Science.gov

Sample records for aperture solar telescope

  1. Instrument Design of the Large Aperture Solar UV Visible and IR Observing Telescope (SUVIT) for the SOLAR-C Mission

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Takeyama, N.

    2012-12-01

    We present an instrumental design of one major solar observation payload planned for the SOLAR-C mission: the Solar Ultra-violet Visible and near IR observing Telescope (SUVIT). The SUVIT is designed to provide high-angular-resolution investigation of the lower solar atmosphere, from the photosphere to the uppermost chromosphere, with enhanced spectroscopic and spectro-polarimetric capability in wide wavelength regions from 280 nm (Mg II h&k lines) to 1100 nm (He I 1083 nm line) with 1.5 m class aperture and filtergraphic and spectrographic instruments.

  2. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  3. Science and Instrument Design of 1.5-m Aperture Solar Optical Telescope for the SOLAR-C Mission

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Katsukawa, Y.; Ichimoto, K.; Shimizu, T.

    2012-12-01

    We present science cases and a design of one of major instruments for SOLAR-C mission; 1.5-m-class aperture solar ultra-violet visible and near IR observing Telescope (SUVIT). The SOLAR-C mission aims at fully understanding dynamism and magnetic nature of the solar atmosphere by observing small-scale plasma processes and structures. The SUVIT is designed to provide high-angular-resolution investigation of lower atmosphere from the photosphere to the uppermost chromosphere with enhanced spectroscopic and spectro-polarimetric capability covering a wide wavelength region from 280 nm (Mg II h&k) to 1100 nm (He I 1083 nm), using focal plane instruments: wide-band and narrow-band filtergraphs and a spectrograph for high-precision spectro-polarimetry in the solar photospheric and chromospheric lines. We will discuss about instrument design to realize the science cases.

  4. Multiple aperture telescope diffraction images

    NASA Astrophysics Data System (ADS)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    After the successful development of the multiple-mirror telescope (MMT) which is now in operation at Mt. Hopkins, Arizona, it appears likely that other large telescopes of the future will also employ several apertures in combination. The characteristics of multiple-aperture telescopes (MAT) are considered along with the diffraction pattern for an array of equal-diameter apertures and the experimental setup for generating the diffraction pattern. An atlas of diffraction images is discussed, taking into account single apertures, linear-spaced arrays, four-square arrays, circular arrays, triangular arrays, Y-arrays, eight-element arrays, arrays with central aperture, Golay arrays, Mills Cross arrays, 12-element arrays, 16-element arrays, and many-aperture arrays. Attention is also given to a quantitative analysis of patterns.

  5. Large aperture Fresnel telescopes/011

    SciTech Connect

    Hyde, R.A., LLNL

    1998-07-16

    At Livermore we`ve spent the last two years examining an alternative approach towards very large aperture (VLA) telescopes, one based upon transmissive Fresnel lenses rather than on mirrors. Fresnel lenses are attractive for VLA telescopes because they are launchable (lightweight, packagable, and deployable) and because they virtually eliminate the traditional, very tight, surface shape requirements faced by reflecting telescopes. Their (potentially severe) optical drawback, a very narrow spectral bandwidth, can be eliminated by use of a second (much smaller) chromatically-correcting Fresnel element. This enables Fresnel VLA telescopes to provide either single band ({Delta}{lambda}/{lambda} {approximately} 0.1), multiple band, or continuous spectral coverage. Building and fielding such large Fresnel lenses will present a significant challenge, but one which appears, with effort, to be solvable.

  6. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  7. A large aperture portable telescope

    NASA Astrophysics Data System (ADS)

    Sperotto, Rinaldo; Poppi, Sergio; Pernechele, Claudio

    2011-10-01

    A dismountable and portable telescope with a large primary mirror (250 mm in diameter) and a numerical aperture of 5.6, is presented. The telescope has a all-spheric catadioptric optical design, consisting of a spherical primary and a group of spherical lenses, where the last surface is aluminized, as a secondary mirror. The group of lenses corrects all the optical aberrations, including the spherical introduced by the primary and the chromatic ones. The telescope has a very compact design, with a physical length of 600mm. This fact, joint with the all spherical design, make it a ligth portable and easy to align instrument: when dismounted it can be contained in a suitcase sizing 580x440x140 mm and the spherical surface for all the mirrors and lenses makes easy the final alignment of the optical train. We discuss here in detail the optical design and the realized prototype and will show the results, both in terms of theoretical and effective performances.&publicationDat

  8. Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, Roderick Allen

    1998-04-20

    A very large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass ''aiming'' at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The magnifying glass includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the magnifying glass, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets.

  9. Synthetic Aperture Technic in Astronomy Using Slit Aperture Telescope

    NASA Astrophysics Data System (ADS)

    Touma, H.

    1997-05-01

    The interest in a Rotating Slit-Aperture Telescope (RSAT) among other synthetic aperture telescopes is its capability of being easily coupled with a spectrograph, in order to give reconstructed images of an astronomical object as a function of the light wavelength. Each colored image is comparable with the others for fruitful astrophysical applications. The principle of image reconstruction is well known: it consists of the inversion of the set of projections (Radon transform) given by the telescope during its rotation around its optical axis. A full coverage of the two dimensional Fourier plane can be obtained by rotating the SAT. This problem has led to intense developments for medical imaging (tomography). One of the main difficulties in the reconstruction process in space may come from the jitter of the rotation axis of the RSAT. A set of projections uncorrected for this jitter produces very fuzzy reconstructed images. An elegant solution to the necessary phasing between successive projections is proposed which makes use of a small auxilliary telescope, and some numerical simulations are presented.

  10. The Historical Growth of Telescope Aperture

    NASA Astrophysics Data System (ADS)

    Racine, René

    2004-01-01

    This paper analyzes a compilation of aperture diameters D and commissioning dates t for 177 optical telescopes, including those that have been among the largest of their time. We offer the following findings, and draw the following inferences, about aperture growth D(t) over four centuries: 1. From the days of Galileo to the present, telescope diameters have steadily grown, with a doubling time t2× of nearly 50 yr. 2. Beginning in 1730, major refractors' apertures followed a strictly exponential curve of growth, with t2×=45 yr, before stopping with the Yerkes 40 inch (1.02 m) in 1897. 3. Over the last 300 yr, the very largest ``frontier'' reflectors have defined a sharp and distinct upper boundary to the D(t) distribution, with t2×=48 yr and D1900=2.3 m. This exponential growth is taken to have been imposed strictly by the rate at which telescope technology has progressed. 4. Data for second-tier ``large'' reflectors yield D1900=1.0 m and t2×=47 yr until 1950 and suggest an exponential decrease of the doubling time afterwards, e-folding in ~70 yr and leading to t2×=20 yr in 2000. This may be the result of a gradual relief, through increased collaboration, of constraints that prevented the limits of technology from being reached. 5. The curves of growth for large and for frontier reflectors cross in ~2010. Whether the aperture growth in the 21st century is limited by demographics-collaborations-or by technology remains to be seen. 6. During the 20th century, commissioning of large telescopes tended to occur in bursts at ~35 yr intervals. 7. Giant telescopes with serious shortcomings were not uncommon before 1850. These typically had twice the aperture of their more productive contemporaries. 8. The completion of the current burst of ambitiously large 20-100 m telescope projects with the scheduled launch of the James Webb Space Telescope in the 2010s would constitute a dramatic break with 4 centuries of historical evolution.

  11. Large aperture cool telescope mission: SPICA

    NASA Astrophysics Data System (ADS)

    Matsumoto, Toshio

    2003-03-01

    SPICA (SPace Infrared telescope for Cosmology and Astrophysics) is a future infrared astronomy mission which is now under study in Japan. Larger aperture (~ 3.5m) infrared telescope will be launched into L2 halo orbit at ambient temperature, and will be cooled in orbit by mechanical cooler down to 4.5K. SPICA is powerful in mid and far infrared observations and will delineate the birth and evolution of galaxies, stars and planetary systems which will play a complementary role to NGST and Hershell.

  12. Optical aperture synthesis with electronically connected telescopes.

    PubMed

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D

    2015-01-01

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705

  13. Optical aperture synthesis with electronically connected telescopes

    PubMed Central

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-01-01

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705

  14. Multiple-Aperture-Based Solar Seeing Profiler

    NASA Astrophysics Data System (ADS)

    Ren, Deqing; Zhao, Gang; Zhang, Xi; Dou, Jiangpei; Chen, Rui; Zhu, Yongtian; Yang, Feng

    2015-09-01

    Characterization of day-time atmospheric turbulence profiles up to 30 km above the telescope is crucial for designs and performance estimations of future solar multiconjugate adaptive optics (MCAO) systems. Recently, the S-DIMM+ method has been successfully used to measure the vertical profile of turbulence. However, to measure profile up to 30 km employing the S-DIMM+ method, a telescope with a diameter of at least 1.0 m is needed, which restricts the usage of S-DIMM+, since large telescopes are scarce and their time is limited. To solve this problem, we introduce the multiple-aperture seeing profiler (MASP), which consists of two portable small telescopes instead of a single large aperture. Numerical simulations are carried out to evaluate the performance of MASP. We find that for one layer case, MASP can retrieve the seeing with error ~5% using 800 frames of wavefront sensor (WFS) data, which is quite similar to the results of a telescope with diameter of 1120 mm. We also simulate profiles with four turbulence layers, and find that our MASP can effectively retrieve the strengths and heights of the four turbulence layers. Since previous measurements at Big Bear Solar Observatory showed that day-time turbulence profile typically consists of four layers, the MASP we introduced is sufficient for actual seeing measurement.

  15. The solar optical telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Objectives of the Solar Optical Telescope are to study the physics of the Sun on the scale at which many of the important physical processes occur and to attain a resolution of 73km on the Sun or 0.1 arc seconds of angular resolution. Topics discussed in this overview of the Solar Optical Telescope include: why is the Solar Optical Telescope needed; current picture of the Sun's atmosphere and convection zone; scientific problems for the Solar Optical Telescope; a description of the telescope; the facility - science management, contamination control, and accessibility to the instruments; the scientific instruments - a coordinated instrument package for unlocking the Sun's secrets; parameters of the coordinated instrument package; science operations from the Space Shuttle; and the dynamic solar atmosphere.

  16. A coded aperture gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Mcconnell, M. L.; Forrest, D. J.; Chupp, E. L.; Dunphy, P. P.

    1982-01-01

    A gamma ray telescope is being developed to operate in the energy range 100 keV to 5 MeV, utilizing coded aperture imaging. The design incorporates a mask pattern based on a Uniformly Redundant Array (URA), which has been shown to have ideal imaging characteristics. A mask-anti-mask procedure is used to eliminate the effects of any possible systematic variations in detector background rates. The detector array is composed of 35 elements of the high-Z material Bismuth Germanate (BGO). Results of laboratory testing of the imaging properties will be presented. A southern hemisphere balloon flight is planned for 1982 with the goal of observing the 0.511 MeV radiation from the Galactic Center. Computer calculations show that a point source of this radiation can be located to within + or - 1 deg.

  17. DiffRACT: differential remapped aperture coronagraphic telescope

    NASA Astrophysics Data System (ADS)

    Allouche, F.; Hadjara, M.; Kok, Y.; Vakili, F.; Abe, L.; Gori, P. M.

    2012-09-01

    We propose a new high dynamic imaging concept for the detection and characterization of extra-solar planets. DIFFRACT standing for DIFFerential Remapped Aperture Coronagraphic Telescope, uses a Wollaston prism to split the entrance pupil into two exit pupils. These exit pupils are then remapped with 2 apertures lenses of different diameters resulting in two separate rescaled focal images of the same star. Since the angular separation of a putative exoplanet orbiting around the star is independent of the angular resolution of the remapped output pupils they appear at the same linear location in the resulting images that differ in resolution proportional to the exit pupil sizes. Exoplanet detection is obtained by numerically rescaling the images at the same angular resolution and substracting them, so that, under aberration and photon noise free conditions the planet twin images appear as two positive and negative Airy patterns. In real conditions however and depending on the exoplanet separation normalized to the angular resolution of the input telescope detection performances depend strongly on the adaptive optics performances and the collecting surface of the telescope. In this study we present the formal expression of DIFFRACT optics concept with a complet set of numerical experiments to estimate the performances of the concept under real observing conditions including instrument and adaptive optics corrections.

  18. Multiple-Aperture Based Solar Seeing Profiler

    NASA Astrophysics Data System (ADS)

    Zhao, Gang; Ren, Deqing

    2015-08-01

    Characterization of daytime atmospheric turbulence profile up to 30 km above the telescope is crucial for designs and performance estimations of solar Multi-Conjugate Adaptive Optics (MCAO) systems. To measure seeing profiles up to 30km, we introduce the Multiple Aperture Seeing Profiler (MASP). It bases on the principle of S-DIMM+ and consists of two portable small telescopes similar to SHABAR. Thus the MASP take the advantages of both S-DIMM+ and SHABAR. It is portable and can be used without big telescope, while it has ability to measure turbulence profile up to 30km. Numerical simulations are carried out to evaluate the performance of MASP. We find that for one layer case, MASP can retrieve the seeing with error ~5% using 800 frames of WFS data, which is quite similar with the results of a telescope with diameter of 1120mm. We also simulate profiles with four turbulence layers, and find that our MASP can well retrieve the strengths and heights of the four turbulence layers. Since previous measurements at BBSO showed that daytime turbulence profile typically consists of four layers, MASP we introduced is sufficient for actual seeing measurement.

  19. Solar Rejection Filter for Large Telescopes

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James

    2009-01-01

    To reject solar radiation photons at the front aperture for large telescopes, a mosaic of large transmission mode filters is placed in front of the telescope or at the aperture of the dome. Filtering options for effective rejection of sunlight include a smaller filter down-path near the focus of the telescope, and a large-diameter filter located in the front of the main aperture. Two types of large filters are viable: reflectance mode and transmittance mode. In the case of reflectance mode, a dielectric coating on a suitable substrate (e.g. a low-thermal-expansion glass) is arranged to reflect only a single, narrow wavelength and to efficiently transmit all other wavelengths. These coatings are commonly referred to as notch filter. In this case, the large mirror located in front of the telescope aperture reflects the received (signal and background) light into the telescope. In the case of transmittance mode, a dielectric coating on a suitable substrate (glass, sapphire, clear plastic, membrane, and the like) is arranged to transmit only a single wavelength and to reject all other wavelengths (visible and near IR) of light. The substrate of the large filter will determine its mass. At first glance, a large optical filter with a diameter of up to 10 m, located in front of the main aperture, would require a significant thickness to avoid sagging. However, a segmented filter supported by a structurally rugged grid can support smaller filters. The obscuration introduced by the grid is minimal because the total area can be made insignificant. This configuration can be detrimental to a diffraction- limited telescope due to diffraction effects at the edges of each sub-panel. However, no discernable degradation would result for a 20 diffraction-limit telescope (a photon bucket). Even the small amount of sagging in each subpanel should have minimal effect in the performance of a non-diffraction limited telescope because the part has no appreciable optical power. If the front aperture filter is integrated with the telescope dome, it will reject heat from the dome and will significantly reduce dome temperature regulation requirements and costs. Also, the filter will protect the telescope optics from dust and other contaminants in the atmosphere. It will be simpler to clean or replace this filter than the telescope primary mirror. It may be necessary to paint the support grid with a highly reflective material to avoid overheating.

  20. Conceptual design of a compact optical synthetic aperture telescope

    NASA Astrophysics Data System (ADS)

    Zhu, Neng-hong Zhu; Chen, Xin-yang, Zhou, Dan; Zhang, Cong-cong; Zheng, Li-xin; Wang, Chao-yan

    2014-04-01

    Y-4 synthetic aperture telescope consists of four 40cm sub-telescopes that are configured as Y-type array based on an unique AZ-Alt mounting. After passing through every sub-aperture, star lights are transformed into parallel beams, enter relay optics for co-phasing sensing, finally combined by an optical combiner and form interferometric images in image plane. Because all tubes are installed on single mounting, the complicate outer optical delay line can be avoided. Y-4 array telescope is of some advantages such as efficient diameter, angle resolution with respect to some other configurations. Some negative influence of beam combining errors including piston, tip/tilt, and pupil mapping error aiming to Y-4 array is analyzed subsequently. The preliminary mechanical and optics design of Y-4 telescope is introduced respectively.

  1. Development of Large-Aperture, Light-Weight Fresnel Lenses for Gossamer Space Telescopes

    SciTech Connect

    Sham, D; Hyde, R; Weisberg, A; Early, J; Rushford, M; Britten, J

    2002-04-29

    In order to examine more distant astronomical objects, with higher resolution, future space telescopes require objectives with significantly larger aperture than presently available. NASA has identified a progression in size from the 2.4m aperture objective currently used in the HUBBLE space telescope[l,2], to 25m and greater in order to observe, e.g., extra-solar planets. Since weight is a crucial factor for any object sent into space, the relative weight of large optics over a given area must be reduced[3]. The areal mass density of the primary mirror for the Hubble space telescope is {approx}200 kg/m{sup 2}. This is expected to be reduced to around 15 kg/m{sup 2} for the successor to Hubble--the next generation space telescope (NGST)[4]. For future very large aperture telescopes needed for extra-solar planet detection, the areal mass density must be reduced even further. For example, the areal mass density goal for the Gossamer space telescopes is < 1 kg/m{sup 2}. The production of lightweight focusing optics at >10m size is also an enabling technology for many other applications such as Earth observation, power beaming, and optical communications.

  2. Self-Referencing Hartmann Test for Large-Aperture Telescopes

    NASA Technical Reports Server (NTRS)

    Korechoff, Robert P.; Oseas, Jeffrey M.

    2010-01-01

    A method is proposed for end-to-end, full aperture testing of large-aperture telescopes using an innovative variation of a Hartmann mask. This technique is practical for telescopes with primary mirrors tens of meters in diameter and of any design. Furthermore, it is applicable to the entire optical band (near IR, visible, ultraviolet), relatively insensitive to environmental perturbations, and is suitable for ambient laboratory as well as thermal-vacuum environments. The only restriction is that the telescope optical axis must be parallel to the local gravity vector during testing. The standard Hartmann test utilizes an array of pencil beams that are cut out of a well-corrected wavefront using a mask. The pencil beam array is expanded to fill the full aperture of the telescope. The detector plane of the telescope is translated back and forth along the optical axis in the vicinity of the nominal focal plane, and the centroid of each pencil beam image is recorded. Standard analytical techniques are then used to reconstruct the telescope wavefront from the centroid data. The expansion of the array of pencil beams is usually accomplished by double passing the beams through the telescope under test. However, this requires a well-corrected, autocollimation flat, the diameter or which is approximately equal to that of the telescope aperture. Thus, the standard Hartmann method does not scale well because of the difficulty and expense of building and mounting a well-corrected, large aperture flat. The innovation in the testing method proposed here is to replace the large aperture, well-corrected, monolithic autocollimation flat with an array of small-aperture mirrors. In addition to eliminating the need for a large optic, the surface figure requirement for the small mirrors is relaxed compared to that required of the large autocollimation flat. The key point that allows this method to work is that the small mirrors need to operate as a monolithic flat only with regard to tip/tilt and not piston because in collimated space piston has no effect on the image centroids. The problem of aligning the small mirrors in tip/tilt requires a two-part solution. First, each mirror is suspended from a two-axis gimbal. The orientation of the gimbal is maintained by gravity. Second, the mirror is aligned such that the mirror normal is parallel to gravity vector. This is accomplished interferometrically in a test fixture. Of course, the test fixture itself needs to be calibrated with respect to gravity.

  3. Construction of the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Rimmele, T. R.; Keil, S.; McMullin, J.; Knölker, M.; Kuhn, J. R.; Goode, P. R.; Rosner, R.; Casini, R.; Lin, H.; Tritschler, A.; Wöger, F.; ATST Team

    2012-12-01

    The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. The project has entered its construction phase. Major subsystems have been contracted. As its highest priority science driver ATST shall provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4m aperture, ATST will resolve features at 0.″03 at visible wavelengths and obtain 0.″1 resolution at the magnetically highly sensitive near infrared wavelengths. A high order adaptive optics system delivers a corrected beam to the initial set of state-of-the-art, facility class instrumentation located in the Coudé laboratory facility. The initial set of first generation instruments consists of five facility class instruments, including imagers and spectro-polarimeters. The high polarimetric sensitivity and accuracy required for measurements of the illusive solar magnetic fields place strong constraints on the polarization analysis and calibration. Development and construction of a four-meter solar telescope presents many technical challenges, including thermal control of the enclosure, telescope structure and optics and wavefront control. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the design status of the telescope and its instrumentation, including design status of major subsystems, such as the telescope mount assembly, enclosure, mirror assemblies, and wavefront correction

  4. Low-Cost Large Aperture Telescopes for Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    2006-01-01

    Low-cost, 0.5-1 meter ground apertures are required for near-Earth laser communications. Low-cost ground apertures with equivalent diameters greater than 10 meters are desired for deep-space communications. This presentation focuses on identifying schemes to lower the cost of constructing networks of large apertures while continuing to meet the requirements for laser communications. The primary emphasis here is on the primary mirror. A slumped glass spherical mirror, along with passive secondary mirror corrector and active adaptive optic corrector show promise as a low-cost alternative to large diameter monolithic apertures. To verify the technical performance and cost estimate, development of a 1.5-meter telescope equipped with gimbal and dome is underway.

  5. The scaling relationship between telescope cost and aperture size for very large telescopes

    NASA Technical Reports Server (NTRS)

    van Belle, Gerard T.; Meinel, Aden Baker; Meinel, Marjorie Pettit

    2004-01-01

    Cost data for ground-based telescopes of the last century are analyzed for trends in the relationship between aperture size and cost. We find that for apertures built prior to 1980, costs scaled as aperture size to the 2.8 power, which is consistent with the precious finding of Meinel (1978). After 1980, 'traditional' monolithic mirror telescope costs have scaled as aperture to the 2.5 power. The large multiple mirror telescopes built or in construction during this time period (Keck, LBT, GTC) appear to deviate from this relationship with significant cost savings as a result, although it is unclear what power law such structures follow. We discuss the implications of the current cost-aperture size data on the proposed large telescope projects of the next ten to twenty years. Structures that naturally tend towards the 2.0 power in the cost-aperture relationship will be the favorable choice for future extremely large apertures; out expectation is that space-based structures will ultimately gain economic advantage over ground-based ones.

  6. Solar energy apparatus with apertured shield

    NASA Technical Reports Server (NTRS)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  7. Advanced Technology Solar Telescope - Approach to a Four-meter Diffraction Limited Solar Telescope

    NASA Astrophysics Data System (ADS)

    Keil, S.; Rimmele, T.; Oschmann, J.; Warner, M.; Dalrymple, N.; Hubbard, R.; Price, R.; Goodrich, B.; Keller, C.; ATST Team

    2003-05-01

    The Advanced Technology Solar Telescope (ATST) is intended to be the next major step in ground based solar observatories. The ATST will provide a laboratory for ultra high resolution, polarimetric measurements of all layers of the solar atmosphere. Currently the project is preparing a conceptual design to fulfill this mission, including plans for the design, development, construction and operation of this facility. Given the nearly three-fold increase in aperture size over the largest existing solar facilities, our approach combines techniques from the newest solar facilities with lessons from recent nighttime telescope designs. This approach insures the ATST will meet the scientific goals that include diffraction-limited performance in the optical for high spatial resolution solar observations and very low scattered light to advance coronal observation capabilities. The current telescope design incorporates the latest active optics techniques, fast focal ratios for the primary optics, an open design for ventilation of locally produced seeing, an un-obscured off-axis pupil and a very high order adaptive optics system built into the telescope from the beginning. Examples of some of the current design concepts for the telescope structure, optics, thermal management, scattered light control, upgrade paths to multi-conjugate adaptive optics, software and facilities to support future potential upgrades and instrumentation are given along with some of the key challenges that lie ahead. The National Solar Observatory is sponsored and supported by the National Science Foundation.

  8. Advanced Technology Solar Telescope Construction: Progress Report

    NASA Astrophysics Data System (ADS)

    Rimmele, Thomas R.; McMullin, J.; Keil, S.; Goode, P.; Knoelker, M.; Kuhn, J.; Rosner, R.; ATST Team

    2012-05-01

    The 4m Advance Technology Solar Telescope (ATST) on Haleakala will be the most powerful solar telescope and the worlds leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Suns output. The ATST will provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4 m aperture, ATST will resolve magnetic features at their intrinsic scales. A high order adaptive optics system delivers a corrected beam to the initial set of five state-of-the-art, facility class instrumentation located in the coude laboratory facility. Photopheric and chromospheric magnetometry is part of the key mission of four of these instruments. Coronal magnetometry and spectroscopy will be performed by two of these instruments at infrared wavelengths. The ATST project has transitioned from design and development to its construction phase. Site construction is expected to begin in April 2012. The project has awarded design and fabrication contracts for major telescope subsystems. A robust instrument program has been established and all instruments have passed preliminary design reviews or critical design reviews. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the project status of the telescope and discussion of the approach to integrating instruments into the facility. The National Science Foundation (NSF) through the National Solar Observatory (NSO) funds the ATST Project. The NSO is operated under a cooperative agreement between the Association of Universities for Research in Astronomy, Inc. (AURA) and NSF.

  9. The Advanced Technology Solar Telescope: beginning construction of the world's largest solar telescope

    NASA Astrophysics Data System (ADS)

    Rimmele, T. R.; Wagner, J.; Keil, S.; Elmore, D.; Hubbard, R.; Hansen, E.; Warner, M.; Jeffers, P.; Phelps, L.; Marshall, H.; Goodrich, B.; Richards, K.; Hegwer, S.; Kneale, R.; Ditsler, J.

    2010-07-01

    The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. The project has successfully passed its final design review and the Environmental Impact Study for construction of ATST on Haleakala, Maui, HI has been concluded in December of 2009. The project is now entering its construction phase. As its highest priority science driver ATST shall provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4 m aperture, ATST will resolve features at 0."03 at visible wavelengths and obtain 0."1 resolution at the magnetically highly sensitive near infrared wavelengths. A high order adaptive optics system delivers a corrected beam to the initial set of state-of-the-art, facility class instrumentation located in the coudé laboratory facility. The initial set of first generation instruments consists of five facility class instruments, including imagers and spectropolarimeters. The high polarimetric sensitivity and accuracy required for measurements of the illusive solar magnetic fields place strong constraints on the polarization analysis and calibration. Development and construction of a fourmeter solar telescope presents many technical challenges, including thermal control of the enclosure, telescope structure and optics and wavefront control. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the design status of the telescope and its instrumentation, including design status of major subsystems, such as the telescope mount assembly, enclosure, mirror assemblies, and wavefront correction

  10. Transmissive diffractive membrane optic for large aperture lightweight optical telescope

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Jiao, Jianchao; Wang, Baohua; Jin, Jiangao; Su, Yun

    2015-08-01

    Transmissive diffractive membrane optic can be used in space optical telescope to reduce the size and mass of imaging system. Based on the international research results about transmissive diffractive membrane, a 4-level diffractive substrate with 100mm apertures was designed and transmissive diffractive membrane was fabricated by spin coating. High-precision support structure for diffractive membrane with surface precision 0.12λ RMS (λ=632.8nm) was introduced, and that can meet the diffractive imaging requirements. Diffraction efficiency of the diffractive membrane supported by support structure was tested, and the test results showed that diffraction efficiency was >50%. The step figure test results illustrated the etched deep precision was less the 10nm. The imaging wavefront test result demonstrated a wavefront error of about 38 nm RMS. The transmissive diffractive membrane optic can be very useful for large aperture imaging system to realize low mass and low cost.

  11. Hubble Space Telescope Solar Array

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This is a view of a solar cell blanket deployed on a water table during the Solar Array deployment test. The Hubble Space Telescope (HST) Solar Arrays provide power to the spacecraft. The arrays are mounted on opposite sides of the HST, on the forward shell of the Support Systems Module. Each array stands on a 4-foot mast that supports a retractable wing of solar panels 40-feet (12.1-meters) long and 8.2-feet (2.5-meters) wide, in full extension. The arrays rotate so that the solar cells face the Sun as much as possible to harness the Sun's energy. The Space Telescope Operations Control Center at the Goddard Space Center operates the array, extending the panels and maneuvering the spacecraft to focus maximum sunlight on the arrays. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST Solar Array was designed by the European Space Agency and built by British Aerospace. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST.

  12. Photometric Reverberation Mapping with a Small Aperture Telescope

    NASA Astrophysics Data System (ADS)

    Hood, Carol E.; Rivera, Noah I.; Thackeray-Lacko, Beverly; Powers, Randy M.; Stuckey, Harrison; Watson, Rene; Hood, Michael A.

    2015-01-01

    We present photometric observations of a sample of bright, broad-line AGN in order to monitor variability and verify their black hole masses using the photometric reverberation mapping technique. Observations were taken, primarily remotely, using the 20-inch telescope at the Murillo Family Observatory, a campus-based observatory located on the outskirts of the Southern California metro area, in both monitored and automated mode nightly in BVRI over a period of 2-5 months. We will show the viability of such a technique for small-aperture telescopes in bright-sky locations and discuss the possibilities of extending this program in the future. We also note that undergraduate students (both from 4-year and community colleges) have been and will continue to be instrumental in the success of similar research programs at CSUSB.

  13. Infrared observations of the solar system in support of Large-Aperture Infrared Telescope (LARITS): Calibration. Final technical report, 1 July 1985-28 February 1989

    SciTech Connect

    Shorthill, R.W.

    1990-05-02

    The Purpose of this project was to improve the infrared calibration base for infrared detectors. Groundbased infrared measurements of solid-surfaced planetary bodies, such as asteroids, are being used for the calibration of spacecraft detectors. A limitation has been the relatively poor theoretical understanding of thermal emission from these objects. The goal was to: (1) develop a database of sources and, (2) improve or modify the thermal models for these sources to provide a calibration data base for spacecraft infrared detector systems. The technique consisted of five phases: (1) design and construct infrared detector system to be used with and without collecting optics, (2) acquire whole-disk infrared lunar data relative to a laboratory blackbody and tie them to Mars (Venus or Mercury) and Vega, (3) compare with thermophysical model of the mood and modify, (4) acquire infrared asteroid photometry, (5) compare the lunar disk photometry the asteroid calibrators using photometry and thermophysical models. The Si bolometer is calibrated without optics, attached to the portable telescope drive and Lunar disk measurement made. Next the bolometer is attached to the 90 inch telescope, Lunar scans are made and the remaining objects (planets, stars, asteroids) are measured.

  14. Telescope aperture optimization for spacebased coherent wind lidar

    NASA Astrophysics Data System (ADS)

    Ge, Xian-ying; Zhu, Jun; Cao, Qipeng; Zhang, Yinchao; Yin, Huan; Dong, Xiaojing; Wang, Chao; Zhang, Yongchao; Zhang, Ning

    2015-08-01

    Many studies have indicated that the optimum measurement approach for winds from space is a pulsed coherent wind lidar, which is an active remote sensing tool with the characteristics that high spatial and temporal resolutions, real-time detection, high mobility, facilitated control and so on. Because of the significant eye safety, efficiency, size, and lifetime advantage, 2μm wavelength solid-state laser lidar systems have attracted much attention in spacebased wind lidar plans. In this paper, the theory of coherent detection is presented and a 2μm wavelength solid-state laser lidar system is introduced, then the ideal aperture is calculated from signal-to-noise(SNR) view at orbit 400km. However, considering real application, even if the lidar hardware is perfectly aligned, the directional jitter of laser beam, the attitude change of the lidar in the long round trip time of the light from the atmosphere and other factors can bring misalignment angle. So the influence of misalignment angle is considered and calculated, and the optimum telescope diameter(0.45m) is obtained as the misalignment angle is 4 μrad. By the analysis of the optimum aperture required for spacebased coherent wind lidar system, we try to present the design guidance for the telescope.

  15. XCAT: the JANUS x-ray coded aperture telescope

    NASA Astrophysics Data System (ADS)

    Falcone, A. D.; Burrows, D. N.; Barthelmy, S.; Chang, W.; Fox, D.; Fredley, J.; Gehrels, N.; Kelly, M.; Klar, R.; Palmer, D.; Persyn, S.; Reichard, K.; Roming, P.; Seifert, E.; Smith, R. W. M.; Wood, P.; Zugger, M.

    2010-07-01

    The JANUS mission concept is designed to study the high redshift universe using a small, agile Explorer class observatory. The primary science goals of JANUS are to use high redshift (6Aperture Telescope (XCAT) and the Near-IR Telescope (NIRT) are the two primary instruments on JANUS. XCAT has been designed to detect bright X-ray flashes (XRFs) and gamma ray bursts (GRBs) in the 1-20 keV energy band over a wide field of view (4 steradians), thus facilitating the detection of z>6 XRFs/GRBs, which can be further studied by other instruments. XCAT would use a coded mask aperture design with hybrid CMOS Si detectors. It would be sensitive to XRFs and GRBs with flux in excess of approximately 240 mCrab. In order to obtain redshift measurements and accurate positions from the NIRT, the spacecraft is designed to rapidly slew to source positions following a GRB trigger from XCAT. XCAT instrument design parameters and science goals are presented in this paper.

  16. The Five-Hundred Aperture Spherical Radio Telescope (fast) Project

    NASA Astrophysics Data System (ADS)

    Nan, Rendong; Li, Di; Jin, Chengjin; Wang, Qiming; Zhu, Lichun; Zhu, Wenbai; Zhang, Haiyan; Yue, Youling; Qian, Lei

    Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese mega-science project to build the largest single dish radio telescope in the world. Its innovative engineering concept and design pave a new road to realize a huge single dish in the most effective way. FAST also represents Chinese contribution in the international efforts to build the square kilometer array (SKA). Being the most sensitive single dish radio telescope, FAST will enable astronomers to jump-start many science goals, such as surveying the neutral hydrogen in the Milky Way and other galaxies, detecting faint pulsars, looking for the first shining stars, hearing the possible signals from other civilizations, etc. The idea of sitting a large spherical dish in a karst depression is rooted in Arecibo telescope. FAST is an Arecibo-type antenna with three outstanding aspects: the karst depression used as the site, which is large to host the 500-meter telescope and deep to allow a zenith angle of 40 degrees; the active main reflector correcting for spherical aberration on the ground to achieve a full polarization and a wide band without involving complex feed systems; and the light-weight feed cabin driven by cables and servomechanism plus a parallel robot as a secondary adjustable system to move with high precision. The feasibility studies for FAST have been carried out for 14 years, supported by Chinese and world astronomical communities. Funding for FAST has been approved by the National Development and Reform Commission in July of 2007 with a capital budget ~ 700 million RMB. The project time is 5.5 years from the commencement of work in March of 2011 and the first light is expected to be in 2016. This review intends to introduce the project of FAST with emphasis on the recent progress since 2006. In this paper, the subsystems of FAST are described in modest details followed by discussions of the fundamental science goals and examples of early science projects.

  17. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  18. Active control of the Chinese Giant Solar Telescope

    NASA Astrophysics Data System (ADS)

    Dai, Yichun; Yang, Dehua; Jin, Zhenyu; Liu, Zhong; Qin, Wei

    2014-07-01

    The Chinese Giant Solar Telescope (CGST) is the next generation solar telescope of China with diameter of 8 meter. The unique feature of CGST is that its primary is a ring, which facilitates the polarization detection and thermal control. In its present design and development phase, two primary mirror patterns are considered. For one thing, the primary mirror is expected to construct with mosaic mirror with 24 trapezoidal (or petal) segments, for another thing, a monolithic mirror is also a candidate for its primary mirror. Both of them depend on active control technique to maintain the optical quality of the ring mirror. As a solar telescope, the working conditions of the CGST are quite different from those of the stellar telescopes. To avoid the image deterioration due to the mirror seeing and dome seeing, especially in the case of the concentration of flux in a solar telescope, large aperture solar projects prefer to adopt open telescopes and open domes. In this circumstance, higher wind loads act on the primary mirror directly, which will cause position errors and figure errors of the primary with matters worse than those of the current 10-meter stellar telescopes with dome protect. Therefore, it gives new challenges to the active control capability, telescope structure design, and wind shielding design. In this paper, the study progress of active control of CGST for its mosaic and monolithic mirror are presented, and the wind effects on such two primary mirrors are also investigated.

  19. The COronal Solar Magnetism Observatory (COSMO) Large Aperture Coronagraph

    NASA Astrophysics Data System (ADS)

    Tomczyk, Steve; Gallagher, Dennis; Wu, Zhen; Zhang, Haiying; Nelson, Pete; Burkepile, Joan; Kolinksi, Don; Sutherland, Lee

    2013-04-01

    The COSMO is a facility dedicated to observing coronal and chromospheric magnetic fields. It will be located on a mountaintop in the Hawaiian Islands and will replace the current Mauna Loa Solar Observatory (MLSO). COSMO will provide unique observations of the global coronal magnetic fields and its environment to enhance the value of data collected by other observatories on the ground (e.g. SOLIS, BBO NST, Gregor, ATST, EST, Chinese Giant Solar Telescope, NLST, FASR) and in space (e.g. SDO, Hinode, SOHO, GOES, STEREO, Solar-C, Solar Probe+, Solar Orbiter). COSMO will employ a fleet of instruments to cover many aspects of measuring magnetic fields in the solar atmosphere. The dynamics and energy flow in the corona are dominated by magnetic fields. To understand the formation of CMEs, their relation to other forms of solar activity, and their progression out into the solar wind requires measurements of coronal magnetic fields. The large aperture coronagraph, the Chromospheric and Prominence Magnetometer and the K-Coronagraph form the COSMO instrument suite to measure magnetic fields and the polarization brightness of the low corona used to infer electron density. The large aperture coronagraph will employ a 1.5 meter fuse silica singlet lens, birefringent filters, and a spectropolarimeter to cover fields of view of up to 1 degree. It will observe the corona over a wide range of emission lines from 530.3 nm through 1083.0 nm allowing for magnetic field measurements over a wide range of coronal temperatures (e.g. FeXIV at 530.3 nm, Fe X at 637.4 nm, Fe XIII at 1074.7 and 1079.8 nm. These lines are faint and require the very large aperture. NCAR and NSF have provided funding to bring the large aperture coronagraph to a preliminary design review state by the end of 2013. As with all data from Mauna Loa, the data products from COSMO will be available to the community via the Mauna Loa website: http://mlso.hao.ucar.edu

  20. A synthetic aperture radio telescope for ICME observations as a potential payload of SPORT

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Sun, W.; Liu, H.; Xiong, M.; Liu, Y. D.; Wu, J.

    2013-12-01

    We introduce a potential payload for the Solar Polar ORbit Telescope (SPORT), a space weather mission proposed by the National Space Science Center, Chinese Academy of Sciences. This is a synthetic aperture radio imager designed to detect radio emissions from interplanetary coronal mass ejections (ICMEs), which is expected to be an important instrument to monitor the propagation and evolution of ICMEs. The radio telescope applies a synthetic aperture interferometric technique to measure the brightness temperature of ICMEs. Theoretical calculations of the brightness temperature utilizing statistical properties of ICMEs and the background solar wind indicate that ICMEs within 0.35 AU from the Sun are detectable by a radio telescope at a frequency <= 150 MHz with a sensitivity of <=1 K. The telescope employs a time shared double rotation scan (also called a clock scan), where two coplanar antennas revolve around a fixed axis at different radius and speed, to fulfill sampling of the brightness temperature. An array of 4+4 elements with opposite scanning directions are developed for the radio telescope to achieve the required sensitivity (<=1K) within the imaging refreshing time (~30 minutes). This scan scheme is appropriate for a three-axis stabilized spacecraft platform while keeping a good sampling pattern. We also discuss how we select the operating frequency, which involves a trade-off between the engineering feasibility and the scientific goal. Our preliminary results indicate that the central frequency of 150 MHz with a bandwidth of 20 MHz, which requires arm lengths of the two groups of 14m and 16m, respectively, gives an angular resolution of 2°, a field of view of ×25° around the Sun, and a time resolution of 30 minutes.

  1. Athermalization design in the big-aperture IR zoom telescope

    NASA Astrophysics Data System (ADS)

    Zheng, Dayue; Chen, Ruiyi; Ye, Zhijian; Jin, Fangqing; Zhao, Xiuli; Zhang, Xingde

    1995-10-01

    How to solve effectively the athermalization of IR zoom lenses is an important problem. We have designed and described an IR zoom lens with a mechanical passive athermalization to compensate for the focus deviation caused by germanium refractive index variation with working temperature in the past research phase. After that, in the other design of an IR zoom telescope, (with aperture 160 mm, magnification 4X - 12X, five-element lenses made of germanium used in the 8 - 12 micrometer range of the wavelength and at a working temperature of -10 degree(s)C to +40 degree(s)C), we adopt a mechanical active athermalization in the front element used for focusing and the rear element for collimating. In this paper we stress the rear collimating element realizing the thermal compensation.

  2. High resolution imaging with multilayer soft X-ray, EUV and FUV telescopes of modest aperture and cost

    NASA Astrophysics Data System (ADS)

    Walker, Arthur B. C., Jr.; Lindblom, Joakim F.; Timothy, J. G.; Hoover, Richard B.; Barbee, Troy W., Jr.; Baker, Phillip C.; Powell, Forbes R.

    1991-09-01

    The development of multilayer reflective coatings now permits soft X-ray, EUV and FUV radiation to be efficiently imaged by conventional normal incidence optical configurations. Telescopes with quite modest apertures can, in principle, achieve images with resolutions which would require apertures of 1.25 meters or more at visible wavelengths. The progress is reviewed which has been made in developing compact telescopes for ultra-high resolution imaging of the sun at soft X-ray, EUV and FUV wavelengths, including laboratory test results and astronomical images obtained with rocket-borne multilayer telescopes. The factors are discussed which limit the resolution which has been achieved so far, and the problems which must be addressed to attain, and surpass the 0.1 arc-second level. The application of these technologies to the development of solar telescopes for future space missions is also described.

  3. Advanced Technology Solar Telescope: a progress report

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Rimmele, T. R.; Keil, S.; Hubbard, R.; Hansen, E.; Phelps, L.; Warner, M.; Goodrich, B.; Richards, K.; Hegwer, S.; Kneale, R.; Ditsler, J.

    2008-07-01

    The four-meter Advanced Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. Development of a four-meter solar telescope presents many technical challenges (e.g., thermal control of the enclosure, telescope structure and optics). We give a status report of the ATST project (e.g., system design reviews, PDR, Haleakal site environmental impact statement progress) and summarize the design of the major subsystems, including the telescope mount assembly, enclosure, mirror assemblies, wavefront correction, and instrumentation.

  4. Advanced Technology Solar Telescope: a progress report

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Rimmele, T. R.; Keil, S.; Barr, J.; Dalrymple, N.; Ditsler, J.; Goodrich, B.; Hansen, E.; Hegwer, S.; Hill, F.; Hubbard, R.; Phelps, L.; Price, R.; Richards, K.; Warner, M.

    2006-06-01

    The four-meter Advanced Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. Development of a four-meter solar telescope presents many technical challenges (e.g., thermal control of the enclosure, telescope structure and optics). We give a status report of the ATST project (e.g., system design reviews, instrument PDR, Haleakala site environmental impact statement progress) and summarize the design of the major subsystems, including the telescope mount assembly, enclosure, mirror assemblies, wavefront correction, and instrumentation.

  5. BLAST: The Balloon-Borne Large Aperture Submillimeter Telescope

    NASA Technical Reports Server (NTRS)

    Devlin, Mark; Ade, Peter; Bock, Jamie; Dicker, Simon; Griffin, Matt; Gunderson, Josh; Halpern, Mark; Hargrave, Peter; Hughes, David; Klein, Jeff

    2004-01-01

    BLAST is the Balloon-borne Large-Aperture Sub-millimeter Telescope. It will fly from a Long Duration Balloon (LDB) platform from Antarctica. The telescope design incorporates a 2 m primary mirror with large-format bolometer arrays operating at 250, 350 and 500 microns. By providing the first sensitive large-area (10 sq. deg.) sub-mm surveys at these wavelengths, BLAST will address some of the most important galactic and cosmological questions regarding the formation and evolution of stars, galaxies and clusters. Galactic and extragalactic BLAST surveys will: (1) identify large numbers of high-redshift galaxies; (2) measure photometric redshifts, rest-frame FIR luminosities and star formation rates thereby constraining the evolutionary history of the galaxies that produce the FIR and sub-mm background; (3) measure cold pre-stellar sources associated with the earliest stages of star and planet formation; (4) make high-resolution maps of diffuse galactic emission over a wide range of galactic latitudes. In addition to achieving the above scientific goals, the exciting legacy of the BLAST LDB experiment will be a catalogue of 3000-5000 extragalactic sub-mm sources and a 100 sq. deg. sub-mm galactic plane survey. Multi-frequency follow-up observations from SIRTF, ASTRO-F, and Herschel, together with spectroscopic observations and sub-arcsecond imaging from ALMA are essential to understand the physical nature of the BLAST sources.

  6. A directional gamma-ray telescope using coded aperture techniques

    NASA Technical Reports Server (NTRS)

    Mcconnell, M. L.; Dunphy, P. P.; Forrest, D. J.; Chupp, E. L.

    1983-01-01

    A directional detector for gamma-ray astronomy has been developed to image sources in the energy range 0.1 to 5 MeV. An array of 35 gain stabilized bismuth germanate detectors, together with a coded aperture mask based on a uniformly redundant array allows imaging in 4 deg square sky bins over a 16 x 24 deg field-of-view. The position of a strong point source, such as the Crab Nebula, can be determined to within not more than about 1 deg. A complementary 'anti-mask' greatly reduces systematic effects arising from nonuniform background rates amongst the detectors. The telescope has an effective area of 190 sq cm and an energy resolution of 19.5 percent FWHM at 662 keV. Results of laboratory tests of the imaging system, including the ability to image multiple sources, uniformity of response over the field-of-view, and the effect of the 'anti-mask', are in good agreement with computer simulations. Features of the flight detector system are described and results of laboratory tests and computer simulations are reviewed. A balloon flight of the telescope is planned for the fall of 1982.

  7. BLAST: Balloon-Borne Large Aperture Submillimeter Telescope

    NASA Astrophysics Data System (ADS)

    Devlin, Mark; Ade, Peter; Bock, Jamie; Dicker, Simon; Griffin, Matt; Gundersen, Josh; Halpern, Mark; Hargrave, Peter; Hughes, David; Klein, Jeff; Mauskopf, Philip; Netterfield, Barth; Olmi, Luca; Scott, Douglas; Tucker, Greg

    2004-04-01

    BLAST is the Balloon-borne Large-Aperture Sub-millimeter Telescope. It will fly from a Long Duration Balloon (LDB) platform from Antarctica. The telescope design incorporates a 2 m primary mirror with large-format bolometer arrays operating at 250, 350 and 500 microns. By providing the first sensitive large-area (10 sq. deg.) sub-mm surveys at these wavelengths, BLAST will address some of the most important galactic and cosmological questions regarding the formation and evolution of stars, galaxies and clusters. Galactic and extragalactic BLAST surveys will: (i) identify large numbers of high-redshift galaxies; (ii) measure photometric redshifts, rest-frame FIR luminosities and star formation rates thereby constraining the evolutionary history of the galaxies that produce the FIR and sub-mm background; (iii) measure cold pre-stellar sources associated with the earliest stages of star and planet formation; (iv) make high-resolution maps of diffuse galactic emission over a wide range of galactic latitudes. In addition to achieving the above scientific goals, the exciting legacy of the BLAST LDB experiment will be a catalogue of 3000-5000 extragalactic sub-mm sources and a 100 sq. deg. sub-mm galactic plane survey. Multi-frequency follow-up observations from SIRTF, ASTRO-F, and Herschel, together with spectroscopic observations and sub-arcsecond imaging from ALMA are essential to understand the physical nature of the BLAST sources.

  8. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    NASA Astrophysics Data System (ADS)

    Truch, Matthew D. P.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Chung, J.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; MacTavish, C. J.; Marsden, G.; Martin, P. G.; Martin, T. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Pascale, E.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Thomas, N. E.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.

    2009-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a suborbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between three arrays, observes simultaneously in broadband (30%) spectral windows at 250, 350, and 500 microns. The optical design is based on a 2 m diameter telescope, providing a diffraction-limited resolution of 30" at 250 microns. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of 30"; postflight pointing reconstruction to <5" rms is achieved. The onboard telescope control software permits autonomous execution of a preselected set of maps, with the option of manual override. On this poster, we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100 hour flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in 2005 June; and a 250 hour, circumpolar flight from McMurdo Station, Antarctica in 2006 December. The BLAST collaboration acknowledges the support of NASA through grants NAG5-12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), the Science and Technology Facilities Council (STFC), Canada's Natural Sciences and Engineering Research Council (NSERC), the Canada Foundation for Innovation, the Ontario Innovation Trust, the Puerto Rico Space Grant Consortium, the Fondo Institucional para la Investigacion of the University of Puerto Rico, and the National Science Foundation Office of Polar Programs.

  9. Correlation tracking study for meter-class solar telescope on space shuttle. [solar granulation

    NASA Technical Reports Server (NTRS)

    Smithson, R. C.; Tarbell, T. D.

    1977-01-01

    The theory and expected performance level of correlation trackers used to control the pointing of a solar telescope in space using white light granulation as a target were studied. Three specific trackers were modeled and their performance levels predicted for telescopes of various apertures. The performance of the computer model trackers on computer enhanced granulation photographs was evaluated. Parametric equations for predicting tracker performance are presented.

  10. Design progress of the solar UV-Vis-IR telescope (SUVIT) aboard SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Kano, R.; Shimizu, T.; Matsuzaki, K.

    2013-09-01

    We present a design progress of the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. SUVIT has an aperture diameter of ~1.4 m for achieving spectro-polarimetric observations with spatial and temporal resolution exceeding the Hinode Solar Optical Telescope (SOT). We have studied structural and thermal designs of the optical telescope as well as the optical interface between the telescope and the focal plane instruments. The focal plane instruments are installed into two packages, filtergraph and spectrograph packages. The spectropolarimeter is the instrument dedicated to accurate polarimetry in the three spectrum windows at 525 nm, 854 nm, and 1083 nm for observing magnetic fields at both the photospheric and chromospheric layers. We made optical design of the spectrograph accommodating the conventional slit spectrograph and the integral field unit (IFU) for two-dimensional coverage. We are running feasibility study of the IFU using fiber arrays consisting of rectangular cores.

  11. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    NASA Astrophysics Data System (ADS)

    Pascale, Enzo

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a sub-orbital submillimetric experiment designed to survey the sky with a 2 m Cassegrain telescope, using large-format bolometric detector arrays in three wavebands centered at 250 mum, 350 mum, and 500 mum. The number of detectors, and diffraction-limited beams of 30'' FWHM at 250 mum give BLAST unprecedented mapping speed and resolution. Flown from a high-altitude balloon-borne platform, BLAST is designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way), and galaxies at cosmological distances. BLAST is a technology demonstrator for the SPIRE instrument on the Herschel satellite, and flew from Fort Sumner, NM (2003), in a 24 h test flight; from Kiruna, Sweden (2005), where 100 h of data were collected on Galactic targets; and from McMurdo, Antarctica (2006), where 250 h of data were collected in both Galactic and extragalactic surveys. This work reviews BLAST and the experimental techniques we have implemented, which led to the success of the project. I also discuss in greater details those aspects of BLAST that will be of relevance for future experiments. I discuss the diffraction limited optics and the detector system that provide point-source sensitivities of 250 mJy s in each waveband, and resolutions from 30' to 60'', from 250 mum to 500 mum, respectively. A new pointing system, based on a day-time star tracker and gyroscopes, was developed, and a pointing reconstruction pipe-line implemented, allowing attitude determination with an accuracy of better than 5'' RMS, at a rate of 100 Hz. The number of detectors, the large volume of data, and the correlations among channels, common in a multi-pixel focal plane, required the implementation of a new data reduction pipe-line. The output of the pipe-line are calibrated maps and simulated maps which enable Monte Carlo analysis. This work also presents the in-flight performance of the instrument. While the design noise was achieved in both the Kiruna and McMurdo flight, the optics performed correctly only during the Antarctic flight.

  12. Construction of the Advanced Technology Solar Telescope - A Progress Report.

    NASA Astrophysics Data System (ADS)

    Rimmele, T. R.; Keil, S.; McMullin, J.; Goode, P. R.; Knoelker, M.; Kuhn, J. R.; Rosner, R.; ATST Team

    2012-12-01

    The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. The ATST will provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4 m aperture, ATST will resolve magnetic features at their intrinsic scales. A high order adaptive optics system delivers a corrected beam to the initial set of five state-of-the-art, facility class instrumentation located in the coude laboratory facility. Photopheric and chromospheric magnetometry is part of the key mission of four of these instruments. Coronal magnetometry and spectroscopy will be performed by two of these instruments at infrared wavelengths. The ATST project has transitioned from design and development to its construction phase. Site construction is expected to begin in the first half of 2012. The project has awarded design and fabrication contracts for major telescope subsystems. A robust instrument program has been established and all instruments have passed preliminary design reviews or critical design reviews. A brief summary of the science goals and observational requirements of the ATST will be given, followed by a summary of the project status of the telescope and discussion of the approach to integrating instruments into the facility.

  13. Development of adaptive optics elements for solar telescope

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.; Grigor'ev, V. M.; Antoshkin, L. V.; Botugina, N. N.; Kovadlo, P. G.; Konyaev, P. A.; Kopulov, E. A.; Skomorovsky, V. I.; Trifonov, V. D.; Chuprakov, S. A.

    2012-07-01

    The devices and components of adaptive optical system ANGARA, which is developed for image correction in the Big solar vacuum telescope (BSVT) at Baykal astrophysical observatory are described. It is shown that the use of modernized adaptive system on BSVT not only reduces the turbulent atmospheric distortions of image, but also gives a possibility to improve the telescope developing new methods of solar observations. A high precision Shack-Hartmann wavefront (WF) sensor has been developed on the basis of a low-aperture off-axis diffraction lens array. The device is capable of measuring WF slopes at array sub-apertures of size 640X640 μm with an error not exceeding 4.80 arc.sec. Also the modification of this sensor for adaptive system of solar telescope using extended scenes as tracking objects, such as sunspot, pores, solar granulation and limb, is presented. The software package developed for the proposed WF sensors includes three algorithms of local WF slopes estimation (modified centroids, normalized cross-correlation and fast Fourier-demodulation), as well as three methods of WF reconstruction (modal Zernike polynomials expansion, deformable mirror response functions expansion and phase unwrapping), that can be selected during operation with accordance to the application.

  14. Solar System Observing Capabilities With The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Sonneborn, George; Milam, S. N.; Hines, D. C.; Stansberry, J. A.; Hammel, H. B.; Lunine, J. I.

    2014-01-01

    The James Webb Space Telescope (JWST) will provide important new capabilities to study our Solar System. JWST is a large aperture, cryogenic, infrared-optimized space observatory under construction by NASA, ESA, and CSA for launch in 2018 into a L2 orbit. Imaging, spectroscopy, and coronography covers 0.6-29 microns. Integral-field spectroscopy is performed with apertures 3 to 7 arcsec square (spatial slices of 0.1 to 0.6 arcsec). JWST is designed to observe Solar System objects having apparent rates of motion up to 0.030 arcseconds/second. This tracking capability includes the planets, satellites, asteroids, Trans-Neptunian Objects, and comets beyond Earth’s orbit. JWST will observe in the solar elongation range of 85 to 135 degrees, and a roll range of +/-5 degrees about the telescope’s optical axis. During an observation of a moving target, the science target is held fixed in the desired science aperture by controlling the guide star to follow the inverse of the target’s trajectory. The pointing control software uses polynomial ephemerides for the target generated using data from JPL’s HORIZON system. The JWST guider field of view (2.2x2.2 arcmin) is located in the telescope focal plane several arcmin from the science apertures. The instrument apertures are fixed with respect to the telescope focal plane. For targets near the ecliptic, those apertures also have a nearly fixed orientation relative to the ecliptic. This results from the fact that the Observatory's sunshield and solar panels must always be between the telescope and the Sun. On-board scripts autonomously control the execution of the JWST science timeline. The event-driven scripts respond to actual slew and on-board command execution, making operations more efficient. Visits are scheduled with overlapping windows to provide execution flexibility and to avoid lost time. An observing plan covering about ten days will be uplinked weekly. Updates could be more frequent if necessary (for example, to accommodate a Target of Opportunity - TOO). The event-driven operations system supports time-critical observations and TOOs. The minimum response time for TOOs is 48 hours (observation approval to execution).

  15. An optical technology study on large aperture telescopes

    NASA Technical Reports Server (NTRS)

    Korsch, D.

    1985-01-01

    The difficult and crucial problem of selecting a suitable telescope concept for an advanced space observatory was examined. To this end two and four mirror telescopes were analyzed and compared. Both configurations are very practical and structurally similar. Parabolic primary and spherical primary four mirror telescope were compared with respect to their performance and the alignment sensitivities of the three correction mirrors. A 1 meter class afocal telescope system with lag angle compensation, to be used in a LIDAR experiment, was examined.

  16. Parallel Image Reconstruction for New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Li, Xue-Bao; Wang, Feng; Xiang, Yong Yuan; Zheng, Yan Fang; Liu, Ying Bo; Deng, Hui; Ji, Kai Fan

    2014-04-01

    Many advanced ground-based solar telescopes improve the spatial resolution of observation images using an adaptive optics (AO) system. As any AO correction remains only partial, it is necessary to use post-processing image reconstruction techniques such as speckle masking or shift-and-add (SAA) to reconstruct a high-spatial-resolution image from atmospherically degraded solar images. In the New Vacuum Solar Telescope (NVST), the spatial resolution in solar images is improved by frame selection and SAA. In order to overcome the burden of massive speckle data processing, we investigate the possibility of using the speckle reconstruction program in a real-time application at the telescope site. The code has been written in the C programming language and optimized for parallel processing in a multi-processor environment. We analyze the scalability of the code to identify possible bottlenecks, and we conclude that the presented code is capable of being run in real-time reconstruction applications at NVST and future large aperture solar telescopes if care is taken that the multi-processor environment has low latencies between the computation nodes.

  17. The feasibility of large refracting telescopes for solar coronal research

    NASA Astrophysics Data System (ADS)

    Nelson, Peter G.; Tomczyk, Steven; Elmore, David F.; Kolinski, Donald J.

    2008-07-01

    Measuring magnetic fields in the solar corona requires a large aperture telescope with exceptionally low levels of scattered light. For internally-occulted coronagraphs the main source is scattering from dust or microroughness on the primary lens or mirror. We show refracting primaries offer significantly lower levels for both sources. To observe magnetic fields in the solar corona with scientifically interesting spatial and temporal resolutions, a 1 meter aperture or larger is required. For a long time such large-scale refractors have been deemed impractical or impossible to construct due to gravitational deformation of the lens. We present the results of finite-element and optical analyses of the gravitational deformation, stress-induced birefringence, and absorptive heating of a (see manuscript)1.5 meter f/5 fused silica lens. These studies demonstrate the traditional objections to large refractors are unfounded and large refracting primaries have unique capabilities.

  18. Solar System Observing Capabilities With The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Sonneborn, George; Milam, S. N.; Hines, D. C.; Stansberry, J.; Hammel, H. B.; Lunine, J. I.

    2013-10-01

    The James Webb Space Telescope (JWST) will provide breakthrough capabilities to study our Solar System. JWST is a large aperture, cryogenic, infrared-optimized space observatory under construction by NASA, ESA, and CSA for launch in 2018 into a L2 orbit. Imaging, spectroscopy, and coronography covers 0.6-29 microns. JWST is designed to observe Solar System objects having apparent rates of motion up to 0.030 arcseconds/second. This capability includes the planets, satellites, asteroids, Trans-Neptunian Objects, and comets beyond Earth’s orbit. JWST can observe solar elongation of 85 to 135 degrees, and a roll range of +/-5 degrees about the telescope’s optical axis. During the observation of a moving target, the science target is held fixed in the desired science aperture by controlling the guide star to follow the inverse of the target’s trajectory. The pointing control software uses polynomial ephemerides for the target generated using JPL’s HORIZON system. The JWST guider field of view (2.2x2.2 arcmin) is located in the telescope focal plane several arcmin from the science apertures. The instrument apertures are fixed with respect to the telescope focal plane. For targets near the ecliptic, those apertures also have a nearly-fixed orientation relative to the ecliptic. This resultsfrom the fact that the Observatory's sun-shade and solar panels must always be between the telescope and the Sun. On-board scripts autonomously control the execution of the JWST science timeline. The event-driven scripts respond to actual slew and on-board command execution, making operations more efficient. Visits are scheduled with overlapping windows to provide execution flexibility and to avoid lost time. An observing plan covering about ten days will be uplinked weekly. Updates could be more frequent if necessary (for example, to accommodate a Target of Opportunity - TOO). The event-driven operations system supports time-critical observations and TOOs. The minimum response time for TOOs is 48 hours (observation approval to execution).

  19. High performance Lyot and PIAA coronagraphy for arbitrarily shaped telescope apertures

    SciTech Connect

    Guyon, Olivier; Hinz, Philip M.; Cady, Eric; Belikov, Ruslan; Martinache, Frantz

    2014-01-10

    Two high-performance coronagraphic approaches compatible with segmented and obstructed telescope pupils are described. Both concepts use entrance pupil amplitude apodization and a combined phase and amplitude focal plane mask to achieve full coronagraphic extinction of an on-axis point source. While the first concept, called Apodized Pupil Complex Mask Lyot Coronagraph (APCMLC), relies on a transmission mask to perform the pupil apodization, the second concept, called Phase-Induced Amplitude Apodization complex mask coronagraph (PIAACMC), uses beam remapping for lossless apodization. Both concepts theoretically offer complete coronagraphic extinction (infinite contrast) of a point source in monochromatic light, with high throughput and sub-λ/D inner working angle, regardless of aperture shape. The PIAACMC offers nearly 100% throughput and approaches the fundamental coronagraph performance limit imposed by first principles. The steps toward designing the coronagraphs for arbitrary apertures are described for monochromatic light. Designs for the APCMLC and the higher performance PIAACMC are shown for several monolith and segmented apertures, such as the apertures of the Subaru Telescope, Giant Magellan Telescope, Thirty Meter Telescope, the European Extremely Large Telescope, and the Large Binocular Telescope. Performance in broadband light is also quantified, suggesting that the monochromatic designs are suitable for use in up to 20% wide spectral bands for ground-based telescopes.

  20. High Performance Lyot and PIAA Coronagraphy for Arbitrarily Shaped Telescope Apertures

    NASA Astrophysics Data System (ADS)

    Guyon, Olivier; Hinz, Philip M.; Cady, Eric; Belikov, Ruslan; Martinache, Frantz

    2014-01-01

    Two high-performance coronagraphic approaches compatible with segmented and obstructed telescope pupils are described. Both concepts use entrance pupil amplitude apodization and a combined phase and amplitude focal plane mask to achieve full coronagraphic extinction of an on-axis point source. While the first concept, called Apodized Pupil Complex Mask Lyot Coronagraph (APCMLC), relies on a transmission mask to perform the pupil apodization, the second concept, called Phase-Induced Amplitude Apodization complex mask coronagraph (PIAACMC), uses beam remapping for lossless apodization. Both concepts theoretically offer complete coronagraphic extinction (infinite contrast) of a point source in monochromatic light, with high throughput and sub-λ/D inner working angle, regardless of aperture shape. The PIAACMC offers nearly 100% throughput and approaches the fundamental coronagraph performance limit imposed by first principles. The steps toward designing the coronagraphs for arbitrary apertures are described for monochromatic light. Designs for the APCMLC and the higher performance PIAACMC are shown for several monolith and segmented apertures, such as the apertures of the Subaru Telescope, Giant Magellan Telescope, Thirty Meter Telescope, the European Extremely Large Telescope, and the Large Binocular Telescope. Performance in broadband light is also quantified, suggesting that the monochromatic designs are suitable for use in up to 20% wide spectral bands for ground-based telescopes.

  1. Planning the 8-meter Chinese Giant Solar Telescope

    NASA Astrophysics Data System (ADS)

    Beckers, Jacques M.; Liu, Z.; Deng, Y.; Ji, H.

    2013-07-01

    The Chinese Giant Solar Telescope (CGST) will be a diffraction limited solar telescope optimized for the near-infrared (NIR) spectral region (0.8 - 2.5 microns). Its diffraction limit will be reached by the incorporation of Multi-Conjugate Adaptive Optics (MCAO) enhanced by image restoration techniques to achieve uniform (u.v) plane coverage over the angular spatial frequency region allowed by its 8-meter aperture. Thus it will complement the imaging capabilities of 4-meter telescopes being planned elsewhere which are optimized for the visible (VIS) spectral region (300 - 1000 nm) In the NIR spectral regions the CGST will have access to unique spectral features which will improve the diagnostics of the solar atmosphere. These include the CaII lines near 860 nm , the HeI lines near 1083 nm, the 1074 nm FeXIII coronal lines, the large Zeeman-split FeI line at 1548 nm, and (v) the H- continuum absorption minimum at 1.6 micron. Especially in sunspot umbrae the simultaneous observation of continua and lines across the NIR spectral range will cover a substantial depth range in the solar atmosphere. Of course the mid- and far- infrared regions are also available for unequalled high-angular resolution solar observations, for example, in the Hydrogen Bracket lines, CO molecular bands, and the MgI emission line at 12.3 microns. The CGST is a so-called ring telescope in which the light is captured by a 1 meter wide segmented ring or by a ring of 7 smaller off-axis aperture telescopes. The open central area of the telescope is large. The advantages of such a ring configuration is that (a) it covers all the spatial frequencies out to those corresponding to its outer diameter, (b) its circular symmetry makes it polarization neutral, (c) its large central hole helps thermal control, and (d) it provides ample space for the MCAO system and instrumentation in the Gregorian focus. Even though optimized for the NIR, we expect to use the CGST also at visible wavelengths in the so-called “Partial Adaptive Optics” (PAO) mode (Applied Optics 31,424,1992) to obtain angular resolution twice that of a 4-meter telescope if their observations indicate that higher resolution is desirable. The CGST is a Chinese solar community project.

  2. Design of a coded aperture Compton telescope imaging system (CACTIS)

    NASA Astrophysics Data System (ADS)

    Volkovskii, Alexander; Clajus, Martin; Gottesman, Stephen R.; Malik, Hans; Schwartz, Kenneth; Tumer, Evren; Tumer, Tumay; Yin, Shi

    2010-08-01

    We have developed a prototype of a scalable high-resolution direction and energy sensitive gamma-ray detection system that operates in both coded aperture (CA) and Compton scatter (CS) modes to obtain optimal efficiency and angular resolution over a wide energy range. The design consists of an active coded aperture constructed from 52 individual CZT planar detectors each measuring 3×3×6 mm3 arranged in a MURA pattern on a 10×10 grid, with a monolithic 20×20×5 mm3 pixelated (8×8) CZT array serving as the focal plane. The combined mode is achieved by using the aperture plane array for both Compton scattering of high-energy photons and as a coded mask for low-energy radiation. The prototype instrument was built using two RENA-3 test systems, one each for the aperture and the focal plane, stacked on top of each other at a distance of 130 mm. The test systems were modified to coordinate (synchronize) readout and provide coincidence information of events within a user-adjustable 40-1,280 ns window. The measured angular resolution of the device is <1 deg (17 mrad) in CA mode and is predicted to be approximately 3 deg (54 mrad) in CS mode. The energy resolution of the CZT detectors is approximately 5% FWHM at 120 keV. We will present details of the system design and initial results for the calibration and performance of the prototype.

  3. A parametric study of various synthetic aperture telescope configurations for coherent imaging applications

    NASA Technical Reports Server (NTRS)

    Harvey, James E.; Wissinger, Alan B.; Bunner, Alan N.

    1986-01-01

    The comparative advantages of synthetic aperture telescopes (SATs) of segmented primary mirror and common secondary mirror type, on the one hand, and on the other those employing an array of independent telescopes, are discussed. The diffraction-limited optical performance of both redundant and nonredundant subaperture configurations are compared in terms of point spread function characteristics and encircled energy plots. Coherent imaging with afocal telescope SATs involves a pupil-mapping operation followed by a Fourier transform one. A quantitative analysis of the off-axis optical performance degradation due to pupil-mapping errors is presented, together with the field-dependent effects of residual design aberrations of independent telescopes.

  4. Large-Aperture, Three Mirror Telescopes for Near-Earth

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; McGraw, J.

    In this era when Space Situational Awareness (SSA) is a national priority and optical-infrared telescopic sensor development is underway, cost-benefit analyses of competing approaches are necessary and appropriate. The DOD is presently investing in a new three-mirror telescope for SSA. At the same time, the Air Force, various universities and private research organizations are either studying or building wide-field telescopes with similar capabilities, but in most cases, at a significantly lower cost. Much of the expense for the DOD system appears driven by certain design choices which were advertised as necessary to fulfill the mission. Design details which would allow an independent analysis have not been published and no public comparison with other approaches is known to exist. Most telescope designs however, can be closely approximated from their optical configuration and imaging performance specifications. An optical designer will tell you that field curvature is one of the five monochromatic aberrations which they try to eliminate. The fact that one DOD development effort considers field curvature a design feature immediately draws attention to the project. This coupled with the paucity of published information and the very high development cost makes this program irresistible for comparison with competing approaches. This paper examines the likely design and performance of a proxy telescope intended to find NEOs, compares and contrasts that telescope with similar, but lower cost on-going projects, and examines the predictable impacts of reproducing such a telescope and placing multiple copies around the globe. The study primarily concentrates on performance measured in terms of search rate in square degrees per hour vs. object visual magnitude. Other considerations such as cost, transportability, availability of replacement components and ease of installation are also considered.

  5. The 100 cm solar telescope primary mirror study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The manufacturing impact of primary mirror configuration on the performance of a 100 cm aperture solar telescope was studied. Three primary mirror configurations were considered: solid, standard lightweight, and mushroom. All of these are of low expansion material. Specifically, the study consisted of evaluating the mirrors with regard to: manufacturing metrology, manufacturing risk factors and ultimate quality assessment. As a result of this evaluation, a performance comparison of the configurations was made, and a recommendation of mirror configuration is the final output. These evaluations, comparisons and recommendations are discussed in detail. Other investigations were completed and are documented in the appendices.

  6. Compton telescope with coded aperture mask: Application to the INTEGRAL/IBIS Compton mode

    NASA Astrophysics Data System (ADS)

    Forot, M.; Laurent, P.; Lebrun, F.; Limousin, O.

    2006-11-01

    Coupling a Compton telescope with a coded aperture mask provides a powerful tool for constructing images between 200 keV and several MeV, as it automatically subtract the background during the image reconstruction. This technique has been successfully applied to the INTEGRAL/IBIS Compton mode and is presented in this paper. The Compton kinetics coupled with the coded aperture mask allows us to construct images with high spatial resolution (12 arcmin) for the first time for a Compton telescope in that energy range, and perform polarization, spectral and temporal studies of astrophysical sources.

  7. Daniel K. Inouye Solar Telescope Science Operations

    NASA Astrophysics Data System (ADS)

    Tritschler, Alexandra; Rimmele, Thomas R.; Berukoff, Steven

    2016-05-01

    The Daniel K. Inouye Solar Telescope (DKIST) is a versatile high resolution ground-based solar telescope designed to explore the dynamic Sun and its magnetism throughout the solar atmosphere from the photosphere to the faint corona. The DKIST is currently under construction on Haleakala, Maui, Hawai'i, and expected to commence with science operations in 2019. In this contribution we provide an overview of the high-level science operations concepts from proposal preparation and submission to the flexible and dynamic planning and execution of observations.

  8. Low-cost Large Aperture Telescopes for Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    2006-01-01

    Low-cost, large-aperture optical receivers are required to form an affordable optical ground receiver network for laser communications. Among the ground receiver station's multiple subsystems, here, we only discuss the ongoing research activities aimed at reducing the cost of the large-size optics on the receiver. Experimental results of two different approaches for fabricating low-cost mirrors of wavefront quality on the order of 100-200X the diffraction limit are described. Laboratory-level effort are underway to improve the surface figure to better than 20X the diffraction limit.

  9. Dynamics and control of a 25-meter aperture virtual structure Gossamer telescope in GEO

    NASA Technical Reports Server (NTRS)

    Mettler, E.; Quadrelli, M.; Breckenrisge, W.

    2002-01-01

    In this paper we conduct a feasibility analysis of a 25-meter aperture virtual-structure space telescope example concept based on formation control of separated free-flying optical modules orbiting the Earth at GEO. We develop a Formation Flying implementation approach, and design and analyze the dynamics, control, metrology and estimation methods.

  10. Layered synthetic microstructures for solar EUV telescopes

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, R. A. M.; Thomas, R. J.; Epstein, G. L.; Osantowski, J. F.

    1985-01-01

    The application of layered synthetic microstructures (LSMs) to figured mirrors suitable for normal incidence solar EUV telescopes is considered, and initial studies for a single mirror telescope consisting of an f/18, 200-cm focal length off-axis paraboloid demonstrate the feasibility of LSM coatings for moderate sized mirrors. Analytical studies on broadband designs comprised of five layers show a seven percent reflectance at 256 A and reflectivities of over 12 percent for wavelengths above 300 A. Deposition considerations are also discussed.

  11. Advanced Technology Solar Telescope: a progress report

    NASA Astrophysics Data System (ADS)

    Oschmann, Jim; Dalrymple, Nathan; Warner, Mark; Price, Ron; Hill, Frank; Hubbard, Rob; Rimmele, Thomas R.; Keller, Christoph U.; Keil, Stephen

    2004-02-01

    The 4m ATST will be the most powerful solar telescope in the world, providing a unique scientific tool to study the Sun and other astronomical objects. The design and development phase for the Advance Technology Solar Telescope (ATST) is progressing. The conceptual design review (CoDR) for the ATST is scheduled for August 2003. We present a brief description of the science requirements of ATST, and remind the reader of some of the technical challenges of building a 4-m solar telescope. We will discuss some of the design strategies that will allow us to achieve the required performance specifications, present conceptual designs for the ATST, and summarize the results of trades we have made on our path to the CoDR. The thermal impacts to local, self-induced seeing with respect to some of our system level trades that have been completed will be discussed.

  12. Detection and initial characterisation of an exoplanet atmosphere with small aperture telescopes

    NASA Astrophysics Data System (ADS)

    Bernt, I.; Müller, M.; Strassmeier, K. G.; Granzer, T.

    2013-09-01

    In the recent years atmospheres of exoplanets have been studied with space-based telescopes like the HST or large aperture ground-based telescopes like the Gran Telescopio Canarias. But as the number of suitable exoplanets is rising, comparative studies of atmospheres with a statistically meaningful amount of targets will follow, for which the observational time with large telescopes is limited and expensive. Our aim is to investigate whether it is possible to detect and initially characterise the atmosphere of an exoplanet with small aperture telescopes using chromatic variations in transit depths. We collected multi-color transits in the years 2011 to 2013 using the robotic 1.2m-telescope STELLA on Tenerife as well as the Nordic Optical Telescope and the 70cm-telescope at the Leibniz Institute for Astrophysics Potsdam. The highly inflated Hot Jupiter HAT-P-32 b was chosen as target for our pilot study for its favorable large atmospheric scale height and therefore enhanced atmospheric detectability. Models of the atmospheric spectra of HAT-P-32 b indicate that the STELLA-data can be used to distinguish between a dusty and a cloud-free atmosphere using the gradient in transit depth of the observations in the blue band and in the visible band. Here we want to present our project together with the first results of the transit depth analysis.

  13. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    NASA Technical Reports Server (NTRS)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  14. Research on the support structure of the primary mirror of large-aperture telescope

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhang, Jingxu

    2007-12-01

    Large-aperture telescope can be used in surveying battlefield, researching landform, searching object, real-time monitoring, imaging, detecting and identifying spatial targets and so on. A large-aperture telescope for achieving high resolution power is designed to monitor spatial target and image in real time. Real-time monitoring plays an important role in military conflicts. The orbit parameter of object, quantity, geometrical shape parameter and so on can be obtained by detect spatial target. With the development of optical technology, people require larger aperture in optics-electronic (O-E) system. By increasing optical aperture, the ability of collecting light and resolution power in the system can be enhanced. But the support structure of the primary mirror of large-aperture telescope will be a very difficult problem. With the increase of primary mirror aperture, the weight of the primary mirror will become larger than before. The root mean square (rms) of the primary mirror is affected by many factors, such as deadweight, deformation of heat, environment and so on. Due to the primary mirror of telescope is an important component of telescope system. By reducing the weight of primary mirror, precision of the system is ensured. During the designing phase, one can consider the supporting project of the primary mirror synthetically and analyze it roundly according to technical requirement of optical system and the effect factors. The final structural design can be reasonable. In an astronomical telescope, the surface of reflector is an important part for collecting dark radiation of celestial bodies. Its surface shape will have an effect on collecting efficiency of telescope radiant energy directly. So the rms must be very high. Optical system of large aperture, small wavelength and small focus can receive maximal light intensity. For ground-based optical astronomical telescope, the design proposed in the paper can satisfy the requirement of the possible minimum atmosphere seeing at astronomical observatory site and exert the use efficiency of the telescope adequately. So the accuracy of the traditional surface of reflector can assure that 90% of all the light energy can be focused on within the angle diameter range of the minimum atmosphere seeing, then 100% of light energy should be focused on the angle diameter range of minimum atmosphere seeing. Because the rms of mirror is very high, precise surface machining and accurate the support of mirror are very important tasks during designing and manufacturing the telescope. In the paper, various support techniques of a large-aperture telescope primary mirror are discussed and a 3.5 meter telescope system at the Starfire Optical Range (SOR) overviewed simply, which was operated by the Directed Energy Directorate of the Air Force Research Laboratory, Kirtland AFB, NM, USA from the ground-based O-E system for the observations of spatial target. We also analyze Theoretical elastic deformation of the Steward Observatory 2.3 meter mirror is analyzed.

  15. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Rich, R. Michael; Tumlinson, Jason; Soummer, Remi; Sembach, Kenneth; Calzetti, Daniela; Oegerle, William; Stahl, H. Phillip; Mountain, Matt; Hyde, Tupper

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers and the resulting performance requirements for ATLAST (8 to 16 milliarcsecond angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to current generation observatory-class space missions. Keywords: Advanced Technology Large-Aperture Space Telescope (ATLAST); ultraviolet/optical space telescopes; astrophysics; astrobiology; technology development.

  16. Small Aperture Telescope Observations of Co-located Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Scott, R.; Wallace, B.

    As geostationary orbit (GEO) continues to be populated, satellite operators are increasing usage of co-location techniques to maximize usage of fewer GEO longitude slots. Co-location is an orbital formation strategy where two or more geostationary satellites reside within one GEO stationkeeping box. The separation strategy used to prevent collision between the co-located satellites generally uses eccentricity (radial separation) and inclination (latitude separation) vector offsets. This causes the satellites to move in relative motion ellipses about each other as the relative longitude drift between the satellites is near zero. Typical separations between the satellites varies from 1 to 100 kilometers. When co-located satellites are observed by optical ground based space surveillance sensors the participants appear to be separated by a few minutes of arc or less in angular extent. Under certain viewing geometries, these satellites appear to visually conjunct even though the satellites are, in fact, well separated spatially. In situations where one of the co-located satellites is more optically reflective than the other, the reflected sunglint from the more reflective satellite can overwhelm the other. This less frequently encountered issue causes the less reflective satellite to be glint masked in the glare of the other. This paper focuses on space surveillance observations on co-located Canadian satellites using a small optical telescope operated by Defence R&D Canada - Ottawa. The two above mentioned problems (cross tagging and glint masking) are investigated and we quantify the results for Canadian operated geostationary satellites. The performance of two line element sets when making in-frame CCD image correlation between the co-located satellites is also examined. Relative visual magnitudes between the co-located members are also inspected and quantified to determine the susceptibility of automated telescopes to glint masking of co-located satellite members.

  17. Solar Multi-Conjugate Adaptive Optics at the Dunn Solar Telescope

    NASA Astrophysics Data System (ADS)

    Rimmele, T.; Hegwer, S.; Richards, K.; Woeger, F.

    Solar adaptive optics has become an indispensable tool at ground based solar telescopes. Driven by the quest for ever higher spatial resolution observations of the Sun solar adaptive optics are now operated routinely at major ground based solar telescopes. The current high-resolution solar telescopes, such as the Dunn Solar Telescope (DST), are in the one-meter class and utilize AO for >95 % of the observing time to achieve the diffraction limit at visible and NIR wavelengths. Solar AO [1,2] has revitalized ground-based solar astronomy at existing telescopes. The development of high-order solar AO that is capable of delivering high Strehl in the visible will be absolutely essential for next generation solar telescopes, such as the 4m aperture Advanced Technology Solar Telescope (ATST), which undoubtedly will revolutionize solar astronomy [3]. Solar observations are performed over an extended field of view. The limited size of the isoplanatic patch, over which conventional adaptive optics (AO) provides diffraction limited resolution is a severe limitation. Solar science would benefit greatly from AO correction over large field of views. A single sunspot typically has a size of about 30 arcsec; large active regions often cover a field of 2-3 arcmin. Figure 1 shows an image of solar granulation and embedded magnetic g-band bright points observed near the limb of the sun. The field of view is approximately 120"x 80". This diffraction limited image was recorded at the Dunn Solar Telescope with high order adaptive optics and post-processed using speckle interferometry. Post-processing is required to achieve the uniform, diffraction limited imaging over such an extended FOV. However, speckle interferometry as well as other post facto restoration methods typically rely on short exposure imaging, which in most cases can not be deployed when quantitative spectroscopy and polarimetry is performed, i.e., long exposures are required. Multi-conjugate adaptive optics (MCAO) is a technique that provides real-time diffraction limited imaging over an extended FOV [4]. The development of MCAO for existing solar telescopes and, in particular, for the next generation large aperture solar telescopes is thus a top priority. The Sun is an ideal object for the development of MCAO since solar structure provides "multiple guide stars" in any desired configuration. It is therefore not surprising that the first successful on-the-sky MCAO experiments were performed at the Dunn Solar Telescope and at a solar telescope on the Canary Islands. However, further development is needed before operational solar MCAO can be implemented at future large aperture solar telescopes such as the ATST on Haleakala [5]. MCAO development must progress beyond these initial proof-of-concept experiments and should include laboratory experiments and on-sky demonstrations under controlled or well characterized conditions as well as quantitative performance analysis and comparison to model predictions. At the DST we recently implemented a dedicated MCAO bench with the goal of developing well-characterized, operational MCAO. The MCAO system uses 2 deformable mirrors conjugated to the telescope entrance pupil and a layer in the upper atmosphere, respectively. DM2 can be placed at conjugates ranging from 2 km to 10 km altitude. For our initial experiments we have used a staged approach in which the 97 actuator, 76 subaperture correlating Shack-Hartmann solar adaptive optics system normally operated at the DST is followed by the second DM and the tomographic wavefront sensor, which uses three "solar guide stars". We use modal reconstruction algorithms for both DMs. We have successfully and stably locked the MCAO system on artificial objects (slides), for which 1 The National Solar Observatory is operated by the Association of Universities for Research in Astronomy under a cooperative agreement with the National Science Foundation, for the benefit of the astronomical community turbulence screens are generated directly in front of the DMs, as well as solar structure. We varied the height of the upper conjugate between 2 km and 7 km. We recorded strictly simultaneous images after the pupil DM and after the upper layer DM. Comparing these images allows us to evaluate the performance of the MCAO stage and directly compare to the conventional AO. In addition we recorded wavefront sensor telemetry data for closed and open loop. We present preliminary results and discuss future plans.

  18. The Balloon-Borne Large Aperture Submillimeter Telescope - BLAST

    NASA Astrophysics Data System (ADS)

    Devlin, Mark

    We are proposing a comprehensive program to study the link between Galactic magnetic fields and star formation. After decades of study, the physical processes regulating star formation still remain poorly understood. Large-scale observations of star forming regions provide counts of the number of dense clouds each of which will eventually evolve into tens to hundreds of stars. However, when simple models of gravitational collapse are applied to the clouds they yield a Galactic star formation rate (SFR) which is many times what is actually observed. Some process or combination of processes must be slowing the collapse of the clouds. The two prevailing theories involve turbulence which prevents the effective dissipation of energy and Galactic magnetic fields which are captured and squeezed by the collapsing cloud provide a mechanism for mechanical support. Understanding these effects fits very well the SMD 2010 Science Plan's Cosmic Origins program. The Balloon-borne Large Aperture Telecope BLASTPol and its planned successor, Super BLASTPol, are the first instruments to combine the sensitivity and mapping speed necessary to trace magnetic fields across entire clouds with the resolution to trace fields down into dense substructures, including cores and laments. Super BLAST-Pol will provide polarization at 250, 350 and 500 mm, with a diffraction limited beam FWHM of 22 arcmin at 250 mm. Super BLASTPol therefore provides the critical link between the PLANCK all-sky polarization maps with 5 arcmin resolution and ALMA s ultra-high resolution, but with only a 20-arcsec field of view. BLASTPol will use the PLANCK data to refine its target selection, then ALMA will utilize BLASTPol maps to zero in on areas of particular interest. Together, these three instruments will be able to probe the inner workings of star formation with previously unreachable resolution, sensitivity and scope.

  19. The High Resolution 1.6 m Off-Axis Solar Telescope for BBSO - The NST

    NASA Astrophysics Data System (ADS)

    Goode, P.

    Progress in building the NST New Solar Telescope will be reported The NST is a 1 6 m clear aperture off-axis solar telescope The telescope is scheduled to see first light at Big Bear Solar Observatory BBSO in April 2007 and is a joint effort of BBSO the University of Hawaii the Korea Astronomy Space Science Institute and the University of Arizona The telescope is off-axis to optimize low-contrast imaging and will have a 3 arcminute field of view Figuring and testing the figure of the large off-axis primary mirror presented unique problems The NST New Solar Telescope will have wavefront sensor controlled real-time active optics and its light will feed BBSO s adaptive optics system which in turn feeds infrared and visible light Fabry-Perot based polarimeters as well as a real-time image processing system utilizing parallel processing The NST replaces the current 0 6 m solar telescope at BBSO and required a new larger vented dome with new thermal and telescope control systems The complementary value of the telescope for upcoming space missions such as SOLAR-B STEREO and SDO will be discussed

  20. Progress in the 1.6 m New Solar Telescope in Big Bear

    NASA Astrophysics Data System (ADS)

    Goode, Philip R.; NST Team

    2006-06-01

    Progress in building the NST (New Solar Telescope) will be reported. The NST is a 1.6 m clear aperture, off-axis solar telescope. The telescope is scheduled to see first light at Big Bear Solar Observatory (BBSO) in April 2007, and is a joint effort of BBSO, the University of Hawaii, the Korea Astronomy & Space Science Institute and the University of Arizona.The telescope is off-axis to optimize low-contrast imaging, and will have a 3 arcminute field of view. Figuring and testing the figure of the large off-axis primary mirror presented unique problems. The NST (New Solar Telescope) will have wavefront sensor controlled, real-time active optics, and its light will feed BBSO's adaptive optics system, which in turn feeds infrared and visible light Fabry-Perot based polarimeters, as well as a real-time image processing system utilizing parallel processing.The NST replaces the current 0.6 m solar telescope at BBSO, and required a new, larger, vented dome with new thermal and telescope control systems.The complementary value of the telescope for upcoming space missions, such as SOLAR-B, STEREO and SDO will be discussed.

  1. FAST - Five hundred meter Aperture Spherical radio Telescope

    NASA Astrophysics Data System (ADS)

    Nan, Ren-Dong

    2009-01-01

    The idea of sitting a large spherical dish in Karst depression is rooted in Arecibo telescope hosted by the NAIC of Cornell University. FAST is an Arecibo-type antenna with 3 outstanding aspects: the unique karst depression as the site; the active main reflector which corrects spherical aberration on the ground to achieve full polarization and wide band without involving complex feed system; and the light focus cabin driven by cables and servomechanism plus a parallel robot as secondary adjustable system to carry the most precise parts of the receivers. These design features will enable FAST to jumpstart many of science goals, such as HI neutral hydrogen line survey, pulsar survey, largest station in VLBI network, spectral line observations and Search for alien's technologies. The feasibility studies for FAST have been carried out for 14 years, being supported by Chinese and world astronomical communities. Funding for Project FAST has been approved by the National Development and Reform commission NDRC in July of 2007 with a capital budget 600 millions RMB and a project time of 5.5 years from the foundation. The first light is expected to be in early 2014. This work is supported by the Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant No. 10433020). More than a hundred research personnel from over thirty research teams were involved in this research. On behalf of project FAST, I wish to make special recognition to their diligent work and great contribution to the project.

  2. Science with the solar optical telescope

    NASA Technical Reports Server (NTRS)

    Jordan, S. D.; Hogan, G. D.

    1984-01-01

    The Solar Optical Telescope (SOT) is designed to provide the solar physics community with the data necessary for solving several fundamental problems in the energetics and dynamics of the solar atmosphere. Among these problems are questions on the origin and evolution of the sun's magnetic field, heating of the outer solar atmosphere, and sources of the solar wind in the lower lying regions of the outer atmosphere. The SOT will be built under the management of NASA's Goddard Space Flight Center, with science instruments provided by teams led by Principal Investigators. The telescope will be built by the Perkin-Elmer Corporation, and the science instruments selected for the first flight will be provided by the Lockheed Palo Alto Research Laboratory (LPARL) and the California Institute of Technology, with actual construction of a combined science instrument taking place at the LPARL. The SOT has a 1.3-meter-diameter primary mirror that will be capable of achieving diffraction-limited viewing in the visible of 0.1 arc-second. This dimension is less than a hydrodynamic scale-height or a mean-free-path of a continuum photon in the solar atmosphere. Image stability will be achieved by a control system in the telescope, which moves both the primary and tertiary mirrors in tandem, and will be further enhanced by a correlation tracker in the combined science instrument. The SOT Facility is currently scheduled for its first flight on Spacelab at the beginning of the 1990's.

  3. Solar optical telescope primary mirror controller

    NASA Technical Reports Server (NTRS)

    Brown, R. J.; Liu, D.

    1980-01-01

    The development of a technique to control the articulated primary mirror (APM) of the solar optical telescope (SOT) is discussed. Program results indicate that a single, all digital controller has sufficient capability to totally handle the computational requirements for control of the SOT APM.

  4. Soviet radio telescopes and solar radio astronomy

    NASA Astrophysics Data System (ADS)

    Alekseev, V. A.; Gel'Freikh, Georgii B.; Zaitsev, Valerii V.; Iliasov, Iurii P.; Kaidanovskii, N. L.

    Soviet radio telescopes of different type and purpose are described, with particular emphasis on very long baseline interferometry. Soviet radio-astronomy studies of solar radio emission and the interplanetary medium are also discussed, with particular attention given to the investigation of the sun's supercorona and the interplanetary plasma.

  5. Daniel K. Inouye Solar Telescope: Overview and Status

    NASA Astrophysics Data System (ADS)

    Rimmele, Thomas; McMullin, Joseph; Warner, Mark; Craig, Simon; Woeger, Friedrich; Tritschler, Alexandra; Cassini, Roberto; Kuhn, Jeff; Lin, Haosheng; Schmidt, Wolfgang; Berukoff, Steve; Reardon, Kevin; Goode, Phil; Knoelker, Michael; Rosner, Robert; Mathioudakis, Mihalis; DKIST TEAM

    2015-08-01

    The 4m Daniel K. Inouye Solar Telescope (DKIST) currently under construction on Haleakala, Maui will be the world’s largest solar telescope. Designed to meet the needs of critical high resolution and high sensitivity spectral and polarimetric observations of the sun, this facility will perform key observations of our nearest star that matters most to humankind. DKIST’s superb resolution and sensitivity will enable astronomers to unravel many of the mysteries the Sun presents, including the origin of solar magnetism, the mechanisms of coronal heating and drivers of the solar wind, flares, coronal mass ejections and variability in solar output. The all-reflecting, off-axis design allows the facility to observe over a broad wavelength range and enables DKIST to operate as a coronagraph. In addition, the photon flux provided by its large aperture will be capable of routine and precise measurements of the currently elusive coronal magnetic fields. The state-of-the-art adaptive optics system provides diffraction limited imaging and the ability to resolve features approximately 20 km on the Sun. Five first light instruments, representing a broad community effort, will be available at the start of operations: Visible Broadband Imager (National Solar Observatory), Visible Spectro-Polarimeter (High Altitude Observatory), Visible Tunable Filter (Kiepenheuer Institute, Germany), Diffraction Limited NIR Spectro-Polarimeter (University of Hawaii) and the Cryogenic NIR Spectro-Polarimeter (University of Hawaii). High speed cameras for capturing highly dynamic processes in the solar atmosphere are being developed by a UK consortium. Site construction on Haleakala began in December 2012 and is progressing on schedule. Operations are scheduled to begin in 2019. We provide an overview of the facility, discuss the construction status, and present progress with DKIST operations planning.

  6. Dynamic Aperture-based Solar Loop Segmentation

    NASA Technical Reports Server (NTRS)

    Lee, Jon Kwan; Newman, Timothy S.; Gary, G. Allen

    2006-01-01

    A new method to automatically segment arc-like loop structures from intensity images of the Sun's corona is introduced. The method constructively segments credible loop structures by exploiting the Gaussian-like shape of loop cross-sectional intensity profiles. The experimental results show that the method reasonably segments most of the well-defined loops in coronal images. The method is only the second published automated solar loop segmentation method. Its advantage over the other published method is that it operates independently of supplemental time specific data.

  7. Designs for a large-aperture telescope to map the CMB 10× faster.

    PubMed

    Niemack, Michael D

    2016-03-01

    Current large-aperture cosmic microwave background (CMB) telescopes have nearly maximized the number of detectors that can be illuminated while maintaining diffraction-limited image quality. The polarization-sensitive detector arrays being deployed in these telescopes in the next few years will have roughly 104 detectors. Increasing the mapping speed of future instruments by at least an order of magnitude is important to enable precise probes of the inflationary paradigm in the first fraction of a second after the big bang and provide strong constraints on cosmological parameters. The CMB community has begun planning a next generation "Stage IV" CMB project that will be comprised of multiple telescopes with between 105-106 detectors to pursue these goals. This paper introduces the new crossed Dragone telescope and receiver optics designs that increase the usable diffraction-limited field-of-view, and therefore the mapping speed, by an order of magnitude compared to the upcoming generation of large-aperture instruments. Polarization systematics and engineering considerations are presented, including a preliminary receiver model to demonstrate that these designs will enable high efficiency illumination of >105 detectors in a next generation CMB telescope. PMID:26974631

  8. Engineering Specification for Large-aperture UVO Space Telescopes Derived from Science Requirements

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Arnold, William; Bevan, Ryan M.; Smith, W. Scott.; Kirk, Charles S.; Postman, Mark

    2013-01-01

    An advanced large aperture UV/optical UVO space telescope is required for the next generation of astrophysics and exoplanet science. The science requirements of proposed exoplanet and astrophysics missions were used to determine the encircled energy, point spread function stability and thermal environment requirements. These requirements then determine the optical wavefront specification for potential telescope assemblies which can fit inside current and planned launch vehicles. The optical wavefront specification becomes the top level of the error budget that is split into various sources that control the structural, thermal and optical design.

  9. Large aperture diffractive telescope design for space-based lidar receivers

    NASA Astrophysics Data System (ADS)

    Zhu, Jinyi; Xie, Yongjun

    2015-11-01

    Diffractive telescopes are ideal to space-based lidar receivers, because of their advantages of mass and surface shape tolerances. To develop diffractive optical systems, the aberration properties and high order diffraction of diffractive lenses were discussed. The aberration properties are suitable for lidar receivers. High order diffraction is helpful to improve diffractive lens fabrication and decrease system length. And it can be realized by modifying the surface figures of a diffractive lens, mainly the ring widths and depth. A 1-meter aperture diffractive telescope design with simple structure was given, providing spot diameters less than 45μm over the whole field of view.

  10. ATLAST-9.2m: a Large-Aperture Deployable Space Telescope

    NASA Technical Reports Server (NTRS)

    Oergerle, William; Feinberg, Lee D.; Purves, Lloyd R.; Hyde, T. Tupper; Thronson, Harley A.; Townsend, Jacqueline A.; Postman, Marc; Bolear, Matthew R.; Budinoff, Jason G.; Dean, Bruce H.; Clampin, Mark C.; Ebbets, Dennis C.; Gong, Qian; Gull, Theodore R.; Howard, Joseph M.; Jones, Andrew L.; Lyon, Richard G.; Pasquale, Bert A.; Perrygo, Charles; Smith, Jeffrey S.; Thompson, Patrick L.; Woodgate, Bruce E.

    2010-01-01

    We present results of a study of a deployable version of the Advanced Technology Large-Aperture Space Telescope (ATLAST), designed to operate in a Sun-Earth L2 orbit. The primary mirror of the segmented 9.2-meter aperture has 36 hexagonal 1.315 m (flat to flat) glass mirrors. The architecture and folding of the telescope is similar to JWST, allowing it to fit into the 6.5 m fairing of a modest upgrade to the Delta-IV Heavy version of the Evolved Expendable Launch Vehicle (EELV). We discuss the overall observatory design, optical design, instruments, stray light, wavefront sensing and control, pointing and thermal control, and in-space servicing options.

  11. Resolution of strong sources for a gamma-ray telescope using coded aperture imaging.

    PubMed

    Laudet, P; Roques, J P

    1988-10-15

    A hard x-ray/medium energy gamma-ray telescope is being developed using coded aperture imaging. The image recorded on the detector has to be cross correlated to deconvolve the sky map. We have developed a deconvolution method using the 2-D discrete Fourier transform, whose goal is to improve the separating power of these reconstructed maps. The results and limits of the method are discussed. PMID:20539547

  12. Cornell Caltech Atacama Telescope (CCAT): a 25-m aperture telescope above 5000-m altitude

    NASA Astrophysics Data System (ADS)

    Sebring, Thomas A.; Giovanelli, Riccardo; Radford, Simon; Zmuidzinas, Jonas

    2006-06-01

    Cornell, California Institute of Technology (Caltech), and Jet Propulsion Lab (JPL) have joined together to study development of a 25 meter sub-millimeter telescope (CCAT) on a high peak in the Atacama region of northern Chile, where the atmosphere is so dry as to permit observation at wavelengths as short as 200 μm. The telescope is designed to deliver high efficiency images at that wavelength with a total one-half wavefront error of about 10 μm. With a 20 arc min field of view, CCAT will be able to accommodate large format bolometer arrays and will excel at carrying out surveys as well as resolving structures to the 2 arc sec resolution level. The telescope will be an ideal complement to ALMA. Initial instrumentation will include both a wide field bolometer camera and a medium resolution spectrograph. Studies of the major telescope subsystems have been performed as part of an initial Feasibility Concept Study. Novel aspects of the telescope design include kinematic mounting and active positioning of primary mirror segments, high bandwidth secondary mirror segment motion control for chopping, a Calotte style dome of 50 meter diameter, a mount capable of efficient scanning modes of operation, and some new approaches to panel manufacture. Analysis of telescope performance and of key subsystems will be presented to illustrate the technical feasibility and pragmatic cost of CCAT. Project plans include an Engineering Concept Design phase followed by detailed design and development. First Light is planned for early 2012.

  13. Recent Enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) Telescope Testbed at MSFC

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Montgomery, Edward E.; Lindner, Jeff

    2000-01-01

    Recent incremental upgrades to the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed have enabled the demonstration of phasing (with a monochromatic source) of clusters of primary mirror segments down to the diffraction limit. PAMELA upgrades include an improved Shack-Hartmann wavefront sensor, passive viscoelastic damping treatments for the voice-coil actuators, mechanical improvement of mirror surface figures, and optical bench baffling. This report summarizes the recent PAMELA upgrades, discusses the lessons learned, and presents a status of this unique testbed for wavefront sensing and control. The Marshall Space Flight Center acquired the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope in 1993 after Kaman Aerospace was unable to complete integration and testing under the limited SDIO and DARPA funding. The PAMELA is a 36-segment, half-meter aperture, adaptive telescope which utilizes a Shack-Hartmann wavefront sensor, inductive coil edge sensors, voice coil actuators, imaging CCD cameras and interferometry for figure alignment, wavefront sensing and control. MSFC originally obtained the PAMELA to supplement its research in the interactions of control systems with flexible structures. In August 1994, complete tip, tilt and piston control was successfully demonstrated using the Shack-Hartmann wavefront sensor and the inductive edge sensors.

  14. Recent Enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) Telescope Testbed at MSFC

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Burdine, Robert (Technical Monitor)

    2001-01-01

    Recent incremental upgrades to the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed have enabled the demonstration of phasing (with a monochromatic source) of clusters of primary mirror segments down to the diffraction limit. PAMELA upgrades include in improved Shack-Hartmann wavefront sensor, passive viscoelastic damping treatments for the voice-coil actuators, mechanical improvement of mirror surface figures, and optical bench baffling. This report summarizes the recent PAMELA upgrades, discusses the lessons learned, and presents a status of this unique testbed for wavefront sensing and control. The Marshall Space Flight Center acquired the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope in 1993 after Kaman Aerospace was unable to complete integration and testing under the limited SDIO and DARPA funding. The PAMELA is a 36-segment, half-meter aperture, adaptive telescope which utilizes a Shack-Hartmann wavefront sensor, inductive coil edge sensors, voice coil actuators, imaging CCD cameras and interferometry for figure alignment, wavefront sensing and control. MSFC originally obtained the PAMELA to supplement its research in the interactions of control systems with flexible structures. In August 1994, complete tip, tilt and piston control was successfully demonstrated using the Shack-Hartmann wavefront sensor and the inductive edge sensors.

  15. Stellar Intensity Interferometry over Kilometer Baselines: Optical aperture synthesis with electronically connected telescopes

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-08-01

    Diffraction-limited optical imaging over kilometer baselines will reveal stellar surfaces, perhaps even resolving the silhouettes of transiting exoplanets. An opportunity is opening up with arrays of air Cherenkov telescopes used for intensity interferometry, a technique once pioneered by Hanbury Brown and Twiss. Being essentially insensitive to atmospheric turbulence, this permits both very long baselines and observing at short optical wavelengths.System verifications have been made in a large optics laboratory. Artificial stars were observed by a group of small telescopes equipped with nanosecond-resolving photon-counting detectors, their outputs processed in a digital correlator. Numerous telescope pairs at different baseline lengths and orientations build up a two-dimensional map of the second-order spatial coherence of the source, from which its image can be extracted.From up to 180 baselines thus measured, full two-dimensional images were reconstructed. As far as we are aware, these are the first diffraction-limited images produced by an array of optical telescopes connected only electronically in software, with no optical connections between them. Since the electronic signal from any telescope can be freely copied without loss of signal, very many baselines can be built up between dispersed telescopes. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric aperture synthesis arrays currently operating at radio wavelengths. arxiv.org/abs/1407.5993, Nature Commun., in press (2015)

  16. The New Swedish Solar Telescope Control System

    NASA Astrophysics Data System (ADS)

    Dettori, Peter M.; Hosinsky, Göran

    2002-12-01

    This paper describes the new Swedish solar telescope control system which is currently in the final phases of testing and tuning. The telescope has two current controlled motors per axis and encoder resolution of 0.0016 arcsecond per pulse. The servo consists of a cascaded position-velocity loop system implemented on a Compaq Alpha workstation class computer. The servo position correction loop runs at a frequency of 100 Hz whilst the faster velocity loop runs at 1KHz. This choice of servo allows a methodical tuning of gains because each gain is correcting a seperate frequency range. We shall describe the mechanical design employed in the telescope and the computer control. The real time requirements of the control servo will be explained along with how we have used standard commercial hardware and operating system to achieve this.

  17. "Future Solar Physics with the Daniel K. Inouye Solar Telescope (DKIST)"

    NASA Astrophysics Data System (ADS)

    Criscuoli, S.

    2014-12-01

    During the last decades, the synergistic development of large aperture telescopes and real time and post facto techniques for image degradation correction, have allowed observations of the solar atmosphere at resolutions up to tens of arcsecond. The analysis of these data, together with the development of sophisticated inversion techniques to infer properties of the magnetic field, have largely improved our understanding of many aspects of solar physics which include the nature and properties of small scale magnetic elements, the fine structuring of sunspots, the properties of granulation and its interaction with the magnetic field, the propagation of waves from the photosphere to the chromosphere, the highly dynamics and fine structuring of the chromosphere. Still several issues, like the origin and nature of the photospheric magnetism, especially in the quiet Sun, the properties of the chromospheric magnetic field, the chromospheric energy budget, and the properties of the photospheric and chromospheric plasma and magnetic field during eruptive events, remain open. Moreover, state-of-the-art magneto hydrodynamic simulations produce structures down to the spatial resolution of the simulations themselves (generally, few kilometers per pixel), which are unresolved in current observations. The Daniel K. Inouye Solar Telescope (DKIST), with its four meter aperture and state-of-the-art adaptive optics, will allow the acquisition of hundredths of arcsecond spatial resolution data. In this contribution I review the main open questions that the analysis of DKIST observations will allow to address.

  18. Solar rejection for an orbiting telescope

    NASA Technical Reports Server (NTRS)

    Rehnberg, J. D.

    1975-01-01

    The present work discusses some of the constraints that the optical designer must deal with in optimizing spaceborne sensors that must look at or near the sun. Analytical techniques are described for predicting the effects of stray radiation from sources such as mirror scatter, baffle scatter, diffraction, and ghost images. In addition, the paper describes a sensor design that has been flown on the Apollo Telescope Mount (Skylab) to aid astronauts in locating solar flares. In addition to keeping stray radiation to a minimum, the design had to be nondegradable by the direct solar heat load.

  19. Hubble Space Telescope (HST) Solar Array Damper

    NASA Technical Reports Server (NTRS)

    Maly, J. R.; Pendleton, S. C.; Salmanoff, J.; Blount, G. J.; Mathews, K.

    1999-01-01

    This paper describes the design of a solar array damper that will be built into each of two new solar arrays to be installed on the Hubble Space Telescope (HST) during Servicing Mission 3. On this mission, currently scheduled for August, 2000, two "rigid" solar array wings will replace the "flexible" wings currently providing power for HST. Dynamic interaction of these wings with the telescope spacecraft can affect the Pointing Control System. The damper, which is integral to the mast of the solar array, suppresses the fundamental bending modes of the deployed wings at 1.2 Hz (in-plane) and 1.6 Hz (out-of-plane). With the flight version of the damper, modal damping of 2.3% of critical is expected over the temperature range of -4 C to 23 C with a peak damping level of 3.9%. The unique damper design is a combination of a titanium spring and viscoelastic-shear-lap dashpot. The damper was designed using a system finite element model of the solar array wing and measured viscoelastic material properties. Direct complex stiffness (DCS) testing was performed to characterize the frequency- and temperature-dependent behavior of the damping prior to fixed-base modal testing of the wing at NASA/Goddard Space Flight Center (NASA/GSFC).

  20. The five-hundred-meter aperture spherical radio telescope (FAST) project

    NASA Astrophysics Data System (ADS)

    Nan, Rendong; Li, Di

    2013-04-01

    Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese "mega-science" project to build the largest single dish radio telescope in the world. Its engineering concept and design pave a new road to realize a huge single dish in an effective way. Being the most sensitive single dish radio telescope, FAST will enable astronomers to jump-start many science goals, such as surveying the neutral hydrogen in the Milky Way and other galaxies, detecting faint pulsars, hearing the possible signals from other civilizations, etc. The feasibility studies for FAST have been carried out for 14 years, supported by Chinese and international astronomy communities. The National Development and Reform Commission approved the funding proposal of FAST in 2007 with a capital budget close to 700 million RMB. The project time is 5.5 years from the commencement of work in March of 2011 and the first light is expected in 2016.

  1. The solar polar radio telescope mission: an overview

    NASA Astrophysics Data System (ADS)

    Sun, Weiying; Zhang, Cheng; Zheng, Jianhua; Wu, Ji; Wang, C. B.; Wang, Chi; Wang, S.

    : The solar polar orbit telescope (SPORT) is a mission proposed for the observation of ICMEs. The main payload is a synthetic aperture radiometer working at meter wave band taking images of the high density interplanetary plasma clouds formed by ICMEs and follows the propagation if it from the surface of the Sun all the way to as far as 0.5 AU or even further. With such a capability of observation, also the SPORT will study transient high energy phenomenon, the magnetic topology, temperature and density as well as velocity of the solar wind in the inner interplanetary heliosphere. In the practical part, the mission is also very useful for space weather forecast in advance of the geo-storm events. Other instruments are also selected to be on board of the solar polar orbit mission for in-situ measurement, such as fluxgate magnetometer, solar wind ion detector and high energy particle detectors. In this paper, we describe the scientific objective, basic principles and feasibility of the interferometric radiometer, general mission design and the status of the SPORT mission.

  2. Focal plane instrument for the Solar UV-Vis-IR Telescope aboard SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Yukio; Suematsu, Yoshinori; Shimizu, Toshifumi; Ichimoto, Kiyoshi; Takeyama, Norihide

    2011-10-01

    It is presented the conceptual design of a focal plane instrument for the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. A primary purpose of the telescope is to achieve precise as well as high resolution spectroscopic and polarimetric measurements of the solar chromosphere with a big aperture of 1.5 m, which is expected to make a significant progress in understanding basic MHD processes in the solar atmosphere. The focal plane instrument consists of two packages: A filtergraph package is to get not only monochromatic images but also Dopplergrams and magnetograms using a tunable narrow-band filter and interference filters. A spectrograph package is to perform accurate spectro-polarimetric observations for measuring chromospheric magnetic fields, and is employing a Littrow-type spectrograph. The most challenging aspect in the instrument design is wide wavelength coverage from 280 nm to 1.1 μm to observe multiple chromospheric lines, which is to be realized with a lens unit including fluoride glasses. A high-speed camera for correlation tracking of granular motion is also implemented in one of the packages for an image stabilization system, which is essential to achieve high spatial resolution and high polarimetric accuracy.

  3. Optimization analysis of primary mirror in large aperture telescope based on workbench

    NASA Astrophysics Data System (ADS)

    Feng, Zhengsen; Wang, Guomin

    2015-10-01

    With the diameter increasing for large aperture telescope primary mirror, the gravity caused by the increased of surface size will directly affect the quality of optical imaging, the adjustment of large aperture primary mirror will be frequent according to the requirement of observation. As the angle and the azimuth's transformation of primary mirror influences the surface shape accuracy immediately, the rational design of the primary mirror supporting structure is of crucial importance. Now the general method is to use ANSYS APDL programming, which is inconvenient and complex to fit for the different components, the calculation require much time and the analysis is lack of efficient. Taking the diameter of 1.12 m telescope primary mirror as the research objection, the paper combine the actual design parameters of SONG telescope, respectively using ANSYS WORKBENCH to employ the primary mirror axial and lateral support model in finite element method, the optimal solution is obtained by optimization design and the change rule of mirror surface deformation under inclined condition is studied. The optimization results according with the requirements of the primary mirror comprehensive error proves that the optimization analysis method is available and applicable.

  4. Recent enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed at MSFC

    NASA Astrophysics Data System (ADS)

    Rakoczy, John M.; Montgomery, Edward E.; Lindner, Jeffrey L.

    2000-08-01

    Recent incremental upgrades to the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed have enabled the demonstration of phasing (with a monochromatic source) of clusters of primary mirror segments down to the diffraction limit. PAMELA upgrades include an improved Shack-Hartmann wavefront sensor, passive viscoelastic damping treatments for the voice-coil actuators, and mechanical improvement of mirror surface figures. This report summarizes the recent PAMELA upgrades and presents a status of this unique testbed for wavefront sensing and control. The Marshall Space Flight Center acquired the PAMELA telescope in 1993 after Kaman Aerospace was unable to complete integration and testing under the limited SDIO and DARPA funding. The PAMELA is a 36-segment, half-meter aperture, adaptive telescope which utilizes a Shack-Hartmann wavefront sensor, inductive coil edge sensors, voice coil actuators, imaging CCD cameras and interferometry for figure alignment, wavefront sensing and control. MSFC originally obtained the PAMELA to supplement its research in the interactions of control systems with flexible structures. In August 1994, complete tip, tilt and piston control was successfully demonstrated using the Shack-Hartmann wavefront sensor and the inductive edge sensors.

  5. Beam Patterns of the Five-hundred-metre Aperture Spherical Telescope

    NASA Astrophysics Data System (ADS)

    Dong, B.; Han, J. L.

    2013-04-01

    The Five-hundred-metre Aperture Spherical Telescope (FAST) is being constructed in China. With an illuminated aperture of 300-m diameter, it will be the most sensitive single-dish radio telescope in the world. We calculate the beam patterns, gains, and efficiencies of the FAST at 200 MHz, 1.4 GHz, and 3 GHz. A program is developed to calculate the structural parameters and construct the FAST models. The three-dimensional beam patterns are calculated by utilising the shooting and bouncing ray method. We show that, with a coaxial horn feed, the FAST has a beam pattern of high gain and reasonably low first sidelobe over the frequency range of 200 MHz to 3 GHz. Compared with an ideal 300-m parabolic reflector, the un-illuminated spherical part of the FAST would make the power level near both sides of the main beam rise by at least 20 dB and the efficiency tends to decrease at high frequencies. At a zenith angle of 0°, its efficiencies at 200 MHz, 1.4 GHz, and 3 GHz are 71.72%, 66.94%, and 57.55%, respectively. We conclude that the FAST is an excellent telescope at low frequencies. At high frequencies, the triangular spherical panels and the gaps between panels are important factors that affect the performance of the FAST.

  6. ATLAST-9.2: A Deployable Large Aperture UVOIR Space Telescope

    NASA Technical Reports Server (NTRS)

    Oegerle, William R.; Feinberg, L.; Purves, L.; Hyde, T.; Thronson, H.; Townsend, J.; Postman, M.; Bolcar, M.; Budinoff, J.; Dean, B.; Clampin, N.; Ebbets, D.; Gong, Q.; Gull, T.; Howard, J.; Jones, A.; Lyon, R.; Pasquale, B.; Perrygo, C.; Smith, S.; Thompson, P.; Woodgate, B.

    2010-01-01

    We present the results of a study of a deployable version of the Advanced Technology Large Aperture Space Telescope (ATLAST) that could be launched on an Evolved Expendable Launch Vehicle (EELV). ATLAST is a concept for a next-generation UVOIR observatory to follow HST and JWST. The observatory retains significant heritage from JWST, thereby taking advantage of technologies and engineering already developed for that mission. At the same time, we have identified several design changes to the JWST architecture, some of which are required due to the demanding wavefront error requirements at visible wavelengths. The optical telescope assembly has a segmented 9.2-meter aperture and consists of 36 hexagonal glass mirrors, each of which is I.3l5m in size (flat-to-flat). The telescope can be folded to fit in the 6.5m fairing on the planned upgrade to the Delta-IV heavy launch vehicle. Near-real time wavefront sensing and control is performed on-board the telescope using stars in the field of view to deliver diffraction limited imaging performance at 500nm wavelength. The optical design of the telescope provides an 8x20 arcmin FOV in which 4-5 instruments can be accommodated, plus fine guidance and wavefront sensors. Unlike JWST, the OTA sits at the end of a multi-gimbaled arm, allowing pitch and roll motion, and is isolated from the sunshield and spacecraft bus by an active isolation system. Our design permits servicing in order to extend the life of the observatory.

  7. ATLAST-9.2: A Deployable Large Aperture UVOIR Space Telescope

    NASA Astrophysics Data System (ADS)

    Oegerle, William R.; Feinberg, L.; Purves, L.; Hyde, T.; Thronson, H.; Townsend, J.; Postman, M.; Bolcar, M.; Budinoff, J.; Dean, B.; Clampin, M.; Ebbets, D.; Gong, Q.; Gull, T.; Howard, J.; Jones, A.; Lyon, R.; Pasquale, B.; Perrygo, C.; Smith, S.; Thompson, P.; Woodgate, B.

    2010-01-01

    We present the results of a study of a deployable version of the Advanced Technology Large Aperture Space Telescope (ATLAST) that could be launched on an Evolved Expendable Launch Vehicle (EELV). ATLAST is a concept for a next-generation UVOIR observatory to follow HST and JWST. The observatory retains significant heritage from JWST, thereby taking advantage of technologies and engineering already developed for that mission. At the same time, we have identified several design changes to the JWST architecture, some of which are required due to the demanding wavefront error requirements at visible wavelengths. The optical telescope assembly has a segmented 9.2-meter aperture and consists of 36 hexagonal glass mirrors, each of which is 1.315m in size (flat-to-flat). The telescope can be folded to fit in the 6.5m fairing on the planned upgrade to the Delta-IV heavy launch vehicle. Near-real time wavefront sensing and control is performed on-board the telescope using stars in the field of view to deliver diffraction limited imaging performance at 500nm wavelength. The optical design of the telescope provides an 8x20 arcmin FOV in which 4-5 instruments can be accommodated, plus fine guidance and wavefront sensors. Unlike JWST, the OTA sits at the end of a multi-gimbaled arm, allowing pitch and roll motion, and is isolated from the sunshield and spacecraft bus by an active isolation system. Our design permits servicing in order to extend the life of the observatory.

  8. Innovative enclosure dome/observing aperture system design for the MROI Array Telescopes

    NASA Astrophysics Data System (ADS)

    Busatta, A.; Marchiori, G.; Mian, S.; Payne, I.; Pozzobon, M.

    2010-07-01

    The close-pack array of the MROI necessitated an original design for the Unit Telescope Enclosure (UTE) at Magdalena Ridge Observatory. The Magdalena Ridge Observatory Interferometer (MROI) is a project which comprises an array of up to ten (10) 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. The most compact configuration includes all ten telescopes, several of which are at a relative distance of less than 8m center to center from each other. Since the minimum angle of the field of regard is 30° with respect to the horizon, it is difficult to prevent optical blockage caused by adjacent UTEs in this compact array. This paper presents the design constraints inherent in meeting the requirement for the close-pack array. An innovative design enclosure was created which incorporates an unique dome/observing aperture system. The description of this system focuses on how the field of regard requirement led to an unique and highly innovative concept that had to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). Finally, we describe the wide use of composites materials and structures (e.g. glass/carbon fibres, sandwich panels etc.) on the aperture system which represents the only way to guarantee adequate thermal and environmental protection, compactness, structural stability and limited power consumption due to reduced mass.

  9. ExSPO: A Discovery Class Apodized Square Aperture (ASA) Expo-Planet Imaging Space Telescope Concept

    NASA Technical Reports Server (NTRS)

    Gezari, D.; Harwit, M.; Lyon, R.; Melnick, G.; Papaliolos, G.; Ridgeway, S.; Woodruff, R.; Nisenson, P.; Oegerle, William (Technical Monitor)

    2002-01-01

    ExSPO is a Discovery Class (approx. 4 meter) apodized square aperture (ASA) space telescope mission designed for direct imaging of extrasolar Earth-like planets, as a precursor to TPF. The ASA telescope concept, instrument design, capabilities, mission plan and science goals are described.

  10. Optimized focal and pupil plane masks for vortex coronagraphs on telescopes with obstructed apertures

    NASA Astrophysics Data System (ADS)

    Ruane, Garreth J.; Absil, Olivier; Huby, Elsa; Mawet, Dimitri; Delacroix, Christian; Carlomagno, Brunella; Piron, Pierre; Swartzlander, Grover A.

    2015-09-01

    We present methods for optimizing pupil and focal plane optical elements that improve the performance of vortex coronagraphs on telescopes with obstructed or segmented apertures. Phase-only and complex masks are designed for the entrance pupil, focal plane, and the plane of the Lyot stop. Optimal masks are obtained using both analytical and numerical methods. The latter makes use of an iterative error reduction algorithm to calculate "correcting" optics that mitigate unwanted diffraction from aperture obstructions. We analyze the achieved performance in terms of starlight suppression, contrast, off-axis image quality, and chromatic dependence. Manufacturing considerations and sensitivity to aberrations are also discussed. This work provides a path to joint optimization of multiple coronagraph planes to maximize sensitivity to exoplanets and other faint companions.

  11. Gamma-ray observations of the Crab Region using a coded-aperture telescope

    SciTech Connect

    Mcconnell, M.L.; Dunphy, P.P.; Forrest, D.J.; Chupp, E.L.; Owens, A.

    1987-10-01

    The region of the Galactic anticenter, including the Crab Nebula, was observed during a balloon flight of the University of New Hampshire Directional Gamma-Ray Telescope employing the coded-aperture imaging technique to image celestial gamma-radiation between 160 keV and 9.3 MeV. The background systematics are treated with a simple and relatively straightforward correction procedure. The results demonstrate that the coded-aperture procedure is a viable approach for imaging not only point sources of radiation, but also extended sources of emission. The results for the Crab's photon spectrum are consistent with a power-law spectrum. Upper limits on the flux levels of line emission at 405 keV and 1050 keV and on the flux from the X-ray binary source A0535 + 26 and diffuse Galactic emission from the anticenter region are derived. 35 references.

  12. Gamma-ray observations of the Crab Region using a coded-aperture telescope

    NASA Technical Reports Server (NTRS)

    Mcconnell, M. L.; Dunphy, P. P.; Forrest, D. J.; Chupp, E. L.; Owens, A.

    1987-01-01

    The region of the Galactic anticenter, including the Crab Nebula, was observed during a balloon flight of the University of New Hampshire Directional Gamma-Ray Telescope employing the coded-aperture imaging technique to image celestial gamma-radiation between 160 keV and 9.3 MeV. The background systematics are treated with a simple and relatively straightforward correction procedure. The results demonstrate that the coded-aperture procedure is a viable approach for imaging not only point sources of radiation, but also extended sources of emission. The results for the Crab's photon spectrum are consistent with a power-law spectrum. Upper limits on the flux levels of line emission at 405 keV and 1050 keV and on the flux from the X-ray binary source A0535 + 26 and diffuse Galactic emission from the anticenter region are derived.

  13. Science with Large Solar Telescopes: Overview of SpS 6

    NASA Astrophysics Data System (ADS)

    Cauzzi, Gianna; Tritschler, Alexandra; Deng, Yuanyong

    2015-03-01

    With several large aperture optical and IR telescopes just coming on-line, or scheduled for the near future, solar physics is on the verge of a quantum leap in observational capabilities. An efficient use of such facilities will require new and innovative approaches to both observatory operations and data handling. This two-days long Special Session discussed the science expected with large solar telescopes, and started addressing the strategies necessary to optimize their scientific return. Cutting edge solar science as derived from state-of-the-art observations and numerical simulations and modeling was presented, and discussions were held on the role of large facilities in satisfying the demanding requirements of spatial and temporal resolution, stray-light correction, and spectro-polarimetric accuracy. Building on the experience of recently commissioned telescopes, critical issues for the development of future facilities were discussed. These included operational issues peculiar to large telecopes as well as strategies for their best use.

  14. Aperture Shield Materials Characterized and Selected for Solar Dynamic Space Power System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The aperture shield in a solar dynamic space power system is necessary to prevent thermal damage to the heat receiver should the concentrated solar radiation be accidentally or intentionally focused outside of the heat receiver aperture opening and onto the aperture shield itself. Characterization of the optical and thermal properties of candidate aperture shield materials was needed to support the joint U.S./Russian solar dynamic space power effort for Mir. The specific objective of testing performed at the NASA Lewis Research Center was to identify a high-temperature material with a low specular reflectance, a low solar absorptance, and a high spectral emittance so that during an off-pointing event, the amount of solar energy reflecting off the aperture shield would be small, the ratio of solar absorptance to spectral emittance would provide the lowest possible equilibrium temperature, and the integrity of the aperture shield would remain intact.

  15. Imaging M15 with a Small Aperture Telescope by Treating the Core as a Single Star

    NASA Astrophysics Data System (ADS)

    Howe, Rodney; Iakovos-Marios, Strikis

    2011-05-01

    The objective for this study will be to explore various time series methods using CCD photometry for use with amateur telescope observations of the dense globular cluster M15. Amateur telescopes are defined here as having an aperture of less than 40 cm, and are collecting photometric filtered observations over time. Specifically, we attempt to determine the light curve of the core of M15 as a "single star". This requires selection of comparison and check stars to perform differential photometry; i.e. subtraction of flux density measures between a nonvariable (reference star) and the variable "single star" of the M15 core as it changes in magnitudes over time. We explore the possibility of measuring the M15 periodicity as an aggregate of many standard stars as identified in the Stetson catalog for NGC7078 (2010). In this paper we'd like to propose methods and techniques for aggregating different cluster region's flux densities (luminosity) and periods.

  16. Ray-tracing and physical-optics analysis of the aperture efficiency in a radio telescope.

    PubMed

    Olmi, Luca; Bolli, Pietro

    2007-07-01

    The performance of telescope systems working at microwave or visible-IR wavelengths is typically described in terms of different parameters according to the wavelength range. Most commercial ray-tracing packages have been specifically designed for use with visible-IR systems and thus, though very flexible and sophisticated, do not provide the appropriate parameters to fully describe microwave antennas and to compare with specifications. We demonstrate that the Strehl ratio is equal to the phase efficiency when the apodization factor is taken into account. The phase efficiency is the most critical contribution to the aperture efficiency of an antenna and the most difficult parameter to optimize during the telescope design. The equivalence between the Strehl ratio and the phase efficiency gives the designer/user of the telescope the opportunity to use the faster commercial ray-tracing software to optimize the design. We also discuss the results of several tests performed to check the validity of this relationship that we carried out using a ray-tracing software, ZEMAX, and a full Physical Optics software, GRASP9.3, applied to three different telescope designs that span a factor of approximately 10 in terms of D/lambda. The maximum measured discrepancy between phase efficiency and Strehl ratio varies between approximately 0.4% and 1.9% up to an offset angle of >40 beams, depending on the optical configuration, but it is always less than 0.5% where the Strehl ratio is >0.95. PMID:17571151

  17. High-contrast imaging testbed for Complex Aperture Telescopes (HiCAT) for future space missions

    NASA Astrophysics Data System (ADS)

    Choquet, E.; N'Diaye, M.; Pueyo, L.; Elliot, E.; Perrin, M. D.; Wallace, J. K.; Anderson, R.; Carlotti, A.; Groff, T.; Hartig, G.; Kasdin, N. J.; Lajoie, C.; Levecq, O.; Long, C.; Mawet, D.; Macintosh, B.; Norman, C.; Shaklan, S.; Sheckells, M.; Sivaramakrishnan, An; Soummer, R.

    2014-03-01

    Searching for nearby habitable worlds with direct imaging and spectroscopy will require a telescope large enough to provide angular resolution and sensitivity to planets around a significant sample of stars. Segmented telescopes are a compelling option to obtain such large apertures. However, these designs have a complex geometry (central obstruction, support structures, segmentation) that makes high contrast imaging challenging. We are developing a new high-contrast imaging testbed at STScI to provide an integrated solution for wavefront control and starlight suppression on complex aperture geometries. We present a novel optimization approach for the testbed optical and opto-mechanical design that minimizes the impact of both phase and amplitude errors from the wave propagation of testbed optics surface errors. This design approach allows us to define the specification for the bench optics, which we then compare to the manufactured parts. We discuss the testbed alignment and first results. We also present our coronagraph design for different testbed pupil shapes (AFTA or ATLAST), which involves a new method for the optimization of Apodized Pupil Lyot Coronagraphs (APLC).

  18. Optimizing the search for high-z GRBs:. the JANUS X-ray coded aperture telescope

    NASA Astrophysics Data System (ADS)

    Burrows, D. N.; Fox, D.; Palmer, D.; Romano, P.; Mangano, V.; La Parola, V.; Falcone, A. D.; Roming, P. W. A.

    We discuss the optimization of gamma-ray burst (GRB) detectors with a goal of maximizing the detected number of bright high-redshift GRBs, in the context of design studies conducted for the X-ray transient detector on the JANUS mission. We conclude that the optimal energy band for detection of high-z GRBs is below about 30 keV. We considered both lobster-eye and coded aperture designs operating in this energy band. Within the available mass and power constraints, we found that the coded aperture mask was preferred for the detection of high-z bursts with bright enough afterglows to probe galaxies in the era of the Cosmic Dawn. This initial conclusion was confirmed through detailed mission simulations that found that the selected design (an X-ray Coded Aperture Telescope) would detect four times as many bright, high-z GRBs as the lobster-eye design we considered. The JANUS XCAT instrument will detect 48 GRBs with z>5 and fluence S_x > 3 × 10-7 erg cm-2 in a two year mission.

  19. Lightweight ZERODUR®: A Candidate Material for Affordable Future UVOIR Space Telescopes of All Apertures

    NASA Astrophysics Data System (ADS)

    Hull, Anthony B.; Westerhoff, T.; Leys, A.

    2014-01-01

    Recent Developments now make available for spaceborne applications highly lightweighted mirrors in ZERODUR®, regarded to be the “gold standard” material for thermal stability. ZERODUR® has flown on over 30 missions, including two great observatories, but not previously to this high degree of lightweighting. Now highly lightweighted mirror substrates can be made from a single billet of low expansion glass which exhibits remarkably low thermal expansion, anisotropy and inhomogeneity. This staility has the potential to simplify every aspect of a mission payload cost. A 1.2m open-back isogrid lightweighted mirror substrate has been made by SCHOTT exhibiting 88% lightweighting and a first Eigenfrequency over 200Hz. Also a recently made 0.3m isogrid lightweighted mirror exhibits ribs thinner than 0.9mm. Mirror or mirror segment substrates can be cost-effectively manufactured from monolithic blanks in apertures as small as 0.3m aperture to over 4m aperture (until recently SCHOTT maintained a line to make 8m ZERODUR® billets). We will describe this technology, the attributes of isogrid lightweighted mirror blanks, and the relevance of this material and manufacturing approach to upcoming UVOIR missions from suborbital to Explorer class to next generation Great Observatory. Lightweight ZERODUR® supports optical telescope systems requiring great stability, even in the presence of payload and scene thermal perturbations. Furthermore, mirrors or mirror segments made with the approach described can be made to remarkably short schedule, cost effectively and with little risk.

  20. Multiple Etalon Systems for the Advanced Technology Solar Telescope

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael; Six, N. Frank (Technical Monitor)

    2002-01-01

    Multiple etalons systems are discussed that meet the 4-meter NSO/Advance Technology Solar Telescope (http://www.nso.edu/ATST/index.html) instrument and science requirements for a narrow bandpass imaging system. A multiple etalon system can provide an imaging interferometer working in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, and a wide-band and broad-band high-resolution imager. Specific dual and triple etalon configurations will be described that provides spectrographic passband of 2.0-3.5nm and reduces parasitic light levels to 1/10000 as required by precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like triple etalon system provides for spectral purity of 100 thousandths. The triple designs have the advantage of reducing the finesse requirement on each etalon, allowing much more stable blocking filters, and can have very high spectral purity. A dual-etalon double-pass Cavallini-like configuration can provide a competing configuration. This design can provide high contrast with only a double etalon. The selection of the final focal plan instrument will depend on a trade-off of the ideal instrument versus reality, the number of etalons, the aperture of etalons, the number of blocking filters the electronic control system and computer interfaces, the temperature control and controllers for the etalons and the electronics. The use of existing experience should provide significant cost savings. The heritage of use of etalons and multiple etalon systems in solar physics come from a number of observatories, which includes MSFC Solar Observatory (NASA), Sac Peak Observatory (NSO), and Kiepenheuer Institute for Solar Physics (Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will reply on the existing experience from these observatories.

  1. Multiple-etalon systems for the Advanced Technology Solar Telescope

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael

    2003-01-01

    Multiple etalon systems are discussed that meet the science requirements for a narrow-passband imaging system for the 4-meter National Solar Observatory (NSO)/Advance Technology Solar Telescope (ATST). A multiple etalon system can provide an imaging interferometer that works in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, an intermediate-band imager, and broadband high-resolution imager. Specific dual and triple etalon configurations are described that provide a spectrographic passband of 2.0-3.5 micron and reduce parasitic light levels to 10(exp -4) as required for precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like (Telecentric Etalon SOlar Spectrometer) triple etalon system provides a spectral purity of 10(exp -5). The triple designs have the advantage of reducing the finesse requirement on each etalon; allow the use of more stable blocking filters, and have very high spectral purity. A dual-etalon double-pass (Cavallini-like) system can provide a competing configuration. Such a dual-etalon design can provide high contrast. The selection of the final focal plane instrument will depend on a trade-off between an ideal instrument and practical reality. The trade study will include the number of etalons, their aperture sizes, complexities of the optical train, number of blocking filters, configuration of the electronic control system, computer interfaces, temperature controllers, etalon controllers, and their associated feedback electronics. The heritage of single and multiple etalon systems comes from their use in several observatories, including the Marshall Space Flight Center (MSFC) Solar Observatory, Sacramento Peak Observatory (NSO), and Kiepenheuer-Institut fur Sonnenphysik (KIS, Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will benefit from the experience gained at these observatories.

  2. Multiple Etalon Systems for the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Gary, G. A.; Balasubramaniam, K. S.; Sigwarth, Michael

    2003-02-01

    Multiple etalon systems are discussed that meet the science requirements for a narrow-passband imaging system for the 4-meter National Solar Observatory (NSO)/Advance Technology Solar Telescope (ATST). A multiple etalon system can provide an imaging interferometer that works in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, an intermediate-band imager, and broadband high-resolution imager. Specific dual and triple etalon configurations are described that provide a spectrographic passband of 2.0-3.5 pm and reduce parasitic light levels to 10-4 as required for precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like (Telecentric Etalon SOlar Spectrometer) triple etalon system provides a spectral purity of 10-5. The triple designs have the advantage of reducing the finesse requirement on each etalon; allow the use of more stable blocking filters, and have very high spectral purity. A dual-etalon double-pass (Cavallini-like) system can provide a competing configuration. Such a dual-etalon design can provide high contrast. The selection of the final focal plane instrument will depend on a trade-off between an ideal instrument and practical reality. The trade study will include the number of etalons, their aperture sizes, complexities of the optical train, number of blocking filters, configuration of the electronic control system, computer interfaces, temperature controllers, etalon controllers, and their associated feedback electronics. The heritage of single and multiple etalon systems comes from their use in several observatories, including the Marshall Space Flight Center (MSFC) Solar Observatory, Sacramento Peak Observatory (NSO), and Kiepenheuer-Institut für Sonnenphysik (KIS, Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will benefit from the experience gained at these observatories.

  3. Stability studies of Solar Optical Telescope dynamics

    NASA Technical Reports Server (NTRS)

    Gullapalli, Sarma N.; Pal, Parimal K.; Ruthven, Gregory P.

    1987-01-01

    The Solar Optical Telescope (SOT) is designed to operate as an attached payload mounted on the Instrument Pointing System (IPS) in the cargo bay of the Shuttle Orbiter. Pointing and control of SOT is accomplished by an active Articulated Primary Mirror (APM), an active Tertiary Mirror (TM), an elaborate set of optical sensors, electromechanical actuators and programmable controllers. The structural interactions of this complex control system are significant factors in the stability of the SOT. The preliminary stability study results of the SOT dynamical system are presented. Structural transfer functions obtained from the NASTRAN model of the structure were used. These studies apply to a single degree of freedom (elevation). Fully integrated model studies will be conducted in the future.

  4. Star sensors of the Space Solar Telescope

    NASA Astrophysics Data System (ADS)

    Sun, Caihong; Ai, Guoxiang; Jin, Shengzhen; Zhu, Zheng; Guo, Ruiying

    2000-10-01

    The Space Solar Telescope (SST) is being developed in Beijing Astronomical Observatory. Two sets of star sensors are needed to fit the requirement of high accuracy attitude determination of SST. The Attitude Determination and Control System (ADCS) of SST is narrated in this paper. How to mount and use the Star Sensors on SST is introduced. The structure of the data handling system and the features such as the precision, field of view (FOV), mass and power consumption of the Star Sensor are given. To elevate accuracy affected by designing and manufacturing of optical lens, mechanical and electrical parts, a calibration correction should be applied. The development of algorithms based on 'triangle set' for the recognition of star patterns, especially the consideration of preventing SST from 'lost in space' is discussed too. The altitude of SST is calculated by the valid data of the Star Sensors and the Sun Guide Telescope. The test results shows that the Star Sensor researched and developed by us can be used not only for SST, but also for other satellites.

  5. Advanced Technology Large-Aperture Space Telescope: Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Traub, Wesley; Calzetti, Daniela; Soummer, Remi; Hyde, Tupper; Sembach, Kenneth; Glavallsco, Mauro; Stapelfeldt, Karl; Oegerle, William; Rich, R. Michael; Stahl, H. Philip; Tumlinson, Jason; Mountain, Matt

    2012-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8- to 16-m ultraviolet optical near Infrared space observatory for launch in the 2025 to 2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including: Is there life elsewhere in the Galaxy? We present a range of science drivers and the resulting performance requirements for ATLAST (8- to 16-marcsec angular resolution, diffraction limited imaging at 0.5 micron wavelength, minimum collecting area of 45 sq m, high sensitivity to light wavelengths from 0.1 to 2.4 micron, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to that of current generation observatory-class space missions.

  6. Thermal design and performance of the balloon-borne large aperture submillimeter telescope for polarimetry BLASTPol

    NASA Astrophysics Data System (ADS)

    Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Klein, J.; Korotkov, A. L.; Matthews, T. G.; Moncelsi, L.; Mroczkowski, A.; Netterfield, C. B.; Novak, G.; Nutter, D.; Pascale, E.; Poidevin, F.; Savini, G.; Scott, D.; Shariff, Jamil A.; Thomas, N. E.; Truch, M. D.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.

    2014-07-01

    We present the thermal model of the Balloon-borne Large-Aperture Submillimeter Telescope for Polarimetry (BLASTPol). This instrument was successfully own in two circumpolar flights from McMurdo, Antarctica in 2010 and 2012. During these two flights, BLASTPol obtained unprecedented information about the magnetic field in molecular clouds through the measurement of the polarized thermal emission of interstellar dust grains. The thermal design of the experiment addresses the stability and control of the payload necessary for this kind of measurement. We describe the thermal modeling of the payload including the sun-shielding strategy. We present the in-flight thermal performance of the instrument and compare the predictions of the model with the temperatures registered during the flight. We describe the difficulties of modeling the thermal behavior of the balloon-borne platform and establish landmarks that can be used in the design of future balloon-borne instruments.

  7. THE BALLOON-BORNE LARGE APERTURE SUBMILLIMETER TELESCOPE (BLAST) 2006: CALIBRATION AND FLIGHT PERFORMANCE

    SciTech Connect

    Truch, Matthew D. P.; Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Bock, James J.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Gundersen, Joshua O.; Hughes, David H.; Martin, Peter G.; Netterfield, C. Barth; Olmi, Luca; Patanchon, Guillaume

    2009-12-20

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 250 hr flight over Antarctica in 2006 December (BLAST06). As part of the calibration and pointing procedures, the red hypergiant star VY CMa was observed and used as the primary calibrator. Details of the overall BLAST06 calibration procedure are discussed. The 1sigma uncertainty on the absolute calibration is accurate to 9.5%, 8.7%, and 9.2% at the 250, 350, and 500 mum bands, respectively. The errors are highly correlated between bands resulting in much lower errors for the derived shape of the 250-500 mum continuum. The overall pointing error is < 5'' rms for the 36'', 42'', and 60'' beams. The performance of optics and pointing systems is discussed.

  8. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope.

    PubMed

    Liu, Shutian; Hu, Rui; Li, Quhao; Zhou, Ping; Dong, Zhigang; Kang, Renke

    2014-12-10

    For the large-aperture space telescope, the lightweight primary mirror design with a high-quality optical surface is a critical and challenging issue. This work presents a topology optimization-based design procedure for a lightweight primary mirror and a new mirror configuration of a large-aperture space telescope is obtained through the presented design procedure. Inspired by the topology optimization method considering cast constraints, an optimization model for the configuration design of the mirror back is proposed, through which the distribution and the heights of the stiffeners on the mirror back can be optimized simultaneously. For the purpose of minimizing the optical surface deviation due to self-weight and polishing pressure loadings, the objective function is selected as to maximize the mirror structural stiffness, which can be achieved by minimizing the structural compliance. The total mass of the primary mirror is assigned as the constraint. In the application example, results of the optimized design topology for two kinds of mass constraints are presented. Executing the design procedure for specific requirements and postprocessing the topology obtained of the structure, a new mirror configuration with tree-like stiffeners and a multiple-arch back in double directions is proposed. A verification model is constructed to evaluate the design results and the finite element method is used to calculate the displacement of the mirror surface. Then the RMS deviation can be obtained after fitting the deformed surface by Zernike polynomials. The proposed mirror is compared with two classical mirrors in the optical performance, and the comparison results demonstrate the superiority of the new mirror configuration. PMID:25608076

  9. Active correction of aperture discontinuities (ACAD) for space telescope pupils: a parametic analysis

    NASA Astrophysics Data System (ADS)

    Mazoyer, Johan; Pueyo, Laurent; Norman, Colin; N'Diaye, Mamadou; Mawet, Dimitri; Soummer, Rémi; Perrin, Marshall; Choquet, Élodie; Carlotti, Alexis

    2015-09-01

    As the performance of coronagraphs improves, the achievable contrast is more and more dependent of the shape of the pupil. The future generation of space and ground based coronagraphic instruments will have to achieve high contrast levels on on-axis and/or segmented telescopes. To correct for the high amplitude aberrations introduced by secondary mirror structures and segmentation of the primary mirror, we explore a two deformable mirror (DM) method. The major difficulty of several DM methods is the non-linear relation linking actuator strokes to the point spread function in the coronagraph focal plane. The Active Compensation of Aperture Discontinuities (ACAD) method is achieving this minimization by solving a non linear differential Monge Ampere equation. Once this open loop method have reached the minimum, a close-loop stroke minimization method can be applied to correct for phase and amplitude aberrations to achieve the ultimate contrast. In this paper, I describe the results of the parametric analysis that that I have undertaken on this method. After recalling the principle of the method, I will described the explored parameter space (deformable mirror set-up, shape of the pupil, bandwidth, coronagraph designs). I will precisely described the way I simulated the Vortex coronagraph for this numerical simulation. Finally I will present the preliminary results of this parametric analysis for space telescope pupils only.

  10. The Balloon-borne Large Aperture Submillimeter Telescope and its rebirth as a polarimeter

    NASA Astrophysics Data System (ADS)

    Thomas, Nicholas Evan

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a 1.8 meter Cassegrain telescope that operates in three bands (250, 350, and 500 mum), each with 30% bandwidth. The detection system is comprised of 280 silicon-nitride micromesh bolometers distributed on three focal plane arrays with 30", 42", and 60" FWHM (full width at half max) beam sizes, respectively. BLAST's goal is to study the evolutionary history and processes associated with star formation. Earth's atmosphere is opaque to submillimeter radiation and astronomical observations in this wavelength are best conducted at high altitudes. BLAST is designed to be flown above 99.5% of the atmosphere on a stratospheric balloon. BLAST has made three scientific flights and this thesis covers the last two. The second flight was made in 2006 from McMurdo, Antarctica and studied the evolutionary history and processes associated with star formation. For the third flight, BLAST was reconfigured as a polarimeter (BLAST-Pol) and was also launched from McMurdo in December 2010. BLAST-Pol's objective is to determine what role, if any, magnetic fields play in star formation. This thesis will describe the BLAST-Pol instrument and provide a summery of key observations made by the 2006 flight.

  11. Structural Feasibility Analysis of a Robotically Assembled Very Large Aperture Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Wilkie, William Keats; Williams, R. Brett; Agnes, Gregory S.; Wilcox, Brian H.

    2007-01-01

    This paper presents a feasibility study of robotically constructing a very large aperture optical space telescope on-orbit. Since the largest engineering challenges are likely to reside in the design and assembly of the 150-m diameter primary reflector, this preliminary study focuses on this component. The same technology developed for construction of the primary would then be readily used for the smaller optical structures (secondary, tertiary, etc.). A reasonable set of ground and on-orbit loading scenarios are compiled from the literature and used to define the structural performance requirements and size the primary reflector. A surface precision analysis shows that active adjustment of the primary structure is required in order to meet stringent optical surface requirements. Two potential actuation strategies are discussed along with potential actuation devices at the current state of the art. The finding of this research effort indicate that successful technology development combined with further analysis will likely enable such a telescope to be built in the future.

  12. Analysis of adaptive optics control for the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Wöger, Friedrich; Rimmele, Thomas

    2010-07-01

    Large aperture solar telescopes, such as the 4 meter aperture Advanced Technology Solar Telescope (ATST), depend on high order adaptive optics (AO) to achieve the telescope's diffraction limited resolution. The AO system not only corrects incoming distortions introduced by atmospheric turbulence, its performance also plays a critical role for the operation of other subsystems and affects the results obtained by downstream scientific instrumentation. For this reason, robust and optimal operation of the AO system is vital to maximize the scientific output of ATST. In order to optimize performance, we evaluate different strategies to obtain the control matrix of the AO system. The dependency of AO performance on various control parameters, such as different system calibration and reconstruction schemes, is analyzed using an AO simulation tool. The AO simulation tool provides a realistic solar AO system simulation and allows a detailed evaluation of the performance achieved by different calibration and reconstruction methods. The results of this study will guide the optimization of the AO system during design and operations.

  13. Solar Sail - Fresnel Zone Plate Lens for a Large Space Based Telescope

    SciTech Connect

    Early, J T

    2002-02-13

    A Fresnel zone plate lens made with solar sail material could be used as the primary optic for a very large aperture telescope on deep space probes propelled by solar sails. The large aperture telescope capability could enable significant science on fly-by missions to the asteroids, Pluto, Kuiper belt or the tort cloud and could also enable meaningful interstellar fly-by missions for laser propelled sails. This type of lens may also have some potential for laser communications and as a solar concentrator. The techniques for fabrication of meter size and larger Fresnel phase plate optics are under development at LLNL, and we are extending this technology to amplitude zone plates made from sail materials. Corrector optics to greatly extend the bandwidth of these Fresnel optics will be demonstrated in the future. This novel telescope concept will require new understanding of the fabrication, deployment and control of gossamer space structures. It will also require new materials technology for fabricating these optics and understanding their long term stability in a space environment.

  14. Daniel K. Inouye Solar Telescope system safety

    NASA Astrophysics Data System (ADS)

    Hubbard, Robert P.; Bulau, Scott E.; Shimko, Steve; Williams, Timothy R.

    2014-08-01

    System safety for the Daniel K. Inouye Solar Telescope (DKIST) is the joint responsibility of a Maui-based safety team and the Tucson-based systems engineering group. The DKIST project is committed to the philosophy of "Safety by Design". To that end the project has implemented an aggressive hazard analysis, risk assessment, and mitigation system. It was initially based on MIL-STD-882D, but has since been augmented in a way that lends itself to direct application to the design of our Global Interlock System (GIS). This was accomplished by adopting the American National Standard for Industrial Robots and Robot Systems (ANSI/RIA R15.06) for all identified hazards that involve potential injury to personnel. In this paper we describe the details of our augmented hazard analysis system and its use by the project. Since most of the major hardware for the DKIST (e.g., the enclosure, and telescope mount assembly) has been designed and is being constructed by external contractors, the DKIST project has required our contractors to perform a uniform hazard analysis of their designs using our methods. This paper also describes the review and follow-up process implemented by the project that is applied to both internal and external subsystem designs. Our own weekly hazard analysis team meetings have now largely turned to system-level hazards and hazards related to specific tasks that will be encountered during integration, test, and commissioning and maintenance operations. Finally we discuss a few lessons learned, describing things we might do differently if we were starting over today.

  15. Active galactic nucleus and quasar science with aperture masking interferometry on the James Webb Space Telescope

    SciTech Connect

    Ford, K. E. Saavik; McKernan, Barry; Sivaramakrishnan, Anand; Martel, André R.; Koekemoer, Anton; Lafrenière, David; Parmentier, Sébastien

    2014-03-10

    Due to feedback from accretion onto supermassive black holes (SMBHs), active galactic nuclei (AGNs) are believed to play a key role in ΛCDM cosmology and galaxy formation. However, AGNs extreme luminosities and the small angular size of their accretion flows create a challenging imaging problem. We show that the James Webb Space Telescope's Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) Aperture Masking Interferometry (AMI) mode will enable true imaging (i.e., without any requirement of prior assumptions on source geometry) at ∼65 mas angular resolution at the centers of AGNs. This is advantageous for studying complex extended accretion flows around SMBHs and in other areas of angular-resolution-limited astrophysics. By simulating data sequences incorporating expected sources of noise, we demonstrate that JWST-NIRISS AMI mode can map extended structure at a pixel-to-pixel contrast of ∼10{sup –2} around an L = 7.5 point source, using short exposure times (minutes). Such images will test models of AGN feedback, fueling, and structure (complementary with ALMA observations), and are not currently supported by any ground-based IR interferometer or telescope. Binary point source contrast with NIRISS is ∼10{sup –4} (for observing binary nuclei in merging galaxies), significantly better than current ground-based optical or IR interferometry. JWST-NIRISS's seven-hole non-redundant mask has a throughput of 15%, and utilizes NIRISS's F277W (2.77 μm), F380M (3.8 μm), F430M (4.3 μm), and F480M (4.8 μm) filters. NIRISS's square pixels are 65 mas per side, with a field of view ∼2' × 2'. We also extrapolate our results to AGN science enabled by non-redundant masking on future 2.4 m and 16 m space telescopes working at long-UV to near-IR wavelengths.

  16. Multiconjugation Optical Relay for an Off-Axis Solar Telescope

    NASA Astrophysics Data System (ADS)

    Moretto, Gil; Langlois, Maud; Rimmele, Thomas R.

    2004-05-01

    The Sun is an ideal object for the development and application of multiconjugate adaptive optics (MCAO). An effort to develop solar MCAO is pursued by the National Solar Observatory (NSO) Adaptive Optics Project. In developing solar MCAO, we bear in mind its possible implementation into the proposed 4 m Advanced Technology Solar Telescope (ATST). Two possible relay optical designs feeding an MCAO section and the coudé section of a 4 m off-axis solar telescope, such as the proposed ATST, are presented and discussed here.

  17. SUNRISE: a balloon-borne telescope for high resolution solar observations in the visible and UV

    NASA Astrophysics Data System (ADS)

    Solanki, Sami K.; Gandorfer, Achim M.; Schuessler, Manfred; Curdt, W.; Lites, Bruce W.; Martinez-Pillet, Valentin; Schmidt, Wolfgang; Title, Alan M.

    2003-02-01

    Sunrise is a light-weight solar telescope with a 1 m aperture for spectro-polarimetric observations of the solar atmosphere. The telescope is planned to be operated during a series of long-duration balloon flights in order to obtain time series of spectra and images at the diffraction-limit and to study the UV spectral region down to ~200 nm, which is not accessible from the ground. The central aim of Sunrise is to understand the structure and dynamics of the magnetic field in the solar atmosphere. Through its interaction with the convective flow field, the magnetic field in the solar photosphere develops intense field concentrations on scales below 100 km, which are crucial for the dynamics and energetics of the whole solar atmosphere. In addition, Sunrise aims to provide information on the structure and dynamics of the solar chromosphere and on the physics of solar irradiance changes. Sunrise is a joint project of the Max-Planck-Institut fuer Aeronomie (MPAe), Katlenburg-Lindau, with the Kiepenheuer-Institut fuer Sonnenphysik (KIS), Freiburg, the High-Altitude Observatory (HAO), Boulder, the Lockheed-Martin Solar and Astrophysics Lab. (LMSAL), Palo Alto, and the Instituto de Astrofi sica de Canarias, La Laguna, Tenerife. In addition, there are close contacts with associated scientists from a variety of institutes.

  18. Solar radio telescopes at ETH Zurich

    NASA Astrophysics Data System (ADS)

    Stehling, Werner R.

    1995-06-01

    For more than 16 years the Radio Astronomy Group of the ETH Zurich has used solar radio telescopes, which were designed to run automatically in an unmanned observing station. The antennas are azimuthally mounted and the position of each axis is measured with absolute shaft encoders. One antenna is driven by stepping motors while the two others use analog motors. The latest version of the antenna steering uses a velocity control of both axes. The antenna follows the Sun continuously and the velocity is adjusted due to the difference of nominal and actual position of the antenna. The Sun's position is calculated in real time using date and time as input parameters. Pointing to galactic objects is also possible and is used for system calibration (Cassiopeia A). The clock of the antenna control is synchronized each minute with a radio controlled time receiver. In addition, the antennas can be operated manually or remotely. A status signal inhibits data recording, if the antenna is not positioned.

  19. Bringing Perfect Vision to the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Matijevich, Russ; Johansson, Erik; Johnson, Luke; Cavaco, Jeff; National Solar Observatory

    2016-01-01

    The world's largest ground-based solar telescope is one step closer to operation with the acceptance of the deformable mirror engineered by AOA Xinetics, a Northrop Grumman Corporation company. The Daniel K. Inouye Solar Telescope (DKIST), currently under construction in Haleakala, Hawaii, will offer unprecedented high-resolution images of the sun using the latest adaptive optics technology to provide its distortion-free imaging.Led by the National Solar Observatory (NSO) and the Association of Universities for Research in Astronomy (AURA), the Inouye Solar Telescope will help scientists better understand how magnetic fields affect the physical properties of the Sun, what roles they play in our solar system and how they affect Earth.Ground-based telescopes, whether observing the sun or the night sky must contend with atmospheric turbulence that acts as a flexible lens, constantly reshaping observed images. This turbulence makes research on solar activity difficult and drives the need for the latest adaptive optics technology.To provide DKIST with the distortion-free imaging it requires, AOA Xinetics designed a deformable mirror with 1,600 actuators, four times the normal actuator density. This deformable mirror (DM) is instrumental in removing all of the atmospheric blurriness that would otherwise limit the telescope's performance. The mirror also has an internal thermal management system to handle the intense solar energy coming from DKIST's telescope. This poster provides the history behind this incredible success story.

  20. Daniel K. Inouye Solar Telescope: integration testing and commissioning planning

    NASA Astrophysics Data System (ADS)

    Craig, Simon; Bulau, Scott E.; Gonzales, Kerry; Hansen, Eric; Goodrich, Bret; Hubbard, Robert P.; Johansson, Eric; Liang, Chen; Kneale, Ruth A.; McBride, William; Sekulic, Predrag; Williams, Timothy R.

    2014-08-01

    The Daniel K. Inouye Solar Telescope (DKIST), formerly the Advanced Technology Solar Telescope (ATST), has been in its construction phase since 2010, anticipating the onset of the integration, test, and commissioning (IT&C) phase late in 2016, and the commencement of science verification in early 2019. In this paper we describe the planning of the Integration, Testing and Commissioning (IT&C) phase of the project.

  1. Spillage and flux density on a receiver aperture lip. [of solar thermal collector

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1985-01-01

    In a dish-type point-focusing solar thermal collector, the spillage and the flux density on the receiver aperture lip are related in a very simple way, if the aperture is circular and centered on the optical axis. Specifically, the flux density on the lip is equal to the spillage times the peak flux density in the plane of the lip.

  2. Solar System science with the Large Synoptic Survey Telescope

    NASA Astrophysics Data System (ADS)

    Jones, Lynne; Brown, Mike; Ivezić, Zeljko; Jurić, Mario; Malhotra, Renu; Trilling, David

    2015-11-01

    The Large Synoptic Survey Telescope (LSST; http://lsst.org) will be a large-aperture, wide-field, ground-based telescope that will survey half the sky every few nights in six optical bands from 320 to 1050 nm. It will explore a wide range of astrophysical questions, ranging from performing a census of the Solar System, to examining the nature of dark energy. It is currently in construction, slated for first light in 2019 and full operations by 2022.The LSST will survey over 20,000 square degrees with a rapid observational cadence, to typical limiting magnitudes of r~24.5 in each visit (9.6 square degree field of view). Automated software will link the individual detections into orbits; these orbits, as well as precisely calibrated astrometry (~50mas) and photometry (~0.01-0.02 mag) in multiple bandpasses will be available as LSST data products. The resulting data set will have tremendous potential for planetary astronomy; multi-color catalogs of hundreds of thousands of NEOs and Jupiter Trojans, millions of asteroids, tens of thousands of TNOs, as well as thousands of other objects such as comets and irregular satellites of the major planets.LSST catalogs will increase the sample size of objects with well-known orbits 10-100 times for small body populations throughout the Solar System, enabling a major increase in the completeness level of the inventory of most dynamical classes of small bodies and generating new insights into planetary formation and evolution. Precision multi-color photometry will allow determination of lightcurves and colors, as well as spin state and shape modeling through sparse lightcurve inversion. LSST is currently investigating survey strategies to optimize science return across a broad range of goals. To aid in this investigation, we are making a series of realistic simulated survey pointing histories available together with a Python software package to model and evaluate survey detections for a user-defined input population. Preliminary metrics from these simulations are shown here; the community is invited to provide further input.

  3. Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes

    NASA Technical Reports Server (NTRS)

    Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning

    2013-01-01

    A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.

  4. 8 Meter Advanced Technology Large-Aperture Space Telescope (ATLAST-8m)

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    ATLAST-8m (Advanced Technology Large Aperture Space Telescope) is a proposed 8-meter monolithic UV/optical/NIR space observatory (wavelength range 110 to 2500 nm) to be placed in orbit at Sun-Earth L2 by NASA's planned Ares V heavy lift vehicle. Given its very high angular resolution (15 mas @ 500 nm), sensitivity and performance stability, ATLAST-8m is capable of achieving breakthroughs in a broad range of astrophysics including: Is there life elsewhere in the Galaxy? An 8-meter UVOIR observatory has the performance required to detect habitability (H2O, atmospheric column density) and biosignatures (O2, O3, CH4) in terrestrial exoplanet atmospheres, to reveal the underlying physics that drives star formation, and to trace the complex interactions between dark matter, galaxies, and intergalactic medium. The ATLAST Astrophysics Strategic Mission Concept Study developed a detailed point design for an 8-m monolithic observatory including optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; mass and power budgets; and system cost. The results of which were submitted by invitation to NRC's 2010 Astronomy & Astrophysics Decadal Survey.

  5. Ground demonstration of an optical control system for a space-based sparse-aperture telescope

    NASA Astrophysics Data System (ADS)

    De Young, David B.; Dillow, James; Corcoran, Stephen P.; Andrews, Edwina V.; Yellowhair, Julius; Devries, Kevin

    1998-08-01

    SVS has recently completed a phase II small business innovative research (SBIR) project called low cost space imager (LCSI). As part of the SBIR project, a sparse aperture telescope design concept was developed. This design includes an optical control system capable of correcting the primary segments to within 38 nm piston and 17 nrad tilt as required by the optical tolerance analysis. The optical system utilizes a common secondary and primaries arranged in a Golay-6 configuration. The primaries are spherical, which eliminates the need for translation and rotation control. A laboratory experiment to validate the controls concept has been completed. This experiment culminated in the demonstration of autonomous capture, alignment, and phasing of an optical system with a three segment primary to tolerances consistent with the space optical system. The implementation of the controls scheme in the laboratory experiment is done using Matlab/Simulink for controller design and code generation the code is implemented real-time on a VME based computer system. Closed loop piston control, which utilizes a four-bin sensing scheme, of an actuated mirror to 25 nm RMS mirror motion has been demonstrated. Additionally, autonomous capture and phasing of three segmented primaries has been demonstrated. The technique for the phasing capture involves real-time implementation of image processing techniques to measure the white light fringe visibility in the far field.

  6. Ground demonstration of an optical control system for a space-based sparse aperture telescope

    NASA Astrophysics Data System (ADS)

    De Young, David B.; Dillow, James; Corcoran, Stephen; Andrews, Edwina V.; Yellowhair, Julius; Devries, Kevin

    1998-09-01

    SVS has recently completed a phase II small business innovative research (SBIR) project called Low Cost Space Imager. As part of the SBIR project, a sparse aperture telescope design concept was developed. This design includes an optical control system capable of correcting the primary segments to within 38 nm piston and 17 nrad tilt as required by the optical tolerance analysis. The optical system utilizes a common secondary and primaries arranged in a Golay-6 configuration. The primaries are spherical, which eliminates the need for translation and rotation control. A laboratory experiment to validate the controls concept has ben completed. This experiment culminated in the demonstration of autonomous capture, alignment, and phasing of an optical system with a three segment primary to tolerances consistent with the space optical system. The implementation of the controls scheme in the laboratory experiment is done using Matlab/Simulink for controller design and code generation. The code is implemented real- time on a VME based computer system. Closed loop piston control, which utilizes a four-bin sensing scheme, of an actuated mirror to 25 nm RMS mirror motion has been demonstrated. Additionally, autonomous capture and phasing of three segmented primaries has been demonstrated. The technique for the phasing capture involves real-time implementation of image processing techniques to measure the white light fringe visibility in the far field.

  7. A Novel Lateral Deployment Mechanism for Segmented Mirror/Solar Panel of Space Telescope

    NASA Astrophysics Data System (ADS)

    Thesiya, Dignesh; Srinivas, A. R.; Shukla, Piyush

    2015-09-01

    Space telescopes require large aperture primary mirrors to capture High Definition (HD) ground image while orbiting around the Earth. Fairing Volume of launch vehicles is limited and thus the size of monolithic mirror is limited to fairing size and solar panels are arranged within a petal formation in order to provide a greater power to volume ratio. This generates need for deployable mirrors for space use. This brings out a method for designing new deployment mechanism for segmented mirror. Details of mechanism folding strategy, design of components, FE simulations, realization and Lab model validation results are discussed in order to demonstrate the design using prototype.

  8. The Solar Optical Telescope for the Hinode Mission: An Overview

    NASA Astrophysics Data System (ADS)

    Tsuneta, S.; Ichimoto, K.; Katsukawa, Y.; Nagata, S.; Otsubo, M.; Shimizu, T.; Suematsu, Y.; Nakagiri, M.; Noguchi, M.; Tarbell, T.; Title, A.; Shine, R.; Rosenberg, W.; Hoffmann, C.; Jurcevich, B.; Kushner, G.; Levay, M.; Lites, B.; Elmore, D.; Matsushita, T.; Kawaguchi, N.; Saito, H.; Mikami, I.; Hill, L. D.; Owens, J. K.

    2008-06-01

    The Solar Optical Telescope (SOT) aboard the Hinode satellite (formerly called Solar-B) consists of the Optical Telescope Assembly (OTA) and the Focal Plane Package (FPP). The OTA is a 50-cm diffraction-limited Gregorian telescope, and the FPP includes the narrowband filtergraph (NFI) and the broadband filtergraph (BFI), plus the Stokes Spectro-Polarimeter (SP). The SOT provides unprecedented high-resolution photometric and vector magnetic images of the photosphere and chromosphere with a very stable point spread function and is equipped with an image-stabilization system with performance better than 0.01 arcsec rms. Together with the other two instruments on Hinode (the X-Ray Telescope (XRT) and the EUV Imaging Spectrometer (EIS)), the SOT is poised to address many fundamental questions about solar magnetohydrodynamics. This paper provides an overview; the details of the instrument are presented in a series of companion papers.

  9. Defining A Risk Analysis Strategy for Exo-Earth Yields from a Future Large Aperture UVOIR Space Telescope

    NASA Astrophysics Data System (ADS)

    Mandell, Avi; Stark, Christopher C.; Roberge, Aki; Domagal-Goldman, Shawn; Stapelfeldt, Karl R.; Robinson, Tyler

    2015-01-01

    The discovery and characterization of Earth-like planets around Sun-like stars using high-contrast imaging is a critical science metric for constraining the requirements on the next-generation large UVOIR space telescope. The dominant driver for the observatory architecture, cost and schedule is the telescope aperture size. Therefore it is important to provide as much constraint as possible on the required aperture size early in the design and planning process.An estimate of the detection yield for Earth-like planets can be calculated using a Monte Carlo simulation of a design reference mission (DRM), allowing the exploration of a variety of mission design and astrophysical parameters. We have developed such a code (Stark et al. 2014); it optimizes the target list and exposure times to maximize mission yield for a specific set of mission parameters. However, many of the important astrophysical quantities and future technical capabilities that feed into these parameters are not well constrained. This leads to a large uncertainty in the final mission architecture needed to achieve a specific exo-Earth yield.In this presentation we discuss the various physical and technological parameters that go into the DRM simulations, and the associated uncertainties based on the current state of research. We then present a strategy for a three-tiered risk assessment using these uncertainties, and conclude with a discussion of the current range in telescope aperture size associated with each risk level.

  10. Receiver for solar energy collector having improved aperture aspect

    DOEpatents

    McIntire, William R.

    1984-01-01

    A secondary concentrator for use in receiver systems for linear focusing primary concentrators is provided with reflector wings at each end. The wings increase the capture of light rays reflected from areas adjacent the rim of a primary concentrator, increasing the apparent aperture size of the absorber as viewed from the rim of the primary concentrator. The length, tilt, and curvature of the wing reflectors can be adjusted to provide an absorber having a desired aperture aspect.

  11. Development of new solar radio telescope in NICT

    NASA Astrophysics Data System (ADS)

    Kubo, Yuki; Watari, Shinichi; Ishii, Mamoru; Ishibashi, Hiromitsu; Iwai, Kazumasa

    Solar radio burst is one of the most important events for not only space weather forecasting but also investigating high-energy phenomena in solar corona. The GHz solar radio waves are synchrotron radiation emitted by high energy electrons at lower corona. On the other hand, the MHz solar radio bursts, especially type II and III bursts, are radiated via mode conversion of Langmuir waves excited by high energy electrons. These high energy electrons are accelerated at reconnection regions in solar flare and shock waves in solar corona. Therefore, MHz and GHz solar radio waves are closely related each other through the accelerated high energy electrons. So, wide frequency range (MHz to GHz) radio wave observations with high time resolution are required to comprehensively understand high energy phenomena in solar corona. We have been operating solar radio spectrograph called HiRAS for over twenty years in Hiraiso Solar Observatory, National Institute of Information and Communications Technology (NICT), but the system has been decrepit and radio wave environment in Hiraiso is getting worse. So, we have developed a new solar radio telescope in Yamagawa radio observation facility, NICT. The frequency range and time resolution in the system is 70MHz to 9.0GHz and 8 msec. In this presentation, we introduce status in progress for our new solar radio telescope.

  12. Daniel K. Inouye Solar Telescope (DKIST) Critical Science Plan

    NASA Astrophysics Data System (ADS)

    Rast, Mark

    2015-08-01

    The Daniel K. Inouye Solar Telescope (DKIST), formerly the Advanced Technology Solar Telescope (ATST), is under construction on Haleakala, Maui HI, with expected instrument integration in 2018 and start of operations during the summer of 2019. In preparation, the National Solar Observatory (NSO) is working with the Science Working Group to formulate a critical science plan for early operations and is calling for community involvement in all stages of its development. The first step in this process is the definition of a set of critical science themes and, under each of these, use-cases that outline the scientific motivation along with the instrument suite and high level observing strategies to be employed. The use-cases will later be refined into observing proposals, which will guide the development of efficient operations tools and procedures and provide the framework for some of the first science observations to be made with the telescope. A web interface has been established to facilitate community engagement.

  13. The James Webb Space Telescope: Solar System Science

    NASA Astrophysics Data System (ADS)

    Hines, Dean C.; Hammel, H. B.; Lunine, J. I.; Milam, S. N.; Kalirai, J. S.; Sonneborn, G.

    2013-01-01

    The James Webb Space Telescope (JWST) is poised to revolutionize many areas of astrophysical research including Solar System Science. Scheduled for launch in 2018, JWST is ~100 times more powerful than the Hubble and Spitzer observatories. It has greater sensitivity, higher spatial resolution in the infrared, and significantly higher spectral resolution in the mid infrared. Imaging and spectroscopy (both long-slit and integral-field) will be available across the entire 0.6 - 28.5 micron wavelength range. Herein, we discuss the capabilities of the four science instruments with a focus on Solar System Science, including instrument modes that enable observations over the huge range of brightness presented by objects within the Solar System. The telescope is being built by Northrop Grumman Aerospace Systems for NASA, ESA, and CSA. JWST development is led by NASA's Goddard Space Flight Center. The Space Telescope Science Institute (STScI) is the Science and Operations Center (S&OC) for JWST.

  14. Daniel K. Inouye Solar Telescope systems engineering update

    NASA Astrophysics Data System (ADS)

    Craig, Simon; Hansen, Eric; Hubbard, Robert P.; Kneale, Ruth

    2014-08-01

    The Daniel K. Inouye Solar Telescope (DKIST), formerly the Advanced Technology Solar Telescope (ATST), has been in its construction phase since 2010, anticipating the onset of integration, test, and commissioning (IT and C) phase late in 2016, and the commencement of science verification in early 2019. In this paper we describe the role of Systems Engineering during these final phases of the project, and present some of the tools, techniques, and methods in use for these purposes. The paper concludes with a brief discussion of lessons learned so far including things we might do differently next time.

  15. BAT Slew Survey (BATSS): Slew Data Analysis for the Swift-BAT Coded Aperture Imaging Telescope

    NASA Astrophysics Data System (ADS)

    Copete, Antonio Julio

    The BAT Slew Survey (BATSS) is the first wide-field survey of the hard X-ray sky (15--150 keV) with a slewing coded aperture imaging telescope. Its fine time resolution, high sensitivity and large sky coverage make it particularly well-suited for detections of transient sources with variability timescales in the ˜1 sec--1 hour range, such as Gamma-Ray Bursts (GRBs), flaring stars and Blazars. As implemented, BATSS observations are found to be consistently more sensitive than their BAT pointing-mode counterparts, by an average of 20% over the 10 sec--3 ksec exposure range, due to intrinsic systematic differences between them. The survey's motivation, development and implementation are presented, including a description of the software and hardware infrastructure that made this effort possible. The analysis of BATSS science data concentrates on the results of the 4.8-year BATSS GRB survey, beginning with the discovery of GRB 070326 during its preliminary testing phase. A total of nineteen (19) GRBs were detected exclusively in BATSS slews over this period, making it the largest contribution to the Swift GRB catalog from all ground-based analysis. The timing and spectral properties of prompt emission from BATSS GRBs reveal their consistency with Swift long GRBs (L-GRBs), though with instances of GRBs with unusually soft spectra or X-Ray Flashes (XRFs), GRBs near the faint end of the fluence distribution accessible to Swift -BAT, and a probable short GRB with extended emission, all uncommon traits within the general Swift GRB population. In addition, the BATSS overall detection rate of 0.49 GRBs/day of instrument time is a significant increase (45%) above the BAT pointing detection rate. This result was confirmed by a GRB detection simulation model, which further showed the increased sky coverage of slews to be the dominant effect in enhancing GRB detection probabilities. A review of lessons learned is included, with specific proposals to broaden both the number and range of astrophysical sources found in future enhancements. The BATSS survey results provide solid empirical evidence in support of an all-slewing hard X-ray survey mission, a prospect that may be realized with the launch of the proposed MIRAX-HXI mission in 2017.

  16. Design and analysis of the aperture shield assembly for space solar receiver

    SciTech Connect

    Strumpf, H.J.; Trinh, T.; Westelaken, W.; Krystkowiak, C.; Avanessian, V.; Kerslake, T.W.

    1997-12-31

    A joint US/Russia program has been conducted to design, develop, fabricate, launch, and operate the world`s first space solar dynamic power system on the Russian Space Station Mir. The goal of the program was to demonstrate and confirm that solar dynamic power systems are viable for future space applications such as the International Space Station (ISS). The major components of the system include a solar receiver, a closed Brayton cycle power conversion unit, a power conditioning and control unit, a solar concentrator, a radiator, a thermal control system, and a Space Shuttle carrier. Unfortunately, the mission was demanifested from the ISS Phase 1 Space Shuttle Program in 1996. However, NASA Lewis is proposing to use the fabricated flight hardware as part of an all-American flight demonstration on the ISS in 2002. The present paper concerns the design and analysis of the solar receiver aperture shield assembly. The aperture shield assembly comprises the front face of the cylindrical receiver and is located at the focal plane of the solar concentrator. The aperture shield assembly is a critical component that protects the solar receiver structure from highly concentrated solar fluxes during concentrator off-pointing events. A full-size aperture shield assembly was fabricated. This unit was essentially identical to the flight configuration, with the exception of materials substitution. In addition, a thermal shock test aperture shield assembly was fabricated. This test article utilized the flight materials and was used for high-flux testing in the solar simulator test rig at NASA Lewis. This testing is described in a companion paper.

  17. Design and Analysis of the Aperture Shield Assembly for a Space Solar Receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, Hal J.; Trinh, Tuan; Westelaken, William; Krystkowiak, Christopher; Avanessian, Vahe; Kerslake, Thomas W.

    1997-01-01

    A joint U.S./Russia program has been conducted to design, develop, fabricate, launch, and operate the world's first space solar dynamic power system on the Russian Space Station Mir. The goal of the program was to demonstrate and confirm that solar dynamic power systems are viable for future space applications such as the International Space Station (ISS). The major components of the system include a solar receiver, a closed Brayton cycle power conversion unit, a power conditioning and control unit, a solar concentrator, a radiator, a thermal control system, and a Space Shuttle carrier. Unfortunately, the mission was demanifested from the ISS Phase 1 Space Shuttle Program in 1996. However, NASA Lewis is proposing to use the fabricated flight hardware as part of an all-American flight demonstration on the ISS in 2002. The present paper concerns the design and analysis of the solar receiver aperture shield assembly. The aperture shield assembly comprises the front face of the cylindrical receiver and is located at the focal plane of the solar concentrator. The aperture shield assembly is a critical component that protects the solar receiver structure from highly concentrated solar fluxes during concentrator off-pointing events. A full-size aperture shield assembly was fabricated. This unit was essentially identical to the flight configuration, with the exception of materials substitution. In addition, a thermal shock test aperture shield assembly was fabricated. This test article utilized the flight materials and was used for high-flux testing in the solar simulator test rig at NASA Lewis. This testing is described in a companion paper.

  18. STATISTICAL DISTRIBUTION OF SIZE AND LIFETIME OF BRIGHT POINTS OBSERVED WITH THE NEW SOLAR TELESCOPE

    SciTech Connect

    Abramenko, Valentyna; Yurchyshyn, Vasyl; Goode, Philip; Kilcik, Ali

    2010-12-10

    We present results of 2 hr non-interrupted observations of solar granulation obtained under excellent seeing conditions with the largest aperture ground-based solar telescope-the New Solar Telescope (NST)-of Big Bear Solar Observatory. Observations were performed with adaptive optics correction using a broadband TiO filter in the 705.7 nm spectral line with a time cadence of 10 s and a pixel size of 0.''0375. Photospheric bright points (BPs) were detected and tracked. We find that the BPs detected in NST images are cospatial with those visible in Hinode/SOT G-band images. In cases where Hinode/SOT detects one large BP, NST detects several separated BPs. Extended filigree features are clearly fragmented into separate BPs in NST images. The distribution function of BP sizes extends to the diffraction limit of NST (77 km) without saturation and corresponds to a log-normal distribution. The lifetime distribution function follows a log-normal approximation for all BPs with lifetime exceeding 100 s. A majority of BPs are transient events reflecting the strong dynamics of the quiet Sun: 98.6% of BPs live less than 120 s. The longest registered lifetime was 44 minutes. The size and maximum intensity of BPs were found to be proportional to their lifetimes.

  19. A Simulation Research on the Solar Hard X-Ray Imaging Telescope

    NASA Astrophysics Data System (ADS)

    Teng, T.; Wu, J.; Chang, J.

    2011-07-01

    High-energy phenomena always play an important role in solar research field. Observations of hard X-ray/gamma-ray can be divided into images and spectra, both of which give clues to reveal the secret of the energy release of solar flares. Instead of conventional imaging technique using mirrors or lens, which cannot work in energy above a few keV, direct imaging, coded aperture and Fourier transform are used for high-energy imaging. Fourier transform technique stands out because of its high sensitivity and high reliability. It can be implemented in various hardware configurations, among which spatial modulation collimator and rotating modulation collimator are widely used. Modulation collimator type hard X-ray imaging telescope is currently widely used in solar observation. For the possible Chinese solar mission in the near future, we make a design of hard X-ray imaging telescope using the common simulation software, GEANT4. The results are closer to the fact compared with the traditional geometric algorithm. An executable design is also proposed at last.

  20. Adaptive optics system for the new Swedish solar telescope

    NASA Astrophysics Data System (ADS)

    Scharmer, Goran B.; Dettori, Peter M.; Lofdahl, Mats G.; Shand, Mark

    2003-02-01

    The 1-meter Swedish solar telescope is a new solar telescope that was put in operation on the island of La Palma in the Canary Islands at the end of May 2002. The goal of this telescope is to reach its diffraction limited resolution of 0.1 arcsec in blue light. This has already been achieved by use of a low-order adaptive optics (AO)system. This paper describes the AO system initially developed for the former 50-cm Swedish Vacuum Solar Telescope (SVST) and further improved for the new telescope. Both systems use a combination of bimorph modal mirrors and Shack-Hartmann wavefront sensors. Unique to these systems are that they rely on a single workstation or a PC to do all the computations required to extract and pre-process the images, measure their positions using cross correlation techniques and for controlling the deformable mirror. This is in the present system possible by using the PERR instruction available on Compaq's Alpha architecture and in the new system using the PSADDBW instruction, available on Pentium 4 and Athlon processors. We describe both these systems with an emphasis on the performance, the ease of support and upgrades of performance. We also describe the optimization of the electrode geometry for the new 37-electrode bimorph mirror, supplied by AOPTIX Technologies, Inc., for controlling Karhunen--Loeve modes. Expected performance, based on closed-loop simulations, is discussed.

  1. Analysis of fratricide effect observed with GeMS and its relevance for large aperture astronomical telescopes

    NASA Astrophysics Data System (ADS)

    Otarola, Angel; Neichel, Benoit; Wang, Lianqi; Boyer, Corinne; Ellerbroek, Brent; Rigaut, François

    2013-12-01

    Large aperture ground-based telescopes require Adaptive Optics (AO) to correct for the distortions induced by atmospheric turbulence and achieve diffraction limited imaging quality. These AO systems rely on Natural and Laser Guide Stars (NGS and LGS) to provide the information required to measure the wavefront from the astronomical sources under observation. In particular one such LGS method consists in creating an artificial star by means of fluorescence of the sodium atoms at the altitude of the Earth's mesosphere. This is achieved by propagating one or more lasers, at the wavelength of the Na D2a resonance, from the telescope up to the mesosphere. Lasers can be launched from either behind the secondary mirror or from the perimeter of the main aperture. The so-called central- and side-launch systems, respectively. The central-launch system, while helpful to reduce the LGS spot elongation, introduces the so-called "fratricide" effect. This consists of an increase in the photon-noise in the AO Wave Front Sensors (WFS) sub-apertures, with photons that are the result of laser photons back-scattering from atmospheric molecules (Rayleigh scattering) and atmospheric aerosols (dust and/or cirrus clouds ice particles). This affects the performance of the algorithms intended to compute the LGS centroids and subsequently compute and correct the turbulence-induced wavefront distortions. In the frame of the Thirty Meter Telescope (TMT) project and using actual LGS WFS data obtained with the Gemini Multi-Conjugate Adaptive Optics System (Gemini MCAO a.k.a. GeMS), we show results from an analysis of the temporal variability of the observed fratricide effect, as well as comparison of the absolute magnitude of fratricide photon-flux level with simulations using models that account for molecular (Rayleigh) scattering and photons backscattered from cirrus clouds.

  2. Solar System Science with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Norwood, J.; Hammel, H. B.; Milam, S.; Lunine, J. I.; Chanover, N.; Stansberry, J.; Hines, D. C.; Sonneborn, G.; Brown, M. E.; Tiscareno, M. S.

    2013-12-01

    The James Webb Space Telescope (JWST) will succeed the Hubble Space Telescope as NASA's premier space-based platform for observational astronomy. This 6.5-meter telescope, which is optimized for observations in the near and mid infrared, will be equipped with four state-of-the-art imaging, spectroscopic, and coronagraphic instruments. These instruments, along with the telescope's moving target capabilities, will enable the infrared study of solar system objects with unprecedented detail. This poster features highlights for planetary science applications, extracted from a white paper in preparation. We present a number of hypothetical solar system observations as a means of demonstrating potential planetary science observing scenarios; the list of applications discussed here is far from comprehensive. The goal of this poster and the subsequent white paper is to stimulate discussion and encourage participation in JWST planning among members of the planetary science community, and to encourage feedback to the JWST Project on any desired observing capabilities, data products, and analysis procedures that would enhance the use of JWST for solar system studies. The upcoming white paper updates and supersedes the solar system white paper published by the JWST Project in 2010 (Lunine et al., 2010), and is based in part on JWST events held at the 2012 and 2013 DPS meetings, and the 2013 LPSC meeting.

  3. Solar System observations with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Milam, S.; Norwood, J.; Hammel, H.; Stansberry, J.; Lunine, J.; Chanover, N.; Hines, D.; Sonneborn, G.; Tiscareno, M.; Brown, M.; Ferruit, P.

    2014-07-01

    The James Webb Space Telescope (JWST) will succeed the Hubble Space Telescope as NASA's premier space-based platform for observational astronomy. This 6.5-meter telescope, which is optimized for observations in the near and mid infrared, will be equipped with four state-of-the-art instruments, which include imaging, spectroscopy, and coronagraphy. These instruments, along with the telescope's moving target capabilities, will enable the infrared study of solar-system objects with unprecedented detail. This poster features highlights for planetary-science applications, extracted from the recent white paper (Norwood et al., 2014). We present a number of hypothetical solar-system observations as a means of demonstrating potential planetary-science observing scenarios; the list of applications discussed here is far from comprehensive. The goals of this poster and white paper are to stimulate discussion and encourage participation in JWST planning among members of the planetary-science community, and to encourage feedback to the JWST Project on any desired observing capabilities, data products, and analysis procedures that would enhance the use of JWST for solar-system studies. This latest work provides the latest observatory and instrument capabilities and expands upon earlier studies of JWST solar-system opportunities (Lunine et al., 2010).

  4. Protective telescoping shield for solar concentrator

    NASA Technical Reports Server (NTRS)

    Argoud, M. J.; Walker, W. L.; Butler, L. V. (inventors)

    1986-01-01

    An apparatus is described for use with a solar concentrator such as a parabolic dish which concentrates sunlight onto a small opening of a solar receiver, for protecting the receiver in the event of a system failure that could cause concentrated sunlight to damage the receiver. The protective apparatus includes a structure which can be moved to a stowed position where it does not block sunlight, to a deployed position. In this position, the structure forms a tube which substantially completely surrounds an axis connecting the receiver opening to the center of the concentrator at locations between the receiver and the concentrator.

  5. G-133: A soft x ray solar telescope

    NASA Technical Reports Server (NTRS)

    Williams, Memorie K.; Campbell, Branton; Roming, Peter W. A.; Spute, Mark K.; Moody, J. Ward

    1992-01-01

    The GOLDHELOX Project, NASA payload number G-133, is a robotic soft x ray solar telescope designed and built by an organization of undergraduate students. The telescope is designed to observe the sun at a wavelength of 171 to 181 A. Since we require observations free from atmospheric interference, the telescope will be launched in a NASA Get-Away-Special (GAS) canister with a Motorized Door Assembly (MDA). In this paper we primarily discuss the most important elements of the telescope itself. We also elaborate on some of the technical difficulties associated with doing good science in space on a small budget (about $100,000) and mention ways in which controlling the instrument environment has reduced the complexity of the system and thus saved us money.

  6. G-133: A soft X ray solar telescope

    NASA Astrophysics Data System (ADS)

    Williams, Memorie K.; Campbell, Branton; Roming, Peter W. A.; Spute, Mark K.; Moody, J. Ward

    1992-10-01

    The GOLDHELOX Project, NASA payload number G-133, is a robotic soft x ray solar telescope designed and built by an organization of undergraduate students. The telescope is designed to observe the sun at a wavelength of 171 to 181 A. Since we require observations free from atmospheric interference, the telescope will be launched in a NASA Get-Away-Special (GAS) canister with a Motorized Door Assembly (MDA). In this paper we primarily discuss the most important elements of the telescope itself. We also elaborate on some of the technical difficulties associated with doing good science in space on a small budget (about $100,000) and mention ways in which controlling the instrument environment has reduced the complexity of the system and thus saved us money.

  7. A large aperture balloon-borne telescope for a submillimeter wavelength survey of the galactic plane

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Hauser, M. G.; Walser, D. W.; Flanick, A.; Silver, A. D.; Smith, J.; Gezari, D. Y.; Kelsall, T.; Cheung, L. H.; Skillman, T. L., Jr.

    1983-01-01

    A balloon-borne, 1.2 meter Cassegrain telescope with a servo-controlled chopping secondary mirror has been developed and used to survey the Galactic Plane at submillimeter wavelengths. The telescope pointing system uses a gyroscope as the primary stabilization reference and makes use of microprocessors for pointing control, on-board data collection, and telemetry formatting. A description of the telescope, multi-channel liquid-helium-cooled focal plane and the aspect and orientation subsystems are presented.

  8. Signatures of Small-Scale Magnetic Field Emergence as Seen from the New Solar Telescope in Big Bear

    NASA Astrophysics Data System (ADS)

    Yurchyshyn, V.

    2011-12-01

    Increased resolution of solar telescopes allow us to study emerging small-scale magnetic fields in unprecedented detail. First light Hinode magnetograms showed evidence of both horizontal and line-of-sight field being constantly brought to the solar surface by solar convection motion. What are the signatures of these fields in the photosphere, if any? The largest aperture ground-based solar telescope, the New Solar Telescope (NST) of Big Bear Solar Observatory now allows us to address many important issues of coupling between the photosphere and chromosphere by means of simultaneous observations of photospheric granulation with well-resolved bright points (BPs) and associated dynamics in the low chromosphere, as seen in the H-alpha spectral line. Excellent seeing conditions, augmented with an adaptive optics system and speckle-reconstruction applications produce diffraction limited images. We examine NST granulation and Halpha images co-temporal with SDO, Hinode and BBSO/IRIM vector magnetograms. Our main finding is that emerging magnetic flux leaves clear footprint in solar granulation. Moreover, the granulation responds to the emerging flux much earlier that it appears in magnetograms. NST granulation images also reveal that various bright points as well as bright granular lanes may form and evolve within a granule. These newly detected features are believed to be associated with small-scale magnetic fields.

  9. The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol): Instrument and 2010 Science Campaign

    NASA Astrophysics Data System (ADS)

    Gandilo, Natalie; BLAST-Pol Collaboration

    2012-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol) is a 1.8-m telescope that observes polarized dust emission with a resolution of 1'. BLAST-Pol images the sky onto a focal plane that consists of 270 feed-horn coupled bolometers at 250, 350, and 500 microns. In January 2011, BLAST-Pol completed a successful 9.5-day flight over Antarctica. Eight science targets were observed, and a second flight is planned for December 2012. I will give an overview of the instrument performance during the first science campaign and present preliminary maps. BLAST-Pol maps will provide an excellent dataset for studying the role of magnetic fields in star formation.

  10. Telescope beam-profile diagnostics and the solar limb

    SciTech Connect

    Lindsey, C.A.; Roellig, T.L. NASA, Ames Research Center, Moffett Field, CA )

    1991-07-01

    The basic method is described for determining the solar limb brightness profile properly corrected for spurious limb darkening caused by the far wings of the resolving beams encountered in large far-infrared and radio telescopes. When the far wings of the beam can be independently measured this problem is usually amenable to standard deconvolution procedures. Under a broad range of well-defined cases, solutions to the deconvolution problem are unique to within the discrimination provided by the core of the beam profile. The theory is applied to solar limb scans made recently on the James Clerk Maxwell Telscope to show solar limb brightening in 850 micron radiation. 16 refs.

  11. Telescope beam-profile diagnostics and the solar limb

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles A.; Roellig, Thomas L.

    1991-01-01

    The basic method is described for determining the solar limb brightness profile properly corrected for spurious limb darkening caused by the far wings of the resolving beams encountered in large far-infrared and radio telescopes. When the far wings of the beam can be independently measured this problem is usually amenable to standard deconvolution procedures. Under a broad range of well-defined cases, solutions to the deconvolution problem are unique to within the discrimination provided by the core of the beam profile. The theory is applied to solar limb scans made recently on the James Clerk Maxwell Telscope to show solar limb brightening in 850 micron radiation.

  12. Investigation of small solar system objects with the space telescope

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1979-01-01

    The application of the space telescope (ST) to study small objects in the solar system in order to understand the birth and the early evolution of the solar system is discussed. The upper size limit of the small bodies is defined as approximately 5000 km and includes planetary satellites, planetary rings, asteroids, and comets.The use of the astronomical instruments aboard the ST, such as the faint object camera, ultraviolet and infrared spectrometers, and spectrophotometers, to study the small solar system objects is discussed.

  13. The science case and data processing strategy for the Thinned Aperture Light Collector (TALC): a project for a 20m far-infrared space telescope

    NASA Astrophysics Data System (ADS)

    Sauvage, Marc; Chanial, Pierre; Durand, Gilles A.; Rodriguez, Louis R.; Starck, Jean-Luc; Ronayette, Samuel; Aussel, Hervé; Minier, Vincent; Motte, Frédérique; Pantin, Eric J.; Sureau, Florent; Terrisse, Robin

    2014-08-01

    The future of far-infrared observations rests on our capacity to reach sub-arcsecond angular resolution around 100 μm, in order to achieve a significant advance with respect to our current capabilities. Furthermore, by reaching this angular resolution we can bridge the gap between capacities offered by the JWST in the near infrared and those allowed by ALMA in the submillimeter, and thus benefit from similar resolving capacities over the whole wavelength range where interstellar dust radiates and where key atomic and molecular transitions are found. In an accompanying paper,1 we present a concept of a deployable annular telescope, named TALC for Thinned Aperture Light Collector, reaching 20m in diameter. Being annular, this telescope features a main beam width equivalent to that of a 27m telescope, i.e. an angular resolution of 0.92" at 100 μm. In this paper we focus on the science case of such a telescope as well on the aspects of unconventional data processing that come with this unconventional optical configuration. The principal science cases of TALC revolve around its imaging capacities, that allow resolving the Kuiper belt in extra-solar planetary systems, or the filamentary scale in star forming clouds all the way to the Galactic Center, or the Narrow Line Region in Active Galactic Nuclei of the Local Group, or breaking the confusion limit to resolve the Cosmic Infrared Background. Equipping this telescope with detectors capable of imaging polarimetry offers as well the extremely interesting perspective to study the influence of the magnetic field in structuring the interstellar medium. We will then present simulations of the optical performance of such a telescope. The main feature of an annular telescope is the small amount of energy contained in the main beam, around 30% for the studied configuration, and the presence of bright diffraction rings. Using simulated point spread functions for realistic broad-band filters, we study the observing performance of TALC in typical situations, i.e a field of point sources, and fields with emission power at every physical scales, taken to represent an extragalactic deep field observation and an interstellar medium observation. We investigate different inversion techniques to try and recover the information present in the input field. We show that techniques combining a forward modeling of the observation process and a reconstruction algorithm exploiting the concept of sparsity (i.e. related to the more general field of compressed sensing) represent a promising avenue to reach the angular resolution promised by the main beam of TALC.

  14. High-Flux, High-Temperature Thermal Vacuum Qualification Testing of a Solar Receiver Aperture Shield

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Mason, Lee S.; Strumpf, Hal J.

    1997-01-01

    As part of the International Space Station (ISS) Phase 1 program, NASA Lewis Research Center (LERC) and the Russian Space Agency (RSA) teamed together to design, build and flight test the world's first orbital Solar Dynamic Power System (SDPS) on the Russian space station Mir. The Solar Dynamic Flight Demonstration (SDFD) program was to operate a nominal 2 kWe SDPS on Mir for a period up to 1-year starting in late 1997. Unfortunately, the SDFD mission was demanifested from the ISS phase 1 shuttle program in early 1996. However, substantial flight hardware and prototypical flight hardware was built including a heat receiver and aperture shield. The aperture shield comprises the front face of the cylindrical cavity heat receiver and is located at the focal plane of the solar concentrator. It is constructed of a stainless steel plate with a 1-m outside diameter, a 0.24-m inside diameter and covered with high-temperature, refractory metal Multi-Foil Insulation (MFI). The aperture shield must minimize heat loss from the receiver cavity, provide a stiff, high strength structure to accommodate shuttle launch loads and protect receiver structures from highly concentrated solar fluxes during concentrator off-pointing events. To satisfy Mir operational safety protocols, the aperture shield was required to accommodate direct impingement of the intensely concentrated solar image for a 1-hour period. To verify thermal-structural durability under the anticipated high-flux, high-temperature loading, an aperture shield test article was constructed and underwent a series of two tests in a large thermal vacuum chamber configured with a reflective, point-focus solar concentrator and a solar simulator. The test article was positioned near the focal plane and exposed to concentrated solar flux for a period of 1-hour. In the first test, a near equilibrium temperature of 1862 K was attained in the center of the shield hot spot. In the second test, with increased incident flux, a near equilibrium temperature of 2072 K was achieved. The aperture shield sustained no visible damage as a result of the exposures. This paper describes the aperture shield thermal-vacuum qualification test program including the test article, test facility, procedures, data collection, test success criteria, results and conclusions.

  15. High-flux, high-temperature thermal vacuum qualification testing of a solar receiver aperture shield

    SciTech Connect

    Kerslake, T.W.; Mason, L.S.; Strumpf, H.J.

    1997-12-31

    As part of the International Space Station (ISS) Phase 1 program, NASA Lewis Research Center (LeRC) and the Russian Space Agency (RSA) teamed together to design, build and flight test the world`s first orbital Solar Dynamic Power System (SDPS) on the Russian space station Mir. The Solar Dynamic Flight Demonstration (SDFD) program was to operate a nominal 2 kWe SDPS on Mir for a period up to 1-year starting in late 1997. Unfortunately, the SDFD mission was demanifested from the ISS Phase 1 shuttle program in early 1996. However, substantial flight hardware and prototypical flight hardware was built including a heat receiver and aperture shield. The aperture shield comprises the front face of the cylindrical cavity heat receiver and is located at the focal plane of the solar concentrator. It is constructed of a stainless steel plate with a 1-m outside diameter, a 0.24-m inside diameter and covered with high-temperature, refractory metal multi-foil insulation (MFI). The aperture shield must minimize heat loss from the receiver cavity, provide a stiff, high strength structure to accommodate shuttle launch loads and protect receiver structures from highly concentrated solar fluxes during concentrator off-pointing events. To satisfy Mir operational safety protocols, the aperture shield was required to accommodate direct impingement of the intensely concentrated solar image for a 1-hour period. To verify thermal-structural durability under the anticipated high-flux, high-temperature loading, an aperture shield test article was constructed and underwent a series of two tests in a large thermal vacuum chamber configured with a reflective, point-focus solar concentrator and a solar simulator. The test article was positioned near the focal plane and exposed to concentrated solar flux for a period of 1-hour. In the first test, a near equilibrium temperature of 1862 K was attained in the center of the shield hot spot. In the second test, with increased incident flux, a near equilibrium temperature of 2072 K was achieved. The aperture shield sustained no visible damage as a result of the exposures. This paper describes the aperture shield thermal-vacuum qualification test program including the test article, test facility, procedures, data collection, test success criteria, results and conclusions.

  16. Solar Hα and white light telescope at Hvar Observatory

    NASA Astrophysics Data System (ADS)

    Čalogović, J.; Dumbović, M.; Novak, N.; Vršnak, B.; Brajša, R.; Pötzi, W.; Hirtenfellner-Polanec, W.; Veronig, A.; Hanslmeier$, A.; Klvaňa, M.; Ambrož, P.

    Recently, the double solar telescope at Hvar Observatory was equipped with the fourth generation of acquisition hardware and software. It provides a valuable instrument to study rapid changes of chromospheric and photospheric features in great detail. The telescope consists of two Carl Zeiss refractors (photosphere d=217mm, chromosphere d=130mm) mounted as one unit on a German parallax mounting. Using a field of view of about 7 and 11 arcmin, it aims to produce high-resolution high-cadence imaging of active regions on the Sun. New Pulnix TM-4200GE 12-bit CCD cameras allow to obtain time series with a cadence up to 30 images per minute.

  17. Coded-aperture gamma-ray telescope - Principles and application to the SIGMA gamma-ray-astronomy project

    NASA Astrophysics Data System (ADS)

    Roques, J.-P.

    The design of a coded aperture and deconvolution/image-reconstruction software for the NaI-crystal/photomultiplier 100-300-keV gamma-ray imaging telescope SIGMA (Satellite d'Imagerie Gamma Montesur Ariane), a satellite observatory being developed by CNES, is presented, and the results of simulations and laboratory tests are summarized. The mathematical principles of coded apertures are reviewed; a technique for designing optimal imaging optics is proposed; the image-reconstruction problem is examined with a focus on the effect of partially coded sources; the SIGMA project is briefly characterized; and the test results are presented in graphs, tables, and an image of a simulated source. Spatial resolution of 1-3 mm and energy resolution compatible with spectroscopic studies are predicted for a 15-mm-thick tungsten coded aperture comprising 29 x 31 elements and situated 2.5 m from the position detector. The software developed permits correction for pointing errors of + or - 30 arcmin on all three axes and real-time deconvolution.

  18. Telescope in a bottle: a novel approach to upgrading a 32-in.-aperture classical Cassegrainian telescope for range instrumentation with IR sensors

    NASA Astrophysics Data System (ADS)

    Houston, Joseph B.

    2002-09-01

    The title for this paper derives from the method selected for upgrading an older telescope which needed to meet current range instrumentation requirements in the infrared portion of the optical spectrum. A major constraint imposed on the project at its outset was the need to keep the older telescope tube, tracking mount and mobile platform at its home base in Florida. In contrast to the traditional way of building telescopes by first designing the optical system and then designing the housing and mount, this upgrade began with fitting a new structure within the confines of the existing housing while increasing the usable aperture from a 29.5 inch diameter Classical Cassegrainian design to a 32 inch aperture system. This new structure evolved from an improved design approach including the use of low thermal coefficient of expansion materials, special baffles and modern alignment techniques. The tube which was to serve as the bottle, was stripped of its optical components while a completely new internal structure was fabricated independently at a facility in California. The redesign and fabrication process began with a search for the original optical design data and a shopping list of parts to be either modified or redesigned to fit the existing light path through a donut ring which incorporates the telescope's trunnion axis, to a second folding mirror thus enabling an infrared camera to be focused along an overhead track parallel to the telescope's optical axis. All of the original optics were reassembled and potted into new mounts. The secondary mirror was placed into a large ball-knuckle assembly which insured rapid and precise alignment. During the process of building the independent structure, an installation kit or erector set was created. This erector set included special tooling for attaching a large headring, all four metering rods, baffles and adapters as well as the primary mirror retaining ring, inside the original tube. All hardware was shipped to the field site in Florida where final assembly took place using only heavy lifting equipment and a minimum of inexpensive alignment devices.

  19. Software design for a balloon-borne solar telescope

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Wang, Jianing

    2003-02-01

    This paper introduces our control software design for a tracing system of precise pointing on a balloon-borne telescope to observe the active details on the solar surface. The telescope is an equatorial one with 80 cm in diameter. Borne by balloon, it works at 30 km above the sea level so as to get rid of the image disturbance due to atmosphere. The system contains three parts: basket control, telescope control and tip-tilt control. For telescope control, the crude sensors for pointing detection are two rotating transformers, while the fine sensors two linear CCDs which produce the error signals of pointing. An inserted-type industry-control computer PC104 completes the position close-loop and then drives the servo amplifiers to carry out pointing, searching and tracing automatically. Due to the fact that the position control loop is closed with an improved digital PID arithmetic, the adjustment of the telescope may respond rapidly, therefore the telescope can precisely follow the Sun on the balloon. Simulation test shows that the tracing accuracy may reach as high as 4" (RMS).

  20. Solar System Science with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Hammel, Heidi B.; Norwood, J.; Chanover, N.; Hines, D. C.; Stansberry, J.; Lunine, J. I.; Tiscareno, M. S.; Milam, S. N.; Sonneborn, G.; Brown, M.

    2013-10-01

    The James Webb Space Telescope (JWST) will succeed the Hubble Space Telescope as NASA’s premier space-based platform for observational astronomy. This 6.5-meter telescope, which is optimized for observations in the near and mid infrared, will be equipped with four state-of-the-art imaging, spectroscopic, and coronagraphic instruments. These instruments, along with the telescope’s moving target capabilities, will enable the infrared study of solar system objects with unprecedented detail (see companion presentation by Sonneborn et al.). This poster features highlights for planetary science applications, extracted from a white paper in preparation. We present a number of hypothetical solar system observations as a means of demonstrating potential planetary science observing scenarios; the list of applications discussed here is far from comprehensive. The goal of this poster and the subsequent white paper is to stimulate discussion and encourage participation in JWST planning among members of the planetary science community, and to encourage feedback to the JWST Project on any desired observing capabilities, data products, and analysis procedures that would enhance the use of JWST for solar system studies. The upcoming white paper updates and supersedes the solar system white paper published by the JWST Project in 2010 (Lunine et al., 2010), and is based in part on JWST events held at the 2012 DPS, the 2013 LPSC meeting, and this DPS (JWST Town Hall, Thursday, 10 October 2013, 12-1 pm).

  1. Solar tests of aperture plate materials for solar thermal dish collectors

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1984-01-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the sun, motion of the concentrator may stop. As the sun moves relative to the earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fail apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  2. Solar tests of aperture plate materials for solar thermal dish collectors

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1984-01-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the sun, motion of the concentrator may stop. As the sun moves relative to the earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluoroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fall apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  3. Solar Tests of Aperture Plate Materials for Solar Thermal Dish Collectors

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1984-01-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the Sun, motion of the concentrator may stop. As the Sun moves relative to the Earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluoroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fall apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  4. The research on direct drives control system in the large aperture telescope

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Zhang, Zhenchao; Wang, Daxing

    2010-07-01

    A 30m giant telescope project, Chinese Future Giant Telescope (CFGT), has been proposed by Chinese astronomers. At present, a series of key techniques are being developed. This paper explores a method to control direct drive servo motor in giant telescope application, which is based on a segmented Surface-mounted Permanent Magnet Synchronous Motor (SMPMSM). The losses of SMPMSM and the method of reducing the losses are discussed in this paper. Phase-controlled rectification circuit is chosen to regulate rectified voltage according to the telescope status. Such design can decrease the losses of the motor to some extent. In the control system Space-vector PWM (SVPWM) algorithm acts as a control algorithm and three-phase voltage source inverter circuit acts as drive circuit. This project is subsidized by Chinese National Natural Science Funds (10833004).

  5. Research of active panel technology for large aperture millimeter-wave/sub-millimeter-wave telescope

    NASA Astrophysics Data System (ADS)

    Wu, Xuhao; Cui, Xiangqun

    2010-05-01

    As Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) project was completed successfully, indicating the key technology of active optics has been mastered by the Chinese astronomical community, experts of Nanjing Institute of Astronomical Optics and Technology (NIAOT), builders of this project, started to consider how to use the technology developed in large optical telescope such as LAMOST to improve the performance of millimeterwave / sub-millimeter-wave telescope. In order to do more research work about active optics of millimeter submillimeter band and improve the performance of Delingha 13.7m millimeter-wave telescope, researchers of NIAOT intend to upgrade the reflect panel accuracy of this telescope. This paper will introduce the preliminary work of the accuracy-upgrading task, numerical simulation of the 13.7m telescope. In this presentation, the primary reflector finite element model (FEM) construction, gravity and thermal deformation, and modal analyze are described. The result shows that the gravity and thermal distortion of the reflector are contributed mostly by the back-structure and the active support for the panels is very necessary to restrain this kind of distortion.

  6. Facility level thermal systems for the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Phelps, LeEllen; Murga, Gaizka; Fraser, Mark; Climent, Tània

    2012-09-01

    The management and control of the local aero-thermal environment is critical for success of the Advanced Technology Solar Telescope (ATST). In addition to minimizing disturbances to local seeing, the facility thermal systems must meet stringent energy efficiency requirements to minimize impact on the surrounding environment and meet federal requirements along with operational budgetary constraints. This paper describes the major facility thermal equipment and systems to be implemented along with associated energy management features. The systems presented include the central plant, the climate control systems for the computer room and coudé laboratory, the carousel cooling system which actively controls the surface temperature of the rotating telescope enclosure, and the systems used for active and passive ventilation of the telescope chamber.

  7. Solar System Observations with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre

    2016-02-01

    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  8. The Solar-A soft X-ray telescope experiment

    NASA Technical Reports Server (NTRS)

    Acton, L.; Bruner, M.; Brown, W.; Lemen, J.; Hirayama, T.

    1988-01-01

    The Japanese Solar-A mission for the study of high energy solar physics is timed to observe the sun during the next activity maximum. This small spacecraft includes a carefully coordinated complement of instruments for flare studies. In particular, the soft X-ray telescope (SXT) will provide X-ray images of flares with higher sensitivity and time resolution than have been available before. This paper describes the scientific capabilities of the SXT and illustrates its application to the study of an impulsive compact flare.

  9. The Lyman-alpha Imager onboard Solar Polar Orbit Telescope

    NASA Astrophysics Data System (ADS)

    Li, Baoquan; Li, Haitao; Zhou, Sizhong; Jiang, Bo

    2013-12-01

    Solar Polar ORbit Telescope (SPORT) was originally proposed in 2004 by the National Space Science Center, Chinese Academy of Sciences, which is currently being under background engineering study phase in China. SPORT will carry a suite of remote-sensing and in-situ instruments to observe coronal mass ejections (CMEs), solar high-latitude magnetism, and the fast solar wind from a polar orbit around the Sun. The Lyman-alpha Imager (LMI) is one of the key remotesensing instruments onboard SPORT with 45arcmin FOV, 2000mm effective focal length and 1.4arcsec/pixel spatial resolution . The size of LMI is φ150×1000mm, and the weight is less than10kg, including the 7kg telescope tube and 3kg electronic box. There are three 121.6nm filters used in the LMI optical path, so the 98% spectral purity image of 121.6nm can be achieved. The 121.6nm solar Lyman-alpha line is produced in the chromosphere and very sensitive to plasma temperature, plasma velocity and magnetism variation in the chromosphere. Solar Lyman-alpha disk image is an ideal tracker for corona magnetism variation.

  10. The Advanced Technology Solar Telescope: design and early construction

    NASA Astrophysics Data System (ADS)

    McMullin, Joseph P.; Rimmele, Thomas R.; Keil, Stephen L.; Warner, Mark; Barden, Samuel; Bulau, Scott; Craig, Simon; Goodrich, Bret; Hansen, Eric; Hegwer, Steve; Hubbard, Robert; McBride, William; Shimko, Steve; Wöger, Friedrich; Ditsler, Jennifer

    2012-09-01

    The National Solar Observatory’s (NSO) Advanced Technology Solar Telescope (ATST) is the first large U.S. solar telescope accessible to the worldwide solar physics community to be constructed in more than 30 years. The 4-meter diameter facility will operate over a broad wavelength range (0.35 to 28 μm ), employing adaptive optics systems to achieve diffraction limited imaging and resolve features approximately 20 km on the Sun; the key observational parameters (collecting area, spatial resolution, spectral coverage, polarization accuracy, low scattered light) enable resolution of the theoretically-predicted, fine-scale magnetic features and their dynamics which modulate the radiative output of the sun and drive the release of magnetic energy from the Sun’s atmosphere in the form of flares and coronal mass ejections. In 2010, the ATST received a significant fraction of its funding for construction. In the subsequent two years, the project has hired staff and opened an office on Maui. A number of large industrial contracts have been placed throughout the world to complete the detailed designs and begin constructing the major telescope subsystems. These contracts have included the site development, AandE designs, mirrors, polishing, optic support assemblies, telescope mount and coudé rotator structures, enclosure, thermal and mechanical systems, and high-level software and controls. In addition, design development work on the instrument suite has undergone significant progress; this has included the completion of preliminary design reviews (PDR) for all five facility instruments. Permitting required for physically starting construction on the mountaintop of Haleakalā, Maui has also progressed. This paper will review the ATST goals and specifications, describe each of the major subsystems under construction, and review the contracts and lessons learned during the contracting and early construction phases. Schedules for site construction, key factory testing of major subsystems, and integration, test and commissioning activities will also be discussed.

  11. Capabilities of the Thirty-Meter Telescope (TMT) for Solar System Astronomy

    NASA Astrophysics Data System (ADS)

    Otarola, Angel; Dumas, Christophe; Meech, Karen; Sekiguchi, Tomohiko; Skidmore, Warren; Tian, Feng; Travouillon, Tony; Wong, Michael H.; Ellerbroek, Brent; Simard, Luc

    2015-11-01

    The TMT will consist of a 30-m filled-aperture segmented primary mirror and will include non-sidereal rate tracking capabilities for observing Solar System objects. Its sensitivity will be 14 times larger than that of 8-m class telescopes for seeing-limited observations -up to 200 times larger for background limited adaptive optics (AO) observations- and will allow high angular/spatial resolution with diffraction-limited capability in the near infrared. AO guiding will accommodate faint, small angular size solar system objects to serve as natural guide stars for non-sidereal observations. For Kuiper belt objects (KBOs), on-instrument wavefront sensors can crawl the field-of-view to look for background natural stars that can be used for tip/tilt correction. We will describe the main characteristics of the Thirty Meter Telescope, its first light instrumentation suite, and the most relevant science-driven requirements for its design, emphasizing the strengths of the TMT for Solar System astronomical research. Some real-case scenarios of sensitivities for solar system targets will be presented for the first-light instruments.Complementary information about TMT, and the opportunities it offers for planetary science research, will be presented at this meeting by Dumas et al., and at the TMT Solar System Town Hall event on Tuesday.The international TMT partnership includes Canada, China, India, Japan, Caltech, the University of California, and Funding is also provided by the Gordon and Betty Moore Foundation. AURA is an Associate Member of TMT on behalf of the US national community. Through a cooperative agreement with the NSF, TMT and a US TMT Science Working Group are developing a model for potential US national partnership in the TMT.

  12. Measurement of polarization assemblies for the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Schubert, William H.; Petrak, Erika; Baur, Thomas G.

    2015-03-01

    We present here methodology and instrumentation for the precise measurement of retardance and optic axis orientation of retarder assemblies for the Daniel K. Inouye Solar Telescope. This solar telescope will perform broadband polarimetry of the sun. Each Meadowlark assembly is made up of three compound zero order retarders that must have a retardance variation of less than 6.33 nanometers across the greater than 110 millimeter clear aperture. The retardation of each component was measured using a combination of spectral transmission scans and ellipsometry, with test wavelengths of less than a 0.45 nanometer bandwidths and yielding a standard deviation in measurements of less than 0.001 waves. A technique for the measurement of the near zero window (Infrasil and CaF2) retardance is shown, in addition to retardance measurements of the component waveplates. An average retardance of 0.63 nm for CaF2 and 0.28 nm for Infrasil was found. Finally, a technique for determining the optic axis tilt of each crystal waveplate using laser ellipsometry is discussed.

  13. Construction status of the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    McMullin, Joseph P.; Rimmele, Thomas R.; Martínez Pillet, Valentin; Berger, Thomas E.; Casini, Roberto; Craig, Simon C.; Elmore, David F.; Goodrich, Bret D.; Hegwer, Steve L.; Hubbard, Robert P.; Johansson, Erik M.; Kuhn, Jeffrey R.; Lin, Haosheng; McVeigh, William; Schmidt, Wolfgang; Shimko, Steve; Tritschler, Alexandra; Warner, Mark; Wöger, Friedrich

    2014-07-01

    The Daniel K. Inouye Solar Telescope (DKIST, renamed in December 2013 from the Advanced Technology Solar Telescope) will be the largest solar facility built when it begins operations in 2019. Designed and developed to meet the needs of critical high resolution and high sensitivity spectral and polarimetric observations of the Sun, the observatory will enable key research for the study of solar magnetism and its influence on the solar wind, flares, coronal mass ejections and solar irradiance variations. The 4-meter class facility will operate over a broad wavelength range (0.38 to 28 microns, initially 0.38 to 5 microns), using a state-of-the-art adaptive optics system to provide diffraction-limited imaging and the ability to resolve features approximately 25 km on the Sun. Five first-light instruments will be available at the start of operations: Visible Broadband Imager (VBI; National Solar Observatory), Visible SpectroPolarimeter (ViSP; NCAR High Altitude Observatory), Visible Tunable Filter (VTF; Kiepenheuer Institut für Sonnenphysik), Diffraction Limited Near InfraRed SpectroPolarimeter (DL-NIRSP; University of Hawai'i, Institute for Astronomy) and the Cryogenic Near InfraRed SpectroPolarimeter (Cryo-NIRSP; University of Hawai'i, Institute for Astronomy). As of mid-2014, the key subsystems have been designed and fabrication is well underway, including the site construction, which began in December 2012. We provide an update on the development of the facilities both on site at the Haleakalā Observatories on Maui and the development of components around the world. We present the overall construction and integration schedule leading to the handover to operations in mid 2019. In addition, we outline the evolving challenges being met by the project, spanning the full spectrum of issues covering technical, fiscal, and geographical, that are specific to this project, though with clear counterparts to other large astronomical construction projects.

  14. On the co-alignment of solar telescopes. A new approach to solar pointing

    NASA Astrophysics Data System (ADS)

    Staiger, J.

    2013-06-01

    Helioseismological measurements require long observing times and thus may be adversely affected by lateral image drifts as caused by pointing instabilities. At the Vacuum Tower Telescope VTT, Tenerife we have recorded drift values of up to 5" per hour under unstable thermal conditions (dome opening, strong day-to-day thermal gradients). Typically drifts of 0.5" - 1.0" per hour may be encountered under more favorable conditions. Past experience has shown that most high-resolution solar telescopes may be affected by this problem to some degree. This inherent shortcoming of solar pointing is caused by the fact that the guiding loop can be closed only within the guiding beam but not within the telescope's main beam. We have developed a new approach to this problem. We correlate continuum brightness patterns observed from within the telescope main beam with patterns originating from a full disk telescope. We show that brightness patterns of sufficient size are unique with respect to solar location at any instant of time and may serve as a location identifier. We make use of the fact that averaged location information of solar structures is invariant with respect to telescope resolution. We have carried out tests at the VTT together with SDO. We have used SDO as a full disk reference. We were able to reduce lateral image drifts by an order of magnitude.

  15. The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry-BLASTPol: performance and results from the 2012 Antarctic flight

    NASA Astrophysics Data System (ADS)

    Galitzki, N.; Ade, P. A. R.; Angilè, F. E.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Gandilo, N. N.; Klein, J.; Korotkov, A. L.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Nutter, D.; Pascale, E.; Poidevin, F.; Savini, G.; Scott, D.; Shariff, J. A.; Soler, J. D.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.

    2014-07-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) is a suborbital mapping experiment, designed to study the role played by magnetic fields in the star formation process. BLASTPol observes polarized light using a total power instrument, photolithographic polarizing grids, and an achromatic half-wave plate to modulate the polarization signal. During its second flight from Antarctica in December 2012, BLASTPol made degree scale maps of linearly polarized dust emission from molecular clouds in three wavebands, centered at 250, 350, and 500 μm. The instrumental performance was an improvement over the 2010 BLASTPol ight, with decreased systematics resulting in a higher number of confirmed polarization vectors. The resultant dataset allows BLASTPol to trace magnetic fields in star-forming regions at scales ranging from cores to entire molecular cloud complexes.

  16. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers, Technology Developments, and Synergies with Other Future Facilities

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Stahl, H. Philip; Mountain, Matt; Hyde, Tupper; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Tumlinson, Jason; Soummer, Remi

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers that define the main performance requirements for ATLAST (8 to 16 milliarcsec angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We will also discuss the synergy between ATLAST and other anticipated future facilities (e.g., TMT, EELT, ALMA) and the priorities for technology development that will enable the construction for a cost that is comparable to current generation observatory-class space missions.

  17. The Use of Small Telescopes for Spectral Imaging of Low-light-level Extended Atmospheres in the Solar System

    NASA Astrophysics Data System (ADS)

    Baumgardner, Jeffrey; Mendillo, Michael

    2009-09-01

    A 10-cm aperture telescope equipped with coronagraphic capabilities, using occulting masks of various size and material, has been developed to obtain low-light-level, wide-angle (~7o FOV), narrow-band filtered images of sodium exospheres at Io, the Moon and Mercury. Here we describe new instrument capabilities and recent findings about the extraordinarily long tails of sodium gas discovered in the lunar and hermean exospheres. Spatial and temporal variability patterns captured in such images can be used to study changes in surface sputtering processes and radiation pressure acceleration effects in the inner solar system.

  18. The soft x ray telescope for Solar-A

    NASA Technical Reports Server (NTRS)

    Brown, W. A.; Acton, L. W.; Bruner, M. E.; Lemen, J. R.; Strong, K. T.

    1989-01-01

    The Solar-A satellite being prepared by the Institute for Sapce and Astronautical Sciences (ISAS) in Japan is dedicated to high energy observations of solar flares. The Soft X Ray Telescope (SXT) is being prepared to provide filtered images in the 2 to 60 A interval. The flight model is now undergoing tests in the 1000 foot tunnel at MSFC. Launch will be in September 1991. Earlier resolution and efficiency tests on the grazing incidence mirror have established its performance in soft x rays. The one-piece, two mirror grazing incidence telescope is supported in a strain free mount separated from the focal plane assembly by a carbon-epoxy metering tube whose windings and filler are chosen to minimize thermal and hygroscopic effects. The CCD detector images both the x ray and the concentric visible light aspect telescope. Optical filters provide images at 4308 and 4700 A. The SXT will be capable of producing over 8000 of the smallest partial frame images per day, or fewer but larger images, up to 1024 x 1024 pixel images. Image sequence with two or more of the five x ray analysis filters, with automatic exposure compensation to optimize the charge collection by the CCD detector, will be used to provide plasma diagnostics. Calculations using a differential emission measure code were used to optimize filter selection over the range of emission measure variations and to avoid redundancy, but the filters were chosen primarily to give ratios that are monotonic in plasma temperature.

  19. Site-seeing measurements for the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Berkefeld, Th.; Bettonvil, F.; Collados, M.; Lpez, R.; Martn, Y.; Peate, J.; Prez, A.; Scharmer, G. B.; Sliepen, G.; Soltau, D.; Waldmann, T. A.; van Werkhoven, T.

    2010-07-01

    Seeing measurements are crucial for the optimum design of (multi-conjugate) adaptive optics systems operating at solar telescopes. For the design study of the 4-meter European Solar Telescope, to be located in the Canary Islands, several instruments have been constructed and operated, at the Observatorio del Roque de los Muchachos (La Palma) and at the Observatorio del Teide (Tenerife), to measure the properties of the ground layer and medium-high altitude turbulence. Several units of short (42.34 cm) and two long (323.06 cm) scintillometer bars are, or are to be, installed at both observatories. In addition to them, two wide-field wavefront sensors will be attached to the optical beams of the Swedish tower, on La Palma, and of the German VTT, on Tenerife, simultaneously used with the normal operation of the telescopes. These wavefront sensors are of Shack-Hartmann type with ~1 arcminute field of view. In this contribution, the instruments setup and their performance are described.

  20. Hubble Space Telescope solar cell module thermal cycle test

    NASA Technical Reports Server (NTRS)

    Douglas, Alexander; Edge, Ted; Willowby, Douglas; Gerlach, Lothar

    1992-01-01

    The Hubble Space Telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low Earth orbit (LEO) thermal cycles between approximately +100 and -100 C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules. The thermal cycle test was interrupted after 2,577 cycles, and a 'cold-roll' test was performed on one of the modules in order to evaluate the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit. A posttest static shadow test was performed on one of the modules in order to analyze temperature gradients across the module. Finally, current in-flight electrical performance data from the actual HST flight solar array will be tested.

  1. Compton Telescope with a Coded Aperture Mask: Imaging with the INTEGRAL/IBIS Compton Mode

    NASA Astrophysics Data System (ADS)

    Forot, M.; Laurent, P.; Lebrun, F.; Limousin, O.

    2007-10-01

    Compton telescopes provide good sensitivity over a wide field of view in the difficult energy range from a few hundred keV to several MeV. Their angular resolution is, however, poor and strongly energy dependent. We present a novel experimental design associating a coded mask and a Compton detection unit to overcome these pitfalls. It maintains the Compton performance while improving the angular resolution by at least an order of magnitude in the field of view subtended by the mask. This improvement is obtained at the expense only of efficiency, which is reduced by a factor of 2. In addition, the background correction benefits from the coded-mask technique, that is, simultaneous measurement of the source and background. This design is implemented and tested using the IBIS telescope on board the INTEGRAL satellite to construct images with 12' resolution over a 2929 field of view in the energy range from 200 keV to a few MeV. The details of the analysis method and the resulting telescope performance, particularly in terms of sensitivity, are presented.

  2. Extra Solar Planetary Imaging Coronagraph and Science Requirements for the James Webb Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2004-01-01

    1) Extra solar planetary imaging coronagraph. Direct detection and characterization of Jovian planets, and other gas giants, in orbit around nearby stars is a necessary precursor to Terrestrial Planet Finder 0 in order to estimate the probability of Terrestrial planets in our stellar neighborhood. Ground based indirect methods are biased towards large close in Jovian planets in solar systems unlikely io harbor Earthlike planets. Thus to estimate the relative abundances of terrestrial planets and to determine optimal observing strategies for TPF a pathfinder mission would be desired. The Extra-Solar Planetary Imaging Coronagraph (EPIC) is such a pathfinder mission. Upto 83 stellar systems are accessible with a 1.5 meter unobscured telescope and coronagraph combination located at the Earth-Sun L2 point. Incorporating radiometric and angular resolution considerations show that Jovians could be directly detected (5 sigma) in the 0.5 - 1.0 micron band outside of an inner working distance of 5/D with integration times of -10 - 100 hours per observation. The primary considerations for a planet imager are optical wavefront quality due to manufacturing, alignment, structural and thermal considerations. pointing stability and control, and manufacturability of coronagraphic masks and stops to increase the planetary-to- stellar contrast and mitigate against straylight. Previously proposed coronagraphic concepts are driven to extreme tolerances. however. we have developed and studied a mission, telescope and coronagraphic detection concept, which is achievable in the time frame of a Discovery class NASA mission. 2) Science requirements for the James Webb Space Telescope observatory. The James Webb Space Observatory (JWST) is an infrared observatory, which will be launched in 201 1 to an orbit at L2. JWST is a segmented, 18 mirror segment telescope with a diameter of 6.5 meters, and a clear aperture of 25 mA2. The telescope is designed to conduct imaging and spectroscopic observations from 0.6-27 microns. The primary mirror find and understand predicted first light objects, observe galaxies back to their earliest precursors so that we can understand their growth and evolution, unravel the birth and early evolution of stars and planetary systems, and study planetary systems and the origins of life. In this paper we discuss the science goals for JWST in the context of the performance requirements they levy on the observatory.

  3. NIRIS: The Second Generation Near-Infrared Imaging Spectro-polarimeter for the 1.6 Meter New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Cao, W.; Goode, P. R.; Ahn, K.; Gorceix, N.; Schmidt, W.; Lin, H.

    2012-12-01

    The largest aperture solar telescope, the 1.6 m New Solar Telescope (NST) has been installed at the Big Bear Solar Observatory (BBSO). To take full advantage of the NST's greatest potential, we are upgrading the routinely operational InfraRed Imaging Magnetograph (IRIM) to its second generation, the NIRIS (Near-InfraRed Imaging Spectropolarimeter). NIRIS will offer unprecedented high resolution spectroscopic and polarimetric imaging data of the solar atmosphere from the deepest photosphere through the base of the corona. With the aid of the BBSO adaptive optics (AO) system, the spatial resolution will be close to the diffraction limit of the NST. The spectroscopic cadence will reach one second, while polarimetric measurements, including Stokes I, Q, U, V profiles, remain at a better than 10 s cadence. Polarization sensitivity is expected to be reach ˜ 10-4Ic. NIRIS will cover a broad spectral range from 1.0 to 1.7μm, with particular attention to two unique spectral lines: the Fe I 1565 nm doublet has already proven to be the most sensitive to Zeeman effect for probing the magnetic field in the deepest photosphere; the He I 1083 nm multiplet is one of the best currently available diagnostic of upper chromospheric magnetic fields that allows one to map the vector field at the base of the corona. NIRIS will be built on dual Fabry-Pérot Interferometers (FPIs), each of which has an aperture of 100 mm. The larger aperture of FPIs allows the available field-of-view up to one and half minutes with a spectral power of ˜ 105.

  4. Athermalization design of collimating lens system for space solar telescope

    NASA Astrophysics Data System (ADS)

    Tao, Shuaiyang; Yang, Jianfeng; Ma, Xiaolong

    2015-11-01

    The Solar Magnetic Field Telescope (MFT) , which imaged directly towards the sun , received about 1000W heat load irradiating into the telescope system, resulting in changes of ambient temperature. According to the principles of athermal design, a collimating lens system was designed, allowing MFT to work properly between a wider temperature range . The collimating lens system with F number of 3.55, worked in the visible spectrum, had the effective focal length of 156.4mm and the full field of view of 2.8 arc min ×2.8 arc min. Through the passive optical athermal method , the optimized lens works at ambient temperature ranging from -40° to 60°.The radii of RMS are all smaller than the pixel pitch. The image quality approaches to diffraction limit and the MTF value is over 0.75, which satisfies the system specifications.

  5. Fibered nulling telescope for extra-solar coronagraphy.

    PubMed

    Hénault, François

    2009-04-01

    A family of fibered nulling telescopes is described, based on the joint use of several recent suggested or demonstrated techniques, namely, pupil densification, multiaxial recombination and single-mode fiber modal filtering, and the use of a fully symmetric beam splitter arrangement. The concept seems appropriate for the realization of a spaceborne nulling telescope, searching for Jupiter-like extra-solar planets and a precursor of future missions, such as Darwin or terrestrial planet finder interferometer (TPF-I). However, it is generally not possible to satisfy at the same time two major requirements, being the depth and size of the central nulling area, and the global throughput for the observed planet. PMID:19340231

  6. High resolution solar observations: the hydrogen-alpha telescopes on Skylab.

    PubMed

    Markey, J F; Austin, R R

    1977-04-01

    Two hydrogen-alpha telescopes were flown as part of the solar astronomy instruments on Skylab. These telescopes provided high resolution video imagery to the crew for both solar surveillance and the pointing of the entire instrument cluster. A film camera on one telescope provided photographs for a postmission pointing record. This paper details the design of the telescopes and their operating characteristics and presents an evaluation of their performance during the mission. PMID:20168612

  7. Analysis of Tracking Measuring Method of Focus Cabin of Five-hundred-meter Aperture Spherical radio Telescope(FAST)

    NASA Astrophysics Data System (ADS)

    Yuan, Hui; Zhu, Lichun

    2015-08-01

    FAST (Five-hundred-meter Aperture Spherical radio Telescope) project is one of the Chinese mega-Science Projects to build the largest single dish radio telescope in the world. FAST has three outstanding innovation aspects: in the karst depression which is large to host the 500-meter telescope, an active main reflector correcting for spherical aberration on the ground to achieve a full polarization is being built, the light-weight feed focus cabin in which a parallel robot as a secondary adjustable system to move with high precision is driven by cables and servomechanism plus. The part of main reflector which is illuminated by the feed is continually adjusted to fit the paraboloid of revolution in real time when tracking the radio source. How to get high precise real-time feedback data of moving focus cabin’s position when tracking the source is one of the crucial problems for the astronomical observation.At present 24 steady basis pillars for measurement whose position coordinates are already known, have been built in the construction field of FAST. Total stations will be installed on one of those pillars, and prisms will be installed on focus cabin. The purpose of this study was to assess the accuracy and reliability of two measuring method: the space distance intersection calculation method and polar measuring method. The space distance intersection calculation method is only using multiple measuring distances between three pillars and prism and known coordinates of pillars to calculate the prism’s coordinates, the polar measurement is using the measuring distance and angles to get the prism’s coordinate.

  8. The Daniel K. Inouye Solar Telescope: A Project Update.

    NASA Astrophysics Data System (ADS)

    Rimmele, T.; Berger, T.; McMullin, J.; Warner, M.; Casinsi, R.; Kuhn, J.; Lin, H.; Woeger, F.; Schmidt, W.; Tritschler, A.; Inouye, Daniel K.; Solar Telescope Team

    2014-09-01

    The Advanced Technology Solar Telescope will be the largest solar facility ever built. Designed and developed to meet the needs of critical high resolution and high sensitivity spectral and polarimetric observations of the sun, this facility will support key experiments for the study of solar magnetism and its influence on the solar wind, flares, coronal mass ejections and solar irradiance variability. The 4-meter diameter facility will operate over a broad wavelength range (0.35 to 28 microns), using state-of-the-art adaptive optics systems to provide diffraction limited imaging and the ability to resolve features approximately 20 km on the Sun. Five first light instruments will be available at the start of operations. Key subsystems have been designed and fabrication is well underway, including the site construction, which began in December 2012. We provide an update on the development of the facilities both on site at the Haleakala Observatories in Maui and the development of components around the world. We present the overall construction and integration schedule leading to the start of operations in mid-2019 and touch on operations aspects.

  9. Engineering Specification for Large-aperture UVO Space Telescopes Derived from Science Requirements

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Mark; Smith, W. Scott

    2013-01-01

    The Advance Mirror Technology Development (AMTD) project is a three year effort initiated in FY12 to mature by at least a half TRL step six critical technologies required to enable 4 to 8 meter UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. A key accomplishment is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints.

  10. The design, construction and testing of the optics for a 147-cm-aperture telescope

    NASA Technical Reports Server (NTRS)

    Buchroeder, R. A.; Elmore, L. H.; Shack, R. V.; Slater, P. N.

    1972-01-01

    Geodetic optics research for the Air Force Cambridge Research Laboratories (AFCRL) is described. The work consisted mainly of the fabrication of the optical components for a telescope with a 152-cm-diam (60-in.) primary mirror masked down to 147-cm-diam for use by the AFCRL for a lunar ranging experiment. Among the achievements of this contract were the following: completion of the primary and secondary mirrors for a high-quality 147-cm-diam telescope system in eight months from the start of edging the primary; manufacture and testing of a unique center mount for the primary according to an AFCRL design that allowed for a thin-edged and therefore less-massive mirror; and development of a quantitative analysis of the wire test for calculating the departure of the mirror figure from the design figure quickly and accurately after each polishing step. This analysis method in conjunction with a knowledge of polishing rates for given weights and diameters of tools, mirror, and polishing materials should considerably reduce the polishing time required for future large mirrors.

  11. Goldhelox: a soft x-ray solar telescope.

    PubMed

    Durfee, D S; Moody, J W; Brady, K D; Brown, C; Campbell, B; Durfee, M K; Early, D; Hansen, E; Madsen, D W; Morey, D B; Roming, P W; Savage, M B; Eastman, P F; Jensen, V

    1995-01-01

    The Goldhelox Project is the construction and use of a near-normal incidence soft x-ray robotic solar telescope by undergraduate students at Brigham Young University. Once it is completed and tested, it will be deployed from a Get-Away-Special (GAS) canister in the bay of a space shuttle. It will image the sun at a wavelength of 171-181Å with a time resolution of 1 sec and a spatial resolution of 2.5 arcsec. The observational bandpass was chosen to image x-rays from highly ionized coronal Fe lines. The data will be an aid in better understanding the beginning phases of solar flares and how flaring relates to the physics of the corona-chromosphere transition region. Goldhelox is tentatively scheduled to fly on a space shuttle sometime in 1995 or 1996. This paper outlines the project goals, basic instrument design, and the unique aspects of making this an undergraduate endeavor. PMID:21307474

  12. Observing Solar System Objects with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Issacs, J.; Balzano, V.; Nelan, E.P.; Anandakrishnan, S.; Hammel, H.

    2008-01-01

    The James Webb Space Telescope (JWST) will have the capability to observe Solar System objects having apparent rates of motion up to 30 milliarcseconds/sec. The key science drivers are the study of Kuiper Belt Objects, asteroids, comets, and the outer planets and their moons at near and mid-infrared wavelengths. This poster presents the results from a recent study that defined the conceptual design for a capability for JWST to track and observe moving targets. We illustrate about how guide star acquisition and tracking wi11 be handled while retaining the efficient and flexible execution characteristics of JWST event-driven operations. We also show how the JWST pointing control system can readily support moving target observations. The characteristics of Solar System objects that can be observed by JWST are summarized along with descriptions of the major aspects of moving target science observation planning and on-board event-driven execution.

  13. Science Goals and Development of the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Keil, S. L.; Rimmele, T. R.; Oschmann, J.; Hubbard, R.; Warner, M.; Price, R.; Dalrymple, N.; Atst Team

    The Advanced Technology Solar Telescope (ATST) will perform high-resolution studies of the Sun's magnetic fields needed to understand their role in the fundamental processes responsible for solar variability. The generation of magnetic fields through dynamo processes, the amplification of fields through the interaction with plasma flows, and the destruction of fields remain poorly understood. There is incomplete insight as to what physical mechanisms are responsible for heating the corona, what causes variations in the radiative output of the Sun, and what mechanisms trigger flares and coronal mass ejections. Progress in answering these critical questions requires study of the interaction of the magnetic field and convection with a resolution sufficient to observe scales fundamental to these processes.

  14. The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap

    NASA Technical Reports Server (NTRS)

    Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.; Shaklan, S.; Stahl, P.; Thronson, H.

    2014-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  15. High Resolution Observations of Solar Quiescent Prominences with the Hinode Solar Optical Telescope: an Open Challenge to 21st Century Ground-based Solar Telescopes (Invited)

    NASA Astrophysics Data System (ADS)

    Berger, T. E.

    2009-12-01

    The Solar Optical Telescope (SOT) on the Japanese Hinode satellite is a 0.5-meter diameter Gregorian solar telescope in a 600 km Sun-synchronous orbit. The telescope achieves diffraction-limited imaging with no atmospheric seeing in a wavelength range from 380 nm to 660 nm. Using both the Broadband Filter Imager (BFI) Ca II H-line channel at 389.6 nm and the tunable Narrowband Filter Imager (NFI) H-alpha channel at 656.3 nm we have observed many quiescent solar prominences since the satellite launch in September 2006. The excellent optical quality and low scattering of the SOT telescope combined with the lack of atmospheric scattering and seeing enables us to capture multi-hour diffraction-limited movies of quiescent prominences above the limb that achieve 200 km spatial resolution and 15--30 second temporal resolution. These SOT observations have led to the discovery of new flows in the solar outer atmosphere in the form of buoyant small-scale (2--6 Mm) plumes and large-scale (10--50 Mm) "bubbles" or arches that originate below quiescent prominences and rise with speeds of 10--30 km/sec to heights of 10--30+ Mm above the solar limb. In this talk we review the kinematic properties of these new flows in combination with the long-observed filamentary downflows to show that quisecent prominences are not magnetostatic structures "suspended against gravity" but are rather entirely dynamic structures in which mass is continually drained in the downflows while being resupplied largely by condensation from the coronal cavity above and episodic buoyant flows from below. The Hinode/SOT instrument has definitively shown the value of flying high-resolution visible-light solar telescopes in space by acheiving in its first six months what had been a long-standing goal of ground-based solar prominence research for the past 50 years. However many key quiescent prominence characteristics cannot be measured by the limited instrumentation on the Hinode satellite. Primary among these is vector magnetic field in prominences at high spatial and temporal resolution and the thermodynamic and magnetic characteristics of the new plume and bubble flows. It is hoped that the new generation of adaptive-optics ground-based telescopes such as the 1.6-m NST can make progress in these areas while we await the next solar space telescope missions.

  16. DETECTION OF SMALL-SCALE GRANULAR STRUCTURES IN THE QUIET SUN WITH THE NEW SOLAR TELESCOPE

    SciTech Connect

    Abramenko, V. I.; Yurchyshyn, V. B.; Goode, P. R.; Kitiashvili, I. N.; Kosovichev, A. G.

    2012-09-10

    Results of a statistical analysis of solar granulation are presented. A data set of 36 images of a quiet-Sun area on the solar disk center was used. The data were obtained with the 1.6 m clear aperture New Solar Telescope at Big Bear Solar Observatory and with a broadband filter centered at the TiO (705.7 nm) spectral line. The very high spatial resolution of the data (diffraction limit of 77 km and pixel scale of 0.''0375) augmented by the very high image contrast (15.5% {+-} 0.6%) allowed us to detect for the first time a distinct subpopulation of mini-granular structures. These structures are dominant on spatial scales below 600 km. Their size is distributed as a power law with an index of -1.8 (which is close to the Kolmogorov's -5/3 law) and no predominant scale. The regular granules display a Gaussian (normal) size distribution with a mean diameter of 1050 km. Mini-granular structures contribute significantly to the total granular area. They are predominantly confined to the wide dark lanes between regular granules and often form chains and clusters, but different from magnetic bright points. A multi-fractality test reveals that the structures smaller than 600 km represent a multi-fractal, whereas on larger scales the granulation pattern shows no multi-fractality and can be considered as a Gaussian random field. The origin, properties, and role of the population of mini-granular structures in the solar magnetoconvection are yet to be explored.

  17. Mechanical analysis and thermal calculation in Space Solar Telescope

    NASA Astrophysics Data System (ADS)

    Chen, Zhiping; Chen, Zhiyuan; Yang, Shimo; Shi, Huli

    2004-10-01

    Space frame including satellite platform is the most important structure part in Space Solar Telescope (SST), which is designed to make observations of transient and steady state solar hydrodynamic and magnetohydrodynamic processes. This paper first introduces the space frame, which is not only a crucial linker between the optical and other subsystems but also a mechanical interface for the telescope and launching rocket. It must satisfy the optics with sufficient strength, stiffness, and thermal stability under the space environment and in the launching process. Then the author sets up finite element analysis model by MSC.Patran software and analyzes the mechanical quality under different load cases such as on-ground, during launching and in-orbit. In order to simulate the space environment and evaluate the influence of space heat to the whole space frame, the paper also presents space thermal calculation and analysis. Calculation results show that this space frame can meet the satellite"s requirements in space running. However, the thermal problem is still serious in primary mirror, which needs to be tested and controlled with strict way. Finally, the paper gives conclusions and forward suggestions, which will be applied to further research and fabrication in SST.

  18. Image Stabilization System for Hinode (Solar-B) Solar Optical Telescope

    NASA Astrophysics Data System (ADS)

    Shimizu, T.; Nagata, S.; Tsuneta, S.; Tarbell, T.; Edwards, C.; Shine, R.; Hoffmann, C.; Thomas, E.; Sour, S.; Rehse, R.; Ito, O.; Kashiwagi, Y.; Tabata, M.; Kodeki, K.; Nagase, M.; Matsuzaki, K.; Kobayashi, K.; Ichimoto, K.; Suematsu, Y.

    2008-06-01

    The Hinode Solar Optical Telescope (SOT) is the first space-borne visible-light telescope that enables us to observe magnetic-field dynamics in the solar lower atmosphere with 0.2 0.3 arcsec spatial resolution under extremely stable (seeing-free) conditions. To achieve precise measurements of the polarization with diffraction-limited images, stable pointing of the telescope (<0.09 arcsec, 3 σ) is required for solar images exposed on the focal plane CCD detectors. SOT has an image stabilization system that uses image displacements calculated from correlation tracking of solar granules to control a piezo-driven tip-tilt mirror. The system minimizes the motions of images for frequencies lower than 14 Hz while the satellite and telescope structural design damps microvibration in higher frequency ranges. It has been confirmed from the data taken on orbit that the remaining jitter is less than 0.03 arcsec (3 σ) on the Sun. This excellent performance makes a major contribution to successful precise polarimetric measurements with 0.2 0.3 arcsec resolution.

  19. Reliability models applicable to space telescope solar array assembly system

    NASA Astrophysics Data System (ADS)

    Patil, S. A.

    1986-01-01

    A complex system may consist of a number of subsystems with several components in series, parallel, or combination of both series and parallel. In order to predict how well the system will perform, it is necessary to know the reliabilities of the subsystems and the reliability of the whole system. The objective of the present study is to develop mathematical models of the reliability which are applicable to complex systems. The models are determined by assuming k failures out of n components in a subsystem. By taking k = 1 and k = n, these models reduce to parallel and series models; hence, the models can be specialized to parallel, series combination systems. The models are developed by assuming the failure rates of the components as functions of time and as such, can be applied to processes with or without aging effects. The reliability models are further specialized to Space Telescope Solar Arrray (STSA) System. The STSA consists of 20 identical solar panel assemblies (SPA's). The reliabilities of the SPA's are determined by the reliabilities of solar cell strings, interconnects, and diodes. The estimates of the reliability of the system for one to five years are calculated by using the reliability estimates of solar cells and interconnects given n ESA documents. Aging effects in relation to breaks in interconnects are discussed.

  20. The Solar Optical Telescope on Hinode: Performance and Capabilities

    NASA Astrophysics Data System (ADS)

    Tarbell, Theodore D.; Tsuneta, S.; SOT Team

    2007-05-01

    The Hinode (Solar B) satellite includes the Solar Optical Telescope (SOT) with its 50 cm diameter Optical Telescope Assembly (OTA) and Focal Plane Package (FPP), for near UV and visible observations of the photosphere and chromosphere at very high (diffraction limited) angular resolution. The FPP has a Spectropolarimeter (SP) for precision measurements of photospheric vector magnetic fields over a 160 x 320 arcsecond field of view; a Narrowband Filter Imager (NFI) with a tunable birefringent filter for magnetic, Doppler, and intensity maps over the same field of view; and a Broadband Filter Imager (BFI) for highest resolution images in six wavelengths (G band, Ca II H, continua, etc.) over two thirds of that field of view. A polarization modulator in the telescope allows measurement of Stokes parameters at all wavelengths in the SP and NFI. This poster gives examples of SOT observables from the performance verification and initial observing phases of the mission. The SP routinely collects Stokes profiles with spatial resolution 0.16 arc seconds (pixel) and rms noise less than 0.001. Initially the NFI only made magnetograms in Fe I 6302.5 with rms noise less than 0.002; more recently it has begun to observe the other photospheric and chromospheric lines available. The BFI movies have unprecedented uniformity and stability for such high spatial resolution; cadence can be 4 seconds or less. All images are stabilized to 0.01 arc seconds by a tip tilt mirror and correlation tracker. The process for requesting Hinode observations is described, along with guidelines for SOT observing programs. Starting in May, 2007, the Hinode data policy becomes completely open, with all data available to the community immediately after receipt and reformatting at ISAS. Hinode is an international cooperative mission between JAXA/ISAS of Japan, NASA of the United States, PPARC of the United Kingdom, and ESA.

  1. The Multi-Spectral Solar Telescope Array (MSSTA)

    NASA Technical Reports Server (NTRS)

    Walker, A. B. C., Jr.; Barbee, Troy W., Jr.; Hoover, Richard B.

    1997-01-01

    In 1987, our consortium pioneered the application of normal incidence multilayer X-ray optics to solar physics by obtaining the first high resolution narrow band, "thermally differentiated" images of the corona', using the emissions of the Fe IX/Fe X complex at ((lambda)lambda) approx. 171 A to 175 A, and He II Lyman (beta) at 256 A. Subsequently, we developed a rocket borne solar observatory, the Multi Spectral Solar Telescope Array (MSSTA) that pioneered multi-thermal imaging of the solar atmosphere, using high resolution narrow band X-ray, EUV and FUV optical systems. Analysis of MSSTA observations has resulted in four significant insights into the structure of the solar atmosphere: (1) the diameter of coronal loops is essentially constant along their length; (2) models of the thermal and density structure of polar plumes based on MSSTA observations have been shown to be consistent with the thesis that they are the source of high speed solar wind streams; (3) the magnetic structure of the footpoints of polar plumes is monopolar, and their thermal structure is consistent with the thesis that the chromosphere at their footpoints is heated by conduction from above; (4) coronal bright points are small loops, typically 3,500 - 20,000 km long (5 sec - 30 sec); their footpoints are located at the poles of bipolar magnetic structures that are are distinguished from other network elements by having a brighter Lyman a signature. Loop models derived for 26 bright points are consistent with the thesis that the chromosphere at their footpoints is heated by conduction from the corona.

  2. KAPAO: A Natural Guide Star Adaptive Optics System for Small Aperture Telescopes

    NASA Astrophysics Data System (ADS)

    Severson, Scott A.; Choi, P. I.; Spjut, E.; Contreras, D. S.; Gilbreth, B. N.; McGonigle, L. P.; Morrison, W. A.; Rudy, A. R.; Xue, A.; Baranec, C.; Riddle, R.

    2012-05-01

    We describe KAPAO, our project to develop and deploy a low-cost, remote-access, natural guide star adaptive optics system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. The system will offer simultaneous dual-band, diffraction-limited imaging at visible and near-infrared wavelengths and will deliver an order-of-magnitude improvement in point source sensitivity and angular resolution relative to the current TMO seeing limits. We have adopted off-the-shelf core hardware components to ensure reliability, minimize costs and encourage replication efforts. These components include a MEMS deformable mirror, a Shack-Hartmann wavefront sensor and a piezo-electric tip-tilt mirror. We present: project motivation, goals and milestones; the instrument optical design; the instrument opto-mechanical design and tolerances; and an overview of KAPAO Alpha, our on-the-sky testbed using off-the-shelf optics. Beyond the expanded scientific capabilities enabled by AO-enhanced resolution and sensitivity, the interdisciplinary nature of the instrument development effort provides an exceptional opportunity to train a broad range of undergraduate STEM students in AO technologies and techniques. The breadth of our collaboration, which includes both public (Sonoma State University) and private (Pomona and Harvey Mudd Colleges) undergraduate institutions has enabled us to engage students ranging from physics, astronomy, engineering and computer science in the all stages of this project. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  3. KAPAO-Alpha: An On-The-Sky Testbed for Adaptive Optics on Small Aperture Telescopes

    NASA Astrophysics Data System (ADS)

    Morrison, Will; Choi, P. I.; Severson, S. A.; Spjut, E.; Contreras, D. S.; Gilbreth, B. N.; McGonigle, L. P.; Rudy, A. R.; Xue, A.; Baranec, C.; Riddle, R.

    2012-05-01

    We present initial in-lab and on-sky results of a natural guide star adaptive optics instrument, KAPAO-Alpha, being deployed on Pomona College’s 1-meter telescope at Table Mountain Observatory. The instrument is an engineering prototype designed to help us identify and solve design and integration issues before building KAPAO, a low-cost, dual-band, natural guide star AO system currently in active development and scheduled for first light in 2013. The Alpha system operates at visible wavelengths, employs Shack-Hartmann wavefront sensing, and is assembled entirely from commercially available components that include: off-the-shelf optics, a 140-actuator BMC deformable mirror, a high speed SciMeasure Lil’ Joe camera, and an EMCCD for science image acquisition. Wavefront reconstruction operating at 1-kHz speeds is handled with a consumer-grade computer running custom software adopted from the Robo-AO project. The assembly and integration of the Alpha instrument has been undertaken as a Pomona College undergraduate thesis. As part of the larger KAPAO project, it is supported by the National Science Foundation under Grant No. 0960343.

  4. Solar System Observing with the Space Infrared Telescope Facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Cleve, J. Van; Meadows, V. S.; Stansberry, J.

    2003-01-01

    SIRTF is NASA's Space Infrared Telescope Facility. Currently planned for launch on 15 Apr 2003, it is the final element in NASA's Great Observatories Program. SIRTF has an 85 cm diameter f/12 lightweight beryllium telescope, cooled to lekss than 5.5K. It is diffraction-limited at 6.5 microns, and has wavelengthcoverage from 3-180 microns. Its estimated lifetime (limited by cryogen) is 2.5 years at minimum, with a goal of 5+ years. SIRTF has three instruments, IRAC, IRS, and MIPS. IRAC (InfraRed Array Camera) provides simultaneous images at wavelengths of 3.6, 4.5, 5.8, and 8.0 microns. IRS (InfraRed Spectrograph) has 4 modules providing low-resolution (R=60-120) spectra from 5.3 to 40 microns, high-resolution (R=600) spectra from 10 to 37 microns, and an autonomous target acquisition system (PeakUp) which includes small-field imaging at 15 microns. MIPS (Multiband Imaging Photometer for SIRTF)} does imaging photometry at 24, 70, and 160 m and low-resolution (R=15-25) spectroscopy (SED) between 55 and 96 microns. The SIRTF Guaranteed Time Observers (GTOs) are planning to observe Outer Solar System satellites and planets, extinct comets and low-albedo asteroids, Centaurs and Kuiper Belt Objects, cometary dust trails, and a few active short-period comets. The GTO programs are listed in detail in the SIRTF Reserved Observations Catalog (ROC). We would like to emphasize that there remain many interesting subjects for the General Observers (GO). Proposal success for the planetary observer community in the first SIRTF GO proposal cycle (GO-1) determines expectations for future GO calls and Solar System use of SIRTF, so we would like promote a strong set of planetary GO-1 proposals. Towards that end, we present this poster, and we will convene a Solar System GO workshop 3.5 months after launch.

  5. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    NASA Astrophysics Data System (ADS)

    Matthews, Tristan G.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Chapman, Nicholas L.; Devlin, Mark J.; Fissel, Laura M.; Fukui, Yasuo; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; Klein, Jeffrey; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Netterfield, Calvin B.; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E.; Truch, Matthew D. P.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  6. High-contrast imager for complex aperture telescopes (HiCAT): 3. first lab results with wavefront control

    NASA Astrophysics Data System (ADS)

    N'Diaye, Mamadou; Mazoyer, Johan; Choquet, Élodie; Pueyo, Laurent; Perrin, Marshall D.; Egron, Sylvain; Leboulleux, Lucie; Levecq, Olivier; Carlotti, Alexis; Long, Chris A.; Lajoie, Rachel; Soummer, Rémi

    2015-09-01

    HiCAT is a high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The pupil geometry of such observatories includes primary mirror segmentation, central obstruction, and spider vanes, which make the direct imaging of habitable worlds very challenging. The testbed alignment was completed in the summer of 2014, exceeding specifications with a total wavefront error of 12nm rms over a 18mm pupil. The installation of two deformable mirrors for wavefront control is to be completed in the winter of 2015. In this communication, we report on the first testbed results using a classical Lyot coronagraph. We also present the coronagraph design for HiCAT geometry, based on our recent development of Apodized Pupil Lyot Coronagraph (APLC) with shaped-pupil type optimizations. These new APLC-type solutions using two-dimensional shaped-pupil apodizer render the system quasi-insensitive to jitter and low-order aberrations, while improving the performance in terms of inner working angle, bandpass and contrast over a classical APLC.

  7. BAND-LIMITED CORONAGRAPHS USING A HALFTONE-DOT PROCESS. II. ADVANCES AND LABORATORY RESULTS FOR ARBITRARY TELESCOPE APERTURES

    SciTech Connect

    Martinez, P.; Kasper, M.

    2012-01-01

    The band-limited coronagraph is a nearly ideal concept that theoretically enables perfect cancellation of all the light of an on-axis source. Over the past several years, several prototypes have been developed and tested in the laboratory, and more emphasis is now on developing optimal technologies that can efficiently deliver the expected high-contrast levels of such a concept. Following the development of an early near-IR demonstrator, we present and discuss the results of a second-generation prototype using halftone-dot technology. We report improvement in the accuracy of the control of the local transmission of the manufactured prototype, which was measured to be less than 1%. This advanced H-band band-limited device demonstrated excellent contrast levels in the laboratory, down to {approx}10{sup -6} at farther angular separations than 3{lambda}/D over 24% spectral bandwidth. These performances outperform the ones of our former prototype by more than an order of magnitude and confirm the maturity of the manufacturing process. Current and next-generation high-contrast instruments can directly benefit from such capabilities. In this context, we experimentally examine the ability of the band-limited coronagraph to withstand various complex telescope apertures.

  8. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    SciTech Connect

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles; Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David; Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey; Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B.; Chapin, Edward L.; Fukui, Yasuo; Gundersen, Joshua O.; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Olmi, Luca; and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  9. Investigation of Umbral Dots with the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Ji, Kaifan; Jiang, Xia; Feng, Song; Yang, Yunfei; Deng, Hui; Wang, Feng

    2015-12-01

    Umbral dots (UDs) are small isolated brightenings observed in sunspot umbrae. They are convective phenomena existing inside umbrae. UDs are usually divided into central UDs (CUDs) and peripheral UDs (PUDs) according to their positions inside an umbra. Our purpose is to investigate UD properties and analyze their relationships, and further to find whether or not the properties depend on umbral magnetic field strengths. Thus, we selected high-resolution TiO images of four active regions (ARs) taken under the best seeing conditions with the New Vacuum Solar Telescope in the Fuxian Solar Observatory of the Yunnan Astronomical Observatory, China. The four ARs (NOAA 11598, 11801, 12158, and 12178) include six sunspots. A total of 1220 CUDs and 603 PUDs were identified. Meanwhile, the radial component of the vector magnetic field of the sunspots taken with the Helioseismic and Magnetic Imager on-board the Solar Dynamics Observatory was used to analyze relationships between UD properties and umbral magnetic field strengths. We find that diameters and lifetimes of UDs exhibit an increasing trend with the brightness, but velocities do not. Moreover, diameters, intensities, lifetimes and velocities depend on the surrounding magnetic field. A CUD diameter was found larger, the CUD brighter, its lifetime longer, and its motion slower in a weak umbral magnetic field environment than in a strong one.

  10. Layer-oriented adaptive optics for solar telescopes.

    PubMed

    Kellerer, Aglaé

    2012-08-10

    First multiconjugate adaptive-optical (MCAO) systems are currently being installed on solar telescopes. The aim of these systems is to increase the corrected field of view with respect to conventional adaptive optics. However, this first generation is based on a star-oriented approach, and it is then difficult to increase the size of the field of view beyond 60-80 arc sec in diameter. We propose to implement the layer-oriented approach in solar MCAO systems by use of wide-field Shack-Hartmann wavefront sensors conjugated to the strongest turbulent layers. The wavefront distortions are averaged over a wide field: the signal from distant turbulence is attenuated and the tomographic reconstruction is thus done optically. The system consists of independent correction loops, which only need to account for local turbulence: the subapertures can be enlarged and the correction frequency reduced. Most importantly, a star-oriented MCAO system becomes more complex with increasing field size, while the layer-oriented approach benefits from larger fields and will therefore be an attractive solution for the future generation of solar MCAO systems. PMID:22885589

  11. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  12. First Solar System Results of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    VanCleve, J.; Cruikshank, D. P.; Stansberry, J. A.; Burgdorf, M. J.; Devost, D.; Emery, J. P.; Fazio, G.; Fernandez, Y. R.; Glaccum, W.; Grillmair, C.

    2004-01-01

    The Spitzer Space Telescope, formerly known as SIRTF, is now operational and delivers unprecedented sensitivity for the observation of Solar System targets. Spitzer's capabilities and first general results were presented at the January 2004 AAS meeting. In this poster, we focus on Spitzer's performance for moving targets, and the first Solar System results. Spitzer has three instruments, IRAC, IRS, and MIPS. IRAC (InfraRed Array Camera) provides simultaneous images at wavelengths of 3.6, 4.5, 5.8, and 8.0 microns. IRS (InfraRed Spectrograph) has 4 modules providing low-resolution (R=60-120) spectra from 5.3 to 40 microns, high-resolution (R=600) spectra from 10 to 37 m, and an autonomous target acquisition system (PeakUp) which includes small-field imaging at 15 m. MIPS (Multiband Imaging Photometer for SIRTF) does imaging photometry at 24, 70, and 160 m and low-resolution (R=15-25) spectroscopy (SED) between 55 and 96 microns. Guaranteed Time Observer (GTO) programs include the moons of the outer Solar System, Pluto, Centaurs, Kuiper Belt Objects, and comets

  13. Investigation of Umbral Dots with the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Ji, Kaifan; Jiang, Xia; Feng, Song; Yang, Yunfei; Deng, Hui; Wang, Feng

    2016-02-01

    Umbral dots (UDs) are small isolated brightenings observed in sunspot umbrae. They are convective phenomena existing inside umbrae. UDs are usually divided into central UDs (CUDs) and peripheral UDs (PUDs) according to their positions inside an umbra. Our purpose is to investigate UD properties and analyze their relationships, and further to find whether or not the properties depend on umbral magnetic field strengths. Thus, we selected high-resolution TiO images of four active regions (ARs) taken under the best seeing conditions with the New Vacuum Solar Telescope in the Fuxian Solar Observatory of the Yunnan Astronomical Observatory, China. The four ARs (NOAA 11598, 11801, 12158, and 12178) include six sunspots. A total of 1220 CUDs and 603 PUDs were identified. Meanwhile, the radial component of the vector magnetic field of the sunspots taken with the Helioseismic and Magnetic Imager on-board the Solar Dynamics Observatory was used to analyze relationships between UD properties and umbral magnetic field strengths. We find that diameters and lifetimes of UDs exhibit an increasing trend with the brightness, but velocities do not. Moreover, diameters, intensities, lifetimes and velocities depend on the surrounding magnetic field. A CUD diameter was found larger, the CUD brighter, its lifetime longer, and its motion slower in a weak umbral magnetic field environment than in a strong one.

  14. Electron-Proton and High Energy Telescopes for Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shrinivasrao R.; Grunau, Jan; Boden, Sebastian; Steinhagen, Jan; Martin, Cesar; Wimmer-Schweingruber, Robert F.; Boettcher, Stephan; Rodríguez-Pacheco, Javier; Seimetz, Lars; Schuster, Bjoern; Kulemzin, Alexander; Wetzel, Moritz; Ravanbakhsh, Ali

    2013-04-01

    The Energetic Particle Detector (EPD) suite for ESA's Solar Orbiter will provide key measurements to address particle acceleration at and near the Sun. The EPD suite consists of five sensors (STEIN, SIS, EPT, LET and HET). The University of Kiel in Germany is responsible for the design, development, and build of EPT and HET which are presented here. The Electron Proton Telescope (EPT) is designed to cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. The Solar Orbiter EPT electron measurements from 20 - 400 keV will cover the gap with some overlap between suprathermal electrons measured by STEIN and high energy electrons measured by HET. The proton measurements from 20 -7000 keV will cover the gap between STEIN and LET. The Electron and Proton Telescope relies on the magnet/foil-technique. The High-Energy Telescope (HET) on ESA's Solar Orbiter mission, will measure electrons from 300 keV up to about 30 MeV, protons from 10 -100 MeV, and heavy ions from ~20 to 200 MeV/nuc. Thus, HET covers the energy range which is of specific interest for studies of the space environment and will perform the measurements needed to understand the origin of high-energy events at the Sun which occasionally accelerate particles to such high energies that they can penetrate the Earth's atmosphere and be measured at ground level (ground-level events). These measurement capabilities are reached by a combination of solid-state detectors and a scintillator calorimeter which allows use of the dE/dx vs. total E technique for particle identification and energy measurement. The upper limits on energy listed above refer to particles (ions) stopping in the scintillator and careful modeling of HET properties will allow discrimination of forward/backward penetrating particles in a wider energy range. Here we present the current development status of EPT-HET units focusing on the test and calibration results obtained with the demonstration models and present plans for future activities.

  15. Polarization calibration techniques and scheduling for the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Elmore, David F.

    2015-10-01

    The Daniel K. Inouye Solar Telescope (DKIST), formerly Advanced Technology Solar Telescope when it begins operation in 2019 will be by a significant margin Earth's largest solar research telescope. Science priorities dictate an initial suite of instruments that includes four spectro-polarimeters. Accurate polarization calibration of the individual instruments and of the telescope optics shared by those instruments is of critical importance. The telescope and instruments have been examined end-to-end for sources of polarization calibration error, allowable contributions from each of the sources quantified, and techniques identified for calibrating each of the contributors. Efficient use of telescope observing time leads to a requirement of sharing polarization calibrations of common path telescope components among the spectro-polarimeters and for those calibrations to be repeated only as often as dictated by degradation of optical coatings and instrument reconfigurations. As a consequence the polarization calibration of the DKIST is a facility function that requires facility wide techniques.

  16. Calibration of the Multi-Spectral Solar Telescope Array multilayer mirrors and XUV filters

    NASA Technical Reports Server (NTRS)

    Allen, Maxwell J.; Willis, Thomas D.; Kankelborg, Charles C.; O'Neal, Ray H.; Martinez-Galarce, Dennis S.; Deforest, Craig E.; Jackson, Lisa; Lindblom, Joakim; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.

    1993-01-01

    The Multi-Spectral Solar Telescope Array (MSSTA), a rocket-borne solar observatory, was successfully flown in May, 1991, obtaining solar images in eight XUV and FUV bands with 12 compact multilayer telescopes. Extensive measurements have recently been carried out on the multilayer telescopes and thin film filters at the Stanford Synchrotron Radiation Laboratory. These measurements are the first high spectral resolution calibrations of the MSSTA instruments. Previous measurements and/or calculations of telescope throughputs have been confirmed with greater accuracy. Results are presented on Mo/Si multilayer bandpass changes with time and experimental potassium bromide and tellurium filters.

  17. Deflectometry measurement of Daniel K. Inouye Solar Telescope primary mirror

    NASA Astrophysics Data System (ADS)

    Huang, Run; Su, Peng; Burge, James H.

    2015-08-01

    SCOTS (Software Configurable Optical Test System) is a high-precision slope measurement technique based on deflectometry. It utilizes a well-calibrated commercial LCD screen and a diffraction-limited camera to provide high dynamic range, non-contact and full-field metrology of reflective/refractive optics of high accuracy but low cost. Recently, we applied this metrology method on the fabrication of the primary mirror of Daniel K. Inouye Solar Telescope (DKIST), which is a 4.2 meter off-axis parabolic segment with more than 8 mm peak-to-valley aspheric departure. Sophisticated calibrations and compensations including camera mapping, screen nonlinearity and screen shape deformation are performed to achieve high accuracy measurement results. By measuring the mirror at different orientations, non-symmetrical systematic errors are eliminated. The metrology system also includes dual cameras that provide self- verification test. The measurement results are being used to guide the fabrication process.

  18. Thermal analysis of the main mirror in space solar telescope

    NASA Astrophysics Data System (ADS)

    Li, Rong; Shi, Hu-li; Chen, Zhi-yuan

    2007-12-01

    For the design of a space solar telescope (SST), the large reflect mirror faces to the sun directly, which is in an abominable thermal condition with seriously thermal distortion. In this paper, it sets up the thermal mode and analyzes the temperature field and thermal distortion of the main mirror of SST. Further more, it uses the thermal design software SINDA/G (System Improved Numerical Differencing Analyzer/Gaski) and the finite element analysis software MSC.Patran to set up different models and various temperature distributions of the main mirror. Though comparing with these models, the paraboloid mirror model is confirmed, which becomes a reference to later thermal analysis of the whole SST.

  19. HUBBLE SPACE TELESCOPE SPECTROPHOTOMETRY AND MODELS FOR SOLAR ANALOGS

    SciTech Connect

    Bohlin, R. C.

    2010-04-15

    Absolute flux distributions for seven solar analog stars are measured from 0.3 to 2.5 {mu}m by Hubble Space Telescope (HST) spectrophotometry. In order to predict the longer wavelength mid-IR fluxes that are required for James Webb Space Telescope calibration, the HST spectral energy distributions are fit with Castelli and Kurucz model atmospheres; and the results are compared with fits from the MARCS model grid. The rms residuals in 10 broadband bins are all <0.5% for the best fits from both model grids. However, the fits differ systematically: the MARCS fits are 40-100 K hotter in T {sub eff}, 0.25-0.80 higher in log g, 0.01-0.10 higher in log z, and 0.008-0.021 higher in the reddening E(B - V), probably because their specifications include different metal abundances. Despite these differences in the parameters of the fits, the predicted mid-IR fluxes differ by only {approx}1%; and the modeled flux distributions of these G stars have an estimated ensemble accuracy of 2% out to 30 {mu}m.

  20. Optical control of the Advanced Technology Solar Telescope.

    PubMed

    Upton, Robert

    2006-08-10

    The Advanced Technology Solar Telescope (ATST) is an off-axis Gregorian astronomical telescope design. The ATST is expected to be subject to thermal and gravitational effects that result in misalignments of its mirrors and warping of its primary mirror. These effects require active, closed-loop correction to maintain its as-designed diffraction-limited optical performance. The simulation and modeling of the ATST with a closed-loop correction strategy are presented. The correction strategy is derived from the linear mathematical properties of two Jacobian, or influence, matrices that map the ATST rigid-body (RB) misalignments and primary mirror figure errors to wavefront sensor (WFS) measurements. The two Jacobian matrices also quantify the sensitivities of the ATST to RB and primary mirror figure perturbations. The modeled active correction strategy results in a decrease of the rms wavefront error averaged over the field of view (FOV) from 500 to 19 nm, subject to 10 nm rms WFS noise. This result is obtained utilizing nine WFSs distributed in the FOV with a 300 nm rms astigmatism figure error on the primary mirror. Correction of the ATST RB perturbations is demonstrated for an optimum subset of three WFSs with corrections improving the ATST rms wavefront error from 340 to 17.8 nm. In addition to the active correction of the ATST, an analytically robust sensitivity analysis that can be generally extended to a wider class of optical systems is presented. PMID:16926876

  1. Solar System Studies with the Space Infrared Telescope Facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    SIRTF (Space Infrared Telescope Facility) is the final element in NASA's 'Great Observatories' program. It consists of an 85-cm cryogenically-cooled observatory for infrared astronomy from space. SIRTF is scheduled for launch in late 2001 or early 2002 on a Delta rocket into a heliocentric orbit trailing the Earth. Data from SIRTF will be processed and disseminated to the community through the SIRTF Science Center (SSC) located at the Infrared Processing and Analysis Center (IPAC) at Caltech. Some 80/% of the total observing time (estimated at a minimum of 7500 hours of integration time per year for the mission lifetime of about 4 years) will be available to the scientific community at large through a system of refereed proposals. Three basic instruments are located in the SIRTF focal plane. The Multiband Imaging Photometer (MIPS), the Infrared Array Camera (IRAC), and the Infrared Spectrometer (IRS), taken together, provide imaging and spectroscopy from 3.5 to 160 microns. Among the solar system studies suited to SIRTF are the following: 1) spectroscopy and radiometry of small bodies from the asteroid main belt, through the Trojan clouds, to the Kuiper Disk; 2) dust distribution in the zodiacal cloud and the Earth's heliocentric dust ring; 3) spectroscopy and radiometry of comets; and 4) spectroscopy and radiometry of planets and their satellites. Searches for, and studies of dust disks around other stars, brown dwarfs, and superplanets will also be conducted with SIRTF. The SORTIE web site (http://ssc.ipac.caltech.edu/sirtf) contains important details and documentation on the project, the spacecraft, the telescope, instruments, and observing procedures. A community-wide workshop for solar system studies with SIRTF is in the planning stages by the author and Martha S. Hanner for the summer of 1999.

  2. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-09-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  3. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  4. Overview and Recent Accomplishments of the Advanced Mirror Technology Development (AMTD) for Large Aperture UVOIR Space Telescopes Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Per Astro2010, a new, larger UVO telescope is needed to answer fundamental scientific questions, such as: is there life on Earth-like exoplanets; how galaxies assemble stellar populations; how baryonic matter interacts with intergalactic medium; and how solar systems form and evolve. And, present technology is not mature enough to affordably build and launch any potential UVO concept. Advanced Mirror Technology Development (AMTD) is a funded SAT project. Our objective is to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. We defined and initiated a program to mature 6 key technologies required to fabricate monolithic and segmented space mirrors.

  5. Design Requirements and Component Down Selection Process for an Aperture Masking Instrument at the Magdalena Ridge Observatory 2.4m Telescope

    NASA Astrophysics Data System (ADS)

    Schmidt, Luke M.; Teare, S. W.; Westpfahl, D. J.; Jurgenson, C. A.

    2009-05-01

    The design of a new instrument requires careful consideration of all components to ensure that design specifications are met while staying within the prescribed budget. This poster presents the down selection process for the major components of a new instrument for the Magdalena Ridge Observatory 2.4m telescope. This instrument is designed primarily for aperture masking at optical wavelengths, a technique that converts a single aperture into a multi-aperture Michelson stellar interferometer. With minor modification this instrument can also be used for millimag photometry, millisecond photometry and other high speed imaging techniques. This poster includes the design requirements and decision process for three main components; the instrument structural support required to mount the instrument to the Nasmyth focus of the telescope, the optical system necessary to re-image the primary aperture, filter and mask incoming light and then produce the correct image scale on the CCD, and finally, CCD performance required to take high-frame-rate, low-noise images. This work is supported by LANL-NMT MOU UCDRD funding and the New Mexico Space Grant Consortium.

  6. Next-generation Solar Data and Data Services from the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Berukoff, S. J.; Reardon, K.; Rimmele, T.

    2014-12-01

    The Daniel K. Inouye Solar Telescope (DKIST), when completed in 2019, will be the largest, most capable, solar telescope in the world. Currently under construction on the summit of Haleakal? on Maui, the DKIST will enable foundational insights into the physics of the Sun's photosphere, chromosphere, and corona. Its suite of first-light instruments will produce approximately 25 TB of raw data per day, with occasional bursts of 50TB per day. These high data rates will require a scalable, flexible data and computing architecture that enables and promotes scientific inquiry and discovery. We briefly describe the DKIST data stream and then provide an overview of the proposed data-center architecture and resources that will allow users to fully exploit this world-class facility.

  7. Next-generation solar data and data services from the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Berukoff, S.; Reardon, K.; Rimmele, T.

    2015-09-01

    The Daniel K. Inouye Solar Telescope (DKIST), when completed, will be the largest, most capable solar telescope in the world. Currently under construction on the summit of Haleakala on Maui, the DKIST will enable foundational insights into the physics of the Sun's photosphere, chromosphere, and corona. Its suite of first-light instruments will produce approximately 25TB of raw and processed data per day, with bursts up to 50TB. These data rates will require a scalable, flexible data and computing architecture that enables and promotes inquiry and discovery. We describe the challenges faced by managing DKIST data and provide an overview of the proposed data center architecture and resources that will allow users to fully exploit this unique world-class facility.

  8. The Multi-Spectral Solar Telescope Array: Observations of Loop Structures in the Solar Atmosphere.

    NASA Astrophysics Data System (ADS)

    O'Neal, Ray H., Jr.

    1995-01-01

    The emergence of multilayer coated optics technology has offered solar physics an unprecedented opportunity to obtain images of the corona at spatial resolutions previously unattainable. A previous demonstration of the efficacy of this technique, the Stanford/Marshall Space Flight Center (NASA) Rocket X-ray Spectroheliograph, rendered full disk images of the solar corona between 1 and 2 arc seconds spatial resolution and spanning more than 3 solar radii. Further images were obtained during the 1991 flight of the Multi -Spectral Solar Telescope Array (MSSTA) at comparable or higher resolutions (<=q1 arc second) and spanning a broader range of the Soft X-ray/EUV spectrum. This thesis describes the development of the MSSTA and presents a preliminary analysis of some plasma loops observed in the corona.

  9. The dynamic solar chromosphere: recent advances from high resolution telescopes

    NASA Astrophysics Data System (ADS)

    Tziotziou, Konstantinos; Tsiropoula, Georgia

    This review focuses on the solar chromosphere, a very inhomogeneous and dynamic layer that exhibits phenomena on a large range of spatial and temporal scales. High-resolution observa-tions from existing telescopes (DST, SST, DOT), as well as long-duration observations with Hinode's SOT employing lines such as the Ca II infrared lines, the Ca II HK and above all the Hα line reveal an incredibly rich, dynamic and highly structured environment, both in quiet and active regions. The fine-structure chromosphere, is mainly constituted by fibrilar features that connect various parts of active regions or span across network cell interiors. We discuss this highly dynamical solar chromosphere, especially below the magnetic canopy, which is gov-erned by flows reflecting both the complex geometry and dynamics of the magnetic field and the propagation and dissipation of waves in the different atmospheric layers. A comprehensive view of the fine-structure chromosphere requires deep understanding of the physical processes involved, investigation of the intricate link with structures/processes at lower photospheric lev-els and analysis of its impact on the mass and energy transport to higher atmospheric layers through flows resulting from different physical processes such as magnetic reconnection and waves. Furthermore, we assess the challenges facing theory and numerical modelling which require the inclusion of several physical ingredients, such as non-LTE and three-dimensional numerical simulations.

  10. Future Diagnostic Capabilities: The 4-meter Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Reardon, Kevin; Elmore, David; Woeger, Friedrich; Tritschler, Alexandra; Rimmele, Thomas

    We discuss the observational capabilities of the Daniel K. Inouye Solar Telescope (DKSIT), formerly known as the Advanced Technology Solar Telescope (ATST), currently under construction on Haleakala Mountain on the island of Maui, Hawaii, with first light anticipated in mid-2019. The DKIST will be a 4-meter aperture Gregorian telescope with advanced environmental control and adaptive optics capable of producing diffraction-limited resolution in visible light of 0.03" or about 20 km in the solar photosphere. The first light instrument suite will include the Visible Broadband Imager (VBI), an interference filter-based instrument capable of 30 Hz imaging of photospheric and chromospheric magnetic structures in the 380 to 800 nm wavelength range. All VBI images will be reconstructed in near-real-time using the KISIP speckle reconstruction algorithm adapted to the DKIST optical and AO configuration. The Visible Spectropolarimeter (ViSP) instrument being fabricated by the High Altitude Observatory (HAO) will enable high-precision slit-spectropolarimetery in any three spectral regions from 380 to 900 nm. The ViSP instrument will be the highest precision spectropolarimeter ever produced with a spatial resolution of approximately 40 km at 600 nm and temporal resolution of 10s to achieve 1e-03 polarimetric precision. The Visible Tunable Filter (VTF) instrument under fabrication at the Kiepenheuer Institute for Solar Physics (KIS) is a triple-etalon Fabry-Perot imaging spectropolarimeter instrument capable of diffraction limited measurements of the Fe I 630.2 nm and Ca II 854.2 nm spectral lines for Doppler and magnetic measurements in the photosphere and chromosphere, respectively. The VTF will also enable the highest spatial and temporal resolution observations yet achieved in the H-alpha line for detailed studies of chromospheric dynamics in response to photospheric magnetic drivers. The Diffraction-Limited Near-IR Spectropolarimeter (DL-NiRSP) and the Cryogenic Near-IR Spectropolarimeter (Cryo-NiRSP) instruments, both under fabrication at the University of Hawaii, will enable polarimetric and spectroscopic investigations in the largely unexplored infra-red spectral region. The DL-NiRSP will span 900 nm to 2.5 microns in wavelength and include a novel fiber-optic "Integral Field Unit" (IFU) for true imaging spectropolarimetry in three simultaneous spectral regions over a variable field of view. This instrument will enable revolutionary measurements of prominence magnetic fields and will also, in the wider field mode, enable coronal polarimetric studies. The Cryo-NiRSP instrument spans the 1--5 micron wavelength range and will make near-diffraction limited 0.3" resolution slit-scan measurements of the coronal magnetic field out to 1.3 solar radii with temporal resolution measured in minutes. The DKIST facility will undergo extensive polarimetric calibration to ensure that the ultimate goal of 5e-04 polarimetic precision is obtainable under the best conditions. All of the data from the DKIST will be transmitted to the central DKIST data center in Boulder, Colorado where automated reduction and calibration pipelines will rapidly provide the community with calibrated data products for use in science investigations. The DKIST will also be operated in a "Service Mode" access model in which investigators will not be required to travel to the telescope to accomplish their science observations.

  11. Point spread functions for the Solar optical telescope onboard Hinode

    NASA Astrophysics Data System (ADS)

    Wedemeyer-Böhm, S.

    2008-08-01

    Aims: We investigate the combined point spread function (PSF) of the Broadband Filter Imager (BFI) and the Solar Optical Telescope (SOT) onboard the Hinode spacecraft. Methods: Observations of the Mercury transit from November 2006 and the solar eclipse(s) from 2007 are used to determine the PSFs of SOT for the blue, green, and red continuum channels of the BFI. For each channel, we calculate large grids of theoretical point spread functions by convolution of the ideal diffraction-limited PSF and Voigt profiles. These PSFs are applied to artificial images of an eclipse and a Mercury transit. The comparison of the resulting artificial intensity profiles across the terminator and the corresponding observed profiles yields a quality measure for each case. The optimum PSF for each observed image is indicated by the best fit. Results: The observed images of the Mercury transit and the eclipses exhibit a clear proportional relation between the residual intensity and the overall light level in the telescope. In addition, there is an anisotropic stray-light contribution. These two factors make it very difficult to pin down a single unique PSF that can account for all observational conditions. Nevertheless, the range of possible PSF models can be limited by using additional constraints like the pre-flight measurements of the Strehl ratio. Conclusions: The BFI/SOT operate close to the diffraction limit and have only a rather small stray-light contribution. The FWHM of the PSF is broadened by only ~1% with respect to the diffraction-limited case, while the overall Strehl ratio is ~0.8. In view of the large variations - best seen in the residual intensities of eclipse images - and the dependence on the overall light level and position in the FOV, a range of PSFs should be considered instead of a single PSF per wavelength. The individual PSFs of that range allow then the determination of error margins for the quantity under investigation. Nevertheless, the stray-light contributions are found to be best matched with Voigt functions with the parameters σ = 0.008 arcsec and γ = 0.004 arcsec, 0.005 arcsec, and 0.006 arcsec for the blue, green, and red continuum channels, respectively.

  12. The Daniel K. Inouye Solar Telescope first light instruments and critical science plan

    NASA Astrophysics Data System (ADS)

    Elmore, David F.; Rimmele, Thomas; Casini, Roberto; Hegwer, Steve; Kuhn, Jeff; Lin, Haosheng; McMullin, Joseph P.; Reardon, Kevin; Schmidt, Wolfgang; Tritschler, Alexandra; Wöger, Friedrich

    2014-07-01

    The Daniel K. Inouye Solar Telescope is a 4-meter-class all-reflecting telescope under construction on Haleakalā mountain on the island of Maui, Hawai'i. When fully operational in 2019 it will be the world's largest solar telescope with wavelength coverage of 380 nm to 28 microns and advanced Adaptive Optics enabling the highest spatial resolution measurements of the solar atmosphere yet achieved. We review the first-generation DKIST instrument designs, select critical science program topics, and the operations and data handling and processing strategies to accomplish them.

  13. Multi-conjugate AO for the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Montilla, I.; Béchet, C.; Le Louarn, M.; Tallon, M.; Sánchez-Capuchino, J.; Collados Vera, M.

    2012-07-01

    The European Solar Telescope (EST) will be a 4-meter diameter world-class facility, optimized for studies of the magnetic coupling between the deep photosphere and upper chromosphere. It will specialize in high spatial resolution observations and therefore it has been designed to incorporate an innovative built-in Multi-Conjugate Adaptive Optics system (MCAO). It combines a narrow field high order sensor that will provide the information to correct the ground layer and a wide field low order sensor for the high altitude mirrors used in the MCAO mode. One of the challenging particularities of solar AO is that it has to be able to correct the turbulence for a wide range of observing elevations, from zenith to almost horizon. Also, seeing is usually worse at day-time, and most science is done at visible wavelengths. Therefore, the system has to include a large number of high altitude deformable mirrors. In the case of the EST, an arrangement of 4 high altitude DMs is used. Controlling such a number of mirrors makes it necessary to use fast reconstruction algorithms to deal with such large amount of degrees of freedom. For this reason, we have studied the performance of the Fractal Iterative Method (FriM) and the Fourier Transform Reconstructor (FTR), to the EST MCAO case. Using OCTOPUS, the end-to-end simulator of the European Southern Observatory, we have performed several simulations with both algorithms, being able to reach the science requirement of a homogeneous Strehl higher that 50% all over the 1 arcmin field of view.

  14. The Focal Plane Package of the Solar Optical telescope on Solar B

    NASA Astrophysics Data System (ADS)

    Tarbell, Theodore D.

    2006-06-01

    The Solar-B satellite will be launched into a full-sun low-earth orbit in the fall of 2006 from Japan's Uchinoura Space center. It includes the 50-cm diameter Solar Optical Telescope with its Focal Plane Package (FPP), for near-UV and visible observations of the photosphere and chromosphere at very high (diffraction limited) angular resolution. The FPP has a Spectro-Polarimeter (SP) for precision measurements of photospheric vector magnetic fields over a 160 x 320 arcsecond field of view; a Narrowband Filter Imager (NFI) with a tunable birefringent filter for magnetic, Doppler, and intensity maps over the same field of view; and a Broadband Filter Imager (BFI) for highest resolution images in six wavelengths (G band, Ca II H, continua, etc.) over two-thirds of that field of view. A polarization modulator in the telescope allows measurement of Stokes parameters at all wavelengths in the SP and NFI. The NFI wavelengths include both photospheric and chromospheric lines (Fe I, Mg b, Na D, H-alpha). All images are stabilized by a tip-tilt mirror and correlation tracker. This presentation will include pictures and description of the instrument, results from calibration and sun testing, portions of the draft science plan, and some preliminary JOP's. Solar-B is an international cooperative mission between JAXA/ISAS of Japan, NASA of the United States, and PPARC of the United Kingdom. The Solar Optical Telescope has been developed by the National Astronomical Observatory of Japan, Mitsubishi Electric Company, and JAXA/ISAS. The FPP has been developed by the Lockheed Martin Advanced Technology Center, High Altitude Observatory, and NASA.

  15. Solar System Observations with Spitzer Space Telescope: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2005-01-01

    The programs of observations of Solar System bodies conducted in the first year of the operation of the Spitzer Space Telescope as part of the Guaranteed Observing Time allocations are described. Initial results include the determination of the albedos of a number of Kuiper Belt objects and Centaurs from observations of their flux densities at 24 and 70 microns, and the detection of emission bands in the spectra of several distant asteroids (Trojans) around 10 and 25 microns. The 10 Kuiper Belt objects observed to date have albedos in the range 0.08 - 0.15, significantly higher than the earlier estimated 0.04. An additional KBO [(55565) 2002 AW(sub l97)] has an albedo of 0.17 plus or minus 0.03. The emission bands in the asteroid spectra are indicative of silicates, but specific minerals have not yet been identified. The Centaur/comet 29P/Schwassmann-Wachmann 1 has a nucleus surface albedo of 0.025 plus or minus 0.01, and its dust production rate was calculated from the properties of the coma. Several other investigations are in progress as the incoming data are processed and analyzed.

  16. A Large Sparse Aperture Densified Pupil Hypertelescope Concept for Ground Based Detection of Extra-Solar Earth-Like Planets

    NASA Technical Reports Server (NTRS)

    Gezari, D.; Lyon, R.; Woodruff, R.; Labeyrie, A.; Oegerle, William (Technical Monitor)

    2002-01-01

    A concept is presented for a large (10 - 30 meter) sparse aperture hyper telescope to image extrasolar earth-like planets from the ground in the presence of atmospheric seeing. The telescope achieves high dynamic range very close to bright stellar sources with good image quality using pupil densification techniques. Active correction of the perturbed wavefront is simplified by using 36 small flat mirrors arranged in a parabolic steerable array structure, eliminating the need for large delat lines and operating at near-infrared (1 - 3 Micron) wavelengths with flats comparable in size to the seeing cells.

  17. ATST telescope pier

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Manuel, Eric; Dreyer, Oliver; Krcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world with a 4m aperture primary mirror. The off axis nature of the telescope optical layout, has the proportions of an 8 metre class telescope. Accordingly the instrumentation for solar observations a 16m diameter co-rotating laboratory (Coude Rotator) is also located within the telescope pier. The pier has a lower cylindrical profile with an upper conical section to support both the telescope mount with a 9m bearing diameter and contain the 16m diameter Coud rotator. The performance of this pier cannot be considered in isolation but must account for ancillary equipment, access and initial installation. The Coude rotator structure and bearing system are of similar size to the telescope base structure and therefore this is the proverbial 'ship in a bottle' problem. This paper documents the competing requirements on the pier design and the balancing of these as the design progresses. Also summarized is the evolution of the design from a conceptual traditional reinforced concrete pier to a composite concrete and steel framed design. The stiffness requirements of the steel frame was a unique challenge for both the theoretical performance and overall design strategy considering constructability. The development of design acceptance criteria for the pier is discussed along with interfacing of the AandE firm responsible for the pier design and the telescope designer responsible for the telescope performance.

  18. First generation solar adaptive optics system for 1-m New Vacuum Solar Telescope at Fuxian Solar Observatory

    NASA Astrophysics Data System (ADS)

    Rao, Chang-Hui; Zhu, Lei; Rao, Xue-Jun; Zhang, Lan-Qiang; Bao, Hua; Ma, Xue-An; Gu, Nai-Ting; Guan, Chun-Lin; Chen, Dong-Hong; Wang, Cheng; Lin, Jun; Jin, Zen-Yu; Liu, Zhong

    2016-02-01

    The first generation solar adaptive optics (AO) system, which consists of a fine tracking loop with a tip-tilt mirror (TTM) and a correlation tracker, and a high-order correction loop with a 37-element deformable mirror (DM), a correlating Shack-Hartmann (SH) wavefront sensor (WFS) based on the absolute difference algorithm and a real time controller (RTC), has been developed and installed at the 1-m New Vacuum Solar Telescope (NVST) that is part of Fuxian Solar Observatory (FSO). Compared with the 37-element solar AO system developed for the 26-cm Solar Fine Structure Telescope, administered by Yunnan Astronomical Observatories, this AO system has two updates: one is the subaperture arrangement of the WFS changed from square to hexagon; the other is the high speed camera of the WFS and the corresponding real time controller. The WFS can be operated at a frame rate of 2100 Hz and the error correction bandwidth can exceed 100 Hz. After AO correction, the averaged residual image motion and the averaged RMS wavefront error are reduced to 0.06″ and 45 nm, respectively. The results of on-sky testing observations demonstrate better contrast and finer structures of the images taken with AO than those without AO.

  19. Study of a Solar X-Ray Telescope

    NASA Astrophysics Data System (ADS)

    Golub, Leon

    1997-05-01

    The highly structured nature of the outer solar atmosphere seems to be intimately linked to the presence, at the solar surface, of magnetic fields that have been generated inside the Sun and have emerged to the surface. The corona is brightest (and also hottest) at just those locations where the magnetic field has emerged from inside the Sun. Dynamo theory predicts that strong magnetic fields will be generated deep in the solar interior and that bundles or 'ropes' of magnetic flux will float to the surface. When this happens, a magnetically bipolar region will become visible, extending above the surface in a three-dimensional structure. The field lines penetrate through the surface, showing two magnetic poles, and also exhibit a three-dimensional structure above the surface. The structure created by the field emergence is rooted in the (relatively) cool photosphere and extends through the chromosphere and transition region to the corona. Thus, the magnetic field creates a region, called an active region, which contains portions at temperatures from less than 104 K to greater than 106 K, and is therefore visible at wavelengths from the infrared through x-rays. The locations where the magnetic field leaves and reenters the visible surface are called the 'footpoints' of the coronal structures associated with the magnetic field. The magnetic fields themselves are not directly visible. However, the hot coronal plasma is, for the most part, constrained to follow the direction of the magnetic field lines in the atmosphere. Now, 100 years after the discovery of x-rays by Wilhelm Roentgen in 1896, we can routinely make observations of the solar corona from outside the Earth's atmosphere in this region of the electromagnetic spectrum. As shown by comparing x-ray images with magnetograms, the bright corona over these bipolar magnetic regions consists of closed structures that seem to follow the orientation of the magnetic field. Although we can see down to the photosphere at x-ray wavelengths when observing the disk of the Sun, this part of the solar atmosphere emits so little that far from the peak of its Planck curve it appears dark in x-ray images. This impression of hot plasma following the magnetic field direction is further strengthened by quantitative studies that calculate coronal magnetic field strength and direction based on photospheric measurements and compare them with the observed brightness and location of the x-ray emitting structures. Such comparisons make it clear that, for the most part, the hot plasma conforms to the geometry of the magnetic field and that the coronal brightness is strongly linked to the strength of the magnetic fields which have erupted to the solar surface from the interior. It is also the case that the larger-scale, fainter corona, as well as coronal holes, are strongly influenced by the large-scale solar magnetic field. We may get a small hint of the reason that the coronal plasma outlines the direction of B by examining the thermal conductivity of a hot plasma in the presence of a magnetic field. This quantity has enormously different values in the directions parallel and perpendicular to the field for a coronal temperature of 106 K, a particle density of 109/cu cm and a magnetic field strength of 100 G, the conductivity along the field is approximately 13 orders of magnitude greater than that perpendicular to the field. It is therefore not surprising that a parcel of plasma which is locally heated would conduct that heat preferentially in the direction of the field. We also note that the thermal conductivity parallel to the magnetic field increases with temperature T, while the perpendicular conductivity decreases. To the extent that the loop aspect ratio, i.e., the ratio of loop length to loop width, is determined by the thermal conductivity, we would expect that higher temperature loops are longer and thinner than cooler ones. However, if the loop width becomes smaller than the spatial resolution of the observing instrument, this effect will not be directly observable. For organizational purposes, we provide a listing of some scientific objectives for a Solar-B x-ray telescope, arranged in terms of identifiable features in the corona.

  20. Study of a Solar X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1997-01-01

    The highly structured nature of the outer solar atmosphere seems to be intimately linked to the presence, at the solar surface, of magnetic fields that have been generated inside the Sun and have emerged to the surface. The corona is brightest (and also hottest) at just those locations where the magnetic field has emerged from inside the Sun. Dynamo theory predicts that strong magnetic fields will be generated deep in the solar interior and that bundles or 'ropes' of magnetic flux will float to the surface. When this happens, a magnetically bipolar region will become visible, extending above the surface in a three-dimensional structure. The field lines penetrate through the surface, showing two magnetic poles, and also exhibit a three-dimensional structure above the surface. The structure created by the field emergence is rooted in the (relatively) cool photosphere and extends through the chromosphere and transition region to the corona. Thus, the magnetic field creates a region, called an active region, which contains portions at temperatures from less than 10(exp 4) K to greater than 10(exp 6) K, and is therefore visible at wavelengths from the infrared through x-rays. The locations where the magnetic field leaves and reenters the visible surface are called the 'footpoints' of the coronal structures associated with the magnetic field. The magnetic fields themselves are not directly visible. However, the hot coronal plasma is, for the most part, constrained to follow the direction of the magnetic field lines in the atmosphere. Now, 100 years after the discovery of x-rays by Wilhelm Roentgen in 1896, we can routinely make observations of the solar corona from outside the Earth's atmosphere in this region of the electromagnetic spectrum. As shown by comparing x-ray images with magnetograms, the bright corona over these bipolar magnetic regions consists of closed structures that seem to follow the orientation of the magnetic field. Although we can see down to the photosphere at x-ray wavelengths when observing the disk of the Sun, this part of the solar atmosphere emits so little that far from the peak of its Planck curve it appears dark in x-ray images. This impression of hot plasma following the magnetic field direction is further strengthened by quantitative studies that calculate coronal magnetic field strength and direction based on photospheric measurements and compare them with the observed brightness and location of the x-ray emitting structures. Such comparisons make it clear that, for the most part, the hot plasma conforms to the geometry of the magnetic field and that the coronal brightness is strongly linked to the strength of the magnetic fields which have erupted to the solar surface from the interior. It is also the case that the larger-scale, fainter corona, as well as coronal holes, are strongly influenced by the large-scale solar magnetic field. We may get a small hint of the reason that the coronal plasma outlines the direction of B by examining the thermal conductivity of a hot plasma in the presence of a magnetic field. This quantity has enormously different values in the directions parallel and perpendicular to the field for a coronal temperature of 10(exp 6) K, a particle density of 10(exp 9)/cu cm and a magnetic field strength of 100 G, the conductivity along the field is approximately 13 orders of magnitude greater than that perpendicular to the field. It is therefore not surprising that a parcel of plasma which is locally heated would conduct that heat preferentially in the direction of the field. We also note that the thermal conductivity parallel to the magnetic field increases with temperature T, while the perpendicular conductivity decreases. To the extent that the loop aspect ratio, i.e., the ratio of loop length to loop width, is determined by the thermal conductivity, we would expect that higher temperature loops are longer and thinner than cooler ones. However, if the loop width becomes smaller than the spatial resolution of the observing instrument, this effect will not be directly observable. For organizational purposes, we provide a listing of some scientific objectives for a Solar-B x-ray telescope, arranged in terms of identifiable features in the corona.

  1. Observation and Modeling of the Solar Transition Region. 1; Multi-Spectral Solar Telescope Array Observations

    NASA Technical Reports Server (NTRS)

    Oluseyi, Hakeem M.; Walker, A. B. C., II; Porter, Jason; Hoover, Richard B.; Barbee, Troy W., Jr.

    1999-01-01

    We report on observations of the solar atmosphere in several extreme-ultraviolet and far-ultraviolet bandpasses obtained by the Multi-Spectral Solar Telescope Array, a rocket-borne spectroheliograph, on flights in 1987, 1991, and 1994, spanning the last solar maximum. Quiet-Sun emission observed in the 171-175 Angstrom bandpass, which includes lines of O v, O VI, Fe IX, and Fe X, has been analyzed to test models of the temperatures and geometries of the structures responsible for this emission. Analyses of intensity variations above the solar limb reveal scale heights consistent with a quiet-Sun plasma temperature of 500,000 less than or equal to T (sub e) less than or equal to 800,000 K. The structures responsible for the quiet-Sun EUV emission are modeled as small quasi-static loops. We submit our models to several tests. We compare the emission our models would produce in the bandpass of our telescope to the emission we have observed. We find that the emission predicted by loop models with maximum temperatures between 700,000 and 900,000 K are consistent with our observations. We also compare the absolute flux predicted by our models in a typical upper transition region line to the flux measured by previous observers. Finally, we present a preliminary comparison of the predictions of our models with diagnostic spectral line ratios from previous observers. Intensity modulations in the quiet Sun are observed to occur on a scale comparable to the supergranular scale. We discuss the implications that a distribution of loops of the type we model here would have for heating the local network at the loops' footpoints.

  2. Solar tests of aperture plate materials for solar thermal dish collectors

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1983-01-01

    In parabolic dish solar collectors, walk-off of the spot of concentrated sunlight is a hazard if a malfunction causes the concentrator to stop following the Sun. Therefore, a test program was carried out to evaluate the behavior of various ceramics, metals, and polymers under solar irradiation of about 7000 kW/sq m. (peak) for 15 minutes. The only materials that did not slump or shatter were two grades of medium-grain extruded graphite. High purity, slip-cast silica might be satisfactory at somewhat lower flux. Oxidation of the graphite appeared acceptable during tests simulating walk-off, acquisition (2000 cycles on/off Sun), and spillage (continuous on-Sun operation).

  3. A two-dimensional spectropolarimeter as a first-light instrument for the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Schmidt, Wolfgang; Bell, Alexander; Halbgewachs, Clemens; Heidecke, Frank; Kentischer, Thomas J.; von der Lhe, Oskar; Scheiffelen, Thomas; Sigwarth, Michael

    2014-07-01

    The Visible Tunable Filter (VTF) is a narrowband tunable filter system for imaging spectropolarimetry. The instrument will be one of the first-light instruments of the Daniel K. Inouye Solar Telescope (DKIST) that is currently under construction on Maui (Hawaii). The DKIST has a clear aperture of 4 meters. The VTF is being developed by the Kiepenheuer Institut fr Sonnenphysik in Freiburg, as a German contribution to the DKIST. The VTF is designed as a diffraction-limited narrowband tunable instrument for Stokes spectro-polarimetry in the wavelength range between 520 and 860 nm. The instrument uses large-format Fabry-Perot interferometers (Etalons) as tunable monochromators with clear apertures of about 240 mm. To minimize the influence of gravity on the interferometer plates, the Fabry-Perots are placed horizontally. This implies a complex optical design and a three-dimensional support structure instead of a horizontal optical bench. The VTF has a field of view of one arc minute squared. With 4096x4096 pixel detectors, one pixel corresponds to an angle of 0.014" on the sky (10 x 10 km on the Sun). The spectral resolution is 6 pm at a wavelength of 600 nm. One 2Dspectrum with a polarimetric sensitivity of 5E-3 will be recorded within 13 seconds. The wavelength range of the VTF includes a number of important spectral lines for the measurement flows and magnetic fields in the atmosphere of the Sun. The VTF uses three identical large-format detectors, two for the polarimetric measurements, and one for broadband filtergrams. The main scientific observables of the VTF are Stokes polarimetric images to retrieve the magnetic field configuration of the observed area, Doppler images to measure the line-of-sight flow in the solar photosphere, and monochromatic intensity filtergrams to study higher layers of the solar atmosphere.

  4. Evaluation of the cosmic-ray induced background in coded aperture high energy gamma-ray telescopes

    NASA Technical Reports Server (NTRS)

    Owens, Alan; Barbier, Loius M.; Frye, Glenn M.; Jenkins, Thomas L.

    1991-01-01

    While the application of coded-aperture techniques to high-energy gamma-ray astronomy offers potential arc-second angular resolution, concerns were raised about the level of secondary radiation produced in a thick high-z mask. A series of Monte-Carlo calculations are conducted to evaluate and quantify the cosmic-ray induced neutral particle background produced in a coded-aperture mask. It is shown that this component may be neglected, being at least a factor of 50 lower in intensity than the cosmic diffuse gamma-rays.

  5. Kees Zwaan, open principle, future of high-resolution solar telescopes

    NASA Astrophysics Data System (ADS)

    Hammerschlag, R. H.; Bettonvil, F. C. M.

    2013-01-01

    It was around the 1970s that during site-test campaigns masts were erected up till 30 m height with sensors at several heights for the measurement of temperature fluctuations. Kees Zwaan discovered that the fluctuations decrease drastically at heights from about 15 m and upward when there is some wind. The conclusion from this experience was the open telescope principle: a telescope completely free in the air 15 m or more above the ground. The Dutch Open Telescope (DOT) was the pioneering demonstrator of the open-telescope technology. Now that larger high-resolution telescopes come in view, it is time to analyze again the principle: the essentials for proper working of the open principle and the design consequences for the new generation of high-resolution solar telescopes.

  6. Cornelis Zwaan, open principle, and the future of high-resolution solar telescopes

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; Bettonvil, Felix C. M.; Jägers, Aswin P. L.; Sliepen, Guus

    2008-07-01

    It was in the years around 1970 that during site-test campaigns for JOSO masts were erected up till 30 m height with sensors at several heights for the measurement of temperature fluctuations. Cornelis (Kees) Zwaan discovered that the fluctuations decrease drastically at heights from about 15 m and upward when there is some wind. The conclusion from this experience was the open telescope principle: the telescope should be completely free in the air 15 m or more above the ground. The Dutch Open Telescope (DOT) was the pioneering demonstrator of the open-telescope technology. Now that larger high-resolution telescopes come in view, it is time to analyze again the principle: (i) the essentials for proper working of the open principle; (ii) the differences with nighttime observations particularly concerning the seeing; (iii) the design consequences for the new generation of high-resolution solar telescopes.

  7. Filters for soft X-ray solar telescopes

    NASA Technical Reports Server (NTRS)

    Spiller, Eberhard; Grebe, Kurt; Golub, Leon

    1990-01-01

    Soft X-ray telescopes require filters that block visible and infrared light and have good soft X-ray transmission. The optical properties of possible materials are discussed, and the fabrication and testing methods for the filters used in a 10-inch normal incidence telescope for 63 A are described. The best performances in the 44-114-A wavelength range are obtained with foils of carbon and rhodium.

  8. Application of a white-light interferometric measuring system as co-phasing the segmented primary mirrors of the high-aperture telescope

    NASA Astrophysics Data System (ADS)

    Song, Helun; Li, Huaqiang; Xian, Hao; Huang, Jian; Wang, Shengqian; Jiang, Wenhan

    2008-03-01

    For the optical system of the telescope, with the increase in telescope size, the manufacture of monolithic primary becomes increasingly difficult. Instead, the use of segmented mirrors, where many individual mirrors (the segments) work together to provide an image quality and an aperture equivalent to that of a large monolithic mirror, is considered a more appropriate strategy. But with the introduction of the large telescope mirror comprised of many individual segments, the problem of insuring a smooth continuous mirror surface (co-phased mirrors) becomes critical. One of the main problems is the measurement of the vertical displacement between the individual segments (piston error), for such mirrors, the segment vertical misalignment (piston error) between the segments must be reduced to a small fraction of the wavelength (<100nm) of the incoming light. The measurements become especially complicated when the piston error is in order of wavelength fractions. To meet the performance capabilities, a novel method for phasing the segmented mirrors optics system is described. The phasing method is based on a high-aperture Michelson interferometer. The use of an interferometric technique allows the measuring of segment misalignment during the daytime with high accuracy, which is a major design guideline. The innovation introduced in the optical design of the interferometer is the simultaneous use of monochromatic light and multiwavelength combination white-light source in a direct method for improving the central fringe identification in the white-light interferometric phasing system. With theoretic analysis, we find that this multiwavelength combination technique can greatly increase the visibility difference between the central fringe and its adjacent side fringes, and thus it offers an increased signal resolution. So make the central fringe identification become easier, and enhance the measure precision of the segment phasing error. Consequently, it is suitable for high-precision measurement purpose and application in the segment piston error phasing system. The description about the expected interferograms and the feasibility of the phasing method are presented here.

  9. Imaging Extra-Solar Planets with an Ultra-Large Space Telescope

    NASA Technical Reports Server (NTRS)

    Taylor, Charles R.

    1998-01-01

    NASA's Origins Program is directed toward two main goals: Imaging of galactic evolution in the early universe, and searching for planets orbiting nearby stars. The Next-Generation Space Telescope (NGST), operating at low temperature with an 8-m aperture, is well designed to meet the first goal. The goal of imaging planets orbiting nearby stars is more problematic. One line of investigation has been the ULTIMA concept (Ultra-Large Telescope, Integrated Missions in Astronomy). In this report, I will lay out the resolution requirements for telescopes to achieve the imaging of extrasolar planets, and describe a modeling tool created to investigate the requirements for imaging a planet when it is very near a much brighter star.

  10. Concepts for a lightweight balloon telescope for solar observation

    NASA Astrophysics Data System (ADS)

    Kaercher, Hans J.

    2003-02-01

    Sunrise is a bi-national US-German program for spectro-polarimetric high-resolution observations of the sun. The ob-servations will be done by a balloon telescope circulating in high altitudes around Antarctica. The paper describes de-sign concepts for the telescope in the balloon gondola. The designs are driven by the environment of the balloon (which is something between earthbound and space). Main design drivers for the telescope are light-weighting, thermal treat-ment of looking to the sun, stability and alignment of the optical elements during operation and handling and safety issues during lift-off and landing. The achievable weight and performance data are demonstrated by structural and ther-mal analyses results.

  11. Progress of site survey for large solar telescopes in western China

    NASA Astrophysics Data System (ADS)

    Liu, Yu

    2015-08-01

    Excellent sites are necessary for developing and installing ground-based large telescopes. For solar telescopes, it had been unclear whether there exist good candidate sites in the west areas in China, including the Tibetan Plateau and the Pamirs Plateau, before the project of solar site survey for our next-generation large solar telescopes, i.e., the Chinese Giant Solar Telescope (CGST) and the large coronagraph, has been lauched since 2011. Based on the close collaboration among Chinese solar society and the scientists from NSO, HAO and other institutes, we have successfully developed the standard insturments for solar site survey and applied them to more than 50 different sites distributed in Xinjiang, Tibet, Qinghai, Sichuan, Yunnan and Ningxia provinces. We have built two long-term monitoring sites in Tibet and the large Shangri-La to take systematic site data. Clear evidence, including the key parameters of seeing factor, sky brightness and water vapor content, has indicated that a few potential sites in the large Tibetan areas should obtain the excellent astronomical conditions for our purpose to develop CGST and large coronagraph. We'll introduce and discuss the fresh site survey results in our report.

  12. ATST telescope mount: telescope of machine tool

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  13. STS-31 Hubble Space Telescope (HST) solar array (SA) mockup at MSFC, Alabama

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A close-up shot shows an extravehicular mobility unit (EMU)-suited astronaut inspecting a solar array (SA) on the Hubble Space Telescope (HST) mockup in the Neutral Buoyancy Simulator (NBS) at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. MSFC managed the design and development of the telescope. The weightlessness simulator was used to practice SA contingency procedures that might be used in space. Astronauts also practiced SA servicing missions in the simulator which they will perform on the telescope in space. The solar arrays which supply electrical power to the space telescope were developed and contributed by the European Space Agency (ESA). ESA's two prime contractors were British Aerospace in England and AEG in West Germany. The two wing-like solar arrays contain 48,000 solar cells. They convert the sun's energy to electricity during that portion of an orbit when they are exposed to sunlight. The power is stored in six batteries to support the telescope during

  14. Adaptive optics real time processing design for the advanced technology solar telescope

    NASA Astrophysics Data System (ADS)

    Richards, Kit

    2012-07-01

    The four meter Advanced Technology Solar Telescope (ATST) adaptive optics (AO) system will require at least twenty-four times the real time processing power as the Dunn Solar Telescope AO system. An FPGA solution for ATST AO real time processing is being pursued instead of the parallel DSP approach used for the Dunn AO76 system. An analysis shows FPGAs will have lower latency and lower hardware cost than an equivalent DSP solution. Interfacing to the proposed high speed camera and the deformable mirror will be simpler and have lower latency than with DSPs. This paper will discuss the current design and progress toward implementing the FPGA solution.

  15. The Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B. C., Jr.; Allen, Max J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C.

    1992-01-01

    We have developed seven compact soft X-ray/EUV (XUV) multilayer coated and two compact FUV interference film coated Cassegrain and Ritchey-Chretien telescopes for a rocket borne observatory, the Multi-Spectral Solar Telescope Array. We report here on extensive measurements of the efficiency and spectral bandpass of the XUV telescopes carried out at the Stanford Synchrotron Radiation Laboratory.

  16. Telescopes and recording systems used by amateurs for studying planets in our solar system - an overview

    NASA Astrophysics Data System (ADS)

    Kowollik, S.; Gaehrken, B.; Fiedler, M.; Gerstheimer, R.; Sohl, F.; Koschny, D.

    2008-09-01

    During the last couple of years, engaged amateur astronomers have benefited by the rapid development in the field of commercial CCD cameras, video techniques, and the availability of mirror telescopes with high quality. Until recently, such technical equipment and the related handling experience had been reserved to research institutes. This contribution presents the potential capabilities of amateur astronomers and describes the approach to the production of data. The quality of the used telescopes is described with respect to aperture and resolving power; as well as the quantum efficiency of the used sensitive b/w CCD cameras with respect to the detectable wavelength. Beyond these facts the necessary exposure times for CCD images using special filters are discussed. Today's amateur astronomers are able to image the bodies of the solar system in the wavelength range between 340 and 1050 nm [1], [2], [3], [4]. This covers a wide range of the spectrum which is investigated with cameras on board of space telescopes or planetary probes. While space probes usually obtain high-resolution images of individual Surface or atmospheric features of the planets, the images of amateur astronomers show the entire surface of the observed planet. Both datasets together permit a more comprehensive analysis of the data aquired in each case. The "Venus Amateur Observing Project" of the European Space Agency [5] is a first step into a successful co-operation between amateur astronomers and planetary scientists. Individual CCD images captured through the turbulent atmosphere of the Earth usually show characteristic distortions of the arriving wave fronts. If one captures hundreds or thousands of images on a video stream in very short time, there will be always also undistorted images within the data. Computer programmes are available to identify and retrieve these undistorted images and store them for further processing [7]. This method is called "Lucky Imaging" and it allows to achieve nearly the theoretical limit of telescopic resolution. By stacking the undistorted images, the signal-to-noise ratio of the data can be increased significantly. "Lucky Imaging" has become a standard in the amateur community since several years. Contrary to space based observations the data rate is not limited by the capacity of any radio transmission, but only limited by the scanning rate and capacity of a modern computer hard disk. An individual video with the uncompreesed raw data can be as large as 4 to 5 GB. EPSC Abstracts, Vol. 3, EPSC2008-A-00191, 2008 European Planetary Science Congress, Author(s) 2008 In addition to the video data, so-called meta data such as the observing location, the recording time, the used filter, environmental conditions (air temperature, wind velocity, air humidity and Seeing) are also documented. From these meta data, the central meridian (CM) of the observed planet during the time of image acqusition can be determined. After data reduction the resulting images can be used to produce map projections or position measurements of albedo structures on the planetary surface or of details within atmospheric features. Amateur astronomers can observe objects in the solar system for large continuous time periods due to the large number of the existing observers e. g. the members of the Association of Lunar & Planetary Observers [6] and their telescopes. They can and react very fast to special events, since they do not have to submit requests for telescope time to a national or international organization. References: [1] Venusimages in uv-light: B. Gährken: http://www.astrode.de/venus07.htm R. Gerstheimer: http://www.astromanie.de/astromania/galerie/venus/venus.html S. Kowollik: http://www.sternwarte-zollern-alb.de/mitarbeiterseiten/kowollik/venus M. Weigand: http://www.skytrip.de/venus2007.htm [2] Images of planets in visible light: M. Fiedler: http://bilder.astroclub-radebeul.de/kategorien.php?action=showukats&kat=0 R. Gerstheimer: http://www.astromanie.de/ S. Kowollik: http://www.sternwarte-zollern-alb.de/mitarbeiterseiten/kowollik [3] Images of planets in methane band light: S. Kowollik: http://www.sternwarte-zollern-alb.de/beobachtungen/methanband/index-gb.htm [4] Images of planets in ir-light: S. Kowollik: http://www.sternwarte-zollern-alb.de/beobachtungen/ir/index-gb.htm [5] ESA amateur astronomer observing campaign: http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=38833 http://www.rssd.esa.int/index.php?project=VENUS [6] Association of Lunar & Planetary Observation (ALPO): http://alpo-astronomy.org/ [7] Software: Cor Berrevoets (Registax): http://www.astronomie.be/registax/ Christian Buil (IRIS): http://www.astrosurf.com/buil/us/iris/iris.htm Georg Dittié (Giotto): http://www.videoastronomy.org/giotto.htm Grischa Hahn (WinJupos): http://www.grischa-hahn.homepage.t-online.de/astro/winjupos/index.htm

  17. Evolving Design Criteria for Very Large Aperture Space-Based Telescopes and Their Influence on the Need for Integrated Tools in the Optimization Process

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.

    2015-01-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4 meter and 8 meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as the aperture grows, the primary takes up the majority of the mass and volume and the established rules need to be adjusted. For example, a small change in lowest frequency requirement can change the cost by millions of dollars.

  18. Evolving design criteria for very large aperture space-based telescopes and their influence on the need for intergrated tools in the optimization process

    NASA Astrophysics Data System (ADS)

    Arnold, William R.

    2015-09-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4 meter and 8 meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as the aperture grows, the primary takes up the majority of the mass and volume and the established rules need to be adjusted. For example, a small change in lowest frequency requirement can change the cost by millions of dollars.

  19. OSCILLATORY BEHAVIOR IN THE QUIET SUN OBSERVED WITH THE NEW SOLAR TELESCOPE

    SciTech Connect

    Andic, A.; Goode, P. R.; Cao, W.; Yurchyshyn, V.; Abramenko, V.; Chae, J.; Ahn, K.

    2010-07-10

    Surface photometry of the quiet Sun has achieved an angular resolution of 0.''1 with the New Solar Telescope at Big Bear Solar Observatory, revealing that a disproportionate fraction of the oscillatory events appear above observed bright point-like structures. During the tracking of these structures, we noted that the more powerful oscillatory events are cospatial with them, indicating that observed flux tubes may be the source of many observed oscillatory events.

  20. Performance of polarization modulation and calibration optics for the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Elmore, David F.; Sueoka, Stacey R.; Casini, Roberto

    2014-07-01

    The Daniel K. Inouye Solar Telescope (formerly Advanced Technology Solar Telescope) will be the world's largest solar telescope and polarimeter when completed in 2019. Efficient use of the telescope to address key science priorities calls for polarization measurements simultaneously over broad wavelength ranges and calibration of the telescope and polarimeters to high accuracy. Broadband polarization modulation and calibration optics utilizing crystal optics have been designed for this application. The performance of polarization modulators and calibration retarders is presented along with a discussion of the unique challenges of this application. Polarimeters operate over the ranges of 0.38-1.1 microns, 0.5-2.5 microns, and 1.0-5.0 microns. Efficient polarization modulation over these broad ranges led to modulators utilizing multiple wave plates and that are elliptical, rather than linear, retarders. Calibration retarders are linear retarders and are constructed from the same sub-component wave plate pairs as the polarization modulators. Polarization optics must address efficiency over broad wavelength ranges while meeting beam deflection, transmitted wave front error, and thermal constraints and doing so with designs that, though large in diameter, can be affordably manufactured.

  1. Solar Polar ORbit Telescope (SPORT): A Potential Heliophysics Mission of China

    NASA Astrophysics Data System (ADS)

    Liu, Ying

    We describe a spacecraft mission, named Solar Polar ORbit Telescope (SPORT), which is currently under a scientific and engineering background study in China. SPORT was originally proposed in 2004 by the National Space Science Center, Chinese Academy of Sciences. It will carry a suite of remote-sensing and in-situ instruments to observe coronal mass ejections (CMEs), solar high-latitude magnetism, and the fast solar wind from a polar orbit around the Sun. It is intended to be the first mission that carries remote-sensing instruments from a high-latitude orbit around the Sun and the first mission that could measure solar high-latitude magnetism. The first extended view of the polar region of the Sun and the ecliptic plane enabled by SPORT will provide a unique opportunity to study CME propagation through the inner heliosphere and solar high-latitude magnetism giving rise to eruptions and the fast solar wind.

  2. Evolving Design Criteria for Very Large Aperture Space Based Telescopes and Their Influence on the Need for Integrated Tools in the Optimization Process

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.

    2015-01-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow-on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4-meter and 8-meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as the aperture grows, the primary takes up the majority of the mass and volume and the established rules need to be adjusted. For example, a small change in lowest frequency requirement can change the cost by millions of dollars. The paper uses numerous trade studies created during the software development phase of the Arnold Mirror Modeler to illustrate the influences of system specifications on the design space. The future telescopes will require better performance, stability and documented feasibility to meet the hurdles of today's budget and schedules realities. AMTD is developing the tools, but the basic system planning mentality also has to adopt to the requirements of these very large and complex physical structures.

  3. OpTIIX: An ISS-Based Testbed Paving the Roadmap Toward a Next Generation Large Aperture UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Etemad, Shar; Seery, Bernard D.; Thronson, Harley; Burdick, Gary M.; Coulter, Dan; Goullioud, Renaud; Green, Joseph J.; Liu, Fengchuan; Ess, Kim; Postman, Marc; Sparks, Williams

    2012-01-01

    The next generation large aperture UV/Optical space telescope will need a diameter substantially larger than even that of JWST in order to address some of the most compelling unanswered scientific quests. These quests include understanding the earliest phases of the Universe and detecting life on exo-planets by studying spectra of their atmospheres. Such 8-16 meter telescopes face severe challenges in terms of cost and complexity and are unlikely to be affordable unless a new paradigm is adopted for their design and construction. The conventional approach is to use monolithic or preassembled segmented mirrors requiring complicated and risky deployments and relying on future heavy-lift vehicles, large fairings and complex geometry. The new paradigm is to launch component modules on relatively small vehicles and then perform in-orbit robotic assembly of those modules. The Optical Testbed and Integration on ISS eXperiment (OpTIIX) is designed to demonstrate, at low cost by leveraging the infrastructure provided by ISS, telescope assembly technologies and end-to-end optical system technologies. The use of ISS as a testbed permits the concentration of resources on reducing the technical risks associated with robotically integrating the components. These include laser metrology and wavefront sensing and control (WFS&C) systems, an imaging instrument, lightweight, low-cost deformable primary mirror segments and the secondary mirror. These elements are then aligned to a diffraction-limited optical system in space. The capability to assemble the optical system and remove and replace components via the existing ISS robotic systems like the Special Purpose Dexterous Manipulator (SPDM), or by the ISS flight crew, allows for future experimentation, as well as repair.

  4. New solar axion search using the CERN Axion Solar Telescope with 4He filling

    NASA Astrophysics Data System (ADS)

    Arik, M.; Aune, S.; Barth, K.; Belov, A.; Bräuninger, H.; Bremer, J.; Burwitz, V.; Cantatore, G.; Carmona, J. M.; Cetin, S. A.; Collar, J. I.; Da Riva, E.; Dafni, T.; Davenport, M.; Dermenev, A.; Eleftheriadis, C.; Elias, N.; Fanourakis, G.; Ferrer-Ribas, E.; Galán, J.; García, J. A.; Gardikiotis, A.; Garza, J. G.; Gazis, E. N.; Geralis, T.; Georgiopoulou, E.; Giomataris, I.; Gninenko, S.; Gómez Marzoa, M.; Hasinoff, M. D.; Hoffmann, D. H. H.; Iguaz, F. J.; Irastorza, I. G.; Jacoby, J.; Jakovčić, K.; Karuza, M.; Kavuk, M.; Krčmar, M.; Kuster, M.; Lakić, B.; Laurent, J. M.; Liolios, A.; Ljubičić, A.; Luzón, G.; Neff, S.; Niinikoski, T.; Nordt, A.; Ortega, I.; Papaevangelou, T.; Pivovaroff, M. J.; Raffelt, G.; Rodríguez, A.; Rosu, M.; Ruz, J.; Savvidis, I.; Shilon, I.; Solanki, S. K.; Stewart, L.; Tomás, A.; Vafeiadis, T.; Villar, J.; Vogel, J. K.; Yildiz, S. C.; Zioutas, K.; CAST Collaboration

    2015-07-01

    The CERN Axion Solar Telescope (CAST) searches for a →γ conversion in the 9 T magnetic field of a refurbished LHC test magnet that can be directed toward the Sun. Two parallel magnet bores can be filled with helium of adjustable pressure to match the x-ray refractive mass mγ to the axion search mass ma. After the vacuum phase (2003-2004), which is optimal for ma≲0.02 eV , we used 4He in 2005-2007 to cover the mass range of 0.02-0.39 eV and 3He in 2009-2011 to scan from 0.39 to 1.17 eV. After improving the detectors and shielding, we returned to 4He in 2012 to investigate a narrow ma range around 0.2 eV ("candidate setting" of our earlier search) and 0.39-0.42 eV, the upper axion mass range reachable with 4He, to "cross the axion line" for the KSVZ model. We have improved the limit on the axion-photon coupling to ga γ<1.47 ×10-10 GeV-1 (95% C.L.), depending on the pressure settings. Since 2013, we have returned to the vacuum and aim for a significant increase in sensitivity.

  5. Solar observations with a low frequency radio telescope

    NASA Astrophysics Data System (ADS)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  6. EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.

    1988-01-01

    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.

  7. Solar EUV, XUV and soft X-ray telescope facilities

    NASA Technical Reports Server (NTRS)

    Withbroe, G. L.

    1982-01-01

    Facility class, high resolution instrumentation can enable maximum spatial, spectral and temporal resolutions and provide understanding of the complex physical conditions in the outer solar atmosphere and the mechanisms responsible for these conditions. The scientific rationale for facility class instruments operating in the EUV, XUV, and soft X ray spectral ranges are discussed. Possible configurations for these facilities and priorities for their development are considered.

  8. The x-ray/EUV telescope for the Solar-C mission: science and development activities

    NASA Astrophysics Data System (ADS)

    Sakao, Taro; Narukage, Noriyuki; Imada, Shinsuke; Suematsu, Yoshinori; Shimojo, Masumi; Tsuneta, Saku; DeLuca, Edward E.; Watanabe, Kyoko; Ishikawa, Shin-nosuke

    2012-09-01

    We report science and development activities of the X-ray/EUV telescope for the Japanese Solar-C mission whose projected launch around 2019. The telescope consists of a package of (a) a normal-incidence (NI) EUV telescope and (b) a grazing-incidence (GI) soft X-ray telescope. The NI telescope chiefly provides images of low corona (whose temperature 1 MK or even lower) with ultra-high angular resolution (0.2-0.3"/pixel) in 3 wavelength bands (304, 171, and 94 angstroms). On the other hand, the GI telescope provides images of the corona with a wide temperature coverage (1 MK to beyond 10 MK) with the highest-ever angular resolution (~0.5"/pixel) as a soft X-ray coronal imager. The set of NI and GI telescopes should provide crucial information for establishing magnetic and gas-dynamic connection between the corona and the lower atmosphere of the Sun which is essential for understanding heating of, and plasma activities in, the corona. Moreover, we attempt to implement photon-counting capability for the GI telescope with which imaging-spectroscopy of the X-ray corona will be performed for the first time, in the energy range from ~0.5 keV up to 10 keV. The imaging-spectroscopic observations will provide totally-new information on mechanism(s) for the generation of hot coronal plasmas (heated beyond a few MK), those for magnetic reconnection, and even generation of supra-thermal electrons associated with flares. An overview of instrument outline and science for the X-ray photoncounting telescope are presented, together with ongoing development activities in Japan towards soft X-ray photoncounting observations, focusing on high-speed X-ray CMOS detector and sub-arcsecond-resolution GI mirror.

  9. Quantitative evaluation on internal seeing induced by heat-stop of solar telescope.

    PubMed

    Liu, Yangyi; Gu, Naiting; Rao, Changhui

    2015-07-27

    heat-stop is one of the essential thermal control devices of solar telescope. The internal seeing induced by its temperature rise will degrade the imaging quality significantly. For quantitative evaluation on internal seeing, an integrated analysis method based on computational fluid dynamics and geometric optics is proposed in this paper. Firstly, the temperature field of the heat-affected zone induced by heat-stop temperature rise is obtained by the method of computational fluid dynamics calculation. Secondly, the temperature field is transformed to refractive index field by corresponding equations. Thirdly, the wavefront aberration induced by internal seeing is calculated by geometric optics based on optical integration in the refractive index field. This integrated method is applied in the heat-stop of the Chinese Large Solar Telescope to quantitatively evaluate its internal seeing. The analytical results show that the maximum acceptable temperature rise of heat-stop is up to 5 Kelvins above the ambient air at any telescope pointing directions under the condition that the root-mean-square of wavefront aberration induced by internal seeing is less than 25nm. Furthermore, it is found that the magnitude of wavefront aberration gradually increases with the increase of heat-stop temperature rise for a certain telescope pointing direction. Meanwhile, with the variation of telescope pointing varying from the horizontal to the vertical direction, the magnitude of wavefront aberration decreases at first and then increases for the same heat-stop temperature rise. PMID:26367657

  10. Aspherical imaging multilayer mirrors with subarcsecond resolution for solar XUV telescopes

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir A.; Zhitnik, Igor A.; Ragozin, Evgeny N.; Andreev, Eugeny A.; Salashchenko, Nikolay N.; Platonov, Jury Y.

    1994-11-01

    For XUV-imaging of the Sun with sub-arc second resolution it is proposed to use the Herschel telescope with aspherical (toroidal) multilayer mirror working at out-of-axis angle 1.5 - 2 degree(s). In that case aberrations (mainly astigmatism) are sufficiently reduced so high resolution better than 1' may be obtained. In comparison with the Ritchey-Chretien two- mirror telescope which is regarded as perspective to reach closely the diffraction limited resolution, the Herschel telescope is more simple, less critical to adjustment and has higher throughput. Toroidal mirrors with diameter D equals 30 mm, focal length F equals 800 mm and ratio of sagittal and meridional radii of curvature Rm/Rs equals 1.001 have been made on super polished fused quartz substrates (roughness better than 7 A). After shape correction mirrors were covered by Mo-Si coating for 175 A wavelength band. The mirrors were used in high resolution channel of the TEREK-C telescope designed for the CORONAS space solar observatory which was launched on March 2, 1994. An example of the solar image obtained by this telescope is presented.

  11. New observational capabilities of the H-alpha Solar Telescope for Argentina (HASTA)

    NASA Astrophysics Data System (ADS)

    Francile, C.; Castro, J. I.; Leuzzi, L.; Luoni, M. L.; Rovira, M. G.; Cornudella, A.; Gómez, W.; Sarmiento, R.

    We present an overview on the new instrumentation for the H-alpha Solar Telescope of Argentina (HASTA), located in "El Leoncito" at the "Observatorio Astronómico Félix Aguilar" in Argentina, which extends its capabilities to observe the solar Chromosphere. Full frame observations of the complete solar disk are made at the H-alpha center line and also at the line wings, with increased spatial and temporal resolution. A new CCD camera, the development of new image acquisition routines, a new Flat Fielding procedure, a new automatic focusing device, new flare classification routines and a web portal access of on line images and daily movies, allows for a more detailed study of the solar activity, chromospheric wave propagation and fast impulsive events. A permanent observer's staff also allows for a continuous solar watching.

  12. Thermal effects in the Solar Disk Sextant telescope

    NASA Astrophysics Data System (ADS)

    Spagnesi, Chiara; Vannoni, Maurizio; Molesini, Giuseppe; Righini, Alberto

    2004-02-01

    The Solar Disk Sextant (SDS) is an instrument conceived to monitor the diameter of the Sun and its oscillations. A key component of the SDS is the Beam Splitting Wedge (BSW), whose function is to provide calibration to the geometry of the focal plane. The thermal behavior of the BSW is critical, as it affects the overall performance of the instrument. Modeling the elements of the BSW and the basic thermal processes is shown to account for experimental evidences of defocusing observed in early measurements with a balloon borne prototype. Basic requirements for accurate thermal stabilization on board of the final instrument are derived.

  13. A silicon surface barrier telescope for solar particles identification

    NASA Technical Reports Server (NTRS)

    Sequeiros, J.; Medina, J.

    1985-01-01

    From the results three conclusions can be made: (1) the detector system described and tested is capable of good charge resolution from He to Al although beyond Ne the statistic is very poor; (2) in the high gain mode, isotopic resolution has been achieved for Li-6/Li-7 Be-7/Be-9; (3) the much higher yield of He over He and of Be-9 over Be-10 in these types of nuclear reactions prevents obtaining experimental evidence of those isotopes, although it is believed that, at least He-3/He-4 can be resolved under other more favorable conditions (i.e., solar He-3-rich events).

  14. Grazing-incidence telescope-spectrograph for space solar-imaging spectroscopy.

    PubMed

    Poletto, L; Tondello, G

    2001-06-01

    The design of a stigmatic grazing-incidence instrument for space applications to solar-imaging spectroscopy is presented. It consists of a double telescope and a spectrograph: Telescope I consists of a single cylindrical mirror with parabolic section, focusing the radiation on the entrance slit of the spectrograph in the spectral dispersion plane; telescope II consists of two cylindrical mirrors with aspherical section in a Wolter configuration, focusing the radiation on the spectrograph focal plane in the direction perpendicular to the spectral dispersion plane. The spectrograph consists of a grazing-incidence spherical variable-line-spaced grating with flat-field properties. Telescope II is crossed with respect to the grating and telescope I; i.e., it is mounted with its tangential planes coincident with the grating equatorial plane. The spectrum is acquired by a detector mounted at near-normal incidence with respect to the direction of the exit beam. The spectral resolution is also preserved for off-axis angles. The effective collecting area of the instrument can be preserved by adoption of a nested configuration for telescope II without degradation of the spectral resolution. PMID:18357295

  15. Progress toward large-aperture membrane mirrors

    NASA Astrophysics Data System (ADS)

    Rotge, James R.; Dass, Shiv C.; Marker, Dan K.; Carreras, Richard A.; Lutz, B.; Duneman, Dennis C.

    2000-10-01

    The Air Force Research Laboratory (AFRL) is exploring the feasibility of large-aperture, deployable, space-based membrane telescopes operating in the visible and/or near- infrared spectral regions. One of the near-term goals of this work is to develop an understanding of available and achievable membrane materials, specifically concentrating on practical techniques to form large aperture membranes with the necessary surface quality and economy. When this research began a little more than three years ago, the conceptual design was based upon a totally inflatable structure. An inflatable structure has been used for space solar power collection and radio frequency antennas. This totally inflatable lenticular design is simple and relatively easy to demonstrate, but maintaining inflation during an extended lifetime in near-earth orbit may not be feasible. Recently, a new concept for a membrane telescope has emerged which does not depend on sustained inflation during operation. Thin membranes on the order of 10 to 100 micrometer thick will be packaged and deployed, maintaining their surface figure by means other than inflation. Given the fact that the sub- wavelength level surface tolerances required of imaging telescopes will probably not be practical with a membrane- based telescope, such systems will probably rely on real-time holography or some other wavefront correction or compensation technique. We will discuss the primary experimental work ongoing in the AFRL Membrane Mirror Laboratory, and in doing so, some of the issues relevant to demonstrating a practical, large-aperture membrane mirror system.

  16. Detection of Solar Wind Disturbances: Mexican Array Radio Telescope IPS Observations at 140 MHz

    NASA Astrophysics Data System (ADS)

    Romero-Hernandez, E.; Gonzalez-Esparza, J. A.; Aguilar-Rodriguez, E.; Ontiveros-Hernandez, V.; Villanueva-Hernandez, P.

    2015-09-01

    The interplanetary scintillation (IPS) technique is a remote-sensing method for monitoring solar-wind perturbations. The Mexican Array Radio Telescope (MEXART) is a single-station instrument operating at 140 MHz, fully dedicated to performing solar-wind studies employing the IPS technique. We report MEXART solar-wind measurements (scintillation indices and solar-wind velocities) using data obtained during the 2013 and 2014 campaigns. These solar-wind measurements were calculated employing a new methodology based on the wavelet transform (WT) function. We report the variation of the scintillation indices versus the heliocentric distance for two IPS sources (3C48 and 3C147). We found different average conditions of the solar-wind density fluctuations in 2013 and 2014. We used the fittings of the radial dependence of the scintillation index to calculate g-indices. Based on the g-index value, we identified 17 events that could be associated with strong compression regions in the solar wind. We present the first ICME identifications in our data. We associated 14 IPS events with preceding CME counterparts by employing white-light observations from the Large Angle and Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) spacecraft. We found that most of the IPS events, detected during the solar maximum of Cycle 24 were associated with complex CME events. For the IPS events associated with single CME counterparts, we found a deceleration tendency of the CMEs as they propagate in the interplanetary medium. These results show that the instrument detects solar-wind disturbances, and the WT methodology provides solar-wind information with good accuracy. The MEXART observations will complement solar-wind IPS studies using other frequencies, and the tracking of solar-wind disturbances by other stations located at different longitudes.

  17. STELLAR TIDAL STREAMS IN SPIRAL GALAXIES OF THE LOCAL VOLUME: A PILOT SURVEY WITH MODEST APERTURE TELESCOPES

    SciTech Connect

    MartInez-Delgado, David; Zibetti, Stefano; Rix, Hans-Walter; Gabany, R. Jay; Crawford, Ken; Majewski, Steven R.; McDavid, David A.; Fliri, Juergen; Carballo-Bello, Julio A.; Bardalez-Gagliuffi, Daniella C.; Trujillo, Ignacio; Penarrubia, Jorge; Chonis, Taylor S.; Madore, Barry; Schirmer, Mischa

    2010-10-15

    Within the hierarchical framework for galaxy formation, minor merging and tidal interactions are expected to shape all large galaxies to the present day. As a consequence, most seemingly normal disk galaxies should be surrounded by spatially extended stellar 'tidal features' of low surface brightness. As part of a pilot survey for such interaction signatures, we have carried out ultra deep, wide field imaging of eight isolated spiral galaxies in the Local Volume, with data taken at small (D = 0.1-0.5 m) robotic telescopes that provide exquisite surface brightness sensitivity ({mu}{sub lim}(V) {approx} 28.5 mag arcsec{sup -2}). This initial observational effort has led to the discovery of six previously undetected extensive (to {approx}30 kpc) stellar structures in the halos surrounding these galaxies, likely debris from tidally disrupted satellites. In addition, we confirm and clarify several enormous stellar over-densities previously reported in the literature, but never before interpreted as tidal streams. Even this pilot sample of galaxies exhibits strikingly diverse morphological characteristics of these extended stellar features: great circle-like features that resemble the Sagittarius stream surrounding the Milky Way, remote shells and giant clouds of presumed tidal debris far beyond the main stellar body, as well as jet-like features emerging from galactic disks. Together with presumed remains of already disrupted companions, our observations also capture surviving satellites caught in the act of tidal disruption. A qualitative comparison with available simulations set in a {Lambda}Cold Dark Matter cosmology (that model the stellar halo as the result of satellite disruption evolution) shows that the extraordinary variety of stellar morphologies detected in this pilot survey matches that seen in those simulations. The common existence of these tidal features around 'normal' disk galaxies and the morphological match to the simulations constitutes new evidence that these theoretical models also apply to a large number of other Milky Way-mass disk galaxies in the Local Volume.

  18. Solar-Array-Induced Disturbance of the Hubble Space Telescope Pointing System

    NASA Technical Reports Server (NTRS)

    Foster, Carlton L.; Tinker, Michael L.; Nurre, Gerald S.; Till, William A.

    1995-01-01

    The investigation of the vibrational disturbances of the Hubble Space Telescope that were discovered soon after deployment in orbit is described in detail. It was found that the disturbances were particularly evident during orbital day-night crossings, and that the magnitude of the disturbances was considerably larger than the design jitter requirement. This paper describes the process by which the vibrations were characterized and isolated to a particular mechanism. The analysis of the flight data and comparisons with computer simulation results showed that the source of the disturbances was the thermally driven deformation of the solar arrays in conjunction with frictional effects in the array mechanisms. The control system was successfully modified to attenuate the disturbances to tolerable levels pending mechanical and thermal redesign of the solar arrays. The new arrays were installed during the first Space Telescope servicing mission, and in combination with the enhanced control system algorithm reduced the disturbances to satisfactory levels.

  19. The solar array-induced disturbance of the Hubble Space Telescope pointing system

    NASA Astrophysics Data System (ADS)

    Foster, C. L.; Tinker, M. L.; Nurre, G. S.; Till, W. A.

    1995-05-01

    The investigation of the vibrational disturbances of the Hubble Space Telescope that were discovered soon after deployment in orbit is described in detail. It was found that the disturbances were particularly evident during orbital day-night crossings, and that the magnitudes of the disturbances were considerably larger than the design jitter requirements. This paper describes the process by which the vibrations were characterized and isolated to a particular mechanism. The analysis of the flight data and comparisons with computer simulation results showed that the source of the disturbances was the thermally driven deformation of the solar arrays in conjunction with frictional effects in the array mechanisms. The control system was successfully modified to attenuate the disturbances to tolerable levels pending mechanical and thermal redesign of the solar arrays. The new arrays were installed during the first space telescope servicing mission and, in combination with the enhanced control system algorithm, reduced the disturbances to satisfactory levels.

  20. Solar-array-induced disturbance of the Hubble space telescope pointing system

    NASA Astrophysics Data System (ADS)

    Foster, Carlton L.; Tinker, Michael L.; Nurre, Gerald S.; Till, William A.

    1995-07-01

    The investigation of the vibrational disturbances of the Hubble Space Telescope that were discovered soon after deployment in orbit is described in detail. It was found that the disturbances were particularly evident during orbital day-night crossings, and that the magnitude of the disturbances was considerably larger than the design jitter requirement. This paper describes the process by which the vibrations were characterized and isolated to a particular mechanism. The analysis of the flight data and comparisons with computer simulation results showed that the source of the disturbances was the thermally driven deformation of the solar arrays in conjunction with frictional effects in the array mechanisms. The control system was successfully modified to attenuate the disturbances to tolerable levels pending mechanical and thermal redesign of the solar arrays. The new arrays were installed during the first Space Telescope servicing mission, and in combination with the enhanced control system algorithm reduced the disturbances to satisfactory levels.

  1. Keck Observations of Solar System Objects: Perspectives for Extremely Large Telescopes

    NASA Astrophysics Data System (ADS)

    Conrad, A. R.; Goodrich, R. W.; Campbell, R. D.; Merline, W. J.; Drummond, J. D.; Dumas, C.; Carry, B.

    2009-09-01

    From differential tracking techniques, required for appulse observations of KBOs with Laser Guide Star Adaptive Optics (LGSAO), to developing methods for collecting spectra at the precise moment of a predicted impact, each Solar System observation conducted on a large telescope presents a unique set of challenges. We present operational details and some key science results from our science program, adaptive optics observations of main belt asteroids and near earth objects; as well as the technical and operational details of several Keck Solar System observations conducted by other teams: the impact of Shoemaker-Levy 9 on Jupiter, volcanoes on Io, the Deep Impact mission to Comet 9P/Tempel 1, and recent observations of Pluto’s moons Nix and Hydra. For each of these observations, we draw from our Keck experience to predict what challenges may lie ahead when similar observations are conducted on next generation telescopes.

  2. The solar array-induced disturbance of the Hubble Space Telescope pointing system

    NASA Technical Reports Server (NTRS)

    Foster, C. L.; Tinker, M. L.; Nurre, G. S.; Till, W. A.

    1995-01-01

    The investigation of the vibrational disturbances of the Hubble Space Telescope that were discovered soon after deployment in orbit is described in detail. It was found that the disturbances were particularly evident during orbital day-night crossings, and that the magnitudes of the disturbances were considerably larger than the design jitter requirements. This paper describes the process by which the vibrations were characterized and isolated to a particular mechanism. The analysis of the flight data and comparisons with computer simulation results showed that the source of the disturbances was the thermally driven deformation of the solar arrays in conjunction with frictional effects in the array mechanisms. The control system was successfully modified to attenuate the disturbances to tolerable levels pending mechanical and thermal redesign of the solar arrays. The new arrays were installed during the first space telescope servicing mission and, in combination with the enhanced control system algorithm, reduced the disturbances to satisfactory levels.

  3. Space telescopes

    NASA Astrophysics Data System (ADS)

    Lemaire, Philippe; Aschenbach, Bernd; Seely, John F.

    A brief survey of normal and grazing incidence space telescope types is given. The optimization of telescope efficiency either by dedicated single, bi-layer or multilayer coatings is described. An outlook of solar and stellar coronagraphs is included.

  4. Features of the solar array drive mechanism for the space telescope

    NASA Technical Reports Server (NTRS)

    Hostenkamp, R. G.

    1985-01-01

    The solar array drive mechanism for the Space Telescope embodies several features not customarily found on solar array drives. Power and signal transfer is achieved by means of a flexible wire harness for which the chosen solution, consisting of 168 standard wires, is described. The torque performance data of the harness over its temperature range are presented. The off load system which protects the bearings from the launch loads is released by a trigger made from Nitinol, the memory alloy. The benefits of memory alloy and the caveats for the design are briefly discussed. The design of the off load system is described and test experience is reported.

  5. Multi-purpose grating spectrograph for the 4-meter European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Calcines, A.; Collados, M.; Feller, A.; Gelly, B.; Grauf, B.; Hirzberger, J.; López Ariste, A.; Lopez, R. L.; Mein, P.; Sayéde, F.

    2012-09-01

    This communication presents a family of spectrographs designed for the European Solar Telescope. They can operate in four different configurations: a long slit standard spectrograph (LsSS), two devices based on subtractive double pass (TUNIS and MSDP) and one based on an integral field, multi-slit, multi-wavelength configuration. The combination of them composes the multi-purpose grating spectrograph of EST, focused on supporting the different science cases of the solar photosphere and chromosphere in the spectral range from 3900 Å to 23000 Å. The different alternatives are made compatible by using the same base spectrographs and different selectable optical elements corresponding to specific subsystems of each configuration.

  6. Off-disk straylight measurements for the Swedish 1-m Solar Telescope

    NASA Astrophysics Data System (ADS)

    Löfdahl, Mats G.

    2016-01-01

    Context. Accurate photometry with ground-based solar telescopes requires characterization of straylight. Scattering in Earth's atmosphere and in the telescope optics are potentially significant sources of straylight, for which the point spread function (PSF) has wings that reach very far. This kind of straylight produces an aureola, extending several solar radii off the solar disk. Aims: We want to measure such straylight using the ordinary science instrumentation. Methods: We scanned the intensity on and far off the solar disk by use of the science cameras in several different wavelength bands on a day with low-dust conditions. We characterized the far wing straylight by fitting a model to the recorded intensities involving a multicomponent straylight PSF and the limb darkening of the disk. Results: The measured scattered light adds an approximately constant fraction of the local granulation intensity to science images at any position on the disk. The fraction varied over the day but never exceeded a few percent. The PSFs have weak tails that extend to several solar radii, but most of the scattered light originates within ~1'. Conclusions: Far-wing scattered light contributes only a small amount of straylight in SST data. Other sources of straylight are primarily responsible for the reduced contrast in SST images.

  7. Multi-Spectral Solar Telescope Array. IV - The soft X-ray and extreme ultraviolet filters

    NASA Technical Reports Server (NTRS)

    Lindblom, Joakim F.; O'Neal, Ray H.; Walker, Arthur B. C., Jr.; Powell, Forbes R.; Barbee, Troy W., Jr.; Hoover, Richard B.

    1991-01-01

    NASA's Multi-Spectral Solar Telescope Array uses various combinations of thin foil filters composed of Al, C, Te, Be, Mo, Rh, and phthalocyanine to achieve the requisite radiation-rejection characteristics. Such rejection is demanded by the presence of strong EUV radiation at longer wavelengths where the specular reflectivity of multilayer mirrors can cause 'contamination' of the image in the narrow band defined by the Bragg condition.

  8. STS-31 Hubble Space Telescope (HST) solar array panel deploy aboard OV-103

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Held in appendage deploy position by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), the Hubble Space Telescope's (HST's) starboard solar array (SA) bistem cassette is released from its stowed position on the Support System Module (SSM) forward shell. The spreader bar and bistem begin to unfurl the SA wing. View was taken by an STS-31 crewmember through an overhead window and is backdropped against the surface of the Earth.

  9. MuSICa image slicer prototype at 1.5-m GREGOR solar telescope

    NASA Astrophysics Data System (ADS)

    Calcines, A.; López, R. L.; Collados, M.; Vega Reyes, N.

    2014-07-01

    Integral Field Spectroscopy is an innovative technique that is being implemented in the state-of-the-art instruments of the largest night-time telescopes, however, it is still a novelty for solar instrumentation. A new concept of image slicer, called MuSICa (Multi-Slit Image slicer based on collimator-Camera), has been designed for the integral field spectrograph of the 4-m European Solar Telescope. This communication presents an image slicer prototype of MuSICa for GRIS, the spectrograph of the 1.5-m GREGOR solar telescope located at the Observatory of El Teide. MuSICa at GRIS reorganizes a 2-D field of view of 24.5 arcsec into a slit of 0.367 arcsec width by 66.76 arcsec length distributed horizontally. It will operate together with the TIP-II polarimeter to offer high resolution integral field spectropolarimetry. It will also have a bidimensional field of view scanning system to cover a field of view up to 1 by 1 arcmin.

  10. Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B.; Allen, Maxwell J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C., Jr.

    1991-01-01

    The Multispectral Solar Telescope Array is a rocket-borne observatory which encompasses seven compact soft X-ray/EUV, multilayer-coated, and two compact far-UV, interference film-coated, Cassegrain and Ritchey-Chretien telescopes. Extensive measurements are presented on the efficiency and spectral bandpass of the X-ray/EUV telescopes. Attention is given to systematic errors and measurement errors.

  11. Multi-Conjugate Adaptive Optics - relay optical designs for a 4-m off-axis solar telescope

    NASA Astrophysics Data System (ADS)

    Moretto, Gilberto; Rimmele, Thomas R.; Langlois, Maud

    2004-02-01

    The Sun is an ideal object for the development and application of Multi-Conjugate Adaptive Optics (MCAO). An effort to develop solar MCAO is pursued by the NSO"s Adaptive Optics Project. In developing solar MCAO we bear in mind its possible implementation into the proposed 4-M Advanced Technology Solar Telescope (ATST). Two possible relay optical designs feeding a MCAO section and the Coudé section of a 4-M off-axis solar telescope, such as the proposed ATST, are presented and discussed here.

  12. The Greenwich Photo-heliographic Results (1874 - 1885): Observing Telescopes, Photographic Processes, and Solar Images

    NASA Astrophysics Data System (ADS)

    Willis, D. M.; Wild, M. N.; Appleby, G. M.; Macdonald, L. T.

    2016-05-01

    Potential sources of inhomogeneity in the sunspot measurements published by the Royal Observatory, Greenwich, during the early interval 1874 - 1885 are examined critically. Particular attention is paid to inhomogeneities that might arise because the sunspot measurements were derived from solar photographs taken at various contributing solar observatories, which used different telescopes, experienced different seeing conditions, and employed different photographic processes. The procedures employed in the Solar Department at the Royal Greenwich Observatory (RGO), Herstmonceux, during the final phase of sunspot observations provide a modern benchmark for interpreting the early sunspot measurements. The different observing telescopes used at the contributing solar observatories during the interval 1874 - 1885 are discussed in detail, using information gleaned from the official RGO publications and other relevant historical documents. Likewise, the different photographic processes employed at the different solar observatories are reviewed carefully. The procedures used by RGO staff to measure the positions and areas of sunspot groups on photographs of the Sun having a nominal radius of either four or eight inches are described. It is argued that the learning curve for the use of the Kew photoheliograph at the Royal Observatory, Greenwich, actually commenced in 1858, not 1874. The RGO daily number of sunspot groups is plotted graphically and analysed statistically. Similarly, the changes of metadata at each solar observatory are shown on the graphical plots and analysed statistically. It is concluded that neither the interleaving of data from the different solar observatories nor the changes in metadata invalidates the RGO count of the number of sunspot groups, which behaves as a quasi-homogeneous time series. Furthermore, it is emphasised that the correct treatment of days without photographs is quite crucial to the correct calculation of Group Sunspot Numbers.

  13. Solar Polar ORbit Telescope (SPORT): A Potential Space Weather Mission of China

    NASA Astrophysics Data System (ADS)

    Liu, Y. D.; Xiong, M.; Wu, J.; Liu, H.; Zheng, J.; Li, B.; Zhang, C.; Sun, W.

    2013-12-01

    We describe a spacecraft mission, named Solar Polar ORbit Telescope (SPORT), which is currently under a scientific and engineering background study in China. SPORT was originally proposed in 2004 by the National Space Science Center, Chinese Academy of Sciences. It will carry a suite of remote-sensing and in-situ instruments to observe coronal mass ejections (CMEs), solar high-latitude magnetism, and the fast solar wind from a polar orbit around the Sun. It is intended to be the first mission that carries remote-sensing instruments from a high-latitude orbit around the Sun, the first mission that could image interplanetary CMEs at radio wavelengths from space, and the first mission that could measure solar high-latitude magnetism leading to eruptions and the fast solar wind. The first extended view of the polar region of the Sun and the ecliptic plane enabled by SPORT will provide a unique opportunity to study CME propagation through the inner heliosphere and solar high-latitude magnetism giving rise to eruptions and the fast solar wind.

  14. A long duration balloon-borne telescope for solar gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Owens, Alan; Chupp, Edward L.; Dunphy, Philip P.

    1989-01-01

    A new solar gamma-ray telescope is described which is intended to take advantage of current long-duration ballon facilities such as the RACOON system. The primary scientific objective is to detect and measure gamma-ray lines from solar flares, along with the associated low-energy continuum. The proposed instrument is centered on a multiheaded Ge system and is designed to operate over the energy range 50 keV to 200 200 MeV. In the nuclear transition energy region, the average energy resolution of the primary detectors is over 20 times better than that achieved with the gamma-ray spectrometer on the Solar Maximum Mission satellite.

  15. Construction Status and Early Science with the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    McMullin, Joseph P.; Rimmele, Thomas R.; Warner, Mark; Martinez Pillet, Valentin; Craig, Simon; Woeger, Friedrich; Tritschler, Alexandra; Berukoff, Steven J.; Casini, Roberto; Goode, Philip R.; Knoelker, Michael; Kuhn, Jeffrey Richard; Lin, Haosheng; Mathioudakis, Mihalis; Reardon, Kevin P.; Rosner, Robert; Schmidt, Wolfgang

    2016-05-01

    The 4-m Daniel K. Inouye Solar Telescope (DKIST) is in its seventh year of overall development and its fourth year of site construction on the summit of Haleakala, Maui. The Site Facilities (Utility Building and Support & Operations Building) are in place with ongoing construction of the Telescope Mount Assembly within. Off-site the fabrication of the component systems is completing with early integration testing and verification starting.Once complete this facility will provide the highest sensitivity and resolution for study of solar magnetism and the drivers of key processes impacting Earth (solar wind, flares, coronal mass ejections, and variability in solar output). The DKIST will be equipped initially with a battery of first light instruments which cover a spectral range from the UV (380 nm) to the near IR (5000 nm), and capable of providing both imaging and spectro-polarimetric measurements throughout the solar atmosphere (photosphere, chromosphere, and corona); these instruments are being developed by the National Solar Observatory (Visible Broadband Imager), High Altitude Observatory (Visible Spectro-Polarimeter), Kiepenheuer Institute (Visible Tunable Filter) and the University of Hawaii (Cryogenic Near-Infrared Spectro-Polarimeter and the Diffraction-Limited Near-Infrared Spectro-Polarimeter). Further, a United Kingdom consortium led by Queen's University Belfast is driving the development of high speed cameras essential for capturing the highly dynamic processes measured by these instruments. Finally, a state-of-the-art adaptive optics system will support diffraction limited imaging capable of resolving features approximately 20 km in scale on the Sun.We present the overall status of the construction phase along with the current challenges as well as a review of the planned science testing and the transition into early science operations.

  16. Calibration development strategies for the Daniel K. Inouye Solar Telescope (DKIST) Data Center

    NASA Astrophysics Data System (ADS)

    Watson, Fraser; Reardon, Kevin P.; Berukoff, Steven J.; Hays, Tony; Wiant, Scott; Spiess, DJ

    2016-05-01

    As telescopes have grown larger and data rates have increased, so have the challenges in providing reliable and accurate calibration strategies for transforming raw data into useful science-ready outputs. The Daniel K. Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world and will use adaptive optics to provide the highest resolution view of the Sun. Its data acquisition rates will be in the hundreds of thousands of frames per day, and it will deliver an average of 12TB of raw solar data on a daily basis. DKIST data will enable significant and transformative discoveries that will dramatically increase our understanding of the Sun and its effects on the Sun-Earth environment. As such, it is a priority of the DKIST Data Center team at the National Solar Observatory (NSO) to be able to deliver timely and accurately calibrated data to the astronomical community for further analysis.The facility will execute a variety of investigator-driven observing programs, which will produce day–to-day variations in the types of acquired data. In combination with large data rates and limited personnel, this will require some degree of automation to be incorporated into the calibration workflows to facilitate the generation of scientifically useful data. The heterogeneity of the data and the unpredictable variations in the seeing conditions (on timescales of seconds or minutes) introduce complexity, which requires a self-adapting, extensible calibration pipeline to provide sufficient automation to the process. Our knowledge of the instrument performance and telescope characteristics will grow as the telescope begins operations, and continuously through the facility lifetime. The automated calibration pipelines will be capable of modification and improvement to incorporate the new information about the DKIST system, as well as potential improvements provided by the DKIST user community.This poster will detail the calibration development strategies being used by the Data Center team at the NSO to manage this calibration effort, in order to deliver timely and accurately calibrated data to the DKIST user community, with as much scientific value as possible.

  17. High-performance parallel image reconstruction for the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Li, Xue-Bao; Liu, Zhong; Wang, Feng; Jin, Zhen-Yu; Xiang, Yong-Yuan; Zheng, Yan-Fang

    2015-06-01

    Many technologies have been developed to help improve spatial resolution of observational images for ground-based solar telescopes, such as adaptive optics (AO) systems and post-processing reconstruction. As any AO system correction is only partial, it is indispensable to use post-processing reconstruction techniques. In the New Vacuum Solar Telescope (NVST), a speckle-masking method is used to achieve the diffraction-limited resolution of the telescope. Although the method is very promising, the computation is quite intensive, and the amount of data is tremendous, requiring several months to reconstruct observational data of one day on a high-end computer. To accelerate image reconstruction, we parallelize the program package on a high-performance cluster. We describe parallel implementation details for several reconstruction procedures. The code is written in the C language using the Message Passing Interface (MPI) and is optimized for parallel processing in a multiprocessor environment. We show the excellent performance of parallel implementation, and the whole data processing speed is about 71 times faster than before. Finally, we analyze the scalability of the code to find possible bottlenecks, and propose several ways to further improve the parallel performance. We conclude that the presented program is capable of executing reconstruction applications in real-time at NVST.

  18. Reflectivity, polarization properties, and durability of metallic mirror coatings for the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Feller, A.; Krishnappa, N.; Pleier, O.; Hirzberger, J.; Jobst, P. J.; Schürmann, M.

    2012-09-01

    In the context of the conceptual design study for the European Solar Telescope (EST) we have investigated different metallic mirror coatings in terms of reflectivity, polarization properties and durability. Samples of the following coating types have been studied: bare aluminum, silver with different dielectric layers for protection and UV enhancement, and an aluminum-silver combination. From 2009 to 2011 we have carried out a long-term durability test under realistic observing conditions at the VTT solar telescope of the Observatorio del Teide (Tenerife, Spain), accompanied by repeated reflectivity measurements in the EST spectral working range (0.3 - 20 μm), and by polarization measurements in the visible range. The test results allow us to find the optimum coatings for the different mirrors in the EST beampath and to eventually assess aging effects and re-coating cycles. The results of the polarization measurements are a valuable input for an EST telescope polarization model, helping to meet the stringent requirements on polarimetric accuracy.

  19. Photogrammetric Assessment of the Hubble Space Telescope Solar Arrays During the Second Servicing Mission

    NASA Technical Reports Server (NTRS)

    Sapp, C. A.; Dragg, J. L.; Snyder, M. W.; Gaunce, M. T.; Decker, J. E.

    1998-01-01

    This report documents the photogrammetric assessment of the Hubble Space Telescope (HST) solar arrays conducted by the NASA c Center Image Science and Analysis Group during Second Servicing Mission 2 (SM-2) on STS-82 in February 1997. Two type solar array analyses were conducted during the mission using Space Shuttle payload bay video: (1) measurement of solar array motion due to induced loads, and (2) measurement of the solar array static or geometric twist caused by the cumulative array loading. The report describes pre-mission planning and analysis technique development activities conducted to acquire and analyze solar array imagery data during SM-2. This includes analysis of array motion obtained during SM-1 as a proof-of-concept of the SM-2 measurement techniques. The report documents the results of real-time analysis conducted during the mission and subsequent analysis conducted post-flight. This report also provides a summary of lessons learned on solar array imagery analysis from SM-2 and recommendations for future on-orbit measurements applicable to HST SM-3 and to the International Space Station. This work was performed under the direction of the Goddard Space Flight Center HST Flight Systems and Servicing Project.

  20. Concept study of an Extremely Large Hyper Telescope (ELHyT) with 1200m sparse aperture for direct imaging at 100 micro-arcsecond resolution

    NASA Astrophysics Data System (ADS)

    Labeyrie, Antoine; Mourard, Denis; Allouche, Fatmé; Chakraborthy, Rijuparna; Dejonghe, Julien; Surya, Arun; Bresson, Yves; Aime, Claude; Mary, David; Carlotti, Alexis

    2012-07-01

    The hypertelescope construction initiated in the Southern Alps (Labeyrie et al., this conference) has provided some preliminary operating experience indicating that larger versions, up to perhaps 1200m, are probably feasible at suitable sites. The Arecibo-like architecture of such instruments does not require the large mount and dome which dominate the cost of a 40m ELT. For the same cost, an "Extremely Large Hyper Telescope” ( ELHyT) may therefore have a larger collecting area. It may thus in principle reach higher limiting magnitudes, both for seeing-limited and, if equipped with a Laser Guide Star and adaptive phasing, for high-resolution imaging with gain as the size ratio, i.e. about 30 with respect to a 40m ELT. Like the radio arrays of antennas, such instruments can be grown progressively. Also, they can be up-graded with several focal gondolas, independently tracking different sources. Candidate sites have been identified in the Himalaya and the Andes. We describe several design options and compare the science achievable for both instruments, ELTs and ELHyTs. The broad science addressed by an ELHyT covers stellar chromospheres, transiting exoplanets and those requiring a high dynamic range, achieved by array apodization or coronagraphy. With a Laser Guide Star, it extends to faint compact sources beyond the limits of telescopes having a smaller collecting area, supernovae, active galactic nuclei, gamma ray bursts. The sparse content of remote galaxies seen in the Hubble Deep Field appears compatible with the crowding limitations of an ELHyT having 1000 apertures.

  1. Solar System Research with the Spacewatch 1.8-m Telescope

    NASA Technical Reports Server (NTRS)

    McMillan, Robert S.

    2001-01-01

    During this grant period, the 1.8-m Spacewatch telescope was put into routine operation to search for asteroids and comets ranging in location from near-Earth space to regions beyond the orbit of Neptune. All of these classes of objects can be detected simultaneously with our uniform scanning procedures. We are studying near Earth objects (NEOs), main belt asteroids, comets, Centaurs, and trans-Neptunian objects (TNOs), as well as the interrelationships of these classes and their bearing on the origin and evolution of the solar system. The Spacewatch 1.8-meter telescope is sensitive to V(mag) < 22.6 in sidereal scanning mode and is able to reach even fainter in longer 'staring' exposures, with a field of view 0.5 degrees square. These faint limits make the operation of the Spacewatch 1.8-m telescope complementary to asteroid surveys being done by other groups. Specifically, EAs smaller than 100 m in diameter and small main belt asteroids can be found, as well as more distant objects such as Centaurs/Scattered Disk Objects (SDOs) and TNOs. The 1.8-m telescope is also being used to do recoveries and astrometry of recently-discovered asteroids that subsequently become too faint for the other groups before good orbits are established.

  2. The KELT-South Telescope

    NASA Astrophysics Data System (ADS)

    Pepper, Joshua; Kuhn, Rudolf B.; Siverd, Robert; James, David; Stassun, Keivan

    2012-03-01

    The Kilodegree Extremely Little Telescope (KELT) project is a survey for new transiting planets around bright stars. KELT-South is a small-aperture, wide-field automated telescope located at Sutherland, South Africa. The telescope surveys a set of 26° × 26° fields around the southern sky and targets stars in the range of 8 < V < 10 mag, searching for transits by hot Jupiters. This article describes the KELT-South system hardware and software and discusses the quality of the observations. We show that KELT-South is able to achieve the necessary photometric precision to detect transits of hot Jupiters around solar-type main-sequence stars. The KELT-South telescope is funded and operated by Vanderbilt University and Fisk University in cooperation with the South African Astronomical Observatory.

  3. Real time controller for 37-element low-order solar adaptive optics system at 1m new vacuum solar telescope

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Gu, Naiting; Chen, Shanqiu; Zhang, Lanqiang; Wang, Xiaoyun; Rao, Xuejun; Li, Mei; Rao, Changhui

    A low-order solar adaptive optics (AO) system had been successfully built and installed at 1m New Vacuum Solar Telescope (NVST) of Full-shine Lake Solar Observatory. The real time controller (RTC) of the AO system, which consists of a correlation tracker and a high-order wavefront correction controller, was developed. In this system, the absolute difference algorithm is used to detect wavefront gradients. A new architecture with field-programmable gate array (FPGA) and digital signal processor (DSP) for the real-time controller based on systolic array and pipeline was designed. The controller was integrated into the AO system and saw the first light on February 24th, 2011, using solar granulation as the beacon. Later, the AO-corrected high resolution sunspots images were obtained using sunspots as the beacon. The observational results show that the contrast and resolution of the solar images are improved evidently after the correction by the AO system. The design of the RTC and the observational results will be presented.

  4. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-04-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  5. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope.

    PubMed

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459

  6. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

    PubMed Central

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459

  7. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6~m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale E.; Wang, Haimin

    2016-05-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6~m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  8. Calibration of the instrumental polarization of the Domeless Solar Telescope at the Hida Observatory

    NASA Astrophysics Data System (ADS)

    Kiyohara, Junko; Ueno, Satoru; Kitai, Reizaburo; Kurokawa, Hiroki; Makita, Mitsugu; Ichimoto, Kiyoshi

    2004-09-01

    A new spectropolarimeter is developed at the Domeless Solar Telescope (DST) in Hida Observatory. It consists of a rotating waveplate, Wollaston prisms, and a high-dispersion spectrograph which is vertically installed at the focus of the DST. In order to realize a high-precision measurement, it is inevitable to compensate the instrumental polarization due to the DST. We observed the quiet region of the Sun, which is considered to be highly unpolarized, with and without a sheet linear polarizer or circular polarizer set at the entrance window of the telescope. The theoretical model which represents the total instrumental polarization of the DST with some characteristic parameters was calculated and compared with the observation. The model that two flat mirrors have different properties can explain the observation in 0.5% accuracy for the unpolarized light, and in 7% for the polarized light.

  9. The adaptive optics and wavefront correction systems for the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Richards, K.; Rimmele, T.; Hegwer, S. L.; Upton, R. S.; Woeger, F.; Marino, J.; Gregory, S.; Goodrich, B.

    2010-07-01

    The high order adaptive optics (HOAO) system is the centerpiece of the ATST wavefront correction system. The ATST wavefront correction system is required to achieve a Strehl of S = 0.6 or better at visible wavelength. The system design closely follows the successful HOAO implementation at the Dunn Solar Telescope and is based on the correlating Shack-Hartmann wavefront sensor. In addition to HOAO the ATST will utilize wavefront sensors to implement active optics (aO) and Quasi Static Alignment (QSA) of the telescope optics, which includes several off-axis elements. Provisions for implementation of Multi-conjugate adaptive optics have been made with the design of the optical path that feeds the instrumentation at the coudé station. We will give an overview of the design of individual subsystems of the ATST wavefront correction system and describe some of the unique features of the ATST wavefront correction system, such as the need for thermally controlled corrective elements.

  10. Rocket studies of solar corona and transition region. [X-Ray spectrometer/spectrograph telescope

    NASA Technical Reports Server (NTRS)

    Acton, L. W.; Bruner, E. C., Jr.; Brown, W. A.; Nobles, R. A.

    1979-01-01

    The XSST (X-Ray Spectrometer/Spectrograph Telescope) rocket payload launched by a Nike Boosted Black Brant was designed to provide high spectral resolution coronal soft X-ray line information on a spectrographic plate, as well as time resolved photo-electric records of pre-selected lines and spectral regions. This spectral data is obtained from a 1 x 10 arc second solar region defined by the paraboloidal telescope of the XSST. The transition region camera provided full disc images in selected spectral intervals originating in lower temperature zones than the emitting regions accessible to the XSST. A H-alpha camera system allowed referencing the measurements to the chromospheric temperatures and altitudes. Payload flight and recovery information is provided along with X-ray photoelectric and UV flight data, transition camera results and a summary of the anomalies encountered. Instrument mechanical stability and spectrometer pointing direction are also examined.

  11. A New Era in Solar Thermal-IR Astronomy: the NSO Array Camera (NAC) on the McMath-Pierce Telescope

    NASA Astrophysics Data System (ADS)

    Ayres, T.; Penn, M.; Plymate, C.; Keller, C.

    2008-09-01

    The U.S. National Solar Observatory Array Camera (NAC) is a cryogenically cooled 1Kx1K InSb ``Aladdin" array that recently became operational at the McMath-Pierce facility on Kitt Peak, a high dry site in the southwest U.S. (Arizona). The new camera is similar to those already incorporated into instruments on nighttime telescopes, and has unprecedented sensitivity, low noise, and excellent cosmetics compared with the Amber Engineering (AE) device it replaces. (The latter was scavenged from a commercial surveillance camera in the 1990's: only 256X256 format, high noise, and annoying flatfield structure). The NAC focal plane is maintained at 30 K by a mechanical closed-cycle helium cooler, dispensing with the cumbersome pumped--solid-N2 40 K system used previously with the AE camera. The NAC linearity has been verified for exposures as short as 1 ms, although latency in the data recording holds the maximum frame rate to about 8 Hz (in "streaming mode"). The camera is run in tandem with the Infrared Adaptive Optics (IRAO) system. Utilizing a 37-actuator deformable mirror, IRAO can--under moderate seeing conditions--correct the telescope image to the diffraction limit longward of 2.3 mu (if a suitable high contrast target is available: the IR granulation has proven too bland to reliably track). IRAO also provides fine control over the solar image for spatial scanning in long-slit mode with the 14 m vertical "Main" spectrograph (MS). A 1'X1' area scan, with 0.5" steps orthogonal to the slit direction, requires less than half a minute, much shorter than p-mode and granulation evolution time scales. A recent engineering test run, in April 2008, utilized NAC/IRAO/MS to capture the fundamental (4.6 mu) and first-overtone (2.3 mu) rovibrational bands of CO, including maps of quiet regions, drift scans along the equatorial limbs (to measure the off-limb molecular emissions), and imaging of a fortuitous small sunspot pair, a final gasp, perhaps, of Cycle 23. Future work with the NAC will emphasize pathfinding toward the next generation of IR imaging spectrometers for the Advanced Technology Solar Telescope, whose 4 m aperture finally will bring sorely needed high spatial resolution to daytime infrared astronomy. In the meantime, the NAC is available to qualified solar physicists from around the world to conduct forefront research in the 1-5 mu region, on the venerable--but infrared friendly--McMath-Pierce telescope.

  12. Experiment and modal analysis on the primary mirror structure of Space Solar Telescope

    NASA Astrophysics Data System (ADS)

    Chen, Zhiyuan; Zhang, Rui; Chen, Zhiping; Yang, Shimo; Hu, Qiqian

    2006-06-01

    Primary mirror with Φ 1m and f 3.5m is the most important optical part in Space Solar Telescope (SST), which is designed to make observations of transient and steady state solar hydrodynamic and magnetohydrodynamic processes and is being researched and manufactured by National Astronomical Observatories. The primary mirror structure(PMS), a crucial linker for the optical and other subsystems, includes primary mirror and its supporting frame. Therefore, this part must satisfy the optical sufficient strength, stiffness, and thermal stability requirements under the space environment and in the launching process. In this paper the primary mirror structure and its connection are described. The scheme of modal analysis and experiment is built, according to the specific dynamic requirements of the primary mirror structure in Space Solar Telescope. The dynamic response on the primary mirror structure is analyzed with MSC.NASTRAN software. Comparing these results with mode parameters obtained from modal experiment analysis. Modal experiment uses freely hanging primary mirror structure, simple input multi-output, and modal parameter identification through CADA-X software. Both results provide evidences to develop this satellite design.

  13. Studying instrumental linear polarization at the Large Solar Vacuum Telescope (LSVT)

    NASA Astrophysics Data System (ADS)

    Firstova, N. M.; Polyakov, V. I.; Skomorovsky, V. I.; Grigoriev, V. M.

    2009-12-01

    Impact linear polarization in solar flares is studied with the Large Solar Vacuum Telescope (LSVT) using the spectral polarimetric method. This method makes it possible to minimize the effect of instrumental polarization with an error of up to 10-2 owing to the normalization of the spectral line intensity to the continuum spectrum intensity with negligible linear polarization. As a result, the Hα line intensity in two orthogonally polarized spectral stripes coincides in the absence of solar polarization. However, in the presence of linear polarization in a flare, the spectral polarimetric method does not rule out that the error can be present in determining the Stokes parameters Q and U because of their possible relative “leakage.” Linear instrumental polarization of LSVT has been performed using polaroid rotation before the major mirror. Twelve elements of a telescope matrix, characterizing linear polarization, have been determined. The usage of a matrix makes it possible to specify the observed Q and U values accurate to 10-3 of their magnitude.

  14. Sub-arcsecond Structure and Dynamics of Flare Ribbons Observed with New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Sharykin, Ivan; Kosovichev, Alexander G.

    2014-06-01

    Emission of solar flares across the electromagnetic spectrum is often observed in the form of two expanding ribbons. The standard flare model explains the flare ribbons as footpoints of magnetic arcades, emitting due to the interaction of energetic particles with the chromospheric plasma. However, the physics of this interaction and properties of the accelerated particles are still unknown. We present results of multiwavelength observations of C2.1 flare of August 15, 2011, observed with the 1.6-meter New Solar Telescope of Big Bear Solar Observatory. These unique data are characterized by the great spatial resolution reaching the telescope diffraction limit with good spectral scanning of H-alpha line, and photospheric imaging. The observations reveal previously unresolved sub-arcsecond structure of the flare ribbons in regions of strong magnetic field. We discuss the fine structure of the flare ribbons, their dynamics, and possible mechanisms of the energy release and transport, using also data from SDO, GOES and FERMI spacecraft.

  15. Isoplanatic patch considerations for solar telescope multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Beckers, Jacques M.

    2014-08-01

    I compare recent site surveys for the future large 4-meter solar and 30-meter nighttime telescopes at the nearby Haleakala and Mauna Kea sites respectively. They show that the outstanding early morning image quality at the solar site corresponds indeed to that observed at the late night one at the nighttime site. That confirms the notion that daytime solar site heating only shows itself later in the morning. The nighttime survey includes observations of the refractive index structure function Cn 2(h) to high altitudes from which the radius of the isoplanatic patch (Ɵ0) can be determined. At zenith (ζ = 00) it equals 2.5 arcsec at 500 nm wavelength. For the early morning (best) seeing at the solar site, which occurs at ζsun = 750 and the cos1.6(ζ) dependence of Θ0,that means an extremely small Ɵ0 (0.26 arcsec). Such small values compromise Adaptive Optics (AO) solar correlation wavefront sensing for which areas are needed equal to about 8"× 8" I suggest options for measuring Cn2(h), and therefore Ɵ0, during the day. These make use of the solar image as well as of daytime images of bright stars and planets. Some use the MASS technique on stars; some use the SHABAR technique using very large detector baselines on the Sun and shorter baselines on planets. It is suggested that these Cn2(h) measurements are made also during regular solar observations. In that way optimal solar observations can be planned using real-time Ɵ0 observations by image selection and optimization of the MCAO configuration.

  16. An Overview of Electron-Proton and High Energy Telescopes of Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. R.; Grunau, J.; Boden, S.; Steinhagen, J.; Martin, C.; Wimmer-Schweingruber, R. F.; Boettcher, S.; Seimetz, L.; Ravanbakhsh, A.; Elftmann, R.; Rodriguez-Pacheco, J.; Prieto, M.; Gomez-Herrero, R.

    2013-12-01

    The Energetic Particle Detector (EPD) suite for ESA's Solar Orbiter will provide key measurements to address particle acceleration at and near the Sun. The EPD suite consists of five sensors (STEP, SIS, EPT, and HET). The University of Kiel in Germany is also responsible for the design, development, and build of EPT and HET which are presented here. The Electron Proton Telescope (EPT) is designed to cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. The Solar Orbiter EPT electron measurements from 20 - 400 keV will cover the gap with some overlap between suprathermal electrons measured by STEP and high energy electrons measured by HET. The proton measurements from 20 -7000 keV will partially cover the gap between STEP and HET. The Electron and Proton Telescope relies on the magnet/foil-technique. The High-Energy Telescope (HET) on ESA's Solar Orbiter mission, will measure electrons from 300 keV up to about 30 MeV, protons from 10 -100 MeV, and heavy ions from ~20 to 200 MeV/nuc. Thus, HET covers the energy range which is of specific interest for studies of the space environment and will perform the measurements needed to understand the origin of high-energy events at the Sun which occasionally accelerate particles to such high energies that they can penetrate the Earth's atmosphere and be measured at ground level. Here we present the current development status of EPT-HET units and calibration results of demonstration models and present plans for future activities.

  17. Advanced Technology Solar Telescope M1 thermal control system design, modeling, and prototype testing

    NASA Astrophysics Data System (ADS)

    Hansen, Eric; Bulau, Scott; Phelps, LeEllen

    2008-07-01

    The Advanced Technology Solar Telescope (ATST) project plans to implement thermal control of the primary mirror using jet impingement of temperature controlled air on the backside of the meniscus mirror. This technique will be used to minimize temperature rise of the optical surface due to coating absorption, minimizing mirror seeing effects. The performance of this system has been evaluated using numerical modeling techniques and weather data recorded at the proposed observatory site. To aid in the design of the M1 thermal control system for the ATST, a prototype test bed was designed, fabricated and tested. This paper reviews the progress and results of this development program.

  18. Advanced Scintillator-Based Compton Telescope for Solar Flare Gamma-Ray Measurements

    NASA Astrophysics Data System (ADS)

    Ryan, James Michael; Bloser, Peter; McConnell, Mark; Legere, Jason; Bancroft, Christopher; Murphy, Ronald; de Nolfo, Georgia

    2015-04-01

    A major goal of future Solar and Heliospheric Physics missions is the understanding of the particle acceleration processes taking place on the Sun. Achieving this understanding will require detailed study of the gamma-ray emission lines generated by accelerated ions in solar flares. Specifically, it will be necessary to study gamma-ray line ratios over a wide range of flare intensities, down to small C-class flares. Making such measurements over such a wide dynamic range, however, is a serious challenge to gamma-ray instrumentation, which must deal with large backgrounds for faint flares and huge counting rates for bright flares. A fast scintillator-based Compton telescope is a promising solution to this instrumentation challenge. The sensitivity of Compton telescopes to solar flare gamma rays has already been demonstrated by COMPTEL, which was able to detect nuclear emission from a C4 flare, the faintest such detection to date. Modern fast scintillators, such as LaBr3, and CeBr3, are efficient at stopping MeV gamma rays, have sufficient energy resolution (4% or better above 0.5 MeV) to resolve nuclear lines, and are fast enough (~15 ns decay times) to record at very high rates. When configured as a Compton telescope in combination with a modern organic scintillator, such as p-terphenyl, sub-nanosecond coincidence resolving time allows dramatic suppression of background via time-of-flight (ToF) measurements, allowing both faint and bright gamma-ray line flares to be measured. The use of modern light readout devices, such as silicon photomultipliers (SiPMs), eliminates passive mass and permits a more compact, efficient instrument. We have flown a prototype Compton telescope using modern fast scintillators with SiPM readouts on a balloon test flight, achieving good ToF and spectroscopy performance. A larger balloon-borne instrument is currently in development. We present our test results and estimates of the solar flare sensitivity of a possible full-scale instrument suitable for flight on long-duration balloon flights or on an Explorer satellite platform.

  19. Results of protective coating studies for the Hubble Space Telescope solar array

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Gause, Raymond L.; Harwell, Roger J.; Dehaye, Robert F.; Burns, Howard Dewitt, Jr.; Reynolds, J. M.

    1989-01-01

    An account is given of the methods, results, and interpretive conclusions obtained by a series of comprehensive performance verification/qualification tests conducted on candidate coatings for the Hubble Space Telescope's (HST) solar array. These coatings are intended to minimize the effects of orbital atomic oxygen impingement on exposed materials. Attention was given to atomic oxygen exposure, UV exposure, thermal cycling, and electron and proton exposure. The V-10 and CVI-1140-1 candidate coatings were demonstrated to be adequately resistant to a five-year HST mission's environmental exposure.

  20. Neutron Emission from the Solar Flare of September 07, 2005, Detected by the Solar Neutron Telescope at Sierra Negra, Mexico

    NASA Astrophysics Data System (ADS)

    Valdes-Galicia, J. F.; Gonzalez, L.; Sanchez, F.; Watanabe, K.; Sako, T.; Matsubara, Y.; Muraki, Y.; Shibata, S.; Hurtado, A.; Musalem, O.

    2011-12-01

    The X17.0 solar flare of September 07, 2005 released high-energy neutrons, that were detected by the Solar Neutron Telescope (SNT) at Sierra Negra, Mexico. In two separate and independent studies of this solar neutron event, the energy spectra as a power law was calculated ( Sako, T., et al., 2006, ApJ, 651, 69. Watanabe, K., et al., 2006. ApJ, 636, 1135) In this paper, we show an alternative analysis, based on an improved numerical simulations of the detector using GEANT 4, and a different technique to treat the SNT data. The results indicate that the spectral index which best fits the neutron flux is nearly 3, in agreement with previous works. Based in the numerically calculated energy deposition of SNT, we confirm that neutrons were detected with at least 1GeV, which implies that the solar flare might have produced 10GeV protons; these could not be observed at Earth, as the source flare was in the east limb of the Sun.

  1. Feasibility study of a layer-oriented wavefront sensor for solar telescopes.

    PubMed

    Marino, Jose; Wöger, Friedrich

    2014-02-01

    Solar multiconjugate adaptive optics systems rely on several wavefront sensors, which measure the incoming turbulent phase along several field directions to produce a tomographic reconstruction of the turbulent phase. In this paper, we explore an alternative wavefront sensing approach that attempts to directly measure the turbulent phase present at a particular height in the atmosphere: a layer-oriented cross-correlating Shack-Hartmann wavefront sensor (SHWFS). In an experiment at the Dunn Solar Telescope, we built a prototype layer-oriented cross-correlating SHWFS system conjugated to two separate atmospheric heights. We present the data obtained in the observations and complement these with ray-tracing computations to achieve a better understanding of the instrument's performance and limitations. The results obtained in this study strongly indicate that a layer-oriented cross-correlating SHWFS is not a practical design to measure the wavefront at a high layer in the atmosphere. PMID:24514185

  2. Solar-B X-ray Telescope (XRT) Concept Study Report

    NASA Astrophysics Data System (ADS)

    Golub, Leon

    1999-10-01

    The X-ray observations from the Yohkoh SXT provided the greatest step forward in our understanding of the solar corona in nearly two decades. Expanding on the accomplishments of Yohkoh, we believe that the scientific objectives of the Solar-B mission are achieved with a significantly improved X-ray telescope (XRT) similar to the SXT. The Solar-B XRT will have twice the spatial resolution and a broader temperature response, while building on the knowledge gained from the successful Yohkoh mission. We present the scientific justification for this view, discuss the instrumental requirements that flow from the scientific objectives, and describe the instrumentation to meet these requirements. We then provide a detailed discussion of the design activities carried out during Phase A, noting the conclusions that were reached in terms of their implications for the detailed design activities which are now commencing. Details of the instrument that have changed as a result of the Phase A studied are specifically noted, and areas of concern going into Phase B are highlighted. XRT is a grazing-incidence (GI) modified Wolter I X-ray telescope, of 35cm inner diameter and 2.7m focal length. The 2048x2048 back-illuminated CCD (now an ISAS responsibility) has 13.5 micron pixels, corresponding to 1.0 arcsec and giving full Sun field of view. This will be the highest resolution GI X-ray telescope ever flown for Solar coronal studies, and it has been designed specifically to observe both the high and low temperature coronal plasma. A small optical telescope provides visible light images for co-alignment with the Solar-B optical and EUV instruments. The XRT science team is working in close cooperation with our Japanese colleagues in the design and construction of this instrument. All of the expertise and resources of the High Energy and Solar/Stellar Divisions of the Center for Astrophysics are being made available to this program, and our team will carry its full share of responsibility for mission operations, data reduction and education and public outreach. All aspects of the XRT design were reviewed during Phase A. The study focussed particularly on those aspects that have the greatest affect on instrument performance and extended lifetime, on the image quality error budget, and on the camera (mechanical and electrical) interface and the instrument mounting interfaces. The present instrument design differs in some details from that originally proposed. Selection of the XRT for Phase A study was contingent upon the removal of the camera and its associated electronics, and the acceptance of a stringent cost cap. The removal of the electronics left the XRT without control electronics for the instrument mechanisms. A mechanism controller was therefore added. The removal of the camera resulted in major complications to the integration and test plan. After many discussions, it was decided that the system would be less expensive, and the risk of unacceptable performance lower, if we include a focus mechanism. The remainder of the XRT design baseline matches the proposed configuration. Data requirements for the XRT are driven by the science plans, which are based on the physical processes in the solar outer atmosphere. Discussions to date of the XRT observing plan, both alone and in conjunction with the other Solar-B instruments, shows that the XRT needs 2 Gbits of on-board storage, at least one circulating buffer of 640 Mbits, and twelve 10- minute downlinks per day in order to carry out its required programs.

  3. NEW SOLAR TELESCOPE OBSERVATIONS OF MAGNETIC RECONNECTION OCCURRING IN THE CHROMOSPHERE OF THE QUIET SUN

    SciTech Connect

    Chae, Jongchul; Ahn, K.; Goode, P. R.; Yurchysyn, V.; Abramenko, V.; Andic, A.; Cao, W.; Park, Y. D.

    2010-04-10

    Magnetic reconnection is a process in which field-line connectivity changes in a magnetized plasma. On the solar surface, it often occurs with the cancellation of two magnetic fragments of opposite polarity. Using the 1.6 m New Solar Telescope, we observed the morphology and dynamics of plasma visible in the H{alpha} line, which is associated with a canceling magnetic feature (CMF) in the quiet Sun. The region can be divided into four magnetic domains: two pre-reconnection and two post-reconnection. In one post-reconnection domain, a small cloud erupted, with a plane-of-sky speed of 10 km s{sup -1}, while in the other one, brightening began at points and then tiny bright loops appeared and subsequently shrank. These features support the notion that magnetic reconnection taking place in the chromosphere is responsible for CMFs.

  4. Solar-B X-ray Telescope (XRT) Concept Study Report

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1999-01-01

    The X-ray observations from the Yohkoh SXT provided the greatest step forward in our understanding of the solar corona in nearly two decades. Expanding on the accomplishments of Yohkoh, we believe that the scientific objectives of the Solar-B mission are achieved with a significantly improved X-ray telescope (XRT) similar to the SXT. The Solar-B XRT will have twice the spatial resolution and a broader temperature response, while building on the knowledge gained from the successful Yohkoh mission. We present the scientific justification for this view, discuss the instrumental requirements that flow from the scientific objectives, and describe the instrumentation to meet these requirements. We then provide a detailed discussion of the design activities carried out during Phase A, noting the conclusions that were reached in terms of their implications for the detailed design activities which are now commencing. Details of the instrument that have changed as a result of the Phase A studied are specifically noted, and areas of concern going into Phase B are highlighted. XRT is a grazing-incidence (GI) modified Wolter I X-ray telescope, of 35cm inner diameter and 2.7m focal length. The 2048x2048 back-illuminated CCD (now an ISAS responsibility) has 13.5 micron pixels, corresponding to 1.0 arcsec and giving full Sun field of view. This will be the highest resolution GI X-ray telescope ever flown for Solar coronal studies, and it has been designed specifically to observe both the high and low temperature coronal plasma. A small optical telescope provides visible light images for co-alignment with the Solar-B optical and EUV instruments. The XRT science team is working in close cooperation with our Japanese colleagues in the design and construction of this instrument. All of the expertise and resources of the High Energy and Solar/Stellar Divisions of the Center for Astrophysics are being made available to this program, and our team will carry its full share of responsibility for mission operations, data reduction and education and public outreach. All aspects of the XRT design were reviewed during Phase A. The study focussed particularly on those aspects that have the greatest affect on instrument performance and extended lifetime, on the image quality error budget, and on the camera (mechanical and electrical) interface and the instrument mounting interfaces. The present instrument design differs in some details from that originally proposed. Selection of the XRT for Phase A study was contingent upon the removal of the camera and its associated electronics, and the acceptance of a stringent cost cap. The removal of the electronics left the XRT without control electronics for the instrument mechanisms. A mechanism controller was therefore added. The removal of the camera resulted in major complications to the integration and test plan. After many discussions, it was decided that the system would be less expensive, and the risk of unacceptable performance lower, if we include a focus mechanism. The remainder of the XRT design baseline matches the proposed configuration. Data requirements for the XRT are driven by the science plans, which are based on the physical processes in the solar outer atmosphere. Discussions to date of the XRT observing plan, both alone and in conjunction with the other Solar-B instruments, shows that the XRT needs 2 Gbits of on-board storage, at least one circulating buffer of 640 Mbits, and twelve 10- minute downlinks per day in order to carry out its required programs.

  5. Transverse Oscillations of Loops with Coronal Rain Observed by Hinode/Solar Optical Telescope

    NASA Astrophysics Data System (ADS)

    Antolin, P.; Verwichte, E.

    2011-08-01

    The condensations composing coronal rain, falling down along loop-like structures observed in cool chromospheric lines such as Hα and Ca II H, have long been a spectacular phenomenon of the solar corona. However, considered a peculiar sporadic phenomenon, it has not received much attention. This picture is rapidly changing due to recent high-resolution observations with instruments such as the Hinode/Solar Optical Telescope (SOT), CRISP of the Swedish 1-m Solar Telescope, and the Solar Dynamics Observatory. Furthermore, numerical simulations have shown that coronal rain is the loss of thermal equilibrium of loops linked to footpoint heating. This result has highlighted the importance that coronal rain can play in the field of coronal heating. In this work, we further stress the importance of coronal rain by showing the role it can play in the understanding of the coronal magnetic field topology. We analyze Hinode/SOT observations in the Ca II H line of a loop in which coronal rain puts in evidence in-phase transverse oscillations of multiple strand-like structures. The periods, amplitudes, transverse velocities, and phase velocities are calculated, allowing an estimation of the energy flux of the wave and the coronal magnetic field inside the loop through means of coronal seismology. We discuss the possible interpretations of the wave as either standing or propagating torsional Alfvén or fast kink waves. An estimate of the plasma beta parameter of the condensations indicates a condition that may allow the often observed separation and elongation processes of the condensations. We also show that the wave pressure from the transverse wave can be responsible for the observed low downward acceleration of coronal rain.

  6. TRANSVERSE OSCILLATIONS OF LOOPS WITH CORONAL RAIN OBSERVED BY HINODE/SOLAR OPTICAL TELESCOPE

    SciTech Connect

    Antolin, P.; Verwichte, E. E-mail: erwin.verwichte@warwick.ac.uk

    2011-08-01

    The condensations composing coronal rain, falling down along loop-like structures observed in cool chromospheric lines such as H{alpha} and Ca II H, have long been a spectacular phenomenon of the solar corona. However, considered a peculiar sporadic phenomenon, it has not received much attention. This picture is rapidly changing due to recent high-resolution observations with instruments such as the Hinode/Solar Optical Telescope (SOT), CRISP of the Swedish 1-m Solar Telescope, and the Solar Dynamics Observatory. Furthermore, numerical simulations have shown that coronal rain is the loss of thermal equilibrium of loops linked to footpoint heating. This result has highlighted the importance that coronal rain can play in the field of coronal heating. In this work, we further stress the importance of coronal rain by showing the role it can play in the understanding of the coronal magnetic field topology. We analyze Hinode/SOT observations in the Ca II H line of a loop in which coronal rain puts in evidence in-phase transverse oscillations of multiple strand-like structures. The periods, amplitudes, transverse velocities, and phase velocities are calculated, allowing an estimation of the energy flux of the wave and the coronal magnetic field inside the loop through means of coronal seismology. We discuss the possible interpretations of the wave as either standing or propagating torsional Alfven or fast kink waves. An estimate of the plasma beta parameter of the condensations indicates a condition that may allow the often observed separation and elongation processes of the condensations. We also show that the wave pressure from the transverse wave can be responsible for the observed low downward acceleration of coronal rain.

  7. Life Cycle Testing of Viscoelastic Material for Hubble Space Telescope Solar Array 3 Damper

    NASA Technical Reports Server (NTRS)

    Maly, Joseph R.; Reed, Benjamin B.; Viens, Michael J.; Parker, Bradford H.; Pendleton, Scott C.

    2003-01-01

    During the March 2002 Servicing Mission by Space Shuttle (STS 109), the Hubble Space Telescope (HST) was refurbished with two new solar arrays that now provide all of its power. These arrays were built with viscoelastic/titanium dampers, integral to the supporting masts, which reduce the interaction of the wing bending modes with the Telescope. Damping of over 3% of critical was achieved. To assess the damper s ability to maintain nominal performance over the 10-year on-orbit design goal, material specimens were subjected to an accelerated life test. The test matrix consisted of scheduled events to expose the specimens to pre-determined combinations of temperatures, frequencies, displacement levels, and numbers of cycles. These exposure events were designed to replicate the life environment of the damper from fabrication through testing to launch and life on-orbit. To determine whether material degradation occurred during the exposure sequence, material performance was evaluated before and after the accelerated aging with complex stiffness measurements. Based on comparison of pre- and post-life-cycle measurements, the material is expected to maintain nominal performance through end of life on-orbit. Recent telemetry from the Telescope indicates that the dampers are performing nominally.

  8. Astroclimate of specialized stations of the Large Solar Vacuum Telescope: Part I

    NASA Astrophysics Data System (ADS)

    Nosov, V. V.; Grigoriev, V. M.; Kovadlo, P. G.; Lukin, V. P.; Nosov, E. V.; Torgaev, A. V.

    2008-02-01

    The paper presents the results of measurements of characteristics of local astroclimate in special production areas of the Large solar vacuum telescope (the Baikal astrophysical observatory of the Institute of Solar-Terrestrial Physics SB RAS). It is demonstrated that the temperature gradients in the telescope rooms are the cause of the initiation of the Benard cell and originating (incipient) turbulence in the pavilion of the astronomical spectrograph. The characteristics of the originating turbulence were studied in detail. It has been found that the measurements date have supported the basic scenarios of stochastization (Landau-Hopf, Ruelle-Takens, Feigenbaum, Pomeau-Menneville scenarios). The Feigenbaum bifurcation diagram has experimentally been supported. It is shown that the basic vortex in Benard cell breaks down into smaller vortices as the result of ten bifurcations of the period duplication. It has been found that the originating turbulence introduced large errors in the data of spectral measurements, even at the path of small length. The horizontal random displacements of spectral lines, appearing due to the pavilion effects, in the horizontal Ebert scheme can reach 1 second of arc. In this case the line displacements occur slowly, at the frequency about 0.01 Hz. Because of low frequencies of line displacements the originating turbulence by its optical characteristics approximated the regular refraction.

  9. Astroclimate of specialized stations of the Large Solar Vacuum Telescope: Part II

    NASA Astrophysics Data System (ADS)

    Nosov, V. V.; Grigoriev, V. M.; Kovadlo, P. G.; Lukin, V. P.; Nosov, E. V.; Torgaev, A. V.

    2008-02-01

    The paper presents the results of measurements of characteristics of local astroclimate in special production areas of the Large solar vacuum telescope (the Baikal astrophysical observatory of the Institute of Solar-Terrestrial Physics SB RAS). It is demonstrated that the temperature gradients in the telescope rooms are the cause of the initiation of the Benard cell and originating (incipient) turbulence in the pavilion of the astronomical spectrograph. The characteristics of the originating turbulence were studied in detail. It has been found that the measurements date have supported the basic scenarios of stochastization (Landau-Hopf, Ruelle-Takens, Feigenbaum, Pomeau-Menneville scenarios). The Feigenbaum bifurcation diagram has experimentally been supported. It is shown that the basic vortex in Benard cell breaks down into smaller vortices as the result of ten bifurcations of the period duplication. It has been found that the originating turbulence introduced large errors in the data of spectral measurements, even at the path of small length. The horizontal random displacements of spectral lines, appearing due to the pavilion effects, in the horizontal Ebert scheme can reach 1 second of arc. In this case the line displacements occur slowly, at the frequency about 0.01 Hz. Because of low frequencies of line displacements the originating turbulence by its optical characteristics approximated the regular refraction.

  10. Photometry’s Bright Future: Detecting Solar System Analogs with Future Space Telescopes

    NASA Astrophysics Data System (ADS)

    Hippke, Michael; Angerhausen, Daniel

    2015-09-01

    Time-series transit photometry from the Kepler space telescope has allowed for the discovery of thousands of exoplanets. We explore the potential of yet improved future missions such as PLATO 2.0 in detecting solar system analogs. We use real-world solar data and end-to-end simulations to explore the stellar and instrumental noise properties. By injecting and retrieving planets, rings, and moons of our own solar system, we show that the discovery of Venus and Earth analogs transiting G dwarfs like our Sun is feasible at high signal-to-noise ratio after collecting 6 yr of data, but Mars and Mercury analogs will be difficult to detect owing to stellar noise. In the best cases, Saturn’s rings and Jupiter’s moons will be detectable even in single-transit observations. Through the high number (>1 billion) of observed stars by PLATO 2.0, it will become possible to detect thousands of single-transit events by cold gas giants, analogs to our Jupiter, Saturn, Uranus, and Neptune. Our own solar system aside, we also show, through signal injection and retrieval, that PLATO 2.0 class photometry will allow for the secure detection of exomoons transiting quiet M dwarfs. This is the first study analyzing in depth the potential of future missions and the ultimate limits of photometry, using realistic case examples.

  11. Fermi Large Area Telescope observation of high-energy solar flares: constraining emission scenarios

    NASA Astrophysics Data System (ADS)

    Omodei, Nicola; Pesce-Rollins, Melissa; Petrosian, Vahe; Liu, Wei; Rubio da Costa, Fatima

    2015-08-01

    The Fermi Large Area Telescope (LAT) is the most sensitive instrument ever deployed in space for observing gamma-ray emission >100 MeV. This has also been demonstrated by its detection of quiescent gamma-ray emission from pions produced by cosmic-ray protons interacting in the solar atmosphere, and from cosmic-ray electron interactions with solar optical photons. The Fermi LAT has also detected high-energy gamma-ray emission associated with GOES M-class and X-class X-ray flares, each accompanied by a coronal mass ejection and a solar energetic particle event increasing the number of detected solar flares by almost a factor of 10 with respect to previous space observations. During the impulsive phase, gamma rays with energies up to several hundreds of MeV have been recorded by the LAT. Emission up to GeV energies lasting several hours after the flare has also been recorded by the LAT. Of particular interest are the recent detections of two solar flares whose position behind the limb was confirmed by the STEREO-B satellite. While gamma-ray emission up to tens of MeV resulting from proton interactions has been detected before from occulted solar flares, the significance of these particular events lies in the fact that these are the first detections of >100 MeV gamma-ray emission from footpoint-occulted flares. We will present the Fermi-LAT, RHESSI and STEREO observations of these flares and discuss the various emission scenarios for these sources.

  12. Solar dynamic modules for Space Station Freedom: The relationship between fine-pointing control and thermal loading of the aperture plate

    NASA Technical Reports Server (NTRS)

    Quinn, Roger D.; Kerslake, Thomas W.

    1992-01-01

    Dynamic simulations of Space Station Freedom (SSF) configured with solar dynamic (SD) power modules were performed. The structure was subjected to Space Shuttle docking disturbances, while being controlled with a 'natural' vibration and tracking control approach. Three control cases were investigated for the purpose of investigating the relationship between actuator effort, SD pointing, and thermal loading on the receiver aperture plate. Transient, one-dimensional heat transfer analyses were performed to conservatively predict temperatures of the multi-layered receiver aperture plate assembly and thermal stresses in its shield layer. Results indicate that the proposed aperture plate is tolerant of concentrated flux impingement during short-lived structural disturbances. Pointing requirements may be loosened and the requirement control torques lessened from that previously specified. Downsizing and simplifying the joint drive system should result in a considerable savings mass.

  13. Search for sub-eV mass solar axions by the CERN Axion Solar Telescope with 3He buffer gas.

    PubMed

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Ezer, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Gazis, E N; Geralis, T; Giomataris, I; Gninenko, S; Gómez, H; Gruber, E; Guthörl, T; Hartmann, R; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Laurent, J M; Liolios, A; Ljubičić, A; Lozza, V; Lutz, G; Luzón, G; Morales, J; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Rashba, T; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K

    2011-12-23

    The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using (3)He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with (4)He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≲m(a)≲0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g(aγ)≲2.3×10(-10) GeV(-1) at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m(a)≲1.15 eV, comfortably overlapping with cosmological hot dark matter bounds. PMID:22243149

  14. MAST - A mass spectrometer telescope for studies of the isotopic composition of solar, anomalous, and galactic cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Cook, Walter R.; Cummings, Alan C.; Cummings, Jay R.; Garrard, Thomas L.; Kecman, Branislav; Mewaldt, Richard A.; Selesnick, Richard S.; Stone, Edward C.; Von Rosenvinge, T. T.

    1993-01-01

    The Mass Spectrometer Telescope (MAST) on SAMPEX is designed to provide high resolution measurements of the isotopic composition of energetic nuclei from He to Ni (Z = 2 to 28) over the energy range from about 10 to several hundred MeV/nuc. During large solar flares MAST will measure the isotopic abundances of solar energetic particles to determine directly the composition of the solar corona, while during solar quiet times MAST will study the isotopic composition of galactic cosmic rays. In addition, MAST will measure the isotopic composition of both interplanetary and trapped fluxes of anomalous cosmic rays, believed to be a sample of the nearby interstellar medium.

  15. The Spectrometer Telescope for Imaging X-rays STIX on Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Csillaghy, A.; Battaglia, M.; Krucker, S.; Hurford, G. J.

    2012-12-01

    The Spectrometer Telescope for Imaging X-rays (STIX) will provide imaging spectroscopy of solar thermal and non-thermal X-ray emissions from ~4 to 150 keV. STIX will play an important role in answering two of Solar Orbiter's main science questions: (1) How and where are energetic particles accelerated at the Sun, and how are they transported into interplanetary space? X-ray images and spectra will provide information on the location, spectrum and intensity of flare accelerated electrons near the Sun. (2) What is the magnetic connection from Solar Orbiter back to the Sun? STIX will play a key role in linking remote sensing and in-situ observations on Solar Orbiter. Radio signatures of flare accelerated electrons will be observed by the Radio and Plasma wave instrument (RPW), while the SupraThermal Electron sensor (STE) of the Energetic Particle Detector suite (EPD) will detect electrons in-situ. Thus, the magnetic structure, field line length and connectivity can be tracked. STIX is based on a Fourier-transform imaging technique similar to that used successfully by the Hard X-ray Telescope (HXT) on the Japanese Yohkoh mission, and related to that used for the Reuven Ramaty High Energy Solar Spectroscopic Imager mission. STIX has a higher sensitivity than RHESSI, with comparable image quality and spectral and spatial resolution. It will be able to observe thermal and non-thermal emission from nanoflares up to the largest X- class events. STIX consists of three main parts: 1. An X-ray window, 2. An imager with 32 subcollimators, and 3. A spectrometer with 32 Cadmium Telluride (CdTe) X-ray detectors The transmission through the grid pairs to the detectors is a very sensitive function of the direction of incidence of the X-ray flux. The relative count rates of the detectors behind the different sets of grids encode the spatial information that can be subsequently decoded on the ground to reconstruct images of the source region at different X-ray energies.

  16. Feasibility study of a layer-oriented wavefront sensor for solar telescopes: comment.

    PubMed

    Kellerer, Aglaé

    2014-11-10

    The future generation of telescopes will be equipped with multi-conjugate adaptive-optics (MCAO) systems in order to obtain high angular resolution over large fields of view. MCAO comes in two flavors: star- and layer-oriented. Existing solar MCAO systems rely exclusively on the star-oriented approach. Earlier we suggested a method to implement the layer-oriented approach, and in view of recent concerns by Marino and Wöger [Appl. Opt.53, 685 (2014)10.1364/AO.53.000685APOPAI1559-128X], we now explain the proposed scheme in further detail. We note that in any layer-oriented system one sensor is conjugated to the pupil and the others are conjugated to higher altitudes. For the latter, not all the sensing surface is illuminated by the entire field of view. The successful implementation of nighttime layer-oriented systems shows that the field reduction is no crucial limitation. In the solar approach the field reduction is directly noticeable because it causes vignetting of the Shack-Hartmann subaperture images. It can be accounted for by a suitable adjustment of the algorithms to calculate the local wavefront slopes. We discuss a further concern related to the optical layout of a layer-oriented solar system. PMID:25402984

  17. The Tandem Etalon Magnetograph of the Solar Magnetic Activity Research Telescope (SMART) at Hida Observatory

    NASA Astrophysics Data System (ADS)

    Nagata, Shin'ichi; Morita, Satoshi; Ichimoto, Kiyoshi; Nishida, Keisuke; Nakatani, Yoshikazu; Kimura, Goichi; Kaneda, Naoki; Kitai, Reizaburou; UeNo, Satoru; Ishii, Takako T.

    2014-04-01

    The imaging photospheric magnetograph using tandem Fabry-Perot filters is newly installed in the Solar Magnetic Activity Research Telescope (SMART) of Hida Observatory, Kyoto University. The instrument, Tandem Etalon Magnetograph (TEM), consists of a rotating wave plate, tandem Fabry-Perot filters which scan the Fe I 6302.5 Å line with ˜ 130 mÅ bandwidth, a polarizing beam splitter, and two CCD cameras simultaneously taking orthogonally polarized light with a frame rate of 30 frames per second. We have confirmed that the Stokes vector map deduced from 20 s integration achieves a polarimetric sensitivity of ˜ 5 × 10-4 for all polarization states at one wavelength, which is higher than is achieved with a space instrument such as the Spectro-Polarimeter aboard Hinode or the Helioseismic and Magnetic Imager aboard the Solar Dynamic Observatory (SDO). We expect the complementary observations by SMART/TEM, Hinode, and SDO can shed new light on the trigger and energy storage mechanism of solar flares.

  18. NEW VACUUM SOLAR TELESCOPE OBSERVATIONS OF A FLUX ROPE TRACKED BY A FILAMENT ACTIVATION

    SciTech Connect

    Yang, Shuhong; Zhang, Jun; Liu, Zhong; Xiang, Yongyuan E-mail: zjun@nao.cas.cn

    2014-04-01

    One main goal of the New Vacuum Solar Telescope (NVST) which is located at the Fuxian Solar Observatory is to image the Sun at high resolution. Based on the high spatial and temporal resolution NVST Hα data and combined with the simultaneous observations from the Solar Dynamics Observatory for the first time, we investigate a flux rope tracked by filament activation. The filament material is initially located at one end of the flux rope and fills in a section of the rope; the filament is then activated by magnetic field cancellation. The activated filament rises and flows along helical threads, tracking the twisted flux rope structure. The length of the flux rope is about 75 Mm, the average width of its individual threads is 1.11 Mm, and the estimated twist is 1π. The flux rope appears as a dark structure in Hα images, a partial dark and partial bright structure in 304 Å, and as a bright structure in 171 Å and 131 Å images. During this process, the overlying coronal loops are quite steady since the filament is confined within the flux rope and does not erupt successfully. It seems that, for the event in this study, the filament is located and confined within the flux rope threads, instead of being suspended in the dips of twisted magnetic flux.

  19. A year of operation of Melibea e-Callisto Solar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Russu, A.; Gómez-Herrero, R.; Prieto, M.; Monstein, C.; Ivanov, H.; Rodríguez-Pacheco, J.; Blanco, J. J.

    2015-08-01

    The e-CALLISTO (Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory) is a worldwide radio-spectrograph network with 24 hours a day solar radio burst monitoring. The e-CALLISTO network is led by the Swiss Federal Institute of Technology Zurich (ETHZ Zurich), which work up collaborations with local host institutions. In 2013 the University of Alcalá joined the e-CALLISTO network with the installation of two Solar Radio Telescopes (SRT): the EA4RKU-SRT that was located at the University of Alcalá from January 2013 till June 2013 and the Melibea-SRT that is located at Peralejos de las Truchas (Guadalajara) in operation from June 2013. The Spanish e-Callisto SRTs provide routine data to the network. We present examples of type III and type II radio-bursts observed by Melibea during its first year of operation and study their relation with soft X-ray flares observed by GOES and Coronal Mass Ejections (CMEs) and Solar Energetic Particle (SEP) events observed by space-borne instrumentation.

  20. Heat-stop structure design with high cooling efficiency for large ground-based solar telescope.

    PubMed

    Liu, Yangyi; Gu, Naiting; Rao, Changhui; Li, Cheng

    2015-07-20

    A heat-stop is one of the most important thermal control devices for a large ground-based solar telescope. For controlling the internal seeing effect, the temperature difference between the heat-stop and the ambient environment needs to be reduced, and a heat-stop with high cooling efficiency is required. In this paper, a novel design concept for the heat-stop, in which a multichannel loop cooling system is utilized to obtain higher cooling efficiency, is proposed. To validate the design, we analyze and compare the cooling efficiency for the multichannel and existing single-channel loop cooling system under the same conditions. Comparative results show that the new design obviously enhances the cooling efficiency of the heat-stop, and the novel design based on the multichannel loop cooling system is obviously better than the existing design by increasing the thermal transfer coefficient. PMID:26367826

  1. Design of the Polarimeter for the Fibre Arrayed Solar Optical Telescope

    NASA Astrophysics Data System (ADS)

    Dun, Guang-tao; Qu, Zhong-quan

    2013-01-01

    The theoretical design of the polarimeter used for the Fibre Arrayed Solar Optical Telescope (FASOT) is described. It has the following characteris- tics: (1) It is provided with the function of optical polarization switching, which makes the high-effciency polarimetry possible; (2) In the waveband of 750 nm, the polarimetric effciency is higher than 50% for the every Stokes parameter, and higher than 86.6% for the total polarization, thus an observer can make the simultaneous polarization measurements on multiple magnetosensitive lines in such a broad range of wavelength; (3) According to the selected photospheric and chromospheric lines, the measurement can be focused on either linear polarization or circular polarization; (4) The polarimeter has a loose tolerance on the manufacturing technology of polarimetric elements and installation errors. All this makes this polarimeter become a high-performance polarimetric device.

  2. A solar extreme ultraviolet telescope and spectrograph for space shuttle. Volume 1: Investigation and technical plan

    NASA Technical Reports Server (NTRS)

    Neupert, W. M.

    1978-01-01

    A scientific investigation of heating and mass transport in the solar corona that is currently planned for a future Shuttle/Spacelab flight is outlined. The instrument to be used is a near-normal incidence grating spectrograph fed by a grazing incidence Wolter Type 2 telescope. A toroidal grating design provides stigmatic images of the corona up to 8 arc min in extent over the spectral region from 225 A to 370 A. Spatial resolution of at least 2 arc sec and spectral resolution of 0.050 A is achievable throughout the central 4 arc min field or view. Primary scientific data are recorded on Schumann-type film. An H-alpha slit jaw monitor and zero order extreme ultraviolet monitor are also planned to support instrument operation.

  3. James Webb Space Telescope Observations of Stellar Occultations by Solar System Bodies and Rings

    NASA Astrophysics Data System (ADS)

    Santos-Sanz, P.; French, R. G.; Pinilla-Alonso, N.; Stansberry, J.; Lin, Z.-Y.; Zhang, Z.-W.; Vilenius, E.; Müller, Th.; Ortiz, J. L.; Braga-Ribas, F.; Bosh, A.; Duffard, R.; Lellouch, E.; Tancredi, G.; Young, L.; Milam, Stefanie N.; the JWST “Occultations” Focus Group

    2016-01-01

    In this paper, we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of Solar System bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun-Earth Lagrange point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a byproduct of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.

  4. Suppression of Astronomical Sources Using Starshades and the McMath-Pierce Solar Telescope

    NASA Astrophysics Data System (ADS)

    Novicki, Megan; Warwick, Steve; Smith, Daniel; Richards, Michael; Harness, Anthony

    2016-01-01

    The external starshade is a method for the direct detection and spectral characterization of terrestrial planets around other stars, a key goal identified in ASTRO2010. Tests of this approach have been and continue to be conducted in the lab and in the field (Samuele et al., 2010, Glassman et al., 2014) using non-collimated light sources with a spherical wavefront. We extend the current approach to performing night-time observations of astronomical objects using small-scale (approximately 1/300th) starshades and the McMath-Pierce Solar Telescope at Kitt Peak National Observatory. We placed a starshade directly in the path of the beam from an astronomical object in front of the main heliostat. Using only flat mirrors, we then directed the light through the observatory path and reflected it off the West heliostat to an external telescope located approximately 270m away, for an effective baseline of 420m.This configuration allowed us to make measurements of flat wavefront sources with a Fresnel number close to those expected in proposed full-scale space configurations. We present the results of our engineering runs conducted in 2015.

  5. Software control of the Advanced Technology Solar Telescope enclosure PLC hardware using COTS software

    NASA Astrophysics Data System (ADS)

    Borrowman, Alastair J.; de Bilbao, Lander; Ariño, Javier; Murga, Gaizka; Goodrich, Bret; Hubbard, John R.; Greer, Alan; Mayer, Chris; Taylor, Philip

    2012-09-01

    As PLCs evolve from simple logic controllers into more capable Programmable Automation Controllers (PACs), observatories are increasingly using such devices to control complex mechanisms1, 2. This paper describes use of COTS software to control such hardware using the Advanced Technology Solar Telescope (ATST) Common Services Framework (CSF). We present the Enclosure Control System (ECS) under development in Spain and the UK. The paper details selection of the commercial PLC communication library PLCIO. Implemented in C and delivered with source code, the library separates the programmer from communication details through a simple API. Capable of communicating with many types of PLCs (including Allen-Bradley and Siemens) the API remains the same irrespective of PLC in use. The ECS is implemented in Java using the observatory's framework that provides common services for software components. We present a design following a connection-based approach where all components access the PLC through a single connection class. The link between Java and PLCIO C library is provided by a thin Java Native Interface (JNI) layer. Also presented is a software simulator of the PLC based upon the PLCIO Virtual PLC. This creates a simulator operating below the library's API and thus requires no change to ECS software. It also provides enhanced software testing capabilities prior to hardware becoming available. Results are presented in the form of communication timing test data, showing that the use of CSF, JNI and PLCIO provide a control system capable of controlling enclosure tracking mechanisms, that would be equally valid for telescope mount control.

  6. Investigation of intergranular bright points from the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Ji, Kai-Fan; Xiong, Jian-Ping; Xiang, Yong-Yuan; Feng, Song; Deng, Hui; Wang, Feng; Yang, Yun-Fei

    2016-05-01

    Six high-resolution TiO-band image sequences from the New Vacuum Solar Telescope (NVST) are used to investigate the properties of intergranular bright points (igBPs). We detect the igBPs using a Laplacian and morphological dilation algorithm (LMD) and automatically track them using a three-dimensional segmentation algorithm, and then investigate the morphologic, photometric and dynamic properties of igBPs in terms of equivalent diameter, intensity contrast, lifetime, horizontal velocity, diffusion index, motion range and motion type. The statistical results confirm previous studies based on G-band or TiO-band igBPs from other telescopes. These results illustrate that TiO data from the NVST are stable and reliable, and are suitable for studying igBPs. In addition, our method is feasible for detecting and tracking igBPs with TiO data from the NVST. With the aid of vector magnetograms obtained from the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, the properties of igBPs are found to be strongly influenced by their embedded magnetic environments. The areal coverage, size and intensity contrast values of igBPs are generally larger in regions with higher magnetic flux. However, the dynamics of igBPs, including the horizontal velocity, diffusion index, ratio of motion range and index of motion type are generally larger in the regions with lower magnetic flux. This suggests that the absence of strong magnetic fields in the medium makes it possible for the igBPs to look smaller and weaker, diffuse faster, and move faster and further along a straighter path.

  7. Co-Alignment System (CAS) study. Report on task 1-3. [Solar Extreme Ultraviolet Telescope and Spectrometer pointing system

    NASA Technical Reports Server (NTRS)

    Anderson, N. T.

    1980-01-01

    The design of a suitable coalignment system (CAS) for the Solar Extreme Ultraviolet Telescope and Spectrometer (SEUTS) is presented. The CAS provides offset adjustment capabilities to SEUTS which will be mounted on a single large pointing system with other devices. The suitability of existing designs is determined and modifications are suggested.

  8. Solar Effects on Tensile and Optical Properties of Hubble Space Telescope Silver-Teflon(Registered Trademark) Insulation

    NASA Technical Reports Server (NTRS)

    deGroh, Kim, K.; Dever, Joyce A.; Snyder, Aaron; Kaminski, Sharon; McCarthy, Catherine E.; Rapoport, Alison L.; Rucker, Rochelle N.

    2006-01-01

    A section of the retrieved Hubble Space Telescope (HST) solar array drive arm (SADA) multilayer insulation (MLI), which experienced 8.25 years of space exposure, was analyzed for environmental durability of the top layer of silver-Teflon (DuPont) fluorinated ethylene propylene (Ag-FEP). Because the SADA MLI had solar and anti-solar facing surfaces and was exposed to the space environment for a long duration, it provided a unique opportunity to study solar effects on the environmental degradation of Ag-FEP, a commonly used spacecraft thermal control material. Data obtained included tensile properties, solar absorptance, surface morphology and chemistry. The solar facing surface was found to be extremely embrittled and contained numerous through-thickness cracks. Tensile testing indicated that the solar facing surface lost 60% of its mechanical strength and 90% of its elasticity while the anti-solar facing surface had ductility similar to pristine FEP. The solar absorptance of both the solar facing surface (0.155 plus or minus 0.032) and the anti-solar facing surface (0.208 plus or minus 0.012) were found to be greater than pristine Ag-FEP (0.074). Solar facing and anti-solar facing surfaces were microscopically textured, and locations of isolated contamination were present on the anti-solar surface resulting in increased localized texturing. Yet, the overall texture was significantly more pronounced on the solar facing surface indicating a synergistic effect of combined solar exposure and increased heating with atomic oxygen erosion. The results indicate a very strong dependence of degradation, particularly embrittlement, upon solar exposure with orbital thermal cycling having a significant effect.

  9. TURBULENT CHARACTERISTICS IN THE INTENSITY FLUCTUATIONS OF A SOLAR QUIESCENT PROMINENCE OBSERVED BY THE HINODE SOLAR OPTICAL TELESCOPE

    SciTech Connect

    Leonardis, E.; Chapman, S. C.; Foullon, C.

    2012-02-01

    We focus on Hinode Solar Optical Telescope (SOT) calcium II H-line observations of a solar quiescent prominence (QP) that exhibits highly variable dynamics suggestive of turbulence. These images capture a sufficient range of scales spatially ({approx}0.1-100 arcsec) and temporally ({approx}16.8 s-4.5 hr) to allow the application of statistical methods used to quantify finite range fluid turbulence. We present the first such application of these techniques to the spatial intensity field of a long-lived solar prominence. Fully evolved inertial range turbulence in an infinite medium exhibits multifractal scale invariance in the statistics of its fluctuations, seen as power-law power spectra and as scaling of the higher order moments (structure functions) of fluctuations which have non-Gaussian statistics; fluctuations {delta}I(r, L) = I(r + L) - I(r) on length scale L along a given direction in observed spatial field I have moments that scale as ({delta}I(r, L){sup p}) {approx} L{sup {zeta}(p)}. For turbulence in a system that is of finite size, or that is not fully developed, one anticipates a generalized scale invariance or extended self-similarity (ESS) ({delta}I(r, L){sup p}) {approx} G(L){sup {zeta}(p)}. For these QP intensity measurements we find scaling in the power spectra and ESS. We find that the fluctuation statistics are non-Gaussian and we use ESS to obtain ratios of the scaling exponents {zeta}(p): these are consistent with a multifractal field and show distinct values for directions longitudinal and transverse to the bulk (driving) flow. Thus, the intensity fluctuations of the QP exhibit statistical properties consistent with an underlying turbulent flow.

  10. Hubble Space telescope thermal cycle test report for large solar array samples with BSFR cells (Sample numbers 703 and 704)

    NASA Technical Reports Server (NTRS)

    Alexander, D. W.

    1992-01-01

    The Hubble space telescope (HST) solar array was designed to meet specific output power requirements after 2 years in low-Earth orbit, and to remain operational for 5 years. The array, therefore, had to withstand 30,000 thermal cycles between approximately +100 and -100 C. The ability of the array to meet this requirement was evaluated by thermal cycle testing, in vacuum, two 128-cell solar cell modules that exactly duplicated the flight HST solar array design. Also, the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit was evaluated by performing a cold-roll test using one module.

  11. Alternative aperture stop position designs for SIRTF

    NASA Technical Reports Server (NTRS)

    Davis, Paul K.; Dinger, Ann S.

    1990-01-01

    Three designs of the Space Infrared Telescope Facility (SIRTF) for a 100,000 high earth orbit are considered with particular attention given to the evaluation of the aperture stop position. The choice of aperture stop position will be based on stray light considerations which are being studied concurrently. It is noted that there are advantages in cost, mass, and astronomical aperture to placing the aperture stop at or near the primary mirror, if the stray light circumstances allow.

  12. The spectrometer telescope for imaging X-rays (STIX) on board Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Vilmer, Nicole; Krucker, Samuel; Karol Seweryn, D..; Orleanski, Piotr; Limousin, Olivier; Meuris, Aline; Brun, Allan Sacha; Grimm, Oliver; Groebelbauer, HansPeter; Rendtel, J.

    The Spectrometer Telescope for Imaging X-rays (STIX) is one of 10 instruments on board Solar Orbiter, a confirmed M-class mission of the European Space Agency (ESA) within the Cosmic Vision program scheduled to be launched in 2017. STIX applies a Fourier-imaging technique using a set of tungsten grids (at pitches from 0.038 to 1 mm) in front of 32 pixelized CdTe detectors to provide imaging spectroscopy of solar thermal and non-thermal hard X-ray emissions from 4 to 150 keV. The paper presents the status of the instrument for the Critical Design Review to be held with ESA in June 2014. Particular emphasis is given to the CdTe hybrid detector called Caliste-SO for high resolution hard X-ray spectroscopy from 4 to 150 keV: Characterizations of the first production batch are reported. Caliste-SO spectrometer units could also fulfill the needs for the SORENTO instrument of the Russian Interhelioprobe mission currently in assessment study.

  13. First Results of Coordinated Observations from IRIS and New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Kosovichev, A. G.; Cao, W.; Goode, P. R.; Gorceix, N.; Kleint, L.; Plymate, C.; Varsik, J. R.; Shumko, S.; Yurchyshyn, V.

    2013-12-01

    Most of the chromospheric structuring and dynamics is controlled by the underlying photospheric processes, associated with turbulent magnetoconvection, ubiquitous magnetic flux emergence, small-scale eruptions and acoustic events. The 1.6 m New Solar Telescope (NST) of Big Bear Solar Observatory offers a substantial improvement in ground-based high-resolution capabilities, and provides important support for the IRIS mission. The primary goal of the coordinated IRIS-NST observations is to obtain complementary data for investigations of photosphere-chromosphere links and drivers of the chromospheric dynamics. The coordinated NST observations are performed using the second-generation adaptive optics system AO-308, and three instruments: Broadband Filter Imagers (G-band and TiO), Visible Imaging Spectrometer (H-alpha), and Near InfraRed Imaging Spectropolarimeter (NIRIS). NIRIS provides high-cadence data in Fe I 1565 nm doublet which is the most Zeeman sensitive probe of magnetic fields in the deep photosphere, and in the He I 1083 nm multiplet for diagnostics of the upper chromosphere. We present initial results of the coordinated observations, and discuss properties of small-scale ejections in fibril magnetic structures, obtained from analysis of IRIS and NST data.

  14. The Rome P.S.P.T. (Precision Solar Photometric Telescope): One Year After

    NASA Astrophysics Data System (ADS)

    Ermolli, I.; Fofi, M.; Torelli, M.

    The RISE Project planned the set-up of a network of high Precision Solar Photometric Telescopes (PSPT) operative at different terrestrial longitudes in order to obtain long unbroken time-series of homogeneous accurate photometric observations of sunspots, faculae, plages and other photospheric and chromospheric brightness inhomogeneities. In this framework the first PSPT is operative at the Rome Astronomical Observatory since February 1996, providing daily images of the solar disk in the Ca II K (393.3 nm) and in the blue continuum (409.6 nm), characterized by a spatial resolution of 2 arcsecond/pixel and a phometric accuracy of 0.1%/pixel. The photometrically calibrated Rome-PSPT images are at disposal of the scientific community that can have access to the data by ftp transfer (ftp.rm.astro.it folder dist/rise) or connection to our webpage (http://www.rm.astro.it/sun.html). we describe the results obtained to date by analyzing the Rome PSPT Ca II K data, regarding the temporal behaviour of the skewness computed for contrast histograms and the temporal behaviour of some properties (intensity, morphology) of plages and network chromospheric regions.

  15. PET: a proton/electron telescope for studies of magnetospheric, solar, and galactic particles

    SciTech Connect

    Cook, W.R.; Cummings, A.C.; Cummings, J.R.; Garrard, T.L.; Kecman, B.; Mewaldt, R.A.; Selesnick, R.S.; Stone, E.C. ); Baker, D.N.; Rosenvinge, T.T. von ); Callis, L.B. ); Blake, J.B.

    1993-05-01

    The Proton/Electron Telescope (PET) on SAMPEX is designed to provide measurements of energetic electrons and light nuclei from solar, galactic, and magnetospheric sources. PET is an all solid-state system that will measure the differential energy spectra of electrons from [approximately]1 to [approximately]30 MeV and H and He nuclei from [approximately]20 to [approximately]300 MeV/nuc, with isotope resolution of H and He extending from [approximately]20 to [approximately]80 MeV/nuc. As SAMPEX scans all local times and geomagnetic cutoffs over the course of its near-polar orbit, PET will characterize precipitating relativistic electron events during periods of declining solar activity, and it will examine whether the production rate of odd nitrogen and hydrogen molecules in the middle atmosphere by precipitating electrons is sufficient to affect O[sub 3] depletion. In addition, PET will complement studies of the elemental and isotopic composition of energetic heavy (Z > 2) nuclei on SAMPEX by providing measurements of H, He, and electrons. Finally, PET has limited capability to identify energetic positrons from potential natural and man-made sources.

  16. Multi-spectral solar telescope array IV; The soft x-ray and extreme ultraviolet filters

    SciTech Connect

    Lindblom, J.F.; O'Neal, R.H.; Walker, A.B.C. Jr. ); Powell, F.R. ); Barbee, T.W. Jr. ); Hoover, R.B. ); Powell, S.F. )

    1991-08-01

    The multilayer mirrors used in the normal-incidence optical systems of the Multi-Spectral Solar Telescope Array (MSSTA) are efficient reflectors for soft x-ray/extreme ultraviolet (EUV) radiation at wavelengths that satisfy the Bragg condition, thus allowing a narrow band of the soft x-ray/EUV spectrum to be isolated. However, these same mirrors are also excellent reflectors in the visible, ultraviolet, and far-ultraviolet (FUV) part of the spectrum, where normal incidence reflectivities can exceed 50%. Furthermore, the sun emits far more radiation in the ultraviolet and visible part of the spectrum than it does in the soft x-ray/EUV. For this reason, thin foil filters are employed to eliminate the unwanted longer wavelength solar emission. The MSSTA instrument uses various combinations of thin foil filters composed of aluminum carbon, tellurium, potassium bromide, beryllium, molybdenum, rhodium, and phthalocyanine to achieve the desired radiation rejection characteristics. In this paper, the authors discuss issues concerning the design, manufacture, and predicted performance of MSSTA filters.

  17. PET - A proton/electron telescope for studies of magnetospheric, solar, and galactic particles

    NASA Technical Reports Server (NTRS)

    Cook, Walter R.; Cummings, Alan C.; Cummings, Jay R.; Garrard, Thomas L.; Kecman, Branislav; Mewaldt, Richard A.; Selesnick, Richard S.; Stone, Edward C.; Baker, Daniel N.; Von Rosenvinge, Tycho T.

    1993-01-01

    The Proton/Electron Telescope (PET) on SAMPEX is designed to provide measurements of energetic electrons and light nuclei from solar, galactic, and magnetospheric sources. PET is an all solid-state system that will measure the differential energy spectra of electrons from about 1 to about 30 MeV and H and He nuclei from about 20 to about 300 MeV/nuc, with isotope resolution of H and He extending from about 20 to about 80 MeV/nuc. As SAMPEX scans all local times and geomagnetic cutoffs over the course of its near-polar orbit, PET will characterize precipitating relativistic electron events during periods of declining solar activity, and it will examine whether the production rate of odd nitrogen and hydrogen molecules in the middle atmosphere by precipitating electrons is sufficient to affect O3 depletion. In addition, PET will complement studies of the elemental and isotopic composition of energetic heavy (Z greater than 2) nuclei on SAMPEX by providing measurements of H, He, and electrons. Finally, PET has limited capability to identify energetic positrons from potential natural and man-made sources.

  18. PROPERTIES OF UMBRAL DOTS AS MEASURED FROM THE NEW SOLAR TELESCOPE DATA AND MHD SIMULATIONS

    SciTech Connect

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Cao, W.; Rempel, M.; Kitai, R.; Watanabe, H.

    2012-02-01

    We studied bright umbral dots (UDs) detected in a moderate size sunspot and compared their statistical properties to recent MHD models. The study is based on high-resolution data recorded by the New Solar Telescope at the Big Bear Solar Observatory and three-dimensional (3D) MHD simulations of sunspots. Observed UDs, living longer than 150 s, were detected and tracked in a 46 minute long data set, using an automatic detection code. A total of 1553 (620) UDs were detected in the photospheric (low chromospheric) data. Our main findings are (1) none of the analyzed UDs is precisely circular, (2) the diameter-intensity relationship only holds in bright umbral areas, and (3) UD velocities are inversely related to their lifetime. While nearly all photospheric UDs can be identified in the low chromospheric images, some small closely spaced UDs appear in the low chromosphere as a single cluster. Slow-moving and long-living UDs seem to exist in both the low chromosphere and photosphere, while fast-moving and short-living UDs are mainly detected in the photospheric images. Comparison to the 3D MHD simulations showed that both types of UDs display, on average, very similar statistical characteristics. However, (1) the average number of observed UDs per unit area is smaller than that of the model UDs, and (2) on average, the diameter of model UDs is slightly larger than that of observed ones.

  19. Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Ekers, Ron; Wilson, Thomas L.

    ``Radio Telescopes" starts with a brief historical introduction from Jansky's1931 discovery of radio emission from the Milky Way through the development ofradio telescope dishes and arrays to aperture synthesis imaging. It includessufficient basics of electromagnetic radiation to provide some understanding of thedesign and operation of radio telescopes. The criteria such as frequencyrange, sensitivity, survey speed, angular resolution, and field of view thatdetermine the design of radio telescopes are introduced. Because it is soeasy to manipulate the electromagnetic waves at radio frequencies, radiotelescopes have evolved into many different forms, sometimes with "wire"structures tuned to specific wavelengths, which look very different from anykind of classical telescope. To assist astronomers more familiar with otherwavelength domains, the appendix A.1. includes a comparison of radioand optical terminology. Some of the different types of radio telescopesincluding the filled aperture dishes, electronically steered phased arrays, andaperture synthesis radio telescopes are discussed, and there is a sectioncomparing the differences between dishes and arrays. Some of the morerecent developments including hierarchical beam forming, phased arrayfeeds, mosaicing, rotation measure synthesis, digital receivers, and longbaseline interferometers are included. The problem of increasing radiofrequency interference is discussed, and some possible mitigation strategies areoutlined.

  20. Ultra-Narrow Negative Flare Front Observed in Helium-10830 Å Using the1.6m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Cao, Wenda; Ding, Mingde; Kleint, Lucia; Su, Jiangtao; Liu, Chang; Ji, Haisheng; Chae, Jongchul; Jing, Ju; Cho, Kyuhyoun; Cho, Kyung-Suk; Gary, Dale E.; Wang, Haimin

    2016-05-01

    Solar flares are sudden flashes of brightness on the Sun and are often associated with coronal mass ejections and solar energetic particles that have adverse effects on the near-Earth environment. By definition, flares are usually referred to as bright features resulting from excess emission. Using the newly commissioned 1.6-m New Solar Telescope at Big Bear Solar Observatory, we show a striking “negative” flare with a narrow but unambiguous “dark” moving front observed in He I 10830 Å, which is as narrow as 340 km and is associated with distinct spectral characteristics in Hα and Mg II lines. Theoretically, such negative contrast in He I 10830 Å can be produced under special circumstances by nonthermal electron collisions or photoionization followed by recombination. Our discovery, made possible due to unprecedented spatial resolution, confirms the presence of the required plasma conditions and provides unique information in understanding the energy release and radiative transfer in solar flares.

  1. Development of a Lyman-α Imaging Solar Telescope for the Satellite

    NASA Astrophysics Data System (ADS)

    Jang, M.; Oh, H.-S.; Rim, C.-S.; Park, J.-S.; Kim, J.-S.; Son, D.

    2005-09-01

    Long term observations of full-disk Lyman-α irradiance have been made by the instruments on various satellites. In addition, several sounding rockets dating back to the 1950s and up through the present have measured the Lyman-α irradiance. Previous full disk Lyman-α images of the sun have been very interesting and useful scientifically, but have been only five-minute ``snapshots" obtained on sounding rocket flights. All of these observations to date have been snapshots, with no time resolution to observe changes in the chromospheric structure as a result of the evolving magnetic field, and its effect on the Lyman-α intensity. The Lyman-α Imaging Solar Telescope(LIST) can provide a unique opportunity for the study of the sun in the Lyman-α region with the high time and spatial resolution for the first time. Up to the 2nd year development, the preliminary design of the optics, mechanical structure and electronics system has been completed. Also the mechanical structure analysis, thermal analysis were performed and the material for the structure was chosen as a result of these analyses. And the test plan and the verification matrix were decided. The operation systems, technical and scientific operation, were studied and finally decided. Those are the technical operation, mechanical working modes for the observation and safety, the scientific operation and the process of the acquired data. The basic techniques acquired through the development of satellite based solar telescope are essential for the construction of space environment forecast system in the future. The techniques which we developed through this study, like mechanical, optical and data processing techniques, could be applied extensively not only to the process of the future production of flight models of this kind, but also to the related industries. Also, we can utilize the scientific achievements which are obtained throughout the project. And these can be utilized to build a high resolution photometric detectors for military and commercial purposes. It is also believed that we will be able to apply several acquired techniques for the development of the Korean satellite projects in the future.

  2. Impacts on Hubble Space Telescope solar arrays: Discrimination between natural and man-made particles

    NASA Astrophysics Data System (ADS)

    Kearsley, A. T.; Drolshagen, G.; McDonnell, J. A. M.; Mandeville, J.-C.; Moussi, A.

    A Post-Flight Investigation was initiated by the European Space Agency to analyze impacts on solar arrays of the Hubble Space Telescope (HST), exposed to space for 8.25 years at approximately 600 km altitude. The solar cells deployed during the first Service Mission (SM-1 in December 1993) were retrieved in March 2002 as part of Service Mission 3B (SM-3B). A sub-panel of 2 m 2 was cut from the arrays for subsequent selection and removal of individual solar cells for analysis. Six cells (4.8 × 10 -3 m 2) were surveyed for flux of all craters of sizes greater than 5 microns. Analytical scanning electron microscopy was used to analyse residues in 111 features of 3-4000 micron conchoidal detachment diameter ( Dco), examined on 23 solar cells. Eighty three show identifiable residue: 38 are Space Debris impacts and 45 Micrometeoroid impacts. Of the remaining 28, 2 contain residue of ambiguous origin, 1 is probably a minor manufacturing flaw, 1 is obscured by contamination, and 24 are unresolved, lacking recognizable residue. The majority of space debris impacts on the SM-3B cells are less than 80 microns Dco, dominated by Al-rich residue, probably of solid rocket motor origin, although three may be due to sodium metal droplet impacts. Three larger features include paint pigment and binder, ferrous alloy, and possible carbon-fibre composite material debris. Micrometeoroid residues are found across the entire crater size range and dominate features of between 100 and 1000 microns, their residues are similar to those found in earlier SM-1 surveys. Fe- and Mg-rich silicates dominate; Fe sulphides are common and there are occasional vesicular Ni- and S-bearing mafic silicates of hydrous phyllosilicate origin. A single sodium aluminosilicate residue and one Fe Ni metal residue were found; as well as enigmatic Mg- and S-bearing residues, all considered as probably of micrometeoroid origin. A few Fe-, O- and C-bearing residues were classified as of ambiguous origin.

  3. UPDATED ANALYSIS OF THE UPWIND INTERPLANETARY HYDROGEN VELOCITY AS OBSERVED BY THE HUBBLE SPACE TELESCOPE DURING SOLAR CYCLE 23

    SciTech Connect

    Vincent, Frederic E.; Ben-Jaffel, Lotfi; Harris, Walter M.

    2011-09-10

    The interplanetary hydrogen (IPH), a population of neutrals that fill the space between planets inside the heliosphere, carries the signature of the interstellar medium (ISM) and the heliospheric interface. As the incoming ISM-ionized component deflects at the heliopause, charge exchange reactions decelerate the bulk motion of the neutrals that penetrate the heliosphere. Inside the heliosphere, the IPH bulk velocity is further affected by solar gravity, radiation pressure, and ionization processes, with the latter two processes dependent on solar activity. Solar cycle 23 provided the first partial temporal map of the IPH velocity, including measurements from the Hubble Space Telescope (HST) spectrometers (Goddard High Resolution Spectrograph (GHRS) and Space Telescope Imaging Spectrograph (STIS)) and the Solar and Heliospheric Observatory/Solar Wind ANisotropies (SWAN) instrument. We present an updated analysis of IPH velocity measurements from GHRS and STIS and compare these results with those of SWAN and two different time-dependent models. Our reanalysis of STIS data reveals a significant change in IPH velocity relative to earlier reports, because of the contamination by geocoronal oxygen that was not accounted for. While current models of the heliospheric interface predict the observed IPH velocity for solar maximum, they are not consistent with data covering solar minimum. With updates to the HST data points, we now find that all data can be fit by the existing models to within 1{sigma}, with the exception of SWAN observations taken at solar minimum (1997/1998). We conclude that the current data lack the temporal coverage and/or precision necessary to determine the detailed characteristics of the solar cycle dependence. Hence, new observations are merited.

  4. Silicon carbide pointing mirror and telescope for the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)

    NASA Astrophysics Data System (ADS)

    Schwalm, Mark; Dibiase, Dan; Landry, Dave; Rider, Brian; Ugolini, Virginia

    2005-08-01

    SSG Precision Optronics, Inc. has delivered a silicon carbide (SiC) pointing mirror and telescope for NASA's Geostationary Imaging Fourier Transform Spectrometer (GIFTS) project. The 28 x 45 cm SiC pointing mirror is part of SSG's two-axis gimbaled mirror assembly that will provide object-space pointing and jitter control. The 24 cm aperture telescope is an off-axis afocal three mirror anastigmat that is the collection aperture for the GIFTS instrument. Silicon carbide was selected for the GIFTS pointing mirror and telescope in order to minimize weight, provide athermal optical performance from room temperature to 190 Kelvin, and maintain image quality and line-of-sight stability in the presence of partial or full solar loading (minimizing solar outages). Both subsystems were successfully designed, fabricated, and subjected to testing prior to being delivered to Utah State University's Space Dynamics Laboratory for integration. This paper describes the pointing mirror and telescope design and hardware results.

  5. Progress Report of the new Solar Sub-Millimeter Telescope Installation

    NASA Astrophysics Data System (ADS)

    Kaufmann, P.; Magun, A.; Levato, H.; Rovira, M.; Arzner, K.; Correia, E.; Costa, J. E. R.; Gimenez de Castro, C. G.; Kaempfer, N.; Raulin, J. P.; Rolli, E.; Silva, A. V. R.

    1998-11-01

    The Sub-Millimeter Solar Telescope (SST) project is now in his final phase of construction and a definitive schedule has been established. The 1.5 m diameter reflector has been completed by Steward Observatory, University of Arizona, presenting an excellent surface with a deviation of 18 microns (r.m.s.). The delay of the reflector construction was the result of the new technology employed, and mainly due to the slumping of the reflector which needed additional technological research (Kingsley et al. 1998). The SST building, including one 3.4 m ESSCO gore-tex radom and a room for two complementary optical imaging spectrographs (from IAP, Bern and OV, UFRJ, Brazil), has been completed now by CASLEO at El Leoncito, San Juan, Argentina. Numerous electrical, electronical, mechanical tests, as well as softwares tests, have been performed at the IAP, Bern, Switzerland, and at Itapetinga, Brazil. The 1.5 m reflector is in Bern, already assembled to the other SST parts: four 210 and two 405 GHZ radiometers built by RPG, the ORBIT positionner, the interface box between the reflector and the radiometers, the counter-weights. Test and integration of the SST are being done at Bern, with a co-participation of researchers and technicians of CRAAE and CASLEO. The shipment of the SST to El Leoncito will be mid-October, and the final installation is scheduled for the period January-April of 1999. The first tests and solar observations are planned for May of 1999. The SST project received main financial support from FAPESP (Proc. 93/3321-7), complemented by funds from the IAP, Switzerland, and, IAFE and CASLEO/CONICET, Argentina.

  6. Analysis of Flows inside Quiescent Prominences as Captured by Hinode/Solar Optical Telescope

    NASA Astrophysics Data System (ADS)

    Freed, M. S.; McKenzie, D. E.; Longcope, D. W.; Wilburn, M.

    2016-02-01

    Developing an understanding of how magnetic fields can become entangled in a prominence is important for predicting a possible eruption. This work investigates the kinetic energy and vorticity associated with plasma motion residing inside quiescent prominences (QPs). These plasma flow characteristics can be utilized to improve our understanding of how the prominence maintains a stable magnetic field configuration. Three different contrast-enhanced solar prominence observations from Hinode/Solar Optical Telescope were used to construct velocity maps—in the plane of the sky—via a Fourier local correlation tracking program. The resulting velocities were then used to perform the first-ever analysis of the two-dimensional kinetic energy and enstrophy spectra of a prominence. Enstrophy is introduced here as a means of quantifying the vorticity that has been observed in many QPs. The kinetic energy power spectral density (PSD) produced indices ranging from -1.00 to -1.60. There was a consistent anisotropy in the kinetic energy spectrum of all three prominences examined. Examination of the intensity PSD reveals that a different scaling relationship exists between the observed prominence structure and velocity maps. All of the prominences exhibited an inertial range of at least 0.8≤slant k≤slant 2.0 {rads} {{Mm}}-1. Quasi-periodic oscillations were also detected in the centroid of the velocity distributions for one prominence. Additionally, a lower limit was placed on the kinetic energy density (ɛ ˜ 0.22-7.04 {{km}}2 {{{s}}}-2) and enstrophy density (ω ˜ 1.43-13.69 × \\quad {10}-16 {{{s}}}-2) associated with each prominence.

  7. Dynamics in Sunspot Umbra as Seen in New Solar Telescope and Interface Region Imaging Spectrograph Data

    NASA Astrophysics Data System (ADS)

    Yurchyshyn, V.; Abramenko, V.; Kilcik, A.

    2015-01-01

    We analyze sunspot oscillations using Interface Region Imaging Spectrograph (IRIS) slit-jaw and spectral data and narrow-band chromospheric images from the New Solar Telescope (NST) for the main sunspot in NOAA AR 11836. We report that the difference between the shock arrival times as measured by the Mg II k 2796.35 Å and Si IV 1393.76 Å line formation levels changes during the observed period, and peak-to-peak delays may range from 40 s to zero. The intensity of chromospheric shocks also displays long-term (about 20 min) variations. NST's high spatial resolution Hα data allowed us to conclude that, in this sunspot, umbral flashes (UFs) appeared in the form of narrow bright lanes stretched along the light bridges and around clusters of umbral bright points. The time series also suggested that UFs preferred to appear on the sunspot-center side of light bridges, which may indicate the existence of a compact sub-photospheric driver of sunspot oscillations. The sunspot's umbra as seen in the IRIS chromospheric and transition region data appears bright above the locations of light bridges and the areas where the dark umbra is dotted with clusters of umbral dots. Co-spatial and co-temporal data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory showed that the same locations were associated with bright footpoints of coronal loops suggesting that the light bridges may play an important role in heating the coronal sunspot loops. Finally, the power spectra analysis showed that the intensity of chromospheric and transition region oscillations significantly vary across the umbra and with height, suggesting that umbral non-uniformities and the structure of sunspot magnetic fields may play a role in wave propagation and heating of umbral loops.

  8. Observing distant solar system objects with James Webb Space Telescope (JWST)

    NASA Astrophysics Data System (ADS)

    Balzano, Vicki; Isaacs, John C.; Nelan, Edmund P.

    2008-07-01

    The James Webb Space Telescope will provide a unique capability to observe Solar System objects such as Kuiper Belt Objects, comets, asteroids, and the outer planets and their moons in the near and mid-infrared. A recent study developed the conceptual design for a capability to track and observe these objects. In this paper, we describe how the requirements and operations concept were derived from the scientific goals and were distributed among the Observatory and Ground Segment components in order to remain consistent with the current event-driven operations concept of JWST. In the event-driven operations concept, the Ground Segment produces a high-level Observation Plan that is interpreted by on-board scripts to generate commands and monitor telemetry responses. This approach allows efficient and flexible execution of planned observations; precise or conservative timing models are not required, and observations may be skipped if guide star or target acquisition fails. The efficiency of this approach depends upon most observations having large time intervals in which they can execute. Solar System objects require a specification of how to track the object with the Observatory, and a guide star that remains within the field of view of the guider during the observation. We describe how tracking and guiding will be handled with JWST to retain the efficient and flexible execution characteristics of event-driven operations. We also describe how the implementation is distributed between the Spacecraft, Fine Guidance Sensor, On-board Scripts, and Proposal Planning Subsystem, preserving the JWST operations concept.

  9. DYNAMICS IN SUNSPOT UMBRA AS SEEN IN NEW SOLAR TELESCOPE AND INTERFACE REGION IMAGING SPECTROGRAPH DATA

    SciTech Connect

    Yurchyshyn, V.; Abramenko, V.; Kilcik, A.

    2015-01-10

    We analyze sunspot oscillations using Interface Region Imaging Spectrograph (IRIS) slit-jaw and spectral data and narrow-band chromospheric images from the New Solar Telescope (NST) for the main sunspot in NOAA AR 11836. We report that the difference between the shock arrival times as measured by the Mg II k 2796.35 Å and Si IV 1393.76 Å line formation levels changes during the observed period, and peak-to-peak delays may range from 40 s to zero. The intensity of chromospheric shocks also displays long-term (about 20 min) variations. NST's high spatial resolution Hα data allowed us to conclude that, in this sunspot, umbral flashes (UFs) appeared in the form of narrow bright lanes stretched along the light bridges and around clusters of umbral bright points. The time series also suggested that UFs preferred to appear on the sunspot-center side of light bridges, which may indicate the existence of a compact sub-photospheric driver of sunspot oscillations. The sunspot's umbra as seen in the IRIS chromospheric and transition region data appears bright above the locations of light bridges and the areas where the dark umbra is dotted with clusters of umbral dots. Co-spatial and co-temporal data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory showed that the same locations were associated with bright footpoints of coronal loops suggesting that the light bridges may play an important role in heating the coronal sunspot loops. Finally, the power spectra analysis showed that the intensity of chromospheric and transition region oscillations significantly vary across the umbra and with height, suggesting that umbral non-uniformities and the structure of sunspot magnetic fields may play a role in wave propagation and heating of umbral loops.

  10. Development of a correlation tracker system for the New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Choi, Seonghwan; Nah, Jakyoung; Moon, Yong-Jae; Wang, Haimin; Coulter, Roy

    2008-07-01

    In this paper, we report on the development of a correlation tracker system for the New Solar Telescope (NST). It consists of three sub-systems: a tip-tilt mirror unit, a camera unit, and a control unit. Its software has been developed via Microsoft Visual C++, which enables us to take images from the high-speed CMOS camera in order to measure the image motions induced by atmospheric turbulence by using SAD algorithm and 2-D FFT cross-correlation, and to control the high-dynamics Piezo tip-tilt mirror for tip-tilt correction. We adopted the SIMD technology and parallel programming technology based on the Intel Core 2 Quad processor without any additional processing system (FPGA or DSP) for high-speed performance. As a result, we can make a tip-tilt correction with about seven hundreds of Hz in a closed loop mode. The prototype system has been successfully developed in a laboratory and will be installed on the NST.

  11. Progress Report of the New Solar Submm-Wave Telescope (SST) Installation

    NASA Astrophysics Data System (ADS)

    Kaufman, P.; Magun, A.; Levato, H.; Rovira, M.; Arzner, K.; Correia, E.; Costa, J. E. R.; Giménez de Castro, C. G.; Kämpfer, N.; Raulin, J.-P.; Rolli, E.; Silva, A. V. R.

    1999-12-01

    The Solar Sub-Millimeter wave Telescope (SST) is now in its final stage of construction and a definite schedule has been established. The 1.5 m diameter reflector has been completed and presents an excellent surface with a deviation of 18 microns (r.m.s.). The reflector construction employed the new "slumping" technique (Martin et al. 1998). The SST building, including one 3.4 m gore-tex radome and a room for optical imaging spectrographs (from IAP, Bern and OV, UFRJ, Brasil), has been completed now at El Leoncito, San Juan, Argentina. Numerous electrical, electronical, mechanical tests, as well as software tests, have been performed at the IAP, Bern, Switzerland, and at Itapetinga, Brasil. The SST was assembled in Bern, consisting of the 1.5 m reflector, four 210 and two 405 GHz radiometers, the positioner, the interface box between the reflector and the radiometers, and the counter-weights. Part of the tests and integration of the SST is beeing done at Bern, with a co-participation of researchers and technicians of CRAAE and CASLEO. The shipment of the SST to El Leoncito will be in February 1999, and the final installation is scheduled for the period March-May 1999. The SST project received main financial support from the Brazilian Agency FAPESP (Proc. 93/3321-7), complemented by funds from the IAFE and CASLEO/CONICET, Argentina, and the IAP, Switzerland.

  12. PRECURSOR OF SUNSPOT PENUMBRAL FORMATION DISCOVERED WITH HINODE SOLAR OPTICAL TELESCOPE OBSERVATIONS

    SciTech Connect

    Shimizu, Toshifumi; Ichimoto, Kiyoshi; Suematsu, Yoshinori

    2012-03-10

    We present observations of a precursory signature that would be helpful for understanding the formation process of sunspot penumbrae. The Hinode Solar Optical Telescope successfully captured the entire evolution of a sunspot from the pore to a large well-developed sunspot with penumbra in an emerging flux region appearing in NOAA Active Region 11039. We found an annular zone (width 3''-5'') surrounding the umbra (pore) in Ca II H images before the penumbra formed around the umbra. The penumbra developed as if to fill the annular zone. The annular zone shows weak magnetogram signals, meaning less magnetic flux or highly inclined fields there. Pre-existing ambient magnetic field islands were distributed at the outer edge of the annular zone and did not come into the zone. There are no strong systematic flow patterns in the zone, but we occasionally observed small magnetic flux patches streaming out. The observations indicate that the annular zone is different from the sunspot moat flow region and that it represents the structure in the chromosphere. We conclude that the annular zone reflects the formation of a magnetic canopy overlying the region surrounding the umbra at the chromospheric level, long before the formation of the penumbra at the photospheric level. The magnetic field structure in the chromosphere needs to be considered in the formation process of the penumbrae.

  13. The Swedish Vacuum Solar Telescope data-acquisition and control systems

    NASA Astrophysics Data System (ADS)

    Shand, Mark; Scharmer, Göran B.

    1998-11-01

    The performance of commodity computer systems doubles approximately every 18 months. Traditionally, the design of scientific data-acquisition and control systems has tended to ignore this fact, relying instead on custom hardware developments using the technology available at the time of instrument specification. Moreover, development manpower is usually limited, causing relatively long development cycles. Often the the result is that an instrument is technologically obsolete quite early in its projected lifetime. In contrast, all the digital processing for data acquisition and control at the Swedish Vacuum Solar Telescope (SVST) on La Palma (Canary Islands) is performed with commodity workstations. The result is a flexible system with low development costs that can easily take advantage of the latest microprocessor advances. The SVST's use of commodity workstations in on-line real-time tasks is in large part made possible by its use of reconfigurable interface technology. Indeed the SVST has been a valuable proving ground for this technology. This article summarizes the instrumentation of the SVST and illustrates examples of data recorded with this instrumentation.

  14. Plate coil thermal test bench for the Daniel K. Inouye Solar Telescope (DKIST) carousel cooling system

    NASA Astrophysics Data System (ADS)

    Phelps, LeEllen; Murga, Gaizka; Montijo, Guillermo; Hauth, David

    2014-08-01

    Analyses have shown that even a white-painted enclosure requires active exterior skin-cooling systems to mitigate dome seeing which is driven by thermal nonuniformities that change the refractive index of the air. For the Daniel K. Inouye Solar Telescope (DKIST) Enclosure, this active surface temperature control will take the form of a system of water cooled plate coils integrated into the enclosure cladding system. The main objective of this system is to maintain the surface temperature of the enclosure as close as possible to, but always below, local ambient temperature in order to mitigate this effect. The results of analyses using a multi-layer cladding temperature model were applied to predict the behavior of the plate coil cladding system and ultimately, with safety margins incorporated into the resulting design thermal loads, the detailed designs. Construction drawings and specifications have been produced. Based on these designs and prior to procurement of the system components, a test system was constructed in order to measure actual system behavior. The data collected during seasonal test runs at the DKIST construction site on Haleakalā are used to validate and/or refine the design models and construction documents as appropriate. The test fixture was also used to compare competing hardware, software, components, control strategies, and configurations. This paper outlines the design, construction, test protocols, and results obtained of the plate coil thermal test bench for the DKIST carousel cooling system.

  15. Opto-thermal analysis of a lightweighted mirror for solar telescope.

    PubMed

    Banyal, Ravinder K; Ravindra, B; Chatterjee, S

    2013-03-25

    In this paper, an opto-thermal analysis of a moderately heated lightweighted solar telescope mirror is carried out using 3D finite element analysis (FEA). A physically realistic heat transfer model is developed to account for the radiative heating and energy exchange of the mirror with surroundings. The numerical simulations show the non-uniform temperature distribution and associated thermo-elastic distortions of the mirror blank clearly mimicking the underlying discrete geometry of the lightweighted substrate. The computed mechanical deformation data is analyzed with surface polynomials and the optical quality of the mirror is evaluated with the help of a ray-tracing software. The thermal print-through distortions are further shown to contribute to optical figure changes and mid-spatial frequency errors of the mirror surface. A comparative study presented for three commonly used substrate materials, namely, Zerodur, Pyrex and Silicon Carbide (SiC) is relevant to vast area of large optics requirements in ground and space applications. PMID:23546089

  16. MAGNETIC RECONNECTION BETWEEN SMALL-SCALE LOOPS OBSERVED WITH THE NEW VACUUM SOLAR TELESCOPE

    SciTech Connect

    Yang, Shuhong; Zhang, Jun; Xiang, Yongyuan

    2015-01-01

    Using the high tempo-spatial resolution Hα images observed with the New Vacuum Solar Telescope, we report solid observational evidence of magnetic reconnection between two sets of small-scale, anti-parallel loops with an X-shaped topology. The reconnection process contains two steps: a slow step with a duration of more than several tens of minutes, and a rapid step lasting for only about three minutes. During the slow reconnection, two sets of anti-parallel loops gradually reconnect, and new loops are formed and stacked together. During the rapid reconnection, the anti-parallel loops approach each other quickly, and then rapid reconnection takes place, resulting in the disappearance of the former loops. In the meantime, new loops are formed and separate. The region between the approaching loops is brightened, and the thickness and length of this region are determined to be about 420 km and 1.4 Mm, respectively. During the rapid reconnection process, obvious brightenings at the reconnection site and apparent material ejections outward along reconnected loops are observed. These observed signatures are consistent with predictions by reconnection models. We suggest that the successive slow reconnection changes the conditions around the reconnection site and triggers instabilities, thus leading to the rapid approach of the anti-parallel loops and resulting in the rapid reconnection.

  17. Witnessing magnetic twist with high-resolution observation from the 1.6-m New Solar Telescope.

    PubMed

    Wang, Haimin; Cao, Wenda; Liu, Chang; Xu, Yan; Liu, Rui; Zeng, Zhicheng; Chae, Jongchul; Ji, Haisheng

    2015-01-01

    Magnetic flux ropes are highly twisted, current-carrying magnetic fields. They are crucial for the instability of plasma involved in solar eruptions, which may lead to adverse space weather effects. Here we present observations of a flaring using the highest resolution chromospheric images from the 1.6-m New Solar Telescope at Big Bear Solar Observatory, supplemented by a magnetic field extrapolation model. A set of loops initially appear to peel off from an overall inverse S-shaped flux bundle, and then develop into a multi-stranded twisted flux rope, producing a two-ribbon flare. We show evidence that the flux rope is embedded in sheared arcades and becomes unstable following the enhancement of its twists. The subsequent motion of the flux rope is confined due to the strong strapping effect of the overlying field. These results provide a first opportunity to witness the detailed structure and evolution of flux ropes in the low solar atmosphere. PMID:25919706

  18. Witnessing magnetic twist with high-resolution observation from the 1.6-m New Solar Telescope

    PubMed Central

    Wang, Haimin; Cao, Wenda; Liu, Chang; Xu, Yan; Liu, Rui; Zeng, Zhicheng; Chae, Jongchul; Ji, Haisheng

    2015-01-01

    Magnetic flux ropes are highly twisted, current-carrying magnetic fields. They are crucial for the instability of plasma involved in solar eruptions, which may lead to adverse space weather effects. Here we present observations of a flaring using the highest resolution chromospheric images from the 1.6-m New Solar Telescope at Big Bear Solar Observatory, supplemented by a magnetic field extrapolation model. A set of loops initially appear to peel off from an overall inverse S-shaped flux bundle, and then develop into a multi-stranded twisted flux rope, producing a two-ribbon flare. We show evidence that the flux rope is embedded in sheared arcades and becomes unstable following the enhancement of its twists. The subsequent motion of the flux rope is confined due to the strong strapping effect of the overlying field. These results provide a first opportunity to witness the detailed structure and evolution of flux ropes in the low solar atmosphere. PMID:25919706

  19. Ultra-narrow Negative Flare Front Observed in Helium-10830 Å Using the 1.6 m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Cao, Wenda; Ding, Mingde; Kleint, Lucia; Su, Jiangtao; Liu, Chang; Ji, Haisheng; Chae, Jongchul; Jing, Ju; Cho, Kyuhyoun; Cho, Kyungsuk; Gary, Dale; Wang, Haimin

    2016-03-01

    Solar flares are sudden flashes of brightness on the Sun and are often associated with coronal mass ejections and solar energetic particles that have adverse effects on the near-Earth environment. By definition, flares are usually referred to as bright features resulting from excess emission. Using the newly commissioned 1.6 m New Solar Telescope at Big Bear Solar Observatory, we show a striking “negative” flare with a narrow but unambiguous “dark” moving front observed in He i 10830 Å, which is as narrow as 340 km and is associated with distinct spectral characteristics in Hα and Mg ii lines. Theoretically, such negative contrast in He i 10830 Å can be produced under special circumstances by nonthermal electron collisions or photoionization followed by recombination. Our discovery, made possible due to unprecedented spatial resolution, confirms the presence of the required plasma conditions and provides unique information in understanding the energy release and radiative transfer in astronomical objects.

  20. Witnessing magnetic twist with high-resolution observation from the 1.6-m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Wang, Haimin; Cao, Wenda; Liu, Chang; Xu, Yan; Liu, Rui; Zeng, Zhicheng; Chae, Jongchul; Ji, Haisheng

    2015-04-01

    Magnetic flux ropes are highly twisted, current-carrying magnetic fields. They are crucial for the instability of plasma involved in solar eruptions, which may lead to adverse space weather effects. Here we present observations of a flaring using the highest resolution chromospheric images from the 1.6-m New Solar Telescope at Big Bear Solar Observatory, supplemented by a magnetic field extrapolation model. A set of loops initially appear to peel off from an overall inverse S-shaped flux bundle, and then develop into a multi-stranded twisted flux rope, producing a two-ribbon flare. We show evidence that the flux rope is embedded in sheared arcades and becomes unstable following the enhancement of its twists. The subsequent motion of the flux rope is confined due to the strong strapping effect of the overlying field. These results provide a first opportunity to witness the detailed structure and evolution of flux ropes in the low solar atmosphere.

  1. Impacts on Hubble Space Telescope solar arrays: discrimination between natural and man-made particles.

    NASA Astrophysics Data System (ADS)

    Kearsley, A. T.; Drolshagen, G.; McDonnell, J. A. M.; Mandeville, J.-C.; Moussi, A.

    A Post-Flight Investigation was initiated by the European Space Agency to analyze impact fluxes on solar arrays of the Hubble Space Telescope (HST), exposed to space for 8.25 years at approximately 600 km altitude. The solar cells were deployed during servicing mission SM-1 (December 1993), and retrieved by shuttle orbiter Columbia in March 2002 (SM-3B). A sub-panel of 2 m2 was cut from the --V2 wing and cells were selected for in-depth analysis. Twelve cells (9.6x10-3 m2) were surveyed for flux of all craters of sizes greater than 5 microns Dco; six at the NHM, and six at ONERA. Cumulative flux plots reveal slightly greater abundance of very small craters than in a comparable survey of SM-1 cells. Analytical scanning electron microscopy was used to locate impact features and to analyse residues at the NHM. 103 features of 3 -- 4000 micron conchoidal detachment diameter (Dco) were located on a total of 17 solar cells. 78 features show identifiable residue: 36 are Space Debris impacts and 42 Micrometeoroid impacts. Of the remaining 25: 4 contain residue of ambiguous origin, 1 is a minor manufacturing flaw, 1 is obscured by contamination, and 19 are unresolved, lacking recognizable residue. Space debris impacts on the SM-3B cells are all less than 80 microns Dco, dominated by Al- rich residue, probably of solid rocket motor origin, some may be unburnt fuel. Three craters may be sodium metal droplet impacts. No residues from paint pigment, aluminium or ferrous alloys, or copper- and tin-bearing metal were found. All craters larger than 100 microns are of micrometeoroid origin, or unresolved. Most residues are magnesium-iron silicate or iron sulfide. A few craters show vesicular Mg, S, Fe and Ni residue. A single Fe Ni metal residue was found, as well as enigmatic Mg- and S-bearing residues, all considered of micrometeoroid origin. A few Fe-, O- and C-bearing residues were classified as of ambiguous origin. The quality and quantity of residue is clearly linked to the crater pit morphology, with oval pit features containing more identifiable residue, perhaps due to lower peak shock pressures experienced in these oblique-incidence impacts.

  2. Production of the 4.26 m ZERODUR mirror blank for the Advanced Technology Solar telescope (ATST)

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Werner, Thomas; Westerhoff, Thomas

    2014-07-01

    The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) will be the most powerful solar telescope in the world. It is currently being built by the Association of Universities for Research in Astronomy (AURA) in a height of 3000 m above sea level on the mountain Haleakala of Maui, Hawaii. The primary mirror blank of diameter 4.26 m is made of the extremely low thermal expansion glass ceramic ZERODUR® of SCHOTT AG Advanced Optics. The DKIST primary mirror design is extremely challenging. With a mirror thickness of only 78 to 85 mm it is the smallest thickness ever machined on a mirror of 4.26 m in diameter. Additionally the glassy ZERODUR® casting is one of the largest in size ever produced for a 4 m class ZERODUR® mirror blank. The off axis aspherical mirror surface required sophisticated grinding procedures to achieve the specified geometrical tolerance. The small thickness of about 80 mm required special measures during processing, lifting and transport. Additionally acid etch treatment was applied to the convex back-surface and the conical shaped outer diameter surface to improve the strength of the blank. This paper reports on the challenging tasks and the achievements on the material property and dimensional specification parameter during the production of the 4.26 m ZERODUR® primary mirror blank for AURA.

  3. RATAN-600 radio telescope in the 24th solar-activity cycle. II. Multi-octave spectral and polarization high-resolution solar research system

    NASA Astrophysics Data System (ADS)

    Bogod, V. M.; Alesin, A. M.; Pervakov, A. A.

    2011-04-01

    Radio astronomy studies of the solar atmosphere possess a very important, not duplicated by other methods, place in the study of solar activity at all stages - from the birth of an active region until its collapse. A significant progress in these studies can be achieved in the implementation of new technical possibilities, such as an increase in the sensitivity of radio telescopes, a detailed spectral analysis over a wide frequency range, high temporal resolution and a broad coverage range in time. We report about the implementation of regular observations with a new spectral and polarization high-resolution system SPHRS, installed at the radio telescope RATAN-600.We describe the concept of the new system and the methods of its implementation.

  4. The Hubble Space Telescope solar array blanket: Post flight technology verification -- Recent R and D results for the assessment of weld joints

    SciTech Connect

    Bebermeier, H.

    1994-12-31

    More than 7 years ago the flexible Hubble Space Telescope solar array blanket was designed and manufactured by the European industry with the ambitious goal to realize a retractable solar array system with full protection against ATOX; full protection of the electrical network against shadowing; a lifetime of 5 years in LEO equivalent to 30,000 thermal cycles. One wing of the solar array was successfully recovered and is now subject of extended post flight investigations under ESA/EsteC contracts. The paper will present in detail recent r and D results from the module and interconnection technology which confirm the technological approach of the Hubble Space Telescope solar array.

  5. A search for small solar-system bodies near the earth using a ground-based telescope - Technique and observations

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Sigwarth, J. B.; Yeates, C. M.

    1990-01-01

    A large, previously undetected flux of small bodies near earth is identified by employing the standard technique of detection of an individual object in two consecutive frames. The observational periods and viewing coordinates for the search for small bodies are presented. A null test is performed in order to further demonstrate that the signatures in the images are not due to instrumental artifacts. The observed fluxes, orbital motions, and radii of the small bodies detected are in agreement with those for the small cometlike objects previously reported. It is pointed out that the radii of the small bodies would be in the range of meters. Since an alternative interpretation of the small bodies is possible, it is suggested that the use of a telescope with larger aperture and/or array detectors with lesser noise levels is necessary to confirm the present observations.

  6. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  7. Measuring the Solar Magnetic Field with STEREO A Radio Transmissions: Faraday Rotation Observations using the 100m Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Kobelski, A.; Jensen, E.; Wexler, D.; Heiles, C.; Kepley, A.; Kuiper, T.; Bisi, M.

    2016-04-01

    The STEREO mission spacecraft recently passed through superior conjunction, providing an opportunity to probe the solar corona using radio transmissions. Strong magnetic field and dense plasma environment induce Faraday rotation of the linearly polarized fraction of the spacecraft radio carrier signal. Variations in the Faraday rotation signify changes in magnetic field components and plasma parameters, and thus can be used to gain understanding processes of the quiescent sun as well as active outbursts including coronal mass ejections. Our 2015 observing campaign resulted in a series of measurements over several months with the 100m Green Bank Telescope (GBT) to investigate the coronal Faraday rotation at various radial distances. These observations reveal notable fluctuations in the Faraday rotation of the signal in the deep corona, and should yield unique insights into coronal magnetohydrodynamics down to a 1.5 solar radius line-of-sight solar elongation.

  8. Phasing rectangular apertures.

    PubMed

    Baker, K L; Homoelle, D; Utterback, E; Jones, S M

    2009-10-26

    Several techniques have been developed to phase apertures in the context of astronomical telescopes with segmented mirrors. Phasing multiple apertures, however, is important in a wide range of optical applications. The application of primary interest in this paper is the phasing of multiple short pulse laser beams for fast ignition fusion experiments. In this paper analytic expressions are derived for parameters such as the far-field distribution, a line-integrated form of the far-field distribution that could be fit to measured data, enclosed energy or energy-in-a-bucket and center-of-mass that can then be used to phase two rectangular apertures. Experimental data is taken with a MEMS device to simulate the two apertures and comparisons are made between the analytic parameters and those derived from the measurements. Two methods, fitting the measured far-field distribution to the theoretical distribution and measuring the ensquared energy in the far-field, produced overall phase variance between the 100 measurements of less than 0.005 rad(2) or an RMS displacement of less than 12 nm. PMID:19997175

  9. A normal incidence, high resolution X-ray telescope for solar coronal observations

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1984-01-01

    A Normal Incidence high resolution X-ray Telescope is reported. The design of a telescope assembly which, after fabrication, will be integrated with the mirror fabrication process is described. The assembly is engineered to fit into the Black Brant rocket skin to survive sounding rocket launch conditions. A flight ready camera is modified and tested.

  10. Simulated Solar Flare X-Ray and Thermal Cycling Durability Evaluation of Hubble Space Telescope Thermal Control Candidate Replacement Materials

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Sechkar, Edward A.; Scheiman, David A.

    1998-01-01

    During the Hubble Space Telescope (HST) second servicing mission (SM2), astronauts noticed that the multilayer insulation (MLI) covering the telescope was damaged. Large pieces of the outer layer of MLI (aluminized Teflon fluorinated ethylene propylene (Al-FEP)) were torn in several locations around the telescope. A piece of curled up Al-FEP was retrieved by the astronauts and was found to be severely embrittled, as witnessed by ground testing. Goddard Space Flight Center (GSFC) organized a HST MLI Failure Review Board (FRB) to determine the damage mechanism of FEP in the HST environment, and to recommend replacement insulation material to be installed on HST during the third servicing mission (SM3) in 1999. Candidate thermal control replacement materials were chosen by the FRB and tested for environmental durability under various exposures and durations. This paper describes durability testing of candidate materials which were exposed to charged particle radiation, simulated solar flare x-ray radiation and thermal cycling under load. Samples were evaluated for changes in solar absorptance and tear resistance. Descriptions of environmental exposures and durability evaluations of these materials are presented.

  11. Search for solar axions by the CERN axion solar telescope with 3He buffer gas: closing the hot dark matter gap.

    PubMed

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Da Riva, E; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Garza, J G; Gazis, E N; Geralis, T; Georgiopoulou, E; Giomataris, I; Gninenko, S; Gómez, H; Gómez Marzoa, M; Gruber, E; Guthörl, T; Hartmann, R; Hauf, S; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Lang, P M; Laurent, J M; Liolios, A; Ljubičić, A; Luzón, G; Neff, S; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Shilon, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J; Vogel, J K; Yildiz, S C; Zioutas, K

    2014-03-01

    The CERN Axion Solar Telescope has finished its search for solar axions with (3)He buffer gas, covering the search range 0.64 eV ≲ ma ≲ 1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ ≲ 3.3 × 10(-10)  GeV(-1) at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory. PMID:24655238

  12. Re-evaluation of the Neutron Emission from the Solar Flare of 2005 September 7, Detected by the Solar Neutron Telescope at Sierra Negra

    NASA Astrophysics Data System (ADS)

    González, L. X.; Valdés-Galicia, J. F.; Sánchez, F.; Muraki, Y.; Sako, T.; Watanabe, K.; Matsubara, Y.; Nagai, Y.; Shibata, S.; Sakai, T.; Musalem, O.; Hurtado, A.

    2015-12-01

    The X17.0 solar flare of 2005 September 7 released high-energy neutrons that were detected by the Solar Neutron Telescope (SNT) at Sierra Negra, Mexico. In three separate and independent studies of this solar neutron event, several of its unique characteristics were studied; in particular, a power-law energy spectra was estimated. In this paper, we present an alternative analysis, based on improved numerical simulations of the detector using GEANT4, and a different technique for processing the SNT data. The results indicate that the spectral index that best fits the neutron flux is around 3, in agreement with previous works. Based on the numerically calculated neutron energy deposition on the SNT, we confirm that the detected neutrons might have reached an energy of 1 GeV, which implies that 10 GeV protons were probably produced; these could not be observed at Earth, as their parent flare was an east limb event.

  13. Performance of the SciBar cosmic ray telescope (SciCRT) toward the detection of high-energy solar neutrons in solar cycle 24

    NASA Astrophysics Data System (ADS)

    Sasai, Yoshinori; Nagai, Yuya; Itow, Yoshitaka; Matsubara, Yutaka; Sako, Takashi; Lopez, Diego; Itow, Tsukasa; Munakata, Kazuoki; Kato, Chihiro; Kozai, Masayoshi; Miyazaki, Takahiro; Shibata, Shoichi; Oshima, Akitoshi; Kojima, Hiroshi; Tsuchiya, Harufumi; Watanabe, Kyoko; Koi, Tatsumi; Valds-Galicia, Jose Francisco; Gonzlez, Luis Xavier; Ortiz, Ernesto; Musalem, Octavio; Hurtado, Alejandro; Garcia, Rocio; Anzorena, Marcos

    2014-12-01

    We plan to observe solar neutrons at Mt. Sierra Negra (4,600 m above sea level) in Mexico using the SciBar detector. This project is named the SciBar Cosmic Ray Telescope (SciCRT). The main aims of the SciCRT project are to observe solar neutrons to study the mechanism of ion acceleration on the surface of the sun and to monitor the anisotropy of galactic cosmic-ray muons. The SciBar detector, a fully active tracker, is composed of 14,848 scintillator bars, whose dimension is 300 cm 2.5 cm 1.3 cm. The structure of the detector enables us to obtain the particle trajectory and its total deposited energy. This information is useful for the energy reconstruction of primary neutrons and particle identification. The total volume of the detector is 3.0 m 3.0 m 1.7 m. Since this volume is much larger than the solar neutron telescope (SNT) in Mexico, the detection efficiency of the SciCRT for neutrons is highly enhanced. We performed the calibration of the SciCRT at Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) located at 2,150 m above sea level in Mexico in 2012. We installed the SciCRT at Mt. Sierra Negra in April 2013 and calibrated this detector in May and August 2013. We started continuous observation in March 2014. In this paper, we report the detector performance as a solar neutron telescope and the current status of the SciCRT.

  14. A normal incidence, high resolution X-ray telescope for solar coronal observations

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1984-01-01

    Efforts directed toward the completion of an X-ray telescope assembly design, the procurement of major components, and the coordination of optical fabrication and X-ray multilayer testing are reported.

  15. A Scanning Hartmann Focus Test for the EUVI Telescopes aboard STEREO

    NASA Technical Reports Server (NTRS)

    Ohl, R.; Antonille, S.; Aronstein, D.; Dean, B.; Delmont, M.; Eichord, W.; Frey, B.; Kubalak, D.; Wilson, M.; Redman, K.; Hynes, S.; Shiri, R.; Smith, J. S.; Thompson, P.

    2007-01-01

    The Solar TErrestrial RElations Observatory (STEREO), the third mission in NASA s Solar Terrestrial Probes program, was launched in 2006 on a two year mission to study solar phenomena like coronal mass ejections. STEREO consists of two nearly identical satellites, each carrying a suite of instruments that provide, among other data, simultaneous images of the Sun. One of these telescopes is the Extreme Ultraviolet Instrument (EUVI). There are two EUVI telescopes, one on each STEREO satellite (EUVI-A and EUVI-B). EUVI is a normal incidence, 98mm diameter, Ritchey-Chretien telescope designed to obtain wide field of view (approx.1deg) images of the Sun at short wavelengths (approx.20nm) using a CCD detector. The telescope entrance aperture is divided into four quadrants by a mask near the secondary mirror spider veins. A mechanism that rotates another mask allows only one of these sub-apertures to accept light from the Sun during an observation. The EUVI is thus four co-aligned, off-axis telescopes. Each off-axis segment on the primary and secondary mirrors has a different extreme ultraviolet coating stack. Furthermore, the aperture select mechanism is synchronized with a filter wheel mechanism near the CCD detector. The EUVI contains no focus mechanism. Models predict that the difference in on-orbit operating temperature and ambient clean room conditions yield a "best focus" difference between integration and operation of approx. 0.2mm.

  16. The High-Resolution Lightweight Telescope for the EUV (HiLiTE)

    SciTech Connect

    Martinez-Galarce, D S; Boerner, P; Soufli, R; De Pontieu, B; Katz, N; Title, A; Gullikson, E M; Robinson, J C; Baker, S L

    2008-06-02

    The High-resolution Lightweight Telescope for the EUV (HiLiTE) is a Cassegrain telescope that will be made entirely of Silicon Carbide (SiC), optical substrates and metering structure alike. Using multilayer coatings, this instrument will be tuned to operate at the 465 {angstrom} Ne VII emission line, formed in solar transition region plasma at {approx}500,000 K. HiLiTE will have an aperture of 30 cm, angular resolution of {approx}0.2 arc seconds and operate at a cadence of {approx}5 seconds or less, having a mass that is about 1/4 that of one of the 20 cm aperture telescopes on the Atmospheric Imaging Assembly (AIA) instrument aboard NASA's Solar Dynamics Observatory (SDO). This new instrument technology thus serves as a path finder to a post-AIA, Explorer-class missions.

  17. The high-resolution lightweight telescope for the EUV (HiLiTE)

    NASA Astrophysics Data System (ADS)

    Martínez-Galarce, Dennis S.; Boerner, Paul; Soufli, Regina; De Pontieu, Bart; Katz, Noah; Title, Alan; Gullikson, Eric M.; Robinson, Jeff C.; Baker, Sherry L.

    2008-07-01

    The High-resolution Lightweight Telescope for the EUV (HiLiTE) is a Cassegrain telescope that will be made entirely of Silicon Carbide (SiC), optical substrates and metering structure alike. Using multilayer coatings, this instrument will be tuned to operate at the 465 Å Ne VII emission line, formed in solar transition region plasma at ~500,000 K. HiLiTE will have an aperture of 30 cm, angular resolution of ~0.2 arc seconds and operate at a cadence of ~5 seconds or less, having a mass that is about 1/4 that of one of the 20 cm aperture telescopes on the Atmospheric Imaging Assembly (AIA) instrument aboard NASA's Solar Dynamics Observatory (SDO). This new instrument technology thus serves as a path finder to a post-AIA, Explorer-class missions.

  18. QUIESCENT PROMINENCE DYNAMICS OBSERVED WITH THE HINODE SOLAR OPTICAL TELESCOPE. I. TURBULENT UPFLOW PLUMES

    SciTech Connect

    Berger, Thomas E.; Slater, Gregory; Hurlburt, Neal; Shine, Richard; Tarbell, Theodore; Title, Alan; Okamoto, Takenori J.; Ichimoto, Kiyoshi; Katsukawa, Yukio; Magara, Tetsuya; Suematsu, Yoshinori; Shimizu, Toshifumi

    2010-06-20

    Hinode/Solar Optical Telescope (SOT) observations reveal two new dynamic modes in quiescent solar prominences: large-scale (20-50 Mm) 'arches' or 'bubbles' that 'inflate' from below into prominences, and smaller-scale (2-6 Mm) dark turbulent upflows. These novel dynamics are related in that they are always dark in visible-light spectral bands, they rise through the bright prominence emission with approximately constant speeds, and the small-scale upflows are sometimes observed to emanate from the top of the larger bubbles. Here we present detailed kinematic measurements of the small-scale turbulent upflows seen in several prominences in the SOT database. The dark upflows typically initiate vertically from 5 to 10 Mm wide dark cavities between the bottom of the prominence and the top of the chromospheric spicule layer. Small perturbations on the order of 1 Mm or less in size grow on the upper boundaries of cavities to generate plumes up to 4-6 Mm across at their largest widths. All plumes develop highly turbulent profiles, including occasional Kelvin-Helmholtz vortex 'roll-up' of the leading edge. The flows typically rise 10-15 Mm before decelerating to equilibrium. We measure the flowfield characteristics with a manual tracing method and with the Nonlinear Affine Velocity Estimator (NAVE) 'optical flow' code to derive velocity, acceleration, lifetime, and height data for several representative plumes. Maximum initial speeds are in the range of 20-30 km s{sup -1}, which is supersonic for a {approx}10,000 K plasma. The plumes decelerate in the final few Mm of their trajectories resulting in mean ascent speeds of 13-17 km s{sup -1}. Typical lifetimes range from 300 to 1000 s ({approx}5-15 minutes). The area growth rate of the plumes (observed as two-dimensional objects in the plane of the sky) is initially linear and ranges from 20,000 to 30,000 km{sup 2} s{sup -1} reaching maximum projected areas from 2 to 15 Mm{sup 2}. Maximum contrast of the dark flows relative to the bright prominence plasma in SOT images is negative and ranges from -10% for smaller flows to -50% for larger flows. Passive scalar 'cork movies' derived from NAVE measurements show that prominence plasma is entrained by the upflows, helping to counter the ubiquitous downflow streams in the prominence. Plume formation shows no clear temporal periodicity. However, it is common to find 'active cavities' beneath prominences that can spawn many upflows in succession before going dormant. The mean flow recurrence time in these active locations is roughly 300-500 s (5-8 minutes). Locations remain active on timescales of tens of minutes up to several hours. Using a column density ratio measurement and reasonable assumptions on plume and prominence geometries, we estimate that the mass density in the dark cavities is at most 20% of the visible prominence density, implying that a single large plume could supply up to 1% of the mass of a typical quiescent prominence. We hypothesize that the plumes are generated from a Rayleigh-Taylor instability taking place on the boundary between the buoyant cavities and the overlying prominence. Characteristics, such as plume size and frequency, may be modulated by the strength and direction of the cavity magnetic field relative to the prominence magnetic field. We conclude that buoyant plumes are a source of quiescent prominence mass as well as a mechanism by which prominence plasma is advected upward, countering constant gravitational drainage.

  19. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    NASA Technical Reports Server (NTRS)

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  20. CCD camera systems and support electronics for a White Light Coronagraph and X-ray XUV solar telescope

    NASA Technical Reports Server (NTRS)

    Harrison, D. C.; Kubierschky, K.; Staples, M. H.; Carpenter, C. H.

    1980-01-01

    Two instruments, a White Light Coronagraph and an X-ray XUV telescope built into the same housing, share several electronic functions. Each instrument uses a CCD as an imaging detector, but due to different spectral requirements, each uses a different type. Hardware reduction, required by the stringent weight and volume allocations of the interplanetary mission, is made possible by the use of a microprocessor. Most instrument functions are software controlled with the end use circuits treated as peripherals to the microprocessor. The instruments are being developed for the International Solar Polar Mission.

  1. New Solar System Researches expected by a New Telescope Project at Mt. Haleakala, Hawaii

    NASA Astrophysics Data System (ADS)

    Kagitani, Masato; Okano, S.; Kasaba, Y.; Kuhn, J.; Berdyugina, S.

    2009-09-01

    We Tohoku University starts the project for the new ground-based telescope dedicated to planets and exoplanets, in collaboration with the Institute for Astronomy of University of Hawaii(IfA/UH) and ETH Zurich. The summit of Mt. Haleakala in Maui, Hawaii is one of the best sites with clear skies, good seeing, and low humidity conditions as well as good accessibility despite its high altitude (elv. 3,000m). Haleakala High Altitude Observatory is operated by IfA/UH, and we have been making observation of planets there since 2000. Currently, our observation facility consists of a 40cm telescope. We have been making observations of faint atmospheric and plasma features around bright planets, Io plasma torus, Mercury and Lunar sodium tail, and so on. Atmospheric escapes from Mars and Venus, the exoplanets close to mother stars are also possible future important topics. When we try to observe those faint emissions surrounding the bright objects, intense scattered light causes a serious problem. The new telescope shall avoid the diffraction due to a spider structure that holds a secondary mirror and to minimize the scattered light from mirror surfaces as far as possible. Such telescope with a wide dynamic range dedicated to planetary and exoplanetary sciences does not exist yet. The project, called PLANETS (Poralized Light from Atmospheres of Nearby Extra Terrestrial Planets), develops a new telescope (tentatively named as JHET; Japan Hawaii Europe Telescope) which consists of an off-axis primary mirror with a diameter of 1.8m, and Gregorian optics on an equatorial mount. State-of-art adaptive optics and masking technologies will also be adopted to eliminate the scattering light. This telescope will enables us to do spectro-polarimetric observations and faint plasma and atmospheres around the bright bodies. We will introduce the progress of our ground-based observations and the future plan involving the wide area of the international communities.

  2. Observations of Solar Energetic Particle Events over the Polar Regions of the Sun at Solar Maximum with the Ulysses COSPIN High Energy Telescope and IMP-8*

    NASA Astrophysics Data System (ADS)

    McKibben, R. B.; Lopate, C.; Zhang, M.

    2002-05-01

    The High Energy Telescope (HET) of the Ulysses COSPIN experi-ment measures intensities and spectra of solar energetic particles (SEPs) with good energy and charge resolution at energies above ~30 MeV/n. During the recent passes over the north and south polar re-gions of the sun, Ulysses observed a number of solar energetic particle events associated with solar activity at low latitudes. Where IMP-8 observations were available, all SEP events observed at proton energies >~30 MeV by Ulysses in the polar regions (solar latitudes above 70 degrees) were also observed at IMP-8. HOwever peak intensities were generally lower and the onsets and rises to maximum were in general significantly slower at Ulysses than at IMP. Anisotropies during the onsets of SEP events at Ulysses were in almost all cases directed outward along the nominal Parker spiral interplanetary magnetic field, implying that the source of the particles on the field lines connecting to Ulysses was inside the orbit of Ulysses. In the late stages of events, generally four to five days after onset, particle fluxes at IMP and Ulysses were approximately equal and remained so for the remainder of the decay phase. We will summarize these and other results from both the north and south polar passes and discuss their significance for models of the ac-celeration and propagation of solar energetic particles. * This work was supported in part by NASA Contract JPL-955432 and by NASA Grant NAG5-8032.

  3. Thermal Performance of the Hubble Space Telescope (HST) Solar Array-3 During the Disturbance Verification Test (DVT)

    NASA Technical Reports Server (NTRS)

    Nguyen, Daniel H.; Skladany, Lynn M.; Prats, Benito D.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    The Hubble Space Telescope (HST) is one of NASA's most productive astronomical observatories. Launched in 1990, the HST continues to gather scientific data to help scientists around the world discover amazing wonders of the universe. To maintain HST in the fore front of scientific discoveries, NASA has routinely conducted servicing missions to refurbish older equipment as well as to replace existing scientific instruments with better, more powerful instruments. In early 2002, NASA will conduct its fourth servicing mission to the HST. This servicing mission is named Servicing Mission 3B (SM3B). During SM3B, one of the major refurbishment efforts will be to install new rigid-panel solar arrays as a replacement for the existing flexible-foil solar arrays. This is necessary in order to increase electrical power availability for the new scientific instruments. Prior to installing the new solar arrays on HST, the HST project must be certain that the new solar arrays will not cause any performance degradations to the observatory. One of the major concerns is any disturbance that can cause pointing Loss of Lock (LOL) for the telescope. While in orbit, the solar-array temperature transitions quickly from sun to shadow. The resulting thermal expansion and contraction can cause a "mechanical disturbance" which may result in LOL. To better characterize this behavior, a test was conducted at the European Space Research and Technology Centre (ESTEC) in the Large Space Simulator (LSS) thermal-vacuum chamber. In this test, the Sun simulator was used to simulate on-orbit effects on the solar arrays. This paper summarizes the thermal performance of the Solar Array-3 (SA3) during the Disturbance Verification Test (DVT). The test was conducted between 26 October 2000 and 30 October 2000. Included in this paper are: (1) brief description of the SA3's components and its thermal design; (2) a summary of the on-orbit temperature predictions; (3) pretest thermal preparations; (4) a description of the chamber and thermal monitoring sensors; and (6) presentation of test thermal data results versus flight predictions.

  4. A normal incidence, high resolution X-ray telescope for solar coronal observations

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1985-01-01

    The following major activities were advanced or completed: complete design of the entire telescope assembly and fabrication of all front-end components; specification of all rocket skin sections including bulkheads, feedthroughs and access door; fabrication, curing, and delivery of the large graphite-epoxy telescope tube; engineering analysis of the primary mirror vibration test was completed and a decision made to redesign the mirror attachment to a kinematic three-point mount; detail design of the camera control, payload and housekeeping electronics; and multilayer mirror flats with 2d spacings of 50 A and 60 A.

  5. NEAT: an astrometric space telescope to search for habitable exoplanets in the solar neighborhood

    NASA Astrophysics Data System (ADS)

    Crouzier, A.; Malbet, F.; Kern, P.; Feautrier, P.; Preiss, O.; Martin, G.; Henault, F.; Stadler, E.; Lafrasse, S.; Behar, E.; Saintpe, M.; Dupont, J.; Potin, S.; Lagage, P.-O.; Cara, C.; Leger, A.; Leduigou, J.-M.; Shao, M.; Goullioud, R.

    2014-03-01

    The last decade has witnessed a spectacular development of exoplanet detection techniques, which led to an exponential number of discoveries and a great diversity of known exoplanets. However, it must be noted that the quest for the holy grail of astrobiology, i.e. a nearby terrestrial exoplanet in habitable zone around a solar type star, is still ongoing and proves to be very hard. Radial velocities will have to overcome stellar noise if there are to discover habitable planets around stars more massive than M ones. For very close systems, transits are impeded by their low geometrical probability. Here we present an alternative concept: space astrometry. NEAT (Nearby Earth Astrometric Telescope) is a concept of astrometric mission proposed to ESA which goal is to make a whole sky survey of close (less then 20 pc) planetary systems. The detection limit required for the instrument is the astrometric signal of an Earth analog (at 10 pc). Differential astrometry is a very interesting tool to detect nearby habitable exoplanets. Indeed, for F, G and K main sequence stars, the astrophysical noise is smaller than the astrometric signal, contrary to the case for radial velocities. The difficulty lies in the fact that the signal of an exo-Earth around a G type star at 10 pc is a tiny 0.3 micro arc sec, which is equivalent to a coin on the moon, seen from the Earth: the main challenge is related to instrumentation. In order to reach this specification, NEAT consists of two formation flying spacecraft at a 40m distance, one carries the mirror and the other one the focal plane. Thus NEAT has a configuration with only one optical surface: an off-axis parabola. Consequently, beamwalk errors are common to the whole field of view and have a small effect on differential astrometry. Moreover a metrology system projects young fringes on the focal plane, which can characterize the pixels whenever necessary during the mission. NEAT has two main scientific objectives: combined with radial velocities and direct imaging, it will explore in a quasi systematic way the nearby planetary systems. The resulting catalog of planetary systems will be very useful to constrain planetary formation models. The second objective is to find very close Earth analogs. These will be top priority targets for a spectroscopic mission aimed at detecting biomarquers. The current activities related to NEAT revolve around 3 themes: i) a lab demonstration: an optical bench replicates the NEAT optical configuration and metrology system in order to demonstrate the feasibility of measuring centroids with a differential accuracy of 5 µpixels (corresponding to 0.3 micro arc sec on sky) ii) a definition phase study of the NEAT mission done by CNES (the "French Space Agency") iii) an end to end simulation of the NEAT data reduction pipeline: from astrometric and RVs measurements to planets All of these activities are focused on the need to answer the next ESA call for M class missions in 2014 with an improved NEAT concept.

  6. A photoelectric astrometric telescope using a Ronchi ruling

    NASA Technical Reports Server (NTRS)

    Buffington, Andrew; Geller, Michael R.

    1990-01-01

    A new generation of photoelectric astrometric telescopes promises significant advances for both semiglobal and differential astrometry. Some of these new telescopes have a Ronchi ruling at the prime focal plane. The images move relative to the ruling, behind which photomultipliers or similar detectors view the modulated transmitted light. When several stars are viewed simultaneously, this technique exploits correlations in the atmospheric seeing to significantly improve differential astrometric precision. This article presents some general design and analysis criteria for this type of telescope and describes the particular reflector telescope. This has a 29-cm aperture and has met a 4-milli-arc-second differential precision per 5-minute observation. The system is designed for a program of improved annual parallax and solar-system object measurements.

  7. Formation metrology and control for large separated optics space telescopes

    NASA Technical Reports Server (NTRS)

    Mettler, E.; Quadrelli, M.; Breckenridge, W.

    2002-01-01

    In this paper we present formation flying performance analysis initial results for a representative large space telescope composed of separated optical elements [Mett 02]. A virtual-structure construct (an equivalent rigid body) is created by unique metrology and control that combines both centralized and decentralized methods. The formation may be in orbit at GEO for super-resolution Earth observation, as in the case of Figure 1, or it may be in an Earth-trailing orbit for astrophysics, Figure 2. Extended applications are envisioned for exo-solar planet interferometric imaging by a formation of very large separated optics telescopes, Figure 3. Space telescopes, with such large apertures and f/10 to f/100 optics, are not feasible if connected by massive metering structures. Instead, the new virtual-structure paradigm of information and control connectivity between the formation elements provides the necessary spatial rigidity and alignment precision for the telescope.

  8. A solar station in Ica - Mutsumi Ishitsuka: a research center to improve education at the university and schools

    NASA Astrophysics Data System (ADS)

    Terrazas-Ramos, Raúl

    2012-07-01

    The San Luis Gonzaga National University of Ica has built a solar station, in collaboration with the Geophysical Institute of Peru, the National Astronomical Observatory of Japan and the Hida Observatory. The Solar Station has the following equipment: a digital Spectrograph Solar Refractor Telescope Takahashi 15 cm aperture, 60 cm reflector telescope aperture, a magnetometer-MAGDAS/CPNM and a Burst Monitor Telescope Solar-FMT (Project CHAIN). These teams support the development of astronomical science and Ica in Peru, likewise contributing to science worldwide. The development of basic science will be guaranteed when university students, professors and researchers work together. The Solar Station will be useful for studying the different levels of university education and also for the general public. The Solar Station will be a good way to spread science in the region through public disclosure.

  9. Submillimeter Telescopes

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas G.; Padin, Stephen; Zmuidzinas, Jonas

    The submillimeter band is a critical one for astronomy. It contains spectral and spatial information on very distant newly formed galaxies and on the early stages of star formation within gas clouds. Yet it is one of the few regions of the electromagnetic spectrum still to be made fully available to astronomy. This is in part due to the general difficulties of construction of detectors, receivers, and telescopes for these wavelengths and in part to the attenuating nature of the Earth's atmosphere. In recent years, optical style telescopes have become available, either on high mountain sites, or in the case of the NASA Kuiper Airborne Observatory (KAO) or Stratospheric Observatory for Infrared Astronomy (SOFIA) on board a high-altitude airplane. The James Clerk Maxwell telescope at 15 m and the Caltech Submillimeter Observatory (CSO) telescope at 10.4 m are both large enough to have developed the field. However, the ESA satellite Herschel has now provided the required space platform for complete spectral coverage and the Atacama Large Millimeter/Submillimeter Array (ALMA) the high spatial resolution, aperture synthesis, high-sensitivity platform.

  10. Ultra high resolution images of the solar chromosphere and corona using coordinated rocket and balloon observations

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C., Jr.; Timothy, J. G.; Hoover, Richard B.; Barbee, Troy W., Jr.

    1993-01-01

    A discussion is presented of the scientific objectives that can be pursued by simultaneous coronal/chromospheric observation with the Multi-Spectral Solar Telescope Array (MSSTA), and a new balloon-borne observatory called the Ultra-High Resolution Vacuum Ultraviolet Spectroheliograph (UHRVS). Attention is given to the proposed UHRVS observatory, which will incorporate two instruments, a 65-cm aperture telescope with narrowband filters for high resolution photographic and photoelectric spectroheliograms, and a very high resolution spectrograph which uses a 40-cm aperture telescope. The capabilities of the MSSTA, and the joint UHRVS/MSSTA observing program that is envisioned are reviewed.

  11. The Hadean, Through a Glass Telescopically: Observations of Young Solar Analogs

    NASA Technical Reports Server (NTRS)

    Gaidos, E. J.

    1998-01-01

    Investigations into the Earth's surface environment during the Hadean eon (prior to 3.8 Ga) are hampered by the paucity of the geological and geochemical record and the relative inaccessibility of better-preserved surfaces with possibly similar early histories (i.e., Mars). One approach is to observe nearby, young solar-mass stars as analogs to the Hadean Sun and its environment. A catalog of 38 G and early K stars within 25 pc was constructed based on main-sequence status, bolometric luminosity, lack of known stellar companions within 800 AU, and coronal X-ray luminosities commensurate with the higher activity of solar-mass stars <0.8 b.y. old. Spectroscopic data support the assignment of ages of 0.2 - 0.8 Ga for most of these stars. Observations of these objects will provide insight into external forces that influenced Hadean atmosphere, ocean, and surface evolution (and potential ecosystems), including solar luminosity evolution, the flux and spectrum of solar ultraviolet radiation, the intensity of the solar wind, and the intensity and duration of a late period of heavy bombardment. The standard model of solar evolution predicts a luminosity of 0.75 solar luminosity at the end of the Hadean, implying a terrestrial surface temperature inconsistent with the presence of liquid water and motivating atmospheric greenhouse models. An alternative model fo solar evolution that invokes mass loss, constructed to explain solar Li depletion, attenuates or reverses this luminosity evolution of the atmospheres of Earth and the other terrestrial planets. This model can be tested by Li abundance measurements. The continuum emission from stellar wind plasma during significant mass loss may be detectable at millimeter and radio wavelengths. The Earth (and Moon) experienced a period of intense bombardment prior to 3.8 Ga, long after accretion was completed in the inner solar system and possibly associated with the clearing of residual planetesimals in the outer solar system. Such a bombardment may have contributed volatiles and organics to the surface, but also have limited the appearacne of a biosphere. While planetary systems around solar systems cannot be detected directly with present technology, the thermal emission from the interplanetary dust generated during a similar heavy bombardment period can be. Midinfrared observations of a large uniform sample of solar analogs are used to constrain the frequency and duration of such events.

  12. Telescopes and space exploration

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1976-01-01

    The necessity for different types of telescopes for astronomical investigations is discussed. Major findings in modern astronomy by ground-based and spaceborne telescopes are presented. Observations of the Crab Nebula, solar flares, interstellar gas, and the Black Hole are described. The theory of the oscillating universe is explored. Operating and planned telescopes are described.

  13. Large bearings with incorporated gears, high stiffness, and precision for the Swedish Solar Telescope (SST) on La Palma

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; Bettonvil, Felix C. M.; Jägers, Aswin P. L.; Scharmer, Göran B.

    2006-06-01

    The 1-meter Swedish Solar Telescope (SST) obtains images of the solar surface with an unprecedented resolution of 0.1 arcsec. It consists of a relatively slender tower with on top only the vacuum turret for reflecting downward the solar beam and no protective dome. This is a favourable situation to get good local seeing. Just in the case of some wind, seeing is best for daytime observations, therefore the precision bearings and drives of the elevation- and azimuth axis of the turret have to be stiff against wind. This requires line contact between the meshing teeth of the large gear wheel and the pinion. High preload forces to achieve line contact are not allowed because of appearing stick-slip effects. To reduce the risk on stick-slip a special design of the teeth for high stiffness combined with low friction and smooth transition from one tooth to the next was made. Furthermore, extreme precision in the fabrication was pursued such that relatively small contact forces give already line contact. This required a special order of the successive fabrication steps of the combination of bearing and gear teeth. An additional problem was the relatively thin section of the bearings required for a compact turret construction, needed for best local seeing and minimum wind load. Solutions for all these problems will be discussed. For the large gears the exceptional good DIN quality class 4 for the pitch precision and straightness plus direction of the teeth faces was achieved.

  14. Mg IX emission lines in an active region spectrum obtained with the Solar EUV Rocket Telescope and Spectrograph (SERTS)

    NASA Technical Reports Server (NTRS)

    Keenan, F. P.; Thomas, R. J.; Neupert, W. M.; Conlon, E. S.

    1994-01-01

    Theoretical electron-temperature-sensitive Mg IX emission line ratios are presented for R(sub 1) = I(443.96 A)/I(368.06 A), R(sub 2) = I(439.17 A)/I(368.06 A), R(sub 3) = I(443.37 A)/I(368.06 A), R(sub 4) = I(441.22 A)/I(368.06 A), and R(sub 5) = I(448.28 A)/I(368.06 A). A comparison of these with observational data for a solar active region, obtained during a rocket flight by the Solar EUV Rocket Telescope and Spectrograph (SERTS), reveals excellent agreement between theory and observation for R(sub 1) through R(sub 4), with discrepancies that average only 9%. This provides experimental support for the accuracy of the atomic data adopted in the line ratio calculations, and also resolves discrepancies found previously when the theoretical results were compared with solar data from the S082A instrument on board Skylab. However in the case of R(sub 5), the theoretical and observed ratios differ by almost a factor of 2. This may be due to the measured intensity of the 448.28 A line being seriously affected by instrumental effects, as it lies very close to the long wavelength edge of the SERTS spectral coverage (235.46-448.76 A).

  15. The Advanced Solar Observatory

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C., Jr.; Bailey, Wayne; Chupp, Edward L.; Hudson, Hugh S.; Moore, Ronald; Roberts, William; Hoover, Richard B.

    1990-01-01

    A conceptual plan for the development of a comprehensive long duration solar space observatory, The Advanced Solar Observatory (ASO) is described. The ASO is intended to provide solar astronomers with the observational power necessary to address fundamental problems relating to the solar convection zone and activity cycle; the thermal and nonthermal processes that control the transport of energy, mass, and magnetic flux in the solar atmosphere; the generation of the solar wind; and the dynamics of the inner heliosphere. The ASO concept encompasses three proposed Space Station-based instrument ensembles: (1) the High Resolution Telescope Cluster, which includes far ultraviolet, extreme ultraviolet, and X-ray telescopes; (2) the Pinhole/Occulter Facility, which includes Fourier transform and coded aperture hard X-ray and gamma ray telescopes and occulted ultraviolet and visible light coronagraphs; and (3) the High Energy Facility, which contains neutron, gamma ray, and low frequency radio spectrometers. Two other facilities, the Orbiting Solar Laboratory, and a package of Global Dynamics Instrumentation, will, with the Space Station ensembles, form a comprehensive capability for solar physics. The scientific program of the ASO, current instrument concepts for the Space Station based ASO instrument ensembles, and plans for their accommodation on the Space Station are described.

  16. Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting

    DOEpatents

    Sanders, William J.; Snyder, Marvin K.; Harter, James W.

    1983-01-01

    The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

  17. Direct detection of extra-solar planetary systems from balloon borne telescopes

    NASA Astrophysics Data System (ADS)

    Terrile, Richard J.; Ftaclas, Christ

    1997-01-01

    Analysis of a 1.5-m diameter High Altitude Balloon Circumstellar Imaging Telescope (HABCIT) indicates that it offers a fast and low cost path to direct detection of extrasolar planets. Above an altitude of about 30 km, scatter in the visible due to the atmosphere is more than 1000 times smaller than the diffraction sidelobes for a 1.5-m telescope at 1 arcsec in the visible. This permits a thousandfold reduction in the total background against which the planet must be detected. By flying a scatter-compensated 1.5-m telescope and high efficiency coronagraph on a balloon platform, a very near-term and low-cost opportunity exists to achieve exciting scientific results and technology demonstrations. For a thousandfold reduction in the background, a Jupiter-like planet could be detected around more than 70 stars with an average integration time of 16 h. For the very nearest stars, complete planetary systems can be characterized down to nearly Earth sized planets over a range of orbital distances (1-5 AU).

  18. The Multi Aperture Imaging Array

    NASA Astrophysics Data System (ADS)

    Zarifis, V.; Bell, R. M., Jr.; Benson, L. R.; Cuneo, P. J.; Duncan, A. L.; Herman, B. J.; Holmes, B.; Sigler, R. D.; Stone, R. E.; Stubbs, D. M.; Kendrick, R. L.; Paxman, R. G.; Seldin, J. H.; Löfdahl, M. G.

    A multi-aperture telescope imaging phased array is being demonstrated at the Lockheed Martin Advanced Technology Center in Palo Alto. The sparse array consists of nine afocal telescopes that are combined to a common focus in a Fizeau interferometer configuration. We have demonstrated diffraction limited performance over a 150 micro-radian field of view with broad band (550 to 800 nm) illumination. The relatively high bandwidth closed loop phasing is achieved using phase diversity wavefront sensing techniques. Applications using a filled array for astronomical observations will also be discussed.

  19. RATAN-600 radio telescope in the 24th solar activity cycle. IV. Information system for RATAN-600 solar observations

    NASA Astrophysics Data System (ADS)

    Tokhchukova, S. Kh.

    2011-07-01

    The development of observational equipment and software for processing and efficient representation of spectral and polarization solar microwave observations on the RATAN-600 contributes to obtaining new information about the parameters of plasma at the chromospheric and coronal levels. Current status of information system for RATAN-600 solar observations is described, which is devoted to automatically capturing, storing, transmitting and processing the data and near-real-time publishing them on the Internet. The user web interface for interactive search, visualization, and on-line analysis of the data is available at http://www.spbf.sao.ru/prognoz/.

  20. Single aperture far-infrared observatory (SAFIR)

    NASA Astrophysics Data System (ADS)

    Harvey, Paul M.; Rieke, George H.; Lester, Daniel F.; Benford, Dominic J.

    2003-03-01

    Development of large, far-infrared telescopes in space has taken on a new urgency with breakthroughs in detector technology and recognition of the fundamental importance of the far-infrared spectral region to cosmological questions as well as to understanding how our own Solar System came into being. SAFIR is 10m-class far-infrared observatory that would begin development later in this decade to meet these needs. Its operating temperature (T <= 4 K) and instrument complement would be optimized to reach the natural sky confusion limit in the far-infrared with diffraction-limited peformance down to at least the atmospheric cutoff, λ >~ 40 μm. This would provide a point source sensitivity improvement of several orders of magnitude over that of SIRTF. SAFIR's science goals are driven by the fact that youngest stages of almost all phenomena in the universe are shrouded in absorption by and emission from cool dust that emits strongly in the far-infrared, 20 μm - 1mm. The main drivers on the telescope are operating temperature and aperture. SAFIR can take advantage of much of the technology under development for NGST. Because of the much less stringent requirements on optical accuracy, however, SAFIR can be developed at substantially lower cost.

  1. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  2. Observations of Dark Lanes in Umbral Fine Structure from the Hinode Solar Optical Telescope: Evidence for Magnetoconvection

    NASA Astrophysics Data System (ADS)

    Bharti, Lokesh; Joshi, Chandan; Jaaffrey, S. N. A.

    2007-11-01

    An analysis of high-resolution G-band images of active region NOAA 10930 is presented. The observations were recorded with the Broadband Filter Imager (BFI) attached to the Solar Optical Telescope (SOT) on board the Hinode mission. We observed dark lanes in umbral dots up to six folds in larger ones. Formation of umbral dots from dark core penumbral filament shows dark lanes. The evolution of the light bridge from the dark core penumbral filament is observed, which further disintegrates into umbral dots. These observations are compatible with the simulations of three-dimensional radiative magnetoconvection with gray radiative transfer in sunspot umbra by Schüssler & Vögler, which support the notion that these structures appear as a result of magnetoconvection.

  3. The participation of the Instituto de Astrofísica de Canarias in the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Collados, M.; Calcines, A.; Diaz, J. J.; Gracia, F.; Grivel-Gelly, C.; López, R.; Mangharam, H.; Páez, E.; Perez, A.; Rasilla, J. L.; Rodríguez, L. F.; Sánchez-Capuchino, J.; Socas-Navarro, H.

    2008-07-01

    This communication reviews the participation of the Instituto de Astrofísica de Canarias (IAC) in the design of the European Solar Telescope. Apart of being the coordinator institution of the whole project, and, as such, responsible for the project managing, the IAC leads several tasks like overall instrument definition or characterization of the atmospheric turbulence profile with height or the definition of adequate detectors. More in particular, the IAC will design and build two long-base SHABAR (SHAdow BAnd Ranger), instruments to measure medium-altitude seeing. The IAC is also responsible for the design, together with other institutions, of the design of grating spectropolarimeters suitable for multiwavelength high spatial and spectral resolution.

  4. Atomic force microscopy characterization of Zerodur mirror substrates for the extreme ultraviolet telescopes aboard NASA's Solar Dynamics Observatory

    SciTech Connect

    Soufli, Regina; Baker, Sherry L.; Windt, David L.; Gullikson, Eric M.; Robinson, Jeff C.; Podgorski, William A.; Golub, Leon

    2007-06-01

    The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV)wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement with EUV reflectance measurements of the mirrors after multilayer coating.

  5. Atomic force microscopy characterization of Zerodur mirror substrates for the extreme ultraviolet telescopes aboard NASA's Solar Dynamics Observatory.

    PubMed

    Soufli, Regina; Baker, Sherry L; Windt, David L; Gullikson, Eric M; Robinson, Jeff C; Podgorski, William A; Golub, Leon

    2007-06-01

    The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV) wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement with EUV reflectance measurements of the mirrors after multilayer coating. PMID:17514269

  6. A CATALOG OF SOLAR X-RAY PLASMA EJECTIONS OBSERVED BY THE SOFT X-RAY TELESCOPE ON BOARD YOHKOH

    SciTech Connect

    Tomczak, M.; Chmielewska, E. E-mail: chmielewska@astro.uni.wroc.pl

    2012-03-01

    A catalog of X-ray plasma ejections (XPEs) observed by the Soft X-ray Telescope on board the Yohkoh satellite has been recently developed in the Astronomical Institute of University of Wroclaw. The catalog contains records of 368 events observed in years 1991-2001 including movies and cross-references to associated events like flares and coronal mass ejections (CMEs). One hundred sixty-three XPEs out of 368 in the catalog were not reported until now. A new classification scheme of XPEs is proposed in which morphology, kinematics, and recurrence are considered. The relation between individual subclasses of XPEs and the associated events was investigated. The results confirm that XPEs are strongly inhomogeneous, responding to different processes that occur in the solar corona. A subclass of erupting loop-like XPEs is a promising candidate to be a high-temperature precursor of CMEs.

  7. Improving characterization and modeling of polarization effects in the calibration retarders for the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Sueoka, Stacey

    2016-05-01

    The Daniel K Inouye Solar Telescope (DKIST) will have a suite of first-light polarimetric instrumentation requiring calibration of a complex off-axis optical path. The DKIST polarization calibration process requires modeling and fitting for several optical, thermal and mechanical effects. Three dimensional polarization ray trace codes (PolarisM) allow modeling of polarization errors inherent in assuming a linear retardation as a function of angle of incidence for our calibration retarders at Gregorian and Coudé foci. Stress induced retardation effects from substrate and coating absorption, mechanical mounting stresses, and inherent polishing uniformity tolerances introduce polarization effects at significant levels. These effects require careful characterization and modeling for mitigation during design, construction, calibration and science observations. Modeling efforts, amplitude estimates and mitigation efforts will be presented for the suite of DKIST calibration optics planned for first-light operations.

  8. Ke Alahaka Program of the Advanced Technology Solar Telescope (ATST) Mitigation Initiative Provides STEM Workshops for Native Hawaiian Students

    NASA Astrophysics Data System (ADS)

    Coopersmith, A.; Cie, D. K.; Naho`olewa, D.; Chirico, J.

    2012-12-01

    The Advanced Technology Solar Telescope (ATST) Mitigation Initiative and the Kahikina O Ka Lā Program are NSF-funded projects at the University of Hawai`i Maui College. These projects will provide instruction and activities intended to increase diversity in STEM or STEM-related careers. Ke Alahaka, the 2012 summer bridge program, was offered to Native Hawaiian high-school students who indicated an interest in STEM areas. Three STEM-content workshops were offered including Marine Science, Sustainable Energy Technology, and Computer Science and Engineering. Students attended hands-on classes three days a week for a month concentrating on only one of the three topics. On the other days, students participated in a Hawaiian Studies course designed to provide a cultural context for the STEM instruction. Focus groups and other program assessments indicate that 50% of the 60 students attending the workshops intend to pursue a STEM major during their undergraduate studies.

  9. Limitations Placed on the Time Coverage, Isoplanatic Patch Size and Exposure Time for Solar Observations Using Image Selection Procedures in the Presence of Telescope Aberrations

    NASA Astrophysics Data System (ADS)

    Beckers, J. M.; Rimmele, T. R.

    1996-12-01

    Image selection, adaptive optics and post-facto image restoration methods are all techniques being used for diffraction limited imaging with ground-based solar and stellar telescopes. Often these techniques are used in a hybrid form like e.g. the application of adaptive optics and/or post-facto image restoration in combination with already good images obtained by image selection in periods of good seeing. Fried (JOSA 56, 1372, 1966), Hecquet and Coupinot (J. Optics/Paris 16, 21, 1985) and Beckers ("Solar and Stellar Granulation", Kluwer, Rutten & Severino Eds, 55, 1988) already discussed the usefulness of image selection, or the "Lucky Observer" mode, for high resolution imaging. All assumed perfect telescope optics. In case of moderate telescope aberrations image selection can still lead to diffraction limited imaging but only when the atmospheric wavefront aberration happens to compensate that of the telescope. In this "Very Lucky Observer" mode the probability of obtaining a good image is reduced over the un-aberrated case, as are the size of the isoplanatic patch and the exposure time. We describe an analysis of these effects for varying telescope aberrations. These result in a strong case for the removal of telescope aberrations either by initial implementation or by the use of slow active optics.

  10. Occultation systems in space-borne telescopes dedicated to the observation of the solar corona

    NASA Astrophysics Data System (ADS)

    Landini, Federico; Fineschi, Silvano; Moses, Daniel; Romoli, Marco

    The observation of the solar corona in white light is a challenging task because of the poor contrast of the signal (i.e., the solar corona) to the stray light noise. The main task a coronagraph or heliospheric imager designer shall face is the reduction of the stray light. This is particularly important in space-borne instruments with an external occultation. A large part of the field literature is dedicated to the optimization of the occulting system in order to reduce the total amount of stray light on the instrument focal plane. From the pioneering work of Newkirk and Bohlin in 1965, several solutions have been elaborated in optimizing the occulters shape. Despite a series of classical optimizing shapes has been employed in many solar missions, each optimization shall fit the constraint of the instrument design and of the mission characteristics. Forthcoming solar space missions such as ASPIICS on PROBA3 (formation flight) and Solar Orbiter (approaching the Sun with a perihelion of 0.28 AU) will introduce considerable technological innovations and their characteristics impose demanding efforts on the scientific payloads in order to be compliant with the constraints. This work reviews the most effective occultation systems that have been employed by past coronagraphs, spectrographs and heliospheric imagers. Moreover, it illustrates the innovative solutions that are going to be adopted by the missions to come.

  11. Fine-scale structures and material flows of quiescent filaments observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Li; Xue, Zhi-Ke; Xiang, Yong-Yuan; Yang, Li-Heng

    2015-10-01

    Study of the small-scale structures and material flows associated with solar quiescent filaments is very important for understanding the formation and equilibrium of solar filaments. Using high resolution Hα data observed by the New Vacuum Solar Telescope, we present the structures of barbs and material flows along the threads across the spine in two quiescent filaments on 2013 September 29 and on 2012 November 2, respectively. During the evolution of the filament barb, several parallel tube-shaped structures formed and the width of the structures ranged from about 2.3 Mm to 3.3 Mm. The parallel tube-shaped structures merged together accompanied by material flows from the spine to the barb. Moreover, the boundary between the barb and surrounding atmosphere was very neat. The counter-streaming flows were not found to appear alternately in the adjacent threads of the filament. However, the large-scale patchy counter-streaming flows were detected in the filament. The flows in one patch of the filament have the same direction but flows in the adjacent patch have opposite direction. The patches of two opposite flows with a size of about 10″ were alternately exhibited along the spine of the filament. The velocity of these material flows ranged from 5.6 km s-1 to 15.0 km s-1. The material flows along the threads of the filament did not change their direction for about two hours and fourteen minutes during the evolution of the filament. Our results confirm that the large-scale counter-streaming flows with a certain width along the threads of solar filaments exist and are coaligned well with the threads.

  12. Effect of Solar Exposure on the Atomic Oxygen Erosion of Hubble Space Telescope Aluminized-Teflon Thermal Shields

    NASA Technical Reports Server (NTRS)

    Guo, Aobo; Ashmead, Claire C.; deGroh, Kim K.

    2012-01-01

    When exposed to low Earth orbital (LEO) environment, external spacecraft materials degrade due to radiation, thermal cycling, micrometeoroid and debris impacts, and atomic oxygen (AO) interaction. Collisions between AO and spacecraft can result in oxidation of external spacecraft surface materials, which can lead to erosion and severe structural and/or optical property deterioration. It is therefore essential to understand the AO erosion yield (Ey), the volume loss per incident oxygen atom (cu cm/atom), of polymers to assure durability of spacecraft materials. The objective of this study was to determine whether solar radiation exposure can increase the rate of AO erosion of polymers in LEO. The material studied was a section of aluminized-Teflon (DuPont) fluorinated ethylene propylene (Al-FEP) thermal shield exposed to space on the Hubble Space Telescope (HST) for 8.25 years. Retrieved samples were sectioned from the circular thermal shield and exposed to ground laboratory thermal energy AO. The results indicate that the average Ey of the solar facing HST Al-FEP was 1.9 10(exp -24)cu cm/atom, while the average Ey of the anti-solar HST Al-FEP was 1.5 10(exp -24)cu cm/atom. The Ey of the pristine samples was 1.6- 1.7 10(exp -24)cu cm/atom. These results indicate that solar exposure affects the post-flight erosion rate of FEP in a plasma asher. Therefore, it likely affects the erosion rate while in LEO.

  13. Ground based solar radio observations during solar maximum mission

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1983-01-01

    The Very Large Array (VLA) and the Westerbork Synthesis Radio Telescope (WSRT) were used for making aperture synthesis maps of solar active and flaring regions. Observations of the Flare buildup in the form of increased intensity and polarization were made. Ring structure associated with sunspots were interpreted as due to the existence of cool material above the spot. Model computations were performed to explain the total intensity and polarization structures of a continuous set of active region maps.

  14. Feasibility study of a layer-oriented wavefront sensor for solar telescopes: reply.

    PubMed

    Marino, Jose; Wöger, Friedrich

    2014-11-10

    We appreciate the thoughtful comments by Kellerer [Appl. Opt.53, 7643 (2014)10.1364/AO.53.007643] to our recent study [Appl. Opt.53, 685 (2014)10.1364/AO.53.000685] in which we evaluate the practicability of a layer-oriented wavefront sensing approach suggested for use in solar multiconjugate adaptive optics. After careful review of Kellerer's comment, we remain cautious about the feasibility of a solar-layer-oriented Shack-Hartmann wavefront sensor. However, we strongly encourage further analysis and proof-of-concept work that addresses the difficulties outlined in our original paper and that demonstrates the operating principles behind such an instrument. PMID:25402985

  15. Optica aperture synthesis

    NASA Astrophysics Data System (ADS)

    van der Avoort, Casper

    2006-05-01

    Optical long baseline stellar interferometry is an observational technique in astronomy that already exists for over a century, but is truly blooming during the last decades. The undoubted value of stellar interferometry as a technique to measure stellar parameters beyond the classical resolution limit is more and more spreading to the regime of synthesis imaging. With optical aperture synthesis imaging, the measurement of parameters is extended to the reconstruction of high resolution stellar images. A number of optical telescope arrays for synthesis imaging are operational on Earth, while space-based telescope arrays are being designed. For all imaging arrays, the combination of the light collected by the telescopes in the array can be performed in a number of ways. In this thesis, methods are introduced to model these methods of beam combination and compare their effectiveness in the generation of data to be used to reconstruct the image of a stellar object. One of these methods of beam combination is to be applied in a future space telescope. The European Space Agency is developing a mission that can valuably be extended with an imaging beam combiner. This mission is labeled Darwin, as its main goal is to provide information on the origin of life. The primary objective is the detection of planets around nearby stars - called exoplanets- and more precisely, Earth-like exoplanets. This detection is based on a signal, rather than an image. With an imaging mode, designed as described in this thesis, Darwin can make images of, for example, the planetary system to which the detected exoplanet belongs or, as another example, of the dust disk around a star out of which planets form. Such images will greatly contribute to the understanding of the formation of our own planetary system and of how and when life became possible on Earth. The comparison of beam combination methods for interferometric imaging occupies most of the pages of this thesis. Additional chapters will treat related subjects, being experimental work on beam combination optics, a description of a novel formalism for aberration retrieval and experimental work on nulling interferometry. The Chapters on interferometric imaging are organized in such a way that not only the physical principles behind a stellar interferometer are clear, but these chapters also form a basis for the method of analysis applied to the interferometers - -or rather beam combination methods- under consideration. The imaging process in a stellar interferometer will be treated as the inversion of a linear system of equations. The definition of interferometric imaging in this thesis can be stated to be the reconstruction of a luminosity distribution function on the sky, that is, in angular measure, larger than the angular diffraction limited spot size -or Point-Spread Function (PSF)- of a single telescope in the array and that contains, again in angular measure, spatial structure that is much smaller than the PSF of a single telescope. This reconstruction has to be based on knowledge of the dimensions of the telescope array and the detector. The detector collects intensity data that is formed by observation of the polychromatic luminosity distribution on the sky and is deteriorated by the quantum-nature of light and an imperfect electronic detection process. Therefore, the imaging study presented in this thesis can be regarded to be a study on the signal characteristics of various interferometers while imaging a polychromatic wide-field stellar source. The collection of beam combination methods under consideration consists of four types. Among these are two well-known types, having either co-axially combined beams as in the Michelson-Morley experiment to demonstrate the existence of ether, or beams that follow optical paths as if an aperture mask were placed in front of a telescope, making the beams combine in the focus of that telescope, as suggested by Fizeau. For separated apertures rather than an aperture mask, these optical paths are stated to be homothetic. In short, these two types will be addressed as the Michelson or the Homothetic type. The other two types are addressed as Densified and Staircase. The first one is short for densified pupil imaging, an imaging technique very similar to the Homothetic type, be it that the natural course of light after the aperture mask is altered. However, the combination of the beams of light is again in focus. The Staircase method is an alternative to the co-axial Michelson method and lends its name from the fact that a staircase-shaped mirror is placed in an intermediate focal plane after each telescope in the array, before combining the beams of light co-axially. This addition allows stellar imaging as with the Michelson type, with the advantage of covering a large field-of-view. The details of these methods will intensively be discussed in this thesis, but the introduction of them at this point allows a short list of results, found by comparing them for equal imaging tasks. Homothetic imagers are best suited for covering a wide field-of-view, considering the information content of the interferometric signals these arrays produce. The large number of detectors does not seem to limit the imaging performance in the presence of noise, due to the high ratio of coherent versus incoherent information in the detector signal. The imaging efficiency of a Michelson type array is also high, although -considering only polychromatic wide-field imaging tasks- the ratio of coherent versus incoherent information in the detected signals is very low. This results in very large observation times needed to produce images comparable to those obtained with a Homothetic array. A detailed presentation of the characteristics of the detected signals in a co-axial Michelson array reveal that such signals, obtained by polychromatic observation of extended sources, have fringe envelope functions that do not allow Fourier-spectroscopy to obtain high-resolution spectroscopic information about such a source. For the Densified case, it is found that this method can indeed provide an interferometric PSF that is more favorable than a homothetic PSF, but only for narrow-angle observations. For polychromatic wide-field observations, the Densified-PSF is field-dependent, for which the image reconstruction process can account. Wide-field imaging using the favorable properties of the Densified-PSF can be performed, by using special settings of the delay or optical path length difference between interferometer arms and including observations with several settings of delay in the observation data. The Staircase method is the second best method for the imaging task under consideration. The discontinuous nature of the staircase-shaped mirrors does not give rise to a discontinuous reconstructed luminosity distribution or non-uniformly covered spatial frequencies. The intrinsic efficiency of the interferometric signal in this type of interferometer is worse than that of the other co-axial method, although the ratio of coherent versus incoherent signal in the data -the length of the fringe packet in one intensity trace-e- is nearly ultimate. The inefficiency is overwhelmingly compensated for by the very short observation time needed. Besides numerical studies of interferometer arrays, one interferometric imager was also studied experimentally. A homothetic imager was built, comprising three telescopes with fully separated beam relay optics. The pointing direction, the location and the optical path length of two of the three beams are electronically controllable. The beams can be focused together to interfere, via a beam combiner consisting of curved surfaces. This set-up allows to measure the required accuracies at which certain optical elements have to be positioned. Moreover, this set-up demonstrates that without knowledge of the initial pointing directions, locations and optical path lengths of the beams, the situation of homothesis can be attained, solely based on information from the focal plane of the set-up. Further experiments show that the approximation of exact homothesis is limited by the optical quality of the beam combiner optics. Parallel to the experiments on homothesis, a study was performed to evaluate the use of the Extended Nijboer-Zernike (ENZ) formalism for analysis of multiple aperture optical systems. It is envisaged that an aberration retrieval algorithm, provided with the common focus of a homothetic array, can be used to detect misalignment of or even aberrations in the sub-apertures of the sparse synthetic aperture. The ENZ formalism is a powerful tool to describe the focal intensity profile in an optical imaging system, imaging a monochromatic point source through a pupil that is allowed to have a certain transmission profile and phase aberration function over the pupil. Moreover, the formalism allows calculation of intensity profiles outside the best-focus plane. With the intensity information of several through-focus planes, enough information is available to reconstruct the pupil function from it. The formalism is described, including the reconstruction algorithm. Although very good results are obtained for general pupil functions, the results for synthetic pupil functions are not very promising. The detailed description of the ENZ-aberration retrieval reveals the origin of the breakdown of the retrieval process. Finally, a description of experiments on nulling interferometry is given, starting with the presentation of an experimental set-up for three-beam nulling. A novel strategy for polychromatic nulling is treated here, with the goal of relieving the tight phase constraint on the spectra in the individual beams. This theoretically allows broad band-nulling with a high rejection ratio without using achromatic phase shifters. The disappointing results led to an investigation of the spectra of the individual beams. The origin of the unsatisfactory level of the rejection ratio is found in the spectral unbalance of the beams. Before branching off, the beams have an equal spectrum. Then, the encounter of different optical elements with individually applied coatings, the control of beam-power per beam and finally the beam coupling into a single-mode fiber, apparently alter the spectra in such a way that the theoretically achievable level of the rejection ratio cannot be reached. The research described in this thesis provides onsets for research in several areas of interest related to aperture synthesis and guidelines concerning the design of synthetic telescopes for imaging. As such, this research contributes to the improvement of instrumentation for observational astronomy, in particular for stellar interferometry. While nulling interferometry is the detection technique that allows a space telescope array such as ESA-Darwin to identify exoplanets, optical aperture synthesis imaging is the technique that can make images of the planetary systems to which these exoplanets belong. Moreover, many objects can be observed that represent earlier versions of our planetary system, our Sun and even our galaxy, the Milky Way. Observing these objects might answer questions about the origins of the Earth itself and the life on it.

  16. A Scanning Hartmann Focus Test for the EUVI Telescopes aboard STEREO

    NASA Technical Reports Server (NTRS)

    Ohl, Ray; Antonille, Scott; Aronstein, Dave; Dean, Bruce; Eichhorn, Bil; Frey, Brad; Kubalak, Dave; Shiri, Ron; Smith, Scott; Wilson, Mark; Redman, Kevin; Janssen, Douglas; d'Entremont, Joseph

    2007-01-01

    The Solar TErrestrial RElations Observatory (STEREO), the third mission in NASA's Solar Terrestrial Probes program, was launched in 2006 on a two year mission to study solar phenomena. STEREO consists of two nearly identical satellites, each carrying an Extreme Ultraviolet Imager (EUVI) telescope as part of the Sun Earth Connection Coronal and Heliospheric Investigation instrument suite. EUVI is a normal incidence, 98mm diameter, Ritchey-Chretien telescope designed to obtain wide field of view images of the Sun at short wavelengths (17.1-30.4nm) using a CCD detector. The telescope entrance aperture is divided into four quadrants by a mask near the secondary mirror spider veins. A mechanism that rotates another mask allows only one of these sub-apertures to accept light over an exposure. The EUVI contains no focus mechanism. Mechanical models predict a difference in telescope focus between ambient integration conditions and on-orbit operation. We describe an independent check of the ambient, ultraviolet, absolute focus setting of the EUVI telescopes after they were integrated with their respective spacecraft. A scanning Hartmann-like test design resulted from constraints implied by the EUVI aperture select mechanism. This inexpensive test was simultaneously coordinated with other NASA integration and test activities in a high-vibration, clean room environment. The total focus test error was required to be better than +/-0.05 mm. We describe the alignment and test procedure, sources of statistical and systematic error, and then the focus determination results using various algorithms. The results are consistent with other tests of focus alignment and indicate that the EUVI telescopes meet the ambient focus offset requirements. STEREO is functioning well on-orbit and the EUVI telescopes meet their on-orbit image quality requirements.

  17. Doppler winds mapped around the lower thermospheric terminator of Venus: 2012 solar transit observations from the James Clerk Maxwell Telescope

    NASA Astrophysics Data System (ADS)

    Clancy, R. Todd; Sandor, Brad J.; Hoge, James

    2015-07-01

    Doppler shifts of sub-millimeter 12 CO (346 GHz) and 13 CO (330 GHz) and millimeter 12 CO (230 GHz) line absorptions were mapped around the circum-disk terminator of Venus before, during, and after the June 5, 2012 solar transit, employing the James Clerk Maxwell Telescope (JCMT). Radiative transfer analysis of the solar transit 12 CO thermal line absorptions yields cross-terminator winds in the Venus lower thermosphere (100-120 km) over the local time (LT) and latitude extent of the atmospheric limb presented by the inferior conjunction, nightside apparent disk of Venus. The unique solar transit geometry provides enhanced spatial resolution of the terminator (0.2 h in local time, LT) associated with solar illumination of this atmospheric limb region, and so provides the first characterization of the instantaneous distribution of cross terminator flow in the Venus lower thermosphere versus LT and latitude. Furthermore, by mapping Doppler winds over the nightside disk preceding and following the solar transit, we place the highly variable zonal and subsolar-to-antisolar (SSAS) circulation components of the nightside lower thermosphere (Clancy, R.T., Sandor, B.J., Moriarty-Schieven, G.H. [2012a]. Icarus 217, 794-812) in the context of the day-to-night cross terminator flow that drives this chaotic nightside dynamical regime. The solar transit observations indicate substantially supersonic (200-300 m/s) day-to-night cross terminator winds that are significantly (by 50-150 m/s) stronger over the evening versus the morning terminator. They also exhibit surprisingly large (50%) variations over a 1-2 h timescale that challenge explanation. These behaviors likely contribute to both the variability and the apparent retrograde zonal component of circulation in the Venus nightside upper atmosphere. Hence, these observations support dynamical arguments for preferential deceleration of the morning sector SSAS circulation (e.g., Alexander, M.J. [1992]. Geophys. Res. Lett. 19, 2207-2210), as recently simulated in the Venus thermospheric general circulation model of Hoshino et al. (Hoshinom, N. et al. [2013]. J. Geophys. Res. 118, 2004-2015).

  18. RATAN-600 radio telescope in the 24th solar-activity cycle. III. System of data acquisition and control of the solar spectral facility

    NASA Astrophysics Data System (ADS)

    Baldin, S. V.; Garaimov, V. I.

    2011-07-01

    We report the development of a multichannel data acquisition and control system for the Spectral and Polarization High-Resolution Solar Research System, installed at the RATAN-600 radio telescope. This facility provides high-speed registration of signals from 240 channels and controls the preparation for observations and the process of automatic observations. The hardware is made in the form factor of 3U Evromekhanika modules. The measurement facility is controlled by the software based on the QT cross-platform library (the open source version), which can be run both on Linux and Windows operating systems. The data are written to a magnetic carrier and then transferred to the computer network of the Special Astrophysical Observatory for archiving, and can be accessed by external users.

  19. Telescoping in on the Microscopic Origins of the Fast Solar Wind

    NASA Astrophysics Data System (ADS)

    Cranmer, S. R.

    2011-12-01

    Despite many years of study, the basic physical processes that are responsible for producing the solar wind are not known (or at least not universally agreed upon). The fact that we have an overabundance of proposed ideas for solving the problems of coronal heating and wind acceleration can be seen as both a blessing and a curse. It is a blessing because it highlights the insight and creativity of the community, but it is a curse because we still do not know how to validate or falsify many of these ideas. Discerning the presence of any given proposed mechanism is difficult not only because measurements are limited, but also because many of the suggested processes act on a wide range of spatial scales (from centimeters to solar radii) with complex feedback effects that are not yet understood. This presentation will discuss a few key examples and controversies regarding the importance of small spatial and temporal scales in the regions where the solar wind is accelerated. For example, new observations have led to a revived debate about whether the hot plasma in the solar wind is injected dynamically from cooler regions below or whether it "evaporates" from the combined effects of radiation and conduction from above. There is also debate about how the open field lines are energized: Is the energy input from waves and turbulent eddies that propagate up from the Sun and dissipate, or is the constantly evolving magnetic carpet responsible for heating the plasma via reconnection? In some areas, traditional observational diagnostics of magnetohydrodynamic plasma properties may not be sufficient to distinguish between competing predictions. Thus, this presentation will also describe why it is probably wise to confront the truly microscopic (nonlinear, non-Maxwellian, collisionless) nature of the relevant particles and fields. Theories and measurements that "zoom in" to this level of kinetic detail have the greatest potential for improving our understanding of the origins of coronal heating and solar wind acceleration.

  20. ATM photoheliograph. [at a solar observatory

    NASA Technical Reports Server (NTRS)

    Prout, R. A.

    1975-01-01

    The design and fabrication are presented of a 65 cm photoheliograph functional verification unit (FVU) installed in a major solar observatory. The telescope is used in a daily program of solar observation while serving as a test bed for the development of instrumentation to be included in early space shuttle launched solar telescopes. The 65 cm FVU was designed to be mechanically compatible with the ATM spar/canister and would be adaptable to a second ATM flight utilizing the existing spar/canister configuration. An image motion compensation breadboard and a space-hardened, remotely tuned H alpha filter, as well as solar telescopes of different optical configurations or increased aperture are discussed.

  1. The preliminary analysis of sunshine durations with meteorological data for the Chinese Giant Solar Telescope site survey

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Zhao, Liang

    2013-09-01

    Using meteorological data is fundamental in any site survey for astronomical instruments. As a first step, the analyses of sunshine duration for candidate sites are crucial for remote site survey for solar observing instruments. In western China, some ground-based meteorological stations have collected daily sunshine data from only partial-sky area since they had to be constructed in valley. One aim of this study is to demonstrate the geographical properties of those meteorological stations. Our goal is to investigate the true sunshine durations obtained if the stations are installed at the top of nearby mountain without screen effect. We make use of the three-dimensional geographical data from the Google Earth software and the statistical meteorological data from the National Meteorology Administration and the meteorological stations. All the 76 national basic meteorological observing stations with altitude over 3000 m located in western China are measured. Since astronomical instruments tend to be installed at the top of a mountain, we need to take into account the loss of the sunshine durations in making the remote site survey. Our results, after the compensation, show that the condition of sunshine duration in the Hengduan-Shan Mountains (HSM) area can meet the basic requirement of at least 2500 h yr-1 for the Chinese Giant Solar Telescope (CGST) site survey.

  2. Observations of Oppositely Directed Umbral Wavefronts Rotating in Sunspots Obtained from the New Solar Telescope of BBSO

    NASA Astrophysics Data System (ADS)

    Su, J. T.; Ji, K. F.; Cao, W.; Banerjee, D.; Priya, T. G.; Zhao, J. S.; Bai, X. Y.; Chen, J.; Zhang, M.; Ji, H. S.

    2016-02-01

    We study the umbral waves as observed by chromospheric imaging observations of two sunspots with the New Solar Telescope at the Big Bear Solar Observatory. We find that the wavefronts (WFs) rotate clockwise and form a one-armed spiral structure in the first sunspot, whereas two- and three-armed structures arise in the second sunspot where the WFs rotate anticlockwise and clockwise alternately. All the spiral arms display propagation outwards and become running penumbral waves once they cross the umbral boundaries, suggesting that the umbral and penumbral waves propagate along the same inclined field lines. We propose that the one-armed spiral structure may be produced by the WF reflections at the chromospheric umbral light bridge, and the multi-armed spirals may be related to the twist of the magnetic field in the umbra. Additionally, the time lag of the umbral oscillations in between the data of He i 10830 Å and {{H}}α -0.4 Å is ∼17 s, and it is ∼60 s for that in between the data of 304 Å and {{H}}α -0.4 Å. This indicates that these disturbances are slow magnetoacoustic waves in nature, and that they propagate upward along the inclined lines with fast radial expansions causing horizontal velocities of the running waves.

  3. Observations of the structure and evolution of solar flares with a soft X-ray telescope

    NASA Technical Reports Server (NTRS)

    Vorpahl, J. A.; Gibson, E. G.; Landecker, P. B.; Mckenzie, D. L.; Underwood, J. M.

    1975-01-01

    Soft X ray flare events were observed with the S-056 X-ray telescope that was part of the ATM complement of instruments aboard SKYLAB. Analyses of these data are reported. The observations are summarized and a detailed discussion of the X-ray flare structures is presented. The data indicated that soft X-ray emitted by a flare come primarily from an intense well-defined core surrounded by a region of fainter, more diffuse emission. An analysis of flare evolution indicates evidence for preliminary heating and energy release prior to the main phase of the flare. Core features are found to be remarkably stable and retain their shape throughout a flare. Most changes in the overall configuration seem to be result of the appearance, disappearance or change in brightness of individual features, rather than the restructuring or reorientation of these features. Brief comparisons with several theories are presented.

  4. Preliminary design analysis for the solar optical telescope main mirror actuator

    NASA Technical Reports Server (NTRS)

    Dunn, R. B.

    1977-01-01

    The resolution of the SOT Gregorian telescope was maintained if the conic foci of the elliptical secondary and parabolic primary were made to coincide within plus or minus 38 microns across the prime focus plane and to within 5 microns in focus. An error in coincidence across the focal plane caused all point images to show additional coma with all the comatic tails pointing in the same direction. An error in focus became magnified by the square of the magnification of the secondary and simply increased the diameter of the point source. Offsetting or rastering the sun may be accomplished by swinging the primary in an arc about the point of coincidence of the conic foci so long as the coincidence is kept to within the tolerance stated.

  5. Astrometry with Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Benedict, G.; Murdin, P.

    2000-11-01

    In 1990 NASA launched the HUBBLE SPACE TELESCOPE. In addition to cameras and spectrographs usable from the far ultraviolet to the near-infrared, the observatory contains three white-light INTERFEROMETERS. As part of engineering and science support their primary task was telescope guiding; to position and hold science targets within the science instrument apertures with tolerances approaching 0.1'...

  6. CHROMOSPHERIC SIGNATURES OF SMALL-SCALE FLUX EMERGENCE AS OBSERVED WITH NEW SOLAR TELESCOPE AND HINODE INSTRUMENTS

    SciTech Connect

    Yurchyshyn, V. B.; Goode, P. R.; Abramenko, V. I.; Chae, J.; Cao, W.; Andic, A.; Ahn, K.

    2010-10-20

    With the ever-increasing influx of high-resolution images of the solar surface obtained at a multitude of wavelengths, various processes occurring at small spatial scales have become a greater focus of our attention. Complex small-scale magnetic fields have been reported that appear to have enough stored energy to heat the chromosphere. While significant progress has been made in understanding small-scale phenomena, many specifics remain elusive. We present here a detailed study of a single event of disappearance of a magnetic dipole and associated chromospheric activity. Based on New Solar Telescope H{alpha} data and Hinode photospheric line-of-sight magnetograms and Ca II H images, we report the following. (1) Our analysis indicates that even very small dipoles (elements separated by about 0.''5 or less) may reach the chromosphere and trigger non-negligible chromospheric activity. (2) Careful consideration of the magnetic environment where the new flux is deposited may shed light on the details of magnetic flux removal from the solar surface. We argue that the apparent collision and disappearance of two opposite polarity elements may not necessarily indicate their cancellation (i.e., reconnection, emergence of a 'U' tube, or submergence of {Omega} loops). In our case, the magnetic dipole disappeared by reconnecting with overlying large-scale inclined plage fields. (3) Bright points (BPs) seen in off-band H{alpha} images are very well correlated with the Ca II H BPs, which in turn are cospatial with G-band BPs. We further speculate that, in general, H{alpha} BPs are expected to be cospatial with photospheric BPs; however, a direct comparison is needed to refine their relationship.

  7. A Future Large-Aperture UVOIR Space Observatory: Study Overview

    NASA Astrophysics Data System (ADS)

    Postman, Marc; Thronson, Harley A.; Feinberg, Lee; Redding, David; Stahl, H. Philip

    2015-01-01

    The scientific drivers for very high angular resolution coupled with very high sensitivity and wavefront stability in the UV and optical wavelength regime have been well established. These include characterization of exoplanets in the habitable zones of solar type stars, probing the physical properties of the circumgalactic medium around z < 2 galaxies, and resolving stellar populations across a broad range of galactic environments. The 2010 NRC Decadal Survey and the 2013 NASA Science Mission Directorate 30-Year Roadmap identified a large-aperture UVOIR observatory as a priority future space mission. Our joint NASA GSFC/JPL/MSFC/STScI team has extended several earlier studies of the technology and engineering requirements needed to design and build a single filled aperture 10-meter class space-based telescope that can enable these ambitious scientific observations. We present here an overview of our new technical work including a brief summary of the reference science drivers as well as in-depth investigations of the viable telescope architectures, the requirements on thermal control and active wavefront control systems, and the range of possible launch configurations.

  8. Telescopic vision contact lens

    NASA Astrophysics Data System (ADS)

    Tremblay, Eric J.; Beer, R. Dirk; Arianpour, Ashkan; Ford, Joseph E.

    2011-03-01

    We present the concept, optical design, and first proof of principle experimental results for a telescopic contact lens intended to become a visual aid for age-related macular degeneration (AMD), providing magnification to the user without surgery or external head-mounted optics. Our contact lens optical system can provide a combination of telescopic and non-magnified vision through two independent optical paths through the contact lens. The magnified optical path incorporates a telescopic arrangement of positive and negative annular concentric reflectors to achieve 2.8x - 3x magnification on the eye, while light passing through a central clear aperture provides unmagnified vision.

  9. Modular assembled space telescope

    NASA Astrophysics Data System (ADS)

    Feinberg, Lee D.; Budinoff, Jason; MacEwen, Howard; Matthews, Gary; Postman, Marc

    2013-09-01

    We present a new approach to building a modular segmented space telescope that greatly leverages the heritage of the Hubble Space Telescope and the James Webb Space Telescope. The modular design in which mirror segments are assembled into identical panels allows for economies of scale and for efficient space assembly that make a 20-m aperture approach cost effective. This assembly approach can leverage NASA's future capabilities and has the power to excite the public's imagination. We discuss the science drivers, basic architecture, technology, and leveraged NASA infrastructure, concluding with a proposed plan for going forward.

  10. Modular Assembled Space Telescope

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.; Budinoff, Jason; MacEwen, Howard; Matthews, Gary; Postman, Marc

    2013-01-01

    We present a new approach to building a modular segmented space telescope that greatly leverages the heritage of the Hubble Space Telescope and the James Webb Space Telescope. The modular design in which mirror segments are assembled into identical panels allows for economies of scale and for efficient space assembly that make a 20-m aperture approach cost effective. This assembly approach can leverage NASA's future capabilities and has the power to excite the public's imagination. We discuss the science drivers, basic architecture, technology, and leveraged NASA infrastructure, concluding with a proposed plan for going forward.

  11. Resolving the Fan-spine Reconnection Geometry of a Small-scale Chromospheric Jet Event with the New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Zeng, Zhicheng; Chen, Bin; Ji, Haisheng; Goode, Philip R.; Cao, Wenda

    2016-03-01

    Jets are ubiquitously present in both quiet and active regions on the Sun. They are widely believed to be driven by magnetic reconnection. A fan-spine structure has been frequently reported in some coronal jets and flares, and has been regarded as a signature of ongoing magnetic reconnection in a topology consisting of a magnetic null connected by a fan-like separatrix surface and a spine. However, for small-scale chromospheric jets, clear evidence of such structures is rather rare, although it has been implied in earlier works that showed an inverted-Y-shaped feature. Here we report high-resolution (0.″16) observations of a small-scale chromospheric jet obtained by the New Solar Telescope (NST) using 10830 Å filtergrams. Bi-directional flows were observed across the separatrix regions in the 10830 Å images, suggesting that the jet was produced due to magnetic reconnection. At the base of the jet, a fan-spine structure was clearly resolved by the NST, including the spine and the fan-like surface, as well as the loops before and after the reconnection. A major part of this fan-spine structure, with the exception of its bright footpoints and part of the base arc, was invisible in the extreme ultraviolet and soft X-ray images (observed by the Atmosphere Imaging Assembly and the X-Ray Telescope, respectively), indicating that the reconnection occurred in the upper chromosphere. Our observations suggest that the evolution of this chromospheric jet is consistent with a two-step reconnection scenario proposed by Török et al.

  12. The large binocular telescope.

    PubMed

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010. PMID:20517352

  13. Cost Modeling for Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2011-01-01

    Parametric cost models are an important tool for planning missions, compare concepts and justify technology investments. This paper presents on-going efforts to develop single variable and multi-variable cost models for space telescope optical telescope assembly (OTA). These models are based on data collected from historical space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models.

  14. Thermal Properties of A Solar Coronal Cavity Observed with the X-Ray Telescope on Hinode

    NASA Technical Reports Server (NTRS)

    Reeves, Katherine K.; Gibson, Sarah E.; Kucera, Theresa A.; Hudson, Hugh S.; Kano, Ryouhei

    2011-01-01

    Coronal cavities are voids in coronal emission often observed above high latitude filament channels. Sometimes, these cavities have areas of bright X-ray emission in their centers. In this study, we use data from the X-ray Telescope (XRT) on the Hinode satellite to examine the thermal emission properties of a cavity observed during July 2008 that contains bright X-ray emission in its center. Using ratios of XRT filters, we find evidence for elevated temperatures in the cavity center. The area of elevated temperature evolves from a ring-shaped structure at the beginning of the observation, to an elongated structure two days later, finally appearing as a compact round source four days after the initial observation. We use a morphological model to fit the cavity emission, and find that a uniform structure running through the cavity does not fit the observations well. Instead, the observations are reproduced by modeling several short cylindrical cavity "cores" with different parameters on different days. These changing core parameters may be due to some observed activity heating different parts of the cavity core at different times. We find that core temperatures of 1.75 MK, 1.7 MK and 2.0 MK (for July 19, July 21 and July 23, respectively) in the model lead to structures that are consistent with the data, and that line-of-sight effects serve to lower the effective temperature derived from the filter ratio.

  15. WIDESPREAD NANOFLARE VARIABILITY DETECTED WITH HINODE/X-RAY TELESCOPE IN A SOLAR ACTIVE REGION

    SciTech Connect

    Terzo, Sergio; Reale, Fabio; Miceli, Marco; Klimchuk, James A.; Kano, Ryouhei; Tsuneta, Saku

    2011-08-01

    It is generally agreed that small impulsive energy bursts called nanoflares are responsible for at least some of the Sun's hot corona, but whether they are the explanation for most of the multimillion-degree plasma has been a matter of ongoing debate. We present here evidence that nanoflares are widespread in an active region observed by the X-Ray Telescope on board the Hinode mission. The distributions of intensity fluctuations have small but important asymmetries, whether taken from individual pixels, multipixel subregions, or the entire active region. Negative fluctuations (corresponding to reduced intensity) are greater in number but weaker in amplitude, so that the median fluctuation is negative compared to a mean of zero. Using Monte Carlo simulations, we show that only part of this asymmetry can be explained by Poisson photon statistics. The remainder is explainable through a tendency for exponentially decreasing intensity, such as would be expected from a cooling plasma produced from a nanoflare. We suggest that nanoflares are a universal heating process within active regions.

  16. The LAMA prototype telescope

    NASA Astrophysics Data System (ADS)

    Truax, Bruce E.; Lanzetta, Kenneth M.; Hickson, Paul

    2004-07-01

    As a step toward the Large-Aperture Mirror Array, the LAMA telescope consortium is planning the construction of a prototype telescope. Intended as a test bed for the required technologies, the LAMA Prototype Telescope (LPT) would be a coherent array of six 6.15-m liquid mirrors. Like the LAMA telescope, each telescope would be provided with tracking optics, path-length equalization, phase tracking and adaptive systems. The beam combiner, consisting of six concave adaptive mirrors, would have the Fizeau geometry enabling wide-field interferometric imaging. In order to facilitate construction, testing and operation, the LPT wil be located at or near a developed astronomical site in the continental United States. While the primary purpose of the facility is to develop and prove the LAMA telescope concept and technologies, it will also be a powerful instrument for scientific research. With a light-collecting area equivalent to that of a 15-m telescope, the LPT would be capable of interferometric imaging with the resolution of a 20-m telescope. The telescope would be provided with an infrared imaging camera. This paper describes the telescope design and discusses the main technical challenges that must be faced.

  17. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    SciTech Connect

    Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina; Alexander, Caroline; Golub, Leon; DeLuca, Edward; Schuler, Timothy

    2014-05-20

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  18. HILT - A heavy ion large area proportional counter telescope for solar and anomalous cosmic rays

    NASA Technical Reports Server (NTRS)

    Klecker, Berndt; Hovestadt, Dietrich; Scholer, M.; Arbinger, H.; Ertl, M.; Kaestle, H.; Kuenneth, E.; Laeverenz, P.; Seidenschwang, E.; Blake, J. B.

    1993-01-01

    The HILT sensor has been designed to measure heavy ion elemental abundances, energy spectra, and direction of incidence in the mass range from He to Fe and in the energy range 4 to 250 MeV/nucleon. With its large geometric factor of 60 sq cm sr the sensor is optimized to provide compositional and spectral measurements for low intensity cosmic rays (i.e. for small solar energetic particle events and for the anomalous component of cosmic rays). The instrument combines a large area ion drift chamber-proportional counter system with two arrays of 16 Li-drift solid state detectors and 16 CsI crystals. The multi dE/dx-E technique provides a low background mass and energy determination. The sensor also measures particle direction. Combining these measurements with the information on the spacecraft position and attitude in the low-altitude polar orbit, it will be possible to infer the ionic charge of the ions from the local cutoff of the Earth's magnetic field. The ionic charge in this energy range is of particular interest because it provides unique clues to the origin of these particles and has not been investigated systematically so far. Together with the other instruments on board SAMPEX (LEICA, MAST, and PET), a comprehensive measurement of the entire solar and anomalous particle population will be achieved.

  19. The Substructure of the Solar Corona Observed in the Hi-C Telescope

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore calculate how the intensity scales from a low-resolution (AIA) pixels to high-resolution (Hi-C) pixels for both the dynamic events and "background" emission (meaning, the steady emission over the 5 minutes of data acquisition time). We find there is no evidence of substructure in the background corona; the intensity scales smoothly from low-resolution to high-resolution Hi-C pixels. In transient events, however, the intensity observed with Hi-C is, on average, 2.6 times larger than observed with AIA. This increase in intensity suggests that AIA is not resolving these events. This result suggests a finely structured dynamic corona embedded in a smoothly varying background.

  20. Discovery of Finely Structured Dynamic Solar Corona Observed in the Hi-C Telescope

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e. have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70 percent of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  1. DEBRIS DISKS AROUND SOLAR-TYPE STARS: OBSERVATIONS OF THE PLEIADES WITH THE SPITZER SPACE TELESCOPE

    SciTech Connect

    Sierchio, J. M.; Rieke, G. H.; Su, K. Y. L.; Plavchan, P.; Stauffer, J. R.; Gorlova, N. I.

    2010-04-01

    We present Spitzer MIPS observations at 24 {mu}m of 37 solar-type stars in the Pleiades and combine them with previous observations to obtain a sample of 71 stars. We report that 23 stars, or 32% +- 6.8%, have excesses at 24 {mu}m at least 10% above their photospheric emission. We compare our results with studies of debris disks in other open clusters and with a study of A stars to show that debris disks around solar-type stars at 115 Myr occur at nearly the same rate as around A-type stars. We analyze the effects of binarity and X-ray activity on the excess flux. Stars with warm excesses tend not to be in equal-mass binary systems, possibly due to clearing of planetesimals by binary companions in similar orbits. We find that the apparent anti-correlations in the incidence of excess and both the rate of stellar rotation and also the level of activity as judged by X-ray emission are statistically weak.

  2. Hosting the Student Telescope Network First Site

    NASA Astrophysics Data System (ADS)

    Rice, M.; Bisque, S. T. M. D.; Stencel, R. E.

    2002-05-01

    The demonstration site for the Student Telescope Network, and for the first practical public-use Internet observatory, as powered by iBisque software, is at New Mexico Skies in southern New Mexico (www.nmskies.com). The observatory site, located approximately 14 miles northeast of the Apache Point Observatory and the Sunspot National Solar Observatory, is at 2,225 meters elevation in the southern Sacramento Mountains of New Mexico. It has very dark transparent skies, excellent weather conditions, good seeing and a high proportion of clear photometric nights. The Internet observatory pod concept includes placing multiple telescopes (as many as twelve), in each of several 32-foot roll-off roof observatories. The 14 to 16 inch aperture telescopes, mounted on accurately pointing and tracking Bisque "Paramounts" (www.bisque.com), plus KAF-1001E CCD cameras, are controlled with a browser-based sky-map GUI (patent pending) control system also developed by Software Bisque. We provide detail on the concept and its implementation. As of mid-March, 2002, the first demonstration telescope has been operating nightly for about 60 days. Over 420 users have registered on the telescope server, more than 2,000 images have been taken and their FITS files downloaded to users' computers all over the world. In this and the companion poster, we report our experiences over the period of the February-May (2002) trial period, including technical challenges and performance measures on the Internet observatory's operations. We further detail lessons learned for future development of browser-based Internet observatories for high school/college level instructional use, and lessons applicable to the use of Internet-based