eloise; Groesser, Torsten; San Filippo,Joseph; Shi, Idina; Collins, David W.; Tsai, Miaw-Sheue; Williams,Gareth; Rydberg, Bjorn; Sung, Patrick; Schild, David

    2007-04-11

    Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand pairing step in HR. RAD51AP1 (RAD51 Associated Protein 1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA damaging treatment. Purified RAD51AP1 binds dsDNA and RAD51, and it greatly stimulates the RAD51-mediated D-loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide the first evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement.

  6. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability

    SciTech Connect

    Parplys, Ann C.; Zhao, Weixing; Sharma, Neelam; Groesser, Torsten; Liang, Fengshan; Maranon, David G.; Leung, Stanley G.; Grundt, Kirsten; Dray, Eloïse; Idate, Rupa; Østvold, Anne Carine; Schild, David; Sung, Patrick; Wiese, Claudia

    2015-08-31

    NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Finally, our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.

  7. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability

    DOE PAGESBeta

    Parplys, Ann C.; Zhao, Weixing; Sharma, Neelam; Groesser, Torsten; Liang, Fengshan; Maranon, David G.; Leung, Stanley G.; Grundt, Kirsten; Dray, Eloïse; Idate, Rupa; et al

    2015-08-31

    NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintainingmore » wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Finally, our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.« less

  8. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability

    PubMed Central

    Parplys, Ann C.; Zhao, Weixing; Sharma, Neelam; Groesser, Torsten; Liang, Fengshan; Maranon, David G.; Leung, Stanley G.; Grundt, Kirsten; Dray, Eloïse; Idate, Rupa; Østvold, Anne Carine; Schild, David; Sung, Patrick; Wiese, Claudia

    2015-01-01

    NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression. PMID:26323318

  9. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability.

    PubMed

    Parplys, Ann C; Zhao, Weixing; Sharma, Neelam; Groesser, Torsten; Liang, Fengshan; Maranon, David G; Leung, Stanley G; Grundt, Kirsten; Dray, Eloïse; Idate, Rupa; Østvold, Anne Carine; Schild, David; Sung, Patrick; Wiese, Claudia

    2015-11-16

    NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression. PMID:26323318

  10. Transcriptional repression by sumoylation of Epstein-Barr virus BZLF1 protein correlates with association of histone deacetylase.

    PubMed

    Murata, Takayuki; Hotta, Naoe; Toyama, Shigenori; Nakayama, Sanae; Chiba, Shigeki; Isomura, Hiroki; Ohshima, Takayuki; Kanda, Teru; Tsurumi, Tatsuya

    2010-07-30

    The transition from latent to lytic phases of the Epstein-Barr virus life cycle is triggered by expression of a viral transactivator, BZLF1, that then induces expression of the viral immediate-early and early genes. The BZLF1 protein is post-translationally modified by a small ubiquitin-related modifier-1 (SUMO-1). Here we found that BZLF1 is conjugated at lysine 12 not only by SUMO-1 but also by SUMO-2 and 3. The K12R mutant of BZLF1, which no longer becomes sumoylated, exhibits stronger transactivation than the wild-type BZLF1 in a reporter assay system as well as in the context of virus genome with nucleosomal structures. Furthermore, exogenous supply of a SUMO-specific protease, SENP, caused de-sumoylation of BZLF1 and enhanced BZLF1-mediated transactivation. Immunoprecipitation experiments proved that histone deacetylase 3 preferentially associated with the sumoylated form of BZLF1. Levels of the sumoylated BZLF1 increased as lytic replication progressed. Based on these observations, we conclude that sumoylation of BZLF1 regulates its transcriptional activity through histone modification during Epstein-Barr virus productive replication. PMID:20516063

  11. CD4+ and CD8+ T-Cell Responses to Latent Antigen EBNA-1 and Lytic Antigen BZLF-1 during Persistent Lymphocryptovirus Infection of Rhesus Macaques

    PubMed Central

    Leskowitz, R. M.; Zhou, X. Y.; Villinger, F.; Fogg, M. H.; Kaur, A.; Lieberman, P. M.; Wang, F.

    2013-01-01

    Epstein-Barr virus (EBV) infection leads to lifelong viral persistence through its latency in B cells. EBV-specific T cells control reactivations and prevent the development of EBV-associated malignancies in most healthy carriers, but infection can sometimes cause chronic disease and malignant transformation. Epstein-Barr nuclear antigen 1 (EBNA-1) is the only viral protein consistently expressed during all forms of latency and in all EBV-associated malignancies and is a promising target for a therapeutic vaccine. Here, we studied the EBNA-1-specific immune response using the EBV-homologous rhesus lymphocryptovirus (rhLCV) infection in rhesus macaques. We assessed the frequency, phenotype, and cytokine production profiles of rhLCV EBNA-1 (rhEBNA-1)-specific T cells in 15 rhesus macaques and compared them to the lytic antigen of rhLCV BZLF-1 (rhBZLF-1). We were able to detect rhEBNA-1-specific CD4+ and/or CD8+ T cells in 14 of the 15 animals screened. In comparison, all 15 animals had detectable rhBZLF-1 responses. Most peptide-specific CD4+ T cells exhibited a resting phenotype of central memory (TCM), while peptide-specific CD8+ T cells showed a more activated phenotype, belonging mainly to the effector cell subset. By comparing our results to the human EBV immune response, we demonstrate that the rhLCV model is a valid system for studying chronic EBV infection and for the preclinical development of therapeutic vaccines. PMID:23698300

  12. T Cell Epitope Clustering in the Highly Immunogenic BZLF1 Antigen of Epstein-Barr Virus

    PubMed Central

    Rist, Melissa J.; Neller, Michelle A.; Burrows, Jacqueline M.

    2014-01-01

    ABSTRACT Polymorphism in the human leukocyte antigen (HLA) loci ensures that the CD8+ T cell response to viruses is directed against a diverse range of antigenic epitopes, thereby minimizing the impact of virus escape mutation across the population. The BZLF1 antigen of Epstein-Barr virus is an immunodominant target for CD8+ T cells, but the response has been characterized only in the context of a limited number of HLA molecules due to incomplete epitope mapping. We have now greatly expanded the number of defined CD8+ T cell epitopes from BZLF1, allowing the response to be evaluated in a much larger proportion of the population. Some regions of the antigen fail to be recognized by CD8+ T cells, while others include clusters of overlapping epitopes presented by different HLA molecules. These highly immunogenic regions of BZLF1 include polymorphic sequences, such that up to four overlapping epitopes are impacted by a single amino acid variation common in different regions of the world. This focusing of the immune response to limited regions of the viral protein could be due to sequence similarity to human proteins creating “immune blind spots” through self-tolerance. This study significantly enhances the understanding of the immune response to BZLF1, and the precisely mapped T cell epitopes may be directly exploited in vaccine development and adoptive immunotherapy. IMPORTANCE Epstein-Barr virus (EBV) is an important human pathogen, associated with several malignancies, including nasopharyngeal carcinoma and Hodgkin lymphoma. T lymphocytes are critical for virus control, and clinical trials aimed at manipulating this arm of the immune system have demonstrated efficacy in treating these EBV-associated diseases. These trials have utilized information on the precise location of viral epitopes for T cell recognition, for either measuring or enhancing responses. In this study, we have characterized the T cell response to the highly immunogenic BZLF1 antigen of EBV by

  13. BZLF1, an Epstein-Barr virus immediate-early protein, induces p65 nuclear translocation while inhibiting p65 transcriptional function

    SciTech Connect

    Morrison, Thomas E.; Kenney, Shannon C. . E-mail: shann@med.unc.edu

    2004-10-25

    We have previously demonstrated that the Epstein-Barr virus immediate-early BZLF1 protein interacts with, and is inhibited by, the NF-{kappa}B family member p65. However, the effects of BZLF1 on NF-{kappa}B activity have not been intensively studied. Here we show that BZLF1 inhibits p65-dependent gene expression. BZLF1 inhibited the ability of IL-1, as well as transfected p65, to activate the expression of two different NF-{kappa}B-responsive genes, ICAM-1 and I{kappa}B-{alpha}. BZLF1 also reduced the constitutive level of I{kappa}B-{alpha} protein in HeLa and A549 cells, and increased the amount of nuclear NF-{kappa}B to a similar extent as tumor necrosis factor-alpha (TNF-{alpha}) treatment. In spite of this BZLF1-associated increase in the nuclear form of NF-{kappa}B, BZLF1 did not induce binding of NF-{kappa}B to NF-{kappa}B responsive promoters (as determined by chromatin immunoprecipitation assay) in vivo, although TNF-{alpha} treatment induced NF-{kappa}B binding as expected. Overexpression of p65 dramatically inhibited the lytic replication cycle of EBV in 293-EBV cells, confirming that NF-{kappa}B also inhibits BZLF1 transcriptional function. Our results are consistent with a model in which BZLF1 inhibits the transcriptional function of p65, resulting in decreased transcription of I{kappa}B-{alpha}, decreased expression of I{kappa}B-{alpha} protein, and subsequent translocation of NF-{kappa}B to the nucleus. This nuclear translocation of NF-{kappa}B may promote viral latency by negatively regulating BZLF1 transcriptional activity. In situations where p65 activity is limiting in comparison to BZLF1, the ability of BZLF1 to inhibit p65 transcriptional function may protect the virus from the host immune system during the lytic form of infection.

  14. Epstein-Barr Virus BZLF1-Mediated Downregulation of Proinflammatory Factors Is Essential for Optimal Lytic Viral Replication

    PubMed Central

    Li, Yuqing; Long, Xubing; Huang, Lu; Yang, Mengtian; Yuan, Yan; Wang, Yan; Delecluse, Henri-Jacques

    2015-01-01

    ABSTRACT Elevated secretion of inflammatory factors is associated with latent Epstein-Barr virus (EBV) infection and the pathology of EBV-associated diseases; however, knowledge of the inflammatory response and its biological significance during the lytic EBV cycle remains elusive. Here, we demonstrate that the immediate early transcriptional activator BZLF1 suppresses the proinflammatory factor tumor necrosis factor alpha (TNF-α) by binding to the promoter of TNF-α and preventing NF-κB activation. A BZLF1Δ207-210 mutant with a deletion of 4 amino acids (aa) in the protein-protein binding domain was not able to inhibit the proinflammatory factors TNF-α and gamma interferon (IFN-γ) and reduced viral DNA replication with complete transcriptional activity during EBV lytic gene expression. TNF-α depletion restored the viral replication mediated by BZLF1Δ207-210. Furthermore, a combination of TNF-α- and IFN-γ-neutralizing antibodies recovered BZLF1Δ207-210-mediated viral replication, indicating that BZLF1 attenuates the antiviral response to aid optimal lytic replication primarily through the inhibition of TNF-α and IFN-γ secretion during the lytic cycle. These results suggest that EBV BZLF1 attenuates the proinflammatory responses to facilitate viral replication. IMPORTANCE The proinflammatory response is an antiviral and anticancer strategy following the complex inflammatory phenotype. Latent Epstein-Barr virus (EBV) infection strongly correlates with an elevated secretion of inflammatory factors in a variety of severe diseases, while the inflammatory responses during the lytic EBV cycle have not been established. Here, we demonstrate that BZLF1 acts as a transcriptional suppressor of the inflammatory factors TNF-α and IFN-γ and confirm that BZLF1-facilitated escape from the TNF-α and IFN-γ response during the EBV lytic life cycle is required for optimal viral replication. This finding implies that the EBV lytic cycle employs a distinct strategy to

  15. The bZIP transactivator of Epstein-Barr virus, BZLF1, functionally and physically interacts with the p65 subunit of NF-kappa B.

    PubMed Central

    Gutsch, D E; Holley-Guthrie, E A; Zhang, Q; Stein, B; Blanar, M A; Baldwin, A S; Kenney, S C

    1994-01-01

    The Epstein-Barr virus (EBV) BZLF1 (Z) immediate-early transactivator initiates the switch between latent and productive infection in B cells. The Z protein, which has homology to the basic leucine zipper protein c-Fos, transactivates the promoters of several replicative cycle proteins. Transactivation efficiency of the EBV BMRF1 promoter by Z is cell type dependent. In B cells, in which EBV typically exists in a latent form, Z activates the BMRF1 promoter inefficiently. We have discovered that the p65 component of the cellular factor NF-kappa B inhibits transactivation of several EBV promoters by Z. Furthermore, the inhibitor of NF-kappa B, I kappa B alpha, can augment Z-induced transactivation in the B-cell line Raji. Using glutathione S-transferase fusion proteins and coimmunoprecipitation studies, we demonstrate a direct interaction between Z and p65. This physical interaction, which requires the dimerization domain of Z and the Rel homology domain of p65, can be demonstrated both in vitro and in vivo. Inhibition of Z transactivation function by NF-kappa B p65, or possibly by other Rel family proteins, may contribute to the inefficiency of Z transactivator function in B cells and may be a mechanism of maintaining B-cell-specific viral latency. Images PMID:8114725

  16. Chlorpyrifos Induces the Expression of the Epstein-Barr Virus Lytic Cycle Activator BZLF-1 via Reactive Oxygen Species

    PubMed Central

    Zhao, Ling; Xie, Fei; Wang, Ting-ting; Liu, Meng-yu; Li, Jia-la; Shang, Lei; Deng, Zi-xuan; Zhao, Peng-xiang; Ma, Xue-mei

    2015-01-01

    Organophosphate pesticides (OPs) are among the most widely used synthetic chemicals for the control of a wide variety of pests, and reactive oxygen species (ROS) caused by OPs may be involved in the toxicity of various pesticides. Previous studies have demonstrated that a reactivation of latent Epstein-Barr virus (EBV) could be induced by oxidative stress. In this study, we investigated whether OPs could reactivate EBV through ROS accumulation. The Raji cells were treated with chlorpyrifos (CPF), one of the most commonly used OPs. Oxidative stress indicators and the expression of the EBV immediate-early gene BZLF-1 were determined after CPF treatment. Our results show that CPF induces oxidative stress as evidenced by decreased malondialdehyde (MDA) level, accompanied by an increase in ROS production, DNA damage, glutathione (GSH) level, and superoxide dismutase (SOD) and catalase (CAT) activity. Moreover, CPF treatment significantly enhances the expression of BZLF-1, and the increased BZLF-1 expression was ameliorated by N-acetylcysteine (NAC) incubation. These results suggest that OPs could contribute to the reactivation of the EBV lytic cycle through ROS induction, a process that may play an important role in the development of EBV-associated diseases. PMID:26257840

  17. Chlorpyrifos Induces the Expression of the Epstein-Barr Virus Lytic Cycle Activator BZLF-1 via Reactive Oxygen Species.

    PubMed

    Zhao, Ling; Xie, Fei; Wang, Ting-ting; Liu, Meng-yu; Li, Jia-la; Shang, Lei; Deng, Zi-xuan; Zhao, Peng-xiang; Ma, Xue-mei

    2015-01-01

    Organophosphate pesticides (OPs) are among the most widely used synthetic chemicals for the control of a wide variety of pests, and reactive oxygen species (ROS) caused by OPs may be involved in the toxicity of various pesticides. Previous studies have demonstrated that a reactivation of latent Epstein-Barr virus (EBV) could be induced by oxidative stress. In this study, we investigated whether OPs could reactivate EBV through ROS accumulation. The Raji cells were treated with chlorpyrifos (CPF), one of the most commonly used OPs. Oxidative stress indicators and the expression of the EBV immediate-early gene BZLF-1 were determined after CPF treatment. Our results show that CPF induces oxidative stress as evidenced by decreased malondialdehyde (MDA) level, accompanied by an increase in ROS production, DNA damage, glutathione (GSH) level, and superoxide dismutase (SOD) and catalase (CAT) activity. Moreover, CPF treatment significantly enhances the expression of BZLF-1, and the increased BZLF-1 expression was ameliorated by N-acetylcysteine (NAC) incubation. These results suggest that OPs could contribute to the reactivation of the EBV lytic cycle through ROS induction, a process that may play an important role in the development of EBV-associated diseases. PMID:26257840

  18. Contribution of myocyte enhancer factor 2 family transcription factors to BZLF1 expression in Epstein-Barr virus reactivation from latency.

    PubMed

    Murata, Takayuki; Narita, Yohei; Sugimoto, Atsuko; Kawashima, Daisuke; Kanda, Teru; Tsurumi, Tatsuya

    2013-09-01

    Reactivation of Epstein-Barr virus (EBV) from latency is dependent on expression of the viral transactivator BZLF1 protein, whose promoter (Zp) normally exhibits only low basal activity but is activated in response to chemical or biological inducers. Using a reporter assay system, we screened for factors that can activate Zp and isolated genes, including those encoding MEF2B, KLF4, and some cellular b-Zip family transcription factors. After confirming their importance and functional binding sites in reporter assays, we prepared recombinant EBV-BAC, in which the binding sites were mutated. Interestingly, the MEF2 mutant virus produced very low levels of BRLF1, another transactivator of EBV, in addition to BZLF1 in HEK293 cells. The virus failed to induce a subset of early genes, such as that encoding BALF5, upon lytic induction, and accordingly, could not replicate to produce progeny viruses in HEK293 cells, but this restriction could be completely lifted by exogenous supply of BRLF1, together with BZLF1. In B cells, induction of BZLF1 by chemical inducers was inhibited by point mutations in the ZII or the three SP1/KLF binding sites of EBV-BAC Zp, while leaky BZLF1 expression was less affected. Mutation of MEF2 sites severely impaired both spontaneous and induced expression of not only BZLF1, but also BRLF1 in comparison to wild-type or revertant virus cases. We also observed that MEF2 mutant EBV featured relatively high repressive histone methylation, such as H3K27me3, but CpG DNA methylation levels were comparable around Zp and the BRLF1 promoter (Rp). These findings shed light on BZLF1 expression and EBV reactivation from latency. PMID:23843637

  19. Laa1p, a Conserved AP-1 Accessory Protein Important for AP-1 Localization in Yeast

    PubMed Central

    Fernández, G. Esteban

    2006-01-01

    AP-1 and Gga adaptors participate in clathrin-mediated protein transport between the trans-Golgi network and endosomes. Both adaptors contain homologous domains that act to recruit accessory proteins involved in clathrin-coated vesicle formation, but the spectrum of known adaptor-binding partners is limited. This study describes an evolutionarily conserved protein of Saccharomyces cerevisiae, Laa1p (Yjl207cp), that interacts and functions specifically with AP-1. Deletion of LAA1, when combined with a conditional mutation in clathrin heavy chain or deletion of GGA genes, accentuated growth defects and increased disruption of clathrin-dependent α-factor maturation and transport of carboxypeptidase Y to the vacuole. In contrast, such genetic interactions were not observed between deletions of LAA1 and AP-1 subunit genes. Laa1p preferentially interacted with AP-1 compared with Gga proteins by glutathione S-transferase-fusion affinity binding and coimmunoprecipitations. Localization of AP-1 and Laa1p, but not Gga proteins, was highly sensitive to brefeldin A, an inhibitor of ADP-ribosylation factor (Arf) activation. Importantly, deletion of LAA1 caused mislocalization of AP-1, especially in cells at high density (postdiauxic shift), but it did not affect Gga protein distribution. Our results identify Laa1p as a new determinant of AP-1 localization, suggesting a model in which Laa1p and Arf cooperate to direct stable association of AP-1 with appropriate intracellular membranes. PMID:16687571

  20. Construction of a recombinant-BCG containing the LMP2A and BZLF1 genes and its significance in the Epstein-Barr virus positive gastric carcinoma.

    PubMed

    Xue, Qing-Jie; Dai, Jun; Li, Xiu-Zhen; Zhu, Wei; Si, Chuan-Ping; Chen, Ting

    2014-10-01

    The signal peptide Ag85B of Bacillus Chalmette-Guerin (BCG) was used to construct a recombinant plasmid of BCG. The BCG-Ag85B gene and fused EBV LMP2A and BZLF1 genes were amplified and successively inserted into the Escherichia coli-BCG shuttle-vector pMV261. The recombinant plasmids were then amplified in E. coli DH5α and transformed into competent BCG. The expression of BZLF1 and LMP2A fusion proteins in recombinant-BCG (rBCG) was shown by Western blot. After the injection of recombinant-BCG into mice, antibodies against the fusion protein BZLF1 and LMP2A were measured by ELISA, and the cellular immune effects were determined by the lactate dehydrogenate (LDH) release assays. The results confirmed that the cloned genes of BCG-Ag85B and Z2A were correctly inserted into the vector pMV261. The recombinant plasmid pMVZ2A expressed Z2A in BCG effectively after transformation. The rBCG proteins were recognized by the BZLF1 (LMP2A) antibody. An ELISA demonstrated that rBCG could stimulate the generation of antibody against the fusion protein. The fusion gene was constructed successfully, and the rBCG induced humoral and cellular immune response in mice. PMID:24699993

  1. Functional and physical interaction between p53 and BZLF1: implications for Epstein-Barr virus latency.

    PubMed Central

    Zhang, Q; Gutsch, D; Kenney, S

    1994-01-01

    The p53 tumor suppressor protein, which is commonly mutated in human cancers, has been shown to interact directly with virally encoded from papillomavirus, adenovirus, and simian virus 40. The disruption of p53 function may be required for efficient replication of certain viruses and may also play a role in the development of virally induced malignancies. Infection with Epstein-Barr virus (EBV) has been associated with the development of B-cell lymphomas and nasopharyngeal carcinoma. Here we show that the EBV immediate-early protein, BZLF1 (Z), which is responsible for initiating the switch from latent to lytic infection, can interact directly in vitro and in vivo with the tumor suppressor protein, p53. This interaction requires the coiled-coil dimerization domain of the Z protein and the carboxy-terminal portion of p53. Overexpression of wild-type p53 inhibits the ability of Z to disrupt viral latency. Likewise, Z inhibits p53-dependent transactivation in lymphoid cells. The direct interaction between Z and p53 may play a role in regulating the switch from latent to lytic viral infection. Images PMID:8114724

  2. Molecular Basis for Enhancement of the Meiotic DMCI Recombinase by RAD51AP1

    SciTech Connect

    Dray, Eloise; Dunlop, Myun Hwa; Kauppi, Liisa; San Filippo, Joseph San; Wiese, Claudia; Tsai, Miaw-Sheue; Begovic, Sead; Schild, David; Jasin, Maria; Keeney, Scott; Sung, Patrick

    2010-11-05

    Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 Associated Protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional co-operation is dependent on complex formation between DMC1 and RAD51AP1, and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci co-localize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.

  3. Transforming Growth Factor Beta 1 Stimulates Expression of the Epstein-Barr Virus BZLF1 Immediate-Early Gene Product ZEBRA by an Indirect Mechanism Which Requires the MAPK Kinase Pathway

    PubMed Central

    Fahmi, Hassan; Cochet, Chantal; Hmama, Zakariae; Opolon, Paule; Joab, Irene

    2000-01-01

    Disruption of Epstein-Barr virus (EBV) latency is mediated by ZEBRA, the protein product of the immediate-early EBV gene, BZLF1. In vitro, phorbol 12-myristate 13-acetate (PMA), a potent activator of protein kinase C (PKC), induces reactivation of EBV. However, the physiological stimuli responsible for the disruption of viral latency are not well characterized. Transforming growth factor beta 1 (TGF-β1) has also been shown to trigger the reactivation of EBV in Burkitt lymphoma cell lines; however, the effect of TGF-β1 on ZEBRA expression has not been reported. To further understand this phenomenon, we have investigated the effect of TGF-β1 on ZEBRA expression. Our results indicate that the treatment of different EBV-positive Burkitt's lymphoma cell lines with TGF-β1 induces a time-dependent activation of BZLF1 transcription with a corresponding increase in the production of the protein ZEBRA. TGF-β1 has been shown to exert its effects through a wide range of intracellular routes; in the present study, we have explored these pathways. Transient expression of Smad proteins on their own had no effect on ZEBRA expression. A specific inhibitor of p38 mitogen-activated protein kinase (MAPK), SB203580, did not affect TGF-β1-induced ZEBRA expression, whereas treatment with the MAPK/ERK kinase inhibitors, PD98059 and U0126, dramatically decreased this induction. This suggests that TGF-β1 effect on BZLF1 expression requires the MAPK pathway. However, in Raji and B95-8 cells additional routes can be used, as (i) the inhibition of ZEBRA induction by PD98059 or U0126 was incomplete, whereas these inhibitors completely abolished PMA-induced ZEBRA expression, (ii) TGF-β1 induction of ZEBRA expression occurs in PKC-depleted cells, (iii) in Raji and in B95-8 cells, the effect of TGF-β1 and PMA are additive. Transient transfection of the EBV-negative B-cell line DG75 with a BZLF1 promoter-fusion construct (Zp-CAT) showed that under conditions where the BZLF1 promoter is

  4. Molecular basis for enhancement of the meiotic DMC1 recombinase by RAD51 associated protein 1 (RAD51AP1)

    PubMed Central

    Dray, Eloïse; Dunlop, Myun Hwa; Kauppi, Liisa; Filippo, Joseph San; Wiese, Claudia; Tsai, Miaw-Sheue; Begovic, Sead; Schild, David; Jasin, Maria; Keeney, Scott; Sung, Patrick

    2011-01-01

    Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 associated protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex-DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional cooperation is dependent on complex formation between DMC1 and RAD51AP1 and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci colocalize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination. PMID:21307306

  5. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha.

    PubMed

    Tang, Mingyong; Tao, Yan-Bin; Xu, Zeng-Fu

    2016-01-01

    Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1) is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1) was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV) 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha. PMID:27168978

  6. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha

    PubMed Central

    Tang, Mingyong; Tao, Yan-Bin

    2016-01-01

    Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1) is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1) was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV) 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha. PMID:27168978

  7. Sumoylation of the Epstein-Barr Virus BZLF1 Protein Inhibits Its Transcriptional Activity and Is Regulated by the Virus-Encoded Protein Kinase▿

    PubMed Central

    Hagemeier, Stacy R.; Dickerson, Sarah J.; Meng, Qiao; Yu, Xianming; Mertz, Janet E.; Kenney, Shannon C.

    2010-01-01

    The Epstein-Barr virus (EBV) immediate-early protein BZLF1 (Z) mediates the switch between latent and lytic EBV infection. Z not only activates early lytic viral gene transcription but also plays a direct role in lytic viral genome replication. Although a small fraction of Z is known to be sumoylated, the effects of this posttranslational modification on various different Z functions have not been well defined. In this report, we show that only the lysine at amino acid residue 12 is required for the sumoylation of Z, and that Z can be sumoylated by SUMO isoforms 1, 2, and 3. We also demonstrate that the sumo-defective Z mutants ZK12A and ZK12R have enhanced transcriptional activity. The sumoylated and nonsumoylated forms of Z were found to have a similar cellular location, both being localized primarily within the nuclear matrix. The Z sumo-defective mutants were, however, partially defective for disrupting promyelocytic leukemia (PML) bodies compared to the ability of wild-type Z. In addition, we show that lytic viral genome replication does not require the sumoylation of Z, although a Z mutant altered at both amino acids 12 and 13 is replication defective. Furthermore, we show that the sumoylation of Z is greatly increased (from less than 1 to about 11%) in lytically induced 293 cells infected with an EBV mutant virus deleted for the EBV-encoded protein kinase (EBV-PK) compared to that of 293 cells infected with wild-type EBV, and that the overexpression of EBV-PK leads to the reduced sumoylation of Z in EBV-negative cells. Our results suggest that the sumoylation of Z helps to promote viral latency, and that EBV-PK inhibits Z sumoylation during viral reactivation. PMID:20181712

  8. Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1)

    PubMed Central

    2015-01-01

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases. PMID:24831826

  9. Over-expression of the PaAP1 gene from sweet cherry (Prunus avium L.) causes early flowering in Arabidopsis thaliana.

    PubMed

    Wang, Jing; Zhang, Xiaoming; Yan, Guohua; Zhou, Yu; Zhang, Kaichun

    2013-02-15

    A homologue of SQUAMOSA/APETALA1, designated PaAP1, was isolated from Prunus avium by reverse transcription-PCR (RT-PCR). The full length of PaAP1 cDNA is 753 bp, and it codes for a polypeptide of 250 amino acid residues. Sequence comparison revealed that PaAP1 belongs to the MADS-box gene family. Phylogenetic analysis indicated that PaAP1 shared the highest identity with SQUA/AP1 homologues from Prunus serrulata. Real-time fluorescence quantitative PCR analysis showed that PaAP1 was expressed at high levels in petal, sepal, style, and flower buds, which was slightly different from the expression pattern of AP1 of Arabidopsis thaliana. To characterize the functions of PaAP1, we assessed Arabidopsis transformed with 35S::PaAP1. A total of 8 transgenic T(1) lines with an early flowering phenotype were obtained, and a 3:1 segregation ratio of flowering time was observed in the T(2) generation of 4 lines. This study provides the first functional analysis of an SQUA/AP1 homolog from P. avium and suggests that PaAP1 is potentially useful for shortening the juvenile period in sweet cherry. PMID:23206932

  10. Human lung and bladder carcinoma tumors as compared to their adjacent normal tissue have elevated AP-1 activity associated with the retinoblastoma gene promoter.

    PubMed

    Linardopoulos, S; Papadakis, E; Delakas, D; Theodosiou, V; Cranidis, A; Spandidos, D A

    1993-01-01

    Examination of the nucleotide sequence of the retinoblastoma (Rb) promoter revealed the presence of a DNA region highly homologous to the recognition site for the cellular transcription factor AP-1. A pair of complementary oligonucleotides containing the AP-1 site was synthesized and used in gel retardation assays to determine the role of the AP-1 protein in the regulation of the Rb gene expression. Using nuclear extracts from Hela cells as well as from lung and bladder tumors, we found specific binding of the AP-1 protein to this oligonucleotide. This binding is elevated in Hela cells, in 10/13 lung and 3/8 bladder tumors as compared to adjacent normal tissue. These results suggest that AP-1 could be implicated in Rb gene transcriptional regulation through its interaction with the AP-1 binding site of the Rb gene promoter. PMID:8476221

  11. Trim69 regulates zebrafish brain development by ap-1 pathway

    PubMed Central

    Han, Ruiqin; Wang, Renxian; Zhao, Qing; Han, Yongqing; Zong, Shudong; Miao, Shiying; Song, Wei; Wang, Linfang

    2016-01-01

    Proteins belonging to the TRIM family have been implicated in a variety of cellular processes such as apoptosis, differentiation, neurogenesis, muscular physiology and innate immune responses. Trim69, previously identified as a novel gene cloned from a human testis cDNA library, has a homologous gene in zebrafish and this study focused on investigating the function of trim69 in zebrafish neurogenesis. Trim69 was found to be expressed in zebrafish embryo brain at the early stages. Knockdown of trim69 led to deformed brain development, obvious signs of apoptosis present in the head, and decreased expression of neuronal differentiation and stem cell markers. This phenotype was rescued upon co-injection of human mRNA together along with the trim69 knockdown. Results of this study also showed an interaction between TRIM69 and c-Jun in human cells, and upon TRIM69 knock down c-Jun expression subsequently increased, whereas the over-expression of TRIM69 led to the down-regulation of c-Jun. Additionally, knockdown both c-Jun and trim69 can rescue the deformed brain, evident cellular apoptosis in the head and decreased expression of neuronal differentiation and stem cell markers. Overall, our results support a role for trim69 in the development of the zebrafish brain through ap-1 pathway. PMID:27050765

  12. Sip1, a Conserved AP-1 Accessory Protein, Is Important for Golgi/Endosome Trafficking in Fission Yeast

    PubMed Central

    Yu, Yang; Kita, Ayako; Udo, Masako; Katayama, Yuta; Shintani, Mami; Park, Kwihwa; Hagihara, Kanako; Umeda, Nanae; Sugiura, Reiko

    2012-01-01

    We had previously identified the mutant allele of apm1+ that encodes a homolog of the mammalian μ 1A subunit of the clathrin-associated adaptor protein-1 (AP-1) complex and demonstrated that the AP-1 complex plays a role in Golgi/endosome trafficking, secretion, and vacuole fusion in fission yeast. Here, we isolated a mutant allele of its4+/sip1+, which encodes a conserved AP-1 accessory protein. The its4-1/sip1-i4 mutants and apm1-deletion cells exhibited similar phenotypes, including sensitivity to the calcineurin inhibitor FK506, Cl− and valproic acid as well as various defects in Golgi/endosomal trafficking and cytokinesis. Electron micrographs of sip1-i4 mutants revealed vacuole fragmentation and accumulation of abnormal Golgi-like structures and secretory vesicles. Overexpression of Apm1 suppressed defective membrane trafficking in sip1-i4 mutants. The Sip1-green fluorescent protein (GFP) co-localized with Apm1-mCherry at Golgi/endosomes, and Sip1 physically interacted with each subunit of the AP-1 complex. We found that Sip1 was a Golgi/endosomal protein and the sip1-i4 mutation affected AP-1 localization at Golgi/endosomes, thus indicating that Sip1 recruited the AP-1 complex to endosomal membranes by physically interacting with each subunit of this complex. Furthermore, Sip1 is required for the correct localization of Bgs1/Cps1, 1,3-β-D-glucan synthase to polarized growth sites. Consistently, the sip1-i4 mutants displayed a severe sensitivity to micafungin, a potent inhibitor of 1,3-β-D-glucan synthase. Taken together, our findings reveal a role for Sip1 in the regulation of Golgi/endosome trafficking in coordination with the AP-1 complex, and identified Bgs1, required for cell wall synthesis, as the new cargo of AP-1-dependent trafficking. PMID:23028933

  13. DNA conformation driven by AP-1 triggers cell-specific expression via a strong epithelial enhancer.

    PubMed

    Virolle, T; Djabari, Z; Ortonne, J P; Aberdam, D

    2000-10-01

    We report here the characterization of the regulatory region of the human LAMA3 gene, coding for the alpha3A chain of laminin-5. A 202 bp fragment is sufficient to confer epithelial-specific expression to a thymidine kinase promoter through the cooperative effect of three AP-1 binding sites. Remarkably, removal of the sequences located between the AP-1 sites does not modify the promoter activity in keratinocytes but allows strong expression in fibroblasts. Replacement of the deleted sequences by non-homologous ones fully restores the restricted enhancement in keratinocytes. Functional analysis and mutagenesis experiments demonstrate that a minimal distance between the AP-1 sites is required for the enhancer DNA fragment to adopt a particular conformation driven by the binding of Jun-Fos heterodimers. In non-permissive cells, this conformation leads to the anchorage of non-DNA-binding fibroblastic cofactors to form an inhibitory ternary complex. Therefore, our results describe for the first time an unusual conformation-dependent epithelial-specific enhancer. PMID:11269498

  14. ACTIVATION OF AP-1 IN UROTSA CELLS BY METHYLATED ARSENICALS

    EPA Science Inventory

    ACTIVATION OF AP-1 IN UROTSA CELLS BY METHYLATED TRIVALENT ARSENICALS. Z Drobna1, I Jaspers2, D J Thomas3 and M Styblo1. 1Department of Pediatrics; 2Center for Environmental Medicine and Lung Biology, University of North Carolina at Chapel Hill, NC, USA; 3US EPA, RTP, NC, USA.

  15. NF-κB and AP-1 Connection: Mechanism of NF-κB-Dependent Regulation of AP-1 Activity

    PubMed Central

    Fujioka, Shuichi; Niu, Jiangong; Schmidt, Christian; Sclabas, Guido M.; Peng, Bailu; Uwagawa, Tadashi; Li, Zhongkui; Evans, Douglas B.; Abbruzzese, James L.; Chiao, Paul J.

    2004-01-01

    Nuclear factor κB (NF-κB) and activator protein 1 (AP-1) transcription factors regulate many important biological and pathological processes. Activation of NF-κB is regulated by the inducible phosphorylation of NF-κB inhibitor IκB by IκB kinase. In contrast, Fos, a key component of AP-1, is primarily transcriptionally regulated by serum responsive factors (SRFs) and ternary complex factors (TCFs). Despite these different regulatory mechanisms, there is an intriguing possibility that NF-κB and AP-1 may modulate each other, thus expanding the scope of these two rapidly inducible transcription factors. To determine whether NF-κB activity is involved in the regulation of fos expression in response to various stimuli, we analyzed activity of AP-1 and expression of fos, fosB, fra-1, fra-2, jun, junB, and junD, as well as AP-1 downstream target gene VEGF, using MDAPanc-28 and MDAPanc-28/IκBαM pancreatic tumor cells and wild-type, IKK1−/−, and IKK2−/− murine embryonic fibroblast cells. Our results show that elk-1, a member of TCFs, is one of the NF-κB downstream target genes. Inhibition of NF-κB activity greatly decreased expression of elk-1. Consequently, the reduced level of activated Elk-1 protein by extracellular signal-regulated kinase impeded constitutive, serum-, and superoxide-inducible c-fos expression. Thus, our study revealed a distinct and essential role of NF-κB in participating in the regulation of elk-1, c-fos, and VEGF expression. PMID:15314185

  16. Thrombin induces endothelial arginase through AP-1 activation.

    PubMed

    Zhu, Weifei; Chandrasekharan, Unni M; Bandyopadhyay, Smarajit; Morris, Sidney M; DiCorleto, Paul E; Kashyap, Vikram S

    2010-04-01

    Arterial thrombosis is a common disease leading to severe ischemia beyond the obstructing thrombus. Additionally, endothelial dysfunction at the site of thrombosis can be rescued by l-arginine supplementation or arginase blockade in several animal models. Exposure of rat aortic endothelial cells (RAECs) to thrombin upregulates arginase I mRNA and protein levels. In this study, we further investigated the molecular mechanism of thrombin-induced arginase changes in endothelial cells. Thrombin strikingly increased arginase I promoter and enzyme activity in primary cultured RAECs. Using different deletion and point mutations of the promoter, we demonstrated that the activating protein-1 (AP-1) consensus site located at -3,157 bp in the arginase I promoter was a thrombin-responsive element. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay further confirmed that upon thrombin stimulation, c-Jun and activating transcription factor-2 (ATF-2) bound to the AP-1 site, which initiated the transactivation. Moreover, loss-of-function studies using small interfering RNA confirmed that recruitment of these two transcription factors to the AP-1 site was required for thrombin-induced arginase upregulation. In the course of defining the signaling pathway leading to the activation of AP-1 by thrombin, we found thrombin-induced phosphorylation of stress-activated protein kinase/c-Jun-NH(2)-terminal kinase (SAPK/JNK or JNK1/2/3) and p38 mitogen-activated protein kinase, which were followed by the phosphorylation of both c-Jun and ATF-2. These findings reveal the basis for thrombin induction of endothelial arginase I and indicate that arginase inhibition may be an attractive therapeutic alternative in the setting of arterial thrombosis and its associated endothelial dysfunction. PMID:20032511

  17. Nucleolin binds specifically to an AP-1 DNA sequence and represses AP1-dependent transactivation of the matrix metalloproteinase-13 gene.

    PubMed

    Samuel, Shaija; Twizere, Jean-Claude; Beifuss, Katherine K; Bernstein, Lori R

    2008-01-01

    Transcriptional regulation via activator protein-1 (AP-1) protein binding to AP-1 binding sites within gene promoter regions of AP-1 target genes plays a key role in controlling cellular invasion, proliferation, and oncogenesis, and is important to pathogenesis of arthritis and cardiovascular disease. To identify new proteins that interact with the AP-1 DNA binding site, we performed the DNA affinity chromatography-based Nucleotide Affinity Preincubation Specificity TEst of Recognition (NAPSTER) assay, and discovered a 97 kDa protein that binds in vitro to a minimal AP-1 DNA sequence element. Mass spectrometric fragmentation sequencing determined that p97 is nucleolin. Immunoblotting of DNA affinity-purified material with anti-nucleolin antibodies confirmed this identification. Nucleolin also binds the AP-1 site in gel shift assays. Nucleolin interacts in NAPSTER with the AP-1 site within the promoter sequence of the metalloproteinase-13 gene (MMP-13), and binds in vivo in chromatin immunoprecipitation assays in the vicinity of the AP-1 site in the MMP-13 promoter. Overexpression of nucleolin in human HeLa cervical carcinoma cells significantly represses AP-1 dependent gene transactivation of a minimal AP-1 reporter construct and of an MMP-13 promoter reporter sequence. This is the first report of nucleolin binding and transregulation at the AP-1 site. PMID:17626252

  18. AP-1 activity during normal human keratinocyte differentiation: evidence for a cytosolic modulator of AP-1/DNA binding.

    PubMed

    Briata, P; D'Anna, F; Franzi, A T; Gherzi, R

    1993-01-01

    Increased levels of c-fos and c-jun expression have been observed in differentiating epithelial cells. However, no data are available on activator protein 1 (AP-1) activity during keratinocyte differentiation. In this work we investigated c-fos and c-jun gene expression and AP-1-(12-O-tetradecanoylphorbol-13-acetate)-responsive enhancer element (TRE) binding activity during keratinocyte differentiation utilizing both authentic and in culture-reconstituted human epidermis. We demonstrate that: (i) in reconstituted epidermis, non-differentiated and differentiated keratinocytes express equivalent levels of c-Jun, while in reconstituted epidermis permanently grafted onto athymic mice, as well as in authentic epidermis, c-Jun is predominantly expressed in the granular layer of the tissue. Equivalent levels of c-fos expression have been found in all the layers of both reconstituted and authentic epidermis. (ii) Nuclear extracts from cultures enriched in differentiated keratinocytes display an 80-90% reduction of AP-1 activity when compared to extracts from cultures enriched in nondifferentiated cells. (iii) Cytosolic extracts obtained from cultures enriched in differentiated cells reduce, in a concentration-dependent manner, the AP-1 activity present in nuclear extracts of both mammalian and Drosophila cells. (iv) The specific TRE binding activity of a recombinant c-Jun protein is significantly reduced by cytosolic extracts of differentiated keratinocytes, while the specific DNA binding of the purified recombinant human homeoprotein HOX4B is not. (v) The dephosphorylation, by alkaline phosphatase, of cytosolic extracts increases the inhibitory activity already present or makes evident a latent activity. PMID:8416791

  19. A Common Signal Patch Drives AP-1 Protein-dependent Golgi Export of Inwardly Rectifying Potassium Channels.

    PubMed

    Li, Xiangming; Ortega, Bernardo; Kim, Boyoung; Welling, Paul A

    2016-07-15

    Nearly all members of the inwardly rectifying potassium (Kir) channel family share a cytoplasmic domain structure that serves as an unusual AP-1 clathrin adaptor-dependent Golgi export signal in one Kir channel, Kir2.1 (KCNJ2), raising the question whether Kir channels share a common Golgi export mechanism. Here we explore this idea, focusing on two structurally and functionally divergent Kir family members, Kir2.3 (KCNJ4) and Kir4.1/5.1 (KCNJ10/16), which have ∼50% amino identity. We found that Golgi export of both channels is blocked upon siRNA-mediated knockdown of the AP-1 γ subunit, as predicted for the common AP-1-dependent trafficking process. A comprehensive mutagenic analysis, guided by homology mapping in atomic resolution models of Kir2.1, Kir2.3, and Kir4.1/5.1, identified a common structure that serves as a recognition site for AP-1 binding and governs Golgi export. Larger than realized from previous studies with Kir2.1, the signal is created by a patch of residues distributed at the confluence of cytoplasmic N and C termini. The signal involves a stretch of hydrophobic residues from the C-terminal region that form a hydrophobic cleft, an adjacent cluster of basic residues within the N terminus, and a potential network of salt bridges that join the N- and C-terminal poles together. Because patch formation and AP-1 binding are dependent on proper folding of the cytoplasmic domains, the signal provides a common quality control mechanism at the Golgi for Kir channels. These findings identify a new proteostatic mechanism that couples protein folding of channels to forward trafficking in the secretory pathway. PMID:27226616

  20. Functional Characterization of OsMADS18, a Member of the AP1/SQUA Subfamily of MADS Box Genes1[w

    PubMed Central

    Fornara, Fabio; Pařenicová, Lucie; Falasca, Giuseppina; Pelucchi, Nilla; Masiero, Simona; Ciannamea, Stefano; Lopez-Dee, Zenaida; Altamura, Maria Maddalena; Colombo, Lucia; Kater, Martin M.

    2004-01-01

    MADS box transcription factors controlling flower development have been isolated and studied in a wide variety of organisms. These studies have shown that homologous MADS box genes from different species often have similar functions. OsMADS18 from rice (Oryza sativa) belongs to the phylogenetically defined AP1/SQUA group. The MADS box genes of this group have functions in plant development, like controlling the transition from vegetative to reproductive growth, determination of floral organ identity, and regulation of fruit maturation. In this paper we report the functional analysis of OsMADS18. This rice MADS box gene is widely expressed in rice with its transcripts accumulated to higher levels in meristems. Overexpression of OsMADS18 in rice induced early flowering, and detailed histological analysis revealed that the formation of axillary shoot meristems was accelerated. Silencing of OsMADS18 using an RNA interference approach did not result in any visible phenotypic alteration, indicating that OsMADS18 is probably redundant with other MADS box transcription factors. Surprisingly, overexpression of OsMADS18 in Arabidopsis caused a phenotype closely resembling the ap1 mutant. We show that the ap1 phenotype is not caused by down-regulation of AP1 expression. Yeast two-hybrid experiments showed that some of the natural partners of AP1 interact with OsMADS18, suggesting that the OsMADS18 overexpression phenotype in Arabidopsis is likely to be due to the subtraction of AP1 partners from active transcription complexes. Thus, when compared to AP1, OsMADS18 during evolution seems to have conserved the mechanistic properties of protein-protein interactions, although it cannot complement the AP1 function. PMID:15299121

  1. Luteolin, a flavonoid, inhibits AP-1 activation by basophils

    SciTech Connect

    Hirano, Toru; Higa, Shinji; Arimitsu, Junsuke; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Matsuda, Hisashi; Yoshikawa, Masayuki; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Kawase, Ichiro; Tanaka, Toshio . E-mail: ttanak@imed3.med.osaka-u.ac.jp

    2006-02-03

    Flavonoids including luteolin, apigenin, and fisetin are inhibitors of IL-4 synthesis and CD40 ligand expression by basophils. This study was done to search for compounds with greater inhibitory activity of IL-4 expression and to clarify the molecular mechanisms through which flavonoids inhibit their expression. Of the 37 flavonoids and related compounds examined, ayanin, luteolin, and apigenin were the strongest inhibitors of IL-4 production by purified basophils in response to anti-IgE antibody plus IL-3. Luteolin did not suppress Syk or Lyn phosphorylation in basophils, nor did suppress p54/46 SAPK/JNK, p38 MAPK, and p44/42 MAPK activation by a basophilic cell line, KU812 cells, stimulated with A23187 and PMA. However, luteolin did inhibit phosphorylation of c-Jun and DNA binding activity of AP-1 in nuclear lysates from stimulated KU812 cells. These results provide a fundamental structure of flavonoids for IL-4 inhibition and demonstrate a novel action of flavonoids that suppresses the activation of AP-1.

  2. Loss of JUNB/AP-1 promotes invasive prostate cancer

    PubMed Central

    Thomsen, M K; Bakiri, L; Hasenfuss, S C; Wu, H; Morente, M; Wagner, E F

    2015-01-01

    Prostate cancer is a frequent cause of male death in the Western world. Relatively few genetic alterations have been identified, likely owing to disease heterogeneity. Here, we show that the transcription factor JUNB/AP-1 limits prostate cancer progression. JUNB expression is increased in low-grade prostate cancer compared with normal human prostate, but downregulated in high-grade samples and further decreased in all metastatic samples. To model the hypothesis that this downregulation is functionally significant, we genetically inactivated Junb in the prostate epithelium of mice. When combined with Pten (phosphatase and tensin homologue) loss, double-mutant mice were prone to invasive cancer development. Importantly, invasive tumours also developed when Junb and Pten were inactivated in a small cell population of the adult anterior prostate by topical Cre recombinase delivery. The resulting tumours displayed strong histological similarity with human prostate cancer. Loss of JunB expression led to increased proliferation and decreased senescence, likely owing to decreased p16Ink4a and p21CIP1 in epithelial cells. Furthermore, the tumour stroma was altered with increased osteopontin and S100 calcium-binding protein A8/9 expression, which correlated with poor prognoses in patients. These data demonstrate that JUNB/AP-1 cooperates with PTEN signalling as barriers to invasive prostate cancer, whose concomitant genetic or epigenetic suppression induce malignant progression. PMID:25526087

  3. Loss of JUNB/AP-1 promotes invasive prostate cancer.

    PubMed

    Thomsen, M K; Bakiri, L; Hasenfuss, S C; Wu, H; Morente, M; Wagner, E F

    2015-04-01

    Prostate cancer is a frequent cause of male death in the Western world. Relatively few genetic alterations have been identified, likely owing to disease heterogeneity. Here, we show that the transcription factor JUNB/AP-1 limits prostate cancer progression. JUNB expression is increased in low-grade prostate cancer compared with normal human prostate, but downregulated in high-grade samples and further decreased in all metastatic samples. To model the hypothesis that this downregulation is functionally significant, we genetically inactivated Junb in the prostate epithelium of mice. When combined with Pten (phosphatase and tensin homologue) loss, double-mutant mice were prone to invasive cancer development. Importantly, invasive tumours also developed when Junb and Pten were inactivated in a small cell population of the adult anterior prostate by topical Cre recombinase delivery. The resulting tumours displayed strong histological similarity with human prostate cancer. Loss of JunB expression led to increased proliferation and decreased senescence, likely owing to decreased p16(Ink4a) and p21(CIP1) in epithelial cells. Furthermore, the tumour stroma was altered with increased osteopontin and S100 calcium-binding protein A8/9 expression, which correlated with poor prognoses in patients. These data demonstrate that JUNB/AP-1 cooperates with PTEN signalling as barriers to invasive prostate cancer, whose concomitant genetic or epigenetic suppression induce malignant progression. PMID:25526087

  4. The Forkhead Transcription Factor FOXK2 Promotes AP-1-Mediated Transcriptional Regulation

    PubMed Central

    Ji, Zongling; Donaldson, Ian J.; Liu, Jingru; Hayes, Andrew; Zeef, Leo A. H.

    2012-01-01

    The transcriptional control circuitry in eukaryotic cells is complex and is orchestrated by combinatorially acting transcription factors. Forkhead transcription factors often function in concert with heterotypic transcription factors to specify distinct transcriptional programs. Here, we demonstrate that FOXK2 participates in combinatorial transcriptional control with the AP-1 transcription factor. FOXK2 binding regions are widespread throughout the genome and are often coassociated with AP-1 binding motifs. FOXK2 acts to promote AP-1-dependent gene expression changes in response to activation of the AP-1 pathway. In this context, FOXK2 is required for the efficient recruitment of AP-1 to chromatin. Thus, we have uncovered an important new molecular mechanism that controls AP-1-dependent gene expression. PMID:22083952

  5. ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation

    PubMed Central

    Jansen, Eric J. R.; Timal, Sharita; Ryan, Margret; Ashikov, Angel; van Scherpenzeel, Monique; Graham, Laurie A.; Mandel, Hanna; Hoischen, Alexander; Iancu, Theodore C.; Raymond, Kimiyo; Steenbergen, Gerry; Gilissen, Christian; Huijben, Karin; van Bakel, Nick H. M.; Maeda, Yusuke; Rodenburg, Richard J.; Adamowicz, Maciej; Crushell, Ellen; Koenen, Hans; Adams, Darius; Vodopiutz, Julia; Greber-Platzer, Susanne; Müller, Thomas; Dueckers, Gregor; Morava, Eva; Sykut-Cegielska, Jolanta; Martens, Gerard J. M.; Wevers, Ron A.; Niehues, Tim; Huynen, Martijn A.; Veltman, Joris A.; Stevens, Tom H.; Lefeber, Dirk J.

    2016-01-01

    The V-ATPase is the main regulator of intra-organellar acidification. Assembly of this complex has extensively been studied in yeast, while limited knowledge exists for man. We identified 11 male patients with hemizygous missense mutations in ATP6AP1, encoding accessory protein Ac45 of the V-ATPase. Homology detection at the level of sequence profiles indicated Ac45 as the long-sought human homologue of yeast V-ATPase assembly factor Voa1. Processed wild-type Ac45, but not its disease mutants, restored V-ATPase-dependent growth in Voa1 mutant yeast. Patients display an immunodeficiency phenotype associated with hypogammaglobulinemia, hepatopathy and a spectrum of neurocognitive abnormalities. Ac45 in human brain is present as the common, processed ∼40-kDa form, while liver shows a 62-kDa intact protein, and B-cells a 50-kDa isoform. Our work unmasks Ac45 as the functional ortholog of yeast V-ATPase assembly factor Voa1 and reveals a novel link of tissue-specific V-ATPase assembly with immunoglobulin production and cognitive function. PMID:27231034

  6. ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation.

    PubMed

    Jansen, Eric J R; Timal, Sharita; Ryan, Margret; Ashikov, Angel; van Scherpenzeel, Monique; Graham, Laurie A; Mandel, Hanna; Hoischen, Alexander; Iancu, Theodore C; Raymond, Kimiyo; Steenbergen, Gerry; Gilissen, Christian; Huijben, Karin; van Bakel, Nick H M; Maeda, Yusuke; Rodenburg, Richard J; Adamowicz, Maciej; Crushell, Ellen; Koenen, Hans; Adams, Darius; Vodopiutz, Julia; Greber-Platzer, Susanne; Müller, Thomas; Dueckers, Gregor; Morava, Eva; Sykut-Cegielska, Jolanta; Martens, Gerard J M; Wevers, Ron A; Niehues, Tim; Huynen, Martijn A; Veltman, Joris A; Stevens, Tom H; Lefeber, Dirk J

    2016-01-01

    The V-ATPase is the main regulator of intra-organellar acidification. Assembly of this complex has extensively been studied in yeast, while limited knowledge exists for man. We identified 11 male patients with hemizygous missense mutations in ATP6AP1, encoding accessory protein Ac45 of the V-ATPase. Homology detection at the level of sequence profiles indicated Ac45 as the long-sought human homologue of yeast V-ATPase assembly factor Voa1. Processed wild-type Ac45, but not its disease mutants, restored V-ATPase-dependent growth in Voa1 mutant yeast. Patients display an immunodeficiency phenotype associated with hypogammaglobulinemia, hepatopathy and a spectrum of neurocognitive abnormalities. Ac45 in human brain is present as the common, processed ∼40-kDa form, while liver shows a 62-kDa intact protein, and B-cells a 50-kDa isoform. Our work unmasks Ac45 as the functional ortholog of yeast V-ATPase assembly factor Voa1 and reveals a novel link of tissue-specific V-ATPase assembly with immunoglobulin production and cognitive function. PMID:27231034

  7. AP-1/σ1A and AP-1/σ1B adaptor-proteins differentially regulate neuronal early endosome maturation via the Rab5/Vps34-pathway

    PubMed Central

    Candiello, Ermes; Kratzke, Manuel; Wenzel, Dirk; Cassel, Dan; Schu, Peter

    2016-01-01

    The σ1 subunit of the AP-1 clathrin-coated-vesicle adaptor-protein complex is expressed as three isoforms. Tissues express σ1A and one of the σ1B and σ1C isoforms. Brain is the tissue with the highest σ1A and σ1B expression. σ1B-deficiency leads to severe mental retardation, accumulation of early endosomes in synapses and fewer synaptic vesicles, whose recycling is slowed down. AP-1/σ1A and AP-1/σ1B regulate maturation of these early endosomes into multivesicular body late endosomes, thereby controlling synaptic vesicle protein transport into a degradative pathway. σ1A binds ArfGAP1, and with higher affinity brain-specific ArfGAP1, which bind Rabex-5. AP-1/σ1A-ArfGAP1-Rabex-5 complex formation leads to more endosomal Rabex-5 and enhanced, Rab5GTP-stimulated Vps34 PI3-kinase activity, which is essential for multivesicular body endosome formation. Formation of AP-1/σ1A-ArfGAP1-Rabex-5 complexes is prevented by σ1B binding of Rabex-5 and the amount of endosomal Rabex-5 is reduced. AP-1 complexes differentially regulate endosome maturation and coordinate protein recycling and degradation, revealing a novel molecular mechanism by which they regulate protein transport besides their established function in clathrin-coated-vesicle formation. PMID:27411398

  8. Clathrin interactions with C-terminal regions of the yeast AP-1 beta and gamma subunits are important for AP-1 association with clathrin coats.

    PubMed

    Yeung, B G; Payne, G S

    2001-08-01

    Heterotetrameric adaptor (AP) complexes are thought to coordinate cargo recruitment and clathrin assembly during clathrin-coated vesicle biogenesis. We have identified, and characterized the physiological significance of clathrin-binding activities in the two large subunits of the AP-1 complex in Saccharomyces cerevisiae. Using GST-fusion chromatography, two clathrin-binding sites were defined in the beta1 subunit that match consensus clathrin-binding sequences in other mammalian and yeast clathrin-binding proteins. Clathrin interactions were also identified with the C-terminal region of the gamma subunit. When introduced into chromosomal genes, point mutations in the beta1 clathrin-binding motifs, or deletion of the gamma C-terminal region, reduced association of AP-1 with clathrin in coimmunoprecipitation assays. The beta1 mutations or the gamma truncation individually produced minor effects on AP-1 distribution by subcellular fractionation. However, when beta1 and gamma mutations were combined, severe defects were observed in AP-1 association with membranes and incorporation into clathrin-coated vesicles. The combination of subunit mutations accentuated growth and alpha-factor pheromone maturation defects in chc1-ts cells, though not to the extent caused by complete loss of AP-1 activity. Our results suggest that both the beta1 and gamma subunits contribute interactions with clathrin that are important for stable assembly of AP-1 complexes into clathrin coats in vivo. PMID:11489214

  9. AP-1 family members act with Sox9 to promote chondrocyte hypertrophy.

    PubMed

    He, Xinjun; Ohba, Shinsuke; Hojo, Hironori; McMahon, Andrew P

    2016-08-15

    An analysis of Sox9 binding profiles in developing chondrocytes identified marked enrichment of an AP-1-like motif. Here, we have explored the functional interplay between Sox9 and AP-1 in mammalian chondrocyte development. Among AP-1 family members, Jun and Fosl2 were highly expressed within prehypertrophic and early hypertrophic chondrocytes. Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) showed a striking overlap in Jun- and Sox9-bound regions throughout the chondrocyte genome, reflecting direct binding of each factor to the same enhancers and a potential for protein-protein interactions within AP-1- and Sox9-containing complexes. In vitro reporter analysis indicated that direct co-binding of Sox9 and AP-1 at target motifs promoted gene activity. By contrast, where only one factor can engage its DNA target, the presence of the other factor suppresses target activation consistent with protein-protein interactions attenuating transcription. Analysis of prehypertrophic chondrocyte removal of Sox9 confirmed the requirement of Sox9 for hypertrophic chondrocyte development, and in vitro and ex vivo analyses showed that AP-1 promotes chondrocyte hypertrophy. Sox9 and Jun co-bound and co-activated a Col10a1 enhancer in Sox9 and AP-1 motif-dependent manners consistent with their combined action promoting hypertrophic gene expression. Together, the data support a model in which AP-1 family members contribute to Sox9 action in the transition of chondrocytes to the hypertrophic program. PMID:27471255

  10. Involvement of the AP-1 Adaptor Complex in Early Steps of Phagocytosis and Macropinocytosis

    PubMed Central

    Lefkir, Yaya; Malbouyres, Marilyne; Gotthardt, Daniel; Ozinsky, Adrian; Cornillon, Sophie; Bruckert, Franz; Aderem, Alan A.; Soldati, Thierry; Cosson, Pierre; Letourneur, François

    2004-01-01

    The best described function of the adaptor complex-1 (AP-1) is to participate in the budding of clathrin-coated vesicles from the trans-Golgi network and endosomes. Here, we show that AP-1 is also localized to phagocytic cups in murine macrophages as well as in Dictyostelium amoebae. AP-1 is recruited to phagosomal membranes at this early stage of phagosome formation and rapidly dissociates from maturing phagosomes. To establish the role of AP-1 in phagocytosis, we made used of Dictyostelium mutant cells (apm1- cells) disrupted for AP-1 medium chain. In this mutant, phagocytosis drops by 60%, indicating that AP-1 is necessary for efficient phagocytosis. Furthermore, phagocytosis in apm1- cells is more affected for large rather than small particles, and cells exhibiting incomplete engulfment are then often observed. This suggests that AP-1 could participate in the extension of the phagocytic cup. Interestingly, macropinocytosis, a process dedicated to fluid-phase endocytosis and related to phagocytosis, is also impaired in apm1- cells. In summary, our data suggest a new role of AP-1 at an early stage of phagosome and macropinosome formation. PMID:14617812

  11. Bcl-3 Expression Promotes Cell Survival following Interleukin-4 Deprivation and Is Controlled by AP1 and AP1-Like Transcription Factors

    PubMed Central

    Rebollo, Angelita; Dumoutier, Laure; Renauld, Jean-Christophe; Zaballos, Angel; Ayllón, Verónica; Martínez-A., Carlos

    2000-01-01

    We have analyzed the interleukin-4 (IL-4)-triggered mechanisms implicated in cell survival and show here that IL-4 deprivation induces apoptotic cell death but does not modulate Bcl-2 or Bcl-x expression. Since Bcl-x expression is insufficient to ensure cell survival in the absence of IL-4, we speculate that additional molecules replace the antiapoptotic role of Bcl-2 and Bcl-x in an alternative IL-4-triggered pathway. Cell death is associated with Bcl-3 downregulation and Bcl-3 expression blocks IL-4 deprivation-induced apoptosis, suggesting that Bcl-3 acts as a survival factor in the absence of growth factor. To characterize the IL-4-induced regulation of murine Bcl-3 expression, we cloned the promoter of this gene. Sequencing of the promoter showed no TATA box element but did reveal binding sites for AP1, AP1-like, and SP1 transcription factors. Retardation gels showed that IL-4 specifically induces AP1 and AP1-like binding activity and that mutation of these binding sites abolishes the IL-4-induced Bcl-3 promoter activity, suggesting that these transcription factors are important in Bcl-3 promoter transactivation. IL-4 deprivation induces downregulation of Jun expression and upregulation of Fos expression, both of which are proteins involved in the formation of AP1 and AP1-like transcription factors. Overexpression of Jun family proteins transactivates the promoter and restores Bcl-3 expression in the absence of IL-4 stimulation. Taken together, these data describe a new biological role for Bcl-3 and define the regulatory pathway implicated in Bcl-3 expression. PMID:10779330

  12. Involvement of Ras/Raf/AP-1 in BMP-4 signaling during Xenopus embryonic development.

    PubMed Central

    Xu, R H; Dong, Z; Maeno, M; Kim, J; Suzuki, A; Ueno, N; Sredni, D; Colburn, N H; Kung, H F

    1996-01-01

    Previously, we elucidated the role of bone morphogenetic protein 4 (BMP-4) in the dorsal-ventral patterning of the Xenopus embryo by using a dominant negative mutant of the BMP-4 receptor (DN-BR). The present paper describes the involvement of Ras, Raf, and activator protein 1 (AP-1) in BMP-4 signaling during Xenopus embryonic development. The AP-1 activity was determined by injecting an AP-1-dependent luciferase reporter gene into two-cell-stage Xenopus embryos and measuring the luciferase activity at various developmental stages. We found that injection of BMP-4 mRNA increased AP-1 activity, whereas injection of DN-BR mRNA inhibited AP-1 activity. Similar inhibitory effects were seen with injection of mRNAs encoding dominant negative mutants of c-Ha-Ras, c-Raf, or c-Jun. These results suggest that the endogenous AP-1 activity is regulated by BMP-4/Ras/Raf/Jun signals. We next investigated the effects of Ras/Raf/AP-1 signals on the biological functions of BMP-4. DN-BR-induced dorsalization of the embryo, revealed by the formation of a secondary body axis or dorsalization of the ventral mesoderm explant analyzed by histological and molecular criteria, was significantly reversed by coinjection of [Val12]Ha-Ras, c-Raf, or c-Jun mRNA. Furthermore, the BMP-4-stimulated erythroid differentiation in the ventral mesoderm was substantially inhibited by coinjection with the dominant negative c-Ha-Ras, c-Raf, or c-Jun mutant. Our results suggest the involvement of Ras/Raf/AP-1 in the BMP-4 signaling pathway. Images Fig. 2 Fig. 3 Fig. 4 PMID:8570644

  13. AP1S3 is required for hepatitis C virus infection by stabilizing E2 protein.

    PubMed

    Li, Xiang; Niu, Yuqiang; Cheng, Min; Chi, Xiaojing; Liu, Xiuying; Yang, Wei

    2016-07-01

    Hepatitis C virus (HCV) infects 130 million people worldwide and is a leading cause of liver cirrhosis, end-stage liver disease and hepatocellular carcinoma. The interactions between viral elements and host factors play critical role on HCV invade, replication and release. Here, we identified adaptor protein complex 1 sigma 3 subunit (AP1S3) as a dependency factor for the efficient HCV infection in hepatoma cells. AP1S3 silencing in cultivated Huh7.5.1 cells significantly reduced the production of HCV progeny particles. Immunoprecipitation analysis revealed that AP1S3 interacted with the HCV E2 protein. With this interaction, AP1S3 could protect HCV E2 from ubiquitin-mediated proteasomal degradation. Using in vivo ubiquitylation assay, we identified that E6-Associated Protein (E6AP) was associated with HCV E2. In addition, treatment with synthetic peptide that contains the AP1S3-recognized motif inhibited HCV infection in Huh7.5.1 cells. Our data reveal AP1 as a novel host network that is required by viruses during infection and provides a potential target for developing broad-spectrum anti-virus strategies. PMID:27079945

  14. AP-1 and clathrin are essential for secretory granule biogenesis in Drosophila

    PubMed Central

    Burgess, Jason; Jauregui, Miluska; Tan, Julie; Rollins, Janet; Lallet, Sylvie; Leventis, Peter A.; Boulianne, Gabrielle L.; Chang, Henry C.; Le Borgne, Roland; Krämer, Helmut; Brill, Julie A.

    2011-01-01

     Regulated secretion of hormones, digestive enzymes, and other biologically active molecules requires the formation of secretory granules. Clathrin and the clathrin adaptor protein complex 1 (AP-1) are necessary for maturation of exocrine, endocrine, and neuroendocrine secretory granules. However, the initial steps of secretory granule biogenesis are only minimally understood. Powerful genetic approaches available in the fruit fly Drosophila melanogaster were used to investigate the molecular pathway for biogenesis of the mucin-containing “glue granules” that form within epithelial cells of the third-instar larval salivary gland. Clathrin and AP-1 colocalize at the trans-Golgi network (TGN) and clathrin recruitment requires AP-1. Furthermore, clathrin and AP-1 colocalize with secretory cargo at the TGN and on immature granules. Finally, loss of clathrin or AP-1 leads to a profound block in secretory granule formation. These findings establish a novel role for AP-1– and clathrin-dependent trafficking in the biogenesis of mucin-containing secretory granules. PMID:21490149

  15. The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond

    PubMed Central

    Nakatsu, Fubito; Hase, Koji; Ohno, Hiroshi

    2014-01-01

    The selective transport of proteins or lipids by vesicular transport is a fundamental process supporting cellular physiology. The budding process involves cargo sorting and vesicle formation at the donor membrane and constitutes an important process in vesicular transport. This process is particularly important for the polarized sorting in epithelial cells, in which the cargo molecules need to be selectively sorted and transported to two distinct destinations, the apical or basolateral plasma membrane. Adaptor protein (AP)-1, a member of the AP complex family, which includes the ubiquitously expressed AP-1A and the epithelium-specific AP-1B, regulates polarized sorting at the trans-Golgi network and/or at the recycling endosomes. A growing body of evidence, especially from studies using model organisms and animals, demonstrates that the AP-1-mediated polarized sorting supports the development and physiology of multi-cellular units as functional organs and tissues (e.g., cell fate determination, inflammation and gut immune homeostasis). Furthermore, a possible involvement of AP-1B in the pathogenesis of human diseases, such as Crohn’s disease and cancer, is now becoming evident. These data highlight the significant contribution of AP-1 complexes to the physiology of multicellular organisms, as master regulators of polarized sorting in epithelial cells. PMID:25387275

  16. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection

    PubMed Central

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez-Bonet, Marta; Nogal, María L.; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity. PMID:25915900

  17. RAD51AP2, a novel vertebrate- and meiotic-specific protein, sharesa conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51

    SciTech Connect

    Kovalenko, Oleg V.; Wiese, Claudia; Schild, David

    2006-07-25

    Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1.

  18. Alcohol homologation

    DOEpatents

    Wegman, Richard W.; Moloy, Kenneth G.

    1988-01-01

    A process for the homologation of an alkanol by reaction with synthesis gas in contact with a system containing rhodium atom, ruthenium atom, iodine atom and a bis(diorganophosphino) alkane to selectivity produce the next higher homologue.

  19. Alcohol homologation

    DOEpatents

    Wegman, R.W.; Moloy, K.G.

    1988-02-23

    A process is described for the homologation of an alkanol by reaction with synthesis gas in contact with a system containing rhodium atom, ruthenium atom, iodine atom and a bis(diorganophosphino) alkane to selectivity produce the next higher homologue.

  20. Deletion mutants of AP-1 adaptin subunits display distinct phenotypes in fission yeast.

    PubMed

    Ma, Yan; Takeuchi, Mai; Sugiura, Reiko; Sio, Susie O; Kuno, Takayoshi

    2009-08-01

    Adaptins are subunits of the heterotetrameric (beta/mu/gamma/sigma) adaptor protein (AP) complexes that are involved in clathrin-mediated membrane trafficking. Here, we show that in Schizosaccharomyces pombe the deletion strains of each individual subunit of the AP-1 complex [Apl2 (beta), Apl4 (gamma), Apm1 (mu) and Aps1 (sigma)] caused distinct phenotypes on growth sensitivity to temperature or drugs. We also show that the Deltaapm1 and Deltaapl2 mutants displayed similar but more severe phenotypes than those of Deltaaps1 or Deltaapl4 mutants. Furthermore, the Deltaapl2Deltaaps1 and Deltaapl2Deltaapl4 double mutants displayed synthetic growth defects, whereas the Deltaaps1Deltaapl4 and Deltaapl2Deltaapm1 double mutants did not. In pull-down assay, Apm1 binds Apl2 even in the absence of Aps1 and Apl4, and Apl4 binds Aps1 even in the absence of Apm1 and Apl2. Consistently, the deletion of any subunit generally caused the disassociation of the heterotetrameric complex from endosomes, although some subunits weakly localized to endosomes. In addition, the deletion of individual subunits caused similar endosomal accumulation of v-SNARE synaptobrevin Syb1. Altogether, results suggest that the four subunits are all essential for the heterotetrameric complex formation and for the AP-1 function in exit transport from endosomes. PMID:19624755

  1. Low concentrations of copper in drinking water increase AP-1 binding in the brain.

    PubMed

    Lung, Shyang; Li, Huihui; Bondy, Stephen C; Campbell, Arezoo

    2015-12-01

    Copper (Cu) in trace amounts is essential for biological organisms. However, dysregulation of the redox-active metal has been implicated in different neurological disorders such as Wilson's, Menkes', Alzheimer's, and Parkinson's diseases. Since many households use Cu tubing in the plumbing system, and corrosion causes the metal to leach into the drinking water, there may be adverse effects on the central nervous system connected with low-level chronic exposure. The present study demonstrates that treatment with a biologically relevant concentration of Cu for 3 months significantly increases activation of the redox-modulated transcription factor AP-1 in mouse brains. This was independent of an upstream kinase indicated in AP-1 activation. Another redox-active transcription factor, NF-κB, was not significantly modified by the Cu exposure. These results indicate that the effect of Cu on AP-1 is unique and may involve direct modulation of DNA binding. PMID:23719850

  2. Modulation of AP-1 activity by the human progesterone receptor in endometrial adenocarcinoma cells.

    PubMed Central

    Bamberger, A M; Bamberger, C M; Gellersen, B; Schulte, H M

    1996-01-01

    The composite transcription factor activating protein 1 (AP-1) integrates various mitogenic signals in a large number of cell types, and is therefore a major regulator of cell proliferation. In the normal human endometrium, proliferation and differentiation alternate in a cyclic fashion, with progesterone being largely implicated in the latter process. However, the effects of progesterone and the progesterone receptor (hPR) on AP-1 activity in the human endometrium are not known. To address this issue, HEC-1-B endometrial adenocarcinoma cells, which are devoid of hPR, were transfected with luciferase reporter constructs driven by two different AP-1-dependent promoters. Unexpectedly, cotransfection of hPR caused a marked induction of luciferase activity in the absence of ligand on both promoters. The magnitude of this induction was similar to that observed in response to the phorbol ester TPA. Addition of ligand reversed the stimulating effect of the unliganded hPR on AM activity in these cells. These effects were specific for hPR, and were not observed with either human estrogen receptor or human glucocorticoid receptor. Furthermore, they strictly depended on the presence of AP-1-responsive sequences within target promoters. Finally, the described effects of hPR on AP-1 activity were shown to be cell-type specific, because they could not be demonstrated in SKUT-1-B, JEG-3, and COS-7 cells. To our knowledge this is the first report of an unliganded steroid receptor stimulating AP-1 activity. This effect and its reversal in the presence of ligand suggest a novel mechanism, through which hPR can act as a key regulator of both proliferation and differentiation in the human endometrium. PMID:8650238

  3. Suppression of albumin enhancer activity by H-ras and AP-1 in hepatocyte cell lines.

    PubMed Central

    Hu, J; Isom, H C

    1994-01-01

    We demonstrated, using a transient transfection assay, that the albumin enhancer increased the expression of the albumin promoter in a highly differentiated, simian virus 40 (SV40)-immortalized hepatocyte cell line, CWSV1, but was not functional in two ras-transformed cell lines (NR3 and NR4) derived from CWSV1 by stable transfection with the T24ras oncogene. A transient cotransfection assay showed that T24ras and normal c-Ha-ras were each able to inhibit the activity of the albumin enhancer in an immortal hepatocyte cell line. DNase I footprinting and gel mobility shift assays demonstrated that the DNA binding activities specific to the albumin enhancer were not decreased in the ras-transformed cells. ras also did not diminish the expression of HNF1 alpha, C/EBP alpha, HNF3 alpha, HNF3 beta, or HNF3 gamma but did significantly increase AP-1 binding activity. Three AP-1 binding sites were identified within the albumin enhancer, and DNA binding activities specific to these AP-1 sites were induced in the ras-transformed hepatocytes. Subsequent functional assays showed that overexpression of c-jun and c-fos inhibited the activity of the albumin enhancer. Site-directed mutagenesis of the AP-1 binding sites in the albumin enhancer partially abrogated the suppressing effect of ras and c-jun/c-fos on the enhancer. These functional studies therefore supported the results of the structural studies with AP-1. We conclude that the activity of the albumin enhancer is subject to regulation by ras signaling pathways and that the effect of ras on the albumin enhancer activity may be mediated by AP-1. Images PMID:8114691

  4. Arsenite suppression of involucrin transcription through AP1 promoter sites in cultured human keratinocytes

    SciTech Connect

    Sinitsyna, Nadezda N.; Reznikova, Tatiana V.; Qin Qin; Song, Hyukhwan; Phillips, Marjorie A.; Rice, Robert H.

    2010-03-15

    While preserving keratinocyte proliferative ability, arsenite suppresses cellular differentiation markers by preventing utilization of AP1 transcriptional response elements. In present experiments, arsenite had a dramatic effect in electrophoretic mobility supershift analysis of proteins binding to an involucrin promoter AP1 response element. Without arsenite treatment, binding of JunB and Fra1 was readily detected in nuclear extracts from preconfluent cultures and was not detected a week after confluence, while c-Fos was detected only after confluence. By contrast, band shift of nuclear extracts from arsenite treated cultures showed only JunB and Fra1 binding in postconfluent as well as preconfluent cultures. Immunoblotting of cell extracts showed that arsenite treatment prevented the loss of Fra1 and the increase in c-Fos proteins that occurred after confluence in untreated cultures. Chromatin immunoprecipitation assays demonstrated substantial reduction of c-Fos and acetylated histone H3 at the proximal and distal AP1 response elements in the involucrin promoter and of coactivator p300 at the proximal element. Alteration of AP1 transcription factors was also examined in response to treatment with four metal containing compounds (chromate, vanadate, hemin, divalent cadmium) that also suppress involucrin transcription. These agents all influenced transcription at AP1 elements in a transcriptional reporter assay, but exhibited less effect than arsenite on binding activity assessed by mobility shift and chromatin immunoprecipitation and displayed variable effects on AP1 protein levels. These findings help trace a mechanism by which transcriptional effects of arsenite become manifest and help rationalize the unique action of arsenite, compared to the other agents, to preserve proliferative ability.

  5. Quassinoid Inhibition of AP-1 Function Does Not Correlate with Cytotoxicity or Protein Synthesis Inhibition†

    PubMed Central

    Beutler, John A.; Kang, Moon-Il; Robert, Francis; Clement, Jason A.; Pelletier, Jerry; Colburn, Nancy H.; McKee, Tawnya C.; Goncharova, Ekaterina; McMahon, James B.; Henrich, Curtis J.

    2010-01-01

    Several quassinoids were identified in a high-throughput screening assay as inhibitors of the transcription factor AP-1. Further biological characterization revealed that while their effect was not specific to AP-1, protein synthesis inhibition and cell growth assays were inconsistent with a mechanism of simple protein synthesis inhibition. Numerous plant extracts from the plant family Simaroubaceae were also identified in the same screen; bioassay-guided fractionation of one extract (Ailanthus triphylla) yielded two known quassinoids, ailanthinone (3) and glaucarubinone (4), which were also identified in the pure compound screening procedure. PMID:19199792

  6. DIFFERENTIAL ACTIVATION OF AP-1 IN HUMAN BLADDER EPITHELIAL CELLS BY INORGANIC AND METHYLATED ARSENICALS

    EPA Science Inventory

    Differential Activation of AP-1 in Human Bladder Epithelial Cells by Inorganic and Methylated Arsenicals

    Zuzana Drobna, Ilona Jaspers, David J. Thomas, and Miroslav Styblo

    ABSTRACT

    Epidemiological studies have linked chronic ingestion of drinking water contai...

  7. Transcription Factor AP1 Potentiates Chromatin Accessibility and Glucocorticoid Receptor Binding

    PubMed Central

    Biddie, Simon C.; John, Sam; Sabo, Pete J.; Thurman, Robert E.; Johnson, Thomas A.; Schiltz, R. Louis; Miranda, Tina B.; Sung, Myong-Hee; Trump, Saskia; Lightman, Stafford L.; Vinson, Charles; Stamatoyannopoulos, John A.; Hager, Gordon L.

    2011-01-01

    Summary Ligand-dependent transcription by the nuclear receptor glucocorticoid receptor (GR) is mediated by interactions with co-regulators. The role of these interactions in determining selective binding of GR to regulatory elements remains unclear. Recent findings indicate a large fraction of genomic GR binding coincides with chromatin that is accessible prior to hormone treatment, suggesting that receptor binding is dictated by proteins that maintain chromatin in an open state. Combining DNaseI accessibility and chromatin immunoprecipitation with high-throughput sequencing, we identify the activator protein 1 (AP1) as a major partner for productive GR-chromatin interactions. AP1 is critical for GR-regulated transcription and recruitment to co-occupied regulatory elements, illustrating an extensive AP1-GR interaction network. Importantly, the maintenance of baseline chromatin accessibility facilitates GR recruitment and is dependent on AP1 binding. We propose a model where the basal occupancy of transcription factors act to prime chromatin and direct inducible transcription factors to select regions in the genome. PMID:21726817

  8. YY1 represses human papillomavirus type 16 transcription by quenching AP-1 activity.

    PubMed Central

    O'Connor, M J; Tan, S H; Tan, C H; Bernard, H U

    1996-01-01

    YY1 is a multifunctional transcription factor that has been shown to regulate the expression of a number of cellular and viral genes, including the human papillomavirus (HPV) oncogenes E6 and E7. In this study, we have analyzed the YY1-mediated repression of the HPV type 16 (HPV-16) E6-E7 promoter. A systematic analysis to identify YY1 sites present in the HPV-16 long control region showed that of 30 potential YY1 binding motifs, 24 bound purified recombinant YY1 protein, but only 10 of these were able to bind YY1 when nuclear extracts of HeLa cells were used. Of these, only a cluster of five sites, located in the vicinity of an AP-1 motif, were found to be responsible for repressing the HPV-16 P97 promoter. All five sites were required for repression, the mutation of any one site giving rise to a four- to sixfold increase in transcriptional activity. The target for YY1-mediated repression was identified as being a highly conserved AP-1 site, and we propose that AP-1 may represent a common target for YY1 repression. We also provide data demonstrating that YY1 can bind the transcriptional coactivator CREB-binding protein and propose a potentially novel mechanism by which YY1 represses AP-1 activity as a result of this YY1-CREB-binding protein interaction. PMID:8794287

  9. Clathrin and AP-1 regulate apical polarity and lumen formation during C. elegans tubulogenesis

    PubMed Central

    Zhang, Hongjie; Kim, Ahlee; Abraham, Nessy; Khan, Liakot A.; Hall, David H.; Fleming, John T.; Gobel, Verena

    2012-01-01

    Clathrin coats vesicles in all eukaryotic cells and has a well-defined role in endocytosis, moving molecules away from the plasma membrane. Its function on routes towards the plasma membrane was only recently appreciated and is thought to be limited to basolateral transport. Here, an unbiased RNAi-based tubulogenesis screen identifies a role of clathrin (CHC-1) and its AP-1 adaptor in apical polarity during de novo lumenal membrane biogenesis in the C. elegans intestine. We show that CHC-1/AP-1-mediated polarized transport intersects with a sphingolipid-dependent apical sorting process. Depleting each presumed trafficking component mislocalizes the same set of apical membrane molecules basolaterally, including the polarity regulator PAR-6, and generates ectopic lateral lumens. GFP::CHC-1 and BODIPY-ceramide vesicles associate perinuclearly and assemble asymmetrically at polarized plasma membrane domains in a co-dependent and AP-1-dependent manner. Based on these findings, we propose a trafficking pathway for apical membrane polarity and lumen morphogenesis that implies: (1) a clathrin/AP-1 function on an apically directed transport route; and (2) the convergence of this route with a sphingolipid-dependent apical trafficking path. PMID:22535410

  10. TNF¿ and GM-CSF-induced activation of the CAEV promoter is independent of AP-1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caprine arthritis encephalitis virus transcription is under the control of the viral promoter within the long terminal repeat. Previous studies with the closely related maedi visna lentivirus have indicated that viral transcription is dependent upon the AP-1 transcription factor. Other studies hav...

  11. An AGEF-1/Arf GTPase/AP-1 Ensemble Antagonizes LET-23 EGFR Basolateral Localization and Signaling during C. elegans Vulva Induction

    PubMed Central

    Skorobogata, Olga; Escobar-Restrepo, Juan M.; Rocheleau, Christian E.

    2014-01-01

    LET-23 Epidermal Growth Factor Receptor (EGFR) signaling specifies the vulval cell fates during C. elegans larval development. LET-23 EGFR localization on the basolateral membrane of the vulval precursor cells (VPCs) is required to engage the LIN-3 EGF-like inductive signal. The LIN-2 Cask/LIN-7 Veli/LIN-10 Mint (LIN-2/7/10) complex binds LET-23 EGFR, is required for its basolateral membrane localization, and therefore, vulva induction. Besides the LIN-2/7/10 complex, the trafficking pathways that regulate LET-23 EGFR localization have not been defined. Here we identify vh4, a hypomorphic allele of agef-1, as a strong suppressor of the lin-2 mutant Vulvaless (Vul) phenotype. AGEF-1 is homologous to the mammalian BIG1 and BIG2 Arf GTPase guanine nucleotide exchange factors (GEFs), which regulate secretory traffic between the Trans-Golgi network, endosomes and the plasma membrane via activation of Arf GTPases and recruitment of the AP-1 clathrin adaptor complex. Consistent with a role in trafficking we show that AGEF-1 is required for protein secretion and that AGEF-1 and the AP-1 complex regulate endosome size in coelomocytes. The AP-1 complex has previously been implicated in negative regulation of LET-23 EGFR, however the mechanism was not known. Our genetic data indicate that AGEF-1 is a strong negative regulator of LET-23 EGFR signaling that functions in the VPCs at the level of the receptor. In line with AGEF-1 being an Arf GEF, we identify the ARF-1.2 and ARF-3 GTPases as also negatively regulating signaling. We find that the agef-1(vh4) mutation results in increased LET-23 EGFR on the basolateral membrane in both wild-type and lin-2 mutant animals. Furthermore, unc-101(RNAi), a component of the AP-1 complex, increased LET-23 EGFR on the basolateral membrane in lin-2 and agef-1(vh4); lin-2 mutant animals. Thus, an AGEF-1/Arf GTPase/AP-1 ensemble functions opposite the LIN-2/7/10 complex to antagonize LET-23 EGFR basolateral membrane localization and signaling

  12. AP1S3 mutations are associated with pustular psoriasis and impaired Toll-like receptor 3 trafficking.

    PubMed

    Setta-Kaffetzi, Niovi; Simpson, Michael A; Navarini, Alexander A; Patel, Varsha M; Lu, Hui-Chun; Allen, Michael H; Duckworth, Michael; Bachelez, Hervé; Burden, A David; Choon, Siew-Eng; Griffiths, Christopher E M; Kirby, Brian; Kolios, Antonios; Seyger, Marieke M B; Prins, Christa; Smahi, Asma; Trembath, Richard C; Fraternali, Franca; Smith, Catherine H; Barker, Jonathan N; Capon, Francesca

    2014-05-01

    Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has the unique potential to deliver insights into gene function. Here, we report two founder mutations (c.11T>G [p.Phe4Cys] and c.97C>T [p.Arg33Trp]) in AP1S3, the gene encoding AP-1 complex subunit σ1C, in 15 unrelated individuals with a severe autoinflammatory skin disorder known as pustular psoriasis. Because the variants are predicted to destabilize the 3D structure of the AP-1 complex, we generated AP1S3-knockdown cell lines to investigate the consequences of AP-1 deficiency in skin keratinocytes. We found that AP1S3 silencing disrupted the endosomal translocation of the innate pattern-recognition receptor TLR-3 (Toll-like receptor 3) and resulted in a marked inhibition of downstream signaling. These findings identify pustular psoriasis as an autoinflammatory phenotype caused by defects in vesicular trafficking and demonstrate a requirement of AP-1 for Toll-like receptor homeostasis. PMID:24791904

  13. Radiolabeled anti-tissue factor antibody (AP-1) for imaging thrombotic disease by PET

    SciTech Connect

    Joshi, V.; Meinken, G.; Srivastava, S.

    1995-05-01

    The objective of this study was to develop and test radioimmunoconjugates of AP-1, an anti-tissue factor (TF) MAb, for PET imaging of vessel wall injury or associated thrombotic disease. Recently, anti rabbit MAb AP-1 was shown to prevent thrombosis following vascular injury in a rabbit model. In the represent study of AP-1 was conjugated with the conventional DTPA dianhydride (DTPA-DA) and with 4-isothiocyanato-cyclohexyl-EDTA (4-ICE) (2 to 2.5 ligands per MAb). Labeling with {sup 57}Co was done by adding {sup 57}CoCl{sub 2} in 0.1 N HCl to 500 {mu}g of conjugate in 0.1 M NaHCO{sub 3} containing 0.12 M acetate. The reaction mixture (pH {approximately} 5.5) was allowed to stand at room temperature for 8 h, and then purified by size exclusion HPLC following EDTA chase (10 {mu}l of 0.1 M EDTA, pH 7.0, 10 min). Labeling efficiencies were >90%. When incubated with mouse serum these conjugates showed similar stability ({approximately}3% activity loss for 4-ICE vs 6% for DTPA-DA at 24 h). The inhibition of tissue factor procoagulant activity was determined for the {sup 67}Co labeled conjugates using a two stage clotting assay. In the first stage, clotting times were determined using serial dilutions of reconstituted TF standards to check linearity. In the second stage, clotting times were determined for {sup 67}Co labeled AP-1 conjugates at various dilutions (1 ng to 1 {mu}g/mL) in presence of 150 ng/ml of TF. Results were compared with those obtained using unlabeled conjugates and the native AP-1. Neither conjugation with chelators nor radiolabelling affected the TF activity of AP-1. These conjugates labeled with {sup 66}Co (t l/1 17.5 h, {beta}{sup +} emission) should prove effective for PET imaging of vessel wall injury or thrombotic disease in our previously established rabbit model. Based on our previous data with other MAbs, the 4-ICE conjugate is expected to provide better biodistribution.

  14. Redox Regulation of an AP-1-Like Transcription Factor, YapA, in the Fungal Symbiont Epichloë festucae

    PubMed Central

    Cartwright, Gemma M.

    2013-01-01

    One of the central regulators of oxidative stress in Saccharomyces cerevisiae is Yap1, a bZIP transcription factor of the AP-1 family. In unstressed cells, Yap1 is reduced and cytoplasmic, but in response to oxidative stress, it becomes oxidized and accumulates in the nucleus. To date, there have been no reports on the role of AP-1-like transcription factors in symbiotic fungi. An ortholog of Yap1, named YapA, was identified in the genome of the grass symbiont Epichloë festucae and shown to complement an S. cerevisiae Δyap1 mutant. Hyphae of the E. festucae ΔyapA strain were sensitive to menadione and diamide but resistant to H2O2, KO2, and tert-butyl hydroperoxide (t-BOOH). In contrast, conidia of the ΔyapA strain were very sensitive to H2O2 and failed to germinate. Using a PcatA-eGFP degron-tagged reporter, YapA was shown to be required for expression of a spore-specific catalase gene, catA. Although YapA-EGFP localized to the nucleus in response to host reactive oxygen species during seedling infection, there was no difference in whole-plant and cellular phenotypes of plants infected with the ΔyapA strain compared to the wild-type strain. Homologs of the S. cerevisiae and Schizosaccharomyces pombe redox-sensing proteins (Gpx3 and Tpx1, respectively) did not act as redox sensors for YapA in E. festucae. In response to oxidative stress, YapA-EGFP localized to the nuclei of E. festucae ΔgpxC, ΔtpxA, and ΔgpxC ΔtpxA cells to the same degree as that in wild-type cells. These results show that E. festucae has a robust system for countering oxidative stress in culture and in planta but that Gpx3- or Tpx1-like thiol peroxidases are dispensable for activation of YapA. PMID:23893078

  15. GSH1, which encodes gamma-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation.

    PubMed Central

    Wu, A L; Moye-Rowley, W S

    1994-01-01

    Changes in gene dosage of the YAP1 gene, encoding the yAP-1 transcriptional regulatory protein, cause profound alterations in cellular drug and metal resistance. Previous studies on yAP-1 action in yeast cells have used the AP-1 response element (ARE) from simian virus 40 as an artificial site for yAP-1-mediated transcriptional activation. No authentic yeast target sites for control of gene expression by yAP-1 are known. Here we show that the GSH1 gene, encoding gamma-glutamylcysteine synthetase, is transcriptionally responsive to the yAP-1 protein. GSH1 encodes the rate-limiting step in yeast glutathione biosynthesis and contains within its promoter region a DNA element that matches the ARE in 11 of 12 positions. The GSH1 yAP-1 response element (YRE) was recognized by yAP-1 protein in vitro. Northern (RNA) blot analysis showed that GSH1 mRNA levels were responsive to YAP1 gene dosage. A site-directed mutation in the YRE that blocked yAP-1 binding in vitro prevented the mutant GSH1 promoter from responding to elevation in YAP1 gene dosage. A delta gsh1 mutant strain was constructed and unable to grow in the absence of exogenous glutathione. A mutant GSH1 gene lacking the YRE was unable to confer normal cadmium tolerance, although other yAP-1-mediated phenotypes remained normal. Thus, GSH1 is one of several genes that are transcriptionally controlled by yAP-1 and influence drug resistance. Images PMID:7915005

  16. Regulation of steatohepatitis and PPARγ signaling by distinct AP-1 dimers

    PubMed Central

    Hasenfuss, Sebastian C.; Bakiri, Latifa; Thomsen, Martin K.; Williams, Evan G.; Auwerx, Johan; Wagner, Erwin F.

    2014-01-01

    Summary Non-alcoholic fatty liver disease (NAFLD) affects up to 30% of the adult population in Western societies, yet the underlying molecular pathways remain poorly understood. Here, we identify the dimeric Activator Protein 1 as a regulator of NAFLD. The Fos-related antigen 1 (Fra-1) and 2 (Fra-2) prevent dietary NAFLD by inhibiting pro-steatotic PPARγ signaling. Moreover, established NAFLD and the associated liver damage can be efficiently reversed by hepatocyte-specific Fra-1 expression. In contrast, c-Fos promotes PPARγ expression, while c-Jun exerts opposing, dimer-dependent functions. Interestingly, JunD was found to be essential for PPARγ signaling and NAFLD development. This unique antagonistic regulation of PPARγ by distinct AP-1 dimers occurs at the transcriptional level and establishes AP-1 as a link between obesity, hepatic lipid metabolism and NAFLD. PMID:24411941

  17. Regulation of steatohepatitis and PPARγ signaling by distinct AP-1 dimers.

    PubMed

    Hasenfuss, Sebastian C; Bakiri, Latifa; Thomsen, Martin K; Williams, Evan G; Auwerx, Johan; Wagner, Erwin F

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) affects up to 30% of the adult population in Western societies, yet the underlying molecular pathways remain poorly understood. Here, we identify the dimeric Activator Protein 1 as a regulator of NAFLD. Fos-related antigen 1 (Fra-1) and Fos-related antigen 2 (Fra-2) prevent dietary NAFLD by inhibiting prosteatotic PPARγ signaling. Moreover, established NAFLD and the associated liver damage can be efficiently reversed by hepatocyte-specific Fra-1 expression. In contrast, c-Fos promotes PPARγ expression, while c-Jun exerts opposing, dimer-dependent functions. Interestingly, JunD was found to be essential for PPARγ signaling and NAFLD development. This unique antagonistic regulation of PPARγ by distinct AP-1 dimers occurs at the transcriptional level and establishes AP-1 as a link between obesity, hepatic lipid metabolism, and NAFLD. PMID:24411941

  18. Apocynin increases glutathione synthesis and activates AP-1 in alveolar epithelial cells.

    PubMed

    Lapperre, T S; Jimenez, L A; Antonicelli, F; Drost, E M; Hiemstra, P S; Stolk, J; MacNee, W; Rahman, I

    1999-01-25

    Apocynin (4-hydroxy-3-methoxy-acetophenone) is a potent intracellular inhibitor of superoxide anion production in neutrophils. In this study, we studied the effect of apocynin on the regulation of the antioxidant glutathione (GSH) and activation of the transcription factor AP-I in human alveolar epithelial cells (A549). Apocynin enhanced intracellular GSH by increasing gamma-glutamylcysteine synthetase activity in A549 cells. Apocynin also increased the expression of gamma-GCS heavy subunit mRNA. This was associated with increased AP-1 DNA binding as measured by the electrophoretic mobility shift assay. These data indicate that apocynin displays antioxidant properties, in part, by increasing glutathione synthesis through activation of AP-1. PMID:9989612

  19. AP-1-Targeting Anti-Inflammatory Activity of the Methanolic Extract of Persicaria chinensis

    PubMed Central

    Son, Young-Jin; Baek, Kwang-Soo; Yang, Woo Seok; Park, Jae Gwang; Kim, Han Gyung; Chung, Woo-Jae; Yoon, Keejung; Lee, Sang Yeol; Kim, Jong-Hoon

    2015-01-01

    In traditional Chinese medicine, Persicaria chinensis L. has been prescribed to cure numerous inflammatory disorders. We previously analyzed the bioactivity of the methanol extract of this plant (Pc-ME) against LPS-induced NO and PGE2 in RAW264.7 macrophages and found that it prevented HCl/EtOH-induced gastric ulcers in mice. The purpose of the current study was to explore the molecular mechanism by which Pc-ME inhibits activator protein- (AP-) 1 activation pathway and mediates its hepatoprotective activity. To investigate the putative therapeutic properties of Pc-ME against AP-1-mediated inflammation and hepatotoxicity, lipopolysaccharide- (LPS-) stimulated RAW264.7 and U937 cells, a monocyte-like human cell line, and an LPS/D-galactosamine- (D-GalN-) induced acute hepatitis mouse model were employed. The expression of LPS-induced proinflammatory cytokines including interleukin- (IL-) 1β, IL-6, and tumor necrosis factor-α (TNF-α) was significantly diminished by Pc-ME. Moreover, Pc-ME reduced AP-1 activation and mitogen-activated protein kinase (MAPK) phosphorylation in both LPS-stimulated RAW264.7 cells and differentiated U937 cells. Additionally, we highlighted the hepatoprotective and curative effects of Pc-ME pretreated orally in a mouse model of LPS/D-GalN-intoxicated acute liver injury by demonstrating the significant reduction in elevated serum AST and ALT levels and histological damage. Therefore, these results strongly suggest that Pc-ME could function as an antihepatitis remedy suppressing MAPK/AP-1-mediated inflammatory events. PMID:25878717

  20. Mutations in ap1b1 Cause Mistargeting of the Na+/K+-ATPase Pump in Sensory Hair Cells

    PubMed Central

    Clemens Grisham, Rachel; Kindt, Katie; Finger-Baier, Karin; Schmid, Bettina; Nicolson, Teresa

    2013-01-01

    The hair cells of the inner ear are polarized epithelial cells with a specialized structure at the apical surface, the mechanosensitive hair bundle. Mechanotransduction occurs within the hair bundle, whereas synaptic transmission takes place at the basolateral membrane. The molecular basis of the development and maintenance of the apical and basal compartments in sensory hair cells is poorly understood. Here we describe auditory/vestibular mutants isolated from forward genetic screens in zebrafish with lesions in the adaptor protein 1 beta subunit 1 (ap1b1) gene. Ap1b1 is a subunit of the adaptor complex AP-1, which has been implicated in the targeting of basolateral membrane proteins. In ap1b1 mutants we observed that although the overall development of the inner ear and lateral-line organ appeared normal, the sensory epithelium showed progressive signs of degeneration. Mechanically-evoked calcium transients were reduced in mutant hair cells, indicating that mechanotransduction was also compromised. To gain insight into the cellular and molecular defects in ap1b1 mutants, we examined the localization of basolateral membrane proteins in hair cells. We observed that the Na+/K+-ATPase pump (NKA) was less abundant in the basolateral membrane and was mislocalized to apical bundles in ap1b1 mutant hair cells. Accordingly, intracellular Na+ levels were increased in ap1b1 mutant hair cells. Our results suggest that Ap1b1 is essential for maintaining integrity and ion homeostasis in hair cells. PMID:23593334

  1. Mutations in ap1b1 cause mistargeting of the Na(+)/K(+)-ATPase pump in sensory hair cells.

    PubMed

    Clemens Grisham, Rachel; Kindt, Katie; Finger-Baier, Karin; Schmid, Bettina; Nicolson, Teresa

    2013-01-01

    The hair cells of the inner ear are polarized epithelial cells with a specialized structure at the apical surface, the mechanosensitive hair bundle. Mechanotransduction occurs within the hair bundle, whereas synaptic transmission takes place at the basolateral membrane. The molecular basis of the development and maintenance of the apical and basal compartments in sensory hair cells is poorly understood. Here we describe auditory/vestibular mutants isolated from forward genetic screens in zebrafish with lesions in the adaptor protein 1 beta subunit 1 (ap1b1) gene. Ap1b1 is a subunit of the adaptor complex AP-1, which has been implicated in the targeting of basolateral membrane proteins. In ap1b1 mutants we observed that although the overall development of the inner ear and lateral-line organ appeared normal, the sensory epithelium showed progressive signs of degeneration. Mechanically-evoked calcium transients were reduced in mutant hair cells, indicating that mechanotransduction was also compromised. To gain insight into the cellular and molecular defects in ap1b1 mutants, we examined the localization of basolateral membrane proteins in hair cells. We observed that the Na(+)/K(+)-ATPase pump (NKA) was less abundant in the basolateral membrane and was mislocalized to apical bundles in ap1b1 mutant hair cells. Accordingly, intracellular Na(+) levels were increased in ap1b1 mutant hair cells. Our results suggest that Ap1b1 is essential for maintaining integrity and ion homeostasis in hair cells. PMID:23593334

  2. Novel and recurrent mutations in the AIRE gene of autoimmune polyendocrinopathy syndrome type 1 (APS1) patients.

    PubMed

    Faiyaz-Ul-Haque, M; Bin-Abbas, B; Al-Abdullatif, A; Abdullah Abalkhail, H; Toulimat, M; Al-Gazlan, S; Almutawa, A M; Al-Sagheir, A; Peltekova, I; Al-Dayel, F; Zaidi, S H E

    2009-11-01

    Autoimmune polyendocrinopathy syndrome type 1 (APS1) is characterized by the presence of at least two out of three clinical features, which include Addison's disease, hypoparathyroidism, and chronic mucocutaneous candidiasis. This disorder is caused by mutations in the AIRE (autoimmune regulator) gene. While several AIRE mutations have been described in APS1 patients of various ethnic origins, the genetic cause of APS1 in Arab patients requires further investigation. This study describes seven Arab families, in which 18 patients had APS1. In addition to the cardinal features of APS1, some patients exhibited alopecia, diabetes mellitus, nephrocalcinosis and other phenotypes associated with APS1. DNA sequencing of the AIRE gene of patients from this study identified four novel and one recurrent mutation. These mutations likely result in loss of AIRE function in the patients. In addition, it was noted that the non-pathogenic c.834C> G mutation (rs1800520, encoding for p.Ser278Arg) occurs with high incidence in the AIRE gene of Arab individuals. Furthermore, this investigation demonstrates inflammation of the hair follicles in APS1 patients with alopecia universalis. We conclude that Arab APS1 patients carry novel and recurrent mutations in the AIRE gene. PMID:19758376

  3. ANKRD1 acts as a transcriptional repressor of MMP13 via the AP-1 site.

    PubMed

    Almodóvar-García, Karinna; Kwon, Minjae; Samaras, Susan E; Davidson, Jeffrey M

    2014-04-01

    The transcriptional cofactor ANKRD1 is sharply induced during wound repair, and its overexpression enhances healing. We recently found that global deletion of murine Ankrd1 impairs wound contraction and enhances necrosis of ischemic wounds. A quantitative PCR array of Ankrd1(-/-) (KO) fibroblasts indicated that ANKRD1 regulates MMP genes. Yeast two-hybrid and coimmunoprecipitation analyses associated ANKRD1 with nucleolin, which represses AP-1 activation of MMP13. Ankrd1 deletion enhanced both basal and phorbol 12-myristate 13-acetate (PMA)-induced MMP13 promoter activity; conversely, Ankrd1 overexpression in control cells decreased PMA-induced MMP13 promoter activity. Ankrd1 reconstitution in KO fibroblasts decreased MMP13 mRNA, while Ankrd1 knockdown increased these levels. MMP13 mRNA and protein were elevated in intact skin and wounds of KO versus Ankrd1(fl/fl) (FLOX) mice. Electrophoretic mobility shift assay gel shift patterns suggested that additional transcription factors bind to the MMP13 AP-1 site in the absence of Ankrd1, and this concept was reinforced by chromatin immunoprecipitation analysis as greater binding of c-Jun to the AP-1 site in extracts from FLOX versus KO fibroblasts. We propose that ANKRD1, in association with factors such as nucleolin, represses MMP13 transcription. Ankrd1 deletion additionally relieved MMP10 transcriptional repression. Nuclear ANKRD1 appears to modulate extracellular matrix remodeling by MMPs. PMID:24515436

  4. JUNB/AP-1 controls IFN-γ during inflammatory liver disease

    PubMed Central

    Thomsen, Martin K.; Bakiri, Latifa; Hasenfuss, Sebastian C.; Hamacher, Rainer; Martinez, Lola; Wagner, Erwin F.

    2013-01-01

    Understanding the molecular pathogenesis of inflammatory liver disease is essential to design efficient therapeutic approaches. In hepatocytes, the dimeric transcription factor c-JUN/AP-1 is a major mediator of cell survival during hepatitis, although functions for other JUN proteins in liver disease are less defined. Here, we found that JUNB was specifically expressed in human and murine immune cells during acute liver injury. We analyzed the molecular function of JUNB in experimental models of hepatitis, including administration of concanavalin A (ConA) or α-galactosyl-ceramide, which induce liver inflammation and injury. Mice specifically lacking JUNB in hepatocytes displayed a mild increase in ConA-induced liver damage. However, targeted deletion of Junb in immune cells and hepatocytes protected against hepatitis in experimental models that involved NK/NKT cells. The absence of JUNB in immune cells decreased IFN-γ expression and secretion from NK and NKT cells, leading to reduced STAT1 pathway activation. Systemic IFN-γ treatment or adenovirus-based IRF1 delivery to Junb-deficient mice restored hepatotoxicity, and we demonstrate that Ifng is a direct transcriptional target of JUNB. These findings demonstrate that JUNB/AP-1 promotes cell death during acute hepatitis by regulating IFN-γ production in NK and NKT cells and thus functionally antagonizes the hepatoprotective function of c-JUN/AP-1 in hepatocytes. PMID:24200694

  5. Fra-2/AP-1 controls bone formation by regulating osteoblast differentiation and collagen production.

    PubMed

    Bozec, Aline; Bakiri, Latifa; Jimenez, Maria; Schinke, Thorsten; Amling, Michael; Wagner, Erwin F

    2010-09-20

    The activator protein-1 (AP-1) transcription factor complex, in particular the Fos proteins, is an important regulator of bone homeostasis. Fra-2 (Fosl2), a Fos-related protein of the AP-1 family, is expressed in bone cells, and newborn mice lacking Fra-2 exhibit defects in chondrocytes and osteoclasts. Here we show that Fra-2-deficient osteoblasts display a differentiation defect both in vivo and in vitro. Moreover, Fra-2-overexpressing mice are osteosclerotic because of increased differentiation of osteoblasts, which appears to be cell autonomous. Importantly, the osteoblast-specific osteocalcin (Oc) gene and collagen1α2 (col1α2) are transcriptional targets of Fra-2 in both murine and human bone cells. In addition, Fra-2, Oc, and col1 are expressed in stromal cells of human chondroblastic and osteoblastic osteosarcomas (Os's) as well as during osteoblast differentiation of human Os cell lines. These findings reveal a novel function of Fra-2/AP-1 as a positive regulator of bone and matrix formation in mice and humans. PMID:20837772

  6. AP-1-mediated invasion requires increased expression of the hyaluronan receptor CD44.

    PubMed Central

    Lamb, R F; Hennigan, R F; Turnbull, K; Katsanakis, K D; MacKenzie, E D; Birnie, G D; Ozanne, B W

    1997-01-01

    Fibroblasts transformed by Fos oncogenes display increased expression of a number of genes implicated in tumor cell invasion and metastasis. In contrast to normal 208F rat fibroblasts, Fos-transformed 208F fibroblasts are growth factor independent for invasion. We demonstrate that invasion of v-Fos- or epidermal growth factor (EGF)-transformed cells requires AP-1 activity. v-Fos-transformed cell invasion is inhibited by c-jun antisense oligonucleotides and by expression of a c-jun dominant negative mutant, TAM-67. EGF-induced invasion is inhibited by both c-fos and c-jun antisense oligonucleotides. CD44s, the standard form of a transmembrane receptor for hyaluronan, is implicated in tumor cell invasion and metastasis. We demonstrate that increased expression of CD44 in Fos- and EGF-transformed cells is dependent upon AP-1. CD44 antisense oligonucleotides reduce expression of CD44 in v-Fos- or EGF-transformed cells and inhibit invasion but not migration. Expression of a fusion protein between human CD44s and Aequorea victoria green fluorescent protein (GFP) in 208F cells complements the inhibition of invasion by the rat-specific CD44 antisense oligonucleotide. We further show that both v-Fos and EGF transformations result in a concentration of endogenous CD44 or exogenous CD44-GFP at the ends of pseudopodial cell extensions. These results support the hypothesis that one role of AP-1 in transformation is to activate a multigenic invasion program. PMID:9001250

  7. ANKRD1 Acts as a Transcriptional Repressor of MMP13 via the AP-1 Site

    PubMed Central

    Almodóvar-García, Karinna; Kwon, Minjae; Samaras, Susan E.

    2014-01-01

    The transcriptional cofactor ANKRD1 is sharply induced during wound repair, and its overexpression enhances healing. We recently found that global deletion of murine Ankrd1 impairs wound contraction and enhances necrosis of ischemic wounds. A quantitative PCR array of Ankrd1−/− (KO) fibroblasts indicated that ANKRD1 regulates MMP genes. Yeast two-hybrid and coimmunoprecipitation analyses associated ANKRD1 with nucleolin, which represses AP-1 activation of MMP13. Ankrd1 deletion enhanced both basal and phorbol 12-myristate 13-acetate (PMA)-induced MMP13 promoter activity; conversely, Ankrd1 overexpression in control cells decreased PMA-induced MMP13 promoter activity. Ankrd1 reconstitution in KO fibroblasts decreased MMP13 mRNA, while Ankrd1 knockdown increased these levels. MMP13 mRNA and protein were elevated in intact skin and wounds of KO versus Ankrd1fl/fl (FLOX) mice. Electrophoretic mobility shift assay gel shift patterns suggested that additional transcription factors bind to the MMP13 AP-1 site in the absence of Ankrd1, and this concept was reinforced by chromatin immunoprecipitation analysis as greater binding of c-Jun to the AP-1 site in extracts from FLOX versus KO fibroblasts. We propose that ANKRD1, in association with factors such as nucleolin, represses MMP13 transcription. Ankrd1 deletion additionally relieved MMP10 transcriptional repression. Nuclear ANKRD1 appears to modulate extracellular matrix remodeling by MMPs. PMID:24515436

  8. Temporal coherency between receptor expression, neural activity and AP-1-dependent transcription regulates Drosophila motoneuron dendrite development

    PubMed Central

    Vonhoff, Fernando; Kuehn, Claudia; Blumenstock, Sonja; Sanyal, Subhabrata; Duch, Carsten

    2013-01-01

    Neural activity has profound effects on the development of dendritic structure. Mechanisms that link neural activity to nuclear gene expression include activity-regulated factors, such as CREB, Crest or Mef2, as well as activity-regulated immediate-early genes, such as fos and jun. This study investigates the role of the transcriptional regulator AP-1, a Fos-Jun heterodimer, in activity-dependent dendritic structure development. We combine genetic manipulation, imaging and quantitative dendritic architecture analysis in a Drosophila single neuron model, the individually identified motoneuron MN5. First, Dα7 nicotinic acetylcholine receptors (nAChRs) and AP-1 are required for normal MN5 dendritic growth. Second, AP-1 functions downstream of activity during MN5 dendritic growth. Third, using a newly engineered AP-1 reporter we demonstrate that AP-1 transcriptional activity is downstream of Dα7 nAChRs and Calcium/calmodulin-dependent protein kinase II (CaMKII) signaling. Fourth, AP-1 can have opposite effects on dendritic development, depending on the timing of activation. Enhancing excitability or AP-1 activity after MN5 cholinergic synapses and primary dendrites have formed causes dendritic branching, whereas premature AP-1 expression or induced activity prior to excitatory synapse formation disrupts dendritic growth. Finally, AP-1 transcriptional activity and dendritic growth are affected by MN5 firing only during development but not in the adult. Our results highlight the importance of timing in the growth and plasticity of neuronal dendrites by defining a developmental period of activity-dependent AP-1 induction that is temporally locked to cholinergic synapse formation and dendritic refinement, thus significantly refining prior models derived from chronic expression studies. PMID:23293292

  9. MEKK1 regulates the AP-1 dimer repertoire via control of JunB transcription and Fra-2 protein stability.

    PubMed

    Cuevas, Bruce D; Uhlik, Mark T; Garrington, Timothy P; Johnson, Gary L

    2005-01-27

    Activator protein 1 (AP-1) transcription factor dimers are composed of Jun, Fos, and ATF member proteins, but the mechanisms that determine AP-1 composition are not clearly defined and the function of specific dimers is not well understood. MEKK1 is a mitogen-activated protein kinase (MAPK) kinase kinase and an ubiquitin ligase that regulates both the extracellular signal-regulated kinase 1/2 and the c-Jun amino-terminal kinase. Herein, we demonstrate that MEKK1 regulates the AP-1 protein repertoire. Both FGF-2 and phorbol ester-inducible urokinase-type plasminogen activator (uPA) expression requires AP-1 binding to an enhancer element in the uPA promoter, and we have previously shown that FGF-2 or PMA induction of uPA expression is strongly dependent on MEKK1. JunB mRNA is significantly increased in MEKK1-/- cells, demonstrating that MEKK1 suppresses JunB mRNA expression. Upregulation of JunB expression in MEKK1-/- cells forms an inhibitory AP-1 complex that binds to the uPA promoter and inhibits uPA transcription. MEKK1 also regulates Fra-2 protein stability by inducing Fra-2 ubiquitination and degradation. MEKK1 regulates AP-1-dependent gene expression by regulating the expression, activity and degradation of component members of the AP-1 complex. Controlling the repertoire of a transcription factor complex is a newly defined function for an MAPK kinase kinase. PMID:15558021

  10. The kinesin KIF16B mediates apical transcytosis of transferrin receptor in AP-1B-deficient epithelia

    PubMed Central

    Perez Bay, Andres E; Schreiner, Ryan; Mazzoni, Francesca; Carvajal-Gonzalez, Jose M; Gravotta, Diego; Perret, Emilie; Lehmann Mantaras, Gullermo; Zhu, Yuan-Shan; Rodriguez-Boulan, Enrique J

    2013-01-01

    Polarized epithelial cells take up nutrients from the blood through receptors that are endocytosed and recycle back to the basolateral plasma membrane (PM) utilizing the epithelial-specific clathrin adaptor AP-1B. Some native epithelia lack AP-1B and therefore recycle cognate basolateral receptors to the apical PM, where they carry out important functions for the host organ. Here, we report a novel transcytotic pathway employed by AP-1B-deficient epithelia to relocate AP-1B cargo, such as transferrin receptor (TfR), to the apical PM. Lack of AP-1B inhibited basolateral recycling of TfR from common recycling endosomes (CRE), the site of function of AP-1B, and promoted its transfer to apical recycling endosomes (ARE) mediated by the plus-end kinesin KIF16B and non-centrosomal microtubules, and its delivery to the apical membrane mediated by the small GTPase rab11a. Hence, our experiments suggest that the apical recycling pathway of epithelial cells is functionally equivalent to the rab11a-dependent TfR recycling pathway of non-polarized cells. They define a transcytotic pathway important for the physiology of native AP-1B-deficient epithelia and report the first microtubule motor involved in transcytosis. PMID:23749212

  11. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    PubMed Central

    2010-01-01

    Background Cinnamomum cassia bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde), tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8+ T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model. Methods Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography) analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer in vitro and in vivo mouse melanoma model. Results Cinnamon extract strongly inhibited tumor cell proliferation in vitro and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as Bcl-2, BcL-xL and survivin. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed in vitro. Conclusion Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes in vitro and in vivo mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative medicine for the treatment of

  12. AP-1-directed human T cell leukemia virus type 1 viral gene expression during monocytic differentiation.

    PubMed

    Grant, Christian; Jain, Pooja; Nonnemacher, Michael; Flaig, Katherine E; Irish, Bryan; Ahuja, Jaya; Alexaki, Aikaterini; Alefantis, Timothy; Wigdahl, Brian

    2006-09-01

    Human T cell leukemia virus type 1 (HTLV-1) has previously been shown to infect antigen-presenting cells and their precursors in vivo. However, the role these important cell populations play in the pathogenesis of HTLV-1-associated myelopathy/tropical spastic paraparesis or adult T cell leukemia remains unresolved. To better understand how HTLV-1 infection of these important cell populations may potentially impact disease progression, the regulation of HTLV-1 viral gene expression in established monocytic cell lines was examined. U-937 promonocytic cells transiently transfected with a HTLV-1 long-terminal repeat (LTR) luciferase construct were treated with phorbol 12-myristate 13-acetate (PMA) to induce cellular differentiation. PMA-induced cellular differentiation resulted in activation of basal and Tax-mediated transactivation of the HTLV-1 LTR. In addition, electrophoretic mobility shift analyses demonstrated that PMA-induced cellular differentiation induced DNA-binding activity of cellular transcription factors to Tax-responsive element 1 (TRE-1) repeat II. Supershift analyses revealed that factors belonging to the activator protein 1 (AP-1) family of basic region/leucine zipper proteins (Fra-1, Fra-2, JunB, and JunD) were induced to bind to TRE-1 repeat II during cellular differentiation. Inhibition of AP-1 DNA-binding activity by overexpression of a dominant-negative c-Fos mutant (A-Fos) in transient expression analyses resulted in severely decreased levels of HTLV-1 LTR activation in PMA-induced U-937 cells. These results have suggested that following infection of peripheral blood monocytes, HTLV-1 viral gene expression may become up-regulated by AP-1 during differentiation into macrophages or dendritic cells. PMID:16829632

  13. Signalling in inflammatory skin disease by AP-1 (Fos/Jun).

    PubMed

    Uluçkan, Özge; Guinea-Viniegra, Juan; Jimenez, Maria; Wagner, Erwin F

    2015-01-01

    Skin inflammation is a physiological reaction to tissue injury, pathogen invasion and irritants. During this process, innate and/or adaptive immune cells are activated and recruited to the site of inflammation to either promote or suppress inflammation. The sequential recruitment and activation of immune cells is modulated by a combination of cytokines and chemokines, which are regulated by transcription factors, such as AP-1 (Fos/Jun), NF-κB, NFATs, and STATs. Here we review the present evidence and the underlying mechanisms of how Jun/AP-1 proteins control skin inflammation. Genetically engineered mouse models (GEMMs) in which AP-1 proteins are deleted in the epidermis have revealed that these proteins control cytokine expression at multiple levels. Constitutive epidermal deletion of JunB in mice leads to a multi-organ disease characterised by increased levels of pro-inflammatory cytokines. These JunB-deficient mutant mice display several phenotypes from skin inflammation to a G-CSF-dependent myeloproliferative disease, as well as kidney atrophy and bone loss, reminiscent of psoriasis and systemic lupus erythematosus. Importantly, epidermal deletion of both JunB and c-Jun in an inducible manner in adult mice leads to a psoriasis-like disease, in which the epidermal proteome expression profile is comparable to the one from psoriasis patient samples. In this GEMM and in psoriasis patient-derived material, S100A8/A9-dependent C3/CFB complement activation, as well as a miR-21-dependent TIMP-3/TACE pathway leading to TNF-α shedding, plays causal roles in disease development. The newly identified therapeutic targets from GEMMs together with investigations in human patient samples open up new avenues for therapeutic interventions for psoriasis and related inflammatory skin diseases. PMID:26458100

  14. Overexpression of members of the AP-1 transcriptional factor family from an early stage of renal carcinogenesis and inhibition of cell growth by AP-1 gene antisense oligonucleotides in the Tsc2 gene mutant (Eker) rat model.

    PubMed

    Urakami, S; Tsuchiya, H; Orimoto, K; Kobayashi, T; Igawa, M; Hino, O

    1997-12-01

    We previously isolated subtracted cDNA clones for genes having increased expression in Tsc2 gene mutant (Eker) rat renal carcinomas (RCs). Among them, fra-1 encoding a transcriptional factor activator protein 1 (AP-1) was identified. We have therefore investigated whether other members of the AP-1 transcription factor family might also be involved in renal carcinogenesis in the Eker rat model. In the present study, overexpression of fra-1, fra-2, c-jun, junB, and junD mRNAs was demonstrated in RCs by Northern blot analysis. Interestingly, AP-1 proteins were highly expressed even in the earliest preneoplastic lesions (e.g., phenotypically altered tubules) as suggested by immunohistochemistry. Moreover, 12-O-tetradecanoylphorbol-13-acetate-responsive element (TRE)-binding activity of AP-1 proteins was observed in RC cell extracts by electrophoretic mobility shift assay. As a next step, we transfected antisense oligonucleotides targeting AP-1 genes into RC cells and demonstrated that their growth was strongly inhibited. Thus, the data suggest that overexpression of AP-1 genes might play a crucial role in renal carcinogenesis in the Eker rat model. PMID:9405228

  15. Overexpression of Two PsnAP1 Genes from Populus simonii × P. nigra Causes Early Flowering in Transgenic Tobacco and Arabidopsis

    PubMed Central

    Zheng, Tangchun; Li, Shuang; Zang, Lina; Dai, Lijuan; Yang, Chuanping; Qu, Guan-Zheng

    2014-01-01

    In Arabidopsis, AP1 is a floral meristem identity gene and plays an important role in floral organ development. In this study, PsnAP1-1 and PsnAP1-2 were isolated from the male reproductive buds of poplar (Populus simonii × P. nigra), which are the orthologs of AP1 in Arabidopsis, by sequence analysis. Northern blot and qRT-PCR analysis showed that PsnAP1-1 and PsnAP1-2 exhibited high expression level in early inflorescence development of poplar. Subcellular localization showed the PsnAP1-1 and PsnAP1-2 proteins are localized in the nucleus. Overexpression of PsnAP1-1 and PsnAP1-2 in tobacco under the control of a CaMV 35S promoter significantly enhanced early flowering. These transgenic plants also showed much earlier stem initiation and higher rates of photosynthesis than did wild-type tobacco. qRT-PCR analysis further indicated that overexpression of PsnAP1-1 and PsnAP1-2 resulted in up-regulation of genes related to flowering, such as NtMADS4, NtMADS5 and NtMADS11. Overexpression of PsnAP1-1 and PsnAP1-2 in Arabidopsis also induced early flowering, but did not complement the ap1-10 floral morphology to any noticeable extent. This study indicates that PsnAP1-1 and PsnAP1-2 play a role in floral transition of poplar. PMID:25360739

  16. Hepatopoietin interacts directly with COP9 signalosome and regulates AP-1 activity.

    PubMed

    Wang, Yan; Lu, Chengrong; Wei, Handong; Wang, Na; Chen, Xiaoxiao; Zhang, Lingqiang; Zhai, Yun; Zhu, Yunping; Lu, Yinglin; He, Fuchu

    2004-08-13

    Hepatopoietin (HPO)/augmenter of liver regeneration (ALR) is a specific hepatotrophic growth factor, which plays a key role in liver regeneration. Our previous study indicated that HPO executes its function by an inter-reactive network of the autocrine, paracrine and endocrine pathways. Recently, we have demonstrated that intracellular HPO interacts with Jun activation domain-binding protein 1 (JAB1) and leads to potentiation of activating protein-1 (AP-1) activity in a MAPK independent fashion. JAB1 is the fifth subunit of the COP9 signalosome (CSN), which is first identified as a suppressor of plant morphogenesis. A protein complex kinase activity associated with the CSN has been reported but not identified yet. In this report, we investigated further the association of HPO with the whole CSN. HPO exists in a complex with the eight-component CSN, both when purified from glycerol gradient centrifugation and when reciprocal immunoprecipitated from the lysates of transfected COS-7 cells. Intracellular HPO colocalizes with endogenous CSN in nucleus of hepatic cells. In addition, intracellular function of HPO that increases the phosphorylation of c-Jun leading to potentiate the AP-1 activity is inhibited by curcumin, a potent inhibitor of CSN-associated kinase. Taken together, these results elucidate a novel relationship of intracellular growth factor, HPO with large protein complex, CSN, which suggests a possible linkage between CSN and liver regeneration. PMID:15304329

  17. The clathrin adaptor AP-1 complex and Arf1 regulate planar cell polarity in vivo

    PubMed Central

    Mendoza, Meg; Dussert, Aurore; Collu, Giovanna; Roman, Angel-Carlos; Weber, Ursula; Ciruna, Brian; Mlodzik, Marek

    2015-01-01

    A key step in generating planar cell polarity (PCP) is the formation of restricted junctional domains containing Frizzled/Dishevelled/Diego (Fz/Dsh/Dgo) or Van Gogh/Prickle (Vang/Pk) complexes within the same cell, stabilized via Flamingo (Fmi) across cell membranes. Although models have been proposed for how these complexes acquire and maintain their polarized localization, the machinery involved in moving core PCP proteins around cells remains unknown. We describe the AP-1 adaptor complex and Arf1 as major regulators of PCP protein trafficking in vivo. AP-1 and Arf1 disruption affects the accumulation of Fz/Fmi and Vang/Fmi complexes in the proximo–distal axis, producing severe PCP phenotypes. Using novel tools, we demonstrate a direct and specific Arf1 involvement in Fz trafficking in vivo. Moreover, we uncover a conserved Arf1 PCP function in vertebrates. Our data support a model whereby the trafficking machinery plays an important part during PCP establishment, promoting formation of polarized PCP-core complexes in vivo. PMID:25849195

  18. Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit antiinflammatory activity in vivo.

    PubMed

    Vayssière, B M; Dupont, S; Choquart, A; Petit, F; Garcia, T; Marchandeau, C; Gronemeyer, H; Resche-Rigon, M

    1997-08-01

    Some of the most potent antiinflammatory and immunosuppressive agents are synthetic glucocorticoids. However, major side effects severely limit their therapeutic use. The development of improved glucocorticoid-based drugs will require the separation of beneficial from deleterious effects. One possibility toward this goal is to try to dissociate two main activities of glucocorticoids, i.e. transactivation and transrepression. Screening of a library of compounds using transactivation and AP-1 transrepression models in transiently transfected cells identified dissociated glucocorticoids, which exert strong AP-1 inhibition but little or no transactivation. Importantly, despite high ligand binding affinity, the prototypic dissociated compound, RU24858, acted as a weak agonist and did not efficiently antagonize dexamethasone-induced transcription in transfected cells. Similar results were obtained in hepatic HTC cells for the transactivation of the endogenous tyrosine amino transferase gene (TAT), which encodes one of the enzymes involved in the glucocorticoid-dependent stimulation of neoglucogenesis. To investigate whether dissociated glucocorticoids retained the antiinflammatory and immunosuppressive potential of classic glucocorticoids, several in vitro and in vivo models were used. Indeed, secretion of the proinflammatory lymphokine interleukin-1beta was severely inhibited by dissociated glucocorticoids in human monocytic THP 1 cells. Moreover, in two in vivo models, these compounds exerted an antiinflammatory and immunosuppressive activity as potent as that of the classic glucocorticoid prednisolone. These results may lead to an improvement of antiinflammatory and immunosuppressive therapies and provide a novel concept for drug discovery. PMID:9259316

  19. Transcriptional regulation of endothelial nitric oxide synthase expression in uterine artery endothelial cells by c-Jun/AP-1

    PubMed Central

    Qian, Xiao-Xian; Mata-Greenwood, Eugenia; Liao, Wu Xiang; Zhang, Honghai; Zheng, Jing; Chen, Dong-bao

    2007-01-01

    Despite extensive studies have shown that increased endothelial nitric oxide synthase (NOS3) expression in the uterine artery endothelial cells (UAEC) plays a key role in uterine vasodilatation, the molecular mechanism controlling NOS3 expression in UAEC is unknown. According to the sheep NOS3 promoter sequence isolated in our laboratory, we hypothesize that the activator protein-1 (AP-1) site in the proximal sheep NOS3 promoter (TGAGTCA, -682 to -676) is important for NOS3 expression. We developed a c-Jun adenoviral expression system to overexpress c-Jun protein into UAEC to investigate the effects of c-Jun/AP-1 on NOS3 expression. Basal levels of c-Jun protein and mRNA were detected in UAEC. C-Jun protein was overexpressed in a concentration and time-dependent fashion in UAEC infected with sense c-Jun (S-c-Jun), but not sham and antisense c-Jun (A-c-Jun) adenoviruses. Infection with S-c-Jun adenovirus (25 MOI, multiplicity of infection) resulted in efficient c-Jun protein overexpression in UAEC up to 3 days. In S-c-Jun, but not sham and A-c-Jun adenovirus infected UAEC, NOS3 mRNA and protein levels were increased (P<0.05) compared to noninfected controls. Increased NOS3 expression was associated with increased total NOS activity. Transient transfections showed that c-Jun overexpression augmented the transactivation of the sheep NOS3 promoter-driven luciferase/reporter constructs with the AP-1 site but not of deletion constructs without the AP-1 site. When the AP-1 site was mutated, c-Jun failed to trans-activate the sheep NOS3 promoter. AP-1 DNA binding activity also increased in c-Jun overexpressed UAEC. Lastly, the pharmacological AP-1 activator phorbol myristate acetate increased AP-1 binding, trans-activated the wild-type but not the AP-1 mutant NOS3 promoter and dose-dependently stimulated UAEC NOS3 and c-Jun protein expression. Hence, our data show that c-Jun/AP-1 regulates NOS3 transcription involving the proximal AP-1 site in the 5′-regulatory region of

  20. Transcription factor AP-1 in esophageal squamous cell carcinoma: Alterations in activity and expression during Human Papillomavirus infection

    PubMed Central

    2009-01-01

    Background Esophageal squamous cell carcinoma (ESCC) is a leading cause of cancer-related deaths in Jammu and Kashmir (J&K) region of India. A substantial proportion of esophageal carcinoma is associated with infection of high-risk HPV type 16 and HPV18, the oncogenic expression of which is controlled by host cell transcription factor Activator Protein-1 (AP-1). We, therefore, have investigated the role of DNA binding and expression pattern of AP-1 in esophageal cancer with or without HPV infection. Methods Seventy five histopathologically-confirmed esophageal cancer and an equal number of corresponding adjacent normal tissue biopsies from Kashmir were analyzed for HPV infection, DNA binding activity and expression of AP-1 family of proteins by PCR, gel shift assay and immunoblotting respectively. Results A high DNA binding activity and elevated expression of AP-1 proteins were observed in esophageal cancer, which differed between HPV positive (19%) and HPV negative (81%) carcinomas. While JunB, c-Fos and Fra-1 were the major contributors to AP-1 binding activity in HPV negative cases, Fra-1 was completely absent in HPV16 positive cancers. Comparison of AP-1 family proteins demonstrated high expression of JunD and c-Fos in HPV positive tumors, but interestingly, Fra-1 expression was extremely low or nil in these tumor tissues. Conclusion Differential AP-1 binding activity and expression of its specific proteins between HPV - positive and HPV - negative cases indicate that AP-1 may play an important role during HPV-induced esophageal carcinogenesis. PMID:19758438

  1. Butyrate produced by commensal bacteria potentiates phorbol esters induced AP-1 response in human intestinal epithelial cells.

    PubMed

    Nepelska, Malgorzata; Cultrone, Antonietta; Béguet-Crespel, Fabienne; Le Roux, Karine; Doré, Joël; Arulampalam, Vermulugesan; Blottière, Hervé M

    2012-01-01

    The human intestine is a balanced ecosystem well suited for bacterial survival, colonization and growth, which has evolved to be beneficial both for the host and the commensal bacteria. Here, we investigated the effect of bacterial metabolites produced by commensal bacteria on AP-1 signaling pathway, which has a plethora of effects on host physiology. Using intestinal epithelial cell lines, HT-29 and Caco-2, stably transfected with AP-1-dependent luciferase reporter gene, we tested the effect of culture supernatant from 49 commensal strains. We observed that several bacteria were able to activate the AP-1 pathway and this was correlated to the amount of short chain fatty acids (SCFAs) produced. Besides being a major source of energy for epithelial cells, SCFAs have been shown to regulate several signaling pathways in these cells. We show that propionate and butyrate are potent activators of the AP-1 pathway, butyrate being the more efficient of the two. We also observed a strong synergistic activation of AP-1 pathway when using butyrate with PMA, a PKC activator. Moreover, butyrate enhanced the PMA-induced expression of c-fos and ERK1/2 phosphorylation, but not p38 and JNK. In conclusion, we showed that SCFAs especially butyrate regulate the AP-1 signaling pathway, a feature that may contribute to the physiological impact of the gut microbiota on the host. Our results provide support for the involvement of butyrate in modulating the action of PKC in colon cancer cells. PMID:23300800

  2. Terminal deoxynucleotidyl transferase is down-regulated by AP-1-like regulatory elements in human lymphoid cells

    PubMed Central

    Peralta-Zaragoza, Oscar; Recillas-Targa, Félix; Madrid-Marina, Vicente

    2004-01-01

    Terminal deoxynucleotidyl transferase (TdT) is a template-independent DNA polymerase that catalyses the incorporation of deoxyribonucleotides into the 3′-hydroxyl end of DNA templates and is thought to increase junctional diversity of antigen receptor genes. TdT is expressed only on immature lymphocytes and acute lymphoblastic leukaemia cells and its transcriptional expression is tightly regulated. We had previously found that protein kinase C (PKC) activation down-regulates TdT expression. PKC-activation induces the synthesis of the Fos and Jun proteins, known as the major components of activation protein 1 (AP-1) transcriptional factor implicated in transcriptional control. Here we report the identification of several DNA–protein interactions within the TdT promoter region in non-TdT expressing human cells. Sequence analysis revealed the presence of a putative AP-1-like DNA-binding site, suggesting that AP-1 may play a relevant role in TdT transcriptional regulation. Using a different source of nuclear extracts and the AP-1–TdT motif as a probe we identified several DNA-protein retarded complexes in electrophoretic mobility shift assays. Super-band shifting analysis using an antibody against c-Jun protein confirmed that the main interaction is produced by a nuclear factor that belongs to the AP-1 family transcription factors. Our findings suggest that the TdT gene expression is down-regulated, at least in part, through AP-1-like transcription factors. PMID:15027905

  3. Terminal deoxynucleotidyl transferase is down-regulated by AP-1-like regulatory elements in human lymphoid cells.

    PubMed

    Peralta-Zaragoza, Oscar; Recillas-Targa, Félix; Madrid-Marina, Vicente

    2004-02-01

    Terminal deoxynucleotidyl transferase (TdT) is a template-independent DNA polymerase that catalyses the incorporation of deoxyribonucleotides into the 3'-hydroxyl end of DNA templates and is thought to increase junctional diversity of antigen receptor genes. TdT is expressed only on immature lymphocytes and acute lymphoblastic leukaemia cells and its transcriptional expression is tightly regulated. We had previously found that protein kinase C (PKC) activation down-regulates TdT expression. PKC-activation induces the synthesis of the Fos and Jun proteins, known as the major components of activation protein 1 (AP-1) transcriptional factor implicated in transcriptional control. Here we report the identification of several DNA-protein interactions within the TdT promoter region in non-TdT expressing human cells. Sequence analysis revealed the presence of a putative AP-1-like DNA-binding site, suggesting that AP-1 may play a relevant role in TdT transcriptional regulation. Using a different source of nuclear extracts and the AP-1-TdT motif as a probe we identified several DNA-protein retarded complexes in electrophoretic mobility shift assays. Super-band shifting analysis using an antibody against c-Jun protein confirmed that the main interaction is produced by a nuclear factor that belongs to the AP-1 family transcription factors. Our findings suggest that the TdT gene expression is down-regulated, at least in part, through AP-1-like transcription factors. PMID:15027905

  4. v-SNARE cellubrevin is required for basolateral sorting of AP-1B–dependent cargo in polarized epithelial cells

    PubMed Central

    Fields, Ian C.; Shteyn, Elina; Pypaert, Marc; Proux-Gillardeaux, Véronique; Kang, Richard S.; Galli, Thierry; Fölsch, Heike

    2007-01-01

    The epithelial cell–specific adaptor complex AP-1B is crucial for correct delivery of many transmembrane proteins from recycling endosomes to the basolateral plasma membrane. Subsequently, membrane fusion is dependent on the formation of complexes between SNARE proteins located at the target membrane and on transport vesicles. Although the t-SNARE syntaxin 4 has been localized to the basolateral membrane, the v-SNARE operative in the AP-1B pathway remained unknown. We show that the ubiquitously expressed v-SNARE cellubrevin localizes to the basolateral membrane and to recycling endosomes, where it colocalizes with AP-1B. Furthermore, we demonstrate that cellubrevin coimmunoprecipitates preferentially with syntaxin 4, implicating this v-SNARE in basolateral fusion events. Cleavage of cellubrevin with tetanus neurotoxin (TeNT) results in scattering of AP-1B localization and missorting of AP-1B–dependent cargos, such as transferrin receptor and a truncated low-density lipoprotein receptor, LDLR-CT27. These data suggest that cellubrevin and AP-1B cooperate in basolateral membrane trafficking. PMID:17485489

  5. Opposing Effects of Zac1 and Curcumin on AP-1-Regulated Expressions of S100A7

    PubMed Central

    Chu, Yu-Wen; Liu, Shu-Ting; Cheng, Hsiao-Chun; Huang, Shih-Ming; Chang, Yung-Lung; Chiang, Chien-Ping; Liu, Ying-Chun; Wang, Wei-Ming

    2015-01-01

    ZAC, an encoding gene mapped at chromosome 6q24-q25 within PSORS1, was previously found over-expressed in the lower compartment of the hyperplastic epidermis in psoriatic lesions. Cytokines produced in the inflammatory dermatoses may drive AP-1 transcription factor to induce responsive gene expressions. We demonstrated that mZac1 can enhance AP-1-responsive S100A7 expression of which the encoding gene was located in PSORS4 with HaCaT keratinocytes. However, the mZac1-enhanced AP-1 transcriptional activity was suppressed by curcumin, indicating the anti-inflammatory property of this botanical agent and is exhibited by blocking the AP-1-mediated cross-talk between PSORS1 and PSORS4. Two putative AP-1-binding sites were found and demonstrated to be functionally important in the regulation of S100A7 promoter activity. Moreover, we found curcumin reduced the DNA-binding activity of AP-1 to the recognition element located in the S100A7 promoter. The S100A7 expression was found to be upregulated in the lesioned epidermis of atopic dermatitis and psoriasis, which is where this keratinocyte-derived chemoattractant engaged in the pro-inflammatory feedback loop. Understanding the regulatory mechanism of S100A7 expression will be helpful to develop therapeutic strategies for chronic inflammatory dermatoses via blocking the reciprocal stimuli between the inflammatory cells and keratinocytes. PMID:26633653

  6. Anti-cancer effect of snake venom toxin through down regulation of AP-1 mediated PRDX6 expression

    PubMed Central

    Son, Dong Ju; Song, Ho Sub; Kim, Jung Hyun; Ko, Seong Cheol; Song, Min Jong; Lee, Won Hyoung; Yoon, Joo Hee; Ham, Young Wan; Han, Sang Bae; Hong, Jin Tae

    2015-01-01

    Snake venom toxin (SVT) from Vipera lebetina turanica contains a mixture of different enzymes and proteins. Peroxiredoxin 6 (PRDX6) is known to be a stimulator of lung cancer cell growth. PRDX6 is a member of peroxidases, and has calcium-independent phospholipase A2 (iPLA2) activities. PRDX6 has an AP-1 binding site in its promoter region of the gene. Since AP-1 is implicated in tumor growth and PRDX6 expression, in the present study, we investigated whether SVT inhibits PRDX6, thereby preventing human lung cancer cell growth (A549 and NCI-H460) through inactivation of AP-1. A docking model study and pull down assay showed that SVT completely fits on the basic leucine zipper (bZIP) region of c-Fos of AP-1. SVT (0–10 μg/ml) inhibited lung cancer cell growth in a concentration dependent manner through induction of apoptotic cell death accompanied by induction of cleaved caspase-3, -8, -9, Bax, p21 and p53, but decreased cIAP and Bcl2 expression via inactivation of AP-1. In an xenograft in vivo model, SVT (0.5 mg/kg and 1 mg/kg) also inhibited tumor growth accompanied with the reduction of PRDX6 expression, but increased expression of proapoptotic proteins. These data indicate that SVT inhibits tumor growth via inhibition of PRDX6 activity through interaction with its transcription factor AP-1. PMID:26061816

  7. RAD51AP2, a novel vertebrate- and meiotic-specific protein, shares a conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51

    PubMed Central

    Kovalenko, Oleg V.; Wiese, Claudia; Schild, David

    2006-01-01

    Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate-specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1. PMID:16990250

  8. Two tobacco AP1-like gene promoters with highly specific, tightly regulated and uniquely expressed activity during floral transition, initiation and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biotech engineering of agronomic traits requires an array of highly specific and tightly regulated promoters in flower or other tissues. In this study, we isolated and characterized two tobacco AP1-like promoters (termed NtAP1La and NtAP1Lb1) in transgenic plants using GUS reporter and tissue-speci...

  9. Retinoic acid-induced AP-1 transcriptional activity regulates B16 mouse melanoma growth inhibition and differentiation.

    PubMed

    Huang, Ying; Boskovic, Goran; Niles, Richard M

    2003-02-01

    Retinoic acid (RA) inhibits growth and induces differentiation of B16 mouse melanoma cells. These effects are accompanied by a large increase in PKCalpha mRNA and protein levels and surprisingly an increase in activating protein-1 (AP-1) transcriptional activity. To further investigate the RA-induced AP-1 activity we established clones of B16 cells stably expressing an AP-1-luciferase reporter gene. Treatment of these clones with phorbol dibutyrate increased AP-1 activity which peaked at 2-4 h and returned to baseline level by 24 h. In contrast, RA treatment resulted in a slow increase in AP-1 activity that reached a maximum level at 48 h and was maintained for the duration of the treatment. We tested the importance of the RA-induced AP-1 activity by establishing clones which stably express a dominant negative fos gene (A-fos) and have greatly diminished AP-1 activity. Growth rates of untreated A-fos expressing cells were similar to wt B16 and clones not expressing A-fos. However, clones expressing the dominant-negative fos had a markedly decreased sensitivity to RA-induced inhibition of anchorage-dependent and -independent growth. Treatment of wt B16 cells for 48 h with RA increased melanin production by two to fourfold, but this effect was completely lost in the A-fos clones. The ability of RA to induce RARbeta and PKCalpha expression was retained in A-fos clones, suggesting that A-fos was not interfering with RAR transcription activation functions. We tested whether the RA-induced AP-1 activity might be mediated by the ERK1/2 MAPK pathway. Inhibition of ERK1/2 phosphorylation stimulated AP-1 activity, which was not additive to that induced by RA. This finding raises the possibility that this MAPK pathway may be a target of retinoid action. Our observations suggest that AP-1 transcriptional activity induced by RA likely plays an important role in the biological changes mediated by this retinoid in B16 melanoma cells. PMID:12494454

  10. Photodynamic activation as a molecular switch to promote osteoblast cell differentiation via AP-1 activation.

    PubMed

    Kushibiki, Toshihiro; Tu, Yupeng; Abu-Yousif, Adnan O; Hasan, Tayyaba

    2015-01-01

    In photodynamic therapy (PDT), cells are impregnated with a photosensitizing agent that is activated by light irradiation, thereby photochemically generating reactive oxygen species (ROS). The amounts of ROS produced depends on the PDT dose and the nature of the photosensitizer. Although high levels of ROS are cytotoxic, at physiological levels they play a key role as second messengers in cellular signaling pathways, pluripotency, and differentiation of stem cells. To investigate further the use of photochemically triggered manipulation of such pathways, we exposed mouse osteoblast precursor cells and rat primary mesenchymal stromal cells to low-dose PDT. Our results demonstrate that low-dose PDT can promote osteoblast differentiation via the activation of activator protein-1 (AP-1). Although PDT has been used primarily as an anti-cancer therapy, the use of light as a photochemical "molecular switch" to promote differentiation should expand the utility of this method in basic research and clinical applications. PMID:26279470

  11. Photodynamic activation as a molecular switch to promote osteoblast cell differentiation via AP-1 activation

    PubMed Central

    Kushibiki, Toshihiro; Tu, Yupeng; Abu-Yousif, Adnan O.; Hasan, Tayyaba

    2015-01-01

    In photodynamic therapy (PDT), cells are impregnated with a photosensitizing agent that is activated by light irradiation, thereby photochemically generating reactive oxygen species (ROS). The amounts of ROS produced depends on the PDT dose and the nature of the photosensitizer. Although high levels of ROS are cytotoxic, at physiological levels they play a key role as second messengers in cellular signaling pathways, pluripotency, and differentiation of stem cells. To investigate further the use of photochemically triggered manipulation of such pathways, we exposed mouse osteoblast precursor cells and rat primary mesenchymal stromal cells to low-dose PDT. Our results demonstrate that low-dose PDT can promote osteoblast differentiation via the activation of activator protein-1 (AP-1). Although PDT has been used primarily as an anti-cancer therapy, the use of light as a photochemical “molecular switch” to promote differentiation should expand the utility of this method in basic research and clinical applications. PMID:26279470

  12. Bone development and inflammatory disease is regulated by AP-1 (Fos/Jun).

    PubMed

    Wagner, E F

    2010-01-01

    The Fos and Jun proteins are members of the AP-1 transcription factor complex, which is a central regulator for many cellular functions. This paper summarises the important functions of Fos proteins in bone development, with special emphasis on the Fos-related proteins Fra-1 and Fra-2. These factors determine the functions of osteoblasts and osteoclasts and regulate cytokine signalling during bone development. Likewise, the Jun proteins control the expression of cytokines and chemokines and are probably causally involved in inflammatory skin diseases such as psoriasis. Investigations into the molecular mechanisms responsible for skin inflammation have revealed that Jun proteins control cytokine expression, such as granulocyte colony-stimulating factor, IL-6 and tumour necrosis factor alpha by transcriptional and posttranscriptional pathways. Finally, the paper discusses the relevance of the Jun-dependent mouse model for psoriasis for preclinical studies in the field of anti-angiogenic therapies. PMID:19995753

  13. TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells

    SciTech Connect

    Patel, Devang N.; Bailey, Steven R.; Gresham, John K.; Schuchman, David B.; Shelhamer, James H.; Goldstein, Barry J.; Foxwell, Brian M.; Stemerman, Michael B.; Maranchie, Jodi K.; Valente, Anthony J.; Mummidi, Srinivas; Chandrasekar, Bysani . E-mail: chandraseka@uthscsa.edu

    2006-09-08

    CXCL16 is a transmembrane non-ELR CXC chemokine that signals via CXCR6 to induce aortic smooth muscle cell (ASMC) proliferation. While bacterial lipopolysaccharide (LPS) has been shown to stimulate CXCL16 expression in SMC, its effects on CXCR6 are not known. Here, we demonstrate that LPS upregulates CXCR6 mRNA, protein, and surface expression in human ASMC. Inhibition of TLR4 with neutralizing antibodies or specific siRNA interference blocked LPS-mediated CXCR6 expression. LPS stimulated both AP-1 (c-Fos, c-Jun) and NF-{kappa}B (p50 and p65) activation, but only inhibition of AP-1 attenuated LPS-induced CXCR6 expression. Using dominant negative expression vectors and siRNA interference, we demonstrate that LPS induces AP-1 activation via MyD88, TRAF6, ERK1/2, and JNK signaling pathways. Furthermore, the flavoprotein inhibitor diphenyleniodonium chloride significantly attenuated LPS-mediated AP-1-dependent CXCR6 expression, as did inhibition of NOX4 NADPH oxidase by siRNA. Finally, CXCR6 knockdown inhibited CXCL16-induced ASMC proliferation. These results demonstrate that LPS-TLR4-NOX4-AP-1 signaling can induce CXCR6 expression in ASMC, and suggest that the CXCL16-CXCR6 axis may be an important proinflammatory pathway in the pathogenesis of atherosclerosis.

  14. A single β adaptin contributes to AP1 and AP2 complexes and clathrin function in Dictyostelium.

    PubMed

    Sosa, R Thomas; Weber, Michelle M; Wen, Yujia; O'Halloran, Theresa J

    2012-02-01

    The assembly of clathrin-coated vesicles is important for numerous cellular processes, including nutrient uptake and membrane organization. Important contributors to clathrin assembly are four tetrameric assembly proteins, also called adaptor proteins (APs), each of which contains a β subunit. We identified a single β subunit, named β1/2, that contributes to both the AP1 and AP2 complexes of Dictyostelium. Disruption of the gene encoding β1/2 resulted in severe defects in growth, cytokinesis and development. Additionally, cells lacking β1/2 displayed profound osmoregulatory defects including the absence of contractile vacuoles and mislocalization of contractile vacuole markers. The phenotypes of β1/2 null cells were most similar to previously described phenotypes of clathrin and AP1 mutants, supporting a particularly important contribution of AP1 to clathrin pathways in Dictyostelium cells. The absence of β1/2 in cells led to significant reductions in the protein amounts of the medium-sized subunits of the AP1 and AP2 complexes, establishing a role for the β subunit in the stability of the medium subunits. Dictyostelium β1/2 could resemble a common ancestor of the more specialized β1 and β2 subunits of the vertebrate AP complexes. Our results support the essential contribution of a single β subunit to the stability and function of AP1 and AP2 in a simple eukaryote. PMID:22050483

  15. TAK1 regulates NF-{Kappa}B and AP-1 activation in airway epithelial cells following RSV infection

    SciTech Connect

    Dey, Nilay; Liu Tianshuang; Garofalo, Roberto P.; Casola, Antonella

    2011-09-30

    Respiratory syncytial virus (RSV) is the most common cause of epidemic respiratory diseases in infants and young children. RSV infection of airway epithelial cells induces the expression of immune/inflammatory genes through the activation of a subset of transcription factors, including Nuclear Factor-{kappa}B (NF-{kappa}B) and AP-1. In this study, we have investigated the signaling pathway leading to activation of these two transcription factors in response to RSV infection. Our results show that IKK{beta} plays a key role in viral-induced NF-{kappa}B activation, while JNK regulates AP-1-dependent gene transcription, as demonstrated by using kinase inactive proteins and chemical inhibitors of the two kinases. Inhibition of TAK1 activation, by overexpression of kinase inactive TAK1 or using cells lacking TAK1 expression, significantly reduced RSV-induced NF-{kappa}B and AP-1 nuclear translocation and DNA-binding activity, as well as NF-{kappa}B-dependent gene expression, identifying TAK1 as an important upstream signaling molecule regulating RSV-induced NF-{kappa}B and AP-1 activation. - Highlights: > IKK{beta} is a major kinase involved in RSV-induced NF-{kappa}B activation. > JNK regulates AP-1-dependent gene transcription in RSV infection. > TAK1 is a critical upstream signaling molecule for both pathways in infected cells.

  16. Antioxidant-induced changes of the AP-1 transcription complex are paralleled by a selective suppression of human papillomavirus transcription.

    PubMed Central

    Rösl, F; Das, B C; Lengert, M; Geletneky, K; zur Hausen, H

    1997-01-01

    Considering the involvement of a redox-regulatory pathway in the expression of human papillomaviruses (HPVs), HPV type 16 (HPV-16)-immortalized human keratinocytes were treated with the antioxidant pyrrolidine-dithiocarbamate (PDTC). PDTC induces elevated binding of the transcription factor AP-1 to its cognate recognition site within the viral regulatory region. Despite of increased AP-1 binding, normally indispensable for efficient HPV-16 transcription, viral gene expression was selectively suppressed at the level of initiation of transcription. Electrophoretic mobility supershift assays showed that the composition of the AP-1 complex, predominantly consisting of Jun homodimers in untreated cells, was altered. Irrespective of enhanced c-fos expression, c-jun was phosphorylated and became primarily heterodimerized with fra-1, which was also induced after PDTC incubation. Additionally, there was also an increased complex formation between c-jun and junB. Because both fra-1 and junB overexpression negatively interferes with c-jun/c-fos trans-activation of AP-1-responsive genes, our results suggest that the observed block in viral transcription is mainly the consequence of an antioxidant-induced reconstitution of the AP-1 transcription complex. Since expression of the c-jun/c-fos gene family is tightly regulated during cellular differentiation, defined reorganization of a central viral transcription factor may represent a novel mechanism controlling the transcription of pathogenic HPVs during keratinocyte differentiation and in the progression to cervical cancer. PMID:8985358

  17. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling

    PubMed Central

    Chakraborty, Atanu; Diefenbacher, Markus E.; Mylona, Anastasia; Kassel, Olivier; Behrens, Axel

    2015-01-01

    The c-Jun/AP-1 transcription factor controls key cellular behaviours, including proliferation and apoptosis, in response to JNK and Ras/MAPK signalling. While the JNK pathway has been well characterised, the mechanism of activation by Ras was elusive. Here we identify the uncharacterised ubiquitin ligase Trim7 as a critical component of AP-1 activation via Ras. We found that MSK1 directly phosphorylates Trim7 in response to direct activation by the Ras–Raf–MEK–ERK pathway, and this modification stimulates Trim7 E3 ubiquitin ligase activity. Trim7 mediates Lys63-linked ubiquitination of the AP-1 coactivator RACO-1, leading to RACO-1 protein stabilisation. Consequently, Trim7 depletion reduces RACO-1 levels and AP-1-dependent gene expression. Moreover, transgenic overexpression of Trim7 increases lung tumour burden in a Ras-driven cancer model, and knockdown of Trim7 in established xenografts reduces tumour growth. Thus, phosphorylation-ubiquitination crosstalk between MSK1, Trim7 and RACO-1 completes the long sought-after mechanism linking growth factor signalling and AP-1 activation. PMID:25851810

  18. Homology, Analogy, and Ethology.

    ERIC Educational Resources Information Center

    Beer, Colin G.

    1984-01-01

    Because the main criterion of structural homology (the principle of connections) does not exist for behavioral homology, the utility of the ethological concept of homology has been questioned. The confidence with which behavioral homologies can be claimed varies inversely with taxonomic distance. Thus, conjectures about long-range phylogenetic…

  19. Human TMEM174 that is highly expressed in kidney tissue activates AP-1 and promotes cell proliferation

    SciTech Connect

    Wang, Pingzhang; Sun, Bo; Hao, Dongxia; Zhang, Xiujun; Shi, Taiping; Ma, Dalong

    2010-04-16

    Mitogen-activated protein kinase (MAPK) cascades play an important role in regulation of AP-1 activity through the phosphorylation of distinct substrates. In the present study, we identified a novel protein, TMEM174, whose RNA transcripts are highly expressed in human kidney tissue. TMEM174 is comprised of 243 amino acids, and contains two predicted transmembrane helices which determine its subcellular localization in endoplasmic reticulum and influences its functions. Over-expression of TMME174 enhanced the transcriptional activity of AP-1 and promoted cell proliferation, whereas the truncated mutant TMEM174{Delta}TM without the transmembrane regions did not retain these functions. The possible mechanism of activation of AP-1 by TMEM174 was further examined. Our results suggest the potential role of TMEM174 in renal development and physiological function.

  20. Expression of cell cycle regulator cdk2ap1 suppresses tumor cell phenotype by non-cell autonomous mechanisms

    PubMed Central

    Zolochevska, Olga; Figueiredo, Marxa L.

    2009-01-01

    We evaluated the effect of expressing the cell cycle regulator cdk2ap1 in epithelial or stromal cell compartments to reduce SCC growth in vitro and in vivo. Cell autonomous and/or non-cell autonomous expression of cdk2ap1 reduced tumor growth and invasion and altered cell cycle, adhesion, invasion, angiogenesis, and apoptotic gene expression, as assessed by several in vitro phenotype assays, quantitative real time PCR, and in vivo molecular imaging using a novel three-way xenograft animal model. Our findings suggest that the interactions between cancer cells and fibroblasts that promote abnormal growth can be minimized by expressing cdk2ap1, supporting a novel concept by which tumor/growth suppressor genes can impact tumorigenesis phenotypes from non-cell autonomous interactions within the tumor microenvironment. PMID:19515604

  1. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    SciTech Connect

    Mohareer, Krishnaveni; Sahdev, Sudhir; Hasnain, Seyed E.

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors, which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.

  2. Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells

    PubMed Central

    Liu, Guangming; Bibus, Douglas M.; Bode, Ann M.; Ma, Wei-Ya; Holman, Ralph T.; Dong, Zigang

    2001-01-01

    Epidemiological and animal-based investigations have indicated that the development of skin cancer is in part associated with poor dietary practices. Lipid content and subsequently the derived fatty acid composition of the diet are believed to play a major role in the development of tumorigenesis. Omega 3 (ω3) fatty acids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can effectively reduce the risk of skin cancer whereas omega 6 (ω6) fatty acids such as arachidonic acid (AA) reportedly promote risk. To investigate the effects of fatty acids on tumorigenesis, we performed experiments to examine the effects of the ω3 fatty acids EPA and DHA and of the ω6 fatty acid AA on phorbol 12-tetradecanoate 13-acetate (TPA)-induced or epidermal growth factor (EGF)-induced transcription activator protein 1 (AP-1) transactivation and on the subsequent cellular transformation in a mouse epidermal JB6 cell model. DHA treatment resulted in marked inhibition of TPA- and EGF-induced cell transformation by inhibiting AP-1 transactivation. EPA treatment also inhibited TPA-induced AP-1 transactivation and cell transformation but had no effect on EGF-induced transformation. AA treatment had no effect on either TPA- or EGF-induced AP-1 transactivation or transformation, but did abrogate the inhibitory effects of DHA on TPA- or EGF-induced AP-1 transactivation and cell transformation in a dose-dependent manner. The results of this study demonstrate that the inhibitory effects of ω3 fatty acids on tumorigenesis are more significant for DHA than for EPA and are related to an inhibition of AP-1. Similarly, because AA abrogates the beneficial effects of DHA, the dietary ratio of ω6 to ω3 fatty acids may be a significant factor in mediating tumor development. PMID:11416221

  3. Activation of transcription factor AP-1 and mitogen-activated protein kinases in aniline-induced splenic toxicity

    SciTech Connect

    Khan, M. Firoze . E-mail: mfkhan@utmb.edu; Kannan, Subburaj; Wang Jianling

    2006-01-15

    Signaling mechanisms in aniline-induced fibrogenic and/or tumorigenic response in the spleen are not known. Previous studies have shown that aniline exposure leads to iron accumulation and oxidative stress in the spleen, which may cause activation of redox-sensitive transcription factors and regulate the transcription of genes involved in fibrosis and/or tumorigenesis. To test this, male SD rats were treated with 0.5 mmol/kg/day aniline via drinking water for 30 days, and activation of transcription factor AP-1 was determined in the splenocyte nuclear extracts (NEs). AP-1 DNA-binding activity in the NEs of freshly isolated splenocytes from aniline-treated rats increased in comparison to the controls, as determined by electrophoretic mobility shift assay (EMSA). AP-1 binding was also determined in the NEs of cultured splenocytes (2 h and 24 h), which showed even a greater increase in binding activity at 2 h. The specificity of AP-1 binding for relevant DNA motifs was confirmed by competition EMSA and by supershift EMSA using antibodies specific to c-Jun and c-Fos. To further explore the signaling mechanisms in the AP-1 activation, phosphorylation patterns of mitogen-activated protein kinases (MAPKs) were pursued. Aniline exposure induced increases in the phosphorylation of the three classes of MAPKs: extracellular-signal-regulated kinase (ERK 1/2), c-Jun N-terminal kinase (JNK 1/2), and p38 MAPKs. Furthermore, TGF-{beta}1 mRNA expression showed a 3-fold increase in the spleens of aniline-treated rats. These observations suggest a strong association among MAPK phosphorylation, AP-1 activation, and enhanced TGF-{beta}1 gene expression. The observed sequence of events subsequent to aniline exposure could regulate genes that lead to fibrogenic and/or tumorigenic response in the spleen.

  4. Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8

    PubMed Central

    Kumar, Nallani Vijay; Yang, Jianbo; Pillai, Jitesh K.; Rawat, Swati; Solano, Carlos; Kumar, Abhay; Grøtli, Morten; Stemmler, Timothy L.; Rosen, Barry P.

    2015-01-01

    The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeast Saccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)] in vitro and in vivo and that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation. PMID:26711267

  5. AP-1/IRF-3 Targeted Anti-Inflammatory Activity of Andrographolide Isolated from Andrographis paniculata.

    PubMed

    Shen, Ting; Yang, Woo Seok; Yi, Young-Su; Sung, Gi-Ho; Rhee, Man Hee; Poo, Haryoung; Kim, Mi-Yeon; Kim, Kyung-Woon; Kim, Jong Heon; Cho, Jae Youl

    2013-01-01

    Andrographolide (AG) is an abundant component of plants of the genus Andrographis and has a number of beneficial properties including neuroprotective, anticancer, anti-inflammatory, and antidiabetic effects. Despite numerous pharmacological studies, the precise mechanism of AG is still ambiguous. Thus, in the present study, we investigated the molecular mechanisms of AG and its target proteins as they pertain to anti-inflammatory responses. AG suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2), as well as the mRNA abundance of inducible NO synthase (iNOS), tumor necrosis factor-alpha (TNF- α ), cyclooxygenase (COX)-2, and interferon-beta (IFN- β ) in a dose-dependent manner in both lipopolysaccharide- (LPS-) activated RAW264.7 cells and peritoneal macrophages. AG also substantially ameliorated the symptoms of LPS-induced hepatitis and EtOH/HCl-induced gastritis in mice. Based on the results of luciferase reporter gene assays, kinase assays, and measurement of nuclear levels of transcription factors, the anti-inflammatory effects of AG were found to be clearly mediated by inhibition of both (1) extracellular signal-regulated kinase (ERK)/activator protein (AP)-1 and (2) I κ B kinase ε (IKK ε )/interferon regulatory factor (IRF)-3 pathways. In conclusion, we detected a novel molecular signaling pathway by which AG can suppress inflammatory responses. Thus, AG is a promising anti-inflammatory drug with two pharmacological targets. PMID:23840248

  6. Quercetin modulates NF-kappa B and AP-1/JNK pathways to induce cell death in human hepatoma cells.

    PubMed

    Granado-Serrano, Ana Belén; Martín, María Angeles; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2010-01-01

    Quercetin, a dietary flavonoid, has been shown to possess anticarcinogenic properties, but the precise molecular mechanisms of action are not thoroughly elucidated. The aim of this study was to investigate the regulatory effect of quercetin (50 microM) on two main transcription factors (NF-kappa B and AP-1) related to survival/proliferation pathways in a human hepatoma cell line (HepG2) over time. Quercetin induced a significant time-dependent inactivation of the NF-kappa B pathway consistent with a downregulation of the NF-kappa B binding activity (from 15 min onward). These features were in concert with a time-dependent activation (starting at 15 min and maintained up to 18 h) of the AP-1/JNK pathway, which played an important role in the control of the cell death induced by the flavonoid and contributed to the regulation of survival/proliferation (AKT, ERK) and death (caspase-3, p38, unbalance of Bcl-2 proapoptotic and antiapoptotic proteins) signals. These data suggest that NF-kappa B and AP-1 play a main role in the tight regulation of survival/proliferation pathways exerted by quercetin and that the sustained JNK/AP-1 activation and inhibition of NF-kappa B provoked by the flavonoid induced HepG2 death. PMID:20358477

  7. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity.

    PubMed Central

    Xanthoudakis, S; Curran, T

    1992-01-01

    Fos and Jun form a heterodimeric complex that regulates gene transcription by binding to the activator protein-1 (AP-1) DNA sequence motif. Previously, we demonstrated that the DNA-binding activity of Fos and Jun is regulated in vitro by a novel redox (reduction-oxidation) mechanism. Reduction of a conserved cysteine (cys) residue in the DNA-binding domains of Fos and Jun by chemical reducing agents or by a nuclear redox factor stimulates DNA-binding activity. Here, we describe purification and characterization of a 37 kDa protein (Ref-1) corresponding to the redox factor. Although Ref-1 does not bind to the AP-1 site in association with Fos and Jun, it partially copurifies with a subset of AP-1 proteins. Purified Ref-1 protein stimulates AP-1 DNA-binding activity through the conserved Cys residues in Fos and Jun, but it does not alter the DNA-binding specificity of Fos and Jun. Ref-1 may represent a novel redox component of the signal transduction processes that regulate eukaryotic gene expression. Images PMID:1537340

  8. Enhancement of Flow-Induced AP-1 Gene Expression by Cyclosporin A Requires NFAT-Independent Signaling in Bone Cells

    PubMed Central

    WORTON, LEAH E.; KWON, RONALD Y.; GARDINER, EDITH M.; GROSS, TED S.; SRINIVASAN, SUNDAR

    2014-01-01

    Growing evidence suggests that aging compromises the ability of the skeleton to respond to anabolic mechanical stimuli. Recently, we reported that treating senescent mice with Cyclosporin A (CsA) rescued aging-related deficits in loading-induced bone formation. Given that the actions of CsA are often attributed to inhibition of the calcineurin/NFAT axis, we hypothesized that CsA enhances gene expression in bone cells exposed to fluid flow, by inhibiting nuclear NFATc1 accumulation. When exposed to flow, MC3T3-E1 osteoblastic cells exhibited rapid nuclear accumulation of NFATc1 that was abolished by CsA treatment. Under differentiation conditions, intermittent CsA treatment enhanced gene expression of late osteoblastic differentiation markers and activator protein 1 (AP-1) family members. Superimposing flow upon CsA further enhanced expression of the AP-1 members Fra-1 and c-Jun. To delineate the contribution of NFAT in this response, cells were treated with VIVIT, a specific inhibitor of the calcineurin/NFAT interaction. Treatment with VIVIT blocked flow-induced nuclear NFATc1 accumulation but did not recapitulate the CsA-mediated enhancement of flow-induced AP-1 component gene expression. Taken together, our study is the first to demonstrate that CsA enhances mechanically-induced gene expression of AP-1 components in bone cells, and suggests that this response requires calcineurin-dependent mechanisms that are independent of inhibiting NFATc1 nuclear accumulation. PMID:25484988

  9. Heparin (GAG-hed) inhibits LCR activity of Human Papillomavirus type 18 by decreasing AP1 binding

    PubMed Central

    Villanueva, Rita; Morales-Peza, Néstor; Castelán-Sánchez, Irma; García-Villa, Enrique; Tapia, Rocio; Cid-Arregui, Ángel; García-Carrancá, Alejandro; López-Bayghen, Esther; Gariglio, Patricio

    2006-01-01

    Background High risk HPVs are causative agents of anogenital cancers. Viral E6 and E7 genes are continuously expressed and are largely responsible for the oncogenic activity of these viruses. Transcription of the E6 and E7 genes is controlled by the viral Long Control Region (LCR), plus several cellular transcription factors including AP1 and the viral protein E2. Within the LCR, the binding and activity of the transcription factor AP1 represents a key regulatory event in maintaining E6/E7 gene expression and uncontrolled cell proliferation. Glycosaminoglycans (GAGs), such as heparin, can inhibit tumour growth; they have also shown antiviral effects and inhibition of AP1 transcriptional activity. The purpose of this study was to test the heparinoid GAG-hed, as a possible antiviral and antitumoral agent in an HPV18 positive HeLa cell line. Methods Using in vivo and in vitro approaches we tested GAG-hed effects on HeLa tumour cell growth, cell proliferation and on the expression of HPV18 E6/E7 oncogenes. GAG-hed effects on AP1 binding to HPV18-LCR-DNA were tested by EMSA. Results We were able to record the antitumoral effect of GAG-hed in vivo by using as a model tumours induced by injection of HeLa cells into athymic female mice. The antiviral effect of GAG-hed resulted in the inhibition of LCR activity and, consequently, the inhibition of E6 and E7 transcription. A specific diminishing of cell proliferation rates was observed in HeLa but not in HPV-free colorectal adenocarcinoma cells. Treated HeLa cells did not undergo apoptosis but the percentage of cells in G2/M phase of the cell cycle was increased. We also detected that GAG-hed prevents the binding of the transcription factor AP1 to the LCR. Conclusion Direct interaction of GAG-hed with the components of the AP1 complex and subsequent interference with its ability to correctly bind specific sites within the viral LCR may contribute to the inhibition of E6/E7 transcription and cell proliferation. Our data

  10. Regulation of human alcohol dehydrogenase gene ADH7: importance of an AP-1 site.

    PubMed

    Kotagiri, S; Edenberg, H J

    1998-07-01

    The structure and function of the human alcohol dehydrogenase 7 (ADH7) promoter were analyzed. A promoter fragment extending to bp -232 functioned well in H4IIE-C3, CV-1, and HeLa cells, whereas the region extending further upstream to bp -799 had no significant effect on activity. We identified cis-acting elements in the proximal 232 bp and examined their effect on promoter activity. Mutation of site A, where c-Jun bound, caused a drastic decrease in the promoter activity in H4IIE-C3 and CV-1 cells, suggesting that AP-1 plays an important role in the regulation of ADH7. Mutation of site B also caused a large drop in promoter activity in both cell lines; C/EBPalpha can bind to this site, but because the site affects activity approximately equally in CV-1 cells that lack C/EBPalpha and in H4IIE-C3 cells that contain low levels, other proteins are likely to play the major roles in vivo. Mutation of site C, where C/EBP bound and c-Jun bound weakly, had different effects in the two cell lines: in H4IIE-C3 cells, the site C mutation did not significantly increase promoter activity, whereas in CV-1 cells, which lack C/EBPalpha, it led to a doubling of activity. Surprisingly, cotransfection of the wild-type promoter with C/EBPa or C/EBPbeta led to a decrease in promoter activity, which might in part explain the lack of activity of ADH7 in adult liver. PMID:9703017

  11. Regulation of osteosarcoma cell lung metastasis by the c-Fos/AP-1 target FGFR1.

    PubMed

    Weekes, D; Kashima, T G; Zandueta, C; Perurena, N; Thomas, D P; Sunters, A; Vuillier, C; Bozec, A; El-Emir, E; Miletich, I; Patiño-Garcia, A; Lecanda, F; Grigoriadis, A E

    2016-06-01

    Osteosarcoma is the most common primary malignancy of the skeleton and is prevalent in children and adolescents. Survival rates are poor and have remained stagnant owing to chemoresistance and the high propensity to form lung metastases. In this study, we used in vivo transgenic models of c-fos oncogene-induced osteosarcoma and chondrosarcoma in addition to c-Fos-inducible systems in vitro to investigate downstream signalling pathways that regulate osteosarcoma growth and metastasis. Fgfr1 (fibroblast growth factor receptor 1) was identified as a novel c-Fos/activator protein-1(AP-1)-regulated gene. Induction of c-Fos in vitro in osteoblasts and chondroblasts caused an increase in Fgfr1 RNA and FGFR1 protein expression levels that resulted in increased and sustained activation of mitogen-activated protein kinases (MAPKs), morphological transformation and increased anchorage-independent growth in response to FGF2 ligand treatment. High levels of FGFR1 protein and activated pFRS2α signalling were observed in murine and human osteosarcomas. Pharmacological inhibition of FGFR1 signalling blocked MAPK activation and colony growth of osteosarcoma cells in vitro. Orthotopic injection in vivo of FGFR1-silenced osteosarcoma cells caused a marked twofold to fivefold decrease in spontaneous lung metastases. Similarly, inhibition of FGFR signalling in vivo with the small-molecule inhibitor AZD4547 markedly reduced the number and size of metastatic nodules. Thus deregulated FGFR signalling has an important role in osteoblast transformation and osteosarcoma formation and regulates the development of lung metastases. Our findings support the development of anti-FGFR inhibitors as potential antimetastatic therapy. PMID:26387545

  12. Regulation of osteosarcoma cell lung metastasis by the c-Fos/AP-1 target FGFR1

    PubMed Central

    Weekes, Daniel; Zandueta, Carolina; Perurena, Naiara; Thomas, David P; Sunters, Andrew; Vuillier, Céline; Bozec, Aline; El-Emir, Ethaar; Miletich, Isabelle; Patiño-Garcia, Ana; Lecanda, Fernando; Grigoriadis, Agamemnon E

    2015-01-01

    Osteosarcoma is the most common primary malignancy of the skeleton and is prevalent in children and adolescents. Survival rates are poor and have remained stagnant due to chemoresistance and the high propensity to form lung metastases. In this study, we used in vivo transgenic models of c-fos oncogene-induced osteosarcoma and chondrosarcoma in addition to c-Fos-inducible systems in vitro to investigate downstream signaling pathways that regulate osteosarcoma growth and metastasis. Fgfr1 was identified as a novel c-Fos/AP-1 regulated gene. Induction of c-Fos in vitro in osteoblasts and chondroblasts caused an increase in Fgfr1 RNA and FGFR1 protein expression levels that resulted in increased and sustained activation of MAPKs, morphological transformation and increased anchorage-independent growth in response to FGF2 ligand treatment. High levels of FGFR1 protein and activated pFRS2α signalling were observed in murine and human osteosarcomas. Pharmacological inhibition of FGFR1 signalling blocked MAPK activation and colony growth of osteosarcoma cells in vitro. Orthotopic injection in vivo of FGFR1 silenced osteosarcoma cells caused a marked 2- to 5-fold decrease in spontaneous lung metastases. Similarly, inhibition of FGFR signalling in vivo with the small molecule inhibitor AZD4547 markedly reduced the number and size of metastatic nodules. Thus, deregulated FGFR signalling plays an important role in osteoblast transformation and osteosarcoma formation and regulates the development of lung metastases. Our findings support the development of anti-FGFR inhibitors as potential antimetastatic therapy. PMID:26387545

  13. Transcriptional activation of the fra-1 gene by AP-1 is mediated by regulatory sequences in the first intron.

    PubMed Central

    Bergers, G; Graninger, P; Braselmann, S; Wrighton, C; Busslinger, M

    1995-01-01

    Constitutive expression of c-Fos, FosB, Fra-1, or c-Jun in rat fibroblasts leads to up-regulation of the immediate-early gene fra-1. Using the posttranslational FosER induction system, we demonstrate that this AP-1-dependent stimulation of fra-1 expression is rapid, depends on a functional DNA-binding domain of FosER, and is a general phenomenon observed in different cell types. In vitro mutagenesis and functional analysis of the rat fra-1 gene in stably transfected Rat-1A-FosER fibroblasts indicated that basal and AP-1-regulated expression of the fra-1 gene depends on regulatory sequences in the first intron which comprise a consensus AP-1 site and two AP-1-like elements. We have also investigated the transactivating and transforming properties of the Fra-1 protein to address the significance of fra-1 up-regulation. The entire Fra-1 protein fused to the DNA-binding domain of Ga14 is shown to lack any transactivation function, and yet it possesses oncogenic potential, as overexpression of Fra-1 in established rat fibroblasts results in anchorage-independent growth in vitro and tumor development in athymic mice, fra-1 is therefore not only induced by members of the Fos family, but its gene product may also contribute to cellular transformation by these proteins. Together, these data identify fra-1 as a unique member of the fos gene family which is under positive control by AP-1 activity. PMID:7791782

  14. The p38 SAPK pathway regulates the expression of the MMP-9 collagenase via AP-1-dependent promoter activation.

    PubMed

    Simon, C; Simon, M; Vucelic, G; Hicks, M J; Plinkert, P K; Koitschev, A; Zenner, H P

    2001-12-10

    The invasive phenotype of cancers critically depends on the expression of proteases such as the M(R) 92,000 type IV collagenase (MMP-9). Several growth factors and oncogenes were found to increase promoter activity and as a consequence protease expression. This frequently requires the activation of the transcription factor AP-1 by signal transduction cascades such as the ERK and JNK pathways. We have previously demonstrated that the tumor promoter TPA can induce MMP-9 expression via a third signaling cascade, the p38 pathway. Considering that TPA is a potent activator of AP-1, we hypothesized that this transcription factor might also be required for p38 pathway-dependent MMP-9 regulation. While dominant negative p38 and MKK-6 mutants reduced MMP-9 promoter activity in CAT assays, a construct encoding an activating mutation in the MKK-6 protein potently stimulated it. This was mediated via 144 bp of the 5'flanking region of the wild-type promoter, which contains an AP-1 site at -79. Both point mutations in this motif and the expression of a c-jun protein lacking its transactivation domain and therefore acting as a dominant negative AP-1 mutant abrogated MKK-6-dependent promoter stimulation. Finally SB 203580, a specific p38 pathway inhibitor, reduced MMP-9 expression/secretion and in vitro invasion of cancer cells. Thus, our results provide evidence that also the third SAPK/MAPK signaling cascade, the p38 signal transduction pathway, stimulates MMP-9 expression in an AP-1-dependent fashion. PMID:11716547

  15. Transcriptomic analysis by RNA-seq reveals AP-1 pathway as key regulator that green tea may rely on to inhibit lung tumorigenesis.

    PubMed

    Pan, Jing; Zhang, Qi; Xiong, Donghai; Vedell, Peter; Yan, Ying; Jiang, Hui; Cui, Peng; Ding, Feng; Tichelaar, Jay W; Wang, Yian; Lubet, Ronald A; You, Ming

    2014-01-01

    Green tea is a promising chemopreventive agent for lung cancer. Multiple signaling events have been reported, however, the relative importance of these mechanisms in mediating the chemopreventive function of green tea is unclear. In the present study, to examine the involvement of AP-1 in green tea polyphenols induced tumor inhibition, human NSCLC cell line H1299 and mouse SPON 10 cells were identified as AP-1 dependent, as these two lines exhibit high constitutive AP-1 activity, and when TAM67 expression was induced with doxycycline, cell growth was inhibited and correlated with suppressed AP-1 activity. RNA-seq was used to determine the global transcriptional effects of AP-1 inhibition and also uncover the possible involvement of AP-1 in tea polyphenols induced chemoprevention. TAM67 mediated changes in gene expression were identified, and within down-regulated genes, AP-1 was identified as a key transcription regulator. RNA-seq analysis revealed that Polyphenon E-treated cells shared 293 commonly down-regulated genes within TAM67 expressing H1299 cells, and by analysis of limited Chip-seq data, over 10% of the down-regulated genes contain a direct AP-1 binding site, indicating that Polyphenon E elicits chemopreventive activity by regulating AP-1 target genes. Conditional TAM67 expressing transgenic mice and NSCLC cell lines were used to further confirm that the chemopreventive activity of green tea is AP-1 dependent. Polyphenon E lost its chempreventive function both in vitro and in vivo when AP-1 was inhibited, indicating that AP-1 inhibition is a major pathway through which green tea exhibits chemopreventive effects. PMID:24343902

  16. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides.

    PubMed

    Sun, Yingjiao; Wang, Yonglin; Tian, Chengming

    2016-10-01

    Yeast AP1 transcription factor is a regulator of oxidative stress response. Here, we report the identification and characterization of CgAP1, an ortholog of YAP1 in poplar anthracnose fungus Colletotrichum gloeosporioides. The expression of CgAP1 was highly induced by reactive oxygen species. CgAP1 deletion mutants displayed enhanced sensitivity to oxidative stress compared with the wild-type strain, and their poplar leaf virulence was obviously reduced. However, the mutants exhibited no obvious defects in aerial hyphal growth, conidia production, and appressoria formation. CgAP1::eGFP fusion protein localized to the nucleus after TBH (tert-Butyl hydroperoxide) treatment, suggesting that CgAP1 functions as a redox sensor in C. gloeosporioides. In addition, CgAP1 prevented the accumulation of ROS during early stages of biotrophic growth. CgAP1 also acted as a positive regulator of several ROS-related genes (i.e., Glr1, Hyr1, and Cyt1) involved in the antioxidative response. These results highlight the key regulatory role of CgAP1 transcription factor in oxidative stress response and provide insights into the function of ROS detoxification in virulence of C. gloeosporioides. PMID:27544415

  17. P4-ATPase Requirement for AP-1/Clathrin Function in Protein Transport from the trans-Golgi Network and Early Endosomes

    PubMed Central

    Liu, Ke; Surendhran, Kavitha; Nothwehr, Steven F.

    2008-01-01

    Drs2p is a resident type 4 P-type ATPase (P4-ATPase) and potential phospholipid translocase of the trans-Golgi network (TGN) where it has been implicated in clathrin function. However, precise protein transport pathways requiring Drs2p and how it contributes to clathrin-coated vesicle budding remain unclear. Here we show a functional codependence between Drs2p and the AP-1 clathrin adaptor in protein sorting at the TGN and early endosomes of Saccharomyces cerevisiae. Genetic criteria indicate that Drs2p and AP-1 operate in the same pathway and that AP-1 requires Drs2p for function. In addition, we show that loss of AP-1 markedly increases Drs2p trafficking to the plasma membrane, but does not perturb retrieval of Drs2p from the early endosome back to the TGN. Thus AP-1 is required at the TGN to sort Drs2p out of the exocytic pathway, presumably for delivery to the early endosome. Moreover, a conditional allele that inactivates Drs2p phospholipid translocase (flippase) activity disrupts its own transport in this AP-1 pathway. Drs2p physically interacts with AP-1; however, AP-1 and clathrin are both recruited normally to the TGN in drs2Δ cells. These results imply that Drs2p acts independently of coat recruitment to facilitate AP-1/clathrin-coated vesicle budding from the TGN. PMID:18508916

  18. Structural and biochemical changes underlying a keratoderma-like phenotype in mice lacking suprabasal AP1 transcription factor function

    PubMed Central

    Rorke, E A; Adhikary, G; Young, C A; Rice, R H; Elias, P M; Crumrine, D; Meyer, J; Blumenberg, M; Eckert, R L

    2015-01-01

    Epidermal keratinocyte differentiation on the body surface is a carefully choreographed process that leads to assembly of a barrier that is essential for life. Perturbation of keratinocyte differentiation leads to disease. Activator protein 1 (AP1) transcription factors are key controllers of this process. We have shown that inhibiting AP1 transcription factor activity in the suprabasal murine epidermis, by expression of dominant-negative c-jun (TAM67), produces a phenotype type that resembles human keratoderma. However, little is understood regarding the structural and molecular changes that drive this phenotype. In the present study we show that TAM67-positive epidermis displays altered cornified envelope, filaggrin-type keratohyalin granule, keratin filament, desmosome formation and lamellar body secretion leading to reduced barrier integrity. To understand the molecular changes underlying this process, we performed proteomic and RNA array analysis. Proteomic study of the corneocyte cross-linked proteome reveals a reduction in incorporation of cutaneous keratins, filaggrin, filaggrin2, late cornified envelope precursor proteins, hair keratins and hair keratin-associated proteins. This is coupled with increased incorporation of desmosome linker, small proline-rich, S100, transglutaminase and inflammation-associated proteins. Incorporation of most cutaneous keratins (Krt1, Krt5 and Krt10) is reduced, but incorporation of hyperproliferation-associated epidermal keratins (Krt6a, Krt6b and Krt16) is increased. RNA array analysis reveals reduced expression of mRNA encoding differentiation-associated cutaneous keratins, hair keratins and associated proteins, late cornified envelope precursors and filaggrin-related proteins; and increased expression of mRNA encoding small proline-rich proteins, protease inhibitors (serpins), S100 proteins, defensins and hyperproliferation-associated keratins. These findings suggest that AP1 factor inactivation in the suprabasal

  19. Structural and biochemical changes underlying a keratoderma-like phenotype in mice lacking suprabasal AP1 transcription factor function.

    PubMed

    Rorke, E A; Adhikary, G; Young, C A; Rice, R H; Elias, P M; Crumrine, D; Meyer, J; Blumenberg, M; Eckert, R L

    2015-01-01

    Epidermal keratinocyte differentiation on the body surface is a carefully choreographed process that leads to assembly of a barrier that is essential for life. Perturbation of keratinocyte differentiation leads to disease. Activator protein 1 (AP1) transcription factors are key controllers of this process. We have shown that inhibiting AP1 transcription factor activity in the suprabasal murine epidermis, by expression of dominant-negative c-jun (TAM67), produces a phenotype type that resembles human keratoderma. However, little is understood regarding the structural and molecular changes that drive this phenotype. In the present study we show that TAM67-positive epidermis displays altered cornified envelope, filaggrin-type keratohyalin granule, keratin filament, desmosome formation and lamellar body secretion leading to reduced barrier integrity. To understand the molecular changes underlying this process, we performed proteomic and RNA array analysis. Proteomic study of the corneocyte cross-linked proteome reveals a reduction in incorporation of cutaneous keratins, filaggrin, filaggrin2, late cornified envelope precursor proteins, hair keratins and hair keratin-associated proteins. This is coupled with increased incorporation of desmosome linker, small proline-rich, S100, transglutaminase and inflammation-associated proteins. Incorporation of most cutaneous keratins (Krt1, Krt5 and Krt10) is reduced, but incorporation of hyperproliferation-associated epidermal keratins (Krt6a, Krt6b and Krt16) is increased. RNA array analysis reveals reduced expression of mRNA encoding differentiation-associated cutaneous keratins, hair keratins and associated proteins, late cornified envelope precursors and filaggrin-related proteins; and increased expression of mRNA encoding small proline-rich proteins, protease inhibitors (serpins), S100 proteins, defensins and hyperproliferation-associated keratins. These findings suggest that AP1 factor inactivation in the suprabasal

  20. Negative regulation of the rat stromelysin gene promoter by retinoic acid is mediated by an AP1 binding site.

    PubMed Central

    Nicholson, R C; Mader, S; Nagpal, S; Leid, M; Rochette-Egly, C; Chambon, P

    1990-01-01

    Stromelysin is a member of the metalloproteinase family which plays an important role in extracellular matrix remodelling during many normal and disease processes. We show here that in polyomavirus-transformed rat embryo fibroblast cells (PyT21), the transcription from the stromelysin gene is repressed by the vitamin A derivative retinoic acid (RA). Furthermore, expression vectors encoding the human RA receptors hRAR-alpha, hRAR-beta and hRAR-gamma repress chloramphenicol acetyltransferase (CAT) expression from stromelysin promoter-CAT gene expression vectors in RA-treated PyT21 and human HeLa cells, as determined by transient transfection assays. Through mutation and deletion analysis, we show that the RA dependent repression is mediated by a 25 bp region from nucleotide positions -72 to -48 of the rat stromelysin 5'-flanking DNA sequence. Further mutation analysis of this region indicates that the DNA sequence required for RA dependent repression colocalizes with an AP1 binding site which is essential for promoter activity. We show also that RA represses the transcriptional activity of a reporter gene containing a TPA responding AP1 binding site driving the HSV tk promoter. Thus the RAR-RA complex appears to repress transcription of the stromelysin gene by blocking activation by positive regulatory factors. However, we found no evidence supporting the possibility that the RA dependent repression could be due to RAR binding to the AP1 binding site or to the AP1 components c-fos and c-jun. Images Fig. 1. Fig. 2. Fig. 4. Fig. 6. Fig. 7. Fig. 8. PMID:2176152

  1. B:2a:P1.5 Meningococcal Strains Likely Arisen from Capsular Switching Event Still Spreading in Spain▿

    PubMed Central

    Castilla, Jesús; Vázquez, Julio A.; Salcedo, Celia; García Cenoz, Manuel; García Irure, José Javier; Torroba, Luis; Beristain, Xabier; Abad, Raquel; Barricarte, Aurelio

    2009-01-01

    Eighteen clustered cases of meningococcal disease associated with B:2a:P1.5 strains doubled the annual incidence up to 4.3 × 105 in Navarra, Spain, in 2007. Eleven percent of cases were fatalities, and 74% of cases were individuals 10 to 24 years old. This is the third cluster associated with this strain in northern Spain since 2001. PMID:19091814

  2. B:2a:p1.5 meningococcal strains likely arisen from capsular switching event still spreading in Spain.

    PubMed

    Castilla, Jesús; Vázquez, Julio A; Salcedo, Celia; García Cenoz, Manuel; García Irure, José Javier; Torroba, Luis; Beristain, Xabier; Abad, Raquel; Barricarte, Aurelio

    2009-02-01

    Eighteen clustered cases of meningococcal disease associated with B:2a:P1.5 strains doubled the annual incidence up to 4.3 x 10(5) in Navarra, Spain, in 2007. Eleven percent of cases were fatalities, and 74% of cases were individuals 10 to 24 years old. This is the third cluster associated with this strain in northern Spain since 2001. PMID:19091814

  3. S100P/RAGE signaling regulates microRNA-155 expression via AP-1 activation in colon cancer

    PubMed Central

    Onyeagucha, Benjamin Chidi; Mercado-Pimentel, Melania E.; Hutchison, Jennifer; Flemington, Erik K.; Nelson, Mark A.

    2013-01-01

    Accumulating evidence indicates that elevated S100P promotes the pathogenesis of cancers, including colon cancer. S100P exerts its effects by binding to and activating the Receptor for Advance Glycation End-products (RAGE). The effects of up-regulated S100P/RAGE signaling on cell functions are well documented. Despite these observations, little is known about the downstream targets of S100P/RAGE signaling. In the present study, we demonstrated for the first time that activation of RAGE by S100P regulates oncogenic microRNA-155 (miR-155) expression through Activator Protein-1 (AP-1) stimulation in colon cancer cells. Ectopic S100P up-regulated miR-155 levels in human colon cancer cells. Conversely, knockdown of S100P resulted in a decrease in miR-155 levels. Exogenous S100P induced miR-155 expression, but blockage of the RAGE with anti-RAGE antibody suppressed the induction of miR-155 by exogenous S100P. Attenuation of AP-1 activation through pharmacological inhibition of MEK activation or genetic inhibition of c-Jun activation using dominant negative c-Jun (TAM67) suppressed miR-155 induction by exogenous S100P. Also, S100P treatment stimulated the enrichment of c-Fos, an AP-1 family member, at the miR-155 host gene promoter site. Finally, a functional study demonstrated that miR-155 knockdown decreases colon cancer cell growth, motility, and invasion. Altogether, these data demonstrate that the expression of miR-155 is regulated by S100P and is dependent on RAGE activation and stimulation of AP-1. PMID:23693020

  4. LDL immune complexes stimulate LDL receptor expression in U937 histiocytes via extracellular signal-regulated kinase and AP-1.

    PubMed

    Fu, Yuchang; Huang, Yan; Bandyopadhyay, Sumita; Virella, Gabriel; Lopes-Virella, Maria F

    2003-07-01

    We have previously shown that LDL-containing immune complexes (LDL-ICs) induce up-regulation of LDL receptor (LDLR) expression in human macrophages. The present study further investigated the molecular mechanisms leading to LDLR up-regulation by LDL-ICs as well as the signaling pathways involved. Results showed that treatment of U937 histiocytes with LDL-ICs did not increase the precursors and the cleaved forms of sterol-regulatory element binding proteins (SREBPs) 1a and 2, suggesting that SREBPs may not be involved in LDLR up-regulation by LDL-ICs. Promoter deletion and mutation studies showed that the AP-1 binding sites were essential for LDL-IC-stimulated LDLR expression. Electrophoretic mobility shift assays further demonstrated that LDL-ICs stimulated transcription factor AP-1 activity. Studies assessing the signaling pathways involved in LDLR up-regulation by LDL-ICs showed that the up-regulation of LDLR was extracellular signal-regulated kinase (ERK) dependent. In conclusion, the present study shows that LDL-ICs up-regulate LDLR expression via the ERK signaling pathway and the AP-1 motif-dependent transcriptional activation. PMID:12730303

  5. The alternate AP-1 adaptor subunit Apm2 interacts with the Mil1 regulatory protein and confers differential cargo sorting

    PubMed Central

    Whitfield, Shawn T.; Burston, Helen E.; Bean, Björn D. M.; Raghuram, Nandini; Maldonado-Báez, Lymarie; Davey, Michael; Wendland, Beverly; Conibear, Elizabeth

    2016-01-01

    Heterotetrameric adaptor protein complexes are important mediators of cargo protein sorting in clathrin-coated vesicles. The cell type–specific expression of alternate μ chains creates distinct forms of AP-1 with altered cargo sorting, but how these subunits confer differential function is unclear. Whereas some studies suggest the μ subunits specify localization to different cellular compartments, others find that the two forms of AP-1 are present in the same vesicle but recognize different cargo. Yeast have two forms of AP-1, which differ only in the μ chain. Here we show that the variant μ chain Apm2 confers distinct cargo-sorting functions. Loss of Apm2, but not of Apm1, increases cell surface levels of the v-SNARE Snc1. However, Apm2 is unable to replace Apm1 in sorting Chs3, which requires a dileucine motif recognized by the γ/σ subunits common to both complexes. Apm2 and Apm1 colocalize at Golgi/early endosomes, suggesting that they do not associate with distinct compartments. We identified a novel, conserved regulatory protein that is required for Apm2-dependent sorting events. Mil1 is a predicted lipase that binds Apm2 but not Apm1 and contributes to its membrane recruitment. Interactions with specific regulatory factors may provide a general mechanism to diversify the functional repertoire of clathrin adaptor complexes. PMID:26658609

  6. Basolateral sorting of chloride channel 2 is mediated by interactions between a dileucine motif and the clathrin adaptor AP-1

    PubMed Central

    de la Fuente-Ortega, Erwin; Gravotta, Diego; Bay, Andres Perez; Benedicto, Ignacio; Carvajal-Gonzalez, Jose Maria; Lehmann, Guillermo L.; Lagos, Carlos F.; Rodríguez-Boulan, Enrique

    2015-01-01

    In spite of the many key cellular functions of chloride channels, the mechanisms that mediate their subcellular localization are largely unknown. ClC-2 is a ubiquitous chloride channel usually localized to the basolateral domain of epithelia that regulates cell volume, ion transport, and acid–base balance; mice knocked out for ClC-2 are blind and sterile. Previous work suggested that CLC-2 is sorted basolaterally by TIFS812LL, a dileucine motif in CLC-2's C-terminal domain. However, our in silico modeling of ClC-2 suggested that this motif was buried within the channel's dimerization interface and identified two cytoplasmically exposed dileucine motifs, ESMI623LL and QVVA635LL, as candidate sorting signals. Alanine mutagenesis and trafficking assays support a scenario in which ESMI623LL acts as the authentic basolateral signal of ClC-2. Silencing experiments and yeast three-hybrid assays demonstrated that both ubiquitous (AP-1A) and epithelium-specific (AP-1B) forms of the tetrameric clathrin adaptor AP-1 are capable of carrying out basolateral sorting of ClC-2 through interactions of ESMI623LL with a highly conserved pocket in their γ1-σ1A hemicomplex. PMID:25739457

  7. Trans-repressor activity of nuclear glycosaminoglycans on Fos and Jun/AP-1 oncoprotein-mediated transcription.

    PubMed

    Busch, S J; Martin, G A; Barnhart, R L; Mano, M; Cardin, A D; Jackson, R L

    1992-01-01

    Heparin blocks the phorbol ester-induced progression of nontransformed cells through the G0/G1 phase (Wright, T.C., L.A. Pukac, J.J. Castellot, M.J. Karnovsky, R.A. Levine, H.-Y. Kim-Park, and J. Campisi. 1989. Proc. Natl. Acad. Sci. USA. 86: 3199-3203) or G1 to S phase (Reilly, C. F., M. S. Kindy, K. E. Brown, R. D. Rosenberg, and G. E Sonenshein. 1989. J. Biol. Chem. 264:6990-6995) of the cell cycle. Cell cycle arrest was associated with decreased levels of stage-specific mRNAs suggesting transcriptional regulation of cell growth. In the present report, we show that heparin selectively repressed TPA-inducible AP-1-mediated gene expression. Heparin-induced trans-repression was observed in primary vascular smooth muscle cells, as well as in the transformed HeLa cell line and in nondifferentiated F9 teratocarcinoma cells. Inhibition of AP-1-mediated trans-activation occurred with heparin and pentosan polysulfate but not with chondroitin sulfate A or C. Heparin-binding peptides or heparitinase I addition to nuclear lysates of heparin-treated cells allowed enhanced recovery of endogenous AP-1-specific DNA binding activity. We propose a model in which nuclear glycosaminoglycans play a trans-regulatory role in altering the patterns of inducible gene expression. PMID:1730747

  8. Scorpion Venom Heat-Resistant Peptide Attenuates Glial Fibrillary Acidic Protein Expression via c-Jun/AP-1.

    PubMed

    Cao, Zhen; Wu, Xue-Fei; Peng, Yan; Zhang, Rui; Li, Na; Yang, Jin-Yi; Zhang, Shu-Qin; Zhang, Wan-Qin; Zhao, Jie; Li, Shao

    2015-11-01

    Scorpion venom has been used in the Orient to treat central nervous system diseases for many years, and the protein/peptide toxins in Buthus martensii Karsch (BmK) venom are believed to be the effective components. Scorpion venom heat-resistant peptide (SVHRP) is an active component of the scorpion venom extracted from BmK. In a previous study, we found that SVHRP could inhibit the formation of a glial scar, which is characterized by enhanced glial fibrillary acidic protein (GFAP) expression, in the epileptic hippocampus. However, the cellular and molecular mechanisms underlying this process remain to be clarified. The results of the present study indicate that endogenous GFAP expression in primary rat astrocytes was attenuated by SVHRP. We further demonstrate that the suppression of GFAP was primarily mediated by inhibiting both c-Jun expression and its binding with AP-1 DNA binding site and other factors at the GFAP promoter. These results support that SVHRP contributes to reducing GFAP at least in part by decreasing the activity of the transcription factor AP-1. In conclusion, the effects of SVHRP on astrocytes with respect to the c-Jun/AP-1 signaling pathway in vitro provide a practical basis for studying astrocyte activation and inhibition and a scientific basis for further studies of traditional medicine. PMID:26134308

  9. Cdk3-promoted epithelial-mesenchymal transition through activating AP-1 is involved in colorectal cancer metastasis

    PubMed Central

    Tang, Na; Li, Yuejin; Peng, Zhengke; Lu, Chengrong; Dong, Zigang; Tang, Faqing

    2016-01-01

    Cyclin dependent kinase-3 (Cdk3) is a positive regulator of the G1 mammalian cell cycle phase. Cdk3 is involved in cancer progression, but very little is known about its mechanism in cancer development and progression. Herein, we found that Cdk3 increased colorectal cancer metastasis through promoting epithelial-mesenchymal transition (EMT) shift. Cdk3 was found to highly express in metastatic cancer and induce cell motility and invasion. Cdk3 was shown to phosphorylate c-Jun at Ser 63 and Ser 73 in vitro and ex vivo. Cdk3-phosphorylated c-Jun at Ser 63 and Ser 73 resulted in an increased AP-1 activity. Ectopic expression of Cdk3 promoted colorectal cancer from epithelial to mesenchymal transition conjugating AP-1 activation, while AP-1 inhibition dramatically decreased Cdk3-increased EMT shift. These results showed that the Cdk3/c-Jun signaling axis mediating epithelial-mesenchymal transition plays an important role in colorectal cancer metastasis. PMID:26755651

  10. Nitrogenase and Homologs

    PubMed Central

    2014-01-01

    Nitrogenase catalyzes biological nitrogen fixation, a key step in the global nitrogen cycle. Three homologous nitrogenases have been identified to date, along with several structural and/or functional homologs of this enzyme that are involved in nitrogenase assembly, bacteriochlorophyll biosynthesis and methanogenic process, respectively. In this article, we provide an overview of the structures and functions of nitrogenase and its homologs, which highlights the similarity and disparity of this uniquely versatile group of enzymes. PMID:25491285

  11. A hypomorphic mutation of the gamma-1 adaptin gene (Ap1g1) causes inner ear, retina, thyroid, and testes abnormalities in mice.

    PubMed

    Johnson, Kenneth R; Gagnon, Leona H; Chang, Bo

    2016-06-01

    Adaptor protein (AP) complexes function in the intracellular sorting and vesicular transport of membrane proteins. The clathrin-associated AP-1 complex functions at the trans-Golgi network and endosomes, and some forms of this complex are thought to mediate the sorting of proteins in plasma membranes of polarized epithelial cells. A null mutation of the mouse Ap1g1 gene, which encodes the gamma-1 subunit of the AP-1 complex, causes embryonic lethality when homozygous, indicating its critical importance in early development but precluding studies of its possible roles during later stages. Here, we describe our analyses of a new spontaneous mutation of Ap1g1 named "figure eight" (symbol fgt) and show that it is an in-frame deletion of 6 bp, which results in the elimination of two amino acids of the encoded protein. In contrast to Ap1g1 (-/-) null mice, mice homozygous for the recessive fgt mutation are viable with adult survival similar to controls. Although Ap1g1 is ubiquitously expressed, the phenotype of Ap1g1 (fgt) mutant mice is primarily restricted to abnormalities in sensory epithelial cells of the inner ear, pigmented epithelial cells of the retina, follicular epithelial cells of the thyroid gland, and the germinal epithelium of the testis, suggesting that impaired AP-1 sorting and targeting of membrane proteins in these polarized cells may underlie the observed pathologies. Ap1g1 (fgt) mutant mice provide a new animal model to study the in vivo roles of gamma-1 adaptin and the AP-1 complex throughout development and to investigate factors that underlie its associated phenotypic abnormalities. PMID:27090238

  12. Sip1, an AP-1 accessory protein in fission yeast, is required for localization of Rho3 GTPase.

    PubMed

    Yu, Yang; Li, Cuifang; Kita, Ayako; Katayama, Yuta; Kubouchi, Koji; Udo, Masako; Imanaka, Yukako; Ueda, Shiho; Masuko, Takashi; Sugiura, Reiko

    2013-01-01

    Rho family GTPases act as molecular switches to regulate a range of physiological functions, including the regulation of the actin-based cytoskeleton, membrane trafficking, cell morphology, nuclear gene expression, and cell growth. Rho function is regulated by its ability to bind GTP and by its localization. We previously demonstrated functional and physical interactions between Rho3 and the clathrin-associated adaptor protein-1 (AP-1) complex, which revealed a role of Rho3 in regulating Golgi/endosomal trafficking in fission yeast. Sip1, a conserved AP-1 accessory protein, recruits the AP-1 complex to the Golgi/endosomes through physical interaction. In this study, we showed that Sip1 is required for Rho3 localization. First, overexpression of rho3⁺ suppressed defective membrane trafficking associated with sip1-i4 mutant cells, including defects in vacuolar fusion, Golgi/endosomal trafficking and secretion. Notably, Sip1 interacted with Rho3, and GFP-Rho3, similar to Apm1-GFP, did not properly localize to the Golgi/endosomes in sip1-i4 mutant cells at 27°C. Interestingly, the C-terminal region of Sip1 is required for its localization to the Golgi/endosomes, because Sip1-i4-GFP protein failed to properly localize to Golgi/endosomes, whereas the fluorescence of Sip1ΔN mutant protein co-localized with that of FM4-64. Consistently, in the sip1-i4 mutant cells, which lack the C-terminal region of Sip1, binding between Apm1 and Rho3 was greatly impaired, presumably due to mislocalization of these proteins in the sip1-i4 mutant cells. Furthermore, the interaction between Apm1 and Rho3 as well as Rho3 localization to the Golgi/endosomes were significantly rescued in sip1-i4 mutant cells by the expression of Sip1ΔN. Taken together, these results suggest that Sip1 recruits Rho3 to the Golgi/endosomes through physical interaction and enhances the formation of the Golgi/endosome AP-1/Rho3 complex, thereby promoting crosstalk between AP-1 and Rho3 in the regulation of

  13. Sip1, an AP-1 Accessory Protein in Fission Yeast, Is Required for Localization of Rho3 GTPase

    PubMed Central

    Yu, Yang; Li, Cuifang; Kita, Ayako; Katayama, Yuta; Kubouchi, Koji; Udo, Masako; Imanaka, Yukako; Ueda, Shiho; Masuko, Takashi; Sugiura, Reiko

    2013-01-01

    Rho family GTPases act as molecular switches to regulate a range of physiological functions, including the regulation of the actin-based cytoskeleton, membrane trafficking, cell morphology, nuclear gene expression, and cell growth. Rho function is regulated by its ability to bind GTP and by its localization. We previously demonstrated functional and physical interactions between Rho3 and the clathrin-associated adaptor protein-1 (AP-1) complex, which revealed a role of Rho3 in regulating Golgi/endosomal trafficking in fission yeast. Sip1, a conserved AP-1 accessory protein, recruits the AP-1 complex to the Golgi/endosomes through physical interaction. In this study, we showed that Sip1 is required for Rho3 localization. First, overexpression of rho3+ suppressed defective membrane trafficking associated with sip1-i4 mutant cells, including defects in vacuolar fusion, Golgi/endosomal trafficking and secretion. Notably, Sip1 interacted with Rho3, and GFP-Rho3, similar to Apm1-GFP, did not properly localize to the Golgi/endosomes in sip1-i4 mutant cells at 27°C. Interestingly, the C-terminal region of Sip1 is required for its localization to the Golgi/endosomes, because Sip1-i4-GFP protein failed to properly localize to Golgi/endosomes, whereas the fluorescence of Sip1ΔN mutant protein co-localized with that of FM4-64. Consistently, in the sip1-i4 mutant cells, which lack the C-terminal region of Sip1, binding between Apm1 and Rho3 was greatly impaired, presumably due to mislocalization of these proteins in the sip1-i4 mutant cells. Furthermore, the interaction between Apm1 and Rho3 as well as Rho3 localization to the Golgi/endosomes were significantly rescued in sip1-i4 mutant cells by the expression of Sip1ΔN. Taken together, these results suggest that Sip1 recruits Rho3 to the Golgi/endosomes through physical interaction and enhances the formation of the Golgi/endosome AP-1/Rho3 complex, thereby promoting crosstalk between AP-1 and Rho3 in the regulation of Golgi

  14. Homological stabilizer codes

    SciTech Connect

    Anderson, Jonas T.

    2013-03-15

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  15. Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: possible mediation by decreased JNK/AP-1 signaling.

    PubMed

    Kwon, Gyoo Taik; Cho, Han Jin; Chung, Won-Yoon; Park, Kwang-Kyun; Moon, Aree; Park, Jung Han Yoon

    2009-09-01

    Isoliquiritigenin (ISL, 4,2',4'-trihydroxychalcone), which is found in licorice, shallot and bean sprouts, is a potent antioxidant with anti-inflammatory and anti-carcinogenic effects. The purpose of this study was to investigate the effects of ISL treatment on the migration, invasion and adhesion characteristics of DU145 human prostate cancer cells. DU145 cells were cultured in the presence of 0-20 micromol/L ISL with or without 10 microg/L epidermal growth factor (EGF). ISL inhibited basal and EGF-induced cell migration, invasion and adhesion dose dependently. ISL decreased EGF-induced secretion of urokinase-type plasminogen activator (uPA), matrix metalloproteinase (MMP)-9, tissue inhibitor of metalloproteinase-1 (TIMP-1), and vascular endothelial growth factor (VEGF), but increased TIMP-2 secretion in a concentration-dependent manner. In addition, ISL decreased the protein levels of integrin-alpha2, intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM), and mRNA levels of uPA, MMP-9, VEGF, ICAM and integrin-alpha2. Furthermore, basal and EGF-induced activator protein (AP)-1 binding activity and phosphorylation of Jun N-terminal kinase (JNK), c-Jun and Akt were decreased after ISL treatment. However, phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase was not altered. The JNK inhibitor SP600125 inhibited basal and EGF-induced secretion of uPA, VEGF, MMP-9 and TIMP-1, as well as AP-1 DNA binding activity and cell migration. These results provide evidence for the role of ISL as a potent antimetastatic agent, which can markedly inhibit the metastatic and invasive capacity of prostate cancer cells. The inhibition of JNK/AP-1 signaling may be one of the mechanisms by which ISL inhibits cancer cell invasion and migration. PMID:18824345

  16. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer

    PubMed Central

    Mishra, Alok; Kumar, Rakesh; Tyagi, Abhishek; Kohaar, Indu; Hedau, Suresh; Bharti, Alok C; Sarker, Subhodeep; Dey, Dipankar; Saluja, Daman; Das, Bhudev

    2015-01-01

    In this study, we investigated the effects of the natural antioxidant curcumin on the HPV16-positive oral carcinoma cell line 93VU147T and demonstrated that curcumin is not only a potent inhibitor for the activity of host nuclear transcription factors AP-1 and NF-kB but it also selectively suppresses transcription of the HPV16/E6 oncogene during the carcinogenic process in oral cancer cells. This study suggests a therapeutic potential of curcumin for high-risk human papilloma virus (HPV)-infected oral cancers. PMID:25932049

  17. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer.

    PubMed

    Mishra, Alok; Kumar, Rakesh; Tyagi, Abhishek; Kohaar, Indu; Hedau, Suresh; Bharti, Alok C; Sarker, Subhodeep; Dey, Dipankar; Saluja, Daman; Das, Bhudev

    2015-01-01

    In this study, we investigated the effects of the natural antioxidant curcumin on the HPV16-positive oral carcinoma cell line 93VU147T and demonstrated that curcumin is not only a potent inhibitor for the activity of host nuclear transcription factors AP-1 and NF-kB but it also selectively suppresses transcription of the HPV16/E6 oncogene during the carcinogenic process in oral cancer cells. This study suggests a therapeutic potential of curcumin for high-risk human papilloma virus (HPV)-infected oral cancers. PMID:25932049

  18. Necrotic cells influence migration and invasion of glioblastoma via NF-κB/AP-1-mediated IL-8 regulation

    PubMed Central

    Ahn, So-Hee; Park, Hyunju; Ahn, Young-Ho; Kim, Sewha; Cho, Min-Sun; Kang, Jihee Lee; Choi, Youn-Hee

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common primary intracranial tumor in adults and has poor prognosis. Diffuse infiltration into normal brain parenchyma, rapid growth, and the presence of necrosis are remarkable hallmarks of GBM. However, the effect of necrotic cells on GBM growth and metastasis is poorly understood at present. In this study, we examined the biological significance of necrotic tissues by exploring the molecular mechanisms underlying the signaling network between necrotic tissues and GBM cells. The migration and invasion of the GBM cell line CRT-MG was significantly enhanced by treatment with necrotic cells, as shown by assays for scratch wound healing and spheroid invasion. Incubation with necrotic cells induced IL-8 secretion in CRT-MG cells in a dose-dependent manner. In human GBM tissues, IL-8 positive cells were mainly distributed in the perinecrotic region, as seen in immunohistochemistry and immunofluorescence analysis. Necrotic cells induced NF-κB and AP-1 activation and their binding to the IL-8 promoter, leading to enhanced IL-8 production and secretion in GBM cells. Our data demonstrate that when GBM cells are exposed to and stimulated by necrotic cells, the migration and invasion of GBM cells are enhanced and facilitated via NF-κB/AP-1 mediated IL-8 upregulation. PMID:27076368

  19. Necrotic cells influence migration and invasion of glioblastoma via NF-κB/AP-1-mediated IL-8 regulation.

    PubMed

    Ahn, So-Hee; Park, Hyunju; Ahn, Young-Ho; Kim, Sewha; Cho, Min-Sun; Kang, Jihee Lee; Choi, Youn-Hee

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common primary intracranial tumor in adults and has poor prognosis. Diffuse infiltration into normal brain parenchyma, rapid growth, and the presence of necrosis are remarkable hallmarks of GBM. However, the effect of necrotic cells on GBM growth and metastasis is poorly understood at present. In this study, we examined the biological significance of necrotic tissues by exploring the molecular mechanisms underlying the signaling network between necrotic tissues and GBM cells. The migration and invasion of the GBM cell line CRT-MG was significantly enhanced by treatment with necrotic cells, as shown by assays for scratch wound healing and spheroid invasion. Incubation with necrotic cells induced IL-8 secretion in CRT-MG cells in a dose-dependent manner. In human GBM tissues, IL-8 positive cells were mainly distributed in the perinecrotic region, as seen in immunohistochemistry and immunofluorescence analysis. Necrotic cells induced NF-κB and AP-1 activation and their binding to the IL-8 promoter, leading to enhanced IL-8 production and secretion in GBM cells. Our data demonstrate that when GBM cells are exposed to and stimulated by necrotic cells, the migration and invasion of GBM cells are enhanced and facilitated via NF-κB/AP-1 mediated IL-8 upregulation. PMID:27076368

  20. The AP-1 Transcription Factor c-Jun Prevents Stress-Imposed Maladaptive Remodeling of the Heart

    PubMed Central

    Windak, Renata; Müller, Julius; Felley, Allison; Akhmedov, Alexander; Wagner, Erwin F.; Pedrazzini, Thierry; Sumara, Grzegorz; Ricci, Romeo

    2013-01-01

    Systemic hypertension increases cardiac workload and subsequently induces signaling networks in heart that underlie myocyte growth (hypertrophic response) through expansion of sarcomeres with the aim to increase contractility. However, conditions of increased workload can induce both adaptive and maladaptive growth of heart muscle. Previous studies implicate two members of the AP-1 transcription factor family, junD and fra-1, in regulation of heart growth during hypertrophic response. In this study, we investigate the function of the AP-1 transcription factors, c-jun and c-fos, in heart growth. Using pressure overload-induced cardiac hypertrophy in mice and targeted deletion of Jun or Fos in cardiomyocytes, we show that c-jun is required for adaptive cardiac hypertrophy, while c-fos is dispensable in this context. c-jun promotes expression of sarcomere proteins and suppresses expression of extracellular matrix proteins. Capacity of cardiac muscle to contract depends on organization of principal thick and thin filaments, myosin and actin, within the sarcomere. In line with decreased expression of sarcomere-associated proteins, Jun-deficient cardiomyocytes present disarrangement of filaments in sarcomeres and actin cytoskeleton disorganization. Moreover, Jun-deficient hearts subjected to pressure overload display pronounced fibrosis and increased myocyte apoptosis finally resulting in dilated cardiomyopathy. In conclusion, c-jun but not c-fos is required to induce a transcriptional program aimed at adapting heart growth upon increased workload. PMID:24039904

  1. Macrophage-derived BAFF induces AID expression through the p38MAPK/CREB and JNK/AP-1 pathways.

    PubMed

    Kim, Hyun-A; Seo, Goo-Young; Kim, Pyeung-Hyeun

    2011-03-01

    BAFF is expressed primarily by macrophages and DCs. BAFF stimulates the differentiation and survival of B cells and induces Ig production. We have demonstrated previously that murine macrophages treated with TGF-β1 or IFN-γ express membrane-bound and soluble forms of BAFF. The ability of these two forms of BAFF to induce expression of AID, which plays a critical role in Ig CSR in B cells, was investigated. Both forms of BAFF, derived from macrophages activated by IFN-γ or TGF-β1, can increase AID expression. Subsequent analysis of BAFF signaling suggested that BAFF induces AID through BCMA, a BAFF-receptor, and p38MAPK and CREB act as intermediates in AID expression. In addition, JNK and AP-1 have similar activities. Our findings suggest that macrophage-derived BAFF stimulates B cells to express AID through BCMA and at least two different pathways, including the p38MAPK/CREB and the JNK/AP-1 pathways. PMID:21169521

  2. Concurrent BMP7 and FGF9 signalling governs AP-1 function to promote self-renewal of nephron progenitor cells

    PubMed Central

    Muthukrishnan, Sree Deepthi; Yang, Xuehui; Friesel, Robert; Oxburgh, Leif

    2015-01-01

    Self-renewal of nephron progenitor cells (NPCs) is governed by BMP, FGF and WNT signalling. Mechanisms underlying cross-talk between these pathways at the molecular level are largely unknown. Here we delineate the pathway through which the proliferative BMP7 signal is transduced in NPCs in the mouse. BMP7 activates the MAPKs TAK1 and JNK to phosphorylate the transcription factor JUN, which in turn governs transcription of AP-1-element containing G1-phase cell cycle regulators such as Myc and Ccnd1 to promote NPC proliferation. Conditional inactivation of Tak1 or Jun in cap mesenchyme causes identical phenotypes characterized by premature depletion of NPCs. While JUN is regulated by BMP7, we find that its partner FOS is regulated by FGF9. We demonstrate that BMP7 and FGF9 coordinately regulate AP-1 transcription to promote G1-S cell cycle progression and NPC proliferation. Our findings identify a molecular mechanism explaining the important cooperation between two major NPC self-renewal pathways. PMID:26634297

  3. The Synonymous Ala87 Mutation of Estrogen Receptor Alpha Modifies Transcriptional Activation Through Both ERE and AP1 Sites.

    PubMed

    Fernández-Calero, Tamara; Flouriot, Gilles; Marín, Mónica

    2016-01-01

    Estrogen receptor α (ERα) exerts regulatory actions through genomic mechanisms. In the classical pathway, ligand-activated ERα binds directly to DNA through estrogen response elements (ERE) located in the promoter of target genes. ERα can also exert indirect regulation of transcription via protein-protein interaction with other transcription factors such as AP-1.S everal ERα synonymous polymorphisms have been identified and efforts to understand their implications have been made. Nevertheless effects of synonymous polymorphisms are still neglected. This chapter focuses on the experimental procedure employed in order to characterize the transcriptional activity of a synonymous polymorphism of the ERα (rs746432) called Alanine 87 (Ala87). Activity of both WT and Ala87 ERα isoforms on transcriptional pathways can be analyzed in transiently transfected cells using different reporter constructs. ERα efficiency on the classical genomic pathway can be analyzed by determining its transactivation activity on an ERE-driven thymidine kinase (TK) promoter controlling the expression of the luciferase reporter gene. Transcriptional activity through the indirect genomic pathway can be analyzed by employing an AP-1 DNA response element-driven promoter also controlling the expression of luciferase reporter gene. PMID:26585143

  4. AP-1 Is a Key Regulator of Proinflammatory Cytokine TNFα-mediated Triple-negative Breast Cancer Progression.

    PubMed

    Qiao, Yichun; He, Huan; Jonsson, Philip; Sinha, Indranil; Zhao, Chunyan; Dahlman-Wright, Karin

    2016-03-01

    Triple-negative breast cancer (TNBC) represents a highly aggressive form of breast cancer with limited treatment options. Proinflammatory cytokines such as TNFα can facilitate tumor progression and metastasis. However, the mechanistic aspects of inflammation mediated TNBC progression remain unclear. Using ChIP-seq, we demonstrate that the cistrome for the AP-1 transcription factor c-Jun is comprised of 13,800 binding regions in TNFα-stimulated TNBC cells. In addition, we show that c-Jun regulates nearly a third of the TNFα-regulated transcriptome. Interestingly, high expression level of the c-Jun-regulated pro-invasion gene program is associated with poor clinical outcome in TNBCs. We further demonstrate that c-Jun drives TNFα-mediated increase of malignant characteristics of TNBC cells by transcriptional regulation of Ninj1. As exemplified by the CXC chemokine genes clustered on chromosome 4, we demonstrate that NF-κB might be a pioneer factor required for the regulation of TNFα-inducible inflammatory genes, whereas c-Jun has little effect. Together, our results uncover AP-1 as an important determinant for inflammation-induced cancer progression, rather than inflammatory response. PMID:26792858

  5. Functional erythroid promoters created by interaction of the transcription factor GATA-1 with CACCC and AP-1/NFE-2 elements.

    PubMed Central

    Walters, M; Martin, D I

    1992-01-01

    We have investigated interactions between the erythroid transcription factor GATA-1 and factors binding two cis-acting elements commonly linked to GATA sites in erythroid control elements. GATA-1 is present at all stages of erythroid differentiation, is necessary for erythropoiesis, and binds sites in all erythroid control elements. However, minimal promoters containing GATA-1 sites are inactive when tested in erythroid cells. Based on this observation, two erythroid cis elements, here termed CACCC and AP-1/NFE-2, were linked to GATA sites in minimal promoters. None of the elements linked only to a TATA box created an active promoter, but GATA sites linked to either CACCC or AP-1/NFE-2 elements formed strong erythroid promoters. A mutation of T to C at position -175 in the gamma-globin promoter GATA site, associated with hereditary persistence of fetal hemoglobin (HPFH), increased expression of these promoters in both fetal and adult cells. A construct bearing the beta-globin CACCC element was more active in adult and less active in fetal erythroid cells, when compared with the gamma-globin CACCC element. These studies suggest that erythroid control elements are formed by the interactions of at least three transcription factors, none of which functions alone. Images PMID:1438231

  6. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex.

    PubMed

    Nakagawa, T; Setou, M; Seog, D; Ogasawara, K; Dohmae, N; Takio, K; Hirokawa, N

    2000-11-10

    Intracellular transport mediated by kinesin superfamily proteins (KIFs) is a highly regulated process. The molecular mechanism of KIFs binding to their respective cargoes remains unclear. We report that KIF13A is a novel plus end-directed microtubule-dependent motor protein and associates with beta 1-adaptin, a subunit of the AP-1 adaptor complex. The cargo vesicles of KIF13A contained AP-1 and mannnose-6-phosphate receptor (M6PR). Overexpression of KIF13A resulted in mislocalization of the AP-1 and the M6PR. Functional blockade of KIF13A reduced cell surface expression of the M6PR. Thus, KIF13A transports M6PR-containing vesicles and targets the M6PR from TGN to the plasma membrane via direct interaction with the AP-1 adaptor complex. PMID:11106728

  7. Homology, convergence and parallelism.

    PubMed

    Ghiselin, Michael T

    2016-01-01

    Homology is a relation of correspondence between parts of parts of larger wholes. It is used when tracking objects of interest through space and time and in the context of explanatory historical narratives. Homologues can be traced through a genealogical nexus back to a common ancestral precursor. Homology being a transitive relation, homologues remain homologous however much they may come to differ. Analogy is a relationship of correspondence between parts of members of classes having no relationship of common ancestry. Although homology is often treated as an alternative to convergence, the latter is not a kind of correspondence: rather, it is one of a class of processes that also includes divergence and parallelism. These often give rise to misleading appearances (homoplasies). Parallelism can be particularly hard to detect, especially when not accompanied by divergences in some parts of the body. PMID:26598721

  8. Activation of NF-κB and AP-1 Mediates Hyperproliferation by Inducing β-Catenin and c-Myc in Helicobacter pylori-Infected Gastric Epithelial Cells

    PubMed Central

    Byun, Eunyoung; Park, Bohye; Lim, Joo Weon

    2016-01-01

    Purpose In the gastric mucosa of Helicobacter pylori (H. pylori)-infected patients with gastritis or adenocarcinoma, proliferation of gastric epithelial cells is increased. Hyperproliferation is related to induction of oncogenes, such as β-catenin and c-myc. Even though transcription factors NF-κB and AP-1 are activated in H. pylori-infected cells, whether NF-κB or AP-1 regulates the expression of β-catenein or c-myc in H. pylori-infected cells has not been clarified. The present study was undertaken to investigate whether H. pylori-induced activation of NF-κB and AP-1 mediates the expression of oncogenes and hyperproliferation of gastric epithelial cells. Materials and Methods Gastric epithelial AGS cells were transiently transfected with mutant genes for IκBα (MAD3) and c-Jun (TAM67) or treated with a specific NF-κB inhibitor caffeic acid phenethyl ester (CAPE) or a selective AP-1 inhibitor SR-11302 to suppress activation of NF-κB or AP-1, respecively. As reference cells, the control vector pcDNA was transfected to the cells. Wild-type cells or transfected cells were cultured with or without H. pylori. Results H. pylori induced activation of NF-κB and AP-1, cell proliferation, and expression of oncogenes (β-catenein, c-myc) in AGS cells, which was inhibited by transfection of MAD3 and TAM67. Wild-type cells and the cells transfected with pcDNA showed similar activities of NF-κB and AP-1, proliferation, and oncogene expression regardless of treatment with H. pylori. Both CAPE and SR-11302 inhibited cell proliferation and expression of oncogenes in H. pylori-infected cells. Conclusion H. pylori-induced activation of NF-κB and AP-1 regulates transcription of oncogenes and mediates hyperproliferation in gastric epithelial cells. PMID:26996564

  9. MAPK/AP-1 signal pathway in tobacco smoke-induced cell proliferation and squamous metaplasia in the lungs of rats.

    PubMed

    Zhong, Cai-Yun; Zhou, Ya-Mei; Douglas, Gordon C; Witschi, Hanspeter; Pinkerton, Kent E

    2005-12-01

    Overwhelming evidence has demonstrated tobacco smoke (TS) is causally associated with various types of cancers, especially lung cancer. Sustained epithelial cell hyperplasia and squamous metaplasia are considered as preneoplastic lesions during the formation of lung cancer. The cellular and molecular mechanisms leading to lung cancer due to TS are not clear. Mitogen-activated protein kinases (MAPK)/activator protein-1 (AP-1) can be activated by various stimuli and play a critical role in the control of cell proliferation and differentiation. To date, information on the response of the MAPK/AP-1 pathway during hyperplasia and squamous metaplasia induced by TS is lacking. We therefore investigated the effects of TS on the development of epithelial hyperplasia and squamous metaplasia, regulation of MAPK/AP-1 activation, and expression of AP-1-regulated cell cycle proteins and differentiation markers in the lungs of rats. Exposure of rats to TS (30 mg/m(3) or 80 mg/m(3), 6 h/day, 3 days/week for 14 weeks) dramatically induced cell proliferation and squamous metaplasia in a dose-dependent manner, effects that paralleled the activation of AP-1-DNA binding activity. Phosphorylated ERK1/2, JNK, p38 and ERK5 were significantly increased by exposure to TS, indicating the activation of these MAPK pathways. Expression of Jun and Fos proteins were differentially regulated by TS. TS upregulated the expression of AP-1-dependent cell cycle proteins including cyclin D1 and proliferating cell nuclear antigen (PCNA). Among the AP-1-dependent cell differentiation markers, keratin 5 and 14 were upregulated, while loricrin, filaggrin and involucrin were downregulated following TS exposure. These findings suggest the important role of MAPK/AP-1 pathway in TS-induced pathogenesis, thus providing new insights into the molecular mechanisms of TS-associated lung diseases including lung cancers. PMID:16051644

  10. p12CDK2-AP1 interacts with CD82 to regulate the proliferation and survival of human oral squamous cell carcinoma cells.

    PubMed

    Chai, Juan; Ju, Jun; Zhang, Shao-Wu; Shen, Zhi-Yuan; Liang, Liang; Yang, Xiang-Ming; Ma, Chao; Ni, Qian-Wei; Sun, Mo-Yi

    2016-08-01

    p12 cyclin-dependent kinase 2 (CDK2)-associating protein 1 (p12CDK2-AP1) has been demonstrated to negatively regulate the activity of CDK2. However, the underlying molecular mechanism remains largely unknown. We aimed to determine the potential binding proteins of p12CDK2-AP1 and to elucidate the role of p12CDK2-AP1 in the regulation of the proliferation, invasion, apoptosis, and in vivo growth of human oral squamous cell carcinoma cells. The protein-protein interaction was predicted using computational decision templates. The predicted p12CDK2‑AP1 interacting proteins were overexpressed in human oral squamous cell carcinoma OSCC-15 cells, and the protein binding was examined using co-precipitation (Co-IP). Cell proliferation and invasion were determined via MTT assay and Transwell system, respectively. Cell apoptosis was evaluated using Annexin V-FITC/PI double staining followed by flow cytometric analysis. The in vivo growth of OSCC-15 cells was examined in nude mouse tumor xenografts. We found that overexpression of either p12CDK2-AP1 or CD82 significantly suppressed the proliferation and invasion but promoted the apoptosis of OSCC-15 cells (P<0.05). Importantly, combined overexpression of p12CDK2-AP1 and CD82 showed synergistic antitumor activity compared with the overexpression of a single protein alone (P<0.05). Additionally, the simultaneous overexpression of p12CDK2-AP1 and CD82 significantly suppressed the in vivo tumor growth of OSCC-15 cells in nude mice compared with the negative control (P<0.05). Our findings indicate that p12CDK2-AP1 interacts with CD82 to play a functional role in suppressing the in vitro and in vivo growth of OSCC-15 cells. PMID:27349208

  11. A cluster region of AP-1 responsive elements is required for transcriptional activity of mouse ODC gene by hepatocyte growth factor.

    PubMed

    Bianchi, Laura; Tacchini, Lorenza; Matteucci, Emanuela; Desiderio, Maria Alfonsina

    2002-05-01

    Ornithine decarboxylase (ODC) activity is regulated by a variety of mechanisms including transcription, translation, and RNA and protein half-life. Since in mouse B16-F1 melanoma cells an early and remarkable (about 6-fold) increase in steady state mRNA levels was observed after hepatocyte growth factor (HGF) treatment, we investigated the transcriptional regulation of mouse ODC promoter. Transient transfection of various ODC-luciferase promoter constructs into the B16-Fl cells in combination with electrophoretic mobility shift assays identified the HGF-responsive element as a cluster of three AP-1 binding sites (-1660 to -1572). Even if each site differs from the canonical TPA responsive element for one nucleotide, only the first two AP-1 consensus sequences seemed to be functional since allowed DNA-binding activity of nuclear proteins after HGF treatment. Comparison of the results of transfection assays with the pOD2.5-luc (2.5 kb gene fragment) and with the construct deprived of the AP-1 cluster pOD-B-luc showed that this 50 bp region was required for ODC transactivating activity in response to HGF. Since in B16-F1 cells HGF increased AP-1 activity and the mRNA expression of various AP-1 subunits, we may conclude that HGF-induced transcription of mouse ODC was largely due to triggering of AP-1 pathway. PMID:12054494

  12. Overexpression of AtAP1M3 regulates flowering time and floral development in Arabidopsis and effects key flowering-related genes in poplar.

    PubMed

    Chen, Zhong; Ye, Meixia; Su, Xiaoxing; Liao, Weihua; Ma, Huandi; Gao, Kai; Lei, Bingqi; An, Xinmin

    2015-08-01

    APETALA1 plays a crucial role in the transition from vegetative to reproductive phase and in floral development. In this study, to determine the effect of AP1 expression on flowering time and floral organ development, transgenic Arabidopsis and poplar overexpressing of AtAP1M3 (Arabidopsis AP1 mutant by dominant negative mutation) were generated. Transgenic Arabidopsis with e35Spro::AtAP1M3 displayed phenotypes with delayed-flowering compared to wild-type and flowers with abnormal sepals, petals and stamens. In addition, transgenic Arabidopsis plants exhibited reduced growth vigor compared to the wild-type plants. Ectopic expression of AtAP1M3 in poplar resulted in up- or down-regulation of some endogenous key flowering-related genes, including floral meristems identity gene LFY, B-class floral organ identity genes AP3 and PI, flowering pathway integrator FT1 and flower repressors TFL1 and SVP. These results suggest that AtAP1M3 regulates flowering time and floral development in plants. PMID:25820621

  13. Control of E-cadherin apical localisation and morphogenesis by a SOAP-1/AP-1/clathrin pathway in C. elegans epidermal cells.

    PubMed

    Gillard, Ghislain; Shafaq-Zadah, Massiullah; Nicolle, Ophélie; Damaj, Raghida; Pécréaux, Jacques; Michaux, Grégoire

    2015-05-01

    E-cadherin (E-cad) is the main component of epithelial junctions in multicellular organisms, where it is essential for cell-cell adhesion. The localisation of E-cad is often strongly polarised in the apico-basal axis. However, the mechanisms required for its polarised distribution are still largely unknown. We performed a systematic RNAi screen in vivo to identify genes required for the strict E-cad apical localisation in C. elegans epithelial epidermal cells. We found that the loss of clathrin, its adaptor AP-1 and the AP-1 interactor SOAP-1 induced a basolateral localisation of E-cad without affecting the apico-basal diffusion barrier. We further found that SOAP-1 controls AP-1 localisation, and that AP-1 is required for clathrin recruitment. Finally, we also show that AP-1 controls E-cad apical delivery and actin organisation during embryonic elongation, the final morphogenetic step of embryogenesis. We therefore propose that a molecular pathway, containing SOAP-1, AP-1 and clathrin, controls the apical delivery of E-cad and morphogenesis. PMID:25858456

  14. MEKK1-MKK4-JNK-AP1 Pathway Negatively Regulates Rgs4 Expression in Colonic Smooth Muscle Cells

    PubMed Central

    Zhang, Yonggang; Li, Fang; Liu, Shu; Wang, Hong; Mahavadi, Sunila; Murthy, Karnam S.; Khalili, Kamel; Hu, Wenhui

    2012-01-01

    Background Regulator of G-protein Signaling 4 (RGS4) plays an important role in regulating smooth muscle contraction, cardiac development, neural plasticity and psychiatric disorder. However, the underlying regulatory mechanisms remain elusive. Our recent studies have shown that upregulation of Rgs4 by interleukin (IL)-1β is mediated by the activation of NFκB signaling and modulated by extracellular signal-regulated kinases, p38 mitogen-activated protein kinase, and phosphoinositide-3 kinase. Here we investigate the effect of the c-Jun N-terminal kinase (JNK) pathway on Rgs4 expression in rabbit colonic smooth muscle cells. Methodology/Principal Findings Cultured cells at first passage were treated with or without IL-1β (10 ng/ml) in the presence or absence of the selective JNK inhibitor (SP600125) or JNK small hairpin RNA (shRNA). The expression levels of Rgs4 mRNA and protein were determined by real-time RT-PCR and Western blot respectively. SP600125 or JNK shRNA increased Rgs4 expression in the absence or presence of IL-1β stimulation. Overexpression of MEKK1, the key upstream kinase of JNK, inhibited Rgs4 expression, which was reversed by co-expression of JNK shRNA or dominant-negative mutants for MKK4 or JNK. Both constitutive and inducible upregulation of Rgs4 expression by SP600125 was significantly inhibited by pretreatment with the transcription inhibitor, actinomycin D. Dual reporter assay showed that pretreatment with SP600125 sensitized the promoter activity of Rgs4 in response to IL-1β. Mutation of the AP1-binding site within Rgs4 promoter increased the promoter activity. Western blot analysis confirmed that IL-1β treatment increased the phosphorylation of JNK, ATF-2 and c-Jun. Gel shift and chromatin immunoprecipitation assays validated that IL-1β increased the in vitro and ex vivo binding activities of AP1 within rabbit Rgs4 promoter. Conclusion/Significance Activation of MEKK1-MKK4-JNK-AP1 signal pathway plays a tonic inhibitory role in

  15. Fra-1/AP-1 induces EMT in mammary epithelial cells by modulating Zeb1/2 and TGFβ expression.

    PubMed

    Bakiri, L; Macho-Maschler, S; Custic, I; Niemiec, J; Guío-Carrión, A; Hasenfuss, S C; Eger, A; Müller, M; Beug, H; Wagner, E F

    2015-02-01

    Epithelial-to-mesenchymal transition (EMT) is essential for embryonic morphogenesis and wound healing and critical for tumour cell invasion and dissemination. The AP-1 transcription factor Fra-1 has been implicated in tumorigenesis and in tumour-associated EMT in human breast cancer. We observed a significant inverse correlation between Fra-1 mRNA expression and distant-metastasis-free survival in a large cohort of breast cancer patients derived from multiple array data sets. This unique correlation among Fos genes prompted us to assess the evolutionary conservation between Fra-1 functions in EMT of human and mouse cells. Ectopic expression of Fra-1 in fully polarized, non-tumourigenic, mouse mammary epithelial EpH4 cells induced a mesenchymal phenotype, characterized by a loss of epithelial and gain of mesenchymal markers. Proliferation, motility and invasiveness were also increased in the resulting EpFra1 cells, and the cells were tumourigenic and efficiently colonized the lung upon transplantation. Molecular analyses revealed increased expression of Tgfβ1 and the EMT-inducing transcription factors Zeb1, Zeb2 and Slug. Mechanistically, Fra-1 binds to the tgfb1 and zeb2 promoters and to an evolutionarily conserved region in the first intron of zeb1. Furthermore, increased activity of a zeb2 promoter reporter was detected in EpFra1 cells and shown to depend on AP-1-binding sites. Inhibiting TGFβ signalling in EpFra1 cells moderately increased the expression of epithelial markers, whereas silencing of zeb1 or zeb2 restored the epithelial phenotype and decreased migration in vitro and tumorigenesis in vivo. Thus Fra-1 induces changes in the expression of genes encoding EMT-related transcription factors leading to the acquisition of mesenchymal, invasive and tumorigenic capacities by epithelial cells. This study defines a novel function of Fra-1/AP-1 in modulating tgfb1, zeb1 and zeb2 expression through direct binding to genomic regulatory regions, which establishes

  16. Fra-1/AP-1 induces EMT in mammary epithelial cells by modulating Zeb1/2 and TGFβ expression

    PubMed Central

    Bakiri, L; Macho-Maschler, S; Custic, I; Niemiec, J; Guío-Carrión, A; Hasenfuss, S C; Eger, A; Müller, M; Beug, H; Wagner, E F

    2015-01-01

    Epithelial-to-mesenchymal transition (EMT) is essential for embryonic morphogenesis and wound healing and critical for tumour cell invasion and dissemination. The AP-1 transcription factor Fra-1 has been implicated in tumorigenesis and in tumour-associated EMT in human breast cancer. We observed a significant inverse correlation between Fra-1 mRNA expression and distant-metastasis-free survival in a large cohort of breast cancer patients derived from multiple array data sets. This unique correlation among Fos genes prompted us to assess the evolutionary conservation between Fra-1 functions in EMT of human and mouse cells. Ectopic expression of Fra-1 in fully polarized, non-tumourigenic, mouse mammary epithelial EpH4 cells induced a mesenchymal phenotype, characterized by a loss of epithelial and gain of mesenchymal markers. Proliferation, motility and invasiveness were also increased in the resulting EpFra1 cells, and the cells were tumourigenic and efficiently colonized the lung upon transplantation. Molecular analyses revealed increased expression of Tgfβ1 and the EMT-inducing transcription factors Zeb1, Zeb2 and Slug. Mechanistically, Fra-1 binds to the tgfb1 and zeb2 promoters and to an evolutionarily conserved region in the first intron of zeb1. Furthermore, increased activity of a zeb2 promoter reporter was detected in EpFra1 cells and shown to depend on AP-1-binding sites. Inhibiting TGFβ signalling in EpFra1 cells moderately increased the expression of epithelial markers, whereas silencing of zeb1 or zeb2 restored the epithelial phenotype and decreased migration in vitro and tumorigenesis in vivo. Thus Fra-1 induces changes in the expression of genes encoding EMT-related transcription factors leading to the acquisition of mesenchymal, invasive and tumorigenic capacities by epithelial cells. This study defines a novel function of Fra-1/AP-1 in modulating tgfb1, zeb1 and zeb2 expression through direct binding to genomic regulatory regions, which establishes

  17. Braid Floer homology

    NASA Astrophysics Data System (ADS)

    van den Berg, J. B.; Ghrist, R.; Vandervorst, R. C.; Wójcik, W.

    2015-09-01

    Area-preserving diffeomorphisms of a 2-disc can be regarded as time-1 maps of (non-autonomous) Hamiltonian flows on R / Z ×D2. The periodic flow-lines define braid (conjugacy) classes, up to full twists. We examine the dynamics relative to such braid classes and define a new invariant for such classes, the BRAID FLOER HOMOLOGY. This refinement of Floer homology, originally used for the Arnol'd Conjecture, yields a Morse-type forcing theory for periodic points of area-preserving diffeomorphisms of the 2-disc based on braiding. Contributions of this paper include (1) a monotonicity lemma for the behavior of the nonlinear Cauchy-Riemann equations with respect to algebraic lengths of braids; (2) establishment of the topological invariance of the resulting braid Floer homology; (3) a shift theorem describing the effect of twisting braids in terms of shifting the braid Floer homology; (4) computation of examples; and (5) a forcing theorem for the dynamics of Hamiltonian disc maps based on braid Floer homology.

  18. Expression profiling of genes regulated by Fra-1/AP-1 transcription factor during bleomycin-induced pulmonary fibrosis

    PubMed Central

    2013-01-01

    Background The Fra-1/AP-1 transcription factor regulates the expression of genes controlling various processes including migration, invasion, and survival as well as extracellular remodeling. We recently demonstrated that loss of Fra-1 leads to exacerbated bleomycin-induced pulmonary fibrosis, accompanied by enhanced expression of various inflammatory and fibrotic genes. To better understand the molecular mechanisms by which Fra-1 confers protection during bleomycin-induced lung injury, genome-wide mRNA expression profiling was performed. Results We found that Fra-1 regulates gene expression programs that include: 1) several cytokines and chemokines involved in inflammation, 2) several genes involved in the extracellular remodeling and cell adhesion, and 3) several genes involved in programmed cell death. Conclusion Loss of Fra-1 leads to the enhanced expression of genes regulating inflammation and immune responses and decreased the expression of genes involved in apoptosis, suggesting that this transcription factor distinctly modulates early pro-fibrotic cellular responses. PMID:23758685

  19. Transcriptional suppression of IL-27 production by Mycobacterium tuberculosis-activated p38 MAPK via inhibition of AP-1 binding.

    PubMed

    Zhang, Jidong; Qian, Xuesong; Ning, Huan; Eickhoff, Christopher S; Hoft, Daniel F; Liu, Jianguo

    2011-05-15

    Mycobacterium tuberculosis remains a major global challenge to human health care, and the mechanisms of how M. tuberculosis evades host immune surveillance to favor its survival are still largely unknown. In this study, we found that bacillus Calmette-Guérin (BCG) and viable M. tuberculosis as well as M. tuberculosis lysates could activate IL-27 expression in human and mouse macrophages by induction of p28 subunit transcription. However, in parallel with these effects, BCG and M. tuberculosis lysate stimulation of macrophages induced activation of p38 MAPK signaling molecules MLK3/MKK3/MK2 to prevent maximal IL-27 production. M. tuberculosis lysate-induced p28 transcription was dependent on MyD88 signaling pathway. AP-1/c-Fos was shown to bind directly to the p28 promoter and induce p28 expression after M. tuberculosis lysate stimulation. Overexpression of p38α inhibited the binding of c-Fos to the p28 promoter but had no effect on c-Fos protein expression or phosphorylation in response to M. tuberculosis lysate stimulation. Furthermore, blockade of p38 by SB203580 enhanced M. tuberculosis-induced AP-1 binding to the p28 promoter. Importantly, we show that adding exogenous IL-27 to increase the levels produced by PBMCs stimulated with live mycobacteria enhanced the ability of BCG-expanded T cells to inhibit intracellular mycobacterial growth in human macrophages. Taken together, our data demonstrate that mycobacterial stimulation induces both IL-27 production and p38 MAPK activation. Strategies designed to tip the balance toward positive regulation of p28 induction by mycobacteria could lead to enhanced protective tuberculosis immunity. PMID:21482740

  20. Tungsten Carbide-Cobalt Nanoparticles Induce Reactive Oxygen Species, AKT, ERK, AP-1, NF-κB, VEGF, and Angiogenesis.

    PubMed

    Liu, Ling-Zhi; Ding, Min; Zheng, Jenny Z; Zhu, Yingxue; Fenderson, Bruce A; Li, Bingyun; Yu, Jing J; Jiang, Bing-Hua

    2015-07-01

    Powder mixtures of tungsten carbide and metallic cobalt (WC-Co) are widely used in various products. Nanoparticles are engineered structures with at least one dimension of 100 nm or smaller. WC-Co is known to be associated with lung injury and diseases. Angiogenesis is a key process during vasculature, carcinogenesis, recovery of injury, and inflammatory diseases. However, the cellular effects of WC-Co nanoparticles on angiogenesis remain to be elucidated. In this study, we investigated angiogenic response and relative mechanisms after exposure to WC-Co nanoparticles. Our results showed that WC-Co nanoparticles at 5 μg/cm(2) induced ROS production which activated AKT and ERK1/2 signaling pathways in lung epithelial cells by reactive oxygen species (ROS) staining and immunoblotting; WC-Co treatment also increased transcriptional activation of AP-1, NF-κB, and VEGF by reporter assay. Further studies demonstrated that ROS are upstream molecules of AKT and ERK signaling pathways; the activation of AP-1, NF-κB, and VEGF was through ROS generation, AKT and ERK1/2 activation. In addition, WC-Co nanoparticles affected the cells to induce angiogenesis by chicken chorioallantoic membrane (CAM) assay. These results illustrate that exposure to WC-Co nanoparticles induces angiogenic response by activating ROS, AKT, and ERK1/2 signaling pathways and the downstream molecules and elucidate the potential molecular mechanisms during this process. This information may be useful for preventing potential damage from nanoparticle exposure in the future. PMID:25893364

  1. Activin A enhances MMP-7 activity via the transcription factor AP-1 in an esophageal squamous cell carcinoma cell line.

    PubMed

    Yoshinaga, Keiji; Mimori, Koshi; Inoue, Hiroshi; Kamohara, Yukio; Yamashita, Keishi; Tanaka, Fumiaki; Mori, Masaki

    2008-09-01

    Activin A, a member of the transforming growth factor beta (TGF-beta) superfamily, is often overexpressed in solid carcinomas. We have previously reported that the expression of activin A is associated with lymph node metastasis in esophageal cancer. In the current study, our goal was to clarify the molecular mechanisms underlying the aggressive behavior of tumors expressing high levels of activin A. Using cDNA microarrays, the gene expression profile of a human esophageal carcinoma cell line (KYSE170) stably transfected with activin betaA (Act-betaA, a subunit of activin A) was compared with those of control human esophageal carcinoma cell lines. We found that expression of MMP-7 was higher in the Act-betaA transfectants than in the control cells. To reveal the mechanism of expression of MMP-7 mediated by activin A, we evaluated mRNA expression of MMP-7 and Act-betaA with or without activin A neutralizing antibody, using real-time PCR and Northern blot analysis. We also performed promoter analysis of the MMP-7 promoter and assessed c-Jun and Smad2/3 expression. MMP-7 expression in the transfectants was correlated with the level of Act-betaA expression and was reduced by activin A neutralizing antibody. The Act-betaA transfectants had higher MMP-7 promoter activity than control cells. MMP-7 promoter activity was not affected by mutation in the Smad binding site, while mutation of the AP-1 binding site did reduce activity. Moreover, the expression of c-Jun was increased in Act-betaA transfectants. These results indicate that activin A may modulate the expression of MMP-7 via AP-1 and not through Smad2/3. PMID:18695873

  2. Down-Regulation of NF-κB Target Genes by the AP-1 and STAT Complex during the Innate Immune Response in Drosophila

    PubMed Central

    Kim, Lark Kyun; Choi, Un Yung; Cho, Hwan Sung; Lee, Jung Seon; Lee, Wook-bin; Kim, Jihyun; Jeong, Kyoungsuk; Shim, Jaewon; Kim-Ha, Jeongsil; Kim, Young-Joon

    2007-01-01

    The activation of several transcription factors is required for the elimination of infectious pathogens via the innate immune response. The transcription factors NF-κB, AP-1, and STAT play major roles in the synthesis of immune effector molecules during innate immune responses. However, the fact that these immune responses can have cytotoxic effects requires their tight regulation to achieve restricted and transient activation, and mis-regulation of the damping process has pathological consequences. Here we show that AP-1 and STAT are themselves the major inhibitors responsible for damping NF-κB–mediated transcriptional activation during the innate immune response in Drosophila. As the levels of dAP-1 and Stat92E increase due to continuous immune signaling, they play a repressive role by forming a repressosome complex with the Drosophila HMG protein, Dsp1. The dAP-1–, Stat92E-, and Dsp1-containing complexes replace Relish at the promoters of diverse immune effector genes by binding to evolutionarily conserved cis-elements, and they recruit histone deacetylase to inhibit transcription. Reduction by mutation of dAP-1, Stat92E, or Dsp1 results in hyperactivation of Relish target genes and reduces the viability of bacterially infected flies despite more efficient pathogen clearance. These defects are rescued by reducing the Relish copy number, thus confirming that mis-regulation of Relish, not inadequate activation of dAP-1, Stat92E, or Dsp1 target genes, is responsible for the reduced survival of the mutants. We conclude that an inhibitory effect of AP-1 and STAT on NF-κB is required for properly balanced immune responses and appears to be evolutionarily conserved. PMID:17803358

  3. The euAP1 Protein MPF3 Represses MPF2 to Specify Floral Calyx Identity and Displays Crucial Roles in Chinese Lantern Development in Physalis[C][W

    PubMed Central

    Zhao, Jing; Tian, Ying; Zhang, Ji-Si; Zhao, Man; Gong, Pichang; Riss, Simone; Saedler, Rainer; He, Chaoying

    2013-01-01

    The Chinese lantern phenotype or inflated calyx syndrome (ICS) is a postfloral morphological novelty in Physalis. Its origin is associated with the heterotopic expression of the MADS box gene 2 from Physalis floridana (MPF2) in floral organs, yet the process underlying its identity remains elusive. Here, we show that MPF3, which is expressed specifically in floral tissues, encodes a core eudicot APETALA1-like (euAP1) MADS-domain protein. MPF3 was primarily localized to the nucleus, and it interacted with MPF2 and some floral MADS-domain proteins to selectively bind the CC-A-rich-GG (CArG) boxes in the MPF2 promoter. Downregulating MPF3 resulted in a dramatic elevation in MPF2 in the calyces and androecium, leading to enlarged and leaf-like floral calyces; however, the postfloral lantern was smaller and deformed. Starch accumulation in pollen was blocked. MPF3 MPF2 double knockdowns showed normal floral calyces and more mature pollen than those found in plants in which either MPF3 or MPF2 was downregulated. Therefore, MPF3 specifies calyx identity and regulates ICS formation and male fertility through interactions with MPF2/MPF2. Furthermore, both genes were found to activate Physalis floridana invertase gene 4 homolog, which encodes an invertase cleaving Suc, a putative key gene in sugar partitioning. The novel role of the MPF3-MPF2 regulatory circuit in male fertility is integral to the origin of ICS. Our results shed light on the evolution and development of ICS in Physalis and on the functional evolution of euAP1s in angiosperms. PMID:23792370

  4. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 {mu}1A (AP-1 mu1A)

    SciTech Connect

    Sawasdee, Nunghathai; Junking, Mutita; Ngaojanlar, Piengpaga; Sukomon, Nattakan; Ungsupravate, Duangporn; Limjindaporn, Thawornchai; Akkarapatumwong, Varaporn; Noisakran, Sansanee; Yenchitsomanus, Pa-thai

    2010-10-08

    Research highlights: {yields} Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. {yields} Adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) was firstly reported to interact with kAE1. {yields} The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. {yields} AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. {yields} AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl{sup -}) and bicarbonate (HCO{sub 3}{sup -}) exchange at the basolateral membrane of kidney {alpha}-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange at the basolateral membrane and failure of proton (H{sup +}) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1

  5. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts

    PubMed Central

    Zhang, Chao; Zhao, Mei; Zhang, Quan-Wu; Gao, Feng-Hou

    2016-01-01

    Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS) scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB)-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP)-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced. PMID:27486852

  6. The JNK/AP-1 pathway upregulates expression of the recycling endosome rab11a gene in B cells transformed by Theileria.

    PubMed

    Lizundia, Regina; Chaussepied, Marie; Naissant, Bernina; Masse, Guillemette X; Quevillon, Emmanuel; Michel, Fréderique; Monier, Solange; Weitzman, Jonathan B; Langsley, Gordon

    2007-08-01

    Lymphocyte transformation induced by Theileria parasites involves constitutive activation of c-Jun N-terminal kinase (JNK) and the AP-1 transcription factor. We found that JNK/AP-1 activation is associated with elevated levels of Rab11 protein in Theileria-transformed B cells. We show that AP-1 regulates rab11a promoter activity in B cells and that the induction of c-Jun activity in mouse fibroblasts also leads to increased transcription of the endogenous rab11a gene, consistent with it being an AP-1 target. Pharmacological inhibition of the JNK pathway reduced Rab11 protein levels and endosome recycling of transferrin receptor (TfR) and siRNA knockdown of JNK1 and Rab11A levels also reduced TfR surface expression. We propose a model, where activation of the JNK/AP-1 pathway during cell transformation might assure that the regulation of recycling endosomes is co-ordinated with cell-cycle progression. This might be achieved via the simultaneous upregulation of the cell cycle machinery (e.g. cyclin D1) and the recycling endosome regulators (e.g. Rab11A). PMID:17388783

  7. Inhibition of AP-1 by Sulforaphane Involves Interaction with Cysteine in the cFos DNA-Binding Domain; Implications for Chemoprevention of UVB-Induced Skin Cancer

    PubMed Central

    Dickinson, Sally E.; Melton, Tania F.; Olson, Erik R.; Zhang, Jian; Saboda, Kathylynn; Bowden, G. Timothy

    2009-01-01

    Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables which has been linked to decreased risk of certain cancers. Although the role of SFN in the induction of the transcription factor Nrf2 has been studied extensively, there is also evidence that inhibition of the transcription factor AP-1 may contribute to the chemopreventive properties of this compound. In this study, we show for the first time that SFN is effective at reducing the multiplicity and tumor burden of UVB-induced squamous cell carcinomas (SCCs) in a mouse model utilizing co-treatment with the compound and the carcinogen. We also show that SFN pretreatment is able to reduce the activity of AP-1 luciferase in the skin of transgenic mice after UVB. Chromatin immunoprecipitation analysis verified that a main constituent of the AP-1 dimer, cFos, is inhibited from binding to the AP-1 DNA binding site by SFN. EMSA analysis of nuclear proteins also show that SFN and diamide, both known to react with cysteine amino acids, are effective at inhibiting AP-1 from binding to its response element. Using truncated recombinant cFos and cJun we show that mutation of critical cysteines in the DNA binding domain of these proteins (Cys154 in cFos and Cys272 in cJun) results in loss of sensitivity to both SFN and diamide in EMSA analysis. Together, these data indicate that inhibition of AP-1 activity may be an important molecular mechanism in chemoprevention of SCC by SFN. PMID:19671797

  8. Targeting the microRNA-21/AP1 axis by 5-fluorouracil and pirarubicin in human hepatocellular carcinoma

    PubMed Central

    He, Xiaodong; Li, Jingjing; Guo, Weidong; Liu, Wei; Yu, Jia; Song, Wei; Dong, Lei; Wang, Fang; Yu, Shuangni; Zheng, Yi; Chen, Songsen; Kong, Yan; Liu, Changzheng

    2015-01-01

    MicroRNAs function as oncomiRs and tumor suppressors in diverse cancers. However, the utility of specific microRNAs in predicting the clinical benefit of chemotherapy has not been well-established. Here, we investigated the correlation between microRNA-21 expression and hepatic arterial infusion chemotherapy with 5-fluorouracil and pirarubicin (HAIC) for hepatocellular carcinoma (HCC). We found that HCC patients with low microRNA-21 levels in tumors tended to have a longer time to recurrence and disease-free survival. We demonstrated that microRNA-21 suppression in combination with 5-fluorouracil and pirarubicin treatment inhibited tumor growth in subcutaneous xenograft mice models. Mechanistically, the AP-1 and microRNA-21-mediated axis was verified to be a therapeutic target of cytotoxic drugs and deregulation of this axis led to an enhanced cell growth in HCC. Taken together, our findings demonstrate that microRNA-21 is a chemotherapy responsive microRNA and can serve as a prognostic biomarker for HCC patients undergoing HAIC. Targeting microRNA-21 enhances the effect of chemotherapeutic drugs, thereby suggesting that microRNA-21 suppression in combination with HAIC may be a novel approach for HCC treatment. PMID:25544773

  9. Proapoptotic RYBP interacts with FANK1 and induces tumor cell apoptosis through the AP-1 signaling pathway.

    PubMed

    Ma, Wen; Zhang, Xuan; Li, Meng; Ma, Xiaoli; Huang, Bingren; Chen, Hong; Chen, Deng

    2016-08-01

    Ring1 and YY1 Binding Protein (RYBP) induces tumor-specific cell apoptosis, but the underlying molecular mechanism has not been fully understood. Here we conducted a yeast two hybrid screen and identified FANK1 (Fibronectin type III and ankyrin repeat domains 1) as a novel RYBP-interacting protein. This interaction was confirmed by coimmunoprecipitation, GST pulldown and immunofluorescence assays. We mapped that the FNIII domain at the N-terminal of FANK1 binds to the Serine/Threonine-rich region at the C-terminal of RYBP. Further studies showed that overexpression of RYBP stabilized, whereas knockdown of RYBP by its specific shRNAs reduced, the expression of FANK1. Mechanistic studies revealed that RYBP inhibited the proteasome degradation of polyubiquitinated FANK1, thus prolonging the half-life of FANK1 protein. Functional studies indicated that RYBP activates FANK1-mediated activator protein 1 (AP-1) signaling pathway which contributes to tumor cell apoptosis. Taken together, our current study uncovered a new mechanism which RYBP utilizes to exert its pro-apoptotic activity in human tumor cells. PMID:27060496

  10. The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field.

    PubMed

    Jahangiri, Leila; Sharpe, Michka; Novikov, Natasha; González-Rosa, Juan Manuel; Borikova, Asya; Nevis, Kathleen; Paffett-Lugassy, Noelle; Zhao, Long; Adams, Meghan; Guner-Ataman, Burcu; Burns, Caroline E; Burns, C Geoffrey

    2016-01-01

    The vertebrate heart forms through successive phases of cardiomyocyte differentiation. Initially, cardiomyocytes derived from first heart field (FHF) progenitors assemble the linear heart tube. Thereafter, second heart field (SHF) progenitors differentiate into cardiomyocytes that are accreted to the poles of the heart tube over a well-defined developmental window. Although heart tube elongation deficiencies lead to life-threatening congenital heart defects, the variables controlling the initiation, rate and duration of myocardial accretion remain obscure. Here, we demonstrate that the AP-1 transcription factor, Fos-like antigen 2 (Fosl2), potentiates the rate of myocardial accretion from the zebrafish SHF. fosl2 mutants initiate accretion appropriately, but cardiomyocyte production is sluggish, resulting in a ventricular deficit coupled with an accumulation of SHF progenitors. Surprisingly, mutant embryos eventually correct the myocardial deficit by extending the accretion window. Overexpression of Fosl2 also compromises production of SHF-derived ventricular cardiomyocytes, a phenotype that is consistent with precocious depletion of the progenitor pool. Our data implicate Fosl2 in promoting the progenitor to cardiomyocyte transition and uncover the existence of regulatory mechanisms to ensure appropriate SHF-mediated cardiomyocyte contribution irrespective of embryonic stage. PMID:26732840

  11. AP-1/Fos-TGase2 Axis Mediates Wounding-induced Plasmodium falciparum Killing in Anopheles gambiae*

    PubMed Central

    Nsango, Sandrine E.; Pompon, Julien; Xie, Ting; Rademacher, Annika; Fraiture, Malou; Thoma, Martine; Awono-Ambene, Parfait H.; Moyou, Roger S.; Morlais, Isabelle; Levashina, Elena A.

    2013-01-01

    Anopheline mosquitoes are the only vectors of human malaria worldwide. It is now widely accepted that mosquito immune responses play a crucial role in restricting Plasmodium development within the vector; therefore, further dissection of the molecular mechanisms underlying these processes should inform new vector control strategies urgently needed to roll back the disease. Here, using genome-wide transcriptional profiling, bioinformatics, and functional gene analysis, we identify a new axis of mosquito resistance to monoclonal Plasmodium falciparum infections that includes the AP-1 transcription factor Fos and the transglutaminase 2 (TGase2), a cross-linking enzyme with known roles in wound responses. We demonstrate that Fos regulates induction of TGase2 expression after wounding but does not affect expression of the components of the well characterized complement-like system. Silencing of Fos or of TGase2 aborts the wounding-induced mosquito killing of P. falciparum. These results reveal multiple signaling pathways that are required for efficient Plasmodium killing in Anopheles gambiae. PMID:23592781

  12. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases. PMID:26276128

  13. Mutations in the gene encoding the Sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation.

    PubMed

    Tarpey, Patrick S; Stevens, Claire; Teague, Jon; Edkins, Sarah; O'Meara, Sarah; Avis, Tim; Barthorpe, Syd; Buck, Gemma; Butler, Adam; Cole, Jennifer; Dicks, Ed; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Hinton, Jonathon; Jones, David; Menzies, Andrew; Mironenko, Tatiana; Perry, Janet; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Tofts, Calli; Varian, Jennifer; West, Sofie; Widaa, Sara; Yates, Andy; Catford, Rachael; Butler, Julia; Mallya, Uma; Moon, Jenny; Luo, Ying; Dorkins, Huw; Thompson, Deborah; Easton, Douglas F; Wooster, Richard; Bobrow, Martin; Carpenter, Nancy; Simensen, Richard J; Schwartz, Charles E; Stevenson, Roger E; Turner, Gillian; Partington, Michael; Gecz, Jozef; Stratton, Michael R; Futreal, P Andrew; Raymond, F Lucy

    2006-12-01

    In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles. PMID:17186471

  14. Baicalein Attenuates Oxidative Stress-Induced Expression of Matrix Metalloproteinase-1 by Regulating the ERK/JNK/AP-1 Pathway in Human Keratinocytes

    PubMed Central

    Kim, Ki Cheon; Kang, Sam Sik; Lee, Jongsung; Park, Deokhoon; Hyun, Jin Won

    2012-01-01

    The matrix metalloproteinase (MMP) family is involved in the breakdown of the extracellular matrix during normal physiological processes such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes such as pathological aging, arthritis, and metastasis. Oxidative conditions generate reactive oxygen species (ROS) (e.g., hydrogen peroxide [H2O2]) in cells, which subsequently induce the synthesis of matrix metalloproteinase-1 (MMP-1). MMP-1, an interstitial collagenase, in turn stimulates an aging phenomenon. In this study, baicalein (5,6,7-trihydroxyflavone) was investigated for its in vitro activity against H2O2-induced damage using a human skin keratinocyte model. Baicalein pretreatment significantly inhibited H2O2-induced up-regulation of MMP-1 mRNA, MMP-1 protein expression and MMP-1 activity in cultured HaCaT keratinocytes. In addition, baicalein decreased the transcriptional activity of activator protein-1 (AP-1) and the expression of c-Fos and c-Jun, both components of the heterodimeric AP-1 transcription factor. Furthermore, baicalein reduced phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun-N-terminal kinase (JNK), which are upstream of the AP-1 transcription factor. The results of this study suggest that baicalein is involved in the inhibition of oxidative stress-induced expression of MMP-1 via inactivation of the ERK/JNK/AP-1 signaling pathway. PMID:24116275

  15. Growth inhibition of non-small cell lung cancer cells by AP-1 blockade using a cJun dominant-negative mutant.

    PubMed

    Shimizu, Y; Kinoshita, I; Kikuchi, J; Yamazaki, K; Nishimura, M; Birrer, M J; Dosaka-Akita, H

    2008-03-11

    cJun, a major constituent of AP-1 transcription factor transducing multiple mitogen growth signals, is frequently overexpressed in non-small cell lung cancers (NSCLCs). The purpose of this study is to determine the effects of AP-1 blockade on the growth of NSCLC cells using a cJun dominant-negative mutant, TAM67. Transiently transfected TAM67 inhibited AP-1 transcriptional activity in NSCLC cell lines, NCI-H1299 (H1299), A549 and NCI-H520 (H520). The colony-forming efficiency of H1299 and A549 was reduced by TAM67, while that of H520 was not. To elucidate the effects of TAM67 on the growth of H1299, we established H1299 clone cells that expressed TAM67 under the control of a doxycycline-inducible promoter. In the H1299 clone cells, the induced TAM67 inhibited anchorage-dependent growth by promoting G1 cell-cycle block, but not by apoptosis. The induced TAM67 decreased the expression of a cell-cycle regulatory protein, cyclin A. TAM67 also inhibited anchorage-independent growth of these cells. Furthermore, TAM67 reduced growth of established xenograft tumours from these cells in nude mice. These results suggest that AP-1 plays an essential role in the growth of at least some of NSCLC cells. PMID:18283312

  16. Identification of GATA2 and AP-1 activator elements within the enhancer VNTR occurring in intron 5 of the human SIRT3 gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human SIRT3 gene contains an intronic VNTR enhancer. A T > C transition occurring in the second repeat of each VNTR allele implies the presence/absence of a putative GATA binding motif. A partially overlapping AP-1 site, not affected by the transition, was also identified. Aims of the present study ...

  17. Collagen XVI Induces Expression of MMP9 via Modulation of AP-1 Transcription Factors and Facilitates Invasion of Oral Squamous Cell Carcinoma

    PubMed Central

    Bedal, Konstanze B.; Grässel, Susanne; Oefner, Peter J.; Reinders, Joerg; Reichert, Torsten E.; Bauer, Richard

    2014-01-01

    Collagen XVI belongs to the family of fibril-associated collagens with interrupted triple helices (FACIT). It is overexpressed during the progression of oral squamous cell carcinoma (OSCC). The present data show a strong collagen XVI-dependent induction of MMP9 and an increase in OSCC cell invasion. We found activated integrin-linked kinase (ILK) in a complex with kindlin-1 and activation of protein kinase B (PKB/Akt) to be responsible for MMP9 induction. Inhibition of the formation of focal adhesions reduced MMP9 expression. Moreover, collagen XVI overexpressing OSCC cell clones (COLXVI cell clones) transfected with vectors containing different MMP9 promoter fragments adjacent to a luciferase reporter revealed an increase in luciferase signal dependent on AP-1 binding sites. Deletion of the AP-1 binding site 98 bp upstream of the reported transcription start site and inhibition of AP-1 with Tanshinone IIA resulted in decreased MMP9 expression. The AP-1 subunit JunB showed differential expression between COLXVI cell clones and mock control cells. Additionally, mass spectrometric analysis of immunoprecipitates revealed that c-Fos interacted strongly with dyskerin in COLXVI cell clones compared to mock controls. PMID:24466237

  18. The Role of JNK and p38 MAPK Activities in UVA-Induced Signaling Pathways Leading to AP-1 Activation and c-Fos Expression1

    PubMed Central

    Silvers, Amy L; Bachelor, Michael A; Bowden, G Timothy

    2003-01-01

    Abstract To further delineate ultraviolet A (UVA) signaling pathways in the human keratinocyte cell line HaCaT, we examined the potential role of mitogen-activated protein kinases (MAPKs) in UVA-induced activator protein-1 (AP-1) transactivation and c-Fos expression. UVA-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK) proteins was detected immediately after irradiation and disappeared after approximately 2 hours. Conversely, phosphorylation of extracellular signal-regulated kinase was significantly inhibited for up to 1 hour post-UVA irradiation. To examine the role of p38 and JNK MAPKs in UVA-induced AP-1 and c-fos transactivations, the selective pharmacologic MAPK inhibitors, SB202190 (p38 inhibitor) and SP600125 (JNK inhibitor), were used to independently treat stably transfected HaCaT cells in luciferase reporter assays. Both SB202190 and SP600125 dose-dependently inhibited UVA-induced AP-1 and c-fos transactivations. SB202190 (0.25–0.5 µM) and SP600125 (62–125 nM) treatments also primarily inhibited UVA-induced c-Fos expression. These results demonstrated that activation of both JNK and p38 play critical role in UVA-mediated AP-1 transactivation and c-Fos expression in these human keratinocyte cells. Targeted inhibition of these MAPKs with their selective pharmacologic inhibitors may be effective chemopreventive strategies for UVA-induced nonmelanoma skin cancer. PMID:14511403

  19. AP-1-mediated chromatin looping regulates ZEB2 transcription: new insights into TNFα-induced epithelial-mesenchymal transition in triple-negative breast cancer.

    PubMed

    Qiao, Yichun; Shiue, Chiou-Nan; Zhu, Jian; Zhuang, Ting; Jonsson, Philip; Wright, Anthony P H; Zhao, Chunyan; Dahlman-Wright, Karin

    2015-04-10

    The molecular determinants of malignant cell behaviour in triple-negative breast cancer (TNBC) are poorly understood. Recent studies have shown that regulators of epithelial-mesenchymal transition (EMT) are potential therapeutic targets for TNBC. In this study, we demonstrate that the inflammatory cytokine TNFα induces EMT in TNBC cells via activation of AP-1 signaling and subsequently induces expression of the EMT regulator ZEB2. We also show that TNFα activates both the PI3K/Akt and MAPK/ERK pathways, which act upstream of AP-1. We further investigated in detail AP-1 regulation of ZEB2 expression. We show that two ZEB2 transcripts derived from distinct promoters are both expressed in breast cancer cell lines and breast tumor samples. Using the chromosome conformation capture assay, we demonstrate that AP-1, when activated by TNFα, binds to a site in promoter 1b of the ZEB2 gene where it regulates the expression of both promoter 1b and 1a, the latter via mediating long range chromatin interactions. Overall, this work provides a plausible mechanism for inflammation-induced metastatic potential in TNBC, involving a novel regulatory mechanism governing ZEB2 isoform expression. PMID:25762639

  20. Theoretical prediction of the relationship between phenol function and COX-2/AP-1 inhibition for ferulic acid-related compounds.

    PubMed

    Murakami, Yukio; Ito, Shigeru; Atsumi, Toshiko; Fujisawa, Seiichiro

    2005-01-01

    Ferulic acid-related compounds possess antioxidant activity. Dehydrodiisoeugenol and ferulic acid dimer (bis-FA), but not the parent monomers isoeugenol and ferulic acid, inhibit lipopolysaccharide (LPS)-induced cyclooxygenase-2 (COX-2) gene expression in RAW 264.7 cells. To clarify the mechanism of their inhibitory effects on COX-2 expression, the phenolic O-H bond dissociation enthalpy (BDE) and ionization potential (IP) of 8 ferulic acid-related compounds were calculated by both semi-empirical molecular orbital (AM1, PM3) and ab initio (3-21G* 6-31G*) and density function theory (DFT) (B3LYP) methods. COX-2 inhibition appeared in compounds with phenolic O-H BDE higher than 85.76 kcal/mol, as calculated by the density function theory (DFT) approach. The phenolic O-H BDEs of the most potent compounds, dehydrodiisoeugenol and bis-FA, were 85.99 and 85.76 kcal/mol, respectively. No causal relationship between COX-2 inhibition and IP was found. Neither dehydrodiisoeugenol nor bis-FA possessed significant scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The NSAID-like activity of dehydrodiisoeugenol and bis-FA appears to be related to their phenol function. Binding of activator protein-1 (AP-1) to the 12-tetradecanoylphorbol-13-acetate-responsive element (TRE) sequence in LPS-stimulated cells was inhibited by bis-FA at 1 microM and dehydrodiisoeugenol at 0.1 microM, but not by the parent monomers isoeugenol and ferulic acid. PMID:16277019

  1. Diallyl disulfide and diallyl trisulfide up-regulate the expression of the pi class of glutathione S-transferase via an AP-1-dependent pathway.

    PubMed

    Tsai, Chia-Wen; Chen, Haw-Wen; Yang, Jaw-Ji; Sheen, Lee-Yan; Lii, Chong-Kuei

    2007-02-01

    Garlic organosulfur compounds are recognized as potential chemopreventive compounds. This protection is related to the induction of phase II detoxification enzymes. We previously reported that diallyl disulfide (DADS) and diallyl trisulfide (DATS) up-regulate the gene expression of the pi class of glutathione S-transferase (GSTP) and that an enhancer element named GPE I is required for this induction. In the present study, we further investigated the signal pathway involved in DADS and DATS up-regulation of this detoxification enzyme in Clone 9 cells. Cells were cultured with 25-200 micromol/L of DADS or DATS for 24 h. Western and Northern blots showed that both garlic allyl sulfides concentration dependently induced GSTP protein and mRNA expression, respectively. Changes in GST activity toward ethacrynic acid were consistent with the increase in GSTP expression (P < 0.05). Electromobility gel shift assay showed that the DNA binding activity of nuclear activator protein-1 (AP-1) is concentration-dependently increased in the presence of DADS and DATS as compared with that of the control cells. The phosphorylation of c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), but not of p38, was stimulated in the presence of both garlic allyl sulfides. Pretreatment with SP600125 and PD98059, which are JNK and ERK inhibitors, respectively, abolished the increase in AP-1-DNA binding activity and also the induction of GSTP protein by either allyl sulfide. Our results indicate that the effectiveness of DADS and DATS on GSTP expression is likely related to the JNK-AP-1 and ERK-AP-1 signaling pathways and, thus, that DADS and DATS enhance the binding of AP-1 to GPE I. PMID:17263507

  2. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 μ1A (AP-1 mu1A).

    PubMed

    Sawasdee, Nunghathai; Junking, Mutita; Ngaojanlar, Piengpaga; Sukomon, Nattakan; Ungsupravate, Duangporn; Limjindaporn, Thawornchai; Akkarapatumwong, Varaporn; Noisakran, Sansanee; Yenchitsomanus, Pa-Thai

    2010-10-01

    Kidney anion exchanger 1 (kAE1) mediates chloride (Cl⁻) and bicarbonate (HCO₃⁻) exchange at the basolateral membrane of kidney α-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl⁻/HCO₃⁻ exchange at the basolateral membrane and failure of proton (H+) secretion at the apical membrane, causing a kidney disease--distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 μ1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXØ motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1 trafficking of kidney α-intercalated cells. PMID:20833140

  3. CARMA1- and MyD88-dependent activation of Jun/ATF-type AP-1 complexes is a hallmark of ABC diffuse large B-cell lymphomas

    PubMed Central

    Juilland, Mélanie; Gonzalez, Montserrat; Erdmann, Tabea; Banz, Yara; Jevnikar, Zala; Hailfinger, Stephan; Tzankov, Alexandar; Grau, Michael; Lenz, Georg; Novak, Urban

    2016-01-01

    A hallmark of the diffuse large B-cell lymphoma (DLBCL) of the activated B-cell (ABC) type, a molecular subtype characterized by adverse outcome, is constitutive activation of the transcription factor nuclear factor–κB (NF-κB), which controls expression of genes promoting cellular survival and proliferation. Much less, however, is known about the role of the transcription factor activator protein-1 (AP-1) in ABC DLBCL. Here, we show that AP-1, like NF-κB, was controlled by constitutive activation of the B-cell receptor signaling component caspase recruitment domain-containing membrane-associated guanylate kinase 1 (CARMA1) and/or the Toll-like receptor signaling component myeloid differentiation primary response gene 88 (MyD88) in ABC DLBCL cell lines. In contrast to germinal center (GC) B-cell (GCB) DLBCL, ABC DLBCL cell lines expressed high levels of the AP-1 family members c-Jun, JunB, and JunD, which formed heterodimeric complexes with the AP-1 family members activating transcription factor (ATF) 2, ATF3, and ATF7. Inhibition of these complexes by a dominant-negative approach led to impaired growth of a majority of ABC DLBCL cell lines. Individual silencing of c-Jun, ATF2, or ATF3 decreased cellular survival and revealed c-Jun/ATF2-dependent control of ATF3 expression. As a consequence, ATF3 expression was much higher in ABC vs GCB DLBCL cell lines. Samples derived from DLBCL patients showed a clear trend toward high and nuclear ATF3 expression in nodal DLBCL of the non-GC or ABC subtype. These findings identify the activation of AP-1 complexes of the Jun/ATF-type as an important element controlling the growth of ABC DLBCL. PMID:26747248

  4. A CRE/AP-1-Like Motif Is Essential for Induced Syncytin-2 Expression and Fusion in Human Trophoblast-Like Model

    PubMed Central

    Vargas, Amandine; Rassart, Éric; Barbeau, Benoit

    2015-01-01

    Syncytin-2 is encoded by the envelope gene of Endogenous Retrovirus-FRD (ERVFRD-1) and plays a critical role in fusion of placental trophoblasts leading to the formation of the multinucleated syncytiotrophoblast. Its expression is consequently regulated in a strict manner. In the present study, we have identified a forskolin-responsive region located between positions -300 to -150 in the Syncytin-2 promoter region. This 150 bp region in the context of a minimal promoter mediated an 80-fold induction of promoter activity following forskolin stimulation. EMSA analyses with competition experiments with nuclear extracts from forskolin-stimulated BeWo cells demonstrated that the -211 to -177 region specifically bound two forskolin-induced complexes, one of them containing a CRE/AP-1-like motif. Site-directed mutagenesis of the CRE/AP-1 binding site in the context of the Syncytin-2 promoter or a heterologous promoter showed that this motif was mostly essential for forskolin-induced promoter activity. Transfection experiments with dominant negative mutants and constitutively activated CREB expression vectors in addition to Chromatin Immunoprecipitation suggested that a CREB family member, CREB2 was binding and acting through the CRE/AP-1 motif. We further demonstrated the binding of JunD to this same motif. Similar to forskolin and soluble cAMP, CREB2 and JunD overexpression induced Syncytin-2 promoter activity in a CRE/AP-1-dependent manner and Syncytin-2 expression. In addition, BeWo cell fusion was induced by both CREB2 and JunD overexpression, while being repressed following silencing of either gene. These results thereby demonstrate that induced expression of Syncytin-2 is highly dependent on the interaction of bZIP-containing transcription factors to a CRE/AP-1 motif and that this element is important for the regulation of Syncytin-2 expression, which results in the formation of the peripheral syncytiotrophoblast layer. PMID:25781974

  5. Homology, homoplasy, novelty, and behavior.

    PubMed

    Hall, Brian K

    2013-01-01

    Richard Owen coined the modern definition of homology in 1843. Owen's conception of homology was pre-evolutionary, nontransformative (homology maintained basic plans or archetypes), and applied to the fully formed structures of animals. I sketch out the transition to an evolutionary approach to homology in which all classes of similarity are interpreted against the single branching tree of life, and outline the evidence for the application of homology across all levels and features of the biological hierarchy, including behavior. Owen contrasted homology with analogy. While this is not incorrect it is a pre-evolutionary contrast. Lankester [Lankester [1870] Journal of Natural History, 6 (31), 34-43] proposed homoplasy as the class of homology applicable to features formed by independent evolution. Today we identify homology, convergence, parallelism, and novelties as patterns of evolutionary change. A central issue in homology [Owen [1843] Lectures on comparative anatomy and physiology of the invertebrate animals, delivered at the Royal College of Surgeons in 1843. London: Longman, Brown, Green & Longmans] has been whether homology of features-the "same" portion of the brain in different species, for example-depends upon those features sharing common developmental pathways. Owen did not require this criterion, although he observed that homologues often do share developmental pathways (and we now know, often share gene pathways). A similar situation has been explored in the study of behavior, especially whether behaviors must share a common structural, developmental, neural, or genetic basis to be classified as homologous. However, and importantly, development and genes evolve. As shown with both theory and examples, morphological and behavioral features of the phenotype can be homologized as structural or behavioral homologues, respectively, even when their developmental or genetic bases differ (are not homologous). PMID:22711423

  6. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: evaluation of their antimicrobial and anticancer activities.

    PubMed

    Guo, Xiaoxiao; Ma, Chengbang; Du, Qiang; Wei, Ran; Wang, Lei; Zhou, Mei; Chen, Tianbao; Shaw, Chris

    2013-09-01

    Here we report two novel 17-mer amidated linear peptides (TsAP-1 and TsAP-2) whose structures were deduced from cDNAs cloned from a venom-derived cDNA library of the Brazilian yellow scorpion, Tityus serrulatus. Both mature peptides were structurally-characterised following their location in chromatographic fractions of venom and synthetic replicates of each were subjected to a range of biological assays. The peptides were each active against model test micro-organisms but with different potencies. TsAP-1 was of low potency against all three test organisms (MICs 120-160 μM), whereas TsAP-2 was of high potency against the Gram-positive bacterium, Staphylococcus aureus (MIC 5 μM) and the yeast, Candida albicans (10 μM). Haemolytic activity of TsAP-1 was low (4% at 160 μM) and in contrast, that of TsAP-2 was considerably higher (18% at 20 μM). Substitution of four neutral amino acid residues with Lys residues in each peptide had dramatic effects on their antimicrobial potencies and haemolytic activities, particularly those of TsAP-1. The MICs of the enhanced cationic analogue (TsAP-S1) were 2.5 μM for S. aureus/C. albicans and 5 μM for E. coli but with an associated large increase in haemolytic activity (30% at 5 μM). The same Lys residue substitutions in TsAP-2 produced a dramatic effect on its MIC for E. coli lowering this from >320 μM to 5 μM. TsAP-1 was ineffective against three of the five human cancer cell lines tested while TsAP-2 inhibited the growth of all five. Lys residue substitution of both peptides enhanced their potency against all five cell lines with TsAp-S2 being the most potent with IC50 values ranging between 0.83 and 2.0 μM. TsAP-1 and TsAP-2 are novel scorpion venom peptides with broad spectrum antimicrobial and anticancer cell activities the potencies of which can be significantly enhanced by increasing their cationicity. PMID:23770440

  7. Silibinin suppresses PMA-induced MMP-9 expression by blocking the AP-1 activation via MAPK signaling pathways in MCF-7 human breast carcinoma cells.

    PubMed

    Lee, Syng-Ook; Jeong, Yun-Jeong; Im, Hyo Gwon; Kim, Cheorl-Ho; Chang, Young-Chae; Lee, In-Seon

    2007-03-01

    Matrix metalloproteinase-9 (MMP-9) plays an important role in the invasion and metastasis of cancer cells. In this study, we examined the inhibitory effect of silibinin, a flavonoid antioxidant from milk thistle (Silybum marianum L.) on PMA-induced MMP-9 expression in MCF-7 human breast carcinoma cells. Silibinin significantly and selectively suppressed PMA-induced MMP-9 expression in MCF-7. Silibinin has been found to inhibit PMA-induced MMP-9 gene transcriptional activity by blocking the activation of AP-1 via MAPK signaling pathways. Moreover, the Matrigel invasion assay showed that silibinin reduces PMA-induced invasion of MCF-7 cells. These results suggest that silibinin represents a potential anti-metastatic agent suppressing PMA-induced cancer cell invasion through the specific inhibition of AP-1-dependent MMP-9 gene expression. PMID:17214970

  8. Sargahydroquinoic acid inhibits TNFα-induced AP-1 and NF-κB signaling in HaCaT cells through PPARα activation

    SciTech Connect

    Jeon, Youngsic; Jung, Yujung; Kim, Min Cheol; Kwon, Hak Cheol; Kang, Ki Sung; Kim, Yong Kee; Kim, Su-Nam

    2014-08-08

    Highlights: • SHQA increases PPARα/γ transactivation and inhibits MMP-2/-9 expression. • SHQA inhibits TNFα-induced AP-1 and MAPK signaling. • SHQA inhibits TNFα-induced p65 translocation and IκBα phosphorylation. • SHQA inhibits TNFα-induced AP-1 and NF-κB signaling via PPARα. - Abstract: Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, their ligands are targets for the treatment of various skin disorders, such as photo-aging and chronological aging of skin. Intensive studies have revealed that PPARα/γ functions in photo-aging and age-related inflammation by regulating matrix metalloproteinases (MMPs) via activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). However, the detailed mechanism of PPARα/γ’s role in skin aging has not yet been elucidated. In this study, we confirmed that sargahydroquinoic acid (SHQA) as a PPARα/γ ligand significantly decreased Tumor Necrosis Factor-alpha (TNFα)-induced MMP-2/-9 expression by downregulating TNFα-induced transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in HaCaT human epidermal keratinocyte cells. Treatment of cells with SHQA and GW6471 (PPARα antagonist) not bisphenol A diglycidyl ether (PPARγ antagonists), reversed the effect on TNFα-induced inflammatory signaling pathway activation. Taken together, our data suggest that SHQA inhibit TNFα-induced MMP-2/-9 expression and age-related inflammation by suppressing AP-1 and NF-κB pathway via PPARα.

  9. Insulin-stimulated expression of c-fos, fra1 and c-jun accompanies the activation of the activator protein-1 (AP-1) transcriptional complex.

    PubMed Central

    Griffiths, M R; Black, E J; Culbert, A A; Dickens, M; Shaw, P E; Gillespie, D A; Tavaré, J M

    1998-01-01

    The activator protein-1 (AP-1) transcriptional complex is made up of members of the Fos (c-Fos, FosB, Fra1, Fra2) and Jun (c-Jun, JunB, JunD) families and is stimulated by insulin in several cell types. The mechanism by which insulin activates this complex is not well understood but it is dependent on the activation of the Erk1 and Erk2 isoforms of mitogen-activated protein kinases. In the current study we show that the AP-1 complex isolated from insulin-stimulated cells contained c-Fos, Fra1, c-Jun and JunB. The activation of the AP-1 complex by insulin was accompanied by (i) a transient increase in c-fos expression, and the transactivation of the ternary complex factors Elk1 and Sap1a, in an Erk1/Erk2-dependent fashion; (ii) a substantial increase in the expression of Fra1 protein and mRNA, which was preceded by a transient decrease in its electrophoretic mobility upon SDS/PAGE, indicative of phosphorylation; and (iii) a sustained increase in c-jun expression without increasing c-Jun phosphorylation on serines 63 and 73 or activation of the stress-activated kinase JNK/SAPK. In conclusion, insulin appears to stimulate the activity of the AP-1 complex primarily through a change in the abundance of the components of this complex, although there may be an additional role for Fra1 phosphorylation. PMID:9742208

  10. Alpha-melanocyte-stimulating hormone modulates activation of NF-kappa B and AP-1 and secretion of interleukin-8 in human dermal fibroblasts.

    PubMed

    Böhm, M; Schulte, U; Kalden, H; Luger, T A

    1999-10-20

    Alpha-melanocyte-stimulating hormone (alpha-MSH) has evolved as a mediator of diverse biological activities in an ever-growing number of non-melanocytic cell types. One mechanism by which alpha-MSH exerts its effects is modulation of AP-1 and NF-kappa B. These two transcription factors also play an important role in fibroblasts, in extracellular matrix composition, and in cytokine expression. By use of electric mobility shift assays, we demonstrate that alpha-MSH (10(-6) to 10(-14) M) activates AP-1 in human dermal fibroblasts, whereas coincubation with interleukin-1 beta (IL-1 beta) results in suppression of its activation. alpha-MSH also induces activation of NF-kappa B but does not modulate DNA binding on costimulation with IL-1 beta. Since AP-1 and NF-kappa B are key elements in controlling interleukin-8 (IL-8) transcription, human fibroblasts were treated with alpha-MSH and IL-1 beta for 24 hours, and cytokine levels in the supernatants were measured by ELISA. alpha-MSH alone had little effect, whereas coincubation with IL-1 beta led to marked downregulation of IL-8 secretion (at most 288 +/- 152 ng/mL) when compared to treatment with IL-1 beta alone (919 +/- 157 ng/mL). Our results indicate that alpha-MSH exerts modulatory effects on the activation of NF-kappa B and AP-1, and that it can regulate chemokine secretion in human dermal fibroblasts. These effects of alpha-MSH may have important regulatory functions in extracellular matrix composition, wound healing, or angiogenesis. PMID:10816661

  11. AP-1 Inhibition by SR 11302 Protects Human Hepatoma HepG2 Cells from Bile Acid-Induced Cytotoxicity by Restoring the NOS-3 Expression

    PubMed Central

    González-Rubio, Sandra; Linares, Clara I.; Aguilar-Melero, Patricia; Rodríguez-Perálvarez, Manuel; Montero-Álvarez, José L.

    2016-01-01

    The harmful effects of bile acid accumulation occurring during cholestatic liver diseases have been associated with oxidative stress increase and endothelial nitric oxide synthase (NOS-3) expression decrease in liver cells. We have previously reported that glycochenodeoxycholic acid (GCDCA) down-regulates gene expression by increasing SP1 binding to the NOS-3 promoter in an oxidative stress dependent manner. In the present study, we aimed to investigate the role of transcription factor (TF) AP-1 on the NOS-3 deregulation during GCDCA-induced cholestasis. The cytotoxic response to GCDCA was characterized by 1) the increased expression and activation of TFs cJun and c-Fos; 2) a higher binding capability of these at position -666 of the NOS-3 promoter; 3) a decrease of the transcriptional activity of the promoter and the expression and activity of NOS-3; and 4) the expression increase of cyclin D1. Specific inhibition of AP-1 by the retinoid SR 11302 counteracted the cytotoxic effects induced by GCDCA while promoting NOS-3 expression recovery and cyclin D1 reduction. NOS activity inhibition by L-NAME inhibited the protective effect of SR 11302. Inducible NOS isoform was no detected in this experimental model of cholestasis. Our data provide direct evidence for the involvement of AP-1 in the NOS-3 expression regulation during cholestasis and define a critical role for NOS-3 in regulating the expression of cyclin D1 during the cell damage induced by bile acids. AP-1 appears as a potential therapeutic target in cholestatic liver diseases given its role as a transcriptional repressor of NOS-3. PMID:27490694

  12. Interleukin 1β and tumor necrosis factor α promote hFOB1.19 cell viability via activating AP1

    PubMed Central

    Ying, Hongliang; Li, Qiang; Zhao, Changfu

    2016-01-01

    Bone trauma healing is a complex physiological process, which may involve the function of various inflammatory cytokines. Our study aimed to explore the roles of inflammatory cytokines in bone trauma healing and reveal the potential mechanism. Concentrations of interleukin (IL)-6, IL-1β and tumor necrosis factor alpha (TNF-α) in peripheral blood serum of bone trauma patients after surgery were determined by ELISA. The human osteoblast hFOB1.19 cell line was cultured to determine the effect of these cytokines in cell viability using MTT assay. In addition, luciferase reporter assay was performed to investigate the activator protein 1 (AP1) transcriptional activity, and small interfering RNA was transfected to inhibit FOS, a component of AP1 molecule. IL-6, IL-1β and TNF-α exhibited higher level in patients with more severe bone traumas after surgery. IL-1β and TNF-α, but not IL-6, induced a significant increase of hFOB1.19 viability after three days of treatment (P < 0.05). IL-1β and TNF-α could activate AP1 transcriptional activity in hFOB1.19 cells (P < 0.001), but the activation was inhibited when cells were pretreated with inhibitor of JNKs, SP600125 (P < 0.001). Besides, the effect of IL-1β and TNF-α on promoting viability was significantly inhibited after knockdown of FOS. These findings indicated that IL-1β and TNF-α played an important role in promoting osteoblast viability via the activation of AP1 transcriptional activity, which was likely to involve the JNK/MAPK signaling pathway. Modulating inflammatory cytokines is a potential strategy for improving the outcome of bone trauma healing. PMID:27347349

  13. Baicalin induces NAD(P)H:quinone reductase through the transactivation of AP-1 and NF-kappaB in Hepa 1c1c7 cells.

    PubMed

    Park, H J; Lee, Y W; Lee, S K

    2004-12-01

    Baicalin (5,6,7-trihydroxyflavone-7-O-D-glucuronic acid, BA) is a flavone isolated from Scutellariae radix. In our previous report BA was a major active principle of NAD(P)H:quinone reductase (QR) induction mediated by Scutellariae radix extract and the induction was related to the transcriptional activation of the QR gene in Hepa 1c1c7 cells. The primary aim of the present study was to determine the molecular mechanism of QR gene expression by baicalin. The antioxidant or electrophile response element (ARE/EpRE) found at the 5'-flanking region of phase II genes may play an important role in mediating their induction by xenobiotics, including chemopreventive agents. In accordance, to study the molecular mechanisms of QR gene expression by BA, electrophoretic mobility shift assay (EMSA), using nuclear extracts of treated and untreated cells against ARE, activator protein-1 (AP-1) or nuclear factor-kappaB (NF-kappaB) binding sites, showed that BA increased the binding levels of the parameters in a dose-dependent manner. Further, Hepa 1c1c7 cells were transiently transfected with a plasmid containing three copies of the AP-1- or NF-kappaB-binding site linked to a chloramphenicol acetyltransferase (CAT) reporter gene. Using the CAT reporter gene assay, a dose-dependent transactivation of AP-1- or NF-kappaB-mediated CAT expression was observed with the treatment of BA. These results clearly indicate that BA induces the QR gene expression and activity by transactivation of AP-1 and NF-kappaB, and thus BA may be considered as a potential cancer chemopreventive agent with the induction of phase II detoxification enzyme. PMID:15548947

  14. Activation of AP-1 and nuclear factor-kappaB transcription factors is involved in hydrogen peroxide-induced apoptotic cell death of oligodendrocytes.

    PubMed

    Vollgraf, U; Wegner, M; Richter-Landsberg, C

    1999-12-01

    H2O2-induced onset and execution of programmed cell death in mature rat brain oligodendrocytes in culture is accompanied by the induction and nuclear translocation of the transcription factors AP-1 and nuclear factor-kappaB (NF-kappaB), both of which have been discussed as regulators of cell death and survival. Supershift analysis of nuclear extracts indicated that the AP-1 complex consists of c-Jun, c-Fos, JunD, and possibly JunB proteins, and that the NF-kappaB complex contains p50, p65, and c-Rel proteins. The first signs of DNA fragmentation were seen already during the first hour after the treatment. DNA fragmentation could be prevented by the antioxidants pyrrolidine dithiocarbamate and vitamin E, by the nuclease inhibitor aurintricarboxylic acid, and by preincubation with the iron chelator deferoxamine (DFO). Additionally, DFO protected oligodendrocytes from H2O2-induced cytotoxic effects as assessed by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, and suppressed the formation of free radicals. DFO alone led to a slight increase and in combination with H2O2 synergistically induced DNA-binding activities of AP-1 and NF-kappaB in oligodendrocytes. Our data suggest that although low levels of H2O2 directly activate AP-1 and NF-kappaB and might contribute to signal transduction pathways promoting cell survival, the formation and action of hydroxyl radicals promote cell death mechanisms that can be attenuated by the iron chelator DFO. PMID:10582611

  15. The nuclear factor YY1 suppresses the human gamma interferon promoter through two mechanisms: inhibition of AP1 binding and activation of a silencer element.

    PubMed Central

    Ye, J; Cippitelli, M; Dorman, L; Ortaldo, J R; Young, H A

    1996-01-01

    Our group has previously reported that the nuclear factor Yin-Yang 1 (YY1), a ubiquitous DNA-binding protein, is able to interact with a silencer element (BE) in the gamma interferon (IFN-gamma) promoter region. In this study, we demonstrated that YY1 can directly inhibit the activity of the IFN-gamma promoter by interacting with multiple sites in the promoter. In cotransfection assays, a YY1 expression vector significantly inhibited IFN-gamma promoter activity. Mutation of the YY1 binding site in the native IFN-gamma promoter was associated with an increase in the IFN-gamma promoter activity. Analysis of the DNA sequences of the IFN-gamma promoter revealed a second functional YY1 binding site (BED) that overlaps with an AP1 binding site. In this element, AP1 enhancer activity was suppressed by YY1. Since the nuclear level of YY1 does not change upon cell activation, our data support a model that the nuclear factor YY1 acts to suppress basal IFN-gamma transcription by interacting with the promoter at multiple DNA binding sites. This repression can occur through two mechanisms: (i) cooperation with an as-yet-unidentified AP2-like repressor protein and (ii) competition for DNA binding with the transactivating factor AP1. PMID:8756632

  16. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    SciTech Connect

    Zhang Dongyun; Li Jingxia; Gao Jimin; Huang Chuanshu

    2009-02-15

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure.

  17. A novel tribasic Golgi export signal directs cargo protein interaction with activated Rab11 and AP-1–dependent Golgi–plasma membrane trafficking

    PubMed Central

    Parmar, Hirendrasinh B.; Duncan, Roy

    2016-01-01

    The reovirus fusion–associated small transmembrane (FAST) proteins comprise a unique family of viral membrane fusion proteins dedicated to inducing cell–cell fusion. We recently reported that a polybasic motif (PBM) in the cytosolic tail of reptilian reovirus p14 FAST protein functions as a novel tribasic Golgi export signal. Using coimmunoprecipitation and fluorescence resonance energy transfer (FRET) assays, we now show the PBM directs interaction of p14 with GTP-Rab11. Overexpression of dominant-negative Rab11 and RNA interference knockdown of endogenous Rab11 inhibited p14 plasma membrane trafficking and resulted in p14 accumulation in the Golgi complex. This is the first example of Golgi export to the plasma membrane that is dependent on the interaction of membrane protein cargo with activated Rab11. RNA interference and immunofluorescence microscopy further revealed that p14 Golgi export is dependent on AP-1 (but not AP-3 or AP-4) and that Rab11 and AP-1 both colocalize with p14 at the TGN. Together these results imply the PBM mediates interactions of p14 with activated Rab11 at the TGN, resulting in p14 sorting into AP1-coated vesicles for anterograde TGN–plasma membrane transport. PMID:26941330

  18. A novel tribasic Golgi export signal directs cargo protein interaction with activated Rab11 and AP-1-dependent Golgi-plasma membrane trafficking.

    PubMed

    Parmar, Hirendrasinh B; Duncan, Roy

    2016-04-15

    The reovirus fusion-associated small transmembrane (FAST) proteins comprise a unique family of viral membrane fusion proteins dedicated to inducing cell-cell fusion. We recently reported that a polybasic motif (PBM) in the cytosolic tail of reptilian reovirus p14 FAST protein functions as a novel tribasic Golgi export signal. Using coimmunoprecipitation and fluorescence resonance energy transfer (FRET) assays, we now show the PBM directs interaction of p14 with GTP-Rab11. Overexpression of dominant-negative Rab11 and RNA interference knockdown of endogenous Rab11 inhibited p14 plasma membrane trafficking and resulted in p14 accumulation in the Golgi complex. This is the first example of Golgi export to the plasma membrane that is dependent on the interaction of membrane protein cargo with activated Rab11. RNA interference and immunofluorescence microscopy further revealed that p14 Golgi export is dependent on AP-1 (but not AP-3 or AP-4) and that Rab11 and AP-1 both colocalize with p14 at the TGN. Together these results imply the PBM mediates interactions of p14 with activated Rab11 at the TGN, resulting in p14 sorting into AP1-coated vesicles for anterograde TGN-plasma membrane transport. PMID:26941330

  19. Rhizoma Coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NFκB-Dependent Pathway

    PubMed Central

    Remppis, Andrew; Bea, Florian; Greten, Henry Johannes; Buttler, Annette; Wang, Hongjie; Zhou, Qianxing; Preusch, Michael R.; Enk, Ronny; Ehehalt, Robert; Katus, Hugo; Blessing, Erwin

    2010-01-01

    Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFκB was analyzed in nuclear extracts, secretion of MCP-1/CCL2 was measured in supernatants. Results. Incubation with Rhizoma coptidis and berberine strongly inhibited LPS-induced monocyte chemoattractant protein (MCP)-1 production in RAW cells. Activation of the transcription factors AP-1 and NFκB was inhibited by Rhizoma coptidis in a dose- and time-dependent fashion. Conclusions. Rhizoma coptidis extract inhibits LPS-induced MCP-1/CCL2 production in vitro via an AP-1 and NFκB-dependent pathway. Anti-inflammatory action of the extract is mediated mainly by its alkaloid compound berberine. PMID:20652055

  20. AP-1 Transcription Factors c-FOS and c-JUN Mediate GnRH-Induced Cadherin-11 Expression and Trophoblast Cell Invasion.

    PubMed

    Peng, Bo; Zhu, Hua; Ma, Liyang; Wang, Yan-Ling; Klausen, Christian; Leung, Peter C K

    2015-06-01

    GnRH is expressed in first-trimester human placenta and increases cell invasion in extravillous cytotrophoblasts (EVTs). Invasive phenotypes have been reported to be regulated by transcription factor activator protein 1 (AP-1) and mesenchymal cadherin-11. The aim of our study was to investigate the roles of AP-1 components (c-FOS/c-JUN) and cadherin-11 in GnRH-induced cell invasion in human EVT cells. Phosphorylated c-FOS and phosphorylated c-JUN were detected in the cell column regions of human first-trimester placental villi by immunohistochemistry. GnRH treatment increased c-FOS, c-JUN, and cadherin-11 mRNA and protein levels in immortalized EVT (HTR-8/SVneo) cells. Moreover, GnRH treatment induced c-FOS and c-JUN protein phosphorylation and nuclear accumulation. Pretreatment with antide, a GnRH antagonist, attenuated GnRH-induced cadherin-11 expression. Importantly, basal and GnRH-induced cadherin-11 expression and cell invasion were reduced by small interfering RNA-mediated knockdown of c-FOS, c-JUN, and cadherin-11 in HTR-8/SVneo cells. Our results suggest that GnRH induces the expression and phosphorylation of the AP-1 transcription factors c-FOS and c-JUN in trophoblast cells, which contributes to GnRH-induced elevation of cadherin-11 expression and cell invasion. PMID:25794160

  1. An AP-1 binding site in the enhancer/core element of the HIV-1 promoter controls the ability of HIV-1 to establish latent infection.

    PubMed

    Duverger, Alexandra; Wolschendorf, Frank; Zhang, Mingce; Wagner, Fredric; Hatcher, Brandon; Jones, Jennifer; Cron, Randall Q; van der Sluis, Renee M; Jeeninga, Rienk E; Berkhout, Ben; Kutsch, Olaf

    2013-02-01

    Following integration, HIV-1 in most cases produces active infection events; however, in some rare instances, latent infection events are established. The latter have major clinical implications, as latent infection allows the virus to persist despite antiretroviral therapy. Both the cellular factors and the viral elements that potentially determine whether HIV-1 establishes active or latent infection events remain largely elusive. We detail here the contribution of different long terminal repeat (LTR) sequences for the establishment of latent HIV-1 infection. Using a panel of full-length replication-competent virus constructs that reflect naturally occurring differences of HIV-1 subtype-specific LTRs and targeted LTR mutants, we found the primary ability of HIV-1 to establish latent infection in this system to be controlled by a four-nucleotide (nt) AP-1 element just upstream of the NF-κB element in the viral promoter. Deletion of this AP-1 site mostly deprived HIV-1 of the ability to establish latent HIV-1 infection. Extension of this site to a 7-nt AP-1 sequence massively promoted latency establishment, suggesting that this promoter region represents a latency establishment element (LEE). Given that these minimal changes in a transcription factor binding site affect latency establishment to such large extent, our data support the notion that HIV-1 latency is a transcription factor restriction phenomenon. PMID:23236059

  2. An AP-1 Binding Site in the Enhancer/Core Element of the HIV-1 Promoter Controls the Ability of HIV-1 To Establish Latent Infection

    PubMed Central

    Duverger, Alexandra; Wolschendorf, Frank; Zhang, Mingce; Wagner, Fredric; Hatcher, Brandon; Jones, Jennifer; Cron, Randall Q.; van der Sluis, Renee M.; Jeeninga, Rienk E.; Berkhout, Ben

    2013-01-01

    Following integration, HIV-1 in most cases produces active infection events; however, in some rare instances, latent infection events are established. The latter have major clinical implications, as latent infection allows the virus to persist despite antiretroviral therapy. Both the cellular factors and the viral elements that potentially determine whether HIV-1 establishes active or latent infection events remain largely elusive. We detail here the contribution of different long terminal repeat (LTR) sequences for the establishment of latent HIV-1 infection. Using a panel of full-length replication-competent virus constructs that reflect naturally occurring differences of HIV-1 subtype-specific LTRs and targeted LTR mutants, we found the primary ability of HIV-1 to establish latent infection in this system to be controlled by a four-nucleotide (nt) AP-1 element just upstream of the NF-κB element in the viral promoter. Deletion of this AP-1 site mostly deprived HIV-1 of the ability to establish latent HIV-1 infection. Extension of this site to a 7-nt AP-1 sequence massively promoted latency establishment, suggesting that this promoter region represents a latency establishment element (LEE). Given that these minimal changes in a transcription factor binding site affect latency establishment to such large extent, our data support the notion that HIV-1 latency is a transcription factor restriction phenomenon. PMID:23236059

  3. Cytoskeletal reorganization and TPA differently modify AP-1 to induce the urokinase-type plasminogen activator gene in LLC-PK1 cells.

    PubMed Central

    Lee, J S; von der Ahe, D; Kiefer, B; Nagamine, Y

    1993-01-01

    Urokinase-type plasminogen activator (uPA) is an extracellular protease and expressed in various cells that exhibit dynamic changes in cell morphology, suggesting a link between cytoskeletal reorganization (CSR) and uPA expression. CSR can be induced by pharmacological agents, such as by colchicine for microtubule cytoskeleton and by cytochalasin for microfilament cytoskeleton. Using these agents, we previously showed that CSR induced the uPA gene in LLC-PK1 cells independently of the protein kinase C and cAMP-dependent protein kinase. Here we show that the induction of the uPA gene by CSR is mediated by the activation of c-Jun which interacts with an AP-1-like site located 2 kb upstream of the uPA gene. 12-O-tetradecanoylphorbol 13-acetate (TPA) induces the uPA gene through the same elements, but additionally utilizes an adjacent PEA3 element and induces c-fos. Furthermore, CSR induces a greater accumulation and a more pronounced phosphorylation of c-Jun than TPA induction. AP-1 is a positive regulator of growth and oncogenesis, and CSR is an integral part of these processes. Our results provide a view how CSR and AP-1 could be coupled in these processes. We also show that TPA and CSR act synergistically, suggesting a model where an initial activation signal could be amplified by CSR. Images PMID:8346015

  4. Evolving the Concept of Homology

    ERIC Educational Resources Information Center

    Naples, Virginia L.; Miller, Jon S.

    2009-01-01

    Understanding homology is fundamental to learning about evolution. The present study shows an exercise that can be varied in complexity, for which students compile research illustrating the fate of homologous fish skull elements, and assemble a mural to serve as a learning aid. The skull of the most primitive living Actinopterygian (bony fish),…

  5. Activation of mitogen-activated protein kinases and AP-1 transcription factor in ovotoxicity induced by 4-vinylcyclohexene diepoxide in rats.

    PubMed

    Hu, Xiaoming; Flaws, Jodi A; Sipes, I Glenn; Hoyer, Patricia B

    2002-09-01

    Previous studies have demonstrated that ovotoxicity induced in small preantral (primordial and primary) ovarian follicles by 4-vinylcyclohexene diepoxide (VCD) in rats is likely via acceleration of the normal process of atresia (apoptosis). This acceleration is associated with increased activities of caspase cascades, changes in subcellular distribution of Bcl-2 family members, and alteration of estrogen receptor-mediated signaling pathways. The present study was designed to investigate possible effects of VCD dosing on the mitogen-activated protein kinases (MAPK)/AP-1 signaling pathways in rat ovarian small follicles. Female F344 rats were given a single dose of VCD (80 mg/kg i.p., 1 day--a time when ovotoxicity has not been initiated) or dosed daily for 10 or 15 days (80 mg/kg i.p.; 10 days--a time when the earliest signs of impending follicular destruction is seen, 15 days--a time when significant ovotoxicity is underway). Four hours following the final dose, ovaries and livers were collected. Ovarian small (25-100 microm) and large (100-250 microm) preantral follicles were isolated, and cytosolic or nuclear extracts were prepared from follicles and livers for analyses. Activities of MAPKs, including extracellular signal-regulated kinase, c-Jun N-terminal protein kinase (JNK), and p38 kinase, were determined in follicular and liver cytosolic extracts, and AP-1 DNA binding activity was determined in follicular and liver nuclear extracts. Compared with control, a single dose of VCD caused a decrease in JNK activity and an increase of AP-1 binding activity in isolated small ovarian follicles. After repeated daily dosing with VCD for 10 or 15 days, JNK and p38 kinase activities in small ovarian follicles were increased (p38 kinase: 1.64 +/- 0.14 for 10 days, 1.48 +/- 0.11 for 15 days, VCD/control, P < 0.01; JNK: 1.44 +/- 0.11 for 10 days, 1.37 +/- 0.06 for 15 days, VCD/control, P < 0.01) and AP-1 binding activity in small ovarian follicles was decreased (10 days, 0

  6. Abelian link invariants and homology

    SciTech Connect

    Guadagnini, Enore; Mancarella, Francesco

    2010-06-15

    We consider the link invariants defined by the quantum Chern-Simons field theory with compact gauge group U(1) in a closed oriented 3-manifold M. The relation of the Abelian link invariants with the homology group of the complement of the links is discussed. We prove that, when M is a homology sphere or when a link--in a generic manifold M--is homologically trivial, the associated observables coincide with the observables of the sphere S{sup 3}. Finally, we show that the U(1) Reshetikhin-Turaev surgery invariant of the manifold M is not a function of the homology group only, nor a function of the homotopy type of M alone.

  7. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    SciTech Connect

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi; Rhim, Hyangshuk; Bae, Yong Soo; Choi, Soo Young; Park, Jinseu

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  8. The regulation of hepcidin expression by serum treatment: requirements of the BMP response element and STAT- and AP-1-binding sites.

    PubMed

    Kanamori, Yohei; Murakami, Masaru; Matsui, Tohru; Funaba, Masayuki

    2014-11-10

    Expression of hepcidin, a central regulator of systemic iron metabolism, is transcriptionally regulated by the bone morphogenetic protein (BMP) pathway. However, the factors other than the BMP pathway also participate in the regulation of hepcidin expression. In the present study, we show that serum treatment increased hepcidin expression and transcription without inducing the phosphorylation of Smad1/5/8 in primary hepatocytes, HepG2 cells or Hepa1-6 cells. Co-treatment with LDN-193189, an inhibitor of the BMP type I receptor, abrogated this hepcidin induction. Reporter assays using mutated reporters revealed the involvement of the BMP response element-1 (BMP-RE1) and signal transducers and activator of transcription (STAT)- and activator protein (AP)-1-binding sites in serum-induced hepcidin transcription in HepG2 cells. Serum treatment induced the expression of the AP-1 components c-fos and junB in primary hepatocytes and HepG2 cells. Forced expression of c-fos or junB enhanced the response of hepcidin transcription to serum treatment. By contrast, the expression of dominant negative (dn)-c-fos and dn-junB decreased hepcidin transcription. The present study reveals that serum contains factors stimulating hepcidin transcription. Basal BMP activity is essential for the serum-induced hepcidin transcription, although serum treatment does not stimulate the BMP pathway. The induction of c-fos and junB by serum treatment stimulates hepcidin transcription, through possibly cooperation with BMP-mediated signaling. Considering that AP-1 is induced by various stimuli, the present results suggest that hepcidin expression is regulated by more diverse factors than had been previously considered. PMID:25151311

  9. Sp1 binds two sites in the CD11c promoter in vivo specifically in myeloid cells and cooperates with AP1 to activate transcription.

    PubMed Central

    Noti, J D; Reinemann, B C; Petrus, M N

    1996-01-01

    The leukocyte integrin gene, CD11c, is transcriptionally regulated and is expressed predominantly on differentiated cells of the myelomonocytic lineage. In this study we have demonstrated that the regions -72 to -63 and -132 to -104 of the CD11c promoter contain elements responsible for phorbol ester-induced differentiation of the myeloid cell line HL60. DNase I footprinting analysis revealed that these regions can bind purified Sp1, and supershift analysis with Sp1 antibody confirmed that Sp1 in HL60 nuclear extracts could bind these regions. Transfection analysis of CD11c promoter-chloramphenicol acetyltransferase constructs containing deletions of these Sp1-binding sites revealed that these sites are essential for expression of the CD11c gene in HL60 cells but not in the T-cell line Molt4 or the cervical carcinoma cell line HeLa. Moreover, cotransfection of pPacSp1 along with these CD11c promoter-chloramphenicol acetyltransferase constructs into Sp1-deficient Drosophila Schneider 2 cells verified that these sites are essential for Sp1-dependent expression of the CD11c promoter. In vivo genomic footprinting revealed that Sp1 contacts the CD11c promoter within the regions -69 to -63 and -116 to -105 in phorbol 12-myristate 13-acetate-differentiated HL60 cells but not in undifferentiated HL60 cells or in Molt4 or HeLa cells. Cotransfection assays in HL60 cells revealed that Sp1 acts synergistically with Ap1 to activate CD11c. Further, both Sp1 sites are capable of cooperating with AP1. In vitro DNase I footprinting analysis with purified Sp1 and c-jun proteins showed that Sp1 binding could facilitate binding of c-jun. We propose that myeloid-specific expression of the CD11c promoter and is facilitated by cooperative interaction between the Sp1- and Ap1-binding sites. PMID:8649405

  10. Elk1 and AP-1 sites in the TBP promoter mediate alcohol-induced deregulation of Pol III-dependent genes

    PubMed Central

    Zhong, Qian; Shi, Ganggang; Zhang, Yanmei; Levy, Daniel; Zhong, Shuping

    2013-01-01

    The major risk factors for hepatocellular carcinoma (HCC) are chronic liver diseases that include hepatitis B, hepatitis C, alcoholic liver disease and non-alcoholic steatohepatitis. However, the mechanisms of alcohol-associated HCC remain to be elucidated. The products of RNA Pol III (RNA polymerase III) dependent genes are elevated in both transformation cells and tumor cells. TBP (TATA-box binding protein) is a central transcription factor, which regulates Pol I, Pol II and Pol III gene activity. Our studies have demonstrated that alcohol increases TBP expression and Pol III gene transcription to promote liver tumor formation. We continue to investigate how ethanol mediates TBP expression. Here, we report that ethanol induces TBP promoter activity and the induction is ethanol dose dependent. Blocking the JNK1 pathway by a chemical inhibitor and siRNA reduce this ethanol-induced activity. Furthermore, mutating G>A at a −46bp Elk1 binding site of the TBP promoter or mutating AP-1 binding site at −37bp (A>G) and −38bp (C>T) reduces the TBP promoter activity. Mutation of both Elk1 and AP-1 binding sites dramatically represses this induction. Together, these studies demonstrate that, for the first time, alcohol increases Pol III gene transcription through a response element, which is composed of the overlapping the Elk1 and AP-1 binding sites of the TBP promoter. It suggests that these binding sites may play a critical role in alcohol-induced deregulation of Pol III genes in liver tumor development. PMID:23454483

  11. Calcium-dependent Nr4a1 expression in mouse Leydig cells requires distinct AP1/CRE and MEF2 elements.

    PubMed

    Abdou, Houssein S; Robert, Nicholas M; Tremblay, Jacques J

    2016-04-01

    The nuclear receptor NR4A1 is expressed in steroidogenic Leydig cells where it plays pivotal roles by regulating the expression of several genes involved in steroidogenesis and male sex differentiation including Star, HSD3B2, and Insl3 Activation of the cAMP and Ca(2+) signaling pathways in response to LH stimulation leads to a rapid and robust activation of Nr4a1 gene expression that requires the Ca(2+)/CAMKI pathway. However, the downstream transcription factor(s) have yet to be characterized. To identify potential Ca(2+)/CaM effectors responsible for hormone-induced Nr4a1 expression, MA-10 Leydig cells were treated with forskolin to increase endogenous cAMP levels, dantrolene to inhibit endoplasmic reticulum Ca(2+) release, and W7 to inhibit CaM activity. We identified Ca(2+)-responsive elements located in the discrete regions of the Nr4a1 promoter, which contain binding sites for several transcription factors such as AP1, CREB, and MEF2. We found that one of the three AP1/CRE sites located at -255 bp is the most responsive to the Ca(2+) signaling pathway as are the two MEF2 binding sites at -315 and -285 bp. Furthermore, we found that the hormone-induced recruitment of phospho-CREB and of the co-activator p300 to the Nr4a1 promoter requires the Ca(2+) pathway. Lastly, siRNA-mediated knockdown of CREB impaired NR4A1 expression and steroidogenesis. Together, our data indicate that the Ca(2+) signaling pathway increases Nr4a1 expression in MA-10 Leydig cells, at least in part, by enhancing the recruitment of coactivator most likely through the MEF2, AP1, and CREB transcription factors thus demonstrating an important interplay between the Ca(2+) and cAMP pathways in regulating Nr4a1 expression. PMID:26647388

  12. Adenosine dialdehyde suppresses MMP-9-mediated invasion of cancer cells by blocking the Ras/Raf-1/ERK/AP-1 signaling pathway.

    PubMed

    Kim, Ji Hye; Kim, Jong Heon; Kim, Seung Cheol; Yi, Young-Su; Yang, Woo Seok; Yang, Yanyan; Kim, Han Gyung; Lee, Jae Yong; Kim, Kyung-Hee; Yoo, Byong Chul; Hong, Sungyoul; Cho, Jae Youl

    2013-11-01

    Adenosine dialdehyde (AdOx) inhibits transmethylation by the accumulation of S-adenosylhomocysteine (SAH), a negative feedback inhibitor of methylation, through the suppression of SAH hydrolase (SAHH). In this study, we aimed to determine the regulatory effect of AdOx on cancer invasion by using three different cell lines: MDA-MB-231, MCF-7, and U87. The invasive capacity of these cells in the presence (MCF-7) or absence (MDA-MB-231 and U87) of phorbal 12-myristate 13-acetate (PMA) was strongly decreased by AdOx treatment. Furthermore, the expression, secretion, and activation of matrix metalloproteinase (MMP)-9, a critical enzyme regulating cell invasion, in these cells were diminished by AdOx treatment. AdOx strongly suppressed AP-1-mediated luciferase activity and, in parallel, reduced the translocation of c-Fos and c-Jun into the nucleus. AdOx was shown to block a series of upstream AP-1 activation signaling complexes composed of extracellular signal-related kinase (ERK), mitogen-activated protein ERK kinase (MEK)1/2, Raf-1, and Ras, as assessed by measuring the levels of the phosphorylated and membrane-translocated forms. Furthermore, we found that suppression of SAHH by siRNA and 3-deazaadenosine, knock down of isoprenylcysteine carboxyl methyltransferase (ICMT), and treatment with SAH showed inhibitory patterns similar to those of AdOx. Therefore, our data suggest that AdOx is capable of targeting the methylation reaction regulated by SAHH and ICMT and subsequently downregulating MMP-9 expression and decreasing invasion of cancer cells through inhibition of the Ras/Raf-1/ERK/AP-1 pathway. PMID:23994169

  13. Long-Range Enhancer Associated with Chromatin Looping Allows AP-1 Regulation of the Peptidylarginine Deiminase 3 Gene in Differentiated Keratinocyte

    PubMed Central

    Chavanas, Stéphane; Adoue, Véronique; Méchin, Marie-Claire; Ying, Shibo; Dong, Sijun; Duplan, Hélène; Charveron, Marie; Takahara, Hidenari; Serre, Guy; Simon, Michel

    2008-01-01

    Transcription control at a distance is a critical mechanism, particularly for contiguous genes. The peptidylarginine deiminases (PADs) catalyse the conversion of protein-bound arginine into citrulline (deimination), a critical reaction in the pathophysiology of multiple sclerosis, Alzheimer's disease and rheumatoid arthritis, and in the metabolism of the major epidermal barrier protein filaggrin, a strong predisposing factor for atopic dermatitis. PADs are encoded by 5 clustered PADI genes (1p35-6). Unclear are the mechanisms controlling the expression of the gene PADI3 encoding the PAD3 isoform, a strong candidate for the deimination of filaggrin in the terminally differentiating epidermal keratinocyte. We describe the first PAD Intergenic Enhancer (PIE), an evolutionary conserved non coding segment located 86-kb from the PADI3 promoter. PIE is a strong enhancer of the PADI3 promoter in Ca2+-differentiated epidermal keratinocytes, and requires bound AP-1 factors, namely c-Jun and c-Fos. As compared to proliferative keratinocytes, calcium stimulation specifically associates with increased local DNase I hypersensitivity around PIE, and increased physical proximity of PIE and PADI3 as assessed by Chromosome Conformation Capture. The specific AP-1 inhibitor nordihydroguaiaretic acid suppresses the calcium-induced increase of PADI3 mRNA levels in keratinocytes. Our findings pave the way to the exploration of deimination control during tumorigenesis and wound healing, two conditions for which AP-1 factors are critical, and disclose that long-range transcription control has a role in the regulation of the gene PADI3. Since invalidation of distant regulators causes a variety of human diseases, PIE results to be a plausible candidate in association studies on deimination-related disorders or atopic disease. PMID:18923650

  14. Overexpression of cyclin D1-CDK4 in silica-induced transformed cells is due to activation of ERKs, JNKs/AP-1 pathway.

    PubMed

    Shen, Fuhai; Fan, Xueyun; Liu, Bingci; Jia, Xiaowei; Du, Hongju; You, Baorong; Ye, Meng; Huang, Chuanshu; Shi, Xianglin

    2006-01-25

    Silica has been known to be a factor inducing acute injury and chronic pulmonary fibrosis. Silica has also been listed as a human carcinogen in 1996 by International Agency for Research on Cancer (IARC). However, the molecular mechanisms involved its pathologic effects are not well understood. In these studies, we found that exposure of human embryonic lung fibroblasts (HELF) to crystalline silica could cause increases in activation of extracellular signal-regulated kinases (ERKs), p38K, and c-Jun NH2-terminal amino kinases (JNKs), and HELF transformation. Interestingly, silica-induced transformation of HELF (S-HELF) led to increases in activated levels of ERKs and p46 of JNKs, and decrease in p38K activation, and no effect on activation of p54 of JNKs, as compared with those in parental HELF. Further studies showed that there are differential effects of ERKs, JNKs and p38K, as well as their downstream transcription factor AP-1, in regulation of expression of cyclin D1 and CDK4 and cell cycle alternations induced by silica. Cyclin D1 and CDK4 were increased in S-HELF as compared with those in HELF. Inhibition of ERKs activation by AG126, JNK by SP600125, and AP-1 by curcumin could reduced the induction of cyclin D1 and CDK4. There is no significant difference for cell cycle distribution between groups. These results demonstrate that ERKs and JNKs, but not p38K is responsible for induction of cyclin D1 and CDK4 in S-HELF, suggesting that overexpression of cyclin D1 and CDK4 caused by silica is mediated by ERK, JNK/AP-1signaling pathway. PMID:16125882

  15. MCP-1 Upregulates Amylin Expression in Murine Pancreatic β Cells through ERK/JNK-AP1 and NF-κB Related Signaling Pathways Independent of CCR2

    PubMed Central

    Cai, Kun; Qi, Dongfei; Hou, Xinwei; Wang, Oumei; Chen, Juan; Deng, Bo; Qian, Lihua; Liu, Xiaolong; Le, Yingying

    2011-01-01

    Background Amylin is the most abundant component of islet amyloid implicated in the development of type 2 diabetes. Plasma amylin levels are elevated in individuals with obesity and insulin resistance. Monocyte chemoattractant protein-1 (MCP-1, CCL2) is involved in insulin resistance of obesity and type 2 diabetes. We investigated the effect of MCP-1 on amylin expression and the underlying mechanisms with murine pancreatic β-cell line MIN6 and pancreatic islets. Methodology/Principal Findings We found that MCP-1 induced amylin expression at transcriptional level and increased proamylin and intermediate forms of amylin at protein level in MIN6 cells and islets. However, MCP-1 had no effect on the expressions of proinsulin 1 and 2, as well as prohormone convertase (PC) 1/3 and PC2, suggesting that MCP-1 specifically induces amylin expression in β-cells. Mechanistic studies showed that although there is no detectable CCR2 mRNA in MIN6 cells and islets, pretreatment of MIN6 cells with pertussis toxin inhibited MCP-1 induced amylin expression, suggesting that alternative Gi-coupled receptor(s) mediates the inductive effect of MCP-1. MCP-1 rapidly induced ERK1/2 and JNK phosphorylation. Inhibitors for MEK1/2 (PD98059), JNK (SP600125) or AP1 (curcumin) significantly inhibited MCP-1-induced amylin mRNA expression. MCP-1 failed to induce amylin expression in pancreatic islets isolated from Fos knockout mice. EMSA showed that JNK and ERK1/2 were involved in MCP-1-induced AP1 activation. These results suggest that MCP-1 induces murine amylin expression through AP1 activation mediated by ERK1/2 or JNK. Further studies showed that treatment of MIN6 cells with NF-κB inhibitor or overexpression of IκBα dominant-negative construct in MIN6 cells significantly inhibited MCP-1-induced amylin expression, suggesting that NF-κB related signaling also participates in MCP-1-induced murine amylin expression. Conclusions/Significance MCP-1 induces amylin expression through ERK1/2/JNK-AP

  16. Object-oriented persistent homology

    NASA Astrophysics Data System (ADS)

    Wang, Bao; Wei, Guo-Wei

    2016-01-01

    Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a

  17. 2'-Benzoyloxycinnamaldehyde inhibits nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells via regulation of AP-1 pathway.

    PubMed

    Kwon, Jung-Yeon; Hong, Su-Hyung; Park, Sun-Dong; Ahn, Sang-Gun; Yoon, Jung-Hoon; Kwon, Byoung-Mog; Kim, Soo-A

    2012-12-01

    Cinnamaldehyde, an active compound of cinnamon, has been reported to exert various biological functions such as anti-inflammatory and anti-tumor activities. Previously, we showed that 2'-hydroxycinnamaldehyde (HCA) has an inhibitory effect on nitric oxide (NO) production through the inhibition of NF-κB signaling. In an effort to find a more effective anti-atherosclerotic agent, here we evaluated the anti-inflammatory effect of 2'-benzoyloxycinnamaldehyde (BCA) in RAW 264.7 murine macrophage cells. We showed that BCA more effectively inhibited NO production than HCA with less cytotoxicity. We also demonstrated that BCA inhibited the lipopolysaccharide (LPS)-induced expression of iNOS in a concentration-dependent manner. Signal transduction studies showed that BCA significantly inhibited the phosphorylation of SAPK/JNK and AP-1-dependent reporter gene activity. LPS-induced expression levels of JunB, c-Jun and c-Fos were also decreased by BCA treatment. Moreover, the LPS-induced DNA binding activity of AP-1 was markedly inhibited by BCA. The direct injection of BCA into mice inhibited the LPS-induced increase in plasma nitrite levels, confirming the anti-inflammatory effect of BCA in vivo. Overall, these observations suggest that BCA has the potential for use as an anti-atherosclerotic agent. PMID:23036374

  18. Radical Scavenging Activity-Based and AP-1-Targeted Anti-Inflammatory Effects of Lutein in Macrophage-Like and Skin Keratinocytic Cells

    PubMed Central

    Oh, Jueun; Kim, Ji Hye; Park, Jae Gwang; Yi, Young-Su; Park, Kye Won; Rho, Ho Sik; Lee, Min-Seuk; Yoo, Jae Won; Kang, Seung-Hyun; Hong, Yong Deog; Shin, Song Seok; Cho, Jae Youl

    2013-01-01

    Lutein is a naturally occurring carotenoid with antioxidative, antitumorigenic, antiangiogenic, photoprotective, hepatoprotective, and neuroprotective properties. Although the anti-inflammatory effects of lutein have previously been described, the mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, in the present study, we aimed to investigate the regulatory activity of lutein in the inflammatory responses of skin-derived keratinocytes or macrophages and to elucidate the mechanism of its inhibitory action. Lutein significantly reduced several skin inflammatory responses, including increased expression of interleukin-(IL-) 6 from LPS-treated macrophages, upregulation of cyclooxygenase-(COX-) 2 from interferon-γ/tumor necrosis-factor-(TNF-) α-treated HaCaT cells, and the enhancement of matrix-metallopeptidase-(MMP-) 9 level in UV-irradiated keratinocytes. By evaluating the intracellular signaling pathway and the nuclear transcription factor levels, we determined that lutein inhibited the activation of redox-sensitive AP-1 pathway by suppressing the activation of p38 and c-Jun-N-terminal kinase (JNK). Evaluation of the radical and ROS scavenging activities further revealed that lutein was able to act as a strong anti-oxidant. Taken together, our findings strongly suggest that lutein-mediated AP-1 suppression and anti-inflammatory activity are the result of its strong antioxidative and p38/JNK inhibitory activities. These findings can be applied for the preparation of anti-inflammatory and cosmetic remedies for inflammatory diseases of the skin. PMID:23533312

  19. Characterization of quinolone antibacterial-induced convulsions and increases in nuclear AP-1 DNA- and CRE-binding activities in mouse brain.

    PubMed

    Ito, Y; Ishige, K; Aizawa, M; Fukuda, H

    1999-05-01

    The quinolone antibacterials enoxacin and norfloxacin (2.5 mg/kg, i.v.) provoked clonic convulsions in mice treated concomitantly with biphenylacetic acid (BPAA, 100 mg/kg, i.p.), a major metabolite of the nonsteroidal anti-inflammatory drug fenbufen. Gel-shift assays showed that enoxacin-induced convulsions resulted in increases in nuclear activator protein 1 (AP-1) DNA- and cyclic AMP responsive element (CRE)-binding activities in the cerebral cortex and hippocampus, but not in other regions, such as the cerebellum and thalamus. In contrast, ofloxacin and levofloxacin, at the same doses, in the presence of BPAA did not evoke convulsions or increase these DNA-binding activities. Administration of these quinolones and BPAA alone elicited neither convulsions nor increases in these DNA-binding activities. These results suggest that the increased nuclear AP-1 DNA- and CRE-binding activities in the cerebral cortex and hippocampus induced by quinolones with BPAA correlated with seizure activities and that these brain regions play pivotal roles in quinolone-induced convulsions. PMID:10340309

  20. Tumorigenesis by Meis1 overexpression is accompanied by a change of DNA target-sequence specificity which allows binding to the AP-1 element.

    PubMed

    Dardaei, Leila; Penkov, Dmitry; Mathiasen, Lisa; Bora, Pranami; Morelli, Marco J; Blasi, Francesco

    2015-09-22

    Meis1 overexpression induces tumorigenicity but its activity is inhibited by Prep1 tumor suppressor. Why does overexpression of Meis1 cause cancer and how does Prep1 inhibit? Tumor profiling and ChIP-sequencing data in a genetically-defined set of cell lines show that: 1) The number of Meis1 and Prep1 DNA binding sites increases linearly with their concentration resulting in a strong increase of "extra" target genes. 2) At high concentration, Meis1 DNA target specificity changes such that the most enriched consensus becomes that of the AP-1 regulatory element, whereas the specific OCTA consensus is not enriched because diluted within the many extra binding sites. 3) Prep1 inhibits Meis1 tumorigenesis preventing the binding to many of the "extra" genes containing AP-1 sites. 4) The overexpression of Prep1, but not of Meis1, changes the functional genomic distribution of the binding sites, increasing seven fold the number of its "enhancer" and decreasing its "promoter" targets. 5) A specific Meis1 "oncogenic" and Prep1 "tumor suppressing" signature has been identified selecting from the pool of genes bound by each protein those whose expression was modified uniquely by the "tumor-inducing" Meis1 or tumor-inhibiting Prep1 overexpression. In both signatures, the enriched gene categories are the same and are involved in signal transduction. However, Meis1 targets stimulatory genes while Prep1 targets genes that inhibit the tumorigenic signaling pathways. PMID:26259236

  1. Sargahydroquinoic acid inhibits TNFα-induced AP-1 and NF-κB signaling in HaCaT cells through PPARα activation.

    PubMed

    Jeon, Youngsic; Jung, Yujung; Kim, Min Cheol; Kwon, Hak Cheol; Kang, Ki Sung; Kim, Yong Kee; Kim, Su-Nam

    2014-08-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, their ligands are targets for the treatment of various skin disorders, such as photo-aging and chronological aging of skin. Intensive studies have revealed that PPARα/γ functions in photo-aging and age-related inflammation by regulating matrix metalloproteinases (MMPs) via activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). However, the detailed mechanism of PPARα/γ's role in skin aging has not yet been elucidated. In this study, we confirmed that sargahydroquinoic acid (SHQA) as a PPARα/γ ligand significantly decreased Tumor Necrosis Factor-alpha (TNFα)-induced MMP-2/-9 expression by downregulating TNFα-induced transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in HaCaT human epidermal keratinocyte cells. Treatment of cells with SHQA and GW6471 (PPARα antagonist) not bisphenol A diglycidyl ether (PPARγ antagonists), reversed the effect on TNFα-induced inflammatory signaling pathway activation. Taken together, our data suggest that SHQA inhibit TNFα-induced MMP-2/-9 expression and age-related inflammation by suppressing AP-1 and NF-κB pathway via PPARα. PMID:25019995

  2. Ramalin inhibits VCAM-1 expression and adhesion of monocyte to vascular smooth muscle cells through MAPK and PADI4-dependent NF-kB and AP-1 pathways.

    PubMed

    Park, Bongkyun; Yim, Joung-Han; Lee, Hong-Kum; Kim, Byung-Oh; Pyo, Suhkneung

    2015-01-01

    Cell adhesion molecules play a critical role in inflammatory processes and atherosclerosis. In this study, we investigated the effect of ramalin, a chemical compound from the Antarctic lichen Ramalina terebrata, on vascular cell adhesion molecule-1 (VCAM-1) expression induced by TNF-α in vascular smooth muscular cells (VSMCs). Pretreatment of VSMCs with ramalin (0.1-10 μg/mL) concentration-dependently inhibited TNF-α-induced VCAM-1 expression. Additionally, ramalin inhibited THP-1 (human acute monocytic leukemia cell line) cell adhesion to TNF-α-stimulated VSMCs. Ramalin suppressed TNF-α-induced production of reactive oxygen species (ROS), PADI4 expression, and phosphorylation of p38, ERK, and JNK. Moreover, ramalin inhibited TNF-α-induced translocation of NF-κB and AP-1. Inhibition of PADI4 expression by small interfering RNA or the PADI4-specific inhibitor markedly attenuated TNF-α-induced activation of NF-κB and AP-1 and VCAM-1 expression in VSMCs. Our study provides insight into the mechanisms underlying ramalin activity and suggests that ramalin may be a potential therapeutic agent to modulate inflammation within atherosclerosis. PMID:25494680

  3. Suppression of Inflammatory Responses by Black Rice Extract in RAW 264.7 Macrophage Cells via Downregulation of NF-kB and AP-1 Signaling Pathways.

    PubMed

    Limtrakul, Pornngarm; Yodkeeree, Supachai; Pitchakarn, Pornsiri; Punfa, Wanisa

    2015-01-01

    Anthocyanin, a phenolic compound, has been reported to have an anti-inflammatory effect against lipopolysaccharide (LPS) induced changes in immune cells. However, little is known about the molecular mechanisms underlying its anti-inflammatory effects. Few research studies have concerned the anti-inflammation properties of colored rice extract as a functional material. Therefore, the purpose of this study was to examine anti-inflammatory effects of the polar fraction of black rice whole grain extracts (BR-WG-P) that features a high anthocyanin content. Our results showed that BR-WG-P significantly inhibited LPS-induced pro- inflammatory mediators, including production of NO and expression of iNOS and COX-2. In addition, secretion of pro-inflammatory cytokines including TNF-α and IL-6 was also significantly inhibited. Moreover, BR-WG-P and anthocyanin inhibited NF-kB and AP-1 translocation into the nucleus. BR-WG-P also decreased the phosphorylation of ERK, p38 and JNK in a dose dependent manner. These results suggested that BR-WG-P might suppress LPS-induced inflammation via the inhibition of the MAPK signaling pathway leading to decrease of NF-kB and AP-1 translocation. All of these results indicate that BR-WG-P exhibits therapeutic potential associated with the anthocyanin content in the extract for treating inflammatory diseases associated with cancer. PMID:26028086

  4. Methylation status and AP1 elements are involved in EBV-mediated miR-155 expression in EBV positive lymphoma cells.

    PubMed

    Yin, Qinyan; Wang, Xia; Roberts, Claire; Flemington, Erik K; Lasky, Joseph A

    2016-07-01

    The relationship between Epstein Barr Virus (EBV) and miR-155 is well established. EBV infection induces miR-155 expression, which is expressed at higher levels in EBV latency type III cells compared to EBV latency type I cells. However, the mechanism by which EBV latency genes activate miR-155 expression is still unclear. Here we present data showing that DNA methylation regulates miR-155 expression. We also provide evidence that the AP1 signaling pathway is involved in EBV-mediated miR-155 activation, and that Bay11 influences signaling of the miR-155 promoter AP1 element. Lastly, we show that LMP2A, LMP1 and EBNAs cannot activate miR-155 expression alone, indicating that the regulation of miR-155 by EBV is dependent on more than one EBV gene or cell signaling pathway. We conclude that the regulation of miR-155 in EBV-positive cells occurs through multiple cell signaling processes involving EBV-mediated chromatin remodeling, cell signaling regulation and transcription factor activation. PMID:27110708

  5. Terminalia catappa Exerts Antimetastatic Effects on Hepatocellular Carcinoma through Transcriptional Inhibition of Matrix Metalloproteinase-9 by Modulating NF-κB and AP-1 Activity.

    PubMed

    Yeh, Chao-Bin; Hsieh, Ming-Ju; Hsieh, Yih-Shou; Chien, Ming-Hsien; Lin, Pen-Yuan; Chiou, Hui-Ling; Yang, Shun-Fa

    2012-01-01

    High mortality and morbidity rates for hepatocellular carcinoma (HCC) in Taiwan primarily result from uncontrolled tumor metastasis. Previous studies have identified that Terminalia catappa leaf extracts (TCE) exert hepatoprotective, antioxidative, antiinflammatory, anticancer, and antimetastatic activities. However, the effects of TCE on HCC and the underlying molecular mechanisms of its activities have yet to be fully elucidated. The present study's findings demonstrate that TCE concentration dependently inhibits human HCC migration/invasion. Zymographic and western blot analyses revealed that TCE inhibited the activities and expression of matrix metalloproteinase-9 (MMP-9). Assessment of mRNA levels, using reverse transcriptase polymerase chain reaction (PCR) and real-time PCR, and promoter assays confirmed the inhibitory effects of TCE on MMP-9 expression in HCC cells. The inhibitory effects of TCE on MMP-9 proceeded by upregulating tissue inhibitor of metalloproteinase-1 (TIMP-1), as well as suppressing nuclear translocation and DNA binding activity of nuclear factor-kappa B (NF-κB) and activating protein-1 (AP-1) on the MMP-9 promoter in Huh7 cells. In conclusion, TCE inhibits MMP-9 expression and HCC cell metastasis and, thus, has potential use as a chemopreventive agent. Its inhibitory effects are associated with downregulation of the binding activities of the transcription factors NF-κB and AP-1. PMID:23258989

  6. Benzyl alcohol derivatives from the mushroom Hericium erinaceum attenuate LPS-stimulated inflammatory response through the regulation of NF-κB and AP-1 activity.

    PubMed

    Noh, Hyung Jun; Yoon, Ju Young; Kim, Geum Sook; Lee, Seung Eun; Lee, Dae Young; Choi, Je Hun; Kim, Seung Yu; Kang, Ki Sung; Cho, Jae Youl; Kim, Ki Hyun

    2014-10-01

    On the search for anti-inflammatory compounds from natural Korean medicinal sources, a bioassay-guided fractionation and chemical investigation of the MeOH extract from the fruiting bodies of Hericium erinaceum resulted in the isolation and identification of five benzyl alcohol derivatives (1-5). In this study, their anti-inflammatory effects on lipopolysaccharide (LPS)-induced production of pro-inflammatory mediators were examined using RAW 264.7 macrophage cells. The structures of isolates were identified by comparing their spectroscopic data with previously reported values. The analysis of their inhibitory activities on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in RAW 264.7 macrophage cells showed that erinacerin B (2) and hericenone E (4) decreased the levels of NO and PGE2 production in a concentration-dependent manner. Next, this study was performed to examine their mechanism of action on the regulation of NO and PGE2 production. Compounds 2 and 4 were found to block the LPS-induced phosphorylation of two major inflammatory transcription factors, NF-κB (p65/p50) and AP-1 (c-Jun and c-Fos). Taken together, these results suggest that down-regulation of LPS-induced NO and PGE2 production by compounds 2 and 4 is mediated through the modulation of NF-κB and AP-1 activation in macrophage cells. These results impact the development of potential health products for preventing and treating inflammatory diseases. PMID:25090632

  7. HIV-1 gp120 induces type-1 programmed cell death through ER stress employing IRE1α, JNK and AP-1 pathway

    PubMed Central

    Shah, Ankit; Vaidya, Naveen K.; Bhat, Hari K.; Kumar, Anil

    2016-01-01

    The ER stress-mediated apoptosis has been implicated in several neurodegenerative diseases; however, its role in HIV/neuroAIDS remains largely unexplored. The present study was undertaken to assess the involvement and detailed mechanism of IRE1α pathway in HIV-1 gp120-mediated ER stress and its possible involvement in cell death. Various signaling molecules for IRE1α pathway were assessed using SVGA cells, primary astrocytes and gp120 transgenic mice, which demonstrated gp120-mediated increase in phosphorylated JNK, XBP-1 and AP-1 leading to upregulation of CHOP. Furthermore, HIV-1 gp120-mediated activation of IRE1α also increased XBP-1 splicing. The functional consequence of gp120-mediated ER stress was determined via assessment of gp120-mediated cell death using PI staining and MTT assay. The gp120-mediated cell death also involved caspase-9/caspase-3-mediated apoptosis. These findings were confirmed with the help of specific siRNA for IRE1α, JNK, AP-1, BiP and CHOP showing significant reduction in gp120-mediated CHOP expression. Additionally, silencing all the intermediates also reduced the gp120-mediated cell death and caspase-9/caspase-3 activation at differential levels. This study provides ER-stress as a novel therapeutic target in the management of gp120-mediated cell death and possibly in the treatment of neuroAIDS. PMID:26740125

  8. Sulforaphane controls TPA-induced MMP-9 expression through the NF-κB signaling pathway, but not AP-1, in MCF-7 breast cancer cells

    PubMed Central

    Lee, Young-Rae; Noh, Eun-Mi; Han, Ji-Hey; Kim, Jeong-Mi; Hwang, Bo-Mi; Kim, Byeong-Soo; Lee, Sung-Ho; Jung, Sung Hoo; Youn, Hyun Jo; Chung, Eun Yong; Kim, Jong-Suk

    2013-01-01

    Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)-butane] is an isothiocyanate found in some cruciferous vegetables, especially broccoli. Sulforaphane has been shown to display anti-cancer properties against various cancer cell lines. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix (ECM), plays an important role in cancer cell invasion. In this study, we investigated the effect of sulforaphane on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion in MCF-7 cells. TPA-induced MMP-9 expression and cell invasion were decreased by sulforaphane treatment. TPA substantially increased NF-κB and AP-1 DNA binding activity. Pre-treatment with sulforaphane inhibited TPA-stimulated NF-κB binding activity, but not AP-1 binding activity. In addition, we found that sulforaphane suppressed NF-κB activation, by inhibiting phosphorylation of IκB in TPA-treated MCF-7 cells. In this study, we demonstrated that the inhibition of TPA-induced MMP-9 expression and cell invasion by sulforaphane was mediated by the suppression of the NF-κB pathway in MCF-7 cells. [BMB Reports 2013; 46(4): 201-206] PMID:23615261

  9. Differential recognition of a dileucine-based sorting signal by AP-1 and AP-3 reveals a requirement for both BLOC-1 and AP-3 in delivery of OCA2 to melanosomes

    PubMed Central

    Sitaram, Anand; Dennis, Megan K.; Chaudhuri, Rittik; De Jesus-Rojas, Wilfredo; Tenza, Danièle; Setty, Subba Rao Gangi; Wood, Christopher S.; Sviderskaya, Elena V.; Bennett, Dorothy C.; Raposo, Graça; Bonifacino, Juan S.; Marks, Michael S.

    2012-01-01

    Cell types that generate unique lysosome-related organelles (LROs), such as melanosomes in melanocytes, populate nascent LROs with cargoes that are diverted from endosomes. Cargo sorting toward melanosomes correlates with binding via cytoplasmically exposed sorting signals to either heterotetrameric adaptor AP-1 or AP-3. Some cargoes bind both adaptors, but the relative contribution of each adaptor to cargo recognition and their functional interactions with other effectors during transport to melanosomes are not clear. Here we exploit targeted mutagenesis of the acidic dileucine–based sorting signal in the pigment cell–specific protein OCA2 to dissect the relative roles of AP-1 and AP-3 in transport to melanosomes. We show that binding to AP-1 or AP-3 depends on the primary sequence of the signal and not its position within the cytoplasmic domain. Mutants that preferentially bound either AP-1 or AP-3 each trafficked toward melanosomes and functionally complemented OCA2 deficiency, but AP-3 binding was necessary for steady-state melanosome localization. Unlike tyrosinase, which also engages AP-3 for optimal melanosomal delivery, both AP-1– and AP-3–favoring OCA2 variants required BLOC-1 for melanosomal transport. These data provide evidence for distinct roles of AP-1 and AP-3 in OCA2 transport to melanosomes and indicate that BLOC-1 can cooperate with either adaptor during cargo sorting to LROs. PMID:22718909

  10. Genomic homologous recombination in planta.

    PubMed Central

    Gal, S; Pisan, B; Hohn, T; Grimsley, N; Hohn, B

    1991-01-01

    A system for monitoring intrachromosomal homologous recombination in whole plants is described. A multimer of cauliflower mosaic virus (CaMV) sequences, arranged such that CaMV could only be produced by recombination, was integrated into Brassica napus nuclear DNA. This set-up allowed scoring of recombination events by the appearance of viral symptoms. The repeated homologous regions were derived from two different strains of CaMV so that different recombinant viruses (i.e. different recombination events) could be distinguished. In most of the transgenic plants, a single major virus species was detected. About half of the transgenic plants contained viruses of the same type, suggesting a hotspot for recombination. The remainder of the plants contained viruses with cross-over sites distributed throughout the rest of the homologous sequence. Sequence analysis of two recombinant molecules suggest that mismatch repair is linked to the recombination process. Images PMID:2026150

  11. Melittin has a chondroprotective effect by inhibiting MMP-1 and MMP-8 expressions via blocking NF-κB and AP-1 signaling pathway in chondrocytes.

    PubMed

    Jeong, Yun-Jeong; Shin, Jae-Moon; Bae, Young-Seuk; Cho, Hyun-Ji; Park, Kwan-Kyu; Choe, Jung-Yoon; Han, Sang-Mi; Moon, Sung-Kwon; Kim, Wun-Jae; Choi, Yung Hyun; Kim, Cheorl-Ho; Chang, Hyeun-Wook; Chang, Young-Chae

    2015-04-01

    Bee venom is a natural ingredient produced by the honey bee (Apis mellifera), and has been widely used in China, Korea and Japan as a traditional medicine for various diseases such as arthritis, rheumatism, and skin diseases However, the regulation of the underlying molecular mechanisms of the anti-arthritis by bee venom and its major peptides is largely unknown. In this study, we investigated the potential molecular mechanisms underlying the anti-arthritis effect of bee venom and its major peptides, melittin and apamin, in tumor necrosis factor-α (TNF-α) responsive C57BL/6 mice chondrocyte cells. The bee venom and melittin significantly and selectively suppressed the TNF-α-mediated decrease of type II collagen expression, whereas the apamin had no effects on the type II collagen expression. We, furthermore, found that the bee venom and melittin inhibited the protein expression of matrix metalloproteinase (MMP)-1 and MMP-8, which suggests that the chondroprotective effect of bee venom may be caused by melittin. The inhibitory effects of melittin on the TNF-α-induced MMP-1 and MMP-8 protein expression were regulated by the inhibition of NF-kB and AP-1. In addition, melittin suppressed the TNF-α-induced phosphorylation of Akt, JNK and ERK1/2, but did not affect the phosphorylation of p38 kinase. These results suggest that melittin suppresses TNF-α-stimulated decrease of type II collagen expression by the inhibiting MMP-1 and MMP-8 through regulation of the NF-kB and AP-1 pathway and provision of a novel role for melittin in anti-arthritis action. PMID:25708656

  12. Identification of a functional transcriptional factor AP-1 site in the sheep interferon tau gene that mediates a response to PMA in JEG3 cells.

    PubMed Central

    Yamaguchi, H; Ikeda, Y; Moreno, J I; Katsumura, M; Miyazawa, T; Takahashi, E; Imakawa, K; Sakai, S; Christenson, R K

    1999-01-01

    To examine regulatory mechanisms of sheep interferon tau (oIFNtau) gene expression, potential enhancer/silencer elements of the oIFNtau gene were examined using a transient transfection system with oIFNtau gene-chloramphenicol acetyltransferase (oIFNtau-CAT) reporter constructs in human choriocarcinoma cells, JEG3. Experiments with 5'-deletion constructs revealed that the upstream regions from bases -654 to -607 and from bases -606 to -555 were essential for oIFNtau gene expression. In a heterologous transcriptional system in which the upstream regions of oIFNtau were inserted in front of simian virus 40 (SV40) promoter, the regions between bases -654 and -555 were determined as being the enhancer region required for oIFNtau-SV40-CAT transactivation. A subsequent study with the oIFNtau-CAT constructs lacking the upstream region between bases -542 and -124 revealed that, in addition to the further upstream region between bases -1000 and -654, the sequences from bases -543 to -452 seemed to act as silencer regions. The oIFNtau-CAT constructs with site-specific mutagenesis revealed that multiple enhancer elements existed between bases -654 and -555 of the oIFNtau gene. On the basis of nucleotide sequence analysis, there are numerous sites between bases -654 and -555 to which potential transcriptional factors, AP-1, GATA and GATA-related proteins, could bind. Furthermore, gel mobility-shift assays revealed that AP-1 or other nuclear factors could bind to these elements. In co-transfection studies, the expression of c-Jun plus c-Fos enhanced the transactivation of oIFNtau-CAT but the expression of GATA-1, GATA-2 or GATA-3 did not. Taken together, these results suggest that the upstream region between bases -654 and -555 could be considered as the enhancer region for oIFNtau gene transactivation. PMID:10359663

  13. 5-Methoxyl Aesculetin Abrogates Lipopolysaccharide-Induced Inflammation by Suppressing MAPK and AP-1 Pathways in RAW 264.7 Cells.

    PubMed

    Wu, Lei; Li, Xueqin; Wu, Haifeng; Long, Wei; Jiang, Xiaojian; Shen, Ting; Qiang, Qian; Si, Chuanling; Wang, Xinfeng; Jiang, Yunyao; Hu, Weicheng

    2016-01-01

    For the first time, a pale amorphous coumarin derivative, 5-methoxyl aesculetin (MOA), was isolated from the dried bark of Fraxinus rhynchophylla Hance (Oleaceae). MOA modulates cytokine expression in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, but the precise mechanisms are still not fully understood. We determined the effects of MOA on the production of inflammatory mediators and pro-inflammatory cytokines in the LPS-induced inflammatory responses of RAW 264.7 macrophages. MOA significantly inhibited the LPS-induced production of nitric oxide (NO), prostaglandin E₂ (PGE₂), tumor necrosis factor-α (TNF-α), interleukin-6, and interleukin-1β. It also effectively attenuated inducible nitric oxide (NO) synthase, cyclooxygenase-2, and TNF-α mRNA expression and significantly decreased the levels of intracellular reactive oxygen species. It inhibited phosphorylation of the extracellular signal-regulated kinase (ERK1/2), thus blocking nuclear translocation of activation protein (AP)-1. In a molecular docking study, MOA was shown to target the binding site of ERK via the formation of three hydrogen bonds with two residues of the kinase, which is sufficient for the inhibition of ERK. These results suggest that the anti-inflammatory effects of MOA in RAW 264.7 macrophages derive from its ability to block both the activation of mitogen-activated protein kinases (MAPKs) and one of their downstream transcription factors, activator protein-1 (AP-1). Our observations support the need for further research into MOA as a promising therapeutic agent in inflammatory diseases. PMID:26938526

  14. Tumorigenesis by Meis1 overexpression is accompanied by a change of DNA target-sequence specificity which allows binding to the AP-1 element

    PubMed Central

    Dardaei, Leila; Penkov, Dmitry; Mathiasen, Lisa; Bora, Pranami; Morelli, Marco J.; Blasi, Francesco

    2015-01-01

    Meis1 overexpression induces tumorigenicity but its activity is inhibited by Prep1 tumor suppressor. Why does overexpression of Meis1 cause cancer and how does Prep1 inhibit? Tumor profiling and ChIP-sequencing data in a genetically-defined set of cell lines show that: 1) The number of Meis1 and Prep1 DNA binding sites increases linearly with their concentration resulting in a strong increase of “extra” target genes. 2) At high concentration, Meis1 DNA target specificity changes such that the most enriched consensus becomes that of the AP-1 regulatory element, whereas the specific OCTA consensus is not enriched because diluted within the many extra binding sites. 3) Prep1 inhibits Meis1 tumorigenesis preventing the binding to many of the “extra” genes containing AP-1 sites. 4) The overexpression of Prep1, but not of Meis1, changes the functional genomic distribution of the binding sites, increasing seven fold the number of its “enhancer” and decreasing its “promoter” targets. 5) A specific Meis1 “oncogenic” and Prep1 “tumor suppressing” signature has been identified selecting from the pool of genes bound by each protein those whose expression was modified uniquely by the “tumor-inducing” Meis1 or tumor-inhibiting Prep1 overexpression. In both signatures, the enriched gene categories are the same and are involved in signal transduction. However, Meis1 targets stimulatory genes while Prep1 targets genes that inhibit the tumorigenic signaling pathways. PMID:26259236

  15. Geniposide suppresses LPS-induced nitric oxide, PGE2 and inflammatory cytokine by downregulating NF-κB, MAPK and AP-1 signaling pathways in macrophages.

    PubMed

    Shi, Qinghai; Cao, Jinjun; Fang, Li; Zhao, Hongyan; Liu, Zhengxiang; Ran, Jihua; Zheng, Xinchuan; Li, Xiaoling; Zhou, Yu; Ge, Di; Zhang, Hongming; Wang, Li; Ran, Ying; Fu, Jianfeng

    2014-06-01

    Inflammatory responses are important to host immune reactions, but uncontrolled inflammatory mediators may aid in the pathogenesis of other inflammatory diseases. Geniposide, an iridoid glycoside found in the herb gardenia, is believed to have broad-spectrum anti-inflammatory effects in murine models but its mechanism of action is unclear. We investigated the action of this compound in murine macrophages stimulated by lipopolysaccharide (LPS), as the stimulation of macrophages by LPS is known to induce inflammatory reactions. We determined the effect of geniposide on LPS-induced production of the inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2), the mRNA and protein expression of the NO and PGE2 synthases, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively, and the mRNA and protein expression of the inflammatory cytokine, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Furthermore, nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK) and activator protein (AP)-1 activity were assayed. To understand the action of geniposide on the NF-κB and MAPK pathways, we studied the effect of NF-κB and MAPK inhibitors on the LPS-induced production of NO, PGE2 and TNF-α. Our findings clearly showed that geniposide mainly exerts its anti-inflammatory effects by inhibiting the LPS-induced NF-κB, MAPK and AP-1 signaling pathways in macrophages, which subsequently reduces overexpression of the inducible enzymes iNOS and COX-2 and suppresses the expression and release of the inflammatory factors, TNF-α, IL-6, NO and PGE2. Thus, geniposide shows promise as a therapeutic agent in inflammatory diseases. PMID:24735815

  16. NF-κB/AP-1-targeted inhibition of macrophage-mediated inflammatory responses by depigmenting compound AP736 derived from natural 1,3-diphenylpropane skeleton.

    PubMed

    Ha, Van Thai; Beak, Heung Soo; Kim, Eunji; Baek, Kwang-Soo; Hossen, Muhammad Jahangir; Yang, Woo Seok; Kim, Yong; Kim, Jun Ho; Yang, Sungjae; Kim, Jeong-Hwan; Joo, Yung Hyup; Lee, Chang Seok; Choi, Joonho; Shin, Hong-Ju; Hong, Sungyoul; Shin, Song Seok; Cho, Jae Youl

    2014-01-01

    AP736 was identified as an antimelanogenic drug that can be used for the prevention of melasma, freckles, and dark spots in skin by acting as a suppressor of melanin synthesis and tyrosinase expression. Since macrophage-mediated inflammatory responses are critical for skin health, here we investigated the potential anti-inflammatory activity of AP736. The effects of AP736 on various inflammatory events such as nitric oxide (NO)/prostaglandin (PG) E2 production, inflammatory gene expression, phagocytic uptake, and morphological changes were examined in RAW264.7 cells. AP736 was found to strongly inhibit the production of both NO and PGE2 in lipopolysaccharide- (LPS-) treated RAW264.7 cells. In addition, AP736 strongly inhibited both LPS-induced morphological changes and FITC-dextran-induced phagocytic uptake. Furthermore, AP736 also downregulated the expression of multiple inflammatory genes, such as inducible NO synthase (iNOS), cyclooxygenase- (COX-) 2, and interleukin- (IL-) 1β in LPS-treated RAW264.7 cells. Transcription factor analysis, including upstream signalling events, revealed that both NF-κB and AP-1 were targeted by AP736 via inhibition of the IKK/IκBα and IRAK1/TAK1 pathways. Therefore, our results strongly suggest that AP736 is a potential anti-inflammatory drug due to its suppression of NF-κB-IKK/IκBα and AP-1-IRAK1/TAK1 signalling, which may make AP736 useful for the treatment of macrophage-mediated skin inflammation. PMID:25386046

  17. Differential Effects of Hepatocyte Nuclear Factor 4α Isoforms on Tumor Growth and T-Cell Factor 4/AP-1 Interactions in Human Colorectal Cancer Cells

    PubMed Central

    Vuong, Linh M.; Chellappa, Karthikeyani; Dhahbi, Joseph M.; Deans, Jonathan R.; Fang, Bin; Bolotin, Eugene; Titova, Nina V.; Hoverter, Nate P.; Spindler, Stephen R.; Waterman, Marian L.

    2015-01-01

    The nuclear receptor hepatocyte nuclear factor 4α (HNF4α) is tumor suppressive in the liver but amplified in colon cancer, suggesting that it also might be oncogenic. To investigate whether this discrepancy is due to different HNF4α isoforms derived from its two promoters (P1 and P2), we generated Tet-On-inducible human colon cancer (HCT116) cell lines that express either the P1-driven (HNF4α2) or P2-driven (HNF4α8) isoform and analyzed them for tumor growth and global changes in gene expression (transcriptome sequencing [RNA-seq] and chromatin immunoprecipitation sequencing [ChIP-seq]). The results show that while HNF4α2 acts as a tumor suppressor in the HCT116 tumor xenograft model, HNF4α8 does not. Each isoform regulates the expression of distinct sets of genes and recruits, colocalizes, and competes in a distinct fashion with the Wnt/β-catenin mediator T-cell factor 4 (TCF4) at CTTTG motifs as well as at AP-1 motifs (TGAXTCA). Protein binding microarrays (PBMs) show that HNF4α and TCF4 share some but not all binding motifs and that single nucleotide polymorphisms (SNPs) in sites bound by both HNF4α and TCF4 can alter binding affinity in vitro, suggesting that they could play a role in cancer susceptibility in vivo. Thus, the HNF4α isoforms play distinct roles in colon cancer, which could be due to differential interactions with the Wnt/β-catenin/TCF4 and AP-1 pathways. PMID:26240283

  18. Exogenous avian leukosis virus-induced activation of the ERK/AP1 pathway is required for virus replication and correlates with virus-induced tumorigenesis

    PubMed Central

    Dai, Manman; Feng, Min; Ye, Yu; Wu, Xiaochan; Liu, Di; Liao, Ming; Cao, Weisheng

    2016-01-01

    A proteomics approach was used to reveal the up-regulated proteins involved in the targeted mitogen-activated protein kinase (MAPK) signal transduction pathway in DF-1 cells after ALV subgroup J (ALV-J) infection. Next, we found that ALV-J CHN06 strain infection of DF-1 cells correlated with extracellular signal-regulated kinase 2 (ERK2) activation, which was mainly induced within 15 min, a very early stage of infection, and at a late infection stage, from 108 h to 132 h post-infection. Infection with other ALV subgroup (A/B) strains also triggered ERK/MAPK activation. Moreover, when activating ERK2, ALV subgroups A, B and J simultaneously induced the phosphorylation of c-Jun, an AP1 family member and p38 activation but had no obvious effect on JNK activation at either 15 min or 120 h. Interestingly, only PD98059 inhibited the ALV-induced c-Jun phosphorylation while SP600125 or SB203580 had no influence on c-Jun activation. Furthermore, the viral gp85 and gag proteins were found to contribute to ERK2/AP1 activation. Additionally, the specific ERK inhibitor, PD980509, significantly suppressed ALV replication, as evidenced by extremely low levels of ALV promoter activity and ALV-J protein expression. In vivo analysis of ERK2 activation in tumor cells derived from ALV-J-infected chicken demonstrated a strong correlation between ERK/MAPK activation and virus-associated tumorigenesis. PMID:26754177

  19. 5-Methoxyl Aesculetin Abrogates Lipopolysaccharide-Induced Inflammation by Suppressing MAPK and AP-1 Pathways in RAW 264.7 Cells

    PubMed Central

    Wu, Lei; Li, Xueqin; Wu, Haifeng; Long, Wei; Jiang, Xiaojian; Shen, Ting; Qiang, Qian; Si, Chuanling; Wang, Xinfeng; Jiang, Yunyao; Hu, Weicheng

    2016-01-01

    For the first time, a pale amorphous coumarin derivative, 5-methoxyl aesculetin (MOA), was isolated from the dried bark of Fraxinus rhynchophylla Hance (Oleaceae). MOA modulates cytokine expression in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, but the precise mechanisms are still not fully understood. We determined the effects of MOA on the production of inflammatory mediators and pro-inflammatory cytokines in the LPS-induced inflammatory responses of RAW 264.7 macrophages. MOA significantly inhibited the LPS-induced production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin-6, and interleukin-1β. It also effectively attenuated inducible nitric oxide (NO) synthase, cyclooxygenase-2, and TNF-α mRNA expression and significantly decreased the levels of intracellular reactive oxygen species. It inhibited phosphorylation of the extracellular signal-regulated kinase (ERK1/2), thus blocking nuclear translocation of activation protein (AP)-1. In a molecular docking study, MOA was shown to target the binding site of ERK via the formation of three hydrogen bonds with two residues of the kinase, which is sufficient for the inhibition of ERK. These results suggest that the anti-inflammatory effects of MOA in RAW 264.7 macrophages derive from its ability to block both the activation of mitogen-activated protein kinases (MAPKs) and one of their downstream transcription factors, activator protein-1 (AP-1). Our observations support the need for further research into MOA as a promising therapeutic agent in inflammatory diseases. PMID:26938526

  20. Bamboo extract reduces interleukin 6 (IL-6) overproduction under lipotoxic conditions through inhibiting the activation of NF-κB and AP-1 pathways.

    PubMed

    Higa, Jason K; Panee, Jun

    2011-07-01

    Interleukin 6 (IL-6) is an inflammatory cytokine overexpressed in obese individuals that contributes to the development of diseases such as insulin resistance, type 2 diabetes, and cardiovascular disease. This study investigated the inhibitory effect of an extract from the bamboo Phyllostachys edulis (BEX) on lipotoxicity-induced over-production of IL-6 in metabolic cell lines. Palmitic acid (PA, 0.4mM) was used to induce lipotoxicity in murine C2C12, 3T3-L1, and Hepa6 cells. Both intra- and extra-cellular protein concentrations of IL-6 were measured in the three cell lines after PA treatment with or without the presence of BEX using cytometric bead assays. IL-6 mRNA levels were quantified using real-time PCR, and nuclear concentrations of c-fos, p50 and p65 proteins were measured using DNA-binding ELISA in 3T3-L1 cells. Lipotoxicity increased IL-6 protein concentration in both cytosol and media collected from myoblast and myotube C2C12, as well as preadipose and adipose 3T3-L1, and the presence of BEX (0.5%, v/v) effectively inhibited this overproduction. IL-6 protein expression in hepatic Hepa6 cells was less affected by lipotoxicity. BEX significantly ameliorated PA-induced upregulation of IL-6 mRNA, which correlated with a reduction in nuclear translocation of p50, p65, and c-fos proteins with the presence of BEX, indicating inhibition of NF-κB and AP-1 activation. In summary, BEX inhibits lipotoxicity-induced IL-6 overproduction in muscle and adipose cell lines through the NF-κB and AP-1 pathways, implicating a potential application of this natural product as a cost-effective anti-inflammation nutraceutical. PMID:21474329

  1. ISHAN: sequence homology analysis package.

    PubMed

    Shil, Pratip; Dudani, Niraj; Vidyasagar, Pandit B

    2006-01-01

    Sequence based homology studies play an important role in evolutionary tracing and classification of proteins. Various methods are available to analyze biological sequence information. However, with the advent of proteomics era, there is a growing demand for analysis of huge amount of biological sequence information, and it has become necessary to have programs that would provide speedy analysis. ISHAN has been developed as a homology analysis package, built on various sequence analysis tools viz FASTA, ALIGN, CLUSTALW, PHYLIP and CODONW (for DNA sequences). This JAVA application offers the user choice of analysis tools. For testing, ISHAN was applied to perform phylogenetic analysis for sets of Caspase 3 DNA sequences and NF-kappaB p105 amino acid sequences. By integrating several tools it has made analysis much faster and reduced manual intervention. PMID:17274766

  2. Homologies in Physics and Astrophysics

    NASA Astrophysics Data System (ADS)

    Bartlett, David F.; Cumalat, J. P.

    2012-01-01

    The genes of humans and chimpanzees are homologs. These genes are - in large measure - identical. From this detailed observation, we naturally suppose that both species evolved from a common ancestor. In particle physics the ordinary observed particles and their superymmetric partners are thought to be homologs, generated by a common "ancestor” , the Higgs particle. Experiments at CERN currently are testing this comfortable analogy of physics with biology. Neither the Higgs boson nor any supersymmetric particle has yet been found. We speculate that a variety of objects are homologs - evidence of an as yet undeveloped quantum theory of gravity to replace Dark Matter. A purely astronomical homology is the Vc - σ o relation which places nearly spherical elliptical galaxies just above well-formed spirals (SA & SB). Here the asymptotically- flat, circular velocity Vc is observed to be between 1 and 2 times the central bulge velocity dispersion σo over the range 60 km/s< σo <400 km/s (Ferrarese 2002, Fig 3). The Vc - σ o relation is difficult to explain with self-consistent equilibrium galaxy models (Courteau et al 2007). Here we give an explanation based on the Sinusoidal Potential, a non-Newtonian potential in which φ =-GM Cos[ko r]/r and ko=2 π /400 pc. We relate the lower limit of 60 km/s to the thermal velocity of protons at the” Broadhurst/Hirano & Hartnett” lookback redshift Z=105.6. This is the redshift where what was 400 pc then expands to 128 h-1 Mpc today. Further, at this Z the temperature of the universe was close to the Hartree Energy of 2 times 13.6 eV, an energy where protons have an rms speed of about 60 km/s.

  3. Symplectic homology product via Legendrian surgery.

    PubMed

    Bourgeois, Frédéric; Ekholm, Tobias; Eliashberg, Yakov

    2011-05-17

    This research announcement continues the study of the symplectic homology of Weinstein manifolds undertaken by the authors [Bourgeois F, Ekholm T, Eliashberg Y (2009) arXiv:0911.0026] where the symplectic homology, as a vector space, was expressed in terms of the Legendrian homology algebra of the attaching spheres of critical handles. Here, we express the product and Batalin-Vilkovisky operator of symplectic homology in that context. PMID:21518898

  4. CXCL12 induces connective tissue growth factor expression in human lung fibroblasts through the Rac1/ERK, JNK, and AP-1 pathways.

    PubMed

    Lin, Chien-Huang; Shih, Chung-Huang; Tseng, Chih-Chieh; Yu, Chung-Chi; Tsai, Yuan-Jhih; Bien, Mauo-Ying; Chen, Bing-Chang

    2014-01-01

    CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression. PMID:25121739

  5. Ras association domain family member 10 suppresses gastric cancer growth by cooperating with GSTP1 to regulate JNK/c-Jun/AP-1 pathway.

    PubMed

    Li, X; Liang, Q; Liu, W; Zhang, N; Xu, L; Zhang, X; Zhang, J; Sung, J J Y; Yu, J

    2016-05-12

    The Ras association domain family (RASSF) encodes several members with tumor-suppressive potentials. We aimed to investigate the biological function and clinical implication of RASSF10 in gastric cancer (GC). We found that RASSF10 was silenced in six of seven GC cell lines and in primary GC tissues, but was highly expressed in normal gastric tissues. The silence of RASSAF10 was mediated by promoter methylation as evaluated by bisulfite genomic sequencing. RASSF10 expression could be restored by demethylation treatment. A negative correlation between methylation and mRNA expression of RASSF10 was observed in 223 gastric samples of The Cancer Genome Atlas study (P<0.0001). Re-expression of RASSF10 in GC cell lines (AGS and MKN45) significantly suppressed cell viability, colony formation, migration and invasion, reduced cells in S phase, accumulated cells in G2 phase and induced cell apoptosis in vitro, and inhibited tumorigenicity in nude mice. These were confirmed by decreased expression of proliferation markers (proliferating cell nuclear antigen, p-CDC2 and p-CDC25) and increased apoptotic cascades (cleaved caspases-9, -8, -3 and cleaved poly (ADP-ribose) polymerase). Conversely, RASSF10 knockdown in normal gastric cell line yielded an opposing effect. Co-immunoprecipitation combined with mass spectrometry analyses were performed to reveal the downstream effectors of RASSF10. The result revealed that glutathione S-transferase Pi 1 (GSTP1) was a direct cooperator of RASSF10. The tumor-suppressive effect of RASSF10 was partially mediated by cooperating with GSTP1 to deregulate Jun N-terminal kinase (JNK)/c-Jun/AP-1 pathway. Importantly, RASSF10 methylation was detected in 56.6% (98/173) of primary GCs and is an independent risk factor for poor survival of GC patients (P=0.001). In conclusions, RASSF10 functions as a tumor suppressor by cooperating with GSTP1 to deregulate JNK/c-Jun/AP-1 pathway in GC. Promoter methylation of RASSF10 is associated with poor survival

  6. Delta FosB and AP-1-mediated transcription modulate cannabinoid CB1 receptor signaling and desensitization in striatal and limbic brain regions

    PubMed Central

    Lazenka, Matthew F.; David, Bethany G.; Lichtman, Aron H.; Nestler, Eric J.; Selley, Dana E.; Sim-Selley, Laura J.

    2014-01-01

    Repeated Δ9-tetrahydrocannabinol (THC) administration produces cannabinoid type 1 receptor (CB1R) desensitization and downregulation, as well as tolerance to its in vivo pharmacological effects. However, the magnitude of CB1R desensitization varies by brain region, with CB1Rs in the striatum and its output nuclei undergoing less desensitization than other regions. A growing body of data indicates that regional differences in CB1R desensitization are produced, in part, by THC-mediated induction of the stable transcription factor, ΔFosB, and subsequent regulation of CB1Rs. The purpose of the present study was to determine whether THC-mediated induction of ΔFosB in the striatum inhibits CB1R desensitization in the striatum and output nuclei. This hypothesis was tested using bitransgenic mice with inducible expression of ΔFosB or ΔcJun, a dominant negative inhibitor of AP-1-mediated transcription, in specific forebrain regions. Mice were treated repeatedly with escalating doses of THC or vehicle for 6.5 days, and CB1R-mediated G-protein activation was assessed using CP55,940-stimulated [35S]GTPγS autoradiography. Overexpression of ΔFosB in striatal dopamine type 1 receptor-containing (D1R) medium spiny neurons (MSNs) attenuated CB1R desensitization in the substantia nigra, ventral tegmental area (VTA) and amygdala. Expression of ΔcJun in striatal D1R- and dopamine type 2 receptor (D2R)-containing MSNs enhanced CB1R desensitization in the caudate-putamen and attenuated desensitization in the hippocampus and VTA. THC-mediated in vivo pharmacological effects were then assessed in ΔcJun-expressing mice. Tolerance to THC-mediated hypomotility was enhanced in ΔcJun-expressing mice. These data reveal that ΔFosB and possibly other AP-1 binding proteins regulate CB1R signaling and adaptation in the striatum and limbic system. PMID:25093286

  7. Effects of AP-1 and NF-κB inhibitors on colonic endocrine cells in rats with TNBS-induced colitis

    PubMed Central

    El-Salhy, Magdy; Umezawa, Kazuo

    2016-01-01

    Interactions between intestinal neuroendocrine peptides/amines and the immune system appear to have an important role in the pathophysiology of inflammatory bowel disease (IBD). The present study investigated the effects of activator protein (AP)-1 and nuclear factor (NF)-κB inhibitors on inflammation-induced alterations in enteroendocrine cells. A total of 48 male Wistar rats were divided into the following four groups (n=12 rats/group): Control, trinitrobenzene sulfonic acid (TNBS)-induced colitis only (TNBS group), TNBS-induced colitis with 3-[(dodecylthiocarbonyl)-methyl]-glutarimide (DTCM-G) treatment (DTCM-G group), and TNBS-induced colitis with dehydroxymethylepoxyquinomicin (DHMEQ) treatment (DHMEQ group). A total of 3 days following administration of TNBS, the rats were treated as follows: The control and TNBS groups received 0.5 ml vehicle (0.5% carboxymethyl cellulose; CMC), respectively; the DTCM-G group received DTCM-G (20 mg/kg body weight) in 0.5% CMC; and the DHMEQ group received DHMEQ (15 mg/kg body weight) in 0.5% CMC. All injections were performed intraperitoneally twice daily for 5 days. The rats were sacrificed, and tissue samples obtained from the colon were examined histopathologically and immunohistochemically. Inflammation was evaluated using a scoring system. In addition, the sections were immunostained for chromogranin A (CgA), serotonin, peptide YY (PYY), oxyntomodulin, pancreatic polypeptide (PP) and somatostatin, and immunostaining was quantified using image-analysis software. The density of cells expressing CgA, PYY and PP was significantly lower in the TNBS group compared with in the control group, whereas the density of cells expressing serotonin, oxyntomodulin and somatostatin was significantly higher in the TNBS group compared with in the control group. None of the endocrine cell types differed significantly between the control group and either the DTCM-G or DHMEQ groups. All of the colonic endocrine cell types were affected in

  8. Staphylococcus aureus induces TGF-β1 and bFGF expression through the activation of AP-1 and NF-κB transcription factors in bovine mammary gland fibroblasts.

    PubMed

    Wu, Jianmei; Ding, Yulin; Bi, Yannan; Wang, Yi; Zhi, Yu; Wang, Jinling; Wang, Fenglong

    2016-06-01

    Staphylococcus aureus is a common Gram-positive pathogen that causes bovine mastitis, a persistent infection of the bovine mammary gland. To better understand the importance of bovine mammary fibroblasts (BMFBs) and the roles of the TLR-NF-κB and TLR-AP-1 signaling pathways in the regulation of S. aureus-associated mastitis and mammary fibosis, BMFBs cultured in vitro were stimulated with different concentrations of heat-inactivated S. aureus to analyze the gene and protein expression of toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), transforming growth factor beta 1 (TGF-β1), basic fibroblast growth factor (bFGF) as well as the protein expression of nuclear factor-kappa B (NF-κB) and activation protein-1 (AP-1) by means of quantitative polymerase chain reaction (qPCR) and western blotting, respectively. Specific NF-κB and AP-1 inhibitors were also used to investigate their effects on the regulation of TGF-β1 and bFGF expression. The results indicated that, in addition to increasing mRNA and protein expression of TLR2 and TLR4, S. aureus could also upregulate TGF-β1 and bFGF mRNA expression and secretion through the activation of NF-κB and AP-1. The increase in TGF-β1 and bFGF expression was shown to be inhibited by AP-1- and NF-κB-specific inhibitors. Taken together, S. aureus induces TGF-β1 and bFGF expression through the activation of AP-1 and NF-κB in BMFBs. This information offers new potential targets for the treatment of bovine mammary fibrosis. PMID:26948281

  9. Oleic acid-induced ADRP expression requires both AP-1 and PPAR response elements, and is reduced by Pycnogenol through mRNA degradation in NMuLi liver cells.

    PubMed

    Fan, Bin; Ikuyama, Shoichiro; Gu, Jian-Qiu; Wei, Ping; Oyama, Jun-ichi; Inoguchi, Toyoshi; Nishimura, Junji

    2009-07-01

    Fatty acids stimulate lipid accumulation in parallel with increased expression of adipose differentiation-related protein (ADRP) in liver cells. Although it is generally considered that the fatty acid effect on ADRP expression is mediated by peroxisome proliferator-activated receptors (PPARs), we identified here an additional molecular mechanism using the NMuLi mouse liver nonparenchymal cell line, which expresses PPARgamma and delta but not alpha. Oleic acid (OA) and specific ligands for PPARgamma and -delta stimulated ADRP expression as well as the -2,090-bp ADRP promoter activity which encompasses the PPAR response element (PPRE) adjacent to an Ets/activator protein (AP)-1 site. When the AP-1 site was mutated, OA failed to stimulate the activity despite the presence of the PPRE, whereas ligands for PPARgamma and -delta did stimulate it and so did a PPARalpha ligand under the coexpression of PPARalpha. DNA binding of AP-1 was stimulated by OA but not by PPAR ligands. Because we previously demonstrated that Pycnogenol (PYC), a French maritime pine bark extract, suppressed ADRP expression in macrophages partly by suppression of AP-1 activity, we tested the effect of PYC on NMuLi cells. PYC reduced the OA-induced ADRP expression along with suppression of lipid droplet formation. However, PYC neither suppressed the OA-stimulated ADRP promoter activity nor DNA binding of AP-1 but, instead, reduced the ADRP mRNA half-life. All these results indicate that the effect of OA on ADRP expression requires AP-1 as well as PPRE, and PYC suppresses the ADRP expression in part by facilitating mRNA degradation. PYC, a widely used dietary supplement, could be beneficial for the prevention of excessive lipid accumulation such as hepatic steatosis. PMID:19383873

  10. Establishing homologies in protein sequences

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.; Barker, W. C.; Hunt, L. T.

    1983-01-01

    Computer-based statistical techniques used to determine homologies between proteins occurring in different species are reviewed. The technique is based on comparison of two protein sequences, either by relating all segments of a given length in one sequence to all segments of the second or by finding the best alignment of the two sequences. Approaches discussed include selection using printed tabulations, identification of very similar sequences, and computer searches of a database. The use of the SEARCH, RELATE, and ALIGN programs (Dayhoff, 1979) is explained; sample data are presented in graphs, diagrams, and tables and the construction of scoring matrices is considered.

  11. Suppression of acetylpolyamine oxidase by selected AP-1 members regulates DNp73 abundance: mechanistic insights for overcoming DNp73-mediated resistance to chemotherapeutic drugs.

    PubMed

    Bunjobpol, W; Dulloo, I; Igarashi, K; Concin, N; Matsuo, K; Sabapathy, K

    2014-08-01

    Enhanced resistance to chemotherapy has been correlated with high levels of Delta-Np73 (DNp73), an anti-apoptotic protein of the p53 tumor-suppressor family which inhibits the pro-apoptotic members such as p53 and TAp73. Although genotoxic drugs have been shown to induce DNp73 degradation, lack of mechanistic understanding of this process precludes strategies to enhance the targeting of DNp73 and improve treatment outcomes. Antizyme (Az) is a mediator of ubiquitin-independent protein degradation regulated by the polyamine biosynthesis pathway. We show here that acetylpolyamine oxidase (PAOX), a catabolic enzyme of this pathway, upregulates DNp73 levels by suppressing its degradation via the Az pathway. Conversely, downregulation of PAOX activity by siRNA-mediated knockdown or chemical inhibition leads to DNp73 degradation in an Az-dependent manner. PAOX expression is suppressed by several genotoxic drugs, via selected members of the activator protein-1 (AP-1) transcription factors, namely c-Jun, JunB and FosB, which are required for stress-mediated DNp73 degradation. Finally, chemical- and siRNA-mediated inhibition of PAOX significantly reversed the resistant phenotype of DNp73-overexpressing cancer cells to genotoxic drugs. Together, these data define a critical mechanism for the regulation of DNp73 abundance, and reveal that inhibition of PAOX could widen the therapeutic index of cytotoxic drugs and overcome DNp73-mediated chemoresistance in tumors. PMID:24722210

  12. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways

    PubMed Central

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-01-01

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer’s disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1–42 (Aβ1−42) -mediated inflammation. Exposure of THP-1 cells to Aβ1−42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1−42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes. PMID:26853104

  13. Stromelysin-3 induction and interstitial collagenase repression by retinoic acid. Therapeutical implication of receptor-selective retinoids dissociating transactivation and AP-1-mediated transrepression.

    PubMed

    Guérin, E; Ludwig, M G; Basset, P; Anglard, P

    1997-04-25

    Human stromelysin-3 and interstitial collagenase are matrix metalloproteinases whose expression by stromal cells in several types of carcinomas has been associated with cancer progression. We compared here the regulation of the expression of both proteinases by retinoids in human fibroblasts. Physiological concentrations of retinoic acid were found to simultaneously induce stromelysin-3 and repress interstitial collagenase. In both cases, the involvement of a transcriptional mechanism was supported by run-on assays. Furthermore, in transient transfection experiments, the activity of the stromelysin-3 promoter was induced by retinoic acid through endogenous receptors acting on a DR1 retinoic acid-responsive element. The ligand-dependent activation of the receptors was also investigated by using selective synthetic retinoids, and we demonstrated that retinoic acid-retinoid X receptor heterodimers were the most potent functional units controlling both stromelysin-3 induction and interstitial collagenase repression. However, specific retinoids dissociating the transactivation and the AP-1-mediated transrepression functions of the receptors were found to repress interstitial collagenase without inducing stromelysin-3. These findings indicate that such retinoids may represent efficient inhibitors of matrix metalloproteinase expression in the treatment of human carcinomas. PMID:9111003

  14. The clinical Pseudomonas fluorescens MFN1032 strain exerts a cytotoxic effect on epithelial intestinal cells and induces Interleukin-8 via the AP-1 signaling pathway

    PubMed Central

    2010-01-01

    Background Pseudomonas fluorescens is present in low number in the intestinal lumen and has been proposed to play a role in Crohn's disease (CD). Indeed, a highly specific antigen, I2, has been detected in CD patients and correlated to the severity of the disease. We aimed to determine whether P. fluorescens was able to adhere to human intestinal epithelial cells (IECs), induce cytotoxicity and activate a proinflammatory response. Results Behaviour of the clinical strain P. fluorescens MFN1032 was compared to that of the psychrotrophic strain P. fluorescens MF37 and the opportunistic pathogen P. aeruginosa PAO1. Both strains of P. fluorescens were found to adhere on Caco-2/TC7 and HT-29 cells. Their cytotoxicity towards these two cell lines determined by LDH release assays was dose-dependent and higher for the clinical strain MFN1032 than for MF37 but lower than P. aeruginosa PAO1. The two strains of P. fluorescens also induced IL-8 secretion by Caco-2/TC7 and HT-29 cells via the AP-1 signaling pathway whereas P. aeruginosa PAO1 potentially used the NF-κB pathway. Conclusions The present work shows, for the first time, that P. fluorescens MFN1032 is able to adhere to IECs, exert cytotoxic effects and induce a proinflammatory reaction. Our results are consistent with a possible contribution of P. fluorescens in CD and could explain the presence of specific antibodies against this bacterium in the blood of patients. PMID:20698984

  15. Terminal epidermal differentiation is regulated by the interaction of Fra-2/AP-1 with Ezh2 and ERK1/2

    PubMed Central

    Wurm, Stefanie; Zhang, Jisheng; Guinea-Viniegra, Juan; García, Fernando; Muñoz, Javier; Bakiri, Latifa; Ezhkova, Elena

    2015-01-01

    Altered epidermal differentiation characterizes numerous skin diseases affecting >25% of the human population. Here we identified Fra-2/AP-1 as a key regulator of terminal epidermal differentiation. Epithelial-restricted, ectopic expression of Fra-2 induced expression of epidermal differentiation genes located within the epidermal differentiation complex (EDC). Moreover, in a papilloma-prone background, a reduced tumor burden was observed due to precocious keratinocyte differentiation by Fra-2 expression. Importantly, loss of Fra-2 in suprabasal keratinocytes is sufficient to cause skin barrier defects due to reduced expression of differentiation genes. Mechanistically, Fra-2 binds and transcriptionally regulates EDC gene promoters, which are co-occupied by the transcriptional repressor Ezh2. Fra-2 remains transcriptionally inactive in nondifferentiated keratinocytes, where it was found monomethylated and dimethylated on Lys104 and interacted with Ezh2. Upon keratinocyte differentiation, Fra-2 is C-terminally phosphorylated on Ser320 and Thr322 by ERK1/2, leading to transcriptional activation. Thus, the induction of epidermal differentiation by Fra-2 is controlled by a dual mechanism involving Ezh2-dependent methylation and activation by ERK1/2-dependent phosphorylation. PMID:25547114

  16. Terminal epidermal differentiation is regulated by the interaction of Fra-2/AP-1 with Ezh2 and ERK1/2.

    PubMed

    Wurm, Stefanie; Zhang, Jisheng; Guinea-Viniegra, Juan; García, Fernando; Muñoz, Javier; Bakiri, Latifa; Ezhkova, Elena; Wagner, Erwin F

    2015-01-15

    Altered epidermal differentiation characterizes numerous skin diseases affecting >25% of the human population. Here we identified Fra-2/AP-1 as a key regulator of terminal epidermal differentiation. Epithelial-restricted, ectopic expression of Fra-2 induced expression of epidermal differentiation genes located within the epidermal differentiation complex (EDC). Moreover, in a papilloma-prone background, a reduced tumor burden was observed due to precocious keratinocyte differentiation by Fra-2 expression. Importantly, loss of Fra-2 in suprabasal keratinocytes is sufficient to cause skin barrier defects due to reduced expression of differentiation genes. Mechanistically, Fra-2 binds and transcriptionally regulates EDC gene promoters, which are co-occupied by the transcriptional repressor Ezh2. Fra-2 remains transcriptionally inactive in nondifferentiated keratinocytes, where it was found monomethylated and dimethylated on Lys104 and interacted with Ezh2. Upon keratinocyte differentiation, Fra-2 is C-terminally phosphorylated on Ser320 and Thr322 by ERK1/2, leading to transcriptional activation. Thus, the induction of epidermal differentiation by Fra-2 is controlled by a dual mechanism involving Ezh2-dependent methylation and activation by ERK1/2-dependent phosphorylation. PMID:25547114

  17. Adaptor protein complexes AP-1 and AP-3 are required by the HHV-7 Immunoevasin U21 for rerouting of class I MHC molecules to the lysosomal compartment.

    PubMed

    Kimpler, Lisa A; Glosson, Nicole L; Downs, Deanna; Gonyo, Patrick; May, Nathan A; Hudson, Amy W

    2014-01-01

    The human herpesvirus-7 (HHV-7) U21 gene product binds to class I major histocompatibility complex (MHC) molecules and reroutes them to a lysosomal compartment. Trafficking of integral membrane proteins to lysosomes is mediated through cytoplasmic sorting signals that recruit heterotetrameric clathrin adaptor protein (AP) complexes, which in turn mediate protein sorting in post-Golgi vesicular transport. Since U21 can mediate rerouting of class I molecules to lysosomes even when lacking its cytoplasmic tail, we hypothesize the existence of a cellular protein that contains the lysosomal sorting information required to escort class I molecules to the lysosomal compartment. If such a protein exists, we expect that it might recruit clathrin adaptor protein complexes as a means of lysosomal sorting. Here we describe experiments demonstrating that the μ adaptins from AP-1 and AP-3 are involved in U21-mediated trafficking of class I molecules to lysosomes. These experiments support the idea that a cellular protein(s) is necessary for U21-mediated lysosomal sorting of class I molecules. We also examine the impact of transient versus chronic knockdown of these adaptor protein complexes, and show that the few remaining μ subunits in the cells are eventually able to reroute class I molecules to lysosomes. PMID:24901711

  18. CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway.

    PubMed

    Huang, Juin-Hua; Lin, Ching-Yu; Wu, Sheng-Yang; Chen, Wen-Yu; Chu, Ching-Liang; Brown, Gordon D; Chuu, Chih-Pin; Wu-Hsieh, Betty A

    2015-07-01

    Collaboration between heterogeneous pattern recognition receptors (PRRs) leading to synergistic coordination of immune response is important for the host to fight against invading pathogens. Although complement receptor 3 (CR3) and Dectin-1 are major PRRs to detect fungi, crosstalk between these two receptors in antifungal immunity is largely undefined. Here we took advantage of Histoplasma capsulatum which is known to interact with both CR3 and Dectin-1 and specific particulate ligands to study the collaboration of CR3 and Dectin-1 in macrophage cytokine response. By employing Micro-Western Array (MWA), genetic approach, and pharmacological inhibitors, we demonstrated that CR3 and Dectin-1 act collaboratively to trigger macrophage TNF and IL-6 response through signaling integration at Syk kinase, allowing subsequent enhanced activation of Syk-JNK-AP-1 pathway. Upon engagement, CR3 and Dectin-1 colocalize and form clusters on lipid raft microdomains which serve as a platform facilitating their cooperation in signaling activation and cytokine production. Furthermore, in vivo studies showed that CR3 and Dectin-1 cooperatively participate in host defense against disseminated histoplasmosis and instruct adaptive immune response. Taken together, our findings define the mechanism of receptor crosstalk between CR3 and Dectin-1 and demonstrate the importance of their collaboration in host defense against fungal infection. PMID:26132276

  19. A new APE1/Ref-1-dependent pathway leading to reduction of NF-kappaB and AP-1, and activation of their DNA-binding activity.

    PubMed

    Ando, Kozue; Hirao, Satoshi; Kabe, Yasuaki; Ogura, Yuji; Sato, Iwao; Yamaguchi, Yuki; Wada, Tadashi; Handa, Hiroshi

    2008-08-01

    APE1/Ref-1 is thought to be a multifunctional protein involved in reduction-oxidation (redox) regulation and base excision DNA repair, and is required for early embryonic development in mice. APE1/Ref-1 has redox activity and AP endonuclease activity, and is able to enhance DNA-binding activity of several transcription factors, including NF-kappaB, AP-1 and p53, through reduction of their critical cysteine residues. However, it remains elusive exactly how APE1/Ref-1 carries out its essential functions in vivo. Here, we show that APE1/Ref-1 not only reduces target transcription factors directly but also facilitates their reduction by other reducing molecules such as glutathione or thioredoxin. The new activity of APE1/Ref-1, termed redox chaperone activity, is exerted at concentration significantly lower than that required for its redox activity and is neither dependent on its redox activity nor on its AP endonuclease activity. We also show evidence that redox chaperone activity of APE1/Ref-1 is critical to NF-kappaB-mediated gene expression in human cells and is mediated through its physical association with target transcription factors. Thus, APE1/Ref-1 may play multiple roles in an antioxidative stress response pathway through its different biochemical activities. These findings also provide new insight into the mechanism of intracellular redox regulation. PMID:18586825

  20. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways.

    PubMed

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-01-01

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer's disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1-42 (Aβ1-42) -mediated inflammation. Exposure of THP-1 cells to Aβ1-42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1-42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes. PMID:26853104

  1. Homologous gene replacement in Physarum

    SciTech Connect

    Burland, T.G.; Pallotta, D.

    1995-01-01

    The protist Physarum polycephalum is useful for analysis of several aspects of cellular and developmental biology. To expand the opportunities for experimental analysis of this organism, we have developed a method for gene replacement. We transformed Physarum amoebae with plasmid DNA carrying a mutant allele, ardD{Delta}1, of the ardD actin gene; ardD{Delta}1 mutates the critical carboxy-terminal region of the gene product. Because ardD is not expressed in the amoeba, replacement of ardD{sup +} with ardD{Delta}1 should not be lethal for this cell type. Transformants were obtained only when linear plasmid DNA was used. Most transformants carried one copy of ardD{Delta}1 in addition to ardD{sup +}, but in two (5%), ardD{sup +} was replaced by a single copy of ardD{Delta}1. This is the first example of homologous gene replacement in Physarum. ardD{Delta}1 was stably maintained in the genome through growth, development and meiosis. We found no effect of ardD{Delta}l on viability, growth, or development of any of the various cell types of Physarum. Thus, the carboxy-terminal region of the ardD product appears not to perform a unique essential role in growth or development. Nevertheless, this method for homologous gene replacement can be applied to analyze the function of any cloned gene. 38 refs., 6 figs., 1 tab.

  2. The Effects of NF-κB and c-Jun/AP-1 on the Expression of Prothrombotic and Proinflammatory Molecules Induced by Anti-β2GPI in Mouse

    PubMed Central

    Yu, Yinjing; Zhou, Hong; Wang, Ting; Yan, Jinchuan

    2016-01-01

    Our previous data demonstrated that nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) are involved in the process of anti-β2GPI/β2GPI-induced tissue factor (TF) expression in monocytes. However, the role of NF-κB and AP-1 in pathogenic mechanisms of antiphospholipid syndrome (APS) in vivo has been rarely studied. This study aimed to investigate whether NF-κB and c-Jun/AP-1 are involved in anti-β2GPI-induced expression of prothrombotic and proinflammatory molecules in mouse. IgG-APS or anti-β2GPI antibodies were injected into BALB/c mice in the presence or absence of PDTC (a specific inhibitor of NF-κB) and Curcumin (a potent inhibitor of AP-1) treatment. Our data showed that both IgG-APS and anti-β2GPI could induce the activation of NF-κB and c-Jun/AP-1 in mouse peritoneal macrophages. The anti-β2GPI-induced TF activity in homogenates of carotid arteries and peritoneal macrophages from mice could significantly decrease after PDTC and/or Curcumin treatment, in which PDTC showed the strongest inhibitory effect, but combination of two inhibitors had no synergistic effect. Furthermore, anti-β2GPI-induced expression of TF, VCAM-1, ICAM-1 and E-selectin in the aorta and expression of TF, IL-1β, IL-6 and TNF-α in peritoneal macrophages of mice were also significantly attenuated by PDTC and/or Curcumin treatment. These results indicate that both NF-κB and c-Jun/AP-1 are involved in regulating anti-β2GPI-induced expression of prothrombotic and proinflammatory molecules in vivo. Inhibition of NF-κB and c-Jun/AP-1 pathways may be beneficial for the prevention and treatment of thrombosis and inflammation in patients with APS. PMID:26829121

  3. TE-domestication and horizontal transfer in a putative Nef-AP1mu mimic of HLA-A cytoplasmic domain re-trafficking.

    PubMed

    Murray, Joseph S; Murray, Elaina H

    2016-01-01

    Genes of the major histocompatibility complex (MHC; also called HLA in human) are polymorphic elements in the genomes of sharks to humans. Class-I and class-II MHC loci appear responsible for much of the genetic linkage to myriad disease states via the capacity to bind short (~8-15 a.a.) peptides of a given pathogen's proteome, or in some cases, the altered proteomes of cancerous cells, and even (in autoimmunity) certain nominal 'self' peptides (Janeway, 2004).(1) Unfortunately, little is known about how the canonical structure of the MHC-I/-II peptide-presenting gene evolved, particularly since beyond ~500 Mya (sharks) no paralogs exist.(2,3) We previously reported that HLA-A isotype alleles with the α1-helix, R65 motif, are wide-spread in phylogeny, but that the α 2-helix, H151R motif, has apparently segregated out of most species. Surprisingly, an uncharacterized orf in T. syrichta (Loc-103275158) encoded R151, but within a truncated A-23 like gene containing 5'- and 3'- footprints of the transposon (TE), tigger-1; the extant tarsier A-23 allele is totally missing exon-3 and part-of exon-4; together, suggesting TE-mediated inactivation of an intact/ancestral A-23 allele (Murray, 2015a).(4) The unique Loc-103275158 orf encodes a putative 15-exon transcript with no apparent paralogs throughout phylogeny. However, an HLA-A11 like gene in M. leucophaeus with a shortened C-terminal domain, and an HLA-A like orf in C. atys with two linked α1/α2/α3 domains, both contain a second transmembrane segment, which is conserved in Loc-103275158. Thus, we could model the putative protein with its Nef-like tail domain docked to its MHC-I like α3 domain (i.e., on the same side of a membrane). This modeled tertiary structure is strikingly similar to the solved structure of the Nef:MHC-I CD:AP1mu transporter (Jia, 2012).(5) Nef:AP1mu binds the CD of MHC-I in trafficking MHC-I away from the trans-golgi and into the endocytic pathway in HIV-1 infected cells. The CD loop of the

  4. Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-κB and AP-1 signaling

    PubMed Central

    2011-01-01

    Background Mushrooms are well recognized for their culinary properties as well as for their potency to enhance immune response. In the present study, we evaluated anti-inflammatory properties of an edible oyster mushroom (Pleurotus ostreatus) in vitro and in vivo. Methods RAW264.7 murine macrophage cell line and murine splenocytes were incubated with the oyster mushroom concentrate (OMC, 0-100 μg/ml) in the absence or presence of lipopolysacharide (LPS) or concanavalin A (ConA), respectively. Cell proliferation was determined by MTT assay. Expression of cytokines and proteins was measured by ELISA assay and Western blot analysis, respectively. DNA-binding activity was assayed by the gel-shift analysis. Inflammation in mice was induced by intraperitoneal injection of LPS. Results OMC suppressed LPS-induced secretion of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6), and IL-12p40 from RAW264.7 macrophages. OMC inhibited LPS-induced production of prostaglandin E2 (PGE2) and nitric oxide (NO) through the down-regulation of expression of COX-2 and iNOS, respectively. OMC also inhibited LPS-dependent DNA-binding activity of AP-1 and NF-κB in RAW264.7 cells. Oral administration of OMC markedly suppressed secretion of TNF-α and IL-6 in mice challenged with LPS in vivo. Anti-inflammatory activity of OMC was confirmed by the inhibition of proliferation and secretion of interferon-γ (IFN-γ), IL-2, and IL-6 from concanavalin A (ConA)-stimulated mouse splenocytes. Conclusions Our study suggests that oyster mushroom possesses anti-inflammatory activities and could be considered a dietary agent against inflammation. The health benefits of the oyster mushroom warrant further clinical studies. PMID:21575254

  5. Truncated and Helix-Constrained Peptides with High Affinity and Specificity for the cFos Coiled-Coil of AP-1

    PubMed Central

    Rao, Tara; Ruiz-Gómez, Gloria; Hill, Timothy A.; Hoang, Huy N.; Fairlie, David P.; Mason, Jody M.

    2013-01-01

    Protein-based therapeutics feature large interacting surfaces. Protein folding endows structural stability to localised surface epitopes, imparting high affinity and target specificity upon interactions with binding partners. However, short synthetic peptides with sequences corresponding to such protein epitopes are unstructured in water and promiscuously bind to proteins with low affinity and specificity. Here we combine structural stability and target specificity of proteins, with low cost and rapid synthesis of small molecules, towards meeting the significant challenge of binding coiled coil proteins in transcriptional regulation. By iteratively truncating a Jun-based peptide from 37 to 22 residues, strategically incorporating i→i+4 helix-inducing constraints, and positioning unnatural amino acids, we have produced short, water-stable, α-helical peptides that bind cFos. A three-dimensional NMR-derived structure for one peptide (24) confirmed a highly stable α-helix which was resistant to proteolytic degradation in serum. These short structured peptides are entropically pre-organized for binding with high affinity and specificity to cFos, a key component of the oncogenic transcriptional regulator Activator Protein-1 (AP-1). They competitively antagonized the cJun–cFos coiled-coil interaction. Truncating a Jun-based peptide from 37 to 22 residues decreased the binding enthalpy for cJun by ∼9 kcal/mol, but this was compensated by increased conformational entropy (TΔS ≤7.5 kcal/mol). This study demonstrates that rational design of short peptides constrained by α-helical cyclic pentapeptide modules is able to retain parental high helicity, as well as high affinity and specificity for cFos. These are important steps towards small antagonists of the cJun-cFos interaction that mediates gene transcription in cancer and inflammatory diseases. PMID:23544065

  6. The human papillomavirus type 16 E7 gene product interacts with and trans-activates the AP1 family of transcription factors.

    PubMed Central

    Antinore, M J; Birrer, M J; Patel, D; Nader, L; McCance, D J

    1996-01-01

    The E7 gene product of human papillomavirus type 16 (HPV16) binds to the retinoblastoma gene product (pRb) and dissociates pRb-E2F complexes. However, the observation that the ability of E7 to bind pRb is not required for the HPV16-induced immortalization of primary keratinocytes prompted a search for other cellular factors bound by E7. Using a glutathione-S-transferase (GST) fusion protein system, we show that E7 complexes with AP1 transcription factors including c-Jun, JunB, JunD and c-Fos. The ability of E7 to complex with c-Jun in vivo is demonstrated by co-immunoprecipitation and the yeast two-hybrid system. An analysis of E7 point mutants in the GST system indicates that the E7 zinc-finger motif, but not the pRb binding domain, is involved in these interactions. Using c-Jun deletion mutants, E7 binding maps between amino acids 224 and 286 of c-Jun. E7 trans-activates c-Jun-induced transcription from a Jun responsive promoter, and this activity correlates with the ability of E7 mutants to bind Jun proteins. Finally, a transcriptionally inactive c-Jun deletion, which can bind E7, interferes with the E7-induced transformation of rat embryo fibroblasts in cooperation with an activated ras, indicating that the Jun-E7 interaction is physiologically relevant and that Jun factors may be targeted in the E7 transformation pathway. Images PMID:8617242

  7. A novel synthetic derivative of the natural product berbamine inhibits cell viability and induces apoptosis of human osteosarcoma cells, associated with activation of JNK/AP-1 signaling.

    PubMed

    Yang, Fan; Nam, Sangkil; Zhao, Robin; Tian, Yan; Liu, Lucy; Horne, David A; Jove, Richard

    2013-11-01

    Osteosarcoma is the most common primary bone tumor in children and adolescents. There is a critical need to find more potent drugs for patients with metastatic or recurrent disease. Berbamine (BBM) is a natural compound derived from the Berberis amurensis plants. BBM and its derivatives have been shown to have antitumor effects in several cancers. Here, we report that a novel synthetic berbamine derivative, BBMD3, inhibits cell viability and induces apoptosis of G292, KHOS, and MG-63 human osteosarcoma cells. Induction of apoptosis in these tumor cells depends on activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase (PARP). Since pan-caspase inhibitor (Z-VAD-FMK) and caspase-9 inhibitor (Z-LEHD-FMK) could block the cleavage of PARP, the apoptosis induced by BBMD3 is through intrinsic signaling pathway. BBMD3 increased phosphorylation of c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK), resulting in increase of phosphorylated c-Jun and total c-Fos, the major components of transcriptional factor AP-1. JNK inhibitor could partially suppress antitumor effect of BBMD3 on osteosarcoma cells. BBMD3 increased the production of reactive oxygen species (ROS) and ROS scavenger, N-acetylcysteine (NAC), could block the phosphorylation of JNK and c-Jun induced by BBMD3. BBMD3 increased the expression of the pro-apototic gene Bad, associated with apoptosis induction. Finally, BBMD3 also decreased the expression of cyclin D1 and D2, the positive cell cycle regulators, which is correlated with growth inhibition in osteosarcoma cells. Collectively, these findings indicate that BBMD3 is a potentially promising drug for the treatment of human osteosarcoma. PMID:24025361

  8. Immunohistochemical analysis of the expression of cellular transcription NFκB (p65), AP-1 (c-Fos and c-Jun), and JAK/STAT in leprosy.

    PubMed

    Silva, Luciana Mota; Hirai, Kelly Emi; de Sousa, Jorge Rodrigues; de Souza, Juarez; Fuzii, Hellen Thais; Dias, Leonidas Braga; Carneiro, Francisca Regina Oliveira; de Souza Aarão, Tinara Leila; Quaresma, Juarez Antonio Simões

    2015-05-01

    Leprosy is a disease whose clinical spectrum depends on the cytokine patterns produced during the early stages of the immune response. The main objective of this study was to describe the activation pattern of cellular transcription factors and to correlate these factors with the clinical forms of leprosy. Skin samples were obtained from 16 patients with the tuberculoid (TT) form and 14 with the lepromatous (LL) form. The histologic sections were immunostained with anti-c-Fos and anti-c-Jun monoclonal antibodies for investigation of AP-1, anti-NFκB p65 for the study of NFκB, and anti-JAK2, STAT1, STAT3, and STAT4 for investigation of the JAK/STAT pathway. Cells expressing STAT1 were more frequent in the TT form than in LL lesions (P = .0096), in agreement with the protective immunity provided by IFN-γ. STAT4 was also more highly expressed in the TT form than in the LL form (P = .0098). This transcription factor is essential for the development of a Th1 response because it is associated with interleukin-12. NFκB (p65) and STAT4 expression in the TT form showed a strong and significant correlation (r = 0.7556 and P = .0007). A moderate and significant correlation was observed between JAK2 and STAT4 in the TT form (r = 0.6637 and P = .0051), with these factors responding to interleukin-12 in Th1 profiles. The results suggest that STAT1, JAK2, and NFκB, together with STAT4, contribute to the development of cell-mediated immunity, which is able to contain the proliferation of Mycobacterium leprae. PMID:25771902

  9. CREB, ATF, and AP-1 transcription factors regulate IFN-gamma secretion by human T cells in response to mycobacterial antigen.

    PubMed

    Samten, Buka; Townsend, James C; Weis, Steven E; Bhoumik, Anindita; Klucar, Peter; Shams, Homayoun; Barnes, Peter F

    2008-08-01

    IFN-gamma production by T cells is pivotal for defense against many pathogens, and the proximal promoter of IFN-gamma, -73 to -48 bp upstream of the transcription start site, is essential for its expression. However, transcriptional regulation mechanisms through this promoter in primary human cells remain unclear. We studied the effects of cAMP response element binding protein/activating transcription factor (CREB/ATF) and AP-1 transcription factors on the proximal promoter of IFN-gamma in human T cells stimulated with Mycobacterium tuberculosis. Using EMSA, supershift assays, and promoter pulldown assays, we demonstrated that CREB, ATF-2, and c-Jun, but not cyclic AMP response element modulator, ATF-1, or c-Fos, bind to the proximal promoter of IFN-gamma upon stimulation, and coimmunoprecipitation indicated the possibility of interaction among these transcription factors. Chromatin immunoprecipitation confirmed the recruitment of these transcription factors to the IFN-gamma proximal promoter in live Ag-activated T cells. Inhibition of ATF-2 activity in T cells with a dominant-negative ATF-2 peptide or with small interfering RNA markedly reduced the expression of IFN-gamma and decreased the expression of CREB and c-Jun. These findings suggest that CREB, ATF-2, and c-Jun are recruited to the IFN-gamma proximal promoter and that they up-regulate IFN-gamma transcription in response to microbial Ag. Additionally, ATF-2 controls expression of CREB and c-Jun during T cell activation. PMID:18641343

  10. A novel synthetic derivative of the natural product berbamine inhibits cell viability and induces apoptosis of human osteosarcoma cells, associated with activation of JNK/AP-1 signaling

    PubMed Central

    Yang, Fan; Nam, Sangkil; Zhao, Robin; Tian, Yan; Liu, Lucy; Horne, David A; Jove, Richard

    2013-01-01

    Osteosarcoma is the most common primary bone tumor in children and adolescents. There is a critical need to find more potent drugs for patients with metastatic or recurrent disease. Berbamine (BBM) is a natural compound derived from the Berberis amurensis plants. BBM and its derivatives have been shown to have antitumor effects in several cancers. Here, we report that a novel synthetic berbamine derivative, BBMD3, inhibits cell viability and induces apoptosis of G292, KHOS, and MG-63 human osteosarcoma cells. Induction of apoptosis in these tumor cells depends on activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase (PARP). Since pan-caspase inhibitor (Z-VAD-FMK) and caspase-9 inhibitor (Z-LEHD-FMK) could block the cleavage of PARP, the apoptosis induced by BBMD3 is through intrinsic signaling pathway. BBMD3 increased phosphorylation of c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK), resulting in increase of phosphorylated c-Jun and total c-Fos, the major components of transcriptional factor AP-1. JNK inhibitor could partially suppress antitumor effect of BBMD3 on osteosarcoma cells. BBMD3 increased the production of reactive oxygen species (ROS) and ROS scavenger, N-acetylcysteine (NAC), could block the phosphorylation of JNK and c-Jun induced by BBMD3. BBMD3 increased the expression of the pro-apototic gene Bad, associated with apoptosis induction. Finally, BBMD3 also decreased the expression of cyclin D1 and D2, the positive cell cycle regulators, which is correlated with growth inhibition in osteosarcoma cells. Collectively, these findings indicate that BBMD3 is a potentially promising drug for the treatment of human osteosarcoma. PMID:24025361

  11. V-ATPase subunit ATP6AP1 (Ac45) regulates osteoclast differentiation, extracellular acidification, lysosomal trafficking, and protease exocytosis in osteoclast-mediated bone resorption

    PubMed Central

    Yang, De-Qin; Feng, Shengmei; Chen, Wei; Zhao, Haibo; Paulson, Christie; Li, Yi-Ping

    2014-01-01

    Lysosomal trafficking and protease exocytosis in osteoclasts are essential for ruffled border formation and bone resorption. Yet, the mechanism underlying lysosomal trafficking and the related process of exocytosis remains largely unknown. We found ATP6ap1 (Ac45), an accessory subunit of vacuolar-type H+-ATPases (V-ATPases), to be highly induced by receptor activator for nuclear factor kappa B ligand (RANKL) in osteoclast differentiation. Ac45 knockdown osteoclasts formed normal actin rings, but had severely impaired extracellular acidification and bone resorption. Ac45 knockdown significantly reduced osteoclast formation. The decrease in the number of osteoclasts does not result from abnormal apoptosis; rather, it results from decreased osteoclast precursor cell proliferation and fusion, which may be partially due to the downregulation of ERK phosphorylation and FBJ osteosarcoma oncogene (c-fos), nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and Tm7sf4 expression. Notably, Ac45 knockdown osteoclasts exhibited impaired lysosomal trafficking and exocytosis, as indicated by the absence of lysosomal trafficking to the ruffled border and a lack of cathepsin K exocytosis into the resorption lacuna. Our data revealed that the impaired exocytosis is specifically due to Ac45 deficiency, and not the general consequence of a defective V-ATPase. Together, our results demonstrate the essential role of Ac45 in osteoclast-mediated extracellular acidification and protease exocytosis, as well as the ability of Ac45 to guide lysosomal intracellular trafficking to the ruffled border, potentially through its interaction with the small GTPase Rab7. Our work indicates that Ac45 may be a novel therapeutic target for osteolytic disease. PMID:22467241

  12. Curcumin Nanoparticles Ameliorate ICAM-1 Expression in TNF-α-Treated Lung Epithelial Cells through p47 phox and MAPKs/AP-1 Pathways

    PubMed Central

    Yang, Chuen-Mao; Liang, Chan-Jung; Lin, Chun-Ching; Chiang, Yao-Chang; Lee, Hui-Chun; Ko, Horng-Huey; Lee, Chiang-Wen

    2013-01-01

    Upregulation of intercellular adhesion molecule-1 (ICAM-1) involves adhesions between both circulating and resident leukocytes and the human lung epithelial cells during lung inflammatory reactions. We have previously demonstrated that curcumin-loaded polyvinylpyrrolidone nanoparticles (CURN) improve the anti-inflammatory and anti-oxidative properties of curcumin in hepatocytes. In this study, we focused on the effects of CURN on the expression of ICAM-1 in TNF-α-treated lung epithelial cells and compared these to the effects of curcumin water preparation (CURH). TNF-αinduced ICAM-1 expression, ROS production, and cell-cell adhesion were significantly attenuated by the pretreatment with antioxidants (DPI, APO, or NAC) and CURN, but not by CURH, as revealed by western blot analysis, RT-PCR, promoter assay, and ROS detection and adhesion assay. In addition, treatment of TNF-α-treated cells with CURN and antioxidants also resulted in an inhibition of activation of p47 phox and phosphorylation of MAPKs, as compared to that using CURH. Our findings also suggest that phosphorylation of MAPKs may eventually lead to the activation of transcription factors. We also observed that the effects of TNF-α treatment for 30 min, which includes a significant increase in the binding activity of AP-1 and phosphorylation of c-jun and c-fos genes, were reduced by CURN treatment. In vivo studies have revealed that CURN improved the anti-inflammation activities of CURH in the lung epithelial cells of TNF-α-treated mice. Our results indicate that curcumin-loaded polyvinylpyrrolidone nanoparticles may potentially serve as an anti-inflammatory drug for the treatment of respiratory diseases. PMID:23671702

  13. Persistent homology and string vacua

    NASA Astrophysics Data System (ADS)

    Cirafici, Michele

    2016-03-01

    We use methods from topological data analysis to study the topological features of certain distributions of string vacua. Topological data analysis is a multi-scale approach used to analyze the topological features of a dataset by identifying which homological characteristics persist over a long range of scales. We apply these techniques in several contexts. We analyze {N}=2 vacua by focusing on certain distributions of Calabi-Yau varieties and Landau-Ginzburg models. We then turn to flux compactifications and discuss how we can use topological data analysis to extract physical information. Finally we apply these techniques to certain phenomenologically realistic heterotic models. We discuss the possibility of characterizing string vacua using the topological properties of their distributions.

  14. Characterization of the human granulocyte-macrophage colony-stimulating factor gene promoter: an AP1 complex and an Sp1-related complex transactivate the promoter activity that is suppressed by a YY1 complex.

    PubMed Central

    Ye, J; Zhang, X; Dong, Z

    1996-01-01

    It is well documented that a repeated CATT element in the human granulocyte-macrophage colony-stimulating factor (GM-CSF) gene promoter is required for promoter activity. However, the transcription factors that are able to transactivate this enhancer element remain unidentified. Recently, we have found that nuclear factor YY1 can interact with the enhancer element. Here, we report that in addition to YY1, two other nuclear factors have been identified in the DNA-protein complexes formed by the CATT oligonucleotide and the Jurkat T-cell nuclear protein. One of these factors is AP1, and the other one is an Sp1-related protein. Results from transient transfection of Jurkat T cells have revealed that formation of both AP1 and the Sp1-related complex is required for the full enhancer activity of the CATT element. This result is supported by cotransfection of a c-jun expression vector and mutational analysis of the AP1 site or the Sp1-related protein binding site. In contrast, formation of the YY1 complex suppresses enhancer activity, since deletion of the YY1 complex induces an augmentation of the enhancer activity and overexpression of YY1 results in an attenuation of the enhancer activity. Results from the mechanism study have revealed that YY1 is able to inhibit transactivation mediated by either AP1 or the Sp1-related protein, and YY1 suppressive activity is DNA binding dependent. Taken together, these data support the ideas that AP1 and the Sp1-related nuclear protein are required for transactivation of the human GM-CSF gene promoter and that YY1 can suppress transactivation of the promoter even under inducible conditions. PMID:8524292

  15. Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes the vascular endothelial growth factor-stimulated MAPKs and downstream effectors AP-1 and CREB in mouse mesangial cells

    PubMed Central

    Tripathi, Satyabha; Pandey, Kailash N.

    2012-01-01

    Along with its natriuretic, diuretic, and vasodilatory properties, atrial natriuretic peptide (ANP) and its guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) exhibit an inhibitory effect on cell growth and proliferation. However, the signaling pathways mediating this inhibition are not well understood. The objective of this study was to determine the effect of ANP-NPRA system on mitogen-activated protein kinases (MAPKs) and the downstream proliferative transcription factors involving activating protein-1 (AP-1) and cAMP-response element binding protein (CREB) in agonist-stimulated mouse mesangial cells (MMCs). We found that ANP inhibited vascular endothelial growth factor (VEGF)-stimulated phosphorylation of MAPKs (Erk1, Erk2, JNK, and p38), to a greater extent in NPRA-transfected cells (50–60%) relative to vector-transfected cells (25–30%). The analyses of the phosphorylated transcription factors revealed that ANP inhibited VEGF-stimulated activation of CREB, and the AP-1 subunits (c-jun and c-fos). Gel shift assays demonstrated that ANP inhibited VEGF-stimulated AP-1 and CREB DNA-binding ability by 67 % and 62 %, respectively. The addition of the protein kinase G (PKG) inhibitor, KT-5823, restored the VEGF-stimulated activation of MAPKs, AP-1, and CREB, demonstrating the integral role of cGMP/PKG signaling in NPRA-mediated effects. Our results delineate the under lying mechanisms through which ANP-NPRA system exerts an inhibitory effect on MAPKs and down-stream effector molecules, AP-1 and CREB, critical for cell growth and proliferation. PMID:22610792

  16. Japanese encephalitis virus induces matrix metalloproteinase-9 expression via a ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent AP-1 pathway in rat brain astrocytes

    PubMed Central

    2012-01-01

    Background Japanese encephalitis virus (JEV) infection is a major cause of acute encephalopathy in children, which destroys central nervous system (CNS) cells, including astrocytes and neurons. Matrix metalloproteinase (MMP)-9 has been shown to degrade components of the basal lamina, leading to disruption of the blood-brain barrier (BBB) and to contribute to neuroinflammatory responses in many neurological diseases. However, the detailed mechanisms of JEV-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) are largely unclear. Methods In this study, the effect of JEV on expression of MMP-9 was determined by gelatin zymography, western blot analysis, RT-PCR, and promoter assay. The involvement of AP-1 (c-Jun and c-Fos), c-Src, PDGFR, PI3K/Akt, and MAPKs in these responses were investigated by using the selective pharmacological inhibitors and transfection with siRNAs. Results Here, we demonstrate that JEV induces expression of pro-form MMP-9 via ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent, AP-1 activation in RBA-1 cells. JEV-induced MMP-9 expression and promoter activity were inhibited by pretreatment with inhibitors of AP-1 (tanshinone), c-Src (PP1), PDGFR (AG1296), and PI3K (LY294002), and by transfection with siRNAs of c-Jun, c-Fos, PDGFR, and Akt. Moreover, JEV-stimulated AP-1 activation was inhibited by pretreatment with the inhibitors of c-Src, PDGFR, PI3K, and MAPKs. Conclusion From these results, we conclude that JEV activates the ROS/c-Src/PDGFR/PI3K/Akt/MAPKs pathway, which in turn triggers AP-1 activation and ultimately induces MMP-9 expression in RBA-1 cells. These findings concerning JEV-induced MMP-9 expression in RBA-1 cells imply that JEV might play an important role in CNS inflammation and diseases. PMID:22251375

  17. Chromosomally-retained RNA mediates homologous pairing.

    PubMed

    Ding, Da-Qiao; Haraguchi, Tokuko; Hiraoka, Yasushi

    2012-01-01

    Pairing and recombination of homologous chromosomes are essential for ensuring correct segregation of chromosomes in meiosis. In S. pombe, chromosomes are first bundled at the telomeres (forming a telomere bouquet) and then aligned by oscillatory movement of the elongated "horsetail" nucleus. Telomere clustering and subsequent chromosome alignment promote pairing of homologous chromosomes. However, this telomere-bundled alignment of chromosomes cannot be responsible for the specificity of chromosome pairing. Thus, there must be some mechanism to facilitate recognition of homologous partners after telomere clustering. Recent studies in S. pombe have shown that RNA transcripts retained on the chromosome, or RNA bodies, may play a role in recognition of homologous chromosomes for pairing. Acting as fiducial markers of homologous loci they would abrogate the need for direct DNA sequence homology searching. PMID:23117617

  18. Homology-independent metrics for comparative genomics.

    PubMed

    Coutinho, Tarcisio José Domingos; Franco, Glória Regina; Lobo, Francisco Pereira

    2015-01-01

    A mainstream procedure to analyze the wealth of genomic data available nowadays is the detection of homologous regions shared across genomes, followed by the extraction of biological information from the patterns of conservation and variation observed in such regions. Although of pivotal importance, comparative genomic procedures that rely on homology inference are obviously not applicable if no homologous regions are detectable. This fact excludes a considerable portion of "genomic dark matter" with no significant similarity - and, consequently, no inferred homology to any other known sequence - from several downstream comparative genomic methods. In this review we compile several sequence metrics that do not rely on homology inference and can be used to compare nucleotide sequences and extract biologically meaningful information from them. These metrics comprise several compositional parameters calculated from sequence data alone, such as GC content, dinucleotide odds ratio, and several codon bias metrics. They also share other interesting properties, such as pervasiveness (patterns persist on smaller scales) and phylogenetic signal. We also cite examples where these homology-independent metrics have been successfully applied to support several bioinformatics challenges, such as taxonomic classification of biological sequences without homology inference. They where also used to detect higher-order patterns of interactions in biological systems, ranging from detecting coevolutionary trends between the genomes of viruses and their hosts to characterization of gene pools of entire microbial communities. We argue that, if correctly understood and applied, homology-independent metrics can add important layers of biological information in comparative genomic studies without prior homology inference. PMID:26029354

  19. Treatment with novel AP-1 and NF-κB inhibitors restores the colonic endocrine cells to normal levels in rats with DSS-induced colitis

    PubMed Central

    EL-SALHY, MAGDY; UMEZAWA, KAZUO

    2016-01-01

    The aim of this study was to determine the effects of two anti-inflammatory agents on the abnormalities in colonic endocrine cells in dextran sodium sulfate (DSS)-induced colitis. Colitis was induced in male Wistar rats (n=45) using DSS; a further 15 rats without colitis were included in a healthy control group. The animals with DSS-induced colitis were randomly divided into 3 treatment groups as follows: i) DSS group, rats were treated with 0.5 ml of 0.5% carboxymethyl cellulose (CMC); ii) DSS-G group, rats were treated with 3-[(dodecyl thiocarbonyl)-methyl]-glutarimide (DTCM-G), a novel activator protein 1 (AP-1) inhibitor, 20 mg/kg in CMC; and iii) DSS-Q group, rats were treated with dehydroxymethylepoxyquinomicin, a nuclear factor κB (NF-κB) inhibitor, 15 mg/kg in CMC. The treatments were administered intraperitoneally, twice daily for 5 days, after which the animals were sacrificed and tissue samples from the colon were immunostained for chromogranin A (CgA), serotonin, peptide YY (PYY), enteroglucagon, pancreatic polypeptide (PP), somatostatin, leukocytes, B/T lymphocytes, B lymphocytes, T lymphocytes, macrophages/monocytes and mast cells. The densities of these endocrine and immune cells were quantified by computer-aided image analysis. The densities of CgA-, serotonin-, PYY- and enteroglucagon-producing cells were significantly higher, and those of PP- and somatostatin-producing cells were significantly lower in the DSS-G, DSS-Q and control groups than in the DSS group. The densities of all the immune cells were lower in the DSS-G, DSS-Q and control groups than in the DSS group. The densities of all endocrine cell types and immune cells in both the DSS groups treated with anti-inflammatory agents were restored to control levels. In conclusion, our data demonstrate that there is an interaction between endocrine and immune cells during inflammation. This interaction with subsequent changes in endocrine cells is responsible for the clinical manifestation of

  20. Buoyancy instability of homologous implosions

    NASA Astrophysics Data System (ADS)

    Johnson, Bryan

    2015-11-01

    Hot spot turbulence is a potential contributor to yield degradation in inertial confinement fusion (ICF) capsules, although its origin, if present, remains unclear. In this work, a perturbation analysis is performed of an analytical homologous solution that mimics the hot spot and surrounding cold fuel during the late stages of an ICF implosion. It is shown that the flow is governed by the Schwarzschild criterion for buoyant stability, and that during stagnation, short wavelength entropy and vorticity fluctuations amplify by a factor exp (π |N0 | ts) , where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. This amplification factor is exponentially sensitive to mean flow gradients and varies from 103-107 for realistic gradients. Comparisons are made with a Lagrangian hydrodynamics code, and it is found that a numerical resolution of ~ 30 zones per wavelength is required to capture the evolution of vorticity accurately. This translates to an angular resolution of ~(12 / l) ∘ , or ~ 0 .1° to resolve the fastest growing modes (Legendre mode l > 100).

  1. Gene Sequence Homology of Chemokines Across Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abundance of expressed gene and protein sequences available in the biological information databases facilitates comparison of protein homologies. A high degree of sequence similarity typically implies homology regarding structure and function and may provide clues to antibody cross-reactivities...

  2. GENE SEQUENCE HOMOLOGY OF CHEMOKINES ACROSS SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abundance of expressed gene and protein sequences available in the biological information databases facilitates comparison of protein homologies. A high degree of sequence similarity typically implies homology regarding structure and function and may provide clues to antibody cross-react...

  3. DNA Sequence Alignment during Homologous Recombination.

    PubMed

    Greene, Eric C

    2016-05-27

    Homologous recombination allows for the regulated exchange of genetic information between two different DNA molecules of identical or nearly identical sequence composition, and is a major pathway for the repair of double-stranded DNA breaks. A key facet of homologous recombination is the ability of recombination proteins to perfectly align the damaged DNA with homologous sequence located elsewhere in the genome. This reaction is referred to as the homology search and is akin to the target searches conducted by many different DNA-binding proteins. Here I briefly highlight early investigations into the homology search mechanism, and then describe more recent research. Based on these studies, I summarize a model that includes a combination of intersegmental transfer, short-distance one-dimensional sliding, and length-specific microhomology recognition to efficiently align DNA sequences during the homology search. I also suggest some future directions to help further our understanding of the homology search. Where appropriate, I direct the reader to other recent reviews describing various issues related to homologous recombination. PMID:27129270

  4. Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-κB pathways in Raw 264.7 macrophages

    PubMed Central

    Yodkeeree, Supachai; Pitchakarn, Pornsiri; Punfa, Wanisa

    2016-01-01

    BACKGROUND/OBJECTIVES Several pharmacological properties of red rice extract have been reported including anti-oxidant, anti-tumor, and reduced cancer cell invasion. This study was conducted to evaluate the anti-inflammatory effects of red rice extract on the production of inflammatory mediators in lipopolysaccharide (LPS)-induced Raw 264.7 macrophages. MATERIALS/METHODS Pro-inflammatory cytokines including tumor necrosis factor-α and interleukin-6 were determined by ELISA and cyclooxygenase-2 and inducible nitric oxide synthase expression was evaluated using western blot analysis. In addition, the signaling pathway controlling the inflammatory cascade such as nuclear factor kappa B (NF-κB), activator proteins-1 (AP-1), and mitogen-activated protein kinase (MAPK) was determined. RESULTS Our results showed that red rice polar extract fraction (RR-P), but not non-polar extract fraction, inhibited interleukin-6, tumor necrosis factor-α, and nitric oxide production in LPS-induced Raw 264.7 cells. RR-P also reduced the expression of inflammatory enzymes, inducible nitric oxide synthase, and cyclooxygenase-2. In addition, activation of AP-1 and NF-κB transcription factor in the nucleus was abrogated by RR-P. RR-P inhibited the phosphorylation of extracellular signaling-regulated kinase 1/2, c-Jun NH2-terminal kinase, and p38 MAPK signaling responsible for the expression of inflammatory mediators in LPS-stimulated Raw 264.7 cells. Based on chemical analysis, high amounts of proanthocyanidin and catechins were detected in the RR-P fraction. However, only proanthocyanidin reduced NF-κB and AP-1 activation in LPS-activated Raw 264.7 cells. CONCLUSION These observations suggest that the anti-inflammatory properties of RR-P may stem from the inhibition of pro-inflammatory mediators via suppression of the AP-1, NF-κB, and MAPKs pathways. PMID:27247720

  5. microRNA let-7c is essential for the anisomycin-elicited apoptosis in Jurkat T cells by linking JNK1/2 to AP-1/STAT1/STAT3 signaling.

    PubMed

    Zhou, Zhiwei; Lu, Xijian; Wang, Jin; Xiao, Jia; Liu, Jing; Xing, Feiyue

    2016-01-01

    Anisomycin, an antibiotic produced by Streptomyces griseolus, strongly induces apoptosis in various tumor cells in vitro, superior dramatically to adriamycin. The present study aims to elucidate its detailed mechanistic process. The results showed that anisomycin sufficiently promoted the apoptosis in human leukemic Jurkat T cells at a quite low dose. microRNA let-7c (let-7c) contributed to the anisomycin-induced apoptosis, which could be abrogated by the inactivation of JNK signaling. The let-7c over-expression and the addition of its mimics facilitated the activation of AP-1, STAT1 and Bim by linking JNK1/2 to AP-1/STAT1, but rather inhibited the activation of STAT3 and Bcl-xL by connecting JNK1/2 to STAT3, followed by the augmented apoptosis in the cells. The let-7c deficiency reduced the AP-1, STAT1 and Bim activities, and enhanced the STAT3 and Bcl-xL, alleviating the anisomycin-induced apoptosis. The knockdown of the bim gene repressed the anisomycin-boosted apoptosis through the attenuation of the active Bak and Bax. The findings indicate for the first time that miR let-7c is essential for the anisomycin-triggered apoptosis by linking JNK1/2 to AP-1/STAT1/STAT3/Bim/Bcl-xL/Bax/Bak signaling. This provides a novel insight into the mechanism by which anisomycin leads to the tumor cell apoptosis, potentially laying the foundations for its development and clinical application. PMID:27087117

  6. Functional Conservation and Divergence of Four Ginger AP1/AGL9 MADS–Box Genes Revealed by Analysis of Their Expression and Protein–Protein Interaction, and Ectopic Expression of AhFUL Gene in Arabidopsis

    PubMed Central

    Song, Juanjuan; Sun, Wei; Xia, Kuaifei; Liao, Jingping; Zhang, Mingyong

    2014-01-01

    Alpinia genus are known generally as ginger–lilies for showy flowers in the ginger family, Zingiberaceae, and their floral morphology diverges from typical monocotyledon flowers. However, little is known about the functions of ginger MADS–box genes in floral identity. In this study, four AP1/AGL9 MADS–box genes were cloned from Alpinia hainanensis, and protein–protein interactions (PPIs) and roles of the four genes in floral homeotic conversion and in floral evolution are surveyed for the first time. AhFUL is clustered to the AP1lineage, AhSEP4 and AhSEP3b to the SEP lineage, and AhAGL6–like to the AGL6 lineage. The four genes showed conserved and divergent expression patterns, and their encoded proteins were localized in the nucleus. Seven combinations of PPI (AhFUL–AhSEP4, AhFUL–AhAGL6–like, AhFUL–AhSEP3b, AhSEP4–AhAGL6–like, AhSEP4–AhSEP3b, AhAGL6–like–AhSEP3b, and AhSEP3b–AhSEP3b) were detected, and the PPI patterns in the AP1/AGL9 lineage revealed that five of the 10 possible combinations are conserved and three are variable, while conclusions cannot yet be made regarding the other two. Ectopic expression of AhFUL in Arabidopsis thaliana led to early flowering and floral organ homeotic conversion to sepal–like or leaf–like. Therefore, we conclude that the four A. hainanensis AP1/AGL9 genes show functional conservation and divergence in the floral identity from other MADS–box genes. PMID:25461565

  7. Involvement of Blimp-1 and AP-1 dysregulation in the 2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated suppression of the IgM response by B cells.

    PubMed

    Schneider, Dina; Manzan, Maria A; Yoo, Byung Sun; Crawford, Robert B; Kaminski, Norbert

    2009-04-01

    B cell differentiation and humoral immune responses are markedly suppressed by the persistent environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The suppression of humoral immune responses by TCDD occurs by direct actions on the B cell and involves activation of the aryl hydrocarbon receptor. Transcriptional regulation of paired box gene 5 (Pax5), an important regulator of B cell differentiation, is altered by TCDD in concordance with the suppression of B cell differentiation and humoral immunoglobulin M response. We hypothesized that TCDD treatment leads to dysregulation of Pax5 transcription by interfering with the basic B cell differentiation mechanisms and aimed to determine the effects of TCDD on upstream regulators of Pax5. A critical regulator of B cell differentiation, B lymphocyte-induced maturation protein-1 (Blimp-1) acts as a transcriptional repressor of Pax5. In lipopolysaccharide (LPS)-activated murine B cell lymphoma, CH12.LX, Blimp-1 messenger RNA, and DNA-binding activity within the Pax5 promoter were suppressed by TCDD. Furthermore, LPS activation of CH12.LX cells upregulated DNA-binding activity of activator protein 1 (AP-1) at three responsive element-like motifs within the Blimp-1 promoter. TCDD treatment of LPS-activated CH12.LX cells suppressed AP-1 binding to these motifs between 24 and 72 h, in concordance with the suppression of Blimp-1 by TCDD. A more comprehensive analysis at 72 h demonstrated that the suppression of AP-1 binding within the Blimp-1 promoter by TCDD was concentration dependent. In summary, our findings link the TCDD-mediated suppression of Blimp-1 through AP-1 to the dysregulation of Pax5, which ultimately leads to the suppression of B cell differentiation and humoral immune responses. PMID:19237549

  8. microRNA let-7c is essential for the anisomycin-elicited apoptosis in Jurkat T cells by linking JNK1/2 to AP-1/STAT1/STAT3 signaling

    PubMed Central

    Zhou, Zhiwei; Lu, Xijian; Wang, Jin; Xiao, Jia; Liu, Jing; Xing, Feiyue

    2016-01-01

    Anisomycin, an antibiotic produced by Streptomyces griseolus, strongly induces apoptosis in various tumor cells in vitro, superior dramatically to adriamycin. The present study aims to elucidate its detailed mechanistic process. The results showed that anisomycin sufficiently promoted the apoptosis in human leukemic Jurkat T cells at a quite low dose. microRNA let-7c (let-7c) contributed to the anisomycin-induced apoptosis, which could be abrogated by the inactivation of JNK signaling. The let-7c over-expression and the addition of its mimics facilitated the activation of AP-1, STAT1 and Bim by linking JNK1/2 to AP-1/STAT1, but rather inhibited the activation of STAT3 and Bcl-xL by connecting JNK1/2 to STAT3, followed by the augmented apoptosis in the cells. The let-7c deficiency reduced the AP-1, STAT1 and Bim activities, and enhanced the STAT3 and Bcl-xL, alleviating the anisomycin-induced apoptosis. The knockdown of the bim gene repressed the anisomycin-boosted apoptosis through the attenuation of the active Bak and Bax. The findings indicate for the first time that miR let-7c is essential for the anisomycin-triggered apoptosis by linking JNK1/2 to AP-1/STAT1/STAT3/Bim/Bcl-xL/Bax/Bak signaling. This provides a novel insight into the mechanism by which anisomycin leads to the tumor cell apoptosis, potentially laying the foundations for its development and clinical application. PMID:27087117

  9. Polymorphism of P53-Ets/AP1 transactivation region of MDM2 oncogene and its immunohistochemical analysis in canine tumours.

    PubMed

    Rezaie, A; Tabandeh, M R; Noori, S M A

    2016-06-01

    Mouse Double Minute-2 (MDM2) is an ubiquitin ligase which is overexpressed or its promoter polymorphism has been reported in different tumours. The objective of this study was to examine the MDM2 protein expression and its promoter polymorphism in some canine tumours. Twenty specimens were collected from 20 dogs with 15 mammary gland carcinomas, 3 lymphomas, 1 transmissible venereal tumour and 1 trichoblastoma. Samples were analysed immunohistochemically using human antibody against MDM2 protein. PCR and DNA sequencing were carried out to identify MDM2 promoter polymorphism. MDM2 gene was expressed in 13 of 20 samples including 11 mammary carcinomas, 1 lymphoma and 1 trichoblastoma. We found 94% homology between canine and human sequences. Four mutations including G169C, A177G, G291T and A177G were identified in different types of breast carcinomas. An extra p53 response element was found in a mixed mammary carcinoma. PMID:24447820

  10. Inhibitory effect of reinioside C on vascular smooth muscle cells proliferation induced by angiotensin II via inhibiting NADPH oxidase-ROS-ENK1/2-NF-kappaB-AP-1 pathway.

    PubMed

    Hong, Dan; Bai, Yong-Ping; Shi, Rui-Zheng; Tan, Gui-Shan; Hu, Chang-Ping; Zhang, Guo-Gang

    2014-09-01

    The proliferation of vascular smooth muscle cells (VSMCs) induced by angiotensin II (Ang II) plays a vital role in the pathogenesis of arteriosclerosis and restenosis. In the present study, the effect of reinioside C, a main active ingredient of Polygala fallax Hemsl, on proliferation of VSMCs induced by Ang II was investigated. It was found that Ang II (1 microM) markedly stimulated proliferation of VSMCs. Pretreatment of reinioside C (3, 10 or 30 microM) concentration-dependently inhibited the proliferative effect of Ang II. To determine the possible mechanism, NADPH oxidase subunits (Nox-1, Nox-4) mRNA expression, intracellular ROS level, phosphorylation of ERK1/2, NF-kappaB activity, and mRNA expression of AP-1 subunits (c-fos, c-jun) and c-myc were measured. The results demonstrated that reinioside C attenuated Ang II-induced NADPH oxidase mRNA expression, generation of ROS, ERK1/2 phosphorylation, activation of NF-kappaB, and mRNA expression of AP-1 and c-myc in VSMCs in a concentration-dependent manner. The effects of Ang II were also inhibited by diphenyleneiodonium (DPI, the NADPH oxidase inhibitor), PD98059 (the ERK1/2 inhibitor) and pyrrolidine dithiocarbamate (PDTC, the NF-kappaB inhibitor). These results suggest reinioside C attenuates Ang II-induced proliferation of VSMCs by inhibiting NADPH oxidase-ROS-ERK1/2-NF-kappaB-AP-1 pathway. PMID:25272943

  11. Pycnogenol Attenuates the Release of Proinflammatory Cytokines and Expression of Perilipin 2 in Lipopolysaccharide-Stimulated Microglia in Part via Inhibition of NF-κB and AP-1 Activation.

    PubMed

    Fan, Bin; Dun, Sai-Hong; Gu, Jian-Qiu; Guo, Yang; Ikuyama, Shoichiro

    2015-01-01

    Over activation of microglia results in the production of proinflammatory agents that have been implicated in various brain diseases. Pycnogenol is a patented extract from French maritime pine bark (Pinus pinaster Aiton) with strong antioxidant and anti-inflammatory potency. The present study investigated whether pycnogenol may be associated with the production of proinflammatory mediators in lipopolysaccharide-stimulated BV2 (mouse-derived) microglia. It was found that pycnogenol treatment was dose-dependently associated with significantly less release of nitricoxide (NO), TNF-α, IL-6 and IL-1β, and lower levels of intercellular adhesion molecule1 (ICAM-1) and perilipin 2 (PLIN2). Furthermore, this effect was replicated in primary brain microglia. Levels of inducible NO synthase mRNA and protein were attenuated, whereas there was no change in the production of the anti-inflammatory cytokine IL-10. Further evidence indicated that pycnogenol treatment led to the suppression of NF-κB activation through inhibition of p65 translocation into the nucleus and inhibited DNA binding of AP-1, suggesting that these proinflammatory factors are associated with NF-κB and AP-1. We conclude that pycnogenol exerts anti-inflammatory effects through inhibition of the NF-κB and AP-1pathway, and may be useful as a therapeutic agent in the prevention of diseases caused by over activation of microglia. PMID:26367267

  12. Identification of a Novel Metabolite in the Degradation of Pyrene by Mycobacterium sp. Strain AP1: Actions of the Isolate on Two- and Three-Ring Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Vila, Joaquim; López, Zaira; Sabaté, Jordi; Minguillón, Cristina; Solanas, Anna M.; Grifoll, Magdalena

    2001-01-01

    Mycobacterium sp. strain AP1 grew with pyrene as a sole source of carbon and energy. The identification of metabolites accumulating during growth suggests that this strain initiates its attack on pyrene by either monooxygenation or dioxygenation at its C-4, C-5 positions to give trans- or cis-4,5-dihydroxy-4,5-dihydropyrene, respectively. Dehydrogenation of the latter, ortho cleavage of the resulting diol to form phenanthrene 4,5-dicarboxylic acid, and subsequent decarboxylation to phenanthrene 4-carboxylic acid lead to degradation of the phenanthrene 4-carboxylic acid via phthalate. A novel metabolite identified as 6,6′-dihydroxy-2,2′-biphenyl dicarboxylic acid demonstrates a new branch in the pathway that involves the cleavage of both central rings of pyrene. In addition to pyrene, strain AP1 utilized hexadecane, phenanthrene, and fluoranthene for growth. Pyrene-grown cells oxidized the methylenic groups of fluorene and acenaphthene and catalyzed the dihydroxylation and ortho cleavage of one of the rings of naphthalene and phenanthrene to give 2-carboxycinnamic and diphenic acids, respectively. The catabolic versatility of strain AP1 and its use of ortho cleavage mechanisms during the degradation of polycyclic aromatic hydrocarbons (PAHs) give new insight into the role that pyrene-degrading bacterial strains may play in the environmental fate of PAH mixtures. PMID:11722898

  13. Pycnogenol Attenuates the Release of Proinflammatory Cytokines and Expression of Perilipin 2 in Lipopolysaccharide-Stimulated Microglia in Part via Inhibition of NF-κB and AP-1 Activation

    PubMed Central

    Fan, Bin; Dun, Sai-Hong; Gu, Jian-Qiu; Guo, Yang; Ikuyama, Shoichiro

    2015-01-01

    Over activation of microglia results in the production of proinflammatory agents that have been implicated in various brain diseases. Pycnogenol is a patented extract from French maritime pine bark (Pinus pinaster Aiton) with strong antioxidant and anti-inflammatory potency. The present study investigated whether pycnogenol may be associated with the production of proinflammatory mediators in lipopolysaccharide-stimulated BV2 (mouse-derived) microglia. It was found that pycnogenol treatment was dose-dependently associated with significantly less release of nitricoxide (NO), TNF-α, IL-6 and IL-1β, and lower levels of intercellular adhesion molecule1 (ICAM-1) and perilipin 2 (PLIN2). Furthermore, this effect was replicated in primary brain microglia. Levels of inducible NO synthase mRNA and protein were attenuated, whereas there was no change in the production of the anti-inflammatory cytokine IL-10. Further evidence indicated that pycnogenol treatment led to the suppression of NF-κB activation through inhibition of p65 translocation into the nucleus and inhibited DNA binding of AP-1, suggesting that these proinflammatory factors are associated with NF-κB and AP-1. We conclude that pycnogenol exerts anti-inflammatory effects through inhibition of the NF-κB and AP-1pathway, and may be useful as a therapeutic agent in the prevention of diseases caused by over activation of microglia. PMID:26367267

  14. Wnt-11 signaling leads to down-regulation of the Wnt/{beta}-catenin, JNK/AP-1 and NF-{kappa}B pathways and promotes viability in the CHO-K1 cells

    SciTech Connect

    Railo, Antti; Nagy, Irina I.; Kilpelaeinen, Pekka Vainio, Seppo

    2008-08-01

    The Wnt family of glycoprotein growth factors controls a number of central cellular processes such as proliferation, differentiation and ageing. All the Wnt proteins analyzed so far either activate or inhibit the canonical {beta}-catenin signaling pathway that regulates transcription of the target genes. In addition, some of them activate noncanonical signaling pathways that involve components such as the JNK, heterotrimeric G proteins, protein kinase C, and calmodulin-dependent protein kinase II, although the precise signaling mechanisms are only just beginning to be revealed. We demonstrate here that Wnt-11 signaling is sufficient to inhibit not only the canonical {beta}-catenin mediated Wnt signaling but also JNK/AP-1 and NF-{kappa}B signaling in the CHO cells, thus serving as a noncanonical Wnt ligand in this system. Inhibition of the JNK/AP-1 pathway is mediated in part by the MAPK kinase MKK4 and Akt. Moreover, protein kinase C is involved in the regulation of JNK/AP-1 by Wnt-11, but not of the NF-{kappa}B pathway. Consistent with the central role of Akt, JNK and NF-{kappa}B in cell survival and stress responses, Wnt-11 signaling promotes cell viability. Hence Wnt-11 is involved in coordination of key signaling pathways.

  15. Reciprocal effects of varicella-zoster virus (VZV) and AP1: activation of jun, fos and ATF-2 after VZV infection and their importance for the regulation of viral genes.

    PubMed

    Rahaus, Markus; Wolff, Manfred H

    2003-03-01

    Varicella-zoster virus, an alpha-herpesvirus that is pathogenic for man, encodes its own transcription activators, but ubiquitous cellular transcription factors are of great importance, too. Performing quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) we found an increase of transcription of AP1 components jun, fos and of ATF-2 at different times post infection (p.i.). Jun and ATF-2 proteins were detected in infected cells. To study general effects of AP1 in the regulation of VZV encoded genes, oligonucleotide transfections were performed to knockout jun and ATF-2 transcription followed by infection with cell free VZV. RT-PCR analyses of ORFs 4, 9, 21, 29 and 68 belonging to all three kinetic classes of genes and containing different combinations of AP1/TRE and ATF/CREB sites in their respective promoters were carried out. In all cases a reduction of viral transcription was found. Virions produced after this procedure were still infectious, but the amount of newly synthesized virions was clearly reduced. PMID:12606072

  16. An Estrogen Receptor-α/p300 Complex Activates the BRCA-1 Promoter at an AP-1 Site That Binds Jun/Fos Transcription Factors: Repressive Effects of p53 on BRCA-1 Transcription1

    PubMed Central

    Jeffy, Brandon D; Hockings, Jennifer K; Kemp, Michael Q; Morgan, Sherif S; Hager, Jill A; Beliakoff, Jason; Whitesell, Luke J; Bowden, G. Timothy; Romagnolo, Donato F

    2005-01-01

    Abstract One of the puzzles in cancer predisposition is that women carrying BRCA-1 mutations preferentially develop tumors in epithelial tissues of the breast and ovary. Moreover, sporadic breast tumors contain lower levels of BRCA-1 in the absence of mutations in the BRCA-1 gene. The problem of tissue specificity requires analysis of factors that are unique to tissues of the breast. For example, the expression of estrogen receptor-α (ERα) is inversely correlated with breast cancer risk, and 90% of BRCA-1 tumors are negative for ERα. Here, we show that estrogen stimulates BRCA-1 promoter activity in transfected cells and the recruitment of ERα and its cofactor p300 to an AP-1 site that binds Jun/Fos transcription factors. The recruitment of ERα/p300 coincides with accumulation in the S-phase of the cell cycle and is antagonized by the antiestrogen tamoxifen. Conversely, we document that overexpression of wild-type p53 prevents the recruitment of ERα to the AP-1 site and represses BRCA-1 promoter activity. Taken together, our findings support a model in which an ERα/AP-1 complex modulates BRCA-1 transcription under conditions of estrogen stimulation. Conversely, the formation of this transcription complex is abrogated in cells overexpressing p53. PMID:16229810

  17. Homology-Independent Metrics for Comparative Genomics

    PubMed Central

    Coutinho, Tarcisio José Domingos; Franco, Glória Regina; Lobo, Francisco Pereira

    2015-01-01

    A mainstream procedure to analyze the wealth of genomic data available nowadays is the detection of homologous regions shared across genomes, followed by the extraction of biological information from the patterns of conservation and variation observed in such regions. Although of pivotal importance, comparative genomic procedures that rely on homology inference are obviously not applicable if no homologous regions are detectable. This fact excludes a considerable portion of “genomic dark matter” with no significant similarity — and, consequently, no inferred homology to any other known sequence — from several downstream comparative genomic methods. In this review we compile several sequence metrics that do not rely on homology inference and can be used to compare nucleotide sequences and extract biologically meaningful information from them. These metrics comprise several compositional parameters calculated from sequence data alone, such as GC content, dinucleotide odds ratio, and several codon bias metrics. They also share other interesting properties, such as pervasiveness (patterns persist on smaller scales) and phylogenetic signal. We also cite examples where these homology-independent metrics have been successfully applied to support several bioinformatics challenges, such as taxonomic classification of biological sequences without homology inference. They where also used to detect higher-order patterns of interactions in biological systems, ranging from detecting coevolutionary trends between the genomes of viruses and their hosts to characterization of gene pools of entire microbial communities. We argue that, if correctly understood and applied, homology-independent metrics can add important layers of biological information in comparative genomic studies without prior homology inference. PMID:26029354

  18. Buoyancy instability of homologous implosions

    SciTech Connect

    Johnson, B. M.

    2015-06-15

    With this study, I consider the hydrodynamic stability of imploding ideal gases as an idealized model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes (short-wavelength incompressive modes elongated in the direction of the mean flow), a second-order ordinary differential equation is derived that can be used to assess the stability of any time-dependent flow with planar, cylindrical or spherical symmetry. Upon further restricting the analysis to homologous flows, it is shown that a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, both entropy and vorticity fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and, in the absence of dissipative effects, is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C)|N0|ti, where C is the convergence ratio of the implosion, N0 is the initial buoyancy frequency and ti is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp(π|N0|ts), where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular momentum as the gas is compressed. For non-monatomic gases, this additional growth due to compression results in weak oscillatory growth under conditions that would otherwise be buoyantly stable; this over-stability is consistent with the conservation of wave action in the fluid frame. The above analytical results are verified by evolving the complete set of linear equations as an initial value problem, and it is demonstrated that oblate modes are the fastest

  19. Buoyancy instability of homologous implosions

    DOE PAGESBeta

    Johnson, B. M.

    2015-06-15

    With this study, I consider the hydrodynamic stability of imploding ideal gases as an idealized model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes (short-wavelength incompressive modes elongated in the direction of the mean flow), a second-order ordinary differential equation is derived that can be used to assess the stability of any time-dependent flow with planar, cylindrical or spherical symmetry. Upon further restricting the analysis to homologous flows, it is shown that a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, both entropy andmore » vorticity fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and, in the absence of dissipative effects, is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C)|N0|ti, where C is the convergence ratio of the implosion, N0 is the initial buoyancy frequency and ti is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp(π|N0|ts), where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular momentum as the gas is compressed. For non-monatomic gases, this additional growth due to compression results in weak oscillatory growth under conditions that would otherwise be buoyantly stable; this over-stability is consistent with the conservation of wave action in the fluid frame. The above analytical results are verified by evolving the complete set of linear equations as an initial value problem, and it is demonstrated that oblate modes are the fastest-growing modes and that high mode numbers are required to reach this limit (Legendre mode ℓ ≳ 100

  20. Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2-NF-κB and JNK-AP-1 signaling pathways.

    PubMed

    Adamopoulos, Christos; Piperi, Christina; Gargalionis, Antonios N; Dalagiorgou, Georgia; Spilioti, Eliana; Korkolopoulou, Penelope; Diamanti-Kandarakis, Evanthia; Papavassiliou, Athanasios G

    2016-04-01

    Endothelial dysfunction involves deregulation of the key extracellular matrix (ECM) enzyme lysyl oxidase (LOX) and the vasoconstrictor protein, endothelin-1 (ET-1), whose gene expression can be modulated by the transcriptional activators nuclear factor kappa B (NF-κB) and activator protein-1 (AP-1). Advanced glycation end products (AGEs) present an aggravating factor of endothelial dysfunction which upon engagement to their receptor RAGE induce upregulation of mitogen-activated protein kinases (MAPKs), leading to NF-κB and AP-1 potentiation. We hypothesized that AGEs could induce NF-κΒ- and AP-1-dependent regulation of LOX and ET-1 expression via the AGE/RAGE/MAPK signaling axis. Western blot, real-time qRT-PCR, FACS analysis and electrophoretic mobility-shift assays were employed in human aortic endothelial cells (HAECs) following treatment with AGE-bovine serum albumin (AGE-BSA) to investigate the signaling pathway towards this hypothesis. Furthermore, immunohistochemical analysis of AGEs, RAGE, LOX and ET-1 expression was conducted in aortic endothelium of a rat experimental model exposed to high- or low-AGE content diet. HAECs exposed to AGE-BSA for various time points exhibited upregulation of LOX and ET-1 mRNA levels in a dose- and time-dependent manner. Exposure of HAECs to AGE-BSA also showed specific elevation of phospho(p)-ERK1/2 and p-JNK levels in a dose- and time-dependent fashion. AGE administration significantly increased NF-κΒ- and AP-1-binding activity to both LOX and ET-1 cognate promoter regions. Moreover, LOX and ET-1 overexpression in rat aortic endothelium upon high-AGE content diet confirmed the functional interrelation of these molecules. Our findings demonstrate that AGEs trigger NF-κΒ- and AP-1-mediated upregulation of LOX and ET-1 via the AGE/RAGE/MAPK signaling cascade in human endothelial cells, thus contributing to distorted endothelial homeostasis by impairing endothelial barrier function, altering ECM biomechanical properties

  1. New phosphonate reagents for aldehyde homologation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New phosphonate reagents were developed for the two-carbon homologation of aldehydes to unbranched- or methyl-branched unsaturated aldehydes. The phosphonate reagents, diethyl methylformyl-2-phosphonate dimethylhydrazone and diethyl ethylformyl-2-phosphonate dimethylhydrazone, contained a protected...

  2. Dualities in Persistent (Co)Homology

    SciTech Connect

    de Silva, Vin; Morozov, Dmitriy; Vejdemo-Johansson, Mikael

    2011-09-16

    We consider sequences of absolute and relative homology and cohomology groups that arise naturally for a filtered cell complex. We establishalgebraic relationships between their persistence modules, and show that they contain equivalent information. We explain how one can use the existingalgorithm for persistent homology to process any of the four modules, and relate it to a recently introduced persistent cohomology algorithm. Wepresent experimental evidence for the practical efficiency of the latter algorithm.

  3. Persistent homology analysis of phase transitions

    NASA Astrophysics Data System (ADS)

    Donato, Irene; Gori, Matteo; Pettini, Marco; Petri, Giovanni; De Nigris, Sarah; Franzosi, Roberto; Vaccarino, Francesco

    2016-05-01

    Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called mean-field XY model and by the ϕ4 lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.

  4. On the hodological criterion for homology.

    PubMed

    Faunes, Macarena; Francisco Botelho, João; Ahumada Galleguillos, Patricio; Mpodozis, Jorge

    2015-01-01

    Owen's pre-evolutionary definition of a homolog as "the same organ in different animals under every variety of form and function" and its redefinition after Darwin as "the same trait in different lineages due to common ancestry" entail the same heuristic problem: how to establish "sameness."Although different criteria for homology often conflict, there is currently a generalized acceptance of gene expression as the best criterion. This gene-centered view of homology results from a reductionist and preformationist concept of living beings. Here, we adopt an alternative organismic-epigenetic viewpoint, and conceive living beings as systems whose identity is given by the dynamic interactions between their components at their multiple levels of composition. We posit that there cannot be an absolute homology criterion, and instead, homology should be inferred from comparisons at the levels and developmental stages where the delimitation of the compared trait lies. In this line, we argue that neural connectivity, i.e., the hodological criterion, should prevail in the determination of homologies between brain supra-cellular structures, such as the vertebrate pallium. PMID:26157357

  5. On the hodological criterion for homology

    PubMed Central

    Faunes, Macarena; Francisco Botelho, João; Ahumada Galleguillos, Patricio; Mpodozis, Jorge

    2015-01-01

    Owen's pre-evolutionary definition of a homolog as “the same organ in different animals under every variety of form and function” and its redefinition after Darwin as “the same trait in different lineages due to common ancestry” entail the same heuristic problem: how to establish “sameness.”Although different criteria for homology often conflict, there is currently a generalized acceptance of gene expression as the best criterion. This gene-centered view of homology results from a reductionist and preformationist concept of living beings. Here, we adopt an alternative organismic-epigenetic viewpoint, and conceive living beings as systems whose identity is given by the dynamic interactions between their components at their multiple levels of composition. We posit that there cannot be an absolute homology criterion, and instead, homology should be inferred from comparisons at the levels and developmental stages where the delimitation of the compared trait lies. In this line, we argue that neural connectivity, i.e., the hodological criterion, should prevail in the determination of homologies between brain supra-cellular structures, such as the vertebrate pallium. PMID:26157357

  6. Homologs of Breast Cancer Genes in Plants

    PubMed Central

    Trapp, Oliver; Seeliger, Katharina; Puchta, Holger

    2011-01-01

    Since the initial discovery of genes involved in hereditary breast cancer in humans, a vast wealth of information has been published. Breast cancer proteins were shown to work as tumor suppressors primarily through their involvement in DNA-damage repair. Surprisingly, homologs of these genes can be found in plant genomes, as well. Here, we want to give an overview of the identification and characterization of the biological roles of these proteins, in plants. In addition to the conservation of their function in DNA repair, new plant-specific characteristics have been revealed. BRCA1 is required for the efficient repair of double strand breaks (DSB) by homologous recombination in somatic cells of the model plant Arabidopsis thaliana. Bioinformatic analysis indicates that, whereas most homologs of key components of the different mammalian BRCA1 complexes are present in plant genomes, homologs of most factors involved in the recruitment of BRCA1 to the DSB cannot be identified. Thus, it is not clear at the moment whether differences exist between plants and animals at this important step. The most conserved region of BRCA1 and BARD1 homologs in plants is a PHD domain which is absent in mammals and which, in AtBARD1, might be involved in the transcriptional regulation of plant development. The presence of a plant-specific domain prompted us to reevaluate the current model for the evolution of BRCA1 homologs and to suggest a new hypothesis, in which we postulate that plant BRCA1 and BARD1 have one common predecessor that gained a PHD domain before duplication. Furthermore, work in Arabidopsis demonstrates that – as in animals – BRCA2 homologs are important for meiotic DNA recombination. Surprisingly, recent research has revealed that AtBRCA2 also has an important role in systemic acquired resistance. In Arabidopsis, BRCA2 is involved in the transcriptional regulation of pathogenesis-related (PR) genes via its interaction with the strand exchange protein RAD51. PMID

  7. Investigating homology between proteins using energetic profiles.

    PubMed

    Wrabl, James O; Hilser, Vincent J

    2010-03-01

    Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding) and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved local stability, may

  8. The expression of the β-defensins hBD-2 and hBD-3 is differentially regulated by NF-κB and MAPK/AP-1 pathways in an in vitro model of Candida esophagitis

    PubMed Central

    Steubesand, Nadine; Kiehne, Karlheinz; Brunke, Gabriele; Pahl, Rene; Reiss, Karina; Herzig, Karl-Heinz; Schubert, Sabine; Schreiber, Stefan; Fölsch, Ulrich R; Rosenstiel, Philip; Arlt, Alexander

    2009-01-01

    Background Candida albicans resides on epithelial surfaces as part of the physiological microflora. However, under certain conditions it may cause life-threatening infections like Candida sepsis. Human β-defensins (hBDs) are critical components of host defense at mucosal surfaces and we have recently shown that hBD-2 and hBD-3 are upregulated in Candida esophagitis. We therefore studied the role of Candidate signalling pathways in order to understand the mechanisms involved in regulation of hBD-expression by C. albicans. We used the esophageal cell line OE21 and analysed the role of paracrine signals from polymorphonuclear leukocytes (PMN) in an in vitro model of esophageal candidiasis. Results Supernatants of C. albicans or indirect coculture with C. albicans induces upregulation of hBD-2 and hBD-3 expression. PMNs strongly amplifies C. albicans-mediated induction of hBDs. By EMSA we demonstrate that C. albicans activates NF-κB and AP-1 in OE21 cells. Inhibition of these pathways revealed that hBD-2 expression is synergistically regulated by both NF-κB and AP-1. In contrast hBD-3 expression is independent of NF-κB and relies solely on an EGFR/MAPK/AP-1-dependent pathway. Conclusion Our analysis of signal transduction events demonstrate a functional interaction of epithelial cells with PMNs in response to Candida infection involving divergent signalling events that differentially govern hBD-2 and hBD-3 expression. PMID:19523197

  9. o,p'-DDT induces cyclooxygenase-2 gene expression in murine macrophages: Role of AP-1 and CRE promoter elements and PI3-kinase/Akt/MAPK signaling pathways

    SciTech Connect

    Han, Eun Hee; Kim, Ji Young; Kim, Hyung-Kyun; Hwang, Yong Pil; Jeong, Hye Gwang

    2008-12-01

    Dichlorodiphenyltrichloroethane (DDT) has been used as an insecticide to prevent the devastation of malaria in tropical zones. However, many reports suggest that DDT may act as an endocrine disruptor and may have possible carcinogenic effects. Cyclooxygenase-2 (COX-2) acts as a link between inflammation and carcinogenesis through its involvement in tumor promotion. In the present study, we examined the effect of o,p'-DDT on COX-2 gene expression and analyzed the molecular mechanism of its activity in murine RAW 264.7 macrophages. Exposure to o,p'-DDT markedly enhanced the production of prostaglandin E{sub 2} (PGE{sub 2}), a major COX-2 metabolite, in murine macrophages. Furthermore, o,p'-DDT dose-dependently increased the levels of COX-2 protein and mRNA. Transfection with human COX-2 promoter construct, electrophoretic mobility shift assays and DNA-affinity protein-binding assay experiments revealed that o,p'-DDT activated the activator protein 1 (AP-1) and cyclic AMP response element (CRE) sites, but not the NF-{kappa}B site. Phosphatidylinositol 3 (PI3)-kinase, its downstream signaling molecule, Akt, and mitogen-activated protein kinases (MAPK) were also significantly activated by the o,p'-DDT-induced AP-1 and CRE activation. These results demonstrate that o,p'-DDT induced COX-2 expression via AP-1 and CRE activation through the PI3-K/Akt/ERK, JNK, and p38 MAP kinase pathways. These findings provide further insight into the signal transduction pathways involved in the carcinogenic effects of o,p'-DDT.

  10. A Central Role for JNK/AP-1 Pathway in the Pro-Oxidant Effect of Pyrrolidine Dithiocarbamate through Superoxide Dismutase 1 Gene Repression and Reactive Oxygen Species Generation in Hematopoietic Human Cancer Cell Line U937

    PubMed Central

    Collin, Pascal; Lomri, Abderrahim

    2015-01-01

    Pyrrolidine dithiocarbamate (PDTC) known as antioxidant and specific inhibitor of NF-κB was also described as pro-oxidant by inducing cell death and reactive oxygen species (ROS) accumulation in cancer. However, the mechanism by which PDTC indices its pro-oxidant effect is unknown. Therefore, we aimed to evaluate the effect of PDTC on the human Cu/Zn superoxide dismutase 1 (SOD1) gene transcription in hematopoietic human cancer cell line U937. We herein show for the first time that PDTC decreases SOD1 transcripts, protein and promoter activity. Furthermore, SOD1 repression by PDTC was associated with an increase in oxidative stress as evidenced by ROS production. Electrophoretic mobility-shift assays (EMSA) show that PDTC increased binding of activating protein-1 (AP-1) in dose dependent-manner suggesting that the MAPkinase up-stream of AP-1 is involved. Ectopic NF-κB p65 subunit overexpression had no effect on SOD1 transcription. In contrast, in the presence of JNK inhibitor (SP600125), p65 induced a marked increase of SOD1 promoter, suggesting that JNK pathway is up-stream of NF-κB signaling and controls negatively its activity. Indeed, using JNK deficient cells, PDTC effect was not observed nether on SOD1 transcription or enzymatic activity, nor on ROS production. Finally, PDTC represses SOD1 in U937 cells through JNK/c-Jun phosphorylation. Taken together, these results suggest that PDTC acts as pro-oxidant compound in JNK/AP-1 dependent-manner by repressing the superoxide dismutase 1 gene leading to intracellular ROS accumulation. PMID:25996379

  11. Homological scaffolds of brain functional networks.

    PubMed

    Petri, G; Expert, P; Turkheimer, F; Carhart-Harris, R; Nutt, D; Hellyer, P J; Vaccarino, F

    2014-12-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186-198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects-homological cycles-associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle,we apply these tools to compare resting state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin-the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  12. Homological scaffolds of brain functional networks

    PubMed Central

    Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.

    2014-01-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  13. Mycobacterium tuberculosis expresses two chaperonin-60 homologs.

    PubMed Central

    Kong, T H; Coates, A R; Butcher, P D; Hickman, C J; Shinnick, T M

    1993-01-01

    A 65-kDa protein and a 10-kDa protein are two of the more strongly immunoreactive components of Mycobacterium tuberculosis, the causative agent of tuberculosis. The 65-kDa antigen has homology with members of the GroEL or chaperonin-60 (Cpn60) family of heat shock proteins. The 10-kDa antigen has homology with the GroES or chaperonin-10 family of heat shock proteins. These two proteins are encoded by separate genes in M. tuberculosis. The studies reported here reveal that M. tuberculosis contains a second Cpn60 homolog located 98 bp downstream of the 10-kDa antigen gene. The second Cpn60 homolog (Cpn60-1) displays 61% amino acid sequence identity with the 65-kDa antigen (Cpn60-2) and 53% and 41% identity with the Escherichia coli GroEL protein and the human P60 protein, respectively. Primer-extension analysis revealed that transcription starts 29 bp upstream of the translation start of the Cpn60-1 homolog and protein purification studies indicate that the cpn60-1 gene is expressed as an approximately 60-kDa polypeptide. Images Fig. 3 Fig. 5 PMID:7681982

  14. A functional activating protein 1 (AP-1) site regulates matrix metalloproteinase 2 (MMP-2) transcription by cardiac cells through interactions with JunB-Fra1 and JunB-FosB heterodimers.

    PubMed Central

    Bergman, Marina R; Cheng, Sunfa; Honbo, Norman; Piacentini, Lucia; Karliner, Joel S; Lovett, David H

    2003-01-01

    Enhanced synthesis of a specific matrix metalloproteinase, MMP-2, has been demonstrated in experimental models of ventricular failure and in cardiac extracts from patients with ischaemic cardiomyopathy. Cultured neonatal rat cardiac fibroblasts and myocytes were used to analyse the determinants of MMP-2 synthesis, including the effects of hypoxia. Culture of rat cardiac fibroblasts for 24 h in 1% oxygen enhanced MMP-2 synthesis by more than 5-fold and augmented the MMP-2 synthetic responses of these cells to endothelin-1, angiotensin II and interleukin 1beta. A series of MMP-2 promoter-luciferase constructs were used to map the specific enhancer element(s) that drive MMP-2 transcription in cardiac cells. Deletion studies mapped a region of potent transactivating function within the 91 bp region from -1433 to -1342 bp, the activity of which was increased by hypoxia. Oligonucleotides from this region were cloned in front of a heterologous simian-virus-40 (SV40) promoter and mapped the enhancer activity to a region between -1410 and -1362 bp that included a potential activating protein 1 (AP-1)-binding sequence, C(-1394)CTGACCTCC. Site-specific mutagenesis of the core TGAC sequence (indicated in bold) eliminated the transactivating activity within the -1410 to -1362 bp sequence. Electrophoretic mobility shift assays (EMSAs) using the -1410 to -1362 bp oligonucleotide and rat cardiac fibroblast nuclear extracts demonstrated specific nuclear-protein binding that was eliminated by cold competitor oligonucleotide, but not by the AP-1-mutated oligonucleotide. Antibody-supershift EMSAs of nuclear extracts from normoxic rat cardiac fibroblasts demonstrated Fra1 and JunB binding to the -1410 to -1362 bp oligonucleotide. Nuclear extracts isolated from hypoxic rat cardiac fibroblasts contained Fra1, JunB and also included FosB. Co-transfection of cardiac fibroblasts with Fra1-JunB and FosB-JunB expression plasmids led to significant increases in transcriptional activity. These

  15. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    SciTech Connect

    Tsai, Ming-Horng; Liang, Chan-Jung; Yen, Feng-Lin; Chiang, Yao-Chang; Lee, Chiang-Wen

    2014-09-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.

  16. Induction of Connective Tissue Growth Factor Expression by Hypoxia in Human Lung Fibroblasts via the MEKK1/MEK1/ERK1/GLI-1/GLI-2 and AP-1 Pathways

    PubMed Central

    Cheng, Yi; Lin, Chien-huang; Chen, Jing-Yun; Li, Chien-Hua; Liu, Yu-Tin; Chen, Bing-Chang

    2016-01-01

    Several reports have indicated that hypoxia, GLI, and connective tissue growth factor (CTGF) contribute to pulmonary fibrosis in idiopathic pulmonary fibrosis. We investigated the participation of mitogen-activated protein kinase kinase (MEK) kinase 1 (MEKK1)/MEK1/ERK1/GLI-1/2 and activator protein-1 (AP-1) signaling in hypoxia-induced CTGF expression in human lung fibroblasts. Hypoxia time-dependently increased CTGF expression, which was attenuated by the small interfering RNA (siRNA) of GLI-1 (GLI-1 siRNA) and GLI-2 (GLI-2 siRNA) in both human lung fibroblast cell line (WI-38) and primary human lung fibroblasts (NHLFs). Moreover, GLI-1 siRNA and GLI-2 siRNA attenuated hypoxia-induced CTGF-luciferase activity, and the treatment of cells with hypoxia induced GLI-1 and GLI-2 translocation. Furthermore, hypoxia-induced CTGF expression was reduced by an MEK inhibitor (PD98059), MEK1 siRNA, ERK inhibitor (U0126), ERK1 siRNA, and MEKK1 siRNA. Both PD98059 and U0126 significantly attenuated hypoxia-induced CTGF-luciferase activity. Hypoxia time-dependently increased MEKK1, ERK, and p38 MAPK phosphorylation. Moreover, SB203580 (a p38 MAPK inhibitor) also apparently inhibited hypoxia-induced CTGF expression. The treatment of cells with hypoxia induced ERK, GLI-1, or GLI-2 complex formation. Hypoxia-induced GLI-1 and GLI-2 translocation into the nucleus was significantly attenuated by U0126. In addition, hypoxia-induced ERK Tyr204 phosphorylation was impeded by MEKK1 siRNA. Moreover, hypoxia-induced CTGF-luciferase activity was attenuated by cells transfected with AP-1 site mutation in a CTGF construct. Exposure to hypoxia caused a time-dependent phosphorylation of c-Jun, but not of c-Fos. Chromatin immunoprecipitation (ChIP) revealed that hypoxia induced the recruitment of c-Jun, GLI-1, and GLI-2 to the AP-1 promoter region of CTGF. Hypoxia-treated cells exhibited an increase in α-smooth muscle actin (α-SMA) and collagen production, which was blocked by GLI-1 siRNA and

  17. Irradiated homologous costal cartilage for augmentation rhinoplasty

    SciTech Connect

    Lefkovits, G. )

    1990-10-01

    Although the ideal reconstructive material for augmentation rhinoplasty continues to challenge plastic surgeons, there exists no report in the literature that confines the use of irradiated homologous costal cartilage, first reported by Dingman and Grabb in 1961, to dorsal nasal augmentation. The purpose of this paper is to present a retrospective analysis of the author's experience using irradiated homologous costal cartilage in augmentation rhinoplasty. Twenty-seven dorsal nasal augmentations were performed in 24 patients between 16 and 49 years of age with a follow-up ranging from 1 to 27 months. Good-to-excellent results were achieved in 83.3% (20 of 24). Poor results requiring revision were found in 16.7% (4 of 24). Complication rates included 7.4% infection (2 of 27) and 14.8% warping (4 of 27). The resorption rate was zero. These results compare favorably with other forms of nasal augmentation. Advantages and disadvantages of irradiated homologous costal cartilage are discussed.

  18. Solar core homology, solar neutrinos and helioseismology

    SciTech Connect

    Bludman, S.A.; Kennedy, D.C.

    1995-12-31

    Precise numerical standard solar models (SSMs) now agree with one another and with helioseismological observations in the convective and outer radiative zones. Nevertheless these models obscure how luminosity, neutrino production and g-mode core helioseismology depend on such inputs as opacity and nuclear cross sections. Although the Sun is not homologous, its inner core by itself is chemically evolved and almost homologous, because of its compactness, radiative energy transport, and ppI-dominated luminosity production. We apply luminosity-fixed homology transformations to the core to estimate theoretical uncertainties in the SSM and to obtain a broad class of non-SSMs, parameterized by central temperature and density and purely radiative energy transport in the core. 25 refs., 3 figs., 3 tabs.

  19. Flare build-up study: Homologous flares group - Interim report

    NASA Technical Reports Server (NTRS)

    Woodgate, B. E.

    1982-01-01

    When homologous flares are broadly defined as having footpoint structures in common, it is found that a majority of flares fall into homologous sets. Filament eruptions and mass ejection in members of an homologous flare set show that maintainance of the magnetic structure is not a necessary condition for homology.

  20. HIV-1 Nef Induces CCL5 production in astrocytes through p38-MAPK and PI3K/Akt pathway and utilizes NF-kB, CEBP and AP-1 transcription factors

    NASA Astrophysics Data System (ADS)

    Liu, Xun; Shah, Ankit; Gangwani, Mohitkumar R.; Silverstein, Peter S.; Fu, Mingui; Kumar, Anil

    2014-03-01

    The prevalence of HIV-associated neurocognitive disorders (HAND) remains high in patients infected with HIV-1. The production of pro-inflammatory cytokines by astrocytes/microglia exposed to viral proteins is thought to be one of the mechanisms leading to HIV-1- mediated neurotoxicity. In the present study we examined the effects of Nef on CCL5 induction in astrocytes. The results demonstrate that CCL5 is significantly induced in Nef-transfected SVGA astrocytes. To determine the mechanisms responsible for the increased CCL5 caused by Nef, we employed siRNA and chemical antagonists. Antagonists of NF-κB, PI3K, and p38 significantly reduced the expression levels of CCL5 induced by Nef transfection. Furthermore, specific siRNAs demonstrated that the Akt, p38MAPK, NF-κB, CEBP, and AP-1 pathways play a role in Nef-mediated CCL5 expression. The results demonstrated that the PI3K/Akt and p38 MAPK pathways, along with the transcription factors NF-κB, CEBP, and AP-1, are involved in Nef-induced CCL5 production in astrocytes.

  1. Procyanidin B2 3,3″-di-O-gallate, a biologically active constituent of grape seed extract, induces apoptosis in human prostate cancer cells via targeting NF-κB, Stat3 and AP1 transcription factors

    PubMed Central

    Tyagi, Alpna; Raina, Komal; Shrestha, Suraj Prakash; Miller, Bettina; Thompson, John A.; Wempe, Michael F.; Agarwal, Rajesh; Agarwal, Chapla

    2014-01-01

    Recently, we identified procyanidin B2 3,3″-di-O-gallate (B2G2) as most active constituent of grape seed extract (GSE) for efficacy against prostate cancer (PCa). Isolating large quantities of B2G2 from total GSE is labor intensive and expensive, thereby limiting both efficacy and mechanistic studies with this novel anti-cancer agent. Accordingly, here we synthesized gram-scale quantities of B2G2, compared it with B2G2 isolated from GSE for possible equivalent biological activity, and conducted mechanistic studies. Both B2G2 preparations inhibited cell growth, decreased clonogenicity, and induced cell cycle arrest and apoptotic death, comparable to each other, in various human PCa cell lines. Mechanistic studies focusing on transcription factors involved in apoptotic and survival pathways revealed that B2G2 significantly inhibits NF-κB and AP1 transcriptional activity and nuclear translocation of Stat3 in PCa cell lines, irrespective of their functional androgen receptor status. B2G2 also decreased survivin expression which is regulated by NF-κB, AP1 and Stat3, and increased cleaved PARP level. In summary, we report B2G2 chemical synthesis at gram-quantity with equivalent biological efficacy against human PCa cell lines and same molecular targeting profiles at key transcription factors level. The synthetic B2G2 will stimulate more research on prostate and possibly other malignancies in preclinical models and clinical translation. PMID:24191894

  2. HIV-1 Nef Induces CCL5 production in astrocytes through p38-MAPK and PI3K/Akt pathway and utilizes NF-kB, CEBP and AP-1 transcription factors

    PubMed Central

    Liu, Xun; Shah, Ankit; Gangwani, Mohitkumar R.; Silverstein, Peter S.; Fu, Mingui; Kumar, Anil

    2014-01-01

    The prevalence of HIV-associated neurocognitive disorders (HAND) remains high in patients infected with HIV-1. The production of pro-inflammatory cytokines by astrocytes/microglia exposed to viral proteins is thought to be one of the mechanisms leading to HIV-1- mediated neurotoxicity. In the present study we examined the effects of Nef on CCL5 induction in astrocytes. The results demonstrate that CCL5 is significantly induced in Nef-transfected SVGA astrocytes. To determine the mechanisms responsible for the increased CCL5 caused by Nef, we employed siRNA and chemical antagonists. Antagonists of NF-κB, PI3K, and p38 significantly reduced the expression levels of CCL5 induced by Nef transfection. Furthermore, specific siRNAs demonstrated that the Akt, p38MAPK, NF-κB, CEBP, and AP-1 pathways play a role in Nef-mediated CCL5 expression. The results demonstrated that the PI3K/Akt and p38 MAPK pathways, along with the transcription factors NF-κB, CEBP, and AP-1, are involved in Nef-induced CCL5 production in astrocytes. PMID:24658403

  3. α-Chaconine isolated from a Solanum tuberosum L. cv Jayoung suppresses lipopolysaccharide-induced pro-inflammatory mediators via AP-1 inactivation in RAW 264.7 macrophages and protects mice from endotoxin shock.

    PubMed

    Lee, Kyoung-Goo; Lee, Suel-Gie; Lee, Hwi-Ho; Lee, Hae Jun; Shin, Ji-Sun; Kim, Nan-Jung; An, Hyo-Jin; Nam, Jung-Hwan; Jang, Dae Sik; Lee, Kyung-Tae

    2015-06-25

    In this study, we investigated the molecular mechanisms underlying the anti-inflammatory effects of α-chaconine in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and in LPS-induced septic mice. α-Chaconine inhibited the expressions of cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) at the transcriptional level, and attenuated the transcriptional activity of activator protein-1 (AP-1) by reducing the translocation and phosphorylation of c-Jun. α-Chaconine also suppressed the phosphorylation of TGF-β-activated kinase-1 (TAK1), which lies upstream of mitogen-activated protein kinase kinase 7 (MKK7)/Jun N-terminal kinase (JNK) signaling. JNK knockdown using siRNA prevented the α-chaconine-mediated inhibition of pro-inflammatory mediators. In a sepsis model, pretreatment with α-chaconine reduced the LPS-induced lethality and the mRNA and production levels of pro-inflammatory mediators by inhibiting c-Jun activation. These results suggest that the anti-inflammatory effects of α-chaconine are associated with the suppression of AP-1, and support its possible therapeutic role for the treatment of sepsis. PMID:25913072

  4. TGF-β2 induces Grb2 to recruit PI3-K to TGF-RII that activates JNK/AP-1-signaling and augments invasiveness of Theileria-transformed macrophages

    PubMed Central

    Haidar, Malak; Whitworth, Jessie; Noé, Gaelle; Liu, Wang Qing; Vidal, Michel; Langsley, Gordon

    2015-01-01

    Theileria-infected macrophages display many features of cancer cells such as heightened invasive capacity; however, the tumor-like phenotype is reversible by killing the parasite. Moreover, virulent macrophages can be attenuated by multiple in vitro passages and so provide a powerful model to elucidate mechanisms related to transformed macrophage virulence. Here, we demonstrate that in two independent Theileria-transformed macrophage cell lines Grb2 expression is down-regulated concomitant with loss of tumor virulence. Using peptidimer-c to ablate SH2 and SH3 interactions of Grb2 we identify TGF-receptor II and the p85 subunit of PI3-K, as Grb2 partners in virulent macrophages. Ablation of Grb2 interactions reduces PI3-K recruitment to TGF-RII and decreases PIP3 production, and dampens JNK phosphorylation and AP-1-driven transcriptional activity down to levels characteristic of attenuated macrophages. Loss of TGF-R>PI3-K>JNK>AP-1 signaling negatively impacts on virulence traits such as reduced JAM-L/ITG4A and Fos-B/MMP9 expression that contribute to virulent macrophage adhesion and invasiveness. PMID:26511382

  5. Interleukin-18 induces EMMPRIN expression in primary cardiomyocytes via JNK/Sp1 signaling and MMP-9 in part via EMMPRIN and through AP-1 and NF-κB activation

    PubMed Central

    Reddy, Venkatapuram Seenu; Prabhu, Sumanth D.; Mummidi, Srinivas; Valente, Anthony J.; Venkatesan, Balachandar; Shanmugam, Prakashsrinivasan; Delafontaine, Patrice

    2010-01-01

    IL-18 and the extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN) stimulate the expression of proinflammatory cytokines and MMPs and are elevated in myocardial hypertrophy, remodeling, and failure. Here, we report several novel findings in primary cardiomyocytes treated with IL-18. First, IL-18 activated multiple transcription factors, including NF-κB (p50 and p65), activator protein (AP)-1 (cFos, cJun, and JunD), GATA, CCAAT/enhancer-binding protein, myocyte-specific enhancer-binding factor, interferon regulatory factor-1, p53, and specific protein (Sp)-1. Second, IL-18 induced EMMPRIN expression via myeloid differentiation primary response gene 88/IL-1 receptor-associated kinase/TNF receptor-associated factor-6/JNK-dependent Sp1 activation. Third, IL-18 induced a number of MMP genes, particularly MMP-9, at a rapid rate as well as tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-3 at a slower rate. Finally, the IL-18 induction of MMP-9 was mediated in part via EMMPRIN and through JNK- and ERK-dependent AP-1 activation and p38 MAPK-dependent NF-κB activation. These results suggest that the elevated expression of IL-18 during myocardial injury and inflammation may favor EMMPRIN and MMP induction and extracellular matrix degradation. Therefore, targeting IL-18 or its signaling pathways may be of potential therapeutic benefit in adverse remodeling. PMID:20693392

  6. Kaposi's Sarcoma-Associated Herpesvirus Latent Gene vFLIP Inhibits Viral Lytic Replication through NF-κB-Mediated Suppression of the AP-1 Pathway: a Novel Mechanism of Virus Control of Latency▿

    PubMed Central

    Ye, Feng-Chun; Zhou, Fu-Chun; Xie, Jian-Ping; Kang, Tao; Greene, Whitney; Kuhne, Kurt; Lei, Xiu-Fen; Li, Qui-Hua; Gao, Shou-Jiang

    2008-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) latency is central to the evasion of host immune surveillances and induction of KSHV-related malignancies. The mechanism of KSHV latency remains unclear. Here, we show that the KSHV latent gene vFLIP promotes viral latency by inhibiting viral lytic replication. vFLIP suppresses the AP-1 pathway, which is essential for KSHV lytic replication, by activating the NF-κB pathway. Thus, by manipulating two convergent cellular pathways, vFLIP regulates both cell survival and KSHV lytic replication to promote viral latency. These results also indicate that the effect of the NF-κB pathway on KSHV replication is determined by the status of the AP-1 pathway and hence provide a mechanistic explanation for the contradictory role of the NF-κB pathway in KSHV replication. Since the NF-κB pathway is commonly activated during infection of gammaherpesviruses, these findings might have general implications for the control of gammaherpesviral latency. PMID:18305042

  7. Luteolin 8-C-β-fucopyranoside inhibits invasion and suppresses TPA-induced MMP-9 and IL-8 via ERK/AP-1 and ERK/NF-κB signaling in MCF-7 breast cancer cells.

    PubMed

    Park, Su-Ho; Kim, Jung-Hee; Lee, Dong-Hun; Kang, Jeong-Woo; Song, Hyuk-Hwan; Oh, Sei-Ryang; Yoon, Do-Young

    2013-11-01

    Matrix metalloproteinase 9 (MMP-9) and interleukin-8 (IL-8) play major roles in tumor progression and invasion of breast cancer cells. The present study was undertaken to investigate the inhibitory mechanism of cell invasion by luteolin 8-C-β-fucopyranoside (named as LU8C-FP), a C-glycosylflavone, in human breast cancer cells. We investigated whether LU8C-FP would inhibit MMP-9 activation and IL-8 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 breast cancer cells. LU8C-FP suppressed TPA-induced MMP-9 and IL-8 secretion and mRNA expression via inhibition of the MAPK signaling pathway and down-regulation of nuclear AP-1 and NF-κB. TPA-induced phosphorylation of ERK 1/2 was suppressed by LU8C-FP, whereas JNK and p38 MAPK phosphorylation were unaffected. In addition, LU8C-FP blocked the ERK 1/2 pathways following expression of MMP-9 and IL-8. These results suggest LU8C-FP may function to suppress invasion of breast cancer cells through the ERK/AP-1 and ERK/NF-κB signaling cascades. PMID:23933110

  8. Biochemistry of homologous recombination in Escherichia coli.

    PubMed Central

    Kowalczykowski, S C; Dixon, D A; Eggleston, A K; Lauder, S D; Rehrauer, W M

    1994-01-01

    Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination. Images PMID:7968921

  9. Coenzyme Q0 regulates NFκB/AP-1 activation and enhances Nrf2 stabilization in attenuation of LPS-induced inflammation and redox imbalance: Evidence from in vitro and in vivo studies.

    PubMed

    Yang, Hsin-Ling; Lin, Ming-Wei; Korivi, Mallikarjuna; Wu, Jia-Jiuan; Liao, Chun-Huei; Chang, Chia-Ting; Liao, Jiunn-Wang; Hseu, You-Cheng

    2016-02-01

    Coenzyme Q (CoQ) analogs with variable number of isoprenoid units have been demonstrated as anti-inflammatory and antioxidant/pro-oxidant molecules. In this study we used CoQ0 (2,3-dimethoxy-5-methyl-1,4-benzoquinone, zero isoprenoid side-chains), a novel quinone derivative, and investigated its molecular actions against LPS-induced inflammation and redox imbalance in murine RAW264.7 macrophages and mice. In LPS-stimulated macrophages, non-cytotoxic concentrations of CoQ0 (2.5-10 μM) inhibited iNOS/COX-2 protein expressions with subsequent reductions of NO, PGE2, TNF-α and IL-1β secretions. This inhibition was reasoned by suppression of NFκB (p65) activation, and inhibition of AP-1 (c-Jun., c-Fos, ATF2) translocation. Our findings indicated that IKKα-mediated I-κB degradation and MAPK-signaling are involved in regulation of NFκB/AP-1 activation. Furthermore, CoQ0 triggered HO-1 and NQO-1 genes through increased Nrf2 nuclear translocation and Nrf2/ARE-signaling. This phenomenon was confirmed by diminished CoQ0 protective effects in Nrf2 knockdown cells, where LPS-induced NO, PGE2, TNF-α and IL-1β productions remained high. Molecular evidence revealed that CoQ0 enhanced Nrf2 steady-state level at both transcriptional and translational levels. CoQ0-induced Nrf2 activation appears to be regulated by ROS-JNK-signaling cascades, as evidenced by suppressed Nrf2 activation upon treatment with pharmacological inhibitors of ROS (N-acetylcysteine) and JNK (SP600125). Besides, oral administration of CoQ0 (5 mg/kg) suppressed LPS-induced (1 mg/kg) induction of iNOS/COX-2 and TNF-α/IL-1β through tight regulation of NFκB/Nrf2 signaling in mice liver and spleen. Our findings conclude that pharmacological actions of CoQ0 are mediated via inhibition of NFκB/AP-1 activation and induction of Nrf2/ARE-signaling. Owing to its potent anti-inflammatory and antioxidant properties, CoQ0 could be a promising candidate to treat inflammatory disorders. PMID:26548719

  10. Redesigning Aldolase Stereoselectivity by Homologous Grafting

    PubMed Central

    Henßen, Birgit; Metz, Alexander; Gohlke, Holger; Pietruszka, Jörg

    2016-01-01

    The 2-deoxy-d-ribose-5-phosphate aldolase (DERA) offers access to highly desirable building blocks for organic synthesis by catalyzing a stereoselective C-C bond formation between acetaldehyde and certain electrophilic aldehydes. DERA´s potential is particularly highlighted by the ability to catalyze sequential, highly enantioselective aldol reactions. However, its synthetic use is limited by the absence of an enantiocomplementary enzyme. Here, we introduce the concept of homologous grafting to identify stereoselectivity-determining amino acid positions in DERA. We identified such positions by structural analysis of the homologous aldolases 2-keto-3-deoxy-6-phosphogluconate aldolase (KDPG) and the enantiocomplementary enzyme 2-keto-3-deoxy-6-phosphogalactonate aldolase (KDPGal). Mutation of these positions led to a slightly inversed enantiopreference of both aldolases to the same extent. By transferring these sequence motifs onto DERA we achieved the intended change in enantioselectivity. PMID:27327271

  11. Homologous Pairing between Long DNA Double Helices

    NASA Astrophysics Data System (ADS)

    Mazur, Alexey K.

    2016-04-01

    Molecular recognition between two double stranded (ds) DNA with homologous sequences may not seem compatible with the B-DNA structure because the sequence information is hidden when it is used for joining the two strands. Nevertheless, it has to be invoked to account for various biological data. Using quantum chemistry, molecular mechanics, and hints from recent genetics experiments, I show here that direct recognition between homologous dsDNA is possible through the formation of short quadruplexes due to direct complementary hydrogen bonding of major-groove surfaces in parallel alignment. The constraints imposed by the predicted structures of the recognition units determine the mechanism of complexation between long dsDNA. This mechanism and concomitant predictions agree with the available experimental data and shed light upon the sequence effects and the possible involvement of topoisomerase II in the recognition.

  12. Redesigning Aldolase Stereoselectivity by Homologous Grafting.

    PubMed

    Bisterfeld, Carolin; Classen, Thomas; Küberl, Irene; Henßen, Birgit; Metz, Alexander; Gohlke, Holger; Pietruszka, Jörg

    2016-01-01

    The 2-deoxy-d-ribose-5-phosphate aldolase (DERA) offers access to highly desirable building blocks for organic synthesis by catalyzing a stereoselective C-C bond formation between acetaldehyde and certain electrophilic aldehydes. DERA´s potential is particularly highlighted by the ability to catalyze sequential, highly enantioselective aldol reactions. However, its synthetic use is limited by the absence of an enantiocomplementary enzyme. Here, we introduce the concept of homologous grafting to identify stereoselectivity-determining amino acid positions in DERA. We identified such positions by structural analysis of the homologous aldolases 2-keto-3-deoxy-6-phosphogluconate aldolase (KDPG) and the enantiocomplementary enzyme 2-keto-3-deoxy-6-phosphogalactonate aldolase (KDPGal). Mutation of these positions led to a slightly inversed enantiopreference of both aldolases to the same extent. By transferring these sequence motifs onto DERA we achieved the intended change in enantioselectivity. PMID:27327271

  13. Homologous Pairing between Long DNA Double Helices.

    PubMed

    Mazur, Alexey K

    2016-04-15

    Molecular recognition between two double stranded (ds) DNA with homologous sequences may not seem compatible with the B-DNA structure because the sequence information is hidden when it is used for joining the two strands. Nevertheless, it has to be invoked to account for various biological data. Using quantum chemistry, molecular mechanics, and hints from recent genetics experiments, I show here that direct recognition between homologous dsDNA is possible through the formation of short quadruplexes due to direct complementary hydrogen bonding of major-groove surfaces in parallel alignment. The constraints imposed by the predicted structures of the recognition units determine the mechanism of complexation between long dsDNA. This mechanism and concomitant predictions agree with the available experimental data and shed light upon the sequence effects and the possible involvement of topoisomerase II in the recognition. PMID:27127987

  14. Khovanov homology of graph-links

    SciTech Connect

    Nikonov, Igor M

    2012-08-31

    Graph-links arise as the intersection graphs of turning chord diagrams of links. Speaking informally, graph-links provide a combinatorial description of links up to mutations. Many link invariants can be reformulated in the language of graph-links. Khovanov homology, a well-known and useful knot invariant, is defined for graph-links in this paper (in the case of the ground field of characteristic two). Bibliography: 14 titles.

  15. Homology and phylogeny and their automated inference

    NASA Astrophysics Data System (ADS)

    Fuellen, Georg

    2008-06-01

    The analysis of the ever-increasing amount of biological and biomedical data can be pushed forward by comparing the data within and among species. For example, an integrative analysis of data from the genome sequencing projects for various species traces the evolution of the genomes and identifies conserved and innovative parts. Here, I review the foundations and advantages of this “historical” approach and evaluate recent attempts at automating such analyses. Biological data is comparable if a common origin exists (homology), as is the case for members of a gene family originating via duplication of an ancestral gene. If the family has relatives in other species, we can assume that the ancestral gene was present in the ancestral species from which all the other species evolved. In particular, describing the relationships among the duplicated biological sequences found in the various species is often possible by a phylogeny, which is more informative than homology statements. Detecting and elaborating on common origins may answer how certain biological sequences developed, and predict what sequences are in a particular species and what their function is. Such knowledge transfer from sequences in one species to the homologous sequences of the other is based on the principle of ‘my closest relative looks and behaves like I do’, often referred to as ‘guilt by association’. To enable knowledge transfer on a large scale, several automated ‘phylogenomics pipelines’ have been developed in recent years, and seven of these will be described and compared. Overall, the examples in this review demonstrate that homology and phylogeny analyses, done on a large (and automated) scale, can give insights into function in biology and biomedicine.

  16. COMPASS server for remote homology inference.

    PubMed

    Sadreyev, Ruslan I; Tang, Ming; Kim, Bong-Hyun; Grishin, Nick V

    2007-07-01

    COMPASS is a method for homology detection and local alignment construction based on the comparison of multiple sequence alignments (MSAs). The method derives numerical profiles from given MSAs, constructs local profile-profile alignments and analytically estimates E-values for the detected similarities. Until now, COMPASS was only available for download and local installation. Here, we present a new web server featuring the latest version of COMPASS, which provides (i) increased sensitivity and selectivity of homology detection; (ii) longer, more complete alignments; and (iii) faster computational speed. After submission of the query MSA or single sequence, the server performs searches versus a user-specified database. The server includes detailed and intuitive control of the search parameters. A flexible output format, structured similarly to BLAST and PSI-BLAST, provides an easy way to read and analyze the detected profile similarities. Brief help sections are available for all input parameters and output options, along with detailed documentation. To illustrate the value of this tool for protein structure-functional prediction, we present two examples of detecting distant homologs for uncharacterized protein families. Available at http://prodata.swmed.edu/compass. PMID:17517780

  17. Recombineering homologous recombination constructs in Drosophila.

    PubMed

    Carreira-Rosario, Arnaldo; Scoggin, Shane; Shalaby, Nevine A; Williams, Nathan David; Hiesinger, P Robin; Buszczak, Michael

    2013-01-01

    The continued development of techniques for fast, large-scale manipulation of endogenous gene loci will broaden the use of Drosophila melanogaster as a genetic model organism for human-disease related research. Recent years have seen technical advancements like homologous recombination and recombineering. However, generating unequivocal null mutations or tagging endogenous proteins remains a substantial effort for most genes. Here, we describe and demonstrate techniques for using recombineering-based cloning methods to generate vectors that can be used to target and manipulate endogenous loci in vivo. Specifically, we have established a combination of three technologies: (1) BAC transgenesis/recombineering, (2) ends-out homologous recombination and (3) Gateway technology to provide a robust, efficient and flexible method for manipulating endogenous genomic loci. In this protocol, we provide step-by-step details about how to (1) design individual vectors, (2) how to clone large fragments of genomic DNA into the homologous recombination vector using gap repair, and (3) how to replace or tag genes of interest within these vectors using a second round of recombineering. Finally, we will also provide a protocol for how to mobilize these cassettes in vivo to generate a knockout, or a tagged gene via knock-in. These methods can easily be adopted for multiple targets in parallel and provide a means for manipulating the Drosophila genome in a timely and efficient manner. PMID:23893070

  18. Weak homological dimensions and biflat Koethe algebras

    SciTech Connect

    Pirkovskii, A Yu

    2008-06-30

    The homological properties of metrizable Koethe algebras {lambda}(P) are studied. A criterion for an algebra A={lambda}(P) to be biflat in terms of the Koethe set P is obtained, which implies, in particular, that for such algebras the properties of being biprojective, biflat, and flat on the left are equivalent to the surjectivity of the multiplication operator A otimes-hat A{yields}A. The weak homological dimensions (the weak global dimension w.dg and the weak bidimension w.db) of biflat Koethe algebras are calculated. Namely, it is shown that the conditions w.db {lambda}(P)<=1 and w.dg {lambda}(P)<=1 are equivalent to the nuclearity of {lambda}(P); and if {lambda}(P) is non-nuclear, then w.dg {lambda}(P)=w.db {lambda}(P)=2. It is established that the nuclearity of a biflat Koethe algebra {lambda}(P), under certain additional conditions on the Koethe set P, implies the stronger estimate db {lambda}(P), where db is the (projective) bidimension. On the other hand, an example is constructed of a nuclear biflat Koethe algebra {lambda}(P) such that db {lambda}(P)=2 (while w.db {lambda}(P)=1). Finally, it is shown that many biflat Koethe algebras, while not being amenable, have trivial Hochschild homology groups in positive degrees (with arbitrary coefficients). Bibliography: 37 titles.

  19. S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha.

    PubMed

    Bianchi, Roberta; Giambanco, Ileana; Donato, Rosario

    2010-04-01

    Extracellular S100B is known to affect astrocytic, neuronal and microglial activities, with different effects depending on its concentration. Whereas at relatively low concentrations S100B exerts trophic effects on neurons and astrocytes, at relatively high concentrations the protein causes neuronal apoptosis and activates astrocytes and microglia, thus potentially representing an endogenous factor implicated in neuroinflammation. We have reported that RAGE ligation by S100B in BV-2 microglia results in the upregulation of expression of the pro-inflammatory cyclo-oxygenase 2 (COX-2) via parallel Ras-Cdc42-Rac1-dependent activation of c-Jun NH(2) terminal protein kinase (JNK) and Ras-Rac1-dependent stimulation of NF-kappaB transcriptional activity. We show here that: (1) S100B also stimulates AP-1 transcriptional activity in microglia via RAGE-dependent activation of JNK; (2) S100B upregulates IL-1beta and TNF-alpha expression in microglia via RAGE engagement; and (3) S100B/RAGE-induced upregulation of COX-2, IL-1beta and TNF-alpha expression requires the concurrent activation of NF-kappaB and AP-1. We also show that S100B synergizes with IL-1beta and TNF-alpha to upregulate on COX-2 expression in microglia. Given the crucial roles of COX-2, IL-1beta and TNF-alpha in the inflammatory response, we propose that, by engaging RAGE, S100B might play an important role in microglia activation in the course of brain damage. PMID:18599158

  20. Comparative analysis of the pteridophyte Adiantum MFT ortholog reveals the specificity of combined FT/MFT C and N terminal interaction with FD for the regulation of the downstream gene AP1.

    PubMed

    Hou, Cheng-Jing; Yang, Chang-Hsien

    2016-07-01

    To study the evolution of phosphatidylethanolamine-binding protein (PEBP) gene families in non-flowering plants, we performed a functional analysis of the PEBP gene AcMFT of the MFT clade in the pteridophyte Adiantum capillus-veneris. The expression of AcMFT was regulated by photoperiod similar to that for FT under both long day and short day conditions. Ectopic expression of AcMFT in Arabidopsis promotes the floral transition and partially complements the late flowering defect in transgenic Arabidopsis ft-1 mutants, suggesting that AcMFT functions similarly to FT in flowering plants. Interestingly, a similar partial compensation of the ft-1 late flowering phenotype was observed in Arabidopsis ectopically expressing only exon 4 of the C terminus of AcMFT and FT. This result indicated that the fourth exon of AcMFT and FT plays a similar and important role in promoting flowering. Further analysis indicated that exons 1-3 in the N terminus specifically enhanced the function of FT exon 4 in controlling flowering in Arabidopsis. Protein pull-down assays indicated that Arabidopsis FD proteins interact with full-length FT and AcMFT, as well as peptides encoded by 1-3 exon fragments or the 4th exon alone. Furthermore, similar FRET efficiencies for FT-FD and AcMFT-FD heterodimer in nucleus were observed. These results indicated that FD could form the similar complex with FT and AcMFT. Further analysis indicated that the expression of AP1, a gene downstream of FT, was up-regulated more strongly by FT than AcMFT in transgenic Arabidopsis. Our results revealed that AcMFT from a non-flowering plant could interact with FD to regulate the floral transition and that this function was reduced due to the weakened ability of AcMFT-FD to activate the downstream gene AP1. PMID:27216814

  1. Eugenolol and glyceryl-isoeugenol suppress LPS-induced iNOS expression by down-regulating NF-kappaB AND AP-1 through inhibition of MAPKS and AKT/IkappaBalpha signaling pathways in macrophages.

    PubMed

    Yeh, J L; Hsu, J H; Hong, Y S; Wu, J R; Liang, J C; Wu, B N; Chen, I J; Liou, S F

    2011-01-01

    Eugenol and isoeugenol, two components of clover oil, have been reported to possess several biomedical properties, such as anti-inflammatory, antimicrobial and antioxidant effects. This study aims to examine the anti-inflammatory effects of eugenol, isoeugenol and four of their derivatives on expression of inducible nitric oxide synthase (iNOS) activated by lipopolysaccharide (LPS) in mouse macrophages (RAW 264.7), and to investigate molecular mechanisms underlying these effects. We found that two derivatives, eugenolol and glyceryl-isoeugenol, had potent inhibitory effects on LPS-induced upregulation of nitrite levels, iNOS protein and iNOS mRNA. In addition, they both suppressed the release of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) induced by LPS. Moreover, they both attenuated the DNA binding of NF-kB and AP-1, phosphorylation of inhibitory kB-alpha (IkB-alpha), and nuclear translocation of p65 protein induced by LPS. Finally, we demonstrated that glyceryl-isoeugenol suppressed the phosphorylation of ERK1/2, JNK and p38 MAPK, whereas eugenolol suppressed the phosphorylation of ERK1/2 and p38 MAPK. Taken together, these results suggest that that eugenolol and glyceryl-isoeugenol suppress LPS-induced iNOS expression by down-regulating NF-kB and AP-1 through inhibition of MAPKs and Akt/IkB-alpha signaling pathways. Thus, this study implies that eugenolol and glyceryl-isoeugenol may provide therapeutic benefits for inflammatory diseases. PMID:21658309

  2. Activation of TGF-β1 promoter by hepatitis C virus-induced AP-1 and Sp1: role of TGF-β1 in hepatic stellate cell activation and invasion.

    PubMed

    Presser, Lance D; McRae, Steven; Waris, Gulam

    2013-01-01

    Our previous studies have shown the induction and maturation of transforming growth factor-beta 1 (TGF-β1) in HCV-infected human hepatoma cells. In this study, we have investigated the molecular mechanism of TGF-β1 gene expression in response to HCV infection. We demonstrate that HCV-induced transcription factors AP-1, Sp1, NF-κB and STAT-3 are involved in TGF-β1 gene expression. Using chromatin immunoprecipitation (ChIP) assay, we further show that AP-1 and Sp1 interact with TGF-b1 promoter in vivo in HCV-infected cells. In addition, we demonstrate that HCV-induced TGF-β1 gene expression is mediated by the activation of cellular kinases such as p38 MAPK, Src, JNK, and MEK1/2. Next, we determined the role of secreted bioactive TGF-β1 in human hepatic stellate cells (HSCs) activation and invasion. Using siRNA approach, we show that HCV-induced bioactive TGF-β1 is critical for the induction of alpha smooth muscle actin (α-SMA) and type 1 collagen, the markers of HSCs activation and proliferation. We further demonstrate the potential role of HCV-induced bioactive TGF-β1 in HSCs invasion/cell migration using a transwell Boyden chamber. Our results also suggest the role of HCV-induced TGF-β1 in HCV replication and release. Collectively, these observations provide insight into the mechanism of TGF-β1 promoter activation, as well as HSCs activation and invasion, which likely manifests in liver fibrosis associated with HCV infection. PMID:23437118

  3. Dimerumic Acid Inhibits SW620 Cell Invasion by Attenuating H2O2-Mediated MMP-7 Expression via JNK/C-Jun and ERK/C-Fos Activation in an AP-1-Dependent Manner

    PubMed Central

    Ho, Bing-Ying; Wu, Yao-Ming; Chang, King-Jen; Pan, Tzu-Ming

    2011-01-01

    Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) in the tumor microenvironment play important roles in tumor invasion and metastasis. Recently, ROS have been reported to cause a significant increase in the production and expression of matrix metalloproteinase (MMP)-7, which is closely correlated with metastatic colorectal cancer. The present study was undertaken to evaluate the scavenging activity of dimerumic acid (DMA) for H2O2 isolated from Monascus-fermented rice to investigate the inhibitory effects of DMA on the invasive potential of SW620 human colon cancer cells, and to explore the mechanisms underlying both these phenomena. Our results showed that increased MMP-7 expression due to H2O2 exposure was mediated by activation of mitogen-activated protein kinases (MAPKs) such as Jun N-terminal kinase (JNK), extracellular-regulated kinase (ERK), and p38 kinase. DMA pretreatment suppressed activation of H2O2-mediated MAPK pathways and cell invasion. Moreover, H2O2-triggered MMP-7 production was demonstrated via JNK/c-Jun and ERK/c-Fos activation in an activating protein 1 (AP-1)-dependent manner. Taken together, these results suggest that DMA suppresses H2O2-induced cell invasion by inhibiting AP-1-mediated MMP-7 gene transcription via the JNK/c-Jun and ERK/c-Fos signaling pathways in SW620 human colon cancer cells. Our data suggest that DMA may be useful in minimizing the development of colorectal metastasis. In the future, DMA supplementation may be a beneficial antioxidant to enhance surgical outcomes. PMID:21814482

  4. Age-associated reduction of cellular spreading/mechanical force up-regulates matrix metalloproteinase-1 expression and collagen fibril fragmentation via c-Jun/AP-1 in human dermal fibroblasts

    PubMed Central

    Qin, Zhaoping; Voorhees, John J; Fisher, Gary J; Quan, Taihao

    2014-01-01

    The dermal compartment of human skin is largely composed of dense collagen-rich fibrils, which provide structural and mechanical support. Skin dermal fibroblasts, the major collagen-producing cells, are interact with collagen fibrils to maintain cell spreading and mechanical force for function. A characteristic feature of aged human skin is fragmentation of collagen fibrils, which is initiated by matrix metalloproteinase 1 (MMP-1). Fragmentation impairs fibroblast attachment and thereby reduces spreading. Here, we investigated the relationship among fibroblast spreading, mechanical force, MMP-1 expression, and collagen fibril fragmentation. Reduced fibroblast spreading due to cytoskeletal disruption was associated with reduced cellular mechanical force, as determined by atomic force microscopy. These reductions substantially induced MMP-1 expression, which led to collagen fibril fragmentation and disorganization in three-dimensional collagen lattices. Constraining fibroblast size by culturing on slides coated with collagen micropatterns also significantly induced MMP-1 expression. Reduced spreading/mechanical force induced transcription factor c-Jun and its binding to a canonical AP-1 binding site in the MMP-1 proximal promoter. Blocking c-Jun function with dominant negative mutant c-Jun significantly reduced induction of MMP-1 expression in response to reduced spreading/mechanical force. Furthermore, restoration of fibroblast spreading/mechanical force led to decline of c-Jun and MMP-1 levels and eliminated collagen fibril fragmentation and disorganization. These data reveal a novel mechanism by which alteration of fibroblast shape/mechanical force regulates c-Jun/AP-1-dependent expression of MMP-1 and consequent collagen fibril fragmentation. This mechanism provides a foundation for understanding the cellular and molecular basis of age-related collagen fragmentation in human skin. PMID:25201474

  5. Dietary turmeric modulates DMBA-induced p21{sup ras}, MAP kinases and AP-1/NF-{kappa}B pathway to alter cellular responses during hamster buccal pouch carcinogenesis

    SciTech Connect

    Garg, Rachana; Ingle, Arvind; Maru, Girish

    2008-11-01

    The chemopreventive efficacy of turmeric has been established in experimental systems. However, its mechanism(s) of action are not fully elucidated in vivo. The present study investigates the mechanism of turmeric-mediated chemoprevention in 7,12-dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis at 2, 4, 6, 10 and 12 weeks. Dietary turmeric (1%) led to decrease in DMBA-induced tumor burden and multiplicity, and enhanced the latency period in parallel, to its modulatory effects on oncogene products and various cellular responses during HBP tumorigenesis. DMBA-induced expression of ras oncogene product, p21 and downstream target, the mitogen-activated protein kinases were significantly decreased by turmeric during HBP carcinogenesis. Turmeric also diminished the DMBA-induced mRNA expression of proto-oncogenes (c-jun, c-fos) and NF-{kappa}B, leading to decreased protein levels and in further attenuation of DMBA-induced AP-1/NF-{kappa}B DNA-binding in the buccal pouch nuclear extracts. Besides, buccal pouch of hamsters receiving turmeric diet showed significant alterations in DMBA-induced effects: (a) decrease in cell proliferation (diminished PCNA and Bcl2 expression), (b) enhanced apoptosis (increased expression of Bax, caspase-3 and apoptotic index), (c) decrease in inflammation (levels of Cox-2, the downstream target of AP-1/NF-{kappa}B, and PGE2) and (d) aberrant expression of differentiation markers, the cytokeratins (1, 5, 8, and 18). Together, the protective effects of dietary turmeric converge on augmenting apoptosis of the initiated cells and decreasing cell proliferation in DMBA-treated animals, which in turn, is reflected in decreased tumor burden, multiplicity and enhanced latency period. Some of these biomarkers are likely to be helpful in monitoring clinical trials and evaluating drug effect measurements.

  6. A novel antimicrobial protein isolated from potato (Solanum tuberosum) shares homology with an acid phosphatase.

    PubMed

    Feng, Jie; Yuan, Fenghua; Gao, Yin; Liang, Chenggang; Xu, Jin; Zhang, Changling; He, Liyuan

    2003-12-01

    The nucleotide and amino acids sequences for AP(1) will appear in the GenBank(R) and NCBI databases under accession number AY297449. A novel antimicrobial protein (AP(1)) was purified from leaves of the potato ( Solanum tuberosum, variety MS-42.3) with a procedure involving ammonium sulphate fractionation, molecular sieve chromatography with Sephacryl S-200 and hydrophobic chromatography with Butyl-Sepharose using a FPLC system. The inhibition spectrum investigation showed that AP(1) had good inhibition activity against five different strains of Ralstonia solanacearum from potato or other crops, and two fungal pathogens, Rhizoctonia solani and Alternaria solani from potato. The full-length cDNA encoding AP(1) has been successfully cloned by screening a cDNA expression library of potato with an anti-AP(1) antibody and RACE (rapid amplification of cDNA ends) PCR. Determination of the nucleotide sequences revealed the presence of an open reading frame encoding 343 amino acids. At the C-terminus of AP(1) there is an ATP-binding domain, and the N-terminus exhibits 58% identity with an/the acid phosphatase from Mesorhizobium loti. SDS/PAGE and Western blotting analysis suggested that the AP(1) gene can be successfully expressed in Escherichia coli and recognized by an antibody against AP(1). Also the expressed protein showed an inhibition activity the same as original AP(1) protein isolated from potato. We suggest that AP(1) most likely belongs to a new group of proteins with antimicrobial characteristics in vitro and functions in relation to phosphorylation and energy metabolism of plants. PMID:12927022

  7. HPLC-MS/MS Analyses Show That the Near-Starchless aps1 and pgm Leaves Accumulate Wild Type Levels of ADPglucose: Further Evidence for the Occurrence of Important ADPglucose Biosynthetic Pathway(s) Alternative to the pPGI-pPGM-AGP Pathway

    PubMed Central

    Muñoz, Francisco José; Li, Jun; Almagro, Goizeder; Montero, Manuel; Pujol, Pablo; Galarza, Regina; Kaneko, Kentaro; Oikawa, Kazusato; Wada, Kaede; Mitsui, Toshiaki; Pozueta-Romero, Javier

    2014-01-01

    In leaves, it is widely assumed that starch is the end-product of a metabolic pathway exclusively taking place in the chloroplast that (a) involves plastidic phosphoglucomutase (pPGM), ADPglucose (ADPG) pyrophosphorylase (AGP) and starch synthase (SS), and (b) is linked to the Calvin-Benson cycle by means of the plastidic phosphoglucose isomerase (pPGI). This view also implies that AGP is the sole enzyme producing the starch precursor molecule, ADPG. However, mounting evidence has been compiled pointing to the occurrence of important sources, other than the pPGI-pPGM-AGP pathway, of ADPG. To further explore this possibility, in this work two independent laboratories have carried out HPLC-MS/MS analyses of ADPG content in leaves of the near-starchless pgm and aps1 mutants impaired in pPGM and AGP, respectively, and in leaves of double aps1/pgm mutants grown under two different culture conditions. We also measured the ADPG content in wild type (WT) and aps1 leaves expressing in the plastid two different ADPG cleaving enzymes, and in aps1 leaves expressing in the plastid GlgC, a bacterial AGP. Furthermore, we measured the ADPG content in ss3/ss4/aps1 mutants impaired in starch granule initiation and chloroplastic ADPG synthesis. We found that, irrespective of their starch contents, pgm and aps1 leaves, WT and aps1 leaves expressing in the plastid ADPG cleaving enzymes, and aps1 leaves expressing in the plastid GlgC accumulate WT ADPG content. In clear contrast, ss3/ss4/aps1 leaves accumulated ca. 300 fold-more ADPG than WT leaves. The overall data showed that, in Arabidopsis leaves, (a) there are important ADPG biosynthetic pathways, other than the pPGI-pPGM-AGP pathway, (b) pPGM and AGP are not major determinants of intracellular ADPG content, and (c) the contribution of the chloroplastic ADPG pool to the total ADPG pool is low. PMID:25133777

  8. Homologous Series of Liquid Crystalline Steroidal Lipids

    SciTech Connect

    Thiemann, T.; Vill, V.

    1997-03-01

    Steroids are an important source of chiral mesophases. The melting behavior and mesomorphic properties of homologous series of steroidal derivatives have been extracted from the literature, tabulated, and discussed. The tables provide the reader with an evaluated compilation of the type of mesophases found for the individual compounds, including their transition temperatures. Where the literature gives more than one set of data for a specific substance, one has been chosen as the main reference, but all alternatives are listed in the footnotes. The data can be used for statistical analysis to show the specific role of substructures within the steroidal framework. {copyright} {ital 1997} {ital American Institute of Physics and American Chemical Society}

  9. Towards Alignment Independent Quantitative Assessment of Homology Detection

    PubMed Central

    Kliger, Yossef

    2006-01-01

    Identification of homologous proteins provides a basis for protein annotation. Sequence alignment tools reliably identify homologs sharing high sequence similarity. However, identification of homologs that share low sequence similarity remains a challenge. Lowering the cutoff value could enable the identification of diverged homologs, but also introduces numerous false hits. Methods are being continuously developed to minimize this problem. Estimation of the fraction of homologs in a set of protein alignments can help in the assessment and development of such methods, and provides the users with intuitive quantitative assessment of protein alignment results. Herein, we present a computational approach that estimates the amount of homologs in a set of protein pairs. The method requires a prevalent and detectable protein feature that is conserved between homologs. By analyzing the feature prevalence in a set of pairwise protein alignments, the method can estimate the number of homolog pairs in the set independently of the alignments' quality. Using the HomoloGene database as a standard of truth, we implemented this approach in a proteome-wide analysis. The results revealed that this approach, which is independent of the alignments themselves, works well for estimating the number of homologous proteins in a wide range of homology values. In summary, the presented method can accompany homology searches and method development, provides validation to search results, and allows tuning of tools and methods. PMID:17205117

  10. SANSparallel: interactive homology search against Uniprot.

    PubMed

    Somervuo, Panu; Holm, Liisa

    2015-07-01

    Proteins evolve by mutations and natural selection. The network of sequence similarities is a rich source for mining homologous relationships that inform on protein structure and function. There are many servers available to browse the network of homology relationships but one has to wait up to a minute for results. The SANSparallel webserver provides protein sequence database searches with immediate response and professional alignment visualization by third-party software. The output is a list, pairwise alignment or stacked alignment of sequence-similar proteins from Uniprot, UniRef90/50, Swissprot or Protein Data Bank. The stacked alignments are viewed in Jalview or as sequence logos. The database search uses the suffix array neighborhood search (SANS) method, which has been re-implemented as a client-server, improved and parallelized. The method is extremely fast and as sensitive as BLAST above 50% sequence identity. Benchmarks show that the method is highly competitive compared to previously published fast database search programs: UBLAST, DIAMOND, LAST, LAMBDA, RAPSEARCH2 and BLAT. The web server can be accessed interactively or programmatically at http://ekhidna2.biocenter.helsinki.fi/cgi-bin/sans/sans.cgi. It can be used to make protein functional annotation pipelines more efficient, and it is useful in interactive exploration of the detailed evidence supporting the annotation of particular proteins of interest. PMID:25855811

  11. Homology modelling of human P-glycoprotein.

    PubMed

    Domicevica, Laura; Biggin, Philip C

    2015-10-01

    P-glycoprotein (P-gp) is an ATP-binding cassette transporter that exports a huge range of compounds out of cells and is thus one of the key proteins in conferring multi-drug resistance in cancer. Understanding how it achieves such a broad specificity and the series of conformational changes that allow export to occur form major, on-going, research objectives around the world. Much of our knowledge to date has been derived from mutagenesis and assay data. However, in recent years, there has also been great progress in structural biology and although the structure of human P-gp has not yet been solved, there are now a handful of related structures on which homology models can be built to aid in the interpretation of the vast amount of experimental data that currently exists. Many models for P-gp have been built with this aim, but the situation is complicated by the apparent flexibility of the system and by the fact that although many potential templates exist, there is large variation in the conformational state in which they have been crystallized. In this review, we summarize how homology modelling has been used in the past, how models are typically selected and finally illustrate how MD simulations can be used as a means to give more confidence about models that have been generated via this approach. PMID:26517909

  12. SANSparallel: interactive homology search against Uniprot

    PubMed Central

    Somervuo, Panu; Holm, Liisa

    2015-01-01

    Proteins evolve by mutations and natural selection. The network of sequence similarities is a rich source for mining homologous relationships that inform on protein structure and function. There are many servers available to browse the network of homology relationships but one has to wait up to a minute for results. The SANSparallel webserver provides protein sequence database searches with immediate response and professional alignment visualization by third-party software. The output is a list, pairwise alignment or stacked alignment of sequence-similar proteins from Uniprot, UniRef90/50, Swissprot or Protein Data Bank. The stacked alignments are viewed in Jalview or as sequence logos. The database search uses the suffix array neighborhood search (SANS) method, which has been re-implemented as a client-server, improved and parallelized. The method is extremely fast and as sensitive as BLAST above 50% sequence identity. Benchmarks show that the method is highly competitive compared to previously published fast database search programs: UBLAST, DIAMOND, LAST, LAMBDA, RAPSEARCH2 and BLAT. The web server can be accessed interactively or programmatically at http://ekhidna2.biocenter.helsinki.fi/cgi-bin/sans/sans.cgi. It can be used to make protein functional annotation pipelines more efficient, and it is useful in interactive exploration of the detailed evidence supporting the annotation of particular proteins of interest. PMID:25855811

  13. Towards Scalable Optimal Sequence Homology Detection

    SciTech Connect

    Daily, Jeffrey A.; Krishnamoorthy, Sriram; Kalyanaraman, Anantharaman

    2012-12-26

    Abstract—The field of bioinformatics and computational biol- ogy is experiencing a data revolution — experimental techniques to procure data have increased in throughput, improved in accuracy and reduced in costs. This has spurred an array of high profile sequencing and data generation projects. While the data repositories represent untapped reservoirs of rich information critical for scientific breakthroughs, the analytical software tools that are needed to analyze large volumes of such sequence data have significantly lagged behind in their capacity to scale. In this paper, we address homology detection, which is a funda- mental problem in large-scale sequence analysis with numerous applications. We present a scalable framework to conduct large- scale optimal homology detection on massively parallel super- computing platforms. Our approach employs distributed memory work stealing to effectively parallelize optimal pairwise alignment computation tasks. Results on 120,000 cores of the Hopper Cray XE6 supercomputer demonstrate strong scaling and up to 2.42 × 107 optimal pairwise sequence alignments computed per second (PSAPS), the highest reported in the literature.

  14. 2,3,5,6-Tetramethylpyrazine (TMP) down-regulated arsenic-induced heme oxygenase-1 and ARS2 expression by inhibiting Nrf2, NF-κB, AP-1 and MAPK pathways in human proximal tubular cells.

    PubMed

    Gong, Xuezhong; Ivanov, Vladimir N; Hei, Tom K

    2016-09-01

    Our recent study demonstrated that sodium arsenite at a clinically relevant dose induced nephrotoxicity in human renal proximal tubular epithelial cell line HK-2, which could be inhibited by natural product 2,3,5,6-tetramethylpyrazine (TMP) with antioxidant activity. The present study demonstrated that arsenic exposure resulted in protein and enzymatic induction of heme oxygenase-1 (HO-1) in dose- and time-dependent manners in HK-2 cells. Blocking HO-1 enzymatic activity by zinc protoporphyrin (ZnPP) augmented arsenic-induced apoptosis, ROS production and mitochondrial dysfunction, suggesting a critical role for HO-1 as a renal protectant in this procession. On the other hand, TMP, upstream of HO-1, inhibited arsenic-induced ROS production and ROS-dependent HO-1 expression. TMP also prevented mitochondria dysfunction and suppressed activation of the intrinsic apoptotic pathway in HK-2 cells. Our results revealed that the regulation of arsenic-induced HO-1 expression was performed through multiple ROS-dependent signal pathways and the corresponding transcription factors, including p38 MAPK and JNK (but not ERK), AP-1, Nrf2 and NF-κB. TMP inhibited arsenic-induced activations of JNK, p38 MAPK, ERK, AP-1 and Nrf2 and block HO-1 protein expression. The present study, furthermore, demonstrated arsenic-induced expression of arsenic response protein 2 (ARS2) that was regulated by p38 MAPK, ERK and NF-κB. To our knowledge, this is the first report showing that ARS2 involved in arsenic-induced nephrotoxicity, while TMP pretreatment prevented such an up-regulation of ARS2 in HK-2 cells. Given ARS2 and HO-1 sharing the similar regulation mechanism, we speculated that ARS2 might also mediate cell survival in this procession. In summary, our study highlighted a role of HO-1 in the protection against arsenic-induced cytotoxicity downstream from the primary targets of TMP and further indicated that TMP may be used as a potential therapeutic agent in the treatment of arsenic

  15. A Novel Berbamine Derivative Inhibits Cell Viability and Induces Apoptosis in Cancer Stem-Like Cells of Human Glioblastoma, via Up-Regulation of miRNA-4284 and JNK/AP-1 Signaling

    PubMed Central

    Yang, Fan; Nam, Sangkil; Brown, Christine E.; Zhao, Robin; Starr, Renate; Horne, David A.; Malkas, Linda H.; Jove, Richard; Hickey, Robert J.

    2014-01-01

    Glioblastoma (GBM) is the most common primary brain tumor, accounting for approximately 40% of all central nervous system malignancies. Despite standard treatment consisting of surgical resection, radiotherapy and/or chemotherapy, the prognosis for GBM is poor; with a median survival of 14.6 months. The cancer stem cell or cancer-initiating cell model has provided a new paradigm for understanding development and recurrence of GBM following treatment. Berbamine (BBM) is a natural compound derived from the Berberis amurensis plant, and along with its derivatives, has been shown to exhibit antitumor activity in several cancers. Here, we reported that a novel synthetic Berbamine derivative, BBMD3, inhibits cell viability and induces apoptosis of cancer stem-like cells (CSCs) in a time- and dose-dependent manner when the CSCs from four GBM patients (PBT003, PBT008, PBT022, and PBT030) were cultured. These CSCs grew in neurospheres and expressed CD133 and nestin as markers. Treatment with BBMD3 destroyed the neurosphere morphology, and led to the induction of apoptosis in the CSCs. Induction of apoptosis in these CSCs is dependent upon activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP). MicroRNA-4284 (miR-4284) was shown to be over-expressed about 4-fold in the CSCs following BBMD3 treatment. Furthermore, transfection of synthetic anti-sense oligonucleotide against human miR-4284 partially blocked the anticancer effects of BBMD3 on the GBM derived CSCs. BBMD3 also increased phosphorylation of the c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK), resulting in an increase expression of phosphorylated c-Jun and total c-Fos; the major components of transcriptional factor AP-1. The JNK-c-Jun/AP-1 signaling pathway plays an important role in the induction of apoptosis in response to UV irradiation and some drug treatments. Targeting glioblastoma stem-like cells with BBMD3 is therefore novel, and may have promise as an effective

  16. AP1- and NF-kappaB-binding sites conserved among mammalian WNT10B orthologs elucidate the TNFalpha-WNT10B signaling loop implicated in carcinogenesis and adipogenesis.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2007-04-01

    WNT signals are context-dependently transduced to canonical and non-canonical signaling cascades. We cloned and characterized wild-type human WNT10B, while another group cloned aberrant human WNT10B with Gly60Asp amino-acid substitution. Proto-oncogene WNT10B is expressed in gastric cancer, pancreatic cancer, breast cancer, esophageal cancer, and cervical cancer. Because WNT10B blocks adipocyte differentiation, coding SNP of WNT10B gene is associated with familial obesity. In 2001, we reported WNT10B upregulation by TNFalpha. Here, comparative integromics analyses on WNT10B orthologs were performed to elucidate the transcriptional mechanism of WNT10B. Chimpanzee WNT10B and cow Wnt10b genes were identified within NW_001223159.1 and AC150975.2 genome sequences, respectively, by using bioinformatics (Techint) and human intelligence (Humint). Chimpanzee WNT10B and cow Wnt10b showed 98.7% and 95.1% total-amino-acid identity with human WNT10B, respectively. N-terminal signal peptide, 24 Cys residues, two Asn-linked glycosylation sites, and Gly60 of human WNT10B were conserved among mammalian WNT10B orthologs. Transcription start site of human WNT10B gene was 106-bp upstream of NM_003394.2 RefSeq 5'-end. Number of GC di-nucleotide repeats just down-stream of WNT10B transcription start site varied among primates and human population. Comparative genomics analyses revealed that double AP1-binding sites in the 5'-flanking promoter region and NF-kappaB-binding site in intron 3 were conserved among human, chimpanzee, cow, mouse, and rat WNT10B orthologs. Because TNFalpha signaling through TNFR1 and TRADD/RIP/TRAF2 complex activates JUN kinase (JNK) and IkappaB kinase (IKK) signaling cascades, conserved AP1- and NF-kappaB-binding sites explain the mechanism of TNFalpha-induced WNT10B upregulation. TNFalpha-WNT10B signaling loop is the negative feedback mechanism of adipogenesis to prevent obesity and metabolic syndrome. On the other hand, TNFalpha-WNT10B signaling loop is

  17. Homologous Recombination—Experimental Systems, Analysis and Significance

    PubMed Central

    Kuzminov, Andrei

    2014-01-01

    Homologous recombination is the most complex of all recombination events that shape genomes and produce material for evolution. Homologous recombination events are exchanges between DNA molecules in the lengthy regions of shared identity, catalyzed by a group of dedicated enzymes. There is a variety of experimental systems in E. coli and Salmonella to detect homologous recombination events of several different kinds. Genetic analysis of homologous recombination reveals three separate phases of this process: pre-synapsis (the early phase), synapsis (homologous strand exchange) and post-synapsis (the late phase). In E. coli, there are at least two independent pathway of the early phase and at least two independent pathways of the late phase. All this complexity is incongruent with the originally ascribed role of homologous recombination as accelerator of genome evolution: there is simply not enough duplication and repetition in enterobacterial genomes for homologous recombination to have a detectable evolutionary role, and therefore not enough selection to maintain such a complexity. At the same time, the mechanisms of homologous recombination are uniquely suited for repair of complex DNA lesions called chromosomal lesions. In fact, the two major classes of chromosomal lesions are recognized and processed by the two individual pathways at the early phase of homologous recombination. It follows, therefore, that homologous recombination events are occasional reflections of the continual recombinational repair, made possible in cases of natural or artificial genome redundancy. PMID:26442506

  18. Multiple Protein Kinases via Activation of Transcription Factors NF-κB, AP-1 and C/EBP-δ Regulate the IL-6/IL-8 Production by HIV-1 Vpr in Astrocytes

    PubMed Central

    Gangwani, Mohitkumar R.; Kumar, Anil

    2015-01-01

    Neurocognitive impairments affect a substantial population of HIV-1 infected individuals despite the success of anti-retroviral therapy in controlling viral replication. Astrocytes are emerging as a crucial cell type that might be playing a very important role in the persistence of neuroinflammation seen in patients suffering from HIV-1 associated neurocognitive disorders. HIV-1 viral proteins including Vpr exert neurotoxicity through direct and indirect mechanisms. Induction of IL-8 in microglial cells has been shown as one of the indirect mechanism through which Vpr reduces neuronal survival. We show that HIV-1 Vpr induces IL-6 and IL-8 in astrocytes in a time-dependent manner. Additional experiments utilizing chemical inhibitors and siRNA revealed that HIV-1 Vpr activates transcription factors NF-κB, AP-1 and C/EBP-δ via upstream protein kinases PI3K/Akt, p38-MAPK and Jnk-MAPK leading to the induction of IL-6 and IL-8 in astrocytes. We demonstrate that one of the mechanism for neuroinflammation seen in HIV-1 infected individuals involves induction of IL-6 and IL-8 by Vpr in astrocytes. Understanding the molecular pathways involved in the HIV-1 neuroinflammation would be helpful in the design of adjunct therapy to ameliorate some of the symptoms associated with HIV-1 neuropathogenesis. PMID:26270987

  19. Apigenin-7-O-β-D-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock.

    PubMed

    Hu, Weicheng; Wang, Xinfeng; Wu, Lei; Shen, Ting; Ji, Lilian; Zhao, Xihong; Si, Chuan-Ling; Jiang, Yunyao; Wang, Gongcheng

    2016-02-01

    Apigenin-7-O-β-D-glucuronide (AG), an active flavonoid derivative isolated from the agricultural residue of Juglans sigillata fruit husks, possesses multiple pharmacological activities, including anti-oxidant, anti-complement, and aldose reductase inhibitory activities. To date, no report has identified the anti-inflammatory mechanisms of AG. This study was therefore designed to characterize the molecular mechanisms of AG on lipopolysaccharide (LPS)-induced inflammatory cytokines in RAW 264.7 cells and on endotoxin-induced shock in mice. AG suppressed the release of nitric oxide (NO), prostaglandin E2 (PGE2), and tumour necrosis factor-α (TNF-α) in LPS-stimulated RAW 264.7 macrophages in a dose-dependent manner without affecting cell viability. Additionally, AG suppressed LPS-induced mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α. AG treatment decreased the translocation of c-Jun into the nucleus, and decreased activator protein-1 (AP-1)-mediated luciferase activity through the inhibition of both p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) phosphorylation. Consistent with the in vitro observations, AG protected mice from LPS-induced endotoxin shock by inhibiting proinflammatory cytokine production. Taken together, these results suggest that AG may be used as a source of anti-inflammatory agents as well as a dietary complement for health promotion. PMID:26750400

  20. Dioscorea nipponica Makino inhibits migration and invasion of human oral cancer HSC-3 cells by transcriptional inhibition of matrix metalloproteinase-2 through modulation of CREB and AP-1 activity.

    PubMed

    Chien, Ming-Hsien; Ying, Tsung-Ho; Hsieh, Yih-Shou; Chang, Yu-Chao; Yeh, Chia-Ming; Ko, Jiunn-Liang; Lee, Wen-Sen; Chang, Jer-Hua; Yang, Shun-Fa

    2012-03-01

    Oral cancer mortality has increased during the last decade due to the difficulties in treating related metastasis. Dioscorea nipponica Makino, a popular folk medicine, exerts anti-obesity and anti-inflammation properties. However, the effect of this folk medicine on metastasis of oral cancer has yet to be fully elucidated. The present study demonstrates that D. nipponica extracts (DNE), at a range of concentrations (0-50 μg/mL), concentration-dependently inhibited migration/invasion capacities of human oral cancer cells, HSC-3, without cytotoxic effects. The anti-migration effect of DNE was also observed in two other OSCC cell lines, Ca9-22 and Cal-27. Zymography, real time PCR, and Western blotting analyses revealed that DNE inhibited matrix metalloproteinase-2 (MMP-2) enzyme activity, and RNA and protein expression. The inhibitory effects of DNE on MMP-2 proceeded by up-regulating tissue inhibitor of metalloproteinase-2 (TIMP-2), as well as suppressing nuclear translocation and DNA binding activity of cAMP response element-binding (CREB) and activating protein-1 (AP-1) on the MMP-2 promoter in HSC-3 cells. In conclusion, DNE inhibited the invasion of oral cancer cells and may have potential use as a chemopreventive agent against oral cancer metastasis. PMID:22210353

  1. Cationicity-enhanced analogues of the antimicrobial peptides, AcrAP1 and AcrAP2, from the venom of the scorpion, Androctonus crassicauda, display potent growth modulation effects on human cancer cell lines.

    PubMed

    Du, Qiang; Hou, Xiaojuan; Ge, Lilin; Li, Renjie; Zhou, Mei; Wang, Hui; Wang, Lei; Wei, Minjie; Chen, Tianbao; Shaw, Chris

    2014-01-01

    The non disulphide-bridged peptides (NDBPs) of scorpion venoms are attracting increased interest due to their structural heterogeneity and broad spectrum of biological activities. Here, two novel peptides, named AcrAP1 and AcrAP2, have been identified in the lyophilised venom of the Arabian scorpion, Androctonus crassicauda, through "shotgun" molecular cloning of their biosynthetic precursor-encoding cDNAs. The respective mature peptides, predicted from these cloned cDNAs, were subsequently isolated from the same venom sample using reverse phase HPLC and their identities were confirmed by use of mass spectrometric techniques. Both were found to belong to a family of highly-conserved scorpion venom antimicrobial peptides - a finding confirmed through the biological investigation of synthetic replicates. Analogues of both peptides designed for enhanced cationicity, displayed enhanced potency and spectra of antimicrobial activity but, unlike the native peptides, these also displayed potent growth modulation effects on a range of human cancer cell lines. Thus natural peptide templates from venom peptidomes can provide the basis for rational analogue design to improve both biological potency and spectrum of action. The diversity of such templates from such natural sources undoubtedly provides the pharmaceutical industry with unique lead compounds for drug discovery. PMID:25332684

  2. Saponins from the roots of Platycodon grandiflorum suppress ultraviolet A-induced matrix metalloproteinase-1 expression via MAPKs and NF-κB/AP-1-dependent signaling in HaCaT cells.

    PubMed

    Hwang, Yong Pil; Kim, Hyung Gyun; Choi, Jae Ho; Han, Eun Hee; Kwon, Kwang-Il; Lee, Young Chun; Choi, Jun Min; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2011-12-01

    Saponins from the roots of Platycodon grandiflorum (CKS) have been shown to exhibit many pharmacological activities, including anti-cancer and anti-inflammatory activities and antioxidant effects. However, anti-skin photoaging effects of CKS have not yet been reported. In this study, we investigated the protective effects of CKS against UVA damage on immortalized human keratinocytes (HaCaT). We then explored the inhibitory effects of CKS on UVA-induced MMP-1 and investigated the molecular mechanism underlying those effects. CKS increased the cell viability and inhibited reactive oxygen species (ROS) production in HaCaT cells exposed to UVA irradiation. Pre-treatment of HaCaT cells with CKS inhibited UVA-induced production of MMP-1 and MMP-9. In addition, CKS decreased UVA-induced expression of the inflammatory cytokines IL-1β and IL-6. Western blot analysis further revealed that CKS markedly suppressed the enhancement of collagen degradation in UVA-exposed HaCaT cells. CKS also suppressed UVA-induced activation of NF-κB or c-Jun and c-Fos, and the phosphorylation of MAPKs, which are upstream modulators of NF-κB and AP-1. PMID:22005258

  3. Apricot attenuates oxidative stress and modulates of Bax, Bcl-2, caspases, NFκ-B, AP-1, CREB expression of rats bearing DMBA-induced liver damage and treated with a combination of radiotherapy.

    PubMed

    Karabulut, Aysun Bay; Karadag, Nese; Gurocak, Simay; Kiran, Tugba; Tuzcu, Mehmet; Sahin, Kazım

    2014-08-01

    We evaluated the ability of apricot to attenuate apoptosis and oxidative stress developed during the process of 7,12-dimethylbenz[a]anthracene (DMBA) and radiotherapy in the liver of rats bearing liver damage. Fifty female Wistar rats were divided into 7 groups; (i) normal control rats; (ii) rats fed with standard diet with apricot (20%), (ii) rats fed with standard diet and administrated 6 gray radiotherapy with Co 60 device applied to a single fraction, (iv) rats fed with standard diet and administered intraperitoneally DMBA (20mg/kg), (v) rats fed with standard diet and administered DMBA and 6 gray radiotherapy, (vi) rats fed with standard rat diet and administered DMBA and supplemented apricot, (vii) rats fed with standard diet supplemented apricot administered DMBA and radiotherapy (RT) for 6weeks. Expression of Bax, caspase 3, and glutathione activity decreased in the liver but liver expression of NF-κB, AP-1, CREB, Bcl-2 and ALT, AST, 5'NT, MDA, NO levels increased in DMBA-induced liver damage rats. In conclusion, the results suggest that apricot supplementation and irradiation given in combination, offer maximum protection against DMBA-induced hepatic carcinogenesis. PMID:24819963

  4. Homologies among Coniferophyte cones: further observations

    NASA Astrophysics Data System (ADS)

    Grauvogel-Stamm, Léa; Galtier, Jean

    1998-04-01

    A reinvestigation of the Triassic conifer pollen cone of Darneya shows evidence that clusters of pollen sacs are attached (adnate), at regular intervals, to the upper side of the stalk and that the distribution of stomata is restricted to the apical part of the abaxial side of the peltate scale. These features and others, such as the commissure visible on the stalk and the scale, suggest a dual nature of the male scale complex of Darneya which therefore is interpreted as an abaxial bract fused with an adaxial fertile shoot bearing several clusters of pollen sacs. This conifer pollen cone is thus considered as a compound strobilus (inflorescence) homologous with the female cone of the conifers and therefore with the cones, both male and female, of the cordaites.

  5. HOMOLOGOUS CYCLONES IN THE QUIET SUN

    SciTech Connect

    Yu, Xinting; Zhang, Jun; Li, Ting; Zhang, Yuzong; Yang, Shuhong E-mail: zjun@nao.cas.cn E-mail: yuzong@nao.cas.cn

    2014-02-20

    Through observations with the Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager, we tracked one rotating network magnetic field (RNF) near the solar equator. It lasted for more than 100 hr, from 2013 February 23 to 28. During its evolution, three cyclones were found to be rooted in this structure. Each cyclone event lasted for about 8 to 10 hr. While near the polar region, another RNF was investigated. It lasted for a shorter time (∼70 hr), from 2013 July 7 to 9. There were two cyclones rooted in the RNF and each lasted for 8 and 11 hr, respectively. For the two given examples, the cyclones have a similar dynamic evolution, and thus we put forward a new term: homologous cyclones. The detected brightening in AIA 171 Å maps indicates the release of energy, which is potentially available to heat the corona.

  6. Chatter detection in turning using persistent homology

    NASA Astrophysics Data System (ADS)

    Khasawneh, Firas A.; Munch, Elizabeth

    2016-03-01

    This paper describes a new approach for ascertaining the stability of stochastic dynamical systems in their parameter space by examining their time series using topological data analysis (TDA). We illustrate the approach using a nonlinear delayed model that describes the tool oscillations due to self-excited vibrations in turning. Each time series is generated using the Euler-Maruyama method and a corresponding point cloud is obtained using the Takens embedding. The point cloud can then be analyzed using a tool from TDA known as persistent homology. The results of this study show that the described approach can be used for analyzing datasets of delay dynamical systems generated both from numerical simulation and experimental data. The contributions of this paper include presenting for the first time a topological approach for investigating the stability of a class of nonlinear stochastic delay equations, and introducing a new application of TDA to machining processes.

  7. CIRCULAR RIBBON FLARES AND HOMOLOGOUS JETS

    SciTech Connect

    Wang Haimin; Liu Chang

    2012-12-01

    Solar flare emissions in the chromosphere often appear as elongated ribbons on both sides of the magnetic polarity inversion line (PIL), which has been regarded as evidence of a typical configuration of magnetic reconnection. However, flares having a circular ribbon have rarely been reported, although it is expected in the fan-spine magnetic topology involving reconnection at a three-dimensional (3D) coronal null point. We present five circular ribbon flares with associated surges, using high-resolution and high-cadence H{alpha} blue wing observations obtained from the recently digitized films of Big Bear Solar Observatory. In all the events, a central parasitic magnetic field is encompassed by the opposite polarity, forming a circular PIL traced by filament material. Consequently, a flare kernel at the center is surrounded by a circular flare ribbon. The four homologous jet-related flares on 1991 March 17 and 18 are of particular interest, as (1) the circular ribbons brighten sequentially, with cospatial surges, rather than simultaneously, (2) the central flare kernels show an intriguing 'round-trip' motion and become elongated, and (3) remote brightenings occur at a region with the same magnetic polarity as the central parasitic field and are co-temporal with a separate phase of flare emissions. In another flare on 1991 February 25, the circular flare emission and surge activity occur successively, and the event could be associated with magnetic flux cancellation across the circular PIL. We discuss the implications of these observations combining circular flare ribbons, homologous jets, and remote brightenings for understanding the dynamics of 3D magnetic restructuring.

  8. Modeling Non-homologous End Joining

    NASA Technical Reports Server (NTRS)

    Li, Yongfeng

    2013-01-01

    Non-homologous end joining (NHEJ) is the dominant DNA double strand break (DSB) repair pathway and involves several NHEJ proteins such as Ku, DNA-PKcs, XRCC4, Ligase IV and so on. Once DSBs are generated, Ku is first recruited to the DNA end, followed by other NHEJ proteins for DNA end processing and ligation. Because of the direct ligation of break ends without the need for a homologous template, NHEJ turns out to be an error-prone but efficient repair pathway. Some mechanisms have been proposed of how the efficiency of NHEJ repair is affected. The type of DNA damage is an important factor of NHEJ repair. For instance, the length of DNA fragment may determine the recruitment efficiency of NHEJ protein such as Ku [1], or the complexity of the DNA breaks [2] is accounted for the choice of NHEJ proteins and subpathway of NHEJ repair. On the other hand, the chromatin structure also plays a role of the accessibility of NHEJ protein to the DNA damage site. In this talk, some mathematical models of NHEJ, that consist of series of biochemical reactions complying with the laws of chemical reaction (e.g. mass action, etc.), will be introduced. By mathematical and numerical analysis and parameter estimation, the models are able to capture the qualitative biological features and show good agreement with experimental data. As conclusions, from the viewpoint of modeling, how the NHEJ proteins are recruited will be first discussed for connection between the classical sequential model [4] and recently proposed two-phase model [5]. Then how the NHEJ repair pathway is affected, by the length of DNA fragment [6], the complexity of DNA damage [7] and the chromatin structure [8], will be addressed

  9. Teleman localization of Hochschild homology in a singular setting

    NASA Astrophysics Data System (ADS)

    Brasselet, J.-P.; Legrand, A.

    2009-09-01

    The aim of this paper is to generalize the Hochschild-Kostant-Rosenberg theorem to the case of singular varieties, more precisely, to manifolds with boundary and to varieties with isolated singularities. In these situations, we define suitable algebras of functions and study the localization of the corresponding Hochschild homology. The tool we use is the Teleman localization process. In the case of isolated singularities, the closed Hochschild homology corresponds to the intersection complex which relates the objects defined here to intersection homology.

  10. [Homologous recombination among bacterial genomes: the measurement and identification].

    PubMed

    Xianwei, Yang; Ruifu, Yang; Yujun, Cui

    2016-02-01

    Homologous recombination is one of important sources in shaping the bacterial population diversity, which disrupts the clonal relationship among different lineages through horizontal transferring of DNA-segments. As consequence of blurring the vertical inheritance signals, the homologous recombination raises difficulties in phylogenetic analysis and reconstruction of population structure. Here we discuss the impacts of homologous recombination in inferring phylogenetic relationship among bacterial isolates, and summarize the tools and models separately used in recombination measurement and identification. We also highlight the merits and drawbacks of various approaches, aiming to assist in the practical application for the analysis of homologous recombination in bacterial evolution research. PMID:26907777

  11. NF-κB- and AP-1-Mediated Induction of Human Beta Defensin-2 in Intestinal Epithelial Cells by Escherichia coli Nissle 1917: a Novel Effect of a Probiotic Bacterium

    PubMed Central

    Wehkamp, Jan; Harder, Jürgen; Wehkamp, Kai; Meissner, Birte Wehkamp-von; Schlee, Miriam; Enders, Corinne; Sonnenborn, Ulrich; Nuding, Sabine; Bengmark, Stig; Fellermann, Klaus; Schröder, Jens Michael; Stange, Eduard F.

    2004-01-01

    Little is known about the defensive mechanisms induced in epithelial cells by pathogenic versus probiotic bacteria. The aim of our study was to compare probiotic bacterial strains such as Escherichia coli Nissle 1917 with nonprobiotic, pathogenic and nonpathogenic bacteria with respect to innate defense mechanisms in the intestinal mucosal cell. Here we report that E. coli strain Nissle 1917 and a variety of other probiotic bacteria, including lactobacilli—in contrast to more than 40 different E. coli strains tested—strongly induce the expression of the antimicrobial peptide human beta-defensin-2 (hBD-2) in Caco-2 intestinal epithelial cells in a time- and dose-dependent manner. Induction of hBD-2 through E. coli Nissle 1917 was further confirmed by activation of the hBD-2 promoter and detection of the hBD-2 peptide in the culture supernatants of E. coli Nissle 1917-treated Caco-2 cells. Luciferase gene reporter analyses and site-directed mutagenesis experiments demonstrated that functional binding sites for NF-κB and AP-1 in the hBD-2 promoter are required for induction of hBD-2 through E. coli Nissle 1917. Treatment with the NF-κB inhibitor Helenalin, as well as with SP600125, a selective inhibitor of c-Jun N-terminal kinase, blocked hBD-2 induction by E. coli Nissle 1917 in Caco-2 cells. SB 202190, a specific p38 mitogen-activated protein kinase inhibitor, and PD 98059, a selective inhibitor of extracellular signal-regulated kinase 1/2, were ineffective. This report demonstrates that probiotic bacteria may stimulate the intestinal innate defense through the upregulation of inducible antimicrobial peptides such as hBD-2. The induction of hBD-2 may contribute to an enhanced mucosal barrier to the luminal bacteria. PMID:15385474

  12. 12-O-Tetradecanoylphorbol-13-Acetate Induces Up-Regulated Transcription of Variant 1 but Not Variant 2 of VIL2 in Esophageal Squamous Cell Carcinoma Cells via ERK1/2/AP-1/Sp1 Signaling

    PubMed Central

    Zhang, Xiao-Dan; Xie, Jian-Jun; Liao, Lian-Di; Long, Lin; Xie, Yang-Min; Li, En-Min; Xu, Li-Yan

    2015-01-01

    The membrane-cytoskeleton link organizer ezrin may be the most “dramatic” tumor marker, being strongly over-expressed in nearly one-third of human malignancies. However, the molecular mechanisms of aberrant ezrin expression still need to be clarified. Ezrin, encoded by the VIL2 gene, has two transcript variants that differ in the transcriptional start site (TSS): V1 and V2. Both V1 and V2 encode the same protein. Here, we found that 12-O-tetradecanoylphorbol-13-acetate (TPA) induced over-expression of human VIL2 in esophageal squamous cell carcinoma (ESCC) cells. Furthermore, VIL2 V1 but not V2 was up-regulated after TPA stimulation in a time-dependent manner. AP-1 and Sp1 binding sites within the promoter region of VIL2 V1 acted not only as basal transcriptional elements but also as a composite TPA-responsive element (TRE) for the transcription of VIL2 V1. TPA stimulation enhanced c-Jun and Sp1 binding to the TRE via activation of the ERK1/2 pathway and increased protein levels of c-Jun, c-Fos, and Sp1, resulting in over-expression of VIL2 V1, whereas the MEK1/2 inhibitor U0126 blocked these events. Finally, we showed that TPA promoted the migration of ESCC cells whereas MEK1/2 inhibitor or ezrin silencing could partially inverse this alteration. Taken together, these results suggest that TPA is able to induce VIL2 V1 over-expression in ESCC cells by activating MEK/ERK1/2 signaling and increasing binding of Sp1 and c-Jun to the TRE of the VIL2 V1 promoter, and that VIL2 is an important TPA-induced effector. PMID:25915860

  13. Triple synergism of human T-lymphotropic virus type 1-encoded tax, GATA-binding protein, and AP-1 is required for constitutive expression of the interleukin-5 gene in adult T-cell leukemia cells.

    PubMed Central

    Yamagata, T; Mitani, K; Ueno, H; Kanda, Y; Yazaki, Y; Hirai, H

    1997-01-01

    Accumulated evidence demonstrates that adult T-cell leukemia (ATL) is frequently associated with eosinophilia, and human T-lymphotropic virus type 1 (HTLV-1)-infected cells frequently express interleukin-5 (IL-5). However, the molecular mechanism of constitutive IL-5 expression in HTLV-1-infected cells remains unclear. To clarify the mechanism of aberrant IL-5 expression in HTLV-1-infected cells, we investigated the response of the human IL-5 promoter to the HTLV-1-encoded protein Tax. Cotransfection experiments using Jurkat cells revealed that Tax is incapable of activating the IL-5 promoter by itself but that it synergistically transactivates the promoter with GATA-binding protein (GATA-4) and 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulation. By introducing a series of mutations within the IL-5 promoter, we found that conserved lymphokine element 0 (CLE0) is responsible for mediating the signal induced by Tax-TPA. A deletion construct of the promoter indicated that the -75 GATA element and CLE0 are sufficient to mediate synergistic activation of the IL-5 promoter. Electrophoretic mobility shift assays using Jurkat cell nuclear extracts demonstrated that TPA induces a transcription factor to bind CLE0, and an experiment using JPX-9 cell nuclear extracts showed that Tax enhances this binding activity. An antibody supershift experiment revealed that this band consists of c-Jun and JunD. However, among the Jun family members, only c-Jun is able to cooperate with Tax and GATA-4 to activate the IL-5 promoter. We have determined the minimum factors required for IL-5 gene activation by reconstituting the IL-5 promoter activity in F9 cells. This is the first report to demonstrate the functional involvement of Tax protein in IL-5 gene regulation and to suggest the functional triple synergism among Tax, GATA-4, and AP-1, which disrupts regulated control of the gene and leads to constitutive expression of the IL-5 gene. PMID:9234684

  14. GLSM's, gerbes, and Kuznetsov's homological projective duality

    NASA Astrophysics Data System (ADS)

    Sharpe, Eric

    2013-12-01

    In this short note we give an overview of recent work on string propagation on stacks and applications to gauged linear sigma models. We begin by outlining noneffective orbifolds (orbifolds in which a subgroup acts trivially) and related phenomena in two-dimensional gauge theories, which realize string propagation on gerbes. We then discuss the 'decomposition conjecture,' equating conformal field theories of strings on gerbes and strings on disjoint unions of spaces. Finally, we apply these ideas to gauged linear sigma models for complete intersections of quadrics, and use the decomposition conjecture to show that the Landau-Ginzburg points of those models have a geometric interpretation in terms of a (sometimes noncommutative resolution of) a branched double cover, realized via nonperturbative effects rather than as the vanishing locus of a superpotential. These examples violate old unproven lore on GLSM's (namely, that geometric phases must be related by birational transformations), and we conclude by observing that in these examples (and conjecturing more generally in GLSM's), the phases are instead related by Kuznetsov's 'homological projective duality.'

  15. Homologous recombination deficiency and ovarian cancer.

    PubMed

    Ledermann, Jonathan A; Drew, Yvette; Kristeleit, Rebecca S

    2016-06-01

    The discovery that PARP inhibitors block an essential pathway of DNA repair in cells harbouring a BRCA mutation has opened up a new therapeutic avenue for high-grade ovarian cancers. BRCA1 and BRCA2 proteins are essential for high-fidelity repair of double-strand breaks of DNA through the homologous recombination repair (HRR) pathway. Deficiency in HRR (HRD) is a target for PARP inhibitors. The first PARP inhibitor, olaparib, has now been licensed for BRCA-mutated ovarian cancers. While mutated BRCA genes are individually most commonly associated with HRD other essential HRR proteins may be mutated or functionally deficient potentially widening the therapeutic opportunities for PARP inhibitors. HRD is the first phenotypically defined predictive marker for therapy with PARP inhibitors in ovarian cancer. Several different PARP inhibitors are being trialled in ovarian cancer and this class of drugs has been shown to be a new selective therapy for high-grade ovarian cancer. Around 20% of high-grade serous ovarian cancers harbour germline or somatic BRCA mutations and testing for BRCA mutations should be incorporated into routine clinical practice. The expanded use of PARP inhibitors in HRD deficient (non-BRCA mutant) tumours using a signature of HRD in clinical practice requires validation. PMID:27065456

  16. CBH1 homologs and varian CBH1 cellulase

    SciTech Connect

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2014-07-01

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  17. CBH1 homologs and variant CBH1 cellulases

    DOEpatents

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2011-05-31

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  18. CBH1 homologs and variant CBH1 cellulases

    DOEpatents

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2008-11-18

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  19. Flare build-up study - Homologous flares group. I

    NASA Technical Reports Server (NTRS)

    Martres, M.-J.; Mein, N.; Mouradian, Z.; Rayrole, J.; Schmieder, B.; Simon, G.; Soru-Escaut, I.; Woodgate, B. E.

    1984-01-01

    Solar Maximum Mission observations have been used to study the origin and amount of energy, mechanism of storage and release, and conditions for the occurrence of solar flares, and some results of these studies as they pertain to homologous flares are briefly discussed. It was found that every set of flares produced 'rafales' of homologous flares, i.e., two, three, four, or more flares separated in time by an hour or less. No great changes in macroscopic photospheric patterns were observed during these flaring periods. A quantitative brightness parameter of the relation between homologous flares is defined. Scale changes detected in the dynamic spectrum of flare sites are in good agreement with a theoretical suggestion by Sturrock. Statistical results for different homologous flare active regions show the existence in homologous flaring areas of a 'pivot' of previous filaments interpreted as a signature of an anomaly in the solar rotation.

  20. Homology modelling and spectroscopy, a never-ending love story.

    PubMed

    Venselaar, Hanka; Joosten, Robbie P; Vroling, Bas; Baakman, Coos A B; Hekkelman, Maarten L; Krieger, Elmar; Vriend, Gert

    2010-03-01

    Homology modelling is normally the technique of choice when experimental structure data are not available but three-dimensional coordinates are needed, for example, to aid with detailed interpretation of results of spectroscopic studies. Herein, the state of the art of homology modelling will be described in the light of a series of recent developments, and an overview will be given of the problems and opportunities encountered in this field. The major topic, the accuracy and precision of homology models, will be discussed extensively due to its influence on the reliability of conclusions drawn from the combination of homology models and spectroscopic data. Three real-world examples will illustrate how both homology modelling and spectroscopy can be beneficial for (bio)medical research. PMID:19718498

  1. Multiple overlapping homologies between two rheumatoid antigens and immunosuppressive viruses.

    PubMed Central

    Douvas, A; Sobelman, S

    1991-01-01

    Amino acid (aa) sequence homologies between viruses and autoimmune nuclear antigens are suggestive of viral involvement in disorders such as systemic lupus erythematosus (SLE) and scleroderma. We analyzed the frequency of exact homologies of greater than or equal to 5 aa between 61 viral proteins (19,827 aa), 8 nuclear antigens (3813 aa), and 41 control proteins (11,743 aa). Both pentamer and hexamer homologies between control proteins and viruses are unexpectedly abundant, with hexamer matches occurring in 1 of 3 control proteins (or once every 769 aa). However, 2 nuclear antigens, the SLE-associated 70-kDa antigen and the scleroderma-associated CENP-B protein, are highly unusual in containing multiple homologies to a group of synergizing immunosuppressive viruses. Two viruses, herpes simplex virus 1 (HSV-1) and human immunodeficiency virus 1 (HIV-1), contain sequences exactly duplicated at 15 sites in the 70-kDa antigen and at 10 sites in CENP-B protein. The immediate-early (IE) protein of HSV-1, which activates HIV-1 regulatory functions, contains three homologies to the 70-kDa antigen (two hexamers and a pentamer) and two to CENP-B (a hexamer and pentamer). There are four homologies (including a hexamer) common to the 70-kDa antigen and Epstein-Barr virus, and three homologies (including two hexamers) common to CENP-B and cytomegalovirus. The majority of homologies in both nuclear antigens are clustered in highly charged C-terminal domains containing epitopes for human autoantibodies. Furthermore, most homologies have a contiguous or overlapping distribution, thereby creating a high density of potential epitopes. In addition to the exact homologies tabulated, motifs of matching sequences are repeated frequently in these domains. Our analysis suggests that coexpression of heterologous viruses having common immunosuppressive functions may generate autoantibodies cross-reacting with certain nuclear proteins. PMID:1712488

  2. The lytic phase of epstein-barr virus requires a viral genome with 5-methylcytosine residues in CpG sites.

    PubMed

    Kalla, Markus; Göbel, Christine; Hammerschmidt, Wolfgang

    2012-01-01

    Epstein-Barr virus (EBV) is a human herpesvirus which has been studied intensively for its role in certain human tumors. It also serves as a model of herpesviral latency because it establishes an immediate, latent infection in human B cells. When EBV infects quiescent, primary B cells it induces their continuous proliferation to yield growth-transformed B-cell lines in vitro. The lytic or productive phase of EBV's life cycle is induced by the expression of the viral BZLF1 gene in latently infected cells. The BZLF1 protein is a transactivator, which selectively binds to two classes of distinct DNA sequence motifs. One class is similar to the motifs that are bound by members of the AP-1 transcription factor family to which BZLF1 belongs. The second class, which contains CpG motifs, is predominant in viral promoters of early lytic genes and is BZLF1's preferred or exclusive target sequence when methylated. The BZLF1 gene is transiently expressed in newly infected B cells but fails to induce EBV's lytic cycle, potentially because the virion DNA is unmethylated. Here we report that the lack of 5-methylcytosine residues in CpG sites of virion DNA prevents the expression of essential lytic genes indispensable for viral DNA amplification during productive infection. This finding indicates that BZLF1 transactivates these promoters in a methylation-dependent fashion and explains how progeny virus synthesis is abrogated in newly infected B cells. Our data also reveal that viral lytic DNA synthesis precludes CpG methylation of virion DNA during EBV's lytic, productive cycle, which can be overcome by the ectopic expression of a prokaryotic cytosine methyltransferase to yield CpG-methylated virion DNA. Upon infection of B cells, randomly CpG-methylated virion DNA induces high expression of essential lytic genes in contrast to virion DNA free of 5-methylcytosine residues. Our data suggest that unmethylated virion DNA is part of EBV's strategy to prevent the viral lytic phase in

  3. Peridinialean dinoflagellate plate patterns, labels and homologies

    USGS Publications Warehouse

    Edwards, L.E.

    1990-01-01

    Tabulation patterns for peridinialean dinoflagellate thecae and cysts have been traditionally expressed using a plate labelling system described by C.A. Kofoid in the early 1900's. This system can obscure dinoflagellate plate homologies and has not always been strictly applied. The plate-labelling system presented here introduces new series labels but incorporates key features and ideas from the more recently proposed systems of G.L. Eaton and F.J.R. Taylor, as modified by W.R. Evitt. Plate-series recognition begins with the cingulum (C-series) and proceeds from the cingulum toward the apex for the three series of the epitheca/epicyst and proceeds from the cingulum toward the antapex for the two series of the hypotheca/hypocyst. The epithecal/epicystal model consists of eight plates that touch the anterior margin of the cingulum (E-series: plates E1-E7, ES), seven plates toward the apex that touch the E-series plates (M-series: R, M1-M6), and up to seven plates near the apex that do not touch E-series plates (D-series: Dp-Dv). The hypothecal/hypocystal model consists of eight plates that touch the posterior margin of the cingulum (H-series: H1-H6,HR,HS) and three plates toward the antapex (T1-T3). Epithecal/epicystal tabulation patterns come in both 8- and 7- models, corresponding to eight and seven plates, respectively, in the E-series. Hypothecal/hypocystal tabulation patterns also come in both 8- and 7-models, corresponding to eight and seven plates, respectively, in the H-series. By convention, the 7-model epitheca/epicyst has no plates E1 and M1; the 7-model hypotheca/hypocyst has no plate H6. Within an 8-model or 7-model, the system emphasizes plates that are presumed to be homologous by giving them identical labels. I introduce the adjectives "monothigmate", "dithigmate," and "trithigmate" to designate plates touching one, two, and three plates, respectively, of the adjacent series. The term "thigmation" applies to the analysis of plate contacts between

  4. The history of the homology concept and the "Phylogenetisches Symposium".

    PubMed

    Hossfeld, Uwe; Olsson, Lennart

    2005-11-01

    The homology concept has had a long and varied history, starting out as a geometrical term in ancient Greece. Here we describe briefly how a typological use of homology to designate organs and body parts in the same position anatomically in different organisms was changed by Darwin's theory of evolution into a phylogenetic concept. We try to indicate the diversity of opinions on how to define and test for homology that has prevailed historically, before the important books by Hennig (1950. Grundzüge einer Theorie der Phylogenetischen Systematik. Deutscher Zentralverlag, Berlin) and Remane (1952. Die Grundlagen des Natürlichen Systems, der Vergleichenden Anatomie und der Phylogenetik. Geest & Portig, Leipzig) brought more rigor into both the debate on homology and into the usage of the term homology among systematists. Homology as a theme has recurred repeatedly throughout the history of the "Phylogenetisches Symposium" and we give a very brief overview of the different aspects of homology that have been discussed at specific symposia over the last 48 years. We also honour the fact that the 2004 symposium was held in Jena by pointing to the roles played by biologists active in Jena, such as Ernst Haeckel and Carl Gegenbaur, in starting the development towards a homology concept concordant with an evolutionary world view. As historians of biology, we emphasize the importance of major treatises on homology and its history that may be little read by systematists active today, and have sometimes also received less attention by historians of biology than they deserve. Prominent among these are the works of Dietrich Starck, who also happened to be both a student, and later a benefactor, of systematics at Jena University. PMID:17046358

  5. Benchmarking the next generation of homology inference tools

    PubMed Central

    Saripella, Ganapathi Varma; Sonnhammer, Erik L. L.; Forslund, Kristoffer

    2016-01-01

    Motivation: Over the last decades, vast numbers of sequences were deposited in public databases. Bioinformatics tools allow homology and consequently functional inference for these sequences. New profile-based homology search tools have been introduced, allowing reliable detection of remote homologs, but have not been systematically benchmarked. To provide such a comparison, which can guide bioinformatics workflows, we extend and apply our previously developed benchmark approach to evaluate the ‘next generation’ of profile-based approaches, including CS-BLAST, HHSEARCH and PHMMER, in comparison with the non-profile based search tools NCBI-BLAST, USEARCH, UBLAST and FASTA. Method: We generated challenging benchmark datasets based on protein domain architectures within either the PFAM + Clan, SCOP/Superfamily or CATH/Gene3D domain definition schemes. From each dataset, homologous and non-homologous protein pairs were aligned using each tool, and standard performance metrics calculated. We further measured congruence of domain architecture assignments in the three domain databases. Results: CSBLAST and PHMMER had overall highest accuracy. FASTA, UBLAST and USEARCH showed large trade-offs of accuracy for speed optimization. Conclusion: Profile methods are superior at inferring remote homologs but the difference in accuracy between methods is relatively small. PHMMER and CSBLAST stand out with the highest accuracy, yet still at a reasonable computational cost. Additionally, we show that less than 0.1% of Swiss-Prot protein pairs considered homologous by one database are considered non-homologous by another, implying that these classifications represent equivalent underlying biological phenomena, differing mostly in coverage and granularity. Availability and Implementation: Benchmark datasets and all scripts are placed at (http://sonnhammer.org/download/Homology_benchmark). Contact: forslund@embl.de Supplementary information: Supplementary data are available at

  6. Homology Groups of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Vásquez Aguilar, R.; Carsteanu, A. A.

    2015-12-01

    Using high-resolution temporal rainfall intensities from Iowa City, IA (IIHR, U of Iowa), we perform an analysis of the homology groups generated by data connectivity in state space, and attempt a qualitative interpretation of the first and second homology groups. Let us note that homology groups are generated, in the context of topological data analysis (TDA), by representing the data in n-dimensional state space and building a connectivity diagram according to the respective distances between the data points. Subsequently, the topological invariants of the resulting connected structures are being analyzed.

  7. HOMOLOGY, CORRESPONDENCE, AND CONTINUITY ACROSS DEVELOPMENT: THE CASE OF SLEEP

    PubMed Central

    Blumberg, Mark S.

    2012-01-01

    The developmental relations among different behaviors can take many forms. At one extreme, two behaviors emerge independently of one another and, at the other extreme, the emergence of one behavior depends on the prior emergence of the other. Whether the two behaviors in the latter case should be designated as developmentally homologous is explored in this essay by reviewing differing approaches to conceptualizing the development of sleep. It is argued that whereas the concept of developmental homology may offer little new to the understanding of sleep development, the conventional notion of evolutionary homology remains to be fully exploited. Identifying homologous sleep processes will benefit from the adoption of a developmental comparative approach that emphasizes real-time sleep dynamics and individual sleep components. Because evolution occurs through the modification of developmental processes, a new commitment to a developmental comparative approach to sleep is a necessary next step toward a better understanding of its evolution. PMID:22711221

  8. Homologous gene targeting in Caenorhabditis elegans by biolistic transformation

    PubMed Central

    Berezikov, Eugene; Bargmann, Cornelia I.; Plasterk, Ronald H. A.

    2004-01-01

    Targeted homologous recombination is a powerful approach for genome manipulation that is widely used for gene alteration and knockouts in mouse and yeast. In Caenorhabditis elegans, several methods of target-selected mutagenesis have been implemented but none of them provides the opportunity of introducing exact predefined changes into the genome. Although anecdotal cases of homologous gene targeting in C.elegans have been reported, no practical technique of gene targeting has been developed so far. In this work we demonstrate that transformation of C.elegans by microparticle bombardment (biolistic transformation) can result in homologous recombination between introduced DNA and the chromosomal locus. We describe a scaled up version of biolistic transformation that can be used as a method for homologous gene targeting in the worm. PMID:14982959

  9. Worst case estimation of homology design by convex analysis

    NASA Technical Reports Server (NTRS)

    Yoshikawa, N.; Elishakoff, Isaac; Nakagiri, S.

    1998-01-01

    The methodology of homology design is investigated for optimum design of advanced structures. for which the achievement of delicate tasks by the aid of active control system is demanded. The proposed formulation of homology design, based on the finite element sensitivity analysis, necessarily requires the specification of external loadings. The formulation to evaluate the worst case for homology design caused by uncertain fluctuation of loadings is presented by means of the convex model of uncertainty, in which uncertainty variables are assigned to discretized nodal forces and are confined within a conceivable convex hull given as a hyperellipse. The worst case of the distortion from objective homologous deformation is estimated by the Lagrange multiplier method searching the point to maximize the error index on the boundary of the convex hull. The validity of the proposed method is demonstrated in a numerical example using the eleven-bar truss structure.

  10. Homological properties of rings of functional-analytic type.

    PubMed Central

    Wodzicki, M

    1990-01-01

    Strong flatness properties are established for a large class of functional-analytic rings including all C*-algebras. This is later used to prove that all those rings satisfy excision in Hochschild and in cyclic homology over almost arbitrary rings of coefficients and that, for stable C*-algebras, the Hochschild and cyclic homology groups defined over an arbitrary coefficient ring k subset C of complex numbers (e.g., k = Z or Q) vanish in all dimensions. PMID:11607088

  11. MRFalign: protein homology detection through alignment of Markov random fields.

    PubMed

    Ma, Jianzhu; Wang, Sheng; Wang, Zhiyong; Xu, Jinbo

    2014-03-01

    Sequence-based protein homology detection has been extensively studied and so far the most sensitive method is based upon comparison of protein sequence profiles, which are derived from multiple sequence alignment (MSA) of sequence homologs in a protein family. A sequence profile is usually represented as a position-specific scoring matrix (PSSM) or an HMM (Hidden Markov Model) and accordingly PSSM-PSSM or HMM-HMM comparison is used for homolog detection. This paper presents a new homology detection method MRFalign, consisting of three key components: 1) a Markov Random Fields (MRF) representation of a protein family; 2) a scoring function measuring similarity of two MRFs; and 3) an efficient ADMM (Alternating Direction Method of Multipliers) algorithm aligning two MRFs. Compared to HMM that can only model very short-range residue correlation, MRFs can model long-range residue interaction pattern and thus, encode information for the global 3D structure of a protein family. Consequently, MRF-MRF comparison for remote homology detection shall be much more sensitive than HMM-HMM or PSSM-PSSM comparison. Experiments confirm that MRFalign outperforms several popular HMM or PSSM-based methods in terms of both alignment accuracy and remote homology detection and that MRFalign works particularly well for mainly beta proteins. For example, tested on the benchmark SCOP40 (8353 proteins) for homology detection, PSSM-PSSM and HMM-HMM succeed on 48% and 52% of proteins, respectively, at superfamily level, and on 15% and 27% of proteins, respectively, at fold level. In contrast, MRFalign succeeds on 57.3% and 42.5% of proteins at superfamily and fold level, respectively. This study implies that long-range residue interaction patterns are very helpful for sequence-based homology detection. The software is available for download at http://raptorx.uchicago.edu/download/. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2-5. PMID:24675572

  12. Metagenomic gene annotation by a homology-independent approach

    SciTech Connect

    Froula, Jeff; Zhang, Tao; Salmeen, Annette; Hess, Matthias; Kerfeld, Cheryl A.; Wang, Zhong; Du, Changbin

    2011-06-02

    Fully understanding the genetic potential of a microbial community requires functional annotation of all the genes it encodes. The recently developed deep metagenome sequencing approach has enabled rapid identification of millions of genes from a complex microbial community without cultivation. Current homology-based gene annotation fails to detect distantly-related or structural homologs. Furthermore, homology searches with millions of genes are very computational intensive. To overcome these limitations, we developed rhModeller, a homology-independent software pipeline to efficiently annotate genes from metagenomic sequencing projects. Using cellulases and carbonic anhydrases as two independent test cases, we demonstrated that rhModeller is much faster than HMMER but with comparable accuracy, at 94.5percent and 99.9percent accuracy, respectively. More importantly, rhModeller has the ability to detect novel proteins that do not share significant homology to any known protein families. As {approx}50percent of the 2 million genes derived from the cow rumen metagenome failed to be annotated based on sequence homology, we tested whether rhModeller could be used to annotate these genes. Preliminary results suggest that rhModeller is robust in the presence of missense and frameshift mutations, two common errors in metagenomic genes. Applying the pipeline to the cow rumen genes identified 4,990 novel cellulases candidates and 8,196 novel carbonic anhydrase candidates.In summary, we expect rhModeller to dramatically increase the speed and quality of metagnomic gene annotation.

  13. Enhancing radiotherapy through a greater understanding of homologous recombination

    PubMed Central

    Barker, Christopher A.; Powell, Simon N.

    2016-01-01

    Radiotherapy for the treatment of cancer can cause a wide range of cellular effects, the most biologically potent of which is the double strand break in DNA. The process of repairing DNA double strand breaks involves one of two major mechanisms: non-homologous end-joining or homologous recombination. In this review, we review the molecular mechanisms of homologous recombination, in particular as it relates to the repair of DNA damage from ionizing radiation. We also present specific situations where homologous recombination may be dysfunctional in human cancers, and how this functional abnormality can be recognized. We also discuss the therapeutic opportunities that can be exploited based on deficiencies in homologous recombination at various steps in the DNA repair pathway. Side-by-side with these potential therapeutic opportunities, we review the contemporary clinical trials in which strategies to exploit these defects in homologous recombination can be enhanced by the use of radiotherapy in conjunction with biologically-targeted agents. We conclude that the field of radiation oncology has only scratched the surface of a potentially highly efficacious therapeutic strategy. PMID:20832019

  14. Identification, Functional Study, and Promoter Analysis of HbMFT1, a Homolog of MFT from Rubber Tree (Hevea brasiliensis).

    PubMed

    Bi, Zhenghong; Li, Xiang; Huang, Huasun; Hua, Yuwei

    2016-01-01

    A homolog of MOTHER OF FT AND TFL1 (MFT) was isolated from Hevea brasiliensis and its biological function was investigated. Protein multiple sequence alignment and phylogenetic analysis revealed that HbMFT1 conserved critical amino acid residues to distinguish MFT, FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1)-like proteins and showed a closer genetic relationship to the MFT-like group. The accumulation of HbMFT1 was generally detected in various tissues except pericarps, with the highest expression in embryos and relatively higher expression in roots and stems of seedlings, flowering inflorescences, and male and female flowers. HbMFT1 putative promoter analysis showed that tissue-specific, environmental change responsive and hormone-signaling responsive elements were generally present. HbMFT1 was strongly induced under a short-day condition at 28 °C, with the highest expression after the onset of a day. Overexpression of HbMFT1 inhibited seed germination, seedling growth, and flowering in transgenic Arabidopsis. The qRT-PCR further confirmed that APETALA1 (AP1) and FRUITFULL (FUL) were drastically down-regulated in 35S::HbMFT1 plants. A histochemical β-glucuronidase (GUS) assay showed that HbMFT1::GUS activity was mainly detected in stamens and mature seeds coinciding with its original expression and notably induced in rosette leaves and seedlings of transgenic Arabidopsis by exogenous abscisic acid (ABA) due to the presence of ABA cis-elements in HbMFT1 promoter. These results suggested that HbMFT1 was mainly involved in maintenance of seed maturation and stamen development, but negatively controlled germination, growth and development of seedlings and flowering. In addition, the HbMFT1 promoter can be utilized in controlling transgene expression in stamens and seeds of rubber tree or other plant species. PMID:26950112

  15. Identification, Functional Study, and Promoter Analysis of HbMFT1, a Homolog of MFT from Rubber Tree (Hevea brasiliensis)

    PubMed Central

    Bi, Zhenghong; Li, Xiang; Huang, Huasun; Hua, Yuwei

    2016-01-01

    A homolog of MOTHER OF FT AND TFL1 (MFT) was isolated from Hevea brasiliensis and its biological function was investigated. Protein multiple sequence alignment and phylogenetic analysis revealed that HbMFT1 conserved critical amino acid residues to distinguish MFT, FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1)-like proteins and showed a closer genetic relationship to the MFT-like group. The accumulation of HbMFT1 was generally detected in various tissues except pericarps, with the highest expression in embryos and relatively higher expression in roots and stems of seedlings, flowering inflorescences, and male and female flowers. HbMFT1 putative promoter analysis showed that tissue-specific, environmental change responsive and hormone-signaling responsive elements were generally present. HbMFT1 was strongly induced under a short-day condition at 28 °C, with the highest expression after the onset of a day. Overexpression of HbMFT1 inhibited seed germination, seedling growth, and flowering in transgenic Arabidopsis. The qRT-PCR further confirmed that APETALA1 (AP1) and FRUITFULL (FUL) were drastically down-regulated in 35S::HbMFT1 plants. A histochemical β-glucuronidase (GUS) assay showed that HbMFT1::GUS activity was mainly detected in stamens and mature seeds coinciding with its original expression and notably induced in rosette leaves and seedlings of transgenic Arabidopsis by exogenous abscisic acid (ABA) due to the presence of ABA cis-elements in HbMFT1 promoter. These results suggested that HbMFT1 was mainly involved in maintenance of seed maturation and stamen development, but negatively controlled germination, growth and development of seedlings and flowering. In addition, the HbMFT1 promoter can be utilized in controlling transgene expression in stamens and seeds of rubber tree or other plant species. PMID:26950112

  16. Multiscale analysis of nonlinear systems using computational homology

    SciTech Connect

    Konstantin Mischaikow; Michael Schatz; William Kalies; Thomas Wanner

    2010-05-24

    This is a collaborative project between the principal investigators. However, as is to be expected, different PIs have greater focus on different aspects of the project. This report lists these major directions of research which were pursued during the funding period: (1) Computational Homology in Fluids - For the computational homology effort in thermal convection, the focus of the work during the first two years of the funding period included: (1) A clear demonstration that homology can sensitively detect the presence or absence of an important flow symmetry, (2) An investigation of homology as a probe for flow dynamics, and (3) The construction of a new convection apparatus for probing the effects of large-aspect-ratio. (2) Computational Homology in Cardiac Dynamics - We have initiated an effort to test the use of homology in characterizing data from both laboratory experiments and numerical simulations of arrhythmia in the heart. Recently, the use of high speed, high sensitivity digital imaging in conjunction with voltage sensitive fluorescent dyes has enabled researchers to visualize electrical activity on the surface of cardiac tissue, both in vitro and in vivo. (3) Magnetohydrodynamics - A new research direction is to use computational homology to analyze results of large scale simulations of 2D turbulence in the presence of magnetic fields. Such simulations are relevant to the dynamics of black hole accretion disks. The complex flow patterns from simulations exhibit strong qualitative changes as a function of magnetic field strength. Efforts to characterize the pattern changes using Fourier methods and wavelet analysis have been unsuccessful. (4) Granular Flow - two experts in the area of granular media are studying 2D model experiments of earthquake dynamics where the stress fields can be measured; these stress fields from complex patterns of 'force chains' that may be amenable to analysis using computational homology. (5) Microstructure Characterization

  17. Multiscale analysis of nonlinear systems using computational homology

    SciTech Connect

    Konstantin Mischaikow, Rutgers University /Georgia Institute of Technology, Michael Schatz, Georgia Institute of Technology, William Kalies, Florida Atlantic University, Thomas Wanner,George Mason University

    2010-05-19

    This is a collaborative project between the principal investigators. However, as is to be expected, different PIs have greater focus on different aspects of the project. This report lists these major directions of research which were pursued during the funding period: (1) Computational Homology in Fluids - For the computational homology effort in thermal convection, the focus of the work during the first two years of the funding period included: (1) A clear demonstration that homology can sensitively detect the presence or absence of an important flow symmetry, (2) An investigation of homology as a probe for flow dynamics, and (3) The construction of a new convection apparatus for probing the effects of large-aspect-ratio. (2) Computational Homology in Cardiac Dynamics - We have initiated an effort to test the use of homology in characterizing data from both laboratory experiments and numerical simulations of arrhythmia in the heart. Recently, the use of high speed, high sensitivity digital imaging in conjunction with voltage sensitive fluorescent dyes has enabled researchers to visualize electrical activity on the surface of cardiac tissue, both in vitro and in vivo. (3) Magnetohydrodynamics - A new research direction is to use computational homology to analyze results of large scale simulations of 2D turbulence in the presence of magnetic fields. Such simulations are relevant to the dynamics of black hole accretion disks. The complex flow patterns from simulations exhibit strong qualitative changes as a function of magnetic field strength. Efforts to characterize the pattern changes using Fourier methods and wavelet analysis have been unsuccessful. (4) Granular Flow - two experts in the area of granular media are studying 2D model experiments of earthquake dynamics where the stress fields can be measured; these stress fields from complex patterns of 'force chains' that may be amenable to analysis using computational homology. (5) Microstructure Characterization

  18. Tocopherol and tocotrienol homologs in parenteral lipid emulsions

    PubMed Central

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas M; Zaloga, Gary P; Siddiqui, Rafat A

    2015-01-01

    Parenteral lipid emulsions, which are made of oils from plant and fish sources, contain different types of tocopherols and tocotrienols (vitamin E homologs). The amount and types of vitamin E homologs in various lipid emulsions vary considerably and are not completely known. The objective of this analysis was to develop a quantitative method to determine levels of all vitamin E homologs in various lipid emulsions. An HPLC system was used to measure vitamin E homologs using a Pinnacle DB Silica normal phase column and an isocratic, n-hexane:1,4 dioxane (98:2) mobile phase. An optimized protocol was used to report vitamin E homolog concentrations in soybean oil-based (Intralipid®, Ivelip®, Lipofundin® N, Liposyn® III, and Liposyn® II), medium- and long-chain fatty acid-based (Lipofundin®, MCT and Structolipid®), olive oil-based (ClinOleic®), and fish oil-based (Omegaven®) and mixture of these oils-based (SMOFlipid®, Lipidem®) commercial parenteral lipid emulsions. Total content of all vitamin E homologs varied greatly between different emulsions, ranging from 57.9 to 383.9 µg/mL. Tocopherols (α, β, γ, δ) were the predominant vitamin E homologs for all emulsions, with tocotrienol content < 0.3%. In all of the soybean emulsions, except for Lipofundin® N, the predominant vitamin E homolog was γ-tocopherol, which ranged from 57–156 µg/mL. ClinOleic® predominantly contained α-tocopherol (32 µg/mL), whereas α-tocopherol content in Omegaven® was higher than most of the other lipid emulsions (230 µg/mL). Practical applications The information on the types and quantity of vitamin E homologs in various lipid emulsions will be extremely useful to physicians and healthcare personnel in selecting appropriate lipid emulsions that are exclusively used in patients with inadequate gastrointestinal function, including hospitalized and critically ill patients. Some emulsions may require vitamin E supplementation in order to meet minimal human requirements

  19. RPA homologs and ssDNA processing during meiotic recombination.

    PubMed

    Ribeiro, Jonathan; Abby, Emilie; Livera, Gabriel; Martini, Emmanuelle

    2016-06-01

    Meiotic homologous recombination is a specialized process that involves homologous chromosome pairing and strand exchange to guarantee proper chromosome segregation and genetic diversity. The formation and repair of DNA double-strand breaks (DSBs) during meiotic recombination differs from those during mitotic recombination in that the homologous chromosome rather than the sister chromatid is the preferred repair template. The processing of single-stranded DNA (ssDNA) formed on intermediate recombination structures is central to driving the specific outcomes of DSB repair during meiosis. Replication protein A (RPA) is the main ssDNA-binding protein complex involved in DNA metabolism. However, the existence of RPA orthologs in plants and the recent discovery of meiosis specific with OB domains (MEIOB), a widely conserved meiosis-specific RPA1 paralog, strongly suggest that multiple RPA complexes evolved and specialized to subdivide their roles during DNA metabolism. Here we review ssDNA formation and maturation during mitotic and meiotic recombination underlying the meiotic specific features. We describe and discuss the existence and properties of MEIOB and multiple RPA subunits in plants and highlight how they can provide meiosis-specific fates to ssDNA processing during homologous recombination. Understanding the functions of these RPA homologs and how they interact with the canonical RPA subunits is of major interest in the fields of meiosis and DNA repair. PMID:26520106

  20. Fold homology detection using sequence fragment composition profiles of proteins.

    PubMed

    Solis, Armando D; Rackovsky, Shalom R

    2010-10-01

    The effectiveness of sequence alignment in detecting structural homology among protein sequences decreases markedly when pairwise sequence identity is low (the so-called "twilight zone" problem of sequence alignment). Alternative sequence comparison strategies able to detect structural kinship among highly divergent sequences are necessary to address this need. Among them are alignment-free methods, which use global sequence properties (such as amino acid composition) to identify structural homology in a rapid and straightforward way. We explore the viability of using tetramer sequence fragment composition profiles in finding structural relationships that lie undetected by traditional alignment. We establish a strategy to recast any given protein sequence into a tetramer sequence fragment composition profile, using a series of amino acid clustering steps that have been optimized for mutual information. Our method has the effect of compressing the set of 160,000 unique tetramers (if using the 20-letter amino acid alphabet) into a more tractable number of reduced tetramers (approximately 15-30), so that a meaningful tetramer composition profile can be constructed. We test remote homology detection at the topology and fold superfamily levels using a comprehensive set of fold homologs, culled from the CATH database that share low pairwise sequence similarity. Using the receiver-operating characteristic measure, we demonstrate potentially significant improvement in using information-optimized reduced tetramer composition, over methods relying only on the raw amino acid composition or on traditional sequence alignment, in homology detection at or below the "twilight zone". PMID:20635424

  1. Homology Modeling a Fast Tool for Drug Discovery: Current Perspectives

    PubMed Central

    Vyas, V. K.; Ukawala, R. D.; Ghate, M.; Chintha, C.

    2012-01-01

    Major goal of structural biology involve formation of protein-ligand complexes; in which the protein molecules act energetically in the course of binding. Therefore, perceptive of protein-ligand interaction will be very important for structure based drug design. Lack of knowledge of 3D structures has hindered efforts to understand the binding specificities of ligands with protein. With increasing in modeling software and the growing number of known protein structures, homology modeling is rapidly becoming the method of choice for obtaining 3D coordinates of proteins. Homology modeling is a representation of the similarity of environmental residues at topologically corresponding positions in the reference proteins. In the absence of experimental data, model building on the basis of a known 3D structure of a homologous protein is at present the only reliable method to obtain the structural information. Knowledge of the 3D structures of proteins provides invaluable insights into the molecular basis of their functions. The recent advances in homology modeling, particularly in detecting and aligning sequences with template structures, distant homologues, modeling of loops and side chains as well as detecting errors in a model contributed to consistent prediction of protein structure, which was not possible even several years ago. This review focused on the features and a role of homology modeling in predicting protein structure and described current developments in this field with victorious applications at the different stages of the drug design and discovery. PMID:23204616

  2. DNA sequence alignment by microhomology sampling during homologous recombination

    PubMed Central

    Qi, Zhi; Redding, Sy; Lee, Ja Yil; Gibb, Bryan; Kwon, YoungHo; Niu, Hengyao; Gaines, William A.; Sung, Patrick

    2015-01-01

    Summary Homologous recombination (HR) mediates the exchange of genetic information between sister or homologous chromatids. During HR, members of the RecA/Rad51 family of recombinases must somehow search through vast quantities of DNA sequence to align and pair ssDNA with a homologous dsDNA template. Here we use single-molecule imaging to visualize Rad51 as it aligns and pairs homologous DNA sequences in real-time. We show that Rad51 uses a length-based recognition mechanism while interrogating dsDNA, enabling robust kinetic selection of 8-nucleotide (nt) tracts of microhomology, which kinetically confines the search to sites with a high probability of being a homologous target. Successful pairing with a 9th nucleotide coincides with an additional reduction in binding free energy and subsequent strand exchange occurs in precise 3-nt steps, reflecting the base triplet organization of the presynaptic complex. These findings provide crucial new insights into the physical and evolutionary underpinnings of DNA recombination. PMID:25684365

  3. Mesodermal expression of the C. elegans HMX homolog mls-2 requires the PBC homolog CEH-20

    PubMed Central

    Jiang, Yuan; Shi, Herong; Amin, Nirav M.; Sultan, Ibrahim; Liu, Jun

    2008-01-01

    Metazoan development proceeds primarily through the regulated expression of genes encoding transcription factors and components of cell signaling pathways. One way to decipher the complex developmental programs is to assemble the underlying gene regulatory networks by dissecting the cis-regulatory modules that direct temporal-spatial expression of developmental genes and identify corresponding trans-regulatory factors. Here, we focus on the regulation of a HMX homoebox gene called mls-2, which functions at the intersection of a network that regulates cleavage orientation, cell proliferation and fate specification in the C. elegans postembryonic mesoderm. In addition to its transient expression in the postembryonic mesodermal lineage, the M lineage, mls-2 expression is detected in a subset of embryonic cells, in three pairs of head neurons and transiently in the somatic gonad. Through mutational analysis of the mls-2 promoter, we identified two elements (E1 and E2) involved in regulating the temporal-spatial expression of mls-2. In particular, we showed that one of the elements (E1) required for mls-2 expression in the M lineage contains two critical putative PBC-Hox binding sites that are evolutionarily conserved in C. briggsae and C. remanei. Furthermore, the C. elegans PBC homolog CEH-20 is required for mls-2 expression in the M lineage. Our data suggests that mls-2 might be a direct target of CEH-20 in the M lineage and that the regulation of CEH-20 on mls-2 is likely Hox-independent. PMID:18316179

  4. Protein Remote Homology Detection Based on an Ensemble Learning Approach

    PubMed Central

    Chen, Junjie; Liu, Bingquan; Huang, Dong

    2016-01-01

    Protein remote homology detection is one of the central problems in bioinformatics. Although some computational methods have been proposed, the problem is still far from being solved. In this paper, an ensemble classifier for protein remote homology detection, called SVM-Ensemble, was proposed with a weighted voting strategy. SVM-Ensemble combined three basic classifiers based on different feature spaces, including Kmer, ACC, and SC-PseAAC. These features consider the characteristics of proteins from various perspectives, incorporating both the sequence composition and the sequence-order information along the protein sequences. Experimental results on a widely used benchmark dataset showed that the proposed SVM-Ensemble can obviously improve the predictive performance for the protein remote homology detection. Moreover, it achieved the best performance and outperformed other state-of-the-art methods. PMID:27294123

  5. Bacterial actin and tubulin homologs in cell growth and division.

    PubMed

    Busiek, Kimberly K; Margolin, William

    2015-03-16

    In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review. PMID:25784047

  6. Using Persistent Homology to Describe Rayleigh-Bénard Convection

    NASA Astrophysics Data System (ADS)

    Tithof, Jeffrey; Suri, Balachandra; Xu, Mu; Kramar, Miroslav; Levanger, Rachel; Mischaikow, Konstantin; Paul, Mark; Schatz, Michael

    2015-11-01

    Complex spatial patterns that exhibit aperiodic dynamics commonly arise in a wide variety of systems in nature and technology. Describing, understanding, and predicting the behavior of such patterns is an open problem. We explore the use of persistent homology (a branch of algebraic topology) to characterize spatiotemporal dynamics in a canonical fluid mechanics problem, Rayleigh Bénard convection. Persistent homology provides a powerful mathematical formalism in which the topological characteristics of a pattern (e.g. the midplane temperature field) are encoded in a so-called persistence diagram. By applying a metric to measure the pairwise distances across multiple persistence diagrams, we can quantify the similarities between different states in a time series. Our results show that persistent homology yields new physical insights into the complex dynamics of large spatially extended systems that are driven far-from-equilibrium. This work is supported under NSF grant DMS-1125302.

  7. Quantization of gauge fields, graph polynomials and graph homology

    SciTech Connect

    Kreimer, Dirk; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology. -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.

  8. Homologous flares and the evolution of NOAA Active Region 2372

    NASA Technical Reports Server (NTRS)

    Strong, K. T.; Smith, J. B., Jr.; Mccabe, M. K.; Machado, M. E.; Saba, J. L. R.; Simnett, G. M.

    1984-01-01

    A detailed record of the evolution of NOAA Active Region 2372 has been compiled by the FBS Homology Study Group. It was one of the most prolific flare-producing regions observed by SMM. The flares occurred in distinct stages which corresponded to particular evolutionary phases in the development of the active region magnetic field. By comparison with a similar but less productive active region, it is found that the activity seems to be related to the magnetic complexity of the region and the amount of shear in the field. Further, the soft X-ray emission in the quiescent active region is related to its flare rate. Within the broader definition of homology adopted, there was a degree of homology between the events within each stage of evolution of AR2372.

  9. Homology in the development of triadic interaction and language.

    PubMed

    Moore, Chris

    2013-01-01

    Conceiving of development with reference to homology can help identify developmental continuity where surface form shows considerable variation across age. I argue that there is a homology of structure between the object-centred, or triadic, interactions that emerge in infancy and later language. The structure of triadic interaction in infancy is first described as involving joint attention and joint engagement about a shared topic, and then a case is made that this structure is maintained through three levels of complexity in language-single word utterances, multiword utterances, and finally complex constructions. A focus on the homological relation between these social interactive structures may be useful in revealing developmental continuities where these may be obscured by quite different surface forms. PMID:22711264

  10. Data bank homology search algorithm with linear computation complexity.

    PubMed

    Strelets, V B; Ptitsyn, A A; Milanesi, L; Lim, H A

    1994-06-01

    A new algorithm for data bank homology search is proposed. The principal advantages of the new algorithm are: (i) linear computation complexity; (ii) low memory requirements; and (iii) high sensitivity to the presence of local region homology. The algorithm first calculates indicative matrices of k-tuple 'realization' in the query sequence and then searches for an appropriate number of matching k-tuples within a narrow range in database sequences. It does not require k-tuple coordinates tabulation and in-memory placement for database sequences. The algorithm is implemented in a program for execution on PC-compatible computers and tested on PIR and GenBank databases with good results. A few modifications designed to improve the selectivity are also discussed. As an application example, the search for homology of the mouse homeotic protein HOX 3.1 is given. PMID:7922689

  11. Remote homology and the functions of metagenomic dark matter.

    PubMed

    Lobb, Briallen; Kurtz, Daniel A; Moreno-Hagelsieb, Gabriel; Doxey, Andrew C

    2015-01-01

    Predicted open reading frames (ORFs) that lack detectable homology to known proteins are termed ORFans. Despite their prevalence in metagenomes, the extent to which ORFans encode real proteins, the degree to which they can be annotated, and their functional contributions, remain unclear. To gain insights into these questions, we applied sensitive remote-homology detection methods to functionally analyze ORFans from soil, marine, and human gut metagenome collections. ORFans were identified, clustered into sequence families, and annotated through profile-profile comparison to proteins of known structure. We found that a considerable number of metagenomic ORFans (73,896 of 484,121, 15.3%) exhibit significant remote homology to structurally characterized proteins, providing a means for ORFan functional profiling. The extent of detected remote homology far exceeds that obtained for artificial protein families (1.4%). As expected for real genes, the predicted functions of ORFans are significantly similar to the functions of their gene neighbors (p < 0.001). Compared to the functional profiles predicted through standard homology searches, ORFans show biologically intriguing differences. Many ORFan-enriched functions are virus-related and tend to reflect biological processes associated with extreme sequence diversity. Each environment also possesses a large number of unique ORFan families and functions, including some known to play important community roles such as gut microbial polysaccharide digestion. Lastly, ORFans are a valuable resource for finding novel enzymes of interest, as we demonstrate through the identification of hundreds of novel ORFan metalloproteases that all possess a signature catalytic motif despite a general lack of similarity to known proteins. Our ORFan functional predictions are a valuable resource for discovering novel protein families and exploring the boundaries of protein sequence space. All remote homology predictions are available at http

  12. Remote homology and the functions of metagenomic dark matter

    PubMed Central

    Lobb, Briallen; Kurtz, Daniel A.; Moreno-Hagelsieb, Gabriel; Doxey, Andrew C.

    2015-01-01

    Predicted open reading frames (ORFs) that lack detectable homology to known proteins are termed ORFans. Despite their prevalence in metagenomes, the extent to which ORFans encode real proteins, the degree to which they can be annotated, and their functional contributions, remain unclear. To gain insights into these questions, we applied sensitive remote-homology detection methods to functionally analyze ORFans from soil, marine, and human gut metagenome collections. ORFans were identified, clustered into sequence families, and annotated through profile-profile comparison to proteins of known structure. We found that a considerable number of metagenomic ORFans (73,896 of 484,121, 15.3%) exhibit significant remote homology to structurally characterized proteins, providing a means for ORFan functional profiling. The extent of detected remote homology far exceeds that obtained for artificial protein families (1.4%). As expected for real genes, the predicted functions of ORFans are significantly similar to the functions of their gene neighbors (p < 0.001). Compared to the functional profiles predicted through standard homology searches, ORFans show biologically intriguing differences. Many ORFan-enriched functions are virus-related and tend to reflect biological processes associated with extreme sequence diversity. Each environment also possesses a large number of unique ORFan families and functions, including some known to play important community roles such as gut microbial polysaccharide digestion. Lastly, ORFans are a valuable resource for finding novel enzymes of interest, as we demonstrate through the identification of hundreds of novel ORFan metalloproteases that all possess a signature catalytic motif despite a general lack of similarity to known proteins. Our ORFan functional predictions are a valuable resource for discovering novel protein families and exploring the boundaries of protein sequence space. All remote homology predictions are available at http

  13. Mutation in Torenia fournieri Lind. UFO homolog confers loss of TfLFY interaction and results in a petal to sepal transformation.

    PubMed

    Sasaki, Katsutomo; Yamaguchi, Hiroyasu; Aida, Ryutaro; Shikata, Masahito; Abe, Tomoko; Ohtsubo, Norihiro

    2012-09-01

    We identified a Torenia fournieri Lind. mutant (no. 252) that exhibited a sepaloid phenotype in which the second whorls were changed to sepal-like organs. This mutant had no stamens, and the floral organs consisted of sepals and carpels. Although the expression of a torenia class B MADS-box gene, GLOBOSA (TfGLO), was abolished in the 252 mutant, no mutation of TfGLO was found. Among torenia homologs such as APETALA1 (AP1), LEAFY (LFY), and UNUSUAL FLORAL ORGANS (UFO), which regulate expression of class B genes in Arabidopsis, only accumulation of the TfUFO transcript was diminished in the 252 mutant. Furthermore, a missense mutation was found in the coding region of the mutant TfUFO. Intact TfUFO complemented the mutant phenotype whereas mutated TfUFO did not; in addition, the transgenic phenotype of TfUFO-knockdown torenias coincided with the mutant phenotype. Yeast two-hybrid analysis revealed that the mutated TfUFO lost its ability to interact with TfLFY protein. In situ hybridization analysis indicated that the transcripts of TfUFO and TfLFY were partially accumulated in the same region. These results clearly demonstrate that the defect in TfUFO caused the sepaloid phenotype in the 252 mutant due to the loss of interaction with TfLFY. PMID:22577962

  14. Homologous beta-adrenergic desensitization in isolated rat hepatocytes.

    PubMed Central

    García-Sáinz, J A; Michel, B

    1987-01-01

    Hepatocytes from hypothyroid rats have a marked beta-adrenergic responsiveness. Preincubation of these hepatocytes with isoprenaline induced a time-dependent and concentration-dependent desensitization of the beta-adrenergic responsiveness without altering that to glucagon (homologous desensitization). The desensitization was evidenced both in the cyclic AMP accumulation and in the stimulation of ureagenesis induced by the beta-adrenergic agonists. Under the same conditions, preincubation with glucagon induced no desensitization. Propranolol was also unable to induce desensitization, but blocked that induced by isoprenaline. Pertussis-toxin treatment did not alter the homologous beta-adrenergic desensitization induced by isoprenaline. PMID:2825633

  15. Macdonald operators and homological invariants of the colored Hopf link

    NASA Astrophysics Data System (ADS)

    Awata, Hidetoshi; Kanno, Hiroaki

    2011-09-01

    Using a power sum (boson) realization for the Macdonald operators, we investigate the Gukov, Iqbal, Kozçaz and Vafa (GIKV) proposal for the homological invariants of the colored Hopf link, which include Khovanov-Rozansky homology as a special case. We prove the polynomiality of the invariants obtained by GIKV’s proposal for arbitrary representations. We derive a closed formula of the invariants of the colored Hopf link for antisymmetric representations. We argue that a little amendment of GIKV’s proposal is required to make all the coefficients of the polynomial non-negative integers.

  16. Simplified computer programs for search of homology within nucleotide sequences.

    PubMed Central

    Kröger, M; Kröger-Block, A

    1984-01-01

    Four new computer programs for search of homology within nucleotide sequences are presented. The main scope of the program design is flexibility, independence of sequence length and the capability to be used by any molecular biologist without any prior computer experience. The programs offer a linear search, a search for maximal identity, an alignment along a given sequence and a search based on homology within the amino acid coding capacity of nucleotide sequences. The language is Fortran V. Copies are available on request. PMID:6546417

  17. Using intron position conservation for homology-based gene prediction

    PubMed Central

    Keilwagen, Jens; Wenk, Michael; Erickson, Jessica L.; Schattat, Martin H.; Grau, Jan; Hartung, Frank

    2016-01-01

    Annotation of protein-coding genes is very important in bioinformatics and biology and has a decisive influence on many downstream analyses. Homology-based gene prediction programs allow for transferring knowledge about protein-coding genes from an annotated organism to an organism of interest. Here, we present a homology-based gene prediction program called GeMoMa. GeMoMa utilizes the conservation of intron positions within genes to predict related genes in other organisms. We assess the performance of GeMoMa and compare it with state-of-the-art competitors on plant and animal genomes using an extended best reciprocal hit approach. We find that GeMoMa often makes more precise predictions than its competitors yielding a substantially increased number of correct transcripts. Subsequently, we exemplarily validate GeMoMa predictions using Sanger sequencing. Finally, we use RNA-seq data to compare the predictions of homology-based gene prediction programs, and find again that GeMoMa performs well. Hence, we conclude that exploiting intron position conservation improves homology-based gene prediction, and we make GeMoMa freely available as command-line tool and Galaxy integration. PMID:26893356

  18. Multiresolution persistent homology for excessively large biomolecular datasets.

    PubMed

    Xia, Kelin; Zhao, Zhixiong; Wei, Guo-Wei

    2015-10-01

    Although persistent homology has emerged as a promising tool for the topological simplification of complex data, it is computationally intractable for large datasets. We introduce multiresolution persistent homology to handle excessively large datasets. We match the resolution with the scale of interest so as to represent large scale datasets with appropriate resolution. We utilize flexibility-rigidity index to access the topological connectivity of the data set and define a rigidity density for the filtration analysis. By appropriately tuning the resolution of the rigidity density, we are able to focus the topological lens on the scale of interest. The proposed multiresolution topological analysis is validated by a hexagonal fractal image which has three distinct scales. We further demonstrate the proposed method for extracting topological fingerprints from DNA molecules. In particular, the topological persistence of a virus capsid with 273 780 atoms is successfully analyzed which would otherwise be inaccessible to the normal point cloud method and unreliable by using coarse-grained multiscale persistent homology. The proposed method has also been successfully applied to the protein domain classification, which is the first time that persistent homology is used for practical protein domain analysis, to our knowledge. The proposed multiresolution topological method has potential applications in arbitrary data sets, such as social networks, biological networks, and graphs. PMID:26450288

  19. Using intron position conservation for homology-based gene prediction.

    PubMed

    Keilwagen, Jens; Wenk, Michael; Erickson, Jessica L; Schattat, Martin H; Grau, Jan; Hartung, Frank

    2016-05-19

    Annotation of protein-coding genes is very important in bioinformatics and biology and has a decisive influence on many downstream analyses. Homology-based gene prediction programs allow for transferring knowledge about protein-coding genes from an annotated organism to an organism of interest.Here, we present a homology-based gene prediction program called GeMoMa. GeMoMa utilizes the conservation of intron positions within genes to predict related genes in other organisms. We assess the performance of GeMoMa and compare it with state-of-the-art competitors on plant and animal genomes using an extended best reciprocal hit approach. We find that GeMoMa often makes more precise predictions than its competitors yielding a substantially increased number of correct transcripts. Subsequently, we exemplarily validate GeMoMa predictions using Sanger sequencing. Finally, we use RNA-seq data to compare the predictions of homology-based gene prediction programs, and find again that GeMoMa performs well.Hence, we conclude that exploiting intron position conservation improves homology-based gene prediction, and we make GeMoMa freely available as command-line tool and Galaxy integration. PMID:26893356

  20. Non-homologous end joining: emerging themes and unanswered questions

    PubMed Central

    Radhakrishnan, Sarvan Kumar; Jette, Nicholas; Lees-Miller, Susan P.

    2014-01-01

    Non-homologous end joining (NHEJ) is the major pathway for the repair of ionizing radiation induced DNA double strand breaks in human cells. Here, we discuss current insights into the mechanism of NHEJ and the interplay between NHEJ and other pathways for repair of IR-induced DNA damage. PMID:24582502

  1. Homological equations for tensor fields and periodic averaging

    NASA Astrophysics Data System (ADS)

    Avendaño Camacho, M.; Vorobiev, Y. M.

    2011-09-01

    Homological equations of tensor type associated to periodic flows on a manifold are studied. The Cushman intrinsic formula [4] is generalized to the case of multivector fields and differential forms. Some applications to normal forms and the averaging method for perturbed Hamiltonian systems on slow-fast phase spaces are given.

  2. On the Homology of Congruence Subgroups and K3(Z)

    PubMed Central

    Lee, Ronnie; Szczarba, R. H.

    1975-01-01

    Let Γ(n;p) be the congruence subgroup of SL(n;Z) of level p. We study the homology and cohomology of Γ(n;p) as modules over SL(n;Fp) and apply our results to obtain an upper bound for the order of K3(Z). PMID:16592224

  3. Multiresolution persistent homology for excessively large biomolecular datasets

    NASA Astrophysics Data System (ADS)

    Xia, Kelin; Zhao, Zhixiong; Wei, Guo-Wei

    2015-10-01

    Although persistent homology has emerged as a promising tool for the topological simplification of complex data, it is computationally intractable for large datasets. We introduce multiresolution persistent homology to handle excessively large datasets. We match the resolution with the scale of interest so as to represent large scale datasets with appropriate resolution. We utilize flexibility-rigidity index to access the topological connectivity of the data set and define a rigidity density for the filtration analysis. By appropriately tuning the resolution of the rigidity density, we are able to focus the topological lens on the scale of interest. The proposed multiresolution topological analysis is validated by a hexagonal fractal image which has three distinct scales. We further demonstrate the proposed method for extracting topological fingerprints from DNA molecules. In particular, the topological persistence of a virus capsid with 273 780 atoms is successfully analyzed which would otherwise be inaccessible to the normal point cloud method and unreliable by using coarse-grained multiscale persistent homology. The proposed method has also been successfully applied to the protein domain classification, which is the first time that persistent homology is used for practical protein domain analysis, to our knowledge. The proposed multiresolution topological method has potential applications in arbitrary data sets, such as social networks, biological networks, and graphs.

  4. Multiresolution persistent homology for excessively large biomolecular datasets

    SciTech Connect

    Xia, Kelin; Zhao, Zhixiong; Wei, Guo-Wei

    2015-10-07

    Although persistent homology has emerged as a promising tool for the topological simplification of complex data, it is computationally intractable for large datasets. We introduce multiresolution persistent homology to handle excessively large datasets. We match the resolution with the scale of interest so as to represent large scale datasets with appropriate resolution. We utilize flexibility-rigidity index to access the topological connectivity of the data set and define a rigidity density for the filtration analysis. By appropriately tuning the resolution of the rigidity density, we are able to focus the topological lens on the scale of interest. The proposed multiresolution topological analysis is validated by a hexagonal fractal image which has three distinct scales. We further demonstrate the proposed method for extracting topological fingerprints from DNA molecules. In particular, the topological persistence of a virus capsid with 273 780 atoms is successfully analyzed which would otherwise be inaccessible to the normal point cloud method and unreliable by using coarse-grained multiscale persistent homology. The proposed method has also been successfully applied to the protein domain classification, which is the first time that persistent homology is used for practical protein domain analysis, to our knowledge. The proposed multiresolution topological method has potential applications in arbitrary data sets, such as social networks, biological networks, and graphs.

  5. Separation of homologous BAC contigs in the tetraploid Upland cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Upland cotton has an allotetraploid genome. Separation of homologous BAC contigs to their sub-genomes and further to individual chromosomes is a great challenge for genome-wide integrated genetic and physical mapping. As a pilot experiment to test the feasibility of separating the contigs in sub-g...

  6. Homology and the optimization of DNA sequence data

    NASA Technical Reports Server (NTRS)

    Wheeler, W.

    2001-01-01

    Three methods of nucleotide character analysis are discussed. Their implications for molecular sequence homology and phylogenetic analysis are compared. The criterion of inter-data set congruence, both character based and topological, are applied to two data sets to elucidate and potentially discriminate among these parsimony-based ideas. c2001 The Willi Hennig Society.

  7. Homology Groups of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Fernández, Félix; Vásquez Aguilar, Raciel; Carsteanu, Alin-Andrei

    2016-04-01

    This study applies topological data analysis, by generating homology groups to uncover patterns in the data of high-resolution temporal rainfall intensities from Iowa City (IIHR, U of Iowa). The state-space representation of the data is being investigated for an appropiate embedding dimension, in order to subsequently study topological properties of resulting manifold.

  8. Disruption of an ADE6 Homolog of Ustilago maydis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ustilago maydis secretes iron-binding compounds during times of iron depletion. A putative homolog of the Sacharromyces cereviseae ADE6 and Escherichia coli purL genes was identified near a multigenic complex, which contains two genes sid1 and sid2 involved in a siderophore biosynthetic pathway. The...

  9. Analysis of benzalkonium chloride and its homologs: HPLC versus HPCE.

    PubMed

    Prince, S J; McLaury, H J; Allen, L V; McLaury, P

    1999-05-01

    Benzalkonium chloride (BAK) is a mixture of alkylbenzyldimethylammonium chloride homologs with n-C,2H25, n-C,4H29, and n-C16H33 comprising a major portion of the alkyl groups present. An analytical method for BAK must differentiate and quantitate the homologs in the BAK mixture. Reversed-phase high performance liquid chromatography (HPLC) separates compounds based on their affinity for a nonpolar column, which is a direct correlation to the compounds' polarity. High performance capillary electrophoresis (HPCE), however, separates compounds in an electric field according to their charge and size. The BAK homologs are suitable for separation by either of these methods because their polarity and sizes differ significantly. The HPLC method employed a mobile phase of 60% acetonitrile and 40% 0.1 M sodium acetate buffer pH 5 pumped at 1.0 ml min(-1), a 4.6 x 250 mm cyano column with 5 microm packing, and UV detection at 254 nm. The HPCE method utilized a run buffer of 30% acetonitrile and 70% 0.05 M sodium phosphate pH 3.06, a 50 microm x 20 cm open silica capillary, 7.5 kV electric field and UV detection at 214 nm. Both HPLC and HPCE demonstrated good linearity in the range of 0.025 to 0.8 mg ml(-1) with r2 values of approximately 0.99. The HPLC method produced good separation of the homolog peaks with a total analysis time of 25 min. HPCE run time was less than 5 min and demonstrated good separation of the three homologs. The HPLC method, however, was superior to HPCE in the areas of sensitivity and precision. The HPLC has been extensively used in the routine quantitation and qualitation of benzalkonium chloride concentrations in various products; however, long analysis times make this method inefficient. The HPCE method produced comparable results to the HPLC method but with much shorter analysis times. An HPCE analysis method, as presented here, may prove to be a much more useful and efficient method for the analysis of benzalkonium chloride and its homologs. PMID

  10. Heterogeneous Preferential Solvation of Water and Trifluoroethanol in Homologous Lysozymes

    PubMed Central

    2015-01-01

    Cytoplasmic osmolytes can significantly alter the thermodynamic and kinetic properties of proteins relative to those under dilute solution conditions. Spectroscopic experiments of lysozymes in cosolvents indicate that such changes may arise from the heterogeneous, site-specific hydrophobic interactions between protein surface residues and individual solvent molecules. In pursuit of an accurate and predictive model for explaining biomolecular interactions, we study the averaged structural characteristics of mixed solvents with homologous lysozyme solutes using all-atom molecular dynamics. By observing the time-averaged densities of different aqueous solutions of trifluoroethanol, we deduce trends in the heterogeneous solvent interactions over each protein’s surface, and investigate how the homology of protein structure does not necessarily translate to similarities in solvent structure and composition—even when observing identical side chains. PMID:24823618

  11. [The problem of homologous blood in transfusiology and its solution].

    PubMed

    Sumbatov, L A; Iunovidova, L I

    1989-10-01

    In cardiosurgery conducted in this country and abroad the development of homologous blood syndrome was observed. Its frequency comprises up to 2.5%, according to the authors' data. It has been established that the syndrome is the result of isoimmunologic incompatibility by the antigenic systems of blood plasma allogeneic proteins. The authors have proposed the testing of blood compatibility by the agglutination methods according to the erythrocytic antigen systems with the use of the complement-fixation test according to the protein-plasma antigen systems, due to these tests the development of homologous blood syndrome has been completely eliminated from their practice. The development of massive blood transfusion syndrome described by some transfusiologists has been rejected by the authors, it is considered by them as manifestation of insufficient blood compatibility of the test animals as a result of a wrong method of their isoimmunologic selection using the only cross-testing. PMID:2515091

  12. Homology study of two polyhydroxyalkanoate (PHA) synthases from Pseudomonas aureofaciens.

    PubMed

    Umeda, F; Nishikawa, T; Miyasaka, H; Maeda, I; Kawase, M; Yagi, K

    2001-11-01

    Recently, we have cloned and analyzed two polyhydroxyalkanoate (PHA) synthase genes (phaC1 and phaC2 in the pha cluster) from Pseudomonas aureofaciens. In this report, the deduced amino acid (AA) sequences of PHA synthase 1 and PHA synthase 2 from P. aureofaciens are compared with those from three other bacterial strains (Pseudomonas sp. 61-3, P. oleovorans and P. aeruginosa) containing the homologous pha cluster. The level of homology of either PHA synthase 1 or PHA synthase 2 was high with each enzyme from these three bacterial strains. Furthermore, multialignment of PHA synthase AA sequences implied that both enzymes of PHA synthase 1 and PHA synthase 2 were highly conserved in the four strains including P. aureofaciens. PMID:11916262

  13. Community-local homology of force chains in granular materials

    NASA Astrophysics Data System (ADS)

    Giusti, Chad; Owens, Eli; Daniels, Karen; Bassett, Danielle

    2015-03-01

    The development of robust quantitative measurements of the structure of force chains in granular materials remains an open problem. Recent work of Bassett, et. al. applies community detection algorithms to extract subnetworks of strongly interacting particles, and then computes geometric measures of these networks to characterize local branching. Separately, Kramar, et. al. apply persistent homology to extract robust global signatures of chains in terms of their Betti numbers. Here, we investigate a hybrid of these two approaches, computing low-dimensional persistent homology of the clique complexes of communities in force-chain graphs. Such invariants measure the tendency of core chain sections to branch while remaining insensitive to the presence of tightly-packed collections of particles, thus making them natural candidates for both local and global stability analysis.

  14. Levels of homology and the problem of neocortex.

    PubMed

    Dugas-Ford, Jennifer; Ragsdale, Clifton W

    2015-07-01

    The neocortex is found only in mammals, and the fossil record is silent on how this soft tissue evolved. Understanding neocortex evolution thus devolves to a search for candidate homologous neocortex traits in the extant nonmammalian amniotes. The difficulty is that homology is based on similarity, and the six-layered neocortex structure could hardly be more dissimilar in appearance from the nuclear organization that is so conspicuous in the dorsal telencephalon of birds and other reptiles. Recent molecular data have, however, provided new support for one prominent hypothesis, based on neuronal circuits, that proposes the principal neocortical input and output cell types are a conserved feature of amniote dorsal telencephalon. Many puzzles remain, the greatest being understanding the selective pressures and molecular mechanisms that underlie such tremendous morphological variation in telencephalon structure. PMID:26154980

  15. Homology and isomorphism: Bourdieu in conversation with New Institutionalism.

    PubMed

    Wang, Yingyao

    2016-06-01

    Bourdieusian Field Theory (BFT) provided decisive inspiration for the early conceptual formulation of New Institutionalism (NI). This paper attempts to reinvigorate the stalled intellectual dialogue between NI and BFT by comparing NI's concept of isomorphism with BFT's notion of homology. I argue that Bourdieu's understanding of domination-oriented social action, transposable habitus, and a non-linear causality, embodied in his neglected concept of homology, provides an alternative theorization of field-level convergence to New Institutionalism's central idea of institutional isomorphism. To showcase how BFT can be useful for organizational research, I postulate a habitus-informed and field-conditioned theory of transference to enrich NI's spin-off thesis of 'diffusion'. I propose that while NI can benefit from BFT's potential of bringing social structure back into organizational research, BFT can enrich its social analysis by borrowing from NI's elaboration of the symbolic system of organizations. PMID:27218878

  16. Optimization criteria and biological process enrichment in homologous multiprotein modules.

    PubMed

    Hodgkinson, Luqman; Karp, Richard M

    2013-06-25

    Biological process enrichment is a widely used metric for evaluating the quality of multiprotein modules. In this study, we examine possible optimization criteria for detecting homologous multiprotein modules and quantify their effects on biological process enrichment. We find that modularity, linear density, and module size are the most important criteria considered, complementary to each other, and that graph theoretical attributes account for 36% of the variance in biological process enrichment. Variations in protein interaction similarity within module pairs have only minor effects on biological process enrichment. As random modules increase in size, both biological process enrichment and modularity tend to improve, although modularity does not show this upward trend in modules with size at most 50 proteins. To adjust for these trends, we recommend a size correction based on random sampling of modules when using biological process enrichment or other attributes to evaluate module boundaries. Characteristics of homologous multiprotein modules optimized for each of the optimization criteria are examined. PMID:23757502

  17. The Divergent Roles of STAYGREEN (SGR) Homologs in Chlorophyll Degradation

    PubMed Central

    Sakuraba, Yasuhito; Park, So-Yon; Paek, Nam-Chon

    2015-01-01

    Degradation of chlorophyll (Chl) by Chl catabolic enzymes (CCEs) causes the loss of green color that typically occurs during senescence of leaves. In addition to CCEs, STAYGREEN1 (SGR1) functions as a key regulator of Chl degradation. Although sgr1 mutants in many plant species exhibit a stay-green phenotype, the biochemical function of the SGR1 protein remains elusive. Many recent studies have examined the physiological and molecular roles of SGR1 and its homologs (SGR2 and SGR-LIKE) in Chl metabolism, finding that these proteins have different roles in different species. In this review, we summarize the recent studies on SGR and discuss the most likely functions of SGR homologs. PMID:25913011

  18. Homologous recombination maintenance of genome integrity during DNA damage tolerance

    PubMed Central

    Prado, Félix

    2014-01-01

    The DNA strand exchange protein Rad51 provides a safe mechanism for the repair of DNA breaks using the information of a homologous DNA template. Homologous recombination (HR) also plays a key role in the response to DNA damage that impairs the advance of the replica