Science.gov

Sample records for aperture fused silica

  1. Improving 351-nm Damage Performance of Large-Aperture Fused Silica and DKDP Optics

    SciTech Connect

    Burnham, A K; Hackel, L; Wegner, P; Parham, T; Hrubesh, L; Penetrante, B; Whitman, P; Demos, S; Menapace, J; Runkel, M; Fluss, M; Feit, M; Key, M; Biesiada, T

    2002-01-07

    A program to identify and eliminate the causes of UV laser-induced damage and growth in fused silica and DKDP has developed methods to extend optics lifetimes for large-aperture, high-peak-power, UV lasers such as the National Ignition Facility (NIF). Issues included polish-related surface damage initiation and growth on fused silica and DKDP, bulk inclusions in fused silica, pinpoint bulk damage in DKDP, and UV-induced surface degradation in fused silica and DKDP in a vacuum. Approaches included an understanding of the mechanism of the damage, incremental improvements to existing fabrication technology, and feasibility studies of non-traditional fabrication technologies. Status and success of these various approaches are reviewed. Improvements were made in reducing surface damage initiation and eliminating growth for fused silica by improved polishing and post-processing steps, and improved analytical techniques are providing insights into mechanisms of DKDP damage. The NIF final optics hardware has been designed to enable easy retrieval, surface-damage mitigation, and recycling of optics.

  2. Fabrication of large aperture kinoform phase plates in fused silica for smoothing focal plane intensity profiles

    SciTech Connect

    Rushford, M.; Dixit, S.; Thomas, I.; Perry, M.

    1996-04-26

    We have fabricated large aperture (40-cm) kinoform phase plates for producing super-Gaussian focal plane intensity profiles. The continuous phase screen, designed using a new iterative procedure, was fabricated in fused silica as a 16-level, one-wave deep rewrapped phase profile using a lithographic process and wet etching in buffered hydrofluoric acid. The observed far-field contains 94% of the incident energy inside the desired spot.

  3. In-situ monitoring of surface post-processing in large aperture fused silica optics with Optical Coherence Tomography

    SciTech Connect

    Guss, G M; Bass, I l; Hackel, R P; Mailhiot, C; Demos, S G

    2008-02-08

    Optical Coherence Tomography is explored as a method to image laser-damage sites located on the surface of large aperture fused silica optics during post-processing via CO{sub 2} laser ablation. The signal analysis for image acquisition was adapted to meet the sensitivity requirements for this application. A long-working distance geometry was employed to allow imaging through the opposite surface of the 5-cm thick optic. The experimental results demonstrate the potential of OCT for remote monitoring of transparent material processing applications.

  4. Large aperture kinoform phase plates in fused silica for spatial beam smoothing on Nova and the Beamlet Lasers

    SciTech Connect

    Rushford, M.C.; Dixit, S.N.; Thomas, I.M.; Martin, A.M.; Perry, M.D.

    1997-03-01

    It is now widely recognized that spatial beam smoothing (homogenization) is essential in coupling the laser energy to the inertial confinement fusion (ICF) targets. For the indirect drive approach to ICF, it is desirable to distribute the laser energy into a uniformly speckled profile that has a flat-top super-Gaussian envelope (8th power or higher) and contains greater than 95% of the energy inside the super-Gaussian profile. Spatial smoothing is easily achieved by introducing a binary random phase plate (RPP) in the beam. This produces a homogenized far-field pattern which consists of an overall envelope function determined by the RPP element superimposed with a fine scale speckle pattern arising due to the interference among the various RPP elements. Although easy to fabricate and currently in routine use in many fusion laboratories, the binary RPPs do not meet the ICF requirements stated above since the far-field intensity profile is restricted to essentially an Airy function containing only 84% (an upper limit) of the energy inside the central spot. Approaches using lenslet arrays (refractive or diffractive) have limited use since they operate in the quasi-far-field and have a short depth of focus. The limitations of the RPPs can be overcome by relaxing the binary phase constraint. We have recently presented 5 continuously varying phase screens for tailoring the focal plane irradiance profiles. Called kinoform phase plates (KPPs), these phase screens offer complete flexibility in tailoring the focal plane envelope and, at the same time, increasing the energy efficiency inside the focal spot. In this paper we discuss the design and fabrication of such kinoform phase plates in fused silica for spatial beam smoothing on the Nova and the Beamlet lasers. Since the phase plates are used at the end of the laser chain, KPPs on Nova and Beamlet have to be fabricated on large aperture optics (65-cm diameter and 40-cm square substrates respectively). The following

  5. Contributions of kinematics and viscoelastic lap deformation on the suface figure during full aperture polishing of fused silica

    SciTech Connect

    Suratwala, T I; Steele, R A; Feit, M D

    2007-10-09

    A typical optical fabrication process involves a series of basic process steps including: (1) shaping, (2) grinding, (3) polishing, and sometimes (4) sub-aperture tool finishing. With significant innovation and development over the years in both the front end (shaping using CNC machines) and the back end (sup-aperture tool polishing), these processes have become much more deterministic. However, the intermediate stages (full aperture grinding/polishing) in the process, which can be very time consuming, still have much reliance on the optician's insight to get to the desired surface figure. Such processes are not presently very deterministic (i.e. require multiple iterations to get desired figure). The ability to deterministically finish an optical surface using a full aperture grinding/polishing will aid optical glass fabricators to achieve desired figure in a more repeatable, less iterative, and more economical manner. Developing a scientific understanding of the material removal rate is a critical step in accomplishing this. In the present study, the surface figure and material removal rate of a fused silica workpiece is measured as a function of polishing time using Ceria based slurry on a polyurethane pad or pitch lap under a variety of kinematic conditions (motion of the workpiece and lap) and loading configurations. The measured results have been applied to expand the Preston model of material removal (utilizing chemical, mechanical and tribological effects). The results show that under uniform loading, the surface figure is dominated by kinematics which can be predicted by calculating the relative velocity (between the workpiece and the lap) with time and position on the workpiece. However, in the case where the kinematics predict a time-averaged removal function over the workpiece that is uniform, we find experimentally that the surface deviates significantly from uniform removal. We show that this non-uniform removal is caused by the non-uniform stress

  6. Low stress ion-assisted coatings on fused silica substrates for large aperture laser pulse compression gratings

    NASA Astrophysics Data System (ADS)

    Smith, Douglas J.; McCullough, Mike; Smith, Claire; Mikami, Takuya; Jitsuno, Takahisa

    2008-10-01

    Large aperture laser pulse compressor designs use several diffraction gratings in series and sometimes tiled together to compress an amplified 1 to 10 ns pulse to 0.1 to 10 ps. The wavefront of the compressed pulse must be well controlled to allow focusing to a small spot on a target. Traditionally, multilayer dielectric gratings (MLDG) have been fabricated onto high thermal expansion substrates such as BK7 glass to prevent crazing and excessive bending due to tensile coating stress when operated in high vacuum. However, the high CTE of the BK7 can cause wavefront distortion and changes in the period of the grating. This work uses ion-assisted deposition of HfO2/SiO2 films to increase the compressive stress in MLD layers to allow use of silica substrates in the compressor vacuum environment. Stress, coating uniformity, and damage results are reported. The process was scaled to full size (91cm × 42cm) MLD gratings for use in the Osaka University LFEX laser system. Diffracted wavefront results from the full scale gratings is presented.

  7. Fluorine-Based DRIE of Fused Silica

    NASA Technical Reports Server (NTRS)

    Yee, Karl; Shcheglov, Kirill; Li, Jian; Choi, Daniel

    2007-01-01

    A process of deep reactive-ion etching (DRIE) using a fluorine-based gas mixture enhanced by induction-coupled plasma (ICP) has been demonstrated to be effective in forming high-aspect-ratio three-dimensional patterns in fused silica. The patterns are defined in part by an etch mask in the form of a thick, high-quality aluminum film. The process was developed to satisfy a need to fabricate high-aspect-ratio fused-silica resonators for vibratory microgyroscopes, and could be used to satisfy similar requirements for fabricating other fused-silica components.

  8. Fused Silica and Other Transparent Window Materials

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    Several transparent ceramics, such as spinel and AlONs are now being produced in sufficient large areas to be used in space craft window applications. The work horse transparent material for space missions from Apollo to the International Space Station has been fused silica due in part to its low coefficient of expansion and optical quality. Despite its successful use, fused silica exhibits anomalies in its crack growth behavior, depending on environmental preconditioning and surface damage. This presentation will compare recent optical ceramics to fused silica and discuss sources of variation in slow crack growth behavior.

  9. Inverse melting in stressed fused silica

    NASA Astrophysics Data System (ADS)

    Bouchut, Philippe

    2012-12-01

    The emissive properties of proton implanted fused silica surfaces have been studied by laser beam annealing. When submitted to a high thermal step from a focused CO2 laser, an intense near infra-red thermoluminescence peak rises at a heating rate threshold. The in plane tensile stress relaxes and silica melts. We show that in the irreversible inverse melting of stressed fused silica, the protons exo-diffuse through internal modes coupling. The heat and mass transfer is one entropy flux whose dynamics are regulated by the mass transport. Inverse melting is the thermodynamic process that initiates the glass transition when heating.

  10. Fused silica windows for solar receiver applications

    NASA Astrophysics Data System (ADS)

    Hertel, Johannes; Uhlig, Ralf; Söhn, Matthias; Schenk, Christian; Helsch, Gundula; Bornhöft, Hansjörg

    2016-05-01

    A comprehensive study of optical and mechanical properties of quartz glass (fused silica) with regard to application in high temperature solar receivers is presented. The dependence of rupture strength on different surface conditions as well as high temperature is analyzed, focussing particularly on damage by devitrification and sandblasting. The influence of typical types of contamination in combination with thermal cycling on the optical properties of fused silica is determined. Cleaning methods are compared regarding effectiveness on contamination-induced degradation for samples with and without antireflective coating. The FEM-aided design of different types of receiver windows and their support structure is presented. A large-scale production process has been developed for producing fused silica dome shaped windows (pressurized window) up to a diameter of 816 mm. Prototypes were successfully pressure-tested in a test bench and certified according to the European Pressure Vessel Directive.

  11. Quartz/fused silica chip carriers

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary objective of this research and development effort was to develop monolithic microwave integrated circuit (MMIC) packaging which will operate efficiently at millimeter-wave frequencies. The packages incorporated fused silica as the substrate material which was selected due to its favorable electrical properties and potential performance improvement over more conventional materials for Ka-band operation. The first step towards meeting this objective is to develop a package that meets standard mechanical and thermal requirements using fused silica and to be compatible with semiconductor devices operating up to at least 44 GHz. The second step is to modify the package design and add multilayer and multicavity capacity to allow for application specific integrated circuits (ASIC's) to control multiple phase shifters. The final step is to adapt the package design to a phased array module with integral radiating elements. The first task was a continuation of the SBIR Phase 1 work. Phase 1 identified fused silica as a viable substrate material by demonstrating various plating, machining, and adhesion properties. In Phase 2 Task 1, a package was designed and fabricated to validate these findings. Task 2 was to take the next step in packaging and fabricate a multilayer, multichip module (MCM). This package is the predecessor to the phased array module and demonstrates the ability to via fill, circuit print, laminate, and to form vertical interconnects. The final task was to build a phased array module. The radiating elements were to be incorporated into the package instead of connecting to it with wire or ribbon bonds.

  12. Subsurface damage on ground fused silica surfaces

    NASA Astrophysics Data System (ADS)

    Xu, Jiafeng; Xu, Xueke; Gao, Wenlan; Wei, Chaoyang; Yang, Minghong; Shao, Jianda

    2014-08-01

    The low surface laser damage threshold of fused silica components in high power laser systems such as NIF restricts the improvement of the output fluence of those systems. Once damage is initiated and grows under subsequent laser shots, the components will go unusable. Subsurface damage (SSD) introduced during manufacturing has been identified as a main damage initiator. A good knowledge of SSD and how manufacturing influences it is essential to optimize manufacturing processes for damage free optics. Using the magneto-rheological finishing (MRF) wedge technique of better accuracy attributed to a tip, we have characterized the subsurface damage on fused silica optical surfaces ground with loose Al2O3 abrasives of different sizes. Larger abrasives generates longer cracks and the number density of cracks decreases sharply with the depth for each size. Rogue particles account for the occurrence of trailing indent scratches. Addition of rogue abrasives into relatively small base abrasive extends SSD more deeply than that induced by rogue abrasives alone. The linear model, with the proportional coefficient 3.511, fits the relationship between SSD depth and surface roughness (SR) better than the quadratic polynomial one. We believe SSD depth relates to SR more statistically than following some specified physical law. The linear relationship between SSD depth and the abrasive size was also established. The abrasive size turned out not to be as a good indictor of SSD depth as SR.

  13. CO2 laser welding fused silica.

    SciTech Connect

    Reed, Scott T.; MacCallum, Danny O'Neill; Knorovsky, Gerald Albert

    2005-08-01

    The feasibility of laser welding of fused silica (aka quartz) has been demonstrated recently by others. An application requiring hermetic sealing of a thin, pressure-bearing quartz diaphragm to a thicker frame led us to explore this technique. We found that laser welding techniques normally used for metallic parts caused scorching and uneven melting. Contrary to standard practices (near focus, high travel speed, high power density), successful welds in fused silica required a broad heat source applied over a large area under a slow rotation to gradually heat the glass through the annealing, softening and finally working temperatures. Furthermore, good mechanical contact between the parts to be joined played an even more important role in this process than in typical metallic joints. A 50 W CO2 laser with 4 f.l. ZnSe2 lens and rotary head was used to weld 0.425 OD, 0.006-0.010 thick, disks to 0.500 OD tubing with 0.125 walls. Several joint geometries and beam orientations were investigated. Temperature profiles were measured and compared to an FEM thermal model. We will discuss the effects of laser power, travel speed, number of passes, joint geometry and part thicknesses on achieving hermeticity and cosmetically-acceptable joints.

  14. Note: Discharging fused silica test masses with ionized nitrogen

    NASA Astrophysics Data System (ADS)

    Ugolini, D.; Funk, Q.; Amen, T.

    2011-04-01

    We have developed a technique for discharging fused silica test masses in a gravitational-wave interferometer with nitrogen ionized by an electron beam. The electrons are produced from a heated filament by thermionic emission in a low-pressure region to avoid contamination and burnout. Some electrons then pass through a small aperture and ionize nitrogen in a higher-pressure region, and this ionized gas is pumped across the test mass surface, neutralizing both polarities of charge. The discharge rate varies exponentially with charge density and filament current, quadratically with filament potential, and has an optimal working pressure of ˜8 mT. Adapting the technique to larger test mass chambers is also discussed.

  15. Laser Damage Precursors in Fused Silica

    SciTech Connect

    Miller, P; Suratwala, T; Bude, J; Laurence, T A; Shen, N; Steele, W A; Feit, M; Menapace, J; Wong, L

    2009-11-11

    There is a longstanding, and largely unexplained, correlation between the laser damage susceptibility of optical components and both the surface quality of the optics, and the presence of near surface fractures in an optic. In the present work, a combination of acid leaching, acid etching, and confocal time resolved photoluminescence (CTP) microscopy has been used to study laser damage initiation at indentation sites. The combination of localized polishing and variations in indentation loads allows one to isolate and characterize the laser damage susceptibility of densified, plastically flowed and fractured fused silica. The present results suggest that: (1) laser damage initiation and growth are strongly correlated with fracture surfaces, while densified and plastically flowed material is relatively benign, and (2) fracture events result in the formation of an electronically defective rich surface layer which promotes energy transfer from the optical beam to the glass matrix.

  16. Coated Fused Silica Fibers for Enhanced Sensitivity Torsion Pendulum

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Horowitz, Jordan; Camp, Jordan

    2007-01-01

    In order to investigate the fundamental thermal noise limit of a torsion pendulum using a fused silica fiber, we systematically measured and modeled the mechanical losses of thin fused silica fibers coated by electrically conductive thin metal films. Our results indicate that it is possible to achieve a thermal noise limit for coated silica lower by a factor between 3 and 9, depending on the silica diameter, compared to the best tungsten fibers available. This will allow a corresponding increase in sensitivity of torsion pendula used for weak force measurements, including the gravitational constant measurement and ground-based force noise testing for the Laser Interferometer Space Antenna (LISA) mission.

  17. Reflecting heat shields made of microstructured fused silica

    NASA Technical Reports Server (NTRS)

    Congdon, W. M.

    1975-01-01

    Heat sheidls constructed from selected monodisperse distributions of high-purity fused-silica particles are efficient reflectors of visible and near-UV radiation generated in shock-layer of space probe during atmospheric entry.

  18. Quantification of residual stress from photonic signatures of fused silica

    NASA Astrophysics Data System (ADS)

    Cramer, K. Elliott; Hayward, Maurice; Yost, William T.

    2014-02-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 ± 0.54 × 10-12 Pa-1. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented.

  19. Quantification of Residual Stress from Photonic Signatures of Fused Silica

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Hayward, Maurice; Yost, William E.

    2013-01-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 +/- 0.54 x 10(exp -12)/Pa. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented. Keywords: Glass, fused silica, photoelasticity, residual stress

  20. HVI Ballistic Limit Characterization of Fused Silica Thermal Panes

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Bohl, W. D.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.

    2015-01-01

    Fused silica window systems are used heavily on crewed reentry vehicles, and they are currently being used on the next generation of US crewed spacecraft, Orion. These systems improve crew situational awareness and comfort, as well as, insulating the reentry critical components of a spacecraft against the intense thermal environments of atmospheric reentry. Additionally, these materials are highly exposed to space environment hazards like solid particle impacts. This paper discusses impact studies up to 10 km/s on a fused silica window system proposed for the Orion spacecraft. A ballistic limit equation that describes the threshold of perforation of a fuse silica pane over a broad range of impact velocities, obliquities and projectile materials is discussed here.

  1. Microwave attenuation of multiwalled carbon nanotube-fused silica composites

    SciTech Connect

    Xiang Changshu; Pan Yubai; Liu Xuejian; Sun Xingwei; Shi Xiaomei; Guo Jingkun

    2005-09-19

    Multiwalled carbon nanotubes (MWCNTs) were used to convert radome materials to microwave absorbing materials. Dense MWCNT-fused silica composites were prepared by hot-pressing technique. The composites exhibit high complex permittivities at X-band frequencies, depending on the content of MWCNTs. The value of the loss tangent increases three orders over pure fused silica only by incorporating 2.5 vol % MWCNTs into the composites. The average magnitude of microwave transmission reaches -33 dB at 11-12 GHz in the 10 vol % MWCNT-fused silica composites, which indicates the composites have excellent microwave attenuation properties. The attenuation properties mainly originate from the electric loss of MWCNTs by the motion of conducting electrons.

  2. Thermoluminescence at a heating rate threshold in stressed fused silica.

    PubMed

    Bouchut, Philippe; Milesi, Frédéric; Da Maren, Céline

    2011-12-19

    The emissive properties of proton implanted fused silica surfaces have been studied by laser beam annealing. When submitted to a high thermal step from a focused CO2 laser, an intense near infra-red transient incandescence (TI) peak rises from stressed silica. The TI presents the characteristics of a thermoluminescent (TL) emission that occurs above a thermal rate threshold. We show that TI rises at the stress relaxation. PMID:22274172

  3. Process for manufacturing hollow fused-silica insulator cylinder

    DOEpatents

    Sampayan, Stephen E.; Krogh, Michael L.; Davis, Steven C.; Decker, Derek E.; Rosenblum, Ben Z.; Sanders, David M.; Elizondo-Decanini, Juan M.

    2001-01-01

    A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.

  4. Form control in atmospheric pressure plasma processing of ground fused silica

    NASA Astrophysics Data System (ADS)

    Li, Duo; Wang, Bo; Xin, Qiang; Jin, Huiliang; Wang, Jun; Dong, Wenxia

    2014-08-01

    Atmospheric Pressure Plasma Processing (APPP) using inductively coupled plasma has demonstrated that it can achieve comparable removal rate on the optical surface of fused silica under the atmosphere pressure and has the advantage of inducing no sub-surface damage for its non-contact and chemical etching mechanism. APPP technology is a cost effective way, compared with traditional mechanical polishing, magnetorheological finishing and ion beam figuring. Thus, due to these advantages, this technology is being tested to fabricate large aperture optics of fused silica to help shorten the polishing time in optics fabrication chain. Now our group proposes to use inductively coupled plasma processing technology to fabricate ground surface of fused silica directly after the grinding stage. In this paper, form control method and several processing parameters are investigated to evaluate the removal efficiency and the surface quality, including the robustness of removal function, velocity control mode and tool path strategy. However, because of the high heat flux of inductively coupled plasma, the removal depth with time can be non-linear and the ground surface evolvement will be affected. The heat polishing phenomenon is founded. The value of surface roughness is reduced greatly, which is very helpful to reduce the time of follow-up mechanical polishing. Finally, conformal and deterministic polishing experiments are analyzed and discussed. The form error is less 3%, before and after the APPP, when 10μm depth of uniform removal is achieved on a 60×60mm ground fused silica. Also, a basin feature is fabricated to demonstrate the figuring capability and stability. Thus, APPP is a promising technology in processing the large aperture optics.

  5. Quantification of residual stress from photonic signatures of fused silica

    SciTech Connect

    Cramer, K. Elliott; Yost, William T.; Hayward, Maurice

    2014-02-18

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 ± 0.54 × 10{sup −12} Pa{sup −1}. Fused silica specimens containing impacts artificially made at NASA’s Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented.

  6. Fused silica mirror development for SIRTF

    NASA Technical Reports Server (NTRS)

    Barnes, W. P., Jr.

    1983-01-01

    An advanced design, lightweight, fuse-quartz mirror of sandwich construction was evaluated for optical figure performance at cryogenic temperatures. A low temperature shroud was constructed with an integral mirror mount and interface to a cryostat for use in a vacuum chamber. The mirror was tested to 13 K. Cryogenic distortion of the mirror was measured interferometrically. Separate interferometry of the chamber window during the test permitted subtraction of the small window distortions from the data. Results indicate that the imaging performance of helium cooled, infrared telescopes will be improved using this type of mirror without correction of cryogenic distortion of the primary mirror.

  7. Process for repairing large scratches on fused silica optics

    NASA Astrophysics Data System (ADS)

    Cormont, Philippe; Bourgeade, Antoine; Cavaro, Sandy; Doualle, Thomas; Gaborit, Gael; Gallais, Laurent; Rullier, Jean-Luc; Taroux, Daniel

    2015-10-01

    Scratches at the surface of fused silica optics can be detrimental for the performance of optical systems because they initiate damage on the optic but also they perturb the amplitude or phase of the transmitted laser light. Removing scratches by conventional polishing techniques can be time consuming as it is an iterative and long process, especially when hours of polishing time are required to obtain very high surface accuracy. So we have investigated ways to remove them with local laser processing. The silica is then heated at temperature higher than the softening point to heal the cracks.

  8. HVI Ballistic Limit Charaterization of Fused Silica Thermal Pane

    NASA Technical Reports Server (NTRS)

    Bohl, William E.; Miller, Joshua E.; Christiansen, Eric L.; Deighton, Kevin.; Davis, Bruce

    2015-01-01

    The Orion spacecraft's windows are exposed to the micrometeroid and orbital debris (MMOD) space environments while in space as well as the Earth entry environment at the mission's conclusion. The need for a low-mass spacecraft window design drives the need to reduce conservatism when assessing the design for loss of crew due to MMOD impact and subsequent Earth entry. Therefore, work is underway at NASA and Lockheed Martin to improve characterization of the complete penetration ballistic limit of an outer fused silica thermal pane. Hypervelocity impact tests of the window configuration at up to 10 km/s and hydrocode modeling have been performed with a variety of projectile materials to enable refinement of the fused silica ballistic limit equation.

  9. Fracture toughness of ultrashort pulse-bonded fused silica

    NASA Astrophysics Data System (ADS)

    Richter, S.; Naumann, F.; Zimmermann, F.; Tünnermann, A.; Nolte, S.

    2016-02-01

    We determined the bond interface strength of ultrashort pulse laser-welded fused silica for different processing parameters. To this end, we used a high repetition rate ultrashort pulse laser system to inscribe parallel welding lines with a specific V-shaped design into optically contacted fused silica samples. Afterward, we applied a micro-chevron test to measure the fracture toughness and surface energy of the laser-inscribed welding seams. We analyzed the influence of different processing parameters such as laser repetition rate and line separation on the fracture toughness and fracture surface energy. Welding the entire surface a fracture toughness of 0.71 {MPa} {m}^{1/2}, about 90 % of the pristine bulk material ({≈ } 0.8 {MPa} {m}^{1/2}), is obtained.

  10. Initiation Identification in Fused Silica 355-nm Optics

    SciTech Connect

    Wall, M; Plitzko, J; Fluss, M J

    2002-01-04

    Thermo-mechanical surface damage initiation and growth in fused-silica 3{omega} (355nm) optics are important performance and cost issues for high-power lasers (fluences of 4-14 J/cm{sup 2}) in the few ns pulse length regime. We are working to characterize and identify the extrinsic origins of damage initiation; impurities, particulates, and manufacturing defects. We have performed a materials characterization survey approach using transmission electron microscopy to identify the chemistry and morphology of particles, and structural defects. TEM offers high chemical or elemental specificity and small analytical spot size yielding complementary materials characterization data and powerful clues to manufacturing improvements. We will report on our characterization of the near surface of one commercially manufactures fused silica optic, where the results indicate both the efficacy and potential value of this approach.

  11. Mechanical protection of DLC films on fused silica slides

    NASA Technical Reports Server (NTRS)

    Nir, D.

    1985-01-01

    Measurements were made with a new test for improved quantitative estimation of the mechanical protection of thin films on optical materials. The mechanical damage was induced by a sand blasting system using spherical glass beads. Development of the surface damage was measured by the changes in the specular transmission and reflection, and by inspection using a surface profilometer and a scanning electron microscope. The changes in the transmittance versus the duration of sand blasting was measured for uncoated fused silica slides and coated ones. It was determined that the diamond like carbon films double the useful optical lifetime of the fused silica. Theoretical expressions were developed to describe the stages in surface deterioration. Conclusions were obtained for the SiO2 surface mechanism and for the film removal mechanism.

  12. Electrical properties of multiwalled carbon nanotube reinforced fused silica composites.

    PubMed

    Xiang, Changshu; Pan, Yubai; Liu, Xuejian; Shi, Xiaomei; Sun, Xingwei; Guo, Jingkun

    2006-12-01

    Multiwalled carbon nanotube (MWCNT)-fused silica composite powders were synthesized by solgel method and dense bulk composites were successfully fabricated via hot-pressing. This composite was characterized by XRD, HRTEM, and FESEM. MWCNTs in the hot-pressed composites are in their integrity observed by HRTEM. The electrical properties of MWCNT-fused silica composites were measured and analyzed. The electrical resistivity was found to decrease with the increase in the amount of the MWCNT loading in the composite. When the volume percentage of the MWCNTs increased to 5 vol%, the electrical resistivity of the composite is 24.99 omega cm, which is a decrease of twelve orders of value over that of pure fused silica matrix. The electrical resistivity further decreases to 1.742 omega. cm as the concentration of the MWCNTs increased to 10 vol%. The dielectric properties of the composites were also measured at the frequency ranging from 12.4 to 17.8 GHz (Ku band) at room temperature. The experimental results reveal that the dielectric properties are extremely sensitive to the volume percentage of the MWCNTs, and the permittivities, especially the imaginary permittivities, increase dramatically with the increase in the concentration of the MWCNTs. The improvement of dielectric properties in high frequency region mainly originates from the greatly increasing electrical properties of the composite. PMID:17256338

  13. Monolithic Cylindrical Fused Silica Resonators with High Q Factors.

    PubMed

    Pan, Yao; Wang, Dongya; Wang, Yanyan; Liu, Jianping; Wu, Suyong; Qu, Tianliang; Yang, Kaiyong; Luo, Hui

    2016-01-01

    The cylindrical resonator gyroscope (CRG) is a typical Coriolis vibratory gyroscope whose performance is determined by the Q factor and frequency mismatch of the cylindrical resonator. Enhancing the Q factor is crucial for improving the rate sensitivity and noise performance of the CRG. In this paper, for the first time, a monolithic cylindrical fused silica resonator with a Q factor approaching 8 × 10⁵ (ring-down time over 1 min) is reported. The resonator is made of fused silica with low internal friction and high isotropy, with a diameter of 25 mm and a center frequency of 3974.35 Hz. The structure of the resonator is first briefly introduced, and then the experimental non-contact characterization method is presented. In addition, the post-fabrication experimental procedure of Q factor improvement, including chemical and thermal treatment, is demonstrated. The Q factor improvement by both treatments is compared and the primary loss mechanism is analyzed. To the best of our knowledge, the work presented in this paper represents the highest reported Q factor for a cylindrical resonator. The proposed monolithic cylindrical fused silica resonator may enable high performance inertial sensing with standard manufacturing process and simple post-fabrication treatment. PMID:27483263

  14. Laser-driven mechanical fracture in fused silica

    NASA Astrophysics Data System (ADS)

    Dahmani, Faiz

    1999-10-01

    Fused silica, widely used as optical-window material in high-fluence requirements on glass and KrF lasers, experiences optical damage. Under fatigue conditions, the damage is initiated by slow crack growth and culminates, if not arrested, with catastrophic crack growth and implosive failure when the stress intensity approaches the critical value. Since laser-induced cracks cannot be eliminated entirely, the behavior of cracked structures under service conditions must be quantified to be predicted. Systematic scientific rules must be devised to characterize laser-induced cracks and their effects, and to predict if and when it may become necessary to replace the damaged components. This thesis makes a contribution toward this end. Measurements of fatigue failure strength of laser-cracked fused silica in air at room temperature for different number of laser pulses and laser fluences are presented. The failure-strength variability is found to be due mainly to the spectrum of crack depths. Agreement with theory suggests the incorporation of a residual term into the failure-strength equation. Experiments on residual stresses induced in fused silica by the presence of a laser-induced crack are carried out using two different techniques. Theoretical modelings show that this residual stress field is of shear nature and mouth-opening. A correlation between the reduction in fracture strength of fused silica and the increase of the residual-stress field is established, providing laser systems designers and operators with guidance on the rate of crack growth as well as on the stress-related ramifications such as laser-driven cracks entail. Specifically, a hoop-stress in the immediate vicinity of a crack growing along the beam propagation direction is identified as strongly coupling to both the laser fluence and the crack growth. This coupling prompted the question of whether or not breaking the hoop stress symmetry by some external perturbation will accelerate or stymie crack

  15. Photoluminescence defects on subsurface layer of fused silica and its effects on laser damage performance

    NASA Astrophysics Data System (ADS)

    Liu, Hongjie; Huang, Jin; Wang, Fengrui; Zhou, Xinda; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo

    2015-02-01

    Subsurface defects of polished fused silica optics are responsible for igniting laser damage in high power laser system. A non destructive measurement technique is developed to detect subsurface photoluminescence defects of fused silica. The fused silica samples polished by different vendors are applied to characterization of subsurface defects and measurement of damage performance. Subsurface photoluminescence defects of fused silica are evaluated by confocal fluorescence microscopy system. Laser induced damage threshold and damage density are measured by 355 nm nanosecond pulse laser. The results show a great differential subsurface quality of fused silica samples. Laser induced damage performance has a good correlation with subsurface defects. This paper shows a new non destructive measurement technique to detect photoluminescence defects on the subsurface layer of polished fused silica. It is very valuable to increasing laser damage performance and improving production-manufacturing engineering of optics.

  16. Temperature dependence of VUV transmission of synthetic fused silica

    NASA Astrophysics Data System (ADS)

    Franke, St.; Lange, H.; Schoepp, H.; Witzke, H.-D.

    2006-07-01

    The temperature dependence of the VUV transmission of synthetic fused silica is of interest for commercial applications as well as for fundamental research. In this work the transmission properties of Suprasil 2 from Heraeus with an absorption edge at very low wavelengths is investigated. The absorption edge of this quartz glass shifts from 170 to 180 nm between 789 and 1129 K. The Urbach rule is discussed for the characterization of the temperature dependent transmission curves. The results are applied to the diagnostics of the Hg 185 nm line from a high pressure mercury discharge lamp.

  17. Hypervelocity impact damage tolerance of fused silica glass

    NASA Technical Reports Server (NTRS)

    Edelstein, K. S.

    1992-01-01

    A test program was conducted at the NASA/Johnson Space Center (JSC) concerning hypervelocity impact damage in fused silica glass. The objectives of this test program were: to expand the penetration equation data base in the velocity range between 2 and 8 km/s; to determine how much strength remains in a glass pane that has sustained known impact damage; and to develop a relationship between crater measurements and residual strength predictions that can be utilized in the Space Shuttle and Space Station programs. The results and conclusions of the residual strength testing are discussed below. Detailed discussion of the penetration equation studies will follow in future presentations.

  18. Subsurface defect characterization and laser-induced damage performance of fused silica optics polished with colloidal silica and ceria

    NASA Astrophysics Data System (ADS)

    Xiang, He; Gang, Wang; Heng, Zhao; Ping, Ma

    2016-04-01

    This paper mainly focuses on the influence of colloidal silica polishing on the damage performance of fused silica optics. In this paper, nanometer sized colloidal silica and micron sized ceria are used to polish fused silica optics. The colloidal silica polished samples and ceria polished samples exhibit that the root-mean-squared (RMS) average surface roughness values are 0.7 nm and 1.0 nm, respectively. The subsurface defects and damage performance of the polished optics are analyzed and discussed. It is revealed that colloidal silica polishing will introduce much fewer absorptive contaminant elements and subsurface damages especially no trailing indentation fracture. The 355-nm laser damage test reveals that each of the fused silica samples polished with colloidal silica has a much higher damage threshold and lower damage density than ceria polished samples. Colloidal silica polishing is potential in manufacturing high power laser optics.

  19. The mechanism of growth of quartz crystals into fused silica

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Hays, J. F.; Spaepen, F.; Turnbull, D.

    1980-01-01

    It is proposed that the growth of quartz crystals into fused silica is effected by a mechanism involving the breaking of an Si-O bond and its association with an OH group, followed by cooperative motion of the nonbridging oxygen and the hydroxyl group which results in the crystallization of a row of several molecules along a crystalline-amorphous interfacial ledge. This mechanism explains, at least qualitatively, all the results of the earlier experimental study of the dependence of quartz crystal growth upon applied pressure: large negative activation volume; single activation enthalpy below Si-O bond energy; growth velocity constant in time, proportional to the hydroxyl and chlorine content, decreasing with increasing degree of reduction, and enhanced by nonhydrostatic stresses; lower pre-exponential for the synthetic than for the natural silica.

  20. High strain rate fracture behavior of fused silica

    NASA Astrophysics Data System (ADS)

    Ruggiero, Andrew; Iannitti, Gianluca; Testa, Gabriel; Limido, Jerome; Lacome, Jean; Olovsson, Lars; Ferraro, Mario; Bonora, Nicola

    2013-06-01

    Fused silica is a high purity synthetic amorphous silicon dioxide characterized by low thermal expansion coefficient, excellent optical qualities and exceptional transmittance over a wide spectral range. Because of its wide use in the military industry as window material, it may be subjected to high-energy ballistic impacts. Under such dynamic conditions, post-yield response of the ceramic as well as the strain rate related effects become significant and should be accounted for in the constitutive modeling. In this study, the procedure for constitutive model validation and model parameters identification, is presented. Taylor impact tests and drop weight tests were designed and performed at different impact velocities, from 1 to 100 m/s, and strain rates, from 102 up to 104 s-1. Numerical simulation of both tests was performed with IMPETUS-FEA, a general non-linear finite element software which offers NURBS finite element technology for the simulation of large deformation and fracture in materials. Model parameters were identified by optimization using multiple validation metrics. The validity of the parameters set determined with the proposed procedure was verified comparing numerical predictions and experimental results for an independent designed test consisting in a fused silica tile impacted at prescribed velocity by a steel sphere.

  1. Thermal annealing of laser damage precursors on fused silica surfaces

    SciTech Connect

    Shen, N; Miller, P E; Bude, J D; Laurence, T A; Suratwala, T I; Steele, W A; Feit, M D; Wang, L L

    2012-03-19

    Previous studies have identified two significant precursors of laser damage on fused silica surfaces at fluenes below {approx} 35 J/cm{sup 2}, photoactive impurities in the polishing layer and surface fractures. In the present work, isothermal heating is studied as a means of remediating the highly absorptive, defect structure associated with surface fractures. A series of Vickers indentations were applied to silica surfaces at loads between 0.5N and 10N creating fracture networks between {approx} 10{micro}m and {approx} 50{micro}m in diameter. The indentations were characterized prior to and following thermal annealing under various times and temperature conditions using confocal time-resolved photo-luminescence (CTP) imaging, and R/1 optical damage testing with 3ns, 355nm laser pulses. Significant improvements in the damage thresholds, together with corresponding reductions in CTP intensity, were observed at temperatures well below the glass transition temperature (T{sub g}). For example, the damage threshold on 05.N indentations which typically initiates at fluences <8 J/cm{sup 2} could be improved >35 J/cm{sup 2} through the use of a {approx} 750 C thermal treatment. Larger fracture networks required longer or higher temperature treatment to achieve similar results. At an annealing temperature > 1100 C, optical microscopy indicates morphological changes in some of the fracture structure of indentations, although remnants of the original fracture and significant deformation was still observed after thermal annealing. This study demonstrates the potential of using isothermal annealing as a means of improving the laser damage resistance of fused silica optical components. Similarly, it provides a means of further understanding the physics associated with optical damage and related mitigation processes.

  2. Morphology and structure of particles produced by femtosecond laser ablation of fused silica

    NASA Astrophysics Data System (ADS)

    Sharma, S. P.; Oliveira, V.; Vilar, Rui

    2016-04-01

    The aim of the present work was to study the morphology and structure of the nanoparticles produced by femtosecond laser ablation of fused silica. Ultrashort laser pulses of 1030 nm wavelength and 550 fs duration were tightly focused by a high numerical aperture microscope objective at the surface of fused silica samples while scanning the sample in relation to the stationary laser beam. Laser tracks were created with pulse energies in the range 5-100 μJ, resulting in ablation debris of different morphologies. The debris were examined by scanning and transmission electron microscopy for their morphology and crystal structure in relation to the incident laser pulse energy. Ejected particles with sizes ranging from a few nanometers to a few microns were found. Their morphologies can be broadly classified into three categories: very fine round nanoparticles with diameters lower than 20 nm, nanoparticles with intermediate sizes between 50 and 200 nm, and big irregular particles with typical size between 0.5 and 1.5 μm. The fine nanoparticles of the first category are predominantly observed at higher pulse energies and tend to aggregate to form web-like and arborescent-like structures. The nanoparticles with intermediate sizes are observed for all pulse energies used and may appear isolated or aggregated in clusters. Finally, the larger irregular particles of the third category are observed for all energies and appear normally isolated.

  3. Influence of oil contamination on the optical performance and laser induced damage of fused silica

    NASA Astrophysics Data System (ADS)

    Yang, L.; Xiang, X.; Miao, X. X.; Li, Z. J.; Li, L.; Yuan, X. D.; Zhou, G. R.; Lv, H. B.; Zu, X. T.

    2015-12-01

    The influence of oil contamination on the optical performance of fused silica and laser induced damage threshold (LIDT) at 355 nm is studied. The liquid vacuum oil is artificially spun on the fused silica surface. Optical microscopy and ultraviolet-visible (UV-vis) spectrophotometer are used to identify and understand the potential influence of oil contamination on the optical performance of fused silica. The results show that a large number of oil droplets are observed on the surface of fused silica after spin-coating, and the transmissivity of fused silica decreases with the increasing oil quantity. The LIDTs of fused silica decrease with the increasing oil mass for both on input and output surfaces at 355 nm, and the LIDT of fused silica with oil on input surface is lower than that on output surface at same contamination level. The damage mechanisms are also discussed by the photo-thermal measurement and three dimensional finite difference time domain (3D-FDTD) method. The experimental and simulated results show that the electric-field modulation by oil droplets, rather than its photo-thermal absorption, is mainly responsible for the oil contamination induced laser damage of fused silica.

  4. Optical waveguides fabricated by nitrogen ion implantation in fused silica

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Fu, Li-Li; Zheng, Rui-Lin; Guo, Hai-Tao; Zhou, Zhi-Guang; Li, Wei-Nan; Lin, She-Bao; Wei, Wei

    2016-02-01

    We report on the fabrication of waveguides in fused silica using 4.5-MeV nitrogen ion implantation with a fluence of 5.0×1014 ions/cm2. The prism-coupling method was employed to measure the effective refractive indices of guiding modes at the wavelengths of 632.8 and 1539 nm. The effective refractive indices of the first few modes were higher than that of the substrate. The refractive index profiles at 632.8 and 1539 nm were reconstructed by the reflectivity calculation method. Positive index changes were induced in the waveguide layers. The end-face coupling method was used to measure the near-field light intensity distributions at the wavelength of 632.8 nm and the finite-difference beam propagation method was applied to simulate the guided mode profile at the wavelength of 1539 nm. The waveguide structures emerge as candidates for integrated photonic devices.

  5. Optical Properties of the DIRC Fused Silica Radiator

    SciTech Connect

    Convery, Mark R

    2003-04-15

    The DIRC detector is successfully operating as the hadronic particle identification system for the BaBar experiment at SLAC. The production of its Cherenkov radiator required much effort in practice, both in manufacture and conception, which in turn required a large number of R&D measurements. One of the major outcomes of this R&D work was an understanding of methods to select radiation hard and optically uniform fused silica material. Others included measurement of the wavelength dependency of the internal reflection coefficient, and its sensitivity to the surface pollution, selection of the radiator support, selection of good optical glue, etc. This note summarizes the optical R&D test results.

  6. Fabrication of microchannels in fused silica using femtosecond Bessel beams

    SciTech Connect

    Yashunin, D. A.; Malkov, Yu. A.; Mochalov, L. A.; Stepanov, A. N.

    2015-09-07

    Extended birefringent waveguiding microchannels up to 15 mm long were created inside fused silica by single-pulse irradiation with femtosecond Bessel beams. The birefringent refractive index change of 2–4 × 10{sup −4} is attributed to residual mechanical stress. The microchannels were chemically etched in KOH solution to produce 15 mm long microcapillaries with smooth walls and a high aspect ratio of 1:250. Bessel beams provide higher speed of material processing compared to conventional multipulse femtosecond laser micromachining techniques and permit simple control of the optical axis direction of the birefringent waveguides, which is important for practical applications [Corrielli et al., “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014)].

  7. Modification of nanostructured fused silica for use as superhydrophobic, IR-transmissive, anti-reflective surfaces

    NASA Astrophysics Data System (ADS)

    Boyd, Darryl A.; Frantz, Jesse A.; Bayya, Shyam S.; Busse, Lynda E.; Kim, Woohong; Aggarwal, Ishwar; Poutous, Menelaos; Sanghera, Jasbinder S.

    2016-04-01

    In order to mimic and enhance the properties of moth eye-like materials, nanopatterned fused silica was chemically modified to produce self-cleaning substrates that have anti-reflective and infrared transmissive properties. The characteristics of these substrates were evaluated before and after chemical modification. Furthermore, their properties were compared to fused silica that was devoid of surface features. The chemical modification imparted superhydrophobic character to the substrates, as demonstrated by the average water contact angles which exceeded 170°. Finally, optical analysis of the substrates revealed that the infrared transmission capabilities of the fused silica substrates (nanopatterned to have moth eye on one side) were superior to those of the regular fused silica substrates within the visible and near-infrared region of the light spectrum, with transmission values of 95% versus 92%, respectively. The superior transmission properties of the fused silica moth eye were virtually unchanged following chemical modification.

  8. Surface Effects on Young's Modulud and Hardness of Fused Silica by Nanoindentation Study

    SciTech Connect

    Zheng, L.; Schmid, A.W.; Lambropoulos, J.C.

    2007-01-24

    The surface Young's modulus (E) and hardness (H) of fused silica samples have been studied by nanoindentation. Two factors strongly affect the results of E and H. One factor is the polishing quality of the fused silica surface. Poor polishing quality produces much smaller E and H than the literature values for bulk fused silica. The second factor is surface flatness. Even for a well-polished silica surface, an "arch bridge effect" may hinder the measurements of the true values of E and H. A correction procedure is proposed to eliminate this effect, and the corrected results show substantial improvements.

  9. Effect of optical coating and surface treatments on mechanical loss in fused silica

    NASA Astrophysics Data System (ADS)

    Gretarsson, Andri M.; Harry, Gregory M.; Penn, Steven D.; Saulson, Peter R.; Schiller, John J.; Startin, William J.

    2000-06-01

    We report on the mechanical loss in fused silica samples with various surface treatments and compare them with samples having an optical coating. Mild surface treatments such as washing in detergent or acetone were not found to affect the mechanical loss of flame-drawn fused silica fibers stored in air. However, mechanical contact (with steel calipers) significantly increased the loss. The application of a high-reflective optical coating of the type used for the LIGO test masses was found to greatly increase the mechanical loss of commercially polished fused silica microscope slides. We discuss the implications for the noise budget of interferometers. .

  10. High strain rate fracture behaviour of fused silica

    NASA Astrophysics Data System (ADS)

    Ruggiero, A.; Iannitti, G.; Testa, G.; Limido, J.; Lacome, J. L.; Olovsson, L.; Ferraro, M.; Bonora, N.

    2014-05-01

    Fused silica is a high purity synthetic amorphous silicon dioxide characterized by low thermal expansion coefficient, excellent optical qualities and exceptional transmittance over a wide spectral range. Because of its wide use in the military industry as window material, it may be subjected to high-energy ballistic impacts. Under such dynamic conditions, post-yield response of the ceramic as well as the strain rate related effects become significant and should be accounted for in the constitutive modelling. In this study, the Johnson-Holmquist (J-H) model parameters have been identified by inverse calibration technique, on selected validation test configurations, according to the procedure described hereafter. Numerical simulations were performed with LS-DYNA and IMPETUS-FEA, a general non-linear finite element software which offers NURBS finite element technology for the simulation of large deformation and fracture in materials. In order to overcome numerical drawbacks associated with element erosion, a modified version of the J-H model is proposed.

  11. Time-resolved shadowgraphy of optical breakdown in fused silica

    NASA Astrophysics Data System (ADS)

    Tran, K. A.; Grigorov, Y. V.; Nguyen, V. H.; Rehman, Z. U.; Le, N. T.; Janulewicz, K. A.

    2015-07-01

    Dynamics of a laser-induced optical breakdown in the bulk of fused silica initiated by a sub-nanosecond laser pulse of an energy fluence as high as 8.7 kJ/cm2 was investigated by using femtosecond time-resolved shadowgraphy. Plasma ignition, growth of the damaged region and accompanying hydrodynamic motion were recorded from the moment directly before the arrival of the driving laser pulse, in the time steps adapted to the rate of the occurring processes. The growth rate of the plasma channel, curvature radii and velocities of the wave fronts were extracted from the shadowgrams. It was found that the plasma channel develops with a supersonic velocity and the first observed shock front tends to transform itself from the initial bowl-like shape to the final spherical one characterising an acoustic wave. Appearance of multiple fronts accompanying the main shock front was registered and used in more detailed analysis of the optical breakdown dynamics in the transparent dielectrics.

  12. Mitigation of organic laser damage precursors from chemical processing of fused silica.

    PubMed

    Baxamusa, S; Miller, P E; Wong, L; Steele, R; Shen, N; Bude, J

    2014-12-01

    Increases in the laser damage threshold of fused silica have been driven by the successive elimination of near-surface damage precursors such as polishing residue, fractures, and inorganic salts. In this work, we show that trace impurities in ultrapure water used to process fused silica optics may be responsible for the formation of carbonaceous deposits. We use surrogate materials to show that organic compounds precipitated onto fused silica surfaces form discrete damage precursors. Following a standard etching process, solvent-free oxidative decomposition using oxygen plasma or high-temperature thermal treatments in air reduced the total density of damage precursors to as low as <50 cm(-2). Finally, we show that inorganic compounds are more likely to cause damage when they are tightly adhered to a surface, which may explain why high-temperature thermal treatments have been historically unsuccessful at removing extrinsic damage precursors from fused silica. PMID:25606889

  13. FUSED SILICA CAPILLARY COLUMN GC/MS FOR THE ANALYSIS OF PRIORITY POLLUTANTS

    EPA Science Inventory

    Operational characteristics have been determined for fused silica capillary column (FSCC) GC/MS as applied to 'extractable' priority pollutants. Chromatographic data show excellent relative retention time (RRT) intralaboratory precision and interlaboratory accuracy when multiple ...

  14. Laser-induced fluorescence of fused silica irradiated by ArF excimer laser

    SciTech Connect

    Zhang Haibo; Yuan Zhijun; Zhou Jun; Dong Jingxing; Wei Yunrong; Lou Qihong

    2011-07-01

    Laser-induced fluorescence (LIF) of high-purity fused silica irradiated by ArF excimer laser is studied experimentally. LIF bands of the fused silica centered at 281 nm, 478 nm, and 650 nm are observed simultaneously. Furthermore, the angular distribution of the three fluorescence peaks is examined. Microscopic image of the laser modified fused silica indicates that scattering of the generated fluorescence by laser-induced damage sites is the main reason for the angular distribution of LIF signals. Finally, the dependence of LIF signals intensities of the fused silica on laser power densities is presented. LIF signals show a squared power density dependence, which indicates that laser-induced defects are formed mainly via two-photon absorption processes.

  15. Shock-wave equation-of-state measurements in fused silica up to 1600 GPa

    DOE PAGESBeta

    McCoy, C. A.; Gregor, M. C.; Polsin, D. N.; Fratanduono, D. E.; Celliers, P. M.; Boehly, T. R.; Meyerhofer, D. D.

    2016-06-02

    The properties of silica are important to geophysical and high-pressure equation of state research. The most prevalent crystalline form, α-quartz, has been extensively studied to TPa pressures. Recent experiments with amorphous silica, commonly referred to as fused silica, provided Hugoniot and reflectivity data up to 630 GPa using magnetically-driven aluminum impactors. This article presents measurements of the fused silica Hugoniot over the range from 200 to 1600 GPa using laser-driven shocks with a quartz standard. These results extend the measured Hugoniot of fused silica to higher pressures, but more importantly, in the 200-600 GPa range, the data are very goodmore » agreement with those obtained with a different driver and standard material. As a result, a new shock velocity-particle velocity relation is derived to fit the experimental data.« less

  16. Effect of Sintering Temperature on the Properties of Fused Silica Ceramics Prepared by Gelcasting

    NASA Astrophysics Data System (ADS)

    Wan, Wei; Huang, Chun-e.; Yang, Jian; Zeng, Jinzhen; Qiu, Tai

    2014-07-01

    Fused silica ceramics were fabricated by gelcasting, by use of a low-toxicity N' N-dimethylacrylamide gel system, and had excellent properties compared with those obtained by use of the low-toxicity 2-hydroxyethyl methacrylate and toxic acrylamide systems. The effect of sintering temperature on the microstructure, mechanical and dielectric properties, and thermal shock resistance of the fused silica ceramics was investigated. The results showed that sintering temperature has a critical effect. Use of an appropriate sintering temperature will promote densification and improve the strength, thermal shock resistance, and dielectric properties of fused silica ceramics. However, excessively high sintering temperature will greatly facilitate crystallization of amorphous silica and result in more cristobalite in the sample, which will cause deterioration of these properties. Fused silica ceramics sintered at 1275°C have the maximum flexural strength, as high as 81.32 MPa, but, simultaneously, a high coefficient of linear expansion (2.56 × 10-6/K at 800°C) and dramatically reduced residual flexural strength after thermal shock (600°C). Fused silica ceramics sintered at 1250°C have excellent properties, relatively high and similar flexural strength before (67.43 MPa) and after thermal shock (65.45 MPa), a dielectric constant of 3.34, and the lowest dielectric loss of 1.20 × 10-3 (at 1 MHz).

  17. Reaction ion etching process for improving laser damage resistance of fused silica optical surface.

    PubMed

    Sun, Laixi; Liu, Hongjie; Huang, Jin; Ye, Xin; Xia, Handing; Li, Qingzhi; Jiang, Xiaodong; Wu, Weidong; Yang, Liming; Zheng, Wanguo

    2016-01-11

    Laser induced damage of fused silica optics occurs primarily on optical surface or subsurface resulting from various defects produced during polishing/grinding process. Many new kinds of surface treatment processes are explored to remove or control the defects on fused silica surface. In this study, we report a new application of reaction ion etching (RIE)-based surface treatment process for manufacture of high quality fused silica optics. The influence of RIE processes on laser damage resistance as a function of etching depth and the evolution of typical defects which are associated with laser damage performance were investigated. The results show that the impurity element defects and subsurface damage on the samples surface were efficiently removed and prevented. Pure silica surface with relatively single-stable stoichiometry and low carbon atomic concentration was created during the etching. The laser damage resistance of the etched samples increased dramatically. The increase of roughness and ODC point defect with deeper etching are believed to be the main factors to limit further increase of the damage resistance of fused silica. The study is expected to contribute to the development of fused silica optics with high resistance to laser induced degradation in the future. PMID:26832251

  18. Fused Silica Surface Coating for a Flexible Silica Mat Insulation System

    NASA Technical Reports Server (NTRS)

    Rhodes, W. H.

    1973-01-01

    Fused silica insulation coatings have been developed for application to a flexible mat insulation system. Based on crystalline phase nucleation and growth kinetics, a 99+% SiO2 glass was selected as the base composition. A coating was developed that incorporated the high emissivity phase NiCr2O4 as a two phase coating with goals of high emittance and minimum change in thermal expansion. A second major coating classification has a plasma sprayed emittance coating over a sealed pure amorphous SiO2 layer. A third area of development centered on extremely thin amorphous SiO2 coatings deposited by chemical vapor deposition. The coating characterization studies presented are mechanical testing of thin specimens extracted from the coatings, cyclic arc exposures, and emittance measurements before and after arc exposures.

  19. Generation of microstripe cylindrical and toroidal mirrors by localized laser evaporation of fused silica.

    PubMed

    Wlodarczyk, Krystian L; Thomson, Ian J; Baker, Howard J; Hall, Denis R

    2012-09-10

    We report a new technique for the rapid fabrication of microstripe cylindrical and toroidal mirrors with a high ratio (>10) of the two principal radii of curvature (RoC(1)/RoC(2)), and demonstrate their effectiveness as mode-selecting resonator mirrors for high-power planar waveguide lasers. In this process, the larger radius of curvature (RoC(1)) is determined by the planar or cylindrical shape of the fused silica substrate selected for laser processing, whilst the other (RoC(2)) is produced by controlled CO(2) laser-induced vaporization of the glass. The narrow stripe mirror aperture is achieved by applying a set of partially overlapped laser scans, with the incident laser power, the number of laser scans, and their spacing being used to control the curvature produced by laser evaporation. In this work, a 1 mm diameter laser spot is used to produce grooves of cylindrical/toroidal shape with 240 μm width and 16 mm length. After high reflectance coating, these grooves are found to provide excellent mode selectivity as resonator mirrors for a 150 μm core Yb:YAG planar waveguide laser, producing high brightness output at more than 300 W. The results show clearly that the laser-generated microstripe mirrors can improve the optical performance of high-power planar waveguide lasers when applied in a low-loss mode-selective resonator configuration. PMID:22968274

  20. Material removal and surface figure during pad polishing of fused silica

    SciTech Connect

    Suratwala, T I; Feit, M D; Steele, W A

    2009-05-04

    The material removal and surface figure after ceria pad polishing of fused silica glass have been measured and analyzed as a function of kinematics, loading conditions, and polishing time. Also, the friction at the workpiece/lap interface, the slope of the workpiece relative to the lap plane, and lap viscoelastic properties have been measured and correlated to material removal. The results show that the relative velocity between the workpiece & lap (determined by the kinematics) and the pressure distribution determine the spatial and temporal material removal and hence the final surface figure of the workpiece. In the case where the applied loading and relative velocity distribution over the workpiece are spatially uniform, a significant non-uniform spatial material removal from the workpiece surface is observed. This is due to a non-uniform pressure distribution resulting from: (1) a moment caused by a pivot point and interface friction forces; (2) viscoelastic relaxation of the polyurethane lap; and (3) a physical workpiece/lap interface mismatch. Both the kinematics and these contributions to the pressure distribution are quantitatively described, and then combined to form a spatial and temporal Preston model & code for material removal (called Surface Figure or SurF{copyright}). The surface figure simulations are consistent with the experiment for a wide variety of polishing conditions. This study is an important step towards deterministic full-aperture polishing, which would allow optical glass fabrication to be performed in a more repeatable, less iterative, and hence more economical manner.

  1. Colloid formation in copper-implanted fused silica and silicate glasses

    SciTech Connect

    Mazzoldi, P.; Caccavale, F.; Cattaruzza, E.

    1993-12-31

    Copper implantations (90 keV, 5{times}10{sup 16} ions/cm{sup 2}) were made into fused silica, borosilicate glasses and soda-lime glass. The copper distribution has been found to vary according to glass type. The optical absorption band characteristic of the implanted metal optical properties was observed only for copper-implanted fused silica. Absorption for all the other samples was either not observable or was negligibly small, however very small metallic particles are present also in soda-lime glass. Subsequent nitrogen implantation (100 keV, 1.5{times}10{sup 17} ions/cm{sup 2}) completely eliminated the copper-colloid induced absorption in the copper-implanted fused silica, while it facilitated formation of copper-colloids in soda-lime glass.

  2. Metallic-like photoluminescence and absorption in fused silica surface flaws

    SciTech Connect

    Laurence, T A; Bude, J D; Shen, N; Feldman, T; Miller, P; Steele, W A; Suratwala, T

    2008-09-11

    Using high-sensitivity confocal time-resolved photoluminescence (PL) techniques, we report an ultra-fast PL (40ps-5ns) from impurity-free surface flaws on fused silica, including polished, indented or fractured surfaces of fused silica, and from laser-heated evaporation pits. This PL is excited by the single photon absorption of sub-band gap light, and is especially bright in fractures. Regions which exhibit this PL are strongly absorptive well below the band gap, as evidenced by a propensity to damage with 3.5eV ns-scale laser pulses.

  3. Development of a Process Model for CO(2) Laser Mitigation of Damage Growth in Fused Silica

    SciTech Connect

    Feit, M D; Rubenchik, A M; Boley, C; Rotter, M D

    2003-11-01

    A numerical model of CO{sub 2} laser mitigation of damage growth in fused silica has been constructed that accounts for laser energy absorption, heat conduction, radiation transport, evaporation of fused silica and thermally induced stresses. This model will be used to understand scaling issues and effects of pulse and beam shapes on material removal, temperatures reached and stresses generated. Initial calculations show good agreement of simulated and measured material removal. The model has also been applied to LG-770 glass as a prototype red blocker material.

  4. Optimum inductively coupled plasma etching of fused silica to remove subsurface damage layer

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaolong; Liu, Ying; Liu, Zhengkun; Qiu, Keqiang; Xu, Xiangdong; Hong, Yilin; Fu, Shaojun

    2015-11-01

    In this work, we introduce an optimum ICP etching technique that successfully removes the subsurface damage (SSD) layer of fused silica without causing plasma induced surface damage (PISD) or lateral etching of SSD. As one of the commonest PISD initiators, metal contamination from reactor chamber is prevented by employing a simple isolation device. Based on this device, a unique low-density pitting damage is discovered and subsequently eliminated by optimizing the etching parameters. Meanwhile etching anisotropy also improves a lot, thus preventing the lateral etching of SSD. Using this proposed technique, SSD layer of fused silica is successfully removed with a surface roughness of 0.23 nm.

  5. Ion trap mass spectrometric detection of laser desorbed ions from derivatized fused silica fibers

    SciTech Connect

    Garrett, A.W.; Earl, W.L.; Cisper, M.E.; Nogar, N.S.; Hemberger, P.H.

    1994-12-31

    Solid-phase microextraction of analytes from complex matrices using fused silica fibers has many advantages over traditional chemical sample preparation technique. Microextraction requires small sample sizes little sample preparation (providing rapid sample turnaround time), and greatly reduces the amount of chemical waste generated in sample preparation. These advantages make fused silica fibers attractive for direct sampling and detection experiments using laser desorption ion trap mass spectrometry (LITMS). The drawback is the very small area ({approximately}1 mm{sup 2}) exposed to laser irradiation, which limits the amount of material desorbed into the ion trap.

  6. Shock-wave equation-of-state measurements in fused silica up to 1600 GPa

    NASA Astrophysics Data System (ADS)

    McCoy, C. A.; Gregor, M. C.; Polsin, D. N.; Fratanduono, D. E.; Celliers, P. M.; Boehly, T. R.; Meyerhofer, D. D.

    2016-06-01

    The properties of silica are important to geophysical and high-pressure equation-of-state research. Its most-prevalent crystalline form, α-quartz, has been extensively studied to TPa pressures. This article presents Hugoniot measurements on amorphous silica, commonly referred to as fused silica, over a range from 200 to 1600 GPa using laser-driven shocks and an α-quartz standard. These results extend the measured Hugoniot of fused silica to higher pressures. In the 200- to 600-GPa range, the data are in very good agreement with those obtained by Qi et al. [Phys. Plasmas 22, 062706 (2015)] using magnetically driven aluminum impactors and aluminum as a standard material. A new shock velocity/particle velocity relation is derived to fit the experimental data.

  7. The effect of lattice temperature on surface damage in fused silica optics

    SciTech Connect

    Bude, J; Guss, G; Matthews, M; Spaeth, M L

    2007-10-31

    We examine the effect of lattice temperature on the probability of surface damage initiation for 355nm, 7ns laser pulses for surface temperatures below the melting point to temperatures well above the melting point of fused silica. At sufficiently high surface temperatures, damage thresholds are dramatically reduced. Our results indicate a temperature activated absorption and support the idea of a lattice temperature threshold of surface damage. From these measurements, we estimate the temperature dependent absorption coefficient for intrinsic silica.

  8. Yb/Al-codoped fused-silica planar-waveguide amplifier

    NASA Astrophysics Data System (ADS)

    Atar, Gil; Eger, David; Bruner, Ariel; Sfez, Bruno; Ruschin, Shlomo

    2016-05-01

    We report an Yb/Al-codoped fused silica planar waveguide amplifier with <0.2 dB/cm passive loss and 0.6 dB/cm gain, featuring a high damage threshold (>0.1 GW/cm2) and a relatively large core (20 μm thick). Waveguide fabrication is based on a novel silica-on-silica technology combining modified-chemical-vapor deposition and a high temperature CO2 laser treatment for making high-power photonic devices.

  9. Infrared telescope design - Implications from cryogenic tests of fused-silica mirrors

    NASA Technical Reports Server (NTRS)

    Melugin, R. K.; Miller, J. H.

    1983-01-01

    A brief review of results from recent cryogenic tests of fused-silica mirrors is given with consideration of the implications for the design of cooled infrared telescopes. Implications include optical performance with a discusion of the top-down optical error budgeting for the Shuttle Infrared Telescope Facility (SIRTF), thermal properties of the mirrors, and mirror mounting.

  10. Femtosecond laser ablation dynamics of fused silica extracted from oscillation of time-resolved reflectivity

    SciTech Connect

    Kumada, Takayuki Akagi, Hiroshi; Itakura, Ryuji; Otobe, Tomohito; Yokoyama, Atsushi

    2014-03-14

    Femtosecond laser ablation dynamics of fused silica is examined via time-resolved reflectivity measurements. After optical breakdown was caused by irradiation of a pump pulse with fluence F{sub pump} = 3.3–14.9 J/cm{sup 2}, the reflectivity oscillated with a period of 63 ± 2 ps for a wavelength λ = 795 nm. The period was reduced by half for λ = 398 nm. We ascribe the oscillation to the interference between the probe pulses reflected from the front and rear surfaces of the photo-excited molten fused silica layer. The time-resolved reflectivity agrees closely with a model comprising a photo-excited layer which expands due to the formation of voids, and then separates into two parts, one of which is left on the sample surface and the other separated as a molten thin layer from the surface by the spallation mechanism. Such oscillations were not observed in the reflectivity of soda-lime glass. Whether the reflectivity oscillates or not probably depends on the layer viscosity while in a molten state. Since viscosity of the molten fused silica is several orders of magnitude higher than that of the soda-lime glass at the same temperature, fused silica forms a molten thin layer that reflects the probe pulse, whereas the soda-lime glass is fragmented into clusters.

  11. Achieving low-wavefront specifications for DUV lithography: impact of residual stress in HPFS fused silica

    NASA Astrophysics Data System (ADS)

    Ladison, Julie L.; Ellison, Joseph F.; Allan, Douglas C.; Fladd, David R.; Fanning, Andrew W.; Priestley, Richard

    2001-09-01

    As optical lithographers push to extend optical lithography technologies to create smaller features with higher NA, lower k1 values and shorter wavelengths, transmitted wavefront specifications for HPFSR fused silica blanks continue to tighten. HPFSR fused silica blanks are typically certified for acceptance using an interferometer operating at a wavelength of 632.8 nm. As the market demands increasingly tighter homogeneity specifications, it has become critical to understand the sources of variation in wavefront measurements. Corning has recently initiated a study to identify those sources of variation. One glass attribute being studied is the impact of residual stress on the wavefront. It is known that residual stresses can alter the refractive index of fused silica. To obtain the residual stress measurements, birefringence measurements were obtained at 632.8 nm for comparison to wavefront measurements at 632.8 nm. The relationship between residual birefringence and transmitted wavefront measurements, at 632.8 nm on Corning HPFSR fused silica blanks, is explored in this paper.

  12. Multi-Length Scale Analysis of the Effect of Fused-Silica Pre-shocking on its Tendency for Devitrification

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Snipes, J. S.; Ramaswami, S.

    2016-03-01

    Recent studies have suggested that impact-induced devitrification of fused silica, or more specifically formation of high-density stishovite, can significantly improve ballistic-penetration resistance of fused silica, the material which is used in transparent armor. The studies have also shown that in order for stishovite to form during a ballistic impact event, very high projectile kinetic energy normalized by the projectile/fused-silica target-plate contact area must accompany such an event. Otherwise fused-silica devitrification, if taking place, does not substantially improve the material ballistic-penetration resistance. In the present work, all-atom molecular-level computations are carried out in order to establish if pre-shocking of fused-silica target-plates (to form stishovite) and subsequent unloading (to revert stishovite to the material amorphous structure) can increase fused silica's propensity for stishovite formation during a ballistic impact. Towards that end, molecular-level computational procedures are developed to simulate both the pre-shocking treatment of the fused-silica target-plate and its subsequent impact by a solid right-circular cylindrical projectile. The results obtained clearly revealed that when strong-enough shockwaves are used in the fused-silica target-plate pre-shocking procedure, the propensity of fused silica for stishovite formation during the subsequent ballistic impact is increased, as is the associated ballistic-penetration resistance. To rationalize these findings, a detailed post-processing microstructural analysis of the pre-shocked material is employed. The results obtained suggest that fused silica pre-shocked with shockwaves of sufficient strength retain some memory/embryos of stishovite, and these embryos facilitate stishovite formation during the subsequent ballistic impact.

  13. Bulk damage and absorption in fused silica due to high-power laser applications

    NASA Astrophysics Data System (ADS)

    Nürnberg, F.; Kühn, B.; Langner, A.; Altwein, M.; Schötz, G.; Takke, R.; Thomas, S.; Vydra, J.

    2015-11-01

    Laser fusion projects are heading for IR optics with high broadband transmission, high shock and temperature resistance, long laser durability, and best purity. For this application, fused silica is an excellent choice. The energy density threshold on IR laser optics is mainly influenced by the purity and homogeneity of the fused silica. The absorption behavior regarding the hydroxyl content was studied for various synthetic fused silica grades. The main absorption influenced by OH vibrational excitation leads to different IR attenuations for OH-rich and low-OH fused silica. Industrial laser systems aim for the maximum energy extraction possible. Heraeus Quarzglas developed an Yb-doped fused silica fiber to support this growing market. But the performance of laser welding and cutting systems is fundamentally limited by beam quality and stability of focus. Since absorption in the optical components of optical systems has a detrimental effect on the laser focus shift, the beam energy loss and the resulting heating has to be minimized both in the bulk materials and at the coated surfaces. In collaboration with a laser research institute, an optical finisher and end users, photo thermal absorption measurements on coated samples of different fused silica grades were performed to investigate the influence of basic material properties on the absorption level. High purity, synthetic fused silica is as well the material of choice for optical components designed for DUV applications (wavelength range 160 nm - 260 nm). For higher light intensities, e.g. provided by Excimer lasers, UV photons may generate defect centers that effect the optical properties during usage, resulting in an aging of the optical components (UV radiation damage). Powerful Excimer lasers require optical materials that can withstand photon energy close to the band gap and the high intensity of the short pulse length. The UV transmission loss is restricted to the DUV wavelength range below 300 nm and

  14. Direct die-to-database electron-beam inspection of fused silica imprint templates

    NASA Astrophysics Data System (ADS)

    Tsuneoka, M.; Hasebe, T.; Tokumoto, T.; Yan, C.; Yamamoto, M.; Resnick, D. J.; Thompson, E.; Wakamori, H.; Inoue, M.; Ainley, Eric; Nordquist, Kevin J.; Dauksher, William J.

    2006-10-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32 and 22 nm nodes. Step and Flash Imprint Lithography (S-FIL TM) is a unique method for printing sub-100 nm geometries. Relative to other imprinting processes S-FIL has the advantage that the template is transparent, thereby facilitating conventional overlay techniques. Further, S-FIL provides sub-100 nm feature resolution without the significant expense of multi-element, high quality projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of templates. With respect to inspection, although defects as small as 70 nm have been detected using optical techniques, it is clear that it will be necessary to take advantage of the resolution capabilities of electron beam inspection techniques. The challenge is in inspecting templates composed purely of fused silica. This paper reports the inspection of both fused silica wafers and plates. The die-to-database inspection of the wafers was performed on an NGR2100 inspection system. Fused silica plates were inspected using an NGR4000 system. Three different experiments were performed. In the first study, Metal 1 and Logic patterns as small as 40 nm were patterned on a 200 mm fused silica wafer. The patterns were inspected using an NGR2100 die-to-database inspection system. In the second experiment, a 6025 fused silica plate was employed. Patterns with a limited field of view (FOV) were inspected using an NGR4000 reticle-based system. To test the tool's capability for larger FOVs, 16 × 16 μm areas on a MoSi half tone plate were scanned and stitched together to evaluate the tool's ability to reliably do die-to-database comparisons across larger inspection areas.

  15. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics.

    PubMed

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-01-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process. PMID:27484188

  16. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    PubMed Central

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-01-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process. PMID:27484188

  17. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-08-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process.

  18. The Effect of High-Pressure Devitrification and Densification on Ballistic-Penetration Resistance of Fused Silica

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Avuthu, V.; Snipes, J. S.; Ramaswami, S.; Galgalikar, R.

    2015-12-01

    Recent experimental and molecular-level computational analyses have indicated that fused silica, when subjected to pressures of several tens of GPa, can experience irreversible devitrification and densification. Such changes in the fused-silica molecular-level structure are associated with absorption and/or dissipation of the strain energy acquired by fused silica during high-pressure compression. This finding may have important practical consequences in applications for fused silica such as windshields and windows of military vehicles, portholes in ships, ground vehicles, spacecraft, etc. In the present work, our prior molecular-level computational results pertaining to the response of fused silica to high pressures (and shear stresses) are used to enrich a continuum-type constitutive model (that is, the so-called Johnson-Holmquist-2, JH2, model) for this material. Since the aforementioned devitrification and permanent densification processes modify the response of fused silica to the pressure as well as to the deviatoric part of the stress, changes had to be made in both the JH2 equation of state and the strength model. To assess the potential improvements in respect to the ballistic-penetration resistance of this material brought about by the fused-silica devitrification and permanent densification processes, a series of transient non-linear dynamics finite-element analyses of the transverse impact of a fused-silica test plate with a solid right-circular cylindrical steel projectile were conducted. The results obtained revealed that, provided the projectile incident velocity and, hence, the attendant pressure, is sufficiently high, fused silica can undergo impact-induced devitrification, which improves its ballistic-penetration resistance.

  19. High-resolution 3-D imaging of surface damage sites in fused silica with Optical Coherence Tomography

    SciTech Connect

    Guss, G; Bass, I; Hackel, R; Mailhiot, C; Demos, S G

    2007-10-30

    In this work, we present the first successful demonstration of a non-contact technique to precisely measure the 3D spatial characteristics of laser induced surface damage sites in fused silica for large aperture laser systems by employing Optical Coherence Tomography (OCT). What makes OCT particularly interesting in the characterization of optical materials for large aperture laser systems is that its axial resolution can be maintained with working distances greater than 5 cm, whether viewing through air or through the bulk of thick optics. Specifically, when mitigating surface damage sites against further growth by CO{sub 2} laser evaporation of the damage, it is important to know the depth of subsurface cracks below the damage site. These cracks are typically obscured by the damage rubble when imaged from above the surface. The results to date clearly demonstrate that OCT is a unique and valuable tool for characterizing damage sites before and after the mitigation process. We also demonstrated its utility as an in-situ diagnostic to guide and optimize our process when mitigating surface damage sites on large, high-value optics.

  20. Origin of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses

    NASA Astrophysics Data System (ADS)

    Chambonneau, M.; Diaz, R.; Grua, P.; Rullier, J.-L.; Duchateau, G.; Natoli, J.-Y.; Lamaignère, L.

    2014-01-01

    Ring patterns surrounding laser damage sites at the exit surface of fused silica are systematically observed when initiated by multiple longitudinal modes nanosecond laser pulses at 1064 nm. The appearance chronology of rings is found to be closely related to the temporal shape of the laser pulses. This supports that the damage morphology originates from the coupling of a laser-supported detonation wave propagating in air with an ablation mechanism in silica. In our experiments, the propagation speed of the detonation wave reaches about 20 km/s and scales as the cube root of the laser intensity, in good agreement with theory.

  1. Numerical simulations of ultrashort laser pulse multifilamentation in fused silica: plasma channels statistics

    NASA Astrophysics Data System (ADS)

    Geints, Yu E.; Zemlyanov, A. A.

    2016-01-01

    The regime of multiple filamentation of gigawatt-power femtosecond laser pulses in fused silica bars is theoretically investigated. Numerical simulations are used to analyze the fine spatial structure of the plasma region formed due to photoionization of silica and accompanying pulse filamentation. The dependence of the number, spatial position, and length of different generations of plasma channels on the energy and focusing conditions of the optical pulse is studied. The role of pulse sequential refocusing in the formation of the plasma region is discussed.

  2. Fracture Induced Sub-Band Absorption as a Precursor to Optical Damage on Fused Silica Surfaces

    SciTech Connect

    Miller, P E; Bude, J D; Suratwala, T I; Shen, N; Laurence, T A; Steele, W A; Menapace, J; Feit, M D; Wong, L L

    2010-03-05

    The optical damage threshold of indentation induced flaws on fused silica surfaces was explored. Mechanical flaws were characterized by laser damaged testing, SEM, optical, and photoluminescence microscopy. Localized polishing, chemical etching, and the control of indentation morphology were used to isolate the structural features which limit optical damage. A thin defect layer on fracture surfaces, including those smaller than the wavelength of visible light, was found to be the dominant source of laser damage initiation during illumination with 355nm, 3ns laser pulses. Little evidence was found that either displaced or densified material or fluence intensification plays a significant role in optical damage at fluences >35J/cm{sup 2}. Elimination of the defect layer was shown to increase the overall damage performance of fused silica optics.

  3. Experimental measurements of the spectral absorption coefficient of pure fused silica optical fibers.

    PubMed

    Moore, Travis J; Jones, Matthew R

    2015-02-20

    Knowledge of the spectral absorption coefficient of fused silica optical fibers is important in modeling heat transfer in the processes and applications in which these fibers are used. An experimental method used to measure the spectral absorption coefficient of optical fibers is presented. Radiative energy from a blackbody radiator set at different temperatures is directed through the optical fibers and into an FTIR spectrometer. Spectral instrument response functions are calculated for different fiber lengths. The ratios of the slopes of the instrument response functions for the different lengths of fibers are used to solve for the spectral absorption coefficient of the fibers. The spectral absorption coefficient of low OH pure fused silica optical fibers is measured between the wavelengths 1.5 and 2.5 μm. PMID:25968202

  4. Numerical simulation of modulation to incident laser by submicron to micron surface contaminants on fused silica

    NASA Astrophysics Data System (ADS)

    Liang, Yang; Xia, Xiang; Xin-Xiang, Miao; Li, Li; Xiao-Dong, Yuan; Zhong-Hua, Yan; Guo-Rui, Zhou; Hai-Bing, Lv; Wan-Guo, Zheng; Xiao-Tao, Zu

    2016-01-01

    Modulation caused by surface/subsurface contaminants is one of the important factors for laser-induced damage of fused silica. In this work, a three-dimensional finite-difference time-domain (3D-FDTD) method is employed to simulate the electric field intensity distribution in the vicinity of particulate contaminants on fused silica surface. The simulated results reveal that the contaminant on both the input and output surfaces plays an important role in the electric field modulation of the incident laser. The influences of the shape, size, embedded depth, dielectric constant (ɛr), and the number of contaminant particles on the electric field distribution are discussed in detail. Meanwhile, the corresponding physical mechanism is analyzed theoretically. Project supported by the National Natural Science Foundation of China (Grant No. 61178018) and the Ph.D. Funding Support Program of Education Ministry of China (Grant No. 20110185110007).

  5. Controllable damping of high-Q violin modes in fused silica suspension fibers

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. V.; Mescheriakov, S. D.; Tokmakov, K. V.; Mitrofanov, V. P.

    2010-01-01

    Fused silica fiber suspension of the test masses will be used in the interferometric gravitational wave detectors of the next generation. This allows a significant reduction of losses in the suspension and thermal noise associated with the suspension. Unfortunately, unwanted violin modes may be accidentally excited in the suspension fibers. The Q-factor of the violin modes also exceeds 108. They have a ring-down time that is too long and may complicate the stable control of the interferometer. Results of the investigation of a violin mode active damping system are described. An original sensor and actuator were especially developed to realize the effective coupling of a thin, optically transparent, non-conducting fused silica fiber with an electric circuit. The damping system allowed the changing of the violin mode's damping rate over a wide range.

  6. Microwave interrogated large core fused silica fiber Michelson interferometer for strain sensing.

    PubMed

    Hua, Liwei; Song, Yang; Huang, Jie; Lan, Xinwei; Li, Yanjun; Xiao, Hai

    2015-08-20

    A Michelson-type large core optical fiber sensor has been developed, which is designed based on the optical carrier-based microwave interferometry technique, and fabricated by using two pieces of 200-μm diameter fused silica core fiber as two arms of the Michelson interferometer. The interference fringe pattern caused by the optical path difference of the two arms is interrogated in the microwave domain, where the fringe visibility of 40 dB has easily been obtained. The strain sensing at both room temperature and high temperatures has been demonstrated by using such a sensor. Experimental results show that this sensor has a linear response to the applied strain, and also has relatively low temperature-strain cross talk. The dopant-free quality of the fused silica fiber provides high possibility for the sensor to have promising strain sensing performance in a high temperature environment. PMID:26368751

  7. Laser-induced periodic annular surface structures on fused silica surface

    SciTech Connect

    Liu, Yi; Brelet, Yohann; Forestier, Benjamin; Houard, Aurelien; Yu, Linwei; Deng, Yongkai; Jiang, Hongbing

    2013-06-24

    We report on the formation of laser-induced periodic annular surface structures on fused silica irradiated with multiple femtosecond laser pulses. This surface morphology emerges after the disappearance of the conventional laser induced periodic surface structures, under successive laser pulse irradiation. It is independent of the laser polarization and universally observed for different focusing geometries. We interpret its formation in terms of the interference between the reflected laser field on the surface of the damage crater and the incident laser pulse.

  8. Dynamics of organic compound extraction from water using liquid-coated fused silica fibers

    SciTech Connect

    Louch, D.; Motlagh, S.; Pawliszyn, J.

    1992-05-15

    Mathematical descriptions of the absorption and desorption processes were developed and compared with experimental results for solid-phase microextraction (SPME) using poly(dimethylsiloxane)-coated fused silica optical fibers. Extraction times for benzene, toluene, and p-xylene using a coating thickness of 55 {mu}m are under 10 min and can be shortened substantially using agitation. Detection limits and distribution coefficients for several organic compounds are presented. 20 refs., 13 figs., 1 tab.

  9. Theory of absorption rate of carriers in fused silica under intense laser irradiation

    SciTech Connect

    Deng, Hongxiang; Xiang, Xia; Zheng, WG; Yuan, XD; Wu, SY; Jiang, XD; Gao, Fei; Zu, Xiaotao T.; Sun, Kai

    2010-11-15

    A quantum non-perturbation theory for phonon-assisted photon absorption of conduction band electron in intense laser was developed. By carrying out the calculation in fused silica at wavelengths from ultraviolet to infrared in terawatt intensity laser, we show that the Non-perturbation approach can make a uniform description of energy absorption rate at both short wavelengths and long wavelengths on TW / cm2 intensity laser.

  10. Comparison of laser-based mitigation of fused silica surface damage using mid- versus far-infrared lasers

    SciTech Connect

    Yang, S T; Matthews, M J; Elhadj, S; Cooke, D; Guss, G M; Draggoo, V G; Wegner, P J

    2009-12-16

    Laser induced growth of optical damage can limit component lifetime and therefore operating costs of large-aperture fusion-class laser systems. While far-infrared (IR) lasers have been used previously to treat laser damage on fused silica optics and render it benign, little is known about the effectiveness of less-absorbing mid-IR lasers for this purpose. In this study, they quantitatively compare the effectiveness and efficiency of mid-IR (4.6 {micro}m) versus far-IR (10.6 {micro}m) lasers in mitigating damage growth on fused silica surfaces. The non-linear volumetric heating due to mid-IR laser absorption is analyzed by solving the heat equation numerically, taking into account the temperature-dependent absorption coefficient {alpha}(T) at {lambda} = 4.6 {micro}m, while far-IR laser heating is well-described by a linear analytic approximation to the laser-driven temperature rise. In both cases, the predicted results agree well with surface temperature measurements based on infrared radiometry, as well as sub-surface fictive temperature measurements based on confocal Raman microscopy. Damage mitigation efficiency is assessed using a figure of merit (FOM) relating the crack healing depth to laser power required, under minimally-ablative conditions. Based on their FOM, they show that for cracks up to at least 500 {micro}m in depth, mitigation with a 4.6 {micro}m mid-IR laser is more efficient than mitigation with a 10.6 {micro}m far-IR laser. This conclusion is corroborated by direct application of each laser system to the mitigation of pulsed laser-induced damage possessing fractures up to 225 {micro}m in depth.

  11. Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica

    SciTech Connect

    Yang, Steven T.; Matthews, Manyalibo J.; Elhadj, Selim; Cooke, Diane; Guss, Gabriel M.; Draggoo, Vaughn G.; Wegner, Paul J.

    2010-05-10

    Laser-induced growth of optical damage can limit component lifetime and, therefore, increase operating costs of large-aperture fusion-class laser systems. While far-infrared (IR) lasers have been used previously to treat laser damage on fused silica optics and render it benign, little is known about the effectiveness of less-absorbing mid-IR lasers for this purpose. In this study, we quantitatively compare the effectiveness and efficiency of mid-IR (4.6 {mu}m) versus far-IR (10.6 {mu}m) lasers in mitigating damage growth on fused silica surfaces. The nonlinear volumetric heating due to mid-IR laser absorption is analyzed by solving the heat equation numerically, taking into account the temperature-dependent absorption coefficient {alpha}(T) at {lambda}=4.6 {mu}m, while far-IR laser heating is well described by a linear analytic approximation to the laser-driven temperature rise. In both cases, the predicted results agree well with surface temperature measurements based on IR radiometry, as well as subsurface fictive temperature measurements based on confocal Raman microscopy. Damage mitigation efficiency is assessed using a figure of merit (FOM) relating the crack healing depth to laser power required, under minimally ablative conditions. Based on our FOM, we show that, for cracks up to at least 500 {mu}m in depth, mitigation with a 4.6 {mu}m mid-IR laser is more efficient than mitigation with a 10.6 {mu}m far-IR laser. This conclusion is corroborated by direct application of each laser system to the mitigation of pulsed laser-induced damage possessing fractures up to 225 {mu}m in depth.

  12. Laser induced damage characteristics of fused silica optics treated by wet chemical processes

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Li, Yaguo; Yuan, Zhigang; Wang, Jian; Yang, Wei; Xu, Qiao

    2015-12-01

    Laser damage to fused silica continues a main issue of high-power/energy laser systems. HF-based etching technique is known to mitigate laser damage initiation and growth under UV laser illumination. The responses of material surface properties, especially surface damage characteristics to various etching parameters are questioned in the article. Fused silica was submerged into HF-based etchants (HF, NH4F:HF, HF:HNO3 with diverse concentrations) in an attempt to improve its laser-induced damage threshold (LIDT). The results have evidenced that the LIDT relies on, to a greater degree, the etched thickness and the etchant composition. The secondary ion mass spectrometer (SIMS) testing was aimed at relating the LIDT to certain metallic contaminant; however, the LIDT exhibits weak direct correlation with Ce, La, Ca, Fe contaminants. The surfaces with the highest LIDT are, more often than not, such that the surface roughness is <10 nm RMS and few metallic impurities are present. In addition, we tried to link the LIDT to the hardness and Young's modulus of fused silica, but no testing data show that there exists direct dependence of the LIDT on hardness and Young's modulus, which are actually independent of the removed thickness.

  13. Improving UV laser damage threshold of fused silica optics by wet chemical etching technique

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Li, Yaguo; Yuan, Zhigang; Wang, Jian; Xu, Qiao; Yang, Wei

    2015-07-01

    Fused silica is widely used in high-power laser systems because of its good optical performance and mechanical properties. However, laser damage initiation and growth induced by 355 nm laser illumination in optical elements have become a bottleneck in the development of high energy laser system. In order to improve the laser-induced damage threshold (LIDT), the fused silica optics were treated by two types of HF-based etchants: 1.7%wt. HF acid and buffer oxide etchant (BOE: the mixture of 0.4%wt. HF and 12%wt. NH4F), respectively, for varied etching time. Damage testing shows that both the etchants increase the damage threshold at a certain depth of material removal, but further removal of material lowers the LIDT markedly. The etching rates of both etchants keep steady in our processing procedure, ~58 μg/min and ~85 μg/min, respectively. The micro-surface roughness (RMS and PV) increases as etching time extends. The hardness (H) and Young's modulus (E) of the fused silica etched for diverse time, measured by nano-indenter, show no solid evidence that LIDT can be related to hardness or Young's modulus.

  14. Effects of wet etch processing on laser-induced damage of fused silica surfaces

    SciTech Connect

    Battersby, C.L.; Kozlowski, M.R.; Sheehan, L.M.

    1998-12-22

    Laser-induced damage of transparent fused silica optical components by 355 nm illumination occurs primarily at surface defects produced during the grinding and polishing processes. These defects can either be surface defects or sub-surface damage.Wet etch processing in a buffered hydrogen fluoride (HF) solution has been examined as a tool for characterizing such defects. A study was conducted to understand the effects of etch depth on the damage threshold of fused silica substrates. The study used a 355 nm, 7.5 ns, 10 Hz Nd:YAG laser to damage test fused silica optics through various wet etch processing steps. Inspection of the surface quality was performed with Nomarski microscopy and Total Internal Reflection Microscopy. The damage test data and inspection results were correlated with polishing process specifics. The results show that a wet etch exposes subsurface damage while maintaining or improving the laser damage performance. The benefits of a wet etch must be evaluated for each polishing process.

  15. Heat accumulation regime of femtosecond laser writing in fused silica and Nd:phosphate glass

    NASA Astrophysics Data System (ADS)

    Bukharin, M. A.; Khudyakov, D. V.; Vartapetov, S. K.

    2015-04-01

    We investigated refractive index induced by direct femtosecond laser writing inside fused silica and Nd:phosphate glass in heat accumulation regime. Spatial profile and magnitude of induced refractive index were investigated at various pulse repetition rates and translation velocities. It was shown that the magnitude of induced refractive index significantly rises with decreasing in time interval between successive laser pulses below the time for thermal diffusion. Going from nonthermal regime to heat accumulation regime, we achieved induced refractive index growth from 4 × 10-3 up to 6.5 × 10-3 in fused silica and from -6 × 10-3 to -9 × 10-3 in Nd:phosphate glass. Aspect ratio of treated area decreased from 2.1 down to less than 1.5 without correcting optical elements. It was shown that in heat accumulation regime, the treated area was surrounded by region of alternatively changed refractive index with significant magnitude up to -2 × 10-3. Wide regions of decreased refractive index enable fabrication of depressed cladding waveguides. We demonstrated low-loss (0.3 dB/cm) tubular waveguide inside fused silica. For orthogonal polarizations of guiding light, we achieved a small difference between losses as 0.1 dB/cm using highly symmetric written tracks forming the cladding. The desired structure was simulated with the beam propagation method, and the results were in good agreement with experiment data.

  16. Single-Molecule Imaging of DNAs with Sticky Ends at Water/Fused Silica Interface

    SciTech Connect

    Slavica Isailovic

    2005-12-17

    Total internal reflection fluorescence microscopy (TIRFM) was used to study intermolecular interactions of DNAs with unpaired (sticky) ends of different lengths at water/fused silica interface at the single-molecule level. Evanescent field residence time, linear velocity and adsorption/desorption frequency were measured in a microchannel for individual DNA molecules from T7, Lambda, and PSP3 phages at various pH values. The longest residence times and the highest adsorption/desorption frequencies at the constant flow at pH 5.5 were found for PSP3 DNA, followed by lower values for Lambda DNA, and the lowest values for T7 DNA. Since T7, Lambda, and PSP3 DNA molecules contain none, twelve and nineteen unpaired bases, respectively, it was concluded that the affinity of DNAs for the surface increases with the length of the sticky ends. This confirms that hydrophobic and hydrogen-bonding interactions between sticky ends and fused-silica surface are driving forces for DNA adsorption at the fused-silica surface. Described single-molecule methodology and results therein can be valuable for investigation of interactions in liquid chromatography, as well as for design of DNA hybridization sensors and drug delivery systems.

  17. Precision drilling of fused silica with 157-nm excimer laser radiation

    NASA Astrophysics Data System (ADS)

    Temme, Thorsten; Ostendorf, Andreas; Kulik, Christian; Meyer, Klaus

    2003-07-01

    μFor drilling fused silica, mechanical techniques like with diamond drills, ultrasonic machining, sand blasting or water jet machining are used. Also chemical techniques like laser assisted wet etching or thermal drilling with CO2-lasers are established. As an extension of these technologies, the drilling of micro-holes in fused silica with VUV laser radiation is presented here. The high absorption of the 157 nm radiation emitted by the F2 excimer laser and the short pulse duration lead to a material ablation with minimised impact on the surrounding material. Contrary to CO2-laser drilling, a molten and solidified phase around the bore can thus be avoided. The high photon energy of 7.9 eV requires either high purity nitrogen flushing or operation in vacuum, which also effects the processing results. Depending on the required precision, the laser can be used for percussion drilling as well as for excimer laser trepanning, by applying rotating masks. Rotating masks are especially used for high aspect ratio drilling with well defined edges and minimised debris. The technology is suitable particularly for holes with a diameter below 200 μm down to some microns in substrates with less than 200 μm thickness, that can not be achieved with mechanical methods. Drilling times in 200 μm fused silica substrates are in the range of ten seconds, which is sufficient to compete with conventional methods while providing similar or even better accuracy.

  18. Ultradeep fused silica glass etching with an HF-resistant photosensitive resist for optical imaging applications

    NASA Astrophysics Data System (ADS)

    Nagarah, John M.; Wagenaar, Daniel A.

    2012-03-01

    Microfluidic and optical sensing platforms are commonly fabricated in glass and fused silica (quartz) because of their optical transparency and chemical inertness. Hydrofluoric acid (HF) solutions are the etching media of choice for deep etching into silicon dioxide substrates, but processing schemes become complicated and expensive for etching times greater than 1 h due to the aggressiveness of HF migration through most masking materials. We present here etching into fused silica more than 600 µm deep while keeping the substrate free of pits and maintaining a polished etched surface suitable for biological imaging. We utilize an HF-resistant photosensitive resist (HFPR) which is not attacked in 49% HF solution. Etching characteristics are compared for substrates masked with the HFPR alone and the HFPR patterned on top of Cr/Au and polysilicon masks. We used this etching process to fabricate suspended fused silica membranes, 8-16 µm thick, and show that imaging through the membranes does not negatively affect image quality of fluorescence microscopy of biological tissue. Finally, we realize small through-pore arrays in the suspended membranes. Such devices will have applications in planar electrophysiology platforms, especially where optical imaging is required.

  19. Influence of piezoceramic to fused silica plate thickness on the radii of curvature of piezoelectric bimorph mirror

    NASA Astrophysics Data System (ADS)

    Libu, M.; Susanth, S.; Vasanthakumari, K. G.; Dileep Kumar, C. J.; Raghu, N.

    2012-01-01

    Piezoelectric based bimorph mirrors (PBM) find extensive use in focusing of x-ray beams. Many optical instruments require use of PBM whose radii of curvature can be tuned precisely. The 100 mm and 300 mm PBMs were fabricated with varying piezoelectric to fused silica plate thicknesses. The radii of curvature of free standing mirrors were measured as a function of voltage and it was found to decrease with increasing voltage. For a given piezoelectric plate thickness, as the fused silica thickness increases, the radii of curvature was found to increase owing to increase in stiffness of the mirror. On the other hand, for a given fused silica plate thickness, when the piezoelectric plate thickness is increased, the radii of curvature are decreased for a given electric field, due to increase in generated force. This study brings out the influence of piezoceramic to fused silica plate thickness on the radii of curvature of PBM.

  20. A new method for synthesizing fluid inclusions in fused silica capillaries containing organic and inorganic material

    USGS Publications Warehouse

    Chou, I.-Ming; Song, Y.; Burruss, R.C.

    2008-01-01

    Considerable advances in our understanding of physicochemical properties of geological fluids and their roles in many geological processes have been achieved by the use of synthetic fluid inclusions. We have developed a new method to synthesize fluid inclusions containing organic and inorganic material in fused silica capillary tubing. We have used both round (0.3 mm OD and 0.05 or 0.1 mm ID) and square cross-section tubing (0.3 ?? 0.3 mm with 0.05 ?? 0.05 mm or 0.1 ?? 0.1 mm cavities). For microthermometric measurements in a USGS-type heating-cooling stage, sample capsules must be less than 25 mm in length. The square-sectioned capsules have the advantage of providing images without optical distortion. However, the maximum internal pressure (P; about 100 MPa at 22 ??C) and temperature (T; about 500 ??C) maintained by the square-sectioned capsules are less than those held by the round-sectioned capsules (about 300 MPa at room T, and T up to 650 ??C). The fused silica capsules can be applied to a wide range of problems of interest in fluid inclusion and hydrothermal research, such as creating standards for the calibration of thermocouples in heating-cooling stages and frequency shifts in Raman spectrometers. The fused silica capsules can also be used as containers for hydrothermal reactions, especially for organic samples, including individual hydrocarbons, crude oils, and gases, such as cracking of C18H38 between 350 and 400 ??C, isotopic exchanges between C18H38 and D2O and between C19D40 and H2O at similar temperatures. Results of these types of studies provide information on the kinetics of oil cracking and the changes of oil composition under thermal stress. When compared with synthesis of fluid inclusions formed by healing fractures in quartz or other minerals or by overgrowth of quartz at elevated P-T conditions, the new fused-silica method has the following advantages: (1) it is simple; (2) fluid inclusions without the presence of water can be formed; (3

  1. Laser-welded fused silica substrates using a luminescent fresnoite-based sealant

    NASA Astrophysics Data System (ADS)

    de Pablos-Martin, A.; Benndorf, G.; Tismer, S.; Mittag, M.; Cismak, A.; Lorenz, M.; Grundmann, M.; Höche, Th.

    2016-06-01

    The laser welding of two fused silica substrates using a fresnoitic glass thin film as a sealant by irradiation with a ns laser is studied. Two different laser parameter sets were compared in terms of bond quality, which include two different laser beam trajectories: linear and wobble (circular) trajectory. The composition of the glass sealant changes with the course of the laser welding, incorporating silica from the substrates. After joining, the bonded samples were exposed to UV light and a very intense emission in the blue spectral range is observed by naked eye, which is due to the crystallization of the fresnoite glass upon the laser irradiation. EDX analysis confirms the crystallization of fresnoite, together with a great enrichment in silica. The formation of a eutectic between both is very plausible. Bond quality and bond strength were evaluated by scanning acoustic microscopy (SAM) and tensile test, which results in a tensile stress of 7 MPa.

  2. Bond strength of composites to etched and silica-coated porcelain fusing alloys.

    PubMed

    Schneider, W; Powers, J M; Pierpont, H P

    1992-05-01

    In vitro bond strengths of two composite veneering materials to two porcelain fusing alloys were measured utilizing two storage conditions. The alloys were etched or treated with silica applied by blasted, thermal or pyrogenic techniques and then silanated. Bond strengths were higher for the Ni-Cr-Be than the Au-Pd alloy with most values greater than 18 MPa. Bond strengths to etched and silanated Au-Pd alloy were low (less than 6.5 MPa), whereas samples treated with silica and silanated had significantly higher values. Bond strengths to the Ni-Cr-Be alloy were highest with the thermal and pyrogenic silica treatments. After thermocycling, most bond strengths to the Au-Pd alloy decreased, but were the same or higher to the Ni-Cr-Be alloy. Cohesive failures of the opaquers were observed. PMID:1325930

  3. Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis

    SciTech Connect

    Yang, S T; Matthews, M J; Elhadj, S; Draggoo, V G; Bisson, S E

    2009-07-07

    In situ spatial and temporal temperature measurements of pristine fused silica surfaces heated with a 10.6 {micro}m CO{sub 2} laser were obtained using an infrared radiation thermometer based on a Mercury Cadmium Telluride (MCT) camera. Laser spot sizes ranged from 250 {micro}m to 1000 {micro}m diameter with peak axial irradiance levels of 0.13 to 16 kW/cm{sup 2}. For temperatures below 2800K, the measured steady-state surface temperature is observed to rise linearly with both increasing beam size and incident laser irradiance. The effective thermal conductivity estimated over this range was approximately 2W/mK, in good agreement with classical calculations based on phonon heat capacities. Similarly, time-dependent temperature measurements up to 2000K yielded thermal diffusivity values which were close to reported values of 7 x 10{sup -7} m{sup 2}/s. Above {approx}2800K, the fused silica surface temperature asymptotically approaches 3100K as laser power is further increased, consistent with the onset of evaporative heat losses near the silica boiling point. These results show that in the laser heating regime studied here, the T{sup 3} temperature dependent thermal conductivity due to radiation transport can be neglected, but at temperatures above 2800K heat transport due to evaporation must be considered. The thermal transport in fused silica up to 2800K, over a range of conditions, can then be adequately described by a linear diffusive heat equation assuming constant thermal properties.

  4. Very high Q measurements on a fused silica monolithic pendulum for use in enhanced gravity wave detectors

    PubMed

    Cagnoli; Gammaitoni; Hough; Kovalik; McIntosh; Punturo; Rowan

    2000-09-18

    We present for the first time the results of very high Q factor measurements for a 2.8 kg fused silica mass suspended by two fused quartz fibers attached by a novel technique for joining fused silica or quartz. The Q for the pendulum mode at 0.93 Hz was (2.3+/-0. 2)x10(7), the highest value demonstrated to date for a mass of this size. By employing such a new suspension system the sensitivity of the gravitational wave detectors currently under construction can be increased up to 1 order of magnitude. PMID:10978077

  5. CO/sub 2/-laser polishing of fused silica surfaces for increased laser damage resistance at 1. 06. mu. m

    SciTech Connect

    Temple, P.A.; Milam, D.; Lowdermilk, W.H.

    1980-04-03

    Bare fused silica surfaces were prepared by subjecting the mechanically polished surface to a rastered cw CO/sub 2/ laser beam. Analysis shows that this processing causes: (a) removal of a uniform layer of fused silica; and (b) a probable re-fusing or healing of existing subsurface fractures. The fused silica removal rate is found to be a function of the laser intensity and scan rate. These surfaces are seen to have very low scatter and to be very smooth. In addition, they have exhibited entrance surface damage thresholds at 1.06 ..mu..m, and 1 nsec, which are substantially above those seen on the mechanically polished surface. When damage does occur, it tends to be at a few isolated points rather than the general uniform damage seen on the mechanicaly polished part. In addition to the damage results, we will discuss an observational technique used for viewing these surfaces which employs dark-field illumination.

  6. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Xin, Qiang; Li, Na; Wang, Jun; Wang, Bo; Li, Guo; Ding, Fei; Jin, Huiliang

    2015-06-01

    Subsurface damage (SSD) is a defect that is inevitably induced during mechanical processes, such as grinding and polishing. This defect dramatically reduces the mechanical strength and the laser damage thresholds of optical elements. Compared with traditional mechanical machining, atmospheric pressure plasma processing (APPP) is a relatively novel technology that induces almost no SSD during the processing of silica-based optical materials. In this paper, a form of APPP, inductively coupled plasma (ICP), is used to process fused silica substrates with fluorocarbon precursor under atmospheric pressure. The surface morphology evolution of ICP-processed substrates was observed and characterized by confocal laser scanning microscope (CLSM), field emission scanning electron microscope (SEM), and atomic force microscopy (AFM). The results show that the roughness evolves with the etching depth, and the roughness evolution is a single-peaked curve. This curve results from the opening and the coalescing of surface cracks and fractures. The coalescence procedure of these microstructures was simulated with two common etched pits on a polished fused silica surface. Understanding the roughness evolution of plasma-processed surface might be helpful in optimizing the optical fabrication chain that contains APPP.

  7. Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics

    NASA Astrophysics Data System (ADS)

    He, Xiang; Zhao, Heng; Wang, Gang; Zhou, Peifan; Ma, Ping

    2016-08-01

    Laser-induced damage in fused silica optics greatly restricts the performances of laser facilities. Gray haze damage, which is always initiated on ceria polished optics, is one of the most important damage morphologies in fused silica optics. In this paper, the laser-induced gray haze damages of four fused silica samples polished with CeO2, Al2O3, ZrO2, and colloidal silica slurries are investigated. Four samples all present gray haze damages with much different damage densities. Then, the polishing-induced contaminant and subsurface damages in four samples are analyzed. The results reveal that the gray haze damages could be initiated on the samples without Ce contaminant and are inclined to show a tight correlation with the shallow subsurface damages.

  8. Laser induced damage of fused silica polished optics due to a droplet forming organic contaminant.

    PubMed

    Bien-Aimé, Karell; Néauport, Jérome; Tovena-Pecault, Isabelle; Fargin, Evelyne; Labrugère, Christine; Belin, Colette; Couzi, Michel

    2009-04-20

    We report on the effect of organic molecular contamination on single shot laser induced damage density at the wavelength of 351 nm, with a 3 ns pulse length. Specific contamination experiments were made with dioctylphthalate (DOP) in liquid or gaseous phase, on the surface of fused silica polished samples, bare or solgel coated. Systematic laser induced damage was observed only in the case of liquid phase contamination. Different chemical and morphological characterization methods were used to identify and understand the damage process. We demonstrate that the contaminant morphology, rather than its physicochemical nature, can be responsible for the decrease of laser induced damage threshold of optics. PMID:19381171

  9. Dimensional stability of fused silica, Invar, and several ultralow thermal expansion materials

    NASA Technical Reports Server (NTRS)

    Berthold, J. W., III; Jacobs, S. F.; Norton, M. A.

    1976-01-01

    A method is developed for testing the long-term dimensional stability of an iodine-stabilized He-Ne laser, using a technique whereby thermal expansion coefficients are measured by forming a Fabry-Perot etalon from the sample and monitoring the optical resonant frequencies with tunable sidebands impressed on a laser beam from a frequency-stabilized He-Ne laser. A change of 1 ppm over a 3-yr period on the part of fused silica dimensions and the differential thermal expansion of Invar LR-35 and Super Invar materials are noted. The method is of interest for the metrology of extremely stable structures such as telescopes and optical resonators.

  10. Role of suprathermal electrons during nanosecond laser energy deposit in fused silica

    SciTech Connect

    Grua, P.; Hébert, D.; Lamaignère, L.; Rullier, J.-L.

    2014-08-25

    An accurate description of interaction between a nanosecond laser pulse and a wide band gap dielectric, such as fused silica, requires the understanding of energy deposit induced by temperature changes occurring in the material. In order to identify the fundamental processes involved in laser-matter interaction, we have used a 1D computational model that allows us to describe a wide set of physical mechanisms and intended for comparison with specially designed “1D experiments.” We have pointed out that suprathermal electrons are very likely implicated in heat conduction, and this assumption has allowed the model to reproduce the experiments.

  11. Subsurface mechanical damage during bound abrasive grinding of fused silica glass

    NASA Astrophysics Data System (ADS)

    Blaineau, P.; André, D.; Laheurte, R.; Darnis, P.; Darbois, N.; Cahuc, O.; Neauport, J.

    2015-10-01

    The subsurface damage (SSD) introduced during bound abrasive grinding of fused silica glass was measured using a wet etch technique. Various process parameters and grinding configurations were studied. The relation between the SSD depth, the process parameters and forces applied by the grinding wheel on the sample was investigated and compared to a simulation using a discrete element method to model the grinding interface. The results reveal a relation between the SSD depth and the grinding forces normalized by the abrasive concentration. Regarding the creation of the SSD, numerical simulations indicate that only a small fraction of the largest particles in the diamond wheel are responsible for the depth of the damaged layer.

  12. Interferometric measurement of the temperature dependence of an index of refraction: application to fused silica.

    PubMed

    Dupouy, Paul-Edouard; Büchner, Matthias; Paquier, Philippe; Trénec, Gérard; Vigué, Jacques

    2010-02-01

    The light reflected by an uncoated Fabry-Perot etalon presents dark rings which give a very sensitive measurement of the variations of the return optical path in the etalon. By measuring the diameters of these rings as a function of the etalon temperature T, we get a sensitive measurement of the derivative dn/dT of the index of refraction n. We have made this experiment with a fused silica etalon and we have achieved a 2% relative uncertainty on dn/dT, comparable to the uncertainty of the best experiments. PMID:20119019

  13. Growth of laser damage in fused silica: diameter to depth ratio

    SciTech Connect

    Norton, M A; Adams, J J; Carr, C W; Donohue, E E; Feit, M D; Hackel, R P; Hollingsworth, W G; Jarboe, J A; Matthews, M; Rubenchik, A M; Spaeth, M L

    2007-10-29

    Growth of laser initiated damage plays a major role in determining optics lifetime in high power laser systems. Previous measurements have established that the lateral diameter grows exponentially. Knowledge of the growth of the site in the propagation direction is also important, especially so when considering techniques designed to mitigate damage growth, where it is required to reach all the subsurface damage. In this work, we present data on both the diameter and the depth of a growing exit surface damage sites in fused silica. Measured growth rates with both 351 nm illumination and with combined 351 nm and 1054 nm illumination are discussed.

  14. Growth of laser initiated damage in fused silica at 1053 nm

    SciTech Connect

    Norton, M A; Donohue, E E; Hollingsworth, W G; Feit, M D; Rubenchik, A M; Hackel, R P

    2004-11-10

    The effective lifetime of a laser optic is limited by both laser-induced damage and the subsequent growth of laser initiated damage sites. We have measured the growth rate of laser-induced damage on polished fused silica surfaces in 10 torr of air at 1053 nm at 10 ns. The data shows exponential growth in the lateral size of the damage site with shot number above a threshold fluence. The size of the initial damage influences the threshold for growth. We will compare the growth rates for input and output surface damage. Possible reasons for the observed growth behavior are discussed.

  15. Gas bubble formation in fused silica generated by ultra-short laser pulses.

    PubMed

    Cvecek, Kristian; Miyamoto, Isamu; Schmidt, Michael

    2014-06-30

    During processing of glass using ultra-fast lasers the formation of bubble-like structures can be observed in several glass types such as fused silica. Their formation can be exploited to generate periodic gratings in glasses but for other glass processing techniques such as waveguide-writing or glass welding by ultra-fast lasers the bubble formation proves often detrimental. In this work we present experiments and their results in order to gain understanding of the origins and on the underlying formation and transportation mechanisms of the gas bubbles. PMID:24977843

  16. Large-Scale Synthesis and Systematic Photoluminescence Properties of Monolayer MoS2 on Fused Silica.

    PubMed

    Wan, Yi; Zhang, Hui; Zhang, Kun; Wang, Yilun; Sheng, Bowen; Wang, Xinqiang; Dai, Lun

    2016-07-20

    Monolayer MoS2, with fascinating mechanical, electrical, and optical properties, has generated enormous scientific curiosity and industrial interest. Controllable and scalable synthesis of monolayer MoS2 on various desired substrates has significant meaning in both basic scientific research and device application. Recent years have witnessed many advances in the direct synthesis of single-crystalline MoS2 flakes or their polycrystalline aggregates on numerous diverse substrates, such as SiO2-Si, mica, sapphire, h-BN, and SrTiO3, etc. In this work, we used the dual-temperature-zone atmospheric-pressure chemical vapor deposition method to directly synthesize large-scale monolayer MoS2 on fused silica, the most ordinary transparent insulating material in daily life. We systematically investigated the photoluminescence (PL) properties of monolayer MoS2 on fused silica and SiO2-Si substrates, which have different thermal conductivity coefficients and thermal expansion coefficients. We found that there exists a stronger strain on monolayer MoS2 grown on fused silica, and the strain becomes more obvious as temperature decreases. Moreover, the monolayer MoS2 grown on fused silica exhibits the unique trait of a fractal shape with tortuous edges and has stronger adsorbability. The monolayer MoS2 grown on fused silica may find application in sensing, energy storage, and transparent optoelectronics, etc. PMID:27338112

  17. High power laser antireflection subwavelength grating on fused silica by colloidal lithography

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Huang, Jin; Geng, Feng; Liu, Hongjie; Sun, Laixi; Yan, Lianghong; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo

    2016-07-01

    In this study we report on an efficient and simple method to fabricate an antireflection subwavelength grating on a fused silica substrate using two-step reactive ion etching with monolayer polystyrene colloidal crystals as masks. We show that the period and spacing of the obtained subwavelength grating were determined by the initial diameter of polystyrene microspheres and the oxygen ion etching duration. The height of pillar arrays can be adjusted by tuning the second-step fluorine ion etching duration. These parameters are proved to be useful in tailoring the antireflection properties of subwavelength grating using a finite-difference time-domain (FDTD) method and effective medium theory. The subwavelength grating exhibits excellent antireflection properties. The near-field distribution of the SWG which is directly patterned into the substrate material is performed by a 3D-FDTD method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure, which has the potential to promote the ability of anti-laser-induced damage. For 10 ns pulse duration and 1064 nm wavelength, we experimentally determined their laser induced damage threshold to 32 J cm‑2, which is nearly as high as bulk fused silica with 31.5 J cm‑2.

  18. Laser beam shape converter using spatially variable waveplate made by nanogratings inscription in fused silica

    NASA Astrophysics Data System (ADS)

    Gertus, T.; Michailovas, A.; Michailovas, K.; PetrauskienÄ--, V.

    2015-03-01

    In this work we present a beam shaping technique based on a spatially variable phase retardation plate inscribed inside bulk of fused silica glass by femtosecond laser pulses. Formation of self-assembled periodic nanostructures was exploited to fabricate the converter. During the fabrication process we control induced nanogratings orientation and retardance. Combination of a spatially variable waveplate and a polarizer acts as a spatially variable transmission filter. With a converter fabricated to transform an initially Gaussian beam to a flat-top beam we preserve more than 50% of initial laser power. Theoretically, the efficiency of the proposed converter could be up to 70%. The proposed converter with no absorbing elements possesses resistance to optical damage similar to that of fused silica. Additionally, the already-fabricated converter allows for on-the-fly adjustment of the beam shape from flat-top to a shape with a dip in the middle. The shaped beam was tested in a high power picosecond pulse amplifier.

  19. Morphology evolution of fused silica surface during ion beam figuring of high-slope optical components.

    PubMed

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin

    2013-06-01

    Ultra-precision and ultra-smooth surfaces are vitally important for some high performance optical systems. Ion beam figuring (IBF) is a well-established, highly deterministic method for the final precision figuring of extremely high quality optical surfaces, whereas ion sputtering induced smoothing, or roughening for nanoscale surface morphology, strongly depends on the processing conditions. Usually, an improper machining method would arouse the production of nanoscale patterns leading to the coarsening of the optical surface. In this paper, the morphology evolution mechanism on a fused silica surface during IBF of high-slope optical components has been investigated by means of atomic force microscopy. Figuring experiments are implemented on two convex spherical surfaces by using different IBF methods. Both of their surface errors are rapidly reduced to 1.2 nm root mean square (RMS) after removing similar deep material, but their surfaces are characterized with obviously different nanoscale morphologies. The experimental results indicate that the ion incidence angle dominates the microscopic morphology during the IBF process. At near-normal incidence, fused silica achieves an ultra-smooth surface with an RMS roughness value R(q) down to 0.1 nm, whereas nanoscale ripple patterns are observed at a large incidence angle with an R(q) value increasing to more than 0.9 nm. Additionally, the difference of incidence angles on various machined areas would influence the uniformity of surface quality, resulting from the interplay between the smoothing and roughening effects induced by ion sputtering. PMID:23736325

  20. Downstream Intensification Effects Associated with CO2 Laser Mitigation of Fused Silica

    SciTech Connect

    Matthews, M J; Bass, I L; Guss, G M; Widmayer, C C; Ravizza, F L

    2007-10-29

    Mitigation of 351nm laser-induced damage sites on fused silica exit surfaces by selective CO{sub 2} treatment has been shown to effectively arrest the exponential growth responsible for limiting the lifetime of optics in high-fluence laser systems. However, the perturbation to the optical surface profile following the mitigation process introduces phase contrast to the beam, causing some amount of downstream intensification with the potential to damage downstream optics. Control of the laser treatment process and measurement of the associated phase modulation is essential to preventing downstream 'fratricide' in damage-mitigated optical systems. In this work we present measurements of the surface morphology, intensification patterns and damage associated with various CO{sub 2} mitigation treatments on fused silica surfaces. Specifically, two components of intensification pattern, one on-axis and another off-axis can lead to damage of downstream optics and are related to rims around the ablation pit left from the mitigation process. It is shown that control of the rim structure around the edge of typical mitigation sites is crucial in preventing damage to downstream optics.

  1. Molecular dynamics simulation of shock induced ejection on fused silica surface

    SciTech Connect

    Su, Rui; Xiang, Meizhen; Jiang, Shengli; Chen, Jun; Wei, Han

    2014-05-21

    Shock response and surface ejection behaviors of fused silica are studied by using non-equilibrium molecular dynamics combining with the Tersoff potential. First, bulk structure and Hugoniot curves of fused silica are calculated and compared with experimental results. Then, the dynamical process of surface ejection behavior is simulated under different loading velocities ranging from 3.5 to 5.0 km∕s, corresponding to shock wave velocities from 7.1 to 8.8 km∕s. The local atomistic shear strain parameter is used to describe the local plastic deformation under conditions of shock compression or releasing. Our result shows that the shear strain is localized in the bottom area of groove under the shock compression. Surface ejection is observed when the loading velocity exceeds 4.0 km∕s. Meanwhile, the temperature of the micro-jet is ∼5574.7 K, which is close to experiment measurement. Several kinds of structural defects including non-bridging oxygen are found in the bulk area of the sample after ejection.

  2. Time-resolved transmission study of fused silica during laser-induced backside dry etching

    NASA Astrophysics Data System (ADS)

    Smausz, T.; Zalatnai, Z.; Papdi, B.; Csákó, T.; Bor, Zs.; Hopp, B.

    2009-03-01

    Laser-induced backside dry etching (LIBDE) is a promising technique for micro- and nanomachining of transparent materials. Although several experiments have already proved the suitability and effectiveness of the technique, there are several open questions concerning the etching mechanism and the concomitant processes. In this paper time-resolved light transmission investigations of etching process of fused silica are presented. 125 nm thick silver coating was irradiated through the carrying 1 mm thick fused silica plate by single pulses of a nanosecond KrF excimer laser. The applied fluences were 0.38, 0.71 and 1 J/cm 2. During the etching process the irradiated spots were illuminated by an electronically delayed nitrogen laser pumped dye laser. The delay between the pump and probe pulses was varied in the range of 0 ns and 20 μs. It was found that the transmitted probe beam intensity strongly depends on the applied delays and fluences. Scanning electron microscopy and energy dispersive X-ray spectrometry of the etched surface showed the existence of silver droplets and fragments on the illuminated surfaces and silver atoms built into the treated surface layer influencing the transmission behavior of the studied samples.

  3. Formation of conical emission of supercontinuum during filamentation of femtosecond laser radiation in fused silica

    NASA Astrophysics Data System (ADS)

    Kandidov, V. P.; Smetanina, E. O.; Dormidonov, A. E.; Kompanets, V. O.; Chekalin, S. V.

    2011-09-01

    The formation of conical emission of supercontinuum during filamentation of femtosecond laser pulses with central wavelengths in a wide range is studied experimentally, numerically, and analytically. The frequency-angular intensity distribution of the spectral components of conical emission is determined by the interference of supercontinuum emission in a filament of a femtosecond laser pulse. The interference of supercontinuum emission has a general character, exists at different regimes of group velocity dispersion, gives rise to the fine spectral structure after the pulse splitting into subpulses and the formation of a distributed supercontinuum source in an extended filament, and causes the decomposition of the continuous spectrum of conical emission into many high-contrast maxima after pulse refocusing in the filament. In spectroscopic studies with a tunable femtosecond radiation source based on a TOPAS parametric amplifier, we used an original scheme with a wedge fused silica sample. Numerical simulations have been performed using a system of equations of nonlinear-optical interaction of laser radiation under conditions of diffraction, wave nonstationarity, and material dispersion in fused silica. The analytic study is based on the interference model of formation of conical emission by supercontinuum sources moving in a filament.

  4. Formation of conical emission of supercontinuum during filamentation of femtosecond laser radiation in fused silica

    SciTech Connect

    Kandidov, V. P. Smetanina, E. O.; Dormidonov, A. E.; Kompanets, V. O.; Chekalin, S. V.

    2011-09-15

    The formation of conical emission of supercontinuum during filamentation of femtosecond laser pulses with central wavelengths in a wide range is studied experimentally, numerically, and analytically. The frequency-angular intensity distribution of the spectral components of conical emission is determined by the interference of supercontinuum emission in a filament of a femtosecond laser pulse. The interference of supercontinuum emission has a general character, exists at different regimes of group velocity dispersion, gives rise to the fine spectral structure after the pulse splitting into subpulses and the formation of a distributed supercontinuum source in an extended filament, and causes the decomposition of the continuous spectrum of conical emission into many high-contrast maxima after pulse refocusing in the filament. In spectroscopic studies with a tunable femtosecond radiation source based on a TOPAS parametric amplifier, we used an original scheme with a wedge fused silica sample. Numerical simulations have been performed using a system of equations of nonlinear-optical interaction of laser radiation under conditions of diffraction, wave nonstationarity, and material dispersion in fused silica. The analytic study is based on the interference model of formation of conical emission by supercontinuum sources moving in a filament.

  5. Depth profiling of polishing-induced contamination on fused silica surfaces

    SciTech Connect

    Kozlowski, M.R.; Carr, J.; Hutcheon, I,; Torres, R.; Sheehan, L. Camp, D.; Yan, M.

    1997-12-20

    Laser-induced damage on optical surfaces is often associated with absorbing contaminants introduced by the polishing process. This is particularly the case for UV optics. Here secondary ion mass spectroscopy (SIMS) was used to measure depth profiles of finished process contamination on fused silica surfaces. Contaminants detected include the major polishing compound components (Ce or Zr from CeO2 or ZrO2), Al presently largely because of the use of Al2O3 in the final cleaning process (Fe, Cu,Cr) incorporated during the polishing step or earlier grinding steps. Depth profile data typically showed an exponential decay of contaminant concentration to a depth of 100-200 nm. This depth is consistent with a polishing redeposition layers formed during the chemo-mechanical polishing of fused silica. Peak contaminant levels are typically in the 10-100 ppm range, except for Al with exceeds 1000 ppm. A strong correlation has been shown between the presence of a gray haze damage morphology and the use of CeO2 polishing compound. No strong correlation was found however between high levels of Ce, or any other contaminant and the low damage threshold was observed. In fact one of the strongest indications of a correlation is between increased damage thresholds and increased Zr contamination. This suggests that the correlation between redeposition layer and laser damage threshold is not simple an absorbing contaminant issue.

  6. Laser-induced damage initiated on the surface of particle contamination fused silica at 1064nm

    SciTech Connect

    Michlitsch, K.J.

    1998-06-01

    An experimental study was undertaken to quantify the effects of contamination particles on the damage threshold of laser-illuminated fused silica optics and set cleanliness requirements for optics on the beam line of the National Ignition Facility at Lawrence Livermore National Laboratory. Circular contamination particles were sputter-deposited onto fused silica windows which were then illuminated repetitively using a 1064nm laser. A variety of contaminants were tested including metals, oxides, and organics. Tests were conducted with particles on the input and output surfaces of the window, and the morphological features of the damage were very reproducible. A plasma often ignited at the contamination particle; its intensity was dependent upon the mass of the contaminant. Input surface damage was characteristically more severe than output surface damage. The size of the damaged area scaled with the size of the particle. On a few occasions, catastrophic damage (cracking or ablation of the substrate) initiated on the output surface due to contamination particles on either the input or output surface. From damage growth plots, predictions can be made about the severity of damage expected from contamination particles of known size and material.

  7. Invited Article: CO2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions

    NASA Astrophysics Data System (ADS)

    Heptonstall, A.; Barton, M. A.; Bell, A.; Cagnoli, G.; Cantley, C. A.; Crooks, D. R. M.; Cumming, A.; Grant, A.; Hammond, G. D.; Harry, G. M.; Hough, J.; Jones, R.; Kelley, D.; Kumar, R.; Martin, I. W.; Robertson, N. A.; Rowan, S.; Strain, K. A.; Tokmakov, K.; van Veggel, M.

    2011-01-01

    In 2000 the first mirror suspensions to use a quasi-monolithic final stage were installed at the GEO600 detector site outside Hannover, pioneering the use of fused silica suspension fibers in long baseline interferometric detectors to reduce suspension thermal noise. Since that time, development of the production methods of fused silica fibers has continued. We present here a review of a novel CO_2 laser-based fiber pulling machine developed for the production of fused silica suspensions for the next generation of interferometric gravitational wave detectors and for use in experiments requiring low thermal noise suspensions. We discuss tolerances, strengths, and thermal noise performance requirements for the next generation of gravitational wave detectors. Measurements made on fibers produced using this machine show a 0.8% variation in vertical stiffness and 0.05% tolerance on length, with average strengths exceeding 4 GPa, and mechanical dissipation which meets the requirements for Advanced LIGO thermal noise performance.

  8. Invited article: CO2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions.

    PubMed

    Heptonstall, A; Barton, M A; Bell, A; Cagnoli, G; Cantley, C A; Crooks, D R M; Cumming, A; Grant, A; Hammond, G D; Harry, G M; Hough, J; Jones, R; Kelley, D; Kumar, R; Martin, I W; Robertson, N A; Rowan, S; Strain, K A; Tokmakov, K; van Veggel, M

    2011-01-01

    In 2000 the first mirror suspensions to use a quasi-monolithic final stage were installed at the GEO600 detector site outside Hannover, pioneering the use of fused silica suspension fibers in long baseline interferometric detectors to reduce suspension thermal noise. Since that time, development of the production methods of fused silica fibers has continued. We present here a review of a novel CO(2) laser-based fiber pulling machine developed for the production of fused silica suspensions for the next generation of interferometric gravitational wave detectors and for use in experiments requiring low thermal noise suspensions. We discuss tolerances, strengths, and thermal noise performance requirements for the next generation of gravitational wave detectors. Measurements made on fibers produced using this machine show a 0.8% variation in vertical stiffness and 0.05% tolerance on length, with average strengths exceeding 4 GPa, and mechanical dissipation which meets the requirements for Advanced LIGO thermal noise performance. PMID:21280809

  9. Monitoring annealing via carbon dioxide laser heating of defect populations in fused silica surfaces using photoluminescence microscopy

    SciTech Connect

    Raman, R N; Matthews, M J; Adams, J J; Demos, S G

    2010-02-01

    Photoluminescence (PL) microscopy and spectroscopy under 266 nm and 355 nm laser excitation are explored as a means of monitoring defect populations in laser-modified sites on the surface of fused silica and their subsequent response to heating to different temperatures via exposure to a CO{sub 2} laser beam. Laser-induced temperature changes were estimated using an analytic solution to the heat flow equation and compared to changes in the PL emission intensity. The results indicate that the defect concentrations decrease significantly with increasing CO{sub 2} laser exposure and are nearly eliminated when the peak surface temperature exceeds the softening point of fused silica ({approx}1900K), suggesting that this method might be suitable for in situ monitoring of repair of defective sites in fused silica optical components.

  10. Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Xu, Mingjin; Dai, Yifan; Zhou, Lin; Shi, Feng; Wan, Wen; Xie, Xuhui; Sui, Tingting

    2016-08-01

    Surface characteristics have great influence on the optical properties especially the laser radiation resistivity of optics. In this paper, the surface characteristics evolutions of fused silica during ion-beam sputtering and their effects on the laser damage performance were investigated. The results show that roughness change is strongly removal depth dependent and a super-smooth surface (0.25 nm RMS) can be obtained by the ion-induced smoothing effect. The concentration of metal impurities (especially Ce element) in subsurface can be effectively decreased after the removal of polishing re-deposition layer. During ion-beam sputtering process, the plastic scratches can be removed while the brittle cracks can be broadened and passivated without increase in the depth direction. Laser damage threshold of fused silica improved by 36% after ion-beam sputtering treatment. Research results have a guiding significance for ion-beam sputtering process technology of fused silica optics.

  11. The effect of high-pressure devitrification and densification on ballistic-penetration resistance of fused silica

    NASA Astrophysics Data System (ADS)

    Avuthu, Vasudeva Reddy

    Despite the clear benefits offered by more advanced transparent materials, (e.g. transparent ceramics offer a very attractive combination of high stiffness and high hardness levels, highly-ductile transparent polymers provide superior fragment-containing capabilities, etc.), ballistic ceramic-glass like fused-silica remains an important constituent material in a majority of transparent impact-resistant structures (e.g. windshields and windows of military vehicles, portholes in ships, ground vehicles and spacecraft) used today. Among the main reasons for the wide-scale use of glass, the following three are most frequently cited: (i) glass-structure fabrication technologies enable the production of curved, large surface-area, transparent structures with thickness approaching several inches; (ii) relatively low material and manufacturing costs; and (iii) compositional modifications, chemical strengthening, and controlled crystallization have been demonstrated to be capable of significantly improving the ballistic properties of glass. In the present work, the potential of high-pressure devitrification and densification of fused-silica as a ballistic-resistance-enhancement mechanism is investigated computationally. In the first part of the present work, all-atom molecular-level computations are carried out to infer the dynamic response and material microstructure/topology changes of fused silica subjected to ballistic impact by a nanometer-sized hard projectile. The analysis was focused on the investigation of specific aspects of the dynamic response and of the microstructural changes such as the deformation of highly sheared and densified regions, and the conversion of amorphous fused silica to SiO2 crystalline allotropic modifications (in particular, alpha-quartz and stishovite). The microstructural changes in question were determined by carrying out a post-processing atom-coordination procedure. This procedure suggested the formation of high-density stishovite (and

  12. Characteristic strength, Weibull modulus, and failure probability of fused silica glass

    NASA Astrophysics Data System (ADS)

    Klein, Claude A.

    2009-11-01

    The development of high-energy lasers has focused attention on the requirement to assess the mechanical strength of optical components made of fused silica or fused quartz (SiO2). The strength of this material is known to be highly dependent on the stressed area and the surface finish, but has not yet been properly characterized in the published literature. Recently, Detrio and collaborators at the University of Dayton Research Institute (UDRI) performed extensive ring-on-ring flexural strength measurements on fused SiO2 specimens ranging in size from 1 to 9 in. in diameter and of widely differing surface qualities. We report on a Weibull statistical analysis of the UDRI data-an analysis based on the procedure outlined in Proc. SPIE 4375, 241 (2001). We demonstrate that (1) a two-parameter Weibull model, including the area-scaling principle, applies; (2) the shape parameter (m~=10) is essentially independent of the stressed area as well as the surface finish; and (3) the characteristic strength (1-cm2 uniformly stressed area) obeys a linear law, σC (in megapascals) ~=160-2.83×PBS (in parts per million per steradian), where PBS characterizes the surface/subsurface ``damage'' of an appropriate set of test specimens. In this light, we evaluate the cumulative failure probability and the failure probability density of polished and superpolished fused SiO2 windows as a function of the biaxial tensile stress, for stressed areas ranging from 0.3 to 100 cm2.

  13. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams

    SciTech Connect

    Bhuyan, M. K.; Velpula, P. K.; Colombier, J. P.; Olivier, T.; Faure, N.; Stoian, R.

    2014-01-13

    We report single-shot, high aspect ratio nanovoid fabrication in bulk fused silica using zeroth order chirp-controlled ultrafast laser Bessel beams. We identify a unique laser pulse length and energy dependence of the physical characteristics of machined structures over which nanovoids of diameter in the range 200–400 nm and aspect ratios exceeding 1000 can be fabricated. A mechanism based on the axial energy deposition of nonlinear ultrashort Bessel beams and subsequent material densification or rarefaction in fused silica is proposed, intricating the non-diffractive nature with the diffusing character of laser-generated free carriers. Fluid flow through nanochannel is also demonstrated.

  14. Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm

    SciTech Connect

    Burnham, A. K.; Cordillot, C.; Fornier, A.; Genin, F. Y.; Rubenchick, A. M.; Schirmann, D.; Yoshiyama, J.

    1998-07-28

    Fused silica windows were artificially contaminated to estimate the resistance of target chamber debris shields against laser damage during NIF operation. Uniform contamination thin films (1 to 5 nm thick) were prepared by sputtering various materials (Au, Al, Cu, and B4C). The loss of transmission of the samples was first measured. They were then tested at 355 nm in air with an 8-ns Nd:YAG laser. The damage morphologies were characterized by Nomarski optical microscopy and SEM. Both theory and experiments showed that metal contamination for films as thin as 1 nm leads to a substantial loss of transmission. The laser damage resistance dropped very uniformly across the entire surface (e.g. 6 J/cm2 for 5 nm of Cu). The damage morphology characterization showed that contrary to clean silica, metal coated samples did not produce pits on the surface. B4C coated silica, on the other hand, led to a higher density of such damage pits. A model for light absorption in the thin film was coupled with a simple heat deposition and diffusion model to perform preliminary theoretical estimates of damage thresholds. The estimates of the loss due to light absorption and reflection pointed out significant .differences between metals (e.g. Al and Au). The damage threshold predictions were in qualitative agreement with experimental measurements.

  15. Effects of silica-coating on surface topography and bond strength of porcelain fused to CAD/CAM pure titanium.

    PubMed

    Fukuyama, Takushi; Hamano, Naho; Ino, Satoshi

    2016-01-01

    The aim of this study was to evaluate the shear bond strength of porcelain fusing to titanium and the effects of surface treatment on surface structure of titanium. In the shear bond strength test, titanium surface treatments were: conventional, silica-coating without bonding agent, and silica-coating with bonding agent. Titanium surface treatments for analysis by the atomic force microscope (AFM) were: polishing, alumina sandblasting and silica-coating. The shear bond strength value of silica-coating with bonding agent group showed significantly higher than that of other groups. In AFM observation results, regular foamy structure which is effective for wetting was only observed in silica-coating. Therefore, this structure might indicate silicon. Silica-coating renders forms a nanoscopic regular foamy structure, involved in superhydrophilicity, to titanium surface, which is markedly different from the irregular surface generated by alumina sandblasting. PMID:27041024

  16. Mitigation of Laser Damage Growth in Fused Silica with a Galvanometer Scanned CO2 Laser

    SciTech Connect

    Bass, I L; Guss, G M; Hackel, R P

    2005-10-28

    At the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL), mitigation of laser surface damage growth on fused silica using single and multiple CO{sub 2} laser pulses has been consistently successful for damage sites whose lateral dimensions are less than 100 {micro}m, but has not been for larger sites. Cracks would often radiate outward from the damage when a CO{sub 2} pulse was applied to the larger sites. An investigation was conducted to mitigate large surface damage sites using galvanometer scanning of a tightly focused CO{sub 2} laser spot over an area encompassing the laser damage. It was thought that by initially scanning the CO{sub 2} spot outside the damage site, radiating crack propagation would be inhibited. Scan patterns were typically inward moving spirals starting at radii somewhat larger than that of the damage site. The duration of the mitigation spiral pattern was {approx}110 ms during which a total of {approx}1.3 J of energy was delivered to the sample. The CO{sub 2} laser spot had a 1/e{sup 2}-diameter of {approx}200 {micro}m. Thus, there was general heating of a large area around the damage site while rapid evaporation occurred locally at the laser spot position in the spiral. A 30 to 40 {micro}m deep crater was typically generated by this spiral with a diameter of {approx}600 {micro}m. The spiral would be repeated until there was no evidence of the original damage in microscope images. Using this technique, damage sites as large as 300 mm in size did not display new damage after mitigation when exposed to fluences exceeding 22 J/cm{sup 2} at 355 nm, 7.5 ns. It was found necessary to use a vacuum nozzle during the mitigation process to reduce the amount of re-deposited fused silica. In addition, curing spiral patterns at lower laser powers were used to presumably ''re-melt'' any re-deposited fused silica. A compact, shearing interferometer microscope was developed to permit in situ measurement of the depth of

  17. Determination of diffusion coefficients of hydrogen in fused silica between 296 and 523 K by Raman spectroscopy and application of fused silica capillaries in studying redox reactions

    USGS Publications Warehouse

    Shang, L.; Chou, I.-Ming; Lu, W.; Burruss, R.C.; Zhang, Y.

    2009-01-01

    Diffusion coefficients (D) of hydrogen in fused silica capillaries (FSC) were determined between 296 and 523 K by Raman spectroscopy using CO2 as an internal standard. FSC capsules (3.25 ?? 10-4 m OD, 9.9 ?? 10-5 m ID, and ???0.01 m long) containing CO2 and H2 were prepared and the initial relative concentrations of hydrogen in these capsules were derived from the Raman peak-height ratios between H2 (near 587 cm-1) and CO2 (near 1387 cm-1). The sample capsules were then heated at a fixed temperature (T) at one atmosphere to let H2 diffuse out of the capsule, and the changes of hydrogen concentration were monitored by Raman spectroscopy after quench. This process was repeated using different heating durations at 296 (room T), 323, 375, 430, 473, and 523 K; the same sample capsule was used repeatedly at each temperature. The values of D (in m2 s-1) in FSC were obtained by fitting the observed changes of hydrogen concentration in the FSC capsule to an equation based on Fick's law. Our D values are in good agreement with the more recent of the two previously reported experimental data sets, and both can be represented by: ln D = - (16.471 ?? 0.035) - frac(44589 ?? 139, RT) (R2 = 0.99991) where R is the gas constant (8.3145 J/mol K), T in Kelvin, and errors at 1?? level. The slope corresponds to an activation energy of 44.59 ?? 0.14 kJ/mol. The D in FSC determined at 296 K is about an order of magnitude higher than that in platinum at 723 K, indicating that FSC is a suitable membrane for hydrogen at temperature between 673 K and room temperature, and has a great potential for studying redox reactions at these temperatures, especially for systems containing organic material and/or sulphur. ?? 2009 Elsevier Ltd.

  18. Detection of subsurface trace impurity in polished fused silica with biological method.

    PubMed

    Wang, Zhuo; Wang, Lin; Yang, Junhong; Peng, Wenqiang; Hu, Hao

    2014-09-01

    Subsurface damage (SSD), especially photoactive impurities, degrades the performance of high energy optics by reduction in the laser induced damage threshold. As the polishing defects are trace content and lie beneath the surface, they are difficult to detect. We herein present a biological method to measure impurities on polished fused silica, based on the intense inhibiting ability about trace level of ceria on enzyme activity. And the enzyme activity is measured in the individual etching solutions of a sequential etching process. Results show that detectability of the biological method satisfies the needs of trace impurity detection with low cost and simple apparatus. Furthermore ceria can be used to tag SSD in lapped and polished optics. PMID:25321508

  19. Scattering analysis for random antireflective structures on fused silica in the ultraviolet.

    PubMed

    Zhao, Jiaoling; Qi, Hongji; Wang, Hu; He, Hongbo; Zhang, Weili

    2015-11-15

    Random antireflective structures are fabricated on fused silica by the thermal dewetting process and reactive ion etching, which shows a broadband antireflective effect over the whole visible wavelength. However, the transmittance in the ultraviolet is limited by the scattering from the etched structures. A graded refractive index model ignoring the scattering in the visible range is applied to extract the etched profile. Then the Lubachevsky-Stillinger algorithm is used to reconstruct the random antireflective structures with the extracted profile. Bidirectional scattering distribution for the reconstructed structures is simulated with the finite-difference time-domain method, which indicates the importance of transmissive scattering the scattering directivity. The scattering directivity is explained well with an effective grating model. The period of the effective grating can guide the prepared technique in the ultraviolet. PMID:26565826

  20. Structural modifications in fused silica induced by ultraviolet fs laser filaments

    NASA Astrophysics Data System (ADS)

    Zergioti, I.; Kyrkis, K. D.; Papazoglou, D. G.; Tzortzakis, S.

    2007-07-01

    It is shown that the tight focusing of short ultraviolet laser pulses (248 nm, 450 fs) in the bulk of high bandgap transparent solids (fused silica) can result in structural modifications in the material. These can vary from small changes of the refractive index to birefringence, cracks and voids. This restructuring of the medium is due to the high laser intensities attained, and the plasma that is generated through multi-photon processes. The restructuring comes in the form of a string, which is the result of the nonlinear propagation of the laser beam in the medium as a self-trapped filament. We resume the conditions for the generation of the different types of modifications and comment on the temporal evolution and the role of the plasma strings at the trail of the light filaments.

  1. Sub-picosecond ultraviolet laser filamentation-induced bulk modifications in fused silica

    NASA Astrophysics Data System (ADS)

    Papazoglou, D. G.; Zergioti, I.; Tzortzakis, S.; Sgouros, G.; Maravelias, G.; Christopoulos, S.; Fotakis, C.

    2005-07-01

    We present experiments with sub-picosecond ultraviolet laser pulses (248 nm, 450 fs) tightly focused in the bulk of fused-silica samples. The high laser intensities attained generate plasma through multi-photon absorption and electron avalanche processes in the bulk of the material. Depending on the initial experimental conditions three distinct types of structural changes in the material are observed, from small changes of the refractive index to birefringence, and even cracks and voids. We also observe the creation of micro-channels, up to 115 μm in length, inside the material due to self-guiding and filamentation of the laser pulses in the transparent material. The selective change of the refractive index is a promising method for the fabrication of photonic structures such as waveguides and three-dimensional integrated optical devices.

  2. Influence of temperature on period of torsion pendulum with a high-Q fused silica fiber

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Wu, Wei-Huang; Shao, Cheng-Gang; Li, Qing; Liu, Jian-Ping; Zhan, Wen-Ze; Wang, Dian-Hong

    2015-09-01

    Due to the high-Q fused silica fiber's extreme sensitivity to temperature change, the period estimation of torsion pendulum with high precision depends on the effective correction of the thermoelastic effect. In the measurement of G with the time-of-swing method, we analyze the complex relation between temperature and the pendulum's period and propose a developed method to find the shear thermoelasticity coefficient as well as isolate the influence of temperature on period alone. The result shows that the shear thermoelasticity coefficient is 101(2) × 10-6/∘C, the resultant correction to Δ(ω2) is 9.16(0.18) ppm, and the relative uncertainty to G is less than 1 ppm.

  3. Fused-silica sandwiched three-port grating under second Bragg angle incidence

    NASA Astrophysics Data System (ADS)

    Li, Hongtao; Wang, Bo; Pei, Hao; Chen, Li; Lei, Liang; Zhou, Jinyun

    2016-05-01

    The fused-silica sandwiched three-port grating under second Bragg angle incidence is presented with operation in transmission. To obtain a highly-efficient three-port grating for a working wavelength of 800 nm, the grating depth and period should be optimized by using rigorous coupled-wave analysis. With the optimized different three-port grating depths and periods, both TE-polarized and TM-polarized waves can be diffracted into three orders with nearly 33% efficiency for the given duty cycle of 0.6. Based on the grating parameters of numerical optimization, modal method may be employed to explain the physical mechanism of the beam propagation in the grating and analyze the splitting behavior. For the sandwiched three-port grating, it is feasible that the diffraction efficiencies can be enhanced for both TE and TM polarizations.

  4. Generation of laser-induced periodic surface structures on transparent material-fused silica

    NASA Astrophysics Data System (ADS)

    Schwarz, Simon; Rung, Stefan; Hellmann, Ralf

    2016-05-01

    We report on a comparison between simulated and experimental results for the generation of laser-induced periodic surface structures with low spatial frequency on dielectrics. Using the established efficacy factor theory extended by a Drude model, we determine the required carrier density for the generation of low spatial frequency LIPSS (LSFL) and forecast their periodicity and orientation. In a subsequent calculative step, we determine the fluence of ultrashort laser pulses necessary to excite this required carrier density in due consideration of the pulse number dependent ablation threshold. The later calculation is based on a rate equation including photo- and avalanche ionization and derives appropriate process parameters for a selective generation of LSFL. Exemplarily, we apply this approach to the generation of LSFL on fused silica using a 1030 nm femtosecond laser. The experimental results for the orientation and spatial periodicity of LSFL reveal excellent agreement with the simulation.

  5. Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica

    SciTech Connect

    Shi, Xuesong; Jiang, Lan; Li, Xin Zhang, Kaihu; Yu, Dong; Yu, Yanwu; Lu, Yongfeng

    2014-07-21

    The dependence of periodic structures and ablated areas on temporal pulse shaping is studied upon irradiation of fused silica by femtosecond laser triple-pulse trains. Three types of periodic structures can be obtained by using pulse trains with designed pulse delays, in which the three-dimensional nanopillar arrays with ∼100–150 nm diameters and ∼200 nm heights are first fabricated in one step. These nanopillars arise from the break of the ridges of ripples in the upper portion, which is caused by the split of orthogonal ripples in the bottom part. The localized transient electron dynamics and corresponding material properties are considered for the morphological observations.

  6. Numerical model for light propagation and light intensity distribution inside coated fused silica capillaries

    NASA Astrophysics Data System (ADS)

    Piasecki, Tomasz; Macka, Mirek; Paull, Brett; Brabazon, Dermot

    2011-07-01

    Numerical simulations of light propagation through capillaries have been reported to a limited extent in the literature for uses such as flow-cell design. These have been restricted to prediction of light path for very specific cases to date. In this paper, a new numerical model of light propagation through multi-walled cylindrical systems, to represent coated and uncoated capillaries is presented. This model allows for light ray paths and light intensity distribution within the capillary to be predicted. Macro-scale (using PMMA and PC cylinders) and micro-scale (using PTFE coated fused silica capillaries) experiments were conducted to validate the model's accuracy. These experimental validations have shown encouragingly good agreement between theoretical predictions and measured results, which could allow for optimisation of associated regions for monolith synthesis and use in fluidic chromatography, optical detection systems and flow cells for capillary electrophoresis and flow injection analysis.

  7. Depth profiling of sol-gel multilayers on fused silica using dynamic SIMS and SNMS

    NASA Astrophysics Data System (ADS)

    Bazin, Nicholas J.; Andrew, James E.; McInnes, Hazel A.; Porter, K. J.; Morris, A. J.

    1999-07-01

    Depth profiling using Dynamic Secondary Ion Mass Spectroscopy through multilayer coatings on fused silica substrates has revealed the effect of increasing the number of layers in the stack. Results are presented for both spin and dip coated multilayers and a significant difference in the interfacial boundary is seen between the two processes. Individual layer thicknesses were estimated using this technique and compared to values gained from UV-Visible spectroscopy. Depth profiling using SNMS of a thick 2-layer system also revealed the thickness of the layers and an indication of the intermixing between them. These measurements agreed well with UV-Vis data. A comparison between these depth-profiling techniques and previous work using AES/XPS depth profiling is discussed.

  8. Diffractive control of 3D multifilamentation in fused silica with micrometric resolution.

    PubMed

    Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Doñate-Buendía, Carlos; Mínguez-Vega, Gladys; Lancis, Jesús

    2016-07-11

    We show that a simple diffractive phase element (DPE) can be used to manipulate at will the positions and energy of multiple filaments generated in fused silica under femtosecond pulsed illumination. The method allows obtaining three-dimensional distributions of controlled filaments whose separations can be in the order of few micrometers. With such small distances we are able to study the mutual coherence among filaments from the resulted interference pattern, without needing a two-arm interferometer. The encoding of the DPE into a phase-only spatial light modulator (SLM) provides an extra degree of freedom to the optical set-up, giving more versatility for implementing different DPEs in real time. Our proposal might be particularly suited for applications at which an accurate manipulation of multiple filaments is required. PMID:27410807

  9. Laser Damage Growth in Fused Silica with Simultaneous 351 nm and 1053 nm irradiation

    SciTech Connect

    Norton, M A; Carr, A V; Carr, C W; Donohue, E E; Feit, M D; Hollingsworth, W G; Liao, Z; Negres, R A; Rubenchik, A M; Wegner, P J

    2008-10-24

    Laser-induced growth of optical damage often determines the useful lifetime of an optic in a high power laser system. We have extended our previous work on growth of laser damage in fused silica with simultaneous 351 nm and 1053 nm laser irradiation by measuring the threshold for growth with various ratios of 351 nm and 1053 nm fluence. Previously we reported that when growth occurs, the growth rate is determined by the total fluence. We now find that the threshold for growth is dependent on both the magnitude of the 351 nm fluence as well as the ratio of the 351 nm fluence to the 1053 nm fluence. Furthermore, the data suggests that under certain conditions the 1053 nm fluence does not contribute to the growth.

  10. Reduction of damage initiation density in fused silica optics via UV laser conditioning

    DOEpatents

    Peterson, John E.; Maricle, Stephen M.; Brusasco, Raymond M.; Penetrante, Bernardino M.

    2004-03-16

    The present invention provides a method for reducing the density of sites on the surface of fused silica optics that are prone to the initiation of laser-induced damage, resulting in optics which have far fewer catastrophic defects and are better capable of resisting optical deterioration upon exposure for a long period of time to a high-power laser beam having a wavelength of about 360 nm or less. The initiation of laser-induced damage is reduced by conditioning the optic at low fluences below levels that normally lead to catastrophic growth of damage. When the optic is then irradiated at its high fluence design limit, the concentration of catastrophic damage sites that form on the surface of the optic is greatly reduced.

  11. Dependence of growth rate of quartz in fused silica on pressure and impurity content

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Hays, J. F.; Turnbull, D.

    1980-01-01

    The effects of pressure, temperature, and some variations in impurity content on the growth rate u of quartz into fused silica were measured. Under all conditions the growth rate was interface controlled and increased exponentially with pressure with an activation volume averaging -21.2 cu cm/mole. The activation enthalpy for all specimens is extrapolated to a zero pressure value of 64 kcal/mole, within the experimental uncertainty. At a given stoichiometry the effect of hydroxyl content on growth rate is described entirely by a linear term C(OH) in the prefactor of the equation for the growth rate. The effect of chlorine impurity can be described similarly. Also u is increased as the ideal stoichiometry is approached from the partially reduced state.

  12. Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica

    SciTech Connect

    Milam, D.

    1998-01-01

    The literature describes more than 30 measurements, at wavelengths between 249 and 1550 nm, of the absolute value of the nonlinear refractive-index coefficient of fused silica. Results of these experiments were assessed and best currently available values were selected for the wavelengths of 351, 527, and 1053 nm. The best values are (3.6{plus_minus}0.64){times}10{sup {minus}16} cm{sup 2}/W at 351 nm, (3.0{plus_minus}0.35){times}10{sup {minus}16} cm{sup 2}/W at 527 nm, and (2.74{plus_minus}0.17){times}10{sup {minus}16} cm{sup 2}/W at 1053 nm. {copyright} 1998 Optical Society of America

  13. Unified beam splitter of fused silica grating under the second Bragg incidence.

    PubMed

    Sun, Zhumei; Zhou, Changhe; Cao, Hongchao; Wu, Jun

    2015-11-01

    A unified design for a 1×2 beam splitter of dielectric rectangular transmission gratings under the second Bragg incidence is theoretically investigated for TE- and TM-polarized light. The empirical equations of the relative grating parameters (ratio of the absolute one to incidence wavelength) for this design are also obtained with the simplified modal method (SMM). The influences of polarization of incident light and relative grating parameters on the performance of the beam splitter are thoroughly studied based on the SMM and rigorous coupled-wave analysis. Two specific gratings are demonstrated with an even split and high diffraction efficiency (>94% for TE polarization and >97% for the TM counterpart). The unified profiles of the 1×2 beam splitter are independent from the incidence wavelength since the refractive index of fused silica is roughly a constant over a wide range of wavelengths, which should be promising for future applications. PMID:26560909

  14. Evaluation and analysis of polished fused silica subsurface quality by the nanoindenter technique

    SciTech Connect

    Ma Bin; Shen Zhengxiang; He Pengfei; Sha Fei; Wang Chunliang; Wang Bin; Ji Yiqin; Liu Huasong; Li Weihao; Wang Zhanshan

    2011-03-20

    We evaluate the subsurface quality of polished fused silica samples using the nanoindenter technique. Two kinds of samples, consisting of hundreds of nanometers and micrometers of subsurface damage layers, are fabricated by controlling the grinding and polishing processes, and the subsurface quality has been verified by the chemical etching method. Then several nanoindentation experiments are performed using the Berkovich tip to investigate the subsurface quality. Some differences are found by relative measurements in terms of the relationship between the total penetration and the peak load on the surfaces, the modulus calculated over the defined depths and from unload, and the indented morphology at a constant load near the surface collapse threshold. Finally, the capabilities of such a mechanical method for detecting subsurface flaws are discussed and analyzed.

  15. Influence of temperature on period of torsion pendulum with a high-Q fused silica fiber.

    PubMed

    Luo, Jie; Wu, Wei-Huang; Shao, Cheng-Gang; Li, Qing; Liu, Jian-Ping; Zhan, Wen-Ze; Wang, Dian-Hong

    2015-09-01

    Due to the high-Q fused silica fiber's extreme sensitivity to temperature change, the period estimation of torsion pendulum with high precision depends on the effective correction of the thermoelastic effect. In the measurement of G with the time-of-swing method, we analyze the complex relation between temperature and the pendulum's period and propose a developed method to find the shear thermoelasticity coefficient as well as isolate the influence of temperature on period alone. The result shows that the shear thermoelasticity coefficient is 101(2) × 10(-6)/°C, the resultant correction to Δ(ω(2)) is 9.16(0.18) ppm, and the relative uncertainty to G is less than 1 ppm. PMID:26429460

  16. Open tubular capillary electrochromatography migration behavior of enkephalins in etched chemically modified fused silica capillaries.

    PubMed

    Pesek, Joseph J; Matyska, Maria T; Velpula, Sunandini

    2006-09-01

    Fused silica capillaries for use in electrophoretic analyses are etched with ammonium bifluoride in the presence of a second inorganic salt (CuCl(2), CrCl(3), NaNO(3), or (NH(4))(2)CO(3)). The effects of the presence of these inorganic components in the surface matrix on the electromigration behavior of enkephalins are evaluated. Resolution, efficiency and peak shape are used to compare the various columns. In some cases the etched surface is then modified by the addition of an octadecyl moiety using a silanization/hydrosilation procedure. The surface properties of the etched capillaries can also be evaluated by electroosmotic flow measurements. RSDs of migration times under identical experimental conditions were <1%. PMID:16720028

  17. Influence of incidence angle and polarization state on the damage site characteristics of fused silica.

    PubMed

    Ma, Bin; Zhang, Yanyun; Ma, Hongping; Jiao, Hongfei; Cheng, Xinbin; Wang, Zhanshan

    2014-02-01

    The influence of the incidence angle and polarization state on the damage site characteristics of fused silica under 355 nm laser irradiation was investigated. The initial damage morphologies and growth behaviors of the damage sites on the exit surface at incidence angles of 0° and 45° as well as in P and S states were compared to investigate the effects of various angles and polarization states. The relationships between the size of the initial damage sites and the laser fluence, as well as the growth threshold, were discussed. The damage morphologies of the craters and cracks at different incidence angles and polarization states were then investigated. Finally, the growth characteristics of the lateral size, crater depth, and crack depth were compared and analyzed. PMID:24514256

  18. Fabrication of 250-nm-hole arrays in glass and fused silica by UV laser ablation

    NASA Astrophysics Data System (ADS)

    Karstens, R.; Gödecke, A.; Prießner, A.; Ihlemann, J.

    2016-09-01

    Parallel nanohole drilling in glass using an ArF excimer laser (193 nm) is demonstrated. For the first time, hole arrays with 500 nm pitch and individual holes with 250 nm diameter and more than 100 nm depth are fabricated by phase mask imaging using a Schwarzschild objective. Holes in soda lime glass are drilled by direct ablation; fused silica is processed by depositing a SiOx-film on SiO2, patterning the SiOx by ablation, and finally oxidizing the remaining SiOx to SiO2. Thermally induced ordered dewetting of noble metal films deposited on such templates may be used for the fabrication of plasmonic devices.

  19. Disposable Polydimethylsiloxane (PDMS)-Coated Fused Silica Optical Fibers for Sampling Pheromones of Moths

    PubMed Central

    Lievers, Rik; Groot, Astrid T.

    2016-01-01

    In the past decades, the sex pheromone composition in female moths has been analyzed by different methods, ranging from volatile collections to gland extractions, which all have some disadvantage: volatile collections can generally only be conducted on (small) groups of females to detect the minor pheromone compounds, whereas gland extractions are destructive. Direct-contact SPME overcomes some of these disadvantages, but is expensive, the SPME fiber coating can be damaged due to repeated usage, and samples need to be analyzed relatively quickly after sampling. In this study, we assessed the suitability of cheap and disposable fused silica optical fibers coated with 100 μm polydimethylsiloxane (PDMS) by sampling the pheromone of two noctuid moths, Heliothis virescens and Heliothis subflexa. By rubbing the disposable PDMS fibers over the pheromone glands of females that had called for at least 15 minutes and subsequently extracting the PDMS fibers in hexane, we collected all known pheromone compounds, and we found a strong positive correlation for most pheromone compounds between the disposable PDMS fiber rubs and the corresponding gland extracts of the same females. When comparing this method to volatile collections and the corresponding gland extracts, we generally found comparable percentages between the three techniques, with some differences that likely stem from the chemical properties of the individual pheromone compounds. Hexane extraction of cheap, disposable, PDMS coated fused silica optical fibers allows for sampling large quantities of individual females in a short time, eliminates the need for immediate sample analysis, and enables to use the same sample for multiple chemical analyses. PMID:27533064

  20. Disposable Polydimethylsiloxane (PDMS)-Coated Fused Silica Optical Fibers for Sampling Pheromones of Moths.

    PubMed

    Lievers, Rik; Groot, Astrid T

    2016-01-01

    In the past decades, the sex pheromone composition in female moths has been analyzed by different methods, ranging from volatile collections to gland extractions, which all have some disadvantage: volatile collections can generally only be conducted on (small) groups of females to detect the minor pheromone compounds, whereas gland extractions are destructive. Direct-contact SPME overcomes some of these disadvantages, but is expensive, the SPME fiber coating can be damaged due to repeated usage, and samples need to be analyzed relatively quickly after sampling. In this study, we assessed the suitability of cheap and disposable fused silica optical fibers coated with 100 μm polydimethylsiloxane (PDMS) by sampling the pheromone of two noctuid moths, Heliothis virescens and Heliothis subflexa. By rubbing the disposable PDMS fibers over the pheromone glands of females that had called for at least 15 minutes and subsequently extracting the PDMS fibers in hexane, we collected all known pheromone compounds, and we found a strong positive correlation for most pheromone compounds between the disposable PDMS fiber rubs and the corresponding gland extracts of the same females. When comparing this method to volatile collections and the corresponding gland extracts, we generally found comparable percentages between the three techniques, with some differences that likely stem from the chemical properties of the individual pheromone compounds. Hexane extraction of cheap, disposable, PDMS coated fused silica optical fibers allows for sampling large quantities of individual females in a short time, eliminates the need for immediate sample analysis, and enables to use the same sample for multiple chemical analyses. PMID:27533064

  1. Internal structure of the nanogratings generated inside bulk fused silica by ultrafast laser direct writing

    SciTech Connect

    Sharma, S. P.; Vilar, R.; Oliveira, V.; Herrero, P.

    2014-08-07

    The aim of the present work was to characterize the internal structure of nanogratings generated inside bulk fused silica by ultrafast laser processing and to study the influence of diluted hydrofluoric acid etching on their structure. The nanogratings were inscribed at a depth of 100 μm within fused silica wafers by a direct writing method, using 1030 nm radiation wavelength and the following processing parameters: E = 5 μJ, τ = 560 fs, f = 10 kHz, and v = 100 μm/s. The results achieved show that the laser-affected regions are elongated ellipsoids with a typical major diameter of about 30 μm and a minor diameter of about 6 μm. The nanogratings within these regions are composed of alternating nanoplanes of damaged and undamaged material, with an average periodicity of 351 ± 21 nm. The damaged nanoplanes contain nanopores randomly dispersed in a material containing a large density of defects. These nanopores present a roughly bimodal size distribution with average dimensions for each class of pores 65 ± 20 × 16 ± 8 × 69 ± 16 nm{sup 3} and 367 ± 239 × 16 ± 8 × 360 ± 194 nm{sup 3}, respectively. The number and size of the nanopores increases drastically when an hydrofluoric acid treatment is performed, leading to the coalescence of these voids into large planar discontinuities parallel to the nanoplanes. The preferential etching of the damaged material by the hydrofluoric acid solution, which is responsible for the pores growth and coalescence, confirms its high defect density.

  2. Ultrafast laser induced electronic and structural modifications in bulk fused silica

    SciTech Connect

    Mishchik, K.; D'Amico, C.; Velpula, P. K.; Mauclair, C.; Boukenter, A.; Ouerdane, Y.; Stoian, R.

    2013-10-07

    Ultrashort laser pulses can modify the inner structure of fused silica, generating refractive index changes varying from soft positive (type I) light guiding forms to negative (type II) values with void presence and anisotropic sub-wavelength modulation. We investigate electronic and structural material changes in the type I to type II transition via coherent and incoherent secondary light emission reflecting free carrier behavior and post-irradiation material relaxation in the index change patterns. Using phase contrast microscopy, photoluminescence, and Raman spectroscopy, we determine in a space-resolved manner defect formation, redistribution and spatial segregation, and glass network reorganization paths in conditions marking the changeover between type I and type II photoinscription regimes. We first show characteristic patterns of second harmonic generation in type I and type II traces, indicating the collective involvement of free carriers and polarization memory. Second, incoherent photoemission from resonantly and non-resonantly excited defect states reveals accumulation of non-bridging oxygen hole centers (NBOHCs) in positive index domains and oxygen deficiency centers (ODCs) with O{sub 2}{sup −} ions segregation in void-like regions and in the nanostructured domains, reflecting the interaction strength. Complementary Raman investigations put into evidence signatures of the different environments where photo-chemical densification (bond rearrangements) and mechanical effects can be indicated. NBOHCs setting in before visible index changes serve as precursors for subsequent compaction build-up, indicating a scenario of cold, defect-assisted densification for the soft type I irradiation regime. Additionally, we observe hydrodynamic effects and severe bond-breaking in type II zones with indications of phase transition. These observations illuminate densification paths in fused silica in low power irradiation regimes, and equally in energetic ranges

  3. Efficiency of magnetorheological fluid finishing on the elimination of defects in fused silica optics

    NASA Astrophysics Data System (ADS)

    Catrin, R.; Taroux, D.; Cormont, P.; Maunier, C.; Corbineau, T.; Razé, G.; Néauport, J.

    2013-09-01

    The MegaJoule laser being constructed at the CEA near Bordeaux (France) is designed to focus more than 1 MJ of energy of UV light, on a millimeter scale target in the centre of an experiment chamber. After amplification and transport at the wavelength of 1053 nm, frequency conversion at 351 nm is done with KH2PO4 crystals. The final optic assembly of this system is made up of large fused silica optics, working in transmission, that are used to convey, focus or shape the laser beam. When exposed to fluences of some joules per square centimeter at 351 nm within nanosecond pulse duration, fused silica optics can exhibit localized damage. Damage sites grow exponentially after further laser exposition and therefore dramatically limit the optic lifetime. The nature of the surface finishing process has been established to determine the lifetime of these components under high UV fluences (i.e. more than 5 J/cm2 for 3 ns pulses). Being able to reduce or eliminate the damage initiators such as subsurface cracks present in subsurface damage (SSD) layer of conventionally polished optical components aims this study. Magneto-rheological fluid finishing (MRF) is chosen as a final polishing tool to remove layers of material without inducing further damages. MRF enables to process optics with very small normal stresses applied to the surface during material removal and thus permits the elimination of the residual subsurface cracks. This study offers a better understanding of the efficiency of MRF polishing on the elimination of subsurface cracks in SSD layers.

  4. Laser-induced damage and fracture in fused silica vacuum windows

    NASA Astrophysics Data System (ADS)

    Campbell, John H.; Hurst, Patricia A.; Heggins, Dwight D.; Steele, William A.; Bumpas, Stanley E.

    1997-05-01

    Laser induced damage, that initiates catastrophic fracture, has been observed in large, fused silica lenses that also serve as vacuum barriers in high-fluence positions on the Nova and Beamlet lasers. In nearly all cases damage occurs on the vacuum side of the lens. The damage can lead to catastrophic crack growth if the flaw size exceeds the critical flaw size for SiO2. If the elastic stored energy in the lens in high enough, the lens will fracture into many pieces resulting in an implosion. The consequences of such an implosion can be severe, particularly for large vacuum systems. Three parameters control the degree of fracture in the vacuum barrier window: (1) the elastic stored energy, (2) the ratio of the window thickness to flaw depth and (3) secondary crack propagation. Fracture experiments have ben carried our on 15-cm diameter fused silica windows that contain surface flaws caused by laser damage. The results of these experiments, combined with data from window failures on Beamlet and Nova have been sued to develop design criteria for a 'fail-safe' lens. Specifically the window must be made thick enough such that the peak tensile stress is less than 500 psi and the corresponding ratio of the thickness to critical flaw size is less than 6. Under these conditions a properly mounted window, upon failure, will break into only tow pieces and will not implode. One caveat to these design criteria is that the air leak through the window before secondary crack growth occurs. Finite element stress calculations of a window before and immediately following fracture into two pieces show that the elastic stored energy is redistributed if the fragments 'lock' in place and thereby bridge the opening. In such cases, the peak stresses at the flaw site can increase leading to further crack growth.

  5. Application of total internal reflection microscopy for laser damage studies on fused silica

    SciTech Connect

    Sheehan, L. M., LLNL

    1997-12-01

    Damage studies show that the majority of damage on ultraviolet grade fused silica initiates at the front or rear surface. The grinding and polishing processes used to produce the optical surfaces of transparent optics play a key role in the development of defects which can ultimately initiate damage. These defects can be on or breaking through the surface or can be sub-surface damage. Total Internal Reflection Microscopy has been documented as a tool for revealing both sub-surface and surface defects in transparent materials. Images taken which compare both Total Internal Reflection Microscopy and Atomic Force Microscopy show that the observed defects can be less than one micron in size. Total Internal Reflection Microscopy has the added benefit of being able to observe large areas (1 square millimeter) with sub-micron detection. Both off-line and in-situ systems have been applied in the Lawrence Livermore National Laboratory`s damage laboratory in order to understand defects in the surface and subsurface of polished fused silica. There is a preliminary indication that TIRM quality can be related to the damage resistance. The in-situ microscope is coupled into a 355 run, 7.5 ns, 10 Hz Nd:YAG laser system in order to study damage occurring at localized scatter sites revealed with the Total Internal Reflection Microscopy method. The tests indicate damage initiating at observed artifacts which have many different morphologies and damage behaviors. Some of the scatter sites and damage morphologies revealed have been related back to the finishing process.

  6. Ultrafast laser induced electronic and structural modifications in bulk fused silica

    NASA Astrophysics Data System (ADS)

    Mishchik, K.; D'Amico, C.; Velpula, P. K.; Mauclair, C.; Boukenter, A.; Ouerdane, Y.; Stoian, R.

    2013-10-01

    Ultrashort laser pulses can modify the inner structure of fused silica, generating refractive index changes varying from soft positive (type I) light guiding forms to negative (type II) values with void presence and anisotropic sub-wavelength modulation. We investigate electronic and structural material changes in the type I to type II transition via coherent and incoherent secondary light emission reflecting free carrier behavior and post-irradiation material relaxation in the index change patterns. Using phase contrast microscopy, photoluminescence, and Raman spectroscopy, we determine in a space-resolved manner defect formation, redistribution and spatial segregation, and glass network reorganization paths in conditions marking the changeover between type I and type II photoinscription regimes. We first show characteristic patterns of second harmonic generation in type I and type II traces, indicating the collective involvement of free carriers and polarization memory. Second, incoherent photoemission from resonantly and non-resonantly excited defect states reveals accumulation of non-bridging oxygen hole centers (NBOHCs) in positive index domains and oxygen deficiency centers (ODCs) with O2- ions segregation in void-like regions and in the nanostructured domains, reflecting the interaction strength. Complementary Raman investigations put into evidence signatures of the different environments where photo-chemical densification (bond rearrangements) and mechanical effects can be indicated. NBOHCs setting in before visible index changes serve as precursors for subsequent compaction build-up, indicating a scenario of cold, defect-assisted densification for the soft type I irradiation regime. Additionally, we observe hydrodynamic effects and severe bond-breaking in type II zones with indications of phase transition. These observations illuminate densification paths in fused silica in low power irradiation regimes, and equally in energetic ranges, characterized by

  7. Etching of fused silica and glass with excimer laser at 351 nm

    NASA Astrophysics Data System (ADS)

    Zimmer, K.; Braun, A.; Böhme, R.

    2003-03-01

    The etching of solid surfaces at the interface to liquids is a new promising method for micro-machining of transparent materials. To extend the method to additional materials the pulsed radiation of a XeF-excimer laser (351 nm) was used for etching different types of glass (Corning Inc.: Pyrex, 7059 and Schott Group: D263, AF45) and fused silica for comparison. The etch rates of the investigated materials increase almost linear at low laser fluences. Threshold fluences for glass as low as 0.5 J/cm 2 and etch rates from 6 to 10 nm per pulse at 1 J/cm 2 have been determined. The etch rate and the threshold fluence depend also on the used liquid, consisting of a solvent (acetone, toluene) and a certain concentration of dissolved pyrene, but only little on the glass type. Due to the low etch rate typically very smooth surfaces are achieved. The surface roughness measured by AFM on Corning 7059-glass at an etch depth of 3.7 μm is as low as 4 nm. Contrary to the other glasses the surface roughness of Pyrex is much higher and dominated by typical arbitrary etch pits with micron dimensions. Comparing the etching of fused silica at a wavelength of 248 and 351 nm the used solution influences both the etch threshold and the etch rate. In accordance to earlier investigations at 248 nm also XeF-laser etching at the interface to an absorbing liquid results in a good surface quality, well defined patterns and almost no debris deposition. Thus, this technique is a good candidate for precise micro-machining applications.

  8. Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers.

    PubMed

    Ye, Hui; Li, Yaguo; Zhang, Qinghua; Wang, Wei; Yuan, Zhigang; Wang, Jian; Xu, Qiao

    2016-04-10

    HF-based (hydrofluoric acid) chemical etching has been a widely accepted technique to improve the laser damage performance of fused silica optics and ensure high-power UV laser systems at designed fluence. Etching processes such as acid concentration, composition, material removal amount, and etching state (etching with additional acoustic power or not) may have a great impact on the laser-induced damage threshold (LIDT) of treated sample surfaces. In order to find out the effects of these factors, we utilized the Taguchi method to determine the etching conditions that are helpful in raising the LIDT. Our results show that the most influential factors are concentration of etchants and the material etched away from the viewpoint of damage performance of fused silica optics. In addition, the additional acoustic power (∼0.6  W·cm-2) may not benefit the etching rate and damage performance of fused silica. Moreover, the post-cleaning procedure of etched samples is also important in damage performances of fused silica optics. Different post-cleaning procedures were, thus, experiments on samples treated under the same etching conditions. It is found that the "spraying + rinsing + spraying" cleaning process is favorable to the removal of etching-induced deposits. Residuals on the etched surface are harmful to surface roughness and optical transmission as well as laser damage performance. PMID:27139869

  9. Hydrolysis of polycarbonate in sub-critical water in fused silica capillary reactor with in situ Raman spectroscopy

    USGS Publications Warehouse

    Pan, Z.; Chou, I.-Ming; Burruss, R.C.

    2009-01-01

    The advantages of using fused silica capillary reactor (FSCR) instead of conventional autoclave for studying chemical reactions at elevated pressure and temperature conditions were demonstrated in this study, including the allowance for visual observation under a microscope and in situ Raman spectroscopic characterization of polycarbonate and coexisting phases during hydrolysis in subcritical water. ?? 2009 The Royal Society of Chemistry.

  10. Preparation of fused-silica columns with phases immobilized by cobalt-60 gamma radiation; application to essential oil analysis

    SciTech Connect

    Hubball, J.A.

    1987-01-01

    Cobalt-60 gamma-radiation was used to immobilize polymeric stationary phases in fused silica capillary columns for gas chromatography. Surface studies of the uncoated fused silica tubing by optical and scanning electron microscopy indicated some irregularities, but overall the tubing maintained its strength and flexibility at dosages up to 25 MRads. A polydimethylsiloxane phase (OV-1) and a polyethylene glycol phase (Carbowax 20 M) were effectively immobilized on the inner surface of fused silica capillary tubing without altering the properties of the phases. The optimum radiation dosage for OV-1 was 7 MRads, while Carbowax 20 M required 25 MRads to immobilize 33% of the coated layer. Fused silica capillary columns prepared with both phases were evaluated for deactivation, efficiency, and thermal stability. Immobilization of Carbowax 20 M extended the low and high temperature limits by 30 C in each direction. Columns prepared in this study were used to analyze the essential oil of Siparuna guianensis. Several key components of the oil were identified by GC/MS and gas chromatographic techniques.

  11. Ion-beam polishing of fused silica substrates for imaging soft x-ray and extreme ultraviolet optics.

    PubMed

    Chkhalo, N I; Churin, S A; Mikhaylenko, M S; Pestov, A E; Polkovnikov, V N; Salashchenko, N N; Zorina, M V

    2016-02-20

    We have studied the surface treatment of polished fused silica by neutralized Ar ions with energy of 500-1500 eV and incidence angles of 0-90°. We found the following regularities: for samples that passed the standard procedure of deep polishing (initial effective roughness σ(eff)∼0.5  nm), the effective roughness decreases to the ultrasmooth level (i.e., σ(eff)∼0.25  nm in the range of spatial frequencies q∈[4.9×10(-2)-63]  μm(-1)). The effect begins to be noticeable at the material removal of 150 nm and reaches saturation at depths of removal greater than 1 μm. For supersmooth samples (σ(eff)<0.3  nm), the effective roughness keeps the initial level at material removal down to tens of micrometers. The optimal ion energy range is 800-1300 eV (maximum smoothing effect); at higher energy some surface roughness degradation is observed. All the smoothing effects are observed at the incidence angle range θ(in)=0-35°. Increasing the ion energy above 1300 eV increases the etching rate by up to 4 μm per hour (J(ion)=0.8  mA/cm2), which allows for deep aspherization of sized substrates. The technique allows for manufacturing the optical elements for extreme ultraviolet and soft x-ray wavelength ranges with a numerical aperture of up to 0.6. PMID:26906575

  12. Laser-induced damage of fused silica at 355 nm initiated at scratches

    NASA Astrophysics Data System (ADS)

    Salleo, Alberto; Genin, Francois Y.; Yoshiyama, J. M.; Stolz, Christopher J.; Kozlowski, Mark R.

    1998-04-01

    Scratches of measured width were produced on the surface of a IV grade fused silica window using a diamond tip. Two scratch morphologies were observed: plastic and brittle. The scratches were irradiated with a 355 nm laser pulse. The laser-induced damage threshold (LIDT) of the unscratched output surface was 15 J/cm2 at 3-ns. The LIDT of the scratched surface as a function of scratch width was then measured for both input and output surface scratches. Input surface scratches of width smaller than 10 micrometers did not influence the LIDT of the silica window. On the output surface, 7 $mUm wide scratches lowered the LIDT by a factor of two. For larger scratches, the LIDT reached an asymptotic value of 5 J/cm2 on both input and output surface. Possible reasons for this LIDT drop could be electric field enhancement in the cracks below the scratch, the presence of contamination particles in the scratch, or the weakening of the material because of existing mechanical flaws.

  13. Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica

    SciTech Connect

    Shen, N; Matthews, M J; Fair, J E; Britten, J A; Nguyen, H T; Cooke, D; Elhadj, S; Yang, S T

    2009-10-30

    Nano- to micrometer-sized surface defects on UV-grade fused silica surfaces are known to be effectively smoothed through the use of high-temperature localized CO{sub 2} laser heating, thereby enhancing optical properties. However, the details of the mass transport and the effect of hydroxyl content on the laser smoothing of defective silica at submicron length scales is still not completely understood. In this study, we examine the morphological evolution of sub-micron, dry-etched periodic surface structures on type II and type III SiO{sub 2} substrates under 10.6 {micro}m CO{sub 2} laser irradiation using atomic force microscopy (AFM). In-situ thermal imaging was used to map the transient temperature field across the heated region, allowing assessment of the T-dependent mass transport mechanisms under different laser-heating conditions. Computational fluid dynamics simulations correlated well with experimental results, and showed that for large effective capillary numbers (N{sub c} > 2), surface diffusion is negligible and smoothing is dictated by capillary action, despite the relatively small spatial scales studied here. Extracted viscosity values over 1700-2000K were higher than the predicted bulk values, but were consistent with the surface depletion of OH groups, which was confirmed using confocal Raman microscopy.

  14. Laser-induced damage morphology in fused silica at 1064 nm in the nanosecond regime

    NASA Astrophysics Data System (ADS)

    Chambonneau, Maxime; Diaz, Romain; Duchateau, Guillaume; Grua, Pierre; Natoli, Jean-Yves; Rullier, Jean-Luc; Lamaignère, Laurent

    2014-10-01

    The morphology of laser-induced damage sites at the exit surface of fused silica is tightly correlated to the mode composition of the nanosecond laser pulses at 1064 nm. In the single longitudinal mode (SLM) configuration, a molten and fractured central zone is surrounded by a funnel-shaped surface modification. Ring patterns surround the damage sites when these are initiated by multiple longitudinal modes (MLM) laser pulses. In this last mode configuration, the pulses temporal profiles as well as the damage ring patterns differ from pulse to pulse. The appearance chronology of the rings is found to be closely related to the temporal shape of the laser pulses. This supports that the damage morphology originates from the coupling of a laser-supported detonation wave propagating in air with an ablation mechanism in silica. In our experiments, the propagation speed of the detonation wave reaches about 20 km/s and scales as the cube root of the laser intensity, in good agreement with theory.

  15. Study of laser-induced damage at 1064nm in fused silica samples in vacuum environment

    NASA Astrophysics Data System (ADS)

    Diaz, R.; Chambonneau, M.; Grua, P.; Rullier, J.-L.; Natoli, J.-Y.; Lamaignère, L.

    2015-11-01

    The influence of vacuum on nanosecond laser-induced damage at the exit surface of fused silica components is investigated at 1064 nm. In the present study, as previously observed in air, ring patterns surrounding laserinduced damage sites are systematically observed on a plane surface when initiated by multiple longitudinal modes laser pulses. Compared to air, the printed pattern is clearly more concentrated. The obtained correlation between the damage morphology and the temporal structure of the pulses suggests a laser-driven ablation mechanism resulting in a thorough imprint of energy deposit. The ablation process is assumed to be subsequent to an activation of the surface by hot electrons related to the diffusive expansion of a plasma formed from silica. This interpretation is strongly reinforced with additional experiments performed on an optical grating in vacuum on which damage sites do not show any ring pattern. Qualitatively, in vacuum, the intensity-dependent ring appearance speed V ~ I1/2 is shown to be different than in air where V ~ I1/3 . This demonstrates that the mechanisms of formation of ring patterns are different in vacuum than in air. Moreover, the mechanism responsible of the propagation of the activation front in vacuum is shown to be outdone when experiments are performed in air.

  16. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces

    SciTech Connect

    Suratwala, T I; Miller, P E; Bude, J D; Steele, R A; Shen, N; Monticelli, M V; Feit, M D; Laurence, T A; Norton, M A; Carr, C W; Wong, L L

    2010-02-23

    The effect of various HF-based etching processes on the laser damage resistance of scratched fused silica surfaces has been investigated. Conventionally polished and subsequently scratched fused silica plates were treated by submerging in various HF-based etchants (HF or NH{sub 4}F:HF at various ratios and concentrations) under different process conditions (e.g., agitation frequencies, etch times, rinse conditions, and environmental cleanliness). Subsequently, the laser damage resistance (at 351 or 355 nm) of the treated surface was measured. The laser damage resistance was found to be strongly process dependent and scaled inversely with scratch width. The etching process was optimized to remove or prevent the presence of identified precursors (chemical impurities, fracture surfaces, and silica-based redeposit) known to lead to laser damage initiation. The redeposit precursor was reduced (and hence the damage threshold was increased) by: (1) increasing the SiF{sub 6}{sup 2-} solubility through reduction in the NH4F concentration and impurity cation impurities, and (2) improving the mass transport of reaction product (SiF{sub 6}{sup 2-}) (using high frequency ultrasonic agitation and excessive spray rinsing) away from the etched surface. A 2D finite element crack-etching and rinsing mass transport model (incorporating diffusion and advection) was used to predict reaction product concentration. The predictions are consistent with the experimentally observed process trends. The laser damage thresholds also increased with etched amount (up to {approx}30 {micro}m), which has been attributed to: (1) etching through lateral cracks where there is poor acid penetration, and (2) increasing the crack opening resulting in increased mass transport rates. With the optimized etch process, laser damage resistance increased dramatically; the average threshold fluence for damage initiation for 30 {micro}m wide scratches increased from 7 to 41 J/cm{sup 2}, and the statistical

  17. Accelerated life time testing of fused silica upon ArF laser irradiation

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.; Triebel, W.; Kufert, S.; Natura, U.

    2008-10-01

    We report on two approaches to strongly shorten life time testing of fused silica's absoption degradation upon 193 nm laser irradiation. Both approaches are based on enhancing the two photon absorption (TPA) induced generation of E' and NBOH defects centers in fused silica compared to common marathon test irradiation parameters. For the first approach the irradiation fluence is increased from typical values H<1 mJ/cm2 to H=10 mJ/cm2, therefore increasing the peak laser power for a more efficient TPA process. To avoid microchannel formation in the samples, being a common break-down criterion in marathon tests based on transmission measurements, a small sample of 10 mm length is irradiated and the absorption is measured directly by the laser induced deflection (LID) technique. For comparing the experimental results with a real marathon test at H=1.3 mJ/cm2, an experimental grade sample with very low hydrogen content, i.e. fast absorption changes due to reduced defect annealing, is choosen. During the fluence dependent absorption measurements after the prolonged irradiation at H=10 mJ/cm2 it is found, that both experiments reveal very comparable absorption data for H=1.3 mJ/cm2. For investigating standard material with high hydrogen content, i.e. slow absorption increase due to effective defect annealing, a sample is cooled down to -180 °C in a special designed experimental setup and irradiated at a laser fluence H=10 mJ/cm2. To control the increase of the defect density and to determine the end of the TPA induced defect generation, the fluorescence at 650 nm of the generated NBOH centers is monitored. Before and after the low temperature experiment, the absorption coefficient is measured directly by LID technique. By applying both, elevated laser fluence and low temperature, the ArF laser induced generation of E' and NBOH centers in the investigated sample is terminated after about 1.2*107 laser pulses. Therefore, a strong reduction of irradiation time is achieved

  18. Transmissivity Reduction Of Fracture Due To Silica Precipitation Is Faster For Variable Aperture

    NASA Astrophysics Data System (ADS)

    Pandey, S. N.; Chaudhuri, A.; Kelkar, S.; Rajaram, H.

    2013-12-01

    Geothermal energy have certain ecological benefits as it does not disturb the local ecosystem. It is also able to generate power with minimum operating cost. The extraction of geothermal energy has grown significantly in the past few decades. One of the major challenges for reservoir scale modeling of geothermal system is to describe the exact configuration of aperture fields. Hence the sustainability of geothermal power plant and future estimation of power production is affected during continuous evolution by geochemical and geomechanical processes. The formation of scale due to precipitation of silica in the wells and the fault creates major problem in the sustainability of the geothermal heat extraction. In this study we simulated the reduction of fracture transmissivity due to precipitation by 3-D simulation of coupled thermo-hydro-chemical (THC) processes a simple geothermal system with a horizontal fault, which connects the injection and production wells to facilitate the cold water circulation. The variability of aperture within the fracture/fault is more realistic and it is known that the reduction of effective transmissivity is accelerated by the heterogeneity of the aperture field. The objective of the study is to understand the results of aperture field heterogeneity on the power production. For comparison among different heterogeneous cases, the initial effective transmissivity has been taken same for each. Using numerical simulation of flow between the wells, the same initial effective transmissivity (i.e. same pressure drop between the wells for same mass flow rate) was attained through iteration. The values of standard deviations were taken in the range of 0 to 0.4. Temperature dependent kinetic rate laws were used for the reactive transport modeling. Here the numerical simulations were performed for injection concentration as the solubility at the temperature in the production well. This extreme case is based on the assumption that there is no

  19. Nanocrystalline diamond microelectrode on fused silica optical fibers for electrochemical and optical sensing

    NASA Astrophysics Data System (ADS)

    Bogdanowicz, Robert; Sobaszek, Michał; Ficek, Mateusz; Gnyba, Marcin; Ryl, Jacek; Siuzdak, Katarzyna; Śmietana, Mateusz

    2015-07-01

    Fabrication process of thin boron-doped nanocrystalline diamond (B-NCD) microelectrode on fused silica single mode optical fiber has been investigated. The B-NCD films were deposited on the fibers using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) at glass substrate temperature of 475 ºC. We have obtained homogenous, continuous and polycrystalline surface morphology with the mean grain size in the range of 100-250 nm and high sp3 content in B-NCD films. The films deposited on glass reference samples exhibit high refractive index (n≍2.05 at λ=550 nm) and low extinction coefficient. Furthermore, cyclic voltammograms (CV) were recorded to determine the electrochemical window and reaction reversibility at the B-NCD fibre-based electrode. Cyclic voltammetry (CV) measurements in aqueous media consisting of 5mM K3[Fe(CN)6] in 0.1M Na2SO4 demonstrated a width of the electrochemical window up to 2.5 V and relatively fast kinetics expressed by a redox peak splitting below 500 mV. Moreover, thanks to high-n B-NCD overlay, the coated fibers can be also used for enhancing sensitivity of long-period gratings (LPGs) induced in the fibers. The LPG is capable for measuring variations in refractive index of surrounding liquid by tracing shift in resonance appearing in transmitted spectrum. Possible combined CV and LPG-based measurements are discussed in this work.

  20. Examination of Relationship Between Photonic Signatures and Fracture Strength of Fused Silica Used in Orbiter Windows

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cramer, K. Elliott; Estes, Linda R.; Salem, Jonathan A.; Lankford, James, Jr.; Lesniak, Jon

    2011-01-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outermost pane of the orbiter windows. Four categories of damage: hyper-velocity impacts that occur during space-flight (HVI); hypervelocity impacts artificially made at the Hypervelocity Impact Technology Facility (HIT-F); impacts made by larger objects falling onto the pane surface to simulate dropped items on the window during service/storage of vehicle (Bruises); and light scratches from dull objects designed to mimic those that might occur by dragging a dull object across the glass surface (Chatter Checks) are examined. The damage sites are cored from fused silica window carcasses, examined with the GFP and other methodologies, and broken using the ASTM Standard C1499-09 to measure the fracture strength. A correlation is made between the fracture strength and damage-site measurements including geometrical measurements and GFP measurements of photoelastic retardation (stress patterns) surrounding the damage sites. An analytical damage model to predict fracture strength from photoelastic retardation measurements is presented and compared with experimental results.

  1. Fracture Strength of Fused Silica From Photonic Signatures Around Collision Sites

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cramer, K Elliott

    2015-01-01

    Impact sites in glass affect its fracture strength. An analytical model that predicts fracture strength from grey-field polariscope (GFP) readings (photoelastic retardations) has been developed and reported in the literature. The model is suggestive that stress fields, resulting from impact damage, destablizes sites within the glass, which lead to pathways that cause strength degradation. Using data collected from fused silica specimens fabricated from outer window panes that were designed for the space shuttle, the model was tested against four categories of inflicted damage. The damage sites were cored from the window carcasses, examined with the GFP and broken using the ASTM Standard C1499-09 to measure the fracture strength. A correlation is made between the fracture strength and the photoelastic retardation measured at the damage site in each specimen. A least-squares fit is calculated. The results are compared with the predictions from the model. A plausible single-sided NDE damage site inspection method (a version of which is planned for glass inspection in the Orion Project) that relates photoelastic retardation in glass components to its fracture strength is presented.

  2. MRF, ELSM and STED: tools to study defects in fused silica optics

    NASA Astrophysics Data System (ADS)

    Catrin, R.; Taroux, D.; Cormont, P.; Maunier, C.; Neauport, J.

    2013-11-01

    The MegaJoule laser being constructed at the CEA near Bordeaux (France) is designed to focus more than 1 MJ of energy at 351 nm, on a millimetre scale target in the centre of an experiment chamber. The final optic assembly of this system operating at a wavelength of 351 nm is made up of large fused silica optics, working in transmission, that are used to convey and focus the laser beam. Under high fluences (i.e. more than 5 J/cm2 for 3 ns pulses), the limited lifetime of final optical assembly is a major concern for fusion scale laser facilities. Previous works have shown that surface finishing processes applied to manufacture these optical components can leave subsurface cracks (SSD), pollution or similar defects that act as initiators of the laser damage. In this work, we used epi-fluorescent light scanning microscopy (ELSM) and Stimulated Emission Depletion (STED) in confocal mode with fluorescent dye tagging to get a better knowledge of size and depth of these subsurface cracks. Magnetorheological fluid finishing technique (MRF) was also used as a tool to remove these cracks and thus assess depths measured by confocal microscopy. Subsurface cracks with a width of about 120 nm are observed up to ten micrometers below the surface.

  3. Microstructuring of fused silica using femtosecond laser pulses of various wavelengths

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Manuel; Engel, Andy; Reisse, Guenter; Weissmantel, Steffen

    2015-11-01

    Experimental results on ablation and microstructuring of fused silica (Corning 7980 HPFS Standard Grade) using femtosecond laser pulses will be presented. In particular, the ablation behavior of the material at the laser wavelengths of 775, 387 and 258 nm was investigated. The qualities of selected microstructures produced at the different wavelengths are compared with respect to roughness, crack formation and exactness. The investigations were carried out using an automated microstructuring system equipped with a femtosecond laser Clark-MXR CPA 2010 (1 mJ maximum pulse energy, 1 kHz repetition rate and 150 fs pulse duration). Layer-by-layer ablation is realized for producing 3D microstructures, where the layer thickness depends on the ablated depth per laser pulse. Those ablation depths depend on the material and the laser parameters and were determined for the three wavelengths in preparatory investigations. Therefore, the laser fluence and the pulse-to-pulse distance were varied independently. We will present the results of our fundamental studies on fs-laser ablation at the three wavelengths and show several structures, such as pyramids, half spheres and cones. Best results were obtained at 258 nm wavelength. There, the exactness was highest and the roughness of the surfaces of the structures was lowest. In addition, absolutely no crack formation occurred.

  4. Comprehensive modeling of structural modification induced by a femtosecond laser pulse inside fused silica glass

    NASA Astrophysics Data System (ADS)

    Najafi, Somayeh; Sadat Arabanian, Atoosa; Massudi, Reza

    2016-06-01

    A comprehensive theoretical model is proposed based on equations describing the nonlinear propagation of an ultrashort pulse inside transparent material, electron density evolution, non-Fourier heat conduction, and thermo-elasto plastic displacement which are respectively solved by various methods. These methods include the split-step finite difference technique and alternating-direction implicit algorithm, fourth-order Range–Kutta algorithm, hybrid finite-element method/finite-difference method, and finite-element method in both space and time to achieve refractive index changes. The whole chain of processes occurring in the interaction of a focused ultrashort laser pulse with fused silica glass in prevalent conditions of micromachining applications is numerically investigated. By optimizing the numerical method and by using an adaptive mesh approach, the execution time of the program is significantly reduced so that the calculations are done at each time step in a fraction of a second. Simulation results show that the energy and duration of the input pulse are very important parameters in induced changes, but the chirp of the input pulse is not an effective parameter. Consequently, by appropriate setting of those parameters one can design a desired refractive index profile.

  5. Study of laser-induced fatigue effects in synthetic fused silica in the UV

    NASA Astrophysics Data System (ADS)

    Gouldieff, C.; Wagner, F. R.; Natoli, J.-Y.

    2014-10-01

    In the last decades, the resistance to high-power laser flux was largely improved in most of optical components insofar as 1-on-1 measurements are concerned. Another challenge lies in improving their resistance to multiple laser shots for highpower laser applications. Indeed, in multi-pulse irradiation, a decrease of the laser-induced damage threshold with increasing number of pulse was observed in various optical materials as in glasses, crystals, and thin-films. This effect, commonly denominated "fatigue" effect, is a limiting factor in many applications where optics have to be long-lifetime, as for example for space applications. Representing the laser damage probability as a function of pulse number for a given fluence allows to distinguish statistical pseudo-fatigue and fatigue which is due to cumulative material modifications. Investigating on the fatigue effects in the bulk of synthetic fused silica (Suprasil 1®) for different wavelengths, we evidenced that the fatigue effect was due to statistical pseudo-fatigue when irradiated at 1064 nm while the fatigue effect at 355 nm came from cumulative material modifications. The current work is dedicated a more detailed study of fatigue effects in Suprasil 1®, testing the influence of the beam size on the fatigue effects. Moreover, an estimation of the lifetime of the created defects is performed using a destructive technique.

  6. Quantitative measurement of CO2 laser-induced residual stress in fused silica optics

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Liao, Wei; Miao, Xinxiang; Yuan, Xiaodong; Zheng, Wanguo; Lv, Haibin; Zhou, Guorui; Zu, Xiaotao; Xiang, Xia

    2015-05-01

    The residual stress field of fused silica induced by continuous wave CO2 laser irradiation is investigated with specific photoelastic methods. Both hoop stress and axial stress in the irradiated zone are measured quantitatively. For the hoop stress along the radial direction, the maximum phase retardance of 30 nm appears at the boundary of the laser distorted zone (680-μm distance to center), and the phase retardance decreases rapidly and linearly inward, and decreases slowly and exponentially outward. For the axial stress, tensile stress lies in a thin surface layer (<280 μm) and compressive stress lies just below the tensile region. Both tensile and compressive stresses increase first and then decrease along the depth direction. The maximum phase retardance induced by axial tensile stress is 150 nm, and the maximum phase retardance caused by axial compression stress is about 75 nm. In addition, the relationship between the maximum axial stress and the deformation height of the laser irradiated zone is also discussed.

  7. Spherical fused silica cells filled with pure helium for nuclear magnetic resonance-magnetometry

    NASA Astrophysics Data System (ADS)

    Maul, Andreas; Blümler, Peter; Heil, Werner; Nikiel, Anna; Otten, Ernst; Petrich, Andreas; Schmidt, Thomas

    2016-01-01

    High magnetic fields (>1 T) are measured by NMR magnetometers with unrivaled precision if the precessing spin sample provides long coherence times. The longest coherence times are found in diluted 3He samples, which can be hyperpolarized for sufficient signal strength. In order to have minimal influence on the homogeneity and value of the measured magnetic field, the optimal container for the 3He should be a perfect sphere. A fused silica sphere with an inner diameter of 8 mm and an outer diameter of 12 mm was made from two hemispheres by diffusion bonding leaving only a small hole for cleaning and evacuation. This hole was closed in vacuum by a CO2 laser and the inner volume was filled with a few mbars of 3He via wall permeation. NMR-measurements on such a sample had coherence times of 5 min. While the hemispheres were produced with <1 μm deviation from sphericity, the bonding left a step of ca. 50 μm at maximum. The influence of such a mismatch, its orientation, and the immediate environment of the sample is analyzed by FEM-simulations and discussed in view of coherence times and absolute field measurements.

  8. Determination of laser damage initiation probability and growth on fused silica scratches

    SciTech Connect

    Norton, M A; Carr, C W; Cross, D A; Negres, R A; Bude, J D; Steele, W A; Monticelli, M V; Suratwala, T I

    2010-10-26

    Current methods for the manufacture of optical components inevitably leaves a variety of sub-surface imperfections including scratches of varying lengths and widths on even the finest finishes. It has recently been determined that these finishing imperfections are responsible for the majority of laser-induced damage for fluences typically used in ICF class lasers. We have developed methods of engineering subscale parts with a distribution of scratches mimicking those found on full scale fused silica parts. This much higher density of scratches provides a platform to measure low damage initiation probabilities sufficient to describe damage on large scale optics. In this work, damage probability per unit scratch length was characterized as a function of initial scratch width and post fabrication processing including acid-based etch mitigation processes. The susceptibility of damage initiation density along scratches was found to be strongly affected by the post etching material removal and initial scratch width. We have developed an automated processing procedure to document the damage initiations per width and per length of theses scratches. We show here how these tools can be employed to provide predictions of the performance of full size optics in laser systems operating at 351 nm. In addition we use these tools to measure the growth rate of a damage site initiated along a scratch and compare this to the growth measured on an isolated damage site.

  9. Stable structure and optical properties of fused silica with NBOHC-E‧ defect

    NASA Astrophysics Data System (ADS)

    Lu, Peng-Fei; Wu, Li-Yuan; Yang, Yang; Wang, Wei-Zheng; Zhang, Chun-Fang; Yang, Chuang-Hua; Su, Rui; Chen, Jun

    2016-08-01

    First-principles method is used to simulate the stable structure and optical properties of a 96-atom fused silica. The preferable structure of NBOHC-E‧ (non-bridging oxygen hole center (NBOHC) and E‧ center) pair defect is predicted to be located at 2.4 Å for the Si–O bond length. The quasi-particle G0W0 calculations are performed and an accurate band gap is obtained in order to calculate the optical absorption properties. With the stretching of the Si1–O1 bond, an obvious redshift can be observed in the absorption spectrum. In the case of NBOHC-E‧ pair, the p-orbital DOS of Si1 atom will shift to the conduction band. Two obvious absorption peaks can be observed in the absorption spectrum. The calculation reproduced the peak positions of the well-known optical absorption bands. Project supported by the National Basic Research Program of China (Grant No. 2014CB643900), the Open Fund of IPOC (BUPT), the Open Program of State Key Laboratory of Functional Materials for Informatics, the National Natural Science Foundation for Theoretical Physics Special Fund “Cooperation Program” (Grant No. 11547039), and Shaanxi Provincial Institute of Scientific Research Plan Projects, China (Grant No. SLGKYQD2-05).

  10. Dynamics of femtosecond laser absorption of fused silica in the ablation regime

    SciTech Connect

    Lebugle, M. Sanner, N.; Varkentina, N.; Sentis, M.; Utéza, O.

    2014-08-14

    We investigate the ultrafast absorption dynamics of fused silica irradiated by a single 500 fs laser pulse in the context of micromachining applications. A 60-fs-resolution pump-probe experiment that measures the reflectivity and transmissivity of the target under excitation is developed to reveal the evolution of plasma absorption. Above the ablation threshold, an overcritical plasma with highly non-equilibrium conditions is evidenced in a thin layer at the surface. The maximum electron density is reached at a delay of 0.5 ps after the peak of the pump pulse, which is a strong indication of the occurrence of electronic avalanche. The results are further analyzed to determine the actual feedback of the evolution of the optical properties of the material on the pump pulse. We introduce an important new quantity, namely, the duration of absorption of the laser by the created plasma, corresponding to the actual timespan of laser absorption by inverse Bremsstrahlung. Our results indicate an increasing contribution of plasma absorption to the total material absorption upon raising the excitation fluence above the ablation threshold. The role of transient optical properties during the energy deposition stage is characterized and our results emphasize the necessity to take it into account for better understanding and control of femtosecond laser-dielectrics interaction.

  11. Laser-induced gas plasma etching of fused silica under ambient conditions

    NASA Astrophysics Data System (ADS)

    Elhadj, Selim; Guss, Gabe; Matthews, Manyalibo J.; Bass, Isaac

    2012-11-01

    Laser machining of optics to mitigate surface defects has greatly enhanced the ability to process large optics such as those found in fusion-class lasers. Recently, the use of assist reactive gases has shown promise in enhancing manifold etching rates relative to ambient conditions for CW-laser exposures. However, these methods still require significant heating of the substrate that induce residual stress, redeposit coverage, material flow, and compromise the final surface finish and damage threshold. While very reactive fluorinated gases are capable to reduce treatment temperatures even further, they are also inherently toxic and not readily transferable to large processing facilities. In this report, we look at whether a short-lived gas plasma could provide the safe and effective etchant sought, while still reducing the thermal load on the surface. We test this approach using a YAG laserinduced gas plasma to act as a source of the etchant for fused silica, a common optical material. The configuration and orientation of the beam and optical apparatus with respect to the surface was critical in preventing surface damage while etching the surface. Results with N2 and air gas plasmas are shown, along with a description of the various experimental implementations attempted.

  12. Two-photon induced fluorescence and other optical effects in irradiated and doped fused silica

    SciTech Connect

    Kramer, S.D.

    1986-07-01

    The objective of this program was to assess and identify irradiation techniques which could be used to modify the optical charactistics of doped fused silica. Primary emphasis was placed on determining if gamma ray or neutron bombardment of the glass would enhance certain Raman and nonlinear optical effects. In particular, the effect of irradiation on optical two photon induced fluorescence was studied in detail. The maximum radiation exposures used were 10/sup 6/ rads (Si) of gamma rays and neutron fluences of 1 x 10/sup 14/ neutrons/cm/sup 2/. The optical measurements were made at room temperature between one and four months after irradiation. The maximum input light intensity was 10/sup 9/ watts/cm/sup 2/ at a near infrared (1.06 ..mu..) input wavelength which was chosen to lie in a transparent spectral region of the glass. Under these experimental conditions a careful search revealed no detectable two-photon induced fluorescence in the region from 550 to 900 nm. The upper limit for the photon efficiency of this process was determined to be less than 1 x 10/sup -10/%. 89 refs., 12 figs.

  13. Temperature-dependent Absolute Refractive Index Measurements of Synthetic Fused Silica

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Frey, Bradley J.

    2006-01-01

    Using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have measured the absolute refractive index of five specimens taken from a very large boule of Corning 7980 fused silica from temperatures ranging from 30 to 310 K at wavelengths from 0.4 to 2.6 microns with an absolute uncertainty of plus or minus 1 x 10 (exp -5). Statistical variations in derived values of the thermo-optic coefficient (dn/dT) are at the plus or minus 2 x 10 (exp -8)/K level. Graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient are presented for selected wavelengths and temperatures along with estimates of uncertainty in index. Coefficients for temperature-dependent Sellmeier fits of measured refractive index are also presented to allow accurate interpolation of index to other wavelengths and temperatures. We compare our results to those from an independent investigation (which used an interferometric technique for measuring index changes as a function of temperature) whose samples were prepared from the same slugs of material from which our prisms were prepared in support of the Kepler mission. We also compare our results with sparse cryogenic index data from measurements of this material from the literature.

  14. Multi-pulse LIBDE of fused silica at different thicknesses of the organic absorber layer

    NASA Astrophysics Data System (ADS)

    Pan, Yunxiang; Ehrhardt, Martin; Lorenz, Pierre; Han, Bing; Hopp, Bela; Vass, Csaba; Ni, Xiaowu; Zimmer, Klaus

    2015-12-01

    Laser-induced etching techniques feature several unique characteristics that enable ultraprecise machining of transparent materials. However, LIBDE (laser-induced back side dry etching) and LIBWE (laser-induced back side wet etching) are preferentially studied due to experimental feasibilities either using a very thin or a bulk absorber at the rear side of the transparent material. This study aims to fill the gap by examining the thickness dependence of the absorbing material. Multi-pulse-LIBDE (MP-LIBDE) of fused silica using different thick photoresist absorber layers (dL = 0.2-11.7 μm) was performed with a KrF excimer laser (λ = 248 nm, tp ≈ 20 ns). The influence of several experimental parameters, such as laser fluence, pulse number, film thickness, on the ablation morphology and the etching rate were investigated. Especially at moderate fluences (F = 0.7-1.5 J/cm2) MP-LIBDE and LIBWE show several similar process characteristics such as the etching rate dependence on the laser fluence and the pulse number with a typical etching rate of approx. 12 nm at 1 J/cm2. However, the specific etching rate values depend on the absorber layer thickness, for instance. The morphology of the etched surface is smooth with a roughness of below 5 nm rms. Further, the modification of the surface has been observed and will be discussed in relation to the multi-pulse laser etching mechanism.

  15. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses

    SciTech Connect

    Couairon, A.; Sudrie, L.; Franco, M.; Prade, B.; Mysyrowicz, A.

    2005-03-15

    We investigate experimentally and numerically the damage tracks induced by tightly focused (NA=0.5) infrared femtosecond laser pulses in the bulk of a fused silica sample. Two types of irreversible damage are observed. The first damage corresponds to a permanent change of refractive index without structural modifications (type I). It appears for input pulse energies beyond 0.1 {mu}J. It takes the form of a narrow track extending over more than 100 {mu}m at higher input powers. It is attributed to a change of the polarizability of the medium, following a filamentary propagation which generates an electron-hole plasma through optical field ionization. A second type of damage occurs for input pulse energies beyond 0.3 {mu}J (type II). It takes the form of a pear-shaped structural damage associated with an electron-ion plasma triggered by avalanche. The temporal evolution of plasma absorption is studied by pump-probe experiments. For type I damage, a fast electron-hole recombination is observed. Type II damage is linked with a longer absorption.

  16. Effect of a Silicone Contaminant Film on the Transmittance Properties of AR-coated Fused Silica

    NASA Technical Reports Server (NTRS)

    Boeder, Paul A.; Visentine, James T.; Shaw, Christopher G.; Carniglia, Charles K.; Ledbury, Eugene A.; Alred, John W.; Soares, Carlos E.

    2004-01-01

    We present the results of a laboratory test to determine the effects of bulk deposited, DC-704 silicone contaminant film on the transmittance properties of an anti-reflective (AR) coated fused silica optical substrate. Testing and optical measurements were performed in vacuum in the Boeing Combined Effects Test Facility (CETF). The test and measurement procedures are described herein. Measurement results are presented showing the change in transmittance characteristics as a function of contaminant deposit thickness and vacuum ultra-violet (vuv) exposure levels. Measurement results show an initial degradation in the transmittance of the contaminated sample. This is followed by a partial recovery in sample transmittance as the sample is exposed to additional VUV radiation. Transmittance results also show a loss of transmission in the ultraviolet portion of the spectrum and an increase in transmission in the infrared portion of the spectrum. These transmittance results are characteristic of thin-film interference effects. Thin-film analyses indicate that some of the observed transmittance results can be successfully modeled, but only if the contaminant film is assumed to be SiO2 rather than DC-704 silicone. Post-test Scanning Electron Microscope (SEM) scans of the test sample indicate the formation of contaminant islands and the presence of a thin uniform coating of contaminant deposit on the sample

  17. Capillary isoelectric focusing of proteins and microorganisms in dynamically modified fused silica with UV detection.

    PubMed

    Horká, Marie; Růzicka, Filip; Horký, Jaroslav; Holá, Veronika; Slais, Karel

    2006-09-01

    We suggest a method for the reproducible and efficient capillary isoelectric focusing of proteins and microorganisms in the pH gradient 3-10. The method involves the segmental injection of the simple ampholytes, the solution of the selected electrolytes, and the sample mixture of bioanalytes and carrier ampholytes to the fused silica capillaries dynamically modified by poly(ethylene glycol), PEG 4000, which is added to the catholyte, the anolyte and injected solutions. In order to receive the reproducible results, the capillaries were rinsed by the mixture of acetone/ethanol between analyses. For the tracing of the pH gradients the low-molecular-mass pI markers were used. The simple proteins and the mixed cultures of microorganisms, Saccharomyces cerevisiae CCM 8191, Escherichia coli CCM 3954, Candida albicans CCM 8180, Candida parapsilosis, Candida krusei, Staphylococcus aureus, Streptococcus agalactiae CCM 6187, Enterococcus faecalis CCM 4224, Staphylococcus epidermidis CCM 4418 and Stenotrophomonas maltophilia, were focused and separated by the method suggested. The minimum detectable number of microbial cells was 5x10(2) to 1x10(3) with on-column UV detection at 280 nm. PMID:16765111

  18. An AC phase measuring interferometer for measuring dn/dT of fused silica and calcium fluoride at 193 nm

    SciTech Connect

    Shagam, R.N.

    1998-09-01

    A novel method for the measurement of the change in index of refraction vs. temperature (dn/dT) of fused silica and calcium fluoride at the 193 nm wavelength has been developed in support of thermal modeling efforts for the development of 193 nm-based photolithographic exposure tools. The method, based upon grating lateral shear interferometry, uses a transmissive linear grating to divide a 193 nm laser beam into several beam paths by diffraction which propagate through separate identical material samples. One diffracted order passing through one sample overlaps the undiffracted beam from a second sample and forms interference fringes dependent upon the optical path difference between the two samples. Optical phase delay due to an index change from heating one of the samples causes the interference fringes to change sinusoidally with phase. The interferometer also makes use of AC phase measurement techniques through lateral translation of the grating. Results for several samples of fused silica and calcium fluoride are demonstrated.

  19. Measuring sub-nm adsorbed water layer thickness and desorption rate using a fused-silica whispering-gallery microresonator

    NASA Astrophysics Data System (ADS)

    Ganta, D.; Dale, E. B.; Rosenberger, A. T.

    2014-05-01

    We report an optical method for measuring the thickness of the water layer adsorbed onto the surface of a high-Q fused-silica microresonator. Light from a tunable diode laser operating near 1550 nm is coupled into the microresonator to excite whispering-gallery modes (WGMs). By observing thermal distortion or even bistability of the WGM resonances caused by absorption in the water layer, the contribution of that absorption to the total loss is determined. Thereby, the thickness of the water layer is found to be ˜0.1 nm (approximately one monolayer). This method is further extended to measure the desorption rate of the adsorbed water, which is roughly exponential with a decay time of ˜40 h when the fused-silica microresonator is held in a vacuum chamber at low pressure.

  20. Research on laser-induced damage resistance of fused silica optics by the fluid jet polishing method.

    PubMed

    Lv, Liang; Ma, Ping; Huang, Jinyong; He, Xiang; Cai, Chao; Zhu, Heng

    2016-03-20

    Laser-induced damage threshold (LIDT) is one important evaluation index for optical glasses applied in large laser instruments which are exposed to high light irradiation flux. As a new kind of precise polishing technology, fluid jet polishing (FJP) has been widely used in generating planar, spherical, and aspherical optics with high-accuracy surfaces. Laser damage resistances of fused silica optics by the FJP process are studied in this paper. Fused silica samples with various FJP parameters are prepared, and laser damage experiments are performed with 351 nm wavelength and a 5.5 ns pulse width laser. Experimental results demonstrate that the LIDT of the samples treated with FJP processes did not increase, compared to their original state. The surface quality of the samples is one factor for the decrease of LIDT. For ceria solution polished samples, the cerium element remaining is another factor of the lower LIDT. PMID:27140559

  1. Subwavelength structures for high power laser antireflection application on fused silica by one-step reactive ion etching

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Jiang, Xiao-Dong; Huang, Jin; Sun, Lai-Xi; Geng, Feng; Yi, Zao; Zu, Xiao-Tao; Wu, Wei-Dong; Zheng, Wanguo

    2016-03-01

    In this paper we report a simple method to fabricate a novel subwavelength structure surface on fused silica substrate using one-step reactive ion etching with two-dimensional polystyrene colloidal crystals as masks. The etching process and the morphologies of the obtained structure are controlled. We show that the period of the obtained fused silica pillar-like arrays were determined by the initial polystyrene nanoparticle size. The height of pillar arrays can be adjusted by controlling the etching duration, which is proved to be of importance in tailoring the antireflection properties of subwavelength structures surface. The novel subwavelength structures surface exhibit excellent broadband antireflection properties, but the size of the pillar affects the antireflective properties in short wavelength region. We anticipate this method would offer a convenient and scalable way for inexpensive and high-efficiency high power laser field designs.

  2. Laser-induced damage of fused silica on high-power laser: beam intensity modulation, optics defect, contamination

    NASA Astrophysics Data System (ADS)

    Zhao, Dongfeng; Sun, Mingyin; Wu, Rong; Lu, Xinqiang; Lin, Zunqi; Zhu, Jianqiang

    2015-11-01

    The wedged focus lens of fused silica, one of the final optics assembly's optics, focuses the 351 nm beam onto target and separates the residual 1053 and 527 nm light with 351 nm light. After the experiment with beam energies at 3ω range from 3 to 5KJ, and pulse shapes about 3ns, the wedged focus lens has laser-induced damage at particular area. Analysis the damage result, there are three reasons to induce these damages. These reasons are beam intensity modulation, optics defect and contamination that cause different damage morphologies. The 3ω beam intensity modulation, one of three factors, is the mostly import factor to induce damage. Here, the n2 nonlinear coefficient of fused silica material can lead to small-scale self-focusing filament because of optics thickness and beam intensity. And some damage-filaments' tails are bulk damage spots because there are subsurface scratches or metal contaminations.

  3. Improve the laser damage resistance of fused silica by wet surface cleaning and optimized HF etch process

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaolong; Liu, Ying; Rao, Huanle; Fu, Shaojun

    2013-07-01

    Fabrication-induced metal contaminations and subsurface damage are generally identified as the laser damage initiators that are responsible for the laser induced damage in fused silica. In this paper, the removal of those two initiators are realized by two methods: wet chemical surface cleaning and optimized HF-based etch process. Two kinds of chemical leaching are used to removing the Ce and other metal impurities respectively. In order prevent the redeposition of the reactive byproducts during HF etch process, we optimized the traditional HF etch process in two ways: absence of NH4F in etch solution and presence of megasonic and ultrasonic agitation during and after etch respectively. And laser damage tests show that these two treatments greatly improve the laser damage resistance of fused silica.

  4. Time-resolved shadowgraphs of transient plasma induced by spatiotemporally focused femtosecond laser pulses in fused silica glass.

    PubMed

    Wang, Zhaohui; Zeng, Bin; Li, Guihua; Xie, Hongqiang; Chu, Wei; He, Fei; Liao, Yang; Liu, Weiwei; Gao, Hui; Cheng, Ya

    2015-12-15

    We report on experimental observations of formation and evolution of transient plasma produced in fused silica glass with spatiotemporally focused (STF) femtosecond laser pulses using a pump-probe shadow imaging technique. Surprisingly, the observation shows that the track of the plasma is significantly curved, which is attributed to an asymmetric density distribution of the transient plasma produced in the focal volume caused by the pulse front tilt of the STF laser field. PMID:26670497

  5. Signal Enhancement of Abiotically-Synthesized RNA Oligonucleotides and other Biopolymers using Unmodified Fused Silica in MALDI-MS

    NASA Astrophysics Data System (ADS)

    Cassidy, Lauren M.; Dong, Yingying; Joshi, Prakash C.; Aldersley, Michael F.; Ferris, James P.; McGown, Linda B.

    2011-06-01

    Metal is the standard desorption platform for MALDI-MS but other surfaces have been shown to offer advantages for particular types of analytes or applications. One such substrate is fused silica, which has been employed for matrix-free detection of low mass analytes and for affinity MALDI-MS in which binding ligands are immobilized at the fused silica surface. The present work reports improved MALDI-MS detection of RNA oligonucleotides, including polyA, polyU, and polyA/U, at the high end of the mass range when unmodified fused silica is used instead of stainless steel as the MALDI target. The RNA oligonucleotides were abiotically synthesized from activated monomers on catalytic clay surfaces. Further investigation found enhanced signals as well for other anionic biopolymers, including DNA oligonucleotides and heparin. Enhancement also was observed for dextran, which is neutral, indicating that the effect is not restricted to anionic biopolymers. Among more general analytical applications, the results are particularly relevant to rapid screening of abiotic RNA polymerization toward elucidating pathways to life on Earth.

  6. Study of the effects of polishing, etching, cleaving, and water leaching on the UV laser damage of fused silica

    SciTech Connect

    Yoshiyama, J.; Genin, F.Y.; Salleo, A.; Thomas, I.; Kozlowski, M.R.; Sheehan, L.M.; Hutcheon, I.D.; Camp, D.W.

    1997-12-23

    A damage morphology study was performed with a 355 nm Nd:YAG laser on synthetic UV-grade fused silica to determine the effects of post- polish chemical etching on laser-induced damage, compare damage morphologies of cleaved and polished surfaces, and understand the effects of the hydrolyzed surface layer and waste-crack interactions. The samples were polished , then chemically etched in buffered HF solution to remove 45,90,135, and 180 nm of surface material. Another set of samples was cleaved and soaked in boiling distilled water for 1 second and 1 hour. All the samples were irradiated at damaging fluencies and characterized by Normarski optical microscopy and scanning electron microscopy. Damage was initiated as micro-pits on both input and output surfaces of the polished fused silica sample. At higher fluencies, the micro-pits generated cracks on the surface. Laser damage of the polished surface showed significant trace contamination levels within a 50 nm surface layer. Micro-pit formation also appeared after irradiating cleaved fused silica surfaces at damaging fluences. Linear damage tracks corresponding cleaving tracks were often observed on cleaved surfaces. Soaking cleaved samples in water produced wide laser damage tracks.

  7. Optical absorption in fused silica at elevated temperatures during 1.5-MeV electron irradiation

    NASA Technical Reports Server (NTRS)

    Smith, A. B.

    1972-01-01

    An experimental determination of the optical transmission of Corning 7940 UV and Suprasil 1 and 2 fused silica has been made during 1.5-MeV electron bombardment. The fused silica reached temperatures ranging from 150 to 1000 C. The Lewis Research Center dynamitron provided electron current densities which corresponded to a dose rate of 2.6 to 20 Mrad/sec. The irradiation induced absorption was measured at 215.0, 270.0, and 450.0 nm (2150, 2700, 4500 A). The length of each irradiation was sufficient so that an equilibrium between radiation induced coloration and high temperature annealing was reached. The experimental results indicate a significant optical absorption, with values of the induced absorption coefficient at 215.0 nm (2150 A) of 14.5 to 2.2/cm, at 270.0 nm (2700 A) of 9.7 to 3.0/cm and at 450.0 nm (4500 A) of 3.7 to 0.5/cm. This would make the use of fused silica as the separating wall material in the nuclear light bulb propulsion concept questionable.

  8. Imaging the early material response associated with exit surface damage in fused silica

    SciTech Connect

    Demos, S G; Raman, R N; Negres, R A

    2010-11-05

    The processes involved at the onset of damage initiation on the surface of fused silica have been a topic of extensive discussion and thought for more than four decades. Limited experimental results have helped develop models covering specific aspects of the process. In this work we present the results of an experimental study aiming at imaging the material response from the onset of the observation of material modification during exposure to the laser pulse through the time point at which material ejection begins. The system involves damage initiation using a 355 nm pulse, 7.8 ns FWHM in duration and imaging of the affected material volume with spatial resolution on the order of 1 {micro}m using as strobe light a 150 ps laser pulse that is appropriately timed with respect to the pump pulse. The observations reveal that the onset of material modification is associated with regions of increased absorption, i.e., formation of an electronic excitation, leading to a reduction in the probe transmission to only a few percent within a time interval of about 1 ns. This area is subsequently rapidly expanding with a speed of about 1.2 {micro}m/ns and is accompanied by the formation and propagation of radial cracks. These cracks appear to initiate about 2 ns after the start of the expansion of the modified region. The damage sites continue to grow for about 25 ns but the mechanism of expansion after the termination of the laser pulse is via formation and propagation of lateral cracks. During this time, the affected area of the surface appears to expand forming a bulge of about 40 {micro}m in height. The first clear observation of material cluster ejection is noted at about 50 ns delay.

  9. Imaging of single-chromophore molecules in aqueous solution near a fused-silica interface

    NASA Astrophysics Data System (ADS)

    Davis, Lloyd M.; Parker, Wesley C.; Ball, David A.; Williams, John G.; Bashford, Greg R.; Sheaff, Pamela; Eckles, Robert D.; Lamb, Don T.; Middendorf, Lyle R.

    2001-04-01

    Single molecules of unconjugated Bodipy-Texas Red (BTR), BTR-dimer, and BTR conjugated to cysteine, in aqueous solutions are imaged using total-internal-reflection excitation and through-sample collection of fluorescence onto an intensified CCD camera, or a back-illuminated frame transfer CCD. The sample excitation is provided by the beam from a continuous-wave krypton ion laser, or a synchronously-pumped dye laser, operating at 568 nm. In order to essentially freeze molecular motion due to diffusion and thereby enhance image contrast, the laser beam is first passed through a mechanical shutter, which yields a 3-millisecond laser exposure for each camera frame. The laser beam strikes the fused-silica/sample interface at an angle exceeding the critical angle by about 1 degree. The resultant evanescent wave penetrates into the sample a depth of approximately 0.3 microns. Fluorescence from the thin plane of illumination is then imaged onto the camera by a water immersion apochromat (NA 1.2, WD 0.2mm). A Raman notch filter blocks Rayleigh and specular laser scatter and a band-pass-filter blocks most Raman light scatter that originates from the solvent. Single molecules that have diffused into the evanescent zone at the time of laser exposure yield near-diffraction-limited Airy disk images with diameters of ~5 pixels. While most molecules diffuse out of the evanescent zone before the next laser exposure, stationary or slowly moving molecules persisting over several frames, and blinking of such molecules are occasionally observed.

  10. Effect of liquid environment on laser-induced backside wet etching of fused silica

    NASA Astrophysics Data System (ADS)

    Lee, Taehwa; Jang, Deoksuk; Ahn, Daehwan; Kim, Dongsik

    2010-02-01

    In laser-induced backside wet etching (LIBWE), the liquid absorbent indirectly heats the transparent material, causing explosive phase change and cavitation. Accordingly, the hydrodynamics of the absorbing liquid, including the size of the liquid chamber, is strongly related to the ablation process. Because the hydrodynamics is dependent on the elastic deformation of the sample, the sample thickness also affects the performance of LIBWE. In this work, experimental analyses were performed to elucidate the hydrodynamics in LIBWE and the effect on the etch rate by varying the liquid chamber size and sample thickness. A KrF excimer laser was used to ablate fused silica samples in toluene and the etch rate was quantified using a scanning profilometer. Laser flash shadowgraphy and photodeflection probing techniques were employed for in situ measurement of the laser-induced hydrodynamics and displacement of the sample, respectively, with a time resolution of approximately nanoseconds. To directly observe the effect of increased liquid pressure on LIBWE, the liquid pressure on the etching spot was locally increased by an external shock wave and the etch results are examined. This study confirms that the photomechanical effects from the laser-induced bubble plays a key role in the LIBWE process, revealing a linear relationship between the etch rate the applied recoil momentum. However, the dependence of the etch rate on the chamber size and sample thickness could not be explained by the change in recoil momentum, i.e., by the bubble pressure. Instead, transient deformation of the sample by the pressure impact was estimated to be mainly responsible for the dependence.

  11. Crystallization of fused silica surfaces by ultra-violet laser irradiation

    NASA Astrophysics Data System (ADS)

    Hirata, Kazuya; Haraguchi, Koshi

    2012-07-01

    In recent years, the increased use of high power lasers has created problems in optical elements due to laser damage. The International Organization for Standardization (ISO) describes in a publication ISO 11254 a laser-power resilience (LPR) test which we used to verify that by flattening the glass substrate of an optical element, we could improve the resistance to laser damage. We report on an evaluation of two types of samples of fused silica substrate whose surface roughness differed (Ra = 0.20 nm and Ra = 0.13 nm) using customized on-line laser damage testing. To induce laser damage to samples, we used the fifth harmonic generation from a Nd:YAG pulse laser (wavelength: 213 nm, pulse width: 4 ns, repetition frequency: 20 Hz). Results show that flattening reduced the progression of laser damage in the meta-phase laser damage phase by 1/3 of that without flattening. However, pro-phase laser damage which started at fluence 2.39 J/cm2 was unrelated to surface roughness. To analyze the pro-phase laser damage, we used x-ray diffraction (XRD), Raman spectroscopy, and variable pressure-type scanning electron microscopy (VP-SEM). From XRD data, we observed XRD patterns of cristobalite (111), cristobalite (102), α-quartz (111), and β-quartz (102). Raman spectrum data showed an increase in the three-membered ring vibration (600 cm-1), four-membered ring vibration (490 cm-1), and many-membered ring vibration (450 cm-1, 390 cm-1, and 300 cm-1). We observed patchy crystallized areas on the sample surfaces in the VP-SEM images. Based on these experimental results, we believe that the dominant factors in pro-phase laser damage are their physical properties. Substrate and thin film material must be appropriately selected in producing an optical element with a high level of resilience to laser exposure.

  12. Sub-surface mechanical damage distributions during grinding of fused silica

    SciTech Connect

    Suratwala, T I; Wong, L L; Miller, P E; Feit, M D; Menapace, J A; Steele, R A; Davis, P A; Walmer, D

    2005-11-28

    The distribution and characteristics of surface cracking (i.e. sub-surface damage or SSD) formed during standard grinding processes has been investigated on fused silica glass. The SSD distributions of the ground surfaces were determined by: (1) creating a shallow (18-108 {micro}m) wedge/taper on the surface by magneto-rheological finishing; (2) exposing the SSD by HF acid etching; and (3) performing image analysis of the observed cracks from optical micrographs taken along the surface taper. The observed surface cracks are characterized as near-surface lateral and deeper trailing indent type fractures (i.e., chatter marks). The SSD depth distributions are typically described by a single exponential distribution followed by an asymptotic cutoff in depth (c{sub max}). The length of the trailing indent is strongly correlated with a given process. Using established fracture indentation relationships, it is shown that only a small fraction of the abrasive particles are being mechanically loaded and causing fracture, and it is likely the larger particles in the abrasive particle size distribution that bear the higher loads. The SSD depth was observed to increase with load and with a small amount of larger contaminant particles. Using a simple brittle fracture model for grinding, the SSD depth distribution has been related to the SSD length distribution to gain insight into ''effective'' size distribution of particles participating in the fracture. Both the average crack length and the surface roughness were found to scale linearly with the maximum SSD depth (c{sub max}). These relationships can serve as useful rules-of-thumb for nondestructively estimating SSD depth and to identify the process that caused the SSD. In certain applications such as high intensity lasers, SSD on the glass optics can serve as a reservoir for minute amounts of impurities that absorb the high intensity laser light and lead to subsequent laser-induced surface damage. Hence a more scientific

  13. On-machine precision preparation and dressing of ball-headed diamond wheel for the grinding of fused silica

    NASA Astrophysics Data System (ADS)

    Chen, Mingjun; Li, Ziang; Yu, Bo; Peng, Hui; Fang, Zhen

    2013-09-01

    In the grinding of high quality fused silica parts with complex surface or structure using ball-headed metal bonded diamond wheel with small diameter, the existing dressing methods are not suitable to dress the ball-headed diamond wheel precisely due to that they are either on-line in process dressing which may causes collision problem or without consideration for the effects of the tool setting error and electrode wear. An on-machine precision preparation and dressing method is proposed for ball-headed diamond wheel based on electrical discharge machining. By using this method the cylindrical diamond wheel with small diameter is manufactured to hemispherical-headed form. The obtained ball-headed diamond wheel is dressed after several grinding passes to recover geometrical accuracy and sharpness which is lost due to the wheel wear. A tool setting method based on high precision optical system is presented to reduce the wheel center setting error and dimension error. The effect of electrode tool wear is investigated by electrical dressing experiments, and the electrode tool wear compensation model is established based on the experimental results which show that the value of wear ratio coefficient K' tends to be constant with the increasing of the feed length of electrode and the mean value of K' is 0.156. Grinding experiments of fused silica are carried out on a test bench to evaluate the performance of the preparation and dressing method. The experimental results show that the surface roughness of the finished workpiece is 0.03 μm. The effect of the grinding parameter and dressing frequency on the surface roughness is investigated based on the measurement results of the surface roughness. This research provides an on-machine preparation and dressing method for ball-headed metal bonded diamond wheel used in the grinding of fused silica, which provides a solution to the tool setting method and the effect of electrode tool wear.

  14. Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses

    SciTech Connect

    Yu Xiaoming; Zeng Bin; Liao Yang; He Fei; Cheng Ya; Xu Zhizhan; Sugioka, Koji; Midorikawa, Katsumi

    2011-03-01

    We report on experimental study on chemical etch selectivity of fused silica irradiated by femtosecond laser with either linear or circular polarization in a wide range of pulse energies. The relationships between the etch rates and pulse energies are obtained for different polarization states, which can be divided into three different regions. A drop of the etch rate for high pulse energy region is observed and the underlying mechanism is discussed. The advantage of using circularly polarized laser is justified owing to its unique capability of providing a 3D isotropic etch rate.

  15. Fabrication of microcapillaries in fused silica using axicon focusing of femtosecond laser radiation and chemical etchingion/ms

    SciTech Connect

    Yashunin, D A; Malkov, Yu A; Stepanov, A N

    2013-04-30

    Fabrication of microcapillaries with a diameter of 50 - 80 {mu}m and a length up to 2.5 mm in fused silica by axicon focusing of femtosecond laser radiation and subsequent chemical etching in a 8 % hydrofluoric acid solution is demonstrated. The etching rate is {approx}6 {mu}m min{sup -1}. It is shown that the microcapillaries have optical waveguiding properties, which testifies to the optical quality of the walls of obtained structures. (extreme light fields and their applications)

  16. Analysis of micro-structural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy

    SciTech Connect

    Matthews, M; Vignes, R; Cooke, J; Yang, S; Stolken, J

    2009-12-15

    Fused silica micro-structural changes associated with localized 10.6 {micro}m CO{sub 2} laser heating are reported. Spatially-resolved shifts in the high-frequency asymmetric stretch transverse-optic (TO) phonon mode of SiO{sub 2} were measured using confocal Raman microscopy, allowing construction of axial fictive temperature (T{sub f}) maps for various laser heating conditions. A Fourier conduction-based finite element model was employed to compute on-axis temperature-time histories, and, in conjunction with a Tool-Narayanaswamy form for structural relaxation, used to fit T{sub f}(z) profiles to extract relaxation parameters. Good agreement between the calculated and measured T{sub f} was found, yielding reasonable values for relaxation time and activation enthalpy in the laser-modified silica.

  17. Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Jiang, Xiaodong; Huang, Jin; Geng, Feng; Sun, Laixi; Zu, Xiaotao; Wu, Weidong; Zheng, Wanguo

    2015-08-01

    Fused silica subwavelength structures (SWSs) with an average period of ~100 nm were fabricated using an efficient approach based on one-step self-masking reactive ion etching. The subwavelength structures exhibited excellent broadband antireflection properties from the ultraviolet to near-infrared wavelength range. These properties are attributable to the graded refractive index for the transition from air to the fused silica substrate that is produced by the ideal nanocone subwavelength structures. The transmittance in the 400-700 nm range increased from approximately 93% for the polished fused silica to greater than 99% for the subwavelength structure layer on fused silica. Achieving broadband antireflection in the visible and near-infrared wavelength range by appropriate matching of the SWS heights on the front and back sides of the fused silica is a novel strategy. The measured antireflection properties are consistent with the results of theoretical analysis using a finite-difference time-domain (FDTD) method. This method is also applicable to diffraction grating fabrication. Moreover, the surface of the subwavelength structures exhibits significant superhydrophilic properties.

  18. Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching

    PubMed Central

    Ye, Xin; Jiang, Xiaodong; Huang, Jin; Geng, Feng; Sun, Laixi; Zu, Xiaotao; Wu, Weidong; Zheng, Wanguo

    2015-01-01

    Fused silica subwavelength structures (SWSs) with an average period of ~100 nm were fabricated using an efficient approach based on one-step self-masking reactive ion etching. The subwavelength structures exhibited excellent broadband antireflection properties from the ultraviolet to near-infrared wavelength range. These properties are attributable to the graded refractive index for the transition from air to the fused silica substrate that is produced by the ideal nanocone subwavelength structures. The transmittance in the 400–700 nm range increased from approximately 93% for the polished fused silica to greater than 99% for the subwavelength structure layer on fused silica. Achieving broadband antireflection in the visible and near-infrared wavelength range by appropriate matching of the SWS heights on the front and back sides of the fused silica is a novel strategy. The measured antireflection properties are consistent with the results of theoretical analysis using a finite-difference time-domain (FDTD) method. This method is also applicable to diffraction grating fabrication. Moreover, the surface of the subwavelength structures exhibits significant superhydrophilic properties. PMID:26268896

  19. Results of applying a non-evaporative mitigation technique to laser-initiated surface damage on fused-silica

    SciTech Connect

    Adams, J J; Bolourchi, M; Bude, J D; Guss, G M; Matthews, M J; Nostrand, M C

    2010-10-26

    We present results from a study to determine an acceptable CO{sub 2} laser-based non-evaporative mitigation protocol for use on surface damage sites in fused-silica optics. A promising protocol is identified and evaluated on a set of surface damage sites created under ICF-type laser conditions. Mitigation protocol acceptability criteria for damage re-initiation and growth, downstream intensification, and residual stress are discussed. In previous work, we found that a power ramp at the end of the protocol effectively minimizes the residual stress (<25 MPa) left in the substrate. However, the biggest difficulty in determining an acceptable protocol was balancing between low re-initiation and problematic downstream intensification. Typical growing surface damage sites mitigated with a candidate CO{sub 2} laser-based mitigation protocol all survived 351 nm, 5 ns damage testing to fluences >12.5 J/cm{sup 2}. The downstream intensification arising from the mitigated sites is evaluated, and all but one of the sites has 100% passing downstream damage expectation values. We demonstrate, for the first time, a successful non-evaporative 10.6 {micro}m CO{sub 2} laser mitigation protocol applicable to fused-silica optics used on fusion-class lasers like the National Ignition Facility (NIF).

  20. Combined Advanced Finishing and UV-Laser Conditioning for Producing UV-Damage-Resistant Fused Silica Optics

    SciTech Connect

    Menapace, J A; Penetrante, B; Golini, D; Slomba, A; Miller, P E; Parham, T; Nichols, M; Peterson, J

    2001-11-01

    Laser induced damage initiation on fused silica optics can limit the lifetime of the components when used in high power UV laser environments. Foe example in inertial confinement fusion research applications, the optics can be exposed to temporal laser pulses of about 3-nsec with average fluences of 8 J/cm{sup 2} and peak fluences between 12 and 15 J/cm{sup 2}. During the past year, we have focused on optimizing the damage performance at a wavelength of 355-nm (3{omega}), 3-nsec pulse length, for optics in this category by examining a variety of finishing technologies with a challenge to improve the laser damage initiation density by at least two orders of magnitude. In this paper, we describe recent advances in improving the 3{omega} damage initiation performance of laboratory-scale zirconium oxide and cerium oxide conventionally finished fused silica optics via application of processes incorporating magnetorheological finishing (MRF), wet chemical etching, and UV laser conditioning. Details of the advanced finishing procedures are described and comparisons are made between the procedures based upon large area 3{omega} damage performance, polishing layer contamination, and optical subsurface damage.

  1. Mitigation of Laser Damage Growth in Fused Silica NIF Optics with a Galvanometer Scanned Carbon Dioxide Laser

    SciTech Connect

    Bass, I L; Draggoo, V; Guss, G M; Hackel, R P; Norton, M A

    2006-04-06

    Economic operation of the National Ignition Facility at the Lawrence Livermore National Laboratory depends on controlling growth of laser damage in the large, high cost optics exposed to UV light at 351 nm. Mitigation of the growth of damage sites on fused silica surfaces greater than several hundred microns in diameter has been previously reported by us using galvanometer scanning of a tightly focused 10.6 {micro}m CO{sub 2} laser spot over an area encompassing the laser damage. Further investigation revealed that fused silica vapor re-deposited on the surface as ''debris'' led to laser damage at unexpectedly low fluences when exposed to multiple laser shots at 351 nm. Additionally, laser power and spatial mode fluctuations in the mitigation laser led to poor repeatability of the process. We also found that the shape of the mitigation pit could produce downstream intensification that could damage other NIF optics. Modifications were made to both the laser system and the mitigation process in order to address these issues. Debris was completely eliminated by these changes, but repeatability and downstream intensification issues still persist.

  2. Absorption of a single 500 fs laser pulse at the surface of fused silica: Energy balance and ablation efficiency

    SciTech Connect

    Varkentina, N.; Sanner, N.; Lebugle, M.; Sentis, M.; Utéza, O.

    2013-11-07

    Ablation of fused silica by a single femtosecond laser pulse of 500 fs pulse duration is investigated from the perspective of efficiency of incident photons to remove matter. We measure the reflected and transmitted fractions of the incident pulse energy as a function of fluence, allowing us to recover the evolution of absorption at the material surface. At the ablation threshold fluence, 25% of incident energy is absorbed. At high fluences, this ratio saturates around 70% due to the appearance of a self-triggered plasma mirror (or shielding) effect. By using the energy balance retrieved experimentally and measurements of the ablated volume, we show that the amount of absorbed energy is far above the bonding energy of fused silica at rest and also above the energy barrier to ablate the material under non-equilibrium thermodynamic conditions. Our results emphasize the crucial role of transient plasma properties during the laser pulse and suggest that the major part of the absorbed energy has been used to heat the plasma formed at the surface of the material. A fluence range yielding an efficient and high quality ablation is also defined, which makes the results relevant for femtosecond micromachining processes.

  3. Mitigation of laser damage growth in fused silica NIF optics with a galvanometer scanned CO II laser

    NASA Astrophysics Data System (ADS)

    Bass, Isaac L.; Draggoo, Vaughn G.; Guss, Gabriel M.; Hackel, Richard P.; Norton, Mary A.

    2006-05-01

    Economic operation of the National Ignition Facility at the Lawrence Livermore National Laboratory depends on controlling growth of laser damage in the large, high cost optics exposed to UV light at 351 nm. Mitigation of the growth of damage sites on fused silica surfaces greater than several hundred microns in diameter has been previously reported by us using galvanometer scanning of a tightly focused 10.6 μm CO II laser spot over an area encompassing the laser damage. Further investigation revealed that fused silica vapor re-deposited on the surface as "debris" led to laser damage at unexpectedly low fluences when exposed to multiple laser shots at 351 nm. Additionally, laser power and spatial mode fluctuations in the mitigation laser led to poor repeatability of the process. We also found that the shape of the mitigation pit could produce downstream intensification that could damage other NIF optics. Modifications were made to both the laser system and the mitigation process in order to address these issues. Debris was completely eliminated by these changes, but repeatability and downstream intensification issues still persist.

  4. Formation of carbon nanoclusters by implantation of keV carbon ions in fused silica followed by thermal annealing

    NASA Astrophysics Data System (ADS)

    Olivero, P.; Peng, J. L.; Liu, A.; Reichart, P.; McCallum, J. C.; Sze, J. Y.; Lau, S. P.; Tay, B. K.; Kalish, R.; Dhar, S.; Feldman, Leonard; Jamieson, David N.; Prawer, Steven

    2005-02-01

    In the last decade, the synthesis and characterization of nanometer sized carbon clusters have attracted growing interest within the scientific community. This is due to both scientific interest in the process of diamond nucleation and growth, and to the promising technological applications in nanoelectronics and quantum communications and computing. Our research group has demonstrated that MeV carbon ion implantation in fused silica followed by thermal annealing in the presence of hydrogen leads to the formation of nanocrystalline diamond, with cluster size ranging from 5 to 40 nm. In the present paper, we report the synthesis of carbon nanoclusters by the implantation into fused silica of keV carbon ions using the Plasma Immersion Ion Implantation (PIII) technique, followed by thermal annealing in forming gas (4% 2H in Ar). The present study is aimed at evaluating this implantation technique that has the advantage of allowing high fluence-rates on large substrates. The carbon nanostructures have been characterized with optical absorption and Raman spectroscopies, cross sectional Transmission Electron Microscopy (TEM), and Parallel Electron Energy Loss Spectroscopy (PEELS). Nuclear Reaction Analysis (NRA) has been employed to evaluate the deuterium incorporation during the annealing process, as a key mechanism to stabilize the formation of the clusters.

  5. Effect of annealing on the laser induced damage of polished and CO2 laser-processed fused silica surfaces

    NASA Astrophysics Data System (ADS)

    Doualle, T.; Gallais, L.; Cormont, P.; Donval, T.; Lamaignère, L.; Rullier, J. L.

    2016-06-01

    We investigate the effect of different heat treatments on the laser-induced damage probabilities of fused silica samples. Isothermal annealing in a furnace is applied, with different temperatures in the range 700-1100 °C and 12 h annealing time, to super-polished fused silica samples. The surface flatness and laser damage probabilities at 3 ns, 351 nm are measured before and after the different annealing procedures. We have found a significant improvement of the initial laser damage probabilities of the silica surface after annealing at 1050 °C for 12 h. A similar study has been conducted on CO2 laser-processed sites on the surface of the samples. Before and after annealing, we have studied the morphology of the sites, the evolution of residual stress, and the laser-induced damage threshold measured at 351 nm, 3 ns. In this case, we observe that the laser damage resistance of the laser created craters can reach the damage level of the bare fused silica surface after the annealing process, with a complete stress relieve. The obtained results are then compared to the case of local annealing process by CO2 laser irradiation during 1 s, and we found similar improvements in both cases. The different results obtained in the study are compared to numerical simulations made with a thermo-mechanical model based on finite-element method that allows the simulation of the isothermal or the local annealing process, the evolution of stress and fictive temperature. The simulation results were found to be very consistent with experimental observations for the stresses evolution after annealing and estimation of the heat affected area during laser-processing based on the density dependence with fictive temperature. Following this work, the temperature for local annealing should reach 1330-1470 °C for an optimized reduction of damage probability and be below the threshold for material removal, whereas furnace annealing should be kept below the annealing point to avoid sample

  6. Infrared, spectral, directional-hemispherical reflectance of fused silica, Teflon polytetrafluoroethylene polymer, chrome oxide ceramic particle surface, Pyromark 2500 paint, Krylon 1602 paint, and Duraflect coating.

    PubMed

    Persky, Merle J; Szczesniak, Martin

    2008-04-01

    Infrared, spectral, directional-hemispherical reflectivity measurements of polished fused silica, Teflon polytetrafluoroethylene polymer, chrome oxide ceramic particle surface, Pyromark 2500 paint, Krylon 1602 paint, and Duraflect coating are provided. The reflectance was measured with an estimated accuracy of 0.01 to 0.02 units and a precision of 0.005 units. All the surfaces were measured at ambient temperatures. Additionally, the chrome oxide ceramic particle surface was measured at 486 K and the Pyromark 2500 at four temperatures to 877 K. Polarization measurements are also provided for fused silica, Duraflect, chrome oxide ceramic particle surface, and Pyromark 2500 paint. Separate diffuse and specular reflectance components for the Duraflect and chrome oxide ceramic surfaces are included. Fresnel-based predictions for fused silica parallel and perpendicular polarized reflections are compared to measurements. It is notable that the Pyromark 2500 and chrome oxide ceramic particle surfaces exhibit a significant lack of manufacturing repeatability. PMID:18382562

  7. The Effect of HF/NH4F Etching on the Morphology of Surface Fractures on Fused Silica

    SciTech Connect

    Wong, L; Suratwala, T; Feit, M D; Miller, P E; Steele, R A

    2008-04-03

    The effects of HF/NH{sub 4}F, wet chemical etching on the morphology of individual surface fractures (indentations, scratches) and of an ensemble of surface fractures (ground surfaces) on fused silica glass has been characterized. For the individual surface fractures, a series of static or dynamic (sliding) Vickers and Brinnell indenters were used to create radial, lateral, Hertzian cone and trailing indentation fractures on a set of polished fused silica substrates which were subsequently etched. After short etch times, the visibility of both surface and subsurface cracks is significantly enhanced when observed by optical microscopy. This is attributed to the removal of the polishing-induced Bielby layer and the increased width of the cracks following etching allowing for greater optical scatter at the fracture interface. The removal of material during etching was found to be isotropic except in areas where the etchant has difficulty penetrating or in areas that exhibit significant plastic deformation/densification. Isolated fractures continue to etch, but will never be completely removed since the bottom and top of the crack both etch at the same rate. The etching behavior of ensembles of closely spaced cracks, such as those produced during grinding, has also been characterized. This was done using a second set of fused silica samples that were ground using either fixed or loose abrasives. The resulting samples were etched and both the etch rate and the morphology of the surfaces were monitored as a function of time. Etching results in the formation of a series of open cracks or cusps, each corresponding to the individual fractures originally on the surface of the substrate. During extended etching, the individual cusps coalesce with one another, providing a means of reducing the depth of subsurface damage and the peak-to-valley roughness. In addition, the material removal rate of the ground surfaces was found to scale with the surface area of the cracks as a

  8. Optical diagnostics of the laser-induced phase transformations in thin germanium films on silicon, sapphire, and fused silica

    NASA Astrophysics Data System (ADS)

    Novikov, H. A.; Batalov, R. I.; Bayazitov, R. M.; Faizrakhmanov, I. A.; Ivlev, G. D.; Prokop'ev, S. L.

    2015-03-01

    The in-situ procedure is used to study the modification of thin (200-600 nm) germanium films induced by nanosecond pulses of a ruby laser. The films are produced using the ion-beam or magnetron sputtering on single-crystalline silicon (Si), sapphire (Al2O3), and fused silica (α-SiO2) substrates. The results on the dynamics of the laser-induced processes are obtained using the optical probing of the irradiated region at wavelengths of λ = 0.53 and 1.06 μm. The results of probing make it possible to determine the threshold laser energy densities that correspond to the Ge and Si melting and the generation of the Ge ablation plasma versus the amount of deposited Ge and thermophysical parameters of the substrate. The reflection oscillograms are used to obtain the dependences of the melt lifetime on the laser-pulse energy density.

  9. Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica

    NASA Astrophysics Data System (ADS)

    Hernandez-Rueda, J.; Siegel, J.; Puerto, D.; Galvan-Sosa, M.; Gawelda, W.; Solis, J.

    2013-07-01

    We have analyzed the ablation depth yield of fused silica irradiated with shaped pulse trains with a separation of 500 fs and increasing or decreasing intensity envelopes. This temporal separation value is extracted from previous studies on ablation dynamics upon irradiation with transform-limited 100 fs laser pulses. The use of decreasing intensity pulse trains leads to a strong increase of the induced ablation depth when compared to the behavior, at the same pulse fluence, of intensity increasing pulse trains. In addition, we have studied the material response under stretched (500 fs, FWHM) and transform-limited (100 fs, FWHM) pulses, for which avalanche or multiphoton ionization respectively dominates the carrier generation process. The comparison of the corresponding evolution of the ablated depth vs. fluence suggests that the use of pulse trains with decreasing intensity at high fluences should lead to enhanced single exposure ablation depths, beyond the limits corresponding to MPI- or AI-alone dominated processes.

  10. Transmittance and reflectance of crystalline quartz and highand low-water content fused silica from 2 microns to 1 mm

    NASA Technical Reports Server (NTRS)

    Heaney, J. B.; Stewart, K. P.; Hass, G.

    1983-01-01

    The transmittances and reflectances of cultured crystalline quartz, Suprasil, Suprasil W, and Infrasil were compared over the wavelength region from 2 to 1000 microns. The high-water content of Suprasil and the low-water content of cultured crystalline quartz, Suprasil W, and Infrasil were determined by their transmittances measured at 2.73 microns where water content causes high absorption in optical materials. The fact that the fused silicas, both with high- and low-water content, had identical far-IR transmittances and that their transmittances were greatly inferior to that of crystalline quartz led to the conclusion that their inferior transmittance is due to their amorphous structure and not to their water content.

  11. Deep wet etching of borosilicate glass and fused silica with dehydrated AZ4330 and a Cr/Au mask

    NASA Astrophysics Data System (ADS)

    Jin, Joo-Young; Yoo, Sunghyun; Bae, Jae-Sung; Kim, Yong-Kweon

    2014-01-01

    This research highlights a superior glass-wet-etch technique which enables a glass wafer to be etched for more than 20 h in 49 wt% hydrofluoric acid (HF) only with Cr/Au film and a common positive photoresist, AZ4330. We demonstrated that pits on the wet-etched glass wafer were generated not only due to HF diffusion through the Cr/Au film but also due to pinholes on the Cr/Au films created by the diffusion of the Cr/Au etchant through a photoresist etching-mask during the Cr/Au wet etching process. These two types of diffusion, HF diffusion and Cr/Au etchant diffusion, were eliminated by the thermal curing of a photoresist (PR), AZ4330, before the Cr/Au wet etching process. The curing process allowed the PR to dehydrate, increased the hydrophobicity, and prevented the diffusion of the hydrophilic HF and Cr/Au etchant. Optimization of the curing process was performed, showing that curing at 130 °C for 20 min was the proper condition. With the optimized process, a 525 µm thick borosilicate glass wafer was penetrated with 49%wt HF. A fused silica wafer 525 µm thick was also wet-etched and penetrated with 49 wt% HF at 10 h. Moreover, no pits were found in wet etching of the fused silica for 20 h in 49 wt% HF. These findings demonstrate that the proposed technique allows the wet etching of a glass wafer for more than 20 h in 49%wt HF, the best result thus far. We fabricated a glass substrate with a 217.0 µm deep cavity and a penetrating through-via using the proposed technique, proving the feasibility of the product as an optical component with a surface roughness of 45.5 Å in the cavity.

  12. PRECISION AND ACCURACY IN THE DETERMINATION OF ORGANICS IN WATER BY FUSED SILICA CAPILLARY COLUMN GAS CHROMOTOGRAPHY/MASS SPECTROMETRY AND PACKED COLUMN GAS CHROMATOGRAPHY/MASS SPECTROMETRY

    EPA Science Inventory

    Two general methods for the identification and measurement of organic compounds in water are compared. One method employs packed column chromatography and the other fused silica capillary column chromatography. The two gas chromatography/mass spectrometry (GC/MS) methods use diff...

  13. Identification of the formation phases of filamentary damage induced by nanosecond laser pulses in bulk fused silica

    SciTech Connect

    Shen, Chao; Xu, Zhongjie; Chambonneau, Maxime E-mail: jiangtian198611@163.com; Cheng, Xiang'ai; Jiang, Tian E-mail: jiangtian198611@163.com

    2015-09-14

    Employing a pump-probe polarization-based two-frame shadowgraphy setup, the formation of filamentary damage induced in bulk fused silica by a nanosecond pulse at 1064 nm is investigated with a picosecond probe. Three different phases are exhibited in the damage experiments. The first phase is the formation of a micrometric plasma channel along the laser direction during the beginning of the pulse likely caused by multi-photon ionization. This channel exhibits growth during ∼400 ps, and the newly grown plasma is discrete. Then, during the end of the pulse, this channel evolves into a tadpole-like morphology showing an elliptical head upstream the laser flux followed by a thin tail. This observed asymmetry is attributed to shielding effects caused by both the plasma and hot modified silica. Once the damage shows its almost final morphology, a last phase consists in the launch of a pressure wave enlarging it after the laser pulse. The physical mechanisms that might be involved in the formation of plasma channels are discussed. The experimental data are first confronted to the moving breakdown model which overestimates the filamentary damage length. Finally, taking into account the temporal shape of the laser pulses, the coupling between Kerr-induced self-focusing and stimulated Brillouin scattering is discussed to interpret the observations.

  14. Influence of vacuum on nanosecond laser-induced surface damage morphology in fused silica at 1064 nm

    NASA Astrophysics Data System (ADS)

    Diaz, R.; Chambonneau, M.; Grua, P.; Rullier, J.-L.; Natoli, J.-Y.; Lamaignère, L.

    2016-01-01

    The influence of vacuum on nanosecond laser-induced damage at the exit surface of fused silica components is investigated at 1064 nm. In the present study, as previously observed in air, ring patterns surrounding laser-induced damage sites are systematically observed on a plane surface when initiated by multiple longitudinal modes laser pulses. Compared to air, the printed pattern is clearly more concentrated. The obtained correlation between the damage morphology and the temporal structure of the pulses suggests a laser-driven ablation mechanism resulting in a thorough imprint of energy deposit. The ablation process is assumed to be subsequent to an activation of the surface by hot electrons related to the diffusive expansion of a plasma formed from silica. This interpretation is strongly reinforced with additional experiments performed on an optical grating in vacuum on which damage sites do not show any ring pattern. Qualitatively, in vacuum, the intensity-dependent ring appearance speed V ∝ I1/2 is shown to be different than in air where V ∝ I1/3. This demonstrates that the mechanisms of formation of ring patterns are different in vacuum than in air. Moreover, the mechanism responsible of the propagation of the activation front in vacuum is shown to be outdone when experiments are performed in air.

  15. Identification of the formation phases of filamentary damage induced by nanosecond laser pulses in bulk fused silica

    NASA Astrophysics Data System (ADS)

    Shen, Chao; Chambonneau, Maxime; Cheng, Xiang'ai; Xu, Zhongjie; Jiang, Tian

    2015-09-01

    Employing a pump-probe polarization-based two-frame shadowgraphy setup, the formation of filamentary damage induced in bulk fused silica by a nanosecond pulse at 1064 nm is investigated with a picosecond probe. Three different phases are exhibited in the damage experiments. The first phase is the formation of a micrometric plasma channel along the laser direction during the beginning of the pulse likely caused by multi-photon ionization. This channel exhibits growth during ˜400 ps, and the newly grown plasma is discrete. Then, during the end of the pulse, this channel evolves into a tadpole-like morphology showing an elliptical head upstream the laser flux followed by a thin tail. This observed asymmetry is attributed to shielding effects caused by both the plasma and hot modified silica. Once the damage shows its almost final morphology, a last phase consists in the launch of a pressure wave enlarging it after the laser pulse. The physical mechanisms that might be involved in the formation of plasma channels are discussed. The experimental data are first confronted to the moving breakdown model which overestimates the filamentary damage length. Finally, taking into account the temporal shape of the laser pulses, the coupling between Kerr-induced self-focusing and stimulated Brillouin scattering is discussed to interpret the observations.

  16. Thermo-mechanical simulations of CO2 laser-fused silica interactions

    NASA Astrophysics Data System (ADS)

    Doualle, T.; Gallais, L.; Cormont, P.; Hébert, D.; Combis, P.; Rullier, J.-L.

    2016-03-01

    CO2 laser heating of silica glass is used in many scientific and industrial applications. Particularly, localized CO2 laser heating of silica glass has demonstrated its ability to mitigate surface damage on optics used for high power laser applications. To develop such applications, the control of temperature, heat affected area, and resulting mechanical stresses are critical. Therefore, it is necessary to understand the silica transformation, the material ejection, and the thermo-mechanical stresses induced by the laser heating and subsequent cooling. In this paper, we detail the development of comprehensive thermo-mechanical numerical simulations of these physical processes, based on finite-element method. The approach is developed for 2D or 3D cases to tackle the case of a moving beam at the surface of the sample, and we particularly discuss the choice of the different parameters based on bibliographic inputs. The thermal and mechanical numerical results have been compared to different dedicated experimental studies: infrared thermography measurements at the surface of the irradiated area, optical profilometry measurements of the laser-processed sites, and photo-elastic measurements. Very consistent results are obtained between numerical and experimental results for the description of the temperature gradients, the material ejection, and the residual stresses.

  17. Picosecond-nanosecond bulk damage of fused silica at 1064nm

    NASA Astrophysics Data System (ADS)

    Smith, Arlee V.; Do, Binh T.

    2008-10-01

    We are interested in maximizing the performance of fiber lasers and amplifiers, particularly for amplification of ps-ns pulses. The observed pulse energies from large mode area fiber amplifiers routinely exceed the reported bulk damage threshold of silica. We have undertaken a program to establish the intrinsic damage thresholds of silica that are relevant for fiber applications. We use a single transverse / single longitudinal mode Q-switched Nd:YAG laser focused to an 8-µm spot several Rayleigh ranges deep in silica windows for the nanosecond measurement, and a Q-switched, mode locked Nd:YAG laser for the picoseconds measurements. Our key findings include: 1. The damage threshold is deterministic rather than statistical for both ns and ps pulses. The threshold varies less than 1% from location to location. 2. The intrinsic damage threshold of silica is 475+/-25 GW/cm2 (fluence = 3850 J/cm2) for 8 ns pulses and approximately 3 times higher for 14 ps pulses. 3. There is no difference in damage thresholds among Corning's A0, B1, C1, D1, D2, and D5 grades of silica. 4. A tight focus is required to avoid large self focusing corrections and to avoid SBS for the 8-ns pulses. 5. Damage morphologies are reproducible from pulse to pulse but change with focal spot size and pulse duration. In all cases, damage appears to begin exactly at the focus and then move upstream approximately one Rayleigh range. 6. The dependence of the damage threshold fluence on pulse duration is nearly linear for pulse durations longer than 50 ps. The square root of duration dependence reported by several investigators for the 50 ps to 10 ns range is refuted. 7. The variation of damage fluence with pulse duration from 20 fs to 20 ns and beyond is well described by a single electron avalanche rate equation with three fixed rates for the avalanche, multiphoton ionization, and electron recombination terms. 8. Our damage threshold is consistent with the most reliable DC field breakdown threshold. 9

  18. Methods for Mitigating Growth of Laser-Initiated Surface Damage on Fused Silcia Optics at 351nm

    SciTech Connect

    Hrubesh, L W; Norton, M A; Molander, W A; Donohue, E E; Maricle, S M; Penetrante, B M; Brusasco, R M; Grundler, W; Butler, J A; Carr, J W; Hill, R M; Summers, L J; Feit, M D; Rubenchik, A; Key, M H; Wegner, P J; Burnham, A K; Hackel, L A; Kozlowski, M R

    2001-12-12

    We report a summary of the surface damage, growth mitigation effort at 351nm for polished fused silica optics. The objective was to experimentally validate selected methods that could be applied to pre-initiated or retrieved-from-service optics, to stop further damage growth. A specific goal was to obtain sufficient data and information on successful methods for fused silica optics to select a single approach for processing large aperture, fused-silica optics used in high-peak-power laser applications. This paper includes the test results and the evaluation thereof, for several mitigation methods for fused silica surfaces. The mitigation methods tested in this study are wet chemical etching, cold plasma etching, CW-CO{sub 2} laser processing, and micro-flame torch processing. We found that CW-CO{sub 2} laser processing produces the most significant and consistent results to halt laser-induced surface damage growth on fused silica. We recorded successful mitigation of the growth of laser-induced surface damage sites as large as 0.5mm diameter, for 1000 shots at 351nm and fluences in the range of 8 to 13J/cm{sup 2}, {approx}11ns pulse length. We obtained sufficient data for elimination of damage growth using CO{sub 2} laser processing on sub-aperture representative optics, to proceed with application to large aperture ({approx}40 x 40cm{sup 2}) fused silica.

  19. Study of CO2 laser smoothing of surface roughness in fused silica

    SciTech Connect

    Shen, N; Matthews, J; Fair, J E; Britten, J A; Nguyen, H T; Cooke, D; Elhadj, S; Henshaw, D; Guss, G M; Guss, G M; Yang, T

    2009-11-03

    Small micrometer-sized roughness on optical surfaces, caused by laser damage and/or redeposition of laser ablated material, can cause local electric field intensification which may lead to damage initiation both on the optics and/or downstream. We examined the smoothing of etched periodic surface structures on SiO{sub 2} substrate with 10.6 {micro}m CO{sub 2} laser using atomic force microscopy. The characteristic surface tension driven mass flow of the glass under different laser parameters were simulated using computational fluid dynamics and correlated with experimental results. We found that during CO{sub 2} laser polishing the estimate viscosity of the silica glass appears to be higher than typical literature values measured at a temperature similar to the laser heating conditions. This discrepancy can be explained by the observation that at high temperature, a significant portion of the hydroxyl content in the layer of heated silica glass can diffuse out resulting in a much stiffer glass.

  20. Comparing the use of 4.6 um lasers versus 10.6 um lasers for mitigating damage site growth on fused silica surfaces

    SciTech Connect

    Yang, S T; Matthews, M J; Elhadj, S; Cooke, D; Guss, G M; Draggoo, V G; Wegner, P J

    2010-10-21

    The advantage of using mid-infrared (IR) 4.6 {micro}m lasers, versus far-infrared 10.6 {micro}m lasers, for mitigating damage growth on fused silica is investigated. In contrast to fused silica's high absorption at 10.6 {micro}m, silica absorption at 4.6 {micro}m is two orders of magnitude less. The much reduced absorption at 4.6 {micro}m enables deep heat penetration into fused silica when it is heated using the mid-IR laser, which in turn leads to more effective mitigation of damage sites with deep cracks. The advantage of using mid-IR versus far-IR laser for damage growth mitigation under non-evaporative condition is quantified by defining a figure of merit (FOM) that relates the crack healing depth to laser power required. Based on our FOM, we show that for damage cracks up to at least 500 {micro}m in depth, mitigation using a 4.6 {micro}m mid-IR laser is more efficient than mitigation using a 10.6 {micro}m far-IR laser.

  1. Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing

    SciTech Connect

    Suratwala, T I; Steele, R; Feit, M D; Wong, L; Miller, P E; Menapace, J A; Davis, P J

    2007-05-02

    The distribution and characteristics of surface cracks (i.e., sub-surface damage or scratching) on fused silica formed during grinding/polishing resulting from the addition of rogue particles in the base slurry has been investigated. Fused silica samples (10 cm diameter x 1 cm thick) were: (1) ground by loose abrasive grinding (alumina particles 9-30 {micro}m) on a glass lap with the addition of larger alumina particles at various concentrations with mean sizes ranging from 15-30 {micro}m, or (2) polished (using 0.5 {micro}m cerium oxide slurry) on various laps (polyurethanes pads or pitch) with the addition of larger rogue particles (diamond (4-45 {micro}m), pitch, dust, or dried Ceria slurry agglomerates) at various concentrations. For the resulting ground samples, the crack distributions of the as-prepared surfaces were determined using a polished taper technique. The crack depth was observed to: (1) increase at small concentrations (>10{sup -4} fraction) of rogue particles; and (2) increase with rogue particle concentration to crack depths consistent with that observed when grinding with particles the size of the rogue particles alone. For the polished samples, which were subsequently etched in HF:NH{sub 4}F to expose the surface damage, the resulting scratch properties (type, number density, width, and length) were characterized. The number density of scratches increased exponentially with the size of the rogue diamond at a fixed rogue diamond concentration suggesting that larger particles are more likely to lead to scratching. The length of the scratch was found to increase with rogue particle size, increase with lap viscosity, and decrease with applied load. At high diamond concentrations, the type of scratch transitioned from brittle to ductile and the length of the scratches dramatically increased and extended to the edge of the optic. The observed trends can explained semi-quantitatively in terms of the time needed for a rogue particle to penetrate into a

  2. Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO{sub 2} laser irradiation

    SciTech Connect

    Robin, Lucile; Cormont, Philippe; Hebert, David; Mainfray, Christelle; Rullier, Jean-Luc; Combis, Patrick; Gallais, Laurent

    2012-03-15

    In situ spatial and temporal temperature measurements of a fused silica surface heated by a 10.6 {mu}m CO{sub 2} laser were performed using an infrared camera. These measurements were derived from heat flux emission of the fused silica. High temperature measurements--in the range 400-2500 K--were performed at the surface of a semi-transparent media with a high spatial resolution. Particular attention was given to the experimental conception and to the calibration of the infrared device. Moreover, both conventional and interferential microscopes were used to characterize the silica surfaces after CO{sub 2} laser irradiation. By associating these results with thermal camera measurements we identified the major surface temperature levels of silica transformation when heated during 250 ms. Surface deformation of silica is observed for temperatures <2000 K. This is consistent with other recent work using CO{sub 2} laser heating. At higher temperatures, matter ejection, as deduced from microscope observations, occurs at temperatures that are still much lower than the standard boiling point. Such evaporation is described by a thermodynamical approach, and calculations show very good agreement with experiment.

  3. Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser

    NASA Astrophysics Data System (ADS)

    Karimelahi, Samira; Abolghasemi, Ladan; Herman, Peter R.

    2014-01-01

    We present multiple methods of high aspect ratio hole drilling in fused silica glass, taking advantage of high power and high repetition rate picosecond lasers and flexible beam delivery methods to excise deep holes with minimal collateral damage. Combinations of static and synchronous scanning of laser focus were explored over a range of laser repetition rates and burst-train profiles that dramatically vary laser plume interaction dynamics, heat-affected zone, and heat accumulation physics. Chemically assisted etching of picosecond laser modification tracks are also presented as an extension from femtosecond laser writing of volume nanograting to form high aspect ratio (77) channels. Processing windows are identified for the various beam delivery methods that optimize the laser exposure over energy, wavelength, and repetition rate to reduce microcracking and deleterious heating effects. The results show the benefits of femtosecond laser interactions in glass extend into the picosecond domain, where the attributes of higher power further yield wide processing windows and significantly faster fabrication speed. High aspect ratio holes of 400 μm depth were formed over widely varying rates of 333 holes per second for mildly cracked holes in static-focal positioning through to one hole per second for low-damage and taper free holes in synchronous scanning.

  4. Verifying an all fused silica miniature optical fiber tip pressure sensor performance with turbine engine field test

    NASA Astrophysics Data System (ADS)

    Wang, Xingwei; Xu, Juncheng; Zhu, Yizheng; Yu, Bing; Han, Ming; Wang, Zhuang; Cooper, Kristie L.; Pickrell, Gary R.; Wang, Anbo; Ringshia, Aditya; Ng, Wing

    2005-11-01

    Pressure sensors are the key elements for industrial monitoring and control systems to lower equipment maintenance cost, improve fuel economy, reduce atmospheric pollution, and provide a safer workplace. However, the testing environment is usually harsh. For example, inside the turbine engine, temperatures might exceed 600°C and pressures might exceed 100psi (690kPa), where most current available sensors cannot survive. Moreover, due to the restricted space for installation, miniature size of the sensor is highly desirable. To meet these requirements, a novel type of all fused silica optic fiber tip pressure sensor with a 125μm diameter was developed. It is a diaphragm based pressure sensor in which a Fabry-Perot interferometer is constructed by the end face of an optical fiber and the surface of a diaphragm connected by a short piece of hollow fiber. The FP cavity length and the interference pattern will change according to ambient pressure variation. Its main improvement with respect to previously developed optical sensors, such as those utilizing techniques of wet etching, anodic bonding and sol-gel bonding, is the fact that no chemical method is needed during the cavity fabrication. Its dynamic pressure performance was verified in a turbine engine field test, demonstrating not only that it can safely and reliably function near the fan of a turbine engine for more than two hours, but also that its performance is consistent with that of a commercial Kulite sensor.

  5. Laser-based dynamic evaporation and surface shaping of fused silica with assist gases: a path to rimless laser machining

    NASA Astrophysics Data System (ADS)

    Elhadj, S.; Matthews, M. J.; Guss, G. M.; Bass, I. L.

    2013-12-01

    Evaporation and ablation are fundamental processes which drive laser-material processing performance. In applications where surface shape is important, control of the temperature field and the resulting spatially varying material response must be considered. For that purpose, assist gases are useful in, first, lowering treatment temperatures and, second, in changing interfacial and bulk chemistry to limit capillary-driven flow. Additionally, laser-matter coupling is influenced by pulse length as it determines the heat affected zone. Using infrared imaging of CO2 laser-heated fused silica and surface profile measurements, we derive temperature and time dependent pitting rates along with shapes for a range of gases that include hydrogen, nitrogen, air, and helium. In the range of 1,500-4,500 K, evaporation, flow, and densification are shown to contribute to the pit shape. Analysis reveals a strong and complex dependence of rim formation on heating time and gas chemistry, mostly by lowering treatment temperature. Under dynamic heating, chemicapillarity appears to help in lowering rim height, in spite of the reactants mass transport limitations. Results on this gas-assisted approach suggest the possibility for sub-nanometer "rimless" laser-based machining.

  6. Time-Resolved Imaging of Material Response Following Laser-Induced Breakdown in the Bulk and Surface of Fused Silica

    SciTech Connect

    Raman, R N; Negres, R A; DeMange, P; Demos, S G

    2010-02-04

    Optical components within high energy laser systems are susceptible to laser-induced material modification when the breakdown threshold is exceeded or damage is initiated by pre-existing impurities or defects. These modifications are the result of exposure to extreme conditions involving the generation of high temperatures and pressures and occur on a volumetric scale of the order of a few cubic microns. The response of the material following localized energy deposition, including the timeline of events and the individual processes involved during this timeline, is still largely unknown. In this work, we investigate the events taking place during the entire timeline in both bulk and surface damage in fused silica using a set of time-resolved microscopy systems. These microscope systems offer up to 1 micron spatial resolution when imaging static or dynamic effects, allowing for imaging of the entire process with adequate temporal and spatial resolution. These systems incorporate various pump-probe geometries designed to optimize the sensitivity for detecting individual aspects of the process such as the propagation of shock waves, near-surface material motion, the speed of ejecta, and material transformations. The experimental results indicate that the material response can be separated into distinct phases, some terminating within a few tens of nanoseconds but some extending up to about 100 microseconds. Overall the results demonstrate that the final characteristics of the modified region depend on the material response to the energy deposition and not on the laser parameters.

  7. An Improved Method of Mitigating Laser Induced Surface Damage Growth in Fused Silica Using a Rastered, Pulsed CO2 Laser

    SciTech Connect

    Bass, I L; Guss, G M; Nostrand, M J; Wegner, P L

    2010-10-21

    A new method of mitigating (arresting) the growth of large (>200 m diameter and depth) laser induced surface damage on fused silica has been developed that successfully addresses several issues encountered with our previously-reported large site mitigation technique. As in the previous work, a tightly-focused 10.6 {micro}m CO{sub 2} laser spot is scanned over the damage site by galvanometer steering mirrors. In contrast to the previous work, the laser is pulsed instead of CW, with the pulse length and repetition frequency chosen to allow substantial cooling between pulses. This cooling has the important effect of reducing the heat-affected zone capable of supporting thermo-capillary flow from scale lengths on the order of the overall scan pattern to scale lengths on the order of the focused laser spot, thus preventing the formation of a raised rim around the final mitigation site and its consequent down-stream intensification. Other advantages of the new method include lower residual stresses, and improved damage threshold associated with reduced amounts of redeposited material. The raster patterns can be designed to produce specific shapes of the mitigation pit including cones and pyramids. Details of the new technique and its comparison with the previous technique will be presented.

  8. Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature

    SciTech Connect

    Shen, N.; Matthews, M. J.; Elhadj, S.; Miller, P. E.; Nelson, A. J.; Hamilton, J.

    2013-04-03

    Here, chemical vapor deposition (CVD) is used for the production of fused silica optics in high-power laser applications. However, relatively little is known about the ultraviolet laser damage threshold of CVD films and how they relate to intrinsic defects produced during deposition. We present here a study relating structural and electronic defects in CVD films to 355 nm pulsed-laser damage threshold as a function of post-deposition annealing temperature (THT). Plasma-enhanced CVD based on SiH4/N2O under oxygen-rich conditions was used to deposit 1.5, 3.1 and 6.4 µm thick films on etched SiO2 substrates. Rapid annealing was performed using a scanned CO2 laser beam up to THT ~ 2100 K. The films were then characterized using x-ray photoemission spectroscopy, Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy. A gradual transition in the damage threshold of annealed films was observed for THT values up to 1600 K, correlating with a decrease in non-bridging silanol and oxygen deficient centres. An additional sharp transition in damage threshold also occurs at ~1850 K indicating substrate annealing. Based on our results, a mechanism for damage-related defect annealing is proposed, and the potential of using high-THT CVD SiO2 to mitigate optical damage is also discussed.

  9. Imaging System to Measure Kinetics of Material Cluster Ejection During Exit-Surface Damage Initiation and Growth in Fused Silica

    SciTech Connect

    Raman, R N; Negres, R A; Demos, S G

    2009-10-29

    Laser-induced damage on the surface of optical components typically is manifested by the formation of microscopic craters that can ultimately degrade the optics performance characteristics. It is believed that the damage process is the result of the material exposure to high temperatures and pressures within a volume on the order of several cubic microns located just below the surface. The response of the material following initial localized energy deposition by the laser pulse, including the timeline of events and the individual processes involved during this timeline, is still largely unknown. In this work we introduce a time-resolved microscope system designed to enable a detailed investigation of the sequence of dynamic events involved during surface damage. To best capture individual aspects of the damage timeline, this system is employed in multiple imaging configurations (such as multi-view image acquisition at a single time point and multi-image acquisition at different time points of the same event) and offers sensitivity to phenomena at very early delay times. The capabilities of this system are demonstrated with preliminary results from the study of exit-surface damage in fused silica. The time-resolved images provide information on the material response immediately following laser energy deposition, the processes later involved during crater formation or growth, the material ejecta kinetics, and overall material motion and transformation. Such results offer insight into the mechanisms governing damage initiation and growth in the optical components of ICF class laser systems.

  10. Morphology And Microstructure in Fused Silica Induced By High Fluence Ultraviolet 3omega (355 Nm) Laser Pulses

    SciTech Connect

    Wong, J.; Ferriera, J.L.; Lindsey, E.F.; Haupt, D.L.; Hutcheon, I.D.; Kinney, J.H.

    2007-08-08

    The morphology and microstructure induced in high quality fused silica by UV (355 nm) laser pulses at high fluence (10-45 J/cm{sup 2}) have been investigated using a suite of microscopic and spectroscopic tools. The laser beam has a near-Gaussian profile with a 1/e{sup 2} diameter of 0.98 mm at the sample plane and a pulse length FWHM (full width at half maximum) of 7.5 ns. The damage craters consist of a molten core region (thermal explosion), surrounded by a near concentric region of fractured material. The latter arises from propagation of lateral cracks induced by the laser-generated shock waves, which also compact the crater wall, {approx} 10 {micro}m thick and {approx} 20% higher in density. The size of the damage crater varies with laser fluence, number of pulses, and laser irradiation history. In the compaction layer, there is no detectable change in the Si/O stoichiometry to within {+-} 1.6% and no crystalline nano-particles of Si were observed. Micro- (1-10 {micro}m) and nano- (20-200 nm) cracks are found, however. A lower valence Si{sup 3+} species on the top 2-3 nm of the compaction layer is evident from the Si 2p XPS. The results are used to construct a physical model of the damage crater and to gain critical insight into laser damage process.